
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Open Access Dissertations

5-2010

On the Design of Methods to Estimate Network
Characteristics
Bruno F. Ribeiro
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/open_access_dissertations

Part of the Computer Sciences Commons

This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in
Open Access Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Recommended Citation
Ribeiro, Bruno F., "On the Design of Methods to Estimate Network Characteristics" (2010). Open Access Dissertations. 223.
https://scholarworks.umass.edu/open_access_dissertations/223

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/open_access_dissertations?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/open_access_dissertations?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/open_access_dissertations/223?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

ON THE DESIGN OF METHODS TO ESTIMATE

NETWORK CHARACTERISTICS

A Dissertation Presented

by

BRUNO F. RIBEIRO

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

May 2010

Department Computer Science

c© Copyright by Bruno F. Ribeiro 2010

All Rights Reserved

ON THE DESIGN OF METHODS TO ESTIMATE
NETWORK CHARACTERISTICS

A Dissertation Presented

by

BRUNO F. RIBEIRO

Approved as to style and content by:

Donald F. Towsley, Chair

Jean Bolot, Member

David Jensen, Member

Patrick Kelly, Member

James F. Kurose, Member

Andrew G. Barto, Department Chair
Department Computer Science

ACKNOWLEDGMENTS

I would like to dedicate this thesis to my mother, Dr. Neyde Felisberto Martins

Ribeiro (Zuca), who passed away on October, 6th, 2007. My mother bestowed the

love for science upon me. Her values are a moral compass that I always strive to

follow. Our Zuca will always be with my sisters and I in spirit.

This thesis would not have been possible without the support of many people. I

want to express my love and gratitude to my sisters, Aline and Flávia, to my father

José Roberto, and to the rest of my family in Brazil (from Recife to Rio de Janeiro).

I cannot forget my “family”, namely Lucia, Fred, Renata, and Luciana.

I would like to express my deepest gratitude to my advisor Prof. Don Towsley,

who was abundantly helpful and offered invaluable assistance and guidance. I also

owe my deepest gratitude to Prof. Towsley for supporting me during the time I was

in Brazil looking after my mother. I also would like thank the members of my thesis

committee, Prof. James Kurose, Dr. Jean Bolot, Prof. Patrick Kelly, and Prof. David

Jensen. I also convey thanks to my Master’s advisor Prof. Edmundo de Souza e Silva

who has helped me in many ways.

I would like to thank the members of the Networks lab. Special thanks to my

friend George Konidaris with whom I shared my culture shock experiences and to the

IHCS (Marc and Dirk) for making “136” a home. Special thanks are also in order

to Christine, Daniel2, Guto, Antonio do Aloe, Paula, Emily, Andre, Jacque, Bruno,

Marcelo, Joy, Ana Paula, and all my friends.

iv

ABSTRACT

ON THE DESIGN OF METHODS TO ESTIMATE
NETWORK CHARACTERISTICS

MAY 2010

BRUNO F. RIBEIRO

B.Sc., FEDERAL UNIVERSITY OF RIO DE JANEIRO

M.Sc., FEDERAL UNIVERSITY OF RIO DE JANEIRO

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Donald F. Towsley

Social and computer networks permeate our lives. Large networks, such as the In-

ternet, the World Wide Web (WWW), AND wireless smartphones, have indisputable

economic and social importance. These networks have non-trivial topological fea-

tures, i.e., features that do not occur in simple networks such as lattices or random

networks. Estimating characteristics of these networks from incomplete (sampled)

data is a challenging task.

This thesis provides two frameworks within which common measurement tasks are

analyzed and new, principled, measurement methods are designed. The first frame-

work focuses on sampling directly observable network characteristics. This framework

is applied to design a novel multidimensional random walk to efficiently sample loosely

connected networks. The second framework focuses on the design of measurement

v

methods to estimate indirectly observable network characteristics. This framework is

applied to design two new, principled, estimators of flow size distributions over Inter-

net routers using (1) randomly sampled IP packets and (2) a data stream algorithm.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . v

LIST OF TABLES . xi

LIST OF FIGURES . xii

CHAPTER

1. INTRODUCTION . 1

1.1 Framework contribution . 3
1.2 Thesis Outline . 5
1.3 Extended Overview . 7

1.3.1 Estimating Graph Characteristics with Multidimensional
Random Walks . 7

1.3.2 Designing TCP flow-level estimators from sampled packets 8
1.3.3 Designing a streaming algorithm . 10

2. BACKGROUND . 11

2.1 Notation . 11
2.2 Basic Notions of Estimation Theory . 12
2.3 Unconstrained Fisher information . 12

2.3.1 Fisher information of n independent samples 13
2.3.2 Unconstrained Cramér-Rao inequality . 13

2.4 Data processing inequality . 16
2.5 Random walk sampling . 16

2.5.1 Notation . 16
2.5.2 Single random walker . 17

vii

2.5.3 Spectral decomposition of a random walk. 18
2.5.4 Stationary random walks. 19

3. ESTIMATING GRAPH CHARACTERISTICS WITH
MULTIDIMENSIONAL RANDOM WALKS 20

3.1 Introduction . 20

3.1.1 Contributions . 22
3.1.2 Outline . 23

3.2 Vertex v.s. edge sampling . 24
3.3 Random walk sampling . 25

3.3.1 Strong Law of Large Numbers . 26
3.3.2 Estimators . 27

3.3.2.1 Label Density . 27
3.3.2.2 Global Clustering Coefficient . 28

3.3.3 Estimator Accuracy & Graph Structure . 31
3.3.4 Multiple Independent Random Walkers . 32

3.4 Frontier sampling . 33
3.5 Results . 37

3.5.1 In- and Out-degree Distribution Estimates . 38
3.5.2 Frontier v.s. Random Sampling . 42
3.5.3 Density of Special Interest Groups . 45
3.5.4 Global Clustering Coefficient Estimates . 45
3.5.5 Convergence to Stationarity . 47

3.6 Distributed Frontier Sampling . 48
3.7 Related work . 51
3.8 Discussion and Future work . 52

4. DESIGNING TCP FLOW-LEVEL ESTIMATORS FROM
SAMPLED PACKETS . 54

4.1 Introduction . 54
4.2 Estimating the TCP flow size distribution from randomly sampled

packets . 55
4.3 Contributions . 57
4.4 Fisher information from sampled packets . 57
4.5 Simplifications to constrained Cramér-Rao inequality 60
4.6 Designing summary functions . 60

viii

4.6.1 Real Internet Traces . 61
4.6.2 No protocol information . 62
4.6.3 TCP SYN flag information . 63
4.6.4 TCP SEQ + SYN flag information . 63

4.7 Simulation results . 66

4.7.1 MLE with conjugate gradients . 66
4.7.2 Results . 68
4.7.3 MLE for SEQ+SYN summary: an efficient estimator 68

4.8 Conclusions . 69

5. DESIGNING A STREAMING ALGORITHM . 71

5.1 Introduction . 71
5.2 A naive algorithm . 72
5.3 An algorithm without collision resolution . 73

5.3.1 Counter independence . 74
5.3.2 The likelihood function . 76
5.3.3 The Fisher information . 76
5.3.4 The Cramér-Rao inequality . 77
5.3.5 A fast estimator . 80

5.4 Further improvements: reducing the memory footprint 81
5.5 Overview of the measurement method . 82
5.6 Measurement method description . 84

5.6.1 Data structures . 84

5.6.1.1 Sketch . 85
5.6.1.2 Sketch histogram . 86
5.6.1.3 Pseudo-random auxiliary counters 86

5.6.2 Histogram estimator . 87

5.6.2.1 Estimates of large flows sizes (≥ k) 88

5.7 Evaluation . 89
5.8 Related work . 91
5.9 Conclusions & Contributions . 93

6. CONCLUSIONS & FUTURE WORK . 95

ix

APPENDIX: DESIGNING TCP FLOW-LEVEL ESTIMATORS
FROM SAMPLED PACKETS . 97

A.1 An approximation to h(smin, smax) . 97
A.2 Designing a streaming algorithm . 101

A.2.1 Pseudo-random counting . 101
A.2.2 Counter increment probability . 102
A.2.3 Flow collision function . 102

BIBLIOGRAPHY . 103

x

LIST OF TABLES

Table Page

3.1 Summary of the graph datasets used in the simulations. “Size of
LCC” refers to the size of the largest connected component. 37

3.2 Frontier sampling: global clustering coefficient estimates. C is the
true value of the global clustering coefficient and Ĉ is its
estimated value. 46

3.3 Relative worst-case difference between the steady state and the
transient edge sampling probabilities after B −K steps. Frontier
edge sampling probabilities are closer to steady state in all
graphs. Legend: (FS) = Frontier sampling (K = 10), (SRW) =
Single (K = 1) Random Walker, and (MRW) = Multiple
(K = 10) Random Walkers. 50

4.1 Trace Statistics . 62

4.2 Minimum number of sampled flows that an unbiased estimator needs in

order to achieve

√

E[(θ̂1 − θ1)2] < 0.5. Results for w = 50, p = 1/200,

obtained with the flow size distribution of the BB-East-2 trace. 65

xi

LIST OF FIGURES

Figure Page

1.1 Schematics of a measurement method. 3

3.1 Illustration of the Markov chain associated to the Frontier sampler
with dimension m = 2. 34

3.2 (Flickr) Log-log plot of the in-degree CCDF. 39

3.3 (LCC of Flickr) The log-log plot of the NMSE of the in-degree
distribution estimates with budget B = |V |/100. 40

3.4 (Flickr) The log-log plot of the NMSE of the in-degree distribution
estimates with budget B = |V |/100. 41

3.5 (LCC of Flickr) Four sample paths of θ̂1 (θ1 = 0.53) as a function of
the number of steps n (horizontal axis in log scale). 42

3.6 (Livejournal) Log-log plot of the out-degree CCDF. 43

3.7 (Livejournal) The log-log plot of the NMSE of the out-degree
distribution estimation with sampling budget B = |V |/10 (MSE
over 10, 000 runs). 44

3.8 (GAB graph) Four paths of θ̂10 as a function of the number of steps n
(θ10 = 0.024). 45

3.9 (GAB graph) The log-log plot of the NMSE of the degree distribution
estimation with sampling budget B = |V |/10 (MSE over 10, 000
runs). 46

3.10 (Flickr) The log-log plot shows the NMSE of the in-degree
distribution estimation with budget B = |V |/100 = 18612 (MSE
over 10, 000 runs). 47

3.11 (Livejournal) The log-log plot shows the NMSE of the in-degree
distribution estimation with budget B = |V |/100 = 52844 (MSE
over 10, 000 runs). 48

xii

3.12 (Flickr) The NMSE of the density estimates of the most popular
groups in the Flickr graph. 49

4.1 Inverse Fisher information (I+)ii (i is the flow size) without protocol
information. 63

4.2 Inverse Fisher information (I+)ii (i is the flow size) with TCP SYN
protocol information. 64

4.3 Inverse Fisher information (I+)ii (i is the flow size) with TCP SYN
and TCP SEQ protocol information. 65

4.4 Estimates from 120 runs with 5× 109 sampled flows and p = 1/200.
Summary function protocol information: TCP SYN flag against
TCP SEQ+SYN flag. Note the strange behavior of the estimates
from the SYN flag summary. This happens due to the low Fisher
information in the sampled flows. 69

4.5 This graph compares the root mean squared error of the MLE
estimate with the inverse of the Fisher information (which,
according to the Cramér-Rao inequality, is a bound for the mean
squared error of the MLE). 70

5.1 Schematics of a measurement method. 72

5.2 The figure plots the inverse Fisher information with varying
maximum counter values (kmax = 2b − 1). 78

5.3 Accuracy of the best packet sampling estimator. Inverse Fisher
information (I+)ii (i is the flow size) with TCP SYN and TCP
SEQ protocol information. 79

5.4 Multiplexing a sketch. One extra bit is used to store ownership in the
physical sketch. Note that counters with index ≤M in the virtual
sketch always win contentions against counters with index
> M . 83

5.5 Histogram estimates with 8MB of memory. BB-East-2 trace
histogram (line) v.s. histogram estimates (with a virtual sketch
and with a regular sketch). Experiment: 9.6 million flows
(average), 6 bit counters (7 bits per flow), 37 runs. 90

xiii

5.6 Histogram estimates with 16MB of memory. Exponential histogram
(line) with λi = 2× 106e−i/104

/9999.5 v.s. histogram estimates
(95% confidence interval is too small). Experiment: 20 million
flows (average), 6 bit counters (7 bits per flow), 43 runs. 92

A.1 Number of sampled flows with label (S, r), r ≥ 1 obtained from both
h drawn synthetically, and h̃ obtained using the real sampled
trace. Results from the BB-East-2 trace. Packet sampling rate
p = 0.01. This graph shows nd̂(N,r), the number of sample tuples
(N, r) (from flows without a SYN sampled packet). Notice that
the average is slightly overestimated. 98

A.2 Number of sampled flows with label (S, r), r ≥ 1 obtained from both
h drawn synthetically, and h̃ obtained using the real sampled
trace. Results from the BB-East-2 trace. Packet sampling rate
p = 0.01. This graph shows nd̂(S,r), the number of sample tuples
(S, r) (from flows with a SYN sampled packet). Notice that the
average is slightly underestimated. 99

xiv

CHAPTER 1

INTRODUCTION

Social and computer networks permeate our modern lives. Large networks, such

as the Internet, the World Wide Web (WWW) [59], Facebook [21], wireless smart-

phones [2], have indisputable economic and social importance. These networks have

non-trivial topological features, i.e., features that do not occur in simple networks such

as lattices or random networks, and are also known as complex networks. Inspired

largely by empirical studies of the characteristics of real-world complex networks, the

flourishing field of network science seeks to advance our knowledge of the structure

and behavior of such systems. Unfortunately, obtaining characteristics of a large

complex network from incomplete (sampled) data is a challenging task. As a result,

principled and accurate studies of these systems depend heavily on principled and

accurate estimates of the characteristics of these networks.

Estimating characteristics, such as the degree distribution from a unknown net-

work graph using incomplete data can be a challenging task. Only under certain

conditions such task can be considered easy. Consider estimating the degree distribu-

tion, θ1, . . . , θw, of a network graph, where θi is the fraction of vertices with degree i

and w is the maximum degree of a vertex. Let V ′ = {v1, . . . , vn} be a set of n sampled

vertices. Assume that the vertices in V ′ are sampled independently (uniformly and

with replacement). Furthermore, assume that we are able to directly query the degree

of vertex v, denoted deg(v). Using the two above assumptions we can build a simple

unbiased estimator of θi:

θ̂i =

n
∑

i=1

deg(vi)/n .

1

In general, however, the above assumptions do not hold and estimating graph

characteristics can be a challenging task. For instance, we may need to relax the

independent sampling assumption due to the cost associated to sampling vertices

independently. This is a common scenario in online social networks, such as Facebook

and MySpace, in which user profiles are associated to unique numerical IDs and the

ID space is sparsely populated. User profiles are sampled uniformly by querying

randomly generated numerical IDs but when the ID space is sparsely populated most

ID queries return non-existing user accounts. In such scenario it is more practical to

sample vertices using methods that do not guarantee independence, e.g., a random

walk (RW). A RW samples a graph by moving a particle (walker) from a vertex to a

neighboring vertex (through an edge). By this process edges and vertices are sampled.

Vertices sampled by a random walker are not independent. This dependence may

significantly increase the estimator error (variance), specially if the graph is loosely

connected.

Another assumption that may not hold in general when we seek to characterize

distributions over the graph is the assumption that querying a vertex returns a sample

of the distribution of interest. In the example above we estimate the degree distri-

bution by directly querying vertex degrees. In some networks directly querying the

characteristic of interest may not be feasible, e.g., the query may not return the vertex

degree but rather a random subset of its edges. In this case, the vertex degree is a

latent variable and the degree distribution must be estimated from a mathematical

model that correlates the observed edge subsets with the original degree distribution.

A latent network characteristic is a network characteristic that needs to be estimated

from a mathematical model that uses a summary of the (sampled) direct observations

as input.

This thesis presents two main contributions:

2

• A framework within which common measurement tasks are analyzed and new,

principled, measurement methods are designed. In this thesis the term measure-

ment method refers to the way in which the (incomplete) data is collected from

the original network and how the network characteristics are estimated from this

(incomplete) data. More importantly, this framework is a powerful tool to ana-

lyze measurement methods that seek to estimate latent network characteristics,

avoiding common caveats and mistakes observed in previous works.

• A new multi-dimensional random walk-type sampling process that, different

from existing random walk sampling processes, reduce the estimation errors

(variance) caused by loosely connected graphs.

Figure 1.1. Schematics of a measurement method.

1.1 Framework contribution

In this thesis the term measurement method refers to the way in which the (incom-

plete) data is collected from the original network and how the network characteristics

are estimated from this (incomplete) data. Figure 1.1 shows a schematic of a mea-

surement method, which can be divided into three steps:

• Collecting the raw samples: raw samples are collected from the network using

a sampling process. For instance sampling individuals independently and uni-

3

formly at random from a population. These raw samples can be, for instance,

the logs of HTTP queries over an on-line social network website such as Face-

book or the IP and TCP headers of Internet packets. The raw samples may or

may not be stored.

• Summarizing the samples: the raw samples are then processed by a function

that outputs a sample summary. The sample summary are the observed net-

work characteristics and can be, for instance, how many “friends” a user has

on his/hers on-line social network account (e.g., Facebook) or the number of

sampled IP packets that belong to the same IP flow (independent of what the

definition of an IP flow is, e.g., all packets with the same destination IP). The

sample summary act as an input to the next step (estimation).

• Estimation: In the last step, an estimator is used to obtain the estimated graph

characteristic. An estimator is a function that takes a summary of the observa-

tions (sampled data) as input and outputs an estimate of a unknown population

parameter (graph characteristic). The estimator requires a model that describes

the (statistical) relationship between the network characteristics and the sum-

marized data.

In each of the above steps, our ability to accurately estimate the original network

characteristics is governed by the data processing inequality. The data processing in-

equality, whose formal estimation theoretic definition is given in Section 2.4 (which is

different than the more common information theoretic definition found in information

theory books such as Cover and Thomas [16]), states that processing the data can

never increase the amount of statistical information (with respect to the characteristic

being estimated) already contained in the data.

This simple inequality has a profound impact in the design of measurement meth-

ods. It states that the statistical information lost in the early steps of the measure-

4

ment method cannot be recovered by later steps. For instance, if the sample summary

(when combined with any available side information) does not contain enough sta-

tistical information to obtain accurate estimates, then no estimator applied to it can

correct that: we need either to find a better summary function or to find a better

sampling process. Using this insight, this thesis focuses on the design of the early

steps of a measurement method, rather than focusing on estimation phase.

With help of Figure 1.1 it is easy to understand recurrent mistakes in the literature.

Namely, the degree distribution of the Internet router-level graph used in Faloutsos et

al. [22] is, in fact, the degree distribution of the “Sample Summary”, not the degree

distribution of the original graph. Similarly, the degree distribution of the Web graph

obtained by Broder et al. [9] and the network characteristics presented in Mislove et

al. [50], Leskovec and Faloutsos [42], Yoon et al. [67], among others [17, 41] are all

characteristics of the sample summary, not estimated characteristics of the original

graph.

Another good use of the proposed framework is to resolve known conflicting results

in the literature. For instance, Hohn and Veitch [34] and Duffield et al. [19] seek to

estimate the flow size distribution of IP flows (a latent network characteristic). Using

the data processing inequality and the Fisher information (introduced in Chapter 2),

Chapter 4 shows that the sample summary obtained by both of these works does not

have enough statistical information to obtain accurate estimates of the original flow

size distribution. This implies that the good results presented in Duffield et al. [19]

are likely to be the product of an evaluation error.

1.2 Thesis Outline

This thesis provides a framework in which common measurement tasks are an-

alyzed and new, principled, measurement methods are designed. In what follows I

5

present a quick summary of this thesis. An extended version of this summary is found

in Section 1.3.

• The necessary background is found in Chapter 2.

• Estimating simple topological characteristics of a network (Chapter 3):

This chapter focuses on the collection of “Raw Samples” from the network. This

chapter compares independent random vertex sampling, independent random

edge sampling, and random walks. Random walks are, arguably, one of the most

important and widely used sampling methods in complex networks. However,

problems arise when sampling a loosely connected graph with a random walk.

Therefore, this chapter emphasizes the design and evaluation of a novel ran-

dom walk sampling process, called Frontier sampling (FS), that mitigates these

problems. We also see, analytically, why FS is preferable to random (uniform)

vertex sampling for estimating the degree distribution tail of power law graphs.

• Estimating latent traffic characteristics of a network:

– Chapter 4 presents a measurement framework used to design better

and more principled measurement methods. The framework devel-

oped in this chapter can be broadly applied to a variety of measurement

problems, and has already been successfully applied to the problem of es-

timating Internet flow size distribution from sampled packets [57, 63] and

also to the Traffic Matrix estimation problem [65]. Chapter 4 presents

an application to the TCP flow size estimation, and provides a definitive

answer to the debate between Hohn and Veitch [34] and Duffield et al. [19]

to whether it is possible to find accurate flow size distribution estimates

from sampled packets without protocol information.

– Chapter 5 designs a fast streaming algorithm to estimate the flow

size histogram inside an Internet router. Here we can see that a principled

6

design can drastically reduce the resource requirements of the measurement

method while retaining most of the statistical information about the flow

sizes intact.

• Conclusions and future work are presented in Chapter 6.

1.3 Extended Overview

In what follows I expand on the description of the three main chapters of this

thesis.

1.3.1 Estimating Graph Characteristics with Multidimensional Random

Walks

Chapter 3 compares independent random vertex sampling, independent random

edge sampling, and random walks. The advantages and disadvantages of random

vertex sampling are contrasted with random edge sampling and random walks. Ran-

dom walks are one of the most used and studied measurement methods for complex

networks. Successful applications of random walk-based estimators can be found

over a variety of interesting problems: sampling individuals in a population (con-

nected through a social network) in order to obtain vertex-oriented graph charac-

teristics [32, 60, 64] (e.g., estimation of HIV seroprevalence among drug users [48]),

estimation of content prevalence in peer-to-peer networks [30, 47, 54, 61], estimation

of degree distributions of the Facebook on-line social graph [29], uniformly sampling

Web pages from the Internet [33, 59], and uniformly sampling Web pages from a

search engine’s index [4], just to name a few examples.

Despite increasing interest in random walks and despite its numerous applications,

measurement methods that use random walk-based sampling tend to have large es-

timation errors when sampling disconnected or loosely connected graphs. Chapter 3

presents a novel random walk-based sampling method: Frontier sampling (FS). FS

7

uses m dependent random walkers to mitigate the estimation errors induced by dis-

connected or loosely connected subgraphs. Let G denote the original graph. FS can

be seen as single (m-dimensional) random walk over Gm, the m-th Cartesian power

of G (Gm is formally defined in Chapter 3). FS is designed such that any estimator

designed to work with samples obtained by a regular random walker can also work

with FS without requiring any modifications.

1.3.2 Designing TCP flow-level estimators from sampled packets

Chapter 4 presents a measurement framework used to design better and

more principled measurement methods. The framework developed in Chap-

ter 4 can be broadly applied to a variety of measurement problems, and has already

been successfully applied to the problem of estimating Internet flow size distribution

from sampled packets [57, 63] and to the Traffic Matrix estimation problem [65]. This

framework is illustrated with the problem of estimating the TCP flow size distribu-

tions from randomly sampled packets. The TCP flow size distribution is defined as

the fraction of TCP flows that contains i = 1, 2, . . . packets. It is one of the Internet

traffic characteristics that garners the most interest from network operators as it can

be used for traffic engineering, denial of service attack monitoring, and worm/virus

outbreak detection. This is a difficult problem as random packet sampling affects the

flow size distribution: large flows are more likely to be sampled than shorter flows

and most small flows will not be sampled at all. We seek answers to the following

open questions:

• Is it possible to accurately estimate the original TCP flow size distribution from

randomly sampled packets?

• Are there other observable characteristics (such as TCP protocol information)

that can be extracted from the sampled packets and could improve the accuracy

of the estimates?

8

The literature concerning TCP flow size distribution estimation contains inconclusive

answers to the questions above. Using the same sampling framework the following

two works, both published in 2003, arrive at distinct conclusions:

• Hohn and Veitch [34] prove that the inversion estimator is not capable of accu-

rately estimating the fraction of flows if the flow size is small. It is important

to note that the inversion estimator is not necessarily optimal. While this is

in interesting negative result, it does not imply that another estimator (e.g.,

Maximum Likelihood Estimator) would not be able to be accurate.

• Duffield, Lund, and Thorup [19] argue that the maximum likelihood estimator,

in practice, can do a good job at estimating the fraction of flows of any size.

Furthermore, Duffield et al. [19] argue that the inversion estimator used by

Hohn and Veitch [34] is unfit for the task as its variance is too high.

In 1947 R.A. Fisher believed that, because of the statistical tools he helped to de-

velop, this type of debate was all but settled [24]. In Chapter 4 we revisit these

tools and argue that this part of Fisher’s lifetime work has been all but ignored in

the Computer Science literature, and that it has profound implications in the way

we perform network measurements. The debate between Hohn and Veitch [34] and

Duffield et al. [19] makes TCP flow size estimation a good example for Chapter 4.

Using the Fisher information and other information theoretic results (described in

detail in Chapter 2), Chapter 4 argues that there is no (practical) unbiased estimator

that can accurately estimate the flow size distribution of small flows using the sum-

mary functions in Hohn and Veitch [34] and Duffield et al. [19]. Moreover, I show that

a simple change to their measurement method (adding the TCP Sequence Number

information in the samples) is sufficient to yield enough information to accurately

estimate the distribution.

9

1.3.3 Designing a streaming algorithm

Chapter 5 revisits the flow size estimation problem. Here, however, the focus is

on combining the sampling and the summary function in order to reduce the mem-

ory footprint and processing power required by the measurement method. The ideas

developed in Chapter 4 are used to design an improved measurement method by: (1)

eliminating statistically irrelevant information being stored (thus reducing its mem-

ory requirements), and (2) drastically reducing the time to estimate the flow size

distribution. The measurement method described in Chapter 5 is efficient enough to

perform on-line estimation inside the router.

The next chapter covers some of the background needed in this thesis.

10

CHAPTER 2

BACKGROUND

Here we revisit the important estimation theory concepts that are used in the

remaining chapters of this thesis.

2.1 Notation

The following notation is used in the reminder of this thesis.

• Random variables are denoted by capital letters, e.g., D.

• Matrices are denoted by bold capital letters, e.g., B.

• ∇d is the vector differential operator with respect to the variables d = (d1, . . . , dk),

∇df(d) =

(

∂f(d)

∂d1
, . . . ,

∂f(d)

∂dk

)

,

where f : R
n → R is differentiable everywhere in the domain of d.

• T is the matrix transpose operator, i.e. , BT is the transpose of B.

• G(V,E) denotes a undirected labeled graph, where V is the set of vertices of

G, E is the set of edges of G which induces a symmetric binary relation (·, ·)

among the vertices in V , and L(v) and L(e) are the set of labels associated to

a vertex v ∈ V and an edge e ∈ E, respectively.

11

2.2 Basic Notions of Estimation Theory

Estimating characteristics of a complex network requires designing a measurement

method consisting of a: sampling process, summary function, and estimator. Often

the characteristic of interest cannot be directly observed. For instance, when we sam-

ple TCP packets in an Internet router, the size of the flow from which the packet

belongs to is a characteristic that cannot be directly observed from the (incomplete)

set of sampled packets. The flow size has to be estimated. A directly observable

characteristic is a characteristic that can be directly observed from the network. For

instance, the number of friends in a Facebook [21] profile is an observable character-

istic of a Facebook profile, as the true value can be directly queried from Facebook

servers. A latent characteristic is a characteristics that cannot be directly observed

but need to be estimated from other observable characteristics. An example of a la-

tent characteristic is the number of packets in a TCP flow when we can only observe

a subset of the packets in the TCP flow.

In the case of latent characteristics we need a model that correlates them with

the observed data. More formally, if D = (D1, . . . , Dn) is a sequence of random

variables that describes the observable characteristics of the sampled (incomplete)

data and θ is a vector of the latent characteristics of interest, the model is defined as

P [D = d | θ], the probability that, given the latent characteristics θ, we sample the

observable characteristic d. P [D = d | θ] is also known as the likelihood function. The

necessity of such a model is an intrinsic requirement, as one needs P [D = d | θ] to be

able to assess how the latent characteristics affect the observable ones.

2.3 Unconstrained Fisher information

The Fisher information (named after R.A. Fisher) can be thought of as the amount

of information that a set of k samples, D = (D1, . . . , Dk), carries about a set of

parameters θ = (θ1, . . . , θn) upon which the probability distribution of the samples

12

depends. Here we assume that the parameters have no constraints, i.e., θ ∈ R
n. Later

we see how the Fisher information increases when we add constraints to θ. The Fisher

information is defined over a set of samples.

In general, the unconstrained Fisher information is a matrix J(D) = [Jij(D)]

where

Jij(D) , E

[

∂ lnP [D | θ]
∂θi

· ∂ lnP [D | θ]
∂θj

]

. (2.1)

Alternatively, we can write J in matrix notation

J(D) , E
[

(∇θ lnP [D | θ])(∇θ lnP [D | θ])T
]

, (2.2)

where AT denotes the transpose of matrix A and ∇ is the vector differential operator.

In what follows we look at some interesting characteristics of the Fisher information.

2.3.1 Fisher information of n independent samples

Lemma 2.3.1. Let J be the Fisher information of one sample. The Fisher informa-

tion of a set of n independent samples is nJ .

Proof. This is a well known result. It comes from the fact that the joint likelihood

of two independent samples D1 and D2 is equal to the likelihood of D1 times the

likelihood of D2.

2.3.2 Unconstrained Cramér-Rao inequality

The most notable property of the Fisher information is a bound on the accuracy

of estimators. The Cramér-Rao theorem states that the mean squared error of any

unbiased estimator is lower bounded by the inverse of the Fisher information, provided

some weak regularity conditions are met (Hajék regularity is needed [35]). Let T be

13

an estimator of θ (T is a function such that T (d) outputs an estimate of θ). T is a

unbiased estimator if E[T (D)] = θ. Then, if T is unbiased:

E[(T (D)i − θi)
2] ≥

(

J(D)−1
)

ii
, (2.3)

where J(D)−1 is the inverse of the Fisher information matrix. The Cramér-Rao

inequality (eq. (2.3)) states that the mean square error of any unbiased estimator

that uses the samples D must be greater than or equal to the inverse of the Fisher

information.

The constrained Cramér-Rao inequality

The parameters θ may have constraints that reduce the uncertainty about the

value of θ in the estimator. Here we consider the following constraints:

0 < θi < 1, ∀i (2.4)

and
∑

∀i

θi = 1. (2.5)

The Cramér-Rao inequality seen in Section 2.3.2 (and found in most textbooks, e.g.,

[16]) does not take into account the increase in Fisher information due to the con-

straints. This increase is due to the reduction in uncertainty about the parameter

values. Fortunately, we can move the inequality constraints shown in eq. (2.4) into

the likelihood function using the following change in variables:

θi = β(γi) =
1

1 + exp(−γi)
,

with γi ∈ R. Function β maps γi with domain R to (0, 1), thus automatically satis-

fying our inequality constraints.

14

In what follows we take the equality constraint in eq. (2.5) into account in the

Cramér-Rao inequality (Gorman and Hero [31]). Let n be the number of samples.

Let J(D) denote the unconstrained Fisher information in respect to γ, given by

J(D) ,
∑

∀j

(∇γ lnP [D = d̂ | θ]) (∇γ lnP [D = d̂ | θ])T dj .

Let K(D) denote the reduction in the Cramér-Rao bound due to the equality con-

straint, which is given by

K(D) = J−1(D)GT(GJ−1(D)GT)−1GJ−1(D),

where

G = ∇γg(γ),

with g(γ) =
∑

∀i β(γi) − 1. Note that the reduction in the Cramér-Rao bound

(represented by K(D)) can be seen as an increase in the Fisher information caused by

the (equality) constraint imposed over the parameters. Note that g(γ) = 0 replaces

the equality constraint in equation (2.5). The constrained Cramér-Rao bound is then

E[(γ − γ̂)(γ − γ̂)T] ≥ −(I+(D))ii/n , (2.6)

where

I+(D)ii = J−1(D)−K(D). (2.7)

The pseudo-inverse of Fisher information can be used in the Cramér-Rao inequality

to obtain a lower bound on the mean squared error of any unbiased estimator (in

respect to θ).

15

The Cramér-Rao bound obtained in eq. 2.6 is a constraint on γ not on θ. For-

tunately, a similar bound for θ can be obtained [62]. Let H = [hi,j] with hi,j =

∂β(γj)/∂γi. Then,

E[(θ − θ̂)(θ − θ̂)T] ≥ H(−I(γ)+/n)HT. (2.8)

2.4 Data processing inequality

The data processing inequality states that for any function f (with domain R
k),

the following inequality holds (see Zamir [69])

I(D) ≥ I(f(D)). (2.9)

The above equation has a powerful interpretation. It states that processing the

observable data can never increase the amount of information already contained in

the data. This property is very useful to us. In analyzing even the most convoluted

measurement method we can simply look at the amount of information it captures,

i.e., no algorithm can extract more information than what is given by I(D). The

inequality

I({D, Y }) ≥ I(D).

also holds true. This means that adding more information, in the form of Y , never

decreases the amount of Fisher information.

2.5 Random walk sampling

2.5.1 Notation

Here I present a formal definition of the sampling problem. Let Gd = (V,Ed) be

a labeled directed graph representing the (original) network graph. We assume that

each vertex in Gd has at least one incoming or outgoing edge. An edge in Gd is an

16

ordered pair of nodes (u, v) representing a connection from u to v. The in-degree of a

vertex u in Gd is the number of distinct edges (v1, u), . . . , (vk, u) into u, and its out-

degree is the number of distinct edges (u, v1), . . . , (u, vk) out of u. If a random walker

has the ability to retrieve incoming and outgoing edges from a queried vertex (and

vertices are distinguishable), then we can represent Gd as a undirected graph. Let

G = (V,E) be the undirected counterpart of Gd, i.e., E = {(u, v)|(u, v) ∈ Ed∨(v, u) ∈

Ed}. Note that G is not necessarily connected. Let deg(v) denote the degree of vertex

v in G. Let L be a finite set of vertex labels (it is trivial to extend our results to

include edge labels). Each vertex in v ∈ V is associated to a set of labels L(v) ⊆ L.

For instance, a vertex label in G can be its in-degree in the original graph Gd.

