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ABSTRACT

ENABLING ACCURATE ANALYSIS OF PRIVATE
NETWORK DATA

SEPTEMBER 2010

MICHAEL G. HAY

A.B., DARTMOUTH COLLEGE

M.S., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Gerome Miklau and Professor David Jensen

This dissertation addresses the challenge of enabling accurate analysis of network

data while ensuring the protection of network participants’ privacy. This is an impor-

tant problem: massive amounts of data are being collected (facebook activity, email

correspondence, cell phone records), there is huge interest in analyzing the data, but

the data is not being shared due to concerns about privacy. Despite much research

in privacy-preserving data analysis, existing technologies fail to provide a solution

because they were designed for tables, not networks, and cannot be easily adapted to

handle the complexities of network data.

We develop several technologies that advance us toward our goal. First, we de-

velop a framework for assessing the risk of publishing a network that has been “an-

onymized.” Using this framework, we show that only a small amount of background

knowledge about local network structure is needed to re-identify an “anonymous” in-

dividual. This motivates our second contribution: an algorithm that transforms the

vii



structure of the network to provably lower re-identification risk. In comparison with

other algorithms, we show that our approach more accurately preserves important

features of the network topology. Finally, we consider an alternative paradigm, in

which the analyst can analyze private data through a carefully controlled query in-

terface. We show that the degree sequence of a network can be accurately estimated

under strong guarantees of privacy.
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CHAPTER 1

INTRODUCTION

We participate daily in a variety of networks. For example, through email corre-

spondence, facebook friends, Internet activity, scholarly publications, and face-to-face

communication, we interact with large, complex networks of peers. Due to techno-

logical advances, increasing amounts of our social interactions are being recorded,

resulting in troves of detailed data about the structure of our networked society.

Some believe the availability of this data has the opportunity to transform social

science, much the way data transformed the biological and physical sciences, leading

to a data-driven “computational social science” [68]. Already, the analysis of network

data has advanced our understanding of diverse phenomena such as the robustness

of the Internet, the spread of HIV, and the causes of financial fraud.

However, to achieve this vision, we must address concerns about privacy. The

collected data can be highly sensitive, revealing the intimate details of our daily lives.

Concerns about privacy make data managers reluctant to share it with the scientists

best equipped to analyze it. At present, computational social science is happening,

but only at the institutions that collected the data or by a select few who have

negotiated access to the data. For science to flourish, we must alleviate the privacy

concerns that prevent data sharing.

The goal of this dissertation is to develop algorithms to enable accurate analysis

of network data while preventing the disclosure of sensitive information.

Despite a long history of research in privacy-preserving data publishing and privacy-

preserving data analysis, existing techniques are not well suited for network data.
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Most prior work assumes the private data can be represented as a table of records,

where an individual’s private information is encapsulated in a single record. Network

data does not fit this data model, and poses new challenges for protecting privacy.

Our investigation uses the prior work in the tabular data setting as foundation to

develop new approaches suited for the complexities of network data.

1.1 Problem setting of prior work: privacy in tabular data

We introduce the main concepts in the traditional setting where the private data

consists of a table of records. This is the setting for prior work. Many of the concepts

introduced here carry over to the network setting and serve as a strong foundation

on which to develop techniques for network data.

As a motivating example, consider the data collected and disseminated by the

Demographic and Health Surveys (DHS) program1 to assess HIV prevalence in devel-

oping countries throughout the world. The data is collected through surveys, in which

respondents are asked for demographic and health information. Part of the survey

includes voluntary HIV testing. Once collected, this data can be used by researchers

to study, among other things, the factors influencing HIV prevalence.

The collected data contains both sensitive and identifying information. Identify-

ing information can be used to associate the data to a real-world entity. For example,

attributes such as gender, age, and geographic location can be identifying. Sensitive

information is any information whose unauthorized disclosure could cause harm. For

example, attributes that indicate HIV status, knowledge/practice of birth control,

etc. could be considered sensitive.

1http://www.measuredhs.com/
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The challenge is to allow analysts to study the data in a way that prevents disclso-

sure of sensitive information of survey respondents. There are several computational

approaches to protecting privacy, illustrated in Figure 1.1 and described next.

Figure 1.1 illustrates the flow of information from survey respondents to analysts.

Individual survey respondents (information providers) contribute their private data.

In this setting, each respondent’s data can be encapsulated in a single record. The

private records are collected into a database, which is controlled by the data manager.

Analysts (information consumers) perform computations on it, interacting with the

data through some kind of query processor.

We distinguish between two kinds of information consumers: analysts and adver-

saries. The analyst wants to study the population, by measuring aggregate statistics,

fitting statistical models, etc. For example: an analyst might want to know what age

groups have highest prevalence of HIV. The adversary, on the other hand, wants to

learn facts about specific individuals. For example, an adversary may ask whether
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Alice tested positive for HIV. There are two competing goals: to support the analyst

and hinder the adversary.

To protect privacy we must control the flow of information from providers to

consumers. Essentially, this requires intervening somewhere along the information

pipeline. In Figure 1.1, there are labeled dashed lines at several points of intervention.

We briefly describe some high-level strategies for intervention. Almost all prior work

represents an instantiation of one of these strategies.

Access control A tempting, but ultimately inadequate solution to the problem

is to try to protect privacy through access control. The goal of access control is to

manage a resource so that it is accessible only to authorized users. In this setting, we

may consider using access control to ensure that only “trusted” analysts can access

the data and that access is limited to the parts of the data relevant for their analysis.

In Figure 1.1, it corresponds to an intervention at the point marked D.

There are three challenges with using access control. First, it requires a mechanism

for establishing trust, which may be difficult to design and costly to execute. In other

words, it may be difficult to discern trustworthy analysts from malicious adversaries.

Second, while there are technologies for supporting fine-grained access control policies,

in this setting, the computations are aggregate statistics, which means each analyst

requires access to all of the records. Access control would be a fairly blunt instrument,

essentially providing access to either all or none of the data. Finally access control is

not a complete solution because in many settings, the goal of analysis is to identify

interesting trends and disseminate that knowledge broadly, into the public domain.

So even if access control is used, there still must be a mechanism for safely releasing

the analyst’s findings. For instance, at one data center that uses access control to

restrict access to sensitive data, the findings of an analyst can be published only after

a satisfactory manual review by the data custodian [1].
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Input perturbation With input perturbation, each individual stochastically alters

his/her data before revealing it to the data manager. In Figure 1.1, input perturbation

corresponds to intervening at the point marked A. The classical example of this

approach is Warner’s randomized response, in which the survey respondent flips a

coin and answers truthfully or randomly based on the outcome [120]. The randomized

answers are collected by the data manager and then published. While the randomness

hides an individual response, thereby ensuring privacy, it remains possible, using the

machinery of statistical inference, to derive accurate estimates of aggregate measures.

This strategy is especially appropriate when even the data manager is untrusted.

When the data manager is trusted, it is possible to achieve the same privacy (with

respect to untrusted analysts) but higher accuracy results by intervening further

“downstream,” with approaches such as transformed data release and query answer

perturbation.

While input perturbation may be used in the tabular data setting, it seems poorly

suited in the network data setting, where designing an effective perturbation mecha-

nism seems challenging and often the data is already collected in a centralized repos-

itory, in which case input perturbation is not applicable.

Transformed data release An alternative strategy is transformed data release,

where the individual records are collected by a trusted party, altered to protect pri-

vacy, and then released to the public. This approach is indicated by B in Figure 1.1.

Randomization is one option for protecting privacy. However, compared with input

perturbation, this setting offers greater flexibility in the design of the randomization

operator. Rather than randomize each record independently, it is possible to de-

sign a randomizer that operates on the entire dataset and achieves greater accuracy

(cf. [17, 106]).

In addition to randomization, transformed data release allows for an alternative

strategy to protect privacy: anonymization. Before publishing the data, identifying
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attributes (name, age, gender, location) are removed or sufficiently coarsened so that

each an individual record cannot be distinguished by these features. This provides

privacy through anonymity: the adversary can no longer associate an individual to a

particular record – each person is “hidden in a crowd.” The analyst can still compute

aggregations over the record groups.

This kind of privacy protection has been formalized as k-anonymity [110, 111, 116].

The objective of k-anonymity is to prevent linkage attacks, when an adversary joins

the published “anonymized” data with some other external source based on some com-

mon attributes. For instance, a privacy researcher successfully linked Massachusetts

voter registration records with an “anonymized” table of medical records published

by the Massachusetts Group Insurance Commission based on birthdate, sex, and

zip code, and was able to re-identify the medical record of the governor of Mas-

sachusetts [115].

K-anonymity prevents linkage attacks by essentially requiring that potentially

identifying attributes (such as birthdate, zip code, etc.) be coarsened so that each

record becomes indistinguishable from at least k − 1 other records. Research on k-

anonymity has been substantial, and many lessons have been learned about benefits

and potential risks of employing such fairly simple privacy protection strategies.

Query auditing Common to the above approaches is that the data is altered to pro-

tect privacy and then released. An alternative strategy is to not release transformed

data but instead allow the analysts to query the private data through a controlled

interface. The first of two approaches based on this strategy is query auditing. In

Figure 1.1, query auditing corresponds to intervening at the point marked C.

In query auditing, the analysts’ queries are either answered exactly or denied

if there is a chance that revealing the answer could lead to disclosure. The data

manager is responsible for determining whether an answer is safe to release. The

decision depends on what queries have been answered and assumptions about the
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adversary’s a priori knowledge. Unfortunately, prior work suggests that there are

substantial technical hurdles to implementing an effective strategy. In some cases,

the auditing decision is computationally hard [64]. It is also subtle: for instance, a

denial may itself leak private information [60]. But perhaps an even bigger issue is

that protecting privacy may require many query denials, limiting its practical utility.

We describe a second strategy, query answer perturbation, that has a similar

approach but seems to offer more flexibility. Like query auditing, the data is never

released. The analyst interacts with the data through some kind of query interface

and the data manager is responsible for query processing. However, rather than

return exact answers, it returns approximate answers, using random noise to control

the accuracy of the approximation.

Query answer perturbation In query answer perturbation, the data manager

computes the true answer to the query, randomly perturbs it, and returns the per-

turbed answer to the analyst. Just like query auditing, it corresponds to intervening

at the point marked C in Figure 1.1. A common assumption in this setting is that the

answer to a query is a number, and therefore it makes sense to think about adding

(appropriately scaled) random noise to a query answer. (However, there are alterna-

tive perturbation strategies when the queries have non-numerical answers, cf. [91].)

Intuitively noise creates uncertainty about the exact query answer, but it is not ob-

vious how to appropriately calibrate the noise to ensure privacy. Fortunately, recent

work in ε-differential privacy provides mechanisms for appropriately calibrating noise

to ensure a very strong guarantee of privacy.

Differential privacy formally bounds the amount that an adversary can infer about

a record given the noisy answer, even in the extreme case where the adversary has

complete knowledge of the remaining records. If a query answering mechanism sat-

isfies ε-differential privacy, then the adversary’s posterior belief (about a person’s

record) can be at most a factor of exp(ε) larger than his prior belief. From an indi-
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vidual’s perspective differential privacy offers the following assurance: whether they

“opt-in” and participate in the survey, or “opt-out” and exclude their data, the result

will be virtually the same. The value of parameter ε is selected by the data manager,

with lower values conferring stronger privacy protection.

Differential privacy can be achieved by adding random noise to the query answer.

The scale of the noise increases inversely with ε. It also increases with the query’s

sensitivity, informally the amount that a single record can influence the query an-

swer. In the tabular data setting, many common analyses have low sensitivity, so the

amount of noise is small and accurate answers are possible. If viewed as database

queries, many analyses can be expressed using operations such as selection, projection,

grouping, and aggregation, all of which are low sensitivity.

Of course, there are limits on how many queries can be answered accurately. If too

many queries are answered too accurately, then disclosures will occur. In this sense,

query answer perturbation is similar to auditing: at some point, the data manager

must effectively refuse to answer queries.

However, query answer perturbation offers more flexibility. Differential privacy

has nice composition properties: if query q1 is answered with ε1-differential privacy

and q2 is answered with ε2-differential privacy, answering both queries satisfies (ε1+ε2)-

differential privacy. (Intuitively, if the answer to qi increases the informed adversary’s

posterior belief by at most a factor of exp(εi) over his (arbitrary) prior belief, then

revealing both answers can increase belief by at most of a factor of exp(ε1 + ε2).)

Therefore, the data manager has the flexibility of trading off lower accuracy in query

answers (smaller ε) in exchange for being able to answer more queries. In fact, in

some cases, answering both q1 and q2 requires only max{ε1, ε2}. In addition, it is

possible to restructure a workload of queries to get even more accurate answers for a

fixed ε. That said, optimal mechanisms that can answer a workload of queries with

maximal accuracy do not yet exist. This is an important issue that currently limits
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the practical applicability of differential privacy. In work outside the scope of this

thesis, we have developed accurate (but non-optimal) mechanisms for answering range

queries [55] and shown that for a given workload, the problem of finding the optimal

mechanism can be formulated as a semi-definite program with rank constraints [76].

In summary, there are several possible ways to protect privacy in the tabular

data setting. Most prior techniques can be viewed as an instance of either input

perturbation, transformed data release, query auditing, query answer perturbation,

or access control. For tables, it is possible to achieve strong privacy and yet also

support accurate data analysis. This is because with tabular data, most analyses can

be expressed as fairly simple aggregations of the data that have low sensitivity. This

makes it possible to preserve aggregate properties, at least approximately, while at

the same time ensuring that individual records are not disclosed.

1.2 Our problem setting: privacy in network data

Network data encodes information about entities and the relationships between

them. The existence of relationships profoundly alters many aspects of the privacy

protection problem. The relationships are often sensitive and must be protected. In

addition, the relationships are also an object of study: many analyses are concerned

with understanding the topology of the network. Therefore approaches designed for

tabular data fail to provide adequate solutions for network data, and we must develop

new approaches to deal with the additional complexities introduced by relationships.

As a motivating example, consider the network data collected by Klovdahl et

al. [65] to study HIV transmission. The data was collected to study a population

that is at high risk of contracting HIV: a population of prostitutes, injecting drug

users, and their associates in a moderate-size city. In contrast to the HIV survey data

collected by measureDHS, in this data, the individuals are connected by relationships
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Figure 1.2. Our problem setting: individuals are connected by relations, forming a
network. We explore three approaches to protecting privacy: simple anonymization,
in which identifiers are replaced and attributes are coarsened or suppressed (a process
we call naive anonymization); transformed data release in which the network structure
is altered; and query answer perturbation, in which noise is added to query answers.

that represent pathways for disease transmission (intercourse or needle sharing). This

allows for new kinds of analyses on the role that network structure can play in disease

transmission. And it also raises new privacy concerns: the relationships are sensitive

and the participants in the network have an expectation that this information will be

kept private.

Network data can be naturally modeled as a graph where nodes represent entities

and edges the relationships among them. In many settings, the entities are people,

but they can also be other things, such as hosts in a computer network. There may be

attributes on nodes as well as edges. An example network is illustrated in Figure 1.2.

The relationships in network data encode additional information about the entities

which may be highly sensitive. Naturally, the existence of an edge may be sensitive

(e.g., in the data collected by Klovdahl et al. [65], an edge reveals a sexual or shared

needle relation). Other aspects of connections may be sensitive as well. For example,

the degree of a vertex may be sensitive: academics in a scholarly collaboration net-
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work may wish to hide their low degree, while participants in a network of romantic

contacts may wish to hide their high degree. Even if the entities in a network are not

individuals, network data may still be sensitive. For example, detailed topological

information about the power grid may reveal vulnerabilities to potential terrorists, or

records of information flow between host machines in a computer network may reveal

applications running on those hosts or facts about host operators. Finally, if there

are attributes on the entities, then just as in the tabular data setting, these may be

also sensitive (e.g., HIV status).

The analyses of network data are more complex and varied than the analyses of

tabular data. Many analyses focus solely on measuring the topology of the network.

This includes computing various network statistics, such as degree distribution, di-

ameter, and transitivity. It also includes searching for interesting structures – for

instance, identifying frequently occurring subgraphs (motif analysis), finding highly

influential nodes (network centrality), or recognizing modular structure (community

discovery). Other analyses focus on correlations between topology and attributes,

such as the study of homophily (the tendency for associations to form among similar

individuals). Finally, a number of analyses are concerned with network dynamics,

either dynamic processes operating over the network (navigation, diffusion) or the

dynamics of the network’s formation. This incomplete summary illustrates the diver-

sity of analyses that are performed on network data. It also illustrates the complexity:

if viewed as database queries, many analyses require joins, in addition to the selection

operations commonly used in tabular data.

In summary, the existence of relationships between individuals makes the problem

considerably different from the traditional tabular data setting. There are differences

in the structure of the data, in what makes the data sensitive, and in how it is ana-

lyzed. These changes may require novel strategies for protecting privacy. Building on

the foundation of work developed in the tabular setting, this thesis explores how to

11



protect privacy in the network data setting. We explore three high level approaches

to simultaneously protecting privacy and supporting accurate analysis. These ap-

proaches are illustrated in Figure 1.2.

The first part of this thesis explores whether attribute anonymization might also

provide adequate protection for network data. As described earlier, attribute anon-

ymization is a common strategy for protecting privacy in the tabular data setting.

External identifiers such as name, social security number, are removed and replaced

with synthetic identifiers. In addition, attributes that are potentially identifying

(quasi-identifiers) are coarsened, perturbed, or suppressed.

Applied to a network, anonymization would require replacing node identifiers, such

as names and IP addresses, with synthetic ones. In addition, if nodes possessed other

identifying attributes, these could be coarsened, etc. using established techniques

from tabular data anonymization. Such precautions would prevent attacks based

on attribute knowledge. The network structure, however, would remain intact. We

wonder whether the presence of relationships between the entities create new threats

to privacy. Specifically, we explore the following question:

Can the patterns of connections around an individual node act as an

identifier, making the node vulnerable to a re-identification attack?

To explore this question, we consider factors such as how much an adversary might

know a priori about the graph structure surrounding a target; how much external

information is necessary to successfully re-identify nodes; and what might be the

consequences of re-identification. Our aim is to articulate the threats to privacy

posed by the release of anonymized network data.
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As we will show, there are settings where attribute anonymization provides insuf-

ficient protection. Thus, we are motivated to consider more complex techniques to

protect privacy. In the second part of the thesis, we investigate the following question:

If graph structure is in fact identifying, how can we alter the graph so

that nodes are resistant to re-identification? What is the impact of the

alterations on network topology?

In addressing this question, it is necessary to consider a number of different is-

sues. With tabular data, there are several operations, such as attribute coarsening

and stochastic perturbation, that can be used to lower the risk of re-identification.

With network data, it is not immediately obvious what kind of alterations should be

applied to create anonymity. Nor is it clear how much alteration is necessary, or how

to quantify the privacy benefit of alteration. Can privacy notions such as k-anonymity

be adapted to the graph setting? How do the lessons learned in tabular data anon-

ymization apply? Ultimately, with this approach, we will publish a graph that differs

from the original. It will be important to understand the impact of the alterations on

analyses of topology. How do we meaningfully compare the transformed graph with

the original? How should the analyst account for the fact that the graph was altered?

We also explore the alternative paradigm of query answer perturbation. This is

a substantially different approach than that considered in the earlier parts of this

thesis, and there are important tradeoffs to consider. Compared with transformed

data release, the obvious disadvantage of query answer perturbation is that a graph

is never published. Instead, the analyst only receives answers to some statistics

and there are limits as to how many queries can be accurately answered. However,

the advantage of query answer perturbation is the potential to achieve much higher

accuracy. With transformed data release, the transformations inevitably alter some
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properties of the graph, and some analyses will be greatly distorted. With query

answer perturbation, the mechanisms are tailored to the specific statistics of interest,

and this creates an opportunity to obtain highly accurate results. In addition, we

explore an approach based on differential privacy, which is a much stronger form of

privacy protection than those based on anonymity.

The final component of this dissertation investigates the following question:

Can we accurately measure network statistics under rigorous privacy

standards, such as differential privacy?

Our investigation takes advantage of the existing work in differential privacy. A

number of useful techniques have already been developed for answering queries under

differential privacy, and their application is not limited to queries over tabular data.

In thinking about applying differential privacy to statistics on network data, some

interesting questions emerge. While differential privacy was originally defined for the

tabular setting, it is in principle applicable to any data that can be (conceptually)

broken up into “units” of private information. For network data, what is the appro-

priate “unit” of private information? For instance, is it an edge, a set of edges, or

a node and its entire neighborhood? This is an important question whose answer

determines what the technical condition of differential privacy actually means for the

privacy of the individual. It also has a profound impact on the accuracy with which

network statistics can be estimated. With tabular data, we saw that an individual’s

data has a limited impact on common analyses—i.e., the sensitivity of common anal-

yses is low. What is the sensitivity of common network analyses? Are there limits on

what can be accurately computed under such a strong notion as differential privacy,

and if so, what is an appropriate remedy?
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As described above, we explore two of the high-level strategies for privacy pro-

tection, transformed data release and query answer perturbation. We chose not to

consider query auditing and access control due to the limitations described earlier. We

also chose not to consider input perturbation. In many settings, the data is already

under the control of a trusted data manager. Network data is often collected by the

data manager as a byproduct of providing some service (e.g., online social networks,

email correspondence, phone call records, Internet traffic). In these settings, input

perturbation is not applicable. That said, there may still be some settings where

it applies, including for instance the previously mentioned study of sexual relation-

ships by Klovdahl et al. [65]. This is a similar context as the one that motivated

the original input perturbation mechanism, Warner’s randomized response. However,

designing an appropriate input perturbation mechanism seems especially challenging

in the context of network data, as the sensitive data is shared between individuals.

We leave this as a consideration for future work.

While, in practice, network data may also have attribute information associated

with nodes, the focus of our work is on network structure—that is, protecting sensitive

structural features and supporting analyses of network topology. There are several

reasons for this. The threats to privacy of sharing attribute information about indi-

viduals have been well-studied in the tabular data setting, and many techniques have

been developed to reduce the threat. What makes the current problem challenging

is the presence of relationships between the individuals. In addition, many network

analyses are concerned exclusively with topology, so developing solutions that sup-

port the accurate analysis of network topology is an important goal by itself. Finally,

enabling accurate analysis of structure is a necessary component of any solution that

supports the combined analysis of attributes and structure. We view our work as the

first steps along the critical path to a comprehensive solution. Future work will ex-
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plore ways to support analyses that involve a combination of structural and attribute

information.

1.3 Overview of contributions

Toward the goal of enabling accurate network analysis while protecting privacy,

we make three main contributions:

• We develop a framework for evaluating the risk of publishing a network after

removing obvious identifiers. Using this framework, we demonstrate that there

is substantial risk: adversaries can use knowledge of graph structure to re-

identify entities in the published network.

• To mitigate the risk, we design an algorithm that transforms the network prior

to publication. The transformed network resists re-identification attacks and at

the same time the transformations preserve important topological features of

the original network.

• Using the paradigm of query answer perturbation, we explore whether it is pos-

sible to accurately compute network statistics under strong privacy protections.

For some statistics, such as clustering coefficient, we identify some limitations.

However, we show that the degree sequence can be accurately estimated under

differential privacy.

These contributions are described in more detail below.

1.3.1 Assessing the risk of network data publication

In Chapter 3, we study the threats to privacy of publishing a network after anon-

ymizing node identifiers and removing identifying attributes. We refer to this strategy

of privacy protection as naive anonymization. We consider how an adversary may

use partial knowledge of the network structure surrounding a set of target entities
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to re-identify them. Once re-identified, additional properties about the targets may

be revealed in the published data. For instance, the adversary may learn that two

targets are connected. We study both the general threat of re-identification as well

as the specific threat of edge disclosure.

The risk of naive anonymization depends on how much the adversary knows and

on how easily nodes can be distinguished by their network structure. We study the

relationship between knowledge, structure, and risk and make the following contribu-

tions.

We present a framework for measuring the risk of naive anonymization. It has

several innovative features. It includes a flexible model of adversary knowledge, al-

lowing a data manager to assess risk with respect to a range of adversary capabilities.

It is efficient to compute, making it applicable for large graphs. It can be used to

assess both re-identification risk and edge disclosure. We believe this framework is a

valuable resource for gaining insight into the relationship between adversary knowl-

edge, graph structure, and re-identification risk. Furthermore, it is a practical tool

that a data manager can use to assess risk prior to publication.

We use our framework to assess the risk of several real networks. We find diversity

in risk: some networks are naturally more resistant to structural re-identification than

others. Nevertheless, on some real-world networks, the risk is high, especially if an

adversary has knowledge beyond a target entity’s immediate neighborhood. The

significance of our study is that it demonstrates that there can be considerable risk in

naive anonymization. Our findings establish a need for more sophisticated techniques.

Finally, we use theoretical analysis to gain insight into how properties such as den-

sity and degree distribution affect a network’s vulnerability to adversarial attack. We

prove that in large Erdös-Rényi random graphs, density determines re-identification

risk, with sparse graphs having low risk and dense graphs having very high risk. We

also prove that power-law random graphs, despite their heavy-tailed degree distribu-
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tions, have low risk in the limit of large graphs. We believe our theoretical analysis

gives insight into how graph structure affects re-identification, which can inform the

design of more sophisticated anonymization techniques.

This work first appeared as a technical report in 2007 [51], then in the proceedings

of the International Conference on Very Large Data Bases, 2008 [54], and has been

accepted for publication in the International Journal on Very Large Data Bases.

1.3.2 Mitigating risk through network transformation

When simple strategies such as removing obvious personally identifiable informa-

tion fail to protect privacy, the data manager must consider alternative strategies for

releasing network data. In Chapter 4, we consider the problem of how to transform a

network to prevent entity re-identification. An effective transformation strategy will

ensure that an adversary cannot re-identify entities in the published network, but

at the same time preserve many important topological features of the network. We

make the following contributions.

We introduce a new privacy definition that characterizes what it means for a

transformed network to be resistant to re-identification attacks. Our definition is an

adaptation of k-anonymity that is called graph k-anonymity. If a published graph is

graph k-anonymous, it means that an adversary cannot successfully re-identify nodes:

his confidence in the identity of a target will be at most 1/k. The parameter k is set

by the data manager, with higher k resulting in greater protection, though achieving

it will also require more alterations to the graph. Our definition is configurable in

the sense that privacy can be defined with respect to a particular class of adversary

capability. It is also general: other recently proposed graph privacy definitions can

be viewed as instantiations of our definition, with specific choices of adversary.

We introduce an algorithm for transforming a graph to achieve both privacy and

accurate preservation of topology. The basic idea is to cluster the nodes of the graph
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into groups and describe the network topology in terms of the groups. As we prove

formally, it satisfies graph k-anonymity by enforcing that the minimum group size is

at least k. To maximize the utility of the transformed graph, the algorithm searches

for a clustering that preserves as much of the topological structure as possible, subject

to the privacy condition.

We empirically evaluate the utility of the transformation algorithm and compare

it with other graph anonymization techniques that have been recently proposed. On

a number of graphs, both real and synthetic, we measure how transformation distorts

common graph properties such as degree distribution, path lengths, and clustering.

Our experiments reveal a number of findings. At small k, many graph properties

are approximately preserved; as k increases, we observe a tendency toward random

graphs. Compared with other techniques, our approach performs comparably and

in some cases, preserves more utility. In particular, because its transformations are

guided by the topology of the graph, it tends to do a much better job of preserving

distinct “engineered” features. For example, on the HOT graph, which is an ideal-

ized model of the Internet, the graph’s low degree correlation is preserved under our

technique.

This work appeared (together with the material in the previous chapter) in the

proceedings of the International Conference on Very Large Data Bases, 2008 [54], and

has been accepted for publication in the International Journal on Very Large Data

Bases.

1.3.3 Estimating network statistics under strong privacy

The last component of this thesis considers an alternative paradigm—query answer

perturbation—and investigates whether we can accurately measure common network

statistics under strong privacy guarantees, such as differential privacy. Because of

the shift in paradigm, the problems and techniques differ considerably from those
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presented in Chapters 3 & 4. Towards the goal of accurate statistics and strong

privacy, we make the following contributions.

A small but vital contribution is to determine how adapt differential privacy to

graph structured data. In Chapter 2, after we present the original definition and its

semantic interpretations, we present several alternative adaptations and describe the

implications for the privacy-utility tradeoff inherent in them. One variant we intro-

duce is called k-edge ε-differential privacy. It prevents an adversary from learning not

only about individual edges, but any set of edges of size up to k. For nodes of low

degree (less than k), this captures the “opt-in/opt-out” semantics of differential pri-

vacy. For nodes with large degree, some aggregate features about their neighborhood

may be leaked—this is an inevitable compromise if we also want to enable accurate

network analysis. The data manager chooses k as well as ε.

Our main contribution is a differentially private algorithm for estimating the de-

gree sequence of a graph. We choose to focus on the degree sequence because it is one

of the most widely studied properties, and it has profound influence on a network’s

structure and function [7, 16, 87, 99]. While existing differentially private techniques

can be used to obtain a noisy estimate of the degree sequence, the accuracy is poor.

In Chapter 5, we present an innovative algorithm that achieves privacy, accuracy,

and scalability: The algorithm satisfies k-edge ε-differential privacy. It produces an

estimate of the degree sequence that is provably accurate, and shown empirically to

be orders of magnitude more accurate than existing techniques. In addition, its linear

time complexity allows it to scale to the massive graphs studied today. We believe

this work is one of the first concrete positive results of applying differential privacy

to network data.

The algorithm has broader applicability than estimating degree sequences. As part

of this work, we define a new kind of histogram, called an unattributed histogram, and

show how our technique can be used to estimate any unattributed histogram. While
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less informative than a conventional histogram—because it hides the association be-

tween bin and frequency—an unattributed histogram is significant because it can be

estimated much more accurately under differential privacy. And although it is less

informative, there are some applications where the discarded information is irrele-

vant and so an unattributed histogram is sufficiently detailed. Estimating the degree

sequence of a graph is one such application, and we describe others in Chapter 5.

To achieve its high accuracy, the algorithm uses an innovative strategy that we

believe has applications beyond this particular instantiation. The strategy uses an

existing differentially private mechanism to obtain a noisy answer and then uses

statistical inference to reduce error. The inference stage exploits natural constraints

that hold on query answers, yet are often violated by the random noise that was

added to ensure privacy. For the degree sequence query, the inference stage produces

a massive reduction in error. Our results demonstrate that the differentially private

mechanism adds more noise than is strictly necessary, and inference is able to filter

out much of the “extra” noise without weakening the privacy protection. We believe

inference may be a computationally efficient way to effectively sample from a more

complex, correlated noise distribution that is tailored to the particular query and

input. We have explored its application to other kinds of queries: in work that lies

outside the scope of this thesis, we show that it can be an effective component of a

mechanism to support histograms [55] and arbitrary workloads of linear queries [76].

Given these positive results for the degree distribution, it is natural to wonder

what other network properties can be computed under differential privacy. An ad-

ditional contribution of this thesis is a review of known results and a discussion of

limitations (Chapter 6). Unfortunately, we find that there are limits as to what can be

accurately computed under differential privacy. For instance, we prove that cluster-

ing coefficient cannot be accurately estimated under differential privacy. One reason

this query is challenging is that differential privacy protects against even a nearly
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omniscient adversary, and for such adversaries, even an approximate answer can leak

private information. We show that if the adversary is less informed, knowing only a

small subgraph of the entire network, then clustering coefficient (and several other

statistics) can be answered with relatively little noise while still ensuring rigorous

privacy protection.

The work on estimating degree sequences presented in Chapter 5 combines results

from two conference publications, the first appearing in the International Conference

on Data Mining, 2009 [52] and the second to appear in International Conference

on Very Large Data Bases, 2010 [55]. The work on computing clustering coefficient

and protecting against weaker adversaries was done in collaboration with Rastogi and

Suciu and appeared in the Symposium on Principles of Database Systems, 2009 [105].

We believe the contributions described above help advance our goal of enabling

accurate network data analysis while simultaneously protecting privacy. Our work

combines a mix of practical tools—methods for risk assessment and algorithms for

network anonymization—with more foundational insights into the limits and possibil-

ities for accurate analysis under rigorous privacy standards. In Chapter 2 we present

background material. The above contributions are described in detail in Chapters 3-

6. Concurrent with our work, a number of others have explored this topic and we

review their contributions in Chapter 7 and conclude in Chapter 8.
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CHAPTER 2

BACKGROUND

In this chapter, we review two privacy definitions, k-anonymity and differential

privacy. Both of these definitions assume tabular data, or at least that an individual’s

private data is encapsulated in a single record. We discuss how to adapt differential

privacy to graphs in Section 2.4, and in Chapter 4 we present a novel privacy definition

for graphs that is inspired by k-anonymity. Also in this chapter, we review some

common network analyses and define network statistics that will be used in this

dissertation.

2.1 K-anonymity

K-anonymity is a privacy definition that characterizes a table’s resistance to re-

identification attacks. Before giving the formal definition, we illustrate with an ex-

ample.

