
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Open Access Dissertations

2-2011

Hardening Software Against Memory Errors and
Attacks
Albert Eugene Novark
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/open_access_dissertations

Part of the Computer Sciences Commons

This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in
Open Access Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Recommended Citation
Novark, Albert Eugene, "Hardening Software Against Memory Errors and Attacks" (2011). Open Access Dissertations. 346.
https://scholarworks.umass.edu/open_access_dissertations/346

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F346&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/open_access_dissertations?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F346&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/open_access_dissertations?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F346&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F346&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/open_access_dissertations/346?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F346&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

HARDENING SOFTWARE AGAINST MEMORY
ERRORS AND ATTACKS

A Dissertation Presented

by

ALBERT EUGENE NOVARK

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

February 2011

Department of Computer Science

c© Copyright by Albert Eugene Novark 2011

All Rights Reserved

HARDENING SOFTWARE AGAINST MEMORY
ERRORS AND ATTACKS

A Dissertation Presented

by

ALBERT EUGENE NOVARK

Approved as to style and content by:

Emery D. Berger, Chair

Scott F. H. Kaplan, Member

Israel Koren, Member

Yannis Smaragdakis, Member

Andrew G. Barto, Department Chair
Department of Computer Science

To BK Reeves.

ACKNOWLEDGMENTS

I’d first like to thank Emery Berger, my thesis advisor, for his unwavering en-

thusiasm and support. His influence has taught me to always approach research

pragmatically, but also to explore the ideas that just can’t work. I also thank my

dissertation committee: Scott Kaplan, Israel Koren, and Yannis Smaragdakis, for

their valuable insights, feedback, and support.

I am fortunate to have worked with Ben Zorn, Cliff Click, Sam Guyer, Kathryn

McKinley, and Erik Learned-Miller, who provided valuable guidance on projects we

worked on together, but more importantly, taught me different ways of thinking about

research and solving problems. Leeanne Leclerc and Laurie Downey deserve special

thanks for making my experience at UMass go as smoothly as possible.

I couldn’t have gotten any of this done without the help of fellow PLASMA lab-

mates, including Vitaliy Lvin, Ting Yang, Matthew Hertz, Tongping Liu, Charlie

Curtsinger, and Justin Aquadro. I am also grateful for sharing an office with Trek

Palmer, Tim Richards, and Ed Walters, who provided both support and much-needed

distraction.

I’m indebted all the friends I’ve made during graduate school. I’d particularly like

to thank George Konidaris, Sarah Osentoski, Steve Murtagh, Ricky Chang, Aaron

St. John, TJ Brunette, Cheryl Caskey, and Scott Niekum. Everyone else: forgive me

for forgetting you; you know I’m writing this at the very last minute.

Finally, I thank my parents, sister, and the rest of my family for their unconditional

love and support, even when I got the crazy idea to get a Ph.D.

v

ABSTRACT

HARDENING SOFTWARE AGAINST MEMORY
ERRORS AND ATTACKS

FEBRUARY 2011

ALBERT EUGENE NOVARK

B.S., UNIVERSITY OF TEXAS

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Emery D. Berger

Programs written in C and C++ are susceptible to a number of memory errors,

including buffer overflows and dangling pointers. At best, these errors cause crashes

or performance degradation. At worst, they enable security vulnerabilities, allowing

denial-of-service or remote code execution. Existing runtime systems provide little

protection against these errors. They allow minor errors to cause crashes and allow

attackers to consistently exploit vulnerabilities.

In this thesis, we introduce a series of runtime systems that protect deployed ap-

plications from memory errors. To guide the design of our systems, we analyze how

errors interact with memory allocators to allow consistent exploitation of vulnerabil-

ities. Our systems improve software in two ways: first, they tolerate memory errors,

allowing programs to continue proper execution. Second, they decrease the probabil-

ity of successfully exploiting security vulnerabilities caused by memory errors. Our

vi

first system, Archipelago, protects exceptionally sensitive server applications against

severe errors using an object-per-page randomized allocator. It provides near-100%

protection against most buffer overflows. Our second system, DieHarder, combines

ideas from Archipelago, DieHard, and other systems to enable maximal protection

against attacks while incurring minimal runtime and memory overhead. Our final sys-

tem, Exterminator, automatically corrects heap-based buffer overflows and dangling

pointers without requiring programmer intervention. Exterminator relies on both a

low-overhead randomized allocator and statistical inference techniques to automati-

cally isolate and correct errors in deployed applications.

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . v

ABSTRACT . vi

LIST OF TABLES . xii

LIST OF FIGURES .xiii

CHAPTER

INTRODUCTION . 1

1. BACKGROUND . 6

1.1 Dynamic Memory Allocation . 6

1.1.1 Freelist-based Allocators . 6
1.1.2 BiBOP-style Allocators . 8

1.1.2.1 OpenBSD Allocator . 9

1.2 Memory Errors . 10

1.2.1 Buffer Overflows . 11
1.2.2 Dangling Pointers . 12

1.3 Virtual Memory . 12

1.3.1 Overview . 13
1.3.2 Core Programming Interface . 14
1.3.3 Implementation Details . 15
1.3.4 Extensions . 16

1.4 Probabilistic Memory Safety . 17

1.4.1 Infinite Heap Semantics . 17

viii

1.4.2 Probabilistic Approximation . 17
1.4.3 DieHard . 18

1.5 Discussion . 19

2. MEMORY ERROR EXPLOITATION . 20

2.1 Threat Model . 20

2.1.1 Landscape . 20

2.2 Attacks . 23

2.2.1 Heap Overflow Attacks . 23

2.2.1.1 Overflow attack model . 23
2.2.1.2 Specific attacks . 24
2.2.1.3 Allocator Analysis . 25

2.2.2 Heap Spraying Attacks . 28

2.2.2.1 Heap spraying attack model . 28
2.2.2.2 Allocator Analysis . 29

2.2.3 Dangling Pointer Attacks . 31

2.2.3.1 Reuse Vulnerabilities . 32
2.2.3.2 Allocator Analysis . 33
2.2.3.3 Specific Attack: Inline Metadata . 34
2.2.3.4 Allocator Analysis . 35

2.3 Countermeasures . 35

3. ARCHIPELAGO: PROVIDING EXTREME BUFFER
OVERFLOW PROTECTION . 37

3.1 Archipelago Architecture . 39

3.1.1 Randomizing Object-Per-Page Allocator . 39
3.1.2 Hot Object Space Management . 42
3.1.3 Cold Storage . 44

3.2 Evaluation . 47

3.2.1 Experimental Methodology . 47
3.2.2 Server Application Performance . 48
3.2.3 Memory-Intensive Program Performance . 50

ix

3.2.4 Impact of Coloring . 52
3.2.5 Space Overhead . 52
3.2.6 Address Space and Hot Space Sizing . 54
3.2.7 Avoiding Injected Faults . 54
3.2.8 Avoiding Real Buffer Overflows . 57

3.3 Conclusion . 58

4. DIEHARDER: PROVIDING MAXIMAL PROTECTION WITH
MINIMUM OVERHEAD . 59

4.1 DieHard Analysis . 59
4.2 DieHarder Design and Implementation . 61
4.3 DieHarder Analysis . 64
4.4 DieHarder Evaluation . 66

5. EXTERMINATOR: PROBABILISTICALLY ISOLATING
BUFFER OVERFLOW AND DANGLING POINTER
ERRORS . 68

5.1 Software Architecture . 70

5.1.1 Exterminator’s Heap Layout . 70
5.1.2 DieFast: A Probabilistic Debugging Allocator 72
5.1.3 Modes of Operation . 76

5.2 Iterative and Replicated Error Isolation . 79

5.2.1 Buffer Overflow Detection . 79
5.2.2 Dangling Pointer Isolation . 83

5.3 Cumulative Error Isolation . 84

5.3.1 Buffer Overflow Detection . 84
5.3.2 Dangling Pointer Isolation . 87

5.4 Error Correction . 88

5.4.1 Buffer overflow correction . 89
5.4.2 Dangling pointer correction . 90
5.4.3 The Correcting Memory Allocator . 90
5.4.4 Collaborative Correction . 91

5.5 Results . 92

5.5.1 Exterminator Runtime Overhead . 92
5.5.2 Memory Error Correction . 93

x

5.5.2.1 Injected Faults . 93
5.5.2.2 Real Faults . 95

5.5.3 Patch Overhead . 96

5.6 Conclusion . 96

6. RELATED WORK . 98

6.1 Buffer Overflows . 98
6.2 Dangling Pointers . 100
6.3 Allocator Security . 101

6.3.1 Metadata Protection . 101
6.3.2 Randomized Memory Managers . 101
6.3.3 Heap Spraying Countermeasures . 102

6.4 Other Related Work . 102

6.4.1 VM techniques for memory management . 102
6.4.2 Automatic Repair . 102
6.4.3 Automatic Debugging . 103
6.4.4 Fault Tolerance . 103

7. CONCLUSION . 105

7.1 Contributions . 105
7.2 Future Work . 106

BIBLIOGRAPHY . 108

xi

LIST OF TABLES

Table Page

1.1 Allocator security properties (see the appropriate section for
explanations). A check indicates the presence of a
security-improving feature; a question mark indicates it is
optional. While OpenBSD’s allocator employs a range of security
features, the systems described in this thesis provide significantly
higher reliability and security. 7

3.1 Server benchmark characteristics: maximum live size, total allocated
memory over the life of the program, and allocation rate. 48

3.2 The performance of various runtime systems in response to injected
memory errors (Section 3.2.7). Archipelago provides the best
protection against overflows of all sizes and frequencies, and
reasonable protection against dangling pointer errors (all
executions fail with GNU libc). 56

xii

LIST OF FIGURES

Figure Page

1.1 A fragment of a freelist-based heap, as used by Linux and Windows.
Object headers precede each object, which make it easy to free
and coalesce objects but allow overflows to corrupt the heap. 7

1.2 A fragment of a segregated-fits BiBOP-style heap, as used by the
BSD allocators (PHKmalloc and OpenBSD). Memory is allocated
from page-aligned chunks, and metadata (size, type of chunk) is
maintained in a page directory. The dotted lines indicate the list
of free objects inside the chunk. 8

1.3 Buffer overflows from stack and heap sources . 11

1.4 Dangling pointer error with corruption . 13

3.1 Archipelago’s software architecture. Archipelago randomly allocates
heap objects in virtual address space (Section 3.1.1). It tracks the
hot objects, which are stored one per page (Section 3.1.2). Cold
objects are compacted and placed in cold storage, and the
physical memory associated with their page frames is relinquished
(Section 3.1.3). 39

3.2 Pseudo-code for Archipelago’s malloc. 40

3.3 Pseudo-code for Archipelago’s free. 41

3.4 Pseudo-code for Archipelago’s compaction routine (Section 3.1.3). 44

3.5 Pseudo-code for Archipelago’s uncompaction routine
(Section 3.1.3). 46

3.6 Performance across a range of server applications (Section 3.2.2),
normalized to GNU libc (smaller is better). 49

3.7 Performance metrics for the memory-intensive espresso benchmark
(Section 3.2.3), normalized to GNU libc (smaller is better). 51

xiii

3.8 Runtime of the memory-intensive espresso benchmark under memory
pressure (Section 3.2.3). 51

3.9 Resident memory usage with and without memory pressure
(Section 3.2.5), normalized to GNU libc. Under memory pressure,
Linux quickly reclaims Archipelago’s uncommitted pages, making
its physical memory consumption strictly lower than with
DieHard-1024. 53

3.10 Impact of sizing parameters on espresso runtime (Section 3.2.6). 55

4.1 An overview of DieHarder’s heap layout. 62

4.2 Runtime overhead of the different allocators, normalized to their
runtime using OpenBSD’s allocator. In exchange for a substantial
increase in entropy, DieHarder imposes on average a 20%
performance penalty vs. OpenBSD for CPU-intensive
benchmarks, though it has no performance impact on Firefox (see
Section 4.4). 66

5.1 An abstract view of Exterminator’s heap layout. Metadata below the
horizontal line contains information used for error isolation and
correction (see Section 5.1.1). 71

5.2 The adaptive DieHard heap layout, used by Exterminator. Objects in
the same size class are allocated randomly from separate
miniheaps, which combined hold M times more memory than
required (here, M = 2). 71

5.3 Site information hash function, used to store allocation and
deallocation call sites (see Section 5.1.1). 72

5.4 Pseudo-code for DieFast, a probabilistic debugging allocator
(Section 5.1.2). 73

5.5 Exterminator’s replicated architecture (Section 5.1.3). Replicas are
equipped with different seeds that fully randomize their
DieFast-based heaps (Section 5.1.2), input is broadcast to all
replicas, and output goes to a voter. A crash, output divergence,
or signal from DieFast triggers the error isolator (Section 5.2),
which generates runtime patches. These patches are fed to
correcting allocators (Section 5.4), which fix the bug for current
and subsequent executions. 78

xiv

5.6 Pseudo-code for the correcting memory allocator, which incorporates
the runtime patches generated by the error isolator. 89

5.7 Runtime overhead for Exterminator across a suite of benchmarks,
normalized to the performance of GNU libc (Linux) allocator. 92

xv

INTRODUCTION

Memory errors, including buffer overflows, dangling pointers, and memory leaks,

remain a leading cause of program crashes and security vulnerabilities. These errors

affect almost all applications, including internet servers, desktop applications, and

embedded systems. Managed programming languages such as C# and Java provide

memory safety, detecting overflows by performing bounds checks and preventing dan-

gling pointers by using type-safe garbage collection. However, many commonly-used

applications are written in unmanaged languages such as C and C++ that provide

little protection against these errors.

Ideally, even unmanaged language implementations would handle these errors

gracefully. Errors should be tolerated whenever possible: overflows should not cor-

rupt useful data, and dangling pointers and memory leaks should be prevented by

garbage collection. When toleration is not possible, programs should resist security

vulnerabilities by eliminating the possibility of successful exploitation of errors.

Techniques such as bounds-checking and garbage collection that deterministically

ensure memory safety for Java and related languages have been applied to C/C++.

Unfortunately, some aspects of C/C++ complicate the implementation of these tech-

niques. Bounds checking requires validating all pointer arithmetic, slowing down

program execution by an order of magnitude. Garbage collection prevents dangling

pointer errors and many memory leaks. However, precise garbage collection requires

reliable distinction of pointer and non-pointer values, which is impossible in C. One

solution is conservative garbage collection, but it cannot reclaim all unused mem-

ory and has unpredictable performance. Such systems thus rarely used in C/C++

production systems because of these drawbacks.

1

While deterministic memory safety may require unacceptable tradeoffs, probabilis-

tic approaches sacrifice 100% protection in order to maintain acceptable runtime and

memory overheads. Systems implementing probabilistic memory safety provide sound

probabilistic guarantees about error tolerance. Existing systems, including those de-

scribed in this dissertation, rely on randomized runtime systems to achieve these

guarantees. Berger and Zorn first introduced the concept of probabilistic memory

safety and implemented DieHard [9], which provides probabilistic protection against

buffer overflows and dangling pointer errors.

By definition, probabilistic memory safety does not tolerate all errors. When

tolerance fails, the runtime system should limit the effect of the error to prevent

security vulnerabilities. In the context of security, the failure modes of the runtime

system are as important as its ability to fully tolerate errors. Our systems provide

probabilistic protection against attacks by decreasing the probability of attack success

when error tolerance fails.

In some cases, error tolerance and vulnerability resistance are in tension. The

runtime system should prevent program crashes due to benign programming errors

while simultaneously preventing exploitation of errors, even if the latter goal requires

terminating the program.

Contributions

In this dissertation, we focus on the interactions between memory allocators and

memory errors, which often cause crashes and security vulnerabilities. We describe

several systems that increase error tolerance and decrease attack effectiveness when

compared to existing memory allocators, including DieHard.

Specifically, this thesis makes the following contributions:

• We analyze the interaction between several widely-used allocators and memory

errors. We show that conventional allocator designs are inherently vulnerable

to a number of attack strategies. We analyze the success probability of several

2

attack strategies against both traditional and randomized allocators and show

that predictability is the inherent weakness that enables consistent successful

attacks. Furthermore, we show that allocator features that increase reliability

can have a negative impact on security.

Building on this analysis, we implement three systems that provide enhanced

security and reliability over the state-of-the-art. Each system provides sound

probabilistic guarantees about error tolerance and security, which we analyze

and prove. Specifically:

• We present a runtime system called Archipelago that deterministically toler-

ates limited overflows while providing strong protection against larger overflows

and dangling pointers. Archipelago’s design fully protects against contiguous

buffer overflow exploits. We analyze Archipelago’s error and attack tolerance

and show that it provides much greater protection than DieHard.

To provide this enhanced protection, Archipelago allocates one object per vir-

tual page and relies on virtual memory protection to enable compaction of stale

objects. Archipelago has low runtime and memory overhead for applications

with low heap footprint, such as small server applications, but is not suitable

for general-purpose use.

• We present DieHarder, a memory allocator that combines ideas from DieHard,

Archipelago, and the OpenBSD allocator to provide maximal protection against

attacks while incurring minimal runtime and memory overheads. We show em-

pirically that DieHarder provides its enhanced security with modest perfor-

mance overhead (around 20% on SPECint2006, but no observable effect on the

Firefox browser).

• Finally, we present Exterminator, a runtime system that automatically iso-

lates and corrects buffer overflows and dangling pointers. Using information

3

gathered over multiple program runs, it produces runtime patches that correct

and prevent similar errors from manifesting in future executions. These patches

are semantically sound, meaning that they cannot introduce further errors into

otherwise correct programs. Exterminator has several different modes of opera-

tion for both debugging and deployment scenarios. Its error isolation algorithms

are statistically sound and have and provably low false positive and negative

rates.

While DieHarder and Archipelago enhance security by lowering the probability

of a single attack’s success, Exterminator adapts the program execution when

errors occur, making any vulnerability a moving target. After repeated failed

attacks, Exterminator will detect and isolate the error, eliminating or changing

the vulnerability. This combination of adaptation and randomization makes

most attacks infeasible.

Outline

This thesis is organized as follows. In Chapter 1, we describe several types of

memory errors and explain their impact on reliability and security. We also present

background material on dynamic memory allocation, including information on state-

of-the-art general-purpose memory allocators. We then describe the hardware and

operating system mechanisms for virtual memory support upon which Archipelago

and DieHarder depend. In Chapter 2, we present a threat model for heap attacks and

describe several attack strategies that target allocator weaknesses. In the subsequent

chapters, we describe three runtime systems that enhance reliability and security. In

Chapter 3, we present Archipelago and demonstrate that it greatly increases error tol-

erance and security over DieHard for server applications. In Chapter 4, we describe

and analyze DieHarder, an allocator which combines the best properties of Archi-

pelago and DieHard to provide maximal protection against security vulnerabilities

4

while remaining practical for general-purpose programs. Finally, in Chapter 5, we

introduce Exterminator, and demonstrate its effectiveness at automatically isolating

and correcting buffer overflow and dangling pointer errors. In Chapter 6, we provide

an overview of previous work, including work specifically targeting memory errors as

well as general software fault tolerance and error avoidance. Finally, we summarize

our contributions and conclude in Chapter 7.

5

CHAPTER 1

BACKGROUND

In this thesis, we address two types of memory errors in the context of dynamic

memory management: buffer overflows and dangling pointers. In this chapter, we

first introduce dynamic memory management and discuss the major design choices

in that space. We then discuss the properties of each type of memory error.

1.1 Dynamic Memory Allocation

The functions that support memory management for C and C++ (malloc and

free, new and delete) are implemented in the C runtime library. Different operat-

ing systems and platforms implement these functions differently, with varying design

decisions and features. In nearly all cases, the algorithms underpinning these al-

locators were primarily designed to provide rapid allocation and deallocation while

maintaining low fragmentation [82], without any thought given to their interaction

with memory errors. We describe the allocation algorithms used by Windows, Linux,

FreeBSD, and OpenBSD, focusing on implementation details with reliability and se-

curity implications. Table 1.1 summarizes the security-related characteristics of these

allocators.

1.1.1 Freelist-based Allocators

The memory managers used by both Windows and Linux are freelist-based:

they manage freed space on linked lists, generally organized into bins corresponding

to a range of object sizes. Figure 1.1 illustrates an allocated object within the Lea

6

Windows DLMalloc 2.7 PHKmalloc OpenBSD
No freelists (§ 1.1.1) X X
No headers (§ 1.1.1) X X
BiBOP (§ 1.1.2) X X
Fully-segregated metadata (§ 1.1.2.1) X
Destroy-on-free (§ 1.1.2.1) X?
Sparse page layout (§ 1.1.2.1) X
Placement entropy (bits) (§ 1.1.2.1) 0 0 0 4
Reuse entropy (bits) (§ 1.1.2.1) 0 0 0 5.4

Table 1.1. Allocator security properties (see the appropriate section for explana-
tions). A check indicates the presence of a security-improving feature; a question
mark indicates it is optional. While OpenBSD’s allocator employs a range of security
features, the systems described in this thesis provide significantly higher reliability
and security.

16 24

prev
chunk
size

curr
chunk
size

allocated space 24 12 free space

Figure 1.1. A fragment of a freelist-based heap, as used by Linux and Windows.
Object headers precede each object, which make it easy to free and coalesce objects
but allow overflows to corrupt the heap.

allocator (DLmalloc). Version 2.7 of the Lea allocator forms the basis of the allocator

in GNU libc [44].

Inline metadata. Like most freelist-based allocators, the Lea allocator prepends

a header to each allocated object that contains its size and the size of the previous

object. This metadata allows it to efficiently place freed objects on the appropriate

free list (since these are organized by size), and to coalesce adjacent freed objects into

a larger chunk.

In addition, freelist-based allocators typically thread the freelist through the freed

chunks in the heap. Freed chunks thus contain the size information (in the headers)

as well as pointers to the next and previous free chunks on the appropriate freelist

(inside the freed space itself). This implementation has the significant advantage over

7

aligned to
page

boundary

16 chunk 4096 first 4096 follow 8 chunk

16 16 16 16 16

8 chunkpage
directory

Figure 1.2. A fragment of a segregated-fits BiBOP-style heap, as used by the BSD al-
locators (PHKmalloc and OpenBSD). Memory is allocated from page-aligned chunks,
and metadata (size, type of chunk) is maintained in a page directory. The dotted lines
indicate the list of free objects inside the chunk.

external freelists of requiring no additional memory to manage the linked list of free

chunks.