2.5.2 Single random walker

A random walk visits a graph G by moving a particle (walker) from a vertex to a

neighboring vertex through an outgoing edge chosen uniformly at random. Describing

a random walk is simple. Let deg(v) denote the degree of vertex v in G (recall that

G is undirected). A random walk that visits B vertices and a starting vertex v0 ∈ V

can be described as:

(1) Set n← 0.

(2) Set v ← v0.

(3) Choose an edge (v, u) from the edges of v with probability 1/ deg(v).

(4) Set v ← u and n← n+ 1.

(5) While n < B goto (3).

In what follows we look at the spectral decomposition of the Markov chain asso-

ciated to a random walker over G.

17

2.5.3 Spectral decomposition of a random walk.

We start with known facts about random walks [45]. Assume G is not bipartite.

Let A = [aij ; ∀i, j], where aij = 1, if (vi, vj) ∈ E and aij = 0 otherwise, be the

adjacency matrix of G and let

D =

deg(v1) · · · 0

...
. . .

...

0 · · · deg(v|V |)

be a diagonal matrix whose diagonal elements are the degrees of the vertices in G.

Let P = D−1A be the one-step transition probability matrix of the random walk.

The probability of visiting a given vertex or edge can be obtained as a function of the

starting state using the spectral decomposition of P.

Let 〈a, b〉 =
∑

∀i aibi denote the inner product of vectors a and b. A transition

probability matrix P of a random walk can be decomposed into its left and right

eigenvectors and eigenvalues [36]

ϕkP = λkϕk and Pψk = λkψk, k = 1, . . . , |V |,

where ∀k, 〈ϕk, ϕk〉 = 〈ψk, ψk〉 = 1, and the indexes k are ordered such that λ1 ≥

λ2 ≥ · · · ≥ λ|V |. As G is connected, symmetric, and non-bipartite (and because P

is a stochastic matrix), it follows from the Frobenius-Perron Theorem that 1 = λ1 >

λ2 ≥ · · · ≥ λ|V | > −1 [45]. The probability that a random walk reaches vertex v in n

steps, given that it starts from vertex u, is [36, 45]

p(n)
uv =

deg(v)

2|E| +

√

deg(v)

deg(u)

|V |
∑

k=2

λn
kψk(u)ϕk(v) . (2.10)

18

As |λk| < 1 for all k 6= 1, it is straightforward to see that

lim
n→∞

p(n)
uv = deg(v)/2|E|,

which is the same result as solving πP = π. It is also worth noting that [45]

∑

∀u∈V

πup
(n)
uv = deg(v)/(2|E|) , n = 0, 1,

and if π
(0)
v denotes the probability that the random walk starts at vertex v, the

probability of visiting edge (t, s) is

∑

∀u∈V

π(0)
u

(

p
(n)
ut

deg(t)
+

p
(n)
us

deg(s)

)

.

2.5.4 Stationary random walks.

Section 2.5.3 shows that the random walker has a unique stationary (aka stable)

distribution πP = π such that
∑

∀v∈V πv = 1. At any given step, a stationary random

walker visits vertex v with probability deg(v)/|E|. The probability that an edge is

visited is 1/|E| (i.e., edges are visited uniformly at random). This means that if the

initial vertex v0 is chosen from V with probability deg(v0)/|E| then the sequence of

visited vertices and edges (V ′ and E ′, respectively) form a stationary sequence [45].

A sequence X1, X2, . . . of random variables is said to be stationary if for any positive

integers i and k, the joint distribution of (Xi, Xi+1, . . . , Xi+k) is independent of i.

Note that a random walk over G starting at some (arbitrary) initial vertex v0 is

asymptotically stationary [45]. It can also be shown that starting at some (arbitrary)

initial vertex v0, and walking sufficiently many (say n) steps over the graph, then the

n+1-st step is almost stationary (according to an appropriate metric), provided that

n is large enough [45].

19

CHAPTER 3

ESTIMATING GRAPH CHARACTERISTICS WITH

MULTIDIMENSIONAL RANDOM WALKS

3.1 Introduction

Social and computer networks permeate our modern lives. Inspired largely by the

empirical study of data from real-world computer and social networks, the flourishing

field of network science seeks to advance the knowledge about the structure and

behavior of such systems. A number of recent studies [8, 20, 29, 42, 43, 50, 56, 52,

54, 64] (to cite a few) are dedicated to the characterization of complex networks.

A complex network is a network with non-trivial topological features (features that

do not occur in simple networks such as lattices or random networks). Examples

of such networks include the Internet, the World Wide Web, social, business, and

biological networks [8, 52]. This chapter represents a complex network as a directed

graph with labeled vertices and edges. A label can be, for instance, the degree of

a vertex or, in a social network setting, someone’s hometown. Examples of network

characteristics include the degree distribution, the fraction of HIV positive individuals

in a population [48], or the average number of copies of a file in a peer-to-peer (P2P)

network [30].

Characterizing the labels of a graph requires querying vertices and/or edges; each

query has an associated cost in resources (time, bandwidth, money). Characterizing

a large graph by querying the whole graph is often too costly. As a result, researchers

have turned their attention to the estimation of graph characteristics based on in-

complete (sampled) data. This chapter presents a new tool to characterize complex

20

networks. In what follows random vertex (edge) sampling refers to sampling vertices

(edges) independently and uniformly at random (with replacement).

Distinct sampling strategies have different resource requirements depending on the

network being sampled. For instance, in a network where each vertex is assigned a

unique user-id (e.g., travelers and their passport numbers) it is a widespread practice

to perform random vertex sampling by querying randomly generated user-ids. This

approach can be resource-intensive if the user-id space is sparsely populated (e.g.,

less than 10% of all MySpace user-ids between the highest and lowest valid user-ids

are currently occupied [56]). Another way to sample a network is by querying edges

instead of vertices. Randomly sampling edges can be harder than randomly sampling

vertices if edges are not be associated to unique IDs (or the IDs cannot be randomly

queried). We summarize some drawbacks of random vertex and edge sampling:

• Random edge sampling can be impractical when edges cannot be directly queried

(e.g., Facebook [29] and MySpace [56]).

• Random vertex sampling may be undesirable when user-ids are sparsely pop-

ulated and queries are subject to resource constraints (e.g., queries are rate-

limited in Flickr, Livejournal [50], and Bittorrent [38]). In a P2P network like

Bittorrent, a client can randomly sample peers (vertices) by querying a tracker

(server); however, trackers may rate-limit client queries [38].

• Even when random vertex sampling is not severely resource-constrained, some

characteristics may be better estimated with random edge sampling (e.g., the

degree distribution tail of a (finite) power-law graph).

An alternative, and often cheaper, way to sample a network is with a random walk

(RW). A RW samples a graph by moving a particle (walker) from a vertex to a

neighboring vertex (through an edge). By this process edges and vertices are sampled.

The probability by which the random walker selects the next neighboring vertex

21

determines the probability by which vertices and edges are sampled. This chapter

is interested in random walks that sample edges uniformly. These samples can be

used to obtain unbiased estimates of a variety of graph characteristics (I present two

examples in Section 3.3).

In order to estimate network characteristics, this chapter assumes that a random

walker has the ability to query incoming and outgoing edges of a vertex (Section 3.3

provides the reason behind this assumption). This is possible over graphs such as

Twitter, LiveJournal [50], YouTube [50], Facebook [29], MySpace [56], P2P net-

works [54], and the arXiv citations network. This chapter revisits the theory behind

random walks in Section 3.3.

Sampling graphs with random walks is not without drawbacks. The accuracy of

the estimates depends not only on the graph structure but also on the characteristic

being estimated. The graph structure can create distortions in the estimates by

“trapping” the random walker inside a subgraph. An extreme case happens when the

graph consists of two or more disconnected components. For instance, wireless mobile

social networks exhibit connection graphs with multiple disconnected subgraphs [20].

But even connected graphs can suffer from the same problem. A random walker

can get “temporarily trapped” and spend most of its sampling budget exploring the

local neighborhood near where it got “trapped”. In such scenario, estimates may

be inaccurate if the characteristics of the local neighborhood differ from the overall

characteristic of the graph. This problem is well documented (see [44]) and our goal

is to mitigate it.

3.1.1 Contributions

This chapter proposes a new multidimensional random walk sampling method

(Frontier sampling) that preserves all of the important statistical properties of a

regular random walk, while mitigating the large estimation errors caused by discon-

22

nected or loosely connected subgraphs that can “trap” a random walker and distort

the estimated graph characteristic. In Section 3.5 we see that estimates from Fron-

tier sampling have smaller Mean Squared Errors (MSEs) than estimates obtained

from regular random walkers (single and multiple independent walkers (reviewed in

Section 3.3.4)) in a variety of scenarios.

This chapter makes two additional contributions: (1) we compare random walk-

based estimates to random vertex and random edge sampling. I show analytically

that the tail of power law graphs is better estimated using random walks (or random

edge sampling) than using random vertex sampling. These results help explain recent

empirical results [54]; (2) another contribution of this chapter comes in the form of

estimators of graph characteristics. While the literature focuses on vertex-centric

estimators for random walks (estimators that use sampled vertices), e.g., Respondent-

Driven Sampling (RDS) [64], casting these estimators as edge-centric simplifies the

design of edge-centric characteristic estimators such as the global clustering coefficient

(described in Section 3.3.2.2).

3.1.2 Outline

The notation used in this chapter is found in Chapter 2.5. The outline of this

chapter is as follows. Section 3.2 contrasts random vertex with random edge sam-

pling. Section 3.3 revisits single and multiple independent random walk sampling and

estimation. Section 3.4 introduces Frontier Sampling (FS), a sampling process that

uses m dependent random walkers in order to mitigate the high estimation errors

caused by disconnected or loosely connected subgraphs. Section 3.4 also shows that

FS can be seen as an m-dimensional random walk over the m-th Cartesian power of

the graph (formally defined in Section 3.4). In Section 3.5 we see that FS outper-

forms both single and multiple independent random walkers in a variety of scenarios.

This chapter also compares independent sampling of vertices and edges with FS sam-

23

pling. Section 3.7 reviews the relevant literature. Finally, Section 3.8 presents the

conclusions and future work.

3.2 Vertex v.s. edge sampling

Here we consider a simple estimation problem. I use this to illustrate the tradeoff

between random edge and random vertex sampling. Consider the problem of estimat-

ing the out-degree distribution of Gd. Let θi be the fraction of vertices with out-degree

i > 0 and E[D] be the average out-degree. The error metric used in most examples

is the normalized root mean square error of θ̂l, which is a normalized measure of the

dispersion of the estimates, defined as

NMSE(l) =

√

E[(θ̂l − θl)2]

θl
. (3.1)

We assume that E[D] is known and that a sampled edge (u, v) only provides

the out-degree of u. It is easy to see that the probability that random edge sampling

samples a vertex with out-degree i is πi = i θi/E[D]. Random vertex sampling samples

a vertex with out-degree i with probability θi. A simple calculation shows that the

NMSE (equation (3.1)) of B randomly sampled edges with out-degree i is

NMSE(i) =
√

(1/πi − 1)/B , i > 0. (3.2)

Similarly, the NMSE of randomly sampled vertices with out-degree i is

NMSE(i) =
√

(1/θi − 1)/B . (3.3)

Now note that πi/θi = i/E[D], which means that πi > θi if i > E[D] and πi < θi if

i < E[D]. From equations (3.2) and (3.3) we see that random edge sampling more

24

accurately estimates large out-degrees (i > E[D]) while random vertex sampling

more accurately estimates small out-degrees (i < E[D]) for the same fixed number

of samples. This means that random edge sampling exhibits smaller NMSE when

estimating the tail of the out-degree distribution. This characteristic of random edge

sampling is also known as importance sampling estimation [58].

The example above is just one of many instances where random edge sampling is

preferred over random vertex sampling. Another example: one can argue that random

edge sampling simplifies the estimation of edge-centric graph characteristics such as

the global clustering coefficient. Unfortunately, as discussed in Section 3.1, random

edge sampling is rarely practical. In what follows we see that, if G is connected,

random walks exhibit similar statistical properties to random edge sampling, without

the (costly) need of independence.

3.3 Random walk sampling

In this section we review random walk (RW) sampling and estimation over G. In

what follows we assume that G is connected and non-bipartite. Sampling G with a

RW is a simple task. A random walker with budget B starts at vertex v0 ∈ V . For the

sake of simplicity, in the reminder of this thesis we assume that all queries of edges and

vertices have unitary cost and that we have a fixed sampling budget B (generalizing

the unitary cost assumption is quite straightforward). Let V ′ = {vi}Bi=1 be a sequence

of sampled vertices and E ′ = {(ui, vi)}Bi=1 be the corresponding sequence of sampled

edges in a RW. We define V ′ and E ′ as sequences because the same vertices (edges)

may be sampled multiple times. We refer to vi ∈ V ′ and (ui, vi) ∈ E ′ as the i-th

sampled vertex and edge, respectively. At the n-th step, the random walker at vertex

v chooses an outgoing edge (v, u) uniformly at random (as seen in Section 2.5.4).

The walker adds v to V ′ and (v, u) to E ′. At step n + 1 the random walker starts

at vertex u and the sampling continues until step B. The RW described here is the

25

most common type of RW found in the literature [45]. Other types of random walks

differ in the way outgoing edges are sampled (e.g., random walks that mimic random

vertex sampling); please refer to [58] for more details.

An important property of a RW is its ability to reach a unique stationary regime.

A necessary condition for stationarity is that G must be connected and non-bipartite.

In a stationary RW, E ′ is a stationary sequence. A sequence X1, X2, . . . of random

variables is said to be stationary if for any positive integers n and k, the joint distribu-

tion of (Xn, . . . , Xn+k) is independent of n. Stationarity is a natural generalization of

random sampling where the assumption of independence is dropped. Once it reaches

steady state, the above RW shares two important properties with random edge sam-

pling. Both sample edges uniformly at random (as shown in Section 2.5.4) and both

obey the strong law of large numbers, as we see next.

3.3.1 Strong Law of Large Numbers

The strong law of large numbers is a powerful tool that states that the sample

average of of any function over the samples converges almost surely to its expected

value. This property is very useful in building accurate estimators. In this section we

see that the average of any function f over the sampled edges (vertices) of a stationary

RW converges almost surely to its expected value, under certain constraints [49].

Here I provide details of this known property, which is included here for the sake of

completeness. Let Xn be the n-th edge sampled by a RW over G (a similar result can

be obtained for the n-th sampled vertex) and B be the size of E ′ (the number of RW

steps).

Theorem 3.3.1 (SLLN). A RW over G satisfies the strong law of large numbers,

namely that for any function f , where
∑

(u,v)∈E |f(u, v)| <∞,

lim
B→∞

1

B

B
∑

n=1

f(Xn)
a.s.→ 1

|E|
∑

∀(u,v)∈E

f(u, v) ,

26

where “a.s.” denotes “almost sure” converge, i.e., the event happens with probability

one.

Proof. The Markov chain associated to a random walker over G is ergodic, as G is

undirected and non-bipartite [45]. Thus, we can directly apply the Strong Law of

Large Numbers for ergodic Markov chains [58, Theorem 6.63].

Theorem 3.3.1 allows us to construct estimators of graph characteristics that con-

verge to their true values as the size of E ′ goes to infinity (B → ∞). In what

follows we apply Theorem 3.3.1 to estimate graph characteristics; we also present two

examples.

3.3.2 Estimators

An estimator is a function that takes the observations (sampled data) as input

and outputs an estimate of a unknown population parameter (graph characteristic).

In this section we see how to estimate graph characteristics using E ′ (the sampled

edges of a RW). Estimators that take V ′ as input are commonly used to estimate

vertex-oriented metrics (such as the degree distribution) and can be found in the

literature [58, 64].

Here I present estimators of two graph characteristics: the vertex (edge) label

density (the fraction of vertices (edges) with a given label in the graph) and the

global clustering coefficient. The design of the estimator is simple: (1) First we find

a function f that computes the characteristic of G assuming V ′ = V and E ′ = E; (2)

later we replace the assumption that V ′ = V and E ′ = E with the assumption that

V ′ and E ′ are sequences drawn from a stationary RW.

3.3.2.1 Label Density

This section illustrates how to build an estimator using a simple example. Recall

that we can record the in- and out-degrees of Gd as vertex labels in G. Each vertex

27

in v ∈ V is associated with a label L(v) ⊆ L, where L is the set of labels defined in

Section 2.5.1. A label can be, for instance, the in-degree of v in the original graph

Gd. We seek to calculate, θl, the fraction of vertices with label l in G. The following

estimator is a simple edge-based version of the vertex-based RDS estimator [64].

Because (for now) we assume that V and E are known, we have

θl ≡
∑

∀(u,v)∈E

f(u, v) ≡
∑

∀(u,v)∈E

(hl(v) + hl(u)) , (3.4)

where

hl(v) =

1

deg(v)|V | if l ∈ L(v)

0 otherwise.

It is trivial to verify that θl is the fraction of vertices with label l. Now we replace

the assumption that V ′ = V and E ′ = E with the assumption that E ′ = {(ui, vi)}Bi=1

is a sequence of B edges sampled by a stationary RW. To eliminate the dependence

of hl on any unknown values (e..g |V | and |E|) we need to redefine hl:

h′l(v) =

1/ deg(v) if l ∈ L(v)

0 otherwise.

Following equation (3.10) in [58, pg. 95] (substituting “f(xj)” for “1/|V |” and “g(xj)”

for “deg(xj)/|E|”), we have that

θ̂l ≡
1

S B

B
∑

i=1

h′l(vi) + h′l(ui) , (3.5)

where S =
∑B

i=1 1/ deg(vi) + 1/ deg(ui), is asymptotically unbiased.

3.3.2.2 Global Clustering Coefficient

In the literature the term clustering coefficient often refers to the local clustering

coefficient [66]. In the following example we estimate a different metric: the global

28

clustering coefficient. In a social network the global clustering coefficient, C, is the

probability that the friend of John’s friend is also John’s friend [52]. More formally,

the global clustering coefficient can be defined as [52]

C =
6× number of triangles in the graph

number of directed paths of length two
,

where a triangle is a clique with 3 vertices and a directed path of length two refers to

any directed path that connects two vertices in the graph.

∆(E) ≡
B
∑

i=1

f∆(ui, vi)/3, (3.6)

where f∆(u, v) is a function that returns the number of common neighbors between

u and v. We can also calculate the number of directed paths of length two

l(E) ≡
B
∑

i=1

fl(ui, vi) ≡
B
∑

i=1

((deg(ui)− 1) + (deg(vi)− 1)) , (3.7)

as an edge (u, v) belongs to 2(deg(u)+deg(v)−2) directed paths of length two and each

path is counted twice in the summation. Note that C is well defined only if l(E) > 0.

As with the previous estimator example, we replace the assumption that E ′ = E

with the assumption that E ′ is sampled by a stationary RW. Applying Theorem 3.3.1

we have that limB→∞ l(E ′)/B
a.s.→ l(E)|E| and that limB→∞ ∆(E ′)/B

a.s.→ ∆(E)|E|.

From the above we obtain the following lemma.

Lemma 3.3.2. Let l(E) > 0 and

Ĉ =
6 ∆(E ′)

l(E ′)
.

Then Ĉ is an asymptotically unbiased estimator of C, i.e., E[limB→∞ Ĉ] = C.

29

Proof. The proof is quite easy. As l(E) > 0, we have that C is well defined. Let

l⋆ = lim
B→∞

l(E ′)(|E|/B)

and

∆⋆ = lim
B→∞

∆(E ′)(|E|/B).

Thus,

lim
B→∞

Ĉ =
∆⋆

l⋆
.

From Theorem 3.3.1 we know that

l⋆
a.s.→ l(E)

and

∆⋆ a.s.→ ∆(E) .

Let Γl = l⋆− l(E) and Γ∆ = ∆⋆−∆(E). Almost sure convergence of l⋆ and ∆⋆ means

that

P [Γl = 0] = 1 and P [Γ∆ = 0] = 1,

respectively, which also implies that

P [Γ∆ = 0 ∩ Γl = 0] = 1

as

P [Γ∆ = 0] =
∑

∀γ

P [Γ∆ = 0 |Γl = γ]P [Γl = γ]

= P [Γ∆ = 0 |Γl = 0]P [Γl = 0].

30

Then,

E
[

lim
B→∞

Ĉ
]

=
∑

∀γl

∑

∀γ∆

∆(E) + γ∆

l(E) + γl
P [Γl = γl ∩ Γ∆ = γ∆]

=
∆(E)

l(E)
= C ,

which concludes the proof.

3.3.3 Estimator Accuracy & Graph Structure

Sampling a graph using a RW is not without drawbacks. A random walker can get

(temporarily) “trapped” inside a subgraph whose characteristics differ from those of

the whole graph. If the random walker starts in steady state (i.e., is stationary), this

scenario may increase the mean squared error of the estimates. If the random walker

does not start in steady state, this scenario may cause an increase in the estimation

bias as well as the mean squared error. Ideally, the random walker needs to mitigate

the effect of these traps over the estimates.

The above two types of estimation error are well documented in the literature and

various solutions are available [28, 58]. For instance, if the random walker does not

start in a stationary regime (transient), it is common practice to discard the first w

samples [28]. The value of w is called the burn-in period. There are two problems

with this solution: (1) it only reduces the error related to the non-stationarity of the

samples; (2) it is difficult to determine a good value for w when the size and structure

of G are unknown.

A simple naive solution to the RW “trapping” problem (adopted in [29] to sample

Facebook), is to sample the graph using multiple independent random walkers [28].

In what follows we see that such a naive approach can lead to increased estimation

errors. In Section 3.4 we see how to mitigate the random walk “trapping” problem

with K dependent random walkers.

31

3.3.4 Multiple Independent Random Walkers

Here we sample G using K (parallel) independent random walkers (MultipleRW).

In order to distinguish MultipleRW and sampling using a single random walker, we

denote the former SingleRW. To simplify our exposition we assume that if B is the

sampling budget, each walker takes B/K steps. Let (V1, . . . , VK) be the state of

K independent random walkers in steady state. It is easy to verify that, as in the

SingleRW case, edges are sampled with probability 1/|E|.

A drawback of MultipleRW can be explained using a simple example. Consider

two random walkers (K = 2) walking over a graph that has two disconnected large

components (subgraphs) GA and GB. Let vol(GA) and vol(GB) denote the total

number of edges in GA and GB, respectively. One random walker starts in GA and

the other one in GB. The random walker stuck in GA (GB) samples edges of GA (GB)

with probability that converges to 1/vol(GA) (1/vol(GB)). If 1/vol(GA) > 1/|E| then

edges of GA are oversampled and, consequently, the edges of GB are undersampled

(as 1/vol(GB) < 1/|E|). On the other hand, when 1/vol(GA) < 1/|E| the edges of

GA are undersampled and the edges of GB are oversampled. Thus, for disconnected

graphs the starting vertices of the random walkers are a key factor to determine the

accuracy of MultipleRW. Increasing the sampling budget minimizes the problem only

if G is connected.

Moreover, the reduction by a factor of K in the budget of each random walker can

exacerbate their non-stationarity. This issue is well documented in the literature and

there seems to be no consensus whether MultipleRW estimates are more accurate

than SingleRW ones (refer to [28] for a discussion). MultipleRW can also be used

to detect the convergence of the estimates to their true value by, say, comparing the

estimates obtained by each RW with the estimates combining all K RW together (e.g.

Gelman-Rubin convergence diagnostics [27]). Here too there is no consensus. Some

32

authors argue that convergence is better diagnosed by dividing a longer SingleRW

into K non-overlapping segments [28].

We say that a graph is homogeneously explored by a set of random walkers when

the edge sampling probabilities of each sampled edge are similar. In Section 3.5 we

see practical examples of non-homogeneous exploration by MultipleRW; we also see

that this implies large estimation errors. Thus, Sections 3.3.3 and 3.3.4 leave us with

the following question:

Q: Is it possible to “homogeneously explore” a graph using multiple random

walkers?

3.4 Frontier sampling
In this section we present a new and promising approach to address the above

question. Frontier Sampling (FS) performs m dependent random walks in the graph.
We refer to m as the dimension of the FS random walk. Let c be the cost of randomly
sampling m vertices. The FS algorithm is simple:

(1) n← 0 //n is the number of steps//

(2) Initialize with a collection of m randomly chosen vertices L = (v1, . . . , vm)

(3) Select u ∈ L with probability deg(u)/
∑

∀v∈L deg(v)

(4) Select an outgoing edge of u, (u, v), uniformly at random

(5) Replace u by v in L, add u to V ′, and add (u, v) to E′

(6) n← n + 1

(7) While n < B − c goto line (3)

Frontier Sampling (FS) is a centrally coordinated sampling algorithm that main-

tains a list of m vertices representing m random walkers. This way FS is less likely to

get stuck in loosely connected subgraphs than a single random walker. However, un-

like m independent random walkers, all m Frontier samplers (random walkers) share

the same sampling process and budget. In all of our simulations, presented in Sec-

tion 3.5, FS estimates are more accurate than both single and m independent random

walkers. Section 3.8 describes how the FS algorithm can be made fully distributed.

33

Frontier Sampling: An m-dimensional Random Walk

Now we see that FS shares many of the same statistical properties of a single

random walker. The key insight behind Theorem 3.4.2 below is that the FS stochastic

process is equivalent to the stochastic process of a single random walker over the m-th

Cartesian power of G, Gm = (V m, Em), where

V m = {(v1, . . . , vm) | v1 ∈ V ∧ · · · ∧ vm ∈ V }

is the m-th Cartesian power of V and ∀v,u ∈ V m, (v,u) ∈ Em if there exists an

index i such that (vi, ui) ∈ E and uj = vj for j 6= i.

u, v k, v

α

u, h

j, v

βα

ζ
α

ω

Legend

α = 1/(deg(u) + deg(v))

β = 1/(deg(k) + deg(v))

ζ = 1/(deg(u) + deg(h))

ω = 1/(deg(j) + deg(v))

ωω

ζ

β

Figure 3.1. Illustration of the Markov chain associated to the Frontier sampler with
dimension m = 2.

Lemma 3.4.1. The Frontier sampling process is equivalent to the sampling process

of a single random walker over Gm.

Proof. Consider the (n − 1)-st step of FS. The reader may find Figure 3.1 helpful

in following the proof. Let Ln = (v1, . . . , vm) be the state of FS before the n-th

step. Clearly Ln ∈ V m. Let e(Ln) denote the collection of all edges associated to the

vertices in Ln. We refer to e(Ln) as the edge frontier at the n-th step. We describe

the transition from state Ln to state Ln+1 as follows (lines (3) and (4) of the FS

algorithm): Select a vertex v ∈ Ln with probability proportional to deg(v) and then

34

replace vertex v in Ln with one of its neighbors (selected uniformly at random). This

is equivalent to randomly sampling an edge from e(Ln) with probability

p =
1

|e(Ln)| =
1

∑

∀v∈Ln
deg(v)

.

Therefore, Ln is able to transition to state Ln+1 iff (Ln, Ln+1) ∈ Em and the transition

probability from Ln to Ln+1 is 1/|e(Ln)|. Thus, the Markov chain that describes FS

is equivalent to the Markov chain of a single random walker over Gm.

Theorem 3.4.2. If G is connected and non-bipartite, then FS is asymptotically sta-

tionary and has a unique stable distribution where: (1) edges are sampled with prob-

ability 1/|E|, (2) sampled edges form a stationary sequence, and (3) the sequence

satisfies the Strong Law of Large Numbers (Theorem 3.3.1).

Proof. Consider the (n − 1)-st step of Frontier sampling. The reader may find Fig-

ure 3.1 helpful in following the proof. Let Ln = (v1, . . . , vm) be the state of Frontier

sampling before the n-th step. Clearly Ln ∈ V m. In what follows let e(Ln) denote the

collection of all edges associated to the vertices in Ln. We refer to e(Ln) as the edge

frontier at the n-th step. We describe the transition from state Ln to state Ln+1 as

follows (lines 3 and 4 of the frontier sampling algorithm): Select a vertex v ∈ Ln with

probability proportional to deg(v) and then replace element v in Ln with one of its

neighbors (selected uniformly at random). This is equivalent to randomly sampling

an edge from e(Ln) with probability

p =
1

|e(Ln)| =
1

∑

∀v∈Ln
deg(v)

.

Thus, Ln is able to transition to state Ln+1 iff (Ln, Ln+1) ∈ Em and the transition

probability from Ln to Ln+1 is 1/|e(Ln)|. Thus, we conclude that Frontier sampling is

a single random walker over the m-th Cartesian power of G, Gm = (V m, Em), where

35

V m = {(v1, . . . , vm) | v1 ∈ V ∧ · · · ∧ vm ∈ V }

is the m-ary Cartesian product of V and ∀v,u ∈ V m, (v,u) ∈ Em if exists an index

i such that (vi, ui) ∈ E and uj = vj for j 6= i. Note that |Em| = m|V |m−1|E|.

Now we need to prove that the distribution of L∞ is stable and unique. For this

we only need to show that the random walk over Gm is ergodic. A random walk

(Markov chain) is ergodic when it is aperiodic and recurrent non-null. Recall that

the random walk over G is ergodic. The probability that Frontier sampling transitions

from Ln ∈ V m to Ln+1 ∈ V m such that Ln and Ln+1 only differ in their i-th element

is always greater than zero, otherwise there is an infinite increasing degree sequence

in the vertices of G. But this is not possible as the random walk over G is recurrent

non-null (an infinite increasing degree sequence would be a sink in the random walk

over G). Thus, any finite sequence of transitions {Ln+w}∆w=1 that only updates its

i-th element has probability greater than zero. Thus, as the sequence {Ln+w}∆w=1 is

also a single random walk over G, it is aperiodic for any chosen i = 1, . . . , m. Thus,

a random walker over Gm must also be aperiodic. We can use the same argument to

show that the random walk over Gm is recurrent non-null. As random walk over Gm

is ergodic, we have that L⋆ is distributed according to the steady state distribution

of a random walk over Gm

P [L∞ = (v1, . . . , vm)] =

∑m
i=1 deg(vi)

m|V |m−1|E| ,

where L∞ ≡ limn→∞ Ln, which is unique and stable (similar to a single random walker

as seen in Section 3.3).

The rest of the proof is straightforward. Each edge in Gm is actually an edge in

G. As each edge in G is copied m times into Gm, we have that edges in G are also

sampled uniformly at random in a random walk over Gm. As Frontier sampling is a

random walk over Gm, its samples form a stationary sequence and follow the Strong

36

Graph Flickr LiveJournal YouTube Hep-th Citations Internet RLT

Description Social Net. Social Net. Social Net. ArXiv pubs. Internet tracert.
Type of graph Directed Directed Directed Directed Directed
of Vertices 1, 715, 255 5, 204, 176 1, 138, 499 27, 770 192, 244
Size of LCC 1, 624, 992 5, 189, 809 1, 134, 890 27, 400 609, 066
of Edges 22, 613, 981 77, 402, 652 9, 890, 764 352, 807 609, 066
Average Degree 12.2 14.6 8.7 12.7 3.2
% of Original Graph 26.9% 95.4% ≤ 79.1% NA NA

Table 3.1. Summary of the graph datasets used in the simulations. “Size of LCC”
refers to the size of the largest connected component.

Law of Large Numbers seen in Theorem 3.3.1. The same is true for the sequence of

sampled vertices.

3.5 Results

In this section we compare FS with SingleRW and MultipleRW. We also contrast

FS with random vertex and edge sampling. The experiments consist of executing

these sampling methods on a variety of real world graphs. The datasets used in the

simulations are summarized in Table 3.1: “Flickr”, “Livejournal”, and “YouTube” are

popular photosharing, blog (weblog), and video sharing websites, respectively. Users

represent as vertices of a graph. In these websites a user can subscribe to other user

updates; an edge (u, v) exists between users u and v if user u subscribes to user v.

At “Livejournal” and “YouTube” it is possible to query the incoming and outgoing

edges of a given user. Further details of these three datasets can be found in [50].

“Hep-th Citations” is a graph of citation references in the ArXiv high energy physics

publications archive [68]. “Internet RLT” is a router-level Internet graph collected

from traceroute measurements of 23 monitors distributed over the world [25]. Note

that some of these graphs contain disconnected components (subgraphs).

37

In the following simulations the starting vertex of each random walker is chosen

uniformly at random from the set of all vertices. The results show that FS estimates

are consistently more accurate than their SingleRW and MultipleRW counterparts.

Moreover, when restricted to the largest connected component, FS reaches steady

state faster than SingleRW and MultipleRW in the simulations presented in Sec-

tion 3.5.5.

3.5.1 In- and Out-degree Distribution Estimates

Here we treat the graphs in Table 3.1 as undirected graphs. In-degrees and out-

degrees are represented as vertex labels. Consider the in-degree distribution. Let

θ = {θi}∀i denote the in-degree distribution, where θi is the fraction of vertices

with in-degree i. In the simulations θ is estimated using equation (3.5). Each

simulation consists of 10, 000 runs (sample paths) used to compute the empirical

NMSE (equation (3.1)), which is then used to compare the accuracy of the esti-

mates obtained from FS (dimensionm ∈ {10, 100, 1000}), SingleRW, and MultipleRW

(K ∈ {10, 100, 1000} walkers). For the sake of conciseness, the following presentation

is restricted to a handful of representative results.

Consider first two representative results from the Flickr graph, whose in-degree

CCDF (complementary cumulative distribution function) log-log plot is shown in

Figure 3.2. The sampling budget is B = 18, 123 = |V |/100, which amounts to

sampling 1% of the vertices. In the first simulation, the sampling is restricted to

the Largest Connected Component (LCC) (which contains 94% of the vertices). The

objective is to test if FS can outperform SingleRW and MultipleRW even when there

are no disconnected subgraphs. Figure 3.3 shows a log-log plot of the NMSE of

FS (m = 1000), SingleRW, and MultipleRW (K = 1000). First, note that the

shape of the NMSE for high in-degrees is a consequence of the fact that vertices

with high degrees in G tend to have unique high in-degree labels and that, similar

38

10−6

10−5

10−4

10−3

10−2

0.1

1

0 10 102 104 105

C
C

D
F

vertex in-degree

♦ ♦

♦
♦♦♦

♦
♦

Figure 3.2. (Flickr) Log-log plot of the in-degree CCDF.

to random edge sampling, the NMSE decreases with the degree. Figure 3.3 shows

that FS outperforms both SingleRW and MultipleRW (particularly at estimating

small in-degrees). It is interesting to note that, for most degrees, estimates obtained

by SingleRW are more accurate than the estimates obtained by MultipleRW. Now

consider the complete Flickr graph. Figure 3.4 shows a log-log plot of the NMSE

of the in-degree distribution. Contrasting the plots in Figures 3.3 and 3.4 note that

the gap between FS and both SingleRW and MultipleRW has significantly increased,

favoring FS.

To better understand the differences between these sampling methods, Figure 3.5

focuses on four runs (sample paths) of the simulation over the complete Flickr graph.