In the original table (Table 2.1(a)), even if we were to remove names, t2 has a

unique combination of Birth, Sex, and Zip attributes and so Beth, the individual

corresponding to t2, can be identified by an adversary with knowledge of these at-

tributes. To prevent such linkage attacks, attributes Birth, Sex, and Zip have been

coarsened in Table 2.1(b). This table has the property that each combination of these

attributes occurs at least 3 times. Therefore Table 2.1(b) is 3-anonymous with respect

to Birth, Sex, and Zip. Table 2.1(a) is only 1-anonymous because some tuples are

uniquely identified by this combination of attributes.
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Table 2.1. Example to illustrate k-anonymity. (a) a table T of medical records; this
table is 1-anonymous. (b) table T after removing the Name attribute and coarsening
attributes Birth, Sex, and Zip; this table is 3-anonymous.

(a) Example table T

Name Birth Sex Zip Condition
t1 Alice 1985 F 14850 Viral Inf.
t2 Beth 1985 F 14853 Cancer
t3 Carol 1985 F 14850 Cancer
t4 Dave 1986 M 14851 Heart Dis.
t5 Ellen 1986 F 14853 Flu
t6 Fred 1986 M 14621 Heart Dis.
t7 Greg 1981 M 14222 Flu
t8 Hank 1962 M 14850 Heart Dis.
t9 Ian 1944 M 14850 Heart Dis.
t10 John 1959 M 14850 Heart Dis.

(b) Example table with coarsened at-
tributes

Birth Sex Zip Condition
t1 1985 F 1485* Viral Inf.
t2 1985 F 1485* Cancer
t3 1985 F 1485* Cancer
t4 198* * 14*** Heart Dis.
t5 198* * 14*** Flu
t6 198* * 14*** Heart Dis.
t7 198* * 14*** Flu
t8 19** M 14850 Heart Dis.
t9 19** M 14850 Heart Dis.
t10 19** M 14850 Heart Dis.

The formal definition of k-anonymity relies on the concept of a quasi-identifier.

Let T be a table with relational schema T (A1, A2, . . . , Am). Let A denote the set of

attributes {A1, A2, . . . , Am}.

Definition 2.1 (Quasi-identifier). A set of attributes Q = {Q1, . . . , Qd} ⊆ A is a

quasi-identifier if these attributes are sufficient to uniquely identify a tuple in T and

may be externally available to an adversary.

In the previous example, the quasi-identifier is Q = {Birth, Sex, Zip}. Condition

is not included because this is private data that is unlikely to be available externally.

However, the other attributes are readily available in external data sources. In fact,

these attributes were used by a privacy researcher to re-identify the governor of Mas-

sachusetts in a table of medical records [115].

A table is k-anonymous if none of its records can be uniquely identified by their

quasi-identifier. Some notation: For a tuple t ∈ T let t[Ai] denote the value of

attribute Ai on tuple t, and similarly for a set of attributes A′ = {Ai1 , . . . , Aid} ⊆ A,

let t[A′] be equal to (t[Ai1 ], . . . , t[Aid ]).
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Definition 2.2 (k-anonymity [110, 111, 116]). Given a quasi-identifier Q, a table T

is k-anonymous with respect to Q if for each t ∈ T , there exists at least k − 1 other

tuples t′1, . . . , t
′
k−1 such that t[Q] = t′1[Q] = · · · = t′k−1[Q].

As suggested by the example, k-anonymity is usually achieved through the coars-

ening of attribute values. A naive algorithm for k-anonymity is to partition the tuples

into groups of size k or larger, and then locally recode the attribute values so that

tuples are indistinguishable within groups. This achieves anonymity but may result

in considerable data loss because if tuples have vastly different values for Q, then their

values will be heavily coarsened. To maximize the utility of the published table, it is

necessary to find the minimal coarsening that achieves the desired level of anonymity.

Several have looked at the complexity of finding the optimal coarsening. The first

complexity result considers coarsening the table through attribute suppression. The

optimal table is the one that achieves k-anonymity for a given k and minimizes the

number of suppressions. This problem has been shown to be NP-hard [93]. Other

variants of the problem, including ones that are not limited to suppression, have also

been shown to be NP-hard [3, 4, 33, 127]. Note however, that the hardness comes

from trying to maximize utility, so even a non-optimal solution will still satisfy the

privacy condition. (With query auditing, it is computationally hard to even check

that the privacy conditions are met.) Many heuristic algorithms have been proposed

for making a table k-anonymous (cf. [4, 5, 15, 46, 69, 70, 71] and references therein).

K-anonymity is a simple, intuitive definition, and it is easy to verify that an output

satisfies the definition. Unfortunately, in the last few years, research has identified

a number of limitations in k-anonymity. While it prevents re-identification, it does

not necessarily prevent the disclosure of sensitive information. For example, suppose

an adversary knows that Ian is 66 year-old male and lives in Ithaca, NY (zip code:

14850). If Table 2.1(b) is published, then the adversary, while unable to re-identify

Ian, can nevertheless infer that he suffers from heart disease. This is an instance of a
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homogeneity attack, in which there exists a set of tuples that not only have matching

quasi-identifiers but are also homogenous with respect to a sensitive attribute.

Remedies have been proposed to address the homogeneity attack. However, even

when groups are not homogenous, it may be possible for an adversary to make prob-

abilistic inferences about sensitive attributes. In addition, some of the “remedies”

introduce additional complexities into the anonymization process, which create new

opportunities for adversarial attack. We highlight some of the vulnerabilities that

have been identified in the literature.

• Background knowledge Even when the tuples within a group are not ho-

mogenous, the adversary may be able to use background knowledge to eliminate

some values. To protect against both homogeneity and background knowledge

attacks, a number of alternative privacy conditions have been developed. They

are similar to k-anonymity but impose additional constraints on the distribution

of sensitive attribute values within each group, essentially requiring some diver-

sity in the distribution [19, 79, 84, 86, 88]. While these additional constraints

protect against background knowledge attacks, they do not guard against the

other attacks described below.

• Learning Privacy breaches can occur when the adversary is able to learn cor-

relations from the anonymized data and then use these correlations to infer the

sensitive attribute values of individual records [61]. For example, in a table of

medical records, the adversary may observe a correlation between smoking and

cancer. Suppose Bob is a smoker and his tuple is in a group with three other

tuples, none of whom are smokers. Then, if the table reveals that one person in

this group has cancer, the adversary may be able to confidently infer that Bob

is the one with cancer. The only known remedy to this attack is differential

privacy.
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• Composition A composition attack [45] can occur when multiple agencies

release anonymized data and some records occur in more than one dataset. This

may allow the adversary to infer sensitive attributes by taking the intersection

of values across datasets. Such a scenario might occur, for example, if two area

hospitals release anonymized patient records and some patients have visited

both hospitals. One way to address composition attacks is to require that

agencies who manage overlapping datasets work in conjunction. There are some

techniques for releasing multiple datasets in a way that protects privacy [125].

• Minimality The minimality attack [123] exploits the fact that many anonym-

ization algorithms publish the table that satisfies the privacy requirement and

also minimizes some measure of information loss. This allows the adversary

to infer sensitive values by process of elimination: for some configurations of

sensitive attribute values, the published table would not be minimal. There are

some algorithms that are resistant specifically to minimality attacks [28, 123]

and other algorithms were recently developed that are resistant to any attack

based on knowledge of how the algorithm operates [126].

An attack may not always result in the exact disclosure of an individual’s attribute

value; it may only result in an educated guess about the value. Furthermore, it may

not apply on all instances. Nevertheless, these attacks show that k-anonymity does

not ensure privacy in a rigorous sense. It fails to account for how the adversary might

reason, especially given background knowledge about the individuals represented in

the data and knowledge about how the algorithm operates.
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2.2 Differential privacy

In this section, we review differential privacy and existing techniques for answer-

ing queries under differential privacy. In Chapter 5, we use these techniques as a

component of our solution.

The original definition of differential privacy modeled the private data as a set

of records, where each record corresponds to an individual. To define differential

privacy, we consider a database I that contains sensitive information about a set of

individuals, and a randomized algorithm A that operates on I. Differential privacy

ensures that the output of the algorithm does not disclose the presence or absence of

an individual’s data. Suppose an individual’s data is removed from I, resulting in a

new database I ′. Differential privacy requires that whether the input is I or I ′, the

probability of a given output is nearly the same.

More formally, let I be a set of records where each record corresponds to an

individual’s private data. For sets A and B, we use ⊕ to denote symmetric difference:

A⊕B′ = {A∪B}−{A∩B}. Database I ′ is a neighbor of I if |I⊕I ′| = 1. Let nbrs(I)

denote the set of neighbors of I, i.e., nbrs(I) = {I ′ | |I ⊕ I ′| = 1}. For algorithm

A, let Range(A) be the set of possible outputs of A. For example, if A computes

the number of records in the database satisfying a given predicate, then Range(A) is

equal to set of non-negative integers. The following definition of differential privacy

is due to Dwork [34].1

Definition 2.3 (ε-differential privacy). An algorithm A is ε-differentially private if

for all instances I, any I ′ ∈ nbrs(I), and any subset of outputs S ⊆ Range(A), the

following holds:

Pr[A(I) ∈ S] ≤ exp(ε)× Pr[A(I ′) ∈ S]

1Differential privacy has been defined inconsistently in the literature. The original definition
(called ε-indistinguishability) defines neighboring databases in terms of Hamming distance [38].
Note that ε-differential privacy (as defined above) implies 2ε-indistinguishability.
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where probability Pr is over the randomness of A.

The parameter ε measures the disclosure and is typically also an input to the

algorithm. For example, the techniques used in this work add random noise to their

outputs, where the noise is a function of ε. The choice of ε is a matter of policy,

but typically ε is “small,” say at most 1, making the probability “almost the same”

whether the input is I or I ′.

An example illustrates why this protects privacy. Suppose a hospital wants to

analyze the medical records of their patients and publish some statistics about the

patient population. A patient may wish to have his record omitted from the study, out

of a concern that the published results will reveal something about him personally and

thus violate his privacy. The above definition assuages this concern because whether

the individual opts-in or opts-out of the study, the probability of a particular output

is almost the same. Clearly, any observed output cannot reveal much about his

particular record if that output is (almost) as likely to occur even when his record is

excluded from the database.

Semantic characterization of differential privacy The example suggests that

differential privacy prevents an adversary from learning private information about an

individual. This intuition is formalized in the following result, adapted from Dwork

et al. [38]. An informed adversary is one who knows all records in the database except

for one. Let t be any tuple. Let At denote an informed adversary who knows I−{t}.

Definition 2.4 (Semantic security [38]). Let f be any boolean predicate over databases.

Algorithm A is ε-semantically secure if for all I, tuples t, informed adversaries At,

and any subset of outputs S ⊆ Range(A), the following holds:

exp(−ε)× Pr[f(I) = 1] ≤ Pr[f(I) = 1 | A(I) ∈ S] ≤ exp(ε)× Pr[f(I) = 1]
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where the probability is taken with respect to the randomness in A and the prior

beliefs of At.

This semantic notion of privacy is equivalent to differential privacy.

Proposition 2.1 (Equivalence [38]). Algorithm A satisfies ε-differential privacy if

and only if A satisfies ε-semantic security.

Hiding multiple records Differential privacy is defined with respect to the addi-

tion or removal of a single record. However, it extends naturally to protecting the

addition or removal of a set of records. When we consider adapting differential pri-

vacy to graphs, we will use this observation to protect the set of edges surrounding a

node.

Definition 2.5 ((k, ε)-differential privacy). An algorithm A is (k, ε)-differentially

private if for all instances I, any I ′ such that |I ⊕ I ′| = k, and any subset of outputs

S ⊆ Range(A), the following holds:

Pr[A(I) ∈ S] ≤ exp(ε)× Pr[A(I ′) ∈ S]

where probability Pr is over the randomness of A.

Note that ε-differential privacy is the special case of (1, ε)-differential privacy. By

a transitivity, A satisfies (1, ε)-differential privacy if and only if A satisfies (k, kε)-

differential privacy.

A relaxation of differential privacy As we will later see, some properties cannot

be accurately measured under the strong requirements of differential privacy. Several

relaxations of differential privacy have been proposed, including the one defined be-

low. As we later discuss, under this relaxation, it is possible to accurately compute

some network statistics that cannot be accurately answered under strict ε-differential

privacy.
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Definition 2.6 ((ε, δ)-differential privacy [36]). An algorithm A is (ε, δ)-differentially

private if for all instances I, any I ′ ∈ nbrs(I), and any subset of outputs S ⊆

Range(A), the following holds:

Pr[A(I) ∈ S] ≤ exp(ε)× Pr[A(I ′) ∈ S] + δ

where probability Pr is over the randomness of A.

2.3 Differentially private query answering

We review a technique by Dwork et al. [38] for answering numerical queries under

differential privacy. Known as the Laplace mechanism, it achieves differential privacy

by adding random noise to query answers, where the noise is carefully calibrated to

the query. We will use this technique as a component of our solution.

The input to the Laplace mechanism is Q, a sequence of queries where the answer

to each query is a number in R. The algorithm computes the true answer Q(I) to

the queries on the private data and then adds random noise to the answers. The

noise depends on the query sequence’s sensitivity. For vectors vectors x and y, let

‖x− y‖1 denote their L1 distance: ‖x− y‖1 =
∑

i |xi − yi|.

Definition 2.7 (Sensitivity). The sensitivity of Q, denoted ∆Q, is defined as

∆Q = max
I,I′∈nbrs(I)

‖Q(I)−Q(I ′)‖1 .

Intuitively, if a query has high sensitivity, then adding or removing an individual’s

private data can have a large effect on the query answer. There are many queries

with low sensitivity, such as the one in the following example.

Example 1. Let I be a database of employment records and let query sequence Q be

a salary histogram—specifically, Q[1] returns the number of records whose salary is
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less than $10K, Q[2] the number with salary between $10K and $20K, and so on, up

to Q[10], the number with salary between $90K and $100K. A neighboring database

instance, I ′, has one additional or one less record, which affects exactly one of the

histogram counts by 1. Therefore, the sensitivity of Q is ∆Q = 1.

To ensure privacy, query answers are randomly perturbed with noise proportional

to their sensitivity.

The following algorithm ensures differential privacy for any Q. Let 〈Lap(σ)〉d

denote a d-length vector of independent random samples from a Laplace distribution

with mean zero and scale σ. (The Laplace distribution has density function f(y) ∝

exp(−|y|/σ).)

Proposition 2.2 (Laplace mechanism [38]). Let Q̃ denote the randomized algorithm

that takes as input a database I, a query Q of length d, and some ε > 0, and outputs

Q̃(I) = Q(I) + 〈Lap(∆Q/ε)〉d

Algorithm Q̃ satisfies ε-differential privacy.

We rely on Proposition 2.2 to ensure privacy for the query sequences we propose

in this work. We emphasize that the proposition holds for any query sequence Q, re-

gardless of correlations or constraints among the queries in Q. Such dependencies are

accounted for in the calculation of sensitivity. (For example, consider the correlated

sequence Q that consists of the same query q repeated k times, then the sensitivity

of Q is k times the sensitivity of 〈q〉.)

One can also use the above mechanism to answer multiple query sequences. This

is useful in interactive settings, where the analyst’s query may depend on the answers

to previous queries. Differentially private algorithms can be composed: the protocol

that allows the analyst to issue ` query sequences, each one using the ε-differentially

private mechanism above, is `ε-differentially private [92].
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Hiding multiple records The Laplace mechanism can be configured to provide

(k, ε)-differential privacy, thereby protecting a set of records. The Laplace mechanism

can be instantiated with ε′ = ε/k—i.e., the algorithm outputs the following:

Q̃(I) = Q(I) + 〈Lap(∆Q/ε
′)〉d

To make this concrete, suppose k = 10 and ε = 1.0. Then ε′ = 0.1. This in-

stantiation of the Laplace mechanism satisfies both (1, 0.1)-differential privacy and

(10, 1.0)-differential privacy, and even (100, 10.0)-differential privacy and so on.

2.4 Differential privacy for graphs

In the above definition, the database is a table whereas in the present work, the

database is a graph. Below we adapt the definition of differential privacy to graphs.

The semantic interpretation of differential privacy rests on the definition of neigh-

boring databases. Since differential privacy guarantees that the output of the algo-

rithm cannot be used to distinguish between neighboring databases, what is being

protected is precisely the difference between neighboring databases. In the above

definition, a neighboring database is defined as the addition or removal of a single

record. With the hospital example, the patient’s private information is encapsulated

within a single record. So differential privacy ensures that the output of the algorithm

does not disclose the patient’s medical history.

With network data, which is primarily about relationships among individuals, the

correspondence between private data and database records is less clear. To adapt

differential privacy to graphs, we must choose a definition for neighboring graphs

and understand the privacy semantics of that choice. We propose three alternatives

offering varying degrees of privacy protection.

We model the input as a graph, G = (V,E), where V is a set of n entities and E

is a set of edges. Edges are undirected pairs (u, v) such that u and v are members of
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V . While the meaning of an edge depends on the domain—it could connote friend-

ship, email exchange, sexual relations, etc.—we assume that it represents a sensitive

relationship that should be kept private. The focus of the present work is concerned

with graph structure, so the inclusion of attributes on nodes or edges is left for future

work.

The first adaptation of differential privacy to graphs is mathematically similar

to the definition for tables. Neighboring graphs are defined as graphs that differ

by one “record.” Given a graph G, one can produce a neighboring graph G′ by

either adding/removing an edge in E, or by adding/removing an isolated node in V .

Restricting the definition to isolated nodes ensures that the change to V does not

require additional changes to E to make it consistent with V .

Definition 2.8 (Edge ε-differential privacy). An algorithm A is edge ε-differentially

private if for all graphs G = (V,E) and G′ = (V ′, E ′) such that |V ⊕V ′|+|E⊕E ′| = 1,

and any subset of outputs S ⊆ Range(A), the following holds:

Pr[A(G) ∈ S] ≤ exp(ε)× Pr[A(G′) ∈ S]

An edge-differentially private algorithm protects individual edges from being dis-

closed. For some applications, edge-differential privacy seems to be a reasonable

privacy standard. For example, consider the study of Kossinets and Watts [67], in

which they analyze a graph derived from the email communication among students

and faculty of a large university. What makes this dataset sensitive is that it reveals

who emails whom; edge-differential privacy protects email relationships from being

disclosed.

However, in some applications, it may be desirable to extend the protection be-

yond individual edges. For example, Klovdahl et al. [65] analyze the social network

structure of “a population of prostitutes, injecting drug users and their personal as-

sociates.” In this graph, an edge represents a sexual interaction or the use of a shared
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needle. Edges are clearly private information, but so too are other properties like node

degree (the number of sexual/drug partners) and even membership in the network.

A second adaptation of differential privacy to graphs provides much stronger pri-

vacy protection. In node-differential privacy, two graphs are neighbors if they differ

by at most one node and all of its incident edges.

Definition 2.9 (Node ε-differential privacy). An algorithm A is node ε-differentially

private if for all graphs G = (V,E) and G′ = (V ′, E ′) such that |V ⊕ V ′| = 1

and E ⊕ E ′ = {(u, v)|u ∈ (V ⊕ V ′) or v ∈ (V ⊕ V ′)}, and any subset of outputs

S ⊆ Range(A), the following holds:

Pr[A(G) ∈ S] ≤ exp(ε)× Pr[A(G′) ∈ S]

Node-differential privacy mirrors the “opt-in/opt-out” notion of privacy from the

hospital example. It assuages any privacy concerns, as a node-differentially private

algorithm behaves almost as if the participant did not appear in at all.

While node-differential privacy is a desirable privacy objective, it may be infeasible

to design algorithms that are both node-differentially private and enable accurate

network analysis. A differentially private algorithm must hide even the worst case

difference between neighboring graphs, and this difference can be large under node-

differential privacy. For instance the empty graph (n isolated nodes) is a neighbor of

the star graph (a hub node connected to n nodes).

To span the spectrum of privacy between edge- and node-differential privacy, we

introduce an extension to edge-differential privacy that allows neighboring graphs to

differ by more than a single edge. In k-edge-differential privacy, neighboring graphs

can differ by up to k edges.

Definition 2.10 (k-edge ε-differential privacy). An algorithmA is k-edge ε-differentially

private if for all graphs G = (V,E) and G′ = (V ′, E ′) such that |V ⊕V ′|+|E⊕E ′| ≤ k,
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and any subset of outputs S ⊆ Range(A), the following holds:

Pr[A(G) ∈ S] ≤ exp(ε)× Pr[A(G′) ∈ S]

A larger setting of k leads to greater privacy protection. If k = 1, then k-edge-

differential privacy is equivalent to edge-differential privacy. If k = |V |, then k-

edge-differential privacy is even stronger than node-differential privacy, as the set of

neighboring graphs under k-edge-differential privacy is a superset of the neighbors

under node-differential privacy. If 1 < k < |V |, then k-edge-differential privacy

prevents the disclosure of aggregate properties of any subset of k edges. Notice that

for those nodes whose degree is less than k, it provides essentially equivalent protection

as node-differential privacy. Nodes whose degree is k or larger face more exposure.

However, nodes with large degree also have greater influence on the structure of the

graph. If our goal is to also allow analysts to accurately measure the graph structure,

then it may be necessary to expose high degree nodes to greater privacy risk.

2.5 Network analyses and statistics

We provide a brief overview of some common network analyses to illustrate the

diversity of analyses that are done on network data. We also define several network

statistics that are used later in the dissertation. In Chapter 4, we use these statistics to

evaluate how the privacy-preserving transformations impact network topology. Also,

in Chapters 5 and 6, we describe answer perturbation techniques for approximating

some of these statistics.

Many analyses focus solely on measuring the topology of the network as defined by

the edge table. Such analyses include the distribution of node degrees, the distribution

of path lengths, and measures of clustering or transitivity. These basic structural

properties of networks compensate for the difficulty in visualizing large networks.
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Significant research effort has been devoted to models of network formation that

generate graphs possessing the structural properties seen in the real world [10, 21, 26,

50, 73, 74, 72, 122].

Some analyses pinpoint specific structural features of the network. Analysis of

network centrality [42] seeks to identify influential nodes. In addition, community

discovery [100] divides the network into meaningful clusters. Motif analysis [94] iden-

tifies interesting structures that occur repeatedly in a network.

Another category of research focuses on understanding the function of the network

by modeling processes that occur within the network. Such processes include search

or navigation within networks [112, 121] and diffusion across networks (e.g., rumors

or epidemics spreading in a group) [63].

While the above analyses focus on the structure of the graph, the presence of

attributes on edges or nodes allow for some new analyses and variants of those above.

For example, homophily, the tendency for associations to form among similar indi-

viduals, can be measured in a network with attributes on nodes [89, 104]. Network

models have been developed that model the correlation between structural features

and attributes [50]. Finally, network data can include temporal information, allowing

the study of network dynamics. This includes the development of models of network

formation and evolution [73] and models to accurately predict future links [67, 80].

This gives a brief overview of the diverse ways in which networks are analyzed.

More complete surveys of network analysis appear in the literature [32, 99].

Network statistics Below we define some of the network statistics that we use in

this dissertation. Let G = (V,E) be an undirected graph where |V | = n and |E| = m.

• Density The edge density of a graph is the number of edges divided by the

number of possible edges: m/
(
n
2

)
.
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• Path statistics A path from u to v is a sequence of edges that traverse from u

to v. The shortest path between u and v is the path with the minimum number

of edges, and its length is the number of edges. The diameter of a graph is the

length of the longest shortest path.

• Connected components A connected component is a maximal subgraph such

that for any pair of nodes in the subgraph, there is a path connecting them.

Some statistics related to connected components include the number of con-

nected components and the relative size of the largest connected component.

• Distortion Distortion is a statistic that captures how closely a graph resembles

a tree [117]. To compute distortion of G, we first construct a spanning tree T .

Then for each edge (u, v) in G, we compute the distance (length of shortest path)

between u and v in T . The distortion is the average distance over all edges in

G. Thus, it measures how path lengths of G are distorted (i.e., lengthened) if

we are restricted to only traversing edges in tree T .

• Degree In an undirected graph, the degree of a node u is the number of neigh-

bors of u (i.e., nodes v such that (u, v) ∈ E). In a directed graph, the in-degree

is the number of incoming edges, the out-degree is the number of outgoing edges.

The degree sequence of a graph is a non-decreasing sequence of the degrees of

the nodes in the graph.

• Degree variability For a degree sequence d = (d1, . . . , dn), the coefficient of

variation CV (d) is defined as CV (d) = σ(d)/〈d〉 where 〈d〉 is the average degree

and σ(d) =
∑n

i=1(di − 〈d〉)2/(n − 1). Graphs with homogenous degrees have

low CV and graphs with diverse degree sequences, such as power-law graphs,

have high CV [7].
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• Degree correlations The s-metric is a measure of degree correlation [78]. It

is defined as s(G) =
∑

(u,v)∈E d(u)d(v) where d(u) is the degree of node u. A

high s(G) indicates that high degree nodes are connected to one another. The

normalized s-metric is s(G)/smax(G) where smax(G) is the maximum possible

s of any graph with the same degree sequence as G. (In practice, it is compu-

tationally intensive to find the true maximum, so we approximate it with the

Havel-Hakimi graph [16], which is efficient to construct and tends to have very

high s.)

• Clustering Clustering coefficient measures the likelihood that two neighbors

of a node are themselves connected. It is defined as C(G) = 1
n

∑
u

24(u)
d(u)(d(u)−1)

where 4(u) is the number of triangles (cliques of size 3) containing u.

• Transitivity A closely related measure to clustering coefficient is transitivity.

It is defined three times the number of triangles in the graph divided by the

number of paths of length two.

• Motif A motif is a subgraph pattern, and motif analysis is the process of

finding “interesting” subgraph patterns, such as those that are unlikely to arise

by chance given some model of network formation.

The above statistics are highlighted because they are used elsewhere in the disserta-

tion. Newman [99] and da F. Costa [32] provide more comprehensive summaries of

common network statistics.

39



CHAPTER 3

ASSESSING RE-IDENTIFICATION RISK

We consider the problem of publishing network data in such a way that permits

useful analysis yet avoids disclosing sensitive information. Most existing work on pri-

vacy in data publishing has focused on tabular data, where each record represents a

separate entity, and an individual may be re-identified by matching the individual’s

publicly known attributes with the attributes of the anonymized table. Anonym-

ization techniques for tabular data do not apply to network data because they fail

to account for the interconnectedness of the entities (i.e., they destroy the network

structure).

Because network analysis can be performed in the absence of entity identifiers

(e.g., name, social security number), a natural strategy for protecting sensitive in-

formation is to replace identifying attributes with synthetic identifiers. We refer to

this procedure as naive anonymization. It is a common practice and presumably,

it protects sensitive information by breaking the association between the real-world

identity and the sensitive data.

However, naive anonymization may be insufficient. A distinctive threat in network

data is that an entity’s connections (i.e., the network structure around it) can be

distinguishing, and may be used to re-identify an otherwise anonymous individual. We

consider how a malicious individual (the adversary) might obtain partial knowledge

about the network structure around targeted individuals and then use this knowledge

to re-identify them in the anonymized network. Once re-identified, the adversary

can learn additional properties about the targets; for instance, he may able to infer
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the presence or absence of edges between them. Since individual connections are

often considered sensitive information, such edge disclosure constitutes a violation of

privacy. Whether naive anonymization provides adequate protection depends on the

structure of the network and the adversary’s capability. In this chapter, we provide

a comprehensive assessment of the privacy risks of naive anonymization.

Although an adversary may also have information about the attributes of nodes,

the focus of this chapter is on disclosures resulting from structural or topological re-

identification, where the adversary’s information is about the structure of the graph

only. The use of attribute knowledge to re-identify individuals in anonymized data

has been well-studied, as have techniques for resisting it [85, 88, 110, 111, 116]. More

importantly, many network analyses are concerned exclusively with structural prop-

erties of the graph, therefore safely publishing an unlabeled network is an important

goal in itself. For example, the following common analyses examine only the net-

work structure: finding communities, fitting power-law models, enumerating motifs,

measuring diffusion, and assessing resiliency [99].

In this chapter, we make the following contributions:

• Adversary Model We propose a flexible model of external information used

by an adversary to attack naively-anonymized networks. The model allows us

to evaluate re-identification risk efficiently and for a range of different adversary

capabilities. We also formalize the structural indistinguishability of a node with

respect to an adversary with locally-bounded external information (Section 3.1).

• Empirical Risk Assessment We evaluate the effectiveness of structural at-

tacks on real and synthetic networks, measuring successful re-identification and

edge disclosures. We find that real networks are diverse in their resistance to

attacks. Nevertheless, our results demonstrate that naive anonymization pro-

vides insufficient protection, especially if an adversary is capable of gathering

knowledge beyond a target’s immediate neighbors (Section 3.2).
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• Theoretical Risk Assessment In addition to the empirical study, we perform

a theoretical analysis of random graphs. We show how properties such as a

graph’s density and degree distribution affect re-identification risk. A significant

finding is that in sufficiently dense graphs, nodes can be re-identified even when

the graph is extremely large (Section 3.3).

The findings of this chapter tell us what makes nodes vulnerable to re-identification

attacks. This understanding serves as a basis for designing effective strategies for

anonymizing network data, a subject which is taken up in Chapter 4.

3.1 Modeling the adversary

In this section we describe the capabilities and motivations of the adversary in

the context of network data. First, we describe the process of naive anonymization

and how the adversary may attack it. Second, we define the threats of node re-

identification and edge disclosure. Third, we explain how anonymity is achieved

through structural similarity, which motivates a model of adversary knowledge based

on degree signatures. Finally we review alternative models of the adversary.

3.1.1 Naive anonymization

Formally, we model a network as an undirected graph G = (V,E). The naive

anonymization of G is an isomorphic graph, Ga = (Va, Ea), defined by a random

bijection Π : V → Va. For example, Figure 3.1 shows a small network represented

as a graph along with its naive anonymization. The anonymization mapping Π, also

shown, is a random, secret mapping.

Naive anonymization prevents re-identification when the adversary has no infor-

mation about individuals in the original graph. Formally stated, an individual x ∈ V ,

called the target, has a candidate set, denoted cand(x), which consists of the nodes

of Ga that could feasibly correspond to x. To assess the risk of re-identification, we
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Figure 3.1. A social network represented as a graph (left), the naive anonymization
(center), and the anonymization mapping (right).

assume each element of the candidate set is equally likely and use the size of the

candidate set as a measure of resistance to re-identification. Since Π is random, in

the absence of other information, any node in Ga could correspond to the target

node x. Thus, given an uninformed adversary, each individual has the same risk of

re-identification, specifically cand(x) = Va for each target individual x.

However, if the adversary has access to external information about the entities,

he may be able to reduce the candidate set and threaten the privacy of individuals.

3.1.2 Threats

In practice the adversary may have access to external information about the enti-

ties in the graph and their relationships. This information may be available through

a public source beyond the control of the data owner, or may be obtained by the ad-

versary’s malicious actions. For example, for the graph in Figure 3.1, the adversary

might know that “Bob has three or more neighbors,” or that “Greg is connected to at

least two nodes, each with degree 2.” Such information allows the adversary to reduce

the set of candidates in the anonymized graph for each of the targeted individuals.

For example, the first statement allows the adversary to partially re-identify Bob:

cand(Bob) = {2, 4, 7, 8}. The second statement re-identifies Greg: cand(Greg) = {4}.
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Re-identification can lead to additional disclosures under naive anonymization.

If an individual is uniquely re-identified, then the entire structure of connections

surrounding the individual is revealed. If two individuals are uniquely re-identified,

then the presence or absence of an edge between them is revealed directly by the

naively anonymized graph. Such an edge disclosure, in which an adversary is able

to accurately infer the presence of an edge between two identified individuals, can

be a serious privacy threat. In the present work, we consider the general threat of

re-identification as well as the more specific threat edge disclosure.

Throughout this work, we model the adversary’s external information as access to

a source that provides answers to a restricted knowledge query evaluated for a single

target node of the original graph G.

An adversary attempts re-identification for a target node x by using Q(x) to refine

the feasible candidate set. Since Ga is published, the adversary can easily evaluate

any structural query directly on Ga, looking for matches. The adversary will compute

the refined candidate set that contains all nodes in the published graph Ga that are

consistent with answers to the knowledge query on the target node.

Definition 3.1 (Candidate Set under Q). For a knowledge query Q over a graph,

the candidate set of target node x w.r.t Q is candQ(x) = {y ∈ Va | Q(x) = Q(y)}.

Example 2. Referring to the example graph in Figure 3.1, suppose Q is a knowl-

edge query returning the degree of a node. Then for targets Ed, Fred, Greg we

have Q(Ed) = 4, Q(Fred) = 2, Q(Greg) = 4, and candidate sets candQ(Ed) =

candQ(Greg) = {2, 4, 7, 8} and candQ(Fred) = {1, 3}.

Given two target nodes x and y, the adversary can use the naively anonymized

graph to deduce the likelihood that the nodes are connected. In the absence of

external information, the likelihood of any edge is simply the density of the graph

(the fraction of all possible edges that exist in the graph).
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If the candidate sets for x and y have been refined by the adversary’s knowledge

about x and/or y, then the adversary reasons about the likelihood x and y are con-

nected based on the connections between the candidate sets for x and y. Thus we

define the edge likelihood to be the Bayesian posterior belief assuming each candidate

is an equally likely match for the targeted nodes.