Unfortunately, inline metadata also provides an excellent attack surface. Even

small overflows from application objects are likely to overwrite and corrupt allocator

metadata. This metadata is present in all applications, allowing application-agnostic

attacks techniques. Attackers have found numerous ways of exploiting this inherent

weakness of freelist-based allocators, including the ability to perform arbitrary code

execution (see Section 2.2 for attacks on freelist-based allocators, and Section 2.3 for

countermeasures).

1.1.2 BiBOP-style Allocators

In contrast to Windows and Linux, FreeBSD’s PHKmalloc [40] and OpenBSD’s

current allocator (derived from PHKmalloc) employ a heap organization known as

segregated-fits BiBOP-style. Figure 1.2 provides a pictorial representation of part of

such a heap. The allocator divides memory into contiguous areas that are a multiple

of the system page size (typically 4K). This organization into pages gives rise to the

name “Big Bag of Pages”, or “BiBOP” [33]. BiBOP allocators were originally used to

provide cheap access to type data for high-level languages, but they are also suitable

for general-purpose allocation.

8

In addition to dividing the heap into pages, both PHKmalloc and OpenBSD’s

allocator ensure that all objects in the same page have the same size—in other words,

objects of different sizes are segregated from each other. The allocator stores object

size and other information in metadata structures either placed at the start of each

page (for small size classes), or allocated from the heap itself. A pointer to this struc-

ture is stored in the page directory, an array of pointers to each managed page. The

allocator can locate the metadata for individual pages in constant time by masking

off the low-order bits and computing an index into the page directory.

On allocation, PHKmalloc first finds a page containing an appropriately sized free

chunk. It maintains a list of non-full pages within each size class. These freelists are

threaded through the corresponding page metadata structures. Upon finding a page

with an empty chunk, it scans the page’s bitmap to find the first available free chunk,

marks it as allocated, and returns its address.

Page-resident metadata. As opposed to freelist-based heaps, BiBOP-style allo-

cators generally have no inline metadata: they maintain no internal state between

allocated objects or within freed objects. However, they often store heap metadata

at the start of pages, or within metadata structures allocated adjacent to application

objects. This property can be exploited to allow arbitrary code execution when a

vulnerable application object adjacent to heap metadata can be overflowed [5] (see

Section 2.2.1).

1.1.2.1 OpenBSD Allocator

OpenBSD originally used PHKmalloc, but recent versions of OpenBSD (since

version 4.4, released in 2008) incorporate a new allocator based on PHKmalloc but

heavily modified to increase security [51]. It employs the following techniques:

9

• Fully-segregated metadata. OpenBSD’s allocator maintains its heap meta-

data in a region completely separate from the heap data itself, so overflows from

application objects cannot corrupt heap metadata.

• Sparse page layout. The allocator allocates objects on pages provided by a

randomized mmap which spreads pages across the address space. This sparse

page layout effectively places unmapped “guard pages” between application

data, limiting the exploitability of overflows.

• Destroy-on-free. Optionally, OpenBSD’s allocator can scramble the contents

of freed objects to decrease the exploitability of dangling pointer errors.

• Randomized placement. Object placement within a page is randomized by

a limited amount: each object is placed randomly in one of the first 16 free

chunks on the page.

• Randomized reuse. The allocator delays reuse of freed objects using a

randomly-probed delay buffer. The buffer consists of 16 entries, and on each

free, a pointer is stored into a random index in this buffer. Any pointer already

occupying that index is then actually freed.

Together, these modifications dramatically increase security, although the randomized

placement and reuse algorithms are of limited value. We discuss these limitations

further in Sections 2.2.1.3 and 2.2.3.1.

1.2 Memory Errors

We specifically target two types of memory errors prevalent in C and C++ applica-

tions: buffer overflows and dangling pointers. In this section, we describe the causes,

effects, and consequences of these errors.

10

1 char arr [40];
2 char* ptr = arr;
3 ptr [50] = ’a’;

(a) Stack overflow

1 char* ptr =
2 (char*) malloc (40);
3 ptr [50] = ’a’;

(b) Heap overflow

Figure 1.3. Buffer overflows from stack and heap sources

1.2.1 Buffer Overflows

A buffer overflow, or out-of-bounds write, occurs when the program writes through

a pointer to a location outside the correct memory block. The memory block may

be dynamically allocated via malloc or automatically allocated on the stack. These

errors often occur when writing to an array using an index that exceeds the size of

the array.

The program starts with a base pointer, which is the address acquired from malloc

or taking the address of a stack-allocated block. Through some pointer arithmetic, it

produces an invalid derived pointer and writes through it. For example, Figure 1.3(a)

shows an overflow through a stack-derived pointer, i.e., the written address is con-

structed from a pointer to a memory block on the stack. Because the index used to

compute the address of the write (50) is greater than the size of the memory block

(40), an overflow occurs.

The program may perform an out-of-bounds write to both stack- and heap-derived

pointers. The consequences of the overflow depend on the location of the base memory

block. In the case of a stack-derived pointer, the program may overwrite data in

another stack-resident memory block or metadata such as the return address or the

previous stack pointer. In the latter case, an attacker can overwrite the return address

and cause the program to jump to an arbitrary instruction. This type of attack is

often referred to as a stack smash and remains a common cause of remote security

vulnerabilities.

11

Alternatively, the program may write through an out-of-bounds heap-derived

pointer. In this case, the overwritten location may be another heap-resident memory

block or metadata used by the dynamic allocator. Corrupting the allocator meta-

data almost always results in crashes. Other data commonly stored on the heap,

such as function pointers and C++ vtable addresses, can be overwritten by attack-

ers, resulting in security vulnerabilities similar to stack-based overflows. Conover et

al. describes early techniques for exploiting heap overflows [20]. Huku describes the

state-of-the-art for GNU libc (DLmalloc) [35], while McDonald and Valasek provide

a detailed overview of attack strategies for the Windows XP heap [48].

1.2.2 Dangling Pointers

A dangling pointer is caused by the program accessing a memory location derived

from a previously-freed pointer to a heap-resident memory block. These errors are

benign until the allocator recycles the memory block for a subsequent malloc request.

In this case, a memory access through the dangling pointer will read or write data in

a different object. A read will return unexpected incorrect data, while a write will

overwrite data in the new object, causing data corruption.

Figure 1.4 shows an idealized dangling pointer error. The intent is that ptr1

and ptr2 point to different strings. However, due to the dangling pointer error, the

subsequent allocation of ptr2 aliases ptr1 under many allocators (those which use

LIFO freelists). Thus the modification of ptr2’s buffer corrupts ptr1’s data.

1.3 Virtual Memory

Two of the systems introduced in this thesis make extensive use of operating system

support for virtual memory management. This section defines some important terms

and concepts and describes the virtual memory primitives used by these systems.

12

1 char* ptr1 = (char*) malloc (40);

2 char* ptr2 = 0;

3

4 strncpy(ptr1 ,"The quick brown fox" ,40);

5

6 // Prematurely free ptr1

7 free(ptr1);

8

9 ptr2 = (char*) malloc (40);

10 strncpy(ptr2 ,"jumped over" ,40);

11

12 // ptr1 and ptr2 are the same string

Figure 1.4. Dangling pointer error with corruption

1.3.1 Overview

Virtual memory is a level of indirection between programs and the hardware’s un-

derlying physical memory. Programs have a large, fixed-size address space of virtual

pages, some of which are backed by physical page frames. The operating system

transparently controls which virtual pages are backed by which page frames.

The OS can evict contents of stale pages to disk and reclaim their physical page

frames for use by other processes. When the program does access an evicted page,

it incurs a page fault, a hardware trap that the OS handles by transparently copying

the contents back into some page frame. It may page out some other page in order

to free up a frame. The OS performs paging transparently to user applications.

The original intent of virtual memory was to provide support for paging. Most

programs obey the working set hypothesis, that is, the set of pages accessed during

some time window is smaller than the total amount of consumed virtual memory [24].

Contents of pages not within this working set (stale pages) are not immediately

needed, and thus can remain evicted without affecting the program’s performance.

By exploiting the working set hypothesis, virtual memory allows multiprogrammed

systems to run more simultaneous applications than would otherwise fit in physical

13

RAM. As long as the combined working sets consume less than the amount of physical

memory in the machine, few page faults occur, and performance is good. However,

if physical memory is too small, thrashing may occur, where freshly-evicted pages

are accessed quickly, causing continuous page faults. During thrashing, performance

slows down by several orders of magnitude, as the system is constantly moving data

back and forth from disk rather than doing useful work.

Aside from paging, virtual memory is useful to provide memory protection in two

senses. First, different processes have separate virtual address spaces, into which

the physical memory for other processes is not mapped. This prevents processes

from reading or writing to memory in other processes, providing isolation. Second,

virtual pages have associated protection modes which allow pages to be read- or

write-protected. Traditionally, operating systems use protection modes to prevent

user-mode reads and writes to kernel pages mapped into process address space.

1.3.2 Core Programming Interface

The underlying hardware determines the parameters of the virtual memory environ-

ment presented to the OS and to user processes. It fixes the size of the virtual address

space, the region of addressable memory. 32-bit architectures such as x86 provide a 4

GB (232) virtual address space, though OS limitations generally limit the amount of

this space usable by user processes to 2–3 GB. 64-bit architectures theoretically allow

264 bytes of addressable memory, but current architectures limit this to less, e.g. 248

bytes on current x86-64 systems.

On these architectures, virtual address space is divided into 4 kB pages. Pages

can be in three states: unmapped, reserved, and committed. An unmapped page is

not available for use by the process, and access to it signals a segmentation fault to

the process, usually resulting in a program crash.

14

Processes map virtual address space via the mmap system call (VirtualAlloc on

Windows). This operation reserves the address range, so that subsequent opera-

tions cannot allocate overlapping memory. Reserved pages do not necessarily have

associated physical page frames.

When a process touches a reserved page for the first time, the OS transparently

maps a physical page frame, thus committing the page. The kernel may acquire

the frame by evicting another page, and so the kernel fills the contents of the frame

with zeroes before mapping it to the new virtual page. Once committed, subsequent

accesses to the page do not result in page faults until the kernel evicts the page.

Mapped virtual pages may be returned to the OS using the munmap system call

(VirtualFree on Windows). This call removes the the mapping to a physical frame,

if any, and returns the virtual page to the unmapped state.

1.3.3 Implementation Details

Virtual memory is an extra level of indirection, and thus requires a map between

virtual pages and physical frames, called the page table. On most architectures, the

page table is implemented as a multilevel structure. For example, on x86, the first 10

bits of address are used to index into the root of the structure and find a page table

block (PTB). The next 10 bits index into the PTB, resulting in a page table entry

which contains the physical address of the corresponding page frame or the location

of the page’s contents on disk.

Because every read or write operation to memory requires consulting the page

table to establish the true physical address, the processor caches commonly-used

mappings in a cache, called the translation lookaside buffer, or TLB. TLBs vary in

size, from small, 128-entry direct-mapped caches on x86 microarchitectures before

2009, to larger, multi-level caches seen on IBM Power systems and the newer Intel

15

Nehalem architecture. The size of the virtual memory range cacheable by the TLB

is referred to as TLB reach.

1.3.4 Extensions

While mmap and munmap provide essential support for virtual memory support, most

operating systems provide additional functionality. The mprotect system call allows

user programs to modify the protection bits on mapped virtual pages. For example,

a user program could disallow execution for pages in its stack and heap segments,

effectively preventing a range of security vulnerabilities, such as class stack smashing.

Another use is write-protecting pages in the mature space of a generational garbage

collector to implement a cheap hardware page-marking write barrier [38].

Archipelago relies on read protection to implement its user-mode page compres-

sion.

In addition to mmap and mprotect, many operating systems provide other APIs

that provide hints about memory usage in order to improve performance of the virtual

memory system. For example, a program can use the mlock system call to instruct

the kernel to never page out a given page range.

Most important to our systems is the madvise system call. An application can

invoke madvise(MADV FREE)1 to inform the kernel that the data on a range of pages is

no longer needed, and it can therefore discard the physical frame rather than writing

it to disk. In contrast to the munmap system call, madvise(MADV FREE) does not

unmap the virtual page, but rather changes its state from committed to reserved. If

a page is accessed after its contents are discarded, the kernel allocates a fresh, zero-

filled page. This call reclaims a page’s physical frame, making it available for reuse

by the system.

1POSIX specifies the described semantics for MADV FREE. Linux provides different semantics,
where MADV DONTNEED provides the functionality described here.

16

1.4 Probabilistic Memory Safety

This section describes probabilistic memory safety, a strategy for providing protection

against buffer overflows. Systems implementing probabilistic memory safety approx-

imate an infinite heap memory manager. We describe both concepts in this section.

1.4.1 Infinite Heap Semantics

An infinite heap memory manager is an ideal, unrealizable runtime system that allows

programs containing memory errors to execute soundly and to completion. In such

a system, the heap area is infinitely large and can never be exhausted. All objects

are allocated using an infinite-sized, fresh block of memory (a boundless memory

block [63]), and are never deallocated.

Portable, correct C programs cannot distinguish between an infinite heap memory

manager and a normal allocator because the semantics of the heap remain unchanged.

However, an infinite heap grants additional semantics to memory errors (which cause

undefined behavior according to the original semantics). Because every object is in-

finitely far away from any other object, buffer overflows become benign, and dangling

pointers also vanish since objects are never deallocated or reused. Thus, a program

containing memory errors would execute correctly under the enhanced semantics, as

long as it does not contain uninitialized reads.

1.4.2 Probabilistic Approximation

Real runtime systems cannot implement infinite heap semantics since real hardware

has finite resources. Systems can approximate infinite semantics by using an M-

heap—a heap that is M times larger than needed. By placing objects uniformly

randomly across an M -heap, the expected separation between any two objects of size

N is M − 1 times the size of an object. Small overflows thus become benign (do

not overwrite useful data) with high probability. By randomizing the choice of freed

objects to reuse, the system minimizes the likelihood of reallocating recently freed

17

objects and overwriting their contents, decreasing the chance that a dangling pointer

error results in corruption. This heap thus provides probabilistic memory safety, a

quantifiable probabilistic guarantee that memory errors that occur in the program

remain benign.

1.4.3 DieHard

DieHard [9] was the first system to implement probabilistic memory safety. DieHard

is a bitmap-based, fully-randomized allocator. The latest version of DieHard, upon

which Exterminator (Chapter 5) is based, adaptively sizes its heap to be M times

larger than the maximum needed by the application [10] (see Figure 5.2). This version

of DieHard allocates memory from increasingly large chunks called miniheaps. Each

miniheap contains objects of exactly one size. If an allocation would cause the total

number of objects to exceed 1/M , DieHard allocates a new miniheap that is twice as

large as the largest existing miniheap.

During allocation, DieHard first selects a miniheap by choosing one randomly from

the proper size class, weighted by miniheap size. After selecting a miniheap, DieHard

randomly probes its bitmap for a free bit. If the bit is set, it starts over, repeating

the random miniheap selection. Allocation takes O(1) expected time. Freeing a

valid object resets the appropriate bit. DieHard’s use of randomization across an

over-provisioned heap makes it probabilistically likely that buffer overflows will land

on free space, and unlikely that a recently-freed object will be reused soon, making

dangling pointer errors rare.

In a DieHard M -heap, the likelihood of no live objects being overwritten by an

overflow N objects in size is (1− 1
M

)N [9]. The probability of the data referenced by

a dangling pointer being intact after A allocations is at least 1−
(

A
F

)
, where F is the

number of free object slots in the corresponding size class.

18

DieHard optionally uses replication to increase the probability of successful exe-

cution. In this mode, it broadcasts inputs to a number of replicas of the application

process, each equipped with a different random seed. A voter intercepts and compares

outputs across the replicas, and only actually generates output agreed on by a plural-

ity of the replicas. The independent randomization of each replica’s heap makes the

probabilities of memory errors independent. Replication thus exponentially decreases

the likelihood of a memory error affecting output, since the probability of an error

striking a majority of the replicas is low.

1.5 Discussion

We focus on explicitly-managed environments, where memory errors have been tra-

ditionally undetected by the runtime system and result in program crashes, security

vulnerabilities, and silent data corruption. Managed environments provide better

safety guarantees: some errors are impossible, such as dangling pointers, and the

runtime system can detect other errors, like overflows, preventing data corruption.

However, some errors, particularly memory leaks, still occur in managed systems, and

have been the focus of recent work [17].

19

CHAPTER 2

MEMORY ERROR EXPLOITATION

In this chapter, we show how interactions between memory errors and the memory

allocator create opportunities for attackers to consistently exploit errors. We first

present a threat model and discuss the environment in which attacks occur. We then

discuss attack techniques that exploit specific interactions between memory errors

and allocator behavior. Finally, we discuss specific countermeasures added to existing

allocators that harden them against some of these attack strategies.

2.1 Threat Model

This section characterizes the landscape for heap-based attacks and presents our

threat model.

2.1.1 Landscape

The power of potential heap attacks is affected by several factors, including the

presence of memory errors, the kind of application being attacked, and whether the

attacker has the ability to launch repeated attacks.

Presence of memory errors. The first and most important factor is the existence

of a memory error, and the attacker’s ability to trigger the code path leading to the

error. A program with no memory errors is not vulnerable to heap-based attacks.

Even mature programs such as Firefox or Adobe Acrobat have latent memory errors

that can be triggered by unexpected inputs and allow exploitation.

20

Application class. The kind of application under attack affects the attacker’s abil-

ity to control heap operations. Many attacks assume an unfragmented heap, where

the effects of heap operations are predictable. For example, when there are no holes

between existing objects, new objects will be allocated contiguously on a fresh page.

Many attack strategies assume the ability to allocate enough objects to force the heap

into a predictable state before launching the actual attack.

When attacking a web browser, the attacker can run scripts written in JavaScript

or Flash. In most current browsers, JavaScript objects are allocated in the same

heap as the internal browser data, allowing the attacker to control the state of the

application heap. Sotirov describes a sophisticated technique called Heap Feng Shui

that allows attacks on browsers running JavaScript to ensure predictable heap behav-

ior [75].

Server applications are generally less cooperative. The number and types of al-

located objects can be fixed by the application. However, an attacker may be able

to place the heap into a predictable state by issuing concurrent requests, forcing the

application to allocate a large number of contemporaneously live objects.

Other applications may provide attackers with no ability to cause multiple object

allocations. For example, many local exploits target programs that run with enhanced

privileges (e.g. setuid root) which may run for a short time and then terminate. In

many cases, the attacker is limited to controlling the command-line arguments and

the resulting heap layout.

Ability to launch repeated attacks. An application’s context defines the at-

tacker’s ability to repeatedly launch attacks. In a web browser, if the first attempt

fails and causes the browser to crash, the user may not attempt to reload the page.

In this case, the attack has only one chance to succeed per target. On the other hand,

server applications generally restart after crashes to ensure availability, providing the

21

attacker with more opportunities. If the server assumes an attack is in progress and

does not restart, then the vulnerability becomes a denial of service.

Given enough time, an attacker with any probability of success will eventually

succeed. However, if the allocator can decrease this probability, the system maintainer

may be able to analyze the attack and fix the application error before the attacker

succeeds.

Randomization techniques such as address-space layout randomization (ASLR)

are designed to provide such unpredictability. For example, Shacham et al. showed

that ASLR on 32-bit systems provides 16 bits of entropy for library address and can

thus be circumvented after about 216 seconds [69]. On 64-bit systems providing 32

bits of entropy, however, the attack would require an expected 163 days. During this

time, it would be feasible to fix the underlying error and redeploy the system.

While one can imagine a hypothetical supervisor program that detects incoming

attacks, such a system would be hard to make practical. While it could detect a

series of crashes coming from a single source, sophisticated attackers control large,

distributed networks which allow them to coordinate large numbers of attack requests

from different sources. Shacham et al. discuss the limitations of such systems in more

detail [69].

However, more sophisticated techniques can limit the vulnerability of systems to

repeated attacks. Systems such as Rx [59], Exterminator (Chapter 5), and ClearView [58]

can detect heap errors and adapt the application to cope with them. For example,

Exterminator can infer the size of an overflow and pad subsequent allocations to

ensure that an overflow of the same size does not overwrite data.

The threat model. We assume the attacker has the power to launch repeated at-

tacks and allocate and free objects at will. Repeated attacks are most useful against

Internet servers, while the unlimited ability to allocate and free objects is most use-

22

ful against web browsers (especially when executing JavaScript). This model thus

assumes the worst-case for prime attack targets in the real world.

We analyze vulnerabilities based on a single exploit attempt. The lower the likeli-

hood of success of a single attack, the longer the expected time before the application

is compromised. Given enough time, the error can be corrected manually, or a system

like Exterminator can adapt the application to correct it.

2.2 Attacks

We now explain in detail how heap-based exploits work, and how these interact

with the underlying heap implementations. Exploits often directly exploit heap-based

overflows or dangling pointer errors (including double frees), but can also start with

heap spraying attacks [30] and then later exploit a vulnerability.

We abstract out each of these attacks into an attack model. We illustrate these

models with examples from the security literature, and show how particular memory

management design decisions facilitate or complicate these attacks.

2.2.1 Heap Overflow Attacks

Perhaps the most common heap attack strategy exploits an overflow of an object

adjacent to heap metadata or application data.

2.2.1.1 Overflow attack model

Abstractly, an overflow attack involves two regions of memory, one source chunk

and one or more target chunks. Target chunks can include application data or heap

metadata, including allocator freelist pointers. The attacker’s goal is to overwrite

some part of target chunk with attacker-controlled data.

A real attack’s success or failure depends on application behavior. For example,

an attack overwriting virtual function table pointers only succeeds if the application

performs a virtual call on a corrupted object. However, details of such application

23

behavior is outside the scope of our attack model, which focuses only on the inter-

action between the heap allocator and overflows. For purposes of analysis, we are

pessimistic from the defender’s viewpoint: we assume that an attack succeeds

whenever a target chunk is overwritten.