Figure 3.5 plots the evolution of θ̂1 (the estimate of θ1) as a function of n (the number

of steps in the random walk). At each run of the simulator both FS and MultipleRW

start at the same vertices (initially chosen using random vertex sampling). Figure 3.5

shows that all four FS sample paths (runs) quickly converge to the value of θ1. For

SingleRW, three out of the four runs start inside the LCC. These runs do not con-

verge to the value of θ1 as some vertices with in-degree one lie outside the LCC. In

39

0.02

0.1

0.2

0.5

1

2

0 10 102 104 105

N
M

S
E

vertex in-degree

SingleRW

♦

♦

♦
♦

♦♦♦♦♦
♦♦♦♦

♦♦♦♦♦♦♦♦♦
♦♦♦
♦
♦
♦♦♦♦♦♦

♦♦♦♦♦♦♦♦
♦
♦♦♦♦
♦
♦♦♦♦
♦
♦♦♦♦♦♦♦
♦♦

♦

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦
♦
♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦
♦♦♦
♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦
♦
♦♦♦♦♦
♦♦♦♦♦
♦
♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦
♦♦♦♦♦
♦♦♦
♦
♦♦♦♦♦
♦♦♦
♦♦♦♦♦♦♦
♦
♦♦♦♦♦♦
♦♦♦♦
♦
♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦
♦♦♦♦
♦
♦♦
♦♦
♦
♦♦♦♦♦♦♦
♦
♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦
♦♦♦♦♦♦
♦
♦
♦♦♦♦♦♦
♦

♦♦♦♦♦♦
♦
♦

♦
♦♦♦♦♦♦♦
♦♦♦
♦♦
♦♦♦
♦
♦♦♦
♦
♦
♦♦♦
♦
♦♦♦♦♦
♦♦
♦♦♦♦♦♦

♦
♦♦♦
♦♦♦♦♦
♦
♦♦
♦♦♦♦♦♦
♦
♦♦♦
♦
♦♦
♦
♦♦
♦♦♦
♦
♦♦♦♦♦
♦♦

♦

♦♦♦♦
♦
♦♦
♦

♦
♦♦♦
♦♦
♦
♦
♦♦♦♦

♦
♦♦♦♦♦♦♦
♦♦
♦
♦♦♦♦♦
♦
♦
♦♦♦
♦♦♦♦♦♦♦♦♦
♦
♦
♦

♦♦♦♦♦
♦♦♦♦♦
♦
♦
♦

♦♦♦♦
♦♦♦♦♦
♦

♦
♦
♦♦
♦♦♦♦
♦
♦♦♦♦♦
♦♦♦♦♦♦♦
♦
♦
♦
♦
♦
♦
♦♦
♦
♦♦♦

♦

♦

♦
♦
♦

♦
♦♦♦♦♦♦
♦♦♦

♦
♦

♦

♦♦♦♦♦

♦
♦
♦
♦
♦

♦♦♦♦♦
♦

♦
♦♦♦♦
♦
♦
♦

♦

♦♦♦♦
♦
♦♦
♦

♦
♦
♦♦
♦

♦

♦♦♦♦♦♦♦♦♦

♦♦
♦

♦♦♦
♦
♦

♦

♦♦
♦
♦

♦
♦
♦♦♦♦
♦

♦
♦

♦♦♦♦
♦♦
♦
♦♦
♦

♦

♦

♦

♦♦
♦

♦

♦

♦♦♦♦♦
♦
♦
♦
♦♦♦♦
♦♦♦♦♦♦

♦

♦
♦

♦

♦♦♦
♦
♦
♦
♦

♦♦
♦♦

♦♦
♦♦
♦

♦

♦♦♦
♦

♦

♦♦♦♦
♦

♦

♦
♦
♦

♦
♦♦
♦♦
♦

♦

♦

♦

♦♦
♦

♦
♦♦♦

♦
♦♦
♦
♦

♦
♦♦
♦
♦

♦

♦

♦
♦♦♦
♦

♦

♦♦♦♦

♦
♦♦

♦
♦

♦
♦♦

♦

♦♦
♦♦

♦

♦

♦
♦
♦♦♦
♦
♦
♦
♦♦♦
♦♦
♦♦
♦

♦♦♦
♦♦

♦

♦
♦

♦

♦
♦

♦
♦♦
♦♦

♦

♦
♦♦

♦
♦

♦

♦

♦
♦

♦

♦

♦
♦

♦♦
♦

♦

♦

♦♦

♦
♦
♦

♦

♦

♦
♦♦
♦
♦
♦♦
♦♦
♦
♦
♦
♦
♦♦

♦
♦♦♦

♦
♦

♦♦♦♦

♦

♦♦

♦

♦♦♦
♦

♦
♦
♦

♦

♦♦♦
♦
♦♦♦
♦♦
♦

♦
♦♦
♦
♦
♦
♦

♦
♦♦
♦

♦

♦♦
♦
♦
♦

♦
♦

♦

♦
♦

♦

♦
♦
♦
♦
♦
♦
♦

♦
♦
♦♦

♦

♦
♦
♦
♦♦
♦♦
♦
♦♦♦♦♦

♦
♦
♦

♦
♦♦
♦

♦♦♦♦

♦♦

♦♦♦
♦♦
♦

♦
♦
♦

♦

♦♦
♦♦

♦

♦

♦

♦

♦

♦♦
♦

♦
♦

♦
♦
♦♦
♦♦♦♦
♦

♦

♦

♦♦♦

♦♦
♦♦

♦

♦

♦♦
♦
♦
♦

♦
♦♦

♦

♦

♦
♦♦♦
♦♦
♦

♦

♦

♦

♦

♦♦

♦
♦♦
♦

♦

♦
♦

♦

♦♦
♦

♦

♦

♦
♦
♦
♦
♦

♦
♦♦
♦
♦

♦

♦♦
♦

♦

♦♦
♦
♦

♦
♦
♦
♦
♦

♦

♦♦
♦

♦
♦♦

♦

♦♦

♦

♦

♦
♦♦

♦

♦

♦
♦
♦

♦

♦♦

♦

♦
♦
♦

♦
♦
♦

♦
♦♦
♦
♦♦
♦

♦

♦
♦♦♦
♦

♦

♦

♦

♦

♦
♦
♦
♦

♦

♦

♦
♦
♦♦♦♦♦
♦

♦

♦
♦

♦

♦♦

♦
♦♦♦♦

♦

♦

♦♦♦
♦

♦

♦

♦
♦♦
♦

♦
♦
♦
♦

♦

♦
♦
♦
♦
♦

♦
♦

♦
♦
♦

♦

♦
♦

♦

♦

♦♦♦♦

♦

♦
♦

♦

♦
♦

♦

♦
♦♦
♦

♦
♦
♦
♦
♦♦♦

♦

♦

♦

♦

♦♦♦

♦
♦

♦

♦

♦

♦

♦

♦♦
♦
♦

♦
♦

♦
♦♦
♦

♦

♦♦

♦

♦♦♦♦♦
♦

♦
♦

♦

♦
♦
♦

♦
♦

♦

♦♦

♦

♦

♦♦♦

♦
♦

♦♦
♦♦♦

♦

♦

♦

♦

♦

♦

♦

♦♦

♦

♦

♦

♦
♦

♦♦
♦

♦♦
♦♦♦

♦♦

♦
♦
♦
♦♦

♦

♦

♦
♦

♦

♦
♦

♦

♦

♦
♦♦

♦♦

♦
♦♦♦
♦
♦
♦

♦

♦

♦

♦
♦♦

♦
♦
♦

♦
♦

♦

♦♦

♦

♦
♦

♦

♦
♦

♦♦
♦

♦
♦

♦♦♦

♦
♦

♦

♦

♦

♦

♦

♦

♦

♦
♦
♦
♦

♦

♦

♦

♦

♦

♦
♦

♦
♦

♦

♦

♦

♦♦♦

♦

♦♦♦

♦♦

♦♦

♦
♦♦

♦
♦
♦♦
♦♦♦♦
♦

♦
♦
♦

♦

♦

♦
♦♦

♦

♦

♦
♦♦
♦
♦♦

♦

♦♦

♦
♦

♦♦

♦
♦

♦♦

♦♦

♦

♦

♦

♦
♦
♦

♦
♦

♦

♦

♦

♦

♦♦

♦

♦♦

♦

♦

♦♦

♦

♦

♦

♦
♦
♦

♦
♦♦

♦

♦

♦

♦

♦

♦

♦

♦♦
♦
♦

♦

♦♦

♦♦

♦
♦

♦

♦♦♦

♦♦

♦

♦

♦♦
♦♦♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦
♦
♦

♦

♦

♦

♦

♦

♦

♦♦♦

♦

♦
♦♦
♦♦♦♦

♦

♦

♦♦
♦♦♦

♦

♦
♦
♦

♦

♦

♦♦

♦

♦
♦

♦

♦

♦

♦♦♦

♦♦

♦

♦♦

♦♦

♦

♦
♦

♦

♦
♦♦♦
♦
♦

♦

♦
♦♦

♦

♦
♦
♦
♦
♦♦

♦

♦
♦
♦

♦

♦

♦♦

♦
♦
♦
♦

♦♦
♦

♦♦

♦♦

♦♦♦
♦

♦

♦♦
♦

♦

♦

♦
♦♦♦

♦♦♦

♦

♦

♦

♦
♦♦

♦

♦♦

♦♦
♦♦
♦

♦

♦♦
♦

♦

♦♦

♦

♦

♦

♦

♦

♦

♦♦♦
♦

♦

♦
♦♦♦

♦

♦

♦
♦

♦

♦
♦♦

♦

♦
♦

♦
♦
♦

♦

♦♦

♦

♦

♦

♦

♦♦

♦
♦
♦

♦
♦

♦

♦

♦
♦♦♦
♦♦♦
♦♦

♦
♦

♦

♦

♦♦

♦♦

♦

♦

♦

♦
♦
♦
♦

♦
♦

♦

♦♦

♦

♦

♦
♦
♦

♦♦♦

♦♦♦
♦

♦♦

♦
♦
♦

♦

♦

♦

♦

♦
♦

♦

♦♦

♦
♦

♦♦
♦

♦
♦

♦

♦

♦

♦

♦

♦
♦♦

♦

♦
♦

♦♦♦

♦

♦

♦♦

♦

♦

♦♦

♦
♦

♦
♦
♦

♦

♦
♦♦
♦

♦♦

♦

♦
♦
♦

♦

♦

♦

♦

♦

♦

♦
♦♦

♦

♦
♦

♦

♦

♦♦

♦

♦
♦

♦
♦♦♦

♦
♦
♦
♦♦♦
♦

♦♦
♦

♦

♦

♦
♦
♦♦

♦
♦
♦♦

♦
♦

♦
♦
♦♦

♦

♦

♦♦♦♦

♦

♦

♦

♦

♦♦♦

♦

♦
♦♦

♦

♦

♦
♦
♦
♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦

♦♦
♦♦

♦

♦

♦
♦♦

♦

♦

♦

♦

♦

♦
♦♦

♦♦♦

♦♦
♦
♦

♦♦

♦♦

♦

♦
♦♦

♦

♦

♦

♦

♦

♦♦♦♦♦♦

♦

♦
♦♦
♦
♦♦♦
♦
♦

♦

♦

♦
♦
♦♦♦

♦

♦
♦
♦

♦♦

♦
♦
♦
♦
♦♦

♦

♦
♦

♦

♦

♦

♦♦

♦
♦

♦♦
♦♦♦

♦

♦♦

♦
♦

♦♦
♦
♦♦♦
♦
♦

♦

♦

♦♦♦

♦

♦♦♦♦
♦
♦♦
♦♦♦♦

♦♦
♦

♦

♦

♦♦♦♦♦

♦
♦
♦
♦

♦♦
♦
♦

♦♦♦

♦♦
♦
♦

♦

♦♦
♦

♦♦

♦

♦♦♦♦♦
♦♦
♦♦♦

♦

♦♦♦♦♦♦

♦

♦
♦♦

♦
♦
♦

♦
♦

♦

♦

♦

♦

♦♦♦♦

♦

♦
♦
♦

♦
♦

♦

♦
♦

♦♦♦♦♦♦♦♦

♦♦

♦

♦

♦♦

♦
♦

♦♦♦
♦
♦

♦
♦
♦

♦
♦
♦

♦♦
♦
♦
♦♦♦♦♦♦♦♦
♦
♦♦

♦

♦

♦

♦♦♦♦

♦
♦
♦♦

♦♦

♦

♦

♦
♦

♦♦♦

♦
♦

♦♦♦♦♦
♦
♦
♦♦♦

♦

♦

♦

♦♦♦♦

♦
♦

♦

♦♦
♦
♦♦♦

♦

♦
♦
♦
♦♦♦♦♦
♦

♦
♦
♦
♦♦♦♦♦
♦

♦♦
♦♦♦

♦

♦
♦♦

♦

♦♦♦♦♦

♦

♦
♦♦♦
♦

♦♦

♦♦

♦♦
♦

♦

♦♦♦♦
♦

♦♦

♦
♦

♦
♦♦♦♦♦♦
♦♦♦♦♦♦♦

♦

♦♦♦♦♦♦
♦

♦

♦♦
♦♦♦
♦♦
♦
♦♦

♦
♦♦
♦♦
♦
♦

♦♦♦
♦♦♦♦♦

♦

♦

♦

♦♦♦♦

♦

♦

♦
♦
♦

♦
♦
♦

♦♦♦

♦♦♦

♦

♦
♦
♦♦♦♦♦

♦

♦♦

♦

♦
♦♦♦

♦

♦♦♦
♦♦♦♦
♦
♦

♦

♦
♦♦♦♦
♦♦
♦
♦

♦

♦♦♦♦♦
♦♦
♦
♦
♦
♦

♦
♦
♦
♦♦

♦
♦

♦♦

♦♦♦♦
♦

♦♦♦♦♦
♦♦♦♦♦

♦

♦
♦♦
♦♦♦
♦♦♦♦
♦
♦♦♦
♦♦
♦
♦

♦♦♦♦♦♦♦
♦♦♦

♦♦

♦

♦

♦♦♦♦♦♦♦

♦

♦

♦

♦

♦

♦♦♦♦
♦♦♦
♦♦♦♦
♦
♦
♦
♦♦

♦♦♦♦♦

♦
♦♦♦♦
♦
♦
♦
♦

♦
♦

♦♦

♦

♦
♦
♦♦
♦
♦

♦
♦

♦
♦

♦

♦♦♦

♦

♦
♦♦

♦

♦♦

♦
♦
♦

♦♦

♦

♦

♦
♦

♦

♦

♦

FS (m = 1000)

+

+

+
+
++

++
+++

+++
++++++

++++++++
+++++++
+++++++++++++++

++++++++
+++

+
+++++++++++++
+
+++++++++++
+++++
++++++++++++
++++++++++++++
+++++++
+
+++
++++
+
+++++
+
+
+
+++++++
+++
++
+
++
+
+++
+++
++++++++
++++++++
++++
+
+++++
++++
++
+
+++++
+++
+
+++++
+++
+
+++
+
++
+
++
++++
+++
+
+

+
+
++++++++
+
+++++++
++++
+
++
+
+
+
++++
+++

+
+++++++
+++
++++++++
++++++
+

+
+++
+
+
+
+

++++++
+
+

+
+++++++
+
++
+
+
+
+
+
+
+++
+
+
+++
+

+++++
+
+

++++++

+

++
++++++
+
++
++++++
+
++
++

++
+

++
+++
+

+++
+++
+

+

+
+++

+

++

+

+

++
+++
+

+
++++

+

+++++
++
++

+
+++++
+

+
+++
+++
+
++++
+

+

+
+

++
+++
+++++
+
+

+

+
+++++
+
++
+

+

+
++
++
+
+
+
+++
++

+
++++
+
+

+
+
+

+
+
+
++
+
+++

+

+

+
+

+

+
+
+++++
+++
+
+

+

+++++

+
+
+
+

+

++++
+

+

+
+
+
++
+

+
+

+

++
+
++
++
+

+

+
++
+

+

++++
+
+
++
+

+
++

+++
+
+

+

+
+
+

+

+

+
++++
+

+
+

++++
++

+
++
+

+

+

+

+
++

+

+

+++++
+
+

+

++++
++++++

+

+
+

+

+
++
+
+
+

+

++
++

++
++
+

+

+
++
+

+

++++

+

+

+

+
+

+
+
+
++

+

+

+

+

++

+

+
+++

+
+
+
+
+

+
++
+
+

+

+

+
+++
+

+

+
+++

+
++

+
+

+
++

+

+
+++

+

+

+
+
++
+

+

+
+
+++
+
+

++

+

+++
++

+

+
+

+

+

+

+

++
++

+

+
++

+
+

+

+

+
+

+

+

+
+

++

+

+

+

+
+

+
+

+

+

+

+

++
+

+

++
++
+

+
+
+
+
+

+

++
+

+
+

++++

+

++

+

+++
+

+
+
+

+

+
+
+

+
+++
++

+

+
++

+

+

+
+

+
++
+

+

+
+
+
+
+

+
+

+

+

+

+

++

+
+
+
+
+

+
+
+
+

+

+
+
+
++

+
+
+
+
++
++

+

+

+

+

++

+

+++
+

++

+
+
+
++
+

+

+

+

+

++
++

+

+

+

+

+

++
+

+
+

+

+

++
++++
+

+

+

+++

++
++

+

+

++
+

+

+

+

++

+

+

+

+++
++

+

+

+

+

+

++

+
++

+

+

+
+

+

++

+

+

+

+

+
+
+
+

+

++
+

+

+

+
+

+

+

++
+
+

+

+
+
+

+

+

++

+

+
++

+

++

+

+

+

+
+

+

+

+

+
+

+

++

+

+

+
+

+

+
+

+
++
+
++
+

+

+
+++
+

+

+

+

+

+
+
+
+

+

+

+
+
++
+
++
+

+

+
+

+

++

+

++++

+

+

+++
+

+

+

+
++
+

+
+
+
+

+

+
+
+
+
+

+
+

+
+
+

+

+

+

+

+

+
+++

+

+

+

+

+

+

+

+

++

+

+
+
+

+

+
+
+

+

+

+

+

+++

+
+

+

+

+

+

+

++

+
+

+
+

+
++
+

+

++

+

++
++
+
+

+
+

+

+

+
+

+
+

+

++

+

+

+
+
+

+
+

++
+
++

+

+

+

+

+

+

+

++

+

+

+

+
+

++

+

++
+
+
+

++

+
+

+
++

+

+

+
+

+

+

+

+

+

+
++

++

+

+++

+
+

+

+

+

+

+
+
+

+

+
+

+

+

+

++

+

+
+

+

+
+

+
+
+

+
+

+++

+
+

+

+

+

+

+

+

+

+
+
+
+

+

+

+

+

+

+
+

+

+

+

+

+

+++

+

+
++

+
+

++

+

++

+

+
++
++++

+

+
+

+

+

+

+
++

+

+

+
++
+
++

+

++

+
+

++

+
+

++

++

+

+

+

+

+

+

+

+

+

+

+

+

++

+

++

+

+

++

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

++

+
+

+

++

++

+
+

+

+++

++

+

+

++
+
++

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+++

+

+

++

+++
+

+

+

++

+++

+

+

+
+

+

+

++

+

+
+

+

+

+

+++

++

+

++

++

+

+
+

+

+
+++

+
+

+

+

++

+

+
+
+
+
++

+

+
+

+

+

+

++

+
+
+

+

++
+

++

+
+

+++
+

+

++
+

+

+

+
++
+

+++

+

+

+

+

++

+

++

++
+
+
+

+

++
+

+

++

+

+

+

+

+

+

+++
+

+

+

+++

+

+

+
+

+

+
++

+

+

+

+

+
+

+

++

+

+

+

+

++

+

+
+

+
+

+

+

+
+++

+++
++

+

+

+

+

++

+
+

+

+

+

+

+
+

+

+

+

+

++

+

+

+

+

+

+++

+++

+

++

+
+
+

+

+

+

+

+

+

+

++

+
+

+
+

+

+

+

+

+

+

+

+

+

+
+

+

+
+

+++

+

+

+
+

+

+

++

+
+

+
+
+

+

+
++
+

++

+

+
+
+

+

+

+

+

+

+

+

++

+

+

+

+

+

++

+

+
+

+
+++

+
+
+

++
+
+

++
+

+

+

+
+
+
+

+
+
++

+
+

+
+

++

+

+

++
++

+

+

+

+

+++

+

+
+
+

+

+

+
+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

++
+
+

+

+

+
++

+

+

+

+

+

+
++

+++

++

+
+

++

++

+

+
+
+

+

+

+

+

+

++++++

+

+
++

+
+++

+

+

+

+

+
+
+++

+

+

+
+

++

+
+
+
+
++

+

+

+

+

+

+

++

+
+

++
+++

+

++

+
+

++
+
+++
+
+

+

+

+++

+

+++
+
+
++
++++

++
+

+

+

++++
+

+

+
+

+

++
+
+

+++

++
+
+

+

++

+

++

+

++
+
+
+
++
+
++

+

++++++

+

+
++

+
+
+

+
+

+

+

+

+

++++

+

+

+
+

+
+

+

+

+

++++
++++

++

+

+

++

+
+

+++

+

+

+
+
+

+

+
+

++
+
+
++++
++
++

+

++

+

+

+

++++

+
+
++

++

+

+

+

+

+++

+

+

+++
++
+
+
+++

+

+

+

++++

+

+

+

++
+
+++

+

+
+
+
+++
+
+

+

+
+
+
+
+++
+

+

++
+++

+

+
++

+

++
+++

+

+
+++
+

++

+
+

+
++

+

++++

+

++

+
+

+

++++++
+++++++

+

+
++
++
++

+

++
++
+
+
++++

+

++
++
+

+

+++
+++++

+

+

+

+
+++

+

+

+
+
+

+

+
+

+++

++
+

+

+
+
++++
+

+

++

+

+
+
++

+

+++
++++
+
+

+

+
+++
+++
+
+

+

+
++++
++
+
+

+
+

+
+
+
++

+
+

++

++++

+

++++
+
+++++

+

+
++
++
+

++++
+

+++
++
+

+

+++++
+
+
+++

++

+

+

++
+++++

+

+

+

+

+

++++

+
++
++++
+
+
+

++

++
+
++

+

++++

+

+
+

+

+

+

++

+

+
+
++
+
+

+
+

+
+

+

+++

+

+
++

+

++

+
+

+

+
+

+

+

+
+

+

+

+

MutipleRW (K = 1000)

�

�

�

�
������

���
���

�����
������

���������
�������������

��
��

���
��

��
���
������������������������
������
����������
�
��������
�
����������������������������
�����������������
����������
�����������
�����������������������������������
�������
�������
�����
������������
�����
�
��������
��������������������
�����������
�
��������
������
�
����
�������������������������
�
���
���������������
���������������
���
���
������������
������������������
�������
�������
�
����������
�������
�
����������������
����
�����������������
����������������
�
�
�����
���������
�
���
��
�
���������
�
�
�����������
�
�
��
�������
�
�
����
�
��
�����
�
������
�����
����������
�
����������
����
���
�
������������
�����
�
�����
������
�
������������������
����
���
���
��
���������
�
�
��
���
��
�����������
���
�
�����
��������
���������
���
�
�������
�
���
���������������
���
��������
�
����������
����������
�������
�
�
����
�
�������
�
��
�
�������
��������
�
�
��
�����
�
��
�
����
��
�
���
�
�
�
�
�

�
��
����
�
��
����
�
��
����
�
�
���
�
��
�
����
�
��
����
��������
�
�
�
�
���������
�

���
��
����
�����
��
�������
�
��
��������
����
����
�
��
���������
�
���
����
����
��
�����
�

��
�����
��
���
����
�
�
�
������
����������
�
������
��
���
���
���
���

�

�
���
���
�
�
�

�����
�����
��
���
������
�
��
����
�
�
�
�
���
�

��
�
����������
�
�
�������
�
�
�
���
�����
�

�
��
�
��
��
�����
�������
���
��
���

����
�
��
�
��
�����

������������
������
��
�

�������
���
��
�
��
����
������
�������
��
�
������
����
���

�
�
�
�
��
���������
�
�
��
�
���

�
��
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�����
�
�
�������
����
�

��
��
�
�
�
��
��

�

���
�
��
���
��
�
�
������
����
�
����
����
���
������
���
�
���
�
����
���
������
��������
�
����
�������
�

��
�
�
�
���
��
������������
�
��
��
�
�
�
�
�
�����
�
�
�������
���
���

�

����
����
��

�

���
�
����
������������
������
��
��
�
�
����������
��
�
�����

�

���

���
��

�
������

�
�
�
����
��
�
�
�������
���
�
�
�
�����
�
�
�
�
��
������
�
�
��
�
���

�

���

�

�
�

�

��

�

�����
�
�
�
����

�

�������
�
�
�
�
�
��
�
�
�
��
�����
�

�
����
�
����
�
�
��
�
�
��
����
�
�
�
�
����������
����
�
������
�
��
�
�
��
�

�
�
���

��
�����
�
���
�
��

�������
�
�

����������
�
���

�
�
������

�

�����������
������
�
�

�

��
�
�
��
��
�������

��

�

��
�
�
�

��
��
����
�

�

�

��
�
���
�
�
�
�
���
���
�
�
�
�����
��
��
�
�����
�
�
�
�
���
��

��

�

����
�����
�
�
�

�

�
�
�
�
�

�
������
��

�����
�

��
�
�

��

�
����
�����
�

��

��

�
��
��
�
�
�
�
�

�������

��
���
�
��
��

�
�
���

�
���

����
�����

�

������

�

�����
�
�
��������
������� �

�

Figure 3.3. (LCC of Flickr) The log-log plot of the NMSE of the in-degree
distribution estimates with budget B = |V |/100.

one of the runs, SingleRW starts in a small disconnected subgraph and, thus, grossly

overestimates the value of θ1. For a similar reason, i.e., walkers starting at small

disconnected subgraphs, MultipleRW grossly overestimates the value of θ1. The Mul-

tipleRW jump around n = 103 steps needs further investigation. It may be due to

the transient of the random walk (discussed in Section 3.3.4). Even when n≫ 1 (not

shown in Figure 3.5) the MultipleRW estimate is unable to converge to θ1. Modifying

both SingleRW and MultipleRW methods to cope with disconnected components is

an interesting open problem.

For the sake of conciseness, the simulation results for the remaining graphs (Ta-

ble 3.1) are omitted as they are similar to the results observed over the Flickr graph.

However, consider the out-degree distribution estimates of Livejournal. Figure 3.6

shows a log-log plot of the CCDF of the original out-degrees. The log-log plot of

the NMSE is shown in Figure 3.7 for FS (m = 100), SingleRW, and MultipleRW

(K = 100) with sampling budget B = |V |/10. From Figure 3.7 we see that esti-

40

0.02

0.1

0.2

0.5

1

2

0 10 102 104 105

N
M

S
E

vertex in-degree

SingleRW

♦

♦

♦
♦♦

♦

♦

♦♦
♦♦♦

♦

♦
♦
♦♦

♦
♦♦♦♦

♦♦♦
♦
♦♦
♦♦♦♦♦
♦

♦

♦

♦♦♦♦♦♦♦♦♦♦
♦
♦♦

♦

♦♦♦♦

♦

♦♦♦♦♦♦
♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦
♦
♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦
♦♦♦
♦♦♦
♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦
♦♦♦♦
♦♦♦
♦
♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦
♦♦♦♦
♦♦♦♦♦
♦
♦♦♦♦♦
♦♦
♦♦♦♦♦♦
♦
♦♦♦♦♦♦♦♦
♦
♦♦♦♦♦♦♦♦♦♦♦♦
♦
♦♦
♦
♦♦♦
♦♦♦♦♦♦♦♦♦
♦
♦
♦♦♦♦
♦
♦♦
♦
♦
♦♦♦♦♦♦
♦
♦♦♦♦
♦
♦♦♦♦♦♦♦
♦♦
♦♦♦♦♦♦
♦
♦
♦♦♦♦♦♦♦♦♦♦♦♦
♦
♦
♦
♦♦♦♦♦
♦♦♦♦♦
♦
♦
♦
♦♦♦♦♦
♦♦♦♦
♦