Definition 3.2 (Edge likelihood under Q). For a knowledge query Q over a graph,

and a pair of target nodes x and y, the inferred likelihood of edge (x, y) under Q is

denoted probQ(x, y) and defined as:

|{(u, v) | u ∈ X, v ∈ Y }|+ |{(u, v) | u, v ∈ X ∩ Y }|
|X| · |Y | − |X ∩ Y |

where X = candQ(x) and Y = candQ(y).

The denominator represents the total number of possible edges from a node of one

candidate set to a node of the other candidate set, and accounts for the case where

the intersection of the candidate sets is non-empty.

Example 3. Continuing the example above, the inferred likelihood of edge (Ed, Fred)

is:

probQ(Ed, Fred) = (4 + 0)/(4 ∗ 2) = 0.500

because there are 4 edges present in Ga between the disjoint candidate sets candQ(Ed)

and candQ(Fred). The inferred edge likelihood of edge (Ed,Greg) is:

probQ(Ed,Greg) = (5 + 5)/(4 ∗ 4− 4) = 0.833

because 5 edges are present in Ga between the identical candidate sets candQ(Ed)

and candQ(Greg). These edge likelihoods should be compared with the prior edge

density of 2 ∗ 11/(8 ∗ 7) = .393.
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Alice Bob Carol

Dave Ed

Fred Greg Harry

(a) graph

Node ID H0 H1 H2

Alice ε 1 {4}
Bob ε 4 {1, 1, 4, 4}

Carol ε 1 {4}
Dave ε 4 {2, 4, 4, 4}
Ed ε 4 {2, 4, 4, 4}

Fred ε 2 {4, 4}
Greg ε 4 {2, 2, 4, 4}
Harry ε 2 {4, 4}

(b) structural signatures

Equivalence Relation Equivalence Classes
≡H0 {A,B,C,D,E, F,G,H}
≡H1 {A,C} {B,D,E,G} {F,H}
≡H2 {A,C}{B}{D,E}{G}{F,H}
≡A {A,C}{B}{D,E}{G}{F,H}

(c) equivalence classes

Figure 3.2. (a) A sample graph, (b) external information consisting of structural
signatures H0,H1 and H2 computed for each individual in the graph, (c) the equiva-
lence classes of nodes implied by the structural signatures. For the sample data, ≡H2 ,
corresponds to automorphic equivalence, ≡A.

In Section 3.2, we measure the threats of edge disclosure and node re-identification

on real networks.

3.1.3 Anonymity through structural similarity

Intuitively, nodes that look structurally similar may be indistinguishable to an

adversary, in spite of external information. A strong form of structural similarity

between nodes is automorphic equivalence. Two nodes x, y ∈ V are automorphically

equivalent (denoted x ≡A y) if there exists an isomorphism from the graph onto itself

that maps x to y.

Example 4. Fred and Harry are automorphically equivalent nodes in the graph of

Figure 3.1. Bob and Ed are not automorphically equivalent: the subgraph around Bob

is different from the subgraph around Ed and no isomorphism proving automorphic

equivalence is possible.
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Automorphic equivalence induces a partitioning on V into sets whose members

have identical structural properties. It follows that an adversary — even with exhaus-

tive knowledge of a target node’s structural position — cannot identify an individual

beyond the set of entities to which it is automorphically equivalent. We say that

two such nodes are structurally indistinguishable and observe that nodes in the graph

achieve anonymity by being “hidden in the crowd” of its automorphic class members.

Some special graphs have large automorphic equivalence classes. For example, in

a complete graph, or in a graph which forms a ring, all nodes are automorphically

equivalent. But in most graphs we expect to find small automorphism classes, likely

to be insufficient for protection against re-identification.

Though automorphism classes may be small in real networks, automorphic equiv-

alence is an extremely strong notion of structural similarity. In order to distinguish

two nodes in different automorphic equivalence classes, it may be necessary to use

complete information about their positions in the graph. For a weaker adversary

with limited knowledge, nodes that are not automorphically equivalent may in fact

be indistinguishable. For example, for an adversary who only knows the degree of

targeted nodes in the graph, Bob and Ed are indistinguishable (even though they are

not automorphically equivalent). This motivates the notion of bounded structural

knowledge we describe next.

3.1.4 Adversary model based on structural signatures

We now describe the adversary model. It is based on a class of knowledge queries,

of increasing power, which report on the local structure of the graph around a node.

These queries are inspired by iterative vertex refinement, a technique originally devel-

oped to efficiently test for the existence of graph isomorphisms [31]. In Section 3.1.5,

we discuss alternative adversary models.
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The queries are denoted Hi for i = 0, 1, 2, . . . . The weakest knowledge query,

H0, simply returns the label of the node. (We consider here unlabeled graphs, so H0

returns ε on all input nodes.) The queries are successively more descriptive: H1(x)

returns the degree of x, H2(x) returns the multiset of each neighbors’ degree, and so

on. The queries can be defined iteratively, where Hi(x) returns the multiset of values

which are the result of evaluating Hi−1 on the set of nodes adjacent to x:

Hi(x) = {Hi−1(z1),Hi−1(z2) . . . ,Hi−1(zm)}

where z1 . . . zm are the nodes adjacent to x.

Example 5. Figure 3.2 contains the same graph from Figure 3.1 along with the

computation of H0, H1, and H2 for each node. For example: H0 is uniformly ε.

H1(Bob) = {ε, ε, ε, ε}, which we abbreviate in the table simply as 4. Using this

abbreviation, H2(Bob) = {1, 1, 4, 4} which represents Bob’s neighbors’ degrees.

In practice, we might expect that if an adversary can learn the degrees of the

target’s neighbors, he would also be able to learn about edges in the neighborhood.

In this case, instead of learning Hi, the adversary would learn a subgraph where the

subgraph is induced by the edges adjacent to nodes that lie within at most i− 1 edge

traversals of the target. This additional knowledge would make the adversary more

powerful, and thus the Hi signature is a more conservative model. The Hi signatures

have the advantage that they are efficient to evaluate, whereas measuring subgraph

knowledge requires checking for subgraph isomorphisms, an NP-Hard problem. Thus,

the Hi signature can be viewed as an efficient way to calculate a lower bound on the

risk of the subgraph adversary. In Section 3.1.5, we discuss prior work, including our

own, that has considered models based on knowledge of subgraphs surrounding the

target.
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For each query Hi, we define an equivalence relation on nodes in the graph in the

natural way.

Definition 3.3 (Relative equivalence). Two nodes x, y in a graph are equivalent

relative to Hi, denoted x ≡Hi y, if and only if Hi(x) = Hi(y).

Example 6. Figure 3.2(c) lists the equivalence classes of nodes according to rela-

tions ≡H0 ,≡H1 , and ≡H2 . All nodes are equivalent relative to H0 (for an unlabeled

graph). As i increases, the values for Hi contain successively more precise structural

information, and as a result, equivalence classes are divided.

To an adversary limited to knowledge query Hi, nodes equivalent with respect to

Hi are indistinguishable. The following proposition formalizes this intuition:

Proposition 3.1. Let x, x′ ∈ V . If x ≡Hi x′ then candHi(x) = candHi(x
′).

Iterative computation of H continues until no new vertices are distinguished. We

call this query H∗. In the example of Figure 3.2, H∗ = H2. The vertex refinement

technique is the basis of efficient graph isomorphism algorithms which can be shown

to work for almost all graphs [8]. In our setting, this means that equivalence under

H∗ is very likely to coincide with automorphic equivalence.

3.1.5 Alternative adversary models

Throughout this work, we use the structural signatures described above as a pa-

rameterized model of external information that can capture the power of a range

of adversaries. Our structural signatures have the advantage that they are efficient

to evaluate even on large graphs, are amenable to theoretical analysis, and they are

conservative model of structural knowledge.

One of our guiding principles is that adversary knowledge tends to be local to the

targeted node, with more powerful adversaries capable of exploring the neighborhood

around a node with increasing diameter.
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In practice, external information about a published social network may be acquired

through malicious actions by the adversary or from public information sources. In

addition, a participant in the network, with some innate knowledge of entities and

their relationships, may be acting as an adversary in an attempt to uncover unknown

information. A legitimate privacy objective in some settings is to publish a graph in

which participating individuals cannot re-identify themselves. For the participant-

adversary, whose knowledge is based on their participation in the network, existing

research about institutional communication networks suggests that there is a horizon

of awareness of about distance two around most individuals [43].

Other work on network anonymity has also focused on adversaries whose structural

knowledge is based on a local neighborhood around a target node [29, 82, 128, 132,

134]. An exception is the recent work by Narayanan et al. [97], which uses an auxiliary

network to attack a target network, and work by Zou et al. [136], which protects

against an adversary with unbounded structural knowledge.

In previous work [51], we considered alternative models of adversary knowledge, in-

cluding partial subgraphs and signatures determined by connections to hubs. In evalu-

ating adversaries with knowledge of partial subgraphs around a target, re-identification

risk is generally lower than with degree signatures, but depends on how complete the

known subgraph is. It is also computationally difficult to compute candidate sets

because testing a potential candidate requires looking for a subgraph isomorphism.

Hubs are highly connected nodes observed in many network datasets. In a Web

graph, a hub may be a highly visited website. In a graph of email connections, hubs

often represent influential individuals. Because hubs are often outliers in a graph’s

degree distribution, the true identity of hub nodes is often apparent in a naively-

anonymized graph. In addition, an individual’s connections to hubs may be publicly

known or easily deduced. We found that on real networks, the rate of re-identification

using knowledge of hub connections was relatively low.
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Table 3.1. Descriptive statistics for the real and synthetic graphs studied.

Statistic Real Datasets Synthetic Datasets
HepTh Enron NetTrace HOT Power-Law Tree Mesh

Nodes 2510 111 4213 939 2500 3280 2500
Edges 4737 287 5507 988 7453 3279 4900
Minimum degree 1 1 1 1 2 1 2
Maximum degree 36 20 1656 91 166 4 4
Median degree 2 5 1 1 4 1 4
Average degree 3.77 5.17 2.61 2.10 5.96 1.99 3.92
Edge density 0.0007 0.0235 0.0003 0.0022 0.0024 0.0006 0.0016
Avg. cand. set size (H1) 558.5 12.0 2792.1 635.5 549.7 1821.8 2138.1
Avg. cand. set size (H2) 25.4 1.5 608.6 81.1 1.4 1659.8 1818.1
Percent re-identified (H1) 0.2 2.7 0.5 0.9 0.9 < 0.1 < 0.1
Percent re-identified (H2) 40.4 73.9 11.1 5.9 82.5 < 0.1 < 0.1

As mentioned above, the focus of this work is on supporting the topological

analysis of graphs. We therefore assume that attributes are not used to aid in re-

identification, and our assessment of utility does not include analyses that depend on

attribute values. Other authors have proposed anonymization schemes that protect

against re-identification using attributes [29, 30, 134].

3.2 Empirical risk assessment

In this section we evaluate the risk of publishing the naive anonymization of

a network through an empirical assessment on several real and synthetic network

datasets.

For each dataset, we consider each node in turn as a target. We assume the

adversary computes the structural signature of that node, and then we compute the

corresponding candidate set. We report the distribution of candidate set sizes across

the population of nodes to characterize how many nodes are protected and how many

are identifiable.

We use the following seven datasets. The HepTh dataset is a graph of coauthors

in theoretical high-energy physics. The dataset is derived from arXiv, an online
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repository of papers. We extracted a subset of the authors and considered them

connected if they wrote at least two papers together.

The Enron dataset is derived from a corpus of email sent to and from managers

at Enron Corporation, made public by the Federal Energy Regulatory Commission

during its investigation of the company. Two individuals are connected if they corre-

sponded at least 5 times.

The NetTrace dataset was derived from an IP-level network trace collected at a

major university. The trace monitors traffic at the gateway; it produces a bipartite

graph between IP addresses internal to the institution, and external IP addresses. We

restricted the trace to 187 internal addresses from a single campus department and

the 4026 external addresses to which at least 20 packets were sent on port 80 (http

traffic).

The HOT dataset is a model of the Internet of a single service provider (ISP).

Its Heuristically Optimal Topology (HOT) is designed to reflect the economic and

technological constraints that influence the topology. It has a hierarchical structure

with a core of interconnected low degree (high-bandwidth) routers at its center and

high-degree (low-bandwidth) routers at its periphery [77].

The Power-Law dataset is a random graph that is generated based on a model of

growth and preferential attachment [10]. Its degree distribution follows a power-law.

In some of the experiments, we also consider a slightly different dataset, Clustered

Power-Law, which is constructed using the same model except that when edges are

inserted into the graph, triangles are formed with some probability (we set p = 0.4).

The Mesh dataset is a 50 × 50 grid topology, where each node is connected to

the four adjacent nodes in the grid. The Tree dataset is a balanced tree of arity 3.

All datasets have undirected edges, with self-loops removed. We eliminated a small

percentage of disconnected nodes in each dataset, focusing on the largest connected

component in the graph. Detailed statistics for the datasets are shown in Table 3.1.
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Figure 3.3. The relationship between candidate set size and structural signature
knowledge Hi for i = 1..4 for four real graphs and three synthetic graphs. For each
Hi, the bars show the percentage of nodes whose candidate sets have sizes in the
following buckets: [1] (black), [2, 4], [5, 10], [11, 20], [21,∞] (white).

3.2.1 Node re-identification

Recall from Section 3.1.4 that nodes contained in the same candidate set for

knowledge Hi share the same value for Hi, are indistinguishable according to Hi, and

are therefore protected if the candidate set size is sufficiently large.

Figure 3.3 is an overview of the likelihood of re-identification under H1,H2,H3

and H4 knowledge queries. For each Hi, the graph reports on the percentage of nodes

whose candidate sets have sizes in the following buckets: [1] , [2, 4], [5, 10], [11, 20],

[21,∞]. Nodes with candidate set size 1 have been uniquely identified, and nodes with

candidate sets between 2 and 4 are at high risk for re-identification. Nodes are at

fairly low risk for re-identification if there are more than 20 nodes in their candidate

set.1 Each Hi is represented as a different point on the x-axis.

Figure 3.3 shows that for the HepTh data, H1 leaves nearly all nodes at low risk

for re-identification, and it requires H3 knowledge to uniquely re-identify a majority

of nodes. For Enron, under H1 about 15% of the nodes have candidate sets smaller

than 5, while only 19% are protected in candidate sets greater than 20. Under H2,

re-identification jumps dramatically so that virtually all nodes have candidate sets

1We do not suggest these categories as a universal privacy standard, but merely as divisions that
focus attention on the most important part of the candidate set distribution where serious disclosures
are at risk.
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less than 5. These two real graphs are roughly similar in behavior to the synthetic

Power-Law graph, as they display features similar to a power-law graph.

NetTrace and HOT have substantially lower disclosure overall, with very few

identified nodes under H1, and even H4 knowledge does not uniquely identify more

than 10% of the nodes. For NetTrace, this results from the unique bipartite structure

of the trace dataset: many nodes in the trace have low degree, as they are unique or

rare web destinations contacted by only one internal host. The HOT graph has high

structural uniformity because it contains many degree one nodes that are connected

to the same high degree node, and thus structurally equivalent to one another.

The synthetic Tree and Mesh graphs display very low re-identification under all

Hi. This is obvious given that these graphs have highly uniform structure: the nodes

in Mesh have either degree 2 or 4, the nodes in Tree have degree 1, 3 or 4. We

include them here for completeness as these graphs are studied in Section 4.3.

A natural precondition for publication is a very low percentage of high-risk nodes

under a reasonable assumption about adversary knowledge. Three datasets meet that

requirement for H1 (HepTh, NetTrace, HOT). Except for the extreme synthetic

graphs Tree and Mesh, no datasets meet that requirement for H2.

Overall, we observe that there can be significant variance across different datasets

in their vulnerability to different adversary knowledge. However, across all datasets,

the most significant change in re-identification is from H1 to H2, illustrating the

increased power of adversaries that can explore beyond the target’s immediate neigh-

borhood. Re-identification tends to stabilize after H3—more information in the form

of H4 does not lead to an observable increase in re-identification in any dataset. Fi-

nally, even though there are many re-identified nodes, a substantial number of nodes

are not uniquely identified even with H4 knowledge.
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Figure 3.4. The inferred edge probabilities resulting from attempted re-identification
using structural signatures H1,H2,H3,H4.

3.2.2 Edge disclosure

We measure the risk of edge disclosure possible under adversaries with knowledge

of degree signatures. Our sample datasets are sparse graphs – their edge densities

are all quite low, as reported in Table 3.1. This means that the expectation of any

particular edge existing in the graph is low.

To measure the risk of edge disclosure, we considered each edge present in the

original graph and considered its inferred edge likelihood under various Hi. That is,

we imagine an adversary using Hi knowledge to re-identify the individuals partici-

pating in each edge of the true graph, and report the inferred edge probability over

the set of all true edges. For each Hi we get a range of inferred edge probabilities, as

illustrated in Figure 3.4.

The results show that with H1 knowledge alone, the risk of edge disclosure is

relatively limited. In the Hep-Th data, 80% of the edges have an inferred edge

probability of less than 0.01, which constitutes a small shift in an adversary’s certainty

about the presence of those edges. In the Enron and NetTrace data, roughly half

the edges have inferred probabilities between 0.10 and 1, which represent a significant

shift in the adversary’s expectation.

Of much more concern, however, is the fact that with H2 knowledge (or greater)

many edges are disclosed with certainty – the inferred edge probability is 1 for a

majority of edges across all datasets. It is also important to note that even when

55



candidate sets tend to be large (such as in NetTrace and HOT), edges can be

disclosed with high likelihood. In NetTrace and HOT this likely reflects a hub

node with a unique degree connected to many degree-one nodes. Even though the

candidate set of degree one nodes may be large, every node in that candidate set is

connected to the hub, and density of connections between the candidate sets is one,

resulting in certain edge disclosure.

3.3 Theoretical risk assessment

The results of the previous section show that re-identification risk varies across

graphs. We want to understand and explain this variation. In some cases, such

as Tree and Mesh, the low re-identification risk can be explained by the regular

topology, which makes it hard to distinguish nodes by their local structure. However,

across the other graphs, the reason for diversity in risk is unclear.

In this section, to gain insight into the factors affecting re-identification risk, we

study random graphs. Random graphs are governed by parameters which control

some aspect of the graph’s topology; by varying the parameters, we can measure

how this property affects re-identification risk. Here, we study how re-identification

risk is affected by two key graph properties, density and degree distribution. To

study the relationship between graph density and anonymity, we analyze the Erdös-

Rényi (ER) model [39, 40, 47], the simplest random graph model. Following that,

we study random graphs with power-law degree distributions. These results help us

to understand under what conditions distinctive structures arise in graphs, and thus

provide insight into the foundations of anonymity for graphs.
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3.3.1 Erdös-Rényi graphs

The ER model generates a graph by sampling each of the
(
n
2

)
edges independently

with probability p. As the number of nodes, n, increases, these graphs exhibit different

behaviors depending on how p scales with n.

We consider three cases. In a sparse random graph p = c/n, in a dense random

graph p = c log n/n, and in a super-dense random graph, p = c (where c is a constant).

The first two cases are of interest because when c > 1, with high probability the

graph includes a giant connected component of size Θ(n) and a collection of smaller

components (in the sparse case) or the graph is completely connected (in the dense

case) [40].

To motivate the theoretical results that follow, Figure 3.5 shows experimental

simulations on ER random graph of 100K nodes and varying edge probabilities. The

trend lines measure the percentage of nodes uniquely identified by H1, H2, and H3

knowledge.

The figure shows that for sparse graphs, very few nodes are uniquely identified,

even with the more powerfulH3 knowledge. Intuitively, nodes cannot be distinguished

because a sparse graph lacks sufficient edge density to create diversity in structure.

Because the edge probability is p = c/n, the expected node degree, which is p(n− 1),

goes to c as n → ∞. Because the expected degree is constant, for sufficiently large

n, structural patterns must repeat, leading to complete structural uniformity in the

limit. The following theorem formalizes this intuition, showing that no degree of Hi

knowledge can distinguish nodes in a large sparse ER random graph.

Theorem 3.1 (Sparse ER random graphs). Let G be an ER random graph containing

n nodes with edge probability given by p = c/n for c > 1. (i) The expected sizes of the

equivalence classes induced by Hi are Θ(n) for any i ≥ 0; (ii) with probability going

to one, the sizes of the equivalence classes induced by Hi are Ω(nα), for any i ≥ 0

and any 0 < α < 1.
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Proof. We begin with H1. Consider a graph of size n. Let Ni denote the degree of

the i-th node, i ≤ n. As n→∞,

P (Ni = k)→ ck

k!
e−c

Note that for any k = ω(1), the probability of Ni = k goes to zero as n → ∞.

Thus, it suffices only consider the case where k is a constant.

Let M1,k(n) denote the expected size of the equivalence class of H1 corresponding

to node degree k when the graph is of size n and let M1,k = limn→∞M1,k(n). We

have

M1,k = lim
n→∞

n∑
i=1

P (Ni = k)

= Θ(n)

In order to establish the second result, we restrict ourselves to a random subset of the

n nodes of size nα, where α < 1. Note that the fraction of nodes in this subset goes

to zero as n→∞. This allows us to show that, as n→∞, the degrees of the nodes

in this subset are independent random variables. Application of a Chernoff bound

then produces P [Lk ≤ (1 − δ)nαcke−c/k!] ≤ e−(δ2cke−c/k!)nα where Lk is the number

of nodes in the subset having degree k as n→∞. As |Mi,k| ≥ Lk, we conclude that

|M1,k(n)| = Ω(nα) with probability going to one for all k.

Similar arguments hold forHi, i = 2, . . .. Consider a node x. We first note that the

Hi equivalence class that x belongs to is determined by the subgraph rooted at x that

includes all nodes within distance i of it. Now, as n→∞, with probability going to

one, this subgraph is a tree. Moreover the probability of the above subgraph deviating

from a tree is O(1/n). Another observation is that every Hi induced equivalence class

contains at least one node, whose distance i subgraph is a tree in the limit as n→∞.

This follows because anyHi consistent multi-set can be used to construct a tree. Thus
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any distance i subgraph centered at a node that is not a tree is hidden by commonly

found trees.

Consider a tree, t, of height i or less. Let N(t) be a set containing the numbers

of children for all nodes in the tree that are at distance j = 0, 1, . . . , i − 1 from the

root. Let Gi(x) denote the distance i subgraph centered at node x and let Ti denote

the set of all possible height i or less trees. Then

P (Gi(x) = t) =
∏

k∈N(t)

ck

k!
e−c +O(1/n), t ∈ Ti

= Θ(1)

P (Gi(x) /∈ Ti) = O(1/n)

Note that as n grows, the distribution of the number of children that a node within

the tree has is Poisson.

Since each equivalence class contains at least one height i or less tree in the limit

as n → ∞, it follows from the above expressions that the expected size of each

equivalence class is Θ(n). Last a similar argument as used for H1 establishes the

second property.

From the standpoint of protecting anonymity, this is an encouraging result for this

class of graphs, assuming we are concerned with publishing large graphs. (In simula-

tions, we found that some re-identification occurs in random graphs of less than 106

nodes.)

As we consider more dense ER random graphs, structural diversity increases and

re-identification becomes a near certainty very quickly. Figure 3.5 suggests that as

graphs become dense (p = clog(n)/n), while nodes remain well-hidden against H1

adversaries, H2 knowledge is sufficient to re-identify virtually all nodes in the graph.

The following theorem supports the simulations.
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Figure 3.5. For H2 and H3 the number of uniquely re-identified individuals in a
classical random graph goes from zero to 100% quickly when there is sufficient edge
density. But regardless of the density, the number of nodes with a unique degree is
close to zero, showing that H1 is insufficient for unique re-identification.

Theorem 3.2 (Dense ER random graphs). Let G be an ER random graph containing

n nodes with edge probability given by p = c log n/n for c > 1.

1. With high probability a node belongs to an equivalence class induced by H1 that

grows to infinity as n→∞.

2. The expected sizes of equivalence classes induced by H2 goes to zero as n→∞.

The second property indicates that for a given H2 signature, the expected number

of nodes having that signature grows more slowly than n. Given the simulation results,

the most likely cause of this result is that the H2 signatures are unique.

Proof. As n→∞, the degree distribution converges to the Poisson distribution with

mean c log n. Let Ni(n) denote the degree of node i in a graph of size n and consider

degrees of the form Ni(n) = δc log n, 0 < δ. Then, as n→∞, we have

P [Ni = δc log n] =
1√

2πδc log nnc(1−δ+δ log δ)
, 0 < δ
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A Chernoff bound argument can be used to show that, whp, a node’s degree lies

within the range (δ0c log n, δ1c log n) where δ0 is the largest value of δ < 0 such that

c(1 − δ + δ log δ) = 1 and δ1 is the smallest value of δ > 1 to satisfy that equation.

Note that P [Ni = δc log n] decreases more quickly than 1/n whenever δ /∈ [δ0, δ1] and

more slowly otherwise. We focus now on the range of degrees (δ0c log n, δ1c log n),

and let Lδ denote the number of nodes with degree δc log n, δ ∈ [δ0, δ1]. Randomly

select a set of nodes of size nα, where α is chosen such that, c(1−δ+δ log δ) < α < 1.

As in the previous theorem, we can show that the degrees of these nodes become

independent random variables as n→∞. Apply now a Chernoff bound (as n→∞)

to obtain

P [Lδ < (1− β)nα(2πδc log n)−1n−c(1−δ+δ log δ)] ≤

e−β
2nα(2πδc logn)−1n−c(1−δ+δ log δ)/2

Because of the choice of α, the right hand side goes to zero. Thus Lδ → ∞ as

n → ∞ whp and therefore the size of the equivalence class corresponding to degree

δc log n goes to infinity as n → ∞. Since a node takes its degree from the range

(δ0c log n, δ1c log n) whp, it belongs to an equivalence class whose size goes to infinity

whp as n→∞.

The proof of the second property is more involved. We sketch the proof. Consider

a node with degree k, we need only consider k ∈ (δ0c log n, δ1c log n). Moreover, we

need only consider degrees of the neighbors in the same range. Furthermore, we can

assume that the degrees of the neighbors are independent of each other as n → ∞.

Application of a straightforward generalization of Theorem 5.7 in [96] to the case of

a non-uniformly random balls and urns problem allows us to write

P [X1 = k1, . . . , Xs = ks] ≤

e
√
δc log n

s∏
i=1

(piδc log n)ki

ki!
e−piδc logn
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where pi is the probability that a neighbor selects degree i. Here (X1, . . . , Xs) consti-

tutes theH2 signature of the node. Now, it is easy to argue using Chernoff bounds that

neighbors only choose degrees clustered around c log n (c log n+ l, l = 0,±1,±2, . . .).

Hence

P [X1 = k1, . . . , Xs = ks] ≤

e
√
δc log n

(pc lognδc log n)δc logn∏s
i=1 ki!

e−pc lognδc logn ≤

a((log n)−1/2)δc logn(e−b(logn)−1/2

)δc logn

Where a is a constant. The second inequality follows from
∏

i ki > 1. Now con-

sider the expected number of nodes with signature (k1, . . . , ks), Mk1,...,ks . It is upper

bounded by

Mk1,...,ks ≤ an((log n)−1/2)δc logn(e−b(logn)−1/2

)δc logn

which goes to zero as n→∞.

Lastly, we include a known result for the case of a super-dense graph where p =

1/2. The following theorem, originally due to Babai and Kucera [8] and rephrased

below, shows that with high probability every node will be uniquely identified using

H3 knowledge:

Theorem 3.3 (Super-dense ER random graphs). Let G be an ER random graph on

n nodes with edge probability p = 1/2. The probability that there exist two nodes

x, y ∈ V such that x ≡H3 y is less than 2−cn for constant value c > 0.

This result provides a sufficient condition for unique re-identification of the entire

population in a graph.

Theorems 3.2 and 3.3 are disappointing from an anonymity perspective. However,

most social and communication networks appear to be sparse, and so Theorem 3.1

may be more applicable. Furthermore, real networks often have heavy-tailed degree
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distributions, which is not the case for ER graphs. To capture the heavy-tailed degree

distribution, we also study re-identification risk in power-law graphs.

3.3.2 Power-law graphs

Several graph models have been proposed that exhibit the heavy-tailed degree

distributions often observed in real networks, including the power law random graph

(PLRG) model [6]. In this model, a graph is constructed by first assigning a degree

to each node, where the degree is sampled from a power law distribution. Edges are

inserted by randomly choosing endpoints until every node has as many edges as its

specified degree. (This can result in self-loops or multiple edges between a pair of

nodes, which are often removed to form a simple graph that closely approximates the

original degree distribution.)

The PLRG, and other power-law models, generate graphs with constant average

degree as the number of nodes increases. Thus the edge density is low, and despite

the skew in node degree, we find that the structural diversity is insufficient for re-

identification. We state this formally for PLRG because it is the easiest power-law

graph model to analyze.

Theorem 3.4 (Power-law random graphs). Let G be a PLRG on n nodes. With

probability going to one, the expected sizes of the equivalence classes induced by Hi is

Θ(n), for any i ≥ 0.

Proof. The proof of Theorem 3.4 proceeds in a similar manner to the proof of Theo-

rem 3.1 except that the Poisson distribution is replaced by P (Ni = k) = ak−α > 0,

k = 0, 1, . . . where a is a constant such that
∑∞

k=0 P (Ni = k) = 1.

3.3.3 Discussion

The theoretical results of this section complement the empirical results of the pre-

vious section. We see that re-identification risk depends on graph size: the empirical
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results for the 2500 node Power-Law graph show high re-identification risk; however,

Theorem 3.4 shows that once a power-law graph is sufficiently large, nodes will be

anonymous.

In fact, the critical factor determining re-identification risk in large random graphs

is not the degree distribution, but density. Sparse graphs (including power law graphs)

have low re-identification risk, whereas dense graphs have high re-identification risk.

This is an important finding as it shows that even in extremely large graphs, nodes are

not necessarily well hidden. It depends on the topological properties of the graph.

This one reason why the Hi structural signatures can be a valuable tool for data

owners, as they allow them to efficiently assess re-identification risk even on large

graphs.

3.4 Conclusion

We have focused on what we believe to be one of the most basic and distinctive

challenges for protecting privacy in network datasets—understanding the extent to

which graph structure acts as an identifier. We have formalized adversary knowledge

and evaluated their impact on real and synthetic networks as well as models of random

graphs. Our findings suggest that there is considerable risk in publishing the naive

anonymization of a graph. In the next chapter, we investigate strategies for mitigating

re-identification risk through more complex transformations of the graph.
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CHAPTER 4

MITIGATING RE-IDENTIFICATION RISK

The previous chapter was about risk assessment. The main finding was that

there is considerable risk in publishing the naive anonymization of a graph because

informed adversaries can use their knowledge to re-identify nodes and in some cases,

infer particular edges. In this chapter, we focus on risk mitigation. We make the

following contributions:

• Privacy Definition First, we propose a privacy condition, which formally

specifies a limit on how much the adversary can learn about a node’s identity.

We compare it with other definitions that have been proposed in the literature

and discuss its limitations (Section 4.1).

• Anonymization Algorithm Then we propose a novel algorithm to achieve

this privacy condition. The algorithm produces a generalized graph, which

describes the structure of the original graph in terms of node groups called su-

pernodes. The generalized graph retains key structural properties of the original

graph yet ensures anonymity (Section 4.2).

• Algorithm Evaluation We perform a comprehensive evaluation of the utility

of the generalized graphs. This includes a comparison with other state-of-the-

art graph anonymization algorithms (Section 4.3).
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4.1 Structural anonymity

In the previous sections, the size of the candidate set is used as a measure of

re-identification risk. This is a natural measure for naive anonymization. A node can

be a candidate only if its local graph structure is an exact match to the adversary’s

knowledge. Therefore each candidate is an equally plausible guess for the target.

However, as we move beyond naive anonymization to consider strategies that alter

the graph structure, the size of the candidate set is no longer an appropriate measure

of risk.

If the graph structure has been altered by the anonymization process, the alter-

ations may have changed the structure around the target. Therefore a candidate may

include not only exact matches in the published graph, but also partial matches. In

addition, not all matches are equally likely. The probability of a candidate depends

on the adversary’s prior belief about the structure around the target, and on the

likelihood that the algorithm altered that structure to produce the observed output.

We introduce a new privacy condition to account for these differences. Invariably,

the first step of any algorithm is to perform naive anonymization to create uncertainty

about the true identities of the nodes. Recall Π : V → Va, the secret mapping between

identifiers in the original graph and the synthetic identifiers in the anonymized graph.

The adversary’s goal is to learn this mapping; the data owner’s goal is to sufficiently

alter the graph so that the adversary fails to achieve its goal.

Our privacy definition is a condition on the adversary’s posterior belief after having

seen the published graph. The posterior belief depends on the published graph, the

algorithm that produced the published graph, and the adversary’s prior belief. A

successful anonymization is one that meets the following definition:

Definition 4.1 (Graph k-anonymity under Q). Let Q be a structural knowledge

query. An anonymized graph Ga satisfies graph k-anonymity with respect to Q if
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∀x ∈ V, ∀y ∈ Va : Pr[Π(x) = y | Ga] ≤ 1/k

where the probability depends on the randomness of the algorithm that produced Ga

and the adversary’s prior probability over input graphs G.

If we make the natural assumption that the adversary has no other external infor-

mation other than Q, then the adversary’s prior probability is uniform over all graphs

G such that in G, the structure around x agrees with Q(x).

