
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Open Access Dissertations

9-2011

Exploiting Structure in Coordinating Multiple
Decision Makers
Hala Mostafa
University of Massachusetts Amherst, hmostafa@cs.umass.edu

Follow this and additional works at: https://scholarworks.umass.edu/open_access_dissertations

Part of the Computer Sciences Commons

This Open Access Dissertation is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in
Open Access Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Recommended Citation
Mostafa, Hala, "Exploiting Structure in Coordinating Multiple Decision Makers" (2011). Open Access Dissertations. 480.
https://scholarworks.umass.edu/open_access_dissertations/480

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F480&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/open_access_dissertations?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F480&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/open_access_dissertations?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F480&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F480&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/open_access_dissertations/480?utm_source=scholarworks.umass.edu%2Fopen_access_dissertations%2F480&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

EXPLOITING STRUCTURE IN COORDINATING
MULTIPLE DECISION MAKERS

A Dissertation Presented

by

HALA MOSTAFA

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

DOCTOR OF PHILOSOPHY

September 2011

Department of Computer Science

c© Copyright by Hala Mostafa 2011

All Rights Reserved

EXPLOITING STRUCTURE IN COORDINATING
MULTIPLE DECISION MAKERS

A Dissertation Presented

by

HALA MOSTAFA

Approved as to style and content by:

Victor Lesser, Chair

Shlomo Zilberstein, Member

Gerome Miklau, Member

Ana Muriel, Member

Andrew G. Barto, Department Chair
Department of Computer Science

ACKNOWLEDGMENTS

One thing that so delayed my finishing this thesis is writing the acknowledgements. I

just cannot begin to thank the following persons, because I don’t think I can ever thank

them enough. But here goes my modest attempt anyway.

I would like to thank my advisor and mentor Victor Lesser. Victor’s eye for analogies

between seemingly very different areas or approaches has been invaluable to my research

and has opened up many an interesting research direction. His high standards of integrity

and innovation will stay with me to the end of my career. Besides research advice, Vic-

tor has infinite capacity for caring about his students; I don’t remember anything I was

grappling with for which Victor didn’t have a good piece of advice.

I would also like to thank Shlomo Zilberstein and Dan Corkill with whom I have been

lucky to discuss my work and whose comments were useful to me in defining my ideas

and making them more concrete. I am also grateful for Anita Raja’s career advice and

numerous emails reminding me to enjoy myself even in stressful situations.

I owe a lot to the liveliness and friendliness of the CS Department atmosphere (never

mind that the heater and the AC were always competing), and I couldn’t have picked a bet-

ter place to spend so many years of my life. I want to thank my friends and colleagues in the

MAS Lab: Bo An, Chongjie Zhang, Yoonheui Kim and Huzaifa Zafar for many interesting

and useful discussions. I was very lucky to more or less belong to the RBR lab as well,

where I could walk and chat for arbitrarily long periods of time about everything under

the sun, whether or not it had ‘MDP’ in it. To Alan Carlin, Marek Petrik, Akshat Kumar,

Siddarth Srivastava, William Yeoh and Chris Amato, thank you for the extremely enjoy-

able talks, dinners and hikes and for sharing stories of everything from fantasy baseball to

mountain biking.

iv

Michele Roberts made everything administrative just glide without us having to think

about it twice. Thank you for your amazing efficiency, and for the air of cheerfulness you

invariably brought into our labs.

Finally, a mere attempt at thanking my parents, brother and husband for their unfaltering

support. If it was not for my family, I would never have survived this program beyond the

first few months. My daily conversations with my parents sustained me and formed my

main link to the ‘real world’. My brother was always willing to answer my linear algebra

questions. My husband’s love and unshakable faith in my abilities is something I can

always count on.

v

ABSTRACT

EXPLOITING STRUCTURE IN COORDINATING
MULTIPLE DECISION MAKERS

SEPTEMBER 2011

HALA MOSTAFA

B.Sc., CAIRO UNIVERSITY, EGYPT

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Victor Lesser

This thesis is concerned with sequential decision making by multiple agents, whether

they are acting cooperatively to maximize team reward or selfishly trying to maximize their

individual rewards. The practical intractability of this general problem led to efforts in

identifying special cases that admit efficient computation, yet still represent a wide enough

range of problems. In our work, we identify the class of problems with structured inter-

actions, where actions of one agent can have non-local effects on the transitions and/or

rewards of another agent. We addressed the following research questions: 1) How can

we compactly represent this class of problems? 2) How can we efficiently calculate agent

policies that maximize team reward (for cooperative agents) or achieve equilibrium (self-

interested agents)? 3) How can we exploit structured interactions to make reasoning about

communication offline tractable?

vi

For representing our class of problems, we developed a new decision-theoretic model,

Event-Driven Interactions with Complex Rewards (EDI-CR), that explicitly represents struc-

tured interactions. EDI-CR is a compact yet general representation capable of capturing

problems where the degree of coupling among agents ranges from complete independence

to complete dependence.

For calculating agent policies, we draw on several techniques from the field of math-

ematical optimization and adapt them to exploit the special structure in EDI-CR. We de-

veloped a Mixed Integer Linear Program formulation of EDI-CR with cooperative agents

that results in programs much more compact and faster to solve than formulations ignoring

structure. We also investigated the use of homotopy methods as an optimization technique,

as well as formulation of self-interested EDI-CR as a system of non-linear equations.

We looked at the issue of communication in both cooperative and self-interested set-

tings. For the cooperative setting, we developed heuristics that assess the impact of po-

tential communication points and add the ones with highest impact to the agents’ decision

problems. Our heuristics successfully pick communication points that improve team re-

ward while keeping problem size manageable. Also, by controlling the amount of commu-

nication introduced by a heuristic, our approach allows us to control the tradeoff between

solution quality and problem size.

For self-interested agents, we look at an example setting where communication is an

integral part of problem solving, but where the self-interested agents have a reason to be

reticent (e.g. privacy concerns). We formulate this problem as a game of incomplete infor-

mation and present a general algorithm for calculating approximate equilibrium profile in

this class of games.

vii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . vi

LIST OF TABLES . xiii

LIST OF FIGURES . xv

CHAPTER

1. INTRODUCTION . 1

1.1 Overview . 1
1.2 Multi-Agent Sequential Decision Making . 3

1.2.1 MSDM: Process and domains . 3
1.2.2 General models . 4

1.2.2.1 Cooperative agents . 4
1.2.2.2 Self-interested agents . 5

1.2.3 Specialized models . 7
1.2.4 Communication . 8
1.2.5 Solution approaches . 10

1.3 Contributions . 12

1.3.1 Problem statement . 12
1.3.2 List of contributions . 13

1.4 Thesis Outline . 15

2. REPRESENTATION FOR STRUCTURED AGENT INTERACTIONS 17

2.1 General Representations . 18

viii

2.1.1 Cooperative agents: DEC-POMDPs and DEC-MDPs 18

2.1.1.1 DEC-POMDP . 18
2.1.1.2 DEC-MDP . 20

2.1.2 Self-interested agents: EFG . 21

2.2 New Model: EDI-CR . 23

2.2.1 Motivating examples . 23

2.2.1.1 Robotic rescue . 23
2.2.1.2 Cleaning robots . 24
2.2.1.3 Modified Mars rovers . 24

2.2.2 Problem characteristics . 25
2.2.3 EDI-CR: The model . 26
2.2.4 EDI-CR vs. factored DEC-MDP . 27

2.3 Survey Of Special Representations . 30

2.3.1 Cooperative agents . 30

2.3.1.1 TI-DEC-MDP . 30
2.3.1.2 EDI-DEC-MDP . 32
2.3.1.3 IDMG . 33
2.3.1.4 DPCL . 35
2.3.1.5 ND-POMDP . 35
2.3.1.6 TD-POMDP . 36

2.3.2 Self-interested agents . 38

2.3.2.1 MAID . 38
2.3.2.2 TAGG . 40
2.3.2.3 Succinct EFG . 42
2.3.2.4 Other representations . 42

2.4 Summary . 43

3. DECISION-THEORETIC MODELS AND OPTIMIZATION 45

3.1 Sequence Form Policy Representation . 46
3.2 Existing Mathematical Formulations Of DEC-MDPs . 47

3.2.1 DEC-MDP NLP . 47
3.2.2 DEC-MDP MILP . 48

ix

3.3 MILP Formulation Of EDI-CR . 49

3.3.1 Formulation of 2-agent EDI-CR . 50

3.3.1.1 Binning histories . 50
3.3.1.2 Enforcing the identity . 52

3.3.2 MILP for 3 or more agents . 54
3.3.3 Experimental results . 58

3.3.3.1 Results of 2-agent formulations . 58
3.3.3.2 Results of 3-agent formulations . 61

3.3.4 Related work . 63

3.4 Solving EDI-CR Using Homotopy Methods . 65

3.4.1 Introduction to homotopy . 66

3.4.1.1 Natural vs. ‘artificial’ parameter λ . 68
3.4.1.2 Tracking the zero curve . 69

3.4.2 Homotopy for linearly constrained optimization 70
3.4.3 Solving DEC-MDPs using homotopy . 71
3.4.4 Challenges in using homotopy . 75

3.4.4.1 Sparse linear algebra . 75
3.4.4.2 Small steps in prediction . 77
3.4.4.3 Possible alternatives . 77

3.5 Summary . 78

4. COMMUNICATION IN COOPERATIVE EDI-CR . 79

4.1 Related work: Communication in Decision Theoretic Models 80
4.2 Communication Costs . 88

4.2.1 Limiting communication . 89
4.2.2 Problem size analysis . 90

4.2.2.1 No communication . 91
4.2.2.2 Full-fledged communication . 91
4.2.2.3 Limited communication . 92

4.3 Heuristics For Uni-directional Interactions . 93

4.3.1 Heuristics based on static structure . 94

x

4.3.1.1 H1: Add after critical actions . 94
4.3.1.2 H2: Add after actions with very different outcomes 94

4.3.2 Heuristic based on an initial policy . 95

4.3.2.1 H3: Add where it causes most belief change 96

4.3.3 Evaluating communication points in context . 96
4.3.4 Automatically determining needed communication 98

4.4 Experimental Results: Uni-directional Heuristics . 99

4.4.1 Experimental setup . 99
4.4.2 Performance of heuristics . 100
4.4.3 Effect on execution time . 102
4.4.4 Automatically determining needed communication 102

4.5 Heuristic For Bi-directional Interactions . 103

4.5.1 Incorporating reward . 105
4.5.2 Using Bayesian networks to calculate beliefs . 106
4.5.3 Evaluating communication points in context . 111
4.5.4 Experimental results . 111
4.5.5 Discussion . 115

4.6 Summary . 118

5. COMMUNICATION AMONG SELFISH AGENTS . 120

5.1 The View Maintenance Problem . 121
5.2 Games Of Incomplete Information . 122

5.2.1 Background . 122
5.2.2 A strategy as a point in multi-dimensional space 124
5.2.3 Approximate equilibria . 125

5.3 View Maintenance As A Game . 126

5.3.1 Problem abstraction . 126
5.3.2 The view maintenance game . 127

5.4 Anytime Algorithm for Computing Approximate BNE 128

5.4.1 Collapsing the game tree . 129
5.4.2 Iteratively improving a point . 130

5.5 Experimental Results . 135

xi

5.5.1 The effect of collapsing . 135
5.5.2 Performance of the search algorithm . 136

5.6 Summary . 139

6. GAME-THEORETIC MODELS AND OPTIMIZATION 140

6.1 Background . 141
6.2 EDI-CR With Varying Communication As A Bilinear Program 142

6.2.1 Analytical and experimental setup . 143
6.2.2 No communication . 144
6.2.3 Mandatory communication . 145
6.2.4 Optional communication . 147

6.3 Finding Equilibria As A System Of Non-linear Equations 148

6.3.1 Continuation for NFG . 149
6.3.2 Continuation for EFG . 151
6.3.3 Continuation for EDI-CR . 152
6.3.4 Related Work . 154

6.3.4.1 Tracing procedure . 154
6.3.4.2 Logit equilibria . 155
6.3.4.3 Easy initial game . 156

6.4 Summary . 157

7. CONCLUSIONS . 158

7.1 Thesis contributions . 158
7.2 Future Directions . 161

7.2.1 Decomposition-based optimization . 161
7.2.2 Homotopy-inspired optimization . 162
7.2.3 Optimization for self-interested EDI-CR . 163
7.2.4 Measuring problem difficulty . 164
7.2.5 State representation . 164

BIBLIOGRAPHY . 167

xii

LIST OF TABLES

Table Page

3.1 Symbols used in the mathematical formulations . 47

3.2 DEC-MDP as an NLP . 48

3.3 DEC-MDP as a MILP . 49

3.4 2-agent EDI-CR as a MILP . 51

3.5 Optimality of 2-agent formulations . 59

3.6 Size of 2-agent formulations . 60

3.7 Solution time (in seconds) of 2-agent formulations . 61

3.8 Comparison of 3-agent formulations (size) . 61

3.9 Comparison of 3-agent formulations (time in seconds) . 61

3.10 Comparison of 3-agent formulations (reward as % of maximum) 62

4.1 Related work . 84

4.2 Related work (cont.) . 85

4.3 Instance composition . 100

5.1 Calculating MOM With Different Amounts of Information 135

5.2 Collapsing VM trees . 136

5.3 Collapsing general trees . 137

5.4 Percentage of VM trees solved by our algorithm vs. QRE 138

5.5 Percentage of general trees solved by our algorithm vs. QRE 138

xiii

6.1 Size and performance comparison for the no-communication case 145

6.2 Size and performance comparison for the mandatory communication
case . 147

6.3 Size and performance comparison for the optional communication
case . 148

xiv

LIST OF FIGURES

Figure Page

2.1 Multi-Agent Influence Diagram . 39

3.1 An example zero curve of a homotopy map. The x-axis is λ and the y-axis
is x. 68

4.1 Effect of problem size on solution quality . 101

4.2 H3 Scores of successively added communication possibilities in small
instances . 104

4.3 H3 Scores of successively added communication possibilities in large
instances . 104

4.4 Induced Bayesian Network . 109

4.5 Time vs Quality and Size vs Quality of H3B vs. H2B 112

4.6 Time vs Quality and Size vs Quality of H3B vs. H2B (cont.) 113

5.1 Collapsible subtrees . 131

xv

CHAPTER 1

INTRODUCTION

1.1 Overview

In the early days of artificial intelligence, one of the main concerns was to develop an

agent - decision maker - that makes optimal decisions in response to changes in a closed

environment that does not contain any other agents. However, agents are increasingly being

deployed in environments containing other agents, whether software agents or physical

situated agents like robots. Our decision maker therefore affects these other agents and is

affected by them. As a result, it can no longer reason about its decisions in isolation; it

must consider other decision makers and their effects on the environment and each other.

