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ABSTRACT

GENERALIZED EXPECTATION CRITERIA
FOR LIGHTLY SUPERVISED LEARNING

SEPTEMBER 2011

GREGORY DRUCK

B.Sc., JOHNS HOPKINS UNIVERSITY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Andrew McCallum

Machine learning has facilitated many recent advances in natural language pro-

cessing and information extraction. Unfortunately, most machine learning methods

rely on costly labeled data, which impedes their application to new problems. Even

in the absence of labeled data we often have a wealth of prior knowledge about these

problems. For example, we may know which labels particular words are likely to

indicate for a sequence labeling task, or we may have linguistic knowledge suggesting

probable dependencies for syntactic analysis. This thesis focuses on incorporating

such prior knowledge into learning, with the goal of reducing annotation effort for

information extraction and natural language processing tasks.

We advocate constraints on expectations as a flexible and interpretable language

for encoding prior knowledge. We focus on the development of Generalized Expecta-

tion (GE), a method for learning with expectation constraints and unlabeled data. We

vii



explore the various flexibilities afforded by GE criteria, derive efficient algorithms for

GE training, and relate GE to other methods for incorporating prior knowledge into

learning. We then use GE to develop lightly supervised approaches to text classifica-

tion, dependency parsing, sequence labeling, and entity resolution that yield accurate

models for these tasks with minimal human effort. We also consider the incorporation

of GE into interactive training systems that actively solicit prior knowledge from the

user and assist the user in evaluating and analyzing model predictions.
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CHAPTER 1

INTRODUCTION

Machine learning has facilitated many recent advances in natural language pro-

cessing and information extraction. Most successful applications use supervised ma-

chine learning, in which the learning algorithm is provided with labeled data, or data

that is annotated with correct outputs. Unfortunately, annotating data often requires

a substantial amount of human effort. Annotation can be incredibly time-consuming,

especially when outputs are complex structures like sequences or trees. Often anno-

tation also requires special expertise such as an understanding of English dependency

syntax for parsing or knowledge of conferences and journals for information extraction

from the scientific literature. Finally, models trained using data from one domain,

for instance text from newspapers, often perform poorly when applied to another,

for instance text on the web. This suggests that it may be necessary to obtain new

labeled data for every domain of interest.

Motivated by these challenges, there has been much interest in learning algorithms

that leverage unlabeled data. In contrast to labeled data, unlabeled data is often

easy to obtain at very low cost. For example, while annotating research papers is

challenging, a large corpus of unlabeled research papers can be downloaded from the

web. Two prominent paradigms for learning with unlabeled data are unsupervised and

semi-supervised learning. Unsupervised learning employs unlabeled data only, while

semi-supervised learning uses a combination of labeled and unlabeled data. Learning

with unlabeled data presents numerous challenges, and both paradigms typically rely

on data or modeling assumptions that may be violated in difficult problems.

1



Even in the absence of labeled data, however, we often have a wealth of prior

knowledge about information extraction and natural language processing tasks of

interest. Examples of such prior knowledge include:

• text classification: Most documents that contain the word senate should be

labeled with the politics class.

• dependency parsing: Nouns are often dependents of verbs.

• information extraction (from citations): The word ACM should usually be

part of a journal or a conference.

• entity resolution: Mentions of entities that have high string overlap are likely

to refer to the same entity.

Clearly learning should be able to benefit from such information.

However, most existing approaches to incorporating prior knowledge into learn-

ing do so in a way that is unintuitive. For example, encoding prior knowledge by

modifying the model or specifying a prior on parameters requires the practitioner to

“speak” in a language that is difficult to interpret. Additionally, prior knowledge

may not straightforwardly map into a labeling of the unlabeled data, meaning that a

reduction to a supervised or semi-supervised learning problem may not be feasible.

How should prior knowledge be encoded? Our prior knowledge is typically about

output variables, though it may not provide the values of any particular output vari-

ables. Instead, it provides properties of the distribution over latent output variables.

For example, knowing that documents that contain senate should usually be labeled

politics tells us that the label distribution in those documents should be skewed to-

ward politics, but it does not tell us which documents are politics and which are not.

The notion of a property of a distribution can be formalized as preferences on the

value of an expectation under the distribution. For example, one might specify that in
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expectation 90% of documents that contain the word senate should be labeled politics.

Such expectation constraints provide a flexible and interpretable language for encod-

ing prior knowledge. Learning algorithms can make use of expectation constraints by

encouraging model predictions for unlabeled data to satisfy them.

This thesis focuses on the development of Generalized Expectation (GE), a method

for learning with expectation constraints and unlabeled data, its application to lever-

aging prior knowledge, and its incorporation into “human-in-the-loop” training sys-

tems, with the goal of reducing annotation effort for information extraction and nat-

ural language processing problems.

1.1 Contributions

The majority of this thesis focuses on the development of the Generalized Expec-

tation (GE) framework.

• Generalized Expectation Criteria (Chapter 3): We provide a thorough ex-

position of the Generalized Expectation (GE) framework, including exploration

of the various flexibilities afforded through the selection of constraint features

and score functions, discussion of the relationship between GE and related meth-

ods, and development of improved methods for GE parameter estimation for

arbitrary Conditional Random Fields (CRFs). These methods are then used

to develop efficient GE training algorithms for tree-structured CRFs including

linear chain CRFs (Chapter 6).

• GE for Lightly Supervised Text Classification (Chapter 4): We use GE

to leverage prior knowledge about the label distribution for documents that

contain particular words. Specifically, light supervision is provided in the form

of “labeled input features” that denote that a word, such as puck, typically

indicates a particular label, such as hockey. Experiments demonstrate that GE
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is preferable to other methods for learning with labeled input features, and that,

given limited annotation time, having an annotator label input features rather

than complete documents typically yields a more accurate classifier.

• GE for Lightly Supervised Dependency Parsing (Chapter 5): We de-

velop an efficient algorithm for GE training of CRFs that model distributions

over trees. We then use GE to leverage linguistic prior knowledge (e.g. a noun’s

parent is often a verb) in lightly supervised non-projective dependency pars-

ing. This method outperforms complex “unsupervised” methods with a small

number of intuitive constraints.

• GE with Approximate Inference using MCMC (Chapter 7): Exact GE

training is intractable for large or loopy models, or when constraints consider

more variables than model features do. To address these cases we explore using

MCMC methods to approximate expectations and covariances for GE training.

We conduct experiments on sequence labeling tasks, where a comparison with

exact GE is possible, and additionally apply this method to entity resolution,

where GE provides high accuracy with two simple constraints.

• Compensating for Noise (Chapter 8): We demonstrate that if the constraints

are known to be noisy or imprecise, and the particular type of noise or impre-

cision can be characterized, then the accuracy of GE training can be increased

by designing a “noise-tolerant” GE objective.

• Empirical Comparison with Posterior Regularization (Chapter 8): We

provide an empirical comparison of GE and Posterior Regularization (PR), a

related method that can be viewed as an approximation to GE. We find that

although the two methods often give similar performance, PR often takes many

more passes through the data to converge than GE.
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In an effort to assist the practitioner in providing more useful and precise supervision,

we also explore the use of interaction between the system and the practitioner.

• Active Learning by Labeling Input Features (Chapter 9): We develop

an active learning algorithm in which the system asks the user to label input

features rather than instances. We select input features for labeling by approx-

imating the expected resulting reduction in model uncertainty. Experiments in

sequence labeling demonstrate that the proposed active learning method out-

performs passive learning with labeled input features as well as traditional active

learning with labeled instances.

• Toward Interactive Training and Evaluation (Chapter 10): We envision

a novel interactive training paradigm in which a practitioner provides light su-

pervision, evaluates performance, and performs error analysis in a closed loop.

We take first steps toward developing this paradigm by solving problems that

can be cast as selecting small, representative samples of the data for the prac-

titioner to inspect. To select such samples, we propose an approach that uses

model predictions to perform stratified sampling. We evaluate the approach

on classification and sequence labeling tasks, and find that accuracy evaluation

effort can be reduced by as much as 53% when compared to random sampling.

1.2 Declaration of Previous Work

• The Generalized Expectation framework was first published under the name

Expectation Regularization (XR) by Mann and McCallum [71]. I began work-

ing on the framework shortly after the submission of that paper. A version of

Chapter 4 was published as (Druck, Mann, and McCallum, 2008) [25]. A ver-

sion of Chapter 5 was published as (Druck, Mann, and McCallum, 2009) [26].

My particular contributions to the development of GE include generalizing the
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framework to arbitrary CRFs, different types of constraints, and different score

functions, developing improved algorithms for GE training, connecting GE to

related methods, and applying GE to a variety of problems.

• The covariance computation algorithm in Chapter 5 appeared in a technical

report (Druck and Smith, 2009) [29].

• The work in Chapter 7 was done in collaboration with Sameer Singh.

• A version of Chapter 9 was published as (Druck, Settles, and McCallum, 2009) [28].

• A version of the approximation to GE discussed in Chapter 3.3 was published

as (Bellare, Druck, and McCallum, 2009) [5].

• A version of Chapter 10 is to appear as (Druck and McCallum, 2011) [27].
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CHAPTER 2

BACKGROUND

In this section we review the background material necessary to understand this

thesis. We start by reviewing undirected graphical models, including inference and

parameter estimation, focusing on Conditional Random Fields [59]. We then discuss

methods for learning with unlabeled data. Finally, we motivate using prior knowledge

as light supervision, and describe the limitations of previous approaches.

2.1 Probabilistic Models

In this thesis, we focus on probability distributions over discrete random variables.

We separate these random variables into input (or evidence) and output (or query)

variables. Input variables are always observed. Output variables are the variables we

aim to predict. We denote input and output random variables as X = {X1, . . . , Xn}

and Y = {Y1, . . . , Ym}, and realizations of those variables as x = {x1, . . . , xn} and

y = {y1, . . . , ym}, respectively. Input variables take values in the set X , while output

variables take values in the set Y . We often refer to an assignment to an output

variable as a label. The joint probability distribution of the input and output variables

is denoted p(X,Y). Recall that a probability distribution must satisfy ∀x∀y 0 ≤

p(X=x,Y =y) ≤ 1 and
∑

x,y p(X=x,Y =y) = 1. To simplify notation, we use the

shorthand p(X=x,Y=y) ≡ p(x,y).

Naively modeling the probability distribution of a large number of variables is

intractable. For example, the joint distribution of n binary-valued random variables

contains 2n elements. This affects both computational and statistical efficiency. For-
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tunately, tractability can be obtained by assuming conditional independence among

some variables. Variable X is conditionally independent of Y given Z if and only if

p(X, Y |Z) = p(X|Z)p(Y |Z).

2.1.1 Undirected Graphical Models

Graphical models are probabilistic models whose conditional independence as-

sumptions are specified by a graph. In this thesis, we focus on undirected graphical

models, also known as Markov random fields. An undirected graphical model de-

fines a family of probability distributions that decompose into the product of factors

Ψa(xa,ya) that each provide a non-negative score for a subset of the variables a.

p(x,y) =
1

Z

∏
a∈F

Ψa(xa,ya) (2.1)

To ensure that p(x,y) is a valid probability distribution, the score
∏

a∈F Ψa(xa,ya)

is normalized by the partition function Z, which is the sum of the scores of all (x,y).

Z =
∑
x,y

∏
a∈F

Ψa(xa,xa) (2.2)

The corresponding undirected graph G = (V,E) for this family of distributions con-

tains a vertex for each variable, V = (X,Y), and an edge between every pair of

variables that participate in the same factor. The undirected graph specifies that

random variables Xa are conditionally independent of Xb given Xs, Xa ⊥⊥ Xb | Xs,

if every path from any node in Xa to any node in Xb includes a node in Xs.

Unfortunately, generating the corresponding undirected graph for p(x,y) can in-

troduce ambiguity about the precise factorization. A factor graph provides an unam-

biguous graphical representation of p(x,y) [57]. A factor graph is a bipartite graph

G = (V, F,E), where V are vertices for random variables, F are special vertices for

factors, and E are edges between variables and factors. Other types of edges are not
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permitted. Factors F represent Ψa, and edges between a variable Xi and a factor Ψa

denote that the variable participates in that factor, Xi ∈ Xa.

In this thesis, we use a log-linear parametrization of the factors

Ψa(xa,ya) = exp
(
θa · fa(xa,ya)

)
, (2.3)

where θa are parameters of the model, and fa is a vector of model feature functions

that examine the variables xa and ya and return a vector of real values.

Depending on the particular application, parameters θa are often tied across mul-

tiple factors. To simplify notation, we drop the a subscripts on f and θ. This is valid

because we can stack all model features into a single column vector, where fi returns 0

if it does not apply to a particular factor a. Note that the following notation assumes

that a is implicitly an argument to f .

Ψa(xa,ya) = exp
(
θ · f(xa,ya)

)
(2.4)

2.1.2 Generative and Discriminative Models

Models of the joint distribution of input and output variables, p(x,y;θ), are called

generative models. In many applications, the aim is to compute probabilities of latent

output variables conditioned on observed input variables. For example, we often want

to find the maximum probability output variable assignment y∗ given the observed

input variables.

y∗ = argmax
y

p(y|x;θ) (2.5)

A discriminative model models the conditional distribution p(y|x;θ) directly. In-

tuitively, discriminative models do not “waste effort” modeling the marginal distribu-

tion of input variables p(x) when they will always be observed. Theoretical analysis

suggests that generative estimation is more sensitive to model misspecification than
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discriminative estimation [65]. In practice, discriminative models often attain higher

accuracy than generative models, and provide other practical advantages discussed

in the next section.

2.1.3 Conditional Random Fields

Conditional Random Fields1 (CRFs) [59] are discriminative, log-linear MRFs. A

CRF defines a conditional probability distribution

p(y|x;θ) =
1

Z(x;θ)

∏
a∈F

exp (θ · f(ya,xa)) . (2.6)

Note that the partition function is now specific to the input variables x.

Z(x;θ) =
∑
y

∏
a∈F

exp (θ · f(ya,xa)) (2.7)

In addition to focusing modeling effort on the query of interest, CRFs have two

important practical advantages over generative, log-linear MRFs. First, the fact that

x is always observed allows the features f to consider any part of x without increasing

the complexity of inference. As a result, we use x rather than xa for the remainder of

this thesis. Second, for applications in natural language processing and information

extraction, computing Z(x;θ) is often much easier than computing Z(θ). For exam-

ple, computing Z(θ) might require summing over all possible English sentences and

labelings of those sentences (with a small set of labels), whereas computing Z(x;θ)

requires summing only over the set of all possible labelings for an observed sentence.

2.1.3.1 Exact Inference in CRFs

We next discuss inference in CRFs. Three inference problems of interest are 1)

computing the probability of a particular output p(y|x;θ), 2) computing marginal

1In the literature the term CRF is often used to refer specifically to a linear chain CRF. In this
thesis CRF refers to an arbitrarily structured, conditional, log-linear Markov random field.
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probability distributions for factors p(ya|x;θ) =
∑

y a
p(y|x;θ), where y a denotes

an assignment to all output variables other than those in a, and 3) computing the

maximum probability output y∗ = argmaxy p(y|x;θ).

If the factor graph for the CRF is a tree, i.e. it is acyclic, then we can solve all

three problems using message passing algorithms. In Belief propagation (BP), origi-

nally proposed by Pearl [86], a variable Yi receives beliefs about what its value should

be from its neighbors. This algorithm is also called the sum-product algorithm, and

can be applied directly to factor graphs [57]. When the factor graph is a tree, BP

can compute all factor marginals exactly in O(n|Y|T ) time, where n is the number

of output variables and T is the maximum number of output variables that partici-

pate in a factor. BP also computes Z(x;θ), so it solves inference problems 1 and 2

above. Inference problem 3 can be solved with the max-product algorithm, which is

identical to sum-product but with each
∑

replaced by a max. These message pass-

ing algorithms often generalize well-known inference algorithms for particular model

structures. For example, the Viterbi and Forward Backward algorithms for chain

models [92] are instances of max-product and sum-product, respectively.

Factor graphs that contain cycles are often called loopy factor graphs. The junc-

tion tree algorithm [61] performs exact inference in any factor graph by running BP

in a new acyclic factor graph with cluster variables that represent multiple original

variables. Unfortunately running BP in the new graph is often intractable, as a clus-

ter variable that combines m original variables takes values in a set of size |Y|m. As

a result, approximate inference algorithms are often applied.

2.1.3.2 Approximate Inference in CRFs

There are many approximate inference algorithms for factor graphs. Variational

methods [120] select the best approximation to the factor graph of interest from a

family of factor graphs where exact inference is tractable. Inference is then performed
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in the tractable model. Loopy belief propagation [79], which is BP applied to a loopy

factor graph, can be viewed as a variational method.

An alternative approach is to estimate quantities of interest from samples drawn

from p(y|x;θ). For example, samples could be used to estimate marginal distributions

p(ya|x;θ) by counting the number of occurrences of each assignment to Ya in the

sample and normalizing. Though we cannot in general sample from p(y|x;θ) directly,

Markov Chain Monte Carlo (MCMC) [2] methods can be used to mimic samples

from p(y|x;θ). MCMC methods collect samples while exploring the space of output

variable assignments using a Markov chain. Specifically, each state in the Markov

chain represents an assignment to the output variables. MCMC methods work when

the invariant distribution of the Markov chain is p(y|x;θ). This holds if the Markov

chain is irreducible and aperiodic. We next review two prominent MCMC methods.

The Metropolis-Hastings (MH) algorithm considers new states sampled from a

proposal distribution, denoted q. Specifically, a candidate state is first sampled from

q(y′|y), where y and y′ are current and candidate states, respectively. The candidate

y′ is accepted, or selected as the next state in the Markov chain, with probability

A(y,y′) = min

(
1,
p(y′)q(y|y′)
p(y)q(y′|y)

)
. (2.8)

Otherwise it is rejected, and a new candidate state is generated.

The Gibbs sampler is a special case of MH in which the proposal distribution is

q(y′|y) =


p(y′j|y j,x;θ) if y′j = y j

0 otherwise,

(2.9)

where j is incremented (or reset) after each sample from q. Note that with this

proposal distribution A(y,y′) = 1, so y′ is always accepted. Therefore the algorithm

consists of iteratively sampling a new assignment to each output variable, conditioned
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on the current assignments to all other output variables. Gibbs sampling is applicable

to models where sampling from p(yj|y j,x;θ) is easy.

2.1.3.3 Supervised Parameter Estimation for CRFs

We next discuss estimating parameters θ for CRFs. Recall that x and y denote

assignments to all variables. Often data consists of N independent and identically

distributed instances (iid) instances. In this case p(y|x;θ) =
∏N

i=1 p(y
i|xi;θ).

In supervised parameter estimation, all input and output variables in the training

data are observed. We refer to such training data as labeled data. The standard

method for estimating parameters in CRFs is to maximize the log-likelihood of the

labeled data, log p(y|x;θ). To reduce overfitting to the training data, the likelihood

is augmented with a prior on parameters p(θ). The complete log-likelihood is

L(θ) = log p(y|x;θ) + log p(θ). (2.10)

We select parameters θ̂ that maximize L(θ).

θ̂ = argmax
θ

log p(y|x;θ) + log p(θ). (2.11)

Note that the log-likelihood of the labeled data is

log p(y|x;θ) = θ · f(x,y)− log
∑
y

exp
(
θ · f(x,y)

)
. (2.12)

Therefore partial derivative of L(θ) with respect to a parameter θj is

∂

∂θj
L(θ) = fj(x,y)− Ep(y|x;θ)[fj(x,y)] +

∂

∂θj
log p(θ), (2.13)

where fj(x,y) =
∑

a∈F fj(x,ya). In words, the partial derivative is the difference

between fj computed on the labeled data and the model expectation of fj. Ignoring

13



the prior, the partial derivative is 0 when the model expectation matches the true

value. The first term in Equation 2.13, fj(x,y), is easily computed using the labeled

data. The second term, Ep(y|x;θ)[fj(x,y)], requires inference. Note that

Ep(y|x;θ)[fj(x,y)] =
∑
y

p(y|x;θ)fj(x,y)

=
∑
y

p(y|x;θ)
∑
a∈F

fj(x,ya)

=
∑
a∈F

∑
ya

p(ya|x;θ)fj(x,ya)
∑
y a

p(y a|x;θ)

=
∑
a∈F

∑
ya

p(ya|x;θ)fj(x,ya), (2.14)

where the last step follows because
∑

y a
p(y a|x;θ) = 1. Equation 2.14 shows that

computing the expectations of the model features requires marginal distributions over

the factors. We discussed computing factor marginals in Section 2.1.3.1.

Unfortunately, as shown in Equation 2.13, the partial derivative with respect to

θj includes the other parameters θ. Therefore, there is no closed form solution to this

optimization problem. Instead, numerical optimization is used. It can be shown that

L(θ) is concave in θ, and consequently simple gradient ascent can provide globally

optimal parameters. Second-order optimization methods, specifically L-BFGS [68],

have been shown to converge much faster than gradient ascent and other numerical

methods for maximizing likelihood in CRFs [70].

A disadvantage of the batch parameter estimation methods described thus far is

that they require inference over all variables in each iteration of numerical optimiza-

tion. In some applications, the factor graph contains a number of disconnected com-

ponents. For example, often the training data consists of a number of iid instances.

In this case online parameter estimation can be applied. In online learning, param-

eters are updated after performing inference on each instance. A standard method

for online learning is stochastic gradient ascent, in which the parameters are updated
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in the direction of the gradient for each instance. For CRFs, this online parameter

estimation method generally converges faster than the batch method [119].

Finally, we discuss p(θ). Typical choices for p(θ) are zero-mean Gaussian or

Laplace priors. Ignoring constant terms, these priors are defined as

Gaussian/L2
2 : log p(θ;σ) = −‖θ‖

2
2

2σ2
(2.15)

Laplace/L1 : log p(θ; b) = −‖θ‖1
b

. (2.16)

These priors can also be interpreted as regularization terms that penalize “large”

parameter vectors according to some norm. Intuitively, L2
2 regularization strongly

penalizes large parameter values, preferring a solution where many parameters have

moderate values. In contrast, an L1 penalty is stronger than an L2
2 penalty when

θi is close to 0, and consequently L1 regularization pushes more parameter values

to 0, while tolerating a few large parameter values. This encourages sparsity in θ.

However, note that ‖θ‖1 is not differentiable everywhere, and consequently requires

the use of different numerical optimization algorithms [1].

2.1.3.4 Maximum Entropy Estimation

Recall that the entropy H of a probability distribution p(x) is

H(p(x)) = −
∑
x

p(x) log p(x). (2.17)

Log-linear models can also be derived from the principle of maximum entropy [8].

The principle states that of all possible distributions that encode some testable in-

formation about the observed random variables, we should choose the distribution

with maximum entropy. Estimation using the principle of maximum entropy is often

referred to as maximum entropy estimation.
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Suppose that we have labeled data (x,y) and features f , and we would like to find a

model p(y|x) that matches the value of f computed on the labeled data in expectation.

Let C be the set of all probability distributions that satisfy this constraint.

C ≡
{
p ∈ ∆ | f(x,y) = Ep(y|x)[f(x,y)]

}
(2.18)

In general there may be many distributions in C. Applying the principle of maximum

entropy results in the following primal optimization problem over p ∈ C

max
p∈C

H(p(y|x)) = max
p∈C
−
∑
y

p(y|x) log p(y|x). (2.19)

It can be shown [30, 87] that the corresponding dual optimization problem is

max
θ

θ · f(x,y)− log
∑
y

exp(θ · f(x,y)) = max
θ

log p(y|x;θ). (2.20)

Note that the dual problem is maximum likelihood in a CRF with factorization and

parameterization specified by features f used in the primal problem.

With generalized maximum entropy estimation [30], we may penalize the difference

between f(x,y) and Ep(y|x)[f(x,y)], rather than require equality. Mathematically

this results in parameter regularization in the dual problem. For example, an L2
2

penalty in the primal problem yields L2
2 parameter regularization in the dual problem.

Additional discussion of this method is provided in Sections 3.3.1 and 3.3.2.

2.1.4 Logistic Regression

A logistic regression model, also known as a maximum entropy classifier, models

the probability of a single output variable y as

p(y|x;θ) =
1

Z(x;θ)
exp(θ · f(x, y)). (2.21)
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Note that a logistic regression model can be viewed as a degenerate CRF where there

are no dependencies among output variables. This allows us to use the term CRF to

stand in for both structured and unstructured log-linear models.

2.2 Learning with Unlabeled Data

Unfortunately, obtaining labeled data is often challenging. Annotation is time-

consuming, especially when output variables are structured. For many tasks, anno-

tation also requires special expertise, for example knowledge of English syntax for

parsing or the names of conferences and journals for information extraction from

research papers. Consequently, annotation is often expensive. In addition, current

machine learning methods are not robust to shifts in domain. For example, a sen-

timent polarity classifier trained using reviews of books may perform substantially

worse when applied to reviews of movies [10]. This implies that it may be necessary

to obtain new labeled data for each task-domain pair of interest. Even with new

annotation platforms based on crowdsourcing like Amazon Mechanical Turk2, this

approach does not scale to the multitude of diverse problems we would like to solve.

As a result, there has been much interest in learning with unlabeled data. In

contrast to labeled data, large amounts of unlabeled data can be obtained at very

low cost. For example, while obtaining English sentences annotated with syntax is

difficult, large numbers of unannotated English sentences can be obtained from the

web. In the following sections, we survey strategies for learning with unlabeled data.

2.2.1 Unsupervised Learning

In contrast to supervised learning methods, which use only labeled data to es-

timate parameters, unsupervised learning methods use only unlabeled data. To be

clear, in this setting we observe input variables x but do not observe output variables.

2http://www.mturk.com
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Purely unsupervised learning with discriminative models is not straightforward.

Marginalizing out the unobserved output variables y shows that unlabeled data has

no effect on the likelihood for a discriminative model.

LM(θ) = log
∑
y

p(y|x;θ) = 0 (2.22)

The predominant approach to unsupervised learning is to use a generative model.

Because the output variables y are unobserved, a natural parameter estimation ob-

jective function is the marginal likelihood of the observed input variables.

LM(θ) = log p(x;θ) = log
∑
y

p(x,y;θ) (2.23)

The Expectation Maximization (EM) algorithm [23] is often used to optimize LM(θ).

EM can be viewed as the following optimization problem [81]:

max
q,θ

F (q,θ) = max
q,θ
−DKL

(
q(y|x)||p(y|x;θ)

)
+ LM(θ) (2.24)

The EM algorithm alternates between Expectation and Maximization steps, which

correspond to optimizing F (q,θ) with respect to q and θ, respectively.

E−Step : q̂t+1 = argmax
q

F (q, θ̂
t
) = p(y|x; θ̂

t
) (2.25)

M−Step : θ̂
t+1

= argmax
θ

F (q̂t+1,θ) = argmax
θ

∑
y

q̂t+1(y|x) log p(x,y;θ) (2.26)

In the E-step, q̂t+1 = p(y|x;θt) because there are no restrictions on the form of q, and

this solution has zero KL divergence. The M-step is maximum likelihood estimation

with the latent variables y “filled in” by q̂t+1. If computing the posterior p(y|x;θ) is

intractable, then a variational approximation can be used [120].
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An alternative approach to unsupervised learning with generative models is to use

MCMC methods to estimate parameters [2]. For example, this approach is often used

for Latent Dirichlet Allocation (LDA) [9], a generative model of documents.

Unsupervised learning is often used to discover latent structure in data. For

example, LDA can discover latent topics, or distributions over words, that are often

semantically coherent and useful for understanding a document collection.

However, when the goal is to make predictions for a particular task, unsupervised

learning is often challenging. The true process that generated the unlabeled data is

typically unknown, or difficult to model tractably, and as a result the model p(x,y;θ)

approximates the true process. The learning algorithm then implicitly assumes that

the model is correct. Therefore, maximizing LM(θ) may not yield posterior distri-

butions p(y|x;θ) that are relevant to the task of interest. Successful applications of

unsupervised learning to solve concrete tasks rely on carefully designed models and

learning algorithms [46, 89].

2.2.2 Semi-Supervised Learning

Semi-supervised learning compromises between supervised and unsupervised learn-

ing by leveraging both labeled and unlabeled data. As in unsupervised learning,

assumptions are required to incorporate unlabeled data into parameter estimation.

Common assumptions are the cluster assumption, the low-density separation assump-

tion, the manifold assumption, and the multi-view assumption. Below we discuss

examples of prominent methods that make each of these assumptions, and situa-

tions in which these assumptions are violated, which may cause these methods to

fail. There has been much additional work in semi-supervised learning. For more

information the reader is referred to [16, 127].

As with unsupervised learning, probabilistic semi-supervised learning is more

straightforward with a generative model. Generative semi-supervised learning meth-
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ods make the cluster assumption, which informally states that the values of the latent

output variables inferred by the model are highly correlated with the true labels. In

semi-supervised learning, we have a mixture of observed and latent output variables,

which we denote as yL and yU (for labeled and unlabeled), respectively. We estimate

parameters by maximizing

LM(θ) = log p(x,yL;θ) = log
∑
yU

p(x,yL,yU ;θ) (2.27)

Either the EM algorithm or direct gradient-based optimization can be applied to this

objective function. Nigam et al. [83] apply EM to semi-supervised text classification

with a naive Bayes model and obtain significant improvements over supervised learn-

ing. However, note that semi-supervised learning by maximizing marginal likelihood

may fail when the model is misspecified, violating the cluster assumption [18, 77].

Note that if there are dependencies between the observed and latent output vari-

ables, then we can also perform semi-supervised learning in a CRF by optimizing the

marginal likelihood of observed output variables conditioned on the input variables.

LMD(θ) = log p(yL|x;θ) = log
∑
yU

p(yL,yU |x;θ) (2.28)

The partial derivative of LMD(θ) is the difference of two expectations. The first

is the model expectation over the latent output variables of fj. The second is the

expectation over all output variables of fj.

∂

∂θj
LMD(θ) = Ep(yU |yL,x;θ)[fj(yL,yU ,x)]− Ep(yL,yU |x;θ)[fj(yL,yU ,x)] +

∂

∂θj
log p(θ).

Training with LMD(θ) can be performed using the expected gradient algorithm [98].

Note, however, that with iid instances where each instance is either fully labeled or

fully unlabeled, this reduces to supervised parameter estimation.
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An alternative formulation of the cluster assumption that is more natural for dis-

criminative training is the low-density separation assumption, which states that the

decision boundary should lie in a region of low-density. Examples of methods that

make this assumption include Entropy Regularization (ER) [41]. Entropy regular-

ization augments the likelihood with a term that encourages low entropy or peaked

distributions over latent variables.

OER(θ) = log p(yL|x;θ)− λH(p(yU |x;θ)) (2.29)

Either direct optimization or an EM-like algorithm can be used to maximizeOER(θ) [41].

Transductive Support Vector Machines [51], which aim to find the maximum mar-

gin decision boundary that separates both the labeled training and unlabeled test

instances, also make a low density separation assumption. In general, these methods

may fail in difficult problems with high class overlap.

Another class of methods assume that the data lies on a low-dimensional manifold,

and that instances that are close on the manifold should have the same output. Graph-

based semi-supervised learning methods [4, 128] build a graph in which nodes are

instances and edge weights denote similarity between instances. A labeling function

is then learned that matches the labels of labeled instances and varies smoothly over

the graph. Because the graph is typically constructed so that it only preserves local

distances, these methods are said to make the manifold assumption. These methods

may fail when the data does not lie on a low-dimensional manifold, or when data

sparsity prevents the discovery of the correct manifold structure.

Multi-view semi-supervised learning methods assume that there are multiple inde-

pendent views, i.e. multiple sets of features, and may additionally assume that each

view is sufficient to provide accurate predictions. Co-training [11] encourages predic-

tions of models that use each view to agree on unlabeled data. This effectively reduces

the hypothesis space and consequently permits learning with less labeled data. How-
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ever, often problems of interest do not have multiple views. Additionally, one view

in isolation may be insufficient for learning.

As a result of the above assumptions, semi-supervised learning methods tend to

be delicate and require data-specific tuning. Mann and McCallum [71] note that

there have been very few published papers that describe a successful application of

semi-supervised learning.

2.2.3 Lightly Supervised Learning

Even in the absence of labeled data we often have a wealth of prior knowledge

about information extraction and natural language processing tasks of interest. Ex-

amples of such prior knowledge include:

• text classification: Most documents that contain the word senate should be

labeled with the politics class.

• dependency parsing: Nouns are often dependents of verbs.

• information extraction (from citations): The word ACM should usually be

part of a journal or a conference.

• entity resolution: Mentions of entities that have high string overlap are likely

to refer to the same entity.

An emerging paradigm that we refer to as lightly supervised learning aims to lever-

age such prior knowledge in learning with unlabeled data. In this section we provide

a survey of different classes of methods for lightly supervised learning. We then il-

lustrate the limitations of these methods for incorporating general prior knowledge,

motivating the methods we develop in Chapter 3.

Note that in this section we focus on broad classes of approaches. More detailed

descriptions of lightly supervised approaches to particular tasks are provided in sub-

sequent chapters. Methods that are closely related to GE are described in Section 3.3.
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2.2.4 Labeling Data Approach

A simple approach is to use prior knowledge to label data, essentially reducing a

lightly supervised learning problem to a supervised or semi-supervised learning prob-

lem. This can often be viewed as using a rule-based system to perform annotation.