Note that the attacker’s ability to exploit a heap overflow depends on the specific

application error, which may allow more or less restricted overflows. For example,

off-by-one errors caused by failure to consider a null string termination byte allow

only the overflow of 1 byte, with a specific value. In general, strcpy-based attacks

do not allow the attacker to write null bytes. On the other hand, some errors allow

overwrites of arbitrary size and content.

2.2.1.2 Specific attacks

An overflow attack may target either heap metadata or application data. In some

cases, a single, specific heap object may be the target, such as a string containing a

filename. In others, there may be many targeted chunks. For example, a potential

target for application data attacks is the virtual function table pointer in the first

word of C++ objects with virtual functions. In some applications, many objects on

the heap have these pointers and thus are viable targets for attack. Other attacks

target inline heap metadata, present in the first words of every free chunk.

Early attacks. The earliest heap overflow attacks targeted application data such

as filename buffers and function pointers [20]. A susceptible program allocates two

objects, the source (overflowed) chunk and an object containing a function pointer

(the target chunk). A successful attack forces the allocator to allocate the source

chunk and victim chunk contiguously. It then overflows the buffer, overwriting the

function pointer with an attacker-controlled address. If the chunks are not adjacent,

a more general attack may overwrite multiple objects in between the buffer and the

vulnerable object.

24

Freelist metadata attacks. Solar Designer first described an attack relying on

specifics of the heap implementation [74]. The attack applies to any allocator that

embeds freelist pointers directly in freed chunks, such as DLmalloc and Windows.

The specific attack described allowed a hostile web server to send a corrupt JPEG

image allowing arbitrary code execution within the Netscape browser.

This attack overwrites words in the free chunk header, overwriting the freelist

pointers with a specific pointer (generally to shellcode) and the address of a tar-

get location. Candidate target locations include function pointers in heap metadata

structures, such as free hook in DLmalloc, which is called during each free oper-

ation. When the corrupted free chunk is reallocated, the allocator writes the pointer

to the target location.

In the worst case for this attack, every free chunk is a target. Once a free chunk

is corrupted, the attacker can simply force allocations until the chunk is reused.

However, existing attacks in the literature target a single, attacker-controlled free

chunk.

Other metadata attacks. BBP describes overflow attacks targeting PHKmalloc

metadata, which resides at the beginning of some pages and also allocated within the

heap itself [5]. In this case, the attacker does not directly control the target chunks.

However, he may be able to indirectly force the allocation of a metadata object by

allocating a page worth of objects of certain size classes. Target chunks include these

page info structures.

2.2.1.3 Allocator Analysis

A number of allocator features have a direct impact on their vulnerability to

overflow attacks.

25

Inline metadata. Allocators such as DLmalloc and Windows that use inline meta-

data inherently provide many target chunks. For some attacks, effectively any chunk

in the heap could be overwritten to cause a remote exploit. For example, a patient

attacker relying on freelist operations (an “unlink attack”) could overwrite the freel-

ist pointers in an arbitrary free chunk, then simply wait for that chunk to be reused.

These allocators are similarly vulnerable to other such attacks, such as those targeting

an object’s size field.

Page-resident metadata. Allocators with no inline metadata, such as PHKmal-

loc, may still have allocator metadata adjacent to heap objects. PHKmalloc places

page info structures at the beginning of some pages (those containing small objects),

and allocates others from the heap itself, in between application objects. Those al-

located from the heap itself are obviously vulnerable to overwrites, especially if the

attacker can control where they are allocated due to determinism in object placement.

PHKmalloc also lacks guard pages, meaning that the page info structures placed at

the beginning of pages may also be adjacent to overflowable application chunks.

Guard pages. Guard pages can protect against overflows in multiple ways. First,

for allocators like PHKmalloc which place metadata at the beginning of some pages,

guard pages could be used to protect that metadata against overflows (though they are

not). Deterministically placing a guard page before each page with metadata provides

protection against contiguous overruns (the most common case), but not against

underruns or non-contiguous overflows (such as an off-by-one on a multidimensional

array).

Second, guard pages provide gaps in memory that cannot be spanned by contigu-

ous overflow attacks, limiting the number of heap chunks that can be overwritten by

a single attack. In this sense, guard pages protect application data itself. However, if

the allocator is sufficiently deterministic, an attacker may be able to ensure the place-

26

ment of the source chunk well before any guard page, allowing an attack to overwrite

many chunks.

Canaries. The use of canaries to protect heap metadata an application data may

protect against overflows in some cases. However, their effectiveness is limited by

how often the canaries are checked. Metadata canaries may be checked during every

heap operation and can substantially protect metadata against overflows. However,

allocators that place canaries between heap objects must trade off runtime efficiency

for protection. For example, an overflow targeting a function pointer in application

data requires no heap operations: only the overwrite and a jump through the pointer.

Since allocators that check canaries only do so on malloc and free, they cannot

protect against all such attacks.

Randomized placement. All existing allocators that do not explicitly random-

ize object placement can be forced to allocate contiguous objects, assuming enough

control of allocations and frees by the attacker. Techniques such as Heap Feng Shui

are designed to force the allocator into such a deterministic state in order to enable

reliable exploitation of vulnerabilities.

OpenBSD randomizes placement of heap objects to a limited extent. This ap-

proach reduces the reliability of overflow exploits by randomizing which heap chunks

are overwritten by any single overflow. Attacks that depend on contiguous objects

are also complicated, since it is unlikely that any given objects will be contiguous in

memory.

However, overflow attacks able to span multiple heap chunks need not rely on

contiguously-allocated objects. As long as the target object is placed after the source

object on the same page, the attacker can overwrite the target. The extent of place-

ment randomization affects the probability of such an attack’s success.

27

OpenBSD’s limited randomization allows certain such attacks to succeed with

high probability. In an unfragmented heap, successive allocations of the same size

objects will be clustered on the same page, even though their placement is randomized

within that page. An attacker that can control heap operations so that the source

and target are allocated on the same page has a 50% probability of allocating the

source at a lower address than the target, enabling the attack to succeed.

For small objects, object placement is not fully randomized within a page because

the allocator uses only 4 bits of entropy for a single allocation. For example, two

successive allocations on a fresh page will always lie within 16 chunks of each other.

An attack can exploit this property to increase attack reliability by limiting the length

of the overflow, reducing the risk of writing past the end of a page and causing the

application to crash.

2.2.2 Heap Spraying Attacks

Heap spraying attacks are used to make exploitation of other vulnerabilities sim-

pler. In modern systems, guessing the location of heap-allocated shellcode or the

address of a specific function for a return-to-libc attack can be difficult due to ASLR.

However, on many systems, the heap lies within a restricted address space. For exam-

ple, on 32-bit systems the heap generally lies within the first 2 GB of virtual address

space. If the attacker allocates hundreds of megabytes of shellcode, jumping to a

random address within this 2 GB region has a high probability of success.

2.2.2.1 Heap spraying attack model

To successfully exploit a heap spray, the attacker must guess the address contained

within some (large) set of attacker-allocated objects. However, the attacker need

not guess a pointer out of thin air. The simplest attack exploits an overflow to

overwrite an application pointer with the guessed value. However, if this pointer

already references the heap, overwriting only the low-order bytes of the pointer on

28

a little-endian machine results in a different pointer, but to an address close to the

original address. An attacker often knows the address of a valid heap object and

can use this knowledge to guess the address of a sprayed object. This knowledge

may be acquired either implicitly due to a partial overwrite, or explicitly based on

information leakage.

To account for these effects, we consider two heap spraying attack models. Both

require the attacker to guess the address of one of a specific set of sprayed objects,

V . The models differ in the information known to the attacker:

• No a priori knowledge. In the first model, the attacker must guess an

address with no a priori knowledge of valid heap addresses.

• Known address attacks. In the second attack model, the attacker knows the

address of a valid heap object. In some cases, the attacker may control when the

known object is allocated. For example, allocating it temporally between two

shellcode buffers makes it easy to guess a shellcode address if the heap allocates

objects contiguously. This model is more general and significantly stronger than

the ability to partially overwrite a pointer value. In the latter case, the attacker

does not know an exact address, and can only guess addresses within 256 or

64K bytes (when overwriting 1 or 2 bytes, respectively).

2.2.2.2 Allocator Analysis

We quantitatively analyze allocator design choices with respect to heap spraying

attacks under both attack models.

No a priori knowledge. First, we analyze the probability of an attacker guessing

the address of one of a set V of target objects without a priori information. V

models the set of objects sprayed into the heap. Note that unlike the overflow case, the

attacker can cause |V | to be close to |H|, the size of the heap. Thus, the probability of

29

guessing the address of heap-allocated shellcode or other target heap data is equivalent

to guessing the address of any heap object in the limit.

More formally, we consider the probability P (a ∈ V), that is, the probability of

address a pointing to a valid heap object. Under this model, the attacker knows only

the approximate value of |H|, the amount of allocated heap memory.

P (a ∈ V) is almost entirely dependent on the target system’s ASLR implemen-

tation. For example, on systems without ASLR, an attacker knowing the size of the

heap can always guess a valid address. Even with ASLR, an attacker spraying hun-

dreds of megabytes of data into the heap on a 32-bit system has a high probability of

guessing the address of a sprayed object. Note that P (a ∈ V) need not be uniform

with respect to a: if the system allocates memory contiguously and |H| > 2 GB, then

address a = 0x80000000 must contain valid data. However, if the allocator allocates

pages randomly and non-contiguously, then the probability need not depend on a

itself.

On 64-bit systems, however, the situation is vastly improved. Even on modern

x86-64 systems which limit the effective virtual address range to 48 or 52 bits, physical

memory limitations restrict the attacker’s ability to fill a significant portion of this

space. If ASLR randomizes the addresses of the mmap region across the entire space,

the probability of guessing a valid address is low. Further evaluation of existing ASLR

systems, which have been discussed by Shacham et al. [69] and Whitehouse [79], is

outside the scope of this dissertation.

Known address attacks. From the allocator’s perspective, the problem of guess-

ing the address of an object in V given the address of a heap object o ∈ V depends

upon the correlation of valid addresses with that of o. In most allocators, this corre-

lation is due to contiguous object allocation. The addresses of contiguous objects are

dependent upon each other. For example, if the entire heap is contiguous, then the

addresses of all heap objects are mutually dependent, and thus amenable to guessing.

30

Quantitatively, we can evaluate the predictability of object addresses by consid-

ering the conditional probability distribution P (a ∈ V | o ∈ H). An allocator that

minimizes this probability for all a 6= o is the least predictable.

In a contiguous heap, the address distribution is highly correlated. An address δ

bytes after the known object o is valid if and only if o lies within the first H− δ bytes

of the heap. In the worst case, we have no knowledge of the position of o within the

heap. The probability of a being a valid address is thus dependent on its distance

from o. The validity of the addresses surrounding o are highly correlated.

By contrast, Archipelago allocates each object in a random position on a separate

page, compressing cold pages to limit its consumption of physical memory. Since

it allocates objects randomly throughout a large address space, Archipelago delivers

minimal correlation because all object addresses are independent. The probability

P (a ∈ V | o ∈ H) ≈ P (a ∈ V)1.

Practical allocators must trade off performance with predictability. While Archi-

pelago works well for programs with small heap footprints and allocation rates, it is

by no means a general purpose allocator. Practical allocators must allocate multiple

objects on the same page in order to provide spatial locality to the virtual memory

system. The page granularity thus limits the entropy an allocator can provide, and

thus the protection it can supply against heap spray attacks.

2.2.3 Dangling Pointer Attacks

Temporal attacks rely on an application’s use of a free chunk of memory. If the

use is a write, the error is generally called a dangling pointer error. If the subsequent

use is another free, it is called a double-free error. There are two general attack

strategies targeting these errors, one based on reuse of the prematurely freed object,

1There is still minimal dependence, as Archipelago ensures at most one object is allocated per
page.

31

and another based on a freelist-based allocator’s use of free chunks to store heap

metadata.

2.2.3.1 Reuse Vulnerabilities

The first strategy exploits the reuse of chunks still referred to by a dangling pointer.

The attacker’s goal is to change the data contained in the object so that the later

(incorrect) use of the first pointer causes an unintended, malicious effect. For ex-

ample, if the dangled object contains a function pointer, and the attacker can force

the allocator to reuse the chunk for an attacker-controlled object, he can overwrite

the function pointer. Later use of the original pointer results in a call through the

overwritten function pointer, resulting in a jump to an attacker-controlled location.

This attack strategy has been described elsewhere [81], but we know of no specific

attacks described in the literature.

This strategy exploits the predictability of object reuse by the allocator. A reliable

attack can only be created if the attacker knows when the dangled chunk will be

recycled. We formalize this by designating the dangled chunk as the target chunk.

The attacker succeeds by forcing the allocator to recycle the target chunk.

Unlike buffer overflows, where each attempt by the attacker may cause the pro-

gram to crash (e.g., by attempting to overflow into unmapped memory), repeated

attempts to reallocate the dangled chunk need not perform any illegal activity. The

attacker just allocates objects and fills them with valid data. This strategy limits the

ability the runtime system to cope with such an attack, unless it somehow prevents

the original dangling pointer error (e.g., via conservative garbage collection).

To combat reuse-based attacks, an allocator can implement a variety of strategies

to delay reuse. First, it can delay reuse for as long as possible, e.g., by using a FIFO

freelist. Unfortunately, in a defragmented heap, this policy has little effect.

32

The allocator could also impose a minimum threshold before objects are recycled.

While a fixed threshold would be predictable and thus exploitable, randomized reuse

would generally make attacks less reliable. For example, if an attacker has only one

chance to force an application to call the overwritten function pointer, randomized

object reuse reduces the probability of success.

OpenBSD implements limited reuse randomization by storing freed pointers in

a random index of a 16-element array. The object is only actually freed when a

subsequent free maps to the same array index. Each subsequent free is thus a Bernoulli

trial with a 1/16 probability of success, making the distribution of t, the time before

the object is reused, follow a geometric distribution with approximately 5.4 bits of

entropy.

2.2.3.2 Allocator Analysis

In this section, we analyze the effect of allocator design on the predictability of

object reuse. We evaluate each allocator feature by analyzing the entropy of t, the

random variable representing the number of allocations before a just-freed object is

recycled.

Freelists. Freelist-based allocators commonly use LIFO freelists. Independent of

other allocator features such as coalescing, such freelists always return the most-

recently allocated object, providing zero entropy and thus perfect predictability.

BiBOP-style allocators. BiBOP-style allocators may implement different reuse

policies. PHKmalloc tracks a freelist of pages, and allocates in address-ordered first-

fit within the first page on the freelist. Thus, t depends on the number of free chunks

on a page. If the freed object creates the only free chunk on the page, the page

was not previously on the freelist, and so the allocator will place it at its head. The

subsequent allocation will choose this page, and return the only free chunk, which is

33

the just-freed chunk. An attacker can force this behavior by allocating objects from

the same size class as the target in order to eliminate fragmentation before the call

to free.

Coalescing. Most freelist-based allocators perform coalescing, the merging of adja-

cent free chunks. When a free chunk is coalesced with an existing free chunk, its size

class will change, and thus be placed on an unpredictable freelist. While coalescing

is deterministic, it relies on several aspects of the heap layout, making it difficult

to create attacks when it occurs. However, in a defragmented heap, the probability

of coalescing occurring is low, making it straightforward to work around in existing

allocators.

2.2.3.3 Specific Attack: Inline Metadata

The second strategy relies on the behavior of the allocator itself. Freelist-based

allocators write metadata into the contents of free chunks. If a dangling pointer

points to a free chunk, then it points to overwritten, invalid data. If the attacker can

control or predict the data the allocator writes into the freed chunk, he can maliciously

corrupt the contents of the object.

Example. Afek describes an exploit that relies on the object layout of C++ objects,

combined with the freelist behavior of the Windows heap [1]. On most implementa-

tions, the first word of a C++ object with virtual functions contains the pointer to

the virtual function table. This same word is also used by freelist-based allocators to

store the pointer to the next object on the freelist. Afek’s technique allocates a fake

vtable object containing pointers to shellcode, then frees the object. Then, the dan-

gling pointer error is triggered, placing the dangled chunk at the head of the freelist

and storing a reference to the fake vtable in the first word. When the application

erroneously uses the dangled pointer and performs a virtual function call, the runtime

34

looks up the address of the target function from the forged vtable installed by the

allocator, resulting in a jump to shellcode.

2.2.3.4 Allocator Analysis

This vulnerability is specific to freelist-based allocators, and does not affect al-

locators with no inline metadata. BiBOP-style allocators do not write metadata to

free chunks, so they cannot be forced to write attacker-controlled data into dangled

objects. This vulnerability also exploits deterministic reuse order, discussed in detail

in Section 2.2.3.2.

2.3 Countermeasures

Allocator implementors have introduced a variety of techniques to protect inline

metadata against attacks. The first countermeasures were freelist integrity checks,

included in modern freelist-based allocators to prevent unlink attacks. Instead of

näıvely trusting the free chunk header, the allocator ensures that memory pointed to

by the heap chunk header is a valid chunk that refers back to the supplied chunk,

and thus forms a valid doubly-linked list.

In addition to freelist integrity checks, Windows XP SP2 added an additional

countermeasure. Each object header contains a 1-byte cookie computed from a per-

heap pseudorandom value and the chunk address. The allocator checks the integrity

of this cookie on each free operation, (possibly) aborting the program if it fails.

An attack that contiguously overflows the previous object must correctly forge this

value in order to overwrite freelist pointers. However, some heap metadata, notably

the size field, lies before the cookie, allowing small overwrites to modify the inline

metadata without corrupting the cookie. McDonald et al. describe a technique that

can achieve a single null byte overflow, such as a string terminator [48] (used in the

“heap desynchronization” attack described in that work). Furthermore, there are

35

only 256 possible 1-byte values, so if an attack can repeatedly guess random cookies,

it will succeed after a relatively low number of trials.

Despite the introduction of these countermeasures, attackers have found new

methods of corrupting heap metadata to allow arbitrary code execution. McDon-

ald and Valasek present a comprehensive summary of attacks against the Windows

XP Service Pack 2/3 heap [48], and Ferguson provides an accessible overview of tech-

niques targeting DLmalloc [28].

While freelist integrity checks were added to the Windows XP heap in service pack

2, a similar structure called the lookaside list (LAL) was left unprotected, allowing

similar attacks. Similarly, the allocator did not consistently check the header cookie

(in particular, during LAL operations), making it possible to exploit certain chunk

header overwrites without guessing the correct value [2].

More comprehensive protection for chunk headers was added in Windows Vista.

In Vista, the entire chunk header is “encrypted” by XORing with a random 32-bit

value. All uses of header fields must be decrypted before use, meaning that the

allocator must consistently check the header integrity in order to function correctly.

In order to supply a specific value to a header field, an attacker must determine the

32-bit value, which is harder to brute force than the single-byte cookie.

While header encryption has effectively eliminated the ability of simple buffer

overflows to successfully attack heap metadata, the technique is just the most recent

reaction to inline metadata attacks. All of these techniques simply cope with an

underlying design flaw: allocators with no inline data are not susceptible to this kind

of attack.

36

CHAPTER 3

ARCHIPELAGO: PROVIDING EXTREME BUFFER
OVERFLOW PROTECTION

This chapter presents Archipelago, a runtime system that significantly improves

the resilience of applications to repeated heap-based memory errors, including large

overflows.1 Archipelago allocates a single object per page, thus treating heap objects

as individual islands, surrounded by stretches of unused address space. On modern

64-bit architectures, virtual address space is a plentiful resource. Archipelago trades

virtual memory for a high degree of probabilistic memory safety; that is, Archipel-

ago can use available virtual memory to significantly increase the likelihood that a

program will run correctly in the face of memory errors.

In contrast to DieHard, Archipelago provides a much higher degree of probabilistic

memory safety. It places a huge amount of virtual memory between objects (several

megabytes), ensuring that large overflows do not corrupt other heap data. To limit

physical memory consumption, Archipelago leverages the following key insight: once

the distance between objects crosses a certain threshold, each page holds exactly one

(small) object. At this point, additional address-space expansion is free: the virtual

memory system does not need to allocate physical frames for unused address space

between objects. Archipelago takes advantage of this insight and directly allocates

one object per page, leaving the virtual address space between objects uncommitted.

1An archipelago is an expanse of water with many scattered islands, such as the Aegean
Sea.

37

While this implementation reduces the number of heap pages required, an object-

per-page allocator suffers from drastic internal fragmentation, as it effectively rounds

each malloc request up to a multiple of the page size. To reduce this fragmen-

tation, Archipelago further reduces physical memory consumption by transparently

compacting heap objects that are infrequently used. To perform compaction, Archi-

pelago copies the actual object data out of its page into a private heap. The allocator

never exposes private heap pointers to the application, keeping it safe from corrup-

tion. It then frees the original page, but retains metadata mapping the page address

to the location of the object in the private heap. When the application later accesses

the object, no physical page frame is mapped to its virtual page, and thus the access

causes a page fault. Archipelago transparently handles this fault and uncompacts the

object by mapping a fresh page to the existing address and copying the contents back

to its original location in virtual memory, allowing the application to again access the

object.

Archipelago targets server applications, the class of applications that are most

sensitive to memory errors and associated security vulnerabilities. These servers are

attractive, high-value targets that are accessible directly from the Internet. We show

that Archipelago can provide high levels of safety and reliability for this class of ap-

plications. Archipelago allows applications to run even in the face of thousands of

memory errors, while keeping performance impact acceptably low. Archipelago slows

down execution of a range of server applications by just 6% on average (from -7%

to 22%). This modest performance impact makes Archipelago a realistic means of

protecting certain deployed server applications against heap-based security vulnera-

bilities.

38

virtual memory pool (available pages for random allocation)

hot object space
(1 object per page)

cold objects
(compacted and protected)

cold storage heap
(holds compacted objects)

Figure 3.1. Archipelago’s software architecture. Archipelago randomly allocates
heap objects in virtual address space (Section 3.1.1). It tracks the hot objects, which
are stored one per page (Section 3.1.2). Cold objects are compacted and placed in cold
storage, and the physical memory associated with their page frames is relinquished
(Section 3.1.3).