This relatively new requirement fueled the need for ways to represent and reason about the

challenging problem of multi-agent decision making. Adding a sequential aspect, whereby

agents take sequences of decisions over time, further complicates the problem.

In this thesis, we are concerned with problems in multi-agent sequential decision mak-

ing in which agents operate in an environment fraught with uncertainty and make sequences

of decisions with long- and short-term stochastic effects. We focus on situations where

there is some degree of independence among the agents’ sub-problems. Specifically, we

focus on situations where structured interactions among agents arise due to (relatively few)

actions having non-local effects on rewards and transitions of other agents. In addition to

being a characteristic of many real-world problems (e.g. in sensor networks and robotics),

this loose coupling of the agents’ decision processes gives us traction over what would

otherwise be an intractable problem. Indeed, identifying and exploiting special structure is

1

a widely used approach to dealing with the prohibitive complexity of the general problem

where agents’ decision processes are very tightly coupled.

In our work, we address situations with both cooperative and self-interested agents. For

each of these, we investigate three main issues:

1. Representation: because existing decision- and game-theoretic models are inade-

quate for representing multi-agent sequential problems with structured interactions,

we developed a new model that can capture the characteristics of our problems with-

out giving up expressive power.

2. Solution: we use available optimization packages to calculate optimal (for coopera-

tive agents) or equilibrium (for self-interested agents) courses of actions. Depending

on the formulation and the solver, the solution can be an approximation of the opti-

mal/equilibrium policy. To use optimization techniques, we developed mathematical

formulations that exploit the special structure of our problems to reduce the number

of variables involved, resulting in formulations that are faster to solve.

3. Communication: we develop heuristics that make it tractable to reason about com-

munication offline. This kind of reasoning is notorious for its difficulty, mainly due

to the explosion in the size of the problem that results from considering when to

communicate and what. By analyzing interactions among agents, we are able to in-

clude communication possibilities only where the agents are likely to benefit from

them. The resulting problem is much smaller than a problem with communication

available everywhere, but still includes enough communication to reach the level of

coordination necessary for a high quality solution.

In the following sections, we give a brief background of the research areas we touch

upon in our work, followed by a list of the contributions made in this thesis and the thesis

outline.

2

1.2 Multi-Agent Sequential Decision Making

In this section, we give a high-level description of multi-agent sequential decision mak-

ing (MSDM) and briefly describe the general models developed for this problem. We then

discuss some models that attempt to circumvent the high complexity by focusing on spe-

cial cases of the general problem. Finally, we discuss the issue of communication among

decision makers in terms of how it is represented and reasoned about.

1.2.1 MSDM: Process and domains

In MSDM, there is a number of decision makers, each with a set of actions. The actions

affect the environment in which the agents are deployed and can directly affect other agents

as well. Actions are taken over a number of steps, or decision epochs, which may be finite

or infinite. The goal ranges from being a single over-arching goal for the entire set of

agents, to being defined per agent, with different agents striving to achieve different goals.

MSDM, in its most general sense, is a problem complicated by the following factors:

• Multiple decision makers. The fact that there are multiple agents that affect the same

environment means that no agent can reason about its decisions in isolation from the

others. Additionally, realistic situations usually involve restrictions on sensing and

communication, so no one agent has a full view of the problem during execution.

It then becomes important to make sure that a decision that looks good to an agent

locally is also a good decision globally.

• Uncertainty. Real-life situations are rife with uncertainty, whether it is sensing un-

certainty that prevents an agent from knowing exactly where it is in its environment,

or action uncertainty where actions do not always have the intended outcomes. Con-

sequently, an agent cannot just follow a linear plan. The plan needs to tell the agent

what to do in every situation it can face. Another consequence of reasoning under un-

certainty is that even if there is a centralized entity that produced plans for all agents

3

offline and each agent knows the plans of all others, during execution each agent is

unsure about where the others are and what they will do.

• Sequences of actions. An action at one stage affects the set of available actions at

all subsequent stages. As a result, an agent cannot be myopic and just choose the

action that looks best immediately, it needs to reason about the long-term effects of

an action. As the number of decision epochs increases, an agent’s decision problem

becomes more difficult.

• Non-local effects. As mentioned earlier, an agent’s action can affect other agents in

the environment, and an agent may not be free to communicate details of its progress

to others (due to communication costs or availability). Therefore, to reason about its

own decisions and prospects in the future, an agent needs to keep track of where it

believes the others to be and thus what they will do in the future. This requirement

greatly complicates an agent’s reasoning process.

Recent years have witnessed a surge in research on multi-agent decision making. Self-

interested agents in competitive situations are mostly of interest to game theoreticians and

economists, fueled by rapid developments in areas like online auctions and agent negotia-

tion. This branch of research is concerned with both optimal (and near-optimal) decision-

making in competitive settings and with designing mechanisms to ensure that the agents do

not game the system or reach undesirable equilibria [27]. Research on cooperative agents is

of interest to the Artificial Intelligence community, whether working with embodied agents

(e.g. robots, planetary rovers) or disembodied ones (e.g. meeting schedulers [76], agent-

coordinated human teams [79], wireless sensor networks [78]).

1.2.2 General models

1.2.2.1 Cooperative agents

There is a large body of literature on models for representing MSDM problems. For the

cases where agents are cooperative, researchers have leveraged the success of the Markov

4

Decision Process (MDP) as a single-agent decision-theoretic model. A number of multi-

agent variants of MDP have been proposed, among the earliest and most general of which

are the Decentralized Partially Observable MDP (DEC-POMDP) and Decentralized MDP

(DEC-MDP) [15]. Each of these models is defined by the set of world states and agent

actions, the rewards associated with taking each action in each state, and the transition

function for the actions. These models assume that an agent cannot find out the world state

with certainty, but does receive an observation correlated with the state it is in. The models

differ in that whereas DEC-MDP assumes that pooling the observations of all agents is

enough to determine the world state, DEC-POMDP does not. The Multi-agent Team De-

cision Problem (MTDP) [70] is a model whose equivalence to DEC-POMDP was proved,

under the perfect recall assumption [75]. Perfect recall means that a state can only be

reached by a unique sequence of actions. Another model is the Multi-agent MDP [23]

which assumes a global state fully observable to all agents. However, this is a very strong

assumption that renders the model unrealistic.

The goal in cooperative settings is to calculate a set of policies, one per agent, that max-

imize the total reward of all agents. Depending on the problem, the quantity to maximize

can be the sum of rewards over the finite horizon of the problem, or in the case of infinite

horizons, the average or discounted reward.

1.2.2.2 Self-interested agents

The field of game theory focuses on situations where self-interested players/agents

make decisions that affect each other and affect a common environment. Each agent tries

to respond make decisions in a way that maximizes its own reward given strategies of the

other agents. Games can be divided along several axes. Perfect recall (vs. imperfect re-

call) games involve players who never forget actions, whether theirs or others’, once they

observe them. In games of incomplete information (vs. perfect information), a player does

not know what moves have already been played by other players, resulting in uncertainty

5

about the current state of the world and multiple game situations being indistinguishable

to that player. Games can also be classified by the number of stages (decision-making

points) they contain; 1-stage games involve only one stage of decision making while in

sequential games, players take moves after observing moves of chance (e.g., a roll of a die)

and moves of the other players. The most general representation for this kind of games is

as normal form Games (NFGs). Sequential games can be represented as extensive form

games (EFGs) where there are multiple stages, each of which is a game. Actions taken at

a stage affect the game that will be played at the next stage, thereby making it necessary to

think about long-term consequences of actions.

A strategy profile is a set of strategies, one per player. A strategy prescribes a proba-

bility distribution over actions to take in each possible situation. The goal in competitive

settings is typically to calculate an equilibrium strategy profile; one from which no player

is motivated to deviate. An equilibrium tells the designer of a system of agents what the

system will converge to in the long run. But some equilibria are more desirable than oth-

ers; equilibria can vary in their stability and the social welfare they achieve, among other

things.

There are different kinds of equilibria, the most basic of which is the Nash equilibrium.

For sequential games, however, the Nash equilibrium may not be rational because it may

involve a player responding to an incredible threat from its opponent; i.e. a move that

seems like a threat but is really not so because it would not make sense for the other to

make. Shortcomings of the Nash equilibrium are addressed by solution concepts known

as equilibrium refinements. For example, subgame perfect equilibria is a solution concept

developed for characterizing equilibria in sequential games.

Without making any assumptions about the game, it is computationally expensive to

calculate a Nash equilibrium even for a two-player NFG. The Lemke-Howson algorithm [53],

one of the best known, has exponential running time on some instances. Even answering

questions concerning the best equilibrium (according to some criterion), or whether a given

6

pure strategy is possible under some equilibrium, is an NP-hard problem [34]. Further-

more, Conitzer and Sandholm show inapproximability results; not even an equilibrium that

is approximately optimal can be found in polynomial time [30].

In addition to EFG, another very general representation for self-interested agents is

Partially Observable Stochastic Games (POSG) [41], which are defined exactly like DEC-

POMDPs, but with a reward function per agent rather than one reward function for the

entire team. An agent’s reward function, however, is still in terms of joint states and actions,

so no independence assumptions are made.

1.2.3 Specialized models

The previous sub-section clearly shows that without making any assumptions about the

underlying structure of a problem, calculating the optimal policy (in the case of cooperative

agents), or an equilibrium profile (for self-interested agents), is computationally very de-

manding. One way of dealing with this prohibitive complexity is identifying sub-classes of

the general problem that are more tractable to solve, but still of practical interest. Different

models cater to problems with different kinds of structure Some of these have inherently

lower complexity, while others, in spite of being in the same complexity class as the more

general models, are easier to solve in practice.

One way in which the general models are specialized is by assuming that interactions

among agents have a certain structure whereby the agents are largely independent except

for some actions that have non-local effects (e.g. Transition-Independent DEC-MDP [14],

Event-Driven Interaction DEC-MDP [12]), or some states where rewards and transitions

depend on actions of all agents (e.g. Interaction-driven Markov game [82], Distributed

POMDPs with Coordination Locales [87]). This kind of structured interaction arises in

domains like robotic search and rescue where robots typically have different goals and

ways of accomplishing them, but they still affect other robots when doing certain actions.

7

Rather than making assumptions about how agents interact, another way of specializing

the general models is to make assumptions about which agents interact. Typically, real life

situations exhibit some kind of locality of interaction where an agent only interacts with

a subset of other agents. This has been leveraged in models like Networked Distributed

POMDP [67]. Locality of interaction arises in domains like distributed sensor networks

where each sensor interacts with only a limited number of neighboring sensors.

The above models are for cooperative agents, but similar approaches have been taken

with game theoretic models. Locality of interaction is again an important characteristic in

many situations and has been exploited in graphical games and variants thereof [48, 52, 19,

47]. Various kinds of conditional independence among agents’ decisions have given rise to

models descending from Influence Diagrams [51, 46].

From this brief survey of the state of the art in models for representing MSDM prob-

lems with special structure, it is clear that there is currently no decision- or game-theoretic

model that can cleanly represent the kind of problems we are interested in; problems where

agents are largely independent and interaction arises because some actions have non-local

effects on the rewards and transitions of other agents. Without a model that specifically

caters to such situations, they can only be represented in extensive form or using DEC-

POMDP, leading to problem instances that are much larger than they need to be. Besides

being representationally inefficient, such representations obscure the structured interaction

among agents, making it hard to exploit to efficiently find an equilibrium or an optimal

policy.

1.2.4 Communication

As we tackle more complex problems requiring tighter coordination, we cannot ignore

the possibility of, and oftentimes need for, communication among the decision makers,

even self-interested ones. Communication allows the agents to coordinate their actions

and overcome uncertainties in action outcomes and the environment. For example, robots

8

conducting a rescue operation need to coordinate in the face of uncertainty regarding action

durations and success, even if the initial plan is common knowledge.

The concern about complexity discussed earlier is exacerbated when communication

is brought into the picture. Reasoning about communication results in an explosion in the

size of the state space and the number of decisions that need to be made (e.g. who should

an agent communicate with, how often, and what should the content of the message be).

We use the term computational cost to refer to the cost of solving the larger and harder

problem we get when communication is involved. There have been numerous efforts to

address this kind of cost. One approach is to reason about communication online. This has

the advantage that at any given state, the agent only has to reason about states reachable

from that state, thereby reducing the overall computational effort. Typically, during of-

fline reasoning about domain actions, the agents either assume they will always be able to

communicate [96, 71] or will never be able to communicate [13]. For these offline assump-

tions, online reasoning then decides where communication can be skipped or introduced,

respectively. The problem with this kind of reasoning is that communication decisions

made this way are typically myopic (involving limited lookahead into the future) and are

usually made under further assumptions regarding the availability of communication in the

future [38, 13], resulting in the possibility of over- or under-communication.