Revisiting naive anonymization, there is a relationship between graph k-anonymity

and our previously used measure of risk, the size of the candidate set. If the proba-

bility distribution over candidates is uniform, this condition simply requires at least

k candidates: a naive anonymization satisfies graph k-anonymity under Q if for any

x, |candQ(x)| ≥ k.

Finally, as we will see in Section 4.2, some anonymizations are graph k-anonymous

with respect to any Q. We simply say in this case that the output satisfies graph

k-anonymity.

Relation to alternative privacy conditions and limitations The above condi-

tion of graph k-anonymity is similar to, and in some sense encompasses other defini-

tions recently proposed for graph data. Liu and Terzi [82] propose a condition which

requires that in the published graph each degree in the graph occurs at least k times.

Such an output satisfies graph k-anonymity with respect to H1 (i.e., degree). Zhou

and Pei [134] require that in the published graph each neighborhood (the subgraph

induced by a node and its neighbors) be isomorphic to at least k − 1 others. Such

an output satisfies graph k-anonymity with respect to N where N is the knowledge

query that returns the neighborhood subgraph of a node. Note it also satisfies graph

k-anonymity with respect to H1 since query N also reveals node degree.

The above definitions are graph analogues of k-anonymity [110, 111, 116], a privacy

condition defined for tables. Each assumes the adversary has some knowledge about
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a target entity (analogous to knowledge of the quasi-identifier) and the anonymity

condition requires that this knowledge cannot be used to distinguish entities in the

published data. The graph data privacy conditions differ on how much knowledge

the adversary is assumed to have (node degree, neighborhood, etc.); analogous to

differences in the choice of quasi-identifier.

Like k-anonymity, the above definitions also have limitations. In a homogeneity

attack, while the adversary is not able to distinguish among a set of candidates, all of

the candidates share a common property. Because the candidates are homogenous,

the adversary has learned something about the target, even though re-identification

did not occur. In tabular data, definitions such as `-diversity [85] and t-closeness [79]

have been introduced to counter the threat of homogeneity attacks.

An instance of the homogeneity attack is edge disclosure (Section 3.1). A pub-

lished graph which is graph k-anonymous may still be vulnerable to edge disclosure.

To address the threat of edge disclosure, Cormode et al. [29] introduce an edge safety

condition (described in Section 4.3.1 of this work). While this prevents edge disclo-

sure, it appears to do so at a significant expense to utility, based on the experimental

results in Section 4.3.3. In addition, we measure the risk of edge disclosure of our

proposed algorithm and find in practice it is low for reasonable k (Section 4.3.5).

Other attacks have been proposed on tabular data anonymizations, and analogues

of these attacks may apply to graph anonymization. Attacks include the composi-

tion attack [45], the minimality attack [123], and the deFinetti attack [61]. While

some of these attacks can be remedied by imposing additional conditions (e.g., m-

invariance [125] defends against the composition of multiple releases of a dynamic

table), developing data publication techniques that resist all of them is an open prob-

lem, not only for graph data, but for tabular data as well. Differential privacy [38]

ensures protection from all of the above attacks, but it remains unclear whether ef-

ficient and accurate data publication is possible under differential privacy [34, 35].
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As discussed in Section 7, some differentially private algorithms for graph data have

been developed, but they output answers to particular queries and do not publish a

graph.

4.2 Graph generalization algorithm

In this section we describe an anonymization technique that protects against re-

identification by generalizing the input graph. We generalize a graph by grouping

nodes into partitions, and then publishing the number of nodes in each partition,

along with the density of edges that exist within and across partitions. The adversary

attempts re-identification in the generalized graph, while the analyst uses it to study

properties of the original graph.

4.2.1 Graph generalization

To generalize a naively-anonymized graph Ga = (Va, Ea), we partition its nodes

into disjoint sets. The elements of a partitioning V are subsets of Va. They can be

thought of as supernodes since they contain nodes from Ga, but are themselves the

nodes of a undirected generalized graph G = (V , E). The superedges of E include

self-loops and are labeled with non-negative weights by the function d : E → Z∗. GV

is a generalization of Ga under a partitioning V if the edge labels report the density

of edges (in Ga) that exist within and across the partitions:

Definition 4.2 (Generalization of graph). Let V be the supernodes of Va. G is a

generalization of Ga under V if, for all X, Y ∈ V , d(X, Y ) = |{(x, y) ∈ Ea| x ∈ X, y ∈

Y }|.

G summarizes the structure of Ga, but the accuracy of that summary depends

on the partitioning. For any generalization G of Ga, we denote by W(G), the set of

possible worlds (graphs over Va) that are consistent with G. Intuitively, this set of

graphs is generated by considering each supernode X and choosing exactly d(X,X)
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edges between its elements, then considering each pair of supernodes (X, Y ) and

choosing exactly d(X, Y ) edges between elements of X and elements of Y . The size

of W(G) is a measure of the accuracy of G as a summary of Ga.

The partitioning of nodes is chosen so that the generalized graph satisfies privacy

goals and maximizes utility, as explained in Sections 4.2.2 and 4.2.3 respectively. In

the extreme case that all partitions contain a single node, then the graph generaliza-

tion G does not provide any additional anonymity: W(G) contains just the graph Ga

(the function d encodes its adjacency matrix). At the other extreme, if all nodes are

grouped into a single partition, then G consists of a single supernode with a self-loop

labeled with |Ea| (the total number of edges in the original graph). W(G) is thus

the set of all graphs over Va with |Ea| edges. In this case the generalization provides

anonymity, but is unlikely to be useful to the analyst since it reflects only the edge

density of the original graph.

In studying a generalized graph, the analyst can sample a single random graph

from W(G) and then perform standard graph analysis on this synthetic graph. Re-

peated sampling can improve the accuracy of analysis. We study in Section 4.3 the

bias and variance of estimates of graph properties based on graphs sampled from

W(G).

4.2.2 Anonymity of generalized graphs

To ensure anonymity we require that the adversary have a minimum level of

uncertainty about the identity of any target node in V . We use the size of a partition

to provide a basic guarantee against re-identification and require that each partition

have size at least k. This ensures that the output satisfies graph k-anonymity with

respect to any structural query Q.

Proposition 4.1. Let G be a generalized graph such that each supernode X has at

least k nodes. Then G satisfies graph k-anonymity.
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Proof. The intuition for this claim is that the generalized graph summarizes the

graph in terms of supernodes and contains no information that allows the adversary

to distinguish between two nodes in the same supernode. Therefore, each of the

k or more nodes in the same supernode must be equally likely candidates and the

probability of any one node being the target is at most 1/k.

We now give a formal proof. Given an input graph G, there are two key steps to

producing a generalized graph: (a) first the nodes of the graph are relabeled, as with

naive anonymization; and then (b) the nodes are partitioned into groups. We assume

the algorithm that chooses the partition does not depend on the particular labels on

the nodes; since it receives a naive anonymization, the labels are arbitrary. Therefore

we can commute these two operations without affecting the final output. Without

loss of generality, we can assume that the nodes are relabeled after the partition is

chosen.

Let Π : V → Va denote the function which relabels nodes. Let P denote the

partition of V into groups. The output G is completely determined by G, Π, and P .

For convenience, let f be the function that takes as input G,Π, P and outputs G.

To show graph k-anonymity, we must show that an adversary cannot use G to

re-identify a target node x. Formally, we must show that for any x ∈ V and any

y ∈ Va, Pr[Π(x) = y | G] ≤ 1/k where the probability comes from the randomness in

the algorithm and the adversary’s prior belief.

To prove this, we will show that

Pr[Π(x) = y|G] = Pr[Π(x) = y′|G]

for any two nodes y and y′ that are in the same supernode of G. Since there at least

k nodes in each supernode, this implies Pr[Π(x) = y|G] ≤ 1/k for any y.
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Since the conditional probability Pr[Π(x) = y|G] = Pr[Π(x) = y,G]/Pr[G] and

the denominator does not depend on y, it suffices to show that Pr[Π(x) = y,G] =

Pr[Π(x) = y′,G].

We can write Pr[Π(x) = y,G] as:

Pr[Π(x) = y,G]

=
∑

π:π(x)=y

Pr[Π = π,G]

=
∑
π,g,p:

G=f(g,π,p)
and π(x)=y

Pr[Π = π,G = g, P = p]

=
∑
π,g,p:

G=f(g,π,p)
and π(x)=y

Pr[P = p|G = g]Pr[Π = π]Pr[G = g]

where Pr[P = p|G = g] is the probability the algorithm outputs partition p given

the input graph g; Pr[Π = π] is the probability of a particular relabeling, which is

equal to 1/|V |! for any π; and Pr[G = g] is the adversary’s prior belief that the input

graph is g.

Consider one term in the above summation by fixing the input graph g, the par-

tition p, and the map π. Let x′ denote the node that maps to y′ under π, i.e.,

π(x′) = y′. Construct an alternate mapping πalt such that the mapping for x and x′

are flipped and all other mappings are unchanged: πalt(x) = π(x′) and πalt(x
′) = π(x)

and πalt(x
′′) = π(x′′) for all x′′ 6∈ {x, x′}. There is a corresponding term in the sum-

mation for Pr[Π(x) = y′,G] where π is replaced with πalt. Since x and x′ appear

in the same partition, we can permute their relabelings without changing the gen-

eralized graph; i.e., f(g, π, p) = f(g, πalt, p). Since each term in the above summa-

tion for Pr[Π(x) = y,G] can be paired with an equal term in the summation for

Pr[Π(x) = y′,G], then Pr[Π(x) = y,G] = Pr[Π(x) = y′,G] and this completes the

proof.
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Requiring a minimum supernode size of k only imposes an upper bound on the

adversary’s confidence in the true identity of his target. For some graphs and some

adversaries, the adversary’s confidence may be much less than 1/k.

For example, consider an adversary who knows only the degree of its target. The

candidates for the target include any node such that in some possible world, its degree

matches the target’s degree. For each supernode, we can determine a range of degrees

such that for each degree in that range and each node in that supernode, there exists

a possible world where that node obtains that degree. For supernode X, the range

is determined by mindegree and maxdegree, which are defined as mindegree(X) =

max(0, d(X,X)−
(|X|−1

2

)
)+
∑

Y ∈V max(0, d(X, Y )−(|X|−1)|Y |) and maxdegree(X) =

min(|X| − 1, d(X,X)) +
∑

Y ∈V min(|Y |, d(X, Y )).

The degree range of each supernode determines the candidates, however, not all

candidates are equally likely. Intuitively, a node is more likely if there are more

possible worlds in which its degree matches the target.

In general, it may be computationally hard to determine the adversary’s posterior

probability of a candidate being the target. The brute force solution—enumerating

all possible worlds and computing candidate set in each one—requires exponential

time. We conservatively require k-sized partitions but observe that in practice this

may provide much stronger protection than that implied by the value of k.

4.2.3 Algorithm description

We now present the graph generalization algorithm, which we call GraphGen. The

input to the GraphGen is Ga and privacy parameter k. The output is a generalized

graph G. Pseudocode for the algorithm is given in Algorithm 1.

Subject to the privacy constraint, which requires the supernodes of G to be of size

at least k, we would like to find the generalized graph that best fits the input graph.

We estimate fitness via a maximum likelihood approach. We consider a uniform
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Algorithm 1 GraphGen, an algorithm that generalizes a graph to ensure anonymity.

Input: Ga = (Va, Ea), graph to generalize
k, minimum supernode size

Output: G, a generalized graph such that each supernode contains at least k nodes
1: G ← Initialize(Ga) {All nodes in one partition.}
2: tcycle ← 5|Va|
3: for t← 1 to ∞ do
4: T ← Schedule(t) {Temperature T cools as t increases.}
5: S ← Successors(G, k)
6: G ′ ← arg maxG′∈S

1
|W(G′)| {Find max likelihood successor}

7: 4L← 1
|W(G′)| −

1
|W(G)| {Change in likelihood}

8: if 4L > 0 then
9: G ← G ′

10: else
11: G ← G ′ with probability e4L/T

12: end if
13: if G updated less than 0.02% of last tcycle steps then
14: return G
15: end if
16: end for

Successors subroutine returns a set of generalized graphs that can be derived
from G by making a small change, such as splitting or merging a supernode in
G.

Input: G, current generalized graph
k, minimum supernode size

Output: a set of generalized graphs, the successors to G
1: S ← ∅ {The set of successors}
2: u← Choose random node
3: X ← Find supernode that contains u
4: if |X| > 2k then
5: G ′ ← Split(X,G) {Choose greedy split of X}
6: S ← S ∪ {G ′}
7: end if
8: for Y such that X, Y are neighbors or share a neighbor do
9: if |X| > k then

10: G ′ ← MoveNode(u,X, Y,G)
11: S ← S ∪ {G ′}
12: end if
13: G ′ ← MergeAndSplit(X, Y,G)
14: S ← S ∪ {G ′}
15: end for
16: return S
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probability distribution over the possible worlds W(G). For a graph g ∈ W(G) we

define PrG[g] = 1/|W(G)| where the number of possible worlds is:

|W(G)| =
∏
X∈V

(
1
2
|X|(|X| − 1)

d(X,X)

) ∏
X,Y ∈V

(
|X||Y |
d(X, Y )

)

Without regard to the anonymity condition, the generalized graph that maximizes

likelihood is the one with each node in a separate partition. Then, as explained above,

|W(G)| = 1 and PrG[Ga] = 1. In general, likelihood is greater with more supernodes

because each supernodes introduces more parameters to fit a fixed amount of data.

But subject to the minimum size constraint, generalized graphs can vary greatly in

their fit to the input graph. GraphGen uses local search to explore the exponential

number of generalized graphs.

The design of the search GraphGen is based on techniques for solving a related

social network analysis problem: stochastic block-modeling [99]. The objective of

stochastic block-modeling is to cluster the nodes of the graph so that nodes in the

same group play a similar “social role” in the graph. While the high-level idea is the

same, there are a few key distinctions from our work. First, our differing motivations

result in different likelihood functions. In stochastic block-modeling, the goal is to

build a predictive model of the data and so the likelihood includes a penalty term

for model complexity; in contrast, our goal is to fit the original graph as closely as

possible given the anonymity condition. Second, the anonymity condition imposes a

new constraint on the search space, which makes search more complex.

To find the generalized graph that maximizes the likelihood function, GraphGen

searches using simulated annealing [109]. Each valid generalized graph (i.e., those

such that each supernode at least k nodes) is a state in the search space. Starting

with a generalized graph that has a single partition (i.e., supernode) containing all

nodes, GraphGen proposes a change of state, by splitting a partition, merging two

partitions, or moving a node to a different partition. The proposal of changing the
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current state from generalized graph G to some new generalized graph G ′ is evaluated

based on the change in likelihood that results. The proposal is always accepted if

it improves the likelihood and accepted with some probability if it decreases the

likelihood. The acceptance probability starts high and is cooled slowly until, as it

approaches zero, a move is accepted only if it increases the likelihood. We terminate

search when fewer than 0.02% of proposals are accepted.

GraphGen may return a partitioning that is only locally maximal. Whether this

happens depends in part on the cooling schedule of simulated annealing; if cooled

slowly enough, it will return the global maximum with high probability [109]. Nev-

ertheless, finding the globally optimal partition is an intractable problem, and we

cannot quantify how close the output is to the optimum. In experimental results

not shown, we did a more systematic exploration of the search space using random

restarts. On the Enron graph with k = 3, the log-likelihood of the output partition

ranged from −362.6 to −353.3; in contrast, a greedy algorithm returns a partition

with log-likelihood of only −511.5.

To make search more efficient, we cache the statistics needed to compute like-

lihood. We maintain a cache of edge counts d(X, Y ) to facilitate computing the

likelihood. Furthermore, when considering a move in search space, it is only neces-

sary to compute the change in likelihood, which is more efficient since a move only

affects a subset of terms in the likelihood equation. For example, to split supernode

X into X ′ and X ′′, the only affected terms are the ones involving X. There is a term

for each neighbor Y of X (i.e., Y such that d(X, Y ) > 0). Since the input graphs are

typically sparse, X has few neighbors, resulting in only a small number of affected

terms. In the worst-case, computing the change in likelihood requires time that is

linear in the size of the input graph.

We also made a few design choices that make search more efficient. A supernode

is split in a greedy fashion: a randomly chosen node is moved from X to a new group
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X ′, and then for each of the next k − 1 nodes, we select the node that maximizes

the likelihood when moved from X to X ′. Second, when we consider merging two

supernodes or moving a node between supernodes, we only consider supernodes X, Y

that are neighbors or share a neighbor. This is locally optimal, in that if Y does not

satisfy this condition, then merging X and Y can only decrease the likelihood of the

current generalized graph. While these choices may exclude the optimal assignment,

results indicate that they are effective heuristics: they greatly reduce runtime without

any decrease in likelihood.

4.2.4 Capitalizing on limited adversaries

The GraphGen algorithm places each node in a supernode with at least k−1 other

nodes. This is a conservative approach in that it ignores the fact that some nodes

may be structurally well-hidden in the original graph. Nodes may be automorphically

equivalent, or so similar that only an adversary with substantial structural knowledge

can distinguish them.

Such a conservative approach has consequences for utility, as graph structure is

coarsened to the supernode level. We would like an approach that can take advantage

of situations in which the adversary is known to have limited knowledge of graph

structure or where the graphs contain many structurally homogenous nodes.

We propose an extension of GraphGen that anonymizes the graph with respect to

a fixed model of adversary knowledge. The idea is to only anonymize nodes that are

vulnerable to re-identification by the given adversary. By focusing the anonymization

on the vulnerable nodes, it may be possible to preserve more of the structure of the

input graph.

To incorporate into the algorithm, the first step is to identify the vulnerable nodes.

Given adversary model Q and group size k, a node x is vulnerable if |candQ(x)| < k.

For example, if Q is H1, then the only nodes that are vulnerable are the ones whose
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degree occurs less than k times. Then, the privacy condition on the generalized graph

is altered so that the only requirement is that if a supernode contains a vulnerable

node, then its size must be at least k. This means that a invulnerable node can be

placed in a supernode of size 1.

This relaxed privacy condition can be incorporated into the search procedure by

allowing state changes that place invulnerable nodes into supernodes of size less than

k. Alternatively, the search can execute as described above, and then supernodes that

contain only invulnerable nodes can be replaced with individual supernodes for each

invulnerable node. (Supernodes containing a mixture of vulnerable and invulnerable

nodes must remain intact to ensure that the vulnerable nodes are protected.) In

Section 4.3.4, we evaluate the latter approach for the H1 and H2 adversary models

and measure the improvement in utility that results. We refer to these variants of

the algorithm as GraphGen(H1) and GraphGen(H2) respectively. The pseudocode is

shown in Algorithm 2.

Algorithm 2 GraphGen(Q) a modification of Algorithm 1 that protects against Q
adversaries.
Input: Ga = (Va, Ea), graph to generalize

k, minimum supernode size
Q knowledge query representing adversary capability

Output: G, a generalized graph that satisfies graph k-anonymity with respect to Q
adversaries.

1: S ← {u ∈ Va | |candQ(u)| < k} {Vulnerable nodes}
2: G ← GraphGen(Ga, k)
{Replace supernodes that contain only invulnerable nodes}

3: for supernode X in G do
4: if X ∩ S = ∅ then
5: replace X with a supernode for each u ∈ X
6: end if
7: end for
8: return G

These alternative anonymization algorithms satisfy graph k-anonymity, but for

restricted adversaries.
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Corollary 1. The output of GraphGen(H1) satisfies graph k-anonymity with respect

to H1. Similarly, the output of GraphGen(H2) satisfies graph k-anonymity with re-

spect to H2.

This follows from Proposition 4.1: vulnerable nodes remain in groups of size k

and are therefore protected, and invulnerable nodes are by definition nodes that the

adversary cannot re-identify with confidence greater than 1/k and therefore it is not

necessary to generalize them.

4.3 Evaluating graph anonymization algorithms

We now present an extensive empirical evaluation of the GraphGen algorithm. We

evaluate its utility, compare it to competing techniques, and measure the effectiveness

of the utility enhancements proposed in Section 4.2.4.

The first goal of our experimental evaluation is to assess the overall utility of

anonymized graphs. We would like to quantify the extent to which the anonymized

graphs produced by GraphGen (and competing techniques) can serve as an accurate

approximation of the original private graph. This is challenging because there are

no well-defined metrics to determine the similarity of two graphs. As methods for

producing anonymized networks emerge, it is becoming increasingly important to

develop a reliable means for assessing their utility.

Our basic approach is to consider a suite of graph properties, measure both the

original graph and the anonymized graph and compare the difference. If the anon-

ymized graph differs from the original for some graph property, as it often does, an

essential question is whether the difference is substantial. To help answer this ques-

tion, we include, as a reference point, a random graph of the same size and density as

the original graph. With respect to a particular measure, if the original graph looks

very different from a random graph, then it is useful to compare the anonymized

graph to both the original and the random graph. The more closely the anonymized
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graph resembles a random graph, the less useful it is. With the GraphGen approach,

as group size k increases, the anonymized graph converges on a random graph, and

we can measure the rate of convergence by varying k. On the other hand, when the

original graph and a random graph appear similar, then the measured property does

not distinguish the original from a random graph and thus cannot be used to assess

whether anonymization has preserved the structure of the original graph.

As another yardstick for measuring the loss in utility, we evaluate the anonym-

ization algorithms on some carefully chosen combinations of metrics and synthetic

graphs. Inspired by research in the networking community [7, 117], we consider a

few graphs that have a deliberately engineered structure and then use metrics that

capture how well this structure is preserved in the anonymized graph. For instance,

we consider a graph that is a tree and measure the extent to which the graph remains

tree-like after anonymization. While some of these graphs are unlikely to arise in

practice, we find the experiments give useful insights into the effect of anonymization

and help distinguish the behavior of competing techniques. It is also important given

that real technological networks are often highly structured and poorly approximated

by random graphs [78].

The second goal of the experimental evaluation is to compare GraphGen against

competing techniques. One challenge is that the privacy guarantees are not always

compatible and so an “apples to apples” comparison is not straightforward. We

attempt to address these disparities in privacy guarantees by aligning our technique

with others so that privacy conditions are comparable (Section 4.3.4), and by assessing

the extent to which our approach is vulnerable to attacks (Section 4.3.5). Despite

the incompatible privacy semantics in some cases, we believe that comparisons of

the algorithms are still useful: their strengths and weaknesses are exposed and their

tendency to bias graph measures is revealed.
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We note that the goal of publishing an anonymized graph is not only to support

the specific graph properties studied here. The hope is that the released dataset

can be used for a wide range of investigations determined by graph topology. If

measuring a specific graph property is the final objective of an analyst, alternative

mechanisms for releasing that property alone should be considered (see discussion of

some techniques in Section 7). At any rate, many analyses cannot be distilled into

simple graph properties, and analysts often require sample datasets to refine their

algorithms or interpret results.

4.3.1 Compared anonymization algorithms

In the first set of experiments, we compare the GraphGen algorithm described in

Section 4.2 against two other algorithms for graph anonymization: the algorithm of

Cormode et al. [29], denoted BCKS, and the algorithm of Liu and Terzi [82], denoted

LT.

The BCKS algorithm is similar to GraphGen in that it partitions nodes into

supernodes and outputs a generalized graph. However, in addition to preventing

re-identification, the resulting generalized graph is also guaranteed to prevent edge

disclosure. The privacy condition ensures that each supernode contains at least k

nodes and that edge disclosure is bounded by 1/k. This is done by requiring that the

supernodes satisfy an additional safety condition, which states that if two nodes share

a neighbor, they must be placed in separate supernodes. The GraphGen algorithm

may not prevent edge disclosure, especially at small k (see Section 4.3.5).

Another important difference is that the BCKS algorithm’s strategy for choosing

supernodes is guided by privacy concerns—partitions are chosen to ensure low edge

disclosure risk—whereas the strategy of GraphGen is guided by utility. As one might

expect, we find that GraphGen achieves higher utility than BCKS.
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It should also be mentioned that the approaches proposed by Cormode et al. [29]

can handle richer graph data representations, including attributes on nodes and edges

and multiple edge types. The focus of the empirical evaluation in [29] is on queries

that involve attributes and short path queries. The focus of our study is to measure

the effects of anonymization on graph topology.

The LT algorithm alters the graph through the insertion and removal of edges with

the goal of making nodes more structurally uniform. The output is a single graph,

not a generalized graph. The algorithm alters the graph until each node degree occurs

at least k times. This prevents re-identification by an adversary whose knowledge is

limited to node degree (i.e., an H1 adversary). It may not protect against a more

powerful adversary (e.g., an H2 adversary). Given the weaker privacy condition, the

LT can achieve better utility than BCKS and GraphGen on some measures.

The LT algorithm anonymizes the graph in a two-stage process. First, it finds the

minimum change to the degree sequence such that the privacy condition is satisfied

(each degree must appear at least k times), and the degree sequence can be realized

(the sequence of integers must satisfy certain graph theoretic constraints). Then, it

attempts to transform the original graph into a new graph that matches this degree

sequence.

This second stage is non-trivial and Liu and Terzi [82] consider several alternative

algorithms. We implement and compare against SimultaneousSwap. This algorithm

is the only one that allows both edge insertions and deletions and appears to perform

better than some of the alternative approaches proposed in [82] that only allow edge

insertions. It is a greedy algorithm that starts with a canonical graph conforming to

the anonymized degree sequence and rewires it in such a way that preserves its degree

sequence but increases the edge overlap with the original graph.
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4.3.2 Overview of experiments

To assess how anonymization impacts utility, we compare the original graph to the

anonymized output based on several important graph properties (described below).

For each property, we measure it on the original graph and on the anonymized output.

For the algorithms that output a single graph, we simply measure the property on the

output graph. For the algorithms that output a generalized graph G, we estimate the

graph property by drawing 100 sample graphs from W(G), measuring the property

of each sample, and then aggregating measurements across samples. We report the

average and show the standard deviation using error bars. The error bars give a sense

of how much variation there is among the graphs in W(G).

If the samples are drawn uniformly from W(G), this models an analyst who be-

lieves that each graph in W(G) is equiprobable. In these experiments, we perform

biased sampling taking samples uniformly from W(G) subject to the constraint that

the minimum degree is one. This makes it more likely that the sampled graph will

contain a large connected component. All of the input graphs contain a single con-

nected component, and we assume this fact is revealed to the analyst.

As a baseline, we also measure the property on a sample of 100 random graphs

that are the same density as the original graph. We refer to this baseline as Random.

Note this baseline is equivalent to applying a graph generalization algorithm where

k = |V |. It has maximum privacy, but low utility as the only property of the original

revealed is the number of nodes and edges.

We repeat this procedure for each graph and each setting of k ∈ {2, 5, 10, 20}.

Note that while k is a common parameter across the algorithms that controls the

size of the group, the resulting privacy is not the same: while GraphGen and BCKS

ensure graph k-anonymity, LT ensures only graph k-anonymity with respect to degree

(H1).

We report results on the datasets that were described earlier in Section 3.2.
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4.3.3 Results

We now present a comparison of the algorithms across several different graph

metrics. Results are presented one metric at a time. We conclude with a general

discussion of the findings in Section 4.3.3.5.

The results of the experiments are shown in Figures 4.1-4.3. Each figure presents

the results for a single graph metric. The value of the metric for the true graph is

shown as a dashed black line. As a reference point, the light gray region shows the

value of the metric for a random graph. It is a region because it depicts a range of ±1

standard deviation around the average value over conforming random graphs. Note

that for each measure, the scales of the y-axis vary across datasets, so in some cases,

while the gap between lines is large, the numerical difference is quite small.

4.3.3.1 Paths

We consider several measures related to paths.

Connectedness Each of the anonymization algorithms may alter the connectivity

of the graph, either dividing a connected component or merging two components.

Each of the input graphs contains a single connected component, so we evaluate

whether anonymization divides it. Figure 4.1(a) shows the results. Generally, the

anonymized graphs contain a single large component, encompassing about 95% or

more of the nodes. However, on the sparsest graphs—NetTrace, HOT, and Tree—

the largest connected component of the anonymized graphs can contain as few as 70%

of the nodes.

Shortest Path Lengths We evaluate how anonymization affects path lengths in

the graph. We measure the length of a shortest path between a pair of randomly

chosen nodes and compute the average length over 200 random pairs. When the

graph contains multiple connected components, we only sample pairs from the largest
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(a) Size of largest (giant) connected component.
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(b) Average shortest path length.
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(c) Distortion of paths in minimum spanning tree.

Figure 4.1. The effect of anonymization on three graph measures related to paths.
The results for three algorithms are compared, with varying privacy parameter k, on
seven different graphs. The value of the given measure on the true graph is shown as
a black dotted line. The value of the measure for sampled random graphs matching
the density of the original is shown as a gray region.

connected component. Since the measure itself is random, there can be variation due

to sampling. We measured this variation and found it small compared to the bias

introduced by anonymization and so for presentation purposes we only report the

average from a single sample.

Figure 4.1(b) shows the results. The effect of anonymization varies greatly across

datasets. The greatest change occurs on Mesh where path lengths are dramatically

shortened. In fact, for LT and BCKS, path lengths are much closer to those of a

random graph than to the original graph. With the GraphGen graphs, while paths are

shortened, they remain considerably longer. GraphGen tends to group neighboring

nodes together, thus it does not introduce as many shortcut paths that can connect

distant regions of the mesh graph.

The distortion of path lengths on Mesh is perhaps not too surprising. For highly-

structured graphs such as a mesh or a lattice, even a small amount of perturbation can
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greatly shorten paths by introducing a few shortcuts paths that can connect distant

regions of the mesh with only a few hops [122] and meshes [62].

Generally, across all input graphs, the average path lengths of an BCKS graph

appears to converge to those of Random as k increases. Convergence sometimes

occurs at small k (e.g., Mesh, Enron, HepTh). Convergence occurs whether or not

path lengths are shorter or longer in random graphs than with the original.

LT produces graphs with shorter path lengths than the original graph. It is very

accurate on some graphs (NetTrace, Power-Law).

There are no consistent trends for GraphGen. Sometimes paths are shorter, some-

times longer. Increasing k does not have a consistent effect on path lengths. On some

graphs, particularly Tree, the path lengths can be considerably longer than on the

original graph.

Tree-like shortest paths We also include a graph theoretic measure called dis-

tortion, which in some sense captures how closely a graph resembles a tree [117]. To

compute distortion of G, we first construct a spanning tree T . Then for each edge

(u, v) in G, we compute the distance between u and v in T . The distortion is the

average distance over all edges in G. Thus, it measures how path lengths of G are

distorted (i.e., lengthened) if we are restricted to only traversing edges in tree T . If

G is a tree, then distortion is 1. A random graph has a distortion of approximately

log n.

Figure 4.1(c) shows the distortion of the anonymized graphs. We focus on Tree,

because the original graph is in fact a tree and so its distortion is 1. Anonymized

graphs have a distortion measure exceeding 1, indicating the anonymized graphs are

no longer tree-like. Distortion is high for LT and BCKS across all k. In fact, the

distortion measure of the anonymized graphs is often closer to a random graph than

the original tree. For GraphGen graphs, while distortion increases with k, it is very
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low at small k. Thus, it appears as though GraphGen more accurately preserves the

tree-like structure of Tree.

In the other graphs, anonymization tends to produce graphs with higher distortion

than the original graph. LT performs comparably to GraphGen, except on Mesh,

where the distortion of GraphGen is much lower and closer to the original graph. On

HOT, which has low distortion indicating tree-like structure, both GraphGen and

LT preserve its tree-like structure at small k.

4.3.3.2 Degree-related measures

The degree distribution of a graph is an important property of a graph. We look at

several different metrics that capture how anonymization affects degree distributions.

Mallows distance First, we compare the distributions using Mallows distance, a

standard metric for comparing two distributions. Let d = d1, . . . , dn be the degree

sequence of the original graph G where di corresponds to the ith largest node degree

in G. Let d′ be the degree sequence of an anonymized graph. Mallows distance (also

known as Earth Mover’s distance [75]) is the Lp distance between the two sequences

Mallowsp(d, d
′) =

( 1

n

n∑
i=1

|di − d′i|
p
)1/p

We use p = 1. Thus, the Mallows distance captures how much, on average, each node

degree is altered by anonymization. E.g., a distance of 1 means each node’s degree is

changed on average by ±1.

Figure 4.2(a) shows some trends across datasets and k. Mallows distance tends

to increase with k, though sometimes inconsistently for GraphGen. The anonymized

graphs tend to have lower Mallows distance than Random, indicating that the degree

sequence of the anonymized graph preserves some of the “structure” of the original

degree sequence.
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(a) Error in degree distribution, measured by Mallows distance
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(b) Maximum degree
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(c) Diversity of degree distribution
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(d) Degree correlations

Figure 4.2. The effect of anonymization on four measures related to the degree
distribution. Again, the results for three algorithms are compared, with varying
privacy parameter k, on seven different graphs. The value of the given measure on
the true graph is shown as a black dotted line. The value of the measure for sampled
random graphs matching the density of the original is shown as a gray region.