A prominent method that takes this approach is prototype-driven learning [44, 45].

This method uses prototypes, for example a list of words that are highly indicative

of each label, to partially label unlabeled data. Parameters of a generative model are

then estimated to maximize the marginal likelihood of the partial labeling and the

input variables. To improve accuracy, this method also uses cluster features that help

supervision to propagate from the prototypes to other related contexts.

Other related approaches include using prior knowledge to induce a soft-labeling of

the unlabeled data [24, 67, 101], or to label the unlabeled data and assign confidence

scores that can be incorporated into learning [124]. We discuss these methods in more

detail in Section 4.3.

The limitation of this approach is that in general it is often unclear how to convert

prior knowledge into a labeling. Consider our prior knowledge about the word ACM,

described above. For any particular occurrence of the word ACM, it is not clear

whether it should be labeled journal or conference. In fact, the occurrence could be

labeled with a different label, as the knowledge only usually applies.

2.2.5 Bayesian Approach

Another possible approach is to use prior knowledge to specify a prior on model

parameters p(θ). For example, Dayanik, et al. [21] propose several methods that use

known associations between words and labels to specify prior distributions on the

parameters of a logistic regression model for text classification.

The limitation of this approach is that our prior knowledge is often not about

parameter values. Parameter values are difficult to interpret as a result of complex
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interactions within the model. Consequently, designing a prior on parameters that

achieves a particular desired effect is challenging.

2.2.6 Modeling Approach

Finally, one can attempt to incorporate prior knowledge directly into the model.

Many successful applications of unsupervised learning can be viewed as taking this

approach, as they often involve complex generative models whose specification is

based on prior knowledge about the task [45, 89].

Unfortunately, understanding the relationship between the structure of the model

and the resulting distribution over latent output variables can be challenging. Con-

sequently it can be difficult to obtain a particular desired effect, especially for a

practitioner who is not a machine learning expert.
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CHAPTER 3

GENERALIZED EXPECTATION CRITERIA

As discussed in Chapters 1 and 2, obtaining labeled data sets for each task and

domain of interest is not feasible. While labeled data may be limited, unlabeled data is

typically easy to obtain. In addition, we have an abundant amount of prior knowledge

about most tasks of interest. However, most existing approaches to learning with

unlabeled data do not take advantage of such information, and approaches that do

require the practitioner to incorporate prior knowledge in an unintuitive way.

In this chapter, we propose constraints on model expectations as a more natural,

declarative language for encoding prior knowledge. We then describe Generalized

Expectation (GE), a flexible framework for specifying and learning with preferences

about model expectations. We also discuss connections between GE and related

frameworks.

3.1 Expectations

Suppose we would like to build a system to extract information from citations of

research papers such as the authors, title, journal, etc. We have a wealth of prior

knowledge about this task. For example, we know that “the word ACM should

usually be part of a conference or a journal.” We aim to develop methods for learning

with unlabeled data that leverage this information.

The methods described in Section 2.2.3 require prior knowledge to be encoded in

terms of model structures or parameter values, which can be difficult to interpret. In

actuality, our prior knowledge is about output variables. However, as also discussed
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in Section 2.2.3, we do not know the values of particular output variables, as it is not

always clear how to label data with our prior knowledge. For example, consider our

prior knowledge about the word ACM. For any particular occurrence of ACM, we do

not know whether it should be labeled conference, journal, or something else.

However, if given a distribution over the latent output variables, we can evaluate

how well it respects our prior knowledge. For example, given one distribution where

ACM is usually part of a conference or a journal, and another where ACM is usually

part of a title, we know that the first distribution is preferable. That is, our prior

knowledge tells us desirable properties of the distribution over latent output variables.

We formalize this idea using expectations. The expectation of a feature φ(x,y)

under a conditional distribution p is

Ep(y|x)[φ(x,y)] =
∑
y

p(y|x)φ(x,y). (3.1)

We call φ a constraint feature to distinguish it from a model feature f .

In order to incorporate our prior knowledge into learning we specifically evaluate

properties of the model distribution over latent output variables

Ep(y|x;θ)[φ(x,y)] = Eθ[φ] =
∑
y

p(y|x;θ)φ(x,y), (3.2)

where Eθ[φ] is shorthand. We describe how to specify preferences about the values

of these expectations in Section 3.2.

As with model features, the constraint features typically decompose into the sum

of local constraint features that consider subsets of output variables a. We denote

the set of variable subsets as F .

φ(x,y) =
∑
a∈F

φ(x,ya) (3.3)
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Therefore, the expectation of the constraint feature can be written

Ep(y|x;θ)[φ(x,y)] =
∑
a∈F

∑
ya

p(ya|x;θ)φ(x,ya), (3.4)

where p(ya|x;θ) are marginal probabilities of output variables in subset a.

The constraint features, like model features, are arbitrary functions of the variables

that return a real value. The selection of the particular subsets of variables to sum

over F , the number of output variables that the local constraint feature takes as input

|a|, and the attributes of variables the local constraint features compute collectively

provide the flexibility to define many different types of expectations. For example,

the constraint feature might only consider a particular subset of variables. If the data

consists of multiple iid samples, then this type of constraint feature can be used to

define an instance-specific expectation, rather than a corpus expectation.

It is important to note that there need not be any correspondence between con-

straint and model feature functions. The constraint features may examine different

aspects of the variables or take different subsets of variables as input, and there may

be more or fewer constraint features than model features. This flexibility can be lever-

aged to train a feature-rich model with a small number of expectation constraints, or

to train a simple model with more expressive expectation constraints.

3.1.1 Input Feature Label Distributions

In this section we describe a constraint feature that is used extensively in this

thesis. Note, however, that the learning methods developed in the remainder of this

chapter apply to arbitrary constraint features.

Following the information extraction example from the previous section, suppose

we would like to evaluate the expected label distribution for ACM. This information

extraction problem can be cast as sequence labeling, so input and output variables

are arranged into sequences. For the purposes of this example, we assume that all
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citations are concatenated into a single sequence of length n. We first define a local

input feature whose value is 1 when the token at some position j in the input sequence

is ACM.

qACM(x, j) = 1{xj=ACM} (3.5)

The indicator function 1{P} returns 1 if the predicate P is true, and 0 otherwise.

In this example, we are interested in individual output variables, so each subset

a contains a single index. We define a local constraint feature whose value is 1 when

the token at j is ACM, and the label y is journal.

φjournal,ACM(x, y, j) = 1{y=journal}qACM(x, j) (3.6)

The complete constraint feature, which sums the local constraint feature over all

positions in the sequence is

φjournal,ACM(x,y) =
n∑
j=1

φjournal,ACM(x, yj, j). (3.7)

The expectation of this constraint feature is

Ep(y|x;θ)[φjournal,ACM(x,y)] =
n∑
j=1

∑
yj

p(yj|x;θ)φjournal,ACM(x, yj, j) (3.8)

=
n∑
j=1

p(Yj = journal|x;θ)qACM(x, j), (3.9)

where p(yj|x;θ) is the marginal of the jth label. Notice that because φjournal,ACM

returns 0 for any token that is not ACM or any label that is not journal, the ex-

pectation will simply be the sum of the marginal probabilities of journal for each
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ACM token. We can make this expectation easier to interpret by normalizing by the

number of ACM tokens. We modify the constraint feature as follows

φjournal,ACM(x,y) =
1

cqACM

n∑
j=1

φjournal,ACM(x, yj, j) (3.10)

cqACM =
n∑
j=1

qACM(x, j). (3.11)

The expectation of φjournal,ACM(x,y) is now a probability. By defining similar con-

straint features for all other labels, we can compute a label distribution for ACM.

We refer to this expectation as an input feature label distribution. We use this

expectation throughout this thesis to encode prior knowledge about the assignments

to output variables that particular input features suggest.

Generalizing, we may use an arbitrary binary input feature q(x, a), arbitrary,

fixed-size subsets a of the output variables, and an indicator function that returns 1

for a particular assignment ` to Ya. The general constraint feature is

φ`,q(x,y) =
1

cq

∑
a∈F

1{ya=`}q(x, a). (3.12)

The expectation of this constraint feature is

Ep(y|x;θ)[φ`,q(x,y)] =
1

cq

∑
a∈F

∑
ya

p(ya|x;θ)1{ya=`}q(x, a) (3.13)

=
1

cq

∑
a∈F

p(Ya = `|x;θ)q(x, a). (3.14)

As above, we define a constraint feature for each possible `. To simplify notation, we

stack all k constraint features into a vector

φ(x,y) =


φ`0(x,y)

...

φ`k(x,y)

 . (3.15)
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Note that we may define a default q that always returns 1, q(x, a) = 1. In this

case we obtain an overall label distribution for the subsets in F .

3.2 Generalized Expectation Criteria

This section describes the method we use to specify preferences about model ex-

pectations. This method involves defining an objective function that has a larger value

when model expectations better respect our preferences, and estimating parameters

to maximize that objective function. Note that in addition to the terminology intro-

duced below, in this thesis we often refer to preferences about model expectations as

constraints. Importantly, we do not mean “hard” constraints that must be satisfied.

In this section we assume that constraint features are stacked into a column vector

φ. We make no assumptions about the functional form of the constraint features.

Generalized Expectation (GE) Criteria are terms in a parameter estimation ob-

jective function that express preferences on the value of a model expectation of some

function. These preferences are expressed through a score function S that takes as

input the expectations of the constraint features and returns a real value.

S(Ep(y|x;θ)[φ(x,y)]) (3.16)

A higher score is preferable to a lower score.

In general S could be an arbitrary function. In this thesis, we focus on score

functions that encourage model expectations of the constraint features to be close to,

or within some range of, a target expectation vector φ̃. It is often convenient to view

this type of score function as the negative of a penalty function. Target expectations

φ̃ could be provided directly by a user, or automatically derived from a more coarse-

grained target (see Chapters 4 and 9, and Section 8.2). Target expectations could also

be estimated from data, though note that an advantage of using prior knowledge is
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that estimation error can be reduced or eliminated. That is, it may take a substantial

amount of labeled data to estimate a target expectation that is as accurate our prior

expectation, especially if the constraint feature occurs infrequently.

We next provide several concrete examples of score functions.

• α-Divergence Penalty: If the expectation and target vectors are probabil-

ity distributions, as when using input feature label distributions, then we can

penalize distance from the targets using an α-divergence [78]. Here we assume

that each element of the constraint feature vector corresponds to one element

of the distribution.

lim
α→1

/ KL Div : SKL(Eθ[φ]) = −DKL

(
φ̃ || Eθ[φ]

)
(3.17)

= φ̃
T

log(Eθ[φ])− φ̃T
log(φ̃) (3.18)

lim
α→0

/ Rev. KL Div : SRKL(Eθ[φ]) = −DKL

(
Eθ[φ] || φ̃

)
(3.19)

= Eθ[φ]T log(φ̃)− Eθ[φ]T log(Eθ[φ])

(3.20)

α=0.5 / Hellinger Dist : SH(Eθ[φ]) = −DH

(
φ̃ || Eθ[φ]

)
(3.21)

= −2
∥∥∥√φ̃−√Eθ[φ]

∥∥∥2
2
, (3.22)

where log denotes an element-wise operation. We refer to SRKL as the reverse

KL divergence.

• Norm Penalty: An alternative is to penalize the difference between the model

and target expectations using a norm. Examples include:

31



L2
2/Squared Err : SL2

2
(Eθ[φ]) = −

∥∥∥φ̃− Eθ[φ]
∥∥∥2
2

(3.23)

L2/Euclidean Dist : SL2(Eθ[φ]) = −
∥∥∥φ̃− Eθ[φ]

∥∥∥
2

(3.24)

L1/Manhattan Dist : SL1(Eθ[φ]) = −
∥∥∥φ̃− Eθ[φ]

∥∥∥
1

(3.25)

• Range Penalty: Often target expectations will be estimated in a way that

introduces noise. If we know something about the amount of noise in our esti-

mate, we may use score functions that only aim to bring the model expectation

within some range of the target expectation. In general, we assume that we

have lower φ̃l and upper φ̃u bounds rather than target expectations. Two pos-

sible score functions penalize distance from the target range using the L2
2 or L1

norm.

Range L2
2: SL2

2R
(Eθ[φ]) = −

∑
i



(
φ̃li − Eθ[φi]

)2
Eθ[φi] < φ̃li(

φ̃ui − Eθ[φi]
)2

Eθ[φi] > φ̃ui

0 otherwise

(3.26)

The L1 range score function can be interpreted as a two-sided “hinge” penalty.

Hinge : SL1R(Eθ[φ]) = −
∑
i


φ̃li − Eθ[φi] Eθ[φi] < φ̃li

Eθ[φi]− φ̃ui Eθ[φi] > φ̃ui

0 otherwise

(3.27)

Figure 3.1 displays the different score functions. The expectation of the constraint

feature is a distribution over two labels. The x-axis value is the probability of the first

label. The target expectation is the uniform distribution. For range constraints, the

target range is within ±0.1. Each score function penalizes distance from the target
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Figure 3.1. Score function values vs. the model expectation of the first constraint
feature when the target is the uniform distribution.

expectation differently, as we discuss more in the following section. For empirical

comparison of different score functions, see Section 8.1.

3.2.1 Parameter Estimation for CRFs

We next discuss estimating CRF parameters using GE criteria. The application

of GE to generative models is left to future work. The complete parameter estimation

objective function contains three terms: the likelihood of available labeled data, the

GE term, and the regularization term. The GE term only applies to unlabeled data.

O(θ) = log p(yL|x;θ) + S(Ep(yU |x;θ)[φ(x,yU)]) + log p(θ) (3.28)
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Note that in general the objective may include several GE terms.

In many applications in this thesis, the data consists of iid instances and no labeled

data is available, so the objective function reduces to the GE and prior terms only.

O(θ) = S(Ep(yU |x;θ)[φ(x,yU)]) + log p(θ) (3.29)

In this case, we often simplify notation by dropping U .

We maximize Equation 3.28 or 3.29 with gradient-based numerical optimization.

We first show that the gradient of S(Ep(y|x;θ)[φ(x,y)]) is similar for all of the score

functions described in the previous section.

The gradient for an L2
2 score function, ∂

∂θ
SL2

2
(Eθ[φ]), is

− ∂

∂θ

(
φ̃− Eθ[φ]

)T(
φ̃− Eθ[φ]

)
= 2
(
φ̃− Eθ[φ]

)T( ∂

∂θ
Eθ[φ]

)
, (3.30)

where ∂
∂θ

Eθ[φ] will be a matrix of dimensionality d(φ)× d(f), where d is the dimen-

sionality of a vector. Similarly, for an L2 score function, ∂
∂θ

SL2(Eθ[φ]) is

− ∂

∂θ

∥∥∥φ̃− Eθ[φ]
∥∥∥
2

=
(φ̃− Eθ[φ])T∥∥∥φ̃− Eθ[φ]

∥∥∥
2

( ∂

∂θ
Eθ[φ]

)
. (3.31)

The gradient of the L1 score function is not defined when φ̃i = Eθ[φi], so we compute

a subgradient. In practice, when using subgradient ascent, we need only choose one

value in the set of subgradients. We choose 0.

∂

∂θ
SL1(Eθ[φi]) =



∂
∂θ

Eθ[φi] Eθ[φi] < φ̃i

− ∂
∂θ

Eθ[φi] Eθ[φi] > φ̃i

0 Eθ[φi] = φ̃i,

(3.32)
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The gradient of the KL divergence score function, ∂
∂θ

SKL(Eθ[φ]), is

− ∂

∂θ
DKL

(
φ̃ || Eθ[φ]

)
=

∂

∂θ

(
φ̃

T
log Eθ[φ]− φ̃T

log φ̃
)

=
∂

∂θ
φ̃

T
log Eθ[φ]

=
( φ̃

Eθ[φ]

)T( ∂

∂θ
Eθ[φ]

)
(3.33)

where φ̃
Eθ [φ]

denotes element-wise division. The gradient of the reverse KL diver-

gence score function, ∂
∂θ

SRKL(Eθ[φ]), is

− ∂

∂θ
DRKL

(
Eθ[φ] || φ̃

)
=

∂

∂θ

(
Eθ[φ]T log(φ̃)− Eθ[φ]T log(Eθ[φ])

)
=
(

log φ̃− 1− log(Eθ[φ])
)T( ∂

∂θ
Eθ[φ]

)
(3.34)

The gradient of the Hellinger distance score function, ∂
∂θ

SH(Eθ[φ]), is

− ∂

∂θ
DH

(
φ̃ || Eθ[φ]

)
= − ∂

∂θ
2
∥∥∥√φ̃−√Eθ[φ]

∥∥∥2
2

(3.35)

= 2

(√
φ̃−

√
Eθ[φ]√

Eθ[φ]

)T( ∂

∂θ
Eθ[φ]

)
(3.36)

The gradients (or subgradients) of range penalties are similar to their non-range

equivalents except that the gradient is 0 in the interval [φ̃li, φ̃ui].
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∂

∂θ
SL2

2R
(Eθ[φi]) =


2
(
φ̃li − Eθ[φi]

)(
∂
∂θ

Eθ[φi]
)

Eθ[φi] < φ̃li

2
(
φ̃ui − Eθ[φi]

)(
∂
∂θ

Eθ[φi]
)

Eθ[φi] > φ̃ui

0 otherwise

(3.37)

∂

∂θ
SL1R(Eθ[φi]) =



(
∂
∂θ

Eθ[φi]
)

Eθ[φi] < φ̃li

−
(
∂
∂θ

Eθ[φi]
)

Eθ[φi] > φ̃ui

0 otherwise

(3.38)

The L2
2 range score function is differentiable everywhere, whereas the L1 range /

hinge score function is not differentiable at the boundaries of the zero-penalty region.

As with the L1 score function, in practice at these boundaries we choose 0 from the

set of possible subgradients.

The gradient of each of the above score functions is the product of a penalty-

specific row vector and the matrix ∂
∂θ

Eθ[φ]. We next compute this matrix.

∂

∂θ
Ep(y|x;θ)[φ(x,y)] =

∑
y

φ(x,y)
∂

∂θ
p(y|x;θ) (3.39)

=
∑
y

φ(x,y)
∂

∂θ

( 1

Z(x;θ)
exp

(
θTf(x,y)

) )
(3.40)

Using the product rule, ∂
∂x

(uv) = u( ∂
∂x
v) + v( ∂

∂x
u), the gradient of the first term is

1

Z(x;θ)

( ∂

∂θ
exp

(
θTf(x,y)

) )
=

1

Z(x;θ)
exp

(
θTf(x,y)

)
f(x,y)T

= p(y|x;θ)f(x,y)T. (3.41)

The gradient of the second term is
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exp
(
θTf(x,y)

) ( ∂

∂θ

1

Z(x;θ)

)
(3.42)

= − exp
(
θTf(x,y)

) 1

Z(x;θ)2

∑
y′

exp
(
θTf(x,y′)

)
f(x,y′)T

= −p(y|x;θ)
∑
y′

p(y′|x;θ)f(x,y′)T. (3.43)

Therefore, ∂
∂θ

Ep(y|x;θ)[φ(x,y)] is

∂

∂θ
Eθ[φ] =

∑
y

p(y|x;θ)φ(x,y)f(x,y)T (3.44)

−
(∑

y

p(y|x;θ)φ(x,y)
)(∑

y

p(y|x;θ)f(x,y)T
)

=Ep(y|x;θ)[φ(x,y)f(x,y)T]− Ep(y|x;θ)[φ(x,y)]Ep(y|x;θ)[f(x,y)T]

=COVp(y|x;θ)

(
φ(x,y), f(x,y)

)
. (3.45)

Equation 3.45 shows that the gradient of the model expectation of the constraint

feature vector is the covariance matrix between constraint and model features.

The gradient provides intuition for how estimating parameters with GE works.

If the score function is not already maximized, GE updates parameters for model

features according to their covariance with constraint features. The score functions

differ in the first term of the gradient, which we denote by u. For example, for L2
2,

u = 2(φ̃− Eθ[φ]). The complete gradient for any of the score functions is

∂

∂θ
S(Eθ[φ]) = uT

(
Eθ[φfT]− Eθ[φ]Eθ[f

T]
)
. (3.46)

Different score functions emphasize closing the gap between model expectations

and target expectations in different ways. For example, KL divergence, in the direc-

tion used in SKL, is said to be inclusive, as it forces Eθ[φi] > 0 when φ̃i > 0. This is

apparent in Equation 3.33, as ui is large when φ̃i > 0 and Eθ[φi] is close to 0. The
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L2
2 score function emphasizes constraint features i with Eθ[φi] � φ̃i or Eθ[φi] � φ̃i

with 2(φ̃i − Eθ[φi]). The L1 score function treats all constraint features the same if

Eθ[φi] 6= φ̃i. For empirical comparison of different score functions, see Section 8.1.

While Equation 3.46 provides intuition, we do not need to explicitly compute and

store the covariance matrix. Note that we can rearrange this equation by moving u

inside the expectations.

∂

∂θ
S(Eθ[φ]) = Eθ[u

TφfT]− Eθ[u
Tφ]Eθ[f

T] (3.47)

Note that uTφ is a scalar. If we define the composite constraint feature as φ′(x,y) ≡

uTφ(x,y), then the gradient may be rewritten as the covariance between the com-

posite constraint feature and the model features.

∂

∂θ
S(Eθ[φ]) = Eθ[φ

′fT]− Eθ[φ
′]Eθ[f

T] (3.48)

The immediate benefit is that we never need to store the full covariance matrix.

To compute Equation 3.48 we must compute three expectations. The difficulty

of computing these expectations depends on both the model and the way in which

the constraint features decompose into local constraint features. In general, if the

constraint and model features decompose in the same way, then standard inference

techniques can be used to compute Ep(y|x;θ)[φ
′] and Ep(y|x;θ)[f ]. Computing the first

term of Equation 3.48 can be more challenging.

Eθ[φ
′fT] = Ep(y|x;θ)[φ

′(x,y)f(x,y)T]

=
∑
a∈F

∑
a′∈F

p(ya,y
′
a|x;θ)φ′(x,ya)f(x,y′a)

T (3.49)

Equation 3.49 shows that, naively, we need to compute marginal distributions over

all variables that participate in a and a′. As we saw in Section 2.1.3.3, standard

parameter estimation only require marginal distributions over a.
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We show that it is actually possible to compute Equation 3.49 efficiently for lo-

gistic regression models (Chapter 4), linear chain CRFs, and tree-structured CRFs

in general (Chapter 6). We show that it is possible to compute Equation 3.49 in

polynomial time for CRFs that model distributions over trees (Chapter 5). Finally,

in some cases approximate inference may be necessary. We consider using MCMC

methods to compute Equation 3.49 in (Chapter 7).

3.2.2 Gradient with iid Instances

When the data consists of N iid instances the model probability simplifies to

p(y|x;θ) =
N∏
i=1

p(yi|xi;θ), (3.50)

where i indexes the instances. Assuming that the constraint features also decompose

over instances, the GE gradient may be simplified.

∂

∂θ
S(Eθ[φ]) = Ep(y|x;θ)[φ

′(x,y)f(x,y)T]− Ep(y|x;θ)[φ
′(x,y)]Ep(y|x;θ)[f(x,y)T]

=
N∑
i=1

∑
yi

N∑
j=1

∑
yj

p(yi|xi;θ)p(yj|xj;θ)[φ(xi,yi)f(xj,yj)T]

−
N∑
i=1

∑
yi

p(yi|xi;θ)[φ(xi,yi)]
N∑
j=1

∑
yj

p(yj|xj;θ)[f(xj,yj)T]

=
N∑
i=1

∑
yi

p(yi|xi;θ)[φ(xi,yi)f(xi,yi)T]

−
∑
yi

p(yi|xi;θ)[φ(xi,yi)]
∑
yi

p(yi|xi;θ)[f(xi,yi)T]

=
N∑
i=1

COVp(yi|xi;θ)

(
φ(xi,yi), f(xi,yi)

)
(3.51)

Equation 3.51 shows that with iid instances the covariance over the entire data set is

equivalent to the sum of per-instance covariances. Intuitively, the “diagonal” terms

among pairs of different, independent instances in the covariance cancel out.

39



Algorithm 1 Computing the GE value and gradient
Input: unlabeled data x, constraint features φ, score function S
Output: value v, gradient grad
// compute constraint feature expectations
Eθ[φ] =

∑
y p(y|x;θ)φ(x,y)

// compute GE value
v = S(Eθ[φ]) + p(θ)
// compute GE gradient
grad = Eθ[φ′fT]− Eθ[φ′]Eθ[fT] + ∂

∂θp(θ)

3.2.3 Generic Training Algorithm

We next describe a general algorithm for estimating parameters with GE. Param-

eter estimation with GE is driven by a numerical optimizer. In order to decide how

to adjust the parameters, the optimizer asks the GE implementation for the value

and gradient of the GE objective function with the current parameters. Algorithm 1

shows that the method for computing the value and gradient can be described as

three distinct steps. Note that this algorithm assumes no labeled data.

First, the expectations of the constraint features are computed. If it is possible to

perform exact inference in p(y|x;θ), and constraint features factor in the same way as

model features, this step can be performed efficiently. Second, the value v is computed

by summing the score function, computed using Eθ[φ], and the parameter regular-

ization term. Finally, the gradient grad is computed by computing the covariance

between the composite constraint feature and the model features. Note that com-

puting the composite constraint feature requires the constraint feature expectations

Eθ[φ] computed in the first step, in order to compute u.

3.2.4 Optimization Notes

In standard maximum entropy estimation, reviewed in Section 2.1.3.4, we know

that there is a labeling of the data that satisfies the equality expectation constraints:

the labeling that was used to estimate the target values. Note that there may not

be a solution that exactly matches the target expectations in the applications in this

thesis, since the target expectations are typically estimated in a way that introduces
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noise. However, GE training is still feasible in these scenarios as it encourages but

does not require the model to match the target expectations.

As with most objective functions that include latent variables, Equation 3.28 is

not concave in the parameters θ. It is well known that log p(y|x;θ) is concave in θ,

but Eθ[φ] is not concave in θ. It is still possible to use standard convex optimization

techniques to maximize Equation 3.28, though of course we are not guaranteed to find

the global optimum. We use two optimization algorithms in this thesis: Subgradient

Ascent, for score functions with points of non-differentiability, and a limited memory

quasi-Newton optimizer L-BFGS [68]. When using L-BFGS, we use the standard,

though not often published, trick of resetting the history and re-starting optimization

upon convergence. In our experience, this improves accuracy with non-convex func-

tions. In general, we do not find it necessary to try many different initializations of

the parameters, though higher accuracy may be attained by doing so. Experiments

in this thesis begin GE training with all parameters initialized to zero.

3.2.5 Temperature

In general, there may be multiple ways to match the target expectations. For

example, suppose we have four documents, and we would like the model to expect

that 75% are label 0. This constraint could be perfectly satisfied in a number of

different ways. For example, one solution is to label any three documents as 0, and

the other as 1. Alternatively, we could label any two documents with label 1, and

label the other documents as 50% label 0, 50% label 1. In some cases the first solution

may be preferable to the second.

To address this, we may modify model probabilities with a temperature T .

pT (y|x;θ) ∝ exp(θ · f(x,y)/T ) (3.52)

41



If T < 1, the log score scores for each y are multiplied by a constant > 1. These

log scores are then exponentiated. Consequently, using T < 1 makes the model

probability distribution more peaked. As T → 0, pT approaches a distribution where

all mass is placed on the maximum probability output.

Using a temperature T < 1 in GE training disallows solutions in which target

expectations are matched with very flat distributions. Empirically, using a tempera-

ture has provided accuracy improvements [71]. We provide additional discussion and

experiments using a temperature in Chapter 7.

3.3 Related Methods

In this section we discuss other frameworks that are related to GE.

3.3.1 Posterior Regularization

As we show in this thesis, in many cases of interest the GE gradient, specifically

Equation 3.48, can be computed efficiently. However, for some models computing

the GE gradient requires inference algorithms that have higher time complexity than

standard inference algorithms. In this section we provide an approximation to the

GE objective function that avoids the covariance computation.

We define the auxiliary distribution, denoted by q, over latent output variables

q(yU |x). The following objective function is a function of both the model parameters

θ and the auxiliary distribution q.

O(θ, q) = L(θ)−DKL

(
q(yU |x)||p(yU |x;θ)

)
+ S
(
Eq(yU |x)[φ(x,yU)]

)
(3.53)

In this objective, the score function S evaluates expectations of the constraint features

under the auxiliary model, and the model and auxiliary distributions over latent

variables are encouraged to be “close” as measured by KL divergence. This objective

is an approximation to Equation 3.28.

42



To optimize this objective function, we perform block coordinate ascent, alter-

nating between optimizing O(θ, q) with respect to q and with respect to θ. These

optimization steps can be interpreted as projections.

Information-Projection: Maximizing Equation 3.53 with respect to q gives

max
q
O(θ, q) = max

q
L(θ)−DKL

(
q(yU |x)||p(yU |x;θ)

)
+ S
(
Eq(yU |x)[φ(x,yU)]

)
= min

q
DKL

(
q(yU |x)||p(yU |x;θ)

)
− S
(
Eq(yU |x)[φ(x,yU)]

)
(3.54)

If S is convex in the constraint feature expectations, then this is a Generalized Max-

imum Entropy problem [30]. The problem is a generalization of maximum entropy

in two ways. First, we minimize the KL divergence from a base distribution, rather

than maximize entropy. Note that this is equivalent to maximizing entropy if the

base distribution is uniform. Second, rather than satisfy equality constraints, we in-

stead minimize a penalty function of model expectations (the negative of the score

function). In the terminology of information geometry, this problem is also called an

information projection.

As in maximum entropy estimation, the optimization problem in Equation 3.54 is

hard to solve in the primal form, but it is easy to solve the dual problem. The dual

problem is similar to the dual of maximum entropy, but here the base distribution

appears in the log-partition function, and there is regularization on model parameters.

For example, with an L2
2 score function, the dual is

argmax
λ

λTφ̃− log
∑
yU

exp
(
λTφ(x,yU) + log p(yU |x;θ)

)
−
∥∥∥λ∥∥∥2

2
.

Moment-Projection: Maximizing Equation 3.53 with respect to θ gives
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max
θ
O(θ, q) = max

θ
L(θ)−DKL

(
q(yU |x)||p(yU |x;θ)

)
+ S
(
Eq(yU |x)[φ(x,yU)]

)
= max

θ
L(θ)−

∑
yU

q(yU |x) log q(yUx) +
∑
yU

q(yU |x) log p(yU |x;θ)

= max
θ
L(θ) +

∑
yU

q(yU |x) log p(yU |x;θ) (3.55)

In this problem, called the moment projection, the score function is a constant. Con-

sequently, this is a maximum likelihood problem with the hidden variables yU “filled

in” by the auxiliary distribution q.

Intuitively, this method is similar to GE, but instead of trying to directly enforce

the expectation constraints by adjusting θ, we introduce a distribution q to match

the expectation constraints, and encourage q and p to be similar. The optimization

alternates between trying to find a q that is close to p but also respects the constraints,

and trying to p close to q that also respects L(θ).

This method, called Alternating Projections (AP) in [5], is equivalent to the

penalty version of Posterior Regularization (PR). PR was first described as an EM

algorithm that constrains the posterior distribution in the E-step [39]. PR was subse-

quently generalized to use soft constraints with a penalty formulation similar to GE

and AP, and to address training of discriminative models [36].

Concretely, the E- and M-steps in PR are equivalent to the I- and M-projections in

AP. Ganchev et al. formulate the penalty objective slightly differently, using the norm

of slack variables, but this is mathematically equivalent to the generalized maximum

entropy formulation used by AP.

There have been numerous applications of PR, including incorporating structural

constraints into word alignment models [39], agreement constraints in a multi-view

setting [35], “noisy labeled data” into dependency grammar induction [34], and pos-

terior sparsity into part-of-speech induction [40]. In contrast, in this thesis we are

primarily concerned with input feature label distribution constraints.
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We compare GE and PR empirically in Chapter 8.3.

3.3.2 Generalized Maximum Entropy / Maximum Likelihood

The most straightforward method for learning with expectation constraints is

generalized maximum entropy [30], previously discussed in Sections 2.1.3.4 and 3.3.1.

With a uniform base distribution and no labeled data, the primal problem is

max
p

H(p(yU |x)) + S(Ep(yU |x)[φ(x,yU)]).

It is convenient to solve this problem in its dual form. The precise dual objective

depends on S, but in all cases the parametrization of p is determined by the constraint

features φ. Specifically, the model and constraint features are identical, φ = f .

In contrast, GE, PR, and related methods allow φ 6= f . We suggest two settings

in which this flexibility can be leveraged. First, we often know about the existence of

additional unconstrained features. For example, in text classification, we may only

have input feature label distribution constraints for a few words, but given unlabeled

data we know about the existence of many other words that may be relevant to the

classification task. Allowing φ 6= f enables learning parameters for these features

by including them in f . This thesis focuses on training feature-rich models with a

small number of expectation constraints. Empirical comparisons between GE and

generalized maximum entropy in this setting are provided in Sections 7.3 and 8.3.