The research that has agents reasoning about communication offline takes different ap-

proaches to reducing the computational cost. Instead of simultaneously computing domain

action and communication policies, the agents can optimize the communication policy and

action policy iteratively with respect to each other [80]. This has the disadvantage of pos-

sibly converging to sub-optimal policies, as when, for example, the agents avoid doing an

action that needs communication because communication for this action is not part of the

communication policy, and the communication policy does not include this desirable com-

munication because the action is not part of the action policy. The only way around this

circularity is to reason about domain and communication actions in an integrated fashion.

9

Note that this does not rule out decomposition-based approaches; it just mandates that the

sub-problems of finding communication and action policies should provide feedback to

each other in a systematic way that does not miss the global optimal.

Another approach that was developed for general DEC-POMDPs requires agents to

communicate at least every K time steps, thereby only considering messages that encode

observation histories up to length K. Since in DEC-POMDP a policy is a mapping from

observation histories to actions, this approach makes policy computation less intractable.

However, this approach does not weigh the costs and benefits of communication, so the

agents can potentially communicate when they do not need to, or be unable to communicate

when they do.

The various independence assumptions that form the bases of the special decision-

theoretic models discussed earlier make reasoning about communication a prime candi-

date for approaches that benefit from these assumptions. If agents are not tightly coupled,

their need for communication is very different from agents in a DEC-POMDP, for exam-

ple. However, so far, there has been no work that tries to make offline reasoning about

communication tractable by exploiting the special character of a given special model.

1.2.5 Solution approaches

One of the concerns raised against decision-theoretic models is their need for an accu-

rate and, often, very detailed model of the environment. This concern is addressed by ap-

proaches that learn the environment model , as in multi-agent reinforcement learning [99],

as well as algorithms that can reason over approximately-specified models. Another, more

important, concern is the very high complexity of the problem of calculating optimal poli-

cies (the general DEC-POMDP and DEC-MDP models are NEXP-complete [15]).

One family of algorithms that attempt to overcome this complexity is the Joint Equilibrium-

based Search For Policies (JESP) family. JESP-style algorithms solve general DEC-POMDPs

by iteratively optimizing one agent’s policy with respect to all other policies until no fur-

10

ther improvement in rewards is possible [65]. This approach reaches a local optimum,

and if the best policy calculated so far is always retained, the algorithm is guaranteed to

terminate. The JESP approach has been implemented in a dynamic programming algo-

rithm (DP-JESP) and has been improved to increase parallelism by exploiting locality of

interaction [67, 49].

Another large family of algorithms for DEC-POMDPs is based on the Dynamic Pro-

gramming (DP) optimal algorithm proposed by Hansen et. al [41] . The Memory-Bounded

Dynamic Programming (MBDP) algorithm started a line of work that attempts to make

DP tractable by keeping track of a limited number of policy trees [74]. Improved MBDP

(IMBDP) is motivated by the fact that only a small set of observations is possible for a

given belief state and action choice [73]. IMBDP therefore only retains the most likely

observations, thereby preventing the exponential growth of tree size with the number of

observations. MBDP with Observation Compression (MBDP-OC) [26] addresses the same

concern but in a more informed way.

Ideas from solving single-agent models have sometimes been borrowed for multi-agent

planning. For example, Point-based dynamic programming for DEC-POMDPs [85] is a

mix of the traditional DP approach and point-based approximations that have been used for

single agent POMDPs. Solutions to a relaxed version of the original probelm (for example,

a version with full observability or with free communication) can be used as heuristics for

approximating the value of the best joint action (e.g., the MDP heuristic is used in MBDP).

Oftentimes, a proposed model is accompanied by an algorithm that solves this particular

model by capitalizing on the special features in it (e.g. the OC-DEC-MDP model has

an accompanying algorithm [17] and the Coverage Set Algorithm [14] was developed to

solve TI-DEC-MDP and EDI-DEC-MDP, later generalized and improved in the Multi-

agent Planning Bilinear Program algorithm [69]).

Exploiting problem structure for efficient representation and computation, together with

the use of heuristic approaches, is making it possible to scale up to tens, and sometimes

11

hundreds, of agents. However, this ability to scale up comes at the expense of significant

restrictions on the nature and amount of interactions among agents. Moreover, the fact that

algorithms exploit the character of their respective models typically makes them of little

use when trying to solve a new model.

Studying state of the art algorithms for sequential decision making, we found only very

few approaches that rely on optimization techniques [9, 69, 95, 8] although the availability

of industrial-grade optimization packages make this an attractive approach. Using opti-

mization is a direction we will take for most of the work presented in this thesis.

1.3 Contributions

1.3.1 Problem statement

In our work, we have identified an interesting class of problems where the decision

processes of multiple agents are tied together by interactions stemming from actions that

have non-local effects. Our study of this class of problems addresses the following research

questions:

1. How can we represent problems where agents are largely independent except for

some structured interactions among them? The representation should exploit the

loose coupling and avoid unnecessary verbosity, but still be able to cope with prob-

lems where interaction is arbitrarily strong.

2. Can we leverage available optimization packages and solvers? Industrial-grade pack-

ages whose performance has been optimized over many years and uses are now

widely available. Can we formulate our problem of calculating a set of policies with

maximum reward or stability in a way such that we can use these solvers? Moreover,

can we exploit structured interactions to develop “good” formulations for which the

available industrial-grade solvers not just work, but work efficiently?

12

3. Can we exploit structured interactions to make reasoning about communication of-

fline tractable? In the kind of problems we address, the agents are not very tightly

coupled, so they do not need to communicate all the details of their progress. Intu-

itively, there are only a few situations where the agents need to communicate. Can

we analyze agent interactions to guess what these situations are and make commu-

nication available only at these points, thus eliminating most of the computational

overhead associated with reasoning about communication? This would allow us to

reason about domain and communication actions in an integrated yet efficient man-

ner.

1.3.2 List of contributions

The contributions of this thesis are in the area of multi-agent decision making in settings

where agents are largely independent except for some structured interactions among their

decision processes. I considered both cooperative and self-interested decision makers. I

studied the problems of representing situations with structured interactions, formulating

and solving the decision making problem as an optimization problem, and reasoning about

communication. The following is a list of my contributions:

• Representation for cooperative and self-interested agents: I developed Event-

Driven Interaction with Complex Rewards (EDI-CR), a decision-theoretic model for

representing structured transition and reward interactions. EDI-CR has the same

expressive power as DEC-MDP with factored state and local observability.

• Solving cooperative EDI-CR using optimization techniques: I exploited struc-

tured interaction to develop a compact Mixed Integer Linear Program formulation of

EDI-CR instances. I also formulated the problem of policy calculation as a contin-

uum of problems with varying strengths of agent interactions and studied the use of

homotopy methods to solve this continuum.

13

• Solving self-interested EDI-CR using optimization techniques: For an existing

formulation of calculating equilibrium as a bilinear program, I studied the effect of

changing the amount of agent interaction on the size of the formulation and the speed

of solving it. As an alternative solution approach, I investigated an existing formu-

lation of finding equilibria as a system of nonlinear equations and the possibility of

adapting and using it to solve self-interested EDI-CR.

• Communication among cooperative agents: I exploited the structure explicitly

represented by EDI-CR to make offline reasoning about communication tractable.

I devised heuristics that strategically choose communication decision points to add

to zero-communication version of the problem. The resulting problem achieves the

benefits of better coordination through communication at a small fraction of the com-

putational cost typically incurred when planning for communication.

• Communication among self-interested agents: I studied the problem of self-interested

agents deciding whether to communicate information when doing so is necessary to

accomplish a collective task, but incurs individual costs. I modeled this situation as a

sequential game of incomplete information and developed a hill-climbing approach

to find an approximate Nash equilibrium.

All the empirical evaluation for the above contributions was done using the Mars rovers

domain. In this domain, rovers are tasked with collecting data from Mars. The rovers can

be cooperative or self-interested, depending on which approach is being evaluated. Each

rovers has a set of sites that it can collect data from and needs to decide which sites to

visit and in what order. Collected pieces of data can be redundant, complementary, or

independent of each other. In addition, a visit to a given site by one rover can make another

rover’s visit to another site easier or harder. More details about this domain are given in

Section 2.2.1.3.

14

1.4 Thesis Outline

The body of this thesis is structured as follows: In Chapter 2, we survey general

decision- and game-theoretic models for representing multi-agent sequential decision mak-

ing, both for cooperative and self-interested agents. We then focus on problems with struc-

tured agent interactions, detailing the characteristics of such problems and presenting some

motivating examples of them. We present our new model, Event-Driven Interaction with

Complex Rewards (EDI-CR), that we developed to fill a gap in existing decision- and game-

theoretic models. We conclude the chapter with a brief survey of specialized models and

compare them to our new model, where appropriate.

In Chapter 3, we try to leverage the power of available industrial grade optimization

packages in solving instances of EDI-CR with cooperative. To this end, we presents two

formulations for our problems; as a mixed integer linear program and as a system of non-

linear equations. We start the chapter with existing mathematical formulations of a more

general class of problems. We then show how we exploit the special character of our

problems to develop compact formulations that are easier to solve, both for the cases with

2 and more than 2 agents. The chapter ends with an overview of homotopy methods and an

investigation of their use to solve EDI-CR instances.

The issue of communication among cooperative (resp. self-interested) decision makers

is investigated in Chapter 4 (resp. Chapter 5). For cooperative agents, we start the chapter

with a survey of ways of representing and reasoning about communication in decision-

theoretic models. We then analyze the computational costs of reasoning about communi-

cation and present our approach for addressing this kind of cost. We present heuristics for

limiting communication in the uni- and bi-directional interaction cases. We give experi-

mental results showing the efficiency of our heuristics in limiting the computational cost

while still allowing for high-quality solutions.

Chapter 5 addresses the issue of communication among self-interested agents in the

context of a problem from the field of database management. In the view maintenance

15

problem, database managers need to disclose information to keep a database view up to date

(collecting a reward for doing so), but incur individual costs for disclosing information. We

formulate the view maintenance problem as a game of incomplete information and present

an anytime hill-climbing algorithm for solving this kind of games.

Chapter 6 deals with the problem of calculating equilibrium profiles for instances of

EDI-CR involving self-interested agents. We investigate the effect of changing the amount

of interaction among agents on the size of EDI-CR instances formulated as bilinear pro-

grams and the speed of solving these programs. We vary the amount of interaction by vary-

ing the amount of communication the agents can have. The chapter ends with a discussion

of continuation methods and their use for solving the problem of calculating equilibrium

profiles in general 1- and multi-stage games, then discuss their possible use for EDI-CR

instances.

Finally, Chapter 7 summarizes our contributions and discusses possible directions for

future work.

16

CHAPTER 2

REPRESENTATION FOR STRUCTURED AGENT
INTERACTIONS

Finding the right representation for a problem is the first step towards solving it. A

suitable representation should be able to express the particularities of the kind of problems

it aims to model. An explicit representation of the special structure of the problem makes

it easier to design efficient solution algorithms that exploit this special structure. On the

other hand, the representation should not be so tailored to the problem as to give up all

generality. Ideally, it should be able to represent a wide spectrum of problems, with the

benefits of using it depending on how close a given problem is to the class of problems

targeted by the representation.

Another concern in discussing the merits of a representation is compactness. Again,

we can use the special character of the problem to avoid duplicate or unnecessarily verbose

specifications. However, this compactness should not be all lost when we start to actually

operate on the representation. If a compact representation does not come with an algorithm

that manipulates it directly, without having to first expand it or ‘roll it out’ , then the actual

benefit of the representation is questionable.

When it comes to multi-agent sequential decision making, a large number of decision-

and game-theoretic models have been proposed in the literature. In addition to general

models, numerous specializations were proposed, together with their associated solution

algorithms, in an attempt to circumvent the high complexity of solving the general models.

However, there is currently no decision- or game-theoretic model that can cleanly represent

the kind of problems we are interested in; problems where agents are largely independent

17

and interaction arises because some actions have non-local effects on the rewards and tran-

sitions of other agents.

We propose a new model, Event-Driven Interactions with Complex Rewards (EDI-CR),

that allows us to better exploit structured interactions among the sub-problems of different

agents. EDI-CR is a compact yet general representation, capable of capturing problems

where the degree of coupling among agents ranges from complete independence, as in

MDPs, to complete dependence, as in decentralized MDPs.

We begin in Section 2.1 by on overview of some of the most general models. In Sec-

tion 2.2, we give some motivating examples that demonstrate the need for a new model.

We then present EDI-CR and discuss its expressive power. In Section 2.3, we give a sur-

vey of specializations of the general representations and compare them to EDI-CR, where

appropriate.

2.1 General Representations

In this section, we overview general decision- and game-theoretic models for represent-

ing sequential multi-agent decision-making under uncertainty.

2.1.1 Cooperative agents: DEC-POMDPs and DEC-MDPs

2.1.1.1 DEC-POMDP

Being very useful in the single-agent case, decision-theoretic models and tools are prov-

ing similarly useful when there are multiple decision-makers involved. The family of mod-

els based on the Markov Decision Process (MDP) is large and still growing. One of the

most general models in the literature is the Decentralized Partially Observable MDP (DEC-

POMDP) proposed by Bernstein et al. [15]. DEC-POMDP is a model suitable for domains

where the agents do not know the global state with certainty, but do receive observations

from which they can form some belief over what the global state is.