3.1 Archipelago Architecture

Archipelago consists of three modules: a randomizing object-per-page mem-

ory allocator, a hot object space, and a cold storage module, which controls

the overall physical memory consumption of the program. Figure 3.1 illustrates the

architecture. These modules are compiled into a dynamically-linked library that re-

places standard memory management routines such as malloc and free with calls

to the Archipelago allocator. Like all systems described in this thesis, Archipelago

can be used with existing compiled binaries using a mechanism like Linux ld.so’s

LD PRELOAD.

3.1.1 Randomizing Object-Per-Page Allocator

Key to Archipelago’s protection from memory errors is its object-per-page memory

allocator, built using the Heap Layers infrastructure [11]. As implied by its name, the

object-per-page allocator places each allocated object on a separate virtual memory

page. It reserves (but does not commit) a large, contiguous section of virtual address

39

1 void * malloc (size_t size) {

2 void * page = NULL;

3 if (size <= PAGE_SIZE) {

4 //object fits on a page

5 //obtain random page from the pool

6 page = getRandomPage ();

7 }

8 if (page == NULL) {

9 //object doesn’t fit on the page

10 //or pool is full

11 //mmap memory directly

12 page =

13 mmap(roundUpToPageSize(size),

14 MAP_ANONYMOUS);

15 }

16 if (page == NULL) {

17 //mmap failed

18 return NULL;

19 }

20 //add coloring

21 void *ptr =

22 getRandomColoring(page , size);

23 //register page(s) as part

24 //of working set

25 registerActivePages(page , ptr , size);

26 return ptr;

27 }

Figure 3.2. Pseudo-code for Archipelago’s malloc.

space using mmap, and uses this space as a pool from which to draw pages to satisfy

allocation requests. Figures 3.2 and 3.3 present pseudo-code for malloc and free.

In the current implementation, the size of the pool of available pages is a runtime

parameter to Archipelago (defaulting to 512 MB) that represents the trade-off be-

tween the protection Archipelago provides and its virtual memory consumption. A

larger pool provides more robust protection against errors, but at the cost of increased

virtual memory consumption.

40

1 void free (void * ptr) {

2 //retrieve size

3 size_t size = getObjectSize(ptr);

4 //get first page

5 void *page = getStartPage(ptr);

6 //unregister pages being deleted

7 unregisterActivePages(page , ptr , size);

8 //discard pages

9 //that have been compacted

10 discardCompactedPages(page , ptr , size);

11 if (size <= PAGE_SIZE) {

12 //object fits on page:

13 //discard contents

14 madvise(page , MADV_FREE);

15 } else {

16 //object doesn’t fit on page:

17 //unmap it

18 munmap(page ,

19 roundUpToPageSize(size));

20 }

21 }

Figure 3.3. Pseudo-code for Archipelago’s free.

Allocation: Objects are placed on pages randomly chosen from the pool (Fig-

ure 3.2, line 6). The object-per-page allocator uses a bitmap to distinguish between

used and unused pages. To satisfy allocation requests, it probes the bitmap ran-

domly (getRandomPage()) until it finds an unused page. The object-per-page allo-

cator bounds the expected number of probes to find an empty page by keeping the

pool no more than half full. This policy bounds the worst-case expected number of

probes to a small constant (2).

Because pages in the pool are allocated randomly, no locality of reference exists

between different pages. Archipelago uses madvise (MADV RANDOM) to inform the

virtual memory manager that no locality exists and that it should not prefetch pages

within the pool. Otherwise, Linux’s prepaging algorithm would normally prefetch

41

some surrounding pages. Archipelago thus ensures that pages are not instantiated in

physical memory until they are actually needed.

To reduce cache conflicts, Archipelago uses coloring to place objects on pages.

Objects are allocated at random offsets on pages, taking care to keep objects within

their pages’ boundaries (lines 21–22). Coloring helps reduce L2 misses due to cache

conflicts, which can improve performance (see Section 3.2.4).

Deallocation: When an object smaller than a page in size is deleted, the object-

per-page allocator marks the page as free (Figure 3.3, lines 5–10). Moreover, it

instructs the virtual memory manager using madvise (MADV FREE) to discard the

contents of the page without writing them to disk, therefore reducing the overhead

of the system due to page eviction (line 14).

Large objects: Objects that do not fit on a single page are treated specially by

the object-per-page allocator. Archipelago currently does not search for ranges of free

pages in the pool but instead allocates memory directly using mmap (Figure 3.2, lines

7–13). When the memory pool becomes more than half full, all objects are allocated

via mmap to avoid large numbers of repeated probes for free pages in the pool. When

an object that was allocated using mmap is freed, its memory is immediately released

back to the operating system using munmap (Figure 3.3, lines 18–19).

3.1.2 Hot Object Space Management

Running programs with the object-per-page allocator alone would consume so much

physical memory that it would be impractical for deployed programs. To limit its

physical memory consumption, Archipelago relies on the working set hypothesis. At

any given time, the program needs only its working set, a small fraction of its allocated

objects.

Archipelago uses a user-mode paging system to evict the mostly-empty pages

managed by the object-per-page allocator. Instead or relying on the OS to write the

42

entire contents of the page to disk, it exploits the fact that most space on the page

is unused. It compacts unneeded pages in this space to its private heap, avoiding the

need for expensive and inefficient disk traffic.

First, the user specifies the desired maximum working set size of the program

through an environment variable. If not specified, it defaults to a maximum working

set of 5,000 objects. Archipelago compacts cold objects that do not fit within this

maximum size. After compaction, it then informs the OS that these now-redundant

page frames can be discarded without the need to write them back to disk via madvise.

Archipelago tracks all pages containing live objects (the working set) in a bounded

FIFO queue. In our current implementation, the size of this FIFO queue is fixed at

startup time to the specified maximum working set size. Pages are added to the back

of the queue at allocation time. Once the queue becomes full, Archipelago removes

and compacts pages from the front of the queue to maintain its maximum size. When

a page is uncompacted, it is again added to the back of the queue.

Unlike Archipelago, operating systems generally use LRU approximations such as

CLOCK to manage the working set [18]. These algorithms rely on hardware-managed

dirty and referenced bits to track information about which pages are in use. However,

these bits are maintained by the kernel and are generally unavailable to the user.

Since it does not have access to these bits, Archipelago uses a FIFO policy for

managing its working set. Even if these bits were visible to user space and thus

exploitable by Archipelago and similar systems, FIFO would likely still be a good

choice. FIFO is provably 2-competitive with LRU (that is, it suffers at most twice

as many page faults as does LRU on a given workload and memory size) [73]. More

sophisticated algorithms would require more overhead for reading referenced bits and

tracking page use statistics. Because Archipelago’s page fault cost is orders of magni-

tude lower than when paging to disk, this tradeoff is unlikely to provide better overall

performance.

43

1 void deflate (void *page) {

2 // allocate space in cold store

3 void *coldStore = coldHeap.malloc(

4 hotPages[page]->getDataSize ());

5 // copy the data

6 memcpy(coldStore , hotPages[page]->getDataStart (),

7 hotPages[page]->getDataSize ());

8 // set trap on future accesses

9 mprotect(page , PROT_NONE);

10 // mark page as cold

11 coldPages[page] = hotPages[page];

12 hotPages.remove(page);

13 // remember the location of the data

14 coldPages[page]. setColdStore(coldStore);

15 // return physical page to OS

16 madvise(page , MADV_FREE);

17 }

Figure 3.4. Pseudo-code for Archipelago’s compaction routine (Section 3.1.3).

3.1.3 Cold Storage

Archipelago compacts pages not in the current working set into a separate, private

heap, called the cold storage. This heap stores only compacted objects and uses the

general-purpose Lea allocator [44].

When Archipelago compacts a page, it copies the contents of the object into the

internal heap (Figure 3.4, lines 2–8). Rather than storing the size of the original

object request, Archipelago determines the bounds of the object by scanning from

both ends until finding a nonzero word. This effectively increases reliability by copying

data written by small overflows, providing a better approximation of infinite heap

semantics. This scheme could be easily extended to detect overflows by comparing

the size of the used region with the original requested size, though we have not

implemented this feature.

After copying the object contents, Archipelago disables direct access to the page

by removing read and write access via mprotect (line 10). The next time the appli-

44

cation tries to access the page, the operating will send a signal to the process, which

Archipelago will handle. Finally, Archipelago removes the page from the hot space by

calling madvise to instruct the virtual memory manager to discard the page contents

instead of flushing it to disk (lines 11–18).

Archipelago installs a signal handler that receives segmentation violation signals

from the OS. Archipelago uses this signal to restore objects from cold storage on

demand (Figure 3.5, lines 28–33). When the handler receives a signal, it first checks

whether the access is to a page corresponding to an object in cold storage. If not,

then it is a true segmentation violation, and Archipelago terminates the program.

However, if the application was trying to access an object in cold storage, the handler

“inflates” the object. A näıve implementation of this handler would first unprotect

the page and copy the data back from cold storage (Figure 3.5, lines 26–30). However,

this implementation is not safe in multithreaded programs, since another thread may

read the page after Archipelago unprotects it, but before it finishes copying the data.

Because memory protection is shared across all threads, Archipelago cannot write

to the page without unprotecting it for all threads. To avoid this scenario, Archipel-

ago acquires a fresh page at a different address and copies the object contents into

it (Figure 3.5, lines 5–11). It then uses mremap to install a mapping for this new

physical page at correct virtual address (lines 13–14). Only then, once the contents

are properly in place, does it unprotect the original virtual page using mprotect (line

18).

After this operation, the object is fully transitioned back into hot space, so Arch-

ipelago can free the space used to hold the object in cold storage (Figure 3.5, lines

19–23). Control then passes back to the application, which can now safely continue.

While compacting pages imposes additional runtime overhead, it effectively con-

trols physical memory overhead, as Section 3.2.5 shows.

45

1 bool inflate (void *page) {

2 // check that page is valid

3 if (! coldPages.hasKey(page))

4 return false;

5 // map a temporary page

6 char * newPage = mmap(0, 4096,

7 PROT_READ | PROT_WRITE);

8 // restore data

9 memcpy(newPage + coldPages[page]. getOffset (),

10 coldPages[page]. getColdStore (),

11 coldPages[page]. getSize ());

12 // map the new page to the old address

13 mremap(newPage , 0, 4096,

14 MREMAP_MAYMOVE | MREMAP_FIXED , page);

15 // remove the temporary page mapping

16 munmap(newPage);

17 // enable access to the original page

18 mprotect(page , PROT_READ | PROT_WRITE);

19 // free the cold space

20 coldHeap.free(coldPages[page]. getColdStore ());

21 // mark page as hot

22 hotPages[page] = coldPages[page];

23 coldPages.remove(page);

24

25 return true;

26 }

27

28 void sigsegv_handler(void *addr) {

29 if (! inflate(getPageStart(addr))) {

30 // Access outside heap

31 abort ();

32 }

33 }

Figure 3.5. Pseudo-code for Archipelago’s uncompaction routine (Section 3.1.3).

46

3.2 Evaluation

In our evaluation, we answer the following questions:

1. What is the runtime overhead of using Archipelago?

2. What is the memory overhead of using Archipelago?

3. What is the effect of changing Archipelago’s heap and pool sizes?

4. How effective is Archipelago against both injected faults and real errors?

3.2.1 Experimental Methodology

We perform our evaluation on a quiescent dual-socket machine with 8 gigabytes of

RAM. Each processor is a 4-core 64-bit Intel Xeon E5345 running at 2.33 Ghz and

equipped with a 4MB L2 cache.

We compare Archipelago to the GNU C library, which uses a variant of the Lea

allocator [44], and to DieHard, version 1.1. This version, available from the project

website, is an adaptive variant that dynamically grows its heap [10], and so is more

space-efficient than the original, published description [9].

One important caveat is that we run all experiments on a particular version of

a recent Linux kernel, version 2.6.22-rc2-mm1. This kernel version uses a more so-

phisticated algorithm for managing physical memory pages that were initially used

by applications, but then returned to the kernel. This page laundering process up-

dates a number of kernel data structures and potentially writes the page’s contents to

secondary storage. Linux kernel versions up to and including 2.6.23 launder pages ea-

gerly whenever an application calls madvise. However, Linux version 2.6.22-rc2-mm1

launders pages lazily, waiting until more physical memory pages are actually needed.

Without memory pressure, this policy halves Archipelago’s on a memory-intensive

microbenchmark, because madvise is on Archipelago’s normal deallocation path.

47

Benchmark Max live Max live Total memory Total objects Alloc rate
(bytes) (objects) (bytes) (bytes/sec)

bftpd 142,723 713 42,057,815 41,159 6,051,484
thttpd 342,280 705 45,255,581 40,791 3,242,810
sshd 568,304 5,203 6,596,222 30,437 1,945,214

Table 3.1. Server benchmark characteristics: maximum live size, total allocated
memory over the life of the program, and allocation rate.

The current Linux kernel (2.6.36) does not contain this patch, though other mod-

ifications have been made to the virtual memory system that affect the performance

of madvise. We have not measured the performance of Archipelago on newer kernels.

3.2.2 Server Application Performance

To quantify the performance overhead of using Archipelago, we measure the runtime

of a range of server applications running with and without Archipelago. In our experi-

ments, Archipelago uses a memory pool of 512 megabytes, when not otherwise stated.

We also compare performance against DieHard with two different heap multiplier val-

ues: 2 and 1024. The first multiplier provides performance and protection similar to

the results reported in the original DieHard paper, while the second multiplier more

closely approximates the level of protection that Archipelago achieves.

We use three different server applications: the thttpd web server, the bftpd ftp

server, and the OpenSSH server. For the first two, we record total throughput

achieved with 50 simultaneous clients issuing 100 requests each. For OpenSSH, we

record the time it takes to perform authentication, spawn a shell, and disconnect. We

run each benchmark 10 times and report the mean and its 95% confidence interval.

We focus on the CPU performance of our benchmarks by performing all our ex-

periments over the loopback network interface to minimize the performance impact

of the network interface. Thus the measured runtime overheads are thus conservative

estimates of the performance overhead one would see in practice.

48

0

0.2

0.4

0.6

0.8

1

1.2

bftpd thttpd sshd
N

o
rm

al
iz

e
d

 R
u

n
ti

m
e

GNU libc DieHard-2 DieHard-1024 Archipelago

(a) Runtime

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

bftpd thttpd sshd

N
o

rm
al

iz
e

d
 L

2
 M

is
se

s

GNU libc DieHard-2 DieHard-1024 Archipelago

(b) L2 Misses

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

bftpd thttpd sshd

N
o

rm
al

iz
e

d
 D

TL
B

 M
is

se
s

GNU libc DieHard-2 DieHard-1024 Archipelago

(c) DTLB Misses

Figure 3.6. Performance across a range of server applications (Section 3.2.2), nor-
malized to GNU libc (smaller is better).

49

Table 3.1 presents the allocation characteristics of the servers in our benchmark

suite. Because Archipelago’s allocator uses both more CPU time and more memory

space than conventional allocators, its time and space overheads are dependent on

the number of heap allocations during the program and the number of live objects.

These server benchmarks have low allocation rates and few live objects, keeping

Archipelago’s overhead low.

Figure 3.6 presents the results of these experiments, normalized to GNU libc.

These results show that Archipelago can protect servers without sacrificing server

performance. Archipelago’s runtime overhead is less than 3% for bftpd and thttpd,

and 17% for OpenSSH. Because these applications never use a large amount of live

memory, the number of L2 and TLB misses is low for every allocator. This result

shows that neither DieHard nor Archipelago hurt memory system performance for

these server applications.

3.2.3 Memory-Intensive Program Performance

To evaluate the worst-case overhead one could expect for Archipelago, we also

measure the performance impact of Archipelago on an extremely memory-intensive

benchmark, espresso. Espresso allocates and deallocates approximately 1.5 million

objects in less than a second. This allocation rate greatly exceeds that of a typical

server application. In our experiments, we run espresso with the same allocators we

use in our server experiments.

Figure 3.7 shows the runtime and number of L2 and DTLB misses of espresso

with all the memory managers, normalized to GNU libc. As expected, Archipelago’s

impact on espresso’s runtime is significantly higher than on the server applications.

Compared to GNU libc, espresso runs 1.24, 2.92 and 7.32 times slower with DieHard-

2, DieHard-1024 and Archipelago, respectively. However, as Figure 3.8 shows, Arch-

ipelago’s ability to control its working set size yields far better performance than

50

0

5

10

15

20

25

30

Runtime L2 Misses DTLB Misses

GNU libc DieHard-2 DieHard-1024 Archipelago

Figure 3.7. Performance metrics for the memory-intensive espresso benchmark (Sec-
tion 3.2.3), normalized to GNU libc (smaller is better).

0

2

4

6

8

10

12

14

16

1024 960 896 832 768 704 640 576 512 448 384

R
u

n
ti

m
e

 (
s)

Available Physical Memory (MB)

DieHard-1024 Archipelago

1443 N/A N/AN/A N/A N/A N/A N/A N/A

Figure 3.8. Runtime of the memory-intensive espresso benchmark under memory
pressure (Section 3.2.3).

51

DieHard-1024 in the presence of memory pressure. As available memory decreases

from 1GB to 384MB, espresso running with Archipelago takes between 5.27s and

9.47s. With DieHard-1024, its runtime spikes to 1443 seconds (more than 24 min-

utes) at 896MB available, and does not run in any reasonable time for smaller amounts

of available physical memory.

3.2.4 Impact of Coloring

As described in Section 3.1.1, Archipelago’s object-per-page allocator uses coloring to

reduce cache conflicts. Surprisingly, the impact of coloring is undetectable for both

the server benchmarks and espresso. However, it dramatically improves performance

on an adversarial microbenchmark. This program allocates 4096 small objects and

repeatedly reads them in order of allocation. Without coloring, each objects lies

at the beginning of its page, and so each access causes a cache miss because all

objects map to a few sets in the cache. With random coloring, performance improves

significantly as the entire cache is utilized, running almost 3 times faster than the

version without coloring. Since this optimization offers the potential to substantially

improve performance but does not degrade performance for any of the benchmarks,

we leave it enabled for all experiments.

3.2.5 Space Overhead

We evaluate the additional memory consumption incurred by using Archipelago, and

compare this to DieHard and GNU libc, both with and without memory pressure.

We simulate memory pressure by locking an increasing amount of memory until the

application’s working set no longer fits in physical memory, and report that number

as the working set size.

Figures 3.9(a) shows the resident memory consumption of thttpd, bftpd, and sshd

without memory pressure. Note that unlike the other allocators, Archipelago preal-

locates a large memory pool at start-up, increasing its virtual memory consumption.

52

0

1

2

3

4

5

6

7

8

9

10

thttpd bftpd sshd

N
o

rm
al

iz
ed

 p
h

ys
ic

al
 m

em
o

ry
 u

sa
ge

GNU libc DieHard-2 DieHard-1024 Archipelago

(a) Resident memory usage, without memory pressure.

0

1

2

3

4

5

6

7

8

9

10

thttpd bftpd sshd

N
o

rm
al

iz
ed

 p
h

ys
ic

al
 m

em
o

ry
 u

sa
ge

GNU libc DieHard-2 DieHard-1024 Archipelago

(b) Resident memory usage, with memory pressure.

Figure 3.9. Resident memory usage with and without memory pressure (Sec-
tion 3.2.5), normalized to GNU libc. Under memory pressure, Linux quickly reclaims
Archipelago’s uncommitted pages, making its physical memory consumption strictly
lower than with DieHard-1024.

A large fraction of that allocated space—more than 70%—is never actually commit-

ted to memory. This effect inflates Archipelago’s apparent resident set size, which

ranges from 3.18 to 7.87 times as much as with GNU libc, making it comparable to

DieHard-1024.

However, Figure 3.9(b) reveals that under memory pressure, the amount of actual

physical memory needed with Archipelago is strictly less than with DieHard-1024.

53

For thttpd, bftpd, and sshd, Archipelago consumes 1.37, 4.29, and 3.99 times as much

memory as GNU libc, while DieHard-1024 consumes 1.57, 5.97, and 5.64 times as

much.

3.2.6 Address Space and Hot Space Sizing

Archipelago’s performance is dependent on two user-supplied parameters: the size

of the virtual address space used for allocation, as well as the size of the hot object

space (i.e., the maximum number of uncompacted pages). Increasing the amount of

virtual address space available increases the effectiveness of Archipelago’s buffer over-

flow protection, but at the possible cost of degraded TLB performance and increased

page table overhead. Increasing the number of pages used for hot objects reduces

overhead due to object compaction, but significantly increases memory overhead.

In order to explore these tradeoffs, we performed experiments varying these pa-

rameters for espresso. Figure 3.10 shows how these parameters affect execution time.

Varying the hot space size has predictable results: too little space (128 MB) signifi-

cantly degrades performance because the working set does not fit, leading to repeated

compaction and uncompaction of hot objects. Increasing to 256MB captures the

working set, so increasing the hot space to 512MB has little effect.

Increasing the amount of virtual address space available to Archipelago shows

a consistent trend. A larger virtual address space has little impact on user time,

but results in increasing time spent in the kernel. This time is due to a poor fit

between the requirements of Archipelago and the current design of Linux’s internal

data structures, which tend to grow linearly as the number of pages that are randomly

protected and unprotected grows.

3.2.7 Avoiding Injected Faults

We evaluate the effectiveness of Archipelago in tolerating memory errors by injecting

both dangling pointers and buffer overflows. We inject faults into espresso running

54

0

1

2

3

4

5

6

7

8

256 512 1024 2048 4096

R
u

n
ti

m
e

 (
s)

Virtual Address Space Size (MB)

User Time System Time

(a) Varying virtual address space

0

1

2

3

4

5

6

7

8

9

128 256 512 1024

R
u

n
ti

m
e

 (
s)

Hot Space Size (MB)

User Time System Time

(b) Varying hot space size

Figure 3.10. Impact of sizing parameters on espresso runtime (Section 3.2.6).

with GNU libc, DieHard and Archipelago. We perform all our injection experiments

100 times, and record the number of times that espresso produces correct output.