Alternatively, model features could be less expressive than constraint features,

which enables leveraging rich prior knowledge while retaining a tractable model. For

example, we could train a logistic regression model for a sequence labeling task using

additional expectation constraints that encourage correct transition marginals. Note,

however, that in general the model will not be capable of matching targets for more

expressive constraints exactly. Consider the following example. Suppose there are two

binary variables: Y0 and Y1, and we have expectation constraints that specify that
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the transition distribution should be p(Y0 =0, Y1 =0)=0.6 and p(Y0 =1, Y1 =1) = 0.4.

Maximum entropy estimation would create a dependency between Y0 and Y1, and the

targets could be matched exactly. However, if we use GE with p(y0, y1) = p(y0)p(y1),

then the target transition distribution cannot be matched exactly. Instead, the global

maximum of a GE objective with a KL divergence penalty and no regularization would

result in marginals of p(Y0 = 0) = p(Y1 = 0) = 0.6, yielding a transition distribution

of p(Y0 = 0, Y1 = 0) = 0.36, p(Y0 = 0, Y1 = 0) = 0.16, p(Y0 = 1, Y1 = 0) = 0.24, p(Y0 =

0, Y1 = 1) = 0.24. Note that the marginals p(y0) and p(y1) are correct, but that 48%

of transitions the model expects are intended to be disallowed by the constraints.

It may be possible to develop alternatives to GE that are based on maximum

entropy. For example, if labeled and unlabeled data are available, we could specify a

mixture of constraints from labeled data and constraints from prior knowledge, and

apply them to the unlabeled data. However, as above this method is not capable

of learning parameters for unconstrained features that appear in unlabeled data. To

address this, it may be possible to develop a maximum entropy method that uses an

additional assumption about the parametrization of the model. Though the additional

assumption conflicts with the principle of choosing the simplest model that is capable

of satisfying the constraints, it would allow f 6= φ, enabling the inclusion of extra

model features. Note, however, that maximizing entropy may discourage the use of

the extra model features. We leave exploration of these directions to future work.

Though generalized maximum entropy and GE provide different solutions in the

settings explored in this thesis, we also describe a case in which they are equivalent.

Suppose that there is no parameter regularization in either objective function, the

score functions are maximized when Ep(y|x;θ)[φ(x,y)] = φ̃, and GE uses a model with

only the constraint features, f = φ. In this case, the maximum entropy solution θme

is a global maximum of the GE objective function. As discussed in Section 2.1.3.4,

maximum entropy is equivalent to maximum likelihood for CRFs. Therefore, the
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maximum likelihood solution is a global maximum of the GE objective when target

expectations φ̃ are estimated from labeled data and the above conditions are satisfied.

3.3.3 Learning from Measurements

Liang et al. take a Bayesian approach to learning with measurements [66], which

are equivalent to target expectations φ̃ in this thesis. Note that unlike the approaches

described in Section 2.2.3, this approach explicitly models the observation of prior

knowledge about feature functions. Liang et al. model the probability of observed

and latent output variables, yL and yU , and observed target expectations, φ̃, as

p(yL,yU , φ̃|x;θ) = p(yL|x;θ)p(yU |x;θ)pN
(
φ̃|φ(x,yU)

)
. (3.56)

It is assumed that yL and yU are conditionally independent given the input variables

x. Target expectations φ̃ are modeled as noisy observations of the true values ac-

cording to some noise model PN . The marginal likelihood of observed variables under

this model is

Lmm(θ) = L(θ) + log
∑
yU

p(yU |x;θ)pN
(
φ̃|φ(x,yU)

)
(3.57)

Computing the second term is intractable, as it does not decompose into expectations

over smaller subsets of variables. However, Ganchev et al. [36] show that if we make

the approximation

∑
yU

p(yU |x;θ)pN(φ̃|φ(x,yU)) = Eθ[pN(φ̃|φ)] ≈ pN
(
φ̃|Eθ[φ]

)
, (3.58)

then, with an appropriate noise model, we recover GE. For example, if we assume

φ̃ ∼ N (Eθ[φ], 0.5I), then, ignoring constants with respect to θ, we recover GE with

an L2
2 score function.
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Lmm(θ) ≈ L(θ) + pN
(
φ̃|Eθ[φ]

)
= L(θ)−

(
φ̃− Eθ[φ]

)T(
φ̃− Eθ[φ]

)
= L(θ) + SL2

2
(Eθ[φ]) (3.59)

Liang et al. [66] make a different approximation to Equation 3.57 that combines

variational inference and Jensen’s inequality. The resulting objective function is

equivalent to PR [36].

3.3.4 Constraint-Driven Learning

Constraint-driven learning (CODL) [15] incorporates instance-specific constraints

into inference using hand set penalties. Incorporating the penalties may break stan-

dard inference algorithms such as Viterbi, so approximate inference, such as beam

search, is used instead. Unlabeled data is incorporated into learning with an EM-like

algorithm. The modified E-step consists of using the penalty-augmented inference

procedure to generate the n-best assignments to the latent output variables. The

modified M-step uses the n-best lists to re-estimate model parameters. CODL can be

viewed as an approximation to PR because it uses an n-best list rather than the full

posterior. Unlike other related methods, CODL requires the practitioner to specify

difficult-to-interpret penalties, rather than expectation constraints.

3.3.5 Constraint-Driven SampleRank

SampleRank is a supervised parameter estimation method that performs param-

eter updates during MCMC inference [123]. Specifically, each pair of consecutive

samples is compared, and a parameter update is made if the ranking of the model

scores of the samples disagrees with the ranking implied by the labeled data. For

further details consult [123].

Constraint-Driven SampleRank (CDSR) extends SampleRank to leverage con-

straints and unlabeled data [109]. In this algorithm the two samples are compared
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with a function that penalizes constraint violation with user-specified penalties λ. In

particular, each sample is evaluated using

Fφ(x,y) = λTφ(x,y), (3.60)

where Singh et al. [109] define φi to return -1 if the constraint is violated, 1 if it

is satisfied and 0 if it does not apply. Because CDSR updates parameters during

sampling, this method is very efficient. However, unlike GE and related methods, it

is not clear how CDSR can enforce that a constraint should hold in expectation, and

consequently the method is best suited to hard, per-instance constraints.

3.3.6 Other Related Methods

GE is related to the method of moments [38], but differs in that it uses target

expectations from prior knowledge rather than sample moments, maximizes a score

function instead of requiring equality, and allows more or fewer moments than pa-

rameters. More recent work in statistics that provides some (but not all) of these

flexibilities includes work that suggests using prior knowledge to set moments and

allows the use of more (but not fewer) moments than parameters [37], and work

that allows the use of auxiliary moment constraints to improve the efficiency of fully

observed parameter estimation [47].

Quadrianto, et al. present a method for learning a conditional model for a test set

with known label proportions given only n (n ≥ |Y|) sets of observations, each with

known label proportions [91]. The method estimates feature expectations by solving

a system of equations that relates the known empirical expectations in each set, the

known label proportions, and the true expectations on the test set. However, this

method requires knowing the label proportions on the test set, and does not address

structured problems or noisy label proportions.
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In later work, Quadrianto et al. propose a transductive learning algorithm that en-

courages the model to have similar training and testing data feature expectations [90].

The method uses a GE-like term in the objective function that penalizes large diver-

gence between the expectations. The objective is optimized in an online fashion by

comparing the expectations of pairs of points from the training and test set. This

suggests it may be possible to devise an online algorithm for GE, though this is left

to future work.

Coupled semi-supervised learning [14] is a method that enforces coupling con-

straints between different learning tasks in a multi-task setting. The proposed algo-

rithms are conceptually similar to PR or CODL: they involve predicting values for

latent variables and adjusting the predictions to take into account the coupling con-

straints (E-step), and using the adjusted predictions to update the model (M-step).
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CHAPTER 4

GE FOR LIGHTLY SUPERVISED TEXT
CLASSIFICATION

In this chapter, we use GE to develop a lightly supervised text classification

method that leverages known relationships between input features (words) and la-

bels. Extensive experiments demonstrate that this approach typically outperforms

other methods for learning with such prior knowledge, and that, given limited annota-

tion time, having an annotator “label” input features rather than complete documents

typically yields a more accurate classifier.

4.1 GE for Logistic Regression

The goal of classification is to predict the value of an output variable yi, often

referred to as a label or a class, for an input xi. If we assume that all output vari-

ables are independent, ∀i,j:i 6=j yi ⊥⊥ yj, then the conditional probability of a set of n

instances can be simplified to

p(y|x;θ) =
N∏
i=1

p(yi|xi;θ). (4.1)

As discussed in Section 2.1.4, with independent output variables a CRF is equiv-

alent to a multinomial logistic regression model or a maximum entropy classifier.

p(yi|xi;θ) =
1

Z(xi;θ)
exp

(
θ · f(xi, yi)

)
(4.2)

Inference in a maximum entropy classifier is straightforward. It follows from

Equation 4.1 that expectations of model features decompose into the sum of instance-
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specific expectations. We can compute instance-specific partition functions Z(xi;θ)

or the maximum probability label for xi in O(|Y|) time, where |Y| is the number of

possible labels, by computing the sum or the max of the scores of each label.

Computing the gradient of a GE term is also straightforward. As discussed in

Section 3.2.2, with iid instances the covariance decomposes into the sum of instance-

specific covariances. The first term of Equation 3.48 is

Eθ[φ
′fT] =

N∑
i=1

∑
yi

p(yi|xi;θ)φ′(yi,xi)f(yi,xi)T. (4.3)

Equation 4.3 shows that computing the GE gradient requires only p(yi|xi; θ). There-

fore no additional inference algorithms are needed, and both supervised and GE

training have the same time complexity: O(N |Y|). In practice GE is slightly slower

because two passes over the data are required.

4.2 Learning with Labeled Features using GE

In this chapter we focus on text classification, in which the task is to assign a label

to a text document. Example text classification problems include email, webpage, and

sentiment polarity classification. Even if we do not have labeled data for these tasks,

we often have prior knowledge that we can use as light supervision: knowledge about

the distribution over labels for the set of documents that contain a particular word. It

is unrealistic to assume that users can provide a precise estimate of this distribution

directly. Instead, we propose an approach in which the user provides list of labels

that comprise most of the probability mass. For example, rather than provide a

distribution over labels for documents that contain the word “game”, the user could

instead provide a list of labels related to sports, for example baseball and hockey. We

refer to this unit of supervision as a labeled input feature.

52



We would like to estimate parameters using only a set of labeled input features

and unlabeled data. In this chapter we take the following simple approach. First, we

convert each labeled input feature into a target distribution using a heuristic. Through

this conversion we provide a labeled input feature with a precise meaning. Then, we

use GE to encourage the model to match these target distributions. Although this

method may introduce noise, the experiments in this chapter demonstrate that precise

estimates of the target distributions are not required to obtain positive results.

4.2.1 Estimating Target Distributions

Let q be an input feature, Lq be its set of labels, and φ̃q be the target distribution

for q, a vector of dimensionality |Y|. We use two methods for converting labeled input

features (q, Lq) into target distributions φ̃q.

• Schapire distributions: As proposed by Schapire et al. [101], we use a simple

heuristic in which a majority of the probability mass for an input feature is

distributed uniformly among its user-specified labels, and the remaining prob-

ability mass is distributed uniformly among the other labels. Specifically, we

assign probabilities

φ̃qy =


pmaj/|Lq| y ∈ Lq

(1− pmaj)/(|Y| − |Lq|) y /∈ Lq,
(4.4)

where pmaj is the majority probability. In the following experiments we use

pmaj =0.9.

• Feature-voted distributions: Alternatively, we use the labeled input features to

vote on labels for the unlabeled instances. For each labeled input feature that

is present in an instance, it contributes a vote for each of its labels. We then

normalize the vote totals to get a distribution over labels for each instance i,
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pv(y|xi). With this soft-labeled data, we can estimate the target distributions

directly.

φ̃qy =
N∑
i=1

Epv(y|xi)[φqy(x
i, y)] (4.5)

4.2.2 Objective Function

We encourage the model to match the target distributions using GE. The con-

straint feature for this application is

φqy′(x, y) =
1

cq
1{y=y′}q(x). (4.6)

As discussed in Section 3.1.1, the expectation of φqy′ is the probability that instances

with q are labeled y′ by the model. We use a KL divergence score function SKL. The

complete objective function, including a Gaussian prior on parameters, is

O(θ) =
∑
q

φ̃
T

q log(Eθ[φq])− φ̃
T

q log(φ̃q)−
1

2σ2

∥∥∥θ∥∥∥2
2
, (4.7)

where Eθ[φq] =
∑N

i=1

∑
yi p(y

i|xi;θ)φq(x
i, yi).

4.2.3 Selecting Input Features to Label

We consider both scenarios in which 1) the user supplies labeled input features

directly, and 2) the user is provided with a set of candidate input features to label.

Importantly, in scenario 2) we give the user the option to skip labeling an input feature

if they are unsure or the input feature is uninformative. For example, the user might

skip labeling if presented the word “the”. We propose the following method to select

input features to label for scenario 2).

We could select candidate input features randomly or by frequency. However, the

random method may select uninformative or infrequent features, while the frequency
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method would select common, uninformative features. Instead we run unsupervised

input feature clustering and select the most prominent input features in each cluster.

Specifically, we use latent Dirichlet allocation (LDA) [9], a widely used topic model.

For each LDA topic ti, we sort input features q by p(q|ti) and choose the top f

input features. There is no guarantee that the candidate input features selected by

this heuristic are relevant to the learning task of interest. However, in practice this

method is preferable to the alternatives. We refer to this method as LDA features.

4.3 Related Work

Several other methods for incorporating labeled input features into text classifi-

cation have been proposed. Many of these methods convert labeled input features

into labeled instances. Liu et al. [67] use human annotators to label features that

are highly predictive of unsupervised instance clustering assignments. The unlabeled

instances are soft-labeled according to their cosine similarity with pseudo-instances

that only contain labeled input features, and this soft-labeled data is used as ini-

tialization for the expectation maximization (EM) algorithm. Schapire, Rochery, and

Gupta [101] use hand-crafted rules based on relevant input features to label instances,

and modify AdaBoost to choose weak learners that both fit the labeled training data

and the soft-labeled data. Wu and Srihari [124] use labeled input features to assign

labels and confidence scores to unlabeled instances, which are then used in conjunc-

tion with labeled data during training. We compare with the methods of Schapire,

Rochery, and Gupta [101] and Wu and Srihari [124] in Sections 4.4.4 and 4.4.5, re-

spectively. As discussed in Section 2.2.3, GE is preferable to these methods because

the mapping between labeled input features and labels is automatically determined.

Dayanik, et al. [21] propose several methods that use labeled input features to

specify prior distributions on the parameters of a logistic regression model. As dis-
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cussed in Section 2.2.3, GE does not require the practitioner to make statements

about difficult-to-interpret parameter values.

Some recent work has addressed active learning by labeling input features. Ragha-

van, Madani, and Jones [94] interleave feedback on instances and input features in

an algorithm called tandem learning. They show that incorporating feedback on

input features can significantly accelerate active learning. Experiments also demon-

strate that humans can provide accurate information about input features, and that

it takes five times as long to label instances as to label input features. Raghavan and

Allan [93] provide additional methods for training SVMs with labeled input features

related to those described above, including scaling the parameters of labeled input

features, creating specially-weighted pseudo-instances containing only labeled input

features, and soft-labeling unlabeled instances. We compare with tandem learning in

Section 4.4.6.

4.3.1 Recent Work

In work published after the work presented in this chapter, Sindhwani and Melville

[107] propose a graph-based co-regularization approach to leveraging labeled input

features and instances. In this method a bipartite graph of instances and features is

constructed in which a weighted undirected edge between a feature and an instance

indicates the frequency of the feature in the instance. A labeling function f is learned

on this graph such that labeled instances and features get their correct labels, and

f is smooth over the graph. The smoothness condition incorporates unlabeled in-

stances and features. Sindhwani et al. [108] compare co-regularization with GE on

binary problems. If the best value of a hyperparameter of co-regularization is se-

lected, co-regularization outperforms GE in 6 of 10 cases. Note that we do not tune

hyperparameters in the experiments that follow. Additionally, there is no discussion

of the application of co-regularization to multi-class problems.
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As in [21], Settles [104] develop a method for using labeled input features to

specify priors on model parameters. Specifically, labeled input features are used to

set the parameters of Dirichlet priors on multinomials for naive Bayes models. The

EM algorithm is then used to incorporate unlabeled data. Settles [104] report that

this method sometimes outperforms GE with 10 labeled input features per class, but

that GE often performs better with 30 labeled input features per-class. Note that if

complete input feature label distributions are available, it is much more natural to

incorporate this information into learning with GE than with difficult-to-interpret pa-

rameter values. Additionally, we expect GE training to outperform a similar method

in complex structured prediction tasks.

4.4 Experiments

In this section we present experiments with the proposed method for learning with

labeled input features using both real and simulated users.

4.4.1 Simulated User

To simulate scenario 1), in which the user both selects the input features and

labels them, we use the following method to select input features.

Ideally, a selected input feature should be both highly predictive of some subset

of labels, and occur frequently enough to have an impact. We simulate the selection

of such input features by revealing the labels of unlabeled instances, which simulates

human background knowledge. Input features are then selected in descending order

of their predictive power, as measured by their mutual information with the class

label. We refer to this method as oracle features.

We use the following method to simulate the labeling of an input feature.

We simulate deciding whether to accept, rather than skip, an input feature by

computing its mutual information with the class label, and accepting if the mutual
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information is > α. In the following experiments, α is the mean of the mutual

information values of the top M most predictive features, where M = 100|Y|, or 100

times the total number of labels. If accepted, the oracle labels an input feature with

the label it occurs with most often, and any other label that it occurs with at least

half as often. We note that because M is typically small relative to the total number

of input features, the oracle is somewhat conservative in the input features it accepts.

This simulates a scenario in which the user only knows about the most prominent

and important input features. We refer to this as the oracle labeler method.

Example labeled input features obtained using the oracle features method and the

oracle labeler are provided in Table 4.1.

input feature label
bad negative

unfunny negative
terrific positive
minute negative
poor negative
awful negative
idiotic negative

ridiculous negative
lame negative

fantastic positive
ludicrous negative

performances positive
family positive

laughable negative
portrayal positive

waste negative
hilarious positive

embarrassing negative
excellent positive

worst negative

input feature labels
handouts course

areas faculty
teaching course, faculty
problem course

grade course
description course

final course
phone faculty, student
exam course

material course
advisor student

department faculty, student
selected faculty
received faculty, student
professor faculty
science faculty, student

required course
ta course

week course
readings course

Table 4.1. Randomly selected labeled input features obtained using oracle features
and the oracle labeler for the movie (left) and webkb (right) data sets.
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4.4.2 Experimental Setup

We evaluate the effectiveness of GE on six text classification data sets. For all

data sets, instances correspond to documents and features are word counts. For the

tasks in which a single instance can be assigned multiple labels, we split the task into

Y one vs. all binary learning tasks, where Y is the number of labels. For other data

sets, we use multi-class classification. We describe the data sets below.

• reuters21578:1 A standard text categorization data set in which task is to

assign categories to news articles. We use the ModApte split and evaluate

on the top 10 most frequent classes, as in [124] (9603 training instances, 3299

testing instances).

• 20 newsgroups2 The task is to classify messages according to the newsgroup

to which they were posted. We use both the entire data set (20 classes, 20,000

instances) and binary subsets (2,000 instances).

• movie3 The Polarity v2.0 data set, in which the task is to classify the sentiment

of movie reviews as positive or negative (2,000 instances).

• sraa2 The task is to classify messages about real and model automobiles and

aviation with the appropriate newsgroup (4 classes, 73,218 instances).

• webkb4 The task is to classify university webpages as student, course, faculty,

or project (4,199 instances).

• industry sector2 The task is to classify webpages according to a hierarchy of

industrial sectors (4,582 instances). We use binary subsets, and the top level

categories (7 classes).

1http://kdd.ics.uci.edu/

2http://www.cs.umass.edu/ mccallum/code-data.html

3http://www.cs.cornell.edu/People/pabo/movie-review-data/

4http://www.cs.cmu.edu/ webkb
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For data sets without a standard test/train split, we randomly split the data such

that 75% is used as training data, and the remaining 25% is reserved for testing.

We use 10 such random splits and report the mean of the results. For experiments

that do not use labeled instances we simulate unlabeled data by hiding labels of all

instances. Experiments with GE never include labeled instances.

4.4.3 Comparison with Baselines

We first compare GE with several baseline methods, described below.

• feature voting: Use the labeled input features to vote on the classification.

• feature labeling: Use the labeled input features to vote on labels for the un-

labeled instances and train a supervised model on this data. We do not include

instances without a labeled input feature, and use hard class assignments, which

provided significantly better results in our experiments.

• labeled only: Use GE to estimate parameters of a model with a reduced

feature set that only includes labeled input features (f = φ).

For these simulated user experiments we use the oracle labeler and select the

top 25|Y| input features (according to oracle features or LDA features) for label-

ing. Data sets med-space, ibm-mac, and baseball-hockey are subsets of the 20

newsgroups data set; healthcare-financial is a subset of the industry sector

data set.

We run experiments comparing the above baselines with GE and provide the

results in Tables 4.2, 4.3, 4.4 and 4.5. The parenthesized number with each data

set indicates the mean number of input features labeled by the oracle labeler. The

results presented in Tables 4.2 and 4.3 are obtained using oracle features and Schapire

distributions. This simulates a scenario in which there is a domain expert who can

suggest and label relevant input features. We also run experiments using LDA features

and Schapire distributions, which simulates a scenario in which some candidate input

60



features are presented to the labeler. The results are presented in Tables 4.4 and 4.5.

We evaluate the methods with macro-averaged F1, the mean of the F1 for each label.

GE attains the highest macro-F1, in 7 of the 9 data sets using oracle features, and

7 of 9 using LDA features. Results marked with a * indicate that GE performs

significantly better under a two-tailed paired t-test with significance level α = 0.05.

We also perform experiments to determine the effectiveness of GE in relation

to semi-supervised training with labeled documents. We use entropy regularization

(ER) [41], a discriminative semi-supervised learning method that aims to minimize the

uncertainty of predictions on unlabeled data. This method was discussed previously

in Section 2.2.2. ER introduces a tuning parameter λ that controls the weight of the

regularizer relative to the data likelihood. We set λ = 0.2, a value that provided

the best mean results across all data sets, and perform training with a deterministic

annealing procedure. We report the number of instances at which the performance of

GE and the instance learning method are statistically indistinguishable. Raghavan,

et al. [94] perform a thorough user study in which they conclude that it is five times

faster to label an input feature than to label a document. We use this result to

present estimated speed-ups using GE over entropy regularization. We note that in

the computation of this estimated speed-up, we consider the number of input features

presented to the labeler, including those that are skipped. Since we expect skipping

an input feature to be faster than labeling an input feature, the estimates in Table 2

are likely to be conservative.

Each of the baselines demonstrates an important point about GE. Feature voting

uses the domain knowledge only, whereas GE uses this information to constrain model

predictions on unlabeled data, and in the process learns about co-occurring features

without labels. Labeled only again demonstrates the importance of incorporating

these co-occurring features without labels. Finally, suppose that an input feature q

has two labels, y0 and y1. The feature labeling method interprets this to mean that
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Learning with Labeled Input Features
data set feat. voting feat. label labeled only GE
movie (43.7 of 50) 0.763* 0.766* 0.772* 0.797
sraa (97.5 of 100) 0.630* 0.596* 0.585* 0.651
webkb (88.8 of 100) 0.496* 0.477* 0.745* 0.774
med-space (50.0 of 50) 0.907* 0.932* 0.930* 0.952
ibm-mac (43.7 of 50) 0.853 0.864 0.861 0.855
baseball-hockey (50 of 50) 0.925* 0.927* 0.939* 0.954
20 newsgroups (494.4 of 500) 0.554* 0.560* 0.643* 0.704
financial-healthcare (50 of 50) 0.653 0.443* 0.539* 0.583
sector.top (163.9 of 175) 0.664* 0.657* 0.719* 0.730

Table 4.2. Macro-averaged F1 for methods that use labeled input features. Candi-
date input features are selected using oracle features. A * indicates that GE performs
significantly better using a two-tailed paired t-test with significance level α = 0.05.

a document with q should have a uniform distribution over y0 and y1. In contrast, GE

does not specify a distribution for individual documents, permitting a more reasonable

solution in which half of documents with q receive label y0, and half receive label y1.

4.4.4 Comparison with Schapire, Rochery, and Gupta [2002]

In this experiment, we compare GE with boosting with prior knowledge [101].

Boosting with prior knowledge aims to maximize the conditional log likelihood of

both labeled instances and instances classified using a hand-crafted model. The

hand-crafted model classifies instances using the product of label probabilities for

features, which are estimated from labeled input features using the Schapire dis-

tributions heuristic. Schapire et al. provide 138 labeled input features for the 20

newsgroups data set. For comparison, we use the same labeled input features and

use the Schapire distributions heuristic to estimate target distributions. We note that

the experiments in [101] use n-gram features, whereas we use only unigram features.

Comparing using the domain knowledge only, GE gives approximately a 15% abso-

lute error reduction from 64% error ([101] Figure 3) to 49% error. Furthermore, the

boosting method requires the domain knowledge and between 400 and 800 labeled
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Labeled Instances Required
data set sup. + ER est. speed-up
movie (43.7 of 50) 150 15.0
sraa (97.5 of 100) 160 8.0
webkb (88.8 of 100) 70 3.5
med-space (50.0 of 50) 90 9.0
ibm-mac (43.7 of 50) 110 11.0
baseball-hockey (50 of 50) 200 20.0
20 newsgroups (494.4 of 500) 650 6.5
financial-healthcare (50 of 50) 50 5.0
sector.top (163.9 of 175) 140 4.0

Table 4.3. The number of labeled instances at which semi-supervised training be-
comes statistically indistinguishable from GE, and the estimated speed-up if labeling
an input feature is 5 times faster than labeling a document.

documents for boosting with prior knowledge to match the accuracy of GE, which

uses no labeled documents.

4.4.5 Comparison with Wu and Srihari [2004]

Next, we compare GE with a method for leveraging labeled input features using

Weighted Margin Support Vector Machines (WMSVMs) [124]. Wu and Srihari provide

a few input features associated with each of the top 10 most frequent classes in the

ModApte split of the Reuters21578 data set. With WMSVMs, a macro-average

break-even-point of around 0.53 is obtained using only this domain knowledge, and a

macro-average break-even-point of around 0.60 is obtained using domain knowledge

and 16 labeled examples ([124] Figure 3). Using the same domain knowledge, feature-

voted distributions, and no labeled documents, GE attains a break-even-point of 0.630.

4.4.6 Comparison with Raghavan [2007]

We also provide an informal comparison with tandem learning [93], an active

learning algorithm that incorporates labeled instances and input features into learn-

ing with Support Vector Machines. We call the comparison informal because tandem
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Learning with Labeled Input Features
data set feat. voting feat. label labeled only GE
movie (4.6 of 50) 0.616 0.608 0.607* 0.623
sraa (29.5 of 100) 0.577 0.526* 0.520* 0.559
webkb (17.5 of 100) 0.514* 0.513* 0.593* 0.615
med-space (14.3 of 50) 0.857* 0.862* 0.867* 0.927
ibm-mac (10.4 of 50) 0.740* 0.817 0.762* 0.817
baseball-hockey (10.8 of 50) 0.779* 0.840* 0.853* 0.915
20 newsgroups (269.6 of 500) 0.493* 0.514* 0.585* 0.667
financial-healthcare (9.4 of 50) 0.552* 0.456* 0.595 0.588
sector.top (50.7 of 175) 0.538* 0.534* 0.544* 0.596

Table 4.4. Same Figure 4.2 as above, but candidate input features are selected using
LDA features.

Labeled Instances Required
data set sup. + ER est. speed-up
movie (4.6 of 50) 20 2.0
sraa (29.5 of 100) 80 4.0
webkb (17.5 of 100) 20 1.0
med-space (14.3 of 50) 40 4.0
ibm-mac (10.4 of 50) 50 5.0
baseball-hockey (10.8 of 50) 40 4.0
20 newsgroups (269.6 of 500) 300 3.0
financial-healthcare (9.4 of 50) 50 5.0
sector.top (50.7 of 175) 60 1.7

Table 4.5. Same as Figure 4.3, but candidate input features are selected using LDA
features.

learning is quite different from GE. Importantly, GE uses neither active learning nor

labeled documents. In the referenced experiments, tandem learning uses a total of

12 labeled documents, and shows at most 100 input features to the annotator. Both

input features and instances are actively selected to reduce uncertainty. Conversely,

we use a static list of input features, chosen before learning begins using an unsu-

pervised method. We compare performance on the 20 newsgroups data set. We

use a one vs. all setup for better comparison. Raghavan et al. report macro-F1 of

0.354 ([93] Table 3). With 100 candidate features selected using LDA features, target
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doc. labeling feat. labeling
user + data set prec rec prec rec
1 ibm-mac 0.90 0.58 0.80 1.00
1 med-space 0.95 0.86 0.73 1.00
1 baseball-hockey 0.98 0.84 0.52 0.92
2 ibm-mac 0.92 0.37 0.50 0.80
2 med-space 0.98 0.80 0.52 0.96
2 baseball-hockey 0.96 0.71 0.41 1.00
3 ibm-mac 0.91 0.75 0.86 1.00
3 med-space 0.99 0.75 0.67 1.00
3 baseball-hockey 0.96 0.83 0.54 1.00
Overall mean 0.95 0.72 0.62 0.96

Table 4.6. User labeling performance. Input feature labeling performance is with
respect to the oracle labeler.

distributions estimated using association-voted-distributions, and the oracle labeler,

we attain macro-F1 of 0.477, averaged over 10 random splits of the data.

4.4.7 User Experiments

Finally, we conduct annotation experiments in which we time three users as they

label 100 documents and 100 input features for binary classification tasks. The candi-

date input features are selected using LDA features. The input features are presented

one at a time, and the user can choose a single label for the input feature or choose

to discard the input feature. After the users finish labeling input features, they label

documents, again with the option to choose a label for the document or to skip the

document if it appears ambiguous. We prefer this ordering (labeling input features

followed by documents) in order to give maximum benefit to the traditional docu-

ment labeling method. We choose documents to present to the user with uncertainty

sampling: after each instance is labeled, the instance with the most uncertain classi-

fication under the current model is selected for labeling. We do this to ensure that

the labeled instances are beneficial. The list of candidate input features is static.
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med: blood, cancer, care, disease, doctor, doctors, drugs, health, med-
ical, medicine, pain, patients, vitamin, yeast
space: earth, launch, mars, mission, moon, nasa, orbit, planet, satel-
lite, shuttle, sky, space, universe
ibm: hp, dos, ibm
mac: apple, mac
baseball: ball, baseball, braves, cubs, hit, hitter, jays, pitching, runs
hockey: flyers, goal, hockey, leafs, nhl, period, shots

Table 4.7. Input features that all three users labeled.

First, we are interested in the accuracy of the human annotators. Table 4.6 shows

the labeling precision and recall for different annotators. For input feature labeling,

performance is measured using the oracle labeler as ground truth; for document la-

beling, performance is measured using the true labels. The labelers provided precise

labels for documents, but also discarded many documents. The labelers were able

to both correctly identify and label almost all input features that the oracle labeler

considers relevant, as indicated by the high recall values. The users also labeled many

additional input features that are actually relevant. For example, all users correctly

identified the names of several baseball teams (braves, cubs, and jays) and a hockey

team (flyers), but these input features are not labeled by the simulated user. We

defined the simulated user to be conservative, only choosing to label input features

that are almost certainly relevant. Consequently, the precision values are artificially

low. The users did make some mistakes when labeling input features, however, as

discussed in more detail in Section 8.1. User 2 had the most trouble selecting and

labeling input features. We suspect that this indicates insufficient familiarity with the

learning tasks. This suggests that future experiments should involve an opportunity

to look through the data before annotation. However, it does not seem unreasonable

to assume that the annotators are familiar with the task they are trying to solve.

Figures 4.1 and 4.2 show the accuracy of two trained systems over time. The

first uses the labeled input features and unlabeled instances with GE. Target distri-
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butions are estimated using Schapire distributions with qmaj = 0.9. The second uses

entropy regularization (ER) [41] (in this experiment we use direct maximization and

weighting parameter γ = 0.01) with the labeled and unlabeled instances. Annotating

input features yields large accuracy improvements for the same amount of time. On

average across all experiments, labeling input features is 3.7 times faster than labeling

documents, and the models trained with GE have 1.0% higher final accuracy. Note

that the point at which the GE curve changes from a dotted line into dots indicates

the point at which the user had processed all 100 input features.

When the annotator is accurate, the results with input feature labeling can be

quite striking. For example, consider the results of User 1 for the ibm vs. mac

classification task. The accuracy of the GE system after 30 seconds of feature labeling

is better than the accuracy of the ER system after 12 minutes of document labeling, a

24x speed-up. As another example, User 3 achieves accuracy of 90% on the baseball

vs. hockey task after 90 seconds with the GE system, at which point the ER system

accuracy is around 50%.