Definition 1 An n-agent DEC-POMDP is a tuple < A, S, A, P, R, Ω, O > where

18

• A is the set of n agents

• S is a finite set of world states, with a distinguished initial state s0

• A = A1 × A2 × ... × An is a finite set of joint actions. Ai is the set of actions that

can be taken by agent i

• P : S × A× S → [0, 1] is the transition function. P (s′|s, a) is the probability of the

outcome state s′ when the joint action a is taken in state s

• R : S × A × S → R is the reward function. R(s, a, s′) is the reward obtained from

taking joint action a in state s and transitioning to state s′

• Ω = Ω1×Ω2×...×Ωn is a finite set of joint observations. Ωi is the set of observations

of agent i

• O : S × A × Ω → [0, 1] is the observation function. O(s′, a, o) is the probability of

agents 1 through n seeing observations o1 through on after joint action a transitions

to s′

• Joint partial observability: the n-tuple of observations made by the agents together

does not (necessarily) fully determine the current state

DEC-POMDP is a very general model in that it does not make any assumptions about

the nature of interaction among the different agents. But it is this same lack of assumptions

that makes DEC-POMDPs very difficult to solve (NEXP-Complete [15]). It is not possible

to break down the joint problem into smaller sub-problems because every aspect of the

problem dynamics tightly couples the sub-problems of individual agents. Rewards, tran-

sitions and observations are all defined over joint actions and states. An added difficulty

is presented by the property of joint partial observability; even if the agents could piece

together all their local observations, they would still be unable to determine the global state

with certainty.

19

2.1.1.2 DEC-MDP

One way of simplifying the DEC-POMDP model is to assume joint full observability,

rather than the general joint partial observability, whereby the set of observations together

do identify the current world state. This results in the Decentralized MDP model.

Definition 2 A decentralized Markov decision process (Dec-MDP) is a Dec-POMDP that

is jointly fully observable, i.e. there is a mapping J that identifies the global state from the

observations of all agents. J : Ω1 × ...×Ωn → S such that O(s, a, o1..on) > 0 if and only

if J(o1..on) = s.

The difference between the DEC-MDP and the DEC-POMDP becomes obvious if we

allow free communication among the agents; a DEC-MDP with free communication re-

duces to an MDP whereas a DEC-POMDP reduces to a POMDP.

In both DEC-POMDP and DEC-MDP, because an agent does not observe the global

state, it can only derive a belief over the global state from the observation history it has

seen so far. An agent’s policy therefore maps each belief state to a probability distribution

over actions. Because there is always a deterministic optimal policy, we can take a policy to

be mapping from belief states to actions. The change from partial to full joint observability

does not affect the theoretical complexity of the model; both DEC-POMDPs and DEC-

MDPs are NEXP-complete [15].

Having replaced the joint partial observability assumption with full observability, the

next logical step in limiting the generality of DEC-POMDPs in return for tractability is to

attack one or more of the ties linking different agents together; the reward, transition and

observation functions. The first step in doing so is to consider a factored state space where

we designate each agent’s part of the state individually. Note that this does not mean an

agent’s part of the state is entirely under its control.

20

Definition 3 A factored, n-agent DEC-MDP is a DEC-MDP where the world state can be

factored into n + 1 components S = S0 × S1 × ...× Sn where S0 are the external features

and Si is the set of features belonging to agent i.

Note that a factored state space does not mean each agent has full control over its state; an

agent’s state can be affected by actions of other agents. Consequently, an agent’s optimal

decision depends on the current uncontrollable features s0 and the history of its local fea-

tures. As with DEC-POMDP, instead of keeping track of history, an agent can form a belief

state, in which case the policy is again a mapping from belief states to actions.

For a factored DEC-MDP, we can consider further sub-classes with independence in

one or more of the following aspects: rewards, transitions and observations. Basically,

independence in an aspect means that for an agent i, the aspect in question is not affected

by the actions of other agents, and only depends on the state and action of i. We will see

some models featuring different kinds of independence in Section 2.3.1.

2.1.2 Self-interested agents: EFG

Extensive form game (EFG) is a general representation for self-interested multi-agent

decision making that is close to factored DEC-MDPs with observable local states. EFG is a

tree capturing the order in which agents take actions, what they know when they take each

action, and the probabilistic outcomes of actions.

Definition 4 An EFG is a tuple < I, V, E, P, H, u, p > where:

• I is the set of players

• The pair (V, E) is a finite directed tree with nodes V and edges E and Z is the set of

terminal nodes

• Player : V \ Z → I determines which player moves at each decision node. Player

induces a partition over V \ Z and Playeri = {x ∈ V \ Z|Player(x) = i} is the

set of nodes at which player i moves

21

• H = {H0, ..., Hn} is the set of information sets, one for each player. H is a partition

over Playeri. The information set of a node x is denoted as h(x)

• Ai(h) is the set of actions available at information set h belonging to agent i

• ui : Z → R is agent i’s utility function defined over the set of terminal nodes. For

x ∈ Z, ui(x) is the payoff to player i if the game ends at node x

• p is the transition probability of chance moves

In a game with imperfect information, an agent does not know with certainty the state of

the other agent (and thus the game played by the agents at any particular stage), but does

have a probability distribution over it, much like the concept of belief in DEC-POMDP. In

such games, an information set can contain more than one node, which the agent cannot

tell apart. A policy should therefore make the same decision across all nodes belonging

to the same information set (similar to a DEC-POMDP policy that maps belief states to

actions). In situations with self-interested agents, the goal is usually to find some kind

of equilibrium set of policies, one per agent, where no one agent is motivated to deviate

from its prescribed policy. This equilibrium state is often desirable so that the designer can

make statements about the long-term state of the multi-agent system. But a game can have

multiple equilibria, and sometimes the goal is to calculate the equilibrium that maximizes

social utility or some other quantity of interest. Unlike the case with cooperative agents, we

are not guaranteed to find a deterministic equilibrium, and therefore a policy is a mapping

from information sets to probability distributions over actions.

Representing a game as an EFG is justified when modeling tightly coupled games where

indeed all actions participate in determining the game’s next state and agents’ individual

rewards. However, this representation is overly verbose in the case of loosely coupled

games with relatively few structured interactions.

In addition to EFG, another very general representation for self-interested agents is

Partially Observable Stochastic Games (POSG) [41], which are defined exactly like DEC-

22

POMDPs, but with a reward function per agent rather than one reward function for the

entire team. An agent’s reward function, however, is still in terms of joint states and actions,

so no independence assumptions are made. Hansen et. all write that a finite-horizon POSG

can be viewed as a type of extensive game with imperfect information [41].

2.2 New Model: EDI-CR

In this section, we propose a new model, Event-Driven Interactions with Complex Re-

wards (EDI-CR), that allows us to better exploit structure in interactions among the sub-

problems of different agents. Our model explicitly captures interactions among agents and

their effects, and thus makes it easier to reason about them than using general models. It is

also more general than existing structured models. First, we give some motivating exam-

ples that demonstrate the need for a new model. We then present EDI-CR and discuss its

expressiveness compared to DEC-MDPs with observable local state.

2.2.1 Motivating examples

2.2.1.1 Robotic rescue

Consider a robotic team dealing with a building on fire. One agent is in charge of

putting out the fire, another locates and evacuates survivors and a third delivers first aid to

the injured. Most of an agent’s actions affect only itself; the first agent’s decision of how

to attack the fire and what kind of extinguisher to use mainly affect its own progress in

fire fighting. Likewise, the paramedic agent’s choice of the kind of first aid care to give to

the injured mainly affects its own progress towards getting them out of critical conditions.

However, the fire-fighting agent’s decision of when to secure a given area affects how easy

it will be for the rescue agent to locate survivors in that area. Competitions like RoboCup

Rescue [1] involve developing intelligent agents that are given the capabilities of the main

actors in a disaster response scenario.

23

2.2.1.2 Cleaning robots

Consider a set of cleaning robots which, between them, manage the cleanliness of a

building. Each robot is responsible for a set of halls, but corridors are joint responsibility

and the robots can get extra reward if they correctly coordinate their cleaning of this shared

space. Other interactions stem from sharing the waste bins and potentially getting into

each other’s way in shared areas like corridors and elevators. Another source of interaction

among the robots is that if one robot needs to move a heavy piece of furniture, it would be

easier to do if it gets help from another robot.

2.2.1.3 Modified Mars rovers

Consider a variant of the Mars rovers domain (used in [14]) where there are multiple

rovers, each with a set of sites to visit. Probabilistically, visiting a site can be slow or fast

and each outcome has an associated probability, duration and reward. In addition, each

site has an earliest start time before which it cannot be visited. A site can also have a list

of pre-requisites; sites that must be visited before the one in question. There is transition

dependence in that a rover’s visiting a site can affect the outcome probability of another

rover visiting some other site. For example, if rover j visits a certain site before rover i,

j can take some measurements which make processing some other site easier for agent i.

Reward interaction takes the form of additional reward (for complementary sites) or penalty

(for redundant sites) collected when the rovers visit certain combinations of sites. For an

agent j, a critical action is visiting a site that affects i’s outcome or is associated with

additional reward. Clearly, the degree of coupling of the agents’ sub-problems depends on

the number of transition and reward interactions.

The decision problem for each agent is what subset of sites it should visit and in what

order. Note that this is different from the decision problem addressed by Becker [14] where

the order of the sites is fixed and agents can only choose to visit a site or skip it, which

significantly reduces the size of the problem. The local state of an agent is composed

24

of the sequence of actions done so far (in chronological order), together with the resulting

outcomes (fast or slow). There is no need to explicitly store the current time in a state, since

it can be calculated by adding up the durations of the particular action outcomes obtained.

Communication can be introduced into this setting to better coordinate the agents and

reduce the uncertainty caused by probabilistic action outcomes. One communication lan-

guage, for example, can be to exchange local states, leaving the agents fully coordinated.

Another language can exchange only certain aspects of the local state (e.g., the last action

done). For the chosen communication language and an associated communication cost

function, the decision problem becomes choosing the subset of sites to visit and their or-

der, in addition to deciding what pieces of information to communicate during execution in

order to maximize the difference between rewards and communication costs.

2.2.2 Problem characteristics

The above examples share some fundamental characteristics:

• Each agent has its own local state and actions (e.g. the cleaning robots have different

locations and different grabbing actions) and actions have probabilistic outcomes.

• Agents are generally unaware of each other’s states and actions, unless some form of

communication (whether deliberate or part of the setting) is specified.

• Most of an agent’s action outcomes and rewards are independent of the other agent.

• Interactions among agents are relatively few, compared to the number of actions

they can take. They are also structured, meaning that an action can affect the other

agent in a specific way. In a reward interaction, a certain action of an agent affects

the reward of a certain actions of the other agent. Transition interactions are where

certain actions of an agent affect the outcome probabilities of certain actions of the

other.

25

• Interactions are not only between actions taken at the same time. An action can be

affected by something that happened in the past (e.g. a robot dumping a large object

in a given bin will affect the outcome of another robot’s use of the bin at any later

point in time). The fact that the affecting action happened is not necessarily encoded

in an agent’s state.

Traditionally, the examples we described would be represented in extensive form or

using DEC-POMDP, depending on whether the agents are cooperative. This requires spec-

ifying an agent’s rewards and next state for each of its actions and the other agents’ actions.

Clearly, this representations is overly verbose, since in most cases, the rewards and new

states are independent of the actions of other agents. Ignoring this fact results in instances

that are much larger than they need to be. Besides being representationally inefficient, such

a representation obscures the structured interaction among agents, making it hard to exploit

to efficiently find an equilibrium or an optimal policy.

2.2.3 EDI-CR: The model

Event-Driven Interactions with Complex Rewards (EDI-CR) is a hybrid of the Transition-

Independent DEC-MDP (TI-DEC-MDP) [14] and the Event-Driven Interaction (EDI-DEC-

MDP) [12] models, discussed in more detail in Section 2.3.1. The state space is factored

and an agent can fully observe its local state, but not the states of others. From TI-DEC-

MDP, EDI-CR inherits complex rewards where in addition to local reward functions, cer-

tain combinations of actions have an additional cost/reward. From EDI-DEC-MDP, EDI-

CR inherits structured transition dependence where in addition to local transition functions,

certain actions of an agent can affect the transitions of another.

Definition 5 An n-agent EDI-CR is a tuple < A, S, A, P1..n, R1..n, ρ, τ, T > where:

• A is the set of n agents

• S = S1 × S2 × ...× Sn is the set of factored world states

26

• A = A1 × A2 × ...× An is the set of joint actions

• Pi : Si × Ai × Si → [0, 1] is i’s local transition function

• Ri : Si × Ai × Si → R is i’s local reward function

• ρ = {< (sk1 , ak1), ..., (skm , akm), rk >k=1..|ρ|} is the set of reward interactions. Each

interaction involves any subset of agents and lists the state-action pairs and the re-

ward/penalty when the agents take these actions in these states.

• τ = {< (sk1 , ak1), ..., (skm , akm), pk >k=1..|τ |} is the set of transition interactions.

The kth entry specifies the new transition probability pk of the state-action pair of the

affected agent km when agents k1 to km−1 do the specified state-action pairs before

km makes its transition.

Depending on the problem, it may be more natural to drop the states from the specifica-

tion of entries in ρ and τ . For example, if a domain has outcomes associated with actions,

and a transition dependence means that action ai affects the probability distribution over

action aj’s outcomes, a compact and natural way to represent this is to have an entry in τ

that specifies the new probability distribution over aj’s outcome, regardless of the particular

states of agents i and j.

EDI-CR can capture a wider range of problems than either of its parents. It provides us

with a model that is more general than either TI-DEC-MDP or EDI-DEC-MDP but still has

inherent structure that can be exploited in a tractable solution algorithm. The complexity of

EDI-CR is clearly NEXP; EDI-CR is a subset of full-fledged DEC-MDP, which is NEXP,

and a superset of EDI-DEC-MDP, which is also NEXP.

2.2.4 EDI-CR vs. factored DEC-MDP

We discuss the expressiveness of EDI-CR by considering how an EDI-CR instance can

be mapped to an instance of factored DEC-MDP with observable local state and vice versa.