Table 3.2 summarizes these results.

Buffer overflows: We perform three sets of experiments with the overflow in-

jector. We inject 8-byte overflows with 0.01 probability, 4K overflows with 0.001

probability, and 8K overflows with 0.0001 probability. These probabilities correspond

to thousands, hundreds, and tens of injected faults, respectively.

55

Injection experiments (% correct executions)
espresso GNU libc DieHard-2 DieHard-1024 Archipelago

buffer overflows
8 bytes, p = 0.01 0% 29% 77% 100%
8K, p = 0.0001 0% 0% 23% 68%
4K, p = 0.001 0% 0% 2% 42%

dangling pointers
5 mallocs, p = 0.01 0% 8% 91% 29%
10 mallocs, p = 0.001 0% 75% 100% 67%
20 mallocs, p = 0.0001 0% 96% 100% 98%

Table 3.2. The performance of various runtime systems in response to injected mem-
ory errors (Section 3.2.7). Archipelago provides the best protection against overflows
of all sizes and frequencies, and reasonable protection against dangling pointer errors
(all executions fail with GNU libc).

In this set of experiments, GNU libc crashes every time, as expected. Archipelago

substantially outperforms both variants of DieHard across the range of overflow sizes

and frequencies. With small and frequent overflows, Archipelago runs correctly every

time. DieHard-1024 does reasonably well, running correctly 77% of the time, while

DieHard-2 only runs correctly 29% of the time.

With large but infrequent overflows, Archipelago runs correctly 68% of the time.

In this case, DieHard-1024 runs correctly only 23% of the time, while DieHard-2

crashes every time. Even in the worst case of large and reasonably frequent overflows,

Archipelago lets espresso run correctly 42% of the time, while it only runs 2% of

the time with DieHard-1024 (DieHard-2 crashes every time in this case).

These results show that Archipelago provides excellent protection against buffer

overflows and offers dramatic improvement over DieHard, even with an expansion

factor of 1024.

Dangling pointers: Archipelago’s design goal was to limit the impact of buffer

overflows, but it also provides a measure of protection against dangling pointers. To

measure the impact of dangling pointers on each system, we injected dangling pointer

56

faults that free objects 5, 10 and 20 allocations early with probabilities 0.01, 0.001

and 0.0001, respectively.

These experiments show that, as expected, DieHard-1024 offers better protection

from dangling pointer errors than Archipelago: it has vastly more available object

slots for reuse. Archipelago has fewer potential slots to place new objects, since it

only allows one object per page. Archipelago also instructs the operating system

that all freed objects are available for the operating system to reuse at its discretion.

If the operating system reuses a page, the original contents will be lost, and access

through a dangling pointer to this data will trigger a fault (effectively detecting, but

not correcting, the error). Nonetheless, Archipelago provides substantial protection

against these errors, running correctly 29% of the time in the first experiment, 67%

of the time in the second, and 98% in the third.

3.2.8 Avoiding Real Buffer Overflows

To evaluate the effectiveness of Archipelago against real-life buffer overflows, we re-

produce two well-known buffer overflow-based exploits: one in the pine mail reader,

and the other in the Squid web cache proxy.

We reproduce an exploit in pine version 4.44. The exploit is a buffer overflow

that can be triggered by a malformed email message and causes pine to crash and

fail to restart until the message is manually removed. When we place a malformed

message in a user’s mailbox, pine with GNU libc crashes whenever the user attempts

to open that mailbox. However, when running with Archipelago, pine successfully

opens the mailbox and performs all standard operations with messages in it, including

the malicious message, without any user-noticeable slowdown.

We also test Archipelago’s ability to withstand a heap buffer overflow for the squid

web cache. For version 2.3.STABLE5, a maliciously formed request causes a buffer

overflow that corrupts heap meta-data (this causes GNU libc to terminate). When

57

running with Archipelago, squid consistently handles the malicious request correctly,

without crashing.

3.3 Conclusion

In this chapter, we present Archipelago, a runtime system that provides a high degree

of probabilistic memory safety from buffer overflows and dangling pointer errors by

spreading objects far apart in virtual address space. It leverages the virtual memory

system to control physical memory consumption by compacting infrequently-used

objects.

We demonstrate that the overhead of using Archipelago is acceptably low across a

range of different server applications, both in terms of CPU performance and memory

usage. However, its overhead on applications that allocate many objects on the heap

(e.g. a web browser) is high, making it unacceptable for general-purpose use.

58

CHAPTER 4

DIEHARDER: PROVIDING MAXIMAL PROTECTION
WITH MINIMUM OVERHEAD

In this chapter, we present the design and analysis of DieHarder, a memory al-

locator designed with security as a primary design goal. DieHarder provides a high

degree of protection against security vulnerabilities while incurring much lower run-

time and memory overhead than Archipelago. As its name implies, DieHarder is

based on DieHard, a fully randomized heap allocator designed to improve the re-

silience of programs to memory errors [9]. Section 1.4.3 discusses DieHard’s design

and implementation. We first analyze DieHard with respect to security and identify

several weaknesses. We then present DieHarder, a secure allocator which combines

the best features of Archipelago, DieHard, and OpenBSD. Figure 4.1 presents an

overview of DieHarder’s architecture.

4.1 DieHard Analysis

While DieHard was designed to increase reliability, it does so by fully randomizing

the placement and reuse of heap objects. This randomization makes allocator behav-

ior is highly unpredictable, a primary goal for our secure allocator. In this section, we

describe the DieHard allocator and analyze its strengths and weaknesses with respect

to our attack models.

Like OpenBSD, DieHard randomizes the placement of allocated objects and the

length of time before freed objects are recycled. However, unlike OpenBSD’s limited

randomization, DieHard randomizes both placement and reuse to the largest practical

59

extent. We show how these two randomization techniques greatly improve protection

against attacks by decreasing predictability.

Randomized Placement When choosing where to allocate a new object, DieHard

chooses uniformly from every free chunk of the proper size. Furthermore, DieHard’s

overprovisioning ensures O(N) free chunks, where N is the number of allocated ob-

jects. DieHard thus provides O(logN) bits of entropy for the position of allocated

objects, significantly improving on OpenBSD’s 4 bits.

This entropy decreases the probability that overflow attacks will succeed. The

probability depends upon the limitations of the specific application error. For exam-

ple, small overflows (at most the size of a single chunk) require that the source object

be allocated contiguously with the target chunk.

Theorem 1. The probability of a small overflow overwriting a specific vulnerable

target under DieHard is O(1/N), where N is the number of allocated heap objects

when the later of the source or target chunk was allocated.

Proof. Due to overprovisioning (by a factor of M) there are at least MN free heap

chunks to choose for each allocation. Each of these slots is equally likely to be

chosen. The probability of the chunks being allocated contiguously is thus at most

2/MN , assuming free chunks on both sides of the first-allocated chunk (otherwise,

the probability is lower).

The probability of a k-chunk overflow overwriting one of V vulnerable objects

generalizes this result. To derive the result, we consider the k object slots following

the source object. The first object in V , v0 has a (MN − k)/MN chance of being

outside these k slots, since there are MN possible positions. Each successive vi has

60

a (MN − k − i)/MN chance, since each v0...vi−1 consumes one possible position.

Multiplying these probabilities gives

(MN − k)!

MN · (MN − k − |V | − 1)!
,

the probability of all vulnerable objects residing outside the overwritten region. Thus

the overwrite succeeds with probability

1− (MN − k)!

MN · (MN − k − |V | − 1)!
.

If |V | << N , each factor is approximately (MN − k)/MN , making the probability

of a successful attack

1−
(

(MN − k)

MN

)|V |
.

Randomized Reuse DieHard chooses the location of newly-allocated chunks ran-

domly across all free chunks of the proper size. Because of its overprovisioning (M -

factor), the number of free chunks is always proportional toN , the number of allocated

objects. Thus the probability of returning the most-recently-freed chunk is at most

1/MN . This bound holds even if we continuously allocate without freeing, since the

allocator maintains its M overprovisioning factor. In other words, the allocator is

sampling with replacement. Thus, like OpenBSD, t follows a geometric distribution

with p = 1/MN . Unlike OpenBSD, which has low fixed reuse entropy, DieHard

provides O(logN) bits, making reuse much less predictable.

4.2 DieHarder Design and Implementation

As shown in the previous section, DieHard provides greater security guarantees

than other general-purpose allocators. However, DieHard was designed for increased

reliability against memory errors rather than for increased security. Several features

61

1 24 6 4 5

4
inUse

4
inUse bitmap

... ...

Allocation space (randomly placed pages)

Miniheaps

Figure 4.1. An overview of DieHarder’s heap layout.

of DieHard enable the program to continue running after experiencing memory errors,

rather than thwarting potential attackers. In this section, we describe DieHarder’s

changes to the original DieHard allocator that substantially enhance its protection

against heap-based attacks.

Sparse Page Layout

DieHard’s first weakness is its use of large, contiguous regions of memory. Allocat-

ing such regions is more efficient than sparse pages, requiring fewer system calls and

smaller page tables. This heap layout results in large regions without guard pages,

allowing single overflows to overwrite large numbers of heap chunks.

In contrast, OpenBSD’s allocator uses a sparse page layout, where small objects

are allocated within pages spread sparsely across the address space. This approach

relies on OpenBSD’s ASLR to allocate randomly-placed pages via mmap. On 64-bit

systems, ASLR makes it highly unlikely that two pages will be adjacent in memory.

As a result, a single overflow cannot span a page boundary without hitting unmapped

memory and crashing the program.

Our first enhancement to DieHard is to use sparse page allocation. Similarly to

OpenBSD, DieHarder randomly allocates individual pages from a large section of

62

address space. DieHarder treats these pages like DieHard, carving them up into size-

segregated chunks tracked by an allocation bitmap. Allocation is also performed as

in DieHard, with an extra level of indirection to cope with sparse page mapping.

Object deallocation is more complicated, since finding the correct bitmap given

an object address is not straightforward. DieHard finds the correct metadata using a

straightforward search, exploiting its heap layout to require expected constant time.

With sparse pages, however, using DieHard’s approach would require O(N) time.

DieHarder instead uses a hash table to store references to page metadata, ensuring

constant-time free operations.

Address Space Sizing

To achieve full randomization under operating systems that randomize only the

base address of the mmap region, such as Linux, DieHarder explicitly randomizes the

addresses of small object pages. It does so by mapping a large, fixed-size region of

virtual address space and then sparsely using individual pages. This implementation

wastes a large amount of virtual memory, but uses physical memory efficiently, since

most virtual pages are not backed by physical page frames.

While the size of the virtual region does not affect the amount of physical memory

used by application data, it does affect the size of the process’s page tables. The x86-

64 uses a 4-level page table. Contiguous allocations of up to 1 GB (218 pages) require

only 1 or 2 entries in the top three levels of the table, consuming approximately 512

pages or 2 MB of memory for the page table itself. In contrast, sparsely allocating

1 GB of pages within the full 48-bit address space requires mostly-complete middle

levels of the table. Each 512-entry second-level page-middle directory (PMD) spans

1 GB, and the expected number of pages contained within each 1 GB region is 1.

The resulting page table would thus require on the order of 2 · 218 page table entries

(PTEs) and PMDs, for a staggering 2 GB page table.

63

Even if physical memory is not an issue, these sparse page tables can drastically

decrease cache efficiency when the application’s working set exceeds the TLB reach.

When each PMD and PTE is sparse, the cache lines containing the actual entries

have only 1/8 utilization (8 of 64 bytes). Combined with needing a line for each

PMD and PTE, the effective cache footprint for page tables grows by 16× under a

sparse layout.

To combat this effect, we restrict DieHarder’s randomization to a smaller virtual

address range.

Destroy-on-free

DieHarder, like many debugging allocators, fills freed objects with random data.

While this policy empirically helps find memory errors, within the context of Die-

Harder, it is required to limit the effectiveness of certain attack strategies.

Unlike allocators with deterministic reuse, repeated malloc and free operations

in DieHarder return different chunks of memory. If freed objects were left intact,

even an attacker with limited control of heap operations (e.g., only able to hold only

one object live at a time) could fill an arbitrary fraction of the heap with attacker-

controlled data by exploiting random placement. In the same scenario, overwriting

the contents of freed objects ensures only one chunk at a time contains attacker-

controlled data.

4.3 DieHarder Analysis

Using a sparse page heap layout provides greater protection against heap overflow

attacks and heap spraying. Unlike DieHard, DieHarder does not allocate small objects

on contiguous pages.

64

Overflows

The sparse layout provides two major protections against overflow attacks. First,

because pages are randomly distributed across a large address space, the probability

of allocating two contiguous pages is low. Thus, pages are protected by guard pages

on both sides with high probability. Overflows past the end of a page will hit the

guard page, causing the attack to fail.

The chance of hitting a guard page depends on H, the number of allocated pages

and S, the size in pages of DieHarder’s allocated virtual address space. The chance

of having a guard page after any allocated page is (S − H)/S. This probability

increases with S; however, large values of S can degrade performance, as discussed

in Section 4.2.

Combined with randomized object placement, the memory immediately after ev-

ery allocated object has a significant probability of being unmapped. The worst case

for DieHarder is 16-byte objects, since there are 256 16-byte chunks per page. The

probability of a 1-byte overflow crashing immediately is at least

(S −H)

S
· 1

256
.

The first term represents the probability of the following page being unmapped, and

the second term the probability of the overflowed object residing in the last slot on

the page.

Heap Spraying

DieHarder’s sparse layout protects against heap spraying attacks by providing

more entropy in object addresses. DieHarder’s fully-randomized allocation eliminates

dependence between the addresses of objects on different pages. The number of

objects that are easily guessable given a valid object address is limited to the number

65

0	

0.25	

0.5	

0.75	

1	

1.25	

1.5	

1.75	

2	

40
0.p
er
lbe
nc
h	

40
1.b
zip
2	

40
3.g
cc
	

42
9.m

cf	

44
5.g
ob
mk
	

45
6.h
mm

er
	

45
8.s
jen
g	

46
2.l
ibq
ua
nt
um
	

46
4.h
26
4r
ef	

47
1.o
mn
et
pp
	

47
3.a
sta
r	

48
3.x
ala
nc
bm
k	

ge
om
ea
n	

N
or
m
al
iz
ed

	 E
xe
cu
0
on

	 T
im

e	

Run0me	 Overhead	

GNU	 libc	 OpenBSD	 DieHard	 DieHarder	

Figure 4.2. Runtime overhead of the different allocators, normalized to their run-
time using OpenBSD’s allocator. In exchange for a substantial increase in entropy,
DieHarder imposes on average a 20% performance penalty vs. OpenBSD for CPU-
intensive benchmarks, though it has no performance impact on Firefox (see Sec-
tion 4.4).

that reside on a single page, which is further reduced by DieHarder’s overprovisioning

factor (inherited from DieHard).

4.4 DieHarder Evaluation

We measure the runtime overhead of DieHarder compared to four existing alloca-

tors, GNU libc (based on DLmalloc 2.7), DLmalloc 2.8.4, DieHard, and OpenBSD.

We enabled DLmalloc 2.8’s object footers that improve its resilience against invalid

frees. We use the adaptive version of DieHard [10] (version 1.1). To isolate allocator

effects, we ported OpenBSD’s allocator to Linux. We run DieHarder using a 4 GB

virtual address space for randomizing small object pages. We discuss the impact of

this design parameter in Section 4.2.

Our experimental machine is a single-socket, quad-core Intel Xeon E5520 (Ne-

halem) running at 2.27GHz with 4 GB of physical memory. We first evaluate the

CPU overhead of various allocators using the SPECint2006 benchmark suite. Unlike

66

its predecessor (SPECint2000), this suite places more stress on the allocator, con-

taining a number of benchmarks with high allocation rates and large heap memory

footprints.

Figure 4.2 shows the runtime of the benchmark suite using each allocator, nor-

malized to its runtime under OpenBSD’s allocator. DieHarder’s overhead varies from

-7% to 117%, with a geometric mean performance impact of 20%. Most benchmarks

exhibit very little overhead (less than 2%). The benchmarks that suffer the most,

perlbench, omnetpp, and xalancbmk, significantly stress the allocator due to their

unusually high allocation rates.

Firefox In addition to the SPECint2006 suite, we evaluated the performance of the

Firefox browser using both DieHarder (4 GB virtual address space) and GNU libc.

In order to precisely measure Firefox’s performance, we used the Selenium browser

automation tool to automatically load a sequence of 20 different web pages. We

used an offline proxy, wwwoffle, to minimize the effect of network latency and ensure

identical behavior across all experiments. We repeated this experiment 15 times for

each allocator.

The results show no statistically significant difference in performance between allo-

cators at the 5% level. The mean runtimes for GNU libc and DieHarder, respectively,

were 44.2 and 41.6 seconds, with standard deviations of 7.13 and 6.12. This result

qualitatively confirms that DieHarder is practical for use.

67

CHAPTER 5

EXTERMINATOR: PROBABILISTICALLY ISOLATING
BUFFER OVERFLOW AND DANGLING POINTER

ERRORS

DieHarder significantly reduces the probability of success of each individual attack

attempt. Given enough time, however, an attacker will eventually succeed. Waiting

for the vendor to patch the vulnerability may require too much time. According to

Symantec, the average time between the discovery of a critical, remotely exploitable

memory error and the release of a patch for enterprise applications is 28 days [78].

Users are thus faced with a difficult tradeoff: sacrifice availability and stop using

the application until a fix is available, or sacrifice security and take the risk of being

exploited. A business relying on vulnerable software for e-commerce, for example,

clearly cannot shut down for a month. Other applications, such as Internet Explorer

or Adobe Flash Player, are used by millions of people worldwide, meaning that zero-

day exploits with low probability of success will compromise thousands of machines

before the vendor is even aware of the vulnerability.

To cope with these situations, we present Exterminator, a runtime system that au-

tomatically isolates and corrects buffer overflows and dangling pointer errors. Exter-

minator requires neither source code nor programmer intervention, and fixes existing

errors without introducing new ones. By automatically correcting errors, Extermina-

tor increases reliability and mitigates the tradeoff between availability and security.

To our knowledge, this system is the first of its kind.

Exterminator relies on an efficient probabilistic debugging allocator that we call

DieFast. DieFast is based on DieHard’s allocator [9], which ensures that heaps are in-

68

dependently randomized. However, while DieHard can only probabilistically tolerate

errors, DieFast probabilistically detects them 1.

Exterminator can operate in three distinct modes: an iterative mode for repeated

runs over the same input, a replicated mode that can correct errors on the fly by

running multiple redundant executions, and a cumulative mode that corrects errors

across multiple runs of the same application with different inputs.

When Exterminator discovers an error, it produces a heap image that contains

the complete state of the heap, similar to a core file. Exterminator’s probabilistic

error isolation algorithms then process one or more heap images (depending on the

execution mode) to locate the source and size of buffer overflows and dangling pointer

errors. These algorithms rely on sound statistical inference methods, not ad hoc

heuristics, and have provably low false positive and false negative rates.

Once Exterminator locates a buffer overflow, it determines the allocation site of

the overflowed object (based on the context-sensitive callsite to malloc) using heap

metadata, and the size of the overflow by the amount of detected heap corruption.

For dangling pointer errors, Exterminator determines both the allocation and deletion

sites of the dangled object, and estimates how prematurely the object was freed.

With this information in hand, Exterminator corrects the errors by generating

runtime patches. These patches operate in the context of a correcting allocator.

The correcting allocator prevents overflows by padding objects and prevents dangling

pointer errors by deferring object deallocations based on the data in the runtime

patch. These actions impose little runtime or space overhead because Exterminator’s

runtime patches are specific to a single allocation site for each buffer overflow, and a

single allocation/deallocation site pair for each dangling pointer.

1DieFast’s implementation predates DieHarder and is thus based upon DieHard. DieFast could
alternatively use DieHarder’s heap layout, which would improve the convergence rates for Extermi-
nator’s cumulative mode isolation algorithms.

69

After Exterminator completes patch generation, it creates or updates a patch to

correct the bug in subsequent executions. If running in replicated mode, it triggers a

patch update in the running processes to fix the bug in the current execution. Exter-

minator’s patches compose straightforwardly, enabling collaborative bug correction:

users running Exterminator can automatically merge their patches, thus systemati-

cally and continuously improving application reliability.

While Exterminator’s allocation padding can prevent minor programming errors,

such as off-by-ones, it cannot deterministically prevent security vulnerabilities result-

ing from arbitrary, unbounded overflows. However, for many vulnerabilities, Exter-

minator can detect, isolate, and adapt the application well before the attack succeeds,

with high probability. This adaptation forces attackers to cope with moving targets,

greatly increasing the difficulty of mounting a successful attack.

5.1 Software Architecture

Exterminator’s software architecture extends and modifies DieHard to enable its error

isolating and correcting properties. Section 1.4.3 described DieHard and its allocator.

This section first describes how Exterminator augments DieHard’s heap layout to

track information needed to identify and remedy memory errors. Second, it presents

DieFast, a probabilistic debugging allocator that exposes errors to Exterminator.

Finally, it describes Exterminator’s three modes of operation.

5.1.1 Exterminator’s Heap Layout

Figure 5.1 illustrates Exterminator’s heap layout, which includes five fields per object

for error isolation and correction: an object id, allocation and deallocation sites,

deallocation time, which records when the object was freed, and a canary bitset

that indicates if the object was filled with canaries (Section 5.1.2).

70

00000001 10... allocation bitmap

3 5

A AA A A

object id

alloc site

heap
DieHard

Exterminator

A3
A1

D2

00100000 00…

canary-filled bitmap

D2 D3

1 2 4

canary bitset

A4 A2 A9
alloc site

dealloc site

dealloc time

Figure 5.1. An abstract view of Exterminator’s heap layout. Metadata below
the horizontal line contains information used for error isolation and correction (see
Section 5.1.1).

4 3 6 521
8

16

32

64

allocation space

bitmap

1

object size

2
inUse

4
inUse

1
inUse

6
inUse

1
inUse

miniheaps

Figure 5.2. The adaptive DieHard heap layout, used by Exterminator. Objects in
the same size class are allocated randomly from separate miniheaps, which combined
hold M times more memory than required (here, M = 2).