In comparing algorithms, BCKS performs worse than the other approaches, with

Mallows distance rapidly approaching that of Random with increasing k. LT almost

always has the lowest Mallows distance, which is expected given that the LT algorithm

explicitly tries to minimize the change to the degree sequence. On graphs where the

original graph has nearly uniform degree—Mesh and Tree—the LT alters the degree

sequence only slightly to satisfy its privacy condition, resulting in a Mallows distance

of zero or near zero on these graphs. GraphGen is typically between LT and BCKS.

Maximum degree Figure 4.2(b) compares the maximum degree of the original

graph with the maximum degree in the anonymized graph. The figure shows a clear
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trend: as k increases, the maximum degree of each anonymized graph converges to

the maximum degree of Random. On Mesh and Tree, the max degree is higher in

Random and the max degree of anonymized graphs increase (except for LT which

stays constant). For the other graphs, the max degree of Random is lower than that

of the original, sometimes much lower. For example, on NetTrace, the maximum

degree is 1656 but Random has a max degree of around 10. For all approaches,

anonymization reduces the max degree by more than half at k = 5. When the

maximum degree is an outlier, such distortion is in some sense inevitable given the

privacy condition: each node degree must be homogenous with at least k − 1 other

node degree. Nevertheless, such a significant change in degree suggests that the graph

structure has been significantly altered.

While all approaches converge to Random, their rates of convergence differ. The

max degree of BCKS changes the most rapidly with k. Surprisingly, on the graphs

where the maximum degree is larger than that of a random graph, the max degree of

GraphGen decreases less rapidly than LT.

Degree variability In addition to measuring the maximum degree, we also measure

the variation in the degree distribution. The coefficient of variation CV (d) measures

the diversity of degree distribution d. It is defined as CV (d) = σ(d)/〈d〉 where 〈d〉 is

the average degree and σ(d) =
∑n

i=1(di − 〈d〉)2/(n − 1). Graphs with homogenous

degrees have low CV and graphs with diverse degree sequences, such as power-law

graphs, have high CV [7].

Figure 4.2(c) shows that, like maximum degree, the CV of anonymized graphs

converges towards random graphs as k increases, except on Power-Law, where di-

versity remains high at k = 20. The comparison between algorithms is similar as it

is with max degree.
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Degree correlations We also measure degree correlations—i.e., the correlation

between a node’s degree and the degrees of its neighbors. It is an important property

that influences processes on networks [32]. We measure correlations using the smetric.

For graph G = (V,E) it is defined as s(G) =
∑

(u,v)∈E d(u)d(v) where d(u) is the

degree of node u. A high s(G) indicates that high degree nodes are connected to

one another. We report a normalized s measure s(G)/smax(G) where smax(G) is the

maximum possible s of any graph with the same degree sequence as G. (In practice,

it is computationally intensive to find the true maximum, so we approximate it with

the Havel-Hakimi graph [16], which is efficient to construct and tends to have very

high s.)

This measure is particularly interesting on the HOT graph. The HOT graph

is explicitly engineered so that high degree nodes are at the periphery of the graph

connected to low degree nodes, resulting in a low s(G) measure. In contrast, in a

random graph, high degree nodes are likely to be connected to each other, resulting

in a high s measure [7].

Figure 4.2(d) shows that in the anonymized version of HOT, increasing k results

in an increased s measure. GraphGen preserves the low s measure better than LT

and substantially better than BCKS. On the other graphs, the performance varies

considerably, with correlations sometimes tending to Random (e.g., HepTh), some-

times diverging from it (e.g., NetTrace), and sometimes remaining constant (e.g.,

Tree).

4.3.3.3 Clustering

Clustering coefficient measures the likelihood that two neighbors of a node are

themselves connected (in a social network, whether a friend of a friend is also a

friend). It is defined as C(G) = 1
n

∑
u

4(u)
(d(u)(d(u)−1))/2

where 4(u) is the number of

triangles (cliques of size 3) containing u and d(u) is the degree of u.
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Figure 4.3. The effect of anonymization on clustering coefficient.

We report on graphs that have substantial clustering (C(G) > 0.15). For the

graphs where clustering coefficient is low, the anonymization tends to preserve the

low clustering coefficient (they never exceeded 0.15). The graphs with high clus-

tering include Enron and HepTh. We also include a synthetic graph, Clustered

Power-Law, which is similar to Power-Law except that the random graph gener-

ation process is biased to introduce triangles [57]. We set the probability of triangle

formation to be 0.4.

Figure 4.3 shows how anonymization reduces the clustering coefficient of clustered

graphs. Even at k = 2, the BCKS has substantially lower clustering coefficient than

the original graph. At larger k, all anonymized graphs have substantially reduced

clustering. At small k, GraphGen preserves the greatest amount of clustering.

With GraphGen, it is difficult to preserve clustering coefficient, especially at large

k. The process of randomly sampling from W(G) tends to destroy clustering coeffi-

cient. The sampled structure within each supernode is simply a random graph with

a density determined by the weight of the supernode’s self edge. Unless they are very

dense, random graphs have low clustering coefficient. Real world graphs, are typically

very sparse, and so as k increases the density within a supernode decreases.

4.3.3.4 Runtime

We also measure the runtime of the different algorithms. We report results on

one of the largest graphs, NetTrace; runtimes on the other graphs are qualitatively
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Table 4.1. On NetTrace, a comparison of runtimes (seconds).

Algorithm k = 2 k = 5 k = 10 k = 20
BCKS 0.2 0.3 0.2 0.2
LT 43.4 29.6 74.2 52.7
GraphGen 3628.8 3171.9 15311.1 1560.1

similar. While GraphGen is considerably slower than the alternative algorithms,

runtime is a secondary concern as the algorithms are run “offline” by the data owner.

Table 4.1 shows that the runtime of BCKS does not depend on group size, agreeing

with previous theoretical analysis [29]. The runtime of the LT algorithm varies across

k: its runtime is dominated by the graph construction process, which depends on the

number of rewiring iterations, something that varies considerably depending on the

particular instance, leading to variation in runtime. Finally, the runtime of GraphGen

appears to decrease with k. This is due to the fact that when groups are large, the

supergraph is comparably more sparse. Therefore, the number of the successors (see

Algorithm 1) is smaller, and so each step in the search runs faster.

4.3.3.5 Discussion

The experiments give insight into how the topological properties of graphs are af-

fected by anonymization. Path lengths tend to more closely resemble path lengths in

a random graph, whether they are shorter or longer than the original graph. Highly

variable degree distributions (as occurs in power-law graphs) tend to become more

uniform and high degree nodes have their degrees reduced. In graphs that are highly

clustered, the effect of anonymization is to substantially reduce the clustering coeffi-

cient. However, the results also show that it is possible to provide privacy and still

preserve some aspects of the original graph.

For graphs with a deliberately engineered structure (such as Mesh, Tree, and

also HOT), anonymization can introduce significant distortion. The GraphGen al-

gorithm, because it explicitly accounts for structure in its anonymization, preserves
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these qualities relatively well. For example, paths remain long in Mesh, Tree remains

tree-like, and degree correlation of HOT remains low.

In terms of comparing the different algorithms, we find that LT and GraphGen

perform consistently better than BCKS. While LT clearly has an advantage over

GraphGen on some metrics, the performance of GraphGen is often comparable and

sometimes better than the performance of LT. In the next section, we resolve the

difference in the privacy standards between these algorithms and present an more

apples-to-apples comparison.

Recall that the error bars around the measures for GraphGen and BCKS measure

the variability across samples from theW(G). Since the original graph G is a member

W(G), one might expect that the error bars would overlap the measure recorded on

G. This does not always occur, suggesting that while G is a possible world that is

consistent with G, it is unlikely to be sampled by chance. It may be possible to bias

the sampling to make G more likely, but it is not clear how this impacts privacy.

As mentioned earlier, the GraphGen and BCKS approaches differ in how the gen-

eralized graph is constructed; in GraphGen it is guided by utility concerns and in

BCKS it is guided by privacy concerns. The edge safety condition of BCKS requires

two neighbors of a node to be placed into separate supernodes. However, the Graph-

Gen often places a node’s neighbors together and it appears to lead to better utility.

It may be that the edge safety condition, while it ensures that the output does not

allow edge disclosures, may conflict with some of the utility metrics considered here.

4.3.4 Utility of enhanced graph generalization algorithm

In this section, we evaluate the proposed enhancements to GraphGen described in

Section 4.2.4. By focusing the anonymization only on the nodes that are vulnerable to

re-identification, we hypothesize that we can improve the utility of GraphGen, which

conservatively generalizes all nodes. We compare GraphGen against two alternatives:
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GraphGen(H1) which guards against H1 adversaries, and GraphGen(H2) which pro-

tects against the stronger H2 adversary. Since GraphGen(H1) provides the same

privacy guarantee as LT, we also include a direct comparison of those approaches.

Based on our earlier assessment in Section 3.2, we expect that GraphGen(H1) will

alter the input graph much less than GraphGen, as most nodes are naturally well-

hidden against an H1 adversary. For GraphGen(H2), it will depend on the dataset.

Many nodes are vulnerable in HepTh and almost all nodes are vulnerable in Enron

and Power-Law, so we may not expect much improvement on those datasets. For

the other datasets, many nodes are well hidden at H2 and so GraphGen(H2) may

generalize these graphs much less than GraphGen.

We summarize the performance difference between GraphGen and its variants

using a suitably normalized measure of each of the properties described in in Sec-

tion 4.3.3. We normalize each measure in terms of the distance between between

GraphGen and the original graph G. Let P denote a graph property and P (g) de-

note the evaluation of P on graph g. The normalized score of anonymized graph

A is defined as |P (A)−P (G)|
|P (GraphGen)−P (G)| . A score of less than 1 indicates that algorithm A

preserves the property more accurately than GraphGen.

Since GraphGen(H1) and GraphGen(H2) guard against weaker adversaries than

GraphGen, the expectation is that the normalized score will be closer to zero, indi-

cating closer agreement with the original graph.

Table 4.2 shows the results for GraphGen(H1). The results show in general that

by targeting the anonymization to protect against H1 adversaries, it is possible to

improve utility. The magnitude of the improvement is not consistent across datasets,

with datasets such Tree and Mesh seeing large gains and Enron seeing relatively

small gains. Sometimes utility degrades (a normalized score exceeding one). Gener-

ally this is when the original GraphGen algorithm is a very accurate approximation of

the original graph (e.g., distortion on Mesh), so the denominator of the normalized
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Table 4.2. A comparison of utility of GraphGen(H1) and GraphGen at k = 10.
Numbers are normalized scores where less than 1 indicates GraphGen(H1) is more
accurate than GraphGen.

Statistic HepTh Enron NetTrace HOT Power-Law Tree Mesh
Giant comp. size 0.014 0.348 0.19 0.695 0 0.333 0.086
Avg. path lengths 1.369 6.174 1.016 0.919 0.002 0.431 0.046
Distortion 0.648 0.973 0.972 0.624 0.665 0.006 0.483
Mallows distance 0.54 0.959 0.946 0.653 0.256 0.005 0.009
Max. degree 1.023 0.982 1.001 0.994 0.997 0.349 0.398
Degree diversity 0.584 1.015 1 0.95 0.911 0.006 0.034
Degree correlation 0.712 0.972 1.039 1.013 0.403 0.065 0.015
Clustering coeff. 0.508 0.869 0.223 0.318 0.954 0.002 0.023

Table 4.3. A comparison of utility of GraphGen(H2) and GraphGen at k = 10.
Numbers are normalized scores where a number less than 1 indicates GraphGen(H2)
is more accurate than GraphGen.

Statistic HepTh Enron NetTrace HOT Power-Law Tree Mesh
Giant comp. size 0.921 1.03 0.926 0.923 1.079 0.772 0.086
Avg. path lengths 0.947 0.793 1.031 0.818 1.098 0.671 0.046
Distortion 0.964 1.31 1.02 0.822 1.24 0.018 0.483
Mallows distance 0.996 1.005 0.996 0.841 0.998 0.014 0.009
Max. degree 1.018 0.998 0.999 0.983 1.004 0.481 0.398
Degree diversity 0.997 0.999 1 0.973 1.002 0.004 0.034
Degree correlation 1.004 1.018 1.002 1.013 0.97 0.075 0.015
Clustering coeff. 0.995 1.009 0.93 0.643 0.926 0.006 0.023

measure is small. Table 4.3 shows that utility improves with GraphGen(H2), but the

improvement is much less than with GraphGen(H1).

Comparison between GraphGen(H1) and LT While the utility of LT was com-

pared against BCKS and GraphGen in Section 4.3.3, these algorithms are not directly

comparable in terms of their privacy guarantees because LT places restrictions on the

adversary’s knowledge. However, we can directly compare LT with GraphGen(H1)

because they both provide equal privacy protection.

95



Table 4.4. A comparison of utility of GraphGen(H1) and LT at k = 10. Numbers
are normalized scores where a number less than 1 indicates GraphGen(H1) is more
accurate than LT. (A dash indicates that LT perfectly matched the original, so the
normalized score is undefined. A 0* indicates that both LT and GraphGen(H1)
perfectly matched the original.)

Statistic HepTh Enron NetTrace HOT Power-Law Tree Mesh
Giant comp. size 0.003 - 0.007 1.195 0* 0.423 0*
Avg. path lengths 0.242 0.151 1.484 0.296 0.016 3.438 0.032
Distortion 0.473 0.55 1.425 0.661 0.84 0.002 0.039
Mallows distance 9.555 0.872 0.958 0.934 1.323 0.643 3.465
Max. degree 1.48 0.92 0.937 0.775 0.807 - -
Degree diversity 46.66 8.311 0.928 1.016 1.482 0.273 8.151
Degree correlation 2.483 12.204 0.71 0.112 0.803 0.051 0.871
Clustering coeff. 0.492 1.025 0.002 1.684 0.579 0.138 0.556

Table 4.4 compares LT and GraphGen(H1) using a measure which is normalized

to LT. Thus a score less than 1 indicates that GraphGen(H1) more accurately approx-

imates the original graph, and a score exceeding 1 indicates that LT is more accurate.

(A dash indicates that LT matches the original, so the normalized score is undefined;

and a 0* indicates that both LT and GraphGen(H1) perfectly match the original.)

The results suggest that the approaches perform somewhat comparably. There is

only one measure (distortion) in which one algorithm is consistently more accurate

across the datasets, and there is no dataset where one algorithm is consistently more

accurate.

4.3.5 Assessing edge disclosure in generalized graphs

Recall our assessment (Section 3.2.2) of edge disclosure under naive anonymiza-

tion, which showed that it is possible for a knowledgeable adversary to accurately

determine whether two nodes are connected. We revisit edge disclosure here, mea-

suring the extent to which graph generalization reduces the risk of edge disclosure.

While graph generalization prevents re-identification (Section 4.2.2), edge disclo-

sure may still be possible. For example, if an adversary can determine which supern-

96



P
er

ce
nt

ag
e 

of
 e

dg
es

 in
 G

k = 2 5 10 20

HepTh

0
20

40
60

80
10

0

k = 2 5 10 20

Enron

0
20

40
60

80
10

0

k = 2 5 10 20

NetTrace

0
20

40
60

80
10

0

k = 2 5 10 20

HOT

0
20

40
60

80
10

0

k = 2 5 10 20

Power−Law

0
20

40
60

80
10

0

k = 2 5 10 20

Tree

0
20

40
60

80
10

0

k = 2 5 10 20

Mesh

[0, 0.10)
[0.10, 0.25)
[0.25, 0.50)
[0.50, 1.00)
[1.00]

0
20

40
60

80
10

0

Figure 4.4. Risk of edge disclosure in generalized graphs across different datasets
and settings of k.

ode contains Alice and which supernode contains Bob he can estimate the likelihood

of an edge between Alice and Bob based on the weight of the superedge between their

respective supernodes. The weight reveals the number of edges in the original graph

between the nodes in Alice’s supernode and the nodes in Bob’s supernode. A higher

weight increases the likelihood they are connected.

To assess the risk of edge disclosure, we conservatively assume that the adversary

can successfully identify the supernode of each target node. In practice, we expect

that this will be difficult for an adversary with limited knowledge, so our results may

exaggerate the risk. Given two target nodes u and v in G, the adversary computes

the likelihood of edge between u and v by first identifying their supernodes in G,

denoted X and Y respectively, and then observing the superedge weight, d(X, Y ).

The likelihood of edge (u, v) is d(X, Y )/|X||Y | or, in the case when X = Y—i.e., the

targets share a supernode—the edge likelihood is 2d(X,X)/|X|(|X| − 1).

Our experiment is as follows. Given a graph G and a setting of k, we produce

a generalized graph Gk and measure its edge disclosure risk. For each edge in the

original graph G, we measure its likelihood given Gk. Each edge likelihood ` is a

number in [0, 1] which we discretize into five categories from “low” (` ∈ [0, 0.10)) to

“high” (` = 1.0). We report the percentage of edges in each category. This is similar

to the experiments in Section 3.2.2 except rather than vary adversary knowledge, we

assume a powerful adversary who knows the mapping of nodes to supernodes.
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Figure 4.4 shows the results across several input graphs and settings of k. (Note

the grayscale used here differs from the one used in Figure 3.4.) The results show

that when k = 2, some edges are disclosed in all datasets. This is not surprising

because at k = 2, whenever two neighbors are placed into the same supernode, the

edge between them is disclosed—the weight of the self-superedge is either 1 (if they

are connected) or 0 (if they are not).

At k = 5, a small portion of edges is disclosed in two graphs, HepTh (2.1%)

and Enron (6.9%), but for the other graphs no edges are disclosed. Overall, edge

disclosure diminishes rapidly with increasing k. By k = 20, edge likelihoods are less

than half across all graphs.

The experiments show that for reasonable settings of k, the process of graph

generalization greatly reduces the threat of edge disclosure. Our assessment is con-

servative and may overstate the threat. To prevent disclosure even at small k, one

must explicitly place neighboring nodes in separate supernodes. This is done in the

BCKS algorithm, which uses a safety condition to ensure that superedge weights are

bounded by 1/k. However, this additional safety condition has considerable cost in

utility as shown in Section 4.3.3.

4.4 Conclusion

We proposed anonymizing a graph by generalizing it: partitioning the nodes and

summarizing the graph at the partition level. This approach is shown to satisfy graph

k-anonymity under any structural query. We show that a wide range of important

graph analyses can be performed accurately on the generalized graphs published.

An important area for future investigation is to develop bounds on the distortion

introduced by anonymization. Analytical bounds could be developed through analysis

of the generalized graphs, or empirical bounds could inferred through careful sampling

of the possible worlds implied by the generalized graphs. We also hope to investigate
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techniques that will safely permit the analyst to sample higher quality representatives

from the set of possible worlds, for example, by biasing sampling towards the true

graph.
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CHAPTER 5

ACCURATE ESTIMATION OF THE DEGREE
SEQUENCE UNDER DIFFERENTIAL PRIVACY

The previous chapters explored transformed data release as a paradigm for sharing

sensitive network data in a way that protects privacy. In this chapter, we consider an

alternative paradigm: query answer perturbation. In this setting, the analyst poses

queries and receives noisy answers. To protect privacy, the noise must be large enough

to hide the contributions of an individual’s private data, however, the hope is that for

statistics of interest, the scale of the noise is small relative to the scale of the statistic,

and the noisy answer is an accurate approximation of the truth. We explore whether

this paradigm is a viable solution for computing common network statistics.

Compared with transformed data release, the obvious disadvantage of query an-

swer perturbation is that a graph is never published. Instead, the analyst only receives

answers to some queries. However, with transformed data release the analyst receives

a transformed graph, and as we saw in the previous chapter, the transformations can

distort important properties of the graph. For instance, we saw that transformations

often diminished the degree of high degree nodes, a bias that could cause analysts to

underestimate node centrality. The advantage of query answer perturbation is the po-

tential to get accurate and unbiased answers by tailoring the perturbation techniques

to the specific statistics of interest.

This chapter and the one that follows investigate whether it is possible to accu-

rately compute network statistics under rigorous guarantees of privacy.

In this chapter, we focus on a specific utility goal—estimating the degree se-

quence of a graph. The degree sequence of a graph is a monotonic non-decreasing
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sequence of the degrees of its nodes. A directed graph has two degree sequences:

an out-degree sequence and an in-degree sequence. For example, for the graph in

Figure 5.2(a), its out-degree sequence is 〈0, 1, 1, 1, 2, 2, 3〉 and its in-degree sequence

is 〈0, 0, 1, 1, 1, 1, 2, 4〉.

We choose to focus on the degree sequence because it is one of the most widely

studied properties of a graph. It influences the structure of a graph and processes that

operate on a graph, and a diverse line of research has studied properties of random

ensembles of graphs consistent with a known degree sequence [78, 87, 101].

The simple strategy of releasing the exact degree sequence fails to provide ade-

quate privacy protection. Some graphs have unique degree sequences (i.e., all graphs

matching this degree sequence are isomorphic) making the release of the degree se-

quence no safer than naive anonymization. In general, it is unclear how to determine

what the degree sequence reveals about the structure of the graph. The problem is

compounded when either the adversary has partial knowledge of graph structure, or

the degree sequence is only one of several statistics published. Our goal is to design

an approach that provides robust privacy protection against powerful adversaries and

is compatible with releasing multiple statistics.

Prior work in differential privacy provides an excellent foundation for exploring

this question. Differential privacy protects against any adversary, even one with nearly

complete knowledge of the private data. While originally described in settings where

an individual’s private data is encapsulated in a single record (such as the tabular

setting), it is adaptable to the graph setting (Section 2.2). It also composes well:

one can release multiple statistics under differential privacy, so long as the algorithm

for each statistic satisfies differential privacy. Thus, a differentially private algorithm

for the degree sequence can be combined with differentially private algorithms for

other statistics into a single privacy framework. While existing differentially private

algorithms, such as the Laplace mechanism (Section 2.2), can be easily adapted to
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obtain noisy answers to queries about the degree sequence, the added noise introduces

considerable error.

The main contribution of this chapter is an algorithm for accurately estimating

the degree sequence of a network in a way that protects the privacy of network

participants. The algorithm has several desirable properties:

• Privacy The algorithm satisfies ε-differential privacy, which means that the

output of the algorithm does not disclose the presence or absence of an edge,

even when the adversary has nearly complete knowledge of the graph. The

proof of privacy is spread across Sections 5.2 & 5.3 as our technique has multiple

components.

• Accuracy Using experiments on real data, we show that the technique is

extremely accurate and orders of magnitude more accurate than existing tech-

niques (Section 5.5). In theoretical analysis, we prove that error scales with

number of distinct degrees whereas existing techniques have error that scales

with the number of nodes (Section 5.3).

• Scalability We analyze the complexity of the algorithm in Section 5.4 and

show the algorithm runs in linear time. In experiments, we show the algorithm

is fast and can scale to large inputs: it computes a private estimate of a 200

million node degree sequence in under 6 seconds.

• Configurability As described in Section 5.2, the algorithm can be instan-

tiated in two different ways and the choice impacts how noise is introduced into

the degree sequence: experiments show that one approach tends to add rela-

tively more noise to low degrees; the other adds relatively more noise to high

degrees. The analyst can choose among the approaches depending on which

part of the sequence is most significant. More importantly, we believe this is an
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interesting finding that leaves open questions for future work on whether the

two strategies can be combined to have lower error throughout the sequence.

• Innovation A key component of our approach is using statistical inference

to filter out some of the noise that was added for privacy. While prior work in

differential privacy has considered the idea of post-processing the noisy answers,

our work is (to the best our knowledge) unique in that this is the first instance

where post-processing is shown to improve accuracy. The boost in accuracy

depends on properties of the input sequence, and we quantify the conditions

that lead to high accuracy results (Section 5.3).

A second contribution of this work is to recognize that our technique has broader

applicability: a degree sequence is an instance of a more general measurement, which

we call an unattributed histogram. We define unattributed histograms in the next

section, but for now it suffices to say that while they are less informative than a

conventional histogram—because they hide some information, namely the association

between bin and frequency—they are significant in the context of data privacy because

we will show that we can estimate unattributed histograms much more accurately

than conventional histograms under differential privacy. Importantly, unattributed

histograms have many useful applications, including, but not limited to, measuring

the degree sequence of a graph.

We present our algorithm in this more general setting of estimating an unattrib-

uted histogram under differential privacy. (Some issues arise for the special case of

estimating degree sequences, which we highlight.) In the next section, we define unat-

tributed histograms, give examples, and contrast them with conventional histograms.

We also give an overview of our algorithm, conveying the main ideas behind our

approach.

Admittedly, the degree sequence is just one property of a graph, and there is

evidence that a number of other properties are not constrained by the degree sequence
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alone [78, 87]. Nevertheless, because of the degree sequence’s profound influence on

the structure of the graph, we believe it is important to know how accurately it can

be estimated, independent of other properties. In the following chapter, we look at

other network statistics, review known results, including some additional work of our

own, and discuss limitations.

5.1 Overview of the task and solution

We start with an overview of the problem—computing an unattributed histogram

under differential privacy—and our solution. An unattributed histogram is a new

concept, so we describe it, give examples, and discuss its practical application. Our

solution uses an innovative technique in differential privacy: it involves post processing

the output of a differentially private mechanism to obtain a more accurate answer.

A key component of our solution is choosing a query strategy where constraints hold

among the answers. The constraints are what drives the post-processing phase.

5.1.1 Task: computing unattributed histograms

We introduce the concept of an unattributed histogram by contrasting it with a

conventional (attributed) histogram.

A histogram on attribute A in relational schema R(A,B, . . . ) summarizes the

distribution of values of A occurring in R. We assume the domain of A, dom, is

ordered. A histogram is computed with respect to a partition of dom into disjoint

intervals, called bins. For each bin, the histogram reports the number of tuples in R

whose value of A falls in the interval specified by the bin. In examples, we partition

the domain into unit-length intervals, i.e., each bin contains only a single value from

the domain.

For example, Figure 5.1(a) shows a table of fictitious medical records having the

schema R(Name,Age,Gender, Condition). We compute a histogram on the attribute
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Name Age Sex Condition

Alice 23 F Healthy
Bob 45 M Asthma

Carol 59 F Flu
Dave 25 M Flu
Ed 70 M Asthma

(a) Relation R

Condition Frequency

Asthma 2
Cancer 0

Flu 2
Healthy 1

(b) Conventional histogram

Frequency

0
1
2
2

(c) Unattributed
histogram

Query Definitions: C : 〈c([x1]), c([x2]), . . . , c(xn)〉 for xi ∈ dom
S : 〈c([xπ(1)]), c([xπ(2)]), . . . , c([xπ(n)])〉
F : 〈f1, . . . , fN〉 where fi =

∑n
i=1 I[c([xi, yi]) ≥ k]

True answer Private output Inferred answer

C(I) = 〈2, 0, 2, 1〉 C̃(I) = 〈1.9,−0.3, 2.1, 0.8〉
S(I) = 〈0, 1, 2, 2〉 S̃(I) = 〈−0.1, 1.1, 2.2, 1.8〉 S(I) = 〈−0.1, 1.1, 2.0, 2.0〉
F(I) = 〈3, 2, 0, 0, 0〉 F̃(I) = 〈3.1, 2.1, 0.1, 0.1, 0.4〉 F(I) = 〈3.1, 2.1, 0.2, 0.2, 0.2〉

(d) Query strategies

Figure 5.1. (a) Example table R on which we compute histograms; (b)
A conventional histogram on attribute Condition, whose domain is dom =
{Asthma,Cancer,Flu,Healthy}; (c) An unattributed histogram on Condition; (d)
Definitions and sample values for alternative query sequences: C computes a conven-
tional histogram, S returns the frequencies of the histogram in rank order, F computes
a cumulative histogram on the frequencies.

Condition. The domain of Condition is { Asthma, Cancer, Flu, Healthy } and or-

dered lexicographically. A conventional histogram on Condition is shown in Fig-

ure 5.1(b).

In contrast to a conventional histogram, an unattributed histogram reports only

the frequencies, and omits the association between bin and frequency. For example,

Figure 5.1(c) shows an unattributed histogram on the Condition attribute. This

result reveals the frequencies but hides which condition goes with which frequency.

For instance, it shows that some condition never occurs (frequency is zero) but not

which condition this is. We call it an unattributed histogram because the frequencies

are not attributed to their values. The result of an unattributed histogram is a
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multiset of frequencies, which can be returned in any order. We adopt a convention

of reporting the frequencies in ascending order.

We can further contrast conventional and unattributed histograms by comparing

their expression in SQL. Both histograms can be expressed as GROUP BY queries in

SQL, the only differences being the column name selection and the order of results.

The following is an SQL expression for a conventional histogram that returns results

ordered by bin:

SELECT A, COUNT(*) AS Frequency FROM R GROUP BY A ORDER BY A

The expression for an unattributed histogram omits A from the results and orders

the results by frequency:

SELECT COUNT(*) AS Frequency FROM R GROUP BY A ORDER BY Frequency

One can think of an unattributed histogram as a projection on the result of a conven-

tional histogram that retains only the frequency column, removing the bin column

from the result. A technical detail: the above SQL expressions compute histograms

over the active domain of A—values from the domain of A that do not appear in

R are omitted from the results. Our differentially private techniques will compute

unattributed histograms over dom and therefore bins with a frequency of zero are

included in the result.

While unattributed histograms may be unconventional, they have practical appli-

cation. There are some settings where the purpose of computing a histogram is not

to learn the frequency of a particular bin or bins, but to simply learn the overall dis-

tribution of frequencies. For example, if the tuples of R represent queries submitted

to a search engine, and A is the search term, then an unattributed histogram shows
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Alice Bob Carol

Dave Ed

Fred Greg Harry

(a) Example network G

Src Dest

Alice Bob
Bob Dave
Bob Ed

Carol Bob
Dave Fred
Dave Ed
Fred Greg
Greg Dave
Greg Ed
Greg Harry
Harry Ed
(b) Edge table

Src Frequency
Alice 1
Bob 2

Carol 1
Dave 2
Ed 0

Fred 1
Greg 3
Harry 1

(c) Attributed degree se-
quence

Frequency
0
1
1
1
1
2
2
3

(d) Unattributed
degree se-
quence

Figure 5.2. (a) Example graph G for which we compute degree sequences; (b) The
edges of G represented as a relation R(Src,Dest); (c) An attributed degree sequence;
(d) An unattributed degree sequence.

the frequency of occurrence of all terms (but not the terms themselves). This can be

used, for instance, in predicting cache performance.

Another important application, especially in the context of this thesis, is measur-

ing the degree sequence of a graph. Given an undirected graph G, the degree sequence

is a monotonic non-decreasing sequence of the degrees of its nodes. A directed graph

has two degree sequences, a sequence of in-degrees and a sequence of out-degrees. For

example, for the graph in Figure 5.2(a), its out-degree sequence is 〈0, 1, 1, 1, 2, 2, 3〉

and its in-degree sequence is 〈0, 0, 1, 1, 1, 1, 2, 4〉.

Degree sequences as unattributed histograms Degree sequences can be viewed

as instances of unattributed histograms. To compute a degree sequence as an unat-

tributed histogram, we first represent the edges of a (directed) graph as a binary

relation R(Src,Dest). For example, the edges of the graph in Figure 5.2(a) are

shown as a relation in Figure 5.2(b). The out-degree sequence is an unattributed

histogram on Src; the in-degree sequence is an unattributed histogram on Dest.
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For example, the out-degree sequence of the directed graph in Figure 5.2(a) is

equal to the unattributed histogram on Src shown in Figure 5.2(d).

For an undirected graph, if we represent an edge (u, v) as two symmetric tuples

in R – tuples (u, v) and (v, u) are in R if and only if edge (u, v) is in the graph –

then the degree sequence is an unattributed histogram on Src in R. (Each edge in

the graph is counted twice in the histogram.)

A conventional histogram would be an attributed degree sequence and would pro-

vide an additional association of each degree with a named individual. For example,

the attributed out-degree sequence of the graph shown in Figure 5.2(a) is equal to

the conventional histogram on Src shown in Figure 5.2(c).

Most uses of the degree sequence are concerned with the distribution of degrees in

the graph, and not the degrees of particular individuals, so the unattributed degree

sequence is sufficient.

While an unattributed histogram can be derived from a conventional histogram,

we distinguish it because it is possible to estimate unattributed histograms much

more accurately under differential privacy. Because the association between bin and

frequency is not needed, we have greater flexibility in designing query strategies.

Next, we describe innovative strategies for estimating unattributed histograms under

differential privacy.

5.1.2 Solution: inference on queries with constraints

We developed two related strategies for computing an unattributed histogram

under differential privacy. Both strategies share a common three step procedure for

computing the histogram. First, we carefully formulate a query such that its answer,

a sequence of numbers, is constrained so that relationships hold among the numbers.

The query is answered using the Laplace mechanism (Section 2.2) to obtain noisy

answer that is differentially private. The addition of random noise may result in a
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sequence of numbers that violate the constraints. So, the final step refines the noisy

answer using statistical inference to produce an answer that is consistent with the

constraints. The inferred sequence can be much more accurate. The two strategies

differ in their choice of query.

We formally define the two strategies in the next section. In the remainder of

this section, we convey the main ideas behind the first strategy, by describing the

query and showing how enforcing constraints through inference can result in a more

accurate answer. The second strategy and the details of the first strategy are described

in Section 5.2.