27

In the definition of EDI-CR, note that ρ and τ do not stipulate that agents involved

in a given entry do the specified actions at the same time to get the additional reward or

affect another agent, i.e. we can associate a reward with a joint action whose individual

components are done at different times. This kind of reward (referred to as extended re-

ward structure in [69]) is more general than a DEC-MDP’s reward function which defines

rewards for transitions made simultaneously by all agents. Capturing the semantics of EDI-

CR’s reward and transition functions in a DEC-MDP would require the DEC-MDP’s state

to remember all previous state-action pairs, resulting in a state space exponentially larger

than that of the EDI-CR’s instance. Also, in DEC-MDP, the reward and transition func-

tions are defined over joint states and actions, which makes the number of entries they have

exponentially larger than that of the individual functions in EDI-CR.

We now show how an EDI-CR instance < S1..n, A1..n, P1..n, R1..n, ρ, τ, T > is mapped

to a DEC-MDP instance < Ŝ1..n, A1..n, P
D, RD, T >. We assume that a given state cannot

be encountered multiple times during a given execution, which is true if the agents know

what stage they are at (e.g. when the state includes time). The need for the assumption will

become apparent in the course of the mapping:

• A1..n and T are the same

• Ŝi = Si×
⋃T−1

t=0 (Si×Ai)
t. The DEC-MDP’s individual state spaces are the EDI-CR

spaces fitted with state and action histories. We use ŝi.current to refer to the current

state stored in ŝi, without the history.

• Every entry RD(ŝ1...ŝn, a1...an) is calculated as follows: we add up the individual

rewards
∑

i Ri(ŝi.current, ai). We then account for any additional rewards: we add

the reward of the kth entry in ρ if the state-action pairs in this entry are present in

(ŝ1...ŝn, a1...an). However, we only do this if ∃i s.t. (sk
i , a

k
i) = (ŝi.current, ai), i.e.,

one of the state-action pairs in the ρ entry has just been finished. This, together with

28

the assumption that a state is encountered at most once during an execution, avoids

giving out reward for the same entry multiple times.

• Every entry PD(ŝ1...ŝn, a1...an, ŝ
′
1...ŝ

′
n) = v is calculated as follows: if, for some

i, the history in ŝ′i is inconsistent with the state-action pair (ŝi, ai), then v = 0.

Otherwise, the distribution over i’s next state is obtained from the kth entry in τ if the

state-action pairs of the affecting agents in k match the histories in (ŝ1...ŝn, a1...an).

Otherwise, the distribution given by Pi is used. The individual distributions are then

multiplied to give a distribution over the joint state.

It is worth noting that if the solution algorithm we are using to calculate a policy for

the DEC-MDP operates on entire histories of actions of all agents, we may not need to

factor the transition and reward interactions given by τ and ρ into the DEC-MDP transition

and reward functions, in which case the DEC-MDP state does not need to keep track of

all transitions made so far. For example, an algorithm operating on the sequence form

representation of a policy (see Section 3.1) can calculate the joint reward of a given tuple

of histories and the transition probability of each agent’s history given the others.

An instance of a factored DEC-MDP can be mapped to an EDI-CR instance without an

exponential increase in size. This is done as follows:

• S1..n, A1..n and T are the same

• ∀iRi(si, ai) = 0 for all actions and states, i.e. individual rewards are not used

• Every entry RD(s1..sn, a1..an) = v has a corresponding entry < n, (s1, a1), ..., (sn, an), v >

in ρ.

• Local transition functions Pi can be set to anything. They will not be used.

• Every entry PD(s1..sn, a1..an, s′1..s
′
n) has n corresponding entries in τ , the ith of

which is < (sj, aj)j 6=i, (si, ai), pi > where pi is obtained by marginalizing the next

state distribution given by PD to obtain a distribution over i’s local state only.

29

2.3 Survey Of Special Representations

In this section we give a brief survey of some of the models proposed in the decision-

theory and game-theory literature. These models attempt to circumvent the high complexity

of solving the general models by focusing on special cases of the general problem.

2.3.1 Cooperative agents

In this subsection, we discuss some of the many specializations of DEC-POMDPs, the

special structure they aim to exploit and, where appropriate, how they differ from our model

EDI-CR.

2.3.1.1 TI-DEC-MDP

Transition-Independent DEC-MDP is a special case of factored DEC-MDP with in-

dependent transitions and observable local states [14]. The only interaction among the

agents’ sub-problems is through the reward function. Agents have their individual reward

functions defined over their local states and actions, but, in addition, there is a complex

reward structure whereby certain combinations of actions have an additional cost/reward.

First, we re-state some definitions related to this model.

Definition 6 A factored, n-agent DEC-MDP is transition independent if the joint transition

function P can be separated into n separate transition functions P1, .., Pn such that

P (s′i|(s0...sn), (a1...an), (s′0...s
′
i−1, s

′
i+1...s

′
n)) =





P0(s
′
0|s0) i = 0

Pi(s
′
i|ŝi, ai, s

′
0) 1 ≤ i ≤ n

For agent i, ŝi ∈ Si × S0 is the local state. The external features S0 are included because

they do affect the agent. Transition independence means that the new local state of each

agent depends only on its previous local state, its local action, and the external features.

External features change based only on the previous external features. The probability of

30

the new joint state is therefore just the product of the probabilities of the new individual

local states.

Definition 7 A factored, n-agent DEC-MDP is observation independent if the joint obser-

vation function O can be separated into n separate observation functions O1, .., On where,

for any local observation oi ∈ Ωi

O(oi|(s′0...s′n), (a1...an), (o1...oi−1, oi+1...on)) = Oi(oi|ŝ′i, ai)

That is, the observation an agent sees depends only on its local state, the external state, and

the agent’s action.

Definition 8 A factored, n-agent DEC-MDP is locally fully observable if ∀oi∃ŝi : P (ŝi|oi) =

1.

When a DEC-MDP has both local full observability and observation independence, we

can get rid of O and Ω in the definition, and in this case the policies become mappings from

local states, rather than observation histories, to actions.

The complex reward structure in TI-DEC-MDP is defined in terms of events; occur-

rences of (si, ai, s
′
i) tuples in agent i’s history. The reward structure can be viewed as a list

of constraints that describe how interactions among the agents’ local trajectories through

the state space (which are determined by their policies and chance outcomes) affect the

global value of the system. A constraint specifies a set of events, one for each involved

agent, together with the additional reward obtained by the team if each agent satisfies his

part of the constraint, which happens if the agent’s event occurs somewhere in its history.

The complexity of TI-DEC-MDP is analyzed in [5] where it is proved that solving

DEC-MDPs with independent transitions and observations and a joint reward structure is

NP-Complete.

31

2.3.1.2 EDI-DEC-MDP

Event-driven interaction DEC-MDP (EDI-DEC-MDP) is another sub-class of factored

DEC-MDP that has observable local states and reward independence but has transition de-

pendence [12]. The latter is, however, structured, with certain actions in one agent affecting

the transition probabilities of certain actions of another agent; i.e., they affect the probabil-

ity distribution over the next states obtained after doing the affected action. For example,

an action done by agent j can facilitate an action done by i (making it finish faster), thereby

increasing the probability of transitioning to a next state with an earlier timestamp.

As in TI-DEC-MDP, the notion of events is used; a dependency consists of an event

of the affecting agent j and a set of unique state-action pairs of the affected agent i. If

the event happens in j’s history, then if i later encounters one of the specified state-action

pairs, i’s transition probability for this pair is affected. This effect is encoded in a modified

version of i’s transition function, which takes the form Pi(ŝ
′
i|ŝi, ai, bŝiai

). For an affected

state-action pair of agent i, the Boolean variable bŝiai
is true if the dependency affecting

this pair is satisfied and false if it is not satisfied or there is no related dependency.

Note how this model assumes that when an agent takes an action that can be influenced

by a dependency, it finds out whether or not that dependency was satisfied, which explains

why bŝiai
is part of the transition function. This forces us to to include the dependency

history in an agent’s local state to ensure the Markov property. Intuitively, when agent i

learns the status of a dependency, it changes its belief about the state of agent j and its j’s

probability of doing future dependencies. This, in turn, affects i’s transition probability,

and so i needs to remember the status of each dependency each time an affected action

is attempted. In the worst case, i’s state needs to store the last time a dependency was

not satisfied as well as the first time it discovered it was satisfied. For the affecting agent,

the state stores the time at which it satisfies each dependency. In some cases, it may not be

necessary to store these pieces of information for every single dependency if the satisfaction

of a dependency implies the satisfaction of all earlier dependencies related to the same

32

interrelation. For more on the difference between a dependency and an interrelation, please

see [10].

From the above, it is clear that EDI-CR treats transition dependencies differently from

EDI-DEC-MDP in that an affected agent does not automatically know when/whether it was

actually affected, as opposed to EDI-DEC-MDP where affecting an agent is accompanied

by a kind of implicit “communication” (for it does transmit information about the depen-

dency) However, the behavior of EDI-DEC-MDP can be mimicked in EDI-CR by having a

state space with additional pieces of information for the boolean variables and timestamps,

and an appropriate definition of the transition dependencies in τ . We therefore leave it to

the modeler to decide whether he wants this kind of communication, and unlike Becker’s

work, make it possible to have a truly zero-communication setting.

Becker points out that EDI-DEC-MDP has an upper-bound deterministic complexity

that is exponential in the size of the state space and doubly exponential in the number of

defined interactions (which suggests non-deterministic exponential time complexity as an

upper bound). The complexity is more formally analyzed in [5] where it is proved to be

NEXP-Complete.

2.3.1.3 IDMG

Interaction-driven Markov game (IDMG) [82] is a sub-class of factored DEC-MDP

with observable local states. It aims to describe problems in which interaction among

agents is a local phenomenon specific to a set of interaction states where the agents are

coupled through their reward and transition functions. A set of interaction states consists

of adjacent joint states (in terms of transition probabilities).

Definition 9 An 2-agent IDMG is a tuple (M1,M2, {iMI , i = 1..n}) where M1 and

M2 are the 2 independent MDPs of the 2 agents and each iMI is an interaction game; a

two-agent, fully cooperative Markov game iMI = (iXI , A,iPI ,
i rI) where

• iXI set of interaction states of game i

33

• A is the set of joint actions

• iPI is a transition probability function for states in iXI and joint actions

• irI is the joint interaction reward function defined over states in iXI and joint actions

A motivating example is where two mobile robots have to navigate in a common environ-

ment, each trying to reach its own goal state and the actions of one robot do not affect the

movement of the other. The robots’ problems are independent except for the fact that there

is a single door in the environment and in states close to the door, the actions of a robot

affect the rewards or transition of the other (e.g. trying to pass through the door at the same

time incurs a penalty for all participants).

The IDMG model assumes that each interaction game describes a situation where the

agents should coordinate. In the corresponding interaction states, each agent explicitly

communicates all information useful to the decision process, where communication is as-

sumed to be unlimited and noise-free. Therefore IDMG assumes that agents can observe

their local states in the parts of the state space where they do not interact, and can observe

the global state in the interaction states.

Clearly, IDMG caters to problems with a different kind of structure than the ones ad-

dressed by EDI-CR. In IDMG, we cannot (easily) represent situations where the action of

one agent affects the transition/reward of another agent wherever it takes an affected action.

That is because in IDMG, the agents are assumed to be tightly coupled in the interaction

states, so all of an agent’s actions taken in those states affect the other agent. Conversely,

if the size of the union of all sets of interaction states is large, representing an IDMG using

EDI-CR would result in large sets of reward and transition interactions ρ and τ , which is

logical because in this case, we are modeling a situation close to an unstructured DEC-

MDP.

34

Another difference is that in EDI-CR, we do not assume free, involuntary communica-

tion as in IDMG. This kind of communication is necessary in solving IDMG because the

solution method assumes knowledge of the joint state during each Markov game.

2.3.1.4 DPCL

Distributed POMDPs with Coordination Locales (DPCL) [87] is a sub-class of DEC-

POMDPs where agents act independently except in certain coordination locales, somewhat

like the interaction states in IDMG. DPCL does not assume transition or reward indepen-

dence, but assumes observation independence. Again, the agents’ decision processes are

expressed in terms of local transition, reward and observation functions, with interactions

expressed as coordination locales (CLs) that are either same-time or future-time coordina-

tion locales. As explained in [88], same-time CLs represent situations where the effect of

simultaneous execution of actions by a subset of agents cannot be described by the local

transition and reward functions of these agents. Future-time CLs identify situations where

actions of one agent impact actions of others in the future.

DPCL differs from IDMG is that the latter assumes observable local state while the

former does not. Also, IDMG assumes free communication in the interaction states, while

DPCL does not.

2.3.1.5 ND-POMDP

Networked Distributed POMDP is a sub-class of DEC-POMDP with factored state that

aims to exploit locality of interactions [67]. ND-POMDP is motivated by domains such

as distributed sensor nets where the sensors need to decide which direction to scan in. To

track a target and obtain associated reward, two sensors with overlapping scanning areas

must coordinate by scanning the same area simultaneously. The target’s movement is un-

certain and unaffected by the sensors. Based on the area it is scanning, each sensor receives

observations that can have false positives and false negatives. This domain has locality of

35

interaction because each sensor interacts with only a limited number of neighboring sen-

sors.

In ND-POMDP, agents have independent transition and observation functions, but have

reward interactions. The reward function is defined as R(s, a) =
∑

l Rl(sl1, sl2, .., slk, su, al1, al2, .., alk)

where each l can refer to any subset of agents and su is the part of the state that is not under

an agent’s control (e.g. the position of the target in the wireless sensor example). Therefore,

we can decompose the set of agents into subsets, where an agent’s reward only depends on

agents belonging to its subset(s). The reward function induces an interaction graph where

agents are nodes and edges connect agents in the same l.