An object id of n means that the object is the nth object allocated. Extermi-

nator uses object ids to identify objects across multiple heap images. These ids are

71

1 int computeHash (int * pc)

2 int hash = 5381;

3 for (int i = 0; i < 5; i++)

4 hash = ((hash << 5) + hash) + pc[i];

5 return hash;

Figure 5.3. Site information hash function, used to store allocation and deallocation
call sites (see Section 5.1.1).

needed because the object’s address cannot be used to identify it across differently-

randomized heaps.

The site information fields capture the calling context for allocations and dealloca-

tions. For each, Exterminator hashes the least significant bytes of the five most-recent

return addresses into 32 bits using the DJB2 hash function [12] (see Figure 5.3).

This out-of-band metadata accounts for 16 bytes plus two bits (one each for the

allocation and canary bitmaps) of space overhead for every object. This overhead is

comparable to that of typical freelist-based memory managers like the Lea allocator,

which prepend 8-byte (on 32-bit systems) or 16-byte headers (on 64-bit systems) to

allocated objects [44]. Exterminator’s metadata does not contain raw pointer values

and can use 32-bit words even on 64-bit systems.

5.1.2 DieFast: A Probabilistic Debugging Allocator

Exterminator uses a new, probabilistic debugging allocator that we call DieFast.

DieFast uses the same randomized heap layout as DieHard, but extends its allocation

and deallocation algorithms to detect and expose errors. Figure 5.4 presents pseudo-

code for the DieFast allocator. Unlike previous debugging allocators, DieFast has a

number of unusual characteristics tailored for its use in the context of Exterminator.

72

1 void * diefast_malloc (size_t sz) {

2 void * ptr = really_malloc (sz);

3 // Check if the object wasn’t

4 // canary -filled or is uncorrupted.

5 bool ok = verifyCanary (ptr);

6 if (!ok) { mark allocated; signal error }

7 return ptr;

8 }

1 void diefast_free (void * ptr) {

2 really_free (ptr);

3 // Check preceding and following objects.

4 bool ok = true;

5 if (isFree (previous (ptr)))

6 ok &= verifyCanary (previous(ptr));

7 if (isFree (next(ptr)))

8 ok &= verifyCanary (next(ptr));

9 if (!ok) { signal error; }

10 // Probabilistically fill with canary.

11 if (notCumulativeMode || random () < p)

12 fillWithCanary (ptr);

13 }

Figure 5.4. Pseudo-code for DieFast, a probabilistic debugging allocator (Sec-
tion 5.1.2).

Implicit Fence-posts

Many existing debugging allocators pad allocated objects with fence-posts (filled with

canary values) on both sides. They can thus detect buffer overflows by checking the

integrity of these fence-posts. This approach has the disadvantage of increasing space

requirements. Combined with the already-increased space requirements of a DieHard-

based heap, the additional space overhead of padding may be unacceptably large.

DieFast exploits two facts to obtain the effect of fence-posts without any additional

space overhead. First, because its heap layout is headerless, one fence-post serves

double duty: a fence-post following an object can act as the one preceding the next

73

object. Second, because allocated objects are separated by E(M − 1) freed objects

on the heap, we use freed space to act as fence-posts.

Random Canaries

Traditional debugging canaries include values that are readily distinguished from nor-

mal program data in a debugging session, such as the hexadecimal value 0xDEADBEEF.

However, one drawback of a deterministically-chosen canary is that it is always possi-

ble for the program to use the canary pattern as a data value. Because DieFast uses

canaries located in freed space rather than in allocated space, a fixed canary would

lead to a high false positive rate if that data value were common in allocated objects.

DieFast instead uses a random 32-bit value set at startup. Since both the canary

and heap addresses are random and differ on every execution, any fixed data value

has a low probability of colliding with the canary, thus ensuring a low false positive

rate (see Theorem 3). To increase the likelihood of detecting an error, DieFast sets

the last bit of the canary. Setting this bit will cause an alignment error if the canary

is dereferenced, but keeps the probability of an accidental collision with the canary

low (1/231).

Probabilistic Fence-posts

Intuitively, the most effective way to expose a dangling pointer error is to fill all freed

memory with canary values. For example, dereferencing a canary-filled pointer will

likely trigger a segmentation violation.

Unfortunately, reading random values does not necessarily cause programs to fail.

For example, in the espresso benchmark, some objects hold bitsets. Filling a freed

bitset with a random value does not cause the program to terminate but only affects

the correctness of the computation.

If reading from a canary-filled dangling pointer causes a program to diverge, there

is no way to narrow down the error. In the worst-case, half of the heap could be filled

74

with freed objects, all overwritten with canaries. All of these objects would then be

potential sources of dangling pointer errors.

In cumulative mode, Exterminator prevents this scenario by non-deterministically

writing canaries into freed memory randomly with probability p, and setting the

appropriate bit in the canary bitmap. This probabilistic approach may seem to

degrade Exterminator’s ability to find errors. However, it is required to isolate read-

only dangling pointer errors, where the canary itself remains intact. Because it would

otherwise take an impractically large number of iterations or replicas to isolate these

errors, Exterminator always fills freed objects with canaries when not running in

cumulative mode (see Sections 5.3.2 and 5.5.2.1 for discussion).

Probabilistic Error Detection

Whenever DieFast allocates memory, it examines the memory to be returned to verify

that any canaries are intact. If not, in addition to signaling an error (see Section 5.1.3),

DieFast sets the allocated bit for this chunk of memory. This “bad object isolation”

ensures that the object will not be reused for future allocations, preserving its contents

for Exterminator’s subsequent use. Checking canary integrity on each allocation

ensures that DieFast will detect heap corruption within E(H) allocations, where H

is the number of objects on the heap.

After every deallocation, DieFast checks both the preceding and subsequent ob-

jects. For each of these, DieFast checks if they are free. If so, it performs the same

canary check as above. Recall that because DieFast’s allocation is random, the iden-

tity of these adjacent objects will differ from run to run. Checking the predecessor

and successor on each free allows DieFast to detect buffer overruns immediately upon

object deallocation.

75

5.1.3 Modes of Operation

Exterminator can be used in three modes of operation: an iterative mode suitable for

testing or whenever all inputs are available, a replicated mode that is suitable both

for testing and for restricted deployment scenarios, and a cumulative mode that is

suitable for broad deployment. All of these rely on the generation of heap images,

which Exterminator examines to isolate errors and compute runtime patches.

If Exterminator discovers an error when executing a program, or if DieFast signals

an error, Exterminator forces the process to emit a heap image file. This file is akin

to a core dump, but contains less data (e.g., no code), and is organized to simplify

processing. In addition to the full heap contents and heap metadata, the heap image

includes the current allocation time (measured by the number of allocations to date).

Iterative Mode

Exterminator’s iterative mode operates without replication. To find a single bug,

Exterminator is initially invoked via a command-line option that directs it to stop as

soon as it detects an error. Exterminator then re-executes the program in “replay”

mode over the same input (but with a new random seed). In this mode, Exterminator

reads the allocation time from the initial heap image to abort execution at that point;

we call this a malloc breakpoint. Exterminator then begins execution and ignores

DieFast error signals that are raised before the malloc breakpoint is reached.

Once it reaches the malloc breakpoint, Exterminator triggers another heap image

dump. This process can be repeated multiple times to generate independent heap

images. Exterminator then performs post-mortem error isolation and runtime patch

generation. A small number of iterations usually suffices for Exterminator to generate

runtime patches for an individual error, as we show in Section 5.5.2. When run with

a correcting memory allocator that incorporates these changes (described in detail in

Section 5.4.3), these patches automatically fix the isolated errors.

76

This mode identifies objects by their allocation time, which is effectively a serial

number. These numbers must be consistent across multiple runs of the program,

which means that execution must be deterministic. Iterative mode thus cannot be

used on unaltered multithreaded programs, since they may allocate objects with a

different global order during different runs. Combining DieFast with a runtime that

guarantees deterministic execution, such as CoreDet [6] or Grace [8], would allow

Exterminator’s iterative mode to function with multithreaded programs.

Replicated Mode

The iterated mode described above works well when all inputs are available so that re-

running an execution is feasible. However, when applications are deployed in the field,

such inputs may not be available, and replaying may be impractical. The replicated

mode of operation allows Exterminator to correct errors while the program is running,

without the need for multiple iterations.

Like DieHard, Exterminator can run a number of differently-randomized replicas

simultaneously (as separate processes), broadcasting inputs to all and voting on their

outputs. However, Exterminator uses DieFast-based heaps, each with a correcting

allocator. This organization lets Exterminator discover and fix errors.

In replicated mode, when DieFast signals an error or the voter detects divergent

output, Exterminator sends a signal that triggers a heap image dump for each replica.

If the program crashes because of a segmentation violation, a signal handler also

dumps a heap image.

If DieFast signals an error, the replicas that dump a heap image do not have

to stop executing. If their output continues to be in agreement, they can continue

executing concurrently with the error isolation process. When the runtime patch

generation process is complete, that process signals the running replicas to tell the

77

seed

votebroadcast

input
output

DieFast replica1seed

DieFast replica2seed

Error isolator

correcting allocator

correcting allocator

correcting allocator

DieFast replica3

runtime

patches

Figure 5.5. Exterminator’s replicated architecture (Section 5.1.3). Replicas are
equipped with different seeds that fully randomize their DieFast-based heaps (Sec-
tion 5.1.2), input is broadcast to all replicas, and output goes to a voter. A crash,
output divergence, or signal from DieFast triggers the error isolator (Section 5.2),
which generates runtime patches. These patches are fed to correcting allocators (Sec-
tion 5.4), which fix the bug for current and subsequent executions.

correcting allocators to reload their runtime patches. Thus, subsequent allocations in

the same process will be patched on-the-fly without interrupting execution.

Exterminator’s replicated mode has the same determinism requirements as itera-

tive mode, and thus the same implications for use with multithreaded programs.

Cumulative Mode

While the replicated mode can isolate and correct errors on-the-fly in deployed ap-

plications, it may not be practical in all situations. For example, replicating applica-

tions with high resource requirements may cause unacceptable overhead. In addition,

multi-threaded or non-deterministic applications can exhibit different allocation activ-

ity and so cause object ids to diverge across replicas. To support these applications,

Exterminator uses its third mode of operation, cumulative mode, which isolates

errors without replication or multiple identical executions.

78

When operating in cumulative mode, Exterminator reasons about objects grouped

by allocation and deallocation sites instead of individual objects, since objects are no

longer guaranteed to be identical across different executions.

Because objects from a given site only occasionally cause errors, often at low

frequencies, Exterminator requires more executions than in replicated or iterative

mode in order to identify these low-frequency errors without a high false positive

rate. Instead of storing heap images from multiple runs, Exterminator computes

relevant statistics about each run and stores them in its patch file. The retained data

is on the order of a few kilobytes per execution, compared to tens or hundreds of

megabytes for each heap image.

5.2 Iterative and Replicated Error Isolation

Exterminator employs two different families of error isolation algorithms: one set for

replicated and iterative modes, and another for cumulative mode.

When operating in its replicated or iterative modes, Exterminator’s probabilistic

error isolation algorithm operates by searching for discrepancies across multiple heap

images. Exterminator relies on corrupted canaries to indicate the presence of an

error. A corrupted canary (one that has been overwritten) can mean two things: if

every object has the same corruption, then it is likely a dangling pointer error, as

Theorem 2 shows. If canaries are corrupted in multiple objects, then it is likely to be

a buffer overflow. Exterminator limits the number of false positives for both overflows

and dangling pointer errors.

5.2.1 Buffer Overflow Detection

Exterminator examines heap images looking for discrepancies across the heaps, both

in overwritten canaries and in live objects. If an object is not equivalent across the

heaps (see below), Exterminator considers it to be a candidate victim of an overflow.

79

To identify victim objects, Exterminator compares the contents of both objects

identified by their object id across all heaps, word-by-word. Exterminator builds an

overflow mask that comprises the discrepancies found across all heaps. However,

because the same logical object may legitimately differ across multiple heaps, Exter-

minator must take care not to consider these as overflows.

First, a freed object may differ across heaps because it was filled with canaries

only in some of the heaps. Exterminator uses the canary bitmap to identify this case.

Second, an object can contain pointers to other objects, which are randomly lo-

cated on their respective heaps. Exterminator uses both deterministic and probabilis-

tic techniques to distinguish integers from pointers. Briefly, if a value interpreted as

a pointer points inside the heap area and points to the same logical object across all

heaps, then Exterminator considers it to be the same logical pointer, and thus not a

discrepancy. Exterminator also handles the case where pointers point into dynamic

libraries, which newer versions of Linux place at random base addresses.

Finally, an object can contain values that legitimately differ from process to pro-

cess. Examples of these values include process ids, file handles, and pseudorandom

numbers. Some data structures may have different topologies depending on random

allocation choices, such as a red-black tree using pointers as keys. When Extermi-

nator finds an object field that differs in an unexplainable way across all heaps, it

assumes that the difference is legitimate and not caused by heap corruption. This

heuristic is required to eliminate false positives, but may cause false negatives if the

object is corrupted in all heaps.

For small overflows, the risk of missing an overflow by ignoring overwrites of the

same objects across multiple heaps is low:

Theorem 2. Let k be the number of heap images, S the length (in number of objects)

of the overflow string, and H the number of objects on the heap. Then the probability

of an overflow overwriting an object on all k heaps is:

80

P(identical overflow) ≤ H × (S/H)k.

Proof. This result holds for a stronger adversary than usual—rather than assuming

a single contiguous overflow, we allow an attacker to arbitrarily overwrite any S

distinct objects. Consider a given object a. On each heap, S objects are corrupted at

random. The probability that object i is corrupted on a single heap is (S/H). Call Ei

the event that object i is corrupted across all heaps; the probability P (Ei) is (S/H)k.

The probability that at least one object is corrupted across all the heaps is P (∪iEi),

which by a straightforward union bound is at most
∑

i P (Ei) = H × (S/H)k.

We now bound the worst-case false negative rate for buffer overflows; that is, the

odds of not finding a buffer overflow because it failed to overwrite any canaries.

Theorem 3. Let M be the heap multiplier, so a heap is never more than 1/M full.

The likelihood that an overflow of length b bytes fails to be detected by comparison

against a canary is at most:

P(missed overflow) ≤
(

1− M − 1

2M

)k

+
1

256b
.

Proof. Each heap is at least (M − 1)/M free. Since DieFast fills free space with

canaries with P = 1/2, the fraction of each heap filled with canaries is at least

(M − 1)/2M . The likelihood of a random write not landing on a canary across all

k heaps is thus at most (1 − (M − 1)/2M)k. The overflow string could also match

the canary value. Since the canary is randomly chosen, the odds of this are at most

(1/256)b.

81

Culprit Identification

At this point, Exterminator has identified the possible victims of overflows. For each

victim, it scans the heap images for a matching culprit, the source of the overflow

into a victim. Because Exterminator assumes that overflows are deterministic when

operating in iterative or replicated modes, the culprit must be the same distance δ

bytes away from the victim in every heap image. In addition, Exterminator requires

that the overflowed values have some bytes in common across the images, and ranks

them by their similarity.

Exterminator checks every other heap image for the candidate culprit, and exam-

ines the object that is the same δ bytes forwards. If that object is free and should

be filled with canaries but they are not intact, then it adds this culprit-victim pair to

the candidate list.

We now bound the false positive rate. Because buffer overflows can be discon-

tiguous, every object in the heap that precedes an overflow is a potential culprit.

However, each additional heap dramatically lowers this number:

Theorem 4. The expected number of objects (possible culprits) the same distance δ

from any given victim object across k heaps is:

E(possible culprits) =
1

(H − 1)k−2
.

Proof. Without loss of generality, assume that the victim object occupies the last slot

in every heap. An object can thus be in any of the remaining n = H − 1 slots. The

odds of it being in the same slot in k heaps is p = 1/(H − 1)k−1. This is a binomial

distribution, so E(possible culprits) = np = 1/(H − 1)k−2.

82

With only one heap image, all (H−1) objects are potential culprits, but one additional

image reduces the expected number of culprits for any victim to just 1 (1/(H − 1)0),

effectively eliminating the risk of false positives.

Once Exterminator identifies a culprit-victim pair, it records the overflow size for

that culprit as the maximum of any observed δ to a victim. Exterminator also assigns

each culprit-victim pair a score that corresponds to its confidence that it is an actual

overflow. This score is 1 − (1/256)S, where S is the sum of the length of detected

overflow strings across all pairs. Intuitively, small overflow strings (e.g., one byte)

detected in only a few heap images are given lower scores, and large overflow strings

present in many heap images get higher scores.

After overflow processing completes and at least one culprit has a non-zero score,

Exterminator generates a runtime patch for an overflow from the most highly-ranked

culprit.

5.2.2 Dangling Pointer Isolation

Isolating dangling pointer errors falls into two cases: a program may read and write

to the dangled object, leaving it partially or completely overwritten, or it may only

read through the dangling pointer. Exterminator does not handle read-only dangling

pointer errors in iterative or replicated mode because it would require too many repli-

cas (e.g., around 20; see Section 5.5.2.1). However, it handles overwritten dangling

objects straightforwardly.

When a freed object is overwritten with identical values across multiple heap im-

ages, Exterminator classifies the error as a dangling pointer overwrite. As Theorem 2

shows, this situation is highly unlikely to occur for a buffer overflow. Exterminator

then generates an appropriate runtime patch, as Section 5.4.2 describes.

83

5.3 Cumulative Error Isolation

When operating in cumulative mode, Exterminator isolates memory errors by com-

puting summary information accumulated over multiple executions, rather than by

operating over multiple heap images. This mode lets Exterminator isolate memory

errors without the need for replication, identical inputs, or deterministic execution.

5.3.1 Buffer Overflow Detection

Exterminator’s cumulative mode buffer overflow isolation algorithm proceeds in three

phases. First, it identifies heap corruption by looking for overwritten canary values.

Second, for each allocation site, it computes an estimate of the probability that an

object from that site could be the source of the corruption. Third, it combines these

independent estimates from multiple runs to identify sites that consistently appear

as candidates for causing the corruption.

After computing the set of corrupt object slots, Exterminator examines allocation

sites and finds possible culprits. To reason about an individual allocation site, Exter-

minator must consider all objects allocated from that site. We use Bayesian inference

to compare two hypotheses, H0, the allocation site does not produce overflowed ob-

jects, and H1, the allocation site produces some overflowed objects.

An object that causes corruption by a forward overflow (i.e., it corrupts mem-

ory at a higher address) must satisfy two criteria. First, it must lie on the same

miniheap as the corruption. Because miniheaps are randomly located throughout the

whole address space, we assume that the probability that an overflow crosses mini-

heap boundaries to cause corruption without first causing a segmentation violation

is negligible. Second, the overflowed object must lie at a lower address than the cor-

ruption. Backwards overflows (underruns) are handled independently using the same

algorithm with the obvious adaptations.

84

For each object, the error isolation algorithm computes the conditional probability

that the object satisfies the criteria given the null hypothesis (i.e., that the object

is not the source of the corruption). The total probability is the product of the

probabilities of being allocated in the same miniheap (the left-hand term below),

times the probability of it falling on the left side of the corruption (the right-hand

term). The first term is the size of the corrupt miniheap, divided by the sum of the

sizes of all miniheaps available in the size class at the time the object was allocated

(The size’ function below ignores miniheaps that did not exist at the time of the

object’s allocation). Let Mc be the corrupted miniheap, k the index of the corrupted

slot in Mc, τ(i) and τ(Mj) the allocation time of object i or miniheap Mj, respectively,

and size(Mi) the number of object slots in miniheap Mi. The probability P (Ci) that

object i satisfies the criteria is then:

P (Ci) =
size′(i,Mc)∑
Mj
size′(i,Mj)

· k

size(Mc)

where

size′(i,Mj) =

0 τ(Mj) > τ(i)

size(Mj) τ(Mj) ≤ τ(i).

For each allocation site A, Exterminator then computes the probability P (CA)

that at least one object from the site satisfied the criteria (1 minus the probability of

all objects not satisfying) as

P (CA) = 1−
(∏

i from A

(
1− P (Ci)

))
.

This value P (CA), combined with the actual observed value CA, is the complete

summary that Exterminator computes and stores between runs. Intuitively, each run

can be thought of as a coin flip, where P (CA) is the probability of heads, and CA = 1

if the coin flip resulted in heads.

85

Using the estimates from multiple runs, Exterminator then identifies allocation

sites that satisfy the criteria more often than expected under the null hypothesis.

These allocation sites are those that generate overflowed objects. Let θA be the

probability that an observed corrupted object was caused by an overflow from an

object allocated from site A. For sites with no overflow errors, θA = 0. For sites

with errors, θA is some value greater than zero, depending on the number of other

bugs in the program. The algorithm compares the likelihoods of the two competing

hypotheses: H0 : θA = 0 (no overflowed objects), and H1 : θA > 0 (some overflowed

objects).

Exterminator’s error classifier takes as input the sequence of computed proba-

bilities Xi = P (CA) and the observed values Yi = CA from each run. Using a

Bayesian model, Exterminator rejects H0 and identifies A as an error source when

P (H1|X̄, Ȳ) > P (H0|X̄, Ȳ). This condition is equivalent (using Bayes’ rule) to

P (X̄, Ȳ |H1)

P (X̄, Ȳ |H0)
>
P (H0)

P (H1)
.

Because the true prior probabilities of the hypotheses are unknown, Exterminator

estimates them. Different estimates trade off between false positive rate and the

number of runs required to identify true errors. Using a ratio of prior probabilities

P (H0)/P (H1) = 1/cN , where N is the total number of allocation sites and c a small

constant (currently, c = 4) generally produces a well-behaved, conservative classifier.

This prior is reasonable because there is some probability that the corruption was

caused by an overflow (as opposed to a dangling pointer), represented by the 1/c

factor, and a small probability that each allocation site is the culprit (the 1/N factor).