In the first strategy, we ask for the frequencies of the unattributed histogram in

rank order. For a histogram over n bins, the answer is a sequence of n numbers, where

the ith number is the ith smallest frequency in the histogram. The true answer to

the query is a monotonic non-decreasing sequence of numbers. To achieve differential

privacy, we show it is sufficient to add (appropriately scaled) independent random

noise to each number. Thus, the analyst receives a sequence of n numbers, where

the ith number is the ith smallest frequency plus noise. Since noise has been added,

the numbers may no longer be monotonically non-decreasing. But we can use the

monotonicity constraint to infer a potentially more accurate answer. We propose an

inference procedure that takes the noisy sequence and derives an estimate for the

unknown monotonic sequence. The output of the inference is the closest monotonic

sequence to the noisy sequence.

Inference can reduce error, but it will depend on the frequencies in the histogram.

The greatest reduction occurs when all bins have the same frequency. Here is an

example for a histogram over n = 10 bins where all bins have the same frequency, 12.

The Laplace mechanism adds independent random noise to each count.
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True answer 〈12, 12, 12, 12, 12, 12, 12, 12, 12, 12〉

Noisy answer 〈12.3, 13.2, 12.9, 11.4, 12.0, 11.6, 9.5, 11.4, 12.4, 11.5〉

Inferred answer 〈11.8, 11.8, 11.8, 11.8, 11.8, 11.8, 11.8, 11.8, 11.9, 11.9〉

In this case, inference effectively averages the noisy observations, thereby reducing

variance and producing a more accurate estimate of the count. At the other extreme,

if all bins have vastly different frequencies, then the noisy sequence may not violate

the monotonicity constraints. For example, consider this histogram over n = 5 bins.

True answer 〈12, 25, 50, 97, 123〉

Noisy answer 〈11.5, 25.2, 49.6, 95.2, 124.8〉

Inferred answer 〈11.5, 25.2, 49.6, 95.2, 124.8〉

The noisy answers are already monotonically increasing and therefore there is nothing

to be done during inference. The inferred answer is identical to the noisy answer and

there is no improvement in accuracy. Fortunately, in real world applications such

as estimating the degree sequence of a private graph, the histograms tend to more

closely resemble the former example, in which case inference greatly boosts accuracy.

There are several challenges in executing the above strategy, which we explore

in the rest of this chapter. First, we must formally define our query strategies and

prove that differential privacy is satisfied. This requires describing the mechanism

for adding random noise and proving it is differentially private. This is the focus of

Section 5.2. Second, we must formalize the inference process and demonstrate its

effectiveness. The inference process is common to both strategies and described in

Sections 5.3 & 5.4, and its performance is evaluated theoretically in Section 5.3.2 and

experimentally in Section 5.5.
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5.2 Query strategies

We describe three query strategies. The first is a baseline strategy, in which

our strategy for computing an unattributed histogram is to simply compute a con-

ventional histogram and ignore attribution. This strategy does not work well: the

noise introduced to ensure privacy greatly distorts the answer. We then describe

our two innovative strategies. Both strategies ask queries where ordering constraints

hold among the answers, which will then be exploited by the inference mechanism

described in Section 5.3.

While our query strategies are simply alternative representations of the same

information, we find that representation matters when answers can be revealed only

approximately. If we were able to return exact answers, then there is no distinction

between alternative representations: the answer to one query can be used to derive

the answer for the other. But under differential privacy, we must add noise and the

choice of representation determines where the noise is introduced. We will show in

experiments that the consequence is that different representations exhibit different

performance.

5.2.1 Baseline strategy: conventional histogram

We first describe the baseline strategy of asking a conventional histogram query,

introducing common notational conventions along the way.

All of the query strategies considered in this paper are formulated as query se-

quences where each element of the sequence is a query on the database. We use Q to

denote a generic query sequence. We refer to query sequences using bold letters (Q,

C, S). When Q is evaluated on a database instance I, the output, Q(I), includes

one answer to each numerical query, so Q(I) is a vector of numbers. The ith query

in Q is Q[i]. Table 5.1 reviews notational conventions.
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Table 5.1. Notational conventions for query sequences.

Q Sequence of queries
C Conventional histogram
S Unattrib. histogram via Sorting
F Unattrib. histogram via Frequency
γQ Constraint set for query Q

Q̃, C̃, S̃, F̃ Randomized query sequence

S,F Randomized query sequence,
returning minimum L2 solution

I Private database instance
C(I),S(I),F(I) Output sequence (truth)

d̃ = C̃(I), s̃ = S̃(I), f̃ = F̃(I) Output sequence (noisy)

s = S(I), f = F(I) Output sequence (inferred)

We can express a histogram as a sequence of counting queries on range attribute

A. We write intervals as [x, y] for x, y ∈ dom, and abbreviate [x, x] as [x]. For a given

interval [x, y], a counting query c([x, y]) reports the number of tuples whose value of

A is contained by the interval:

c([x, y]) = SELECT COUNT(*) FROM R WHERE x ≤ R.A ≤ y

A histogram is computed with respect to a user-specified partition of dom into n

disjoint intervals [x1, y1], [x2, y2], . . . , [xn, yn] whose union is equal to dom. We refer

to each interval as a bin. We use C to denote the query sequence of a conventional

histogram. It is defined as:

C = 〈c([x1, y1]), c([x2, y2]), . . . , c([xn, yn])〉

For example, consider a histogram on attribute Condition with unit-length intervals

(each contains a single condition). The histogram expressed as a query sequence is:

C = 〈c([Asthma]), c([Cancer]), c([Flu]), c([Healthy])〉
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The answer to C is a vector of n numbers, corresponding to the number of tuples in

each bin. For example, if I is the relation in Figure 5.1(a) and C is the histogram on

attribute Condition, then the answer is.

C(I) = 〈2, 0, 2, 1〉

To ensure differential privacy, we do not return exact answers to queries. Instead,

random noise is added. For all of our query strategies, we rely on the Laplace mech-

anism. This mechanism adds independent noise to each answer, where the noise is

drawn from a zero mean, appropriately scaled Laplace distribution. As described in

Section 2.2, the scale depends on the sensitivity of the query—informally, the amount

by which the query answer can change due to the addition or removal of an individ-

ual’s private data. This mechanism can be applied to any query sequence and satisfies

the rigorous privacy guarantee of differential privacy.

To apply the Laplace mechanism to C, we must determine the sensitivity of C,

denoted ∆C.

Proposition 5.1 (Sensitivity of C). The sensitivity of C, denoted ∆C, is 1.

Proof. Let I and I ′ be neighboring databases that differ by the tuple t. This tuple

affects the answer to a single query in C, specifically it changes the count for the

interval that contains t.A by exactly 1. Therefore, ‖C(I)−C(I ′)‖1 = 1.

We use C̃ to denote the application of the Laplace mechanism to the query se-

quence C. Let 〈Lap(b)〉n denote a vector of independent Laplace random variables

each with scale b.

Definition 5.1 (C̃). The randomized algorithm C̃ is defined as the application of

the Laplace mechanism to the query sequence C. It returns the following randomized

vector:

C̃(I) = C(I) + 〈Lap(∆C/ε)〉n

113



It follows from Proposition 2.2 that this is ε-differentially private.

5.2.2 First strategy: frequencies in rank order

The first query strategy returns the frequencies of the unattributed histogram in

rank order. Let S denote the n-length query sequence where the ith query returns the

frequency of the ith lowest frequency bin. Formally, for input I let π : [1, n] → [1, n]

be a permutation of the bins specific to I such that if i < j, then c([xπ(i), yπ(i)]) ≤

c([xπ(j), yπ(j)]) on input I. Then S[i] = c([xπ(i), yπ(i)]) for i = 1 to n.

For example, if S is an unattributed histogram on attribute Condition, then S[1]

is the frequency of the rarest condition and S[4] is the frequency of the most common

condition (out of four possible conditions).

The answer to S is a vector of length n, corresponding to the bin frequencies.

The numbers in the vector are monotonically non-decreasing. Following the previous

example, if I is a database consisting of the relation in Figure 5.1(a) and S is an

unattributed histogram on attribute Condition, then S(I) is:

S(I) = 〈0, 1, 2, 2〉

Query sequences C and S are similar, but with one key distinction. Both compute

the same set of n counts over the intervals [x1, y1] to [xn, yn], and so when evaluated,

they return the same multiset of numbers. The distinction between them is how those

numbers are indexed: in C the query answers are indexed by domain—the ith answer

is the frequency of ith smallest attribute value in the domain—and in S the answers

are indexed by their rank—the ith answer is the ith smallest frequency.

To answer S using the Laplace mechanism, we must determine its sensitivity.

Perhaps surprisingly, the sensitivity of S is no larger than the sensitivity of C. (In

fact, ∆S = ∆C = 1.) This follows from the following claim.
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Proposition 5.2 (Sensitivity of S). For any query sequence Q, let SQ be the query

sequence that returns the answers of Q in rank order. Then ∆SQ
≤ ∆Q.

Proof. Let x and y be two vectors of length n. Let πx : [1, n]→ [1, n] be a permutation

that sorts x, i.e., if i < j, then xπx(i) ≤ xπx(j). Similarly, let πy be a permutation that

sorts y. First, we claim that

∥∥〈xπx(1), . . . , xπx(n)〉 − 〈yπy(1), . . . , yπy(n)〉
∥∥

1
≤ ‖x− y‖1

If this claim is true, it implies for any databases I and I ′, ‖SQ(I)− SQ(I ′)‖1 ≤

‖Q(I)−Q(I ′)‖1.

We now prove the claim. While πx is specific to x, we can still apply the same

permutation to y, to obtain 〈yπx(1), . . . , yπx(n)〉. If we apply the same permutation to

both vectors, this does not change the L1 distance between them since the alignment

between x and y is preserved under the permutation. Thus, we have:

∥∥〈xπx(1), . . . , xπx(n)〉 − 〈yπx(1), . . . , yπx(n)〉
∥∥

1
= ‖x− y‖1

Now consider swapping any out-of-order pair in the permuted y: i.e., if there exists

a pair yπ(i), yπ(j) such that i < j but yπx(i) > yπx(j), then let π′ be a new permutation

identical to πx except π′(i) = πx(j) and π′(j) = πx(i). This can only decrease L1

distance, as the smaller (resp. larger) number in y is now aligned with the smaller

(resp. larger) number in x. That is,

∥∥〈xπx(1), . . . , xπx(n)〉 − 〈yπ′(1), . . . , yπ′(n)〉
∥∥

1

≤
∥∥〈xπx(1), . . . , xπx(n)〉 − 〈yπx(1), . . . , yπx(n)〉

∥∥
1
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If we repeat this step, swapping any out-of-order pair in y and updating π′ accordingly,

the L1 can only decrease at each step. Eventually, no out-of-order pairs will remain,

and π′ will be a permutation that sorts y; i.e., π′ = πy and we have shown that

∥∥〈xπx(1), . . . , xπx(n)〉 − 〈yπy(1), . . . , yπy(n)〉
∥∥

1

≤
∥∥〈xπx(1), . . . , xπx(n)〉 − 〈yπx(1), . . . , yπx(n)〉

∥∥
1

= ‖x− y‖1

completing the proof.

Again, we can obtain a differentially private estimate of S using the Laplace

mechanism.

Definition 5.2 (S̃). The randomized algorithm S̃ is defined as the application of

the Laplace mechanism to the query sequence S. It returns the following randomized

vector:

S̃(I) = S(I) + 〈Lap(∆S/ε)〉n

It follows from Proposition 2.2 that this is ε-differentially private:

Since the same magnitude of noise is added to S as to C, it appears as though the

accuracies of S̃ and C̃ are the same. However, S implies a powerful set of constraints.

Notice that the ordering occurs before noise is added. Thus, the returned counts are

ordered according to the true rank order. If the returned answer contains out-of-order

counts, this must be caused by the addition of random noise.

We use γ to denote the set of constraints associated with a query. For the query

S, γS contains the set of inequalities S[i] ≤ S[i+ 1] for 1 ≤ i < n. (The query C has

no constraints between the answers, so γC is empty.) In Section 5.3, we show how to

exploit these constraints to boost accuracy.
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5.2.3 Second strategy: frequency of frequencies

The main idea behind the second strategy is as follows. We can view the frequen-

cies of an unattributed histogram as simply a collection of n numbers. Each number

is an integer in the range [0, N ] where N is the number of tuples in the database.

For now, we assume N is known. Treating these n numbers as data, we can measure

the data distribution, for example by computing a histogram. In other words, we

are computing the frequency of frequencies: the number of times that each frequency

occurs in the unattributed histogram.

Our second approach computes a particular kind of histogram over these numbers,

a cumulative histogram. The query sequence is denoted F and has length N . For

k = 1 to N , the kth query in the sequence is defined as

F[k] =
n∑
i=1

I[c([xi, yi]) ≥ k]

where I[·] is the indicator function, equal to 1 when its argument is true and 0 oth-

erwise. In words, F[k] reports the number of bins (in the unattributed histogram)

whose frequency is k or larger. The answer is an integer between 0—meaning that

no bins have at least this frequency—and n—meaning that all bins have at least this

frequency.

For example, if F is computed on attribute Condition, then F[1] is the number

of conditions that occur at least once, F[2] is the number of conditions that occur at

least twice, and so on. The length of the query depends on N , the number of tuples

in the relation. Observe that given an answer to F, we can derive the answer S, and

vice versa.

Evaluating this query on the input I shown in Figure 5.1(a), we have N = 5 and

therefore F(I) has length 5 and the answer is as follows

F(I) = 〈3, 2, 0, 0, 0〉
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This answer indicates that three conditions occur at least once, two conditions occur

twice, and zero conditions occur three or more times.

Like the S query, the answers of F are constrained. As k increases, the value of

F[k] can only decrease. Thus, γF consists of the set of inequalities F[i] ≥ F[i+ 1] for

1 ≤ i < N .

To apply the Laplace mechanism, we must determine the sensitivity of F.

Proposition 5.3 (Sensitivity of F). The sensitivity of F is ∆F = 1.

Proof. Let I and I ′ be neighboring databases such that I ′ has an additional tuple t.

Without loss of generality, let t fall into interval [xi, yi]. Further, suppose that on I,

c([xi, yi]) = k. On database I ′, the inclusion of t makes c([xi, yi]) = k + 1. Therefore

if F[k + 1] = a on I, then F[k + 1] = a+ 1 on I ′; note that F[k] is the same on both

I and I ′, as are all other positions. Therefore ‖F(I)− F(I ′)‖1 = 1.

Again, we can obtain a differentially private estimate of F using the Laplace

mechanism.

Definition 5.3 (F̃). The randomized algorithm F̃ is defined as the application of

the Laplace mechanism to the query sequence F. It returns the following randomized

vector:

F̃(I) = F(I) + 〈Lap(∆F/ε)〉N

It follows from Proposition 2.2 that this is ε-differentially private.

When N is unknown, a slightly more complex query strategy is necessary. Our

strategy is an interactive approach in which we incrementally compute F by iteratively

asking F[k] for increasing k until a stopping condition is reached. Observe that for

k ≥ N + 1, the true query answer, F[k], is zero. While the returned answers may

not be equal to zero due to the addition of random noise, the expected value of each

answer is zero. We can continue increasing k until the noisy answers appear to have
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“converged” to 0. For example, we can apply the central limit theorem to derive a

confidence interval around the mean of the last N0 observations and terminate when

the upper bound of the interval is less than 1. The number N0 is a function of the

noise magnitude ∆F/ε and our desired level of confidence. The following proposition

claims that this interactive approach is differentially-private.

Proposition 5.4 (Interactive F). Let F̃k denote the randomized algorithm that re-

turns the following noisy answer:

F̃k(I) = F(I)[k] + Lap(∆F/ε)

The process that interactively asks F̃i for i = 1 up to any N ′ (where N ′ may depend

on the answers received) satisfies ε-differential privacy.

Proof. Consider a transcript of noisy answers Let 〈f1, . . . , fN ′〉 output by the interac-

tive process. We claim that for any two neighboring databases I and I ′ the probability

of returning 〈f1, . . . , fN ′〉 differs by at most a factor of exp(ε). There exists a single

k such that F(I)[k] 6= F(I ′)[k], for all i 6= k, F(I)[i] = F(I ′)[i]. Thus, for any i 6= k,

we have

Pr[F̃i(I) = fi|f1, . . . , fi−1] = Pr[F̃i(I
′) = fi|f1, . . . , fi−1]

and for k, the Laplace noise ensures that

Pr[F̃i(I) = fk|f1, . . . , fk−1] ≤ exp(ε) Pr[F̃i(I
′) = fk|f1, . . . , fk−1]

Therefore

N ′∏
i=1

Pr[F̃i(I) = fi|f1, . . . , fi−1] ≤ exp(ε)
N ′∏
i=1

Pr[F̃i(I
′) = fi|f1, . . . , fi−1]

and we have proved the claim.
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Special considerations for computing degree sequences We briefly remark on

some differences in computing sensitivity for the special case where the unattributed

histogram is the degree sequence of an undirected graph. The issue is that in the graph

setting, neighboring instances may differ by more than a single tuple. Neighboring

graphs can differ by multiple edges under k-edge differential privacy for k > 1 and

under node-differential privacy (Section 2.4).

For k-edge differential privacy, it is sufficient to analyze the special case of k = 1

because existing results (Section 2.2) show that differential privacy for k = 1 extends

naturally to k > 1. Therefore, we focus on the case of k = 1. For directed graphs,

removing one edge is equivalent to removing one tuple, so our analysis of unattributed

histograms applies immediately to the (in or out) degree sequence of a directed graph.

For an undirected graph, each edge is counted twice in the unattributed histogram,

once for each endpoint. Therefore the sensitivity must be doubled.

For node differential privacy, it is not hard to see that the sensitivity is large,

specifically O(n). In other words, the magnitude of the noise added by the Laplace

mechanism matches the range of the query answers and therefore, the answers are so

noisy, they are useless. For this reason, in the remainder of this chapter, we adopt

k-edge differential privacy as the privacy standard.

A final issue for degree sequences is that n, the number of bins in the unattributed

histogram, depends on the graph and may not be public knowledge. This impacts

the S query, because its length is n. Recall from Section 5.1.1, there is a bin for

each node in the graph. Releasing the exact number of nodes in the graph does not

technically satisfy k-edge differential privacy. This is not a significant issue, and can

be remedied similarly to the way the issue of unknown N is handled with the F

query. Specifically, first we slightly modify the definition of S: we return frequencies

(degrees) in descending, rather than ascending order, and the ith smallest degree for
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any i > |V | = n is defined as −1. Then we apply the incremental approach described

for the F query, stopping when the answers appear to “converge” at -1.

5.3 Inference

Here we describe how we can use statistical inference to refine noisy answers to ob-

tain estimates that are consistent with the query constraints. For the query sequences

we consider here – S and F – the primary constraint is an ordering constraint. How-

ever, inference can be applied to other query sequences, resulting in consistent answers

and, in some cases, increased accuracy [55, 76]. We first describe the general inference

framework and then describe the specific approach for handling order constraints.

Given a query sequence Q, let γQ denote the set of constraints which must hold

among the answers. The inference process takes the randomized output of the query,

denoted q̃ = Q̃(I), and finds the sequence of query answers q that is “closest” to q̃

and also satisfies the constraints of γQ. Here closest is determined by L2 distance,

and the result is the minimum L2 solution:

Definition 5.4 (Minimum L2 solution). Let minL2(·, ·) be a function that takes noisy

sequence q̃ and constraints γQ and outputs a vector q that satisfies the constraints γQ

and at the same time minimizes ||q̃− q||2. We say that q is the minimum L2 solution.

Examples of minimum L2 solutions are shown in Figure 5.1 for two different queries

that have ordering constraints.

Finding the minimum L2 solution requires no access to the private database, only

q̃, the output of a differentially private algorithm, and γQ, a property of the query. In

fact, the computation can be carried out by the analyst after receiving q̃. Nevertheless,

we now formally prove that q can be computed under differential privacy. We use Q

to denote the two step randomized process in which the data owner first computes

q̃ = Q̃(I) and then computes q = minL2(q̃, γQ).
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Proposition 5.5 (Inference preserves privacy). If Q̃ satisfies ε-differential privacy,

then Q satisfies ε-differential privacy.

Proof. For any set of outputs O of the function minL2(·, ·), let IO denote O’s pre-

image: IO = {q̃ | minL2(q̃, γQ) ∈ O}. For any I and I ′ ∈ nbrs(I), the following

shows that Q is ε-differentially private:

Pr[Q(I) ∈ O] = Pr[Q̃(I) ∈ IO]

≤ exp(ε) Pr[Q̃(I ′) ∈ IO]

= exp(ε) Pr[Q(I ′) ∈ O]

where the inequality is due to the fact that Q̃ is ε-differentially private.

We will show that for some queries, inference produces more accurate answers.

In other words, by moving the noisy answer to the closest answer that is consistent

with the constraints, we also move it closer to the true answer. One can show that

when the constraints define a solution set that is convex, as is the case with the

queries we study here, then inference can only reduce error [114]. However, we find

that inference not only does not harm, but it can substantially reduce error, as was

suggested previously by the examples in Section 5.1.2

Next we show how to compute the minimum L2 solution for queries with ordering

constraints.

5.3.1 Inference for ordering constraints

We now present the minimum L2 solution for the case of ordering constraints.

It can be applied to any query sequence where ordering constraints hold among the

answers. This includes S and F. Let O be any n-length query sequence where ascend-

ing order constraints γO hold among the answers, i.e., γO contains the inequalities

O[i] ≤ O[i + 1] for all 1 ≤ i < n. Of course, we can apply our solution to queries
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with descending order constraints—such as F—by reversing the vector before apply-

ing inference. Let õ denote a random output from the Laplace mechanism applied to

O.

For ordering constraints, finding the minimum L2 solution can be cast as a con-

vex optimization problem. A convex optimization problem involves minimizing (or

maximizing) a convex objective function subject to convex constraints on its argu-

ments [18].

Problem 1 (Inference under order constraints). Given õ and γO, the problem of find-

ing the minimum L2 solution, o = minL2(õ, γO) is equivalent to solving the following

convex optimization problem.

minimize
n∑
i=1

(õ[i]− o[i])2

subject to o[i] ≤ o[i+ 1], 1 ≤ i < n.

(5.1)

The solution to this problem has an elegant, closed form as shown the following

theorem. The proof is in Section 5.7.1.

Theorem 5.1. [Minimum L2 Solution for ordering constraints] For a given õ, let

õ[i, j] denote the subsequence 〈õ[i], õ[i + 1], . . . , õ[j]〉 and M [i, j] the average of this

subsequence: M [i, j] =
∑j

k=i õ[k]/(j − i + 1). For each position k, let Lk and Uk be

defined as

Lk = min
k≤j≤n

max
1≤i≤n

M [i, j]

and

Uk = max
1≤i≤k

min
i≤j≤n

M [i, j]

The minimum L2 solution, o = minL2(õ, γO), is unique and is equal to o[k] = Lk =

Uk.
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After we developed our solution to Problem 1, we learned that this problem is an

instance of isotonic regression, a problem that has been analyzed in statistics. The

statistics literature has several characterizations, including the max-min formula we

present above (cf. Barlow et al. [14]). To our knowledge, our extension to include

additional constraints (below) and our utility analysis (next section) are novel.

We describe a linear time algorithm for computing minL2(õ, γO) in Section 5.4.

It is in fact a variant of an existing algorithm for isotonic regression, though we

developed it independently.

Here are a few examples of short sequences õ and their minimal L2 solutions o.

Table 5.2. Examples of private outputs õ = Õ(I) and their closest ordered sequence
o.

original output inferred output L2 distance
õ o ||õ− o||2

〈9, 10, 14〉 〈9, 10, 14〉 0
〈9, 14, 10〉 〈9, 12, 12〉 4
〈14, 9, 10, 15〉 〈11, 11, 11, 15〉 14

Example 7. Table 5.2 gives three examples of õ and its closest ordered sequence

o. First, suppose õ = 〈9, 10, 14〉. Since õ is already ordered, o is equal to õ. In the

second example, õ = 〈9, 14, 10〉, the last two elements are out of order. The closest

ordered sequence is o = 〈9, 12, 12〉. Finally, let õ = 〈14, 9, 10, 15〉. The sequence is

in order except for õ[1]. While changing the first element from 14 to 9 would make

it ordered, its distance from õ would be (14 − 9)2 = 25 which is further away than

o = 〈11, 11, 11, 15〉, which is 14 from õ.

Since the Laplace mechanism introduces random noise to each numerical answer

in the sequence, both the output õ and o may include numbers that are non-integral

and/or negative. In many applications, there may be additional constraints of inte-

grality and non-negativity. This motivates the following problem.
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Problem 2 (Inference under order, integrality, and bound constraints). Let γ′O be

the constraint set γO augmented with the additional constraints that each answer

be integral and between given lower and upper bounds, respectively denoted L and

U . The problem of finding the minimum L2 solution minL2(õ, γ′O) is equivalent to

solving the following optimization problem.

minimize
n∑
i=1

(õ[i]− o[i])2

subject to L ≤ o[i] ≤ o[i+ 1] ≤ U, 1 ≤ i < n.

o[i] ∈ Z, 1 ≤ i ≤ n.

(5.2)

Despite the fact that integrality constraints make the problem non-convex, The-

orem 5.2 shows that including these constraints can be easily incorporated. The

resulting solution is equal to o rounded to the nearest non-negative integers. The

proof is in Section 5.7.2.

Theorem 5.2. [Minimum L2 Solution for order, integrality, and bound constraints]

Given o = minL2(õ, γO), let o′ denote the sequence derived from o in which each

element o[k] is rounded to the nearest integer in [L,U ]. Then o′ = minL2(õ, γ′O).

5.3.2 Utility analysis

We analyze O and show under what conditions inference can lead to improved

accuracy. To our knowledge, prior work in isotonic regression has only shown that

inference cannot increase error [58]. Before presenting a theoretical statement of such

conditions, we first give an illustrative example of how inference can reduce error for

an instance of the S query.

Example 8. Figure 5.3(a) shows a sequence S(I) along with a sampled s̃ and inferred

s. While the values in s̃ deviate considerably from S(I), s lies very close to the true

answer. In particular, for subsequence [1, 20], the true sequence S(I) is uniform
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(a) Example s̃ and s
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(b) Expected error

Figure 5.3. (a) Example of how inference reduces the error: s is more accurate than
s̃; (b) Error bars show expected error for s at each position, showing lower error in
the middle of the uniform subsequence.

and the constrained inference process effectively averages out the noise of s̃. At the

twenty-first position, which is a unique count in S(I), and constrained inference does

not refine the noisy answer, i.e., s[21] = s̃[21]. Figure 5.3(b) shows the expected error

per position; error is lowest in the middle of the uniform subsequence, and larger at

the ends.

Figure 5.3(a) suggests that error will be low for sequences in which many counts

are the same. To analyze the accuracy of the randomized query sequences proposed

in this work we quantify their error. Õ can be considered an estimator for the true

value O(I). We use the common Mean Squared Error as a measure of accuracy.

Definition 5.5 (Error). For a randomized query sequence Q̃ whose input is Q(I),

the error(Q̃) is
∑

i E(Q̃[i]−Q[i])2 Here E is the expectation taken over the possible

randomness in generating Q̃.

For example, error(S̃) =
∑

i E(S̃[i]−S[i])2 which simplifies to: nE[Lap(∆S/ε)
2] =

8n/ε2.

The following theorem quantifies the accuracy of O precisely. Let n and d denote

the number of values and the number of distinct values in O(I) respectively. Let

n1, n2, . . . , nd be the number of times each of the d distinct values occur in O(I) (thus∑
i ni = n). The proof appears in Section 5.7.3.

126



Theorem 5.3. [Utility of inference] There exist constants c1 and c2 independent of

n and d such that

error(O) ≤
d∑
i=1

∆2
O

ε2
(c1 log3 ni + c2)

Thus error(O) = O(
∆2

O

ε2
d log3 n) whereas error(Õ) = Θ(

∆2
O

ε2
n).

The above theorem shows that constrained inference can boost accuracy, and the

improvement depends on properties of the input O(I). In particular, if the number of

distinct elements d is 1, then error(O) = O(
∆2

O

ε2
log3 n), while error(Õ) = Θ(

∆2
O

ε2
n).

On the other hand, if d = n, then error(O) = O(
∆2

O

ε2
n) and thus both error(O) and

error(Õ) scale linearly in n. For many practical applications, d � n, which makes

error(O) significantly lower than error(Õ). In Sec. 5.5, experiments on real data

demonstrate that the error of O can be orders of magnitude lower than that of Õ.

Theorem 5.3 also demonstrates the existence of a ε-differentially private where the

magnitude of the error depends on the instance. While there are other algorithms

that add instance dependent noise, the privacy definition must be relaxed to allow

for the (very low probability) event that the output discloses too much about the

instance [102].

5.4 Inference algorithm

We now describe an efficient algorithm for computing o = minL2(õ, γO). A

straightforward approach for computing o is to construct a dynamic program based

on the solution given in Theorem 5.1. However, it requires linear time to compute

each o[k], making the total runtime quadratic, infeasible for large sequences. We

present an algorithm that requires only linear time.
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We first described this algorithm Hay et al. [52]. Since that time, we learned that

Algorithm 3 is in fact a variant of the Pool Adjacent Violators Algorithm (cf. Barlow

et al. [13]).

The design of the algorithms stems from the following observation. If õ violates

the ordering constraints, then there exists at least one adjacent pair that is out of

order. We can replace each of these observations with their average without affecting

the minimum L2 solution.

Lemma 5.1 (Solution Invariant). Let õ[k] and õ[k + 1] be any adjacent pair such

that õ[k] ≥ õ[k + 1]. Let õ′ be equivalent to õ except that õ′[k] = õ′[k + 1] =

(õ[k] + õ[k + 1])/2. Then minL2(õ, γO) = minL2(õ′, γO).

Proof. First, we show that o[k] = o[k + 1] whenever õ[k] ≥ õ[k + 1]. We know that

o[k] ≤ o[k + 1] because of the ordering constraints. Suppose o[k] < o[k + 1]. We

are free to increase o[k] or reduce o[k + 1] without violating the order constraints.

There are two cases. If õ[k + 1] < o[k + 1] then decreasing o[k + 1] reduces the

L2 distance, contradicting the fact that o has minimal L2 distance to õ. Otherwise,

we have õ[k] ≥ õ[k + 1] ≥ o[k + 1] > o[k] and increasing o[k] reduces L2 distance,

contradicting minimality. Either way, we reach a contradiction and therefore o[k] =

o[k + 1] whenever õ[k] ≥ õ[k + 1].

The above implies o[k] = o[k + 1] and o′[k] = o′[k + 1]. We now show that

o[k] = o′[k]. Let y denote the value of the solution at positions k and k + 1. Let us

write the objective function of (5.1) as a function of y. On input õ, the objective is

to minimize:

f(y) = (õ[k]− y)2 + (õ[k + 1]− y)2 +
∑

j 6∈{k,k+1}

(õ[j]− o[j])

and on input õ′ the objective is to minimize:
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g(y) = 2((õ[k] + õ[k + 1])/2− y)2 +
∑

j 6∈{k,k+1}

(õ[j]− o[j])

Algebraic manipulation reveals that g(y) = f(y) + c where c is constant with respect

to y. Therefore, both f and g are minimized at the same value of y and we have

shown that the minimal L2 solution is the same for õ and õ′.

The algorithm exploits this observation as follows. Starting at the end of the

sequence, it descends the sequence until an out-of-order pair is found, say õ[k] and

õ[k + 1]. This pair of observations is replaced with two observations equal to their

average. This may result in a new out-of-order pair – the revised õ′[k + 1] may

now be larger than õ[k + 2] – so the algorithm extends the average to include later

observations until it is less than or equal to the next observation in the sequence.

This entire subsequence of observations is replaced by a uniform subsequence equal

to their average. The algorithm then descends the sequence to find the next out-of-

order pair. When all pairs are in order, the algorithm has found the minimum L2

solution.

Algorithm 3 is a pseudocode implementation. The altered sequence is stored on a

stack, denoted S, where each item in the stack is a uniform subsequence, represented

by its length and value. In lines 2-16, the sequence is descended to identify out-of-

order observations. Line 4 checks whether the current observation is out-of-order. If

so, then the current observation is averaged with the observations stored in the stack

until the average is less than or equal to the next observation in the stack (lines 7-11),

and this average is placed on the stack (line 12). If it is not out-of-order, then the

current observation is simply pushed onto the stack (line 14). Lines 18-24 transform

the stack representation into a sequence.

The time and space complexity of Algorithm 3 is O(n). First, iterating through

the observations (lines 2-16) requires linear time: in each step, the run time of the

while loop (lines 7-11) is proportional to the number of items popped from S during
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Algorithm 3 An algorithm for computing o = minL2(õ, γO)

1: first← 〈length : 1, value : õ[n]〉
2: for k from n− 1 to 1 do
3: next← S.top()
4: if õ[k] > next.value then
5: sum← õ[k]
6: len← 1
7: while S 6= ∅ and sum

len
> next.value do

8: sum← sum+ next.value× next.length
9: len← len+ next.length

10: next← S.pop()
11: end while
12: S.push(〈length : len, value : sum〉)
13: else
14: S.push(〈length : 1, value : õ[k]〉)
15: end if
16: end for
17:

18: o← 〈〉
19: while S 6= ∅ do
20: next← S.pop()
21: for 1 to next.length do
22: o.append(next.value)
23: end for
24: end while
25: return o

this step. Since each iteration pushes at most one item onto the stack (line 12 or 14),

the total number of pops is at most n. Therefore the amortized cost of a single step

is O(1). Second, once the stack S is completed, reconstructing o (lines 18-24) takes

only linear time. In the worst-case the stack S can require O(n) space. However,

only the top of the stack is accessed during computations and the rest can be written

to disk as needed.