Notice that the ER system gives erratic performance, with large accuracy jumps

in consecutive 30 second intervals. This reinforces our earlier assertions about the

delicateness of traditional semi-supervised learning methods.

4.5 Conclusion and Future Work

In this chapter, we applied GE to train logistic regression models using labeled

input features. Experiments show that GE outperforms other methods for learning

with labeled input features and that labeling input features rather than labeling

documents provides a more efficient way to train a document classifier.

This chapter suggests many directions for additional research, many of which are

explored in later chapters.
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• The target distributions used in this chapter are very noisy, as the targets are set

using simple heuristics. Additionally, input features may be labeled incorrectly.

We explore strategies for compensating for noise in Section 8.1.

• In the experiments in Section 4.4.7, active learning is used when labeling doc-

uments but not when labeling input features. We develop an active learning

method in which users label features in Chapter 9.

• We develop methods for efficiently evaluating the accuracy of classifiers trained

using labeled input features in Chapter 10.

Additional conclusions and discussion are provided in Chapter 12.
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User 1: ibm-mac, med-space
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User 1: baseball-hockey, User2: ibm-mac
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User 2: med-space, baseball-hockey
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Figure 4.1. Accuracy vs. time for the GE and ER systems with Users 1 and 2. In
most cases, GE gives better accuracy given the same amount of annotation time.
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User 3: ibm-mac, med-space
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User 3: baseball-hockey
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Figure 4.2. Accuracy vs. time for the GE and ER systems with User 3. In most
cases, GE gives better accuracy given the same amount of annotation time.
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CHAPTER 5

GE FOR LIGHTLY SUPERVISED DEPENDENCY
PARSING

We next apply GE to lightly supervised non-projective dependency parsing. In

dependency parsing the task is to output a dependency tree for a given input sen-

tence. A dependency tree represents syntactic dependencies among lexical elements

in the input sentence. A syntactic dependency is represented by directed edge from

a parent, or head, to a child, or modifier. Multiple criteria for determining whether

a dependency holds between a pair of lexical elements, as well as determining the

direction of the dependency, have been proposed [84]. A projective dependency tree

can be drawn such that there are no crossing edges when nodes are ordered as they

appear in the sentence. In this chapter we consider the more general non-projective

case, in which any valid tree is permitted. In labeled dependency parsing, in addition

to predicting the tree, a parser must predict a label for each edge. For simplicity, in

this chapter we focus on the unlabeled case. Additional background on dependency

parsing is provided in [75, 76, 84, 111].

In this chapter, we derive novel algorithms for GE training of CRF models of

non-projective dependency trees. We use the resulting method to leverage directly

expressed linguistic prior knowledge (e.g. a noun’s parent is often a verb) to train

dependency parsers with no labeled data. This is an important problem because

annotating data for syntactic parsing is incredibly time-consuming. In a comparison

with two prominent “unsupervised” learning methods that require indirect biasing

toward the correct syntactic structure, we show that GE can attain better accuracy

with as few as 20 intuitive constraints.
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5.1 Tree Conditional Random Fields

We first define a CRF p(y|x;θ) that models unlabeled, non-projective dependency

trees. We choose non-projective parsing because it is the more general case. The tree

y is represented as a vector of the same length as the sentence x, where yi is the index

of the parent of lexical element xi. The probability of a tree y given sentence x is

p(y|x;θ) =
1

Z(x;θ)
exp

( n∑
i=1

θ · f(xi, xyi ,x)
)
, (5.1)

where f are edge-factored feature functions that consider the child lexical element, or

input (word, tag, or other feature), the parent input, and the rest of the sentence.

This factorization implies that dependency decisions are independent conditioned on

the input sentence x if y is a tree. Computing Z(x;θ) and the edge expectations

needed for parameter estimation require summing over all possible trees for x.

By relating the sum of the scores of all possible trees to counting the number

of spanning trees in a graph, it can be shown that Z(x;θ) is the determinant of

the Kirchoff matrix, Kx;θ ∈ Rn×n, which is constructed using the scores of possible

edges [55, 76, 111]. The score of edge j → i, sx;θ(i, j), is defined

sx;θ(i, j) = exp
(
θ · f(xi, xj,x)

)
. (5.2)

We define sx;θ(i, i) = 0. Note that index 0 corresponds to the special root symbol.

The Kirchoff matrix Kx;θ is defined

[Kx;θ]j,i =


∑

k∈{0,...,n}:k 6=i sx;θ(i, k) : i = j

−sx;θ(i, j) : i 6= j.

In general we use the notation [A]i,j to denote the value at row i and column j in

matrix A. Computing the determinant |Kx;θ| = Z(x;θ) takes O(n3) time, where n

is the length of the sentence.
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One method for computing the marginal probability of a particular edge k → i

(i.e. yi = k), is to set the score of any edge k′ → i such that k′ 6= k to 0. The

determinant of the resulting modified Kirchoff matrix Kk→i
x;θ is then the sum of the

scores of all trees that include the edge k → i. The marginal p(yi = k|x;θ) can be

computed by dividing this score by Z(x;θ) [76]. There are O(n2) possible edges in

each sentence, so computing edge expectations with this algorithm takes O(n5) time.

Smith and Smith [111] describe a more efficient algorithm that can compute edge

expectations in O(n3) time using the inverse of the Kirchoff matrix K−1x;θ. This algo-

rithm is derived by computing the gradient of the log partition function directly [111].

∂ logZ(x;θ)

∂θm
=

n∑
i=1

n∑
j=0

sx;θ(i, j)fm(xi, xj,x)
(
[K−1x;θ]i,i − [K−1x;θ]i,j

)
(5.3)

Equation 5.3 computes edge expectations. The edge marginals are

p(yi=k|x;θ) = sx;θ(i, k)
(
[K−1x;θ]i,i − [K−1x;θ]i,k

)
. (5.4)

5.2 GE for Tree CRFs

In this section we derive an inference algorithm to compute covariance in a Tree

CRF, allowing us to apply GE. For discussion of an alternative algorithm, see the

last paragraph of Section 6.4. Because we assume that trees for different sentences

are independent, covariance decomposes into the sum of per-instance covariances, as

discussed in Section 3.2.2. If constraint features are edge-factored, the covariance for

one sentence, using the composite constraint feature φ′ discussed in Section 3.2.1, is
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COVp(y|x;θ)

(
φ′(x,y), f(x,y)

)
=
∑
yi,yj

p(yi, yj|x;θ)φ′(xi, xyi ,x)f(xj, xyj ,x)T

−
(∑

yi

p(yi|x;θ)φ′(xi, xyi ,x)
)

×
(∑

yj

p(yj|x;θ)f(xj, xyj ,x)T
)
. (5.5)

The second term of the covariance can be computed using the edge marginals p(yi|x;θ).

The first term of the covariance is more difficult to compute because it requires the

marginal probability of two edges p(yi, yj|x;θ) occurring in the same tree.

We proceed by computing the second partial derivative of the log partition func-

tion. The first partial derivative of the log partition function is an expectation, so

the second derivative is the covariance, as we saw in Section 3.2.1. We will use this

fact to derive an O(n4) algorithm for computing the covariance. Note that although

we derive the covariance between features that appear in the model, the resulting

expression can also be used to compute the model predicted covariance between two

arbitrary edge-factored features (that may or may not be in the model).

The second partial derivative of the log partition function with respect to θm and

θn (the parameters for feature functions fn and fm) is

∂2 logZ(x;θ)

∂θm∂θn
=

n∑
k=1

n∑
`=0

∂2 logZ(x;θ)

∂θm∂sx;θ(k, `)

∂sx;θ(k, `)

∂θn

=
n∑
k=1

n∑
`=0

sx;θ(k, `)fn(xk, x`,x)
∂2 logZ(x;θ)

∂θm∂sx;θ(k, `)
. (5.6)

If j → i and `→ k are not the same edge, i 6= k ∨ j 6= `, then

∂2 logZ(x;θ)

∂θm∂sx;θ(k, `)
=

n∑
i=1

n∑
j=0

sx;θ(i, j)fm(xi, xj,x)
∂

∂sx;θ(k, `)

(
[K−1x;θ]i,i − [K−1x;θ]i,j

)
. (5.7)

For an arbitrary matrix A, the derivative with respect to t of its inverse A−1 is
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∂A−1

∂t
= −A−1

∂A

∂t
A−1. (5.8)

The derivative of A with respect to a single cell in [A]k,l is a matrix with a 1 at k, `

and zeros elsewhere. Therefore, the derivative of a cell in the inverse [A−1]i,j with

respect to cell [A]k,` is the product of two cells in the inverse.

∂[A−1]i,j
∂[A]k,`

= −[A−1]i,k[A
−1]`,j. (5.9)

Using this fact, we have

[K−1x;θ]i,i

∂sx;θ(k, `)
= [K−1x;θ]i,`[K

−1
x;θ]k,i − [K−1x;θ]i,k[K

−1
x;θ]k,i,

[K−1x;θ]i,j

∂sx;θ(k, `)
= [K−1x;θ]i,`[K

−1
x;θ]k,j − [K−1x;θ]i,k[K

−1
x;θ]k,j. (5.10)

Putting these terms together, we have (when i 6= k ∨ j 6= `)

∂

∂sx;θ(k, `)

(
[K−1x;θ]i,i − [K−1x;θ]i,j

)
=[K−1x;θ]i,`[K

−1
x;θ]k,i − [K−1x;θ]i,k[K

−1
x;θ]k,i

− [K−1x;θ]i,`[K
−1
x;θ]k,j + [K−1x;θ]i,k[K

−1
x;θ]k,j (5.11)

∂2 logZ(x;θ)

∂θm∂sx;θ(k, `)
=

n∑
i=1

n∑
j=0

sx;θ(i, j)fm(xi, xj,x)

×
(

[K−1x;θ]i,`[K
−1
x;θ]k,i − [K−1x;θ]i,k[K

−1
x;θ]k,i

− [K−1x;θ]i,`[K
−1
x;θ]k,j + [K−1x;θ]i,k[K

−1
x;θ]k,j

)
. (5.12)

If j → i and `→ k are the same edge, i = k ∧ j = `, then
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∂2 logZ(x;θ)

∂θm∂sx;θ(i, j)
=

n∑
i=1

n∑
j=0

(
[K−1x;θ]i,i − [K−1x;θ]i,j

) ∂

∂sx;θ(i, j)
sx;θ(i, j)fm(xi, xj,x)

+ sx;θ(i, j)fm(xi, xj,x)
∂

∂sx;θ(i, j)

(
[K−1x;θ]i,i − [K−1x;θ]i,j

)
.

=
n∑
i=1

n∑
j=0

fm(xi, xj,x)
(
[K−1x;θ]i,i − [K−1x;θ]i,j

)
− sx;θ(i, j)fm(xi, xj,x)([K−1x;θ]i,i − [K−1x;θ]i,j)

2 (5.13)

Substituting back into Equation 5.6 gives us the covariance

∂2 logZ(x;θ)

∂θm∂θn
=

n∑
k=1

n∑
`=0

n∑
i=1

n∑
j=0

sx;θ(k, `)fn(xk, x`,x)sx;θ(i, j)fm(xi, xj,x)

×
(

[K−1x;θ]i,`[K
−1
x;θ]k,i − [K−1x;θ]i,k[K

−1
x;θ]k,i

− [K−1x;θ]i,`[K
−1
x;θ]k,j + [K−1x;θ]i,k[K

−1
x;θ]k,j

)
+

n∑
i=1

n∑
j=0

sx;θ(i, j)fn(xi, xj,x)fm(xi, xj,x)

×
(
[K−1x;θ]i,i − [K−1x;θ]i,j

)
, (5.14)

where the last two lines accounts for the extra term introduced when i = k ∧ j = `.

Equation 5.14 computes the covariance between two edge-factored feature func-

tions fm and fn. Notice that this computation only requires cells from the inverse

Kirchoff matrix. Computing the inverse Kirchoff matrix takes O(n3) time for each

sentence. The time required to compute the complete covariance is then O(n4), the

time required to consider all possible pairs of edges. Note that Posterior Regulariza-

tion [36], described in Section 3.3.1, would take O(n3) time for a tree CRF. As we

discuss in Section 6.4, the GE gradient could also be computed in O(n3) time, though

there may be reasons to prefer the above O(n4) algorithm.

Finally, we provide an expression for computing the two edge marginal itself. The

covariance can also be written as
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Ep(yi=j,yk=`|x;θ)[fm(xi, xj,x)fn(xk, x`,x)]

− Ep(yi=j|x;θ)[fm(xi, xj,x)]Ep(yk=`|x;θ)[fn(xk, x`,x)]. (5.15)

Therefore, the two edge marginal is

p(yi=j, yk=`|x, θ) =[K−1x;θ]i,`[K
−1
x;θ]k,i − [K−1x;θ]i,k[K

−1
x;θ]k,i

−[K−1x;θ]i,`[K
−1
x;θ]k,j + [K−1x;θ]i,k[K

−1
x;θ]k,j

+[Kx;θ]i,i[K
−1
x;θ]k,k − [K−1x;θ]i,i[K

−1
x;θ]k,`

−[K−1x;θ]i,j[K
−1
x;θ]k,k + [K−1x;θ]i,j[K

−1
x;θ]k,`. (5.16)

5.3 Lightly Supervised Dependency Parsing with GE

In the remainder of this chapter we use GE to train dependency parsers with

naturally encoded linguistic insights. For example, we know that “in English, when

a determiner is directly to the left of a noun, the noun is usually the parent of the

determiner.” We use edge-factored constraint features φ that are the product of a

predicate q that considers the head, modifier, and rest of the sentence, and a term

that normalizes by the total number of possible edges for which q fires, cq.

φq(xi, xj,x) =
1

cq
q(xi, xj,x) (5.17)

The expectation Eθ[φq] is then the probability that an edge is present when q fires.

We encourage the model to match target expectations φ̃ with an L2
2 score function.

The complete objective function also includes a Gaussian prior on parameters.

O(θ) = −
∥∥∥φ̃− Eθ[φ]

∥∥∥2
2
− 1

2σ2

∥∥∥θ∥∥∥2
2

(5.18)

We next discuss the selection of constraint features and estimation of targets.
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5.3.1 Constraints from Linguistic Prior Knowledge

In this thesis, we use constraints derived from several basic types of linguistic

knowledge. One simple form of linguistic knowledge is the set of possible parent tags

for a given child tag. This type of constraint was used in the development of a rule-

based dependency parser [22]. Additional information can be obtained from small

grammar fragments. Haghighi and Klein [44] provide a list of prototype phrase struc-

ture rules that can be augmented with dependencies and used to define constraints

involving parent and child tags, surrounding or interposing tags, direction, and dis-

tance. Finally there are well known hypotheses about the direction and distance of

attachments that can be used to define constraints. Eisner and Smith [32] use the fact

that short attachments are more common to improve unsupervised parsing accuracy.

5.3.2 Simulated User Constraints

For some experiments that follow we use “simulated user” constraints that are

estimated from labeled data. This simulation involves choosing constraint features

(motivated by the linguistic knowledge described above) and estimating target expec-

tations. Simulated constraints used in this thesis consider three simple statistics of

candidate constraint functions: count cq, edge count eq, and edge probability p(e|q).

cq =
N∑
i=1

∑
j

∑
k

q(xij, x
i
k,x)

eq =
N∑
i=1

∑
j

q(xij, x
i
yij
,x)

p(e|q) =
eq
cq

Constraint functions are selected according to some combination of the above statis-

tics. In some cases we additionally prune the candidate set by considering only certain

predicates. To compute the target expectation, we simply use bin(p(e|q)), where bin
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returns the closest value in the set {0, 0.1, 0.25, 0.5, 0.75, 1}. This can be viewed as

specifying that q is very indicative of edge, somewhat indicative of edge, etc.

5.4 Related Work

This work is related to the prototype-driven grammar induction method of Haghighi

and Klein [44], which uses prototype phrases to guide the EM algorithm in learning a

PCFG. Direct comparison with this method is not possible because we are interested

in dependency syntax rather than phrase structure syntax. As discussed in Sec-

tion 2.2.3, the primary advantage of GE over prototype-driven learning is that it uses

expectation constraints, allowing one to specify how often a constraint should hold.

In contrast, prototype-driven learning uses hard constraints. Additionally prototype-

driven grammar induction needs to be used in conjunction with other unsupervised

methods (distributional similarity and CCM [53]) to attain reasonable accuracy, and

is only evaluated on length 10 or less sentences with no lexical information. In con-

trast, GE uses only the provided constraints and unparsed sentences, and is used to

train a feature-rich discriminative model.

Conventional semi-supervised learning requires parsed sentences. Kate and Mooney

[52] and McClosky and Johnson [74] both use modified forms of self-training to boot-

strap parsers from limited labeled data. Wang et al. [121] combine a structured loss

on parsed sentences with a least squares loss on unlabeled sentences. Koo et al. [54]

use a large unlabeled corpus to estimate cluster features which help the parser gen-

eralize with fewer examples. Smith and Eisner [110] apply entropy regularization to

dependency parsing. The above methods can be applied to small seed corpora, but

McDonald1 has criticized such methods as working from an unrealistic premise, as a

significant amount of the effort required to build a treebank comes in the first 100

1R. McDonald, personal communication, 2007
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sentences (both because of the time it takes to create an appropriate rubric and to

train annotators).

There are also a number of methods for unsupervised learning of dependency

parsers. Klein and Manning [53] use a carefully initialized and structured generative

model (DMV) in conjunction with the EM algorithm to get the first positive results

on unsupervised dependency parsing. As empirical evidence of the sensitivity of DMV

to initialization, Smith [112] (pg. 37) uses three different initializations, and only one,

the method of Klein and Manning [53] , gives accuracy higher than 31% on the WSJ10

corpus (see Section 5.5). This initialization encodes the prior knowledge that long

distance attachments are unlikely.

Smith and Eisner [113] develop contrastive estimation (CE), in which the model is

encouraged to move probability mass away from implicit negative examples defined us-

ing a carefully chosen neighborhood function. For instance, Smith [112] (pg. 82) uses

eight different neighborhood functions to estimate parameters for the DMV model.

The best performing neighborhood function DEL1ORTRANS1 provides accuracy of

57.6% on WSJ10 (see Section 5.5). Another neighborhood, DEL1ORTRANS2, pro-

vides accuracy of 51.2%. The remaining six neighborhood functions provide accuracy

below 50%. This demonstrates that constructing an appropriate neighborhood func-

tion can be delicate and challenging.

Smith and Eisner [114] propose structural annealing (SA), in which a strong bias

for local dependency attachments is enforced early in learning, and then gradually

relaxed. This method is sensitive to the annealing schedule. Smith [112] (pg. 136)

use 10 annealing schedules in conjunction with three initializers. The best performing

combination attains accuracy of 66.7% on WSJ10, but the worst attains accuracy of

32.5%.

Seginer [102] and Bod [12] approach unsupervised parsing by constructing novel

syntactic models. The development and tuning of the above methods constitute the
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encoding of prior domain knowledge about the desired syntactic structure. In con-

trast, our framework provides a straightforward and explicit method for incorporating

prior knowledge.

Finally, Ganchev et al. [34] use Posterior Regularization, introduced in Section 3.3.1,

to learn a projective target language parser using only a source language parser and

word alignments. The constraints specify that at least some of edges projected from

the source language must appear in target language parses.

5.4.1 Recent Work

In work that was published after the work presented in this chapter, Naseem et

al. [80] present a related approach for incorporating universal linguistic knowledge

into dependency grammar induction. We refer to this method as HDP-DEP. HDP-

DEP uses posterior regularization, introduced in Section 3.3.1, rather than GE, to

estimate parameters of a complex generative model, rather than a simple conditional

model. Specifically, the model is similar to DMV but encodes richer context informa-

tion, generates words rather than part-of-speech tags, and learns to refine syntactic

categories. The constraints used by Naseem et al. [80] also take a different form.

They provide a set of rules and specify that some percentage of edges p must be an

instance of one of these rules. HDP-DEP outperforms GE with the 20 constraints

in Table 5.1, giving accuracy of 64.9% vs. 61.3%. We attribute this difference to the

more complex and expressive generative model. Recall that part of the motivation

for our work was to avoid the development of such models.

5.5 Comparison with Unsupervised Learning

In this section we compare GE training with methods for unsupervised parsing.

We use the WSJ10 corpus (as processed by Smith [112]), which is comprised of English
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sentences of ten words or fewer (after stripping punctuation) from the WSJ portion of

the Penn Treebank. As in previous work sentences contain only part-of-speech tags.

We compare GE and supervised training of an edge-factored CRF with unsuper-

vised learning of a DMV model [53] using EM and contrastive estimation (CE) [113].

We also report the accuracy of an attach-right baseline2. Finally, we report the accu-

racy of a constraint baseline that assigns a score to each possible edge that is the sum

of the target expectations for all constraints on that edge. Possible edges without

constraints receive a score of 0. These scores are used as input to the maximum span-

ning tree algorithm, which returns the best tree. Note that this is a strong baseline

because it can handle uncertain constraints, and the tree constraint imposed by the

MST algorithm helps information propagate across edges.

We note that there are considerable differences between the DMV and CRF mod-

els. The DMV model is more expressive than the CRF because it can model the arity

of a head as well as sibling relationships. Because these features consider multiple

edges, including them in the CRF model would make exact inference intractable [76].

However, the CRF may consider the distance between head and child, whereas DMV

does not model distance. The CRF also models non-projective trees, which when

evaluating on English is likely a disadvantage.

Consequently, we experiment with two sets of features for the CRF model. The

first, restricted set includes features that consider the head and child tags of the depen-

dency conjoined with the direction of the attachment, (parent-POS,child-POS,direction).

With this feature set, the CRF model is less expressive than DMV. The second full

set includes standard features for edge-factored dependency parsers [75], though still

unlexicalized. The CRF cannot consider valency even with the full feature set, but

this is balanced by the ability to use distance.

2The reported accuracies with the DMV model and the attach-right baseline are taken from [112].
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feature ex. feature ex.

MD → VB 1.00 NNS ← VBD 0.75
POS ← NN 0.75 PRP ← VBD 0.75
JJ ← NNS 0.75 VBD → TO 1.00

NNP ← POS 0.75 VBD → VBN 0.75

ROOT → MD 0.75 NNS ← VBP 0.75
ROOT → VBD 1.00 PRP ← VBP 0.75
ROOT → VBP 0.75 VBP → VBN 0.75
ROOT → VBZ 0.75 PRP ← VBZ 0.75

TO → VB 1.00 NN ← VBZ 0.75
VBN → IN 0.75 VBZ → VBN 0.75

Table 5.1. 20 constraints that give 61.3% accuracy on WSJ10. Tags are grouped
according to heads, and are in the order they appear in the sentence, with the arrow
pointing from head to modifier.

We generate constraints in two ways. First, we use constraints of the form (parent-

POS,child-POS,direction) such that cq ≥ 200. We choose constraints in descending

order of p(e|q). The first 20 constraints selected using this method are displayed in

Table 5.1.

Although the reader can verify that the constraints in Table 5.1 are reasonable,

we additionally experiment with human-provided constraints. We use the prototype

phrase-structure constraints provided by Haghighi and Klein [44], and with the aid of

head-finding rules, extract 14 (parent-pos,child-pos,direction) constraints.3 We then

estimated target expectations for these constraints using our prior knowledge, with-

out looking at the training data. We also created a second constraint set with an

additional six constraints for tag pairs that were previously underrepresented.

5.5.1 Results

We present results varying the number of constraints in Figures 5.1 and 5.2. Fig-

ure 5.1 compares supervised and GE training of the CRF model, as well as the feature

3Because the CFG rules in [44] are “flattened” and in some cases do not generate appropriate
dependency constraints, we only used a subset.
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Figure 5.1. Comparison of the baseline and both GE and supervised training of the
restricted and full CRF. Note that supervised training uses 5,301 parsed sentences.
GE with human provided constraints closely matches the simulated results.

constraint baseline. First we note that GE training using the full feature set substan-

tially outperforms the restricted feature set, despite the fact that the same set of

constraints is used for both experiments. This result demonstrates GE’s ability to

learn about related but non-constrained features. GE training also outperforms the

baseline4.

We compare GE training of the CRF model with unsupervised learning of the

DMV model in Figure 5.25. Despite the fact that the restricted CRF is less expressive

than DMV, GE training of this model outperforms EM with 30 constraints and CE

with 50 constraints. GE training of the full CRF outperforms EM with 10 constraints

and CE with 20 constraints (those displayed in Table 5.1). GE training of the full

4The baseline eventually matches the accuracy of the restricted CRF but this is understandable
because GE’s ability to bootstrap is greatly reduced with the restricted feature set.

5Klein and Manning [53] report 43.2% accuracy for DMV with EM on WSJ10. When jointly mod-
eling constituency and dependencies, Klein and Manning [53] report accuracy of 47.5%. Seginer [102]
and Bod [12] propose unsupervised phrase structure parsing methods that give better unlabeled F-
scores than DMV with EM, but they do not report directed dependency accuracy.
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Figure 5.2. Comparison of GE training of the restricted and full CRFs with unsu-
pervised learning of DMV. GE training of the full CRF outperforms CE with just 20
constraints. GE also matches CE with 20 human provided constraints.

CRF with the set of 14 constraints from [44], gives accuracy of 53.8%, which is above

the interpolated simulated constraints curve (43.5% accuracy with 10 constraints,

61.3% accuracy with 20 constraints). With the 6 additional constraints, we obtain

accuracy of 57.7% and match CE.

Recall that CE, EM, and the DMV model incorporate prior knowledge indirectly,

and that the reported results are heavily-tuned ideal cases (see Section 5.4). In

contrast, GE provides a method to directly encode intuitive linguistic insights.

Finally, note that structural annealing [114] provides 66.7% accuracy on WSJ10

when choosing the best performing annealing schedule [112]. As noted in Section 5.4

other annealing schedules provide accuracy as low as 32.5%. GE training of the full

CRF attains accuracy of 67.0% with 30 constraints.
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5.6 Experiments on Long Sentences

Unsupervised parsing methods are typically evaluated on short sentences, as in

Section 5.5. In this section we show that GE can be used to train parsers for longer

sentences that provide comparable accuracy to supervised training with tens to hun-

dreds of parsed sentences. We use the standard train/test splits of the Spanish,

Dutch, and Turkish data from the 2006 CoNLL Shared Task. We also use standard

edge-factored feature templates [75]6. We experiment with versions of the data sets

in which we remove sentences that are longer than 20 words and 60 words.

For these experiments, we use a simulated user constraint selection method mo-

tivated by the linguistic prior knowledge described in Section 5.3.1. The first set of

constraints specifies the most frequent head tag, attachment direction, and distance

combinations for each child tag. We select constraints of the type (parent-CPOS,child-

CPOS,direction,distance)7. We add constraints for every q such that eq>100 for max

length 60 data sets, and eq>10 times for max length 20 data sets.

In some cases, the possible parent constraints described above will not be enough

to provide high accuracy, because they do not consider other tags in the sentence [75].

Consequently, we experiment with adding an additional 25 sequence constraints (for

what are often called “between” and “surrounding” features). The constraint feature

selection method aims to choose such constraints that help to reduce uncertainty in

the possible parents constraint set. Consequently, we consider sequence features qs

with p(e|qs) ≥ 0.75, and whose corresponding (parent-CPOS,child-CPOS,direction,distance)

constraint q, has edge probability p(e|q) ≤ 0.25. Among these candidates, we sort by

cqs , and select the top 25.

6Typical feature processing uses only supported features, or those features that occur on at least
one true edge in the training data. Because we assume that the data is unlabeled, we instead use
features on all possible edges. This generates tens of millions features, so we prune those features
that occur fewer than 10 total times, as in [110].

7For these experiments we use coarse-grained part-of-speech tags in constraints.
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We compare with the constraint baseline described in Section 5.5. Additionally, we

report the number of parsed sentences required for supervised CRF training (averaged

over 5 random splits) to match the accuracy of GE training using the possible parents

+ sequence constraint set.

The results are provided in Table 5.2. We first observe that GE always outperforms

the baseline, especially on parent decisions for which there are no constraints (not

reported in Table 5.2, but for example 53.8% vs. 20.5% on Turkish 20). Second, we

note that accuracy is always improved by adding sequence constraints. Importantly,

we observe that GE gives comparable performance to supervised training with tens or

hundreds of parsed sentences. These parsed sentences provide a tremendous amount

of information to the model, as for example in 20 Spanish length ≤ 60 sentences,

a total of 1,630,466 features are observed, 330,856 of them unique. In contrast,

the constraint-based methods are provided at most a few hundred constraints. When

comparing the human costs of parsing sentences and specifying constraints, remember

that parsing sentences requires the development of detailed annotation guidelines,

which can be extremely time-consuming (see also the discussion is Section 5.4).

possible parent constraints + sequence constraints complete trees

baseline GE baseline GE

dutch 20 69.5 70.7 69.8 71.8 80-160
dutch 60 66.5 69.3 66.7 69.8 40-80

spanish 20 70.0 73.2 71.2 75.8 40-80
spanish 60 62.1 66.2 62.7 66.9 20-40

turkish 20 66.3 71.8 67.1 72.9 80-160
turkish 60 62.1 65.5 62.3 66.6 20-40

Table 5.2. Experiments on Dutch, Spanish, and Turkish with maximum sentence lengths
of 20 and 60. Observe that GE outperforms the baseline, adding sequence constraints
improves accuracy, and accuracy with GE training is comparable to supervised training
with tens to hundreds of parsed sentences.

Finally, we experiment with iteratively adding constraints. We sort constraints

with cq>50 by p(e|q), and ensure that 50% are (parent-CPOS,child-CPOS,direction,distance)
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parent tag true predicted

det. 0.005 0.005
adv. 0.018 0.013
conj. 0.012 0.001
pron. 0.011 0.009
verb 0.355 0.405
adj. 0.067 0.075
punc. 0.031 0.013
noun 0.276 0.272
prep. 0.181 0.165

direction true predicted

right 0.621 0.598
left 0.339 0.362

distance true predicted

1 0.495 0.564
2 0.194 0.206
3 0.066 0.050
4 0.042 0.037
5 0.028 0.031
6-10 0.069 0.033
> 10 0.066 0.039

feature (distance) false pos. occ.

verb → punc. (>10) 1183
noun → prep. (1) 1139
adj. → prep. (1) 855

verb → verb (6-10) 756
verb → verb (>10) 569
noun ← punc. (1) 512
verb ← punc. (2) 509
prep. ← punc. (1) 476
verb → punc. (4) 427
verb → prep. (1) 422

Table 5.3. Error analysis for GE training with possible parent + sequence constraints on
Spanish 60 data. On the top left, the predicted and true distribution over parent coarse
part-of-speech tags. On the top right, the predicted and true distributions over attachment
directions and distances. On the bottom, common features on false positive edges.

constraints and 50% are sequence constraints. Figure 5.3, which displays results for

Spanish 60, shows that GE outperforms the baseline more soundly than above, and

that adding constraints continues to increase accuracy.

5.7 Error Analysis

In this section, we analyze the errors of the model learned with the possible parent

+ sequence constraints on the Spanish 60 data. In Table 5.3, we present four types

of analysis. First, we present the predicted and true distributions over coarse-grained

parent part of speech tags. We can see that verb is being predicted as a parent tag

more often then it should be, while most other tags are predicted less often than
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Figure 5.3. Comparing GE training of a CRF and constraint baseline while increasing
the number of simulated user constraints.

they should be. Next, we show the predicted and true distributions over attachment

direction and distance. From this we see that the model is often incorrectly predicting

left attachments, and is predicting too many short attachments. Finally, we show the

most common parent-child tag with direction and distance features that occur on false

positive edges. From this table, we see that many errors concern the attachments of

punctuation. The second line indicates a prepositional phrase attachment ambiguity.

This analysis could also be performed by a linguist by looking at predicted trees

for selected sentences. Once errors are identified, GE constraints could be added to

address these problems.

5.8 Conclusion and Future Work

In this chapter we developed a method for GE training of CRFs that model

distributions over trees. We applied this method to lightly supervised non-projective

dependency parsing, leveraging linguistic prior knowledge.

There are several directions for future work.
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• User specified target expectations are likely to be imprecise. Additional exper-

iments that aim to compensate for this imprecision appear in Section 8.1.

• GE could also be applied to projective models. The resulting training method

would be more efficient (see Section 6.4), and would be suited to applications

to English, which is mostly projective.

• Applying GE to models with valence or constituency could mitigate some of

the errors observed in Section 5.7.

• Additional experiments could use the universal rules of [80]. The universal

rules have higher coverage than the prior knowledge used in this chapter, which

should improve accuracy.

Additional conclusions and discussion are provided in Chapter 12.
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CHAPTER 6

GE FOR SEQUENCE LABELING AND
TREE-STRUCTURED CRFS

In this chapter we discuss the application of GE to linear chain CRFs. We first

review the algorithm of Mann and McCallum [72] for computing the GE gradient

when constraint features are zeroth-order, and derive a similar algorithm for first-

order constraint features. We show that these algorithms can be made more efficient

by using the composite constraint feature, introduced in Section 3.2.1. We then

provide empirical results that demonstrate the efficiency advantages of using the

composite constraint feature. Finally, we generalize this algorithm to enable efficient

GE training in any tree-structured CRF.