Besides the fact that ND-POMDP assumes transition independence and EDI-CR does

not, the difference between these two models is that in the former, agents belonging to the

same subset l are assumed to have very tight reward interaction; there is a single reward

function per subset, and it is defined over joint actions and states of agents in the subset.

This can be seen as a coarse-grained kind of independence where agents either have reward

interactions involving all their actions or none at all. EDI-CR captures a more fine-grained

kind of interaction where specific actions affect, or are affected by, what another agent does.

However, we can still represent ND-POMDP instances using EDI-CR: the set of transition

interactions τ will be empty while the set of reward interactions ρ will have one entry for

each entry in each Rl function.

2.3.1.6 TD-POMDP

Transition-Decoupled POMDP [94] is another sub-class of DEC-POMDPs with fac-

tored state space. In TD-POMDP, agent i’s state < ui, li, ni > has 3 kinds of features:

• ui: features uncontrollable by any agent

• li: features under agent i’s control

• ni: features controlled by some other agent j but whose values impact i’s local tran-

sitions (such features would then appear as locally controlled features of agent j)

36

The reward function is the sum of local rewards defined over local states and actions.

Because of the decomposition of an agent’s state into the above 3 sets of features, agent i’s

local transition function can be written as

P (st+1
i |st, a) = P (ut+1

i |ut
i).P (lt+1

i |st
i, ai).P (nt+1

i |st − lti, a 6=i)

Non-locally controlled features allow for reward and transition interactions among agents.

However there are two points to note. First, in TD-POMDP an agent cannot affect another’s

transition probability immediately because if i affects j, i’s action will first set a non-local

feature in nj then, in the next time step, j’s transitions can start getting affected by this

feature in nj . The second point is that reward interaction is modeled as a kind of transition

interaction. Again, an agent can set a feature in another’s state (transition dependence), and

the reward of the latter can depend on whether this feature was set.

The approach for solving TD-POMDP, like the Coverage Set Algorithm for solving

TI-DEC-MDP on which it is based, aims to consider fewer points in the policy space by

realizing that due to the loose coupling of agents’ processes, many policies of one agent

have the same effect on another agent. This can be seen as grouping or binning policies.

In Chapter 3, we use the idea of binning to obtain compact mathematical formulations of

EDI-CR that can be solved efficiently. In our case, we bin sequences of actions of one

agent that have the same effect on a given sequence of actions of another agent.

The work on TD-POMDP was published in 2010, and has some differences from EDI-

CR (published in 2009). Although both models address loosely-coupled decision pro-

cesses, EDI-CR assumes observable local states, while TD-POMDP does not. Another

difference is that EDI-CR specifies interactions as first class entities, listing in the sets ρ and

τ the effects an agent’s action has on the reward/transitions of other agents. On the other

hand, TD-POMDP models interactions through the non-local features. Besides disallowing

immediate effects, another consequence of this representation is that a problem with only

reward, but no transition, interactions will appear in TD-POMDP as a problem with tran-

37

sition interactions. In general, reasoning about transition interactions is considerably more

difficult than reasoning about reward interactions alone; Transition Independent DEC-MDP

(2.3.1.1) is NP-Complete whereas Event Driven Interaction-DEC-MDP (2.3.1.2) is NEXP-

Complete. We therefore feel that modeling reward interactions as transition interactions

may add unnecessary complexity.

2.3.2 Self-interested agents

There have been several efforts to exploit special structure in games to achieve rep-

resentational and computational savings. Most of the special models in the literature are

restricted to 1-stage games and have the goal of scaling up with the number of agents,

rather than the number of actions per agent [48, 47, 52, 19, 89]. In this section, we briefly

review some of the game-theoretic representations that exploit special structures that would

otherwise be obscured in an EFG.

2.3.2.1 MAID

Multi-agent influence diagrams (MAIDs) [51, 21] are representations that have their

origins in influence diagrams [45]. Like all alternatives to EFG, MAIDs try to explicitly

capture a structural property of a game that would otherwise be obscured in extensive form.

In the case of MAIDs, this property is that not all decision variables in a game are inter-

dependent.

A MAID defines a directed acyclic graph in which nodes correspond to random vari-

ables of three types. For each agent i, there is a set of

• Decision variables, Di, whose domains are available actions and are represented as

rectangles

• Chance variables, χi, whose values are chosen by nature and are represented as ovals

• Utility variables, Ui, which represent the agent’s payoffs and are drawn as diamonds

38

Figure 2.1. Multi-Agent Influence Diagram representation of the Tree Killer problem [51]

Figure 2.1 shows an example MAID. A conditional probability table (CPT) specifies the

conditional probability of a node’s variable given an instantiation of its parents, P (x|Pax).

A strategy profile for agent i is a set of decision rules, one for each node in Di. A deci-

sion rule specifies the probability of making a certain decision given values of its parents.

It simply sets the CPTs of decision nodes. To represent perfect recall (an agent does not

“forget” decisions it made in the past), all earlier decisions and their parents are among the

parents of a later decision node.

Initial work on MAIDs looked at using the MAID representation as a guide for decom-

posing a game into interacting fragments, and provided an algorithm that finds equilibria

for these smaller games in a way that is guaranteed to produce a global equilibrium for

the entire game [51]. Specifically, Koller and Milch construct from MAID a strategic rele-

vance graph in which the maximal strongly connected components are found and a tree is

build whose nodes are these components. The components are then ordered topologically

and solved in this order by changing each component back to a game tree and solving it

using McKelvey and McLennan’s algorithm [56].

39

Later work on MAIDs addresses the issue that for most realistic games, the relevance

graph consists of a single strongly connected component, in which case the above algorithm

degenerates into converting the game back to the original tree. Blum et. al. address this by

exploiting finer-grained structure in MAIDs to improve the efficiency of a certain family of

algorithms called continuation algorithms [21].

2.3.2.2 TAGG

Temporal action graph games (TAGG) is a graphical representation of imperfect-information

extensive form games that can be much more compact than MAIDs for games with cer-

tain special structures; namely anonymity and context-specific utility independencies [46].

TAGGs are an extension of action graph games (AGGs) to represent games taking place

over multiple stages. Both representations can model anonymity, where a player’s payoffs

depend on how many players took a certain action, rather than exactly who these players

are. AGGs and TAGGs represent a game as a graph where nodes are actions and an agent’s

utility depends only on the node it chose and the action counts on the neighbors of the

chosen node. We can therefore specify a utility function for each action node that maps the

set of configurations over the node’s neighbors to a utility value. Clearly, this structure can

be exploited for computational savings.

In TAGGs, Jiang et. al. [46] extend AGGs with chance and decision nodes like the

ones in MAID. In addition, they introduce time-dependent counters in action nodes that

keep track of how many times the given action has been chosen up to a given time point.

The utility functions are also made time-dependent; U t
A specifies the utility of action A at

each time step t. An agent can therefore receive payoffs for taking an action soon after it

does so and later on. Play can be seen as a sequence of AGGs played over time. At each

time step t, players with decisions at time t participate in a simultaneous-move AGG on

the set of action nodes, whose action counts are initialized to be the counts at t− 1.

40

To define an agent’s expected utility, Jiang et. al. create the induced Bayesian Network

(induced BN) of the TAGG. This BN has the TAGG’s decision and chance variables in

addition to 1) an action count variable for each action and each time step; 2)a utility vari-

able for each time-dependent utility function U t
A and each A and t and 3) decision-payoff

variables representing the utilities of decisions received at each of their payoff time points.

Decision-payoff variables are essentially multiplexers that choose which utility function to

use based on which action was taken. An agent’s expected payoff from a strategy profile

σ is then the sum of the expected values of all its decision-payoff variables in the induced

BN, where the CPTs of decision variables are dictated by σ.

The work also introduces the notion of an induced MAID, which is the same as the

induced BN except that decision and utility variables in the latter are decision and utility

nodes in the former. Jiang et. al show that a TAGG can be exponentially more compact

than the corresponding induced MAID. However, one criticism that we have of this work

is that it compares the size of a TAGG to that of a naiive MAID representation, one whose

nodes have a much larger in-degree than they need to. Even though the paper later uses

obvious structures in the CPTs of the induced BN/MAID to yield a representation with

much smaller CPTs (e.g. the CPTs for action counts are counting functions that can benefit

from intermediate values), the reduction in size is measured relative to the large naiive

MAID, rather than the more compact one. In fact, the paper shows that simple manipulation

of the MAID nodes and creation of intermediate ones results in a MAID whose size is only

polynomial in the size of the TAGG.

In addition to proposing a new representation, Jiang et. al propose ways in which they

can speed up the calculation of expected utility (EU) by exploiting the special structure

in their representation. Calculation of EU is essentially doing inference to determine the

marginal probability distributions over utility variables. Instead of using general BN infer-

ence techniques, Jiang et. al exploit the structure in the induced BN to speed up the calcu-

lation. For example, the induced BN has many ’counter’ nodes whose CPTs are structured

41

counting functions. Another exploitable characteristic of the induced BN is that variables

in it can be grouped by time step. This grouping, together with the introduction of some

dummy variables that results in a BN satisfying the Markov property, allows Jiang et. al to

perform efficient variable elimination.

From the above, it is clear that in order to do any processing on a TAGG we need

to first construct the corresponding BN/MAID. For calculating the expected payoffs, the

authors operate on the BN, and for calculating Nash equilibria, they apply existing MAID

algorithms to the MAID. In our opinion, these facts put the purpose of having a TAGG

representation in question, since it is never actually used.

2.3.2.3 Succinct EFG

For some games, the game trees expressed in extensive form are too large to be stored

in memory explicitly. To overcome this, Dudik and Gordon propose an implicit representa-

tion called succinct EFG [32]. A representation is succinct if it has enough information to

support certain queries that make it possible to simulate play in a game through sampling,

thus avoiding the need to explicitly represent all possible paths through a game. As such,

MAIDs are themselves examples of succinct EFGs. One drawback of MAIDs is that they

cannot represent context-specific independence (e.g. allowing different decision nodes to

have different available actions). The second problem is that MAID algorithms rely on

clique tree representations which can have high space and time complexities. Dudik and

Gordon propose an algorithm that finds an extension of correlated equilibria to sequential

games, with the advantage that it allows control over characteristics of the target equilib-

rium, e.g., we can ask for an equilibrium with high social welfare.

2.3.2.4 Other representations

A number of representations have been proposed in the literature for efficiently rep-

resenting 1-stage games exhibiting special structure. For example, graphical games [48],

Game nets (G-nets) [52] and action-graph games [19] address games whose special struc-

42

ture is the locality of interactions among agents, i.e. an agent is only affected by a a subset

of other agents whose size is small relative to the total number of agents. Some approaches

specifically address games with a certain kind of interaction graph (e.g. a tree [47]).

The work on poker (e.g. [35]) tries to exploit structure in sequential games. This line

of work is primarily concerned with the issue of scaling to larger games and provides

automatic abstractions that produce much smaller games whose solutions can be converted

to solutions of the original games. The problem is that with the assumptions they make, it

is not clear that the techniques developed in this line of work can be used in general.

The work of Eitan et. al [7] is similar to ours in that it exploits structure in the form of

transition and/or reward independence. They consider a zero-sum stochastic game in which

each player has a constrained Markov Decision Process whose transitions depend only on

this player’s actions. A player’s reward, however, depends on the states and actions of both

players. We differ in that we assume that some transitions can depend on the other player’s

actions, whereas in their case, the transitions are independent.

2.4 Summary

In this chapter, we presented a brief overview of some general models of multi-agent

sequential decision making, both decision- and game-theoretic. We provided some motivat-

ing examples that demonstrate the need for a new model for situations where the decision

processes of the agents are largely independent, yet there are some reward and transition

interactions among them. We also gave a brief survey of some of the specialized models

proposed in the decision-theory and game-theory literature.

We presented our new decision-theoretic model, EDI-CR, for representing structured

transition and reward interactions. EDI-CR specifies the decision problem of each agent

then lists the ways in which one agent can affect the processes of others. Although there

are existing models that take the same approach to representation, none of them address

situations with fine-grained dependencies that we are interested in. EDI-CR can represent

43

problems ranging from complete independence (a group of MDPs) to complete dependence

(a DEC-MDP with observable local state). The representational savings obtained from

using EDI-CR depend on the number of interactions among agents.

In the next chapters, we see how we can calculate policies for EDI-CR.

44

CHAPTER 3

DECISION-THEORETIC MODELS AND OPTIMIZATION

In this chapter, we discuss the use of optimization techniques to compute policies for

EDI-CR multi-agent decision problems involving cooperative agents.

For settings involving cooperative agents, finding the optimal joint policy can be for-

mulated as an optimization problem. The objective is to maximize the expected rewards of

the agent team subject to constraints guaranteeing that a feasible solution to the optimiza-

tion problem represents a set of legal policies. The formulation should also factor in the

interactions among agents and their effects.

There are existing mathematical formulations, both for general and specialized mod-

els. However, when applied to EDI-CR, these formulations are too verbose and/or lack

global optimality guarantees. We propose mathematical formulations that exploit the spe-

cial structure in EDI-CR to achieve compactness (i.e. reduce the number of variables in the

formulation) and efficient computation. For the 2-agent case, our formulation is exact and

its solution is guaranteed to be optimal. For cases with more than 2 agents, our formulation

involves a relaxation of the original problem, and thus optimality of the resulting solution

is not guaranteed.

We begin by explaining the policy representation that will be used in all the formula-

tions in this chapter, followed by a brief discussion of existing formulations in Section 3.2.

We then present our Mixed Integer Linear Program (MILP) formulations for EDI-CR and

give experimental results in Section 3.3. Finally, we discuss our formulation of finding

the optimal policy as a system of non-linear equations and the possible use of homotopy

methods as an alternative optimization technique in Section 3.4.