Theorem 5.4. [Correctness] Algorithm 3 computes minL2(õ, γO).

Proof. The proof follows from Lemma 5.1. The algorithm takes the input sequence

and constructs an alternate sequence (lines 4-11) such that, according to Lemma 5.1,

its minimum L2 solution is the same as the input sequence.
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At step k, let õk denote the alternate sequence õk = 〈õ[1], . . . , õ[k], õS[k+1], . . . , õS[n]〉

where õS[k+1, . . . , n] corresponds to the subsequence stored on the stack. The invari-

ant of the algorithm is that the minimum L2 solution for õk is equal to the minimum

L2 solution for õ.

Once k = 1, õ1 is stored entirely on the stack S and it must satisfy the ordering

constraints, as the while loop ensures that subsequences are only pushed onto the

stack if they obey the ordering constraints. Thus, the minimum L2 solution for õ1 is

itself and lines 18-24 simply transforms õ1 from its stack representation to a sequence

representation.

5.5 Experiments

The primary goal of the experiments is to assess the utility of our proposed tech-

niques for estimating unattributed histograms. We compare three strategies: the

baseline strategy of computing a conventional histogram and ignoring attribution,

plus our two techniques based on carefully formulated queries followed by inference

(S and F).

We compare the techniques through several means. Each technique produces

an unattributed histogram, which can be viewed as simply a collection of numbers,

and we can measure its distribution. For each technique, we measure how closely

its distribution resembles the true distribution (the distribution of an unattributed

histogram computed on the private data). We do this several ways: through visual

comparison, using metrics such as KS distance and Mallows distance, comparing to

sampling error, and by carrying out a common analyses on the distribution, such

as modeling. We fit the parameters of a power-law model to each distribution and

compare their fit.

Asking a conventional histogram and then ignoring attribution yields the same

answer as asking the S query. Therefore, in the experiments, S̃ represents both the
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input to the inference-based approach S and the strategy of asking a conventional

histogram. For most of the experiments, we focus on S and S̃ and but we compare S

with F in Section 5.5.2.

Our experiments show that S and F are very accurate techniques for computing

unattributed histograms under differential privacy. They are much more accurate

than the baseline strategy of using the Laplace mechanism to compute a conventional

histogram (S̃). The accuracy of S and F is not uniform across the entire distribution,

and in fact, the techniques behave differently, achieving highest accuracy in different

parts of the distribution.

In addition to studying utility, we also assess the scalability of the inference al-

gorithm. Our evaluation shows that inference is very fast and can scale to large

inputs.

Datasets We focus on one the most compelling application of unattributed his-

tograms: measuring the degree sequence of a network. We use data derived from

real social networks and apply our technique to estimating the network’s degree se-

quence. The datasets are derived from crawls of four online social networking sites:

Flickr (≈1.8M nodes), LiveJournal (≈5.3M), Orkut (≈3.1M), and YouTube

(≈1.1M) [95]. To the best of our knowledge, these are the largest publicly available

social network datasets. We also evaluate the technique synthetic network including

Random, a classical random graph, which has a Poisson degree distribution (λ = 10),

and Power, a random graph with a power-law degree distribution (α = 1.5).

5.5.1 Utility

We use two measures to measure the accuracy of the estimated distribution. First,

we use the Kolmogorov-Smirnoff (KS) statistic, a measure used to test whether two

samples are drawn from the same distribution. Let the empirical cumulative distribu-
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tion function (CDF) of sample X = X1, . . . , Xn be defined as FX(x) = 1
n

∑n
i=1 I[Xi ≤

x]. Then the KS statistic between X and Y is KS(X, Y ) = maxx |FX(x)− FY (x)|.

The KS statistic is insensitive to differences in the tails of the two distributions, so

we also use the Mallows distance (aka Earth Mover’s distance) to capture deviations

in the tail. Given samples X and Y each of size n, with X(i) denoting the ith largest

sample in X, the Mallows p-distance is

Mallowsp(X, Y ) =
( 1

n

n∑
i=1

∣∣X(i) − Y(i)

∣∣p )1/p

An example shows how Mallows distance is more sensitive than the KS statistic to the

tail of the distribution. Consider three graphs A, B, and C in which all nodes have

degree 1, except in B one node has degree 2 and in C one node has degree n−1. The

KS statistic between A and either B or C is O(n−1). The Mallows distance (p = 1)

between A and B is O(n−1), but between A and C, the Mallows distance is O(1),

capturing the difference between their largest degrees.

A visual comparison of distributions Figure 5.4 shows the true degree distribu-

tion along with the differentially private approximations, revealing that S produces a

very accurate approximation while S̃ does not. The distributions are represented using

the complementary CDF (CCDF), denoted CF and defined as CFX(x) = 1−FX(x).

Thus, each line shows what fraction of nodes have a degree greater than the given

value on the x-axis. Abusing notation, we use S(I), s̃, and s, which are all degree

sequences, to refer to their corresponding degree distributions. Thus, the line la-

beled S(I) refers to the true degree distribution and the lines labeled s̃ and s refer

to the degree distributions derived from differentially private sequences s̃ and s (here

ε = 0.01).

Figure 5.4 shows that noise added to produce s̃ substantially distorts the degree

distribution. In contrast, s is a much more accurate approximation of S(I). While
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Figure 5.4. Complementary CDFs of S(I), s̃ and s (top). Bias of S (bottom).

s exhibits some deviations from the true distribution, the deviations appear to os-

cillate around the true distribution. This demonstrates that, by exploiting the sort

constraints, constrained inference can filter out much of the noise in s̃.

Bias & variance analysis In addition to showing individual samples s̃ and s, we

also analyze the bias and variance of randomized algorithms S̃ and S. More precisely,

we measure bias of S as the expected difference between the CCDFs of S and S(I)

for each degree—i.e., biasS(x) = E[CFS(x)−CFS(I)(x)] where the expectation is over

the randomness in S. The variance of S is varS(x) = E[(CFS(x)−E[CFS(x)])2]. We

focus on S because it is evident from Figure 5.4 that S̃ exhibits substantial bias.

We evaluate the bias/variance of S empirically thru repeated sampling. The

results are shown in the bottom panel of Figure 5.4. The y-axis is the difference

in cumulative probability between S and S, CFS(x)−CFS(I)(x). The line shows the

average difference (bias) and the error bars depict the standard deviation from the

average (square root of variance). The line remains near 0, suggesting that S may be

an unbiased or nearly unbiased estimator of S(I). The variance peaks wherever the

CCDF exhibits steepest change.

Accuracy vs. ε Figures 5.5 and 5.6 show the relationship between ε and accuracy

for two measures of accuracy—KS in 5.5, Mallows in 5.6. We report the average
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Figure 5.5. Accuracy (KS distance) across varying ε.
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Figure 5.6. Accuracy (Mallows distance with p = 2) across varying ε.

accuracy over 10 trials (random samplings of s̃). In both figures, the parameter ε

varies along horizontal axis—smaller ε corresponds to greater privacy protection.

The results show that S is uniformly more accurate than S̃, across all datasets,

settings of ε, and both measures of accuracy. Furthermore, for low settings of ε

(stronger privacy), the difference in accuracy is greater, suggesting that the benefit

of constrained inference increases with privacy.

Also shown in the figure is the accuracy of an estimate based on random sampling

(10% of the degrees are sampled uniformly at random). While sampling does not

provide differential privacy, it can serve as a useful reference point. Sampling has

very low KS distance (as expected), but higher Mallows distance because random

sampling is unlikely to select the high degree nodes in the tail. In fact, sampling has

higher Mallows distance than S (except on Random, which is a distribution without

long tails). Since analysts often cannot obtain complete graphs and must rely on

samples, this result suggests that the additional error due to privacy can be small

compared to the sampling error.
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Figure 5.7. Size vs. Accuracy for fixed ε = 0.01.

Accuracy vs. size Figure 5.7 shows how accuracy of S improves as the graph

increases in size. The figure reports accuracy on Power graphs of varying size, from

10K to 5M nodes. The results show a clear separation between S̃ and S: as the size

of the graph increases, the accuracy of S̃ remains constant whereas the accuracy of

S improves. Thus, with S, larger datasets yield either more privacy (given a fixed

accuracy target, we can lower ε) or better utility (higher accuracy for fixed ε).

The accuracy of S̃ does not improve with graph size because random noise is

added to each degree, thus the average error per degree does not change with the

size of the graph. However, as Example 8 showed, S can be very accurate when the

degree sequence contains long subsequences of uniform degrees. As the graph size

increases, accuracy improves because the subsequences of uniform degree grow longer

(in a power-law graph, the expected proportion of nodes with a given degree is a

constant independent of n).

Modeling power-law distributions Our final experiment assesses how accurately

the analyst can estimate the parameters of a power-law model using S̃ or S. The

experiment is designed as follows. First, we sample a Power graph with parameters

θ = (α = 1.5, xmin = 10). We fix this as the true degree distribution. Then we

sample s̃ and s and derive corresponding distributions. To each of these three degree

distributions, we fit a power-law model using maximum likelihood [27]. The result is
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Figure 5.8. Accuracy of estimating power-law model using S̃, S.

three different estimates for the parameters θ, which we denote θ̂, θ̃, and θ respectively.

We are interested in comparing the model fit to the true degree distribution, θ̂, to

the models fit under differential privacy, θ̃ and θ.

The individual parameter estimates are shown in the middle and right plot of

Figure 5.8, but the leftmost plot provides a holistic assessment of the model fit. It

assesses model fit using the D statistic of Clauset et al. [27] which measures the KS

statistic on the power-law tail of the distribution. We consider two variants of this

measure: in one, the tail is defined by the estimate of xmin under s̃ or s; in the other,

xmin is based on the true xmin.

The plots reveal that using either S̃ or S, the analyst will estimate a model that

has a close fit to the tail of the original (power-law) distribution, when the tail is

defined by the xmin estimated on the noisy distribution. However, it also shows that

the size of the tail is under-estimated (the power-law behavior becomes apparent only

for large degrees). If we compare the models based on how well they fit the true tail of

the power-law distribution (solid lines of leftmost plot), we see that S̃ has considerable

distortion (note the log-scale) while S is reasonably accurate even at small ε.
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Figure 5.9. On Flickr, a comparison of S and F.

5.5.2 Utility comparison: S vs. F

We now compare the query strategy S with the alternative strategy F. The results

are shown in Figure 5.9. We show results on Flickr, but the results are representative

of the trends across all datasets. Figure 5.9(a) shows the complementary CDFs of a

typical sample at ε = 0.01. Both techniques approximate the true distribution quite

well; but F appears to be much more accurate, at least for the degrees shown (≤ 50).

This higher accuracy also reflected in the comparison of KS Distance: Figure 5.9(b)

shows that F has much lower KS distance than S. However, Figure 5.9(c) shows that

F is less accurate when it comes to Mallows distance. The higher Mallows distance

is due to the fact that F is not as accurate in the high degree nodes at the tail of the

degree distribution.

5.5.3 Scalability of inference

Figure 5.10 shows that the runtime of Algorithm 3 scales linearly and is extremely

fast. The left figure shows the runtime on the real datasets and the right figure

shows the runtime on even larger synthetic datasets of up to 200M nodes. In ad-

dition to Random and Power, we include two non-random synthetic distributions,

corresponding to the best- and worst-case inputs for the runtime of the algorithm.
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The best-case is Regular, a uniform degree distribution (all nodes have degree 10),

the worst-case is Natural, a distribution having one occurrence of each degree in

{0, . . . , n− 1}.

The small variation in runtime across datasets shows that it is not particularly

sensitive to the type of degree distribution. Furthermore, it is extremely fast: pro-

cessing a 200 million node graph takes less than 6 seconds. The efficiency of the

algorithm makes the constrained inference approach practical for large graphs.

5.6 Conclusion

We introduced the concept of an unattributed histogram and showed how to

compute it accurately under differential privacy. An unattributed histogram is in some

sense less informative than a conventional histogram, but nevertheless has several

practical applications. For example, the degree sequence of a graph is an instance

of an unattributed histogram. Its significance lies in the context of the analysis of

private data: under differential privacy, it is possible, using our technique, to estimate

an unattributed much more accurately than a conventional histogram.

Our technique for estimating an unattributed histogram satisfies differential pri-

vacy, scales to large inputs, and produces extremely accurate approximations. The
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guarantee of differential privacy means that, unlike approaches based on anonymiza-

tion, it provides extremely robust protection, even against powerful adversaries. Our

algorithm runs in linear time and is demonstrably fast. The output is accurate and

has provably bounded error that scales with the number of distinct frequencies of a

histogram, rather than the number of bins.

Our technique achieves high accuracy by post-processing the noisy output of the

Laplace mechanism, a differentially private mechanism for answering an arbitrary

query sequence. The fact that we are able to reduce error comes from slack in the

system: the Laplace mechanism adds more noise than necessary to achieve differential

privacy. While it adds independent and identically distributed noise to each answer

in the sequence, intuitively, it seems that less noise is needed in the middle of uniform

subsequences, because changes in the database can only induce changes at the ends

of uniform subsequences. Our inference mechanism effectively reduces noise in the

regions of uniformity, while the noise at the regions’ ends remains sufficiently large

to protect privacy.

A natural goal is to describe directly the improved noise distributions implied

by our inference technique, and build a privacy mechanism that samples from it.

This could, in theory, avoid the inference step altogether. But it is seems quite

difficult to discover, describe, and sample these improved noise distributions, which

will be highly dependent on a particular query of interest. Our approach suggests that

constraints and statistical inference can be an effective path to discovering new, more

accurate noise distributions that satisfy differential privacy. As a practical matter, our

approach does not necessarily burden the analyst with the inference process because

the server can implement the post-processing step. In that case it would appear to

the analyst as if the server was sampling from the improved distribution.

We proposed two query strategies for unattributed histograms, S and F, and

showed experimentally how each is impacted by the added noise: with S, the largest

140



distortion occurs at low degrees, with F, the largest distortion occurs in the tail of

high degrees. A successful strategy may be to ask both S and F, and combine the

answers using inference. Asking two queries requires increasing the magnitude of the

noise, but the accuracy boost from inference may offset the extra noise.

Finally, given the importance of the degree sequence to the structure of a graph,

we believe that our techniques are a critical first step towards the ultimate goal of

publishing synthetic graphs that are both accurate and ensure differential privacy.

5.7 Proofs

5.7.1 Proof of Theorem 5.1

We first restate the theorem below.

Theorem 5.1. [Minimum L2 Solution for ordering constraints] For a given õ, let

õ[i, j] denote the subsequence 〈õ[i], õ[i + 1], . . . , õ[j]〉 and M [i, j] the average of this

subsequence: M [i, j] =
∑j

k=i õ[k]/(j − i + 1). For each position k, let Lk and Uk be

defined as

Lk = min
k≤j≤n

max
1≤i≤n

M [i, j]

and

Uk = max
1≤i≤k

min
i≤j≤n

M [i, j]

The minimum L2 solution, o = minL2(õ, γO), is unique and is equal to o[k] = Lk =

Uk.

Proof. In the proof, we abbreviate the notation and implicitly assume that the range

of i is [1, n] or [1, j] when j is specified. Similarly, the range of j is [1, n] or [i, n] when

i is specified.
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We start with the easy part, showing that Uk ≤ Lk. Define an n × n matrix Ak

as follows:

Akij =


M [i, j] if i ≤ j

∞ if j < i ≤ k

−∞ otherwise

Then minj maxiA
k
ij = Lk and maxi minj A

k
ij = Uk. In any matrix Ak, maxi minj A

k
ij ≤

minj maxiA
k
ij: this is a simple fact that can be checked directly, or see [103], hence

Uk ≤ Lk.

We show next that if o is the minimum L2 solution, then Lk ≤ o[k] ≤ Uk. If

we show this, then the proof of the theorem is completed, as then we will then have

o[k] = Lk = Uk. The proof relies on the following lemma.

Lemma 5.2. Let o be the minimum L2 solution. Then (i) o[1] ≤ U1, (ii) o[n] ≥ Ln,

(iii) for all k, min(o[k + 1],maxiM [i, k]) ≤ o[k] ≤ max(o[k − 1],minjM [k, j]).

The proof of the lemma appears below, but now we use it to complete the proof

of Theorem 5.1. First, we show that o[k] ≤ Uk using induction on k. The base case

is k = 1 and it is stated in the lemma, part (i). For the inductive step, assume

o[k − 1] ≤ Uk−1. From (iii), we have that

o[k] ≤ max(o[k − 1],min
j
M [k, j])

≤ max(Uk−1,min
j
M [k, j]) = Uk

The last step follows from the definition of Uk. A similar induction argument shows

that o[k] ≥ Lk, except the order is reversed: the base case is k = n and the inductive

step assumes o[k + 1] ≥ Lk+1.

The only remaining step is to prove the lemma.
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of Lemma 5.2. For (i), it is sufficient to prove that o[1] ≤ M [1, j] for all j ∈ [1, n].

Assume the contrary. Thus there exists a j such that for o[1] > M [1, j]. Let δ =

o[1] −M [1, j]. Thus δ > 0. Further, for all i, denote δi = o[i] − o[1]. Consider the

sequence o′ defined as follows:

o′[i] =

 o[i]− δ if i ≤ j

o[i] otherwise

It is obvious to see that since o is a sorted sequence, so is o′.

We now claim that ||o′ − õ||2 < ||o − õ||2. For this note that since the sequence

o′[j + 1, n] is identical to the sequence o[j + 1, n], it is sufficient to prove ||o′[1, j] −

õ[1, j]||2 < ||o[1, j] − õ[1, j]||2. To prove that, note that ||o[1, j] − õ[1, j]||2 can be

expanded as

||o[1, j]− õ[1, j]||2 =

j∑
i=1

(o[i]− õ[i])2 =

j∑
i=1

(o[1] + δi − õ[i])2

=

j∑
i=1

(M [1, j] + δ + δi − õ[i])2

Suppose for a moment that we fix M [1, j] and δi’s, and treat ||o[1, j]− õ[1, j]||2 as a

function f over δ. The derivative of f(δ) is:

f ′(δ) = 2

j∑
i=1

(M [1, j] + δ + δi − õ[i])

= 2
(
jM [1, j]−

j∑
i=1

õ[i]
)

+ 2jδ + 2

j∑
i=1

δi

= 2jδ + 2

j∑
i=1

δi

Since δi ≥ 0 for all i, then the derivative is strictly greater than zero for any δ > 0,

which implies that f is a strictly increasing function of δ and has a minimum at
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δ = 0. Therefore, ||o[1, j] − õ[1, j]||2 = f(δ) > f(0) = ||o′[1, j] − õ[1, j]||2. This is a

contradiction since it was assumed that o was the minimum solution. This completes

the proof for (i).

For (ii), the proof of o[n] ≥ maxiM [i, n] follows from a similar argument: if

o[n] < M [i, n] for some i, define δ = M [i, n]− o[n] and the sequence o′ with elements

o′[j] = o[j] + δ for j ≥ i. Then o′ can be shown to be a strictly better solution than

o, proving (ii).

For the proof of (iii), we first show that o[k] ≤ max(o[k−1],minjM [k, j]). Assume

the contrary, i.e. there exists a k such that o[k] > o[k − 1] and o[k] > minjM [k, j].

In other words, we assume there exists a k and j such that o[k] > o[k − 1] and

o[k] > M [k, j]. Denote δ = o[k] −max(o[k − 1],M [k, j]). By our assumption above,

δ > 0. Define the sequence

o′[i] =

 o[i]− δ if k ≤ i ≤ j

o[i] otherwise

Note that by construction, o′[k] = o[k]−δ = o[k]−(o[k]−max(o[k−1],M [k, j])) =

max(o[k − 1],M [k, j]). It is easy to see that o′ is sorted (indeed the only inversion

in the sort order could have occurred if o′[k − 1] > o′[k], but doesn’t as o′[k − 1] =

o[k − 1] ≤ max(o[k − 1],M [k, j]) = o′[k]).

Now a similar argument as in the proof of (i) for the sequence õ[k, j], yields that

the error ||o′[k, j]− õ[k, j]||2 < ||o[k, j]− õ[k, j]||2. Thus ||o′ − õ||2 < ||o′ − õ||2 and o′

is a strictly better solution than o. This yields a contradiction as o is the minimum

L2 solution. Hence o[k] ≤ max(o[k − 1],minjM [k, j]).
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A similar argument in the the reverse direction shows that o[k] ≥

min(ok+1,maxiM [i, k]) completing the proof of (iii).

5.7.2 Proof of Theorem 5.2

We prove the following result.

Theorem 5.2. [Minimum L2 Solution for order, integrality, and bound constraints]

Given o = minL2(õ, γO), let o′ denote the sequence derived from o in which each

element o[k] is rounded to the nearest integer in [L,U ]. Then o′ = minL2(õ, γ′O).

Lemma 5.3. If ok = ok+1 = . . . = oj∗ = M [k, j∗], for any k ≤ i ≤ j∗, M [i, j∗] ≤

M [k, j∗].

Proof. According to Theorem 5.1, M [k, j∗] = minj≥kM [k, j]. If there exists an k ≤

i∗ ≤ j∗ such that M [i∗, j∗] > M [k, j∗], we have M [k, i∗] < M [k, j∗], which comes to a

contradiction.

Theorem 5.5 (Minimum L2 with boundary constraints). Let {γS, [L,U ]} be the

constraint set γS augmented with the additional constraint that each count be in range

[L,U ]. Given o = minL2((, õ), γS), let oL,U denote the sequence derived from o in

which

oL,Uk =


L ok ≤ L

ok L < ok < U

U ok ≥ U

Then oL,U = minL2((, õ), {γS, [L,U ]}).

Proof. Without loss of generality, here we just consider the case L = −∞ and prove

it by contradiction. Assume that o′ = minL2((, õ), {γS, [L,U ]}). Let k0 = mink{ok ≥

U}. Since ok0 ≥ U > ok0−1, according to Theorem 5.1, ok0 = minj≥k0 M [k0, j]. If

o′k0 < U , let k1 = maxk{o′k = o′k0}. Consider function f(x) =
∑k1

k=k0
(õk − x)2,
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f ′(x) = 2(k1 − k0 + 1)(x −M [k0, k1]). Since o′k0 < o′k1+1 ≤ U ≤ ok0 ≤ M [k0, k1], we

know
k1∑

k=k0

(õk − o′k0)
2 = f(o′k0) > f(o′k1+1) =

k1∑
k=k0

(õk − o′k1+1)2,

which contradicts with the fact that o′ = minL2((, õ), {γS, [L,U ]}). Therefore o′k0 =

U .

Since o′k0 = U and ok0−1 < U , from the definition of o and o′, we know both

o1, o2, . . . , ok0−1 and o′1, o
′
2, . . . , o

′
k0−1 are the minimun L2 solution of õ1, õ2, . . . , õk0−1

that satisfies the constraint set {γS, [−∞, U ]}. Since o is unique, o1, o2, . . . , ok0−1 and

o′1, o
′
2, . . . , o

′
k0−1 are identical. Above all,

o−∞,U = minL2((, õ), {γS, [−∞, U ]}).

According to Theorem 5.5, one can easily get the following corollaries:

Corollary 2. Let L ≤ U1 ≤ U2. If oL,U1
n < U1, oL,U1 = oL,U2.

Corollary 3. Let L1 ≤ L2 ≤ U . If oL2,U
1 > L2, oL1,U = oL2,U .

Now we can further generate Theorem 5.5 to integer case.

Theorem 5.6 (Minimum L2 with integer and boundary constraints). Given integer

L,U . Let {γS, [L,U ], int} be the constraint set {γS, [L,U ]} augmented with the addi-

tional constraint that each count be an integer. Given oL,U = minL2((, õ), {γS, [L,U ]}),

let ŝL,U denote the sequence derived from oL,U in which each element oL,Uk is rounded

to its nearest integer. Then ŝL,U is a minimum L2 solution that satisfies the constraint

set {γS, [L,U ], int}.

Proof. Proof by induction over n. The conclusion is trivial for n = 1. Suppose the

theorem hold for all n ≤ k, and consider that n = k + 1.
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Case 1: oL,U isn’t a constant sequence, which means there exists 1 ≤ j∗ ≤

k such that L ≤ oL,Uj∗ < oL,Uj∗+1 ≤ U . Let’s consider oL,U as two subsequences

oL,U1 , oL,U2 , . . . , oL,Uj∗ and oL,Uj∗+1, o
L,U
j∗+2, . . . , o

L,U
n .

Now let’s consider the first subsequence. Since the subsequence oL,U1 , oL,U2 , . . . , oL,Ui

is the minimum L2 solution of õ1, õ2, . . . , õi that satisfies the constraint set {γS, [L, õi+1]},

according to Corollary 2, it is also the minimum L2 solution of õ1, õ2, . . . , õi that sat-

isfies the constraint set {γS, [L,U ]}. Therefore, according to the induction hypothe-

sis, by rounding each element of oL,U1 , oL,U2 , . . . , oL,Ui to its nearest integer, which are

ŝL,U1 , ŝL,U2 , . . . , ŝL,Ui , we get a minimum L2 solution of õ1, õ2, . . . , õi that satisfies the

constraint set {γS, [L,U ], int}.

Similarly, ŝL,Ui+1 , ŝ
L,U
i+2 , . . . , ŝ

L,U
k+1 is a minimum L2 solution of õi+1, õi+2, . . . , õk+1 that

satisfies the constraint set {γS, [L,U ], int}. Thus ŝL,U is a minimum L2 solution that

satisfies the constraint set {γS, [L,U ], int}.

Case 2: Otherwise, oL,U is a constant sequence. If they all equal to an integer (i.e.

L, U or in case that M [1, n] is an integer), then the conclusion is obvious. Otherwise,

let’s consider a minimum L2 solution ŝ1, ŝ2, . . . , ŝn that satisfies the constraint set

{γS, [L,U ], int}. If ŝ1 < M [1, n], let i1 = maxi{ŝi = ŝ1}. Since M [1, i1] ≥ M [1, n],

to minimize
∑i1

i=1(õi − ŝi)
2, we know ŝ1 > bM [1, n]c. Here bxc is the maximum

integer that smaller than or equal to x. Otherwise we can assign ŝ1 = . . . = ŝi1 =

min{bM [1, n]c, ŝi1+1} to get a even smaller L2 solution. Similarly, we can prove that

if ŝn > M [1, n], ŝn ≤ dM [1, n]e. Here dxe is the minimum integer that larger than

or equal to x. Above all, we know bM [1, n]c ≤ ŝ1, ŝ2, . . . , ŝn ≤ dM [1, n]e. Let

m = M [1, n]− bM [1, n]c, remind i1 = maxi{ŝi = ŝ1}. Therefore:
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n∑
i=1

(õi − ŝi)2 (5.3)

=

i1∑
i=1

(õi −M [1, n] +m)2 +
n∑

i=i1+1

(õi −M [1, n]− (1−m))2

=
n∑
i=1

(õi −M [1, n])2 (5.4)

+ 2mi1(M [1, i1]−M [1, n]) + 2(1−m)(n− i1)(M [1, n]−M [i1 + 1, n])

+ i1m
2 + (n− i1)(1−m)2 (5.5)

According to Lemma 5.3 and Theorem 5.1, M [i, n] ≤ M [1, n] ≤ M [1, i]. Thus (5.5)

becomes

(5.5) ≥
n∑
i=1

(õi −M [1, n])2 + i1m
2 + (n− i1)(1−m)2

≥
n∑
i=1

(õi −M [1, n])2 + nmin{m2, (1−m)2} (5.6)

Notice that for any t,

n∑
i=1

(õi −M [1, n] + t)2 =
n∑
i=1

(õi −M [1, n])2 + nt2 + t
n∑
i=1

(õi −M [1, n])

=
n∑
i=1

(õi −M [1, n])2 + nt2 + t(
n∑
i=1

õi − nM [1, n])

=
n∑
i=1

(õi −M [1, n])2 + nt2

we know

(5.6) = min{
n∑
i=1

(õi −M [1, n])2 + nm2,

n∑
i=1

(õi −M [1, n])2 + n(m− 1)2}

= min{
n∑
i=1

(õi −M [1, n] +m)2,

n∑
i=1

(õi −M [1, n] + (m− 1))2}

= min{
n∑
i=1

(õi − (M [1, n]−m))2,

n∑
i=1

(õi − (M [1, n]−m+ 1))2}
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Thus, assigning ŝi to the nearest integer of M [1, n] gives a minimum L2 solution.

Above all, we finish the induction and the theorem is proved.

In particular, with the boundary condition [0, n − 1], Theorem 5.6 becomes the

Theorem 5.2.

5.7.3 Proof of Theorem 5.3

We first restate the theorem below. Denote n and d as the number of values and

the number of distinct values in O(I) respectively. Let n1, n2, . . . , nd be the number

of times each of the d distinct values occur in O(I) (thus
∑

i ni = n).

Theorem 5.3. [Utility of inference] There exist constants c1 and c2 independent of

n and d such that

error(O) ≤
d∑
i=1

∆2
O

ε2
(c1 log3 ni + c2)

Thus error(O) = O(
∆2

O

ε2
d log3 n) whereas error(Õ) = Θ(

∆2
O

ε2
n).

Before showing the proof, we prove the following lemma.

Lemma 5.4. Let o = O(I) be the input sequence. Call a translation of o the operation

of subtracting from each element of o a fixed amount δ. Then error(O[i]) is invariant

under translation for all i.

Proof. Denote Pr(o|o) (Pr(õ|o)) the probability that o (õ) is output on the input

sequence o. Denote o′, o′, and õ′ the sequence obtained by translating o, o, and õ by

δ, respectively.

First observe that Pr(õ|o) = Pr(õ′|o′) as õ and õ′ are obtained by adding the

same Laplacian noise to o and o′, respectively. Using Theorem 5.1 (since all Uk’s and

Lk’s shift by δ on translating õ by delta), we get that if o is the minimum L2 solution

given õ, then o′ is the minimum L2 solution given õ′. Thus, Pr(o|o) = Pr(o′|o′) for

149



all sequences o. Further, since o[i] and o′[i] yield the same L2 error with o[i] and

o′[i] respectively, we get that the expected error(O[i]) is same for both inputs o and

o′.

Lemma 5.5. Let X be any positive random variable that is bounded (limx→∞ xPr(X >

x) exists). Then

E(X) ≤
∫ ∞

0

Pr(X > x)dx

Proof. The proof follows from the following chain of equalities.

E(X) =

∫ ∞
0

x
∂

∂x
(Pr(X ≤ x))

= −
∫ ∞

0

x
∂

∂x
(Pr(X > x))

= −[xPr(X > x)]∞0 +

∫ ∞
0

(Pr(X ≤ x)− 1)dx (by parts)

= − lim
x→∞

xPr(X > x) +

∫ ∞
0

Pr(X > x)dx

≤
∫ ∞

0

Pr(X > x)dx

Here the last equality follows as X is bounded and therefore the limit exists and

is positive. This completes the proof.

We next state a theorem that was shown in [25].

Theorem 5.7 (Theorem 3.4 [25]). Suppose that X1, X2, . . . , Xn are independent

random variables satisfying Xi ≤ E(Xi) + M , for 1 ≤ i ≤ n. We consider the sum

X =
∑n

i=1Xi with expectation E(X) =
∑n

i=1E(Xi) and V ar(X) =
∑n

i=1 V ar(Xi).

Then, we have

Pr(X ≥ E(X) + λ) ≤ e
−λ2

2(V ar(X)+Mλ/3)
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For a random variable X, denote I[X] the indicator function that X ≥ 0 (thus

I[X] = 1 if X ≥ 0 and 0 otherwise). Using Theorem 5.7, we prove the following

lemma.

Lemma 5.6. Suppose i, j are indices such that for all k ∈ [i, j], o[k] ≤ 0. Then there

exists a constant c such that for all τ ≥ 1 the following holds.

Pr

(
M̃ [i, j]2I[M̃ [i, j]] ≥ c(

log2 ((j − i+ 1)τ)

(j − i+ 1)ε2
)

)
≤ 1

(j − i+ 1)2τ 2

Proof. We apply Theorem 5.7 on õ[k] for k ∈ [i, j]. First note that E(õ[k]) = o[k] ≤ 0.

Further V ar(õ[k]) = 2
ε2

as õ[k] is obtained by adding Laplace noise to o[k] which has

this variance. We also know that õ[k] ≥ M + o[k] happens with probability at most

e−εM/2.