6.1 Linear Chain CRFs

In this chapter input and output variables are arranged into iid sequences xi and

yi. An nth-order linear-chain CRF [59] models output sequences with an nth-order

Markov assumption

yij+n+1 ⊥⊥ yij | yik : j + 1 ≤ k ≤ j + n. (6.1)

We assume a first-order linear-chain CRF for the remainder of this chapter. The

probability of a particular output sequence y for the ith input sequence is

p(y|xi;θ) =
1

Z(xi;θ)
exp

( ni∑
j=1

θ · f(xi, yj, yj+1, j)
)
, (6.2)

91



where ni is the sequence length. Model features f consider the entire input sequence

and two consecutive output variables. To simply notation, for the remainder of this

chapter we drop the sequence index i and the position argument j to f .

Although inference in a linear-chain CRF requires summing over all possible out-

put sequences, dynamic programming can be applied, yielding polynomial time al-

gorithms. The most probable output sequence can be computed with the Viterbi

algorithm, and transition marginals can be computed with the forward-backward al-

gorithm [59]. Both algorithms take O(n|Y|2) time, where |Y| is the number of labels.

Additional background on linear chain CRFs can obtained in [115].

6.2 GE for Linear Chain CRFs

In this section we derive algorithms for GE training of linear chain CRFs. If

constraint features consider one label, or are zeroth-order, then the second term of

Equation 3.45 is easy to compute using the forward backward algorithm. As in

Chapter 5, the first term of Equation 3.45 is more difficult to compute.

uT
( n∑
i=1

∑
yi

∑
yi+1

[ n∑
j=1

∑
yj

p(yi, yi+1, yj|x;θ)φ(x, yj)
]
f(yi, yi+1,x)T

)
(6.3)

We first review the algorithm proposed by Mann and McCallum [72] for computing

the bracketed quantity in Equation 6.3.

6.2.1 Gradient Computation for Zeroth-Order Constraint Features

The original algorithm of Mann and McCallum [72] for computing the bracketed

quantity in Equation 6.3 performs the computation once for each constraint feature.

We describe an equivalent version that performs the computation for all constraint

features simultaneously, storing a vector in each cell of the dynamic programming

table. This version is more amenable to the improvement in Section 6.2.3.
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We would like to compute

n∑
j=1

∑
yj

p(yi, yi+1, yj|x;θ)φ(x, yj)

=
i∑

j=1

∑
yj

p(yi, yi+1, yj|x;θ)φ(x, yj) +
n∑

j=i+1

∑
yj

p(yi, yi+1, yj|x;θ)φ(x, yj) (6.4)

We can rewrite the first term of Equation 6.4 as follows.

i∑
j=1

∑
yj

p(yi, yi+1, yj|x;θ)φ(x, yj)

= p(yi, yi+1|x;θ)φ(x, yi) +
i−1∑
j=1

∑
yj

p(yi, yi+1, yj|x;θ)φ(x, yj)

= p(yi, yi+1|x;θ)φ(x, yi) +
∑
yi−1

i−1∑
j=1

∑
yj

p(yi−1, yi, yi+1, yj|x;θ)φ(x, yj)

= p(yi, yi+1|x;θ)φ(x, yi) + p(yi+1|yi,x;θ)
∑
yi−1

( i−1∑
j=1

∑
yj

p(yi−1, yi, yj|x;θ)φ(x, yj)
)

(6.5)

Therefore, we can compute the first term of Equation 6.4 using dynamic programming

with the recursion

α(y0, y1, 0) ≡ p(y0, y1|x;θ)φ(x, y0) (6.6)

α(yi, yi+1, i) ≡ p(yi, yi+1|x;θ)φ(x, yi) + p(yi+1|yi,x;θ)
∑
yi−1

α(yi−1, yi, i− 1) (6.7)

We can compute the second term of Equation 6.4 of similarly.
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n∑
j=i+1

∑
yj

p(yi, yi+1, yj|x;θ)φ(x, yj)

= p(yi, yi+1|x;θ)φ(x, yi+1) +
n∑

j=i+2

∑
yj

p(yi, yi+1, yj|x;θ)φ(x, yj)

= p(yi, yi+1|x;θ)φ(x, yi+1) +
∑
yi+2

n∑
j=i+2

∑
yj

p(yi, yi+1, yi+2, yj|x;θ)φ(x, yj)

= p(yi, yi+1|x;θ)φ(x, yi+1) + p(yi|yi+1,x;θ)
∑
yi+2

( n∑
j=i+2

∑
yj

p(yi+1, yi+2, yj|x;θ)φ(x, yj)
)

(6.8)

Therefore the “backward” recursion is

β(yn−1, yn, n−1) ≡ p(yn−1, yn|x;θ)φ(x, yn) (6.9)

β(yi, yi+1, i) ≡ p(yi, yi+1|x;θ)φ(x, yi+1) + p(yi|yi+1,x;θ)
∑
yi+2

β(yi+1, yi+2, i+ 1).

(6.10)

For any yi, yi+1, i, Equation 6.4 can be computed

n∑
j=1

∑
yj

p(yi, yi+1, yj|x;θ)φ(x, yj) = α(yi, yi+1, i) + β(yi, yi+1, i). (6.11)

Note that α and β are dense vectors that store partial expectations of the con-

straint features. Therefore, the time complexity of the zeroth-order algorithm is

O(d(φ)n|Y|2), where d(φ) is the dimensionality of φ, or the total number of con-

straint features. Note that if we have constraints for some set of input features of size

c and all labels, d(φ) = c|Y|, so the algorithm is O(cn|Y|3).

6.2.2 Gradient Computation for First-Order Constraint Features

In this section we derive an algorithm for computing the GE gradient when con-

straint features are first-order φ(x, yj, yj+1). In this case we want to compute
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n∑
j=1

∑
yj ,yj+1

p(yi, yi+1, yj, yj+1|x;θ)φ(x, yj, yj+1) (6.12)

=
i∑

j=1

∑
yj ,yj+1

p(yi, yi+1, yj, yj+1|x;θ)φ(x, yj, yj+1)

+
n∑

j=i+1

∑
yj ,yj+1

p(yi, yi+1, yj, yj+1|x;θ)φ(x, yj, yj+1). (6.13)

Proceeding as in the previous section, we can write the first term of Equation 6.13 as

i∑
j=1

∑
yj ,yj+1

p(yi, yi+1, yj, yj+1|x;θ)φ(x, yj, yj+1) (6.14)

=p(yi, yi+1|x;θ)φ(x, yi, yi+1)

+
i−1∑
j=1

∑
yj ,yj+1

p(yi, yi+1, yj, yj+1|x;θ)φ(x, yj, yj+1) (6.15)

=p(yi, yi+1|x;θ)φ(x, yi, yi+1)

+
∑
yi−1

i−1∑
j=1

∑
yj ,yj+1

p(yi−1, yi, yi+1, yj, yj+1|x;θ)φ(x, yj, yj+1) (6.16)

=p(yi, yi+1|x;θ)φ(x, yi, yi+1)

+ p(yi+1|yi,x;θ)
∑
yi−1

i−1∑
j=1

∑
yj ,yj+1

p(yi−1, yi, yj, yj+1|x;θ)φ(x, yj, yj+1). (6.17)

Therefore, we can compute the first term of Equation 6.13 using dynamic program-

ming with the recursion

α(y0, y1, 0) ≡p(y0, y1|x;θ)φ(x, y0, y1) (6.18)

α(yi, yi+1, i) ≡p(yi, yi+1|x;θ)φ(x, yi, yi+1)

+ p(yi+1|yi,x;θ)
∑
yi−1

α(yi−1, yi, i− 1). (6.19)
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We can write the second term of Equation 6.13 as

n∑
j=i+1

∑
yj ,yj+1

p(yi, yi+1, yj, yj+1|x;θ)φ(x, yj, yj+1) (6.20)

=
∑
yi+2

p(yi, yi+1, yi+2|x;θ)φ(x, yi+1, yi+2)

+
n∑

j=i+2

∑
yj ,yj+1

p(yi, yi+1, yj, yj+1|x;θ)φ(x, yj, yj+1) (6.21)

=p(yi|yi+1,x;θ)
∑
yi+2

p(yi+1, yi+2|x;θ)φ(x, yi+1, yi+2)

+
∑
yi+2

n∑
j=i+2

∑
yj ,yj+1

p(yi, yi+1, yi+2, yj, yj+1|x;θ)φ(x, yj, yj+1) (6.22)

=p(yi|yi+1,x;θ)
∑
yi+2

p(yi+1, yi+2|x;θ)φ(x, yi+1, yi+2)

+ p(yi|yi+1,x;θ)
∑
yi+2

n∑
j=i+2

∑
yj ,yj+1

p(yi+1, yi+2, yj, yj+1|x;θ)φ(x, yj, yj+1). (6.23)

Therefore the “backward” recursion is

β(yn−1, yn, n− 1) ≡0 (6.24)

β(yn−2, yn−1, n− 2) ≡p(yn−2|yn−1,x;θ)
∑
yn

p(yn−1, yn|x;θ)φ(x, yn−1, yn) (6.25)

β(yi, yi+1, i) ≡p(yi|yi+1,x;θ)
∑
yi+2

p(yi+1, yi+2|x;θ)φ(x, yi+1, yi+2)

+ p(yi|yi+1,x;θ)
∑
yi+2

β(yi+1, yi+2, i+ 1) (6.26)

For any yi, yi+1, i, Equation 6.13 can be computed

i∑
j=1

∑
yj ,yj+1

p(yi, yi+1, yj, yj+1|x;θ)φ(x, yj, yj+1) = α(yi, yi+1, i) + β(yi, yi+1, i). (6.27)
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The time complexity of the first-order algorithm is O(d(φ)n|Y|2). Note that

if we have constraints for some set of input features of size c and all transitions,

d(φ) = c|Y|2, so the algorithm is O(cn|Y|4).

6.2.3 Improved Algorithm using the Composite Constraint Feature

In Section 3.2.1 we introduced the composite constraint feature φ′.

φ′(x,y) ≡ uTφ(x,y) (6.28)

Substituting the composite constraint feature into Equation 6.3 yields

n∑
i=1

∑
yi

∑
yi+1

[ n∑
j=1

∑
yj

p(yi, yi+1, yj|x;θ)φ′(x, yj)
]
f(yi, yi+1,x)T. (6.29)

We can use the algorithm of Section 6.2.1 to compute Equation 6.29. Note that using

the composite constraint feature dramatically reduces the time complexity of this

algorithm. Previously, a dense vector of dimensionality d(φ) was stored in each cell

of the dynamic programming table. In contrast, with the composite constraint feature

we only need to store a scalar in each cell. If we assume that the constraint features

are cached, computing the composite constraint feature takes O(ds(φ)) time, where

ds(φ) is the maximum number of constraint features that are non-zero for a particular

x, j, and yj
1. Importantly, note that ds(φ) does not depend on |Y|. Therefore, the

total time complexity of the algorithm of Section 6.2.1 is reduced to O(ds(φ)n|Y|2).

Additionally, the time complexity of the algorithm of Section 6.2.2, for first-order

constraint features, is also O(ds(φ)n|Y|2) with the composite constraint feature.

There are several practical implications of this result. In both cases GE train-

ing is much more efficient. Increasing the number of constraint features has much

1In the worst case ds(φ) = d(φ), and using the composite constraint feature does not improve
efficiency. However, ds(φ)=d(φ) requires every constraint feature to fire for each x, j, and yj , which
is unlikely to happen in practice. In the applications explored in this thesis, typically d(φ) >> ds(φ).
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Figure 6.1. Comparison of GE training time (in seconds) for a linear chain CRF
with zeroth-order constraints using the algorithm of Section 6.2.1 with (Mod) and
without (MM08) the composite constraint feature.

less impact on the running time, as ds(φ) typically grows very slowly with d(φ) in

the sequence labeling problems addressed in this thesis. For example, at most one

constraint feature can fire at each position when using constraints on label distribu-

tions for words. Using first-order constraint features was previously not feasible, but

with the improved algorithm it is in theory no less efficient than using zeroth-order

constraint features.

6.3 Empirical Efficiency Comparison

We conduct an experiment to compare training times using the algorithm of Sec-

tion 6.2.1 with and without the composite constraint feature. Recall that previous

work did not utilize the composite constraint feature [72].

We use the same 5 80:20 splits of the Cora references data set as in Section 9.4,

with the same model features. We select m = {20, 40, 80, 160, 320} input features that

have the highest mutual information with the label at positions where they fire, and
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add zeroth-order input feature label distribution constraints with target values set to

their true values in the training data. Timing results with both L2
2 and KL divergence

score functions are presented in Figure 6.1. Using the composite constraint feature

significantly reduces the training time and the speed with which it grows with m.

6.4 Generalization to Tree-Structured CRFs

The previous section shows that it is possible to compute the GE gradient for

linear chain CRFs in O
(
(ds(f) + ds(φ))n|Y|2

)
time. In this section we generalize this

algorithm. In general, we would like to compute

Eθ[φ
′fT] =

∑
y

p(y|x;θ)φ′(x,y)f(x,y)T

=
∑
y

p(y|x;θ)φ′(x,y)
∑
a∈F

f(x,ya)
T

=
∑
a∈F

∑
ya

f(x,ya)
T
∑
y a

p(y|x;θ)φ′(x,y), (6.30)

where y a denotes an assignment to all variables other than those in a. Suppose that

the factor graph for p(y|x;θ) is a tree and that the constraint features factor in the

same way as the model features. In this case we can compute Equation 6.30 efficiently

using dynamic programming. Suppose that n variables participate in a. We denote

assignments to those variables as ya1, . . . , yan. Because the factor graph for p(y|x;θ)

is a tree, we can split y a into assignments to variables that participate in subtrees

rooted at each yai, denoted yπ(ai). Note that yπ(ai) excludes yai. We would like to

compute the inner sum of Equation 6.30
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∑
y a

p(ya1, . . . , yan,yπ(a1), . . . ,yπ(an)|x;θ)φ′(x, ya1, . . . , yan,yπ(a1), . . . ,yπ(an))

=
∑
y a

p(ya1, . . . , yan,yπ(a1), . . . ,yπ(an)|x;θ)
(
φ′(x,ya) +

n∑
i=1

φ′(x, yai,yπ(ai))
)

= p(ya|x;θ)φ′(x,ya) +
n∑
i=1

∑
yπ(ai)

p(ya1, . . . , yan,yπ(ai)|x;θ)φ′(x, yai,yπ(ai))

= p(ya|x;θ)φ′(x,ya) +
n∑
i=1

p(ya i|yai,x;θ)
∑
yπ(ai)

p(yai,yπ(ai)|x;θ)φ′(x, yai,yπ(ai)),

(6.31)

where ya i denotes an assignment to all variables in a except Yai. The first step follows

because we assume φ′ decomposes in the same way as the model. The second step

follows because all variables that appear in subtrees other than i marginalize out.

The third step follows because ya i ⊥⊥ yπ(ai) | yai.

Equation 6.31 shows that the expectation of φ′ over all outputs with Ya = ya

can be decomposed into the sum of a term that depends only on the factor marginal

p(ya|x;θ), and the sum of the expectations of φ′ in subtrees rooted at the variables

that participate in a. We can compute these expectations with dynamic programming.

Proceeding from Equation 6.31, suppose that we would like to compute the expec-

tation of the subtree rooted at Yai with Yai = yai. Specifically, this subtree includes

Ya and {Yπ(aj) : 1 ≤ j ≤ n ∧ j 6= i}. Marginalizing over ya i, we have

∑
ya i

p(ya|x;θ)φ′(x,ya) +
n∑

1≤j≤n:j 6=i

p(ya j|yaj,x;θ)
∑
yπ(aj)

p(yaj,yπ(aj)|x;θ)φ′(x, yaj,yπ(aj)).

(6.32)

It is convenient to specify this procedure as a message passing algorithm. The

form of the algorithm is similar to the sum product algorithm [57]. The messages and

an expression for computing
∑

y a
p(y|x;θ)φ′(x,y) are presented in Table 6.1. As

with the sum product algorithm, a root is first selected. Then, the algorithm consists
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message from variables to factors:
µYai→a(yai) =

∑
a′∈N(Yai)\a µa′→Yai(yai)

message from leaf variables to factors (follows from above):

µYai→a(yai) = 0

message from factors to variables:
µa→Yai(yai) =

∑
ya:Yai=yai

p(ya|x;θ)φ′(x,ya) +
∑

1≤j≤|a|:j 6=i p(ya j|yaj,x;θ)µYaj→a(yaj)

message from unary leaf factors to variables (follows from above):

µa→Yai(yai) = p(yai|x;θ)φ′(x, yai)

expectation with variables in factor a assigned:∑
y a
p(y|x;θ)φ′(x,y) = p(ya|x;θ)φ′(x,ya) +

∑|a|
j=1 p(ya j|yaj,x;θ)µYaj→a(yaj)

Table 6.1. Messaging passing algorithm to compute
∑

y a
p(y|x;θ)φ′(x,y). N(Y )

denotes the set of factors that take Y as input. A\a denotes the set A with a removed.

of an upward pass, in which messages are passed from the leaves to the root, followed

by a downward pass, in which messages are passed from root to the leaves.

Note that the algorithm takes factor marginals as input. It can be viewed as a

generalization of the algorithms of Sections 6.2.1 and 6.2.2. After the messages are

computed, the gradient can be computed with Equation 6.30 and the expression for∑
y a
p(y|x;θ)φ′(x,y) in Table 6.1. The time complexity of the complete algorithm

is O((ds(f)+ds(φ))n|Y|T ), where T is the maximum number of output variables that

participate in a factor. Consequently, when the CRF is tree-structured and constraint

features factor as model features, GE training has the same time complexity in n and

Y as computing expectations. Note however, that there is a constant factor difference

in the run time, as this algorithm requires two passes of dynamic programming.

A generalized algorithm can also be derived using a hypergraph representation.

Li and Eisner [64] provide efficient algorithms for computing covariances on hyper-
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graphs2. A weighted hypergraph HG = (V,E) consists of a set of vertices V and

a set of weighted hyperedges E. A hyperedge links a set of antecedent nodes to a

consequent node. For example, a hypergraph that represents a lattice for a linear

chain CRF contains n|Y| vertices, one for each possible label at each position in the

sequence, and n|Y|2 hyperedges, one for each possible pair of consecutive labels in

the sequence. The weight of each edge is its score exp(θ · f(yi, yi+1,x)). Hypergraphs

are convenient for representing all possible derivations for phrase structure parsing.

For models whose inference problems can be represented with a hypergraph, per-

forming inference can be cast as a semiring parsing problem. A semiring is an alge-

braic structure equipped with multiplicative and additive operations and identities.

Li and Eisner [64] define first and second-order expectation semirings, and algorithms

that use these semirings to compute expectations and covariances on hypergraphs.

They then propose a “lifting trick” ([64], Section 4.3) that allows the use of a variant

of the inside outside algorithm to compute covariances more efficiently. Due to sub-

stantial differences in terminology and notation, we do not review these algorithms.

Any tree-structured factor graph can be encoded as a hypergraph in which there

are vertices for each possible assignment to each variable, and hyperedges among all

nodes for variables that participate in the same factor a with weight exp(θ · f(ya,x)).

The general message passing algorithm and the hypergraph algorithm are equiv-

alent for tree-structured models and conceptually related, but there are several small

differences. The message passing algorithm uses marginals, whereas the hypergraph

algorithm uses unnormalized scores, and subsequently normalizes by Z(x;θ).

In Chapter 5 we applied GE to tree CRFs. To ensure a valid tree, the factor

graph for this model contains a factor that touches each parent index variable. Con-

sequently, naively using sum product or the message passing algorithm presented in

2Pauls et al. [85] concurrently developed a similar algorithm.
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this section would take exponential time in the sentence length n. In Chapter 5 we

derived an O(n4) algorithm for computing the gradient that uses matrix inversion.

Instead, we could use symbolic differentiation in reverse mode [43], as known as back-

propagation, to compute the gradient in O(n3) time. This would involve applying

symbolic differentiation to the determinant computation. Our method may be prefer-

able, however, because it leverages standard, well-studied matrix algorithms that are

both fast and numerically accurate. Though it requires a sum over all pairs of edges,

pushing the time complexity to O(n4), only a few arithmetic operations are required

for each pair. We leave an empirical comparison of the algorithms to future work.
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CHAPTER 7

MCMC GE AND LIGHTLY SUPERVISED ENTITY
RESOLUTION

In previous chapters we developed exact algorithms for GE training. In this

chapter we approximate the expectations and covariances required for GE training

using MCMC. We compare exact and MCMC GE training of linear chain CRFs,

and use MCMC GE to train an entity resolution model for which exact inference

is intractable. We also explore the use of temperature in MCMC GE training, and

illustrate the contrast between MCMC GE training with and without iid instances.

7.1 MCMC GE

Thus far we have applied GE to CRFs for which exact inference is tractable:

logistic regression models (Chapter 4), tree CRFs (Chapter 5), and tree-structured

CRFs (Chapter 6). We showed that if constraint and model features factor in the

same way, exact GE training of these models is tractable.

However, exact inference is intractable for many models of interest, including

entity or coreference resolution models. In coreference resolution the task is to deter-

mine the set of mentions that refer to the same real-word entity. For instance, given

citations of research papers, we aim to predict sets of citations that all refer to the

same paper. Note that we do not know how many true entities exist in the data.

Additionally, in some settings we may prefer to use constraint features that do not

factor in the same way as model features. For example, when extracting information

from citations of research papers, we know that at most one segment of each type,
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i.e. title, should be present in each citation. Incorporating this knowledge into the

model directly would make exact inference intractable. Instead, we may enforce this

constraint at training time, retaining tractable inference at test time.

To address these cases, we approximate the expectations and covariances required

for GE training by sampling outputs from the model y ∼ p(y|x;θ). The approximate

expectations of the constraint features are

Ep(y|x;θ)[φ(x,y)] =
∑
y

p(y|x;θ)φ(x,y) ≈ 1

|S|
∑
y∈S

φ(x,y), (7.1)

where S is the set of samples. By the law of large numbers, this estimate converges

almost surely to the true expectation as |S| → ∞. This approximation can be used

in place of the true expectation in any of the score functions described in Section 3.2.

The approximation of the gradient (expanded from Equation 3.48) is

∂

∂θ
S(Eθ[φ]) = Ep(y|x;θ)[φ

′(x,y)f(x,y)T]− Ep(y|x;θ)[φ
′(x,y)]Ep(y|x;θ)[f(x,y)T]

≈ 1

|S|
∑
y∈S

φ′(x,y)f(x,y)T − 1

|S|
∑
y∈S

φ′(x,y)
1

|S|
∑
y∈S

f(x,y)T. (7.2)

In this thesis, sampling is performed using Markov chain Monte Carlo (MCMC)

methods. We briefly reviewed MCMC methods in Section 2.1.3.2. We discuss the

details of specific sampling methods in Sections 7.2 and 7.3.

7.1.1 Temperature

We next discuss the use of a temperature in MCMC GE. As described in Sec-

tion 3.2.5, a variant of GE training modifies model probabilities with a temperature

T . This method is motivated by the fact that a label distribution constraint with

target [0.6, 0.4] could be satisfied with parameters θ′ that assign a label distribu-

tion of [0.6, 0.4] to each variable. As T → 0, however, the label distribution with θ′

approaches [1.0, 0.0]. Consequently a temperature T < 1 discourages such solutions.
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In MCMC sampling, a temperature can be used to concentrate samples in high

probability regions [2]. Specifically, as T → 0, transitions in the Markov chain that

reduce the probability of the output variable assignments become less likely.

In MCMC GE, the above notions of temperature are identical. Consequently,

there are two potential benefits to using a temperature T < 1 in MCMC GE. First, it

may increase the accuracy of the trained model. Second, it may reduce the number

of samples necessary to obtain an accurate approximation, as only samples around

the mode of the distribution are required. However, it is well known that MCMC

methods have difficulty transitioning between modes, and this problem is exacerbated

when using a temperature T < 1, as the probability distribution is more peaked. We

next evaluate these issues empirically.

7.2 Comparing MCMC GE to Exact GE

We first compare MCMC GE and exact GE for training linear chain CRFs. If

constraint features factor in the same way as model features, exact GE is tractable

for this model (see Chapter 6).

We use Gibbs sampling, reviewed in Section 2.1.3.2, to sample from p(y|x;θ). Each

iteration involves sampling for each output variable, indexed by j, in each sequence,

indexed by i, a new assignment yij conditioned on the current assignments to its

neighbors, yij ∼ pT (yij|yij−1, yij+1,x;θ). Output variable assignments are initialized

randomly. We begin with 100 “burn-in” iterations, and then collect a sample every

10 iterations. In the following experiments, we vary the number of samples in order

to evaluate the tradeoff between efficiency and accuracy. We additionally evaluate

the effect of temperature by varying T .

We use two sequence labeling tasks for the following experiments. The apart-

ments information extraction data set and its feature representation are described
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in Section 9.4. The CoNLL03 named entity recognition data set and its feature

representation are described in Section 8.2.

Input feature label distribution constraints for these experiments are selected au-

tomatically using labeled data. We select 100 input features with count ≥ 3 that

have the highest mutual information with the label variable at positions where they

fire. We estimate target distributions by binning the true distributions estimated

from labeled data. For example, with 6 bins, each probability is estimated as the

closest value in {0, 0.2, 0.4, 0.6, 0.8, 1}. To compensate for rounding error we then

re-normalize to obtain the coarsened target distribution. With 101 bins, the targets

are very close to their true values.

Note that we compare the accuracy of models produced by different training meth-

ods, rather than the approximation error. In some cases MCMC GE actually provides

higher accuracy than exact GE. This is possible because there is not necessarily a di-

rect relationship between the GE objective and the accuracy of the model.

Figure 7.1 displays apartments results using 6 and 101 bin constraints, and tem-

peratures T ∈ {0.1, 0.5, 1}. In all cases, using 25 samples is sufficient to obtain

within 1% test token accuracy of exact GE. With 101 bin constraints and 10 samples,

MCMC GE with T = 0.1 provides lower accuracy than MCMC GE with T ∈ {0.5, 1}.

However, this method outperforms all other methods with 25 samples. With 6 bin

constraints and T = 0.1, using only 10 samples is sufficient to outperform all other

methods. These results confirm that using a temperature T < 1 can be beneficial.

Figure 7.2 displays CoNLL03 results. With 6 bin constraints, 25 samples is always

sufficient to get within 0.01 segment F1 of exact GE. With more precise constraints,

more samples are required, though for T ∈ {1, 0.5}, 100 samples is more than sufficient

to get within 0.01 segment F1 of exact GE. However, we obtain erratic results with

MCMC GE with T = 0.1 and 101 bin constraints.
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Figure 7.1. Apartments experiments using exact and MCMC GE.

Analysis reveals that the inconsistent results obtained with T = 0.1 are a result

of MCMC being unable to transition between modes. With T = 0.1 it is often the

case the sampler always yields the same output for a particular sequence. When

all sampled outputs for a sequence are identical, the covariance is 0, and hence the

gradient is 0 and optimization terminates. When this occurs, however, the true

covariance, as computed by exact GE, is non-zero.

In summary, we found that MCMC GE typically only requires a small number of

samples to produce an accurate model in this setting. Though using a low tempera-

ture is sometimes beneficial, it can also result in erratic performance, suggesting the

investigation of annealing procedures in which T varies over time. We leave further

investigation of temperature in MCMC GE to future work.

In the above experiments the data consists of iid instances. In practice, models

where approximate inference is required often have connected factor graphs. We next

compare MCMC GE and exact GE in this setting.
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Figure 7.2. CoNLL03 experiments using exact and MCMC GE.

7.2.1 Comparison in Connected Factor Graphs

The experiments of Section 7.2 suggest that MCMC GE only requires a small

number of samples to produce an accurate model. However, the experiments of

Section 7.2 are conducted with data that consists of iid instances. In this section we

illustrate additional challenges with MCMC GE when the factor graph is connected.

As described in Section 3.2.2, with iid instances the covariance is the sum of

per-instance covariances

∑
i

Ep(yi|xi;θ)[φ(xi,yi)f(xi,yi)T]− Ep(yi|xi;θ)[φ(xi,yi)]Ep(yi|xi;θ)[f(xi,yi)T]. (7.3)

Suppose that a constraint feature φ and a model feature f never fire in the same

instance. Then, by Equation 7.3, their covariance is 0, which means that a constraint

on φ will have no effect on the parameter for f . This also holds when approximating

Equation 7.3, regardless of the particular set of samples S.

However if we add dependencies between instances to the model, it is possible for

the covariance of any f and φ to be non-zero. That is, we expect the covariance matrix

for the iid setting to be less dense, or to have more zero entries. This suggests that

109



20 40 60 80 100 120 140 160 180 200
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7
apartments, one sequence: MI constraints, 101 bins

samples

te
st

 to
ke

n 
ac

cu
ra

cy

 

 

exact temp=1
approx temp=1
exact temp=0.5
approx temp=0.5
exact temp=0.1
approx temp=0.1

20 40 60 80 100 120 140 160 180 200
0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

apartments, one sequence: MI constraints, 6 bins

samples

te
st

 to
ke

n 
ac

cu
ra

cy

 

 

exact temp=1
approx temp=1
exact temp=0.5
approx temp=0.5
exact temp=0.1
approx temp=0.1

Figure 7.3. Apartments experiments using exact and MCMC GE with a connected
model.

additional samples may be required to accurately estimate covariances in connected

models. An alternative perspective on this problem is that when the number of

samples is small, it is possible that large, spurious covariances are estimated for

pairs of model and constraint features that happen to co-occur unusually often. This

problem is mitigated with iid instances, as many covariances must be zero.

To test this hypothesis, we conduct an experiment that is identical to the exper-

iment of Section 7.2, except that we concatenate the apartments data into a single

sequence by adding a dependency between the final output variable of one sequence

and the initial output variable of the next. Figure 7.3 displays the results of this

experiment. Note that with 101 bins the exact GE results are very similar to those in

Figure 7.1. With 6 bins the exact results are slightly lower but comparable. With a

connected model, even using 200 samples is insufficient to get within 1% test token ac-

curacy of exact GE, while with iid instances only 25 samples are required. We expect

this problem to be especially pronounced early in training when model probabilities

are close to uniform. Consequently, in the experiment in Section 7.3 we attempt to

mitigate this problem with parameter initialization.
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7.3 Lightly Supervised Entity Resolution

In this section we apply MCMC GE to lightly supervised entity resolution. This

is an important application because annotating entity resolution data can be incred-

ibly time-consuming. For example, determining whether two mentions refer to the

same entity may require conducting research on the web. Successful unsupervised

approaches to the related noun-phrase coreference problem rely on complex gener-

ative models [46, 89]. In this section we perform entity resolution with a standard

discriminative model and two simple GE constraints.

In this section the task is to predict, given citations of research papers, the sets of

citations that refer to the same paper. We use the Cora entity resolution data set1.

In this data set each citation is segmented into title, author, and venue. We conduct

separate experiments on each of the three splits of the data set. There are 377, 471,

and 447 mentions, and 43, 40, and 51 true entities in splits 0, 1, and 2.

We model the conditional distribution of entities given mentions with a CRF

model. Specifically, the input variables x correspond to mentions. Each output

variable represents an entity. An assignment to output variable i, yi, is a subset of

mentions that refer to entity i. Therefore, the domain of each output variable is the

power set of the set of mentions. With n mentions, the size of the domain is 2n.

Therefore, exact inference is intractable for practical entity resolution tasks.

In this experiment model features are defined over pairs of mentions and include

various measures of string similarity. We use the similar title and similar venue

features of Poon and Domingos [88], as well as conjunctions of these features. Ad-

ditional features include the count, proportion, discretized count, and discretized

proportion of token matches in the two citation strings, as well as separate ver-

sions of these features for the author, title, and venue strings. Examples include

1Available at http://alchemy.cs.washington.edu/
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If the string match is ≥ 80%, then the citations are a match 85% of the time.
If the string match is ≤ 20%, then the citations are not a match 99% of the time.

Table 7.1. Two simple GE constraints for entity resolution.

the number of matching tokens in the two author strings and whether the number of

matching tokens in the two venue strings is > 4. The bins used for count discretiza-

tion are {0, 1, 2,≤ 4,≤ 8,≥ 8} and the bins used for proportion discretization are

{0,≤ 0.2,≤ 0.4,≤ 0.6,≤ 0.8,≥ 0.8}. Finally there are exact string match features,

and a default feature that is present for all pairs of mentions. In total there are 68

features.

We use two simple constraints, displayed in Table 7.1. In words, the constraints

say that “two citations that have a high string overlap usually refer to the same

entity”, and “two mentions that have very lower string overlap almost never refer to

the same entity.” Target distributions are estimated using a combination of domain

knowledge and examination of the mentions.