45

3.1 Sequence Form Policy Representation

We use a policy representation that was independently, and later jointly, devised by

Koller et. al [50] and von Stengel [83] to represent games. It has been used in settings with

self-interested [61] and cooperative agents [8]. In the context of game trees, the idea behind

this representation is that a policy can be characterized by the probability distribution it

induces over the leaves of the tree. If two policies induce the same distribution, then they

result in the same reward.

For models with local observability, a sequence of agent i, s1.a1..st.at, consists of i’s

actions and local states. Following the nomenclature of Aras and Dutech [8], we use the

term history instead of sequence. Concatenating a state s and action a to a history h pro-

duces a new history (h.s.a) that is called an extension of history h. A history containing T

(the problem’s time horizon) actions is a terminal history. For agent i, the set of all histo-

ries is denoted by Hi, terminal histories by Zi, and non-terminal histories by Ni. A joint

history h ∈ H is a tuple containing one history per agent.

An agent’s policy induces a probability distribution over its histories. The realization

weight of a history s1.a1..st.at under a policy is the probability that the policy assigns to

taking actions a1..t given that the states s1..t are encountered. A history’s realization weight

therefore does not include chance outcome probabilities. We will have separate terms that

reflect these probabilities. The vector of all realization weights will be denoted as x and

the weight of history hi by x(hi).

A pure policy deterministically chooses one action at each decision making point. In

cooperative settings there is at least one optimal pure joint policy, so we restrict our at-

tention to pure policies. But even a pure policy will have multiple terminal histories with

non-zero weights, because it must specify an action to take at each state reachable under

the policy. Because we do not include transition probabilities in a history’s weight, the

realization weight can only be 0 or 1. The set of i’s terminal histories with weight 1 under

46

Table 3.1. Symbols used in the mathematical formulations

Symbol Meaning
H Set of all histories
Z Set of terminal histories
N Set of non-terminal histories
σi Support set of agent i
‖σi‖ Support size of agent i
Qi Quantity belonging to agent i
Q−i Joint quantity of all agents but i
x(hi) Realization weight of i’s history hi

i, j, k Specific agents
g An arbitrary agent

a policy is called support set, denoted by σi, and its size is the support size ‖σi‖. Table 3.1

summarizes the symbols we use in this chapter.

3.2 Existing Mathematical Formulations Of DEC-MDPs

In this section, we review existing mathematical formulations of a DEC-MDP with

local observability as a Non-Linear Program and as a Mixed Integer Linear Program. We

will adapt some of the ideas behind these formulations for EDI-CR in the next section.

3.2.1 DEC-MDP NLP

The formulation of DEC-MDP with local observability as a Non-Linear Program (NLP)

is given in Table 3.2. In the objective function, R(h) = β(h)r(h) is the expected reward of

terminal joint history h, where β(h) is the probability of encountering the joint states in h

given the actions in h

β(h) =
T−1∏
t=1

P (st+1|st, at)

r(h) is the sum of rewards of states and actions along the history. The constraints in the

NLP are called policy constraints and guarantee that a solution to the NLP represents a

legal policy where the sum of an agent’s action probabilities in any state is 1. The first

47

Table 3.2. DEC-MDP as an NLP

max
∑

h∈Z
R(h)

∏
g∈A

x(hg)

s.t.
∑
a∈Ag

x(sg0 .a) = 1 g ∈ A
∑
a∈Ag

x(hg.s.a) = x(hg) g∈A, s∈Sg, hg∈Ng

x ∈ [0, 1]

set of constraints in Table 3.2 ensures that for any agent, the sum of action probabilities at

its start state is 1. The second set of constraints in Table 3.2 ensures that the realization

weights of a history’s extensions add up to that history’s weight.

The problem with the NLP formulation is that it results in a non-concave objective

function for which no methods guarantee finding a globally optimal solution.

3.2.2 DEC-MDP MILP

Aras and Dutech [8] developed a formulation for DEC-POMDPs as a MILP, thereby

guaranteeing that a locally optimal solution is also globally optimal. We modify their

formulation for the case of DEC-MDP with local observability. For ease of explanation,

Table 3.3 is for the case with only 2 agents i and j. Because the difficulty of solving a

MILP increases with the number of integer variables, Aras only restricts weights of termi-

nal histories to be integer (in fact binary). The constraints force the other variables to be

integers as well.

As in the NLP formulation, R(h, h′) in the objective function (3.1) already accounts

for the transition probabilities of both agents, so realization weights are either 0 or 1.

To linearize the objective function, Aras introduces a compound variable zhi,hj
for each

pair of terminal histories. The variable is related to the existing x variables by the identity

zhi,hj
= x(hi)x(hj)

48

Table 3.3. DEC-MDP as a MILP

max
∑

hi∈Zi,hj∈Zj

R(hi, hj)zhi,hj
(3.1)

s.t. policy constraints and∑

h−g∈Z−g

zhg ,h−g =x(hg)‖σ−g‖ g∈A, hg∈Zg (3.2)

∑

hi∈Zi,hj∈Zj

zhi,hj
= ‖σi‖‖σj‖ (3.3)

x, z ∈ [0, 1] x(hg) ∈ {0, 1} g∈A, hg∈Zg

The question now is how to enforce the identity using a set of linear constraints. To do this,

Aras uses combinatorics (knowing ‖σi‖ and ‖σj‖) and treats the z variables as counters.

Constraint (3.2) guarantees that if hg is part of some agent g’s support set (x(h) = 1),

enough compound variables involving hg are set to 1, otherwise all compound variables

involving hg should be 0. Constraint (3.3) limits the number of compound variables that

can be simultaneously set to 1.

3.3 MILP Formulation Of EDI-CR

In this section, we propose a compact Mixed Integer Linear Program formulation of

EDI-CR instances [62]. The key insight we use is that due to structured interactions, most

action sequences of a group of agents have the same effect on a given agent. This allows us

to treat these sequences similarly and use fewer variables in the formulation. We present

experiments showing that our formulation is more compact and leads to faster solution

times and better solutions than formulations ignoring the structure of interactions. We

begin with a formulation for 2-agents then generalize to one for 3 or more agents.

49

3.3.1 Formulation of 2-agent EDI-CR

3.3.1.1 Binning histories

For the 2-agent case, the NLP in Table 3.2 is a Quadratic Program (QP) whose objective

function has the form xTQx where Q is the reward matrix. Q(hi, hj) = R(hi, hj) if hi and

hj are terminal histories, and is 0 otherwise. The MILP in Table 3.3 “flattens” this matrix,

multiplying each matrix entry by a compound variable created for that entry. This approach

makes sense for DEC-MDPs, because agents’ decision processes are tightly coupled and

the rewards/transitions of one agent strongly depend on the actions taken by another. For a

given history hi, R(hi, hj) can vary widely depending on hj , and a given row or column in

Q contains many distinct values, thus justifying the need for a variable per entry in Q.

The situation can be very different in the presence of structured interactions. An agent is

only affected by the those actions of another agent that are involved in reward and transition

interactions in ρ and τ . So for a given hi, the rewards and transition along hi do not depend

on the exact actions in the history of another agent. Suppose τ specifies that action a3 of

agent j affects the transition probability of a7 of i. Now if hi involves doing a7 at time 6,

all histories hj that do a3 before time 6 have the same effect on hi’s transitions.

In the matrix view of the objective function, because in EDI-CR agents have their local

reward functions, we can express Q as the sum of reward matrices of the 2 agents Qi + Qj .

Note that this does not assume that rewards are independent; each entry in these matrices

can depend on the histories of both agents. The rows (resp. columns) in Qi (resp. Qj) will

contain many duplicate entries, reflecting the fact that an agent is oblivious to many details

of the other agent’s history.

The main idea in our formulation is that for a history hg, we group all histories of the

other agent that have the same effect on the transitions and rewards in hg into a single bin.

For each history hg of some agent g, the set of bins it induces, Bhg , is a partition over the

set of terminal histories of the other agent.

50

Table 3.4. 2-agent EDI-CR as a MILP

max
∑

b∈Bhg

Rg(hg, bhg)zhg ,b g ∈ A, hg ∈ Zg,

s.t. policy constraints and∑

b∈Bhg

zhg ,b = x(hg) g ∈ A, hg ∈ Zg

zhg ,b≤
∑

h−g∈b

β(h−g|hg)x(h−g) g∈A, hg∈Zg, b∈Bhg

x, z ∈ [0, 1] x(hg) ∈ {0, 1} g ∈ A, hg ∈ Zg

Instead of creating a variable for every pair of terminal histories, we introduce a single

variable zhg ,b for every history hg and every bin b ∈ Bhg associated with it. In the ma-

trix view, we create a variable for each distinct entry in Qi and Qj . Because structured

interaction results in many duplicate entries, binning can significantly reduce the number

of compound variables we introduce. Our MILP for EDI-CR is given in Table 3.4.

In the objective function, we fold into Rg(hg, b) those quantities of hg that are oblivi-

ous to which history in b is played, namely hg’s transition probabilities and rewards. We

therefore have

Rg(hg, b) = rg(hg|b)β(hg|b)

The factors on the right can be calculated using any history h−g ∈ b

rg(hg|b) =
T−1∑
t=1

Rg(st, at, st+1) + rρ(hg, h−g)/2

where rρ(h, hj) represents rewards (if any) that depend on actions of both agents, as speci-

fied in ρ. Dividing by 2 avoids double counting reward interactions. The transition proba-

bility is given by

51

β(h|b) =
T−1∏
t=1

Pτ (st+1|st, at, {a′1..a′t})

Pτ depends on the local transition function Pg and, for transitions involved in τ , actions in

h−g done up to time t, {a′1..a′t}.

We fold into zhg ,b quantities that depend on the particular h−g in the bin, namely the

transition probabilities along h−g, given history hg (β(h−g|hg)). The identity defining a

compound variable is therefore

zhg ,b = x(hg)
∑

h−g∈b

β(h−g|hg)x(h−g) (3.4)

zhg ,b is therefore the probability that g plays hg, multiplied by the probability that the other

agent plays a history in b.

The effect of the number of interactions on the size of the formulation is clear. As the

number of interactions increases, we need more bins (thus more compound variables), since

each bin represents a unique way in which an agent affects another. In the extreme case of a

general DEC-MDP, an agent’s history needs a separate bin for each of the other’s histories,

essentially creating a compound variable for every pair of histories as in the DEC-MDP

MILP.

3.3.1.2 Enforcing the identity

We need to enforce identity (3.4) by linear constraints. This is more challenging than

in the DEC-MDP case where the binary nature of the compound variables allows the use of

combinatorics to devise the constraints. In our formulation, the compound variables are no

longer binary, and we must resort to other properties of, and relations among, the variables

to derive constraints equivalent to the identity.

52

Summing both sides of (3.4) over all bins of hg gives

∑

b∈Bhg

zhg ,b = x(hg)
∑

b∈Bhg

∑

h−g∈b

β(h−g|hg)x(h−g)

Since Bhg partitions Z−g, the double sum reduces to a sum over all histories of the other

agent, giving

∑

b∈Bhg

zhg ,b = x(hg)
∑

h−g∈Z−g

β(h−g|hg)x(h−g) (3.5)

A legal policy prescribes an action at each state reachable by a non-terminal history

whose realization weight is non-zero. As a result, histories in the support set cover all

possible transitions of actions along their parents. This means that the sum of probabilities

of transitions along histories in the support set must be 1, i.e.,
∑

h−g∈σ−g
β(h−g|hg) = 1. It

follows that

∑

h−g∈Z−g

β(h−g|hg)x(h−g) = 1 (3.6)

because only the xs of histories in σ−g are 1, so the left side is the sum of their correspond-

ing βs. From (3.5) and (3.6), we have the following set of constraints, one per terminal

history of each agent

∑

b∈Bhg

zhg ,b = x(hg) (3.7)

This constraint simply guarantees that if hg is not part of the support, all the compound

variables involving hg and its bins should be 0. If hg is part of the support, it guarantees

there is enough contribution from the compound variables associated with all bins of hg.

However, the above constraint does not prevent one compound variable from taking

too high a value at the expense of another. We can use identity (3.4) itself as a source of

53

upper bounds on compound variables. Because in (3.4) x(hg) is either 0 or 1, we have the

following set of constraints, one per history per bin associated with this history:

zhg ,b ≤
∑

h−g∈b

β(h−g|hg)x(h−g) (3.8)

Together, constraints (3.7) and (3.8) strictly enforce the identity. One advantage of our

constraints over the combinatorics-based constraints in the DEC-MDP formulation is that

ours do not involve the size of the support set, which Aras calculates from the parameters

of the problem by assuming that the number of states a state-action pair transitions to

is constant. But in settings where this number depends on the particular action taken,

determining the support size requires carefully looking at an agent’s decision tree and the

paths in it, which is non-trivial for large problems.

As for the number of constraints, the set of constraints in (3.7) has the same size as

the constraints in the DEC-MDP MILP; there is one constraint per terminal history of each

agent. The difference is that we have fewer terms in the summation on the left hand side

than in the DEC-MDP MILP.

The set in (3.8), however, is larger, because it has a constraint for each bin of each

terminal history of each agent, as opposed to a constraint for each terminal history. So, for

example, if from the perspective of each history of each agent all the histories of the other

agents fall into 1 of 3 bins, our formulation will have 3 times as many constraints of type

(3.8) as there are in the DEC-MDP MILP. But as will be seen in Section 3.3.3, this does

not prevent us from obtaining computational advantage over the DEC-MDP formulation.