For simplicity, call n to be j − i + 1. Denoting X =
∑

k∈[i,j] õ[k], we see that

E(X) ≤ 0 and V ar(X) = 2n
ε2

. Further, set M = 3 log (nτ)/ε. Denote B the event

that for some k, õ[k] ≥ M + o[k]. Thus Pr(B) ≤ ne−εM/2 ≤ 1
2n2τ3

. If B does not

happen, we know that õ[k] ≤ M + o[k] for all k ∈ [i, j]. Thus we can then apply

Theorem 5.7 to get:

Pr (X ≥ E(X) + λ) ≤ e
−λ2

2(2n/ε2+λ log (nτ)/ε) + Pr(B)

= e
−λ2

2(2n/ε2+λ log (nτ)/ε) +
1

2n2τ 3

Setting λ = 8
ε

√
n log (nτ) gives us that

Pr

(
X ≥ E(X) +

8

ε

√
n log (nτ)

)
≤ 1

n2τ 2

Since E(X) ≤ 0, we get

Pr

(
X ≥ 8

ε

√
n log (nτ)

)
≤ 1

n2τ 2
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Also we observe that M̃ [i, j] = X/n, which yields

Pr

(
M̃ [i, j] ≥ 8 log (nτ)√

nε

)
≤ 1

n2τ 2

Finally, observe that M̃ [i, j] ≤ c implies that M̃ [i, j]2I[M̃ [i, j]] ≤ c2. Thus we get

Pr

(
M̃ [i, j]2I[mm[i, j]] ≥ 64 log2 (nτ)

nε2

)
≤ 1

n2τ 2

Putting n = j − i+ 1 and using c = 64 gives us the required result.

Now we can give the proof of Theorem 5.3. In the proof we assume without loss

of generality that ∆O = 1.

of Theorem 5.3. The proof of error(Õ) = Θ(n/ε2) is obvious since:

error(Õ) =
n∑
k=1

error(õ[i]) = n(
2

ε2
)

In the rest of the proof, we shall show bound error(O). Let o = O(I) be the

input sequence. We know that o consists of d distinct elements. Denote or as the rth

distinct element of o. Also denote [lr, ur] as the set of indices corresponding to or,

i.e. ∀i∈[lr,ur]o[i] = or and ∀i/∈[lr,ur]o[i] 6= or. Let M [i, j] record the mean of elements in

o[i, j], i.e. M [i, j] =
∑j

k=i o[k]/(i− j + 1).

To bound error(O), we shall bound error(O[i]) separately for each i. To bound

error(O[i]), we can assume W.L.O.G that s[i] is 0. This is because if o[i] 6= 0,

then we can translate the sequence o by o[i]. As shown in Lemma 5.4 this preserves

error(O[i]), while making o[i] = 0.

Let k ∈ [lr, ur] be any index for the rth distinct element of o. By definition,

error(O[k]) = E(o[k] − o[k])2 = E(o[k]2) (as we can assume W.L.O.G o[k] = 0).
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From Theorem 5.1, we know that o[k] = Uk. Thus error(O[k]) = E(U2
k ). Here we

treat Uk = maxi≤kminjM̃ [i, j] as a random variable. Now by definition of E, we have

E(U2
k ) = E(U2

k I[Uk]) + E(U2
k (1− I[Uk])) = A+B (say)

We shall bound A and B separately. For bounding A, denote Uk = maxi≤kM̃ [i, ur].

It is apparent that Uk ≥ Uk and thus U2
k I[Uk] ≥ U2

k I[Uk]. To bound A, we observe

that

A = E(U2
k I[Uk]) ≤ E(U2

k I[Uk])

Further, since Uk = maxi≤kM̃ [i, ur], we know that U2
k I[Uk] = maxi≤kM̃ [i, ur]

2I[M̃ [i, ur]].

Thus we can write:

A ≤ E(U2
k I[Uk]) = E

(
maxi≤kM̃ [i, ur]

2I[M̃ [i, ur]]
)

Let τ > 1 be any number and c be the constant used in Lemma 5.6. Let us denote

ei the event that:

M̃ [i, ur]
2I[M̃ [i, ur]] ≥ c(

log2 ((ur − i+ 1)τ)

(ur − i+ 1)ε2
)

We can apply lemma 5.6 to compute the probability of ei as o[j] ≤ 0 for all

j ≤ ur (as we assumed W.L.O.G s[k] = 0). Thus we get Pr(ei) ≤ 1
(ur−i+1)2τ2

.

Define e = ∨uri=1ei. Then Pr(e) ≤
∑ur

i=1 Pr(ei) = 2/τ 2 (as
∑ur

i=1 1/i2 ≤ 2). If the

event e does not happen, then it is easy to see that
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U2
k I[Uk] = maxi≤kM̃ [i, ur]

2I[M̃ [i, ur]]

≤ c(
log2 ((ur − k + 1)τ)

(ur − k + 1)ε2
)

Thus with at least probability 1 − 2/τ 2 (which is Pr(¬e)), we get U2
k I[Uk] is

bounded as above. This yields that there exist constants c1 and c2 such that E(U2
k I[Uk]) ≤

c1 log2 (ur−k+1)+c2
(ur−k+1)ε2

. The proof is by the application of Lemma 5.5 (as Uk is bounded)

and a simple integration over τ ranging from 1 to ∞. Finally we get that A ≤

E(U2
k I[Uk]) ≤

c1 log2 (ur−k+1)+c2
(ur−k+1)ε2

.

Recall that B = E(U2
k (1−I[Uk])). We can write B as E(L2

k(1−I[Lk])) as Lk = Uk.

Using the exact same arguments as above for Lk but on sequence −O yields that

B ≤ c1 log2 (k−lr+1)+c2
(k−lr+1)ε2

.

Finally, we get that O[k] = A+B which is less than c1 log2 (ur−k+1)+c2
(ur−k+1)ε2

+ c1 log2 (k−lr+1)+c2
(k−lr+1)ε2

.

To obtain a bound on the total error(O).

error(O) =
d∑
r=1

∑
k∈[lr,ur]

error(O[k])

≤
d∑
r=1

∑
k∈[lr,ur]

c1 log2 (ur − k + 1) + c2

(ur − k + 1)ε2
+

d∑
r=1

∑
k∈[lr,ur]

c1 log2 (k − lr + 1) + c2

(k − lr + 1)ε2

≤
d∑
r=1

c1 log3 (ur − lr + 1) + c2

ε2

Finally noting that ur − lr + 1 is just nr, the number of occurrences of or in o,

we get error(O) =
∑

r
c1 log3 nr+c2

ε2
= O(d log3 n/ε2). This completes the proof of the

theorem.
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CHAPTER 6

ESTIMATING OTHER STATISTICS UNDER STRONG
PRIVACY

While being able to compute the degree distribution under differential privacy is an

important result, it is only one of many network properties that an analyst may wish

to measure. Network analysis is an often mentioned goal in the differential privacy

literature, but relatively few concrete results exist that demonstrate the feasibility of

differential privacy for network data. Below we highlight a few results and discuss

some of the challenges.

As described previously (Chapter 2), the Laplace mechanism can be used to ap-

proximately answer any query or query sequence. The accuracy of the answer depends

the query’s sensitivity, with lower sensitivity yielding greater accuracy. Some analy-

ses of networks can be computed with queries that are low sensitivity. For example,

one measure of network resiliency can be approximated with a low sensitivity query.

The query asks how many edges must be removed until the network becomes, say,

disconnected, and it has a sensitivity of one [38]. In addition, for weighted graphs

with edge weights in [0, 1], the weight of a minimum edge-cut or a minimum spanning

tree are both low-sensitivity queries [38].

However, the fact that an analysis can be computed using a query, or sequence

of queries, with low sensitivity does not necessarily imply that the analysis will be

accurate under differential privacy. Our investigation of the degree distribution is

an illustration of this point. The query sequences described earlier – C, S, F –

all have low sensitivity. Yet because the query sequence is linear in the size of the
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graph, the small amount of noise on individual queries accumulates, resulting in severe

distortion of the degree distribution. To achieve acceptable accuracy, we had to design

query strategies where constraints held between query answers and then exploit those

constraints to reduce noise.

While these are promising results, open questions remain about the accuracy

obtainable for many common network analyses. It is not known if the strategy used for

the degree sequence can be applied to other high-dimensional degree statistics, such

as the paired in-out degree sequence of the p1 model [56] or degree correlations [87].

For other important analyses, the prospects for accurate analysis under differ-

ential privacy seem poor. Computations such as transitivity, clustering coefficient,

centrality, and path-lengths involve joins on the edge table. It is not hard to show

that the sensitivity of such statistics is extremely high. We give illustrative examples

for two counting queries: the number of triangles (i.e., cycles of length 3) and the

number of paths of length two. Among other things, these two statistics can be used

to compute transitivity.

Figure 6.1 shows two graphs that correspond to worst-case inputs for the two

respective queries. In Figure 6.1(a), when the edge (Bob,Alice) is present, there are

m − 2 triangles; when it is absent, there are 0 triangles. Therefore the sensitivity

of the query that returns the number of triangles is at least m − 2 where m is the

number of nodes in the graph. Therefore, using the Laplace mechanism, it would be

necessary to add Laplace noise with scale O(m/ε). Since real graphs are typically

sparse, the total number of triangles is typically at most O(m), so the large noise

renders the answer useless. Similarly, Figure 6.1(b) shows the sensitivity of counting

the number of length two paths is also O(m).

These are not limitations of the Laplace mechanism, specifically, but of any dif-

ferentially private mechanism. This is formalized in the following proposition which

says that any ε-differentially private algorithm will likely have error at least ∆Q/2 on
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Alice

Bob

(b) Length 2 paths

Figure 6.1. Example graphs illustrating the high sensitivity of triangle and path
queries.

some inputs. The probability of this event depends on ε, but it is non-negligible for

reasonable ε.

Proposition 6.1 (Limits of differential privacy). Let Q be any query sequence and

A be any ε-differentially private algorithm. There exists inputs I such that with

probability at least e−ε

1+e−ε
,

‖Q(I)−A(Q(I))‖1 ≥
∆Q

2

Proof. Let I and I ′ be worst-case neighboring instances such that ‖Q(I)−Q(I ′)‖1 =

∆Q. Let OI be the set of outputs “near” I, meaning for any o ∈ OI , we have

‖o−Q(I)‖1 < ∆Q/2. Let δ be such that for all I, Pr[A(I) ∈ OI ] ≥ 1− δ. Therefore

we have the following chain of inequalities:

δ ≥ Pr[A(I) 6∈ OI ] ≥ Pr[A(I) ∈ OI′ ] ≥ e−εPr[A(I ′) ∈ OI′ ] ≥ e−ε(1− δ)

which implies δ ≥ e−ε

1+e−ε
.

157



The reason for these limits is that differential privacy is a guarantee under two

worst-case assumptions. Recall from Section 2.2 the semantic interpretation of dif-

ferential privacy as a bound on the ratio between an adversary’s prior and posterior

beliefs. The first assumption is that the adversary is nearly omniscient and has com-

plete knowledge of the private data except for one tuple (or, more generally, one

differential object). Second, the guarantee holds for all inputs, regardless of how

likely they are to occur in practice. The combined result is that for an analysis like

the number of triangles, it is possible to construct a graph where the number of tri-

angles depends entirely on a single edge. On this input, against an adversary who

knows every edge save this one, it is impossible to simultaneously produce accurate

answers and prevent the adversary from learning about the edge.

Circumventing these limitations requires addressing at least one of these worst-

case assumptions. In Rastogi et al. [105], we propose an approach based on relaxing

the former assumption; Nissim et al. [102] propose an approach that is based on

addressing the latter assumption. We briefly describe each approach, and summarize

their application to network statistics.

The basic idea behind Nissim et al. [102] is that while privacy should hold on all

inputs, the accuracy of the query answer may depend on the instance. When the input

is a worst-case input, accuracy is necessarily low. But when the input is “far” from a

worst-case input, it is possible to achieve much higher accuracy. A tempting solution

is to use the local sensitivity of the given input I—i.e., the maximum change between

Q(I) and Q(I ′) for any I ′ ∈ nbrs(I). However, this can leak information because

the local sensitivity itself can change substantially between neighboring instances and

thus an approach that uses it directly would fail to satisfy differential privacy. Their

approach is based on smooth sensitivity, an upper bound on local sensitivity that

varies smoothly over the space of possible databases. Using the Laplace mechanism

with smooth sensitivity in place of global sensitivity satisfies (ε, δ)-differential pri-
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vacy. The weakening to (ε, δ)-differential privacy is necessary because the smooth

sensitivity can differ on two neighboring instances (albeit by a bounded amount) and

so some outputs become much more likely on one instance as compared to its neigh-

bor; however, the probability of observing such an output is very rare (δ is typically

exponentially small in n).

Nissim et al. [102] apply the smooth sensitivity idea to the problem of computing

the number of triangles. They show how to efficiently compute the smooth sensitivity

for a given graph and also show that random graphs are likely to have low smooth

sensitivity. Since the smooth sensitivity is bounded below by the local sensitivity, a

particular input will have low smooth sensitivity only if it has low local sensitivity. For

the triangle query, local sensitivity is low when high degree nodes share few common

neighbors. In real-world graphs, this may not be the case, and so the local sensitivity

(and therefore the smooth sensitivity) may be high.

In Rastogi et al. [105], we designed an alternative approach by “relaxing” differ-

ential privacy. Recall that differential privacy implies protection against adversaries

who are practically omniscient. We considered more realistic adversaries who have

greater uncertainty about the input. We developed an algorithm that is a variant on

the Laplace mechanism, however it is not differentially private. Instead it satisfies

adversarial privacy, a definition based on bounding the prior and posterior beliefs

of adversaries within a restricted class. Against adversaries who know a small sub-

graph (of size O(log n)) and whose prior belief about the rest of the graph is based

on a sparse random graph model, it is possible to accurately release the number of

triangles. In addition, several other statistics can be accurately released, including

queries about path lengths, cycles, and cliques and other subgraph motifs. Error

scales poly-logarithmically with the size of the graph. Details are provided in [105].

Finally, another potential solution for high sensitivity queries is to reformulate

them into lower sensitivity queries. High sensitivity means that for some networks,
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the change of a single edge can profoundly alter the query answer. Given that network

data is often incomplete and noisy, analysts need measures that are robust to minor

perturbations of network structure. In fact, there has been some work looking at

how some common analyses are affected by small perturbations [59]. The connection

between robust statistics and differentially private algorithms has been explored, but

existing results are limited to high sensitivity queries of tabular data [37].

Despite the poor prospects for some network analyses, it is nevertheless impor-

tant to identify analyses that can be accurately computed under differential privacy,

such as the degree distribution. Differential privacy is so rigorous that even if it is

ultimately necessary to adopt weaker privacy definitions, any differentially private

techniques can be easily integrated into a complete solution.
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CHAPTER 7

RELATED WORK

While the broader topics of privacy-preserving data publication and privacy-

preserving data analysis have a long and well-documented history (cf. [2, 23, 35]),

addressing these issues for network data is a topic that has only recently gained at-

tention. Work on this topic includes attacks of naive anonymization and alternative

approaches to network anonymization. We review relevant work below, and there are

also several recent surveys [53, 81, 124, 135].

When it comes to network data, particularly the data stored in online social

networks, there are a number of privacy issues beyond those that arise with analysis

and publication. We also briefly review some of the work addressing other privacy

issues with network data.

We also discuss work in differential privacy that is related to the techniques pro-

posed in Chapter 5.

7.1 Attacks

Backstrom et al. [9] propose an active attack on anonymized networks, where

the adversary is capable of adding nodes and edges prior to anonymization. The

attack re-identifies an arbitrary set of targets by inserting a random subgraph that

will be unique with high probability (independent of the input graph) and then con-

necting the subgraph to the targets. Active attacks, while relevant to online social

networks, are difficult or impossible to carry out in many other networks (such as
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contact networks used to study disease transmission or email networks internal to an

organization).

Passive attacks—where the adversary attacks an already published network—have

been more extensively studied. We first introduced the passive attack based on Hi

degree signatures in Hay et al. [51]. We also studied adversaries with knowledge of

partial subgraph patterns around a target, and knowledge of connections to hubs in

the network. Narayanan and Shmatikov [97] propose a passive attack in which the

adversary exploits access to an auxiliary network whose membership overlaps with the

anonymized network. Such an attack can lead to breaches of privacy if for instance

the anonymized network includes sensitive attributes or additional edges absent from

the auxiliary network. Singh and Zhan [113] measure the vulnerability to attack as

a function of well known topological properties of the graph, and Wang et al. [119]

propose a measure of anonymity based on description logic.

7.2 Network anonymization algorithms

There are three primary approaches to network anonymization: directed alter-

ation, generalization, and random alteration. With directed alteration, the graph

structure is altered, using operations such as edge insertions, to create common struc-

tural patterns. Nodes in the output graph are more likely to look more similar to one

another, but the graph may be missing data or contain spurious information. With

generalization/clustering, the structure of the graph is generalized at a granularity

that is coarse enough to provide some privacy but fine enough to reveal the essen-

tial features of the network’s topology. Most approaches to generalization, including

the one described in Chapter 4, are based on clustering nodes into groups and then

describing the graph at the group level. Finally, with random alteration, the graph

is altered stochastically, through random edge additions and deletions. Structural

patterns in the original graph are disguised by the random alteration.
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7.2.1 Directed alteration

Liu and Terzi [82] propose several algorithms for anonymizing a graph through

the insertion and removal of edges, altering the graph so that nodes cannot be dis-

tinguished by degree. We compare against their SimultaneousSwap algorithm in

Section 4.3.

Zhou and Pei [134] propose a similar problem formulation as Liu and Terzi [82]

but with a stronger privacy condition. The condition requires that for each node in

the graph, its neighborhood—the subgraph induced by the node and its neighbors—

is isomorphic with at least k − 1 other neighborhoods. Any graph satisfying this

condition will also satisfy the condition of Liu and Terzi [82] because if two nodes have

isomorphic neighborhoods, then they must have equal degrees. Another difference is

that the data model includes labels on the nodes, which must also be anonymized.

They show that the problem of determining the minimal set of edge insertions that

satisfy the privacy condition is NP-Hard. They propose a greedy algorithm, however,

due to a subgraph matching step, its runtime remains exponential in the worst-case.

Thompson and Yao [118] propose a more efficient algorithm for this problem.

Zou et al. [136] further strengthen the privacy condition, requiring that each node

be automorphically equivalent with at least k − 1 others. Since nodes in the same

automorphic equivalence class are structurally indistinguishable, no adversary can

successfully re-identify a target node beyond a set of at least k nodes. They pro-

pose an algorithm in which the graph is partitioned into subgraphs, and then the

subgraphs are placed into groups containing at least k subgraphs. The subgraphs

within each group are made automorphic with each other through a process of ver-

tex/edge insertions and deletions. They compare the utility of this approach against

the approaches described above as well as our generalization approach described in

Chapter 4. Recent work by Cheng et al. [24] adopts a similar approach of altering
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the graph to ensure automorphic equivalence, but do so in a way that also limits edge

disclosure.

7.2.2 Generalization/clustering

In their initial work on graph anonymization, Cormode et al. [30] consider bipartite

graph data—representing, for example, associations between people and products

they purchase—and propose an anonymization algorithm that breaks the association

between identifying attributes and nodes in the graph. The main threat considered is

an adversary with knowledge of node attributes, and so under these assumptions, it is

safe to release a naive anonymization of the graph. They propose an algorithm that

groups nodes so that those within a group cannot be distinguished by their attributes.

Further, they impose a safety condition that two nodes in the same group do not have

common neighbors, thereby preventing edge disclosure.

In subsequent work, Cormode et al. [29] extend their approach to handle a richer

class of data, such as social networks with multiple edge types and attributes on nodes

and edges. They also consider an approach which protects against an adversary with

knowledge of graph structure. They propose a partitioning based approach that we

compare against in Section 4.3.

Campan and Truta [20] propose an approach similar to the generalization approach

described in Chapter 4. In terms of graph structure, their masked social network

appears to be equivalent to our generalized graph. They also include identifying

attributes on the nodes, handling them using standard techniques from tabular data.

To generalize the graph, Campan and Truta apply an iterative, greedy algorithm that

anonymizes nodes in batches of k, similar to the algorithm of Zhou and Pei [134].

Zheleva et al. [132] consider a related but distinct problem. They study an ad-

versary who might be capable of predicting sensitive edges (e.g., friendship relations)

given knowledge of non-sensitive attributes and non-sensitive edges (e.g., classmate
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relations). The sensitive data is never published, not even in an anonymized form.

The purpose of the study is to measure to what extent non-sensitive properties leak

information about sensitive properties, and they consider several alternative strategies

for coarsening the non-sensitive properties to prevent accurate inference.

7.2.3 Random alteration

Rastogi et al. [106] present a mechanism for tables that has a natural interpre-

tation for graphs. They randomly remove a fraction of original edges and randomly

add a fraction of new edges. The resulting edge table is released in its entirety. They

show that the parameters of the random process can be chosen to ensure strong pro-

tection against edge disclosure while allowing a class of counting queries to estimated

accurately. Unfortunately it does not address queries that require joins on the edge

table, which are crucial to network analysis.

Hay et al. [54] consider randomly permuting some fraction of the network’s edges.

They show this is effective at limiting an adversary’s ability to re-identify a target

based on node degree. However, the graph structure is changed considerably: a 10%

change in the edge structure results in a roughly 33% change in the value of some

important graph metrics. Although the analyst may be able to reduce the error

through statistical post-processing, the results suggest that the gain in privacy is

offset by a substantial loss in utility.

To address the loss of utility, Ying and Wu [128] consider a more complex random-

ization strategy that is guided by the graph structure, choosing a random alteration

that preserves key properties of the network. The technique is based on the observa-

tion that many important network properties are related to the graph’s spectrum—

i.e., the set of eigenvalues of the graph’s adjacency matrix or other matrices derived

from it. Thus, they develop a random-alteration algorithm where edges are randomly

added and deleted, but the random choice is guided based on how the change affects
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the graph’s spectrum. They show that the utility of the randomly altered network—

measured both in terms of common metrics and spectral properties—is much im-

proved. However, they do not assess what impact spectrum-based randomization has

on privacy. The protection must necessarily be weaker than pure randomization: the

noise is influenced by the structure of the graph which means the adversary may be

able to use his knowledge of graph structure to infer likely edge swaps. It is unclear

how much this improves the adversary’s ability to breach privacy.

Additional work by the same authors considers imposing additional constraints [129]

and a more in depth study of the risk of edge disclosure with randomization based

approaches [131]. Ying et al. [130] compare random alteration and directed alteration

approaches.

7.3 Other privacy issues arising with network data

The anonymization of existing networks is not the only privacy problem that arises

with network data.

Some work has looked at the problem of reconstructing a private graph under

various access restrictions. Frikken and Golle [44] designed a protocol for privately

assembling a graph that is distributed among a large number of parties. The output

of the protocol is a naively-anonymized graph. Korolova et al. [66] consider an ad-

versary who tries to re-assemble the graph from a set of views of local neighborhoods

(obtained, for example, by breaking into user accounts in an online social network

setting).

There are many privacy concerns with online social networks. At least two works

have looked at how a user’s private information can sometimes be inferred from the

public information available on friends’ profiles or from knowledge of group mem-

berships [49, 133]. Others have looked at ways to mitigate user exposure. Liu and

Terzi [83] propose a way of computing a privacy “score” for an online profile that
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measures a user’s risk, with higher scores indicating the user profile discloses more

sensitive information. Fang and LeFevre [41] propose a privacy “wizard,” an applica-

tion that aids users in configuring their privacy settings, identifying communities of

friends that should be granted the same access privileges. Carminati et al. [22] look

at access-control models for protecting privacy in online social networks.

7.4 Related work in differential privacy

Differential privacy has been an active area of research. Dwork has written com-

prehensive reviews of differential privacy [34, 35]. In Chapter 6, we reviewed applica-

tions of differential privacy to network analyses. Differential privacy also has applica-

tions in network security, where it has been proposed as a tool for network operators

to conduct collaborative intrusion detection without disclosing sensitive information

about individual client’s network traffic [107]. Recent work looks at carrying out

common network trace analyses under differential privacy [90].

The technique introduced in Chapter 5 involved post-processing the answers of

a differentially private mechanism to ensure consistency. This idea of using statisti-

cal inference to post-process answers and boost accuracy has broader applications.

We used this technique to design a mechanism for publishing synthetic data that is

accurate for range queries [55]. It asks a hierarchical tree of range queries and uses

summation constraints to infer accurate answers for all range queries. We extended

this approach to support inference over a set of linear counting queries where arbitrary

linear constraints may hold among the answers. Using this framework, we showed

that it is possible to design optimal strategies for support workloads of queries, using

tools from convex optimization [76].

The basic idea of post-processing was introduced in Barak et al. [11], who proposed

a linear program for making a set of marginals consistent, non-negative, and integral.

However, unlike the present work, the post-processing is not shown to improve accu-
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racy. (While it is true that their Fourier transformations can increase accuracy for

low-order marginals, this is a pre-processing step that reformulates queries to avoid

issues of consistency and does not improve accuracy on the queries considered in the

present paper.)

168



CHAPTER 8

CONCLUSION

This dissertation addresses the challenge of enabling accurate analysis of network

data while ensuring the protection of network participants’ privacy. This is an im-

portant problem: massive amounts of data are being collected, there is huge interest

in analyzing the data, but the data are not being shared due, in large part, to con-

cerns about privacy. Recent incidents have demonstrated that releasing data without

properly addressing these concerns can be a damaging exercise, with negative conse-

quences for both data manager and data participant [12, 98, 115]. Although there

have been decades of research in privacy-preserving data publication and privacy-

preserving data analysis, existing technologies provide an inadequate solution because

they were designed for tables, not networks, and cannot be easily adapted to handle

the complexities of network data.

We develop several technologies that advance us toward our goal. Our contribu-

tions represent important first steps in addressing the problem and we see opportu-

nities to extend the work in new and promising directions.

8.1 Review of contributions

In Chapter 3, we demonstrated that simple strategies fail to provide adequate

protection. We studied the risk of publishing a network after applying naive anon-

ymization, in which external identifiers are replaced and identifying attributes are

suppressed. In carrying out this task, our workhorse was the vertex refinement query:

it is efficient to evaluate and capable of modeling a range of adversaries. Using vertex
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refinement queries, we found that real networks are diverse in their risk but in some

networks, nodes are highly vulnerable to re-identification attack, especially if the ad-

versary has knowledge beyond a target node’s immediate neighborhood (e.g., this is

true of the HepTh network). Re-identification risk depends on the network’s struc-

ture and we showed, through the analytical study of Erdös-Rényi random graphs,

that density has a profound influence on risk, with sparse graphs being at low risk

and dense graphs being at high risk. Our study of risk supports our overarching goal

because it provides data managers with algorithms that they can use to assess risk

prior to publication, and because it demonstrates that there is a need for technolo-

gies to mitigate risk. The rest of the dissertation was devoted to the design of such

technologies.

In Chapter 4 we presented an algorithm for transforming a network to prevent node

re-identification. Our algorithm transforms the network by generalizing it, replacing

groups of nodes with supernodes and sets of edges with superedges. Effectively, it

produces a coarse-grained summary of the network’s topology, describing it in terms

of the edge density between and within groups. The process of summarization prov-

ably lowers re-identification risk; and the data manager can choose the appropriate

setting of k to tradeoff lower risk against greater information loss. Through experi-

ments on real and synthetic networks, we evaluate how well the transformed network

preserves the topology of the original network, and compare our approach with other

techniques. In comparison with the LT and BCKS algorithms, we find our technique

preserves the input comparably or better. One notable distinction between tech-

niques is that the other techniques do not account for topology when transforming

the network—for instance, LT minimizes the number of edge insertions, but edges

can be inserted anywhere, even between disconnected components. Our approach is

explicitly guided by the network structure, using search to place nodes into clusters

of “similar” nodes, similar to stochastic block-modeling. This has its advantages: we
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find that our technique more accurately preserves distinctive features, such as mesh

or tree patterns, and the low degree correlations of the HOT network. This work

contributes to the goal of this dissertation: we provide a practical tool that a data

manager can use to publish a transformed network that has provably bounded risk.

Also, our study gives insights into the kinds of distortions that are inevitably caused

by the transformations.

In Chapters 5 & 6, we address the problem of computing accurate network statis-

tics under strong privacy protections, such as those afforded by differential privacy.

Our main contribution is a technique for estimating the degree sequence of a network

(Chapter 5). The algorithm satisfies k-edge ε-differential privacy, produces extremely

accurate estimates, and is computationally efficient, capable of running on networks

with hundreds of millions of nodes. A data manager can now release (an approxima-

tion of) the degree sequence of a private network with assurances that the error in the

approximation is provably low and that the output does not leak private information,

even to powerful, informed adversaries. In addition, the technique, which relies on

applying inference to the noisy answers of a differentially private mechanism, is inno-

vative and has broader applications. Our works shows that existing mechanisms can

add more noise than is strictly necessary and inference can be an appealing strategy

for reducing excess noise. We have investigated other applications of inference in

subsequent work [55, 76].

Admittedly, the degree sequence of a network is only one statistic (though an

important one), and questions remain about what other statistics can be accurately

learned under differential privacy. We summarize known results, including additional

work of our own, in Chapter 6. Unfortunately, we find limitations with differential

privacy: network statistics like clustering coefficient involve joins on the edge table

and have high sensitivity. This provably limits the accuracy with which they can be

estimated under differential privacy. As a potential remedy to this conflict between

171



privacy and accuracy, we show that if the adversary has limited information about

the network—such as knowing only a small subgraph of it—then a relatively small

amount of noise is sufficient to ensure strong privacy (albeit not differential privacy).

The work of Nissim et al. [102] provides another possible remedy and relies on a

modest relaxation of differential privacy.

8.2 Future directions

We see a number of directions for future work. We briefly highlight a few of them:

• Empirical comparison At this point, many network transformation algo-

rithms have been developed (see Chapter 7) and their relative benefits are not

clearly understood. We could extend the empirical evaluation we undertook in

Chapter 4 to include a broader array of techniques and thereby provide a more

comprehensive evaluation.

• Vulnerabilities Most algorithms for network data transformation define pri-

vacy using an adaptation of k-anonymity to networks. In the tabular data

setting, k-anonymity (and variants of it) has been shown to be vulnerable to

attack (Chapter 2). It is unclear whether those attacks, or new ones, apply to

the network anonymization algorithms.

• Attributes Our work has focused on network structure. It would be interesting

to investigate supporting analyses of structure and attributes. For instance, can

we approximately measure homophily under differential privacy?

• High Sensitivity High sensitivity queries are problematic under differential

privacy. Many network analyses have high sensitivity often because of the ex-

istence of some pathological worst-case input that is highly unlikely to arise in

practice. How can we incorporate background knowledge about realistic net-

work structure to rule out pathological instances?
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One of the directions for future work that we find most intriguing is model-based

synthetic data. The idea behind model-based synthetic data is to take an existing

statistical parametric model and use query answer perturbation techniques to accu-

rately estimate the model parameters. An instantiated model defines a probability

distribution over networks from which one can sample synthetic networks. Because

the model was fit under differential privacy, both the model and the networks can be

safely released to the public.

This approach represents, in some sense, a synthesis between transformed data

release and query answer perturbation, the two approaches that have been considered

in this dissertation and in other work on this topic. But it has the potential to alleviate

some of the limitations of each of the current approaches.

Query answer perturbation provides very strong privacy, and for some queries,

it achieves very high accuracy. However, it does have some practical limitations.

Some analyses cannot be easily reduced to a small set of queries. For instance,

some analyses are not statistics, but involve running algorithms over the network or

carrying out simulations. It can be hard to determine the sensitivity of such complex

procedures. Also, the user may find it frustrating to only be able to access the data

through a query interface, especially during the initial phase of analysis, which is often

exploratory, open-ended, and iterative. In addition, the data manager is responsible

for processing queries. For the manager, this means he must invest resources in query

processing and for the analyst, he must reveal his analyses to the data manager. For

these reasons, there is a significant benefit to having techniques for publishing data.

While there are now several algorithms for publishing transformed network data

(Chapter 4 and the related work described in Chapter 7), these too have limitations.

Compared to the query answer perturbation techniques, the privacy protections are

weak. In addition, while the transformations inevitably distort some properties of the
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network, these approaches provide no theoretical bounds on how large that distortion

may be.

Model-based synthetic data has the potential to provide the best of both worlds.

The analyst can use the model to produce synthetic networks and then run analyses

on the sampled networks. The approach ensures rigorous privacy, as all interactions

with the private data are through a differentially private mechanism. In addition,

this approach may provide a clearer picture of how noise distorts the network. For

instance, it may be possible to derive error bounds on the accuracy of the parameter

estimates, allowing the analyst to account for the distortion introduced by the privacy

mechanism. In addition, the biases of the model are often made explicit as the

structure of the model encodes independence assumptions and the analyst can reason

about their realism and the consequences of their invalidity.

To pursue this approach it will be necessary to identify existing statistical mod-

els that may fit well with the query answer perturbation approach. Many network

models have been developed in the last couple of decades [48], and a few stand out as

potentially well-suited for the task. The dK family of models [87] is based on node

degrees and degree correlations, and in fact our current techniques can be immedi-

ately applied to fit the 1K model, the simplest model in the dK family. Also, the

exponential random graph model (ERGM) family [50, 89, 108] is intriguing because

the model is defined by a set of sufficient statistics and so it fits naturally with the

framework of using query answer perturbation. ERGMs can also handle attributes.

Of the many models in the ERGM family, the p1 model [56] is particularly interesting

because its sufficient statistics include the in- and out-degree sequence of the network.

There are of course a number of challenges to address to understand whether

model-based synthetic data will yield the hoped for benefits. We believe that the

contributions of this dissertation provide lessons and insights that will be valuable in

addressing these challenges.
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