♦
♦
♦♦♦
♦♦♦
♦
♦♦♦♦♦
♦♦♦♦♦♦♦
♦
♦
♦
♦
♦♦♦♦♦♦
♦♦
♦

♦

♦♦
♦
♦
♦♦♦♦♦♦♦♦♦
♦
♦

♦

♦♦♦♦♦

♦
♦
♦♦
♦

♦♦♦♦♦
♦
♦
♦♦♦♦
♦
♦♦

♦

♦♦♦♦♦♦♦
♦
♦
♦♦♦♦

♦
♦♦♦♦♦♦♦♦♦
♦♦♦

♦♦♦
♦
♦

♦

♦♦
♦
♦

♦
♦
♦♦♦♦♦

♦
♦
♦♦♦♦
♦♦
♦
♦♦
♦
♦

♦

♦
♦♦
♦
♦

♦
♦♦♦♦♦
♦
♦
♦
♦♦♦♦♦
♦
♦♦♦♦
♦

♦♦

♦

♦♦♦
♦
♦♦
♦

♦♦
♦♦
♦♦
♦♦
♦

♦

♦♦♦
♦

♦

♦♦♦♦
♦
♦

♦
♦♦
♦
♦♦
♦♦
♦

♦

♦

♦

♦♦♦
♦
♦♦♦
♦
♦♦
♦♦

♦♦
♦♦♦
♦

♦

♦
♦♦♦
♦

♦

♦♦♦♦

♦
♦♦

♦
♦
♦
♦♦
♦
♦♦
♦♦
♦
♦

♦♦♦♦♦
♦
♦♦
♦♦♦♦♦
♦♦
♦
♦♦♦
♦♦

♦

♦
♦

♦
♦
♦
♦
♦♦♦♦

♦

♦
♦♦

♦
♦

♦

♦

♦
♦
♦

♦

♦
♦
♦♦
♦
♦

♦
♦♦
♦
♦
♦

♦
♦

♦
♦♦
♦
♦
♦♦
♦♦
♦
♦♦
♦
♦♦

♦
♦♦♦

♦
♦
♦♦♦♦

♦

♦♦

♦

♦♦♦♦
♦
♦♦

♦
♦♦♦
♦
♦♦♦♦♦
♦

♦
♦♦
♦
♦
♦
♦

♦
♦♦
♦

♦

♦♦♦
♦
♦
♦
♦

♦

♦
♦
♦

♦♦
♦♦
♦
♦♦

♦♦
♦♦

♦

♦
♦
♦
♦♦
♦♦
♦
♦♦♦♦♦
♦
♦
♦
♦
♦♦
♦

♦♦♦♦

♦♦

♦♦♦
♦♦
♦
♦
♦
♦

♦

♦♦♦♦

♦

♦
♦

♦

♦
♦♦
♦

♦♦
♦
♦
♦♦
♦♦♦♦
♦

♦

♦

♦♦♦

♦♦
♦♦

♦

♦

♦♦♦♦
♦

♦
♦♦

♦

♦

♦
♦♦♦
♦♦
♦

♦
♦

♦

♦

♦♦

♦♦♦
♦

♦

♦
♦
♦
♦♦
♦

♦

♦

♦
♦
♦♦
♦

♦
♦♦
♦
♦

♦

♦♦
♦
♦

♦♦
♦♦

♦
♦♦
♦
♦

♦

♦♦
♦

♦
♦♦

♦

♦♦

♦

♦

♦
♦♦

♦

♦
♦
♦
♦

♦

♦♦

♦

♦
♦
♦

♦
♦
♦

♦
♦♦♦♦
♦
♦

♦

♦
♦♦♦
♦

♦

♦

♦

♦

♦
♦
♦
♦

♦

♦

♦
♦
♦♦♦♦♦
♦

♦

♦
♦

♦

♦♦

♦
♦♦♦♦
♦

♦

♦♦♦
♦

♦

♦
♦
♦♦
♦

♦
♦
♦
♦
♦

♦
♦
♦
♦
♦
♦
♦
♦
♦
♦

♦

♦
♦

♦

♦

♦♦♦♦

♦

♦
♦

♦

♦
♦
♦

♦
♦♦
♦
♦
♦
♦
♦
♦♦♦

♦

♦

♦

♦

♦♦♦

♦
♦

♦

♦

♦

♦

♦

♦♦
♦
♦

♦
♦

♦
♦♦
♦

♦

♦♦

♦

♦♦♦♦♦
♦

♦
♦

♦

♦
♦
♦

♦
♦

♦

♦♦
♦

♦

♦♦♦

♦
♦

♦♦
♦♦♦

♦

♦

♦

♦

♦

♦

♦

♦♦

♦

♦

♦

♦
♦

♦♦
♦

♦♦
♦♦♦

♦♦

♦
♦
♦
♦♦

♦

♦

♦
♦

♦
♦
♦

♦
♦
♦
♦♦

♦♦

♦
♦♦♦
♦
♦
♦

♦

♦

♦

♦
♦♦

♦
♦♦

♦
♦

♦

♦♦

♦

♦♦

♦

♦
♦
♦♦
♦

♦
♦

♦♦♦

♦
♦

♦

♦

♦

♦

♦

♦

♦

♦
♦
♦
♦

♦

♦

♦

♦

♦

♦♦

♦
♦

♦

♦

♦

♦♦♦

♦

♦♦♦

♦♦

♦♦

♦
♦♦
♦
♦
♦♦
♦♦♦♦
♦

♦
♦
♦

♦

♦

♦
♦♦

♦

♦

♦
♦♦♦
♦♦

♦

♦♦
♦♦

♦♦

♦
♦

♦♦

♦♦

♦

♦

♦

♦
♦
♦
♦
♦

♦

♦

♦

♦

♦♦

♦

♦♦

♦

♦

♦♦

♦

♦

♦

♦
♦
♦

♦
♦♦

♦

♦

♦

♦

♦

♦

♦

♦♦
♦
♦

♦

♦♦

♦♦

♦
♦
♦

♦♦♦

♦♦

♦

♦

♦♦
♦♦♦

♦

♦

♦

♦

♦

♦
♦

♦

♦

♦
♦
♦
♦

♦

♦

♦

♦

♦

♦♦♦

♦

♦
♦♦
♦♦♦♦

♦

♦

♦♦
♦♦♦

♦

♦
♦
♦

♦

♦

♦♦

♦
♦
♦

♦

♦

♦

♦♦♦

♦♦

♦

♦♦

♦♦

♦

♦
♦

♦

♦
♦♦♦
♦
♦

♦

♦
♦♦

♦

♦
♦
♦
♦
♦♦

♦

♦
♦
♦

♦

♦

♦♦

♦
♦
♦
♦

♦♦
♦

♦♦

♦♦

♦♦♦
♦

♦

♦♦
♦

♦

♦

♦
♦♦
♦

♦♦♦

♦

♦

♦

♦
♦♦

♦

♦♦

♦♦
♦♦
♦

♦

♦♦♦

♦

♦♦

♦

♦

♦

♦

♦

♦
♦♦♦♦

♦

♦
♦♦♦
♦

♦

♦♦
♦

♦
♦♦

♦

♦
♦

♦

♦
♦

♦

♦♦
♦

♦

♦

♦

♦♦

♦
♦
♦
♦
♦

♦

♦
♦
♦♦♦
♦♦♦
♦♦

♦
♦

♦

♦

♦♦

♦♦

♦

♦

♦

♦
♦
♦
♦

♦
♦
♦

♦♦

♦

♦

♦
♦
♦

♦♦♦

♦♦♦
♦

♦♦

♦
♦♦

♦

♦

♦

♦

♦
♦

♦

♦♦

♦
♦

♦♦
♦

♦
♦

♦

♦

♦

♦

♦

♦
♦♦

♦

♦
♦

♦♦♦

♦

♦

♦♦
♦

♦

♦♦

♦
♦

♦
♦♦

♦

♦
♦♦
♦

♦♦

♦

♦
♦
♦

♦

♦

♦

♦

♦

♦

♦
♦♦

♦

♦
♦

♦

♦

♦♦

♦

♦
♦

♦♦♦♦

♦
♦
♦
♦♦♦
♦

♦♦
♦

♦

♦

♦♦♦♦
♦
♦
♦♦

♦
♦
♦
♦
♦♦

♦

♦

♦♦♦♦

♦

♦

♦

♦

♦♦♦

♦

♦
♦♦

♦
♦

♦
♦
♦
♦

♦

♦

♦

♦

♦

♦
♦

♦

♦

♦

♦
♦

♦♦
♦♦

♦
♦

♦
♦♦

♦

♦

♦

♦

♦

♦
♦♦

♦♦♦

♦♦
♦
♦

♦♦

♦♦

♦

♦♦♦
♦

♦

♦

♦

♦

♦♦♦♦♦♦

♦

♦♦♦♦
♦♦♦
♦
♦

♦

♦

♦♦♦♦♦

♦

♦
♦♦

♦♦

♦
♦
♦
♦
♦♦

♦
♦
♦

♦

♦
♦

♦♦

♦
♦

♦♦♦♦♦

♦

♦♦

♦
♦

♦♦
♦
♦♦♦
♦
♦

♦

♦

♦♦♦

♦

♦♦♦♦
♦
♦♦
♦♦♦♦

♦♦
♦

♦

♦

♦♦♦♦♦

♦
♦
♦
♦

♦♦
♦
♦

♦♦♦

♦♦
♦
♦

♦

♦♦
♦

♦♦

♦

♦♦
♦♦♦
♦♦
♦♦
♦

♦

♦♦♦♦♦♦

♦
♦
♦♦

♦
♦
♦

♦
♦

♦

♦

♦

♦

♦♦♦♦

♦

♦
♦
♦

♦
♦

♦

♦
♦

♦♦♦♦♦♦♦♦

♦♦
♦

♦

♦♦

♦
♦

♦♦♦
♦

♦

♦
♦
♦

♦
♦
♦

♦♦♦♦
♦♦♦♦♦♦♦♦
♦
♦♦

♦

♦

♦

♦♦♦♦

♦
♦
♦♦

♦♦

♦

♦

♦
♦

♦♦♦

♦
♦

♦♦♦♦♦
♦
♦
♦♦♦

♦

♦

♦

♦♦♦♦

♦
♦

♦

♦♦
♦
♦♦♦

♦

♦
♦
♦
♦♦♦♦♦
♦

♦♦
♦
♦
♦♦♦♦
♦
♦♦♦
♦
♦

♦

♦
♦♦

♦

♦♦♦♦♦
♦

♦
♦♦♦
♦

♦♦

♦♦

♦♦♦

♦

♦♦♦♦
♦

♦♦

♦
♦

♦
♦♦♦♦♦♦
♦♦♦♦♦♦♦

♦

♦♦♦♦♦♦
♦

♦

♦♦♦♦♦♦
♦♦♦♦

♦
♦♦♦♦♦
♦

♦♦♦
♦♦♦♦♦
♦

♦

♦

♦
♦♦♦
♦

♦

♦
♦
♦

♦
♦
♦

♦♦♦

♦♦♦

♦

♦♦
♦♦♦♦♦

♦

♦♦

♦

♦♦♦♦

♦

♦♦♦♦♦♦♦
♦
♦

♦

♦
♦♦♦♦
♦♦
♦
♦

♦

♦♦♦♦♦
♦♦
♦
♦
♦
♦

♦♦
♦
♦♦
♦
♦

♦♦

♦♦♦♦
♦

♦♦♦♦♦
♦♦♦♦♦

♦

♦
♦♦
♦♦♦
♦♦♦♦
♦
♦♦♦
♦♦♦
♦
♦♦♦♦♦♦♦
♦♦♦

♦♦
♦
♦
♦♦♦♦♦♦♦

♦

♦

♦

♦

♦

♦♦♦♦
♦♦♦
♦♦♦♦
♦
♦
♦
♦♦

♦♦♦♦♦
♦
♦♦♦♦
♦
♦
♦
♦

♦
♦
♦♦

♦

♦
♦
♦♦
♦
♦

♦
♦
♦
♦

♦

♦♦♦

♦
♦
♦♦

♦
♦♦
♦♦
♦
♦♦

♦

♦

♦♦

♦
♦

♦

FS (m = 1000)

+

+

+

+
++

++
++++

++++
+++++
+++++++

++++++++
+++++++++++++++++

++++++++

+
+++++++++++++
++++++
+++++++
+++++++++++
+++++
+
++++++++++
+++
+++++++
+
+++
++++
+
+++++
+
+
+
+++++++
+++
+
++
++
++
+
+
+++
+++++++++
+++++++
+++
+
++++++
++++
++
+
++
+++
+++
+
+++++
+
++
+
+++
+
++
+
++++++
+++
+
+

+
+++++++++
++++++
++
++++
+
++
+
+
+
+++
++++

+
++++++++++
++++++++
++++++
+

+
+++
++
+
+

++++++
+
+

+
+++++
++
+
++
++
++
+
+
+++
+
+
+
++
+

+++++
+
+

++++++

+

++
++++++
+
++
++++++
+
++
++

+
+
+

++
+++
+

+++
+++
+

+

++++

+

++

+

+

+++
++
+

+
++
+
+

+

+++++
++
++
+
++++
+
+

+
+++
++++++++
+

+

+
+

++
+++
+++++
+
+

+

+
+++++
+++
+

+

+
++
+
++
+
+

+++
++

+
+
+++
+
+
+
+
+

+
+
+
+
+
+
+++

+

+

+
+

+

+
+
+++++
+++
+
+

+

+++++

+
+
+
+

+

++++
+

+

+
++
++
+

+
+

+

++
+++
++
+

+

+
++
+

+

++++
+
+
++
+

++
+

+++
+
+

+

++
+

+

+

+
++++
+

+
+

+
+
++
++

+
++

+

+

+

+

+
++

+

+

+++++
+
+
+
++
+++
+
++++

+

+
+

+

+
++
+
+
+

+

++

++

++

++
+

+

+++
+

+

++++

+

+

+

+
+

+
+
+
++

+

+

+

+

++
+

+
+++

+
+
+
+
+

+
++
+
+

+

+

+

+++

+

+

+
+++

+
++

+
+

+
++

+

+
+++

+

+

+
+
++
+

+

+
+

++
+
+
+

++

+

+++

++

+

+
+

+

+

+

+

++
++

+

+
++

+
+

+

+

+
+

+

+

+
+

++

+

+

+

+
+

+
+

+

+

+

+

+
+
+

+

++
++
+

+
+
+
++

+

++
+

+
+

++++

+

++

+

+++
+

+
+
+

+

+
+
+

+
+++
++

+

+
++

+

+
+
+

+
++
+

+

+
+
+

+
+

+
+

+

+

+

+

+
+

+
+
+
+
+

+
+
+
+

+

+
+
+
++

+
+
+
+
++
++

+

+

+

+

++

+

+++
+

++

+
+
+
++
+

+

+

+

+

++
++

+

+

+

+

+

++
+

+
+

+
+

++
++++
+

+

+

++
+

++
+
+

+

+

+
+
+

+

+

+

++

+

+

+
+++
++

+

+

+

+

+

++

+
++

+

+

+
+

+

++
+

+

+

+

+
+
+
+

+

++
+

+

+

+
+

+

+

++
+
+

+

+
+
+

+

+

++

+

+
++

+

++

+

+

+

++

+

+

+

+
+

+

++

+

+

+

+

+

+
+

+
++
+
++
+

+

+
+++
+

+

+

+

+

+
+
+
+

+

+

+
+
++
+++
+

+

+
+

+

++

+

+
+++

+

+

+++
+

+

+

+

++
+

+
+
+
+

+

+
+
+
+

+

+
+

+
+
+

+

+

+

+

+

+
+++

+

+

+

+

+

+

+

+

++

+

+
+

+

+

+
+
+

+

+

+

+

+++

+
+

+

+

+

+

+

++
+
+

+
+

+
++
+

+

++

+

++
++
+
+

+
+

+

+

+

+

+
+

+

++

+

+

+++

+
+

++
+
++

+

+

+

+

+

+

+

++

+

+

+

+
+

++

+

+
+
++
+

++

+
+

+
++

+

+

+
+

+

+
+

+

+

+
++

++

+

+++

+

+
+

+

+

+

+
+
+

+

+
+

+

+

+

++

+

+
+

+

+
+

+
+
+

+

+

+++

+
+

+

+

+

+

+

+

+

+
+
+
+

+

+

+

+

+

+
+

+

+

+

+

+

+++

+

+
++

+
+

++

+

++

+

+
++

++++
+

+
+

+

+

+

+
++

+

+

+
+
+
+
++

+

++

+
+

++

+
+

++

++

+

+

+

+

+

+

+

+

+

+

+

+

++

+

++

+

+

++

+

+

+

+

+

+

+

++

+

+

+

+

+

+

+

++

+
+

+

++

++

+
+

+

+++

++

+

+

++
+
++

+

+

+

+

+

+

+

+

+

+
+

+

+

+

+

+

+

+

+++

+

+

++
+++
+

+

+

++

+++

+

+

+

+

+

+

++

+

+

+

+

+

+

+++

++

+

++

++

+

+
+

+

+
+++
+
+

+

+

++

+

+

+
+
+
++

+

+
+

+

+

+

++

+
+
+
+

++
+

++

+
+

+
++
+

+

++
+

+

+

+
+
+

+

+++

+

+

+

+

++

+

++

++
+
+
+

+

++
+

+

++

+

+

+

+

+

+

+++
+

+

+

+++

+

+

+
+

+

+
++

+

+
+

+

+
+

+

++

+

+

+

+

++

+
+
+

+
+

+

+

+
+++

+++
++

+

+

+

+

++

+
+

+

+

+

+

+
+

+

+

+

+

++

+

+

+

+

+

+++

+++

+

++

+
+
+

+

+

+

+

+

+

+

++

+
+

+
+
+

+
+

+

+

+

+

+

+

+
+

+

+
+

+++

+

+

+
+

+

+

++

+
+

+
+
+

+

+
++
+

+
+

+

+
+
+

+

+

+

+

+

+

+

++

+

+

+

+

+

++

+

+
+

+
+++

+
+
+

+++
+

++
+

+

+

+
+
++

+

+
++

+
+

+
+

++

+

+

++
++

+

+

+

+

++
+

+

+
++

+

+

+
+
+
+

+

+

+

+

+

+

+

+

+

+

+

+

++
++

+

+

+
++

+

+

+

+

+

+
++

+++

++

+
+

++

++

+

+
++

+

+

+

+

+

++++++

+

+
++

+
+++

+

+

+

+

+
+
+++

+

+

+
+

++

+
+
+
+
++

+

+

+

+

+

+

++

+
+

++
+++

+

++

+
+

++
+
+++

+
+

+

+

+++

+

+++
+

+
++
++++

++
+

+

+

++++
+

+

+
+

+

++
+
+

+++

++
+
+

+

++
+

++

+

++
+
+
+
++
+
++

+

++++++

+

+
++

+
+
+

+
+

+

+

+

+

++++

+

+
+
+

+
+

+

+

+

++
+
+++++

++

+

+

++

+
+

+++

+

+

+
+
+

+

+
+

++
+
+
++++++++

+

++

+

+

+

++++

+
+
++

++

+

+

+

+

+++

+

+

+++++
+
+
+
++

+

+

+

++++

+

+

+

++
+
+++

+

+
+
+
++++
+

+

+
+
+
+
+++
+

+

++
+++

+

+

+
+

+

+++++

+

+
+++
+

++

++

+
+
+

+

++++

+

++

+
+

+

++++++
+++++++

+

+
++
+
++
+

+

++
++
+
+
++
++

+

++
++
+

+

++
+
+++++

+

+

+

++++

+

+

+
+
+

+

+
+

+++

+
++

+

+
+
++++
+

+

++

+

+
+
++

+

+++
++++
+

+

+

+
+++
+++
+
+

+

+++
+
+
++
+
+

+
+

+
+
+
++

+
+

++

++++

+

++++
+
+++++

+

+
++
++
+

++++
+

++
+
++
+

+

+++++++
+++

++

+

+

+++
++++

+

+

+

+

+

++++

+
++
++++

+
+
+

++

++
+
++

+

++++

+

+
+

+

+

+

++

+

+
+
++
+
+

+
+

+
+

+

+++

+

+
++

+

++

++

+

++

+

+

+
+

+

+

+

MutipleRW (K = 1000)

�

�

�

�
������

�����
�����

�������
���������

���������������������
��

���
���

������������������������������
�������������������
�����������������������������
��
�������
�����������������
��������������
��
�����
�������������������������
����������������������������������
��������
�������������
������������������
����
������������������
�����������������������������
����������������
����������������
�
�
�����
���������
�
�������������
����
�����������
�
����������
������
�
�������
�
������
�����
����������
�
����������
����
���
�
�����������������
�
�����
������
�����������������������
���
���
�����������
����
�����
���������������
��������
�����
���������
���
�
�������
�
���
���������������
�����������
�
��������������������
�������
�
�
����
��������
����
�������
��������
�
���
�����
�
��
�
����
��������
�
�
�
�
��
����
�
��
����
�
����
��
��
���
����
����
�
������
��������
�
�
������������

���
������
�����
��
�������
�
���
�������
����
����
�
���
�
�������
����
����
����
��
�����
�

�������
��
���
����
�
�
�����������������
�
������
��
����
��
���
���
�
�
������
��
�

����������
��
�����
����
�
����
�
�
�
�
��
���
�
��
���
����������
�������
�
�
�
���
������
�
��
�
��
��
�����
����������
�����
����
�
��
�
��
�����
������������
������
��
�

�������
������
������
������
�������
��
�
������
����
���
�
�
�
�
��
�����������
��
�
���
�
��
�
�
�
���
��
�
�
�
�
��
�
�����
�
�������������

��
��
�
�
�
��
��
�
���
�
��
���
����������
����
�
����
����
���
���������
�
��������
���������
��������
�
����
�������
�
��
�
�
�
���
��
���������������
��
�
�
�
�
�
�����
�
�
�������
������

�

����
����
��
�
��������
������������
����������
�
�
����������
��������
�
���
�����
�
������
�
�
�
����
������
�����
���
�
�
�
������
�
�
�
��
������
�
�
��
�
���

�
���
�
�
�
�

��

�
�����
�
�
�
����
�
��������
�
�
�
�
��
�
�
�
��
�����
�
�
�����
�����
����
�
������
�
�
�
�
����������
����
�
������
�
��
��
��
�
�
�
���
��
�����
�
���
�
��
�������
�
�

����������
�
���

�
�
������

�

�����������
��������

�

��
�
�
��
��
�������
��

�

���
�
�
��
��
����
�
�
�
��
��
��
�
�
�
�
���
���
�
�
�
�����
��
���
�����
��
�
�
�����
��

�

����
�����
�
�
�
�
�
�
�
�
�
�
������
��
������
��
�
�
��
�
����
�����
�
��

��
�
��
��
��
�
�
�
�������
��
���
�
����
�
�
���
�
���
����
�����
�
������

�

������
�
��������������� �

�

Figure 3.4. (Flickr) The log-log plot of the NMSE of the in-degree distri-
bution estimates with budget B = |V |/100.

mates of vertices with small out-degrees in FS are up to one order of magnitude more

accurate than those obtained from both SingleRW and MultipleRW.

The next experiment focuses on studying the impact of loosely connected sub-

graphs over the degree estimates. Consider a graph that consists of two instances of a

random undirected Barabási-Albert [5] graph, GA and GB, with 5×105 vertices each

and average degrees 2 and 10, respectively, joined by a single edge connecting the two

smallest degree vertices in GA and GB (ties are resolved arbitrarily). Henceforth, this

graph is referred to as GAB.

The experiment consists of estimating the degree distribution of GAB using FS

(m = 100), SingleRW, and MultipleRW (K = 100). Again, both FS and MultipleRW

start at the same vertices in each execution of the simulation, which are initially

chosen uniformly at random. In this experiment the hypothesis is that, for small

sampling budgets, each random walker will see the degree distribution of either GA

or GB but not the degree distribution of GAB. Moreover, as the starting vertex of

each random walker is chosen uniformly at random, GA, which has the same number

41

0.35

0.4

0.45

0.5

0.55

0.6

0.65

103 5 × 103 |V |/100 1 × 105 106

θ̂
1
(n

)

Random walk steps (n)

SingleRW
FS (m = 1000)

MultipleRW (K = 1000)

Figure 3.5. (LCC of Flickr) Four sample paths of θ̂1 (θ1 = 0.53) as a
function of the number of steps n (horizontal axis in log scale).

of vertices as GB but 1/5 of the edges, receives more random walkers than its per

edge “share”. Consequently, MultipleRW oversamples GA.

Figure 3.8 shows the results of four simulation runs and plots the evolution of the

estimates of θ10 (θ̂10) as a function of the number of steps. In this simulation note

that: (1) FS quickly converges to a value that is close to the correct value; (2) two

out of the four SingleRW runs overestimate θ10 and the remaining two underestimate

it; (3) three out of the four MultipleRW runs converge to the same, incorrect, fraction

(underestimating the true value of θ10). FS is designed to be robust to disconnected

or loosely connected subgraphs. All of the FS runs quickly converge to good estimates

of θ10. Figure 3.9 also shows that the NMSE for FS, SingleRW, and MultipleRW, that

of FS is consistently lower.

3.5.2 Frontier v.s. Random Sampling

In Section 3.2 we show that if the degrees of two neighboring vertices are inde-

pendent, random edge sampling is more accurate than random vertex sampling when

it comes to estimating the tail of the degree distribution. In this section we observe

42

10−6

10−5

10−4

10−3

10−2

0.1

1

0 10 102 104 105

C
C

D
F

vertex out-degree

♦ ♦ ♦♦♦
♦
♦

Figure 3.6. (Livejournal) Log-log plot of the out-degree CCDF.

this to be true over large real world graphs; we also observe that the accuracy of FS

closely matches the accuracy of random edge sampling. In the following simulations

we estimate the in-degree distribution. Random edge sampling uses the estimator θ̂i,

equation (3.5) (the estimator used for sampled vertices is trivial).

In this first simulation we set the sampling cost of random vertex sampling to

one and random edge sampling has cost two (as each edge samples two vertices).

The sampling budget is B = |V |/100. We label this simulation “100% hit ratio”

to indicate the unitary cost of randomly sampling vertices. Figure 3.10 shows a

log-log plot of the NMSE of our simulation over the (complete) Flickr graph. The

vertical line indicates the average in-degree. Note that random edge sampling is more

(less) accurate than random vertex sampling at estimating in-degrees larger (smaller)

than the average in-degree, as predicted by equations (3.2) and (3.3) of our model in

Section 3.2. We also observe that the accuracy of FS (m = 1000) closely matches the

accuracy of random edge sampling.

43

10−2

0.02

0.1

0.2

0.5

1

2

4

0 10 102 104 105

N
M

S
E

vertex out-degree

SingleRW

♦

♦ ♦
♦♦♦

♦

♦

♦

♦

♦
♦♦

♦

♦♦
♦
♦

♦

♦

♦

♦♦
♦
♦♦♦♦♦♦♦♦♦♦♦♦♦

♦

♦

♦♦

♦
♦

♦

♦

♦♦♦♦♦♦♦

♦
♦♦♦

♦

♦♦♦♦♦♦
♦
♦♦♦♦♦♦♦♦♦

♦

♦♦♦♦♦♦
♦♦
♦♦♦♦♦♦♦♦♦

♦

♦♦

♦

♦♦♦♦
♦
♦
♦
♦
♦
♦
♦♦♦♦

♦

♦
♦♦

♦

♦♦

♦

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦
♦♦♦♦
♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦
♦
♦♦♦♦♦♦♦♦♦♦♦
♦♦♦
♦
♦♦♦
♦♦♦♦♦♦

♦

♦♦
♦♦♦♦♦
♦
♦♦♦♦♦

♦

♦♦♦♦

♦

♦

♦
♦♦♦
♦♦♦

♦
♦
♦
♦
♦♦♦♦♦
♦
♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦
♦♦♦♦♦♦
♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦
♦
♦♦♦♦
♦
♦♦♦♦♦♦♦
♦
♦
♦♦♦♦♦♦♦♦♦♦♦
♦
♦
♦♦♦
♦
♦♦♦♦♦♦♦
♦♦
♦
♦♦♦♦
♦

♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦
♦
♦♦
♦♦♦♦
♦♦♦♦♦
♦♦♦♦♦♦♦♦
♦
♦
♦♦
♦
♦
♦♦♦♦♦♦♦
♦♦
♦
♦♦

♦

♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦
♦♦

♦♦♦
♦♦♦
♦♦♦♦♦♦
♦
♦
♦
♦

♦
♦
♦♦♦♦
♦♦♦♦♦
♦♦♦♦♦
♦♦♦♦
♦♦
♦♦♦♦
♦
♦♦
♦♦♦
♦
♦♦
♦♦♦♦
♦
♦♦♦♦
♦♦♦

♦♦
♦
♦♦♦♦♦♦♦♦♦♦♦♦
♦♦
♦♦
♦
♦

♦
♦
♦♦♦♦
♦♦
♦
♦♦
♦
♦♦♦♦♦♦♦♦♦♦
♦
♦
♦
♦
♦
♦

♦
♦

♦
♦
♦♦
♦♦
♦
♦♦♦♦♦
♦
♦
♦♦♦♦
♦

♦
♦♦♦♦
♦♦
♦
♦♦♦
♦

♦♦♦♦
♦♦♦♦♦♦♦♦

♦
♦♦♦♦
♦♦♦♦♦♦

♦

♦♦

♦
♦♦♦♦
♦♦
♦♦
♦
♦
♦
♦
♦
♦
♦
♦♦♦♦

♦
♦♦
♦
♦
♦♦
♦
♦♦♦
♦♦♦♦♦♦

♦♦
♦♦
♦
♦
♦
♦♦
♦
♦
♦
♦

♦
♦♦
♦♦
♦
♦
♦♦
♦♦
♦♦

♦

♦

♦
♦
♦♦
♦
♦
♦♦♦
♦
♦♦♦

♦

♦♦
♦♦
♦♦♦

♦
♦
♦♦
♦
♦♦♦
♦♦♦♦
♦♦

♦
♦♦
♦

♦♦

♦

♦
♦♦♦

♦

♦♦

♦
♦
♦♦
♦

♦

♦♦

♦

♦♦
♦

♦♦
♦
♦
♦♦♦
♦
♦
♦
♦
♦

♦

♦

♦
♦

♦

♦♦
♦
♦

♦

♦
♦
♦
♦♦♦

♦
♦♦

♦

♦
♦♦
♦♦

♦♦

♦♦

♦

♦
♦♦
♦

♦♦
♦
♦♦

♦
♦♦
♦

♦
♦

♦

♦

♦♦
♦
♦
♦♦♦
♦
♦

♦
♦♦♦♦
♦♦
♦
♦
♦
♦
♦♦
♦♦♦

♦

♦♦♦♦
♦

♦

♦♦
♦♦♦♦
♦
♦♦

♦♦
♦
♦♦

♦

♦
♦♦
♦♦

♦

♦

♦

♦

♦

♦
♦♦♦♦
♦
♦

♦

♦
♦

♦
♦
♦♦
♦

♦
♦

♦
♦♦
♦♦♦
♦
♦
♦

♦
♦

♦♦♦
♦♦

♦

♦

♦

♦
♦♦
♦♦♦♦
♦♦

♦

♦

♦

♦♦
♦♦

♦
♦
♦
♦

♦

♦

♦♦
♦
♦

♦
♦
♦♦
♦

♦♦

♦♦♦♦
♦♦
♦♦♦
♦♦
♦
♦

♦
♦♦♦

♦

♦
♦

♦

♦♦♦
♦♦♦♦♦♦

♦

♦

♦

♦♦♦
♦♦
♦

♦
♦
♦

♦
♦
♦
♦
♦♦
♦

♦♦♦♦
♦
♦

♦

♦

♦♦♦♦

♦
♦♦♦

♦
♦
♦♦♦

♦

♦♦♦♦♦♦
♦
♦

♦

♦

♦♦♦
♦♦
♦♦
♦♦
♦♦

♦

♦♦♦
♦
♦♦
♦

♦

♦♦
♦
♦♦♦♦

♦♦♦♦
♦

♦♦

♦

♦
♦
♦♦♦
♦
♦♦♦♦
♦♦♦
♦
♦

♦

♦
♦♦
♦
♦♦♦♦

♦

♦
♦

♦♦♦

♦

♦
♦
♦♦♦
♦♦♦
♦
♦
♦
♦
♦

♦
♦♦♦
♦
♦
♦
♦
♦♦

♦
♦
♦

♦
♦
♦

♦
♦♦

♦
♦
♦♦♦♦
♦
♦♦♦♦♦♦
♦
♦♦♦♦♦
♦♦
♦♦♦
♦♦♦♦

♦♦
♦♦♦
♦♦
♦

♦♦♦♦♦

♦

♦♦
♦
♦♦♦♦
♦
♦

♦♦
♦

♦
♦
♦♦
♦
♦♦

♦

♦
♦
♦
♦
♦
♦

♦♦♦♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦
♦♦
♦

♦

♦
♦♦♦
♦
♦♦♦♦
♦♦♦

♦♦♦♦♦♦♦
♦
♦

♦

♦♦♦♦♦
♦
♦♦
♦
♦
♦
♦♦♦♦♦
♦
♦
♦
♦
♦
♦
♦
♦♦♦♦♦
♦
♦♦♦♦♦♦♦♦
♦
♦
♦♦

♦
♦♦♦♦♦♦♦♦♦♦
♦
♦

♦

♦♦♦♦♦♦♦♦♦
♦
♦♦
♦
♦♦♦♦♦♦♦
♦♦
♦♦
♦

♦♦♦♦♦
♦
♦♦
♦
♦
♦♦♦♦♦♦♦
♦
♦♦♦♦♦♦♦♦
♦
♦♦♦
♦♦♦♦
♦♦
♦♦♦♦♦♦♦
♦

♦♦
♦♦♦
♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦

♦

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

♦

♦♦♦♦♦♦
♦
♦♦♦♦♦♦♦
♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦
♦♦♦♦♦♦♦

♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦
♦♦

♦♦♦

♦

FS (m = 100)

+

+ ++++++++
++++

++
+
+++
+
+
+

++
+++++

+

+

+

+
+
+
+

+

+
+
+

+

+

+
+

+

+
+
+
+

+

+

+

+

++

+

++++++

+

++
+
++++++

+

+++
+++

++

+
+++
++++
+

+

++

+

+
+++
+

+

+

+
+
+
+
++
+

+

+
++

+

++

+

+
++++++
+
++
++++++++++++++
++++++

+

+++
+
+
+++++++
+++++++++++
++++
++++++
+
+++
+++
+
++++++
++++
+++
++

+
++
+++
++
+

+

+
+

+++++
+
+++++

+

++++

+

+

+

+++
+
++

+
+
+
+
+++++

+

++
+
++++
+++++++++
++
+
+
+++++++++
++
++++++++
++
+++++++
++++++
++++
++
++++
+
+++++
++++
+
+++
++++++
++
+
++++
+
+++++++
+
+
+
++++++++
++++
+
++
+

+
++++
++

++
+
++++

+

++
+
+
+
+
+++
++++++
+++
++
+
++
++
++
++++++++
++
+
+
++
+

+
+++++
+
+
++
+

++

+

+

+++++
++++++++++
+
++++++++++
++
+++++++
++

+
+++++
++++
+
+
+

+

+
+

+

+
+++
+
+++++
+
++++

+++
+
+
+
+++
+

+
++

+++

+

+
+++++
+
++
++
+++

++

+
++
+
+++++++++
++
++
+
+

+
+
+
+
++
++

+
+
++
+++
+
+
+
++++
+
+
+
+
+

+

+

+

+
+
++
++
+

+++++
+

+
++++
+

+
++++

++
+
+++
+

+++
+

++
+
+++++

+
++++
+
++
+++

+

++

+
++++
++

++
+
+
+

+
+
+
+
++++

+
++

+

+
+
+
+
+++
+
++++
+

++
+
+

+

+

+
++
+

+
+

+

+

++
++
+

+
+
+

++
++

+

+

+
+

++
+
+
+
+
+
+
+++

+

+
+
+
+
++
+

+

+
++
+

+++
+
+
++
++

+
+
+
+

++

+

+
+++

+

++

+

+
++

+

+

++

+

++
+

++

+
+
+++
+
+
+
+
+

+

+

+

+

+

++
+
+

+

+

+

+
+++

+

++

+

+
+
+

++

++

++

+

+
++
+

+
++
++

+
+
+
+

+
+

+

+

++
+
+
+
++
+

+

+

++
++
++
+

+
+

+

++

+
++

+

++++
+

+

++
++
++
+

+
+

++
+
++

+

+
++
+
+

+

+

+

+

+

+
++++
+
+

+

+
+

+
+
+
+

+

+
+

+
++
+++
+

+
+

+

+

+++

++

+

+

+

+

++
+
+
++
++

+

+

+

++
++

+
+
+
+

+

+

++

+
+

+
+
+
+

+

++

++++

++

+++
+
+
+
+

+
+++

+

+
+

+

+
++
+
+
++
++

+

+

+

+
+
+

++
+

+
+
+

+

+
+

+
++

+

++++
+
+

+

+

+
+
++

+

+++

+
+

+++

+

++
++++

+

+

+

+

+++

++
++
++
++

+

+++
+
++
+

+

++

+

++++

++++
+

++

+

+
+

+++

+

++++

+++
+
+

+

+

++
+
++++

+

+

+

+++

+

+
+
+++

+++
+
+
+
+
+

+
+++
+

+

+
+
++

+
+

+

+
+
+

+

++

+
+
+++
+

+
++++++
+
+++++

++

+++

++++

++

+++

++

+

++
+++

+

++

+

++++
+
+

++

+

+

+
++
+
++

+

+

+

+
+
+

+

+++++
++

++

++

++

++

+

+
+
+

+

+
+++

+

++++

++
+

+++++++
+
+

+

+++++
+
++
+
+

+

++++
+
+

+
+
+

+
+
+

+++++

+
++++++++

+
+
++

+

++++++++++
+
+

+

+++++++++

+

++
+
+++++++

++

++

+

+++++

+

+
+
+

+

+++++++

+

++++++++

+

+++
+
+++

++
+++++++
+

++

+++

+

++++++++++++++

+

+++++++++++++++++++++++++++++++

+

++++++

+

+++++++
+
+++++++++++++++++++++++++

+

+++++++

++
+++++++++
++++++
+

+++++++++++++++

+

++
+++

+

MultipleRW (K = 100)

�

�

��
�
���
�
������
�
��
�
������
�
������
�����������

�

��������
�
�����������
��
��

�

������������������������������
�����
�����������������������������
���������������������
�����
��

�

���
�
�������������
�
����

�

�

�
������
�
��������
�
�����������������
������������������
�������������
����������
����������������
������������
�
����
����������
�����������
��
���
�
�������
��
�
����
�
���������
�����������
���������
��������
�
�
���
�
���������
�
��
�

�
����������������������������
�������
��

���
�����
����
�
�
�
�
�
�
����
�����
�����
����
��
����
�
��
���
�
��
����
�
����
���

��
�
������������
��
��
�
�

�
�
����
��
�
��
�
����������
�
�
���
�

�
�

�
�
��
��
�
�����
�
�
����
�

�
����
��
����
�
����
��������

�
����
������

�

��

�
����
��
��
�
�
�
�
�
�
�
����

�
��
�
�
��
�
���
������
��
��
�
�
�
��
�
�
�
�

�
��
��
�
�
��
��
��

�

�

�
�
��
���
�
�
�
���

�

��
��
���

�
�
��
�
���
������

�
��
�

��

�

�
���

�

��

�
�
��
�

�

��

�

��
�

��
�
�
�����
�
�
�

�

�

�
�

�

��
�
�

�

�
�
��
��

�
��

�

���
��

��

��

�

�
��
�

��
�
��

�
�
�
�

�
�

�

�

��
�
�
���
�
�

�
����
��
�
�
�
�
��
���

�

����
�

�

��
����
�
��

��
�
��

�

�
��
�
�

�

�

�

�

�

�
����
�
�

�

�
�

�
�
��
�

�
�

�
��
���
�
�
�

�
�

���
��

�

�

�

�
��
����
��

�

�

�

��
��

�
�
�
�

�

�

��
�
�

�
�
��
�

��

����
��
�����
�
�

�
���

�

�
�

�
���
��
��
��

�

�

�

���
��
�

�
�
�

�

�
�
�
��
�
����
�
�

�

�

����

�
���

�
�
���

�

������
�
�

�

�

���
��
��
��
��

�

���
�
��
�

�

��
�

����

����
�

��

�

�
�
���
�
����
���
�
�

�

�
��
�
����

�

�
�

���

�

�
�
���
���
�
�
�
�
�

�
���
�
�
����

��
�

�
�
�

�
��

�
�
����
�
������
�
�����
��
���
����
��
���
��
�
�����

�

��
�
����
�
�

��
�

�
�
��
�
��

�

�
�
�
�
�
�

�����
��
��
��
��
��
�
��
�

�

�
���
�
����
���

�������
�
�

�

�����
�
��
�
�
�
�����
�
�
�
�
�
�
�
�����
�
��������
�
�
��

�
����������
�
�

�

���������
�
��
�
�������
��
��
�

�����
�
�
�
�
�
�������
�
��������
�
���
����
��
�������
�

��
���
�
��������������

�

�������������������������������

�

������
�
�������
�
�������������������������
�
�������
��
���������������
�
���������������
�
���

�

Figure 3.7. (Livejournal) The log-log plot of the NMSE of the out-degree
distribution estimation with sampling budget B = |V |/10 (MSE over 10, 000
runs).