We use an L2
2 GE score function to incorporate the constraints. Experiments in

Section 7.2.1 show that a large number of samples may be required to get accurate co-

variance estimates when the graphical model is connected. To mitigate this problem,

we initialize model parameters using generalized maximum entropy (ME) estimation

(see Sections 2.1.3.4 and 3.3.2). Specifically, we run five iterations of generalized max-

imum entropy training with the constraints and an L2
2 score function. The resulting

parameters are used to initialize GE estimation. The motivation for this initializa-

tion is to avoid sampling when the model probabilities are close to uniform. We also

use generalized maximum entropy as a baseline. For both methods we use Gradient

Ascent with a learning rate of 0.1 for optimization, and per-parameter learning rates

as advocated by Lowd and Dominos [69]. Specifically, we divide the gradient for each

model feature by its count in the unlabeled data. Both objectives include a zero-mean

Gaussian prior on parameters p(θ) with σ2 = 10.
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We compare with constraint-driven SampleRank (CDSR), previously described in

Section 3.3.5. Unlike GE and ME, which alternate between sampling and gradient

steps, CDSR adjusts the parameters during sampling. Specifically, it adjusts the

parameters so that the model gives higher score to output variable assignments that

satisfy the constraints. Note that this method cannot incorporate the knowledge

that a constraint should hold 85% of the time. We use the objective function in

Section 3.3.5 with λ = 1010. This should result in hard enforcement of the constraints.

Sampling is performed using the Metropolis-Hastings (MH) algorithm, reviewed in

Section 2.1.3.2. The MH proposal distribution randomly chooses a mention, and with

probability pmove proposes moving it to another entity. With probability 1 − pmove,

it instead proposes creating a new singleton entity containing the mention. Here

pmove = 0.8. For GE and ME, we use 500 samples, with 1000 jumps between each

collected sample. For CDSR, we use a total of 100,000 jumps. To make predictions,

we use MH with simulated annealing, so that the final state in the Markov chain is

likely to be the maximum probability output. Specifically, 50,000 jumps are taken

with each of the following temperatures in sequence {1.0, 0.1, 0.01, 0.001, 0.0001}.

We evaluate using pairwise precision, recall, and F1. We say that two mentions

match in an output y if they refer to the same entity. Let c be the number of

pairs of correctly predicted matches, p be the number of pairs of matches the model

predicts, and t be the true number of pairs of matches. Then the pairwise precision is

P = c/p, the pairwise recall is R = c/t, and the pairwise F1 is the harmonic mean of

precision and recall F1 = 2PR/(P + R). We also evaluate with B3 precision, recall,

and F1 [3]. This metric is similar to the pairwise metrics, but rewards models for

correctly predicting entities with few mentions. For a mention indexed by i, let ci be

the number of correctly predicted matches with i (including i itself), pi be the total

number of matches the model predicts for i , and ti be the true number of matches
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for i. Then the precision and recall for i are defined as above. The final metrics are

computed by summing the per mention metrics and normalizing.

7.3.1 Results

Table 7.2 displays the results of the experiment. GE substantially outperforms

the ME baseline in all metrics. Recall that maximum entropy estimation results in

a model that only has parameters for constraint features. In contrast, GE is able

to estimate parameters for the 68 model features described above. The difference in

performance between ME and GE demonstrates that this is beneficial.

CDSR outperforms GE in terms of pairwise F1 on all three data sets. GE out-

performs CDSR in terms of B3 F1 on two of the three data sets. GE always provides

better recall, while CDSR always provides better precision.

It is somewhat surprising that the two methods provide comparable results. Note

that CDSR is not capable of explicitly encouraging the model to match target ex-

pectations. Instead, prior knowledge must encoded as difficult-to-interpret penalties

in the function that compares pairs of samples. Intuitively, one would expect setting

λ = 1010 to result in hard enforcement of the constraints, but this is not what we

observe. Note that we have verified that changing the target expectations from 85%

and 99% to 100% and 100% for GE training substantially reduces pairwise F1 and

B3, as expected. We hypothesize that GE would outperform CDSR on other prob-

lems where designing an appropriate penalty is more challenging, where the target

expectations are less peaked, or where matching the targets precisely is required to

obtain high accuracy.

7.4 Conclusion and Future Work

In this chapter we approximated the expectations and covariances required for

GE training using MCMC. We conducted sequence labeling experiments that demon-
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Pairwise F1 B3

Method (Split) P R F1 P R F1
ME (0) 83.46 66.07 73.75 76.51 63.76 69.56
CDSR (0) 95.85 98.92 97.36 95.50 98.08 96.77
GE (0) 94.82 100.00 97.34 94.26 100.00 97.05
ME (1) 80.82 60.69 69.32 81.59 67.68 73.99
CDSR (1) 99.18 91.07 94.95 98.08 92.36 95.14
GE (2) 87.46 99.42 93.06 88.92 98.66 93.54
ME (2) 67.06 60.90 63.83 68.07 61.78 64.78
CDSR (2) 88.94 91.89 90.39 91.71 92.89 92.29
GE (2) 82.48 99.18 90.07 86.80 98.82 92.42

Table 7.2. Entity resolution experiments on the Cora data set.

strate that with iid instances, a small number of samples is sufficient to match the

accuracy of exact GE. In the non-iid setting, however, more samples are required to

accurately estimate covariances. We then applied MCMC GE to lightly supervised

entity resolution, obtaining accurate models with two simple constraints.

Directions for future work include additional comparison of GE and CDSR, as

discussed in Section 7.3.1, and investigation of annealing methods and more complex

sampling schemes in general, in order to reduce the number of samples MCMC GE

requires in the non-iid setting.

Additional conclusions and discussion are provided in Chapter 12.
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CHAPTER 8

ADDITIONAL EMPIRICAL ANALYSIS

In previous chapters we demonstrated that it is often possible to train accurate

models with minimal human effort using the GE framework. In this chapter we

explore directions for improving these results by either compensating for noise in the

target expectations, or increasing the precision of the target expectations.

Additionally, we provide an empirical comparison with Posterior Regularization [36].

8.1 Compensating for Noise

In this thesis, input feature label distributions are estimated using procedures that

introduce noise. In this section we develop methods to compensate for noise.

As discussed in detail in Chapter 3.2, defining a GE objective function requires

selecting a score function. In this thesis score functions assign a lower score when

model expectations are “far” from target expectations φ̃. Consequently we can view

score functions as the negative of constraint violation penalties. Different penalties

can be used to emphasize closing the gap between model and target expectations in

different ways. We first propose methods for defining noise-tolerant penalties.

• target range: Rather than encouraging the model to match precise target

expectations, we may instead encourage the model expectation to be within

some target range. This can be achieved by specifying a penalty function that

is 0 if the model expectation is within the target range. Examples include the

hinge and L2
2 range score functions introduced in Chapter 3.2.
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• penalty shape: Another way to address noise is to vary the shape of the

penalty. Different shapes can help to compensate for different types of noise. If

most target expectations are accurate, but a few target expectations are highly

inaccurate, an L1 penalty is appropriate. An L1 penalty encourages most con-

straints to be matched exactly, i.e. to incur zero penalty, but may allow some

constraints to be highly violated. In contrast an L2
2 penalty discourages sub-

stantial violation of any constraint, which is more appropriate for constraints

with consistent noise or imprecision. The KL divergence penalty highly encour-

ages constraint features with target probability ≥ 0 to have model expectation

≥ 0. See Figure 3.1 to compare penalties visually.

• compound constraint features: We also consider noise-tolerant constraint

features. Rather than specifying separate constraints with individual target

expectations or ranges, it is possible to combine multiple constraint features

into a single compound constraint feature.

In this section we focus on cases in which prior knowledge can be encoded as a

noisy rule-based system. Specifically, the rule-based system r takes x as input

and provides, for subsets of output variables Ya, sets of allowable assignments to

Ya. When the rule-based system has no information about a particular output

variable, it returns the empty set ∅. For example, for dependency parsing, the

rule-based system could provide a list of probable parents for each token in the

input sentence.

We define two constraint features using this rule-based system that vary in the

way they are normalized. The rule set precision constraint feature is defined as

φrp(x,y) =
1

cr

∑
a∈F

1{ya∈r(x)a} (8.1)

cr =
∑
a∈F

1{r(x)a 6=∅}, (8.2)
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where r(x)a is the set of allowable output variable assignments to a. The expec-

tation of φrp(x,y) is the expected probability that the model agrees with the

rule-based system r, given that r has a prediction. A similar constraint feature

is used in [34].

Alternatively, we define the rule set recall constraint feature as

φrr(x,y) =
1

|F|
∑
a∈F

1{ya∈r(x)a}. (8.3)

The expectation of φrr(x,y) is the expected probability that model predictions

are supported by the rule-based system. A similar constraint feature is used

in [80].

Compound constraint features allow us to avoid specifying individual target

expectations. For example, rather than specifying a target for each dependency

parsing rule like JJ ← NNS, we can instead specify the expected precision

or recall of the entire rule set. However, using a compound constraint makes

learning more challenging, as there is less specific guidance about how violation

of the compound constraint should be addressed.

8.1.1 Document Classification Experiment

We first conduct an experiment using the labeled input features provided by users

in Section 4.4.7. The resulting constraints are noisy in two ways: 1) the targets are

set using a simple heuristic that assigns probability 0.9 to the label provided by the

user, and 2) the users occasionally label input features incorrectly. Table 8.1 displays

results using either a KL divergence score function, an L1 score function, or a Hinge

score function with a penalty of 0 when the model expectation is ≥ 0.9. For L1

and Hinge score functions we use subgradient ascent for optimization, while for KL

score functions we use L-BFGS. In six of nine cases, using either an L1 or a Hinge
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score function outperforms using a KL score function. Using a hinge score function

outperforms using an L1 score function in five of nine cases.

Table 8.1 also displays statistics of the noise present in each set of constraints.

Let the true expectation be the value of φ on labeled data, φ̃L = φ(x,yL). We define

noise as the absolute difference between the true and target expectations, |φ̃L − φ̃|.

Note that the largest improvements with an L1 or Hinge score function are obtained

with constraints that have the largest maximum noise values.

To develop additional intuition, consider the baseball-hockey data set and User

1. Table 8.2 displays label distributions for two input features, pitching and devils,

according to the true distribution, the target distribution, and distributions from

logistic regression models estimated using KL, L1, and Hinge score functions.

The following example illustrates the benefit of using a target range. Note that

although the target probability of baseball for pitching is 0.9, the true value is 1.0.

The model estimated with a KL divergence score function matches the target closely.

However, the model estimated with a Hinge score function, which only encourages the

probability of baseball to be ≥ 0.9, instead expects 93.1% of documents that contain

pitching to be labeled baseball.

The following example illustrates the benefit of using an L1-based penalty. Note

that the word devils is incorrectly labeled by User 1 as baseball. While the model

estimated with a KL score function does not match the target closely, it still expects

54.6% of documents that contain devils to be labeled baseball. The model estimated

with an L1 score function matches the target much less closely, expecting 76.4% of

documents that contain devils to be labeled hockey.

8.1.2 Dependency Parsing Experiment

We also conduct dependency parsing experiments with the two sets of user pro-

vided constraints used in the experiments of Section 5.5. The target distributions for
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noise accuracy
mean stddev max KL L1 Hinge

(1) baseball-hockey 0.131 0.190 0.900 86.2 91.2 92.2
(1) ibm-mac 0.097 0.107 0.304 85.4 84.4 84.4
(1) med-space 0.088 0.072 0.341 91.6 90.6 90.6
(2) baseball-hockey 0.160 0.164 0.536 87.4 94.0 94.4
(2) ibm-mac 0.262 0.264 0.792 72.3 78.0 78.0
(2) med-space 0.171 0.185 0.840 84.0 87.4 89.2
(3) baseball-hockey 0.072 0.032 0.137 94.2 93.6 93.8
(3) ibm-mac 0.071 0.094 0.304 85.0 85.4 85.4
(3) med-space 0.114 0.099 0.670 89.6 90.4 91.4

Table 8.1. Results on 20 Newsgroups subsets using the constraints provided by users
in Section 4.4.7 while varying the score function. Using an L1 or Hinge score function
can help compensate for noise in the target expectations.

baseball hockey
pitching : true 1.000 0.000
pitching : target 0.900 0.100
pitching : GE KL 0.888 0.112
pitching : GE L1 0.922 0.078
pitching : GE Hinge 0.931 0.069

baseball hockey
devils : true 0.000 1.000
devils : target 0.900 0.100
devils : GE KL 0.546 0.454
devils : GE L1 0.236 0.764
devils : GE Hinge 0.250 0.750

Table 8.2. True, target, and model distributions for the words pitching and devils
using the baseball-hockey data set and the constraints from User 1. Bold indicates
the model expectations that are closest to the true distributions.

these constraints are set to a value in {0, 0.1, 0.25, 0.5, 0.75, 1} by the user. Conse-

quently, it is likely that the target distributions are imprecise.

Table 8.3 compares L1 and L2
2 score functions with both target expectations and

target ranges, as well as rule-based constraints. Specifically, target ranges are set to

[φ̃−ε, φ̃+ε], so that the penalty is zero within ε of the original target expectation. The

rule-based system provides a set of candidate parents for each child. This candidate

set includes any parent such that a constraint feature fires on the resulting edge.

Table 8.4 shows that the mean noise value is generally higher in these experiments

than in the experiments of Section 8.1.1. However, relative to the mean, the variance

is lower. As a result, an L1 score function is less appropriate. Empirically an L1 score
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14 constraints 20 constraints
L2
2 0.537 0.574

L2
2 range (ε = 0.1) 0.540 0.576

L2
2 range (ε = 0.2) 0.546 0.579

L1 0.530 0.568
L1 range (ε = 0.1) 0.543 0.572
L1 range (ε = 0.2) 0.524 0.571
rule set (precision=0.9) 0.575 0.620
rule set (recall=0.9) 0.574 0.614

Table 8.3. Dependency parsing accuracy on WSJ10 with user-provided constraints
from Section 5.5 using different GE score functions. Bold denotes an improvement
over L2

2, used in Section 5.5. Underline denotes the best performing method overall.

14 constraints 20 constraints
noise mean 0.260 0.182
noise stddev 0.141 0.170
noise max 0.492 0.723

Table 8.4. Statistics of the noise in the user-provided constraints from Section 5.5.

function decreases parsing accuracy when compared to an L2
2 score function. Using a

target range with an L2
2 score function provides a small accuracy improvement. Using

rule set constraints outperforms all other methods. In this application, the reduction

in noise provided by the rule set constraints outweighs the additional ambiguity.

8.1.3 Summary

In this section we showed that it is possible to compensate for noisy target ex-

pectations by selecting appropriate score functions and constraint features. How-

ever, experiments suggest that the appropriate method depends on the particular

application and characteristics of the noise, making it difficult to provide a general

recommendation.
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8.2 Varying Target Expectation Precision

The input feature label distribution constraints used in this thesis are imprecise.

For example, in Chapter 4 the target distributions are automatically generated from

labeled input features using simple heuristics. In this section, we investigate the

effect of the precision of the target expectations on GE training, with the aim of

understanding the extent to which improving precision would improve accuracy.

We focus on input feature label distribution constraints. We use the following

procedure to automatically vary the precision of the target distributions. First, we

estimate the true target distributions using labeled data. Then, we bin each proba-

bility by mapping it to the closest value in a fixed set of possible probabilities. We

vary the precision by varying the number possible probabilities or bins. For example,

with 6 bins, each probability is mapped to the closest value in {0, 0.2, 0.4, 0.6, 0.8, 1}.

To compensate for rounding error we renormalize to obtain a new target distribution.

We conduct experiments on two sequence labeling tasks: CoNLL03 named entity

recognition (NER) and Cora citation extraction. Model features for Cora are those

used in Section 9.4. The unlabeled data set contains 350 instances, and the test set

contains 150. Model features for CoNLL03 include standard regular expressions such

as starts with a capital letter, character prefixes and suffixes up to length 4, the token

at positions in {−2,−1, 0, 1, 2}, conjunctions of tokens at {−1&0, 0&1,−1&1}, and

the Wikipedia lexicon and Brown cluster features used in [95]. We use the standard

training set and evaluate on testb.

We use 101, 11, 6, and 3 bins. Note that with 101 bins, the target probabilities

are very close to their true values. GE training of a first-order linear chain CRF is

performed using a KL divergence score function and a Gaussian prior on parameters

with σ2 = 10. We add zeroth-order constraints for non-context input features in

descending order of mutual information with the label at positions where they fire.

122



50 100 150 200 250 300
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Target Precision: CoNLL03 NER (MI)

# constraints

se
gm

en
t F

1

 

 

101 bins
11 bins
6 bins
3 bins

50 100 150 200 250 300
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

# constraints

to
ke

n 
ac

cu
ra

cy

Target Precision: Cora References (MI)

 

 

101 bins
11 bins
6 bins
3 bins

Figure 8.1. More precise constraints yield more accurate CoNLL03 NER.

Figure 8.1 displays learning curves using target distributions with different levels

of precision. We observe that increasing the precision of the targets can substantially

improve model accuracy. For example, on CoNLL03, 40 constraints using 101 bins

yields segment F1 of 70.1, while 40 constraints using 3 bins yields segment F1 of 48.9.

Note that 40 constraints using 6 bins yields segment F1 of 61.7, demonstrating that

smaller increases in precision can still provide a substantial improvement. Similar

trends are evident in the Cora results.

These results suggest that developing methods for obtaining even slightly more

precise target expectations is likely to beneficial.

8.3 Empirical Comparison with Posterior Regularization

In this section we compare GE with Posterior Regularization (PR) [36], discussed

in Section 3.3.1. We first review mathematical and computational differences.

Recall that PR can be viewed as an approximation to GE. Concretely, given a GE

objective function

OGE(θ) = S
(
Eθ[φ]

)
+ log p(θ), (8.4)
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where Eθ[φ] =
∑

y p(y|x;θ)φ(x,y), a corresponding PR objective function is

OPR(θ, q) = −DKL

(
q||pθ

)
+ S
(
Eq[φ]

)
+ log p(θ) (8.5)

DKL

(
q||pθ

)
=
∑
y

q(y|x) log
q(y|x)

p(y|x;θ)
. (8.6)

PR encourages q to maximize the score function while encouraging q and pθ to be

close. When DKL

(
q||pθ

)
= 0, which implies q(y|x) = p(y|x;θ), the PR objective is

identical to the GE objective. However, a local maximum of the PR objective may

have q(y|x) 6= p(y|x;θ), for example because log p(θ) discourages equality, or because

pθ cannot represent q. Even when q(y|x)=p(y|x;θ) at a maximum, θ may not be a

maximum of the GE objective. In general, GE and PR provide different solutions.

As described in Section 3.3.1, the PR objective can be maximized with a block

coordinate ascent algorithm that only requires expectations of model and constraint

features, rather than their covariance. Therefore, PR training is tractable if inference

in pθ is tractable and constraint features factor in the same way as model features.

Section 6.4 shows that GE training of tree-structured CRFs is tractable. As a result,

for tree-structured CRFs the time complexity of both GE and PR is O
(
(ds(f) +

ds(φ))n|Y|T
)
. However, this analysis does not account for the number of iterations of

optimization. Note that with PR, both the E- and M-step require multiple gradient

computations. We compare optimization of GE and PR in the following experiments.

8.3.1 Experimental Setup

We conduct sequence labeling experiments. Specifically, we use the CoNLL03

named entity recognition and Cora citation extraction data sets, as described in

Section 8.2. The model p(y|x;θ) is a first-order linear chain CRF.

We use zeroth-order input feature label distribution constraints. Input features

are selected in descending order of mutual information with the label at positions
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where they fire. As in Section 8.2, we vary the precision of the target distributions

by binning the true targets. We use either 101 or 6 bins.

For both GE and PR we use an L2
2 score function and a Gaussian prior on pa-

rameters. For PR, this yields L2
2 regularization of the dual form of q in the modified

E-step [5, 36]. The complete objective functions are

OGE(θ) = −
∥∥φ̃− Eθ[φ]

∥∥2
2
− 1

2σ2

∥∥θ∥∥2
2

(8.7)

OPR(θ, q) = −DKL

(
q||pθ

)
− α

∥∥φ̃− Eq[φ]
∥∥2
2
− 1

2σ2

∥∥θ∥∥2
2
, (8.8)

where α in the PR objective is a hyperparameter that determines the importance of

the score function relative to the KL divergence and regularization terms, and σ2 is

a hyperparameter that controls the strength of the regularization.

Labeled data is unavailable in the lightly supervised learning settings explored

in this thesis. As a result, standard strategies for tuning hyperparameters such as

using a held-out development set or performing cross-validation are not applicable.

We instead typically use “default” hyperparameter values, for example σ2 = 1 for

GE training of logistic regression models and σ2 = 10 for GE training of structured

models. However, insightful selection of σ2 can improve accuracy. Additionally, we

find that careful selection of PR hyperparameters α and σ2 is sometimes required to

obtain an accurate model.

To avoid drawing conclusions that may be based on poor hyperparameter values,

we use a labeled development set for tuning. Specifically, we use a 60:20:20 unla-

beled/development/test split. Because PR has two hyperparameters to tune whereas

GE has one, we allow GE training to consider the same number of possible values of

σ2 as the total number of pairs of hyperparameters (σ2, α) considered by PR training.

We use batch optimization. We begin L-BFGS optimization with the parameters

from the previous round in each step. We consider both optimizing until conver-
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gence in each E-step and M-step, and a variant in which we perform one iteration of

optimization in each step. Note that an iteration involves line optimization, which

requires multiple gradient computations.

For PR training we run 250 rounds, where a round is an E-step followed by an

M-step. For PR training with one iteration of optimization per step we run 1000

rounds. For GE and ME we use standard stopping criteria.

8.3.2 Results

Figures 8.2 and 8.3 display results for Cora and CoNLL03 with different con-

straint sets. Each plot compares GE, PR, PR with one iteration of optimization per

step (PR1), and generalized maximum entropy (ME). The x-axis is the number of

passes through the data. For ME, the number of passes is the total number of gra-

dient computations. For PR, the number of passes is the total number of gradient

computations in both the E- and M-steps. For GE, the number of passes is twice the

total number of gradient computations, to account for the need to compute constraint

feature expectations before computing the covariance (see Algorithm 1).

First, note that both GE and PR substantially outperform ME, demonstrating

the benefit of including additional features in pθ (see Section 3.3.2). Next, note that

GE and PR often provide similar final results. This can also be observed in Table 8.5,

which displays the token accuracies or segment F1 values for the final models, as well

as the overlap of the models trained with GE and PR. The overlap is the percentage

of tokens for which two models make the same prediction. The overlap of models

trained with GE and PR is typically over 90%.

However, Figures 8.2 and 8.3 show that PR often requires more passes through

the data than GE. For example, in the Cora experiment with 20 constraints and 6

bins, GE reaches 50.6% token accuracy after 54 gradient computations or 108 passes.

After 8,346 passes, PR1 provides token accuracy of 47.3%. Similar trends are evident
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accuracy / F1 GE overlap
ME PR PR1 GE PR PR1

Cora

20, 101 0.341 0.528 0.612 0.679 0.729 0.870
80, 101 0.428 0.836 0.889 0.893 0.885 0.933
320, 101 0.476 0.920 0.930 0.931 0.972 0.978
20, 6 0.342 0.403 0.473 0.506 0.718 0.924
80, 6 0.419 0.737 0.755 0.775 0.909 0.944
320, 6 0.461 0.857 0.866 0.863 0.937 0.936

CoNLL03

20, 101 0.275 0.549 0.653 0.668 0.922 0.980
80, 101 0.578 0.756 0.780 0.783 0.979 0.990
320, 101 0.725 0.833 0.836 0.835 0.992 0.993
20, 6 0.270 0.497 0.493 0.520 0.922 0.980
80, 6 0.535 0.656 0.629 0.645 0.983 0.977
320, 6 0.654 0.754 0.768 0.769 0.985 0.993

Table 8.5. Final token accuracy (Cora) / segment F1 (CoNLL03 ) for ME, PR, PR1,
and GE, as well as the overlap in the predictions of models trained with GE and PR.

in the CoNLL03 results. We note that GE training also takes much less time, but we

prefer to avoid comparisons that may be influenced by implementation details.

Finally, we note that typical hyperparameter values selected for PR training are

large values (∼100-10000) for α and small values (∼0.1-1) for σ2. Using a small σ2

slows the rate at which information is transferred from q to p. We observe that models

trained with PR tend to generalize better when q and p are coupled gradually.

8.3.3 Discussion

In previous work [5] and other unpublished experiments, we often found that GE

training provided higher accuracy than PR training. The experiments presented here

suggest that the two methods provide similar accuracy when 1) hyperparameters are

carefully selected and 2) PR training is permitted to take up to thousands of passes.

There is a growing body of evidence that suggests that direct gradient-based

optimization can be preferable to EM. Salakhutdinov et al. [98] show that EM exhibits

slow convergence when the data is not well-clustered, and provide a direct gradient-

based alternative that converges faster than EM in this setting. Berg-Kirkpatrick
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et al. [7] show that direct-gradient based optimization outperforms EM for training

feature-rich generative models. Recall that PR uses a modified EM algorithm for

optimization, while GE uses direct gradient-based optimization, and that PR can

be viewed as an approximation to GE. While the aforementioned papers consider

generative models and we consider discriminative models, and our objective is not to

maximize likelihood but to satisfy constraints, we observe similar trends. Exploring

this connection is a direction for future work.
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Figure 8.2. Comparison of convergence of GE, PR, and ME on Cora.
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Figure 8.3. Comparison of convergence of GE, PR, and ME on CoNLL03.
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CHAPTER 9

ACTIVE LEARNING BY LABELING INPUT FEATURES

In the setting investigated in previous chapters, constraints are provided before

learning begins. In this chapter, we develop an active learning method that solicits

targets for the candidate constraints that are expected to be most informative. We

focus on the case in which users provide labels for input features for sequence label-

ing tasks, and show that the proposed active learning method outperforms passive

learning with labeled input features as well as traditional active learning with labeled

instances. An example of two iterations of active input feature labeling are presented

in Table 9.1.

9.1 Active Learning Background

In traditional active learning, surveyed in [103], the machine selects instances for

the user to label, with the goal of prioritizing the labeling of the instances that would

most improve the model. In this section we review work in active learning relevant

to this thesis.

In pool-based active learning [17], the machine selects a query from a pool of can-

didate queries, where each query represents an unlabeled instance. Most methods

for selecting queries in pool-based active learning aim to reduce model uncertainty.

Uncertainty sampling is a straightforward active learning method that selects the in-

stance whose predictions are most uncertain [63]. For probabilistic models, the most

uncertain instance is the one whose predicted label distribution has the highest en-
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accuracy: 46.5% → 60.5%
input feature label
PHONE* contact
call contact
deposit rent
month rent
pets restrictions
lease rent
appointment contact
parking features
EMAIL* contact
information contact

accuracy: 60.5% → 67.1%
input feature label
water utilities
close neighborhood
garbage utilities
included utilities, features
shopping neighborhood
bart neighborhood
downtown neighborhood
TIME* contact
bath size

Table 9.1. Two iterations of active input feature labeling. Each table shows the
input features labeled, and the resulting change in accuracy. Note that included was
labeled as utilities and features, and that ∗ denotes a regular expression feature.

tropy. Query by committee (QBC) methods instead maintain a committee of possible

models, and select instances that maximize disagreement among the committee [106].

The previously described methods consider the uncertainty of instances in iso-

lation, though the addition of a new labeled instance will change the uncertainties

of other instances as well. Methods that account for this include those that aim to

minimize future expected error [97]. However, in general these approaches are com-

putationally intractable, as naively they typically require re-training the model for

every possible response to each query.

Most active learning work has focused on classification rather than structured

output problems. Active learning was first applied to structured NLP problems by

Thompson et al. [116] and Hwa [49]. Settles and Craven [105] provide the first large-

scale empirical comparison of active learning methods for sequence labeling tasks.

Additionally they suggest augmenting uncertainty-based query selection metrics with

a component that depends on the density in the neighborhood of the instance.

Some work has shown that it can be beneficial to combine active and semi-

supervised learning by using the pool of unlabeled instances during training [129, 73].
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9.2 Active Learning by Labeling Input Features

We consider queries for labels for input features qk(x, i). We subsequently con-

vert an input feature with a set of labels L into a target distribution by assigning

probability 1/|L| for each l ∈ L and probability 0 for each l /∈ L1.

Algorithm 2 presents a pool-based active learning algorithm [62] that solicits labels

for input features. The novel components of the algorithm are an option to skip a

query and the notion that skipping and labeling have different costs. The option to

skip is important when using feature queries because a user may not know how to

label some input features. In each iteration the model is retrained using the train

procedure, which takes as input a set of labeled input features C and unlabeled data

D = {x1, . . . ,xN}. Then, while the iteration cost c is less than the maximum cost

cmax, the query that maximizes the query selection metric η is selected. The accept

function determines whether the labeler will label input feature q. If q is labeled, it

is added to the set of labeled input features C, and the label cost clabel is added to c.

Otherwise, the skip cost cskip is added to c. This process continues for m iterations.

9.2.1 Feature query selection methods

In this section we propose feature query selection methods. Queries with higher

scores according to scoring functions η are considered more useful. It is important

to note these are not feature selection methods since we are determining the input

features for which supervisory feedback will be most helpful to the model, rather than

determining which features will be part of the model. Note that below we use η(qk)

as shorthand for η(qk, θ, C,D).

We aim to select queries that are expected to provide the largest reduction in

model uncertainty. We denote possible responses to a query qk with φ̃k. The Ex-

1In Section 4 we used 0.9 rather than 1. The value 1 was originally selected to improve ef-
ficiency [28], but this choice does not change the time complexity when using the more efficient
algorithm of Chapter 6. It is possible that better performance could be obtained using a value < 1.
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Algorithm 2 Active Learning by Labeling Input Features

Input: unlabeled data set D = {x1, . . . ,xN}, initial feature constraints C,
label cost clabel, skip cost cskip, max cost per iteration cmax, max iterations m
Output: model parameters θ
for i = 1 to m do
θ = train(D, C)
c = 0
while c < cmax do
q = argmaxqk

η(qk, θ, C,D)
if accept(q) then
C = C ∪ label(q)
c = c+ clabel

else
c = c+ cskip

end if
end while

end for
θ = train(D, C)

pected Information Gain (EIG) of a query is the expectation of the reduction in

model uncertainty over all possible responses. Mathematically, EIG is

ηEIG(qk) = Ep(φ̃k|qk)

[ N∑
i=1

H
(
p(y|xi;θ)

)
− H

(
p(y|xi;θφ̃k)

)]
,

where θφ̃k are the new model parameters if the response to qk is φ̃k. Unfortunately,

this method is computationally intractable. Computing ηEIG requires retraining the

model for each possible candidate-query-response pair. This is prohibitively expensive

for structured output models. Computing the expectation over possible responses is

also challenging, as in this thesis users may provide a set of labels for a query, and

more generally φ̃k could be a label distribution.

To obtain a tractable strategy, we make the following assumptions: 1) the addition

of a constraint for qk only affects the uncertainty of output variables at positions where

qk fires, and 2) the addition of the constraint eliminates any uncertainty about those

variables. With these assumptions, ηEIG(qk) becomes the Total Uncertainty (TU),

the sum of the marginal entropies at the positions where the input feature fires.
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ηTU(qk) =
N∑
i=1

n∑
j=1

qk(x
i, j)H

(
p(yj|xi; θ)

)

Note that while these assumptions yield a tractable method, they are often vi-

olated. In particular, consider assumption 2. In practice, input features are often

skipped, so in many cases a candidate input feature will have no effect on uncertainty

if selected. Two types of input features that will often be skipped are frequent input

features such as stopwords, and very infrequent input features. We discourage the

selection of these input features by down-weighting ηTU for frequent input features,

while avoiding a bias for infrequent input features. This method, called weighted

uncertainty (WU), scales the mean uncertainty by the logarithm of the count.

ηWU(qk) = log(ck)
ηTU(qk)

ck
.

Finally, we also suggest an uncertainty-based metric called diverse uncertainty

(DU) that encourages diversity among queries by multiplying TU by the mean dis-

similarity between the input feature and previously labeled features. For sequence

labeling tasks, we can measure the relatedness using distributional similarity

ηDU(qk) = ηTU(qk)
1

|C|
∑
qj∈C

1−sim(qk, qj).

where sim(qk, qj) returns the cosine similarity between context vectors of words oc-

curring in a window of ±3.

We contrast the notion of uncertainty described above with another type of un-

certainty: the entropy of the predicted label distribution for the input feature, or

expectation uncertainty (EU).

ηEU(qk) = H(Eθ[φk])
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Note that ηEU(qk) will be large if either the model is uncertain when qk fires, or the

marginal when qk fires is low entropy, but qk appears with many different labels. In

other words, non-discriminative qk whose true label distribution is close to uniform

will always have large ηEU(qk).

The methods described above require the model to be retrained between iterations.

To verify that this is necessary, we compare against query selection methods that only

consider the previously labeled input features. First, we consider a feature query

selection method called coverage (cov) that aims to select input features that are

dissimilar from existing labeled input features, increasing the labeled input features’

“coverage” of the feature space. In order to compensate for choosing very infrequent

input features, we scale coverage by the count of the input feature.

ηcov(qk) = ck
1

|C|
∑
qj∈C

1− sim(qk, qj)

Motivated by the feature query selection method of Tandem Learning [93] (see Sec-

tion 9.3 for further discussion), we consider a feature query selection metric similar-

ity (sim) that is the maximum similarity to a labeled input feature, weighted by the

occurrence count of the input feature in the corpus.