Finally, Exterminator computes the above values and compares them. Assuming

H0, each independent run i has a Xi = P (CA) chance that Yi = 1. By the product

rule,

86

P (X̄, Ȳ |H0) =
∏

i

(
(1−Xi)(1− Yi) +XiYi

)
.

Computing the likelihood of H1 requires consideration of all possible values of θA.

The probability of Yi is then the causation probability θA, plus the probability due to

random chance, (1− θA)Xi. We assume a uniform prior distribution on θA, that is,

P (θA) =

 1 0 < θA ≤ 1

0 otherwise

The likelihood is then:

P (X̄, Ȳ |H1) =

∫ 1

0

∏
i

(1− (1− θA)Xi − θA

)(
1− Yi

)
+
(
(1− θA)Xi + θA

)
Yi

 dθA.

Once Exterminator identifies an erroneous allocation site A, it produces a runtime

patch that corrects the error. To find the correct padding value, it searches backwards

from the corruption found during the current run until it finds an object allocated

from A. It then uses the distance between that object and the end of the corruption

as the padding value.

5.3.2 Dangling Pointer Isolation

As with buffer overflows, dangling pointer isolation proceeds by computing summary

information over a number of runs. To force each run to have a different effect,

Exterminator fills freed objects with canaries with some probability p, turning every

execution into a series of Bernoulli trials. If overwriting a prematurely-freed object

with canaries leads to an error, then its overwrite will correlate with a failed execution

with probability greater than p. Conversely, if an object was not prematurely freed,

then overwriting it with canaries should have no correlation with the failure or success

of the program.

87

For each failed run, Exterminator computes the probability that an object was

canaried from each allocation site. As in the buffer overflow case, the summary

information required is simply this probability (Xi) and whether or not a canary was

observed (Yi).

Because the meaning of this data is the same as in the buffer overflow algorithm,

Exterminator uses the same hypothesis test to compute the likelihood that each

allocation site is the source of a dangling pointer error.

The choice of p reflects a tradeoff between the precision of the buffer overflow

algorithm and dangling pointer isolation. Since overflow isolation relies on detecting

corrupt canaries, low values of p increase the number of runs (though not the number

of failures) required to isolate overflows. However, lower values of p increase the

precision of dangling pointer isolation by reducing the risk that certain allocation

sites will always observe one canary value. We currently set p = 1/2, though some

dangling pointer errors may require lower values of p to converge within a reasonable

number of runs.

Exterminator then estimates the required lifetime extension by locating the old-

est canaried object from an identified allocation site, and computing the number

of allocations between the time it was freed and the time that the program failed.

The correcting allocator then extends the lifetime of all objects corresponding to this

allocation/deallocation site by twice this number.

5.4 Error Correction

We now describe how Exterminator uses the information from its error isolation algo-

rithms to correct specific errors. Exterminator first generates runtime patches for each

error. It then relies on a correcting allocator that uses this information, padding allo-

cations to prevent overflows, and deferring deallocations to prevent dangling pointer

errors.

88

1 void * correcting_malloc (size_t sz)

2 // Update the allocation clock.

3 clock ++;

4 // Free deferred objects.

5 while (deferralQ.top()->time <= clock)

6 really_free (deferralQ ().pop()->ptr);

7 int allocSite = computeAllocSite ();

8 // Find the pad for this site.

9 int pad = padTable (allocSite);

10 void * ptr = really_malloc (sz + pad);

11 // Store object info and return.

12 setObjectId (ptr , clock);

13 setAllocSite (ptr , allocSite);

14 return ptr;

1 void correcting_free (void * ptr)

2 // Compute site info for this pointer.

3 int allocS = getAllocSite (ptr);

4 int freeS = computeFreeSite ();

5 setFreeSite (ptr , freeS);

6 // Defer or free?

7 int defer = deferralMap (allocS , freeS);

8 if (defer == 0)

9 really_free (ptr);

10 else

11 deferralQ.push (ptr , clock + defer);

Figure 5.6. Pseudo-code for the correcting memory allocator, which incorporates
the runtime patches generated by the error isolator.

5.4.1 Buffer overflow correction

For every culprit-victim pair that Exterminator encounters, it generates a runtime

patch consisting of the allocation site hash and the padding needed to contain the

overflow (δ + the size of the overflow). If a runtime patch has already been generated

for a given allocation site, Exterminator uses the maximum padding value encountered

so far.

89

5.4.2 Dangling pointer correction

The runtime patch for a dangling pointer consists of the combination of its allocation

site info and a time by which to delay its deallocation.

Exterminator computes this delay as follows. Let τ be the recorded deallocation

time of the dangled object, and T be the last allocation time. Exterminator has

no way of knowing how long the object is supposed to live, so computing an exact

delay time is impossible. Instead, it extends the object’s lifetime (delays its free) by

twice the distance between its premature free and the last allocation time, plus one:

2× (T − τ) + 1.

This choice ensures that Exterminator will compute a correct patch in a logarith-

mic number of executions. As we show in Section 5.5.2, multiple iterations to correct

pointer errors are rare in practice, because the last allocation time can be well past

the time that the object should have been freed.

It is important to note that this deallocation deferral does not multiply its lifetime

but rather its drag [65]. To illustrate, an object might live for 1000 allocations and

then be freed just 10 allocations too soon. If the program immediately crashes, Exter-

minator will extend its lifetime by 21 allocations, increasing its lifetime by less than

1% (1021/1010). Section 5.5.3 evaluates the impact of both overflow and dangling

pointer correction on space consumption.

5.4.3 The Correcting Memory Allocator

The correcting memory allocator incorporates the runtime patches described above

and applies them when appropriate. Figure 5.6 presents pseudo-code for the allocation

and deallocation functions.

At start-up, or upon receiving a reload signal (Section 5.1.3), the correcting al-

locator loads the runtime patches from a specified file. It builds two hash tables: a

pad table mapping allocation sites to pad sizes, and a deferral table, mapping

90

pairs of allocation and deallocation sites to a deferral value. Because it can reload the

runtime patch file and rebuild these tables on-the-fly, Exterminator can apply patches

to running programs without interrupting their execution. This aspect of Extermi-

nator’s operation may be especially useful for systems that must be kept running

continuously.

On every deallocation, the correcting allocator checks to see if the object to be

freed needs to be deferred. If it finds a deferral value for the object’s allocation and

deallocation site, it pushes onto the deferral priority queue the pointer and the

time to actually free it (the current allocation time plus the deferral value).

The correcting allocator then checks the deferral queue on every allocation to see

if an object should now be freed. It then checks whether the current allocation site

has an associated pad value. If so, it adds the pad value to the allocation request,

and forwards the allocation request to the underlying allocator.

5.4.4 Collaborative Correction

Each individual user of an application is likely to experience different errors. To allow

an entire user community to automatically improve software reliability, Exterminator

provides a simple utility that supports collaborative correction. This utility takes as

input a number of runtime patch files. It then combines these patches by computing

the maximum buffer pad required for any allocation site, and the maximal deferral

amount for any given allocation site. The result is a new runtime patch file that

covers all observed errors. Because the size of patch files is limited by the number

of allocation sites in a program, we expect these files to be compact and practical to

transmit. For example, the size of the runtime patches that Exterminator generates

for injected errors in espresso was just 130K, and shrinks to 17K when compressed

with gzip.

91

0

0.5

1

1.5

2

2.5
N

o
rm

a
li

z
e
d

 E
x
e
cu

ti
o

n
 T

im
e

Exterminator Overhead

GNU libc Exterminator

allocation-intensive SPECint2000

Figure 5.7. Runtime overhead for Exterminator across a suite of benchmarks, nor-
malized to the performance of GNU libc (Linux) allocator.

5.5 Results

Our evaluation answers the following questions:

1. What is the runtime overhead of using Exterminator?

2. How effective is Exterminator at finding and correcting memory errors, both

for injected and real faults?

3. What is the overhead of Exterminator’s runtime patches?

5.5.1 Exterminator Runtime Overhead

We evaluate Exterminator’s performance with the SPECint2000 suite [76] running

reference workloads, as well as a suite of allocation-intensive benchmarks. We use the

92

latter suite of benchmarks both because they are widely used in memory manage-

ment studies [9, 31, 37], and because their high allocation-intensity stresses memory

management performance. For all experiments, we fix Exterminator’s heap multiplier

(value of M) at 2.

All results are the average of five runs on a quiescent, dual-processor Linux system

with 3 GB of RAM, with each 3.06GHz Intel Xeon processor (hyperthreading active)

equipped with 512K L2 caches. Our observed experimental variance is below 1%.

We focus on the non-replicated mode (iterative/cumulative), which we expect to

be a key limiting factor for Exterminator’s performance and the most common usage

scenario.

We compare the runtime of Exterminator (DieFast plus the correcting alloca-

tor) to the GNU libc allocator. This allocator is based on the Lea allocator [44],

which is among the fastest available [11]. Figure 5.7 shows that, versus this alloca-

tor, Exterminator degrades performance by from 0% (186.crafty) to 132% (cfrac),

with a geometric mean of 25.1%. While Exterminator’s overhead is substantial for

the allocation-intensive suite (geometric mean: 81.2%), where the cost of comput-

ing allocation and deallocation contexts dominates, its overhead is significantly less

pronounced across the SPEC benchmarks (geometric mean: 7.2%).

5.5.2 Memory Error Correction

5.5.2.1 Injected Faults

To measure Exterminator’s effectiveness at isolating and correcting bugs, we used the

fault injector that accompanies the DieHard distribution to inject buffer overflows and

dangling pointer errors. For each data point, we run the injector using a random seed

until it triggers an error or divergent output. We next use this seed to deterministically

trigger a single error in Exterminator, which we run in iterative mode. We then

measure the number of iterations required to isolate and generate an appropriate

93

runtime patch. The total number of images (iterations plus the first run) corresponds

to the number of replicas that would be required when running Exterminator in

replicated mode.

Buffer overflows: We triggered 10 different buffer overflows each of three differ-

ent sizes (4, 20, and 36 bytes) by underflowing objects in the espresso benchmark.

The number of images required to isolate and correct these errors was 3 in every case.

Notice that this result is substantially better than the analytical worst-case. For three

images, Theorem 3 bounds the worst-case likelihood of missing an overflow to 42%

(Section 5.2.1), rather than the 0% false negative rate we observe here.

Dangling pointer errors: We then triggered 10 dangling pointer faults in

espresso with Exterminator running in iterative and in cumulative modes. In it-

erative mode, Exterminator succeeds in isolating the error in only 4 runs. In another

4 runs, espresso does not write through the dangling pointer. Instead, it reads a

canary value through the dangled pointer, treats it as valid data, and either crashes

or aborts. Since no corruption is present in the heap, Exterminator cannot isolate the

source of the error. In the remaining 2 runs, writing canaries into the dangled object

triggers a cascade of errors that corrupt large segments of the heap. In these cases,

the corruption destroys the information Exterminator requires to isolate the error.

In cumulative mode, however, Exterminator successfully isolates all 10 injected

errors. For runs where no large-scale heap corruption occurs, Exterminator requires

between 22 and 30 executions to isolate and correct the errors. In each case, 15 fail-

ures must be observed before the erroneous site pair crosses the likelihood threshold.

Because objects are overwritten randomly, the number of runs required to yield 15

failures varies. Where writing canaries corrupts a large fraction of the heap, Extermi-

nator requires 18 failures and 34 total runs. In some of the runs, execution continues

long enough for the allocator to reuse the culprit object, preventing Exterminator

from observing that it was overwritten.

94

5.5.2.2 Real Faults

We also tested Exterminator with actual bugs in two applications: the Squid web

caching server, and the Mozilla web browser.

Squid web cache

Version 2.3s5 of Squid has a buffer overflow; certain inputs cause Squid to crash with

either the GNU libc allocator or the Boehm-Demers-Weiser collector [9, 59].

We run Squid three times under Exterminator in iterative mode with an input

that triggers a buffer overflow. Exterminator continues executing correctly in each

run, but the overflow corrupts a canary. Exterminator’s error isolation algorithm

identifies a single allocation site as the culprit and generates a pad of exactly 6 bytes,

fixing the error.

Mozilla web browser

We also tested Exterminator’s cumulative mode on a known heap overflow in Mozilla

1.7.3 / Firefox 1.0.6 and earlier. This overflow (Bugzilla ID 307259) occurs because

of an error in Mozilla’s processing of Unicode characters in domain names. Not only

is Mozilla multi-threaded, leading to non-deterministic allocation behavior, but even

slight differences in moving the mouse cause allocation sequences to diverge. Thus,

neither replicated nor iterative modes can identify equivalent objects across multiple

runs.

We perform two case studies that represent plausible scenarios for using Extermi-

nator’s cumulative mode. In the first study, the user starts Mozilla and immediately

loads a page that triggers the error. This scenario corresponds to a testing environ-

ment where a proof-of-concept input is available. In the second study, the user first

navigates through a selection of pages (different on each run), and then visits the

error-triggering page. This scenario approximates deployed use where the error is

triggered in the wild.

95

In both cases, Exterminator correctly identifies the overflow with no false positives.

In the first case, Exterminator requires 23 runs to isolate the error. In the second, it

requires 34 runs. We believe that this scenario requires more runs because the site

that produces the overflowed object allocates more correct objects, making it harder

to identify it as erroneous.

5.5.3 Patch Overhead

Exterminator’s approach to correcting memory errors does not impose additional

execution time overhead in the presence of patches. However, it consumes additional

space, either by padding allocations or by deferring deallocations. We measure the

space overhead for buffer overflow corrections by multiplying the size of the pad by

the maximum number of live objects that Exterminator patches. The most space

overhead we observe is for the buffer overflow experiment with overflows of size 36,

where the total increased space overhead is between 320 and 2816 bytes.

We measure space overhead for dangling pointer corrections by multiplying the

object size by the number of allocations for which the object is deferred; that is, we

compute the total additional drag. In the dangling pointer experiment, the amount

of excess memory ranges from 32 bytes to 1024 bytes (one 256 byte object is deferred

for 4 deallocations). This amount constitutes less than 1% of the maximum memory

consumed by the application.

5.6 Conclusion

Like our previous systems, Exterminator operates entirely at the runtime level on

unaltered binaries, and consists of three key components: (1) DieFast, a probabilistic

debugging allocator, (2) a probabilistic error isolation algorithm, and (3) a correcting

memory allocator. Exterminator’s probabilistic error isolation isolates the source and

extent of memory errors with provably low false positive and false negative rates.

96

Its correcting memory allocator incorporates runtime patches that the error isolation

algorithm generates to correct memory errors. While Exterminator is valuable for

use during testing, a key advantage over existing systems is its low overhead that

allows it to protect deployed applications from crashes and security vulnerabilities by

automatically discovering and correcting memory errors.

97

CHAPTER 6

RELATED WORK

The problem of coping with software errors has been studied extensively. In

this chapter, we discuss related systems for coping with memory errors, as well as

techniques for dealing with other types of software errors.

This chapter is organized as follows. First, we cover related work on coping with

memory errors. Section 6.1 discusses techniques for coping with buffer overflow er-

rors, followed by Section 6.2 on dangling pointer errors. Section 6.3 discusses allocator

techniques specifically targeted at improving security, including randomization. Sec-

tion 6.4 discusses previous work not directly related to memory errors, including other

uses of virtual memory for user-space memory management (Section 6.4.1), and au-

tomatic techniques for repairing (Section 6.4.2) and isolating (Section 6.4.3) general

software errors.

6.1 Buffer Overflows

Many previous systems have addressed the problem of buffer overflows using mod-

ified versions of C and some combination of static analysis and dynamic checks. Sys-

tems reliant on language extensions include Cyclone [36, 77], which augments C with

an advanced type system to provide safe explicit memory management. CCured [52]

inserts dynamic checks into the compiled program and uses static analysis to eliminate

checks from places where memory errors cannot occur.

Other approaches are less ambitious, but do not require source code modification.

Jones and Kelley’s system [39] extends GCC to maintain metadata on all memory

98

blocks and adds dynamic checks on each object access to detect dereferences of out-

of-bounds pointers. Upon detecting an invalid dereference, the runtime prints an

error message and aborts the program, preventing security vulnerabilities. While it

maintains backwards compatibility for programs which maintain strict compliance

with the C specification, many programs create invalid intermediate pointers which

are never dereferenced, but violate the specification and create false positives in their

system. Programs instrumented with their system suffer around 12X performance

degradation, making it impractical for most production systems.

CRED [68] extends Jones and Kelley’s scheme to handle invalid intermediate

pointers, and targets only references to string buffers, which are the most common

cause of buffer overflow security vulnerabilities. Dhurjati and Adve present a similar

system built in LLVM [43] which uses pool allocation [42] and pointer analysis to

remove many dynamic checks [26]. Their system achieves low overhead but requires

whole-program analysis, making it impractical for many environments.

Rinard et al. extend CRED to tolerate buffer overflow errors using a system called

boundless buffers that caches out-of-bound writes in a hash table for later reuse [63].

This approach allows the program to continue past the error and maintain correct

execution in most cases.

Libraries like LibSafe and HeapShield can prevent overflows that stem from misuse

of C APIs like strcpy [4, 7]. HeapShield itself was integrated into DieHard [10] and

has also been integrated into DieHarder.

Buffer overflow detection has been offered by dynamic binary instrumentation

tools used for bug detection, such as Purify [34] and Valgrind [53, 54]. These systems

have high precision but very high overhead, making them unsuitable for production

use.

Finally, there have been numerous debugging memory allocators which have vary-

ing support for detecting buffer overflows. The documentation for one of them, mpa-

99

trol, includes a list of over ninety such systems [67]. Notable recent allocators with

debugging features include dnmalloc [84], Heap Server [41], and version 2.8 of the

Lea allocator [44, 64]. Electric Fence [57] and PageHeap [49] are both object-per-

page allocators like Archipelago, but without Archipelago’s features that reduce its

overhead.

6.2 Dangling Pointers

Conservative garbage collection [16] can prevent dangling pointer errors and some

memory leaks by ignoring all free operations and instead automatically reclaiming

unreachable memory. Despite its benefits, however, practical collectors for C/C++

have real and perceived drawbacks, both for performance and correctness. Pointer

misidentification can cause conservative garbage collectors to fail to reclaim memory,

especially on 32-bit platforms [15]. Worse, because C/C++ programs can obscure

pointers (e.g., via XOR-encoding of linked lists [80]), a conservative collector can

inadvertently reclaim live objects, causing these programs to crash.

Object-per-page allocators such as Electric Fence [57] and PageHeap [49] can

detect dangling pointer accesses by remembering which pages were used for freed

objects. However, these systems require substantial extra physical memory, making

them suitable only for debugging.

Dhurjati and Adve improve on this technique by proposing a novel object-per-

virtual-page allocator [25]. Their allocator maps multiple virtual pages to a single

physical one, thus eliminating extra physical memory overhead. Upon free, the al-

locator protects the virtual page used by the object so that future (invalid) accesses

can be detected. The system soundly reuses virtual addresses by removing the pro-

tected page entries when a whole-program pointer and liveness analysis proves that

the pages are inaccessible.

100

6.3 Allocator Security

Other previous work to increase the security of memory allocators has focused on

securing heap metadata and the use of randomization to increase non-determinism.

6.3.1 Metadata Protection

One approach is to secure the metadata via encryption: Robertson describes the

use of XOR-encoded heap metadata [64], a countermeasure that was incorporated

(in slightly modified form) by Lea into DLmalloc version 2.8 (a later version than

the basis of GNU libc’s allocator). Younan et al. instead present a modified version

of the Lea allocator that fully segregates metadata, but which implements no other

security enhancements [84]. Kharbutli et al. describe an approach to securing heap

metadata that places it in a separate process [41]. Isolation of heap metadata helps

prevent certain attacks but, for example, does not mitigate attacks against the heap

data itself. Like DieHard, DieHarder completely segregates heap metadata, and its

randomized placement of heap metadata in a sparse address space effectively protects

the metadata.

6.3.2 Randomized Memory Managers

Several memory management systems employ some degree of randomization, includ-

ing locating the heap at a random base address [13, 56], adding random padding

to allocated objects [14], shuffling recently-freed objects [41], or a mix of padding

and object deferral [59]. This level of randomization is insufficient for Exterminator,

which requires full heap randomization. None of these approaches generate as much

entropy as DieHard or DieHarder.

Exterminator builds on DieHard [9], which tolerates errors probabilistically. Ex-

terminator substantially modifies and extends DieHard’s heap layout and allocation

algorithms. It also uses probabilistic algorithms that identify and correct errors.

101

6.3.3 Heap Spraying Countermeasures

One noteworthy countermeasure by Ratanaworabhan et al. called Nozzle ad-

dresses heap spraying attacks aimed at preventing code injection attacks [61]. Nozzle

operates by scanning the heap looking for valid x86 code sequences—a large number

of such sequences indicates that a spray attack is in progress, and can be used to

trigger program termination.

6.4 Other Related Work

6.4.1 VM techniques for memory management

Recent cooperative systems exploit communication between the OS virtual mem-

ory manager (VMM) and the garbage collector to reduce paging due to garbage

collection. Yang et al. modify the Linux virtual memory manager to provide detailed

reference information, allowing it to dynamically adapt the GC heap size in order to

maximize performance [83].

Appel and Li describe a number of primitives and algorithms for exploiting virtual

memory in user-mode [3].

6.4.2 Automatic Repair

Demsky et al.’s automatic data structure repair [21, 22, 23] enforces data structure

consistency specifications, guided by a formal description of the program’s data struc-

tures (specified manually or derived automatically by Daikon [27]). Exterminator

attacks a different problem, namely that of isolating and correcting memory errors,

and is orthogonal and complementary to data structure repair.

Sidiroglou et al. propose STEM, a self-healing runtime that executes functions in

a transactional environment so that if they detect the function misbehaving, they can

prevent it from doing damage [71]. Using STEM, they implement error virtualization,

which maps the set of possible errors in a function onto those that have an explicit

102

error handler. The more recent SEAD system goes beyond STEM requiring no source

code changes, handling I/O with virtual proxies, and by specifying the repair policy

explicitly through an external description [72]. While STEM and SEAD are promis-

ing approaches to automatically recovering from errors, neither provides solutions

for as broad a class of errors as Exterminator, nor do they provide mechanisms to

semantically eliminate the source of the error automatically, as Exterminator does.