Some complex networks exhibit a sparse user-id space. In this scenario a fraction

of the sampling budget B can be spent querying invalid users-ids. Motivated by

recent experiments over the MySpace network [56], the following experiment assumes

that only 10% of the user-ids are valid, i.e., in average only one in every ten randomly

sampled vertices are valid. We denote 10% to be the hit ratio. For random edge

sampling we assume a hit ratio of 1% (the choice of 1% is arbitrary). Figure 3.11

shows a log-log plot of the NMSE of our simulation over the (complete) Livejournal

graph with sampling budget B = |V |/100 = 52844. We observe that FS (m = 1000),

which samples m = 1000 random vertices and (in average) crawls B − 10m vertices,

preforms better than random edge sampling. Also note that FS estimates are more

accurate than the estimates obtained from random vertex sampling for all but the

three smallest in-degrees. This indicates that FS is more robust to low hit ratios than

random vertex and edges sampling.

44

0

0.012

0.024

0.048

1 5 × 103 104

θ̂
1
0
(n

)

Random walk steps (n)

SingleRW
FS (m = 100)

MultipleRW (K = 100)

Figure 3.8. (GAB graph) Four paths of θ̂10 as a function of the number of
steps n (θ10 = 0.024).

3.5.3 Density of Special Interest Groups

In a variety of complex networks, e.g., on-line social networks, each vertex (user)

is associated with multiple labels that represent group affiliations, e.g., user interests,

user geolocation, among others. For example, in the Flickr graph 21% of the users

belong to one or more special interest groups [50]. Let L denote the set of groups

in the Flickr graph and θl the fraction of vertices that belong to group l ∈ L. In

the simulations θl is estimated using FS (m = 100), SingleRW, and MultipleRW

(K = 100) with budget B = |V |/100. Figure 3.12 shows the NMSE (from 10, 000

runs) of the most popular 200 groups ordered in decreasing popularity. FS is clearly

superior to both SingleRW and MultipleRW. Even when restricting the random walks

to the largest connected component, FS still noticeably outperforms MultipleRW

(K = 100) and SingleRW.

3.5.4 Global Clustering Coefficient Estimates

Here the accuracy of estimating the global clustering coefficient is evaluated using

FS, SingleRW, and MultipleRW. The simulations show little difference between FS

45

0.1

0.2

1

5

1 10 102 104

N
M

S
E

vertex degree i

SingleRW

♦ ♦ ♦ ♦
♦♦♦

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

♦
♦♦♦♦
♦♦
♦♦♦
♦♦♦♦
♦
♦♦♦♦♦
♦♦
♦♦♦
♦♦♦♦♦♦♦♦♦♦
♦♦♦
♦♦♦

♦

♦
♦

♦♦
♦
♦

♦♦♦♦♦
♦♦♦♦♦♦

♦

♦♦
♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦

♦

♦♦♦♦♦

♦

♦♦♦♦

♦

♦

♦

♦
♦
♦

♦♦♦♦♦♦♦
♦
♦♦♦

♦

♦
♦♦♦♦♦♦♦
♦
♦
♦
♦

♦

♦
♦♦♦
♦♦♦♦
♦♦

♦

♦♦♦♦

♦

♦♦♦
♦♦♦♦
♦♦♦♦♦♦♦♦♦

♦

♦

♦♦

♦

♦

♦

♦♦♦♦

♦

♦♦♦

♦

♦♦♦♦♦♦♦

♦

♦♦♦♦♦♦♦♦♦♦♦♦♦

♦

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

♦

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

♦

♦

♦

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

♦

♦♦

♦

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

♦

♦♦♦ ♦♦♦ ♦

♦

FS (m = 100)

+
+

+
+

++++++++++++
+++++++++

++++++++
++++++++++

++++++
+
+
++++++
++++
++
+
+
+
+
+
++
+++
+

+

++
+
+++
++
+

+
+++
+
+

+

+++
+++++
+
+

+
+

++

+
+

++

++

+
++++
+

+
+

+

+
+

+
+

+

+

+
+
++

+

+
+

+
+

+
+++

+

+

+

+
+

+

+
+

+

+
++

+

+

+

+

+

+

+

++

+

+

+

+

+

+
+

+

+
+

++

+
+

+

+
++

+

++

+

++

+

+

++

++

+

+
++

+
+

+

+
+++

+

+

+

++
+

+

+

+

+

+
+

++
+

+

+

+
+

+

+

+

+

+

+

+

+

+

+++

+
+

+

+

+

+

+
+

+

+
+

++

+
+

+

+

+

+

+

+
+

+

++
+

++

++

++++

+

++

+

+

+

+

+

+

+

+

+

+

+++

+

+

+

+

+

+

+

+++

+
+

+

+

+

++

+

+

+

+

+

++++

+

+

+

+++++

+

+++

+

++

+

++++

+

+

+

+

+

++

+

+

+

++

+

+

+
+

++++++

+

++++++

+

+++++

+

+

+

+++++++++++++++++++

+

+

+

+

++

+

+++++++

+

++++++++++++++++

+

+++++++++

+
++++

+

+++
+++

+

+

MultipleRW (K = 100)

� � ��
��

��������������������������
��������������������

�����������������
���
�
���������
������

�

�����
�
�����������

�

�����������������

�

�����

�

����

�

�

�

��
�
�������
�
���
�

�

������������

�

����������
�
����

�

����������������

�

�

��

�

�

�

�

����

�

���

�

�������

�

�������

�

������

�

�����������������

�

����������������������������

�

�����

�

�

�

����������������������

�

��

�

���������������������������������������

�

������ �

�

Figure 3.9. (GAB graph) The log-log plot of the NMSE of the degree
distribution estimation with sampling budget B = |V |/10 (MSE over 10, 000
runs).

(m = 100), SingleRW, MultipleRW (K = 100). Table 3.2 presents the average and the

root mean squared error (
√
MSE) over 100, 000 runs of the estimates obtained using

FS over three graphs. From the results of Table 3.2 we observe that FS accurately

estimates the global clustering coefficient.

Graph Budget(B) C Ĉ ±
√

MSE

Joint Barabási-Albert |V |/10 10−4 10−4 ± 10−5

Flickr |V |/20 0.05 0.05 ± 10−3

LiveJournal |V |/50 0.06 0.06 ± 0.01

Table 3.2. Frontier sampling: global clustering coefficient estimates. C is the true
value of the global clustering coefficient and Ĉ is its estimated value.

46

10−3

10−2

0.02

0.1

1

8

30

0 10 102 104 105

N
M

S
E

vertex in-degree
av

er
ag

e
in

-d
eg

re
e

Random Edge Sampling (100% hit ratio)

♦

♦

♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

♦♦
♦♦

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦
♦
♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦
♦
♦♦♦♦♦♦♦
♦♦♦♦♦♦
♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦
♦♦♦♦♦
♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦
♦♦
♦♦♦♦♦♦♦
♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦
♦
♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦
♦♦♦
♦
♦♦♦♦♦
♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦
♦♦
♦
♦
♦♦
♦
♦♦♦♦♦♦♦♦♦♦
♦♦
♦
♦♦♦♦♦
♦♦♦♦
♦
♦♦♦♦♦
♦
♦♦♦♦♦
♦
♦♦
♦
♦♦♦♦♦♦♦♦♦
♦♦♦♦
♦
♦♦♦♦♦♦♦♦♦
♦♦♦
♦♦♦♦♦
♦
♦♦♦
♦
♦
♦♦♦♦♦♦

♦♦
♦♦♦♦♦♦♦♦♦♦
♦
♦
♦
♦♦♦
♦
♦
♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦
♦
♦♦
♦
♦♦♦♦
♦♦♦♦♦♦♦♦♦♦
♦♦
♦
♦♦♦♦
♦
♦♦♦♦
♦
♦
♦
♦♦
♦♦♦♦♦♦
♦
♦

♦
♦♦♦
♦♦♦♦
♦♦♦♦
♦
♦♦♦
♦♦
♦
♦
♦♦♦♦♦
♦
♦♦♦♦
♦♦♦
♦♦♦♦♦
♦
♦♦♦♦
♦
♦
♦♦♦♦♦♦♦♦
♦♦♦♦♦♦
♦
♦
♦♦♦♦♦

♦

♦♦
♦
♦♦
♦♦
♦♦♦
♦
♦♦♦
♦♦
♦
♦
♦♦
♦
♦
♦♦
♦♦
♦
♦
♦
♦♦♦♦
♦
♦
♦
♦
♦♦♦♦♦♦♦♦
♦
♦♦
♦♦♦
♦♦♦♦
♦♦
♦♦♦♦
♦
♦♦
♦
♦♦♦♦
♦♦♦
♦
♦♦♦♦♦♦♦♦♦
♦
♦♦
♦
♦
♦♦♦♦♦♦
♦
♦
♦♦♦♦
♦
♦♦
♦
♦♦♦
♦♦
♦♦♦♦♦
♦♦♦♦
♦

♦♦
♦♦♦♦♦♦
♦♦♦♦♦
♦♦♦
♦
♦♦
♦
♦♦♦♦
♦♦
♦♦♦♦♦
♦
♦
♦♦
♦

♦♦♦♦

♦

♦
♦

♦

♦
♦♦♦
♦♦
♦♦
♦♦♦♦♦♦♦

♦

♦
♦♦♦
♦♦♦
♦
♦

♦

♦♦♦♦♦
♦
♦♦
♦

♦
♦♦♦♦♦♦♦
♦
♦

♦
♦
♦♦
♦♦♦♦

♦
♦♦
♦
♦♦♦
♦
♦
♦
♦♦♦♦♦
♦♦♦
♦
♦
♦♦
♦
♦
♦♦♦♦

♦
♦♦♦
♦
♦

♦♦
♦

♦♦♦

♦

♦♦
♦
♦
♦♦♦
♦

♦
♦♦♦

♦

♦♦
♦
♦♦♦
♦
♦♦
♦♦♦♦♦♦♦

♦

♦♦♦♦
♦
♦

♦

♦

♦
♦♦♦♦
♦

♦

♦♦♦♦
♦♦♦♦

♦

♦♦
♦
♦♦
♦
♦♦♦♦
♦
♦
♦♦♦♦

♦

♦
♦♦♦♦
♦♦
♦♦
♦
♦♦♦♦
♦
♦♦
♦♦♦
♦
♦
♦
♦

♦
♦♦♦♦
♦
♦
♦

♦
♦
♦
♦
♦
♦♦♦♦♦♦
♦
♦♦♦

♦

♦
♦
♦

♦♦♦
♦♦

♦
♦
♦

♦
♦

♦♦♦
♦
♦♦
♦♦♦♦♦
♦♦
♦
♦♦♦♦♦♦
♦♦
♦

♦♦
♦
♦♦
♦
♦♦
♦
♦

♦♦♦
♦♦
♦♦♦♦♦
♦

♦

♦

♦

♦
♦
♦
♦♦

♦

♦

♦

♦♦
♦♦♦♦♦♦
♦♦

♦♦
♦♦♦♦♦

♦

♦
♦♦
♦
♦♦
♦
♦
♦♦♦
♦♦
♦♦♦♦
♦♦♦

♦
♦

♦
♦♦♦
♦
♦♦
♦♦

♦
♦♦

♦
♦♦

♦

♦♦
♦♦♦
♦♦

♦♦♦
♦♦
♦

♦

♦
♦
♦

♦

♦

♦♦♦♦
♦
♦
♦
♦
♦
♦♦
♦
♦

♦
♦
♦
♦♦♦
♦

♦♦♦
♦♦
♦♦
♦
♦♦
♦
♦♦♦
♦♦♦♦♦
♦♦♦
♦
♦
♦♦♦

♦

♦
♦♦♦♦♦♦
♦
♦♦♦♦
♦♦
♦♦

♦♦
♦♦
♦

♦

♦
♦
♦♦♦♦

♦

♦

♦

♦
♦♦
♦
♦♦
♦
♦
♦♦

♦

♦
♦
♦
♦
♦
♦♦♦

♦

♦

♦

♦

♦

♦

♦
♦♦♦
♦
♦
♦♦
♦♦
♦♦
♦
♦♦♦
♦♦
♦
♦
♦♦♦♦♦
♦

♦
♦
♦
♦
♦
♦
♦
♦

♦♦♦
♦
♦
♦
♦
♦

♦

♦♦♦

♦
♦
♦♦♦♦♦♦
♦
♦

♦♦♦♦♦
♦

♦♦♦
♦

♦

♦♦

♦
♦♦♦
♦

♦

♦♦♦
♦♦
♦

♦♦

♦♦
♦
♦♦

♦
♦♦♦♦
♦♦♦
♦♦♦

♦

♦♦♦♦
♦♦
♦

♦♦
♦

♦
♦
♦♦

♦♦♦♦
♦♦♦
♦♦
♦♦
♦♦♦
♦
♦
♦♦♦

♦

♦
♦♦
♦♦
♦♦♦

♦
♦
♦
♦
♦♦

♦

♦♦
♦♦♦♦♦
♦
♦♦♦♦

♦♦
♦
♦
♦
♦

♦

♦
♦♦♦♦
♦
♦
♦♦♦
♦
♦

♦♦
♦
♦♦♦
♦
♦♦
♦
♦♦
♦
♦♦
♦

♦
♦
♦
♦♦
♦♦♦
♦♦
♦
♦
♦♦♦♦♦♦♦♦♦
♦♦

♦
♦
♦♦
♦♦
♦
♦
♦

♦♦
♦♦

♦
♦
♦
♦♦
♦

♦
♦♦
♦
♦♦♦
♦♦♦♦

♦♦
♦♦♦
♦

♦

♦
♦
♦♦
♦
♦♦
♦♦
♦♦♦
♦♦
♦

♦

♦
♦
♦
♦
♦♦
♦
♦♦

♦♦♦

♦

♦

♦♦
♦
♦

♦♦
♦♦

♦♦♦

♦
♦♦♦♦
♦♦

♦
♦♦♦♦
♦
♦
♦

♦

♦
♦
♦♦

♦
♦
♦
♦
♦
♦♦
♦
♦♦
♦♦♦♦
♦♦♦
♦♦♦♦
♦♦♦
♦
♦
♦♦♦♦♦♦♦♦
♦♦
♦♦
♦♦
♦
♦
♦♦♦♦
♦
♦
♦

♦
♦♦♦

♦
♦♦
♦
♦
♦
♦♦
♦♦
♦
♦
♦
♦
♦
♦
♦
♦

♦

♦
♦
♦
♦♦♦♦♦
♦

♦♦♦

♦

♦
♦
♦

♦
♦♦♦
♦♦♦
♦♦
♦♦
♦♦
♦♦
♦
♦♦♦♦

♦
♦
♦

♦

♦♦♦♦♦♦
♦
♦♦♦♦♦♦♦
♦
♦
♦
♦
♦♦♦♦♦
♦
♦♦♦
♦♦
♦♦
♦♦♦♦♦
♦♦
♦
♦
♦
♦♦
♦♦

♦♦♦♦♦♦
♦♦

♦♦

♦♦♦♦♦♦♦♦
♦
♦
♦♦♦
♦
♦♦♦♦♦♦♦
♦♦♦♦
♦♦♦
♦

♦

♦♦♦♦♦
♦
♦♦
♦
♦♦♦♦

♦♦♦
♦♦♦♦
♦
♦♦♦
♦♦
♦
♦♦♦♦♦♦♦♦♦♦

♦

♦♦♦♦♦♦
♦♦
♦♦
♦♦
♦
♦♦

♦

♦

♦
♦
♦♦♦♦
♦
♦♦♦
♦♦
♦
♦
♦
♦♦♦♦♦♦♦♦
♦♦
♦
♦

♦♦
♦♦

♦♦♦
♦
♦
♦♦♦

♦
♦♦
♦♦♦♦♦♦♦♦♦♦♦♦
♦
♦♦
♦

♦
♦
♦♦♦♦
♦♦♦♦
♦♦
♦
♦
♦
♦

♦♦♦

♦♦
♦♦♦♦♦♦♦♦♦♦
♦
♦

♦

♦♦♦♦
♦
♦
♦
♦♦♦♦♦♦
♦
♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦
♦
♦♦♦♦♦
♦
♦
♦♦
♦
♦♦♦♦♦
♦
♦♦♦♦♦
♦♦
♦♦
♦♦♦
♦
♦♦♦♦
♦
♦♦
♦♦
♦
♦♦♦♦♦♦♦♦♦♦♦♦♦

♦

♦♦♦♦♦♦♦♦
♦♦♦♦♦♦
♦♦♦♦♦
♦♦♦♦♦
♦
♦♦♦♦♦♦♦♦
♦
♦
♦
♦♦♦♦
♦
♦

♦♦♦
♦
♦♦♦♦♦
♦♦♦

♦
♦♦
♦♦♦♦♦
♦
♦♦
♦
♦♦♦♦
♦
♦♦♦♦♦♦♦♦♦
♦
♦♦♦♦♦♦♦♦♦

♦
♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦
♦♦♦♦
♦
♦♦♦♦♦♦♦♦♦♦
♦
♦♦♦♦♦♦
♦♦♦♦♦
♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦
♦♦
♦♦
♦
♦
♦♦♦♦♦♦♦

♦

♦
♦
♦
♦
♦♦♦♦♦♦♦
♦♦♦♦♦♦♦
♦♦
♦♦♦♦♦♦♦
♦♦♦♦
♦♦♦
♦
♦
♦♦
♦
♦♦♦♦♦♦♦♦
♦♦♦
♦♦♦

♦
♦♦
♦
♦
♦♦
♦♦♦
♦♦
♦
♦

♦♦
♦

♦

♦

FS (m = 1000) (100% hit ratio)

+

+

+
+++++

++++++++
+++++++++++++++

+++++++++++++++++++++++++++
+++
+
++

+++++++++++++++++++++++++++++
+++

+++++++++++++++
++++++
++++++++++++++++++++
+++++++++++++++++++++
++++++++
++++++++
+++++++++++++++++++++++++
+
++++++
+
+
++++++++
+++++++++++
+++++
++++
+++++
+
+++++++
++++++
+
++++++++
+++++++++++++
+
++
+
+++++
+
++++++
+
+
++++
+
+++
+
++++++
+++++
+
++++++++
+
++++++
+
+
++++++++++++
+
+
+
+++++
+++++++
+
+++++++
+++
+
++++
+++++++++
+++++++
++++++++++
++
+
+
++
+
++++++++++
++
+
+++++
++
++
+
+++++
+
+
++++
+
++
+
+++++++
+
+
++++
+
+++++++++
+++
+++
++
+
++
+
+
+
++++++

+
+
+++++
+
++++
+
+
+
+++
+

+
+++++++
+
++++++++++
+
++
+
++++
++
+
++
++
++
+++
+

+++
+
+

++++
+
+
+
++
+++
++
+
+

+

+
+++
+
+++
+++
++
+++
++
+

+
+
+++
+

+
++++
+++
+++++
+
++++
+
+
++++++
++
+++++
++
+
+++
++

+

++
+
+
+
+
++++
+
+
++
+
+
+
+
++
+
+
++
++
+
+

+
++
++
+
+
+
+
++
+
+
++++
+
++
+++
+
+++

++
++++
+
++
+
++++
+++
+
+++
++++++
+

++
+
+
++++++
+
+
+++
++++
+
+
+
+
++
+++++
++
++

+

+
++++
+++
+++++
+
+
+
+
++
+
++++
++
+++++
+
+
+
+

+

++++

+

+
+

+

+
+++
++
+
+
+++++++

+

+
+++
+++
+

+

+

++++
+

+
++
+

+
+
++++++
+
+

+

+
++
+++
+

+
++
+
++
+

+
+

+
+++
+
+
+++
+
+
++
+
+
++
++

+
+++
+
+

++
+

+
++

+

++
+
+
+
++
+

+
+
++

+

++
+
+
+
+
+
++
+++++++

+

++++
+
+

+

+

+

++++

+

+

+
+++
++++

+

++

+
++

+
++++
+
+

++++

+

+
+
+++
+
+++
+
++++
+
+
+
+++
+
+
+

+

+
++++
+
+
+

+
+
+
+
+
++
+
+++
+
+++

+

+
+

+

+++
+
+

+
+
+

+
+

++
+
+
++
+++
+
+
++

+
++++++
++
+

+
+
+
++
+

++
+
+

+++
++
+++++

+

+

+

+

+

+
+
++

+

+

+

++
++
+
+++
++

++
+
+
+++

+

+
++

+
+
+
+
+
+++
++

+
+++
+
+
+

+
+

+
+++
+
++
+
+

+

++

+

++

+

++
+++
+
+

+++
++
+

+

+
+
+

+

+

+
+++
+

+

+
+
+
++
+
+

+
+
+
+++
+

+++
++
++
+
++
+
+++
+++++
+++
+
+
+++

+

+
+
+++++
+
++
++
++
++

++
++
+

+

+
+
+
+
+
+

+

+

+

+
++
+
++
+
+
++

+

+
+
+
+
+
+
++

+

+

+

+

+

+

+
++
++

+

++
++
++
+
+++
++

+
+
+++++

+

+
+

+

+
+
+
+
+

+++
+
+
+
+

+

+

+++

+
+
++
++++
+
+

++
+++
+

+
+
+
+

+

++

+
+
+
+

+

+

+++

++
+

++

++
+

++

+
++++
+++
+
++

+

+
+
++
++
+

++
+

+
+
++

+++
+
+++
++
++
+++
+
+
++
+

+

+
++
+
+

+++

+

+
+
+
++

+

++
++++
+
+
+++
+

++
+
+
+
+

+

+
++++

+

+
+++
+

+

++
+
+++

+
+
+

+
++

+

++
+

+
+
+
++
+
++
++
+
+
+
+++
+++++

+
+

+

+
++
++

+
+
+

+
++
+

+
+
+
++
+

+
+
+
+
+++
+++
+

++

++
+
+

+

+

+
+
+

+

++
++
++
+

+
+

+

+

+
+
+
+
++
+
+
+

+++

+

+

++
+
+

++

++

+++

+
+
+++
++

+
+++
+

+
+

+

+

+
+
++

+
+
+

+
+

++

+
++
++++
+++
+++
+
+++
+
+

+++++
+
++
++
++
++
+
+
++++
+
+
+

+

+++

+
++
+

+
+
++
++
+

+

+
+
+

+
+
+

+

+
+
+

+++
+
+
+

+++

+

+
+
+

+

+++
+++
++
++
++
++
+
++++

+
+
+

+

++++++
+
++++
+++
+
+
+
+
+++++

+
+
++
++
++
+
+++
+
+
+
+
+
+

++

+
+

+++++
+
++

++

++++++++
+
+
+++
+
++++
++
+++++

+++
+

+

+++++
+
++
+
++
+
+

+++
+++
+
+
+++
++
+

++++++++++

+

++++++
+
+++
++
+
++

+

+

+
+
++++
+
+
++
++

+
+
+

++++++++
++
+

+

++
++

+++
+
+

+++

+
+
+

++++++++++++
+
++

+

+

+

++++
++++
++
+
+
+
+

+++

+
+
++++++++++
+
+

+

++++
+
+
+

++++++
+
+++++++++
++++++++
+
+++++
+
+
++
+
+++++
+
+++++
++
++
+++

+

++++
+
++
++
+
+++++++++++++

+

++++++++
++++++
++++
+
+++++
+
++++++++
+
+
+
++++
+
+

+++
+
++
+++
+++

+
++
+++++
+
++

+
++++
+

+++++++
+
+
+
+++++
++++

+

+++++++++++
+++++
++
++
++++
+
++++++++++

+

++++++
+++++
++++++
+
+++++++
+++
++
+
+
+++++++

+

+
+
+
+
+++++++
++++
+++
++
++++++
++++
+
++
+
+
+
++
+

+
+
++++
++
+++
+++

+
+
++
+
++
+++
++
+
+

++
+

+

+

Random Vertex Sampling (100% hit ratio)

�

�

�
�

����
���

����
�����

������
��������

�����������
��������������

����������������������
�����������������������

��������������������������
���������������������������������

���������������������������
���������������������
���������������������
�
�������������������
��������
���������������������������������
��������
�
��������
����������������
���������
��������
������
�
��������
������
����������
�
���
�����������
����
�
����������
�����
���������
�
�����������
���������
��������
���������������
���
����
����������
�����������������
��
�
�
��
�
����������
��
�
�����
�
�
��
�
�����
�
�
����
�
��
�
�������������
�
���������
���
���
��
�
���
�
�
������
��
����������
�
�
�
��
��
�
��������
����������
�
��
�����
��
�
��
��
��
���
�
���
�
�
����
�
�
�
��
������
�
�

�
���
����
����
�
���
��
�
�
�
���
�
�
����
���
�����
�
����
�
�
������
��
���
����
�
�����

�

�
�
�
��
��
���
�
�
��
��
�
�
��
�
�
��
����
�
����
�
�
�
�
��
�
�����
�
��
���
����
��
����
�
��
�
����
���
�
���������
�
��
�
�
������
�
�
����
�
��
�
���
��
�����
����
�

��
������
��������
�
��
�
����
��
����
���
��
�

����

�
�
�

�

�
���
��
���������

�

�
���
���
�
�

�

����
�
�
��
�

�
����
��
�
�
�

�
�
��
���
�

�
��
�
��
�
�
�
������
���
�
�
����
���
�

�
���
�
�
��
�
���
�

��
�
�
���
�

�
��
�

�
��
�
�
��
�
��
�
������

�

������

�

�

�
����
�
�

��������

�
��
�
��
�����
�
�
����

�

�
����
��
��
�
���
����
���
�
�
�
�

�
����
�
��
�
��
�
���
��������

�

�
�
�

���
�
�

�
�
�

�
�

��
��
��
�����
��
�
������
��
�

�
�
�
��
�
��
�
�

���
��
�����
�

�

�
�
�
����

�
�
�

��
��
�
�����
��
�����

�
���

�
��
�
�
���
��
�
�����
�

�
�

�
���
�
��
�
�

�
��
�
��
�

�
������
���
��
�

�

�
�
�

�

�
�����
�
�
�
�
��
��
�
�
�
���
�

���

�
���
�����
����������
�
�
�
�
�
�

�
����
��
�
��
��
��
�
�
��
��
�

�
������

�
�
�

�
��
�
��
�
�
��

�
���
�
����
�
�
�

�

�
�
�
��
��
�
��
��
��
�
���
��
�
�
�����
�
�
�
�
�
���
�
���
�
�
�
�
�

�

���

�
�������
�
�
�����
�
���
�

�

��
��
�
�
�

�

���
��
�
��
��
�
��

�
����
��
�
���
�

�
�
��
��
�
�
�
�

�
�
��
����
�����
��
����
�
��
�

�

�
����
���

�
�
��
��

�

��
�����
�
����

��
�
�
�
�

�

�
����
�
�
���
�
�

�
�
�
���
�
��
�
��
�
��
��
�
�
��
��
���
�
���������
���

�
�
��
��
�
�
�

��
�
�

�
�
�
��
�

�
���
���
����
��
���
�
�
�
�
�
�
�
��
��
���
�
�
�

�

�
�
�
���
�
��
���
�
�
��
�
�
��
�
�

���
��
��
�
��
�����

�
�
�
�
�
���
�
��
�
�
�����
����
���
���
�
��
�
�
�
����
�
�
��
��
�
���
�
�
����
�
�
�
�
���
�
���
�
�
�
���
�
�
�
�
�
�
�
�

�

�
��
����
��
���

�

�
�
�

�

���
�
�
�
���
�
��
�
��
�
�
��
�
�
�
�
������
�
����
���
�
�
�
�
�����
�
�
��
��
�
�����
���
�
��
���

�

�����
�
��
�
��������
�
�
�
���
�
����
�
������
���
�
�
�����
�
�
�
�
����
���
���
���
�
���
�
����������
�
������
�
���
�
��
��
�
�
�
�
�������
�
��
�
�
�
��������
��
�
�
��
��
���
�
�
�
�
�
��
�
������������
�
��
�
�
�
����
����
��
�
��

�

���
��
����������
�
�
�
����
�
�
�
������
�
��������
�
��������
�
�����
�
���
�
����������
�
��
��
��������
�
��
��
��������������
�
�������
�
����������
�
�����
�
��������
�
�������
�
������
��
����
�
�������
�
�������
�
���������
�
���������
�
����������
�
��������
�
���
�
�������
�
�� �

�

Figure 3.10. (Flickr) The log-log plot shows the NMSE of the in-degree
distribution estimation with budget B = |V |/100 = 18612 (MSE over 10, 000
runs).

3.5.5 Convergence to Stationarity

In this last set of experiments we see how fast FS, SingleRW, and MultipleRW con-

verge to their stationary edge sampling probabilities. In this simulation K ∈ {1, 10}

(number of independent random walkers), m = 10 (Frontier sampling dimension) and

restrict our analysis to the largest connected component of the three graphs in our

datasets with the smallest number of vertices (in order to speed the computation):

“Internet RLT”, “YouTube”, and “Hep-th”. Let p
(B)
u,v denote the probability that a

random walker, whose initial vertex is chosen uniformly at random, samples edge

(u, v) at its the end of its sampling budget B. To measure the convergence to the

stationary edge sampling probability, we use the largest relative difference between

the stationary sampling probability 1/|E| and p
(B)
u,v :

max
(u,v)∈E

1− p
(B)
u,v

1/|E| .

47

10−2

0.02

0.1

1

8

30

0 10 102 104 105

N
M

S
E

vertex in-degree

Random Edge Sampling (10% hit ratio)

♦

♦ ♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦
♦
♦
♦
♦♦♦♦♦♦♦♦♦♦♦♦
♦
♦♦♦♦♦♦
♦♦♦♦♦♦
♦♦♦♦♦♦
♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦
♦
♦♦♦♦
♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦
♦♦
♦
♦♦
♦
♦
♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦♦♦♦♦♦♦
♦♦♦♦♦♦♦
♦♦

♦♦
♦♦♦♦
♦♦♦♦♦♦♦♦
♦
♦
♦♦♦♦♦♦
♦♦♦♦♦
♦
♦♦♦♦
♦♦♦
♦
♦♦
♦♦♦♦
♦
♦♦
♦♦♦
♦
♦♦
♦♦♦♦♦♦♦
♦♦
♦♦♦

♦♦
♦
♦♦♦♦♦♦♦
♦
♦♦♦♦
♦♦♦♦
♦♦

♦
♦
♦♦♦♦
♦♦♦
♦♦
♦
♦♦♦
♦
♦♦♦♦♦♦
♦
♦
♦
♦♦
♦

♦
♦

♦
♦
♦♦
♦♦♦♦♦♦♦♦
♦
♦♦
♦♦
♦♦
♦
♦♦♦♦

♦♦
♦
♦♦♦♦♦
♦
♦
♦
♦♦
♦♦♦♦♦♦

♦
♦♦♦
♦
♦
♦
♦♦♦♦♦♦♦
♦
♦♦♦♦
♦♦
♦♦
♦
♦
♦
♦
♦♦
♦
♦♦♦♦
♦♦♦
♦
♦
♦♦

♦
♦
♦
♦
♦♦♦♦♦♦
♦♦
♦♦
♦

♦

♦♦♦
♦
♦
♦
♦

♦
♦♦
♦♦
♦
♦
♦♦
♦♦
♦♦

♦

♦
♦
♦
♦♦
♦♦♦♦♦
♦
♦♦♦

♦

♦
♦
♦
♦
♦♦♦

♦

♦
♦♦
♦
♦♦♦
♦
♦♦♦♦♦

♦
♦♦
♦
♦♦

♦

♦
♦♦♦

♦
♦♦
♦
♦
♦♦
♦

♦

♦♦
♦
♦♦
♦
♦♦
♦
♦
♦♦♦♦♦
♦
♦♦

♦

♦

♦
♦

♦

♦♦
♦
♦

♦

♦
♦
♦
♦♦♦

♦
♦♦

♦

♦
♦♦

♦♦

♦♦

♦♦

♦
♦♦♦
♦
♦
♦♦♦♦

♦
♦
♦
♦

♦♦
♦

♦

♦♦♦
♦
♦♦♦♦
♦
♦♦
♦
♦♦♦
♦♦
♦
♦
♦
♦♦
♦
♦♦

♦

♦♦♦♦
♦

♦

♦♦
♦♦♦♦
♦
♦♦

♦♦
♦
♦♦

♦

♦
♦
♦♦♦

♦

♦

♦
♦
♦

♦
♦♦♦♦♦
♦
♦

♦
♦

♦
♦♦♦
♦

♦
♦

♦
♦♦
♦♦♦
♦
♦
♦

♦
♦

♦♦♦
♦♦

♦

♦

♦

♦
♦♦
♦♦♦♦
♦♦

♦

♦

♦

♦♦
♦♦
♦♦
♦
♦

♦

♦

♦♦
♦
♦

♦
♦
♦
♦
♦

♦♦

♦♦♦♦
♦♦
♦♦♦♦♦
♦
♦

♦
♦♦♦
♦
♦
♦

♦
♦♦♦
♦
♦
♦♦
♦♦

♦

♦

♦

♦♦♦
♦♦
♦

♦♦
♦

♦
♦
♦
♦
♦♦
♦
♦♦♦♦
♦
♦

♦

♦

♦♦♦♦
♦
♦♦♦

♦♦
♦♦
♦♦

♦♦
♦♦♦♦
♦
♦
♦

♦

♦♦♦
♦♦

♦♦
♦♦
♦♦

♦

♦♦♦♦♦♦
♦

♦

♦♦
♦
♦♦♦♦
♦♦♦♦
♦

♦♦

♦

♦
♦
♦♦♦
♦
♦♦♦♦
♦♦♦
♦

♦

♦
♦
♦♦
♦
♦♦♦♦

♦

♦
♦
♦♦♦

♦

♦♦♦♦♦
♦♦♦
♦
♦
♦
♦
♦

♦
♦♦♦
♦
♦
♦♦♦♦

♦♦

♦

♦
♦
♦
♦
♦♦

♦♦♦♦♦
♦
♦♦♦♦♦♦♦
♦
♦♦♦♦♦
♦♦
♦♦♦
♦♦♦♦
♦♦
♦♦♦
♦♦
♦
♦♦♦♦♦

♦

♦♦
♦
♦♦♦♦♦♦
♦♦
♦

♦
♦
♦♦♦♦♦

♦

♦
♦
♦♦♦
♦
♦♦♦♦♦
♦♦
♦♦
♦♦
♦♦
♦♦
♦
♦♦
♦

♦

♦♦♦♦
♦
♦♦♦♦
♦♦
♦

♦♦♦♦♦♦♦♦♦

♦

♦♦♦♦♦♦♦♦
♦
♦
♦
♦♦♦♦
♦♦
♦
♦
♦
♦
♦
♦
♦♦♦♦♦
♦
♦♦♦♦♦♦♦♦♦♦♦♦
♦
♦♦♦♦♦♦♦♦♦♦♦♦

♦

♦♦♦♦♦♦♦♦♦
♦
♦♦
♦
♦♦♦♦♦♦♦
♦♦
♦♦
♦
♦♦♦♦♦
♦
♦
♦
♦
♦
♦♦♦♦♦♦♦
♦
♦♦♦♦♦♦♦♦
♦
♦♦♦♦♦♦♦
♦♦
♦♦♦♦♦♦♦♦♦♦
♦♦♦
♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦

♦

♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦

♦

♦♦♦♦♦♦
♦
♦♦♦♦♦♦♦
♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦
♦♦♦♦♦♦♦
♦♦
♦♦♦♦♦♦♦♦
♦
♦♦♦♦♦♦
♦
♦♦♦♦♦♦♦♦♦♦♦♦♦♦♦
♦
♦♦♦

♦

FS (m = 1000) (10% hit ratio)

+

+ +++++++++++
++++++++++++++++

++++++++++
+++++
++++++++
+
+++
+
++++++

+
++
+
++++++
+
++++++
+++++++++++

+

++++++++
+
+++
++++++
+++
+
++

+

+++++++
+++++++++++++++++++++++
+
++++
+
++++++++++++++++++
+++++++++++++++++
++++++++++++
+++++++
++++++
+
+++++++++++++
+
++++

+

+

++++
+++
+
++++++++
+
+++++++++
++++++++
++++++++++++++
++++++++++
+++++++
++++++
++++
++++++
+
+++++++++
+
+++++++++
++
+
+
+
++
++++++++++
+
++++++++
++++
+
++
+
++
+++++
++
+
++++
+
++++
+++++++++
++
+++
++
+++
++++++
+
+++++
++++
+++
++
+
+++++
++
+

++
+

+
+++++++++++++++
+++++++++++++
+++++++
++

++
++++
++++
+
+
+
+

+
+

+
+
++++
+++++
+
++++
+++
+
+
+
+++
+

+
++
+++
+
++
++++
+
++
++
+++

++
+
+++++++
+++++
++
++
+
+

+
+
++++
++
+
++
+
+++
+
+
+
++++
+
+
+
+
+

+

+
+

+
+
++
++
+
+++++
+
+
+++++
+
++++

++
+
+
++
+
++++

++
++++++

+
+++
+
+
+++++

+

++

+
++++
++
++
+
+
+
+
+
+
+
++++

+++
+
+
++

+
+++
++++++

++
++
+

+

+
++
+
+
+
+

+
++
++
+
+
++
++
++

+

+

+
+
++
+
+
+
+
+
+
+++

+

+
+++
+++

+

+
++
+
+++
+
+++
++

+
++
+

++

+

+
+++

+

++

+

+
++

+

+

++

+

++
+

++
+
+
+++
+
+
+
+
+

+

+

+
+

+

++
+
+

+

+
+
+
+++

+
++

+

+
+
+

++

++

++

+

+
++
+

+
++++

+
+
+
+

++

+

+

++
+
+
+++
+
+

+
++++
++
+
+
+
+
++
+
++

+

++++
+

+

++
++++
+

++

++
+
++

+

+
+
++
+

+

+

+

+

+

+
++++
+
+

+

+
+

+
+
+
+
+

+
+

+
++
+++
+
+
+

+
+

+++
++

+

+

+

+
++
+
+
++
++

+

+

+

++
++

+
+
+
+

+

+

++
+
+

+
+
+
+
+

++

++++
++
+++++
+
+

+
+++

+

+
+

+

+++
++
++
++

+

+

+

+++
++
+

+
+
+

+

+
+

+
++
+
++++
+
+

+

+

++++

+
+++

+
+
+++

+

++
++++
+

+

+

+

+++
++
++
++
++

+

+++
+
+++

+

++
+

++++

++++
+

++

+

+
+
+++
+

++++
+++
+

+

+

+
++
+
++++

+

+
+

+++

+

+++++
+++
+
+
+
+
+

+
+++
+

+
++++

+
+

+

+
+
+

+

++

+++++
+
+++++++
+
+++++
++
+++
++++

++
+++
++
+

+++++

+

++
+
++++
++

++
+

+
+
++
+++

+

+
+
+
++

+

+++++
++
++

++
++
++
+
++
+

+

++++
+
++++
++
+

+++++++
+
+

+

+++++
+
++
+
+

+
++++
++
+
+
+

+
+
+
+++++
+
++++++++
+
+
++

+
++++++++++
+
+

+

+++++++++
+
++
+
+++++++
++
++
+

+++++
+
+
+
+
+

+++++++
+
++++++++
+

+++++++
++
+++++++
+

++

+++
+
++++++++++++++

+

+++++++++++++++++++++++++++++++

+

++++++
+

+++++++
+
+++++++++++++++++++++++++
+
+++++++

++
+++++++++
++++++
+
+++++++++++++++
+
+++

+

Random Vertex Sampling (10% hit ratio)

�

�
�

������
����

�����
������

������
��������

��������
���������
�����������
�����������
�������������
���������������
���������������
���������������
�����������������������
��������������������
�����������������������������
�������������������
��������
���������������
�������������������
����������������������������
���������
�����
���������������
����������
����
�������������
�
��������
����
������
�����
����������
�����������
����������
������
�
�����
���������������
��
�
��
�
�
�����
����������
�������������
�������
��

���
���
��������
�
�
������
�����
�
����
���
�
��
����
�
��
���
�
��
�����
��
����
�

��
�
�������
�����
����
�
�

�
�
����
���
��
�
����������
�
�
�
��
�

�
�

�
�
��
��
������
�
�
��
�
��
�����
��
�
�����
�
�
�
��
������

�
���
�
�
��
���
�
��
�
����
��
��
�
�
�
�
��
�
�
���
���
�
�
��
�
�
�
�
������
��
��
�

�

�
��
�
��
�

�
��
��
�
�
���
�
��

�

�
�
�
��
�����
�
���

�

�
���
���

�
�
��
�
���
�
���
��

�
��
�
��

�

�
���

�
��
�
�
��
�

�

��
�
��
�
��
�
�
���
�
�
�
��

�

�

�
�

�

��
�
�

�

�
�
�
���

�
��

�

���
��

��

��

�
���
�

�
����

�
�
�
�

��
�

�

���
�
����
�
�
�
�
��
���
��
�
��

�
��

�

����
�

�

��
����
�
��

��
�
��

�

�
�
���

�

�

�
�
�

�
����
�
�
�

�
�

�
�
��
�

�
�

�
��
���
�
�
�

�
�

���
��

�

�

�

�
��
�
�
��
��

�

�

�

��
��

��
�
�

�

�

��
�
�

�
�
�
�
�

��

����
��
�����
�
�

�
���
�
�
�

�
�
��
�
�
��
��

�

�

�

�
�
�
��
�

�
�
�

�
�
�
�
��
�
����
�
�

�

�

����
�
���

�
�
��
�
�

���
���
�
�
�

�

���
��
��
��
��

�

�������

�

��
�
����
����
�

��

�

�
�
���
�
����
���
�

�

�
�
��
�
����

�

�
�
���

�

�����
���
�
�
�
�
�

�
���
�
�
����

�
�

�

�
�
�
�
��
�����
�
�������
�
�����
��
���
����
��
���
��
�
�����

�

��
�
������
��
�

�
�
�����

�

�
�
���
�
�����
��
��
��
��
��
�
��
�

�

����
�
����
��
�

���������

�

��������
�
�
�
�����
�
�
�
�
�
�
�
�����
�
������������
�
������������

�

���������
�
��
�
�������
��
��
�
�����
�
�
�
�
�
�������
�
��������
�
�������
��
���������
�
���
�
��

�

������
�
�������
�
�������������������������
�
�������
��
���������������
�
���������������
�
���

�

Figure 3.11. (Livejournal) The log-log plot shows the NMSE of the in-
degree distribution estimation with budget B = |V |/100 = 52844 (MSE over
10, 000 runs).

Table 3.3 presents a Monte Carlo estimate of this relative difference. The 95% confi-

dence interval of the Monte Carlo simulation is ±1%. The estimates show that the

difference between the transient and the stationary edge sampling probabilities of

independent random walkers are between 5 and 42 times larger than the difference of

Frontier sampling. This means that Frontier sampling converges faster to stationarity

edge sampling probability.

In what follows we see that FS sampling is well suited to be used in large scale

(parallel, asynchronous) experiments.

3.6 Distributed Frontier Sampling

In what follows we see that FS sampling can be achieved by multiple independent

random walkers (MultipleRW) where the cost of sampling a vertex v is an expo-

nentially distributed random variable with parameter deg(v). The proof uses the

Uniformization principle of Markov chains [10, Chapter 7.5] and the Poisson de-

48

10−2

0.15

0.3

0.5

1

1.5

1 50 100 150

N
M

S
E

Group index

SingleRW

♦
♦
♦♦♦

♦

♦♦♦♦♦♦♦♦

♦

♦♦♦
♦♦♦♦♦♦♦♦♦♦♦

♦
♦♦♦♦♦♦♦

♦
♦

♦
♦♦
♦
♦
♦
♦♦♦♦♦♦♦♦♦

♦♦♦♦♦♦

♦

♦♦♦♦
♦♦♦♦

♦♦♦
♦♦♦♦♦♦

♦

♦♦

♦

♦♦

♦

♦
♦♦♦♦

♦

♦

♦

♦♦♦♦
♦♦♦
♦

♦

♦

♦

♦

♦♦♦

♦♦

♦♦

♦

♦♦♦♦
♦♦♦♦

♦

♦♦♦♦

♦♦

♦

♦

♦♦

♦

♦

♦

♦♦♦♦

♦

♦♦♦

♦♦

♦♦♦♦♦

♦

♦
♦
♦

♦

♦

♦

♦

♦
♦

♦♦

♦♦

♦♦

♦

♦
♦
♦

♦

♦

♦♦♦

♦

♦♦♦♦

♦

♦♦♦♦

♦
♦

♦

♦

FS (m = 100)

++++++

+
+

+

+
+
+
+
+++++
++
++

++++
+
++

+

+
+++++
+
+
+
+
++
+
+

+

++
++
+
+
+
++
+
+++++

+
+
+++
+
+
+
+
++
+
++++++

+
+
+

+
+
+
++

+
+
+
+
+

++++
+
+
+
++
++++++++

+
+++
+
++
+
+
+
+++
+++++++

++++++++++
+
++
+++
++++++++

+
+
+++++++

+
+
++
+
+
+
++
+

+++++
+++
+
++++++++

+

MultipleRW (K = 100)

������

�

�

�

�

�

�

�

���

�

�
�
�

�

�

�

�
��
��
���

�

��

��
�

�
�
�

��
�
�

�

�
�
�

�

�

�
���

�

��
�
��

�

�
�
��

�

����
�

�

�

�

�

�

�
�

�
�

�
�
�

���

�

�

�

�

�

�
�

�
�

�

�
��

�

�

�

���
�
��

�

�
��

�

�
�
��
��
��
�
��
�
�

�
��
���
�

�
�

�

�
�

�

��

�

�

�

�
��
�

�
��

��

�

��
�

�
�
��

�

�
��
�

��
��

�

�
�

��
�����

�����
���

�

Figure 3.12. (Flickr) The NMSE of the density estimates of the most
popular groups in the Flickr graph.

composition property to show that a MultipleRW with random exponential costs is

equivalent to the FS sampling process described in Section 3.4, with the appropriate

choice of budget B.

Let P be the transition probability matrix of the Markov chain associated to a

random walker over Gm = (V m, Em), the m-th Cartesian power of G. Following

Section 2.5.3 we have

P = D−1A,

where A is the adjacency matrix of Gm and D is a diagonal matrix with Di,i =
∑

∀j Ai,j. According to Lemma 3.4.1 P is also the transition probability matrix of FS

in G. Let M = {Ln ∈ V m : n = 0, . . .} denote the FS Markov chain (discrete-time),

i.e., the transition probability matrix of M is P. Now let χ = {X(t) ∈ V m : t ≥ 0}

be a continuous-time Markov chain with transition rate matrix

Q = A−D ,

49

Sampling prob. error

Graph B (sampling budget) FS MRW SRW

Internet RLT 100 17% 257% 156%
YouTube 20 43% 236% 216%
Hep-Th 20 36% 1510% 781%

Table 3.3. Relative worst-case difference between the steady state and the transient
edge sampling probabilities after B −K steps. Frontier edge sampling probabilities
are closer to steady state in all graphs. Legend: (FS) = Frontier sampling (K = 10),
(SRW) = Single (K = 1) Random Walker, and (MRW) = Multiple (K = 10) Random
Walkers.

observed during the (time) interval [0, B]. It is easy to see that the transition prob-

ability matrix of the embedded (discrete-time) Markov chain of χ, denoted by χ′,

is

P′ = I −D−1Q = P.

In the literature P′ is known as the Uniformized counterpart of Q (with unitary

uniformization rate) [10, Chapter 7.5]. Because P′ = P, the stochastic processes χ′

andM are equivalent.

Let L′
n = (v1, . . . , vm) denote the state of χ before the n-th step. Now note

that because all off-diagonal non-zero transition rates in Q are equal to one, the

probability that the k-th random walker transitions out of vertex vk is independent

of the state of all the other random walkers in Ln. Thus, we can decompose the

Poisson process describing a departure from the state L′
n = (v1, . . . , vm) into m in-

dependent stochastic processes, where the i-th process is a Poisson process with rate

λi = deg(vi) , i = 1, . . . , m. The above is equivalent to the stochastic process of

a discrete-time MultipleRW with m random walkers and budget B, where the cost

of sampling a vertex v is an exponentially distributed random variable with rate

µv = deg(v).

50

3.7 Related work

This section is devoted to review the related literature. FS can be classified as

a Markov Chain Monte Carlo (MCMC) method. Other MCMC-based methods are

applied to characterize complex networks. Applications include, but are not limited to

estimating: characteristics of a population [64] (e.g. estimation of HIV seroprevalence

among drug users [48]), content density in peer-to-peer networks [30, 47, 54, 61],

uniformly sampling Web pages from the Internet [33, 59], and uniformly sampling Web

pages from a search engine’s index [4]. The above literature is mostly concerned with

random walks that seek to sample vertices uniformly (also known as Metropolized

Random Walks or Metropolis-RW) [30, 33, 59, 4, 61]. The accuracy of RW and

Metropolis-RW is compared in [29, 54], and in a variety of experiments RW estimates

are consistently more accurate than or equal to MRW estimates.

The above literature does not consider the use of multiple random walks to address

the problem of estimating characteristics of disconnected or loosely connected graphs.

While multiple independent random walkers have been used as a convergence test

in the literature, the simulations presented in Section 3.5 show that independent

walkers are not suited to sample loosely connected graphs when the starting vertices

are selected uniformly at random.

A number of real complex networks are known to have disconnected or loosely

connected subgraphs. A large body of MCMC literature is dedicated to overcome the

locality problem described in Section 3.3.3. However, the literature either assumes

that the graph is very structured, e.g., a 2 dimensional lattice, or that the graph

is completely known. These assumptions make the solutions inapplicable to our

problem. A comprehensive list of MCMC methods and their characteristics can be

found in [58].

Projecting a RW onto a higher dimensional space has been used in [11] to turn

the Markov chain associated to the random walker nonreversable, which can speed

51

up the mixing of the original RW. Unfortunately, it is unclear if this method can be

successfully used to estimate characteristics of complex networks.

In networks that cannot be crawled (e.g., the Internet topology), samples must

be obtained along shortest paths, and vertex degrees cannot be queried, [1] shows

that observed vertex degrees are biased. This chapter, however, assumes graph can

be crawled and vertex degrees queried. The scenario described in this chapter admits

a RW with a unbiased estimator. Multiple random walks also find other applications

besides the one presented in this work. They are used to collect Web data [13], search

P2P networks [7, 70], and decrease the time to discover “new wireless nodes” [2].

Dependent multiple random walks are also used in percolation theory [3].

3.8 Discussion and Future work

This chapter presented a new promising random walk-based method (Frontier

sampling) that mitigates the estimation errors caused by subgraphs that “trap” a

random walker. Frontier sampling (FS) uses multiple (m) mutually dependent ran-

dom walker. The dependence between walkers is designed to “better balance” their

samples. These samples are shown to be the projection (onto the original graph) of

a special type of m-dimensional (single) random walker. Simulations over real world

graphs in Section 3.5 show that Frontier sampling (FS) is more robust than single

and multiple independent random walkers to estimate degree distributions and the

fraction of users that belong to a social group. This chapter also presents evidence,

using an analytical argument (also substantiated by simulations), that random walks

(in particular, FS) are better suited to estimate the tail of power law graphs than

random vertex sampling.

Moreover, FS sampling is well suited to be used in large scale (parallel, asyn-

chronous) experiments. This is because FS sampling can be achieved by multiple in-

dependent random walkers where the cost of sampling a vertex v is an exponentially

52

distributed random variable with parameter deg(v). Using the the Uniformization

principle of Markov chains [10, Chapter 7.5] and the Poisson decomposition property,

Section 3.6 shows that this MultipleRW with random exponential costs is equivalent

to the FS sampling process described in Section 3.4, with the appropriate choice of

budget B.

The ideas behind FS can have far reaching implications, from estimating char-

acteristics of dynamic networks to the design of new MCMC-based approximation

algorithms.

53

CHAPTER 4

DESIGNING TCP FLOW-LEVEL ESTIMATORS FROM

SAMPLED PACKETS

4.1 Introduction

Estimation can be difficult if the characteristic of interest (e.g., the TCP flow

size) cannot be directly measured from the observations (e.g, sampled packets). We

refer to these characteristics as latent network characteristics. Often, latent char-

acteristics need to be estimated, by applications or measurement apparatus, from

other observable characteristics. Such estimation requires a model-based measure-

ment method that correlates the unobserved characteristics with the observed ones

using a mathematical model.

The theory behind the estimation of latent characteristics had a significantly step

forward in 1935, when R. A. Fisher’s book The design of experiments [23] shed a new

light onto agricultural field experiments. Fisher’s questions ignited a revolution in the

field of estimation theory. In 1947, Fisher summarized his views of the statistician’s

job [24]:

“[The finding] that the amount of information extracted in the process

of estimation could never exceed the quantity supplied by the data [...],

combined with the practical fact that directly available processes of com-

putation would extract almost always a very large fraction of the total

available [information], shifted the moral balance. ... The weight of [the

statistician’s] responsibility was thrown back on to the process by which

54

the data had come into existence. So armed with [the] amount of in-

formation as a practical tool, statisticians came to study what forms of

experiment, or what types of observational programs would yield the most

information for a given expenditure in time, money and labor.”

Since Fisher’s foundational work, statisticians have used the tools Fisher helped de-

velop to design measurement methods. Here measurement method (which Fisher refers

to as “experiment” or “observational program”) refers to the procedure in which one

collects observable data that helps to estimate (partially) latent characteristics of the

system under study.

It is rather surprising to find that the above part of Fisher’s lifetime work has

been all but ignored in the Computer Science literature. This absence is especially

noticeable in the design of network measurements. In what follows we consider the

estimation of TCP flow size distributions from randomly sampled packets. We use

this example to illustrate how Fisher’s foundational work can be applied to help design

better network measurement methods.

4.2 Estimating the TCP flow size distribution from randomly

sampled packets

This chapter considers the problem of estimating flow size distributions by sam-

pling packets at a chosen point (router) in the network. Packets are sampled according

to a Bernoulli process with sampling probability p, 0 < p < 1. Random packet sam-

pling is widely used in network monitoring to reduce the workload of the monitoring

apparatus (the monitoring apparatus is typically a router). These sampled packet

streams can then be used to estimate flow-level characteristics of network traffic [19].

Flows are disjoint subsets of packets such that every packet belongs to a flow and no

packet belongs to more than one flow. The conventional IP flow definition is a set of

packets that obey the following rules:

55

• Any two packets have the same 5-tuple, i.e., the same IP Source, IP Destination,

source port number, destination port number, and protocol number.

• Maximum inter-packet arrival time must be less than a threshold t, where t is

a value given by the network operator, typically between 30 to 60 seconds.

One of the most relevant flow-level characteristics is the flow size distribution, i.e.

the fraction of flows that contains i packets, i = 1, 2, This is an important metric

for many applications, such as traffic engineering, denial of service attack monitoring,

and worm/virus outbreak detections. It is easy to see that sampling packets can

affect the flow size distribution. Large flows are sampled with high probability but

have their original number of packets, i, reduced in average to i · p, while most small

flows will not be sampled at all. To date there is conflicting evidence on the quality

of the resulting estimates.

In 2003 Hohn and Veitch [34] proved that it is impossible (in practice) to accurately

estimate the fraction of small flow sizes using the inversion estimator. The inversion

estimator is a simple and fast estimator based on linear algebra. However, it is not the

most accurate estimator for most problems. In the same year and using a similar data

set, Duffield, Lund, and Thorup [19] provided several estimators and argued that, in

practice, they do a good job at estimating the same metric. Duffield et al. [19], in the

light of this seemingly contradictory result, argues that the inversion estimator has

a higher variance than their proposed estimator. They also argues, without a formal

proof, that its maximum likelihood estimator does not exhibit the same high variance

problem. In 1947 Fisher believed that this type of debate was all but extinct [24].

These contradicting results make this a good application to the Fisher information,

the constrained Cramér-Rao bound, and the data processing inequality, which were

introduced in Chapter 2.

56

4.3 Contributions

In 2006 Ribeiro et al. [57] used the Fisher information, the Cramér-Rao and data

processing inequalities to show that:

• Using the measurement method of Hohn and Veitch [34] and Duffield et al. [19]

(over similar data sets1) no algorithm can obtain accurate unbiased flow size

distribution estimates under a realistic scenario. An unbiased estimate is

an estimate whose average is the true average, i.e., if θ̂ is an unbiased estimate

of θ then E[θ̂] = θ.

• If flows are TCP flows, a measurement method that takes protocol information

into account can obtain accurate flow size distributions estimates. (A TCP flow

is a flow that contains only packets from a single TCP session.)

In this chapter I present these results. In what follows the flows prior to sampling are

referred to as original flows. A sampled (or thinned) flow is a flow that has at least

one packet sampled. A flow of size i is a flow that originally has i packets. Likewise, a

sampled flow of size m is a flow that has m packets sampled, where m ≥ 1. In practice

some original flows are not sampled and therefore not observed. Some original flows

may split into multiple sampled flows. Here we do not account for flow splitting.

Our goal is to estimate the original flow size distribution from the sampled flow size

distribution.

4.4 Fisher information from sampled packets

As packets are sampled independently according to a Bernoulli process, then flows

are also sampled independently. Applying Lemma 2.3.1 we have that if J is the Fisher

information of one sampled flow, then the Fisher Information of n sampled flows is

1These results should also hold for other real Internet data sets.

57

nJ . Therefore, we focus on the Fisher information of a single sampled flow. Assume

a maximum flow size w ≥ 2 and let θ = (θ1, . . . , θw), where θi > 0, 1 ≤ i ≤ w,

be the fraction of flows with size i. Let n be the number of sampled flows and ŝj ,

j ≥ 0, denote the total number of sampled flows with j sampled packets. We can

also further define the empirical sampled flow size distribution d̂ = [ŝj/n]. Let d be

the true sampled flow size distribution. Distributions d and θ are related by

dj =
w
∑

i=1

bijθi, (4.1)

where bij is the binomial probability of sampling j packets out of i original packets

given sampling probability p. Equation (4.1) can be written in matrix notation as

d = Bθ, (4.2)

where B is a w×w matrix whose element (i, j) is bji. Matrix B is an upper triangular

matrix and thus (4.2) has a unique solution. The inversion estimator of Hohn and

Veitch [34] is just θ̂ = B−1d̂. Now let D denote a random variable of the sampled flow

size distribution and P [D = d̂] denote the probability that the sampled distribution

is d̂. It is easy to see that E[D] = d and d̂ is a sample of D.

Lets now define the likelihood function over a single sampled flow. As we have

just a single sampled flow, if the flow contains j sampled packets, d̂j = 1 and d̂k =

0, ∀k 6= j. The probability that a flow has j packets sampled is dj = (Bθ)j. Thus,

P [D = d̂ | θ] =
w
∑

j=1

d̂j(Bθ)j . (4.3)

Note that θ is constrained by:
∑

∀i

θi = 1 (4.4)

58

and

0 < θi < 1, ∀i. (4.5)

Using the likelihood function of equation (4.3) and the results of Chapter 2.3.2 we

obtain the constrained Cramér-Rao bound for the flow size distribution problem.

Applying the constrained Cramér-Rao inequality: An example with w = 2

Let w = 2 be the maximum flow size, θ = (0.88, 0.12), and p = 0.01. From eq.

(2.3.2), (G)i = θ2
i /(θi − 1). Equation (2.3.2) yields

J(β−1(θ1)) = −
2
∑

j=1

a(j) (a(j))T/dj,

where a(j) = (b1,j , b2,j) · (θ2/(θ − 1)). Let j denote the number of sampled packets in

a flow with a SYN packet. Then b1,1 = 1, b1,2 = 0, b2,1 = 0.99 and b2,2 = 0.01. The

inverse of the Fisher information I−1 (equation (2.7)) of one sampled flow is

I−1 =

−1078 1078

1078 −1078

Now assume n flows are sampled. Thus the lower bound on the mean squared error

of estimates γ̂1 and γ̂2 obtained using the Cramér-Rao bound will be E[(γ1− γ̂1)
2] ≥

1078/n and E[(γ2 − γ̂2)
2] ≥ 1078/n. The Cramér-Rao bound of parameters θ comes

from the delta method as seen in Section 2.3.2. Matrix H is

H =

0.105 0

0 0.105

.

An application of eq. (2.8) yields that the mean squared error of any unbiased es-

timates θ̂1 and θ̂2 of θ1 and θ2 respectively to be: E[(θ1 − θ̂1)
2] ≥ 1092/n and

E[(θ2 − θ̂2)2] ≥ 1092/n for n sampled flows, given n sufficiently large.

59

4.5 Simplifications to constrained Cramér-Rao inequality

The results presented above (published in Ribeiro et al. [57]), were later simplified

assuming that the inequality constraint in equation (4.5) does not contribute to the

Fisher information or the Cramér-Rao lower bound [63]. It is worth noting that the

Cramér-Rao lower bound obtained ignoring the inequality of equation (4.5) can be

violated by an estimator that “projects” the unconstrained estimated results into

the constrained space of the parameters (“Remark 8” in [31], also there is an extra

complication that many (but not all) of such estimators are biased). However, I

believe that in most practical scenarios and for a large enough maximum flow size

(e.g. Wmax > 5) the inequality and equality (equation (4.4)) constraints contribute

little to the value of the Fisher information. In fact, our experiments indicate that

the contribution of the inequality constraint to the Fisher information is minimal.

Moreover, if considering only the equality constraint, equation (2.7) simplifies to [63]

I+ = J−1 − θθT , (4.6)

where J−1 is the inverse of the unconstrained Fisher information (equation (2.3.2)).

Equation (4.6) shows that the equality constraint reduces the Cramér-Rao bound

over the estimate of θi by θ2
i /n if compared to the unconstrained bound (J−1)ii/n.

Thus, if (J−1)ii is large, the equality constraint contributes very little to the accuracy

of the estimates.

4.6 Designing summary functions

The inverse of the Fisher information allows us to verify if the “statistical informa-

tion” contained in the summary d suffices to accurately estimate θ. Even better, we

are able to determine how many sampled flows are necessary to achieve a given Mean

Squared Error (MSE) bound (Cramér-Rao bound). Moreover, we can test different

60

types of summaries. Distinct summaries modify the matrix B of equation (4.2). In

this section we see how much these different matrices B affect the Fisher information.

The data processing inequality (Chapter 2.4) states that adding information can

only increase the amount of Fisher information. Thus, we expect that a good mea-

surement method using extra information to perform better, or at least no worse, than

a good measurement method that does not use the extra information. This clearly

holds as one can always throw the extra information away inside the estimator. Here

we consider a measurement method similar to the one used in Hohn and Veitch [34]

and Duffield et al. [19] but that also extracts the following TCP protocol information

from the sampled packets:

• SYN flag: Here only the first sampled packet of the flow can have the SYN

flag. (Duffield et al. [19] also presents a method with SYN flag information, but

in their method all flows without SYN packets are discarded, which is not our

case).

• TCP sequence number (SEQ): Here, given the assumptions discussed in

Section 4.6.4, the TCP sequence number can be used to obtain the number of

packets between any two sampled packets of the same flow.

4.6.1 Real Internet Traces

The Fisher information depends on the flow size distribution θ. To evaluate dis-

tinct summary functions we use an empirical flow size distribution, θ, based on packet

traces collected from a Tier-1 ISP’s backbone network. These packet traces are col-

lected using IPMON, a passive measurement system that captures the first 64 bytes

IP packet header of every packet on an optical link [26]. The statistics of these traces

are listed in Table 4.1. The BB-East-1 and BB-East-2 traces are taken from two

OC-48 links between backbone routers on the east coast. The Access-East trace is

from an access link in the east coast.

61

Unfortunately, the Fisher information matrix analysis requires flow sizes to be in

the range {1, . . . , w}. The following evaluation focuses on small flow sizes. To reduce

the computational cost, all numerical analysis uses w = 10, 20, 30, 40, 50 and renor-

malizes θ accordingly. It is interesting to note that in my experiments increasing w

beyond 50 has little impact over the Fisher information of small flows. The numerical

results presented next were obtained using the flow size distribution of the BB-East-2

trace. The results for the other packet traces are similar.

Trace Avg. Rate Active Flows Duration

Access-East 373Mbps 61,000/sec 2 hours
BB-East-1 867Mbps 140,000/sec 2 hours
BB-East-2 25Mbps 5,000/sec 2 hours

Table 4.1. Trace Statistics

4.6.2 No protocol information

Without protocol information the summary function can only count the number

of packets in a flow. In this case bij is the binomial probability of sampling j packets

out of i original packets given sampling probability p. The inverse of the constrained

Fisher information (I+
ii) (for the BB-East-2 trace) is I+

11 < 1015. From the Cramér-

Rao inequality we know that
√

MSE ≥
√

I+
11/n, where n is the number of sampled

flows. This means that achieving
√

MSE < 0.5 requires n > 4 × 1015. This is a

huge number of sampled flows. To give an idea how large is 4 × 1015 flows, since

its creation the whole Internet has not yet carried these many flows. Thus, without

protocol information it is impossible (in practice) to obtain accurate unbiased

estimates of θ using packet sampling. This result generalizes the observation in

Hohn and Veitch [34] to any type of unbiased estimator. Figure 4.1 shows the inverse

Fisher information I+
ii for flow sizes i = 1, . . . , 20.

62

I
+

Figure 4.1. Inverse Fisher information (I+)ii (i is the flow size) without protocol
information.

In what follows we see whether adding protocol information to the summary func-

tion improves the information content of the data used in the estimation phase.

4.6.3 TCP SYN flag information

Here we consider adding the TCP SYN flag information to the summary. In

this scenario matrix B needs to be redefined. The modification to B is simple to

understand. The SYN packet is one unique specially marked packet in the flow. If

we do not sample the SYN packet of the flow, it means that the flow has one extra

packet that was not sampled. This is all of the information the SYN packet encodes.

The change in B is straightforward. bij is the binomial probability of sampling j − 1

packets out of i − 1 original packets given sampling probability p, with b11 = 1. In

this scenario, achieving
√

MSE < 0.5 requires n > 1.6×1015. While there is the TCP

SYN flag increases in accuracy (Fisher information), it is still insufficient to obtain

an accurate estimate. Figure 4.2 shows the inverse Fisher information I+
ii for flow

sizes i = 1, . . . , 20.

4.6.4 TCP SEQ + SYN flag information

TCP uses a 32-bit sequence number that counts payload bytes in a flow An es-

timator that measures flow sizes in number of bytes can clearly benefit from TCP

sequence numbers. The question is whether an estimator using packet counts can

63

flow size
SYN information

0.0E+00

2.0E+07

4.0E+07

6.0E+07

8.0E+07

1 3 5 7 9 11 13 15 17 19
flow size

I+

flow size

Figure 4.2. Inverse Fisher information (I+)ii (i is the flow size) with TCP SYN
protocol information.

also benefit from sequence numbers. Assume that there is a function h(sa, sb) that

takes two TCP sequence numbers sa and sb from two distinct packets a and b of the

same flow and returns the number of packets sent between a and b including a and

b. This is not trivial to compute h in real life experiments due to duplicated packets

and packets of different sizes that belong to the same flow. Appendix A.1 provides a

reasonably an approximation to h that performs well in practice.

Let s
(u)
min, s

(u)
max be the smallest/greatest sampled TCP sequence number values of

flow u (wraps around are easily treated if the sampling probability is not too low,

e.g., > 10−4). Let r = h(s
(u)
min, s

(u)
max) ∈ {0, . . . , w − 2} be the number of packets sent

between the smallest and the greatest sampled TCP sequence numbers. Let subscript

SYN (NOSYN) denote a sampled flow with (without) a sampled SYN packet. Let

b′i,(SYN,r) = p (1− p)i−r

denote the probability that a flow of size i has a sampled SYN packet and has r =

h(s
(u)
min, s

(u)
max). Let

b′i,(NOSYN,r) = (i− r) p (1− p)i−r

denote the probability that a flow of size i does not have a sampled SYN packet and

has r = h(s
(u)
min, s

(u)
max). An element i, j of matrix B is

64

Measurement method Minimum no. of sampled flows
Hohn and Veitch [34] and Duffield et al. [19] 4× 1015

Duffield et al. [19] (SYN flag) 1.6× 1015

Ribeiro et al. [57] (SYN + SEQ) 1.6× 103

Table 4.2. Minimum number of sampled flows that an unbiased estimator needs in order

to achieve

√

E[(θ̂1 − θ1)2] < 0.5. Results for w = 50, p = 1/200, obtained with the flow
size distribution of the BB-East-2 trace.

bi,j = b′i,j/
∑

∀j

b′i,j,

where

j ∈ {(NOSYN, 0), . . . , (NOSYN, w − 1), (SYN, 0), . . . , (SYN, w − 1)}.

In this scenario, achieving
√

MSE < 0.5 requires n > 1.6 × 103, which is 12 (!)

orders of magnitude fewer samples than estimating with SYN flags alone or without

protocol information. Table 4.2 summarizes the number of samples required to achieve
√

MSE < 0.5 for flows of size one in the BB-East-2 trace.

0

10

20

30

40

1 3 5 7 9 11 13 15 17 19

sequence no. information

flow size

I
+

flow size

Figure 4.3. Inverse Fisher information (I+)ii (i is the flow size) with TCP SYN and
TCP SEQ protocol information.