ηsim(qk) = ck max
qj∈C

sim(qk, qj)

Input features similar to those already labeled are likely to be discriminative, and

therefore likely to be labeled (rather than skipped). However, insufficient diversity

may also result in an inaccurate model, suggesting that coverage should select more

useful queries than similarity.

Finally, we compare with several passive baselines. Random (rand) assigns

scores to input features randomly. Frequency (freq) scores input features using

their frequency in the training data.
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ηfreq(qk) =
N∑
i=1

n∑
j=1

qk(x, j)

Top LDA (LDA) selects the top words from 50 topics learned from the training data

using latent Dirichlet allocation (LDA) [9]. More specifically, the words w generated

by each topic t are ranked using the conditional probability p(w|t). The word input

feature is assigned its maximum rank across all topics.

ηLDA(qk) = max
t

rankLDA(qk, t)

This method will select useful input features if the topics discovered are relevant to

the task. A similar method was previously introduced in Section 4.2.3.

9.3 Related Work

In standard active learning, surveyed in Section 9.1, the learner requests instance

labels. This section reviews work in active learning that uses other types of queries.

Tandem Learning [93], previously discussed in Section 4.3, is an active learning

algorithm that alternates between querying the user for instance labels and input

feature labels. Input feature queries are selected according to their co-occurrence

with previously labeled input features and prominent model features. As shown in

Section 4.4.6, GE is preferable to the methods Tandem Learning uses to learn with

labeled input features. We address the potential for mixing feature and instance

queries in Section 9.6. In order to evaluate the feature query selection methodology

of Tandem Learning, we propose a method motivated2 by it in Section 9.2.1. This

method, abbreviated sim, performs poorly in the experiments in Section 9.4.

2The query selection method in Tandem Learning [93] requires a stack that is modified between
queries within each iteration. Here query scores are only updated after each iteration of labeling.
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In addition to a method for learning with Measurements, discussed in Section 3.3.3,

Liang et al. [66] propose a method for actively soliciting measurements based on

Bayesian experimental design. Selected measurement queries are those that maxi-

mize the expected utility over all possible responses to the query. This intractable

computation can be simplified by sampling measurement observations, but still re-

quires computing the expected change in utility for every sample, which is intractable

for real world data sets and structured output problems. Note that Liang et al. use

this method on synthetic data but switch to simpler uncertainty-based query selection

method for experiments on real data.

Sindhwani et al. [108] present a method for interleaving instance and input feature

label queries. They find that selecting input feature queries using a method closely

related to what we call expectation uncertainty above performs poorly, as an uncer-

tain feature may be non-discriminative. Instead they choose input feature queries

according to model certainty. The risk of this approach is that it may only reinforce

existing correct predictions, rather than address errors. Sindhwani et al. also propose

an approach based on transductive experimental design that selects input feature and

instance queries that minimize the variance in test set predictions. In experiments

considering only feature queries, certainty and transductive experimental design out-

performed random and uncertainty sampling. It is not clear how the training method

of Sindhwani et al. would generalize to structured output spaces, and consequently

comparing with this method is not possible.

In recent work, Settles [104] develops an interface for interactive training in which

users can label both instances and features. The interface organizes candidate features

into columns, and each column contains features that are predicted to be indicative of

a particular label. This method is related to previously described methods that select

features that are expected to be predictive [93, 108]. In contrast, in this chapter we use

only labeled features, and advocate uncertainty based query selection. Settles [104]
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does not compare with alternative query selection methods. In this chapter we find

that uncertainty based methods outperform others. The interface itself is related to

the interface we develop in Section 9.5 in that multiple queries are displayed to the

user simultaneously, and feature queries are organized to facilitate labeling.

9.4 Sequence Labeling Experiments

In this section we present experiments with a simulated labeler. When presented

an instance query, the labeler simply provides the true labels. When presented a

feature query, the labeler first decides whether to skip. We have found that real

users are more likely to label input features that are relevant for only a few labels.

Therefore, the labeler chooses to label an input feature if the entropy of its label

distribution is ≤ 0.7. If accepted, the labeler uses the labeling rule introduced in

Section 4.4.1: label the input feature with the maximum probability label, as well

as any label whose probability is at least half as large. Examples of labeled input

features provided by this method are displayed in Table 9.1.

To estimate the effort of different labeling actions, we perform preliminary exper-

iments in which we observe users labeling data for ten minutes. In these experiments

it took an average of 4 seconds to label an input feature, 2 seconds to skip an input

feature, and 0.7 seconds to label a token. We setup experiments such that each iter-

ation simulates one minute of labeling by setting cmax = 60, cskip = 2 and clabel = 4.

For instance active learning, we use Algorithm 1 but without the skip option, and

set clabel = 0.7. We perform m = 10 iterations, so the entire experiment simulates

10 minutes of annotation time. For efficiency, we only consider the 500 most fre-

quent unlabeled input features in each iteration. To start, ten randomly selected seed

labeled input features are provided.

We use random (rand) selection, standard uncertainty sampling (US) (using

sequence entropy) and information density (ID) [105] to select instance queries.
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When learning with instances we use Entropy Regularization (ER) [50], discussed in

Section 2.2.2, to leverage unlabeled instances3. We balance the ER term with the data

likelihood by choosing the best ER weight in {10−3, 10−2, 10−1, 1, 10} multiplied by

#labeled
#unlabeled

for each data set and query selection method. Seed instances are provided

such that the simulated labeling time is equivalent to labeling 10 input features.

In addition to GE, we also use maximum marginal likelihood training, discussed

in Section 2.2.2, for learning with labeled input features. Specifically, we use the

labeled input features to obtain a partial labeling of the unlabeled data. When there

are multiple choices for a token’s label, we randomly sample one.

We evaluate these methods on two sequence labeling tasks. The apartments task

involves segmenting 300 apartment classified ads into 11 fields including features,

rent, neighborhood, and contact. We use the same feature processing as [45], with the

addition of context features in a window of ±3. The Cora references task is to extract

13 BibTex fields such as author and booktitle from 500 research paper references. We

use a standard set of word, regular expressions, and lexicon features, as well as context

features in a window of ±3. All results are averaged over ten random 80:20 splits of

the data.

9.4.1 Results

Table 9.2 presents mean (across all iterations) and final token accuracy results.

On the apartments task, GE methods greatly outperform MML4 and ER methods.

Each uncertainty-based GE method also outperforms all passive GE methods. On

the Cora task, only GE with weighted uncertainty significantly outperforms ER and

passive GE methods in terms of mean accuracy, but all uncertainty-based GE meth-

ods provide higher final accuracy. This suggests that on the cora task, active GE

3Results using self-training instead of ER are similar.

4Only the best performing MML active learning method is shown.
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methods are performing better in later iterations. Figure 9.1, which compares the

learning curves of the best performing methods of each type, shows this phenomenon.

Further analysis reveals that the uncertainty-based methods are choosing frequent

input features that are more likely to be skipped than those selected randomly in

early iterations.

We next compare with the results of related methods. We cannot make claims

about statistical significance, but the results illustrate the competitiveness of our

method. The 74.6% final accuracy on apartments is comparable to any result ob-

tained by Haghighi and Klein [45] (the best is 74.1%), comparable to the supervised

HMM results reported by Grenager et al. [42] (74.4%), and comparable to the results

reported by Mann and McCallum [72] with GE with more accurate sampled label

distributions and 10 labeled examples. Chang et al. [15] only obtain better results

than 88.2% on Cora when using 300 labeled examples (two hours of estimated an-

notation time), 5000 additional unlabeled examples, and extra test time inference

constraints. Note that obtaining these results required only 10 simulated minutes of

annotation time, and that the method is provided no information about the label

transition matrix.

9.5 Sequence Labeling Experiments with Users

Another advantage of feature queries is that input feature names are concise

enough to be browsed, rather than considered individually. This allows the design of

improved interfaces that can further increase the speed of active learning. We built

a prototype interface that allows the user to quickly browse many candidate input

features. The input features are split into groups of five input features each. Each

group contains input features that are related, as measured by distributional similar-

ity. The input features within each group are sorted according to the active learning

141



method apartments cora
mean final mean final

ER rand 47.9 50.5 74.8 80.4
ER US 50.3 55.6 74.9 82.0
ER ID 50.4 57.2 75.1 82.5

MML rand 47.7 51.2 58.6 64.6
MML WU 57.6 60.8 61.0 66.2

GE rand 59.0 64.8∗ 77.6∗ 83.7
GE freq 66.5∗ 71.6∗ 68.6 79.8
GE LDA 65.7∗ 71.4∗ 74.9 85.0
GE cov 67.5∗† 72.4∗ 70.7 84.1
GE sim 57.8 65.9∗ 67.1 79.2
GE EU 67.9∗† 72.4∗ 72.9 83.2
GE TU 70.1∗† 73.6∗† 76.9 88.2∗†

GE WU 71.6∗† 74.6∗† 80.3∗† 88.1∗†

GE DU 70.5∗† 74.4∗† 78.4∗ 87.5∗†

Table 9.2. Mean and final token accuracy results for all methods. A ∗ denotes that a
GE method significantly outperforms all non-GE methods. A † denotes that an active
GE method significantly outperforms all passive GE methods. Bold entries denote
that the method significantly outperformed all non-bold entries. Italics denotes a
passive method. Significance is assessed using a paired t-test with significance level
α = 0.05.

metric. This interface, displayed in Figure 9.3, may be useful because input features

in the same group are likely to have the same label.

We conduct three types of experiments. First, a user labels instances selected by

information density, and models are trained using ER. The instance labeling interface

allows the user to label tokens quickly by extending the current selection one token

at a time and only requiring a single keystroke to label an entire segment. Second,

the user labels input features presented one-at-a-time by weighted uncertainty, and

models are trained using GE. To aid the user in understanding the function of the

input feature quickly, we provide several examples of the input feature occurring in

context and the model’s current predicted label distribution for the input feature.

Finally, the user labels input features organized using the grid interface described in

the previous paragraph. Weighted uncertainty is used to sort feature queries within
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Figure 9.1. Token accuracy vs. time for best performing ER, MML, passive GE,
and active GE methods.

each group, and GE is used to train models. Each iteration of labeling lasts two

minutes, and there are five iterations. Retraining with ER between iterations takes

an average of 5 minutes on cora and 3 minutes on apartments. With GE, the retraining

times are on average 6 minutes on cora and 4 minutes on apartments. Consequently,

even when viewed with total time, rather than annotation time, active learning by

labeling input features is beneficial. In future work, users could continue to label

features selected according to the old model during retraining.

Figure 9.2 displays the results. User 1 labeled apartments data, while Users 2

and 3 labeled cora data. User 1 was able to obtain much better results with input

feature labeling than with instance labeling, but performed slightly worse with the

grid interface than with the serial interface. User 1 commented that they found

the label definitions for apartments to be imprecise, so the other experiments were

conducted on the cora data. User 2 obtained better results with input feature labeling

than instance labeling, and obtained higher mean accuracy with the grid interface.

User 3 was much better at labeling input features than instances, and obtained better

results with the grid interface.
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Figure 9.2. User experiments with instance labeling and input feature labeling with
the serial and grid interfaces.
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Figure 9.3. Grid input feature labeling interface. Boxes on the left contain groups of
input features that appear in similar contexts. Input features in the same group often
receive the same label. On the right, the model’s current expectation and occurrences
of the selected input feature in context are displayed.
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9.6 Conclusion and Future Work

We proposed an active learning approach in which input features, rather than

instances, are labeled. We presented an algorithm for active learning with input

features and several feature query selection methods that approximate the expected

reduction in model uncertainty of a feature query. In simulated experiments, active

learning with labeled input features outperformed passive learning with labeled input

features, and uncertainty-based feature query selection outperformed other baseline

methods. In both simulated and real user experiments, active learning with input

features outperformed passive and active learning with instances. Finally, we pro-

posed a new labeling interface that leverages the conciseness of input feature queries.

User experiments suggested that this grid interface can improve labeling efficiency.

In this chapter we focused on labeling input features. However, the proposed

methods generalize to queries for expectation estimates of arbitrary functions, for

example queries for the label distributions for input features, labels for instances

(using a constraint feature that is non-zero only for a particular instance), partial

labels for instances, and class priors. The uncertainty-based query selection methods

described in Section 9.2.1 apply naturally to these new query types. Importantly

this framework would allow principled mixing of different types of queries, instead of

alternating between them as in Tandem Learning [93]. When mixing queries, it will

be important to use different costs for different annotation types [118], and estimate

the probability of obtaining a useful response to a query. This idea was also proposed

by Liang et al. [66], but no experiments with mixed active learning were presented.

Additional conclusions and discussion are provided in Chapter 12.
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CHAPTER 10

TOWARD INTERACTIVE TRAINING WITH GE

In the previous chapter we developed a method that actively solicits light super-

vision. In Section 9.5, we proposed and evaluated a method in which the system

suggested a range of possible queries to answer, and the user could choose which

action to take.

Building on this work, we envision an interactive training paradigm in which users

perform evaluation, analyze errors, and specify and refine supervision in a closed loop.

In contrast to active learning [103], in this paradigm the system aids the user in un-

derstanding what the model is predicting, and the user leverages this insight to direct

the learning process. There are at least two benefits to building this paradigm around

methods for learning with expectation constraints. First, expectation constraints pro-

vide a flexible and powerful language for users to give feedback to the system. Second,

interactive analysis may enable users to specify more accurate and useful constraints

than would be possible otherwise.

In this chapter, we focus on several key subproblems in our interactive training

paradigm that can be cast as selecting a representative sample of the unlabeled data

for the user to inspect. Specifically, we develop methods to assist the user in per-

forming evaluation at multiple levels of granularity, and in specifying and refining

constraints. Random sampling can be applied to these problems, but the resulting

sample may not be representative. Instead, we develop sampling strategies based on

stratified sampling [117], a method that has a long history in statistics [82]. In strat-

ified sampling, points are grouped into strata, and random sampling is performed
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within each stratum. If the statistic of interest varies across the strata, then strati-

fied sampling yields a lower variance estimator than random sampling. To perform

stratification, we use model expectations as a proxy for latent output variables. In

classification and sequence labeling experiments, these sampling strategies reduce ac-

curacy evaluation effort by as much as 53%, provide more reliable estimates of F1 for

rare labels, and aid in the specification and refinement of constraints.

We also briefly describe other problems in interactive training and discuss possible

approaches.

10.1 Related Work

In contrast to active learning [103], in which the system queries the user, our

interactive training paradigm allows the user to provide supervision based on error

analysis, which may enable more efficient training. Our interactive training paradigm

and the active learning method developed in Chapter 9.2 could also be combined,

allowing a mixture of user-initiated and system-initiated interactions.

There is growing interest in interaction in machine learning, including some work

in interactive training and model selection. Huang and Mitchell [48] develop methods

for interactive clustering. Users may specify that a feature indicates cluster member-

ship, that an instance is in a cluster, or that a cluster should be deleted, for example.

Roth and Small [96] propose a method that allows the user to interactively modify

model features. They focus on modifying and constructing word lists, also known as

gazetteers or lexicons, for NLP tasks. Instances selected for interaction are those that

are incorrectly predicted and contain word lists that are expected to be imprecise.

The user may then modify the word lists or create new word lists to correct the

mistakes. Experiments demonstrate that this interaction is beneficial.

Zaidan et al. [126] propose soliciting rationales, an annotation that summarizes the

user’s labeling decision. For example, in text classification, an annotator may mark
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a portion of a document as the justification for the label they assigned. Experiments

show that users can provide rationales quickly, and that a generative approach for

learning with both rationales and labels outperforms learning with labels only.

Culotta et al. [19] propose a method for interactively correcting errors of CRFs.

When a user corrects a mistake, the most probable sequences with the corrected label

are presented. If the correct labeling is present in that list, the user can choose it

directly, avoiding correcting the other mistakes by hand. Candidate mistakes can also

be selected for correction according to the expected propagation of corrections.

Fails and Olsen [33] present an interactive training system for pixel classification

tasks. The system provides the user with an image, annotated with the current model

predictions, and asks the user to correct the mistakes. They stress the need for fast

learning algorithms in an interactive training system.

Ware et al. [122] develop a system for interactively building decision tree classifiers

that allows users to visualize attribute values and draw polygons to separate different

labels. In contrast, our goal is to combine user interaction and machine learning.

Settles [104] develops an interface for interactive training in which users can label

both instances and features, previously discussed in Sections 4.3.1 and 9.3.

Kumar et al. [58] argue for an interactive classification framework in which anno-

tation cost and both current and future utility are jointly optimized.

In contrast to the above approaches, the proposed paradigm is based on learning

with expectation constraints, and assists the user in evaluation, analysis, and the

specification and refinement of constraints.

Note that interactive machine learning often refers to learning directly from in-

teractions with the world, for example based on rewards received for taking context-

dependent actions [60]. Though we are interested in exploring this direction in future

work, in this chapter learning is user-directed.
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This chapter focuses on developing sampling methods for various subproblems in

interactive training. These methods are based on stratified sampling, discussed in

Section 10.2.1, and use model expectations as a proxy for latent output variables.

Stratified sampling using model predictions has also been applied to address specific

evaluation problems in information retrieval [125]. More closely related, Bennett and

Carvalho [6] develop a confidence-based stratified sampling method for estimating

classifier accuracy. In contrast, we apply stratified sampling to rapid evaluation of

classifiers and structured models trained using expectation constraints. We propose

an extension to the method of Bennett and Carvalho [6] that reduces error in this

setting in Section 10.3.1. Additionally, we propose a general approach that is also ap-

plicable to other problems in interactive training. Alternatives to stratified sampling

include methods based on importance sampling [99, 100]. We plan to consider these

approaches in future work.

10.2 Selecting Representative Samples

In this chapter, we aim to develop methods to assist the user in evaluation, error

analysis, and the specification and refinement of constraints. We cast these problems

as instances of the following more general problem: selecting a sample of the data for

the user to inspect. In this section we summarize our stratified sampling approach to

this problem.

10.2.1 Stratified Sampling

We first review stratified sampling [117], a sampling method we use pervasively

in this thesis. We assume an iid unlabeled dataset D = {x1, . . . ,xN}. We aim to

compute the mean of a per-instance function r(xj,yj) that considers both the input

variables and the true values of the latent output variables. To simplify notation in

this section we define rj = r(xj,yj). The true mean is r̄∗ = 1
N

∑N
j=1 r

j. Because the
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output variables yj are latent, evaluating r is costly. Rather than evaluating r for

each instance, we choose a sample S of size n and use it to estimate the mean of r.

The most basic strategy is random sampling, in which n instances are selected

uniformly at random from D. The estimate of the population mean is the sample

mean ˆ̄rrs = 1
n

∑n
j=1 r

j. This estimator is unbiased, meaning that the expected value

of ˆ̄rrs over all possible samples of size n is r̄∗. However, when the sample size n

is small, ˆ̄rrs has high variance. With replacement1, the estimated variance of ˆ̄rrs is

V̂ ar(ˆ̄rrs) = S2

n
, where S2 is the sample variance.

Stratified sampling has a long history in statistics [82]. In stratified sampling,

instances are partitioned into m strata {Ds1, . . . ,Dsm}, where each xj ∈ D appears

in exactly one stratum. To obtain a complete sample of size n, for each stratum i, ni

instances are randomly sampled (n =
∑m

i=1 ni). An estimate of the mean of r can be

obtained using

ˆ̄rss =
m∑
i=1

Ni

N

1

ni

ni∑
j=1

rji =
m∑
i=1

Wi ˆ̄ri,

where rji is r for the jth instance in the ith stratum, Wi = Ni/N is the weight of

the ith stratum, and ˆ̄ri = 1
ni

∑ni
j=1 r

j
i is the mean estimate for the ith stratum. This

estimator is also unbiased. The estimated variance of ˆ̄rss is

V̂ ar(ˆ̄rss) =
m∑
i=1

W 2
i V̂ ar(ˆ̄ri),

where V̂ ar(ˆ̄ri) = S2
i /ni is the estimated variance of ˆ̄ri. A 1 − α confidence interval

for ˆ̄rss is ˆ̄rss ± zα/2
√
V̂ ar(ˆ̄rss).

For a given sample size n, we consider two methods for choosing the number of

samples from each stratum. With proportional allocation, the sampling proportions

1Without replacement V̂ ar(ˆ̄rrs) = (1− n
N )S2

n .
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are equal to the weights, ni/n = Wi. It can be shown that the true variance of

the proportional allocation estimator is lower than the true variance of the random

sampling estimator: V ar(ˆ̄rss) ≤ V ar(ˆ̄rrs). The difference of the variances is

V ar(ˆ̄rrs)− V ar(ˆ̄rss) =
1

n

m∑
i=1

Wi(r̄
∗
i − r̄∗)2. (10.1)

Equation 10.1 has implications in stratification, as it shows that the variance reduction

is larger when strata means r̄∗i have high variance, or are very different from each

other.

The second sample allocation method is optimal allocation. In optimal allocation,

per-stratum sample sizes ni are not proportional to the size of the stratum. Instead,

the idea is to use more samples in strata where r has higher variance. Formally,

suppose that the true standard deviations σi for each stratum are known. Optimal

allocation assigns samples to each stratum using the following equation

ni = n× Niσi∑m
i′=1Ni′σi′

.

Optimal allocation can outperform proportional allocation when the variance of r

varies across different strata.

Because the rj are latent, we must select proxy variables to stand in for them to

perform stratified sampling. These proxy variables can be used for both stratification

and estimating strata variances for optimal allocation.

10.2.2 Estimating Vector-Valued and Non-Linear Functions

In many applications of interest we need to estimate the means of several functions

simultaneously, which we view as estimating the mean of a vector-valued function r

instead of a scalar function r. Often a vector-valued function r is required because

we are interested in estimating a non-linear function with the sample. A non-linear
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function is one that cannot be computed as the mean of a function on individual

instances in the sample. For example, accuracy is the mean of a function that evalu-

ates correctness on each instance, but F1 is non-linear, as computing it requires the

number of correct, predicted, and true instances in the entire sample. Vector-valued

and non-linear functions have implications in stratification, sample allocation, and

estimation.

As described in Section 10.2.1, for scalar r strata should be selected so that stratum

means r̄∗i are much different than the population mean r̄∗. In the vector-valued r

case, stratification is less straightforward. Intuitively, the stratification should be

helpful for estimating all elements of r, but note that for some non-linear functions

certain estimates ri may be more important than others. We simply stratify so that

a composite variable, correlated with r, varies across strata. Alternative methods

for future study include multi-way [13] and clustering-based stratification. We also

perform optimal allocation using the estimated standard deviation of a composite

variable.

A natural estimator of a non-linear function ω is ω̂ = ω(ˆ̄r) [56]. Note that

although ˆ̄r is an unbiased estimate of r̄∗, ω̂ is not necessarily an unbiased estimate

of ω(r̄∗). Computing the variance of ω̂ is not straightforward, as we only obtain one

value of ω from the sample. A general approach is to use re-sampling methods such

as jackknifing, in which each instance is held out of the sample in turn, providing

n different function values that can be used to estimate variance [31]. Jackknife

estimates for stratified sampling have also been developed [56].

10.2.3 General Stratified Sampling Approach

For each stratified sampling method we propose throughout this thesis, we describe

four components: the target function, the stratification function, the stratification
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scheme, and the sample allocation scheme. We next describe these components and

our general approach to designing them.

As described in the previous section, in some cases we are not interested in the

mean estimates ˆ̄r, but rather some non-linear function of the estimates ω(ˆ̄r). We

refer to the non-linear function ω as the target function. The target function varies in

different applications. In the linear case the target function is the identity function.

The stratification function s computes a proxy value for each instance that can

be used for stratification and sample allocation. Though the output variables y are

latent, if we have a trained model we do have some information about the values of

these variables. Our general approach is to use current model predictions as a proxy

for latent output variables y. Specifically, a method we use pervasively is to stratify

according to the expectation of some function of interest r′ (often r′ = r)

s(xj) = Ep(y|xj ;θ)[r
′(xj,y)] =

∑
y

p(y|xj;θ)r′(xj,y).

This approach makes the reasonable assumption that model predictions are corre-

lated with the true output variables. This implies that the improvement provided by

stratified sampling is bounded by accuracy of the current model.

When estimating a vector of means ˆ̄r, we take a simple approach and continue

to use a scalar stratification function s(x), essentially defining a composite variable.

One simple strategy is to use the expectation of a single element of the vector: r′ = ri,

s(x) = Ep(y|xj ;θ)[ri(x
j,y)].

The stratification scheme takes as input the values computed by the stratification

function and defines the strata. We use two methods for defining strata, which we

discuss in detail in the following sections.

Finally, the sample allocation scheme defines how samples are allocated to strata.

If optimal allocation is used, rather than proportional allocation, then a stratum

variance estimator that defines a procedure for estimating the variance of strata must
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also be defined. We estimate within-stratum variances by using the sample estimates

(for instances that have already been inspected), using model probabilities as a proxy

for the latent output variables, or a combination. To use model probabilities, we

advocate a simple strategy in which values for the latent output variables are sampled

according to the model, r is computed, and the resulting sample variance estimates

of r stand-in for true variances.

Note that, in general, inspecting individual instances to estimate a statistic could

also yield labeled instances as a by-product. In future work we could perform training

using both constraints and labeled instances.

10.3 Overall Evaluation

Suppose we have an initial model for the task we would like to solve. Our goal is to

interactively improve this model. A natural first step is to come to an understanding

of what the model is predicting and how accurate it is, in order to decide where to

focus analysis and provide supervision. Importantly, we want to do this with minimal

effort. In this section we apply stratified sampling to choose sets of instances (with

model predictions) for manual inspection. For concreteness and to allow thorough

validation, we focus on the task of using the sample to estimate a performance metric

such as accuracy. However, we also suggest that with appropriate adjustments to

the sampling scheme, viewing a sample of instances selected by this method would

provide accurate representations of other properties of interest.

Note that the methods described here, though motivated by interactive training,

could also be used in a non-interactive setting to evaluate lightly supervised learning.

This is an important problem on its own, as in a lightly supervised setting there is

typically no data available for evaluation.
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10.3.1 Evaluating Classification Accuracy

We first estimate classification accuracy. Formally, we aim to estimate the mean

of the correctness indicator function

rc(x, y) = 1{ŷ=y},

where ŷ is the predicted label, ŷ = argmaxy p(y|x;θ), and 1{p} returns 1 if the pred-

icate p is true, and 0 otherwise. When computed with the true label, rc returns 1

if the model is correct, and 0 otherwise. We next devise several stratified sampling

schemes for estimating ˆ̄rc.

• Target Function: Classification accuracy is a linear function, as ˆ̄rc is an es-

timate of accuracy. Consequently the target function ω is simply the identity

function ω(ˆ̄rc) = ˆ̄rc.

• Stratification Function: Equation 10.1 suggests that strata should be defined

to maximize the variance in individual stratum accuracies. Because the stratum

accuracies are unavailable, we instead stratify using the expectation of rc.

sc(x
j) = Ep(y|xj ;θ)[rc(x

j, y)]

=
∑
y

p(y|xj;θ)1{ŷ=y} = p(ŷ|xj;θ) (10.2)

Equation 10.2 shows that the model expectation of rc is the probability of

the best label, or the model’s confidence in its prediction. Note that, using

our general approach, we recover the stratification function of Bennett and

Carvalho [6]. When applied to other tasks in interactive training our approach

yields different stratification functions.
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• Stratification Scheme: We use a uniform size stratification scheme. First, we

sort unlabeled instances according to sc(x
j). Then, we define strata by splitting

the sorted list into m pieces, each containing the same number of instances.

• Sample Allocation: Finally, we must allocate samples to the strata. With a

uniform size stratification scheme, proportional allocation allocates n/m samples

to each stratum. We additionally use optimal allocation, where the challenge is

estimating the standard deviations in each stratum σ̂i.

Bennett and Carvalho [6] propose online stratified sampling, in which the σ̂i are

re-estimated using the observed values rji after each sample. As the number of

samples increases, the estimates become more accurate, and savings increase.

However, a potential disadvantage of this approach is that many samples may be

required to obtain estimates that are accurate enough to be beneficial. Because

we are especially interested in evaluation with minimal effort, we propose two

additional methods for estimating σ̂i that leverage model predictions.

We can model each unobserved rji in stratum i as a Bernoulli random variable cji

with pji = p(ŷ|xj;θ). Summing all cji for stratum i yields an expected accuracy

random variable with a Poisson Binomial distribution2. We can use the variance

of this distribution as an estimate of the stratum variance σ̂2
i =

∑
j p

j
i (1− p

j
i ).

This method prioritizes strata where there are expected to be a mix of correct

and incorrect predictions over strata with expected accuracy near 0 or 1.

As n increases, we expect online stratified sampling to eventually provide better

estimates than the above method. Consequently, we propose a novel compro-

mise. In each iteration, we sample a correctness value for each unlabeled in-

stance cji ∼ p(yj|xj;θ), and treat these values as pseudo-observations of rji that

2The sum is a Binomial random variable if p is the same for each instance.
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are down-weighted by parameter α. We then estimate σ̂i as in online stratified

sampling, combining the true and pseudo-observations.

10.3.2 Classification Experiments

We compare approaches for evaluating the accuracy of document classifiers for

binary subsets of 20 Newsgroups as described in Section 4.4.2. The classifiers are

trained with GE using constraints provided by users in Section 4.4.7.

We compare random sampling (random) and stratified sampling approaches that

use confidence stratification with m = 5 strata and different sample allocation meth-

ods: proportional allocation (pro conf ), optimal allocation using online variance es-

timation (opt online) [6], and optimal allocation using the combined confidence and

online variance estimation method (opt conf online). We also conduct but do not

display experiments with confidence-based optimal allocation. In general, opt conf

online outperforms this method more as n increases. We begin stratified sampling by

allocating two samples to each stratum. For the optimal allocation methods, we rees-

timate σ̂i after each sample, and smooth the estimates with 10 pseudo-observations3;

for opt online these pseudo-observations are uniform, while for opt conf online the

pseudo-observations are sampled correctness values (i.e. α = 10/Ni). To compute

estimates of ˆ̄r, we reveal the true labels for instances in the sample. We run 1000

trials, and report the mean absolute accuracy estimation error.

Figures 10.1 and 10.2 display error vs. n. First, note that the stratified sampling

approaches provide lower mean absolute error than random sampling. We assess sig-

nificance with a Mann-Whitney U test, the non-parametric counterpart of an unpaired

t-test. Of the 216 possible comparisons between random sampling and a stratified

sampling method (9 tasks × 8 different sample sizes × 3 stratified sampling meth-

3We initially smoothed with 1/
√
ni pseudo-observations as in [6], but this significantly increased

error for opt online.
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ods), stratified sampling provides significantly lower error (significance level α = 0.05)

in 209 cases. Random sampling never significantly outperforms stratified sampling.

Attaining the same mean absolute error with random sampling would often require

significantly more effort. For example, in the med-space task with User 1 ’s con-

straints, a sample of size n = 20 using opt conf online gives error of 0.0406. Random

attains comparable performance with 30 samples, giving an error of 0.0418. This is

a 33% reduction in evaluation effort. We conclude that the accuracy of classifiers

trained with GE can be estimated more efficiently using stratified sampling.

Opt conf online provides lower mean absolute error than any other method in 54

of the 72 cases (9 tasks × 8 sample sizes). Of the 162 reductions in these 54 cases, 133

are significant. Opt conf online significantly outperforms opt online 43 times, and is

significantly outperformed by opt online only once. Error analysis reveals that opt

online tends to overestimate the differences in variance between strata. Additional

smoothing reduces error with large n, but increases error with small n, as opt online

approaches pro conf as the amount of smoothing increases. We conclude that opt

conf online is preferable for minimal effort evaluation.
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Figure 10.1. Stratified sampling methods provide classification accuracy estimates
with lower error. Opt conf online typically outperforms the other methods.
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Figure 10.2. Stratified sampling methods provide classification accuracy estimates
with lower error. Opt conf online typically outperforms the other methods.
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10.3.3 Estimating Sequence Token Accuracy

We next propose stratified sampling methods for evaluating token accuracy for

sequence labeling models. We estimate the mean of the vector-valued function rsc

defined

rsc0(x,y) =
T∑
t=1

1{ŷt=yt}

rsc1(x,y) = T,

where T is the length of the sequence and t indexes positions in the sequence. The

function rsc returns the number of correctly predicted labels in the first position, and

the length in the second. We describe the components of several stratified sampling

schemes.

• Target Function: While instance accuracy and average token accuracy are

linear, token accuracy is non-linear. Token accuracy is defined ωta(ˆ̄rsc) =

ˆ̄rsc0/ˆ̄rsc1
4.