6.4.3 Automatic Debugging

Two previous systems apply techniques designed to help isolate bugs. Statistical bug

isolation is a distributed assertion sampling technique that helps pinpoint the location

of errors, including but not limited to memory errors [45, 46, 47]. It works by injecting

lightweight tests into the source code; the result of these tests, in bit vector form, can

be processed to generate likely sources of the errors. This statistical processing differs

from Exterminator’s probabilistic error isolation algorithms, although Liu et al. also

use hypothesis testing [47]. Like statistical bug isolation, Exterminator can leverage

runs of deployed programs. However, unlike statistical bug isolation, Exterminator

requires neither source code nor a large deployed user base in order to find errors,

and automatically generates runtime patches that correct them.

Delta debugging automates the process of identifying the smallest possible inputs

that do and do not exhibit a given error [19, 50, 85]. Given these inputs, it is up to

the software developer to actually locate the bugs themselves. Exterminator focuses

on a narrower class of errors, but is able to isolate and correct an error given just one

erroneous input, regardless of its size.

6.4.4 Fault Tolerance

Recently, there has been an increasing focus on approaches for tolerating hardware

transient errors that are becoming more common due to fabrication process limita-

tions. Work in this area ranges from proposed hardware support [60] to software fault

103

tolerance [62]. While Exterminator also uses redundancy as a method for detecting

and correcting errors, Exterminator goes beyond tolerating software errors, which are

not transient, to correcting them permanently. Like Exterminator, other efforts in

the fault tolerance community seek to gather data from multiple program executions

to identify potential errors. For example, Guo et al. use statistical techniques on

internal monitoring data to probabilistically detect faults, including memory leaks

and deadlocks [32]. Exterminator goes beyond this previous work by characterizing

each memory error so specifically that a correction can be automatically generated

for it.

Rx operates by checkpointing program execution and logging inputs [59]. Rx rolls

back crashed applications and replays inputs to it in a new environment that pads all

allocations or defers all deallocations by some amount. If this new environment does

not yield success, Rx rolls back the application again and increases the pad values,

up to some threshold. Unlike Rx, Exterminator does not require checkpointing or

rollback, and precisely isolates and corrects memory errors.

104

CHAPTER 7

CONCLUSION

Despite years of research and dozens of tools, memory errors remain a problem

in deployed software. Existing debugging tools succeed at finding these errors, but

require high runtime or memory overheads, making them unsuitable for deployment.

Many such errors may manifest only after long periods in production. Others create

security risks when used with uncontrolled inputs such as web pages or arbitrary

network requests. Runtime systems that tolerate memory errors and prevent their

exploitation decrease these risks.

7.1 Contributions

In this thesis, we present three systems that improve application reliability and se-

curity in the presence of memory errors. First, it presents Archipelago, which tolerates

large and repeated heap overflows in especially-vulnerable server applications. We

show that applications using Archipelago can survive thousands of repeated memory

errors without malfunctioning. Second, it presents DieHarder, an allocator specifically

designed to reduce predictability and to make exploiting attacks as difficult as pos-

sible while remaining practical. We show that DieHarder provides significantly more

entropy than previous allocators while imposing little runtime overhead. Finally, it

presents Exterminator, a system that uses robust statistical techniques to tolerate,

detect, and correct heap buffer overflows and dangling pointers in general-purpose

applications. We show that Exterminator has acceptably-low runtime overhead for

production use as well as provably low false positive and negative rates.

105

7.2 Future Work

The systems presented in this thesis prove that the underlying concepts are sound,

while suggesting enhancements and further exploration of these ideas for future work.

Our current implementation of Archipelago uses a fixed-size hot space, that is, a

constant number of objects are kept uncompressed and directly-accessible. A more

robust implementation would use an adaptively-sized space, requiring less physical

memory when possible, but providing better performance for larger working sets. A

mechanism such as CRAMM’s [83] that dynamically adjusts the hot space size to

maintain a target overhead would obviously be applicable here.

Our current implementation of DieHarder allocates small-object pages uniformly

at random from a large, statically-sized virtual address space. While this policy max-

imizes entropy, it can require significant memory to store page tables. OpenBSD’s

kernel allocator uses a more adaptive mechanism that allocates randomly from a vir-

tual address region that grows as more pages become allocated. Adopting such a

mechanism for DieHarder (on Linux) would reduce memory overhead while main-

taining O(logN) bits of entropy in page addresses.

Exterminator’s existing implementation focuses on reliability, rather than secu-

rity. While the existing system provides significant benefits, minor changes could

substantially improve its adaptation to attacks. For example, upon discovering an

allocation site responsible for overflowed objects, it could use Archipelago to allocate

those objects on their own pages, surrounded by guard pages. This policy would

ensure that contiguous overflows from those objects could never overwrite vulnerable

data.

Exterminator’s cumulative mode error isolation algorithms, which require neither

repeated runs on the same input nor determinism, are the most applicable for pro-

duction use. However, they may require many iterations (around 30) in order to

diagnose the error. Replacing DieFast’s heap layout with DieHarder’s, which consists

106

of many almost-independent pages rather than large contiguous regions of address

space, would greatly decrease the number of iterations required for Exterminator to

identify the cause of an error.

Different inference methods that use richer information collected from individual

heap dumps may also enable quicker convergence. For example, for buffer overflows,

the algorithm keeps only a single bit per allocation site representing whether an ob-

ject from that callsite existed at a lower address in the same miniheap as a corrupted

canary. Tracking more information, such as possible deltas, would provide the isola-

tor with much more information without requiring excessive space, and would likely

enable more quickly-converging inference algorithms.

107

BIBLIOGRAPHY

[1] Jonathan Afek and Adi Sharabani. Dangling pointer: Smashing the pointer for
fun and profit. In Black Hat USA (2007).

[2] Alexander Anisimov. Defeating Microsoft Windows XP SP2 heap protection and
DEP bypass, 2005.

[3] Andrew W. Appel and Kai Li. Virtual memory primitives for user programs. In
ASPLOS (1991), pp. 96–107.

[4] Kumar Avijit, Prateek Gupta, and Deepak Gupta. Tied, libsafeplus: Tools for
runtime buffer overflow protection. In Proceedings of the 13th USENIX Security
Symposium (Aug. 2004), USENIX.

[5] BBP. BSD heap smashing. http://www.ouah.org/BSD-heap-smashing.txt.

[6] Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan Grossman.
Coredet: a compiler and runtime system for deterministic multithreaded execu-
tion. In Proceedings of the fifteenth edition of ASPLOS on Architectural support
for programming languages and operating systems (2010), ASPLOS ’10, ACM.

[7] Emery D. Berger. HeapShield: Library-based heap overflow protection for free.
Tech. Rep. UMCS TR-2006-28, Department of Computer Science, University of
Massachusetts Amherst, May 2006.

[8] Emery D. Berger, Ting Yang, Tongping Liu, and Gene Novark. Grace: safe
multithreaded programming for c/c++. In OOPSLA (2009), Shail Arora and
Gary T. Leavens, Eds., ACM, pp. 81–96.

[9] Emery D. Berger and Benjamin G. Zorn. DieHard: probabilistic memory safety
for unsafe languages. In PLDI (2006), Michael I. Schwartzbach and Thomas
Ball, Eds., ACM, pp. 158–168.

[10] Emery D. Berger and Benjamin G. Zorn. Efficient probabilistic memory safety.
Tech. Rep. UMCS TR-2007-17, Department of Computer Science, University of
Massachusetts Amherst, Mar. 2007.

[11] Emery D. Berger, Benjamin G. Zorn, and Kathryn S. McKinley. Composing
high-performance memory allocators. In Proceedings of the 2001 ACM SIGPLAN
Conference on Programming Language Design and Implementation (June 2001),
ACM Press, pp. 114–124.

108

[12] Dan Bernstein. Usenet posting, comp.lang.c. http://groups.google.com/

group/comp.lang.c/msg/6b82e964887d73d9, Dec. 1990.

[13] Sandeep Bhatkar, Daniel C. DuVarney, and R. Sekar. Address obfuscation:
An efficient approach to combat a broad range of memory error exploits. In
Proceedings of the 12th USENIX Security Symposium (Aug. 2003), USENIX,
pp. 105–120.

[14] Sandeep Bhatkar, R. Sekar, and Daniel C. DuVarney. Efficient techniques for
comprehensive protection from memory error exploits. In Proceedings of the 14th
USENIX Security Symposium (Aug. 2005), USENIX, pp. 271–286.

[15] Hans-Juergen Boehm. Space efficient conservative garbage collection. In PLDI
(1993), pp. 197–206.

[16] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncooperative
environment. SPE 18, 9 (1988), 807–820.

[17] Michael D. Bond and Kathryn S. McKinley. Bell: bit-encoding online memory
leak detection. In Shen and Martonosi [70], pp. 61–72.

[18] Richard W Carr and John L Hennessy. WSClock - A simple and effective al-
gorithm for virtual memory management. In Proceedings of the Eighth ACM
Symposium on Operating System Principles (Pacific Grove, CA, Dec. 1981),
pp. 87–95.

[19] Holger Cleve and Andreas Zeller. Locating causes of program failures. In Roman
et al. [66], pp. 342–351.

[20] Matt Conover and the w00w00 Security Team. w00w00 on heap overflows.
http://www.w00w00.org/files/articles/heaptut.txt, January 1999.

[21] Brian Demsky, Michael D. Ernst, Philip J. Guo, Stephen McCamant, Jeff H.
Perkins, and Martin C. Rinard. Inference and enforcement of data structure
consistency specifications. In ISSTA (2006), Lori L. Pollock and Mauro Pezzè,
Eds., ACM, pp. 233–244.

[22] Brian Demsky and Martin C. Rinard. Automatic detection and repair of errors
in data structures. In OOPSLA (2003), Ron Crocker and Guy L. Steele Jr., Eds.,
ACM, pp. 78–95.

[23] Brian Demsky and Martin C. Rinard. Data structure repair using goal-directed
reasoning. In Roman et al. [66], pp. 176–185.

[24] Peter Denning. Working sets past and present. 64–84.

[25] Dinakar Dhurjati and Vikram Adve. Efficiently detecting all dangling pointer
uses in production servers. In DSN ’06: Proceedings of the International Confer-
ence on Dependable Systems and Networks (Washington, DC, USA, 2006), IEEE
Computer Society, pp. 269–280.

109

[26] Dinakar Dhurjati and Vikram S. Adve. Backwards-compatible array bounds
checking for C with very low overhead. In Osterweil et al. [55], pp. 162–171.

[27] Michael D. Ernst, Adam Czeisler, William G. Griswold, and David Notkin.
Quickly detecting relevant program invariants. In ICSE (2000), pp. 449–458.

[28] Justin N. Ferguson. Understanding the heap by breaking it. In Black Hat USA
(2007).

[29] Jeanne Ferrante and Kathryn S. McKinley, Eds. Proceedings of the ACM SIG-
PLAN 2007 Conference on Programming Language Design and Implementation,
San Diego, California, USA, June 10-13, 2007 (2007), ACM.

[30] Shashank Gonchigar. Ani vulnerability: History repeats.

[31] Dirk Grunwald, Benjamin Zorn, and Robert Henderson. Improving the cache
locality of memory allocation. In Proceedings of SIGPLAN’93 Conference on
Programming Languages Design and Implementation (Albuquerque, NM, June
1993), vol. 28(6), pp. 177–186.

[32] Zhen Guo, Guofei Jiang, Haifeng Chen, and Kenji Yoshihira. Tracking proba-
bilistic correlation of monitoring data for fault detection in complex systems. In
DSN (2006), IEEE Computer Society, pp. 259–268.

[33] David R. Hanson. A portable storage management system for the Icon program-
ming language. Software Practice and Experience 10, 6 (1980), 489–500.

[34] Reed Hastings and Bob Joyce. Fast detection of memory leaks and access er-
rors. In Proceedings of the Winter ’92 USENIX conference (1992), USENIX
Association, pp. 125–136.

[35] huku. Exploiting dlmalloc frees in 2009. Phrack 13, 66 (November 2009).

[36] Trevor Jim, J. Gregory Morrisett, Dan Grossman, Michael W. Hicks, James
Cheney, and Yanling Wang. Cyclone: A safe dialect of C. In USENIX Annual
Technical Conference, General Track (2002), Carla Schlatter Ellis, Ed., USENIX,
pp. 275–288.

[37] Mark S. Johnstone and Paul R. Wilson. The memory fragmentation problem:
Solved? In OOPSLA ’97 Workshop on Garbage Collection and Memory Man-
agement (Oct. 1997), Peter Dickman and Paul R. Wilson, Eds.

[38] Richard E. Jones and Rafael Lins. Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. Chichester, July 1996.

[39] Richard W. M. Jones and Paul H. J. Kelly. Backwards-compatible bounds check-
ing for arrays and pointers in C programs. In AADEBUG (1997), pp. 13–26.

[40] Poul-Henning Kamp. Malloc(3) revisited. http://phk.freebsd.dk/pubs/

malloc.pdf.

110

[41] Mazen Kharbutli, Xiaowei Jiang, Yan Solihin, Guru Venkataramani, and Milos
Prvulovic. Comprehensively and efficiently protecting the heap. In Shen and
Martonosi [70], pp. 207–218.

[42] Chris Lattner and Vikram Adve. Automatic pool allocation: improving perfor-
mance by controlling data structure layout in the heap. In PLDI ’05: Proceed-
ings of the 2005 ACM SIGPLAN conference on Programming language design
and implementation (2005), pp. 129–142.

[43] Chris Lattner and Vikram S. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In CGO (3 2004), IEEE Computer Society,
pp. 75–88.

[44] Doug Lea. A memory allocator. http://gee.cs.oswego.edu/dl/html/malloc.html,
1997.

[45] Ben Liblit, Alexander Aiken, Alice X. Zheng, and Michael I. Jordan. Bug isola-
tion via remote program sampling. In PLDI (2003), ACM, pp. 141–154.

[46] Ben Liblit, Mayur Naik, Alice X. Zheng, Alexander Aiken, and Michael I. Jordan.
Scalable statistical bug isolation. In PLDI (2005), Vivek Sarkar and Mary W.
Hall, Eds., ACM, pp. 15–26.

[47] Chao Liu, Xifeng Yan, Long Fei, Jiawei Han, and Samuel P. Midkiff. SOBER:
statistical model-based bug localization. In ESEC/SIGSOFT FSE (2005), Michel
Wermelinger and Harald Gall, Eds., ACM, pp. 286–295.

[48] John McDonald and Chris Valasek. Practical Windows XP/2003 Heap Exploita-
tion. In BlackHat USA 2009 (Las Vegas, NV, July 2009).

[49] Microsoft. How to use Pageheap.exe in Windows xp, Windows 2000, and Win-
dows Server 2003. http://support.microsoft.com/kb/286470.

[50] Ghassan Misherghi and Zhendong Su. HDD: Hierarchical delta debugging. In
Osterweil et al. [55], pp. 142–151.

[51] Otto Moerbeek. A new malloc(3) for OpenBSD. In EuroBSDCon (2009).

[52] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley
Weimer. CCured: type-safe retrofitting of legacy software. ACM Trans. Program.
Lang. Syst. 27, 3 (2005), 477–526.

[53] Nicholas Nethercote and Jeremy Fitzhardinge. Bounds-checking entire programs
without recompiling. In SPACE 2004 (Venice, Italy, Jan. 2004).

[54] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavyweight
dynamic binary instrumentation. In Ferrante and McKinley [29], pp. 89–100.

111

[55] Leon J. Osterweil, H. Dieter Rombach, and Mary Lou Soffa, Eds. 28th Interna-
tional Conference on Software Engineering (ICSE 2006), Shanghai, China, May
20-28, 2006 (2006), ACM.

[56] PaX Team. PaX address space layout randomization (ASLR). http://pax.

grsecurity.net/docs/aslr.txt.

[57] Bruce Perens. Electric fence malloc debugger.
http://perens.com/FreeSoftware/ElectricFence/.

[58] Jeff H. Perkins, Sunghun Kim, Samuel Larsen, Saman P. Amarasinghe, Jonathan
Bachrach, Michael Carbin, Carlos Pacheco, Frank Sherwood, Stelios Sidiroglou,
Greg Sullivan, Weng-Fai Wong, Yoav Zibin, Michael D. Ernst, and Martin C.
Rinard. Automatically patching errors in deployed software. In SOSP (2009),
Jeanna Neefe Matthews and Thomas E. Anderson, Eds., ACM, pp. 87–102.

[59] Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and Yuanyuan Zhou. Rx:
treating bugs as allergies - a safe method to survive software failures. In SOSP
(2005), Andrew Herbert and Kenneth P. Birman, Eds., ACM, pp. 235–248.

[60] Moinuddin K. Qureshi, Onur Mutlu, and Yale N. Patt. Microarchitecture-based
introspection: A technique for transient-fault tolerance in microprocessors. In
DSN (2005), IEEE Computer Society, pp. 434–443.

[61] Paruj Ratanaworabhan, Benjamin Livshits, and Benjamin Zorn. Nozzle: A de-
fense against heap-spraying code injection attacks. In Proceedings of the 18th
USENIX Security Symposium (Aug. 2009), USENIX, pp. 169–186.

[62] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan, and David I.
August. Swift: Software implemented fault tolerance. In CGO (2005), IEEE
Computer Society, pp. 243–254.

[63] Martin C. Rinard, Cristian Cadar, Daniel Dumitran, Daniel M. Roy, and Tudor
Leu. A dynamic technique for eliminating buffer overflow vulnerabilities (and
other memory errors). In ACSAC (2004), IEEE Computer Society, pp. 82–90.

[64] William K. Robertson, Christopher Krügel, Darren Mutz, and Fredrik Valeur.
Run-time detection of heap-based overflows. In LISA (2003), USENIX, pp. 51–
60.

[65] Niklas Rojemo and Colin Runciman. Lag, drag, void and use — heap profil-
ing and space-efficient compilation revisited. In Proceedings of the first ACM
SIGPLAN International Conference on Functional Programming (1996), ACM,
pp. 34–41.

[66] Gruia-Catalin Roman, William G. Griswold, and Bashar Nuseibeh, Eds. 27th In-
ternational Conference on Software Engineering (ICSE 2005), 15-21 May 2005,
St. Louis, Missouri, USA (2005), ACM.

112

[67] Graeme S. Roy. mpatrol: Related software. http://www.cbmamiga.demon.co.

uk/mpatrol/mpatrol_83.html, Nov. 2006.

[68] Olatunji Ruwase and Monica S. Lam. A practical dynamic buffer overflow de-
tector. In NDSS (2004), The Internet Society.

[69] Hovav Shacham, Matthew Page, Ben Pfaff, Eu Jin Goh, Nagendra Modadugu,
and Dan Boneh. On the effectiveness of address-space randomization. In CCS
’04: Proceedings of the 11th ACM conference on Computer and communications
security (2004).

[70] John Paul Shen and Margaret Martonosi, Eds. Proceedings of the 12th Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2006, San Jose, CA, USA, October 21-25, 2006
(2006), ACM.

[71] Stelios Sidiroglou, Michael E. Locasto, Stephen W. Boyd, and Angelos D.
Keromytis. Building a reactive immune system for software services. In USENIX
Annual Technical Conference, General Track (2005), USENIX, pp. 149–161.

[72] Stelios Sidiroglou, Michael E. Locasto, Stephen W. Boyd, and Angelos D.
Keromytis. From STEM to SEAD: Speculative execution for automated defense.
In USENIX Annual Technical Conference (2007), USENIX.

[73] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list update and
paging rules. Commun. ACM 28 (February 1985), 202–208.

[74] Solar Designer. JPEG COM marker processing vulnerability in Netscape
browsers. http://www.openwall.com/advisories/OW-002-netscape-jpeg/,
2000.

[75] Alexander Sotirov. Heap Feng Shui in JavaScript. In Black Hat Europe (2007).

[76] Standard Performance Evaluation Corporation. SPEC2000. http://www.spec.org.

[77] Nikhil Swamy, Michael W. Hicks, Greg Morrisett, Dan Grossman, and Trevor
Jim. Safe manual memory management in Cyclone. Sci. Comput. Program. 62,
2 (2006), 122–144.

[78] Symantec. Internet security threat report. http://www.symantec.com/

enterprise/threatreport/index.jsp, Sept. 2006.

[79] Ollie Whitehouse. An analysis of address space layout randomization on
Windows Vista. http://www.symantec.com/avcenter/reference/Address_

Space_Layout_Randomization.pdf, 2007.

[80] Wikipedia. XOR linked list, 2008. [Online; accessed 19-March-2008].

[81] Wikipedia. Dangling pointer — Wikipedia, the free encyclopedia, 2010. [Online;
accessed 16-April-2010].

113

[82] Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles. Dynamic
storage allocation: A survey and critical review. In Proceedings of the Inter-
national Workshop on Memory Management (Kinross, Scotland, Sept. 1995),
vol. 986, pp. 1–116.

[83] Ting Yang, Emery D. Berger, Scott F. Kaplan, and J. Eliot B. Moss. CRAMM:
Virtual memory support for garbage-collected applications. In OSDI (2006),
USENIX Association, pp. 103–116.

[84] Yves Younan, Wouter Joosen, Frank Piessens, and Hans Van den Eynden. Secu-
rity of memory allocators for C and C++. Tech. Rep. CW 419, Department of
Computer Science, Katholieke Universiteit Leuven, Belgium, July 2005. Avail-
able at http://www.cs.kuleuven.ac.be/publicaties/rapporten/cw/CW419.
pdf.

[85] Andreas Zeller. Yesterday, my program worked. Today, it does not. Why? In
ESEC / SIGSOFT FSE (1999), Oscar Nierstrasz and Michel Lemoine, Eds.,
vol. 1687 of Lecture Notes in Computer Science, Springer, pp. 253–267.

114

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2-2011

	Hardening Software Against Memory Errors and Attacks
	Albert Eugene Novark
	Recommended Citation

	tmp.1302202498.pdf.EG5pT