65

4.7 Simulation results

The Maximum log-Likelihood Estimator (MLLE), finds a set of parameters θ̂ that

maximize the log-likelihood of the sampled data. Under the same regularity conditions

required by the Cramér-Rao bound, the MLLE is an asymptotically efficient unbiased

estimator of θ, i.e., its error achieves the Cramér-Rao lower bound as the number of

samples tends to infinity. As in practice we do not have a very large number of

samples, we would like it to be close to optimal even with the number of samples

typically collected at Tier-1 backbone routers. This section presents the estimators

of the summary functions proposed in Section 4.6. In particular we see that using the

TCP SEQ + SYN flag summary, the MLLE does not require a large number of samples

to be unbiased and achieve the Cramér-Rao error lower bound. In addition, we present

a conjugate gradients algorithm for the MLLE, a faster convergence algorithm than

the commonly used Expectation Maximization algorithm.

The MLLE uses penalty functions to make sure the estimate θ̂ lies within the

region defined by the constraints in equations (4.4) and (4.5). When a value θi

violates one of the constraints, the MLLE receives a penalty, which then forces the

search to remain within the constrained region. In the first part of this section we

estimate the flow size distribution using only SYN flags in the summary function.

This, of course, does not account for the “noise” introduced by flow-splitting, which

splits one long original flow into two or more shorter ones. This chapter does not

account for flow splitting, although [37] shows that is possible to do so. Next we

review an algorithm that computes the MLLE.

4.7.1 MLE with conjugate gradients

Let n denote the number of sampled flows and d̂j be the fraction of sampled flows

with index j. The interpretation of index j depends on the summary function used.

For instance, in the summary with no protocol information j is the number of sampled

66

packets. The MLLE can be written as

θ̂ = arg max
θ̂

n
∑

∀j

d̂j ln(Bθ̂)j , (4.7)

subject to
∑

i θ̂i = 1 and 0 < θ̂i < 1, ∀i ∈ {1, . . . ,W}.

There are multiple ways to find a value for θ̂ that satisfies equation (4.7). One

of them, used in [19], is the Expectation Maximization algorithm. Although the

EM algorithm is sound, needs no fine tuning, and is guaranteed to always improve

the estimate at each step, in practice it can suffer from slow convergence [55]. More

specifically, Theorem 5.2 in [55] shows that if the parameters θ are “poorly separable”

in the likelihood function then EM exhibits a slow convergence rate. The term “poorly

separable” can be quantified as the difficulty of distinguishing whether a sample j

came from flow sizes i or i′ with i 6= i′, i.e., if bi,jθi ≈ bi′,jθi′ . Unfortunately, flow

size estimation suffers from this problem. Although one expects that other maximum

likelihood algorithms will also suffer with these “poorly separable” parameters, it is

believed that in practice the effect is felt more by EM [55] (conjecture is strengthened

by the practical experience accumulated in this research, trying to apply the EM and

the conjugate gradients methods to the flow size estimation problem).

Instead, we use the method of conjugate gradients [53] to compute a solution to

(4.7). The conjugate gradient MLE algorithm is implemented with the help of the

wnlib library2. For the above algorithm to work, we need to provide the matrix B

and the gradient of the log likelihood function, ∇θ lnP [D = d̂ | θ], conditioned on
∑w

i=1 θi = 1. The i th component of this gradient is

∂

∂θi
P [D = d̂ | θ] =

∑

∀j

bi,j d̂j
∑w

r=1 θ̂r br,j
− 1.

2http://www.willnaylor.com/wnlib.html

67

The constraints 0 < θ̂i < 1, ∀i ∈ {1, . . . ,W} are introduced as penalty functions.

The algorithm is initialized with θ̂(0) = (1/w, . . . , 1/w), where w is the maximum flow

size.

4.7.2 Results

The following simulation uses packet sampling probability p = 1/200 and maxi-

mum flow size w = 50. Figure 4.4 shows a graph with the original flow size distri-

bution and its MLE estimate using the TCP SYN and TCP SEQ+SYN summaries

(showing the mean and root mean squared error of the estimates). We denote the

MLE applied to the SYN and SEQ+SYN summaries as SYN MLE and SEQ+SYN

MLE, respectively. As expected, the estimates from the SYN MLE are inaccurate

because the summary does not contain enough information. The estimates from the

SYN MLE are also extremely sensitive to the initialization point θ̂(0). On the other

hand, Figure 4.4 shows that the SEQ+SYN MLE estimate is accurate and insensi-

tive to the initialization point θ̂(0). In what follows we compare the mean squared

error of the SEQ+SYN MLE estimates with the error bound given by the constrained

Cramér-Rao inequality of Chapter 2.3.2.

4.7.3 MLE for SEQ+SYN summary: an efficient estimator

Here we see that the SEQ+SYN MLE is able to come close to the smallest possible

error allowed by the Cramér-Rao inequality. Figure 4.5 shows the mean standard

deviation error of SEQ+SYN MLE estimates compared to its respective inverse Fisher

information. For a large number of sampled flows (108) we see that the Cramér-Rao

inequality is tight and the SEQ+SYN MLE is an efficient estimator when we have 108

sampled flows. An estimator is called efficient when its mean squared error reaches

the lower bound of the Cramér-Rao inequality (i.e., it is equal to the inverse of the

Fisher information matrix). For a much smaller sample set, 260, 000 sampled flows,

there is a small bias in the estimates (which allows the estimator MSE to violate

68

1e−06

1e−05

0.0001

0.001

0.01

0.1

1

0 5 10 15 20 25

F
ra

c
ti
o

n
 o

f
fl
o

w
s

Flow size

Original distribution (line)

SYN + SEQ

SYN flag

Figure 4.4. Estimates from 120 runs with 5 × 109 sampled flows and p = 1/200.
Summary function protocol information: TCP SYN flag against TCP SEQ+SYN
flag. Note the strange behavior of the estimates from the SYN flag summary. This
happens due to the low Fisher information in the sampled flows.

the Cramér-Rao bound). The root mean squared error is fairly close to the lower

bound of the Cramér-Rao inequality. Thus, one can argue that the SEQ+SYN MLE

is almost efficient for practical purposes even with only 260, 000 sampled flows.

4.8 Conclusions

The Fisher information, the Cramér-Rao inequality, and the data processing in-

equality are powerful tools for the design of measurement methods. In the example

presented in this chapter (flow size distribution estimation) these tools allow us to

answer the questions proposed in Chapter 1:

• It possible to accurately estimate the original flow size distribution from the

sampled packets?

Answer: Yes, as long as protocol information is used in the summary function

and the estimator.

69

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 5 10 15 20 25 30 35 40 45 50

ro
ot

 m
ea

n
sq

ua
re

d
er

ro
r

flow size

Inverse Fisher information 260,000 sampled flows
MLE 260,000 sampled flows

Inverse Fisher information 108 sampled flows
MLE 108 sampled flows

Figure 4.5. This graph compares the root mean squared error of the MLE esti-
mate with the inverse of the Fisher information (which, according to the Cramér-Rao
inequality, is a bound for the mean squared error of the MLE).

• Are there other observable characteristics (besides the number of packets sam-

pled) that could yield more information about the original flow size distribution?

Answer: Yes, the TCP Sequence Numbers contain a lot of information about

θ. The SYN flag, on the other hand, contains a small amount of information.

This chapter also shows that the SEQ+SYN MLE comes close to the Cramér-Rao

bound, even for small sample set sizes.

70

CHAPTER 5

DESIGNING A STREAMING ALGORITHM

5.1 Introduction

A data stream is an ordered sequence of n data items that can be read only once.

A streaming algorithm is allowed access to all of the data stream but can only retain

a small amount of information (a.k.a. sketch or summary) about the data items it

has seen so far. A streaming algorithm is considered efficient if the size of the sketch

is bounded by O(polylog(n)) and the update time for any data item is also bounded

by O(polylog(n)). Thus, a streaming algorithm that seeks to estimate parameters

of the data stream is a measurement method that has restrictions on its available

computational resources. Streaming measurement methods are represented by the

schematic in Figure 5.1. In contrast to Figure 1.1 (in Chapter 1) it is clear that the

“sampling” and “summary” steps of Figure 1.1 are combined in Figure 5.1. This

happens because combining both steps eliminates the need to store the raw sampled

data, thus, saving memory.

DESCRIBE SET. SUBSET OF WHAT? This chapter presents an efficient stream-

ing algorithm to compute the subset size histogram. The subset size histogram, λi, is

the number of disjoint subsets with i = 1, . . . , w elements, where w is the maximum

subset size. The subset size histogram is an important metric to detect anomalies in

computer networks, such as the Internet. For instance, the flow size distribution seen

in Chapter 4 is a normalized subset size histogram, where subsets are flows. In what

follows we restrict our attention to the problem of estimating the flow size histogram.

However, the following techniques are applicable to the more general problem of es-

71

��
���
��
��

	
�����

������
������

���
�����������

�
���

�����

�������

���������
������

��
�������

Figure 5.1. Schematics of a measurement method.

timating the subset size histogram. In what follows histogram refers to the flow size

histogram. Lets first consider a naive algorithm to compute the histogram.

5.2 A naive algorithm

A simple algorithm to compute the histogram counts the number of packets on

each flow. We can accomplish that using hash tables. A hash table is an array of

counters indexed by a hash value h. Let H be a hash function such that all packets

in the same flow hash to the same hash value. Once a packet arrives, we compute

its hash value, h, and increment counter h in the hash table. Ideally H should map

each possible flow to a different counter. However, a simple (and fast) function H

would allow packets from distinct flows to hash into the same counter [14]. This

means that the hash table needs to resolve hash collisions (pairs of different keys with

the same hash values). Hash collisions are resolved by assigning a flow identifier to

each counter, in order to guarantee that no two flows increment the same counter. A

newly arrived packet that is assigned to a counter with value zero increments it and

associates its unique flow identifier with the counter. A newly arrived packet that is

assigned to a non-zero counter either: (1) increments the counter if its unique flow

identifier matches the counter flow identifier; or (2) triggers a collision event if its flow

72

identifier does not match the counter flow identifier. Collision events can be expensive

to resolve, both in terms of the memory and the processing power required. One of

the reasons is that unique flow identifiers can be large, which means that storing one

for each counter may increase the memory requirements tremendously. As many as

half a billion flows arrive every hour at an Internet core router, the above algorithm

is not practical.

5.3 An algorithm without collision resolution

The naive algorithm can be made faster and more memory efficient if hash colli-

sions are not resolved. The idea behind this new algorithm, motivated by [40], is that

although a counter value may count the number of packets of two or more flows, the

original flow size distribution can still be resolved using an estimator. In a streaming

algorithm it is important that the whole measurement method, from updating the

sketch to outputting the estimates, is fast and memory efficient. Thus, applying the

framework developed in Chapter 4 to the statistical information stored in the sketch

motivates the development of a new measurement method that: (1) includes a CPU

efficient estimator, and (2) requires a small memory footprint.

The algorithm presented in this chapter breaks the packet stream down into mea-

surement epochs. Each epoch has two phases: (1) at each packet arrival the sketch

is updated; (2) at the end of the epoch the algorithm uses an estimator to com-

pute the histogram from the sketch. Let λ = {λi}wi=1 denote the histogram, where

w is the maximum flow size, of flows that arrived during the measurement epoch.

The sketch consists of packet counters {C1, . . . , Cm}, where m is the total number of

counters in the sketch. At each packet arrival the algorithm increments Ch, where

h ∈ {1, . . . , m} is the value returned by a universal hash function, H , such that all

packets in the same flow hash to the same value. An universal hash function H is a

function that has the following property [14]: if x and y are packets from different

73

flows, H(x) and H(y) are independent and uniformly distributed random variables

over {1, . . . , m}. The algorithm presented here assumes that the total number of

flows of size i = 1, 2, . . . observed during a measurement epoch is Poisson distributed

with parameter λi. This assumption holds true for the Internet traces used in this

thesis and has been reported true for other Internet traces [6]. Also note that this is

a fairly weak assumption. The streaming algorithm presented in this chapter relies

on the analysis of the Fisher information of the sketch. The following property of the

counters simplifies the search for the Fisher information.

5.3.1 Counter independence

Let C
(i)
h denote the total number of flows of size i that are assigned to counter

h by the hash function (in the end of the measurement epoch). Let b denote the

number of bits of a counter and thus, kmax = 2b − 1 is the maximum value that the

counter can assume. The value of counter h at the end of a measurement epoch is a

random variable Ch, where

Ch = min(C
(1)
h + 2C

(2)
h + 3C

(3)
h + · · ·+ wC

(w)
h , kmax) .

Under the assumption that the total number of flows of size i is Poisson distributed

and that H is an universal hash function we have the following lemma.

Lemma 5.3.1. The sequence of counters {C(i)
h ; h = 1, . . . , m} is a sequence of inde-

pendent Poisson random variables each with parameter λi/m.

Proof. Let N be the number of flows of size i that arrive during the measurement

epoch. We know that N is a Poisson random variable with parameter λi. Let X
(i)
h (n)

be a random variable that is equal to 1 if the n-th flow of size i is assigned to counter

h, otherwise X
(i)
h (n) = 0. Because h is obtained from an universal hash function

we know that each flow is assigned to a counter independently and with probability

74

1/m. Note that
∑m

h=1X
(i)
h (n) = 1 and, as each flow in N is assigned to a counter

independently and with probability 1/m, X
(i)
h (n) is a Bernoulli random variable that

is independent of N and has parameter p = 1/m. The total number of flows of size i

assigned to counter h can be described by the sum

C
(i)
h =

N
∑

n=1

X
(i)
h (n).

The probability-generating function (p.g.f.) of N is fN (s) = E[sN] = eλi(s−1) and the

p.g.f. of each X
(i)
h (n) is E[sX

(i)
h

(n)] = 1− p+ ps, where p = 1/m. As

E[sX
(i)
h

(1)+···+X
(i)
h

(N)] = E[(1− p+ ps)N] = eλi(1−p+ps−1) = eλip(s−1),

the p.g.f. of C
(i)
h is eλip(s−1) which is the p.g.f. of a Poisson random variable with

parameter λip. This proves that C
(i)
h is Poisson distributed with parameter λi/m. It

is left to prove that the random variables in the sequence {C(i)
h ; h = 1, . . . , m} are

mutually independent. Thus, I need to show that

P

[

C
(i)
k

∣

∣

∣

∣

∣

⋂

∀h 6=k

C
(i)
h

]

= P
[

C
(i)
k

]

, ∀k.

Let k ∈ {1, . . . , m},

P

[

C
(i)
k = ck

∣

∣

∣

∣

∣

⋂

∀h 6=k

C
(i)
h = ch

]

=

=

∞
∑

n=0

P

[

C
(i)
k = ck

∣

∣

∣

∣

∣

⋂

∀h 6=k

C
(i)
h = ch

⋂

N = n

]

P

[

N = n,

∣

∣

∣

∣

∣

⋂

∀h 6=k

C
(i)
h = ch

]

=

∞
∑

n=0

1(ck = n−
∑

∀h 6=k

ch)P

[

N = n

∣

∣

∣

∣

∣

⋂

∀h 6=k

C
(i)
h = ch

]

= P

[

m
∑

h=1

C
(i)
h = ck +

∑

∀h 6=k

ch

∣

∣

∣

∣

∣

⋂

∀h 6=k

C
(i)
h = ch

]

= P [C
(i)
k = ck] , (as N =

∑m
h=1C

(i)
h).

75

5.3.2 The likelihood function

In what follows we obtain the likelihood function of Ch in in terms of parameters

λ = {λi; i = 1, . . . , w}. Assume that w > kmax. The likelihood function for Ch = 0

P [Ch = 0 | λ] = e−
P

∀j λj/m.

The likelihood function for 0 < Ch < kmax is

P [Ch = k | λ] =
∑

∀(x1+2x2+···+wxw=k)

k
∏

i=1

(λi/m)xi

xi!
e−

P

∀j λj/m, (5.1)

where the outermost summation sums over all combinations of flow sizes that add up

to k (this takes O(k3) time and can be computed using the recursion presented in

Appendix A.2.2). The likelihood function for Ch = kmax is

P [Ch = kmax | λ] = 1−
kmax−1
∑

k=0

P [Ch = k | λ]. (5.2)

5.3.3 The Fisher information

To obtain the Fisher information matrix we need the derivatives of the likelihood

function. The derivative with respect to λi of the likelihood function for counter value

Ch = k, where 0 ≤ k < kmax is:

∂P [Ch = k | λ]

∂λi
=

∑

∀(x1+2x2+···+wxw=k)

xi − λi/m

λi

k
∏

m=1

(λj/m)xm

xm!
e−

P

∀j λj/m , (5.3)

where, by definition, 0! = 1. If the counter value is k = kmax, the derivative of the

likelihood function is

∂P [Ch = kmax | λ]

∂λi
= −

kmax−1
∑

k=0

∂P [Ch = k | λ]

∂λi
, (5.4)

Note that a counter Ch can be no greater than kmax.

76

Applying Lemma 5.3.1 (that counters are independent) and Lemma 2.3.1 (that the

Fisher information of a set of n independent samples is n times the Fisher information

of one sample) we get that the Fisher information of the whole sketch is m times the

Fisher information of a single counter. The Fisher information matrix of a single

counter is

Jji =

(

kmax
∑

k=0

(∂P [Ch = k | λ] / ∂λi) (∂P [Ch = k | λ] / ∂λi)

P [Ch = k | λ]

)

ij

 .

The following example illustrates the computation of the Fisher information ma-

trix. Suppose kmax = 2. The derivative of the likelihood function for Ch = 0

∂P [Ch = 0 | λ]

∂λi
= − 1

m
e−

P

∀j λj/m,

For Ch = 1:

∂P [Ch = 1 | λ]

∂λ1
= (1/m− λ1/m

2)e−
P

∀j λj/m,

and

∂P [Ch = 1 | λ]

∂λi
= −(λ1/m

2)e−
P

∀j λj/m, ∀i > 1

And for Ch = kmax = 2:

∂P [Ch = 2 | λ]

∂λ1
= −(− 1

m
e−

P

∀j λj/m + (1/m− λ1/m
2)e−

P

∀j λj/m) = λ1e
−

P

∀j λj/m,

and

∂P [Ch = 1 | λ]

∂λi

= −(1/m+ λ1/m
2)e−

P

∀j λj/m, ∀i > 1.

Assembling the Fisher information matrix from the above equations is trivial.

5.3.4 The Cramér-Rao inequality

Let λ̂ = {λ̂i}wi=1 be an estimate of λ = {λi}wi=1. In order to simplify our analysis

lets assume that λi ∈ R, i = 1, . . . , w. Estimating λ using a maximum likelihood

77

estimator, such as the expectation maximization (EM) algorithm, requires multiple

iterations over the estimates λ̂ in order to maximize the likelihood function. This

is because changing an estimate λ̂i, while keeping the sketch values fixed, forces the

estimator to revise all the other estimates λ̂j, ∀j 6= i. These changes are clear in the

following example. Suppose we seek to estimate λ1. Note that counters with value

2 are the result of the collision of two flows of size one or only one flow of size 2.

Suppose that inside this iterative estimator we set λ̂2 to be zero. The estimate λ̂1

must be revised as the number of counters of value 2 has not changed and we now

have λ̂2 = 0. Likewise, a change in λ̂1 most likely translates into a change in λ̂2

for the same reason. Thus, it is natural to understand why Kumar et al. [40] resort

to a computationally expensive EM algorithm (based on eq.(5.1)) to compute the

MLE. The computationally expensive EM is, however, ill-suited as an estimator for

a streaming algorithm. In this section we seek to design a computationally faster

estimator from the analysis of the inverse of the Fisher information matrix.

 0.001

 0.01

 0.1

 1

 2 4 6 8 10 12 14 16

J-1

Flow size

2 bits
3 bits
4 bits

Figure 5.2. The figure plots the inverse Fisher information with varying maximum
counter values (kmax = 2b − 1).

78

0

10

20

30

40

1 3 5 7 9 11 13 15 17 19

sequence no. information

flow size

I
+

flow size

Figure 5.3. Accuracy of the best packet sampling estimator. Inverse Fisher infor-
mation (I+)ii (i is the flow size) with TCP SYN and TCP SEQ protocol information.

In what follows we consider the Fisher information of a single counter, i.e., m = 1.

In this experiment, λi is the fraction of flows of size i in the BBEast-2 trace (presented

in Section 4.6.1). This means that
∑

∀i λi = 1, i.e., there is, on average, one flow

hashed into the counter. Figure 5.2 plots the inverse of the Fisher information for

three different maximum counter values: kmax = 2b − 1, where b ∈ {2, 3, 4} bits. It

is interesting to compare the information content of the sketch with the information

content obtained from packet sampling, i.e., compare the result in Figure 5.2 with

Figure 5.3 (the best result of Chapter 4). Note that the sketch needs two orders of

magnitude fewer samples (counters) than the packet sampling schemes presented in

Chapter 4 need flows in order to achieve the same MSE (mean squared error).

Using Figure 5.2 we can assess how much information counter values greater than

k give about flows of size k. Figure 5.2 shows that the information content about λi

from a counter with maximum value kmax is practically independent of the value of

kmax as long as i < kmax. This implies that an estimator of, say, λ1 can aggregate all

counter values and flow sizes greater than 1 with little loss of information. The above

remark motivates the following estimator.

79

5.3.5 A fast estimator

Let m ≥ 1 and g = (g0, . . . , gkmax
), where gi is the number of counters with value i.

We seek to estimate λi, where i < kmax. Because the number of flows of size i hashed

to a counter are i.i.d. Poisson random variables with parameter λi/m (Lemma 5.3.1),

the average number of counters with value zero is

E[g0] = me−
P

∞

i=1 λi/m, (5.5)

where E[g0] is the expected value of g0. The next equation derives the average number

of counters with value one

E[g1] =
λ1

m
E[g0]. (5.6)

More generally, for 2 ≤ j < k, we have

E[gj] =

(

λj

m
+

j−1
∑

c=2

fλ(j, c)

)

E[g0] , (5.7)

where function fλ gives the probability that c flows are hashed into the same counter

and their sizes sum up to j; a recursive O(j3) time algorithm to compute fλ is given

in Appendix A.2.2.

Using equations (5.5) and (5.6) we get an estimate for λ1:

λ̂1 = m(g1/g0).

Using λ̂1 and g2 we can also estimate λ2. More generally, we can estimate λj using

equation (5.7) and λ̂i for i = 1, . . . , j − 1

λ̂j = m(gj/g0)−m
j−1
∑

c=2

fλ̂(j, c). (5.8)

80

Thus, estimating all flow sizes with size less than i takes O(i3) operations if interme-

diate results are saved. These estimates are quite accurate as we will observe in the

next section.

5.4 Further improvements: reducing the memory footprint

This section provides further improvements to the baseline measurement method

presented in Section 5.3. A histogram should provide a general overview of the traffic,

rather than a fine grained view. Thus, typical monitoring applications do not need

fine grained counts of all flow sizes. In security event detection, we are interested

in very small flow sizes (mice) such as 1, 2, but only up to a certain value k. To

measure the impact of medium and elephants flows, these larger flow sizes can be

estimated in a binned fashion. Therefore, I propose a new multi-resolution algorithm

to estimate the size histogram with aggregated and probabilistic counting of large

flows, and fine-grained counting for flow sizes up to k packets. As an example, let

k = 16. In this case we maintain per flow counters for each flow sizes 1,..,16, but flows

of sizes from 17 packets to 32 packets, 33 to 64, etc, are counted probabilistically and

estimated together. Using this approach 6 bit counters (and k = 16) are enough to

(probabilistically) count flows of sizes up to w ≈ 1014.

The estimator presented in Section 5.3.5 is extended to include histogram bins

proposed above while producing accurate histogram estimates. This is achieved by

designing a space efficient low collision sketch. The sketch divides and folds (mul-

tiplexes) Z virtual sketches into the physical space of one sketch. The low flow

collision probability allows the estimator to obtain accurate histogram values with

O(k3 + logw) operations in total. Note that w and k can be made as small as the

network operator wants with no loss in accuracy. When faced with very high speed

links and relatively low computing resources for monitoring and statistics gathering,

81

this simple resource minimalist design makes a strong case for an in-line inside the

router implementation.

The rest of this chapter is organized as follows. Section 5.5 provides an overview

of the algorithm. Section 5.6 illustrates data structure design and the estimator in

details. Experiment results using trace data are shown in Section 5.7. Section 5.8

presents the related work. Finally, I conclude with Section 5.9.

5.5 Overview of the measurement method

The data structure of the proposed sketch works as follows. Each newly arrived

packet is used to update a counter through a hash function, where all packets in a

flow hash to the same counter. The algorithm keeps M of such counters in a vector

(sketch). A universal hash function is a function where a randomized algorithm is used

to generate hash values for distinct flows. Hence, the collision probability of different

flows hashed to the same counter is a simple function of the number of flows divided

by the size of the sketch. The algorithm increases counter values probabilistically,

using a variation of the approach in Morris [51]. Counters are incremented by 1 with

probability 1 if the counter value, C, is less than k (a small constant defined by the

network operator). Otherwise, if C ≥ k the counter is incremented with probability

2−C+k−1. This translates into grouping medium to large flow sizes into histogram bins

Bm = [k + 2m − 1, k + 2m+1 − 1], m = 0, . . . , log2w − 1, where w is the largest flow

size as defined by the network operator. As a result of this binning, we only need to

use small counters (the experiments in Section 5.7 use 7 bit counters) as compared to

other schemes, drastically lowering memory requirements. Note that this approach is

performed entirely in software and does not require specialized hardware. In Section

5.6 I explain the details and also present a practical and efficient way to emulate a

probabilistic counter without resorting to (slow) pseudo-random number generators.

82

Physical sketch

Legend

counter = 0
counter > 0
index <= M

counter > 0
index > M

Counters 1 to M
always win
contetions

01

Virtual sketch

0

Counters 1 to M Counters M+1 to 2M

M counters

Figure 5.4. Multiplexing a sketch. One extra bit is used to store ownership in the
physical sketch. Note that counters with index ≤M in the virtual sketch always win
contentions against counters with index > M .

At each sketch update the algorithm also updates a histogram of the sketch values.

In the estimation phase, the estimator uses this sketch value histogram to estimate

the size histogram. To estimate a flow of size i we need at least O(i3) operations

to untangle the corresponding hash collisions. This results in a prohibitively high

CPU usage when maximum flow sizes are large, w ≫ 1. In a sketch with very low

collision rate the untangling of hash collisions does not play a significant role in the

estimation phase. Moreover, the accuracy of the estimates depends on the fraction

of hash collisions, a low collision rate means high estimation accuracy. One way to

reduce collisions is to increase the sketch size. However, a large sketch size is not

desirable due to the corresponding increase in memory requirements.

Therefore, we arrive at the sketch design exemplified in Figure 5.4. The idea is to

“multiplex” Z virtual sketches with M counters each into the physical space of one

M-counter sketch. The “multiplexing” works as follows: Z virtual sketch counters

share the same physical sketch counter if both counters are zero. If one or both

virtual counters are not zero we use the contention resolution algorithm described

in Section 5.6.1.1. The contention resolution has an overhead of ⌈logZ⌉ bits per

physical counter. Let’s look at an example of contention in Figure 5.4. Counters

83

with indexes M and 2M in the virtual sketch contend for the same physical counter.

Virtual counter M wins and virtual counter 2M is evicted from the virtual sketch. In

Section 5.6.1.1 we see that virtual counter eviction is equivalent to flow thinning. In

the experiments shown in Section 5.7 at most 15% of the flows are discarded due to

counter eviction. Extra memory space could be used to store these evicted counters if

flow thinning must be avoided. It is important to note that the extra CPU overhead

using this approach when compared to a regular sketch is negligible.

Small counters with their exponential histogram bin sizes and small hash collision

probabilities allow us to propose a O(k3 + logw) histogram estimator. Note that k

is a small constant typically k ≪ w (the experiments in Section 5.7 use k = 16 and

w = 1014). The following details the sketch data structure and its estimator.

5.6 Measurement method description

The measurement method consists of two components, the sketch data structure

and the estimator. The following section describes the data structure used to sketch

flow sizes based on each packet. Later we present the estimator that obtains the

histogram.

5.6.1 Data structures

The sketch data structure consists of three structures:

1. Sketch: This is the main data structure that has M counters, denoted Ch,

h = 1, . . . ,M . Each newly arrived packet increments its corresponding counter.

There are also M b-bit auxiliary counters labeled [ai], i = 1, . . . ,M , plus one

ownership bit per counter (in the experiments b = 6).

2. Sketch histogram: g = (g0, . . . , gkmax
) is the normalized histogram of the above

counter values; it is updated upon changes of the ownership bits.

84

3. Pseudo-random auxiliary counters: O(logw) auxiliary counters are kept in order

to implement a fast approximate random sampling algorithm.

Here w is the maximum flow size of interest and

b ≥ ⌈log2(log2w + 1 + k)⌉.

In what follows I illustrate the role of each of the above three data structures in the

algorithm.

5.6.1.1 Sketch

The sketch is a virtual sketch with ZM counters, Z ∈ {2, 3, . . .}, occupying the

physical space of a sketch with M counters. I refer to this virtual sketch as a Z-

fold virtual sketch or just a virtual sketch if the value of Z is clear from the context.

Counters in the physical sketch are indexed from 1 to M . A counter in the physical

sketch is shared by Z virtual sketch counters; each physical sketch counter has ⌈log2 Z⌉

ownership bits.

Counters in the virtual sketch are called virtual counters or just counters. Counters

in the physical sketch are called physical counters. To simplify the exposition, consider

Z = 2. Let’s follow the example shown in Figure 5.4. Virtual counters with indexes

c and M + c, c = 1, . . . ,M , are mapped into the physical counter with index c. A

physical counter value represents the value of a virtual counter with index ≤ M if

its ownership bit is zero. Otherwise it represents a virtual counter with index > M .

Physical counters are initialized with value zero and with ownership bits set to one.

Packets of a flow assigned to a virtual counter with index > M will not change its

corresponding physical counter if the physical counter has ownership bit zero. These

flows are considered to belong to evicted virtual counters. Also, if a packet assigned

to a counter with index ≤ M , arrives and finds its corresponding virtual counter

85

with ownership bit one, it sets the counter to one and the ownership bit to zero.

This means that the previous virtual counter (of index > M) that occupies the same

physical position is evicted from the virtual sketch. Note that counters are evicted

uniformly at random (because the hash function assigns flows to counters randomly);

this is equivalent to randomly discarding flows, also called flow thinning. In the

example of Figure 5.4 virtual counter 2M is evicted from the virtual sketch. The

following assumes that evicted counters are discarded.

Flow sampling [18] in its simplest form can be seen as a particular case of the

above sketch where the number of virtual sketches, Z, goes to infinity, ownership bits

are unique flow IDs, and virtual counters can only evict zero-valued counters in the

physical sketch. Note that when Z goes to infinity there are no flow collisions in the

virtual sketch. However, using a simple flow multiplexing argument, one can show

that the amount of flow thinning increases with Z. Thus we want to keep Z as small

as possible provided that flow size histogram estimates are accurate. We return to

this topic when evaluating this approach in Section 5.7.

5.6.1.2 Sketch histogram

A histogram of the counter values of the virtual sketch is kept in vector g =

(g0, . . . , gkmax
). This vector is initialized with zero except for g0 = 2M . Whenever a

counter with value j has its ownership bit changed from one to zero, gj is decremented

by one. This simple operation reflects the reduction in the number of virtual counters

due to contention. The remaining histogram updates are quite trivial.

5.6.1.3 Pseudo-random auxiliary counters

The sketch counters perform random (Bernoulli) sampling with probabilities taken

from {2−j | j = 1, . . . , kmax − k + 1} for counter values larger than k. At a high level

this approach follows the same simple principle of Morris [51], which requires us to

perform pseudo-random sampling at line speed. Since traditional pseudo-random

86

number generators are computationally intensive, there is an alternative that is best-

case deterministic and worst-case probabilistic.

Assume there are N i.i.d. (independent and identically distributed) flows that

increment their respective hash counters with probability 2−j , j = 1, . . . , kmax−k+1.

We start by creating an auxiliary counter aj and initialize it with aj ← 2j − 1. Upon

a packet arrival (from any of these N flows) aj is decremented by one. If aj = −1

we sample the packet (i.e. increment the respective sketch counter) and reinitialize

aj ← 2j−1. Note that forN = 1 this corresponds to deterministic sampling. Since we

only need to maintain one additional counter per value j we need O(logW) auxiliary

counters for the sketch. Appendix A.2.1 shows that as N →∞, packets are sampled

randomly (according to a Bernoulli process) at rate 2−j, as if they were sampled by

a true random number generator.

In the next section we see how to estimate the histogram using g = (g0, . . . , gkmax
).

5.6.2 Histogram estimator

This section presents a histogram estimator that uses the empirical sketch his-

togram g and outputs a flow size histogram in O(k3 + logW) operations. Let the

sketch load define the number of measured flows divided by the virtual sketch size.

The estimator works as follows: As soon as either the measurement epoch is reached

or the load achieves L = 1/2, we save g (which is always up-to-date), reinitialize all

variables and start another measurement epoch. I use g to refer to the “saved g”. g

can be used to estimate the size histogram using a two step estimator. Section 5.3.5

presents the first step where we estimate flows of size smaller than k (k is the de-

terministic counting threshold defined in Section 5.5); Section 5.6.2.1 presents the

second step where we estimate the histogram bins for flow sizes ≥ k. This section

shows that there is little information gain if we only seek to estimate flows of size

87

smaller than i and the estimator has sketch counters that are able to count more than

i packets.

To estimate the histogram of flows of size < k we use the estimator presented

in Section 5.3.5. Moreover, the sketch load is estimated with L̂ = − ln(g0) (from

equation (5.5)). Thus, estimating the histogram of all flow sizes with sizes less than

k takes O(k3) operations. These estimates are quite precise as we will observe in the

next section. The following shows how low sketch loads can help us design a fast

estimator for flows of size ≥ k.

5.6.2.1 Estimates of large flows sizes (≥ k)

Estimating large flow sizes encounters a problem: sketch counters are counted

probabilistically for values ≥ k. We can derive an equation similar to eq. (5.7) that

accounts for the probabilistic nature of gj for j ≥ k

E[gj] = E[g0]
∞
∑

i=j

(

f(i− k, j − k)λi/m+ f(i− k, j − k)
i
∑

c=2

fλ(i, c)
)

, (5.9)

where function f , described in Appendix A.2.2, is the probability that i− k packets

triggers j − k increments on a counter with value k. From equation (5.9) we see that

estimating λj is not an easy task. In what follows I derive a rough approximation to

equation (5.9) that lead to a very simple estimator. Let

Bj = {k + 2j−1 − 1, . . . , k + 2j − 2}, j = k, . . . , (kmax − k) (5.10)

be the bins of the histogram for j ≥ k and let

Λj =
∑

∀i∈Bj

λi, j = k, . . . , (kmax − k)

be the total number of flows with size i ∈ Bj . Assume that j is large. In what follows I

approximate probabilistic counting by deterministic counting, i.e. f(i− k, j − k) = 1

88

if i ∈ Bj and zero otherwise. Also assume that most of the flow size distribution

probability rests in flows with sizes much smaller than 2j. In this case, collisions of

flows whose flow size sums are in Bj are due to either: (1) a large number of small

flows; or (2) few small and large flows. Let’s look at the first case, a large number

of small flow collisions. The probability of 3 or more flows hashing into the same

counter is small when L = 1/2. Thus the effect of a large number of flows colliding is

negligible as the summation over fλ in equation (5.9) becomes vanishingly small as

m (the number of counters) increases.