• Stratification Functions: We propose two stratification functions. The first

is the expectation of rsc0.

sexc(x
j) = Ep(y|xj ;θ)[rsc0(x

j,y)] =
T∑
t=1

p(ŷt|xj;θ)

This can be interpreted as the expected number of correct tokens, where p(ŷt|xj;θ)

is the marginal probability of the predicted label at position t. The stratifica-

4We could use the population mean length in place of ˆ̄rsc1. Stratified sampling provides even
larger improvements with this estimator, but the estimates have higher error due to discrepancies
between the population mean length and ˆ̄rsc1. This may result in accuracy > 1, for example.
Therefore, in this thesis we estimate all arguments to ω from S.
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tion function sconf is the expectation of a function that returns 1 only if the

labeling of the entire sequence is correct.

sconf (x
j) = Ep(y|xj ;θ)[1{ŷ=y}] = p(ŷ|xj;θ).

The expectation is the probability of the predicted label sequence. This can be

interpreted as model confidence.

• Stratification Scheme: We use the uniform size stratification scheme, de-

scribed in Section 10.3.1, for this task.

• Sample Allocation: We use both proportional and optimal allocation. In op-

timal allocation, we allocate samples using estimates of the standard deviation

of rsc0(x
j,y). This is preferable to using the standard deviation of 1{ŷ=y} in the

applications we explore here, as complete instance accuracy is low. As in Sec-

tion 10.3.1, we use both online estimation of the variance with the samples, and

a combined method. In the combined method, pseudo-observations of token

correctness are sampled according to the marginal probabilities of the predicted

labels p(ŷt|xj;θ), and these pseudo-observations are combined with the labeled

sample estimates, as described in Section 10.3.1.

10.3.4 Sequence Labeling Experiments

This experiment uses the Cora data set as described in Section 9.5. The model

is trained with the constraints provided by User 3 in Section 9.5, and an additional

constraint with weight 10 that specifies that 80% of transitions between labels should

be self-transitions. In this task each sequence is a complete citation. To enable precise

sampling, we split citations into smaller subsequences. However, using very short

subsequences would obscure helpful context, making the user’s task more difficult.

Consequently, we split citations into subsequences of maximum length 10.
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The sampling strategies for this experiment are random, sconf stratification with

proportional allocation (pro conf ), sexc stratification with proportional allocation

(pro ex ), sconf stratification with online optimal allocation (opt online), and sconf

stratification with combined optimal allocation (opt ex online). We do not report

results with sexc stratification and optimal allocation. The results are similar to opt

ex online, but with higher error. For opt online, we used the same smoothing strategy

as [6], which performed better than a fixed value of 10 for this task (the opposite was

true in Section 10.3.2). We did not tune α for opt ex online, keeping α = 10/Ni,

giving an advantage to opt online. We use m = 5 strata, and conduct 1000 trials. To

simulate rapid evaluation, we use 100-500 tokens (∼10-50 subsequences).

Figure 10.3 displays the results. The x-axis is the total number of tokens evaluated.

All stratified sampling methods significantly outperform random sampling (Mann

Whitney U test with significance level α = 0.05). Opt ex online outperforms all

methods significantly at each point on the graph except for pro conf at 300, and

pro conf and opt online at 500. At 200 tokens, the mean absolute error with opt ex

online is 0.0309. Random sampling does not attain a comparable error of 0.0311 until

n = 425. This is a savings of 225 tokens, or 53% of total evaluation effort.

In this experiment pro conf outperforms pro ex. Note that sexc ≤ T . Error

analysis shows that sexc yields strata that are more correlated with T than sconf .

10.4 Fine-Grained Evaluation and Error Analysis

In Section 10.3, we found that stratified sampling methods can provide signifi-

cantly more accurate estimates of overall performance than random sampling. One

possible next step in interactive training is to drill down and perform fine-grained

evaluation, with the goal of using this information to refine or provide new super-

vision. In this section, we propose a stratified sampling approach to fine-grained

evaluation and error analysis. As an example error analysis task, we consider com-
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Figure 10.3. Stratified sampling methods significantly outperform random sampling
for evaluating token accuracy on the Cora data set.

puting token F1 for a particular label of interest ` for sequence labeling tasks. This is

an important problem because in a particular application some labels may be more

important than others. Additionally, awareness of low F1 for ` provides a path for

improving the model.

The function of interest, rf`, is defined as

rf`0(x,y) =
T∑
t=1

1{yt=` ∧ ŷt=`}

rf`1(x,y) =
T∑
t=1

1{ŷt=`}

rf`2(x,y) =
T∑
t=1

1{yt=`}.

In words, the first element is the number of correctly predicted labels whose value is

`, the second element is the number of predictions of `, and the third element is the

number of true labels whose value is `.

• Target Function: The F1 target function for label ` is
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ωF1(ˆ̄rf`) =
2× ˆ̄rf`0/ˆ̄rf`1 × ˆ̄rf`0/ˆ̄rf`2

ˆ̄rf`0/ˆ̄rf`1 + ˆ̄rf`0/ˆ̄rf`2
.

• Stratification Function: The stratification function is the expectation of rf`2

sf`2(x
j) = Ep(y|xj ;θ)[rf`2(x

j,y)] =
T∑
t=1

p(yt = `|xj;θ).

This can be interpreted as the expected number of ` tokens.

• Stratification Scheme: We again use the uniform size stratification scheme.

However, we find that the density of rf`2 is less uniform than the density of the

stratification functions used for overall evaluation. There are often a few xj for

which sf`2 is large, and many xj for which sf`2 is very small. This occurs when

` is infrequent, for example.

Consequently, we also experiment with non-uniform size stratification. A stan-

dard method for determining stratum boundaries is the cum
√
F rule [20], which

aims to minimize within-stratum variance. Performing stratification according

to the cum
√
F rule first involves splitting the instances into k initial sorted

classes, where Ci denotes the ith class. Next, the cumulative function c of the

square root of the class frequencies is computed.

c(j) =

j∑
i=1

√
|Ci|

The stratum width w is then computed as w = c(k)/m. Finally, the initial

classes are grouped into strata of equal width w using the cum
√
F values, c(j).

• Sample Allocation: We allocate two initial samples to each stratum (to enable

computing V̂ ar(ˆ̄rss) if needed), and allocate the remaining samples proportion-

ally. When n = 2m, this can be viewed as optimal allocation with σ̂i that are
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inversely proportional to the stratum sizes, σ̂i = 1/Ni. This scheme is appro-

priate because in this setting large strata are likely to have small sf`2 values,

and consequently we expect few occurrences of ` in those strata.

10.4.1 Experiment

We use the same data set and initial model as in Section 10.3.4. Citations are

again split into subsequences of maximum length 10. To simulate obtaining a rapid

estimate of token F1 for `, we evaluate using n = 10 subsequences.

We compare random sampling, sampling proportionally from equal-sized strata

using sf`2 (ex uniform), and sampling proportionally from strata determined by the

cum
√
F rule using sf`2 (ex cum

√
F ). We use m = 5 strata. For the cum

√
F rule,

we use k = 20 initial classes that each cover a fixed-width segment of the range of

sf`2 (i.e. one class is all x with sf`2(x) ∈ [0, 0.5]). In some cases with k = 20 initial

classes less than m of them contain instances — empirical evidence of the statement

above that the density of sf`2 can be highly non-uniform. In this case we multiply k

by 10 iteratively until we have at least m+ 1 non-empty classes.

Table 10.1 reports the results. We evaluate both the mean absolute error in the F1

estimate (F1 err) and the percentage of wasted trials (waste). A wasted trial occurs

when none of the 10 subsequences contain a true occurrence of the label of interest.

In this case it is not possible to obtain a meaningful recall estimate5. Bold denotes

that a method gives the lowest F1 err or waste. A ∗ in the F1 err column denotes

statistical significance (Mann Whitney U test with significance level α = 0.05).

The ex cum
√
F method performs as well as or better than the other methods. In

terms of F1, it always significantly outperforms random, and significantly outperforms

ex uniform in all cases except title and date. The ex cum
√
F method also avoids a

5Following standard conventions, recall is 1 if there are no true occurrences of ` in the sample,
and precision is 1 if there are no predicted occurrences of ` in the sample.
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random ex uniform ex cum
√
F

F1 err waste F1 err waste F1 err waste
author 0.073 0.004 0.051 0.000 0.041∗ 0.000
journal 0.273 0.069 0.221 0.006 0.143∗ 0.000
note 0.843 0.843 0.822 0.822 0.274∗ 0.274
booktitle 0.183 0.017 0.139 0.000 0.105∗ 0.000
tech 0.392 0.501 0.363 0.364 0.129∗ 0.000
volume 0.293 0.084 0.239 0.004 0.091∗ 0.000
location 0.286 0.286 0.262 0.145 0.093∗ 0.000
editor 0.510 0.605 0.468 0.488 0.172∗ 0.000
institut. 0.351 0.427 0.339 0.257 0.136∗ 0.000
title 0.079 0.000 0.056 0.000 0.051 0.000
date 0.123 0.006 0.080 0.000 0.077 0.000
pages 0.183 0.052 0.133 0.000 0.081∗ 0.000
publisher 0.392 0.149 0.356 0.071 0.157∗ 0.000

Table 10.1. Using n = 10 subsequences to evaluate token label F1 for each Cora label.
Stratified sampling provides more accurate F1 estimates and avoids wasted samples.

wasted sample in 1000 trials in all cases except for note. Using non-uniform strata

with sf`2 typically results in a small stratum with instances that are very likely to

contain `. This greatly reduces waste. However, stratified sampling also samples

other instances, ensuring that we obtain an unbiased estimate of r̄∗ even if model

predictions are poorly correlated with the true labels. This illustrates the utility of

stratified sampling for targeted evaluation.

10.5 Specifying New Constraints

Thus far we have focused on evaluation and analysis. We now shift our focus

to improving the model. Users could specify new constraints manually, or select

from candidate constraints [25, 28]. In this section we propose a new paradigm

in which the user specifies constraints while inspecting data. For example, after

inspecting [ journal : Transactions ] [ title: on Pattern Analysis ] . . ., the user may

choose to add new constraints that specify that Transactions should almost always

be labeled journal, and that transitions from journal to title are extremely unlikely.
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This paradigm can help the user specify more accurate constraints, find constraints

that are particularly useful, and may suggest constraints to the user that they may

not have considered otherwise. Note that constraints apply to the entire data set,

and hence provide more supervision than labeling data [25, 28]. However, in future

work we plan to allow both types of supervision. We focus on targeted improvement

of the model. In this section we aim to improve token F1 for a particular label `.

We can view this as an estimation problem as follows. Based on their prior

knowledge, the user has some set of candidate constraints that they are capable of

specifying. For each instance, the function r simply returns the number of times each

candidate constraint is applicable with respect to the targeted improvement task.

Note that computing r is expensive, since the user must manually inspect instances.

The user decides which constraints to add based on the mean candidate constraint

estimate ˆ̄r. When applying stratified sampling to improve label `, we use the same

sample allocation and cum
√
F stratification method as in Section 10.4.

10.5.1 Experiments

We use the same data set and constraints as in Section 10.3.4. Initial models

are trained with either the full set of 108 constraints or a random subsample of 52

constraints (small).

We simulate the specification of new constraints so that we can conduct a large

number of trials. To simulate user prior knowledge, we use labeled data to define con-

straints as in previous work [25, 28, 66]. Candidate constraints include input feature

label distribution constraints of the form used in [28] for input features that occur

at least 10 times and have label distribution entropy ≤ 0.7. In addition, there are

candidate constraints that discourage unlikely label transitions6. In this experiment

6The probability of taking any transition in the unlikely set is encouraged to be close to 0 using
KL divergence. To balance this constraint with the others, its weight is set to the number of labeled
feature constraints.
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constraints label initial random stratified

small
institution 0.178 0.271 0.440∗

journal 0.341 0.473 0.637∗

location 0.466 0.580 0.654∗

full
institution 0.661 0.682 0.722∗

journal 0.635 0.593 0.661∗

location 0.655 0.685 0.738∗

Table 10.2. Using stratified sampling to find new constraints improves token F1 for
a label of interest.

unlikely transitions are those that do not occur in the labeled data. Candidate con-

straints are applicable if they apply to a token with true or predicted label `. Any

constraint i with ˆ̄ri ≥ 0 is then added. For input feature label distributions, the

target distribution is assigned using the “labeling” method used in [28].

We evaluate the targeted improvement of three moderately infrequent labels in

the Cora data set: institution, journal, and location. We use n = 10 sub-sequences

of length at most 10 to find constraints, and subsequently retrain the model with

the augmented set of constraints. Results comparing random and stratified sam-

pling with 100 trials are presented in Table 10.2. In all cases, stratified sampling

yields significantly higher token F1 for `. The improvement is the result of finding

additional applicable constraints. While specifying these constraints takes additional

time, when ` is infrequent, we expect finding appropriate constraints to dominate the

time required to specify them. As in Section 10.4, this method encourages the sam-

ple to contain a mix of correct predictions of `, false positives, and false negatives.

Other sampling strategies do not provide this coverage. For example, uncertainty

sampling may miss true occurrences of `, and certainty sampling method may miss

false negatives.
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10.6 Estimating Target Expectations

In this thesis, we often assign target distributions with simple heuristics. We know

from Section 8.2 that as the target distributions become more precise, the resulting

model becomes more accurate (c.f. [72]). Additionally, we know from Section 8.1 that

users occasionally make mistakes when specifying constraints, and that such incorrect

constraints can be detrimental to GE.

Incorrect constraints can be corrected and imprecise constraints can be refined by

having the user view a few occurrences of the constraint feature φ in context. Mann

and McCallum [72] found that this target estimation method gave higher accuracy

than traditional sequence labeling with the same number of labels. In this section

we use stratified sampling to ensure that the small number of occurrences consid-

ered by the user are representative. Note that these ideas could be applied to other

expectation estimation problems.

The specific task we consider is estimating a distribution over labels for a particular

input feature q. The function of interest returns a vector with the count of q with

each label. For a classification task, the function rq is

rq`(x, y) = 1{y=`}q(x)

For a sequence labeling task, the function rq is

rq`(x,y) =
T∑
t=1

1{yt=`}q(x, t)

• Target Function: We aim to estimate the distribution over labels for each

input feature. Consequently ωex(ˆ̄rq) simply returns ˆ̄rq normalized to sum to 1.

• Stratification Functions: We need only consider xj where q(xj) = 1, or

q(xj, t)=1 for some t. For binary classification tasks, the stratification function
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is the expectation of rq0, where 0 refers to one of the labels.

sq0(x
j) = Ep(y|xj ;θ)[rq0(x

j, y)] = p(y = 0|xj;θ),

where again we only consider xj with q(xj)=1.

For a non-binary task we stratify according to the index of the most frequently

predicted label `max.

s`max(x
j) = Ep(y|xj ;θ)[rq`max(x

j,y)]

=
T∑
t=1

p(yt = `max|xj;θ)q(xj, t).

In ongoing work we are developing improved, clustering-based methods for strat-

ification for expectation estimation.

• Stratification Scheme and Sample Allocation: We use the cum
√
F rule,

described in Section 10.4, for stratification, and the same sample allocation

scheme.

10.6.1 Classification Experiments

For this experiment we use the same data sets and constraints as the experiments

in Section 10.3.2. We use m = 5 strata, 10 samples per constraint, and repeat the

experiment 1000 times with different random seeds. We evaluate using the mean

absolute expectation estimation error (err), and the accuracy of the logistic regres-

sion model after re-training with the refined constraints (rt acc). Table 10.3 displays

results comparing random sampling and stratified sampling with cum
√
F rule strat-

ification using sq0 (stratified). Stratified sampling always provides more accurate ex-

pectation estimates, and provides higher accuracy when the model is retrained with

the refined constraints in all cases except one. Cases in which stratified sampling

significantly outperforms random sampling are indicated with a ∗.
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constraint and data sets
random stratified

err rt acc err rt acc
(1) baseball-hockey 0.113 0.950 0.059∗ 0.957∗

(1) ibm-mac 0.162 0.807 0.140∗ 0.817∗

(1) med-space 0.092 0.935 0.055∗ 0.941∗

(2) baseball-hockey 0.150 0.939 0.085∗ 0.950∗

(2) ibm-mac 0.195 0.816 0.173∗ 0.819
(2) med-space 0.131 0.932 0.103∗ 0.938∗

(3) baseball-hockey 0.115 0.941 0.059∗ 0.950∗

(3) ibm-mac 0.150 0.836 0.141 0.836
(3) med-space 0.079 0.933 0.049∗ 0.941∗

Table 10.3. Stratified sampling provides lower error target expectation estimates, and
higher accuracy when the classifier is retrained with the refined targets.

10.6.2 Sequence Labeling Experiments

Finally, we refine User 3’s constraints for Cora with n=4 and n=10 samples of the

constraint occurring in context. We use m=2 strata for n=4, m=5 strata for n=10,

and conduct 100 trials. We use the same initial model as in Section 10.3.4, which

has accuracy of 82.8%. Note that here strata with low s`max values do not necessarily

have low variance. Therefore, in this experiment we avoid over-stratifying, allowing

<m strata if there are fewer non-empty initial classes.

Using random sampling gives mean absolute expectation estimation error of 0.259

with n= 4 and error of 0.171 with n= 10. Using proportional allocation with sqmax

and cum
√
F stratification gives error of 0.215 with n = 4, a 17% error reduction,

and error of 0.136 with n = 10, a 20% error reduction. Retraining the model with

the refined constraints obtained using random sampling gives accuracy of 82.5% with

n = 4 and accuracy of 86.3% with n = 10, while retraining the model with refined

constraints using stratified sampling gives statistically significantly higher accuracy

of 84.0% with n= 4 and accuracy of 87.2% with n= 10. Random sampling requires

n=16 samples per constraint to match the accuracy of stratified sampling with n=10,

a 37.5% reduction.
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The user may instead use the sample to specify their own target expectation. In

this case, we want the sample to include as many labels as possible, to remind the user

of the input feature’s uses. Random sampling with n= 4 finds 61.1% of the labels

input features occur with, whereas stratified sampling finds 70.4%. With n = 10,

random sampling finds 69.5%, whereas stratified sampling finds 82.9%.

We also conjecture that in applications where the target label distributions have

higher entropy, reductions in target estimation error will yield larger accuracy im-

provements.

10.7 Conclusion and Future Work

In this chapter we proposed an interactive training paradigm, and focused on

solving the sub-problem of selecting representative samples for user inspection. In

this section we describe opportunities for future work in interactive training, propose

possible approaches, and discuss key challenges.

10.7.1 Suggesting Refinements

The development of methods that automatically select constraints that require

refinement or further examination is likely to be beneficial, as we have found that

incorrect constraints can be detrimental. We propose two possible approaches. First,

in various experiments we have observed that constraints whose model expectations

are far from their target expectations after training are likely to be incorrect. This

suggests selecting constraints that are least well satisfied for refinement. In addition,

in some cases we can detect analytically that a pair of constraints cannot both be

satisfied. As an extreme example, consider two constraints that are copies of each

other but have different target expectations.
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10.7.2 Contrasting Models

During interactive training it may be beneficial to assist the user in understanding

how the model is changing with the addition or refinement of supervision. This may be

useful for evaluating whether the model is improving, or evaluating whether some new

supervision had the desired effect. This method would also be generally applicable

when comparing two models in a non-interactive setting.

We propose that stratified sampling could be applied to this problem. Possible

stratification metrics include the magnitude of the divergence between the predictions

under each model, or the identity of the pair of predicted outputs.

A key challenge is the development of fast re-training methods that allow contrast-

ing the models shortly after supervision is provided. In fact, fast re-training is a key

challenge for interactive training in general, as it has been suggested that real-time

interaction is important [33].

10.7.3 Analyzing Specific Errors

Another possible direction is developing methods to assist the user in analyzing

predictions for a single example. These methods would provide insight into why the

model is making particular incorrect predictions. In addition to the qualitative benefit

of gaining insight into model predictions, knowing why the model is making a mistake

can help one add the necessary constraints to fix the problem. We conjecture that this

will allow users to provide precise supervision more quickly. Note that the proposed

methods could be applicable to other, more traditional types of error analysis and

model improvement paradigms, such as modifying the feature representation.

10.7.3.1 Possible Approaches

We first consider assisting the user in answering the question: What does the model

predict in other similar contexts? We propose two methods.
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• Displaying expectations: First, we can display expectations Ep(y|x;θ)[f(x,y)]

of features f that fire within the region of interest. Both corpus and instance-

specific expectations may be of interest.

• Displaying similar contexts: Second, we can display specific model predic-

tions in similar contexts. For structured outputs, a context is a substructure,

for example a subsequence in sequence labeling. We can measure the similar-

ity between contexts using some distance between their expectation vectors.

For example, in sequence labeling tasks a context may be a subsequence of

length k starting at some position j. This context is represented by the vector

Ep(yj ,...,yj+k|x;θ)[f(x,y)], and we can display model predictions for the m contexts

that are closest to this vector. Alternatively, we could use stratified sampling to

choose a representative sub-sample of contexts whose similarity is above some

threshold.

We also propose methods to help the user in answering the question: How does

changing the input change model predictions? This provides a tool for interactively

obtaining intuition about model predictions without looking at parameter values,

which are difficult to interpret.

As a quantitative measure of how modifying the input changes predictions, we use

the odds ratio. Let x be the input and x′ be the modified input. First, we consider

the case in which we want to understand how changing the input changes the odds

of two outputs y and y′. Define the odds O and odds ratio OR as

O(y,y′,x,θ) =
p(y|x;θ)

p(y′|x;θ)
(10.3)

OR(y,y′,x,x′,θ) =
O(y,y′,x,θ)

O(y,y′,x′,θ)
. (10.4)

If p is a log-linear model, then Equation 10.3 can be simplified by canceling the

partition functions
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O(y,y′,x,θ) =
s(x,y;θ)

s(x,y′;θ)
,

where s(x,y;θ) = exp(θ · f(x,y)). In some cases we may also be interested in the

marginal odds ratio OR(ya,y
′
a,x,x

′,θ), where a selects a subset of y.

O(ya,y
′
a,x,θ) =

p(ya|x;θ)

p(y′a|x;θ)
(10.5)

OR(ya,y
′
a,x,x

′,θ) =
O(ya,y

′
a,x,θ)

O(ya,y′a,x
′,θ)

. (10.6)

How should we choose the x and y arguments above? All arguments may be

specified by the user, but we also propose some default methods. A simple method to

set y and y′ is to use the two most probable outputs. A simple strategy for choosing

x′, or how to modify the input, is to remove some portion of x. For example, for a

document classification task we can modify x by removing an individual word or an

entire sentence from the document. For sequence labeling, we can consider “masking”

a sub-sequence by replacing the word with a special OOV token. Viewing how model

predictions change when removing or masking certain parts of the input can provide

the user with intuition for how the model makes predictions.

However, we must exercise care so that we avoid modifying the input in a way

that is very unlikely according to the observed data. Otherwise, we may encounter

interaction issues. We describe interaction with an example. Suppose we have two

features fi and fj that are highly correlated — i.e. they often fire for the same

(x,y). Because the features often occur together, it is possible for fi and fj to

have similar expectations but very different parameter values λi and λj. Supposing

λi >> λj, zeroing fj may appear to have little effect on model predictions. This

result is misleading because fj is as useful as fi. Consequently, if we make an unlikely

modification, we may not get an accurate estimate of the importance of the modified

part of the original input.
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We do not believe this is a limiting issue, as we can automatically detect unlikely

modifications. When the user or system modifies the input, we can compute the mean

feature covariance between the modified portion and the rest of the input, and notify

the user if it exceeds some fixed threshold.

10.7.3.2 Pilot Experiment

In Section 10.7.3.3, we provide a case study using the proposed methods. In

this section, we describe a quantitative pilot experiment. We use the movie reviews

data set, as processed in Section 4.4.2, and conduct the experiment using Amazon

Mechanical Turk7. The experiment tests whether displaying expectations can result

in more useful constraints.

In setting 1, 10 users are provided 10 reviews that the model is predicting incor-

rectly and the true label for that review. They are then asked to select three words

from the review that are strong indicators of the true label, and that they would

expect to generalize beyond this particular review. In setting 2 10 users are again

provided 10 reviews, but now the words in the review that have highest input feature

label expectation for each label are colored red (positive) and blue (negative). Users

are asked to choose words that are not already colored, if possible.

We use the words the users provide to create sets of labeled input feature con-

straints as in Chapter 4. We then compare the accuracy of the original model, trained

with 1600 labeled instance, with models trained with labeled data and additional con-

straints. We choose hyperparameters, the Gaussian prior variance σ2 and the weight

of the GE term, using 5-fold cross validation. The accuracy of the original model is

85.5%. With the constraints provided by the users in setting 1, the mean accuracy

improves to 86.0%. With the constraints provided by users in setting 2, the mean

accuracy improves to 87.0%. This provides some initial evidence that displaying ex-

7https://www.mturk.com
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pectations encourages the specification of more useful constraints. For additional

evidence, see also the grid interface experiment in Section 9.4.1.

10.7.3.3 Case Study

In this section we conduct two case studies using the Cora data set as processed

in Section 9.4. For simplicity, the questions we ask only consider one label, though

the methods are not limited to this case.

• author vs. editor error: After generating a summary of model predictions,

we find an example, Example 1 in Table 10.4, where an editor segment is being

labeled author. “( Eds . )” are the tokens that should tell the model to label

this segment editor. We first look at the marginal probability at the token

“Eds”. The most probable labels include author = 0.62, date = 0.21, and

editor = 0.15.

We next ask how the labeling of “Eds.” would change if we modified the in-

put by masking some neighboring words. We compute the odds ratio of author

vs. editor and date vs. editor. In both cases editor has lower probability than

the alternative, so a value < 1 indicates that masking this word decreases the

odds of editor. We see from this analysis, presented in Table 10.4, that mask-

ing any token in the parenthesized block increases the odds of “Eds” being

labeled author, though not necessarily by much. Masking the tokens within the

parenthesis increases the odds of “Eds” being labeled date.

Next, we analyze expectations of features that fire at this position. Relevant

expectations are displayed in Table 10.4. We observe that the model does expect

“Eds” to be labeled editor, but gives nearly as high expectation to author. We

also observe that the model expects a date when the previous token is “)”.

Next, we analyze other tokens. At the token “Clinger”, the marginal is author =

0.82, editor = 0.15. Relevant expectations that overlap with this position are
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listed in Table 10.4. Here we observe that the model favors author for tokens

with “Eds” in the right context. Additionally, the model expects tokens that

appear in a last name list to almost always be author. The expectation of editor

is less than 0.05. We also look at expectations of features at the first token,

where we find that the model expects author to begin the sentence 98% of the

time. Finally, to determine the extent of this problem, we then ask the system

for a similar context, and obtain the context displayed in Table 10.4.

Based on the above analysis, we specify new constraints that encourage “Eds”

and any tokens with “Eds” one or two tokens to the right to be labeled editor.

Adding these constraints and re-training with GE was sufficient to change the

model’s predictions to editor for these segments. Not only did the proposed

methods allow us to understand how the model makes predictions, but they

also helped us to a choose a constraint to address a particular type of error.

In previous work [15], where constraints were selected without the use of these

methods, constraints on “Eds” were not included.

• journal vs. booktitle error: Another example in the summary had a journal

segment mislabeled as a booktitle. This example, labeled Example 2, is displayed

in Table 10.4. Intuition might lead one to believe that what is needed a con-

straint on the word “Transactions”, which we expect to be highly indicative of

the journal. Surprisingly, the model already expects the label of “Transactions”

to be journal 90% of the time. In fact, the marginals across the entire segment

give more probability to journal than booktitle, for example 59% vs. 40% for

“Transactions”. Masking any word in the segment with the exception of “on”

decreases the odds of journal. If we look at the expectation of the default feature

for a transition between journal and pages, we find the problem. This transi-

tion is very unlikely according to the model, with probability of 0.6% of pages

given journal. According to the model, a journal token primarily transitions to
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another journal token (78.4%) or to a volume token (19.1%). Consequently, we

may add a constraint that specifies that transitions between journal and pages,

though unlikely, are possible. Importantly, through analysis we find that our

intuitions about model predictions were incorrect, and this insight allows us to

specify a precise constraint to address the problem.
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Example 1
[ author Rees, J . and W . Clinger ( Eds . ) . ] [ title The revised 3 report on
the algorithmic language Scheme . ] [ journal SIGPLAN Notices ] [ volume
21 ( 12 ) , 1986 , ] [ pages 37 - 79 . ]

Example 1 Related Context (centered on “Eds”)
. . . [ note desJardins , ] [ author M . , & Gordon , D . F . ( Eds . ) . ] . . .

Example 2
[ author A . J . Bernstein . ] [ title Analysis of programs for parallel processing
. ] [ booktitle IEEE Transactions on Electronic Computers , ] [pages pages 757
- 763 , ] [date October 1966 . ]

OR vs. editor for “Eds”
masked token author date
“Clinger” 3.13 1.33
“(” 0.32 1.97
“Eds” 0.85 0.19
“.” 0.69 0.51
“)” 0.20 2.46

Expectations at “Eds”
word expectation
W=Eds editor : 0.40

author : 0.38
title: 0.18

W=( @-1 date: 0.65
volume: 0.21
booktitle: 0.05

Expectations at “Clinger”
word expectation
W=Eds@2 author : 0.55

editor : 0.31
title: 0.18

LASTNAME author : 0.87

Table 10.4. Case study. The upper tables contains the examples themselves, and a
related context for Example 1. The lower table contain relevant answers to questions
about changing the input and model expectations. Section 10.7.3.3 discusses this
information and its implications in detail.
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CHAPTER 11

LIMITATIONS AND KNOWN ISSUES

In this chapter, we briefly discuss the limitations of and known issues with the

lightly supervised learning methods used in this thesis.

The proposed methods assume that users have knowledge of feature expectations.

In tasks where the data is text, this assumption is often reasonable, as we have shown.

However, this assumption may be unreasonable for other problems. For example,

features in computer vision tasks are often complex transformations of small patches

of pixels. It is unlikely that users will have strong intuitions about the expectations

of such features. The proposed methods may not be applicable in such settings.

Models in this thesis use large numbers of features. This is advantageous because

it allows GE to learn about many features, improving generalization, and because it

provides more flexibility during optimization. GE may work less well with models

with few features. In this case it may be beneficial to augment the model features,

for example with additional cluster features as in [45].

The utility of a particular set of constraints depends on subtle interactions among

them. For example, we have found cases in which a small set of carefully selected

constraints can provide higher accuracy than a much larger set, in which particular

combinations of constraints yield surprisingly low accuracy, and in which the addition

of a few carefully selected constraints greatly improves the accuracy of a constraint

set. These observations motivate the study of interactive training, the hope being

that interaction will help users to construct more useful constraint sets. In practice,

we have found that better accuracy is obtained when constraints are balanced among
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labels and provide broad coverage of the feature space. Making precise statements

about desirable properties of constraint sets is a challenging problem for future work.

This thesis used input feature label distribution constraints, which are normalized

by the input feature count (see Section 3.1.1). This makes the expectations easier for

the user to interpret, but additionally seems to be beneficial in numerical optimization.

We have observed cases in which using counts instead of distributions with an L2
2 score

function yields low accuracy, as in this case frequent constraint features can dominate

the objective function.
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CHAPTER 12

CONCLUSION AND FUTURE WORK

The eventual goal of the line of research pursued in this thesis is to enable a do-

main expert to train an accurate model for a task of interest in a matter of hours

rather than months. In this thesis we took several steps toward this goal. We con-

tributed to the development of the Generalized Expectation framework, which allows

a practitioner to incorporate their prior knowledge into learning in a natural and

intuitive way. We applied GE to a variety of tasks, demonstrating that it is often

possible to train accurate models with minimal human effort. We then took first steps

toward developing interactive training systems that actively solicit prior knowledge

and provide assistance in evaluating and refining the model.

We view the following research directions, several of which we have begun explor-

ing in this thesis, as being important for making additional progress.

There are several possible directions for further developing the GE framework.

• This thesis focused exclusively on discriminative models, though GE could also

be applied to generative models. For example, input feature label distribution

constraints could be used to compensate for model misspecification, allowing a

practitioner to directly guide latent structure discovery.

• There is much interest in the machine learning community in online learning.

Online GE training is not straightforward, as making an update for a single

instance requires computing expectations over the entire data set, and those

expectations change with each parameter update. However, recent work sug-
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gests that the development of an online version of GE may be possible [90].

Online GE could help to reduce latency in an interactive setting.

Constraints that are provided by users or derived from existing resources are often

noisy, and noisy constraints reduce accuracy. We explored approaches for compen-

sating for noise in Section 8.1, but there are many directions for future work.

• The ideal GE objective function seems to depend on both the application and

the type of noise. It would be beneficial to have a better characterization of

where particular objectives can be expected to work well.

• Rather than compensating for imprecision, it may be possible to obtain more

precise constraints. Additional study is needed to determine the maximum

level of precision that users can provide. Note that interactive systems can also

facilitate this by aiding the user in specifying constraints.

• It may instead be possible to develop constraints that are more natural for users

to specify, such as inequality constraints among pairs of constraint features.

Interactive training systems may help users provide more useful, precise supervi-

sion. We discuss future directions in active learning, including soliciting supervision at

multiple granularities, in Section 9.6. We discuss future directions in interactive train-

ing, including developing methods for suggesting constraint refinement, contrasting

models, and analyzing specific errors, in detail in Section 10.7. Finally, it is impor-

tant to begin building and deploying prototype interactive training systems in order

to identify additional directions for future work.
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