Now, consider the second case: a small number of collisions between small and

large flows. As j is large, most flows of sizes i ∈ Bj are at least twice as large as

flows of smaller sizes not in Bj . This means that two or three collisions of flows with

sizes not in Bj are unlikely to sum up to a size in Bj . Then, apart from degenerate

cases such as
∑

∀i∈Bj
λi ≪

∑

∀c∈Bj−1
λc, most of the collisions between small and large

flows that fall into Bj are between small flows and flows whose sizes are in Bj . This

motivates us to propose the following approximation to equation (5.9)

E[gj] ≈ E[g0]LΛj .

With the above equation we have the following estimate for Λj:

Λ̂j ≈ (gj/g0)/L . (5.11)

The following section evaluates the above algorithm using Internet traces and a syn-

thetic hard-to-estimate distribution.

5.7 Evaluation

This section evaluates the proposed algorithm using Internet traces and one syn-

thetic extreme-case distribution. All experiments use parameters: k = 16 and

89

1

10

10
2

10
3

10
4

10
5

10
6

10
7

1
5 10 15 [32,47] [528,1039] [16400,32783]

#
 o

f
flo

w
s

Flow size interval

True flow size histogram

Virtual sketch:

 Estimated avg. + 95% conf. intervals

Regular sketch:

 Estimated avg.

Figure 5.5. Histogram estimates with 8MB of memory. BB-East-2 trace histogram
(line) v.s. histogram estimates (with a virtual sketch and with a regular sketch).
Experiment: 9.6 million flows (average), 6 bit counters (7 bits per flow), 37 runs.

W ≈ 1014 (thus the sketch counter requires b = 6 bits). The first experiment uses the

histogram of trace BBEast-2 (described in Chapter 4). This trace contains 9.5 million

distinct flows collected over a two hour period. This means that an 8MB physical

sketch has a 2-fold virtual sketch load L ≈ 1/2. In these experiments Z = 2 (a 2-fold

virtual sketch) as it has a low virtual sketch load, L, and Z = 2 is the folding value

with the smallest flow thinning probability.

The empirical flow arrival rates are used to generate 37 (Poisson) synthetic traces

that will feed the streaming algorithm. Another experiment uses the same scenario

replacing the multiplexed sketch by a regular sketch. A regular sketch does not

need to maintain an extra ownership bit and can use this space to reduce its load.

Measuring the same number of flows the regular sketch has load L = b/(b+1) = 0.86,

in contrast to the load L = 1/2 of a 2-fold virtual sketch. The estimator takes

less than one second to compute all estimates in both scenarios. Figure 5.5 show

the results of both experiments. The first experiment (with the virtual sketch) also

shows the 95% percentile confidence intervals. For the virtual sketch we observe that

the algorithm was able to obtain very good histogram estimates as well as very tight

confidence intervals. Note that for all flow sizes < k the estimator is unbiased. In the

90

case where flow sizes are ≥ k we see that equation (5.11) provides us with estimates

that are fairly close to the actual histogram values. On the other hand, the results of

my second experiment (with a regular sketch) indicate that a regular sketch performs

poorly for flow sizes greater than k.

A more heavily utilized backbone link BBEast-1 (this trace is described in Chap-

ter 4) contains 250 million measured flows during a 30 minute interval. This trace

requires a 220MB sketch and the estimator still takes less than one second to obtain

estimates for the complete histogram. The estimates are even more precise than the

ones obtained for BBEast-2, due to the order of magnitude increase in the number of

counters.

Next I test the estimator with a histogram whose tail decreases exponentially, i.e.

λi ∝ e−αi. This is a good extreme-case test of the estimator’s ability to measure

the histogram tail. In this scenario fλ(i, c) = fλ(i, c
′) for any c, c′ ∈ {1, . . . , i},

which makes equation (5.11) a much worst approximation to Λj than the case where

histograms are heavy tailed. Figure 5.6 shows the results of an experiment where

λi ∝ e−0.01i. We observe that the estimator performs reasonably well for flows of size

as large as 32,000 packets. Note that we are also able to capture the overall trend of

the tail, although the actual values for very large flow sizes are quite over-estimated.

However, this flow size histogram is not based on Internet traces and is presented

here to assess the performance of the estimator in a worst-case scenario.

5.8 Related work

Measuring the histogram of network flow sizes has been the subject of a number

of studies [15, 19, 39, 40, 57]. Although Internet routers handle traffic on a packet-

by-packet basis at the IP layer, the statistics of the underlying flows are vital to

network operators. The histogram of flow sizes is an important traffic metric that

91

1

10

10
2

10
3

10
4

10
5

10
6

10
7

1
5 10 15 [32,47] [528,1039] [16400,32783]

#
 o

f
flo

w
s

Flow size interval

Trace histogram (line)

Estimated histogram

Figure 5.6. Histogram estimates with 16MB of memory. Exponential histogram
(line) with λi = 2 × 106e−i/104

/9999.5 v.s. histogram estimates (95% confidence
interval is too small). Experiment: 20 million flows (average), 6 bit counters (7 bits
per flow), 43 runs.

gives insights to network monitoring applications such as traffic profiling, and aids

fast detection of security attacks.

In Chapter 4 we saw that reducing the load by aggressively sampling packets at

random [19] (without much side information) leads to inaccurate flow size estimates.

More recently a number of alternative solutions employ data streaming algorithms to

solve the histogram problem (without the need for protocol information) with more

accuracy [15, 39, 40]. Kumar et al. [40] proposed sketches to maintain approximate

flow size counts in an array of counters.

The algorithm in [40] hashes data items into a sketch with very fast update speeds,

O(1). Updates are fast because the algorithm does not resolve (or check) hash colli-

sions. As expected, the speed comes at the expense of loss of information about the

original subset sizes (due to unresolved hash collisions). In a (slow) off-line phase,

Kumar et al. [40] use a computationally intensive Expectation Maximization (EM)

algorithm to compute the estimation from these counters. Moreover, the authors

advise network operators to use at least one 32 bit counter per flow in average. In

this chapter I argue that the EM step in [40] is unnecessary and that estimates can

92

be obtained with a much faster algorithm that uses much smaller counters. Cor-

mode et al. [15] estimates the histogram using a sketch that maintains a tuple (flow

size counter, flow id) in memory. It relies on flow filtering (thinning) to compute

histogram estimates. The drawback of this method comes from its high memory re-

quirements, which can be as high as dozens of bytes per flow. Lu et al. [46] uses a

streaming algorithm tailored specifically to measure heavy tailed distributions that

requires little memory space. Their estimator however needs to compute all flow sizes

and use (even in a best-case scenario) O(W) time, where W is the largest flow size

of interest to the network operator.

5.9 Conclusions & Contributions

This chapter presented a resource minimalist flow size histogram estimator. By

trading-off flow size granularity, we count flow sizes in an aggregated and probabilistic

manner. This leads to a small memory footprint and an exponential speed up of the

time required to compute estimates over previous streaming methods. I tested the

proposed algorithm using both Tier-1 backbone traces and synthetic distributions

with satisfactory accuracy.

This chapter improves upon the approach of Kumar et al. [40] by exponentially

speeding up the estimation phase while reducing the memory requirement from 32

bits per flow to 7 bits per flow. In contrast to Lu et al. [46], the proposed approach

is exponentially faster and does not assume a specific distribution shape. We also

see that the amount of Fisher information stored in the sketch with respect to the

flow size distribution is two orders of magnitude higher than the Fisher information

contained in the sampled packets of Chapter 4. This finding reinforces the reputation

of streaming algorithms against traditional sampling approaches. Furthermore, the

Fisher information also presents an interesting structure, namely: counter values

greater than i have little information that can help estimate flows of size ≤ i. This

93

motives the design of a exponentially faster off-line phase and a four fold memory

saving.

The proposed streaming algorithm:

• has a small memory footprint: A counter is incremented until the counter

reaches value k, where k is a constant. After that, the counter is incremented

according to the probabilistic counting scheme proposed by Morris [51]. This

reduces the counter size to a few bits (e.g. 7 bits) without harming our ability

to precisely estimate flows of size smaller than k; and

• has a fast estimation phase: Flows are estimated from the smallest to the largest

sizes in one pass. Flow sizes larger than k are grouped in exponentially increas-

ing groups. Groups of flow sizes are estimated as a whole.

The complexity of the estimation phase is O(k3 + logw). These savings come with a

loss of information. However, because the original amount of information is high, we

can afford to lose some information.

This chapter also present other contributions that are possibly of interest in their

own:

• A hash folding technique that trades-off discarding a fraction of the collided

flows for the reduction in the amount of memory required by the sketch. Flow

sampling is shown to be a limiting case of this technique.

• A pseudo-random sampling scheme that speeds up the probabilistic counting

scheme proposed by Morris [51].

94

CHAPTER 6

CONCLUSIONS & FUTURE WORK

This thesis provides a framework within which common measurement tasks are an-

alyzed and new, principled, measurement methods are designed. Chapter 3 presented

a promising random walk-based method (Frontier sampling) that mitigates the esti-

mation errors caused by disconnected or loosely connected graphs. Frontier sampling

(FS) uses multiple (m) mutually dependent random walker. The dependence between

walkers is designed to “better balance” their samples. These samples are shown to be

the projection (onto the original graph) of a special type of m-dimensional (single)

random walker.

Simulations over real world graphs in Section 3.5 showed that Frontier sampling

(FS) is more robust than single and multiple independent random walkers to estimate

degree distributions and the fraction of users that belong to popular social groups.

An analytical argument (also substantiated by simulations), showed that random

walks (in particular, FS) are better suited to estimate the tail of power law graphs

than random vertex sampling. Moreover, FS sampling is well suited to be used in

large scale (parallel, asynchronous) experiments. The ideas behind FS can have far

reaching implications, from estimating characteristics of dynamic networks to the

design of new MCMC-based approximation algorithms.

Chapter 4 built upon Fisher’s foundational work to present a framework within

which one can design better network measurement methods. Using the Internet flow

size distribution as an example, this framework allows us to answer the following

(previously open) questions:

95

• It possible to accurately estimate the original flow size distribution from the

sampled packets?

Answer: Yes, as long as protocol information is used in the summary function

and the estimator.

• Are there other observable characteristics (besides the number of packets sam-

pled) that could yield more information about the original flow size distribution?

Answer: Yes, TCP Sequence Numbers contain a lot of information about θ.

The SYN flag, on the other hand, contains a small amount of information.

Chapter 4 also presented a measurement method that uses the TCP sequence numbers

and is efficient even for small sample set sizes.

Chapter 5 presented a resource minimalist flow size histogram estimator. We

saw that the amount of Fisher information stored in the sketch with respect to the

flow size distribution is two orders of magnitude higher than the Fisher information

contained in the sampled packets of Chapter 4. This finding reinforces the reputa-

tion of streaming algorithms against traditional sampling approaches. Furthermore,

the Fisher information also presents an interesting structure, namely, counter values

greater than i contain little information to help estimate flows of size ≤ i. This

motivated the design of a exponentially faster off-line phase and a four fold memory

saving. Chapter 5 also presents other contributions that are possibly of interest in

their own:

• A hash folding technique that trades-off discarding a fraction of the collided

flows for the reduction in the amount of memory required by the sketch. Flow

sampling is shown to be a limiting case of this technique.

• A pseudo-random sampling scheme that speeds up the probabilistic counting

scheme proposed by Morris [51].

96

APPENDIX

DESIGNING TCP FLOW-LEVEL ESTIMATORS FROM

SAMPLED PACKETS

A.1 An approximation to h(smin, smax)

Before proceeding to the actual estimation of the flow size distribution we need to

address one last issue. Function h introduced in Section 4.6.4 takes as arguments two

TCP sequence numbers of two packets in a flow and returns the number of packets

sent between these two packets. Before we can estimate flow sizes from real Internet

traces we need to approximate h using real Internet sampled flows. We describe this

next.

The baseline for our approximation h̃(s1, s2) to h(s1, s2) is to use |s1− s2| divided

by the maximum data segment transmitted on the flow, where s1 and s2 are two

TCP sequence numbers of packets belonging to the same flow. The reasoning here is

that while a TCP application has enough data to send, most TCP protocol stacks will

send packets with data up to the maximum payload size. Most TCP implementations

use maximum payload sizes of 1460, 1448 or 536. Notice that we are looking at only

one direction of the flow, i.e., we only have access to one side of the two-way TCP

connection. Unfortunately a good approximation of h requires enhancements to the

baseline approach.

Zero sized packets and modern web browsers present two difficult issues to resolve

in finding a good h̃. (1) Since zero sized packets do not increase the TCP sequence

number counter, they are almost totally invisible to us if not sampled. (2) Modern

web browsers use persistent HTTP 1.1 connections since an user is expected to follow

97

 10

 100

 1000

 10000

 100000

 1e+06

 0 20 40 60 80 100

N
um

be
r

of
 s

am
pl

es
 w

ith
 tu

pl
e

(N
,r

)

Sample tuple (NOSYN,r)

Mean number of samples obtained with h
Samples obtained with approximation

Figure A.1. Number of sampled flows with label (S, r), r ≥ 1 obtained from both
h drawn synthetically, and h̃ obtained using the real sampled trace. Results from
the BB-East-2 trace. Packet sampling rate p = 0.01. This graph shows nd̂(N,r), the
number of sample tuples (N, r) (from flows without a SYN sampled packet). Notice
that the average is slightly overestimated.

many links on the same web server. Upon receiving a request for a page, the web

server sends all packets with the same size except for the last one. The user’s browser

keeps the TCP connection open, and in the event of a new user requested page, it

asks for more data over the same TCP connection. This creates a TCP flow from

possibly many independent flows. One can argue that these are independent TCP

flows and should be treated as such. However, as they share the same SYN packet,

our model groups them into a single flow.

We first deal with the multiple payload size problem. A sizable amount of the

web-servers on the Internet are Linux machines. Linux machines have an interesting

behavior on their IPID field, they are all sequential for a given a TCP flow (a reference

to the many uses of the IPID field can be found on [12]). With distinct payload sizes

98

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100

N
um

be
r

of
 s

am
pl

es
 w

ith
 tu

pl
e

(S
,r

)

Sample tuple (SYN,r)

Mean number of samples obtained with h
Samples obtained with approximation

Figure A.2. Number of sampled flows with label (S, r), r ≥ 1 obtained from both
h drawn synthetically, and h̃ obtained using the real sampled trace. Results from
the BB-East-2 trace. Packet sampling rate p = 0.01. This graph shows nd̂(S,r), the
number of sample tuples (S, r) (from flows with a SYN sampled packet). Notice that
the average is slightly underestimated.

inside the same flow, most of them not sampled, |s1 − s2| will likely not give us a

number that is a multiple of the maximum payload size per packet in the flow. If

these small sized payloads are not a large fraction of the total number of packets we

can verify whether the number of packets obtained using the IPID difference of the

packets is close to the number obtained using Sequence Numbers. If so, we will use

the IPID difference.

In most TCP flows the majority of the data is sent in one direction, i.e., the TCP

sequence number difference on one direction is much larger than on the other. If most

of the data is being sent in the direction being sampled, we obtain maximum payload

sizes from the sampled flow, by discarding FIN and SYN packets (usually smaller),

assuming sampled packets are representative of the unsampled packets. Otherwise,

99

we denote the flow as a TCP ACK flow. TCP ACK flows usually have many zero

sized packets. One can estimate the value of h on TCP ACK flows by looking at the

TCP ACK sequence numbers, which are sequence numbers of the data being sent on

the opposite direction of the sampled packets. We keep statistics on the distribution

of some specific payload sizes (such as sizes 1460, 536) of non TCP ACK flows and

assume that the payload size distribution in both directions is the same. Using the

TCP ACK sequence numbers and the above mentioned distribution we obtain an

estimate of the value of h.

The above function h̃ is a rather simplistic application of TCP protocol informa-

tion; however it works reasonably well although the proposed estimator can certainly

benefit from a more accurate model of h. We leave the construction of a better model

for future research.

The above observations were made from trace Access-East, and then tested on

BB-East-2. Sampling flows on the BB-East-2 trace at rate p = 1/100 generates,

on average, approximately 125,000 sampled TCP flows to be used by the estimator.

Figures A.2 and A.1 show how well we can approximate the sample tuples nd̂(S,r) and

nd̂(N,r), respectively, obtained from h̃ over real sampled data from BB-East-2. Recall

that nd̂(S,r) (nd̂(N,r)) are the counts of the sampled SYN (NON-SYN) flows where

r = h(s
(u)
max, s

(u)
min).

Note that the use of h̃ results in a slight underestimate of the number of sampled

SYN flows and a slight overestimate of the number of sampled NON-SYN flows.

This matter needs further investigation but it might indicate that sampled flows are

suffering from flow splitting [37]. A future research topic is to account for flow splitting

in the model.

100

A.2 Designing a streaming algorithm

A.2.1 Pseudo-random counting

Here is the proof that when N , the number of flows using pseudo-random counter

ch, approaches infinity then packets of any of these flows are sampled according to a

Bernoulli process. Initialize ch ← h − 1, remembering that ch counts down to zero.

When ch is decremented, p is the probability that a given flow decremented it and

1 − p be the probability that other flows decremented it. Let X be the number of

subtractions by a flow between ch rollovers (a rollover is when counter goes instantly

from ch = 0 back to ch = h). Define

Pm = P [X = m], m = 1, . . . , h− 1.

It is easy to see that if we assume that
(

k
j

)

= 0 whenever j > k we have

Pm =

(

h− 1

m− 1

)

(1− p)h−mpm +

m−1
∑

i=0

(

h− 1

i

)

(1− p)h−i pi Pm−i, m = 1, 2, . . . , h.

(A.1)

Now we see that the flow is Bernoulli sampled. Proof by induction on m.

P1 = (1− p)h−1p+ (1− p)h P1 → P1 =
(1− p)h−1p

1− (1− p)h

as N →∞, p→ 0 and then P1 = 1/h.

Induction:

Assume Pi = (1− 1/h)i−11/h for i = 1, 2, . . . , m− 1. Then equation (A.1) becomes

Pm =(h− 1)p Pm−1 + (1− p)h Pm +O(p2)

=(h− 1)p(1− 1/h)m−21/n+ (1− p)h Pm +O(p2),

101

passing all variables Pm to the left side

Pm =((h− 1)p(1− 1/h)m−21/n+O(p2))/(1− (1− p)h)

=(1− 1/h)m−11/h+O(p).

As p → 0, Pm = (1 − 1/h)m−11/h, which is geometrically distributed and thus the

flow is Bernoulli sampled.

A.2.2 Counter increment probability

The probability of having j counter increments out of i packets is given by f(i, j) =

2−(j(j+1)/2)f ′(i− j, j + 1), where

f ′(i, j) =

∑i
m=0(1− 2−j)mf ′(i−m, j − 1) if j ≥ 2

(1− 2−1)i otherwise.

A.2.3 Flow collision function

Function fλ(j,m) = f ′
λ(j, 1, m) can be computed using the following recursion.

f ′
λ(j, w,m) =

e−
P

i λi if j = m = 0

0 if w > j or wm > j

otherwise

f ′
λ(j, w,m) =

min(⌊j/w⌋,m)
∑

r=0

(λw)r

r!
f ′

λ(j − r w, w + 1, m− r);

caching its intermediate results fλ is known to have complexity O(j3) [40].

102

BIBLIOGRAPHY

[1] Achlioptas, Dimitris, Clauset, Aaron, Kempe, David, and Moore, Cristopher. On
the bias of traceroute sampling: Or, power-law degree distributions in regular
graphs. J. ACM 56, 4 (2009), 1–28.

[2] Avin, Chen, and Krishnamachari, Bhaskar. The power of choice in random walks:
An empirical study. Comput. Netw. 52, 1 (2008), 44–60.

[3] Balister, P.N., Bollobás, B., and Stacey, A.M. Dependent percolation in two
dimensions. Probability Theory and Related Fields 117, 4 (2000), 495–513.

[4] Bar-Yossef, Ziv, and Gurevich, Maxim. Random sampling from a search engine’s
index. J. ACM 55, 5 (2008), 1–74.

[5] Barabási, A.-L., and Albert, R. Emergence of scaling in random networks. Sci-
ence 286 (1999), 509–512.

[6] Barakat, Chadi, Thiran, Patrick, Iannaccone, Gianluca, Diot, Christophe, and
Owezarski, Philippe. Modeling internet backbone traffic at the flow level. IEEE
Transactions on Signal Processing 51, 8 (August 2003), 2111–2124.

[7] Bisnik, Nabhendra, and Abouzeid, Alhussein A. Optimizing random walk search
algorithms in p2p networks. Computer Networks 51, 6 (2007), 1499–1514.

[8] Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D.-U. Complex
networks: Structure and dynamics. Physics Reports 424, 4-5 (2006), 175–308.

[9] Broder, A., Kumar, R., Maghoul, F., Raghavan, P., Rajagopalan, S., Stata, R.,
Tomkins, A., and Wiener, J. Graph structure in the web. Computer Networks
33 (2000), 309–320.

[10] Cassandras, Christos G., and Lafortune, Stephane. Introduction to Discrete
Event Systems. Springer-Verlag, Inc., 2006.

[11] Chen, Fang, Lovász, László, and Pak, Igor. Lifting Markov chains to speed up
mixing. In STOC ’99: Proceedings of the thirty-first annual ACM symposium on
Theory of computing (New York, NY, USA, 1999), ACM, pp. 275–281.

[12] Chen, Weifeng, Huang, Yong, Ribeiro, Bruno F., Suh, Kyoungwon, Zhang, Hong-
gang, de Souza e Silva, Edmundo, Kurose, Jim, and Towsley, Don. Exploiting
the IPID field to infer network path and end-system characteristics. In Proceed-
ing of the 2005 Passive and Active Measurement (PAM’05) Workshop (March
2005).

103

[13] Cho, Junghoo, and Garcia-Molina, Hector. Parallel crawlers. In WWW ’02:
Proceedings of the 11th international conference on World Wide Web (New York,
NY, USA, 2002), ACM, pp. 124–135.

[14] Cormen, Thomas H., Leiserson, Charles E., Rivest, Ronald L., and Stein, Clif-
ford. Introduction to Algorithms, 2nd revised edition ed. The MIT Press, Septem-
ber 2001.

[15] Cormode, Graham, Muthukrishnan, S., and Rozenbaum, Irina. Summarizing
and mining inverse distributions on data streams via dynamic inverse sampling.
In VLDB (2005), pp. 25–36.

[16] Cover, Thomas M., and Thomas, Joy A. Elements of Information Theory. John
Wiley & sons, 1991.

[17] Datta, Souptik, and Kargupta, Hillol. Uniform data sampling from a peer-to-
peer network. In ICDCS ’07: Proceedings of the 27th International Conference on
Distributed Computing Systems (Washington, DC, USA, 2007), IEEE Computer
Society, p. 50.

[18] Duffield, Nick, Lund, Carsten, and Thorup, Mikkel. Flow sampling under hard
resource constraints. SIGMETRICS Perform. Eval. Rev. 32, 1 (2004), 85–96.

[19] Duffield, Nick, Lund, Carsten, and Thorup, Mikkel. Estimating flow distributions
from sampled flow statistics. IEEE/ACM Transactions on Networking 13, 5
(2005), 933–946.

[20] Eagle, Nathan, Pentland, Alex S., and Lazer, David. Inferring friendship network
structure by using mobile phone data. Proceedings of the National Academy of
Sciences 106, 36 (August 2009), 15274–15278.

[21] Facebook. http://www.facebook.com, 2009.

[22] Faloutsos, Michalis, Faloutsos, Petros, and Faloutsos, Christos. On power-law
relationships of the internet topology. In SIGCOMM ’99: Proceedings of the con-
ference on Applications, technologies, architectures, and protocols for computer
communication (New York, NY, USA, 1999), ACM, pp. 251–262.

[23] Fisher, R. A. The Design of Experiments, 1st ed. Oliver & Boyd, Edinburgh,
UK, 1935.

[24] Fisher, R.A. Development of the theory of experimental design. In Proc. Inter-
national Statistical Conferences (1947), vol. 3, pp. 434–439.

[25] for Internet Data Analysis, Coperative Association. CAIDA’s Internet topology
data kit #0304. San Diego Supercomputer Center, UCSD, 2003.

[26] Fraleigh, C., Moon, S., Lyles, B., Cotton, C., Khan, M., Moll, D., Rockell, R.,
Seely, T., and Diot, C. Packet-level traffic measurements from the sprint IP
backbone. IEEE Network (2003).

104

[27] Gelman, A., and Rubin, D.B. Inference from iterative simulation using multiple
sequences (with discussion). Statistical Science 7 (1992), 457–511.

[28] Geyer, Charles J. Practical Markov Chain Monte Carlo. Statistical Science 7, 4
(1992), 473–483.

[29] Gjoka, Minas, Kurant, Maciej, Butts, Carter T., and Markopoulou, Athina. A
walk in Facebook: Uniform sampling of users in online social networks. In Proc.
of the IEEE Infocom (Jun 2010 (to appear)).

[30] Gkantsidis, Christos, Mihail, Milena, and Saberi, Amin. Random walks in peer-
to-peer networks: algorithms and evaluation. Perform. Eval. 63, 3 (March 2006),
241–263.

[31] Gorman, John D., and Hero, Alfred O. Lower bounds for parametric estimation
with constraints. IEEE Transactions on Information Theory 36, 6 (Nov 1990),
1285–1301.

[32] Heckathorn, Douglas D. Respondent-driven sampling: A new approach to the
study of hidden populations. Social Problems (1997).

[33] Henzinger, Monika R., Heydon, Allan, Mitzenmacher, Michael, and Najork,
Marc. On near-uniform url sampling. In Proceedings of the 9th international
World Wide Web conference on Computer networks : the international journal
of computer and telecommunications netowrking (Amsterdam, The Netherlands,
The Netherlands, 2000), North-Holland Publishing Co., pp. 295–308.

[34] Hohn, Nicolas, and Veitch, Darryl. Inverting sampled traffic. IEEE/ACM Trans.
Netw. 14, 1 (2006), 68–80.

[35] Ibragimov, A., and Hasminskii, R.Z. Statistical Estimation - Asymptotic Theory.
Springer, New York, 1981.

[36] Kac, Mark. Random walk and the theory of Brownian motion. The American
Mathematical Monthly 54, 7 (1947), 369–391.

[37] Kompella, Ramana Rao, and Estan, Cristian. The power of slicing in internet
flow measuremet. In IMC ’05: Proceeding of the 5th ACM/USENIX Internet
Measurement Conference (October 2005).

[38] Konrath, Marlom A., Barcellos, Marinho P., and Mansilha, Rodrigo B. Attacking
a swarm with a band of liars: evaluating the impact of attacks on bittorrent. In
P2P ’07: Proceedings of the Seventh IEEE International Conference on Peer-to-
Peer Computing (Washington, DC, USA, 2007), IEEE Computer Society, pp. 37–
44.

[39] Kumar, Abhishek, Sung, Minho, Xu, Jun, and Zegura, Ellen W. A data stream-
ing algorithm for estimating subpopulation flow size distribution. In Proceeding
of the ACM SIGMETRICS (2005), pp. 61–72.

105

[40] Kumar, Abhishek, Sung, Minho, Xu, Jun (Jim), and Wang, Jia. Data streaming
algorithms for efficient and accurate estimation of flow size distribution. In
Proceeding of the ACM SIGMETRICS (2004), pp. 177–188.

[41] Lee, Sang Hoon, Kim, Pan-Jun, and Jeong, Hawoong. Statistical properties of
sampled networks. Physical Review E (Statistical, Nonlinear, and Soft Matter
Physics) 73, 1 (2006), 016102.

[42] Leskovec, Jure, and Faloutsos, Christos. Sampling from large graphs. In KDD
’06: Proceedings of the 12th ACM SIGKDD international conference on Knowl-
edge discovery and data mining (New York, NY, USA, 2006), ACM, pp. 631–636.

[43] Leskovec, Jure, Lang, Kevin J., Dasgupta, Anirban, and Mahoney, Michael W.
Statistical properties of community structure in large social and information
networks. In WWW ’08: Proceeding of the 17th international conference on
World Wide Web (New York, NY, USA, 2008), ACM, pp. 695–704.

[44] Levin, David A., Peres, Yuval, and Wilmer, Elizabeth L. Markov Chains and
Mixing Times. AMS, 2009.

[45] Lovász, L. Random walks on graphs: a survey. Combinatorics 2 (1993), 1–46.

[46] Lu, Yi, Montanari, Andrea, Prabhakar, Balaji, Dharmapurikar, Sarang, and
Kabbani, Abdul. Counter braids: A novel counter architecture for per-flow
measurement. In Proceeding of the ACM SIGMETRICS (2008).

[47] Massoulié, Laurent, Le Merrer, Erwan, Kermarrec, Anne-Marie, and Ganesh,
Ayalvadi. Peer counting and sampling in overlay networks: random walk meth-
ods. In PODC ’06: Proceedings of the twenty-fifth annual ACM symposium on
Principles of distributed computing (New York, NY, USA, 2006), ACM, pp. 123–
132.

[48] McKnight, Courtney, Jarlais, Don Des, Bramson, Heidi, Tower, Lisa, Abdul-
Quader, Abu S., Nemeth, Chris, and Heckathorn, Douglas. Respondent-driven
sampling in a study of drug users in New York City: Notes from the field. Journal
of Urban Health 83, 6 (2006), 154–159.

[49] Meyn, Sean, and Tweedie, Richard L. Markov Chains and Stochastic Stability.
Cambridge University Press, New York, NY, USA, 2009.

[50] Mislove, Alan, Marcon, Massimiliano, Gummadi, Krishna P., Druschel, Peter,
and Bhattacharjee, Bobby. Measurement and Analysis of Online Social Net-
works. In Proceedings of the 5th ACM/Usenix Internet Measurement Conference
(IMC’07) (San Diego, CA, October 2007).

[51] Morris, Robert. Counting large numbers of events in small registers. Communi-
cations of the ACM 21, 10 (1978), 840–842.

106

[52] Newman, M. E. J. The structure and function of complex networks. SIAM
Review 45, 2 (2003), 167–256.

[53] Press, William H., Flannery, Brian P., Teukolsky, Saul A., and Vetterling,
William T. Numerical Recipes in C : The Art of Scientific Computing. Cam-
bridge University Press, October 1992.

[54] Rasti, Amir H., Torkjazi, Mojtaba, Rejaie, Reza, Duffield, Nick, Willinger, Wal-
ter, and Stutzbach, Daniel. Graph sampling in unstructured Peer-to-Peer and
undirected online social networks. In IEEE INFOCOM Mini-Conference (2009).

[55] Redner, Richard A., and Walker, Homer F. Mixture Densities, Maximum Like-
lihood and the EM Algorithm. SIAM Review 26, 2 (April 1984), 195–239.

[56] Ribeiro, Bruno, Gauvin, William, Liu, Benyuan, and Towsley, Don. On MySpace
account spans and double Pareto-like distribution of friends. Tech. Rep. UMass
CMPSCI UM-CS-2010-001, University of Massachusetts at Amherst, Jan 2010.

[57] Ribeiro, Bruno, Towsley, Don, Ye, Tao, and Bolot, Jean. Fisher information of
sampled packets: an application to flow size estimation. In Proceedings of the
6th ACM Internet measurement conference (2006), pp. 15–26.

[58] Robert, Christian P., and Casella, George. Monte Carlo Statistical Methods,
2nd ed. Springer-Verlag, Secaucus, NJ, USA, 2005.

[59] Rusmevichientong, Paat, Pennock, David M., Lawrence, Steve, and Giles, Lee C.
Methods for sampling pages uniformly from the world wide web. In AAAI Fall
Symposium on Using Uncertainty Within Computation (2001), pp. 121–128.

[60] Salganik, Matthew, and Goel, Sharad. Respondent-Driven Sampling as Markov
Chain Monte Carlo. Statistics in Medicine 28, 17 (2009), 2202–2229.

[61] Stutzbach, Daniel, Rejaie, Reza, Duffield, Nick, Sen, Subhabrata, and Will-
inger, Walter. On unbiased sampling for unstructured peer-to-peer networks.
IEEE/ACM Trans. Netw. 17, 2 (2009), 377–390.

[62] Trees, Harry L. Van. Detection, Estimation, and Modulation Theory, Part I,
1st ed. Wiley-Interscience.

[63] Tune, Paul, and Veitch, Darryl. Towards optimal sampling for flow size esti-
mation. In IMC ’08: Proceedings of the 8th ACM SIGCOMM conference on
Internet measurement (New York, NY, USA, 2008), ACM, pp. 243–256.

[64] Volz, Erik, and Heckathorn, Douglas D. Probability based estimation theory for
Respondent-Driven Sampling. Journal of Official Statistics (2008).

[65] Wang, Chao, and Ma, Xiaoli. Deriving cramér-rao bounds and maximum likeli-
hood estimators for traffic matrix inference. SIGMETRICS Perform. Eval. Rev.
37, 2 (2009), 12–14.

107

[66] Watts, D.J., and Strogatz, S.H. Collective dynamics of “small world” networks.
Nature 393 (June 1998), 440–442.

[67] Yoon, Sooyeon, Lee, Sungmin, Yook, Soon-Hyung, and Kim, Yup. Statistical
properties of sampled networks by random walks. Physical Review E (Statistical,
Nonlinear, and Soft Matter Physics) 75, 4 (2007), 046114.

[68] KDD cup 2003 dataset (http://www.cs.cornell.edu/projects/kddcup/
datasets.html).

[69] Zamir, Ram. A Proof of the Fisher Information Inequality via a Data Processing
Argument. IEEE Transactions on Information Theory 44, 3 (1998), 1246–1250.

[70] Zhong, Ming, and Shen, Kai. Random walk based node sampling in self-
organizing networks. SIGOPS Oper. Syst. Rev. 40, 3 (2006), 49–55.

108

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	5-2010

	On the Design of Methods to Estimate Network Characteristics
	Bruno F. Ribeiro
	Recommended Citation

	nyc-22.0-021121-0-2hrs.d_vs_extracted_from_realtrace.SYN.eps