3.3.2 MILP for 3 or more agents

The idea of binning histories extends beyond 2 agents. With n agents, an agent’s bins

contains history tuples, where each tuple consists of histories of the n−1 other agents. The

compound variable associated with a history hg and one of its bins b is given by the identity

54

zhg ,b = x(hg)
∑

h−g∈b

∏

hf∈h−g

β(hf |h, h−g)x(hf) (3.9)

As in the 2-agent case, the set of bins associated with hg is a partition over Z−g, so we can

use constraint (3.7). The greater challenge is devising linear constraints that impose upper

bounds on the z variables, similar to constraint (3.8). With 2-agents, we simply obtained

linear constraints by dropping the leading x in the identity. But with 3 or more agents,

doing so would result in a non-linear constraint.

In the following, we use properties of legal policies and structured interactions to de-

rive 2 sets of linear constraints (in addition to constraint (3.7)) that attempt, but are not

guaranteed, to enforce the identity. Note that even if the identity is violated, any solution

to the MILP still forms a legal set of policies, since the legality is guaranteed by the policy

constraints.

For ease of exposition, we show the derivation of the constraints associated with a

history hi of agent i when A contains three agents i, j and k.

If we assume that an action of agent i can be affected by at most one other agent, we

can decompose b into a bin for each affecting agent, bj and bk (b = bj × bk). Dropping the

leading x in (3.9) and using the decomposition of b to break down the summation gives

zhi,b≤
∑

hj∈bj

x(hj)
∑

hk∈bk

x(hk)β(hj|hi, hk)β(hk|hi, hj) (3.10)

We can obtain two linear upper bounds from the above by setting all x(hj) (resp. x(hk)) to

1. But these bounds would be too loose; for a feasible solution < xs, zs > to the MILP, zs

can be very different from the z calculated by applying the identity to xs. In other words,

the solver has too much freedom to violate the identity and set some zs higher than the

identity allows if this improves the value of the objective function. The reward reported by

the solver (the value of the objective function at zs) is therefore higher than the true reward

obtained when the agents follow the policies prescribed by xs. The solver is optimizing a

55

relaxed version of the problem whose optimal solution does not necessarily correspond to

an optimal of the original problem. We need to tighten the upper bound so that the relaxed

problem corresponds more faithfully to the original problem.

Consider the coefficient of some x(hj) in the non-linearized constraint (3.10):

∑

hk∈bk

x(hk)β(hj|hi, hk)β(hk|hi, hj) (3.11)

Setting all x(hk) = 1∀hk ∈ bk allows this coefficient to be higher than it can be under a

legal policy. Regarding the coefficient as a sum over the contributions of each hk ∈ bk,

we can decrease the coefficient by limiting the contributions of the hks. To do this, we

decompose the sum in (3.11) into a series of sums over bins of k’s histories constructed

from the perspective of j’s history hj . We denote the bins of k’s histories induced by hj as

bhjk (
⋃

bhjk = bk). Because j’s transition probability is the same under all hk in the same

bin, we can factor this probability out. The coefficient can then be re-written as

∑

bhjk

β(hj|hi, bhjk)
∑

hk∈bhjk

x(hk)β(hk|hi, hj)

Now we can use the same reasoning behind constraint (3.7) to replace the second summa-

tion involving x(hk) with an upper bound on it

⌊ ∑

hk∈bhjk

β(hk|hi, hj)

⌋
(3.12)

where bxc denotes min(x,1). We can therefore bound the factor multiplying each β(hj|hi, bhjk)

to be at most 1. The coefficient of x(hj) is restricted to be

∑

bhjk

β(hj|hi, bhjk)

⌊ ∑

hk∈bhjk

β(hk|hi, hj)

⌋

56

We can obtain a coefficient for each x(hk) in a similar fashion. Using these restricted

coefficients, and the fact that a coefficient cannot exceed 1, we approximately enforce iden-

tity (3.9) using constraint (3.7) and the following bounds

zhi,b ≤
∑

hj∈bj

x(hj)

⌊∑

bhjk

β(hj|hi, bhjk)

⌊ ∑

hk∈bhjk

β(hk|hi, hj)

⌋⌋

zhi,b ≤
∑

hk∈bk

x(hk)

⌊∑

bhkj

β(hk|hi, bhkj)

⌊ ∑

hj∈bhkj

β(hj|hi, hk)

⌋⌋ (3.13)

The quest for tight linear relaxations for non-linear functions is common in the opti-

mization literature. A trilinear term of the form xyz where x, y and z are between 0 and 1

can be replaced by a new variable w and the following set of constraints:

w ≤ x

w ≤ y

w ≤ z

w ≥ x + y + z − 2

(3.14)

The above is a a linear relaxation of the term’s convex envelope and guarantees that w is

within a certain amount of the product xyz [55]. Although these constraints are somewhat

similar to the constraints our formulation generates for the 3-agent case, there is a problem

in using them directly. The identity (3.9) does not define zhg ,b ‘cleanly’ as just the product

of 3 variables; there are summations and constants involved. Using the upper bounds in

(3.12) to obtain a clean trilinear term would interfere with the last inequality in (3.14)

because the right-hand side may no longer be a lower bound on z.

Even if we could use the above linear relaxation, there is no guarantee that it is tighter

than the relaxation we developed using properties of legal policies.

57

The idea of further binning histories within a given bin to bound the values of coeffi-

cients can be used with any number of agents. For n agents, this would result in n − 1

upper bounds per z variable1.

3.3.3 Experimental results

We now present experimental results of our two formulations applied to the Mars rovers

problem in Section 2.2.1.3.

3.3.3.1 Results of 2-agent formulations

We compare 3 formulations of EDI-CR instances: 1) the NLP formulation in Table 3.2,

but restricted to 2 agents, 2) the DEC-MDP MILP formulation in Table 3.3 and 3) the

EDI-CR MILP formulation in Table 3.4. All 3 formulations were solved using IBM ILOG

Cplex [2] under the default parameters; the first using Cplex Mixed Integer QP solver, and

the other two using Cplex MILP solver. We experimented with 22 instances of the modified

Mars rovers problem. The number of interactions ranges from 4 to 7.

We note that the time to generate the 3 formulations is almost the same; constructing the

bins and objective function for the EDI-CR MILP is not more expensive than constructing

the reward matrix for the QP or the objective function for the DEC-MDP MILP. In all 3

cases, we iterate over every pair of histories of the 2 agents to calculate their rewards and

probabilities.

Optimality: First, we look at the behavior of the 3 formulations with respect to opti-

mality. Note that even after obtaining a solution that we know is optimal (by comparing to

a known optimal solution), Cplex may spend a long time verifying optimality. We therefore

have 5 possible outcomes of a run:

1. Optimal solution found and verified

1Higher order terms can be relaxed by repeated application of relaxations of lower order terms [24].

58

Table 3.5. Optimality of 2-agent formulations

QP DEC-MDP EDI-CR
MILP MILP

1) Optimal, Verified 5 9 17
2) Optimal, Not verified 9 5 x

3) Local optimal 5 - -
4) Suboptimal 3 6 5-x
5) No solution 0 2 0

2. Optimal solution found but not verified before time out2

3. Locally optimal solution found (only possible in solving the QP)

4. Optimal solution not found before time out, but a suboptimal solution was found

5. No solution found before time out

Of the 22 instances, Table 3.5 compares how many fall in each category for each for-

mulation. Because a MILP solver would never report solution that is only locally optimal,

the corresponding entries are marked by ’-’. Our formulation resulted in a provably opti-

mal solution in 17/22 instances. In the remaining instances, we obtained higher rewards

than the other formulations, but cannot say with certainty that our solution was optimal,

so each of the remaining 5 instances falls into category 2 or 4. QP and DEC-MDP MILP

were equally good at finding optimal solutions, although DEC-MDP MILP was better at

verifying optimality. The table shows that the non-concavity of the QP can often lead the

solver to just report a locally optimal solution. It also shows that in some cases, the number

of compound variables introduced in the DEC-MILP is too large to allow the solver to find

any solution before time out (row 5).

Formulation size: Next, we look at the size of the MILP with and without exploiting

structured interactions. We break down our 22 instances into 3 groups G1, G2 and G3

containing 5, 9 and 8 instances, respectively. Table 3.6 shows the number of terminal

2Time out is 60 seconds for small instances and 600 seconds for larger ones.

59

Table 3.6. Size of 2-agent formulations

Zi Zj zEDI zDEC CEDI CDEC

G1 81 46 254 3,762 381 127
G2 162 112 608 18,062 882 274
G3 941 781 3,793 596,950 5,515 1,722

histories for each agent |Zi| and |Zj|, the number of compound variables introduced in

the DEC-MDP formulation|z|DEC and our EDI-CR formulation |z|EDI , and the number of

constraints (besides the policy constraints). Results were averaged over instances in each

group. Clearly, the DEC-MDP formulation introduces many more compound variables

than our formulation which only create as many variables as needed to distinguish between

bins induced by a given history. The difference in the number of variables becomes more

pronounced as the problem size increases. Although our formulation has more constraints

than the DEC-MDP MILP, we next show that the increased number of constraints is offset

by the large reduction in the number of variables, resulting in MILPs that are overall easier

to solve.

Solution time: Table 3.7 shows the results of comparing both the time needed to find

the optimal solution (reported as ‘Find’), and the time needed to verify that the solution is

indeed optimal (reported as ‘Verify’). The times are in seconds, averaged over instances

in each group. For groups where some solutions were not found/verified within reasonable

time, the number of instances over which the averaging was done is indicated in brackets.

In general, solving the EDI-CR MILP formulation is significantly faster than solving the

other 2 formulations. There is also a large difference in the time needed to verify optimality.

In the Small group, only 3 instances could be solved provably optimally within 60 seconds

using the DEC-MDP MILP and QP formulations. In the Medium group, the differences in

time to verify optimality among the different formulations is even more pronounced. In the

Large group, Cplex found solutions for all the instances of the EDI-CR MILP formulation,

but could not verify optimality. A solution with the same quality could not be found with

any of the other formulations.

60

Table 3.7. Solution time (in seconds) of 2-agent formulations

Find Find Find Verify Verify Verify
EDI DEC QP EDI DEC QP

G1 0.29 8.68 0.57 0.12(3) 3.5(3) 0.58(3)
G2 0.59 10.72 6.4 0.35(6) 21.6(6) > 60
G3 83 N/A N/A N/A N/A N/A

Table 3.8. Comparison of 3-agent formulations (size)

Zi Zj Zk zEDI

G1 116 114 102 507
G2 163 170 220 898
G3 285 184 158 1265
G4 263 267 654 1567

3.3.3.2 Results of 3-agent formulations

The 3-agent case exacerbates the problem of the DEC-MDP MILP formulation which

introduces hundreds of thousands to several millions variables in our test cases. Because

Cplex was unable to solve (and usually even load) the DEC-MDP MILP of our instances,

we omit this formulation from further discussion.

We compare the NLP in Table 3.2, solved using Knitro [3], and EDI-CR 3-agent MILP

from Section 3.3.2 solved using Cplex [2] under the default parameters. Left to automat-

ically determine the most suitable algorithm, Knitro chose the active-set algorithm. We

used 25 instances of the Mars Rovers problem broken down into 4 groups G1 to G4 con-

taining increasingly larger instances. G1 contains 10 instances and each of the other groups

contains 5 instances. The number of interactions ranges from 4 to 10.

Table 3.9. Comparison of 3-agent formulations (time in seconds)

Reward Dom. Binning MILP NLP MILP NLP
Calculation Removal Total Total

G1 192 78 6.6 1.2 27.4 278 297.7
G2 1296 353 56.2 7.22 284.9 1712 1933
G3 2063 802 119 38 588 3022 3453
G4 3376 480 478 72 1800 4406 5656

61

Table 3.10. Comparison of 3-agent formulations (reward as % of maximum)

MILP NLP
G1 88 86
G2 85.7 88.3
G3 88.7 87.2
G4 88.6 43.6

Tables 3.8,3.9 and 3.10 summarize our experimental results averaged over instances

in each group. Table 3.8 shows the sizes of the instances we tested on and the number

of compound variables our formulation creates. The number of non-policy constraints

introduced by our formulation can be calculated as |Zi| + |Zj| + |Zg| + 2|z|. The first 3

terms are due to constraint (3.7) and the last term is due to the upper bounds in (3.13). It is

important to note that the constraint matrix, although large, is fairly sparse; the constraint

of a terminal history only involves the zs of this history’s bins, and the constraint of a zh,b

only involves histories in b of 1 affecting agent. As will be shown presently, Cplex solves

EDI-CR MILPs in very little time.

To generate both the MILP and NLP, we need to calculate rewards for each triplet

< hi, hj, hk > (time indicated in column ‘Reward Calculation’) and remove dominated

histories up front (indicated in column ‘Dom. Removal’)3, overhead that was insignificant

in the 2-agent case. Column ‘Bin’ shows the time to construct bins and calculate their as-

sociated constraint matrices for the MILP. Although this step is rather expensive, it results

in a MILP that is solved at least an order of magnitude faster than the NLP. Actual solu-

tion times taken by Cplex are given in columns ‘MILP’ and ‘NLP’. We also give the total

time to generate and solve the MILP (reward calculation + dominated histories removal +

bin construction + solver time) in column ‘MILP Total’ and for NLP (reward calculation +

dominated histories removal + solver time) in ‘NLP Total’ We note that the dominated his-

tories removal step can be sped up by optimizing our implementation of it. Even with our

3Without this pre-processing step (details in [8]) none of the formulation would fit in memory. The
reported numbers are those of undominated histories.

62

current implementation, the time to solve the NLP far exceeds the bin constraints construc-

tion time and the MILP solving time combined. The difference becomes more pronounced

with larger instances. Indeed, for instances in G4, we timed out Knitro and reported the

reward it obtained after 30 minutes.

Finally, Table 3.10 compares the rewards obtained by the policies from the NLP and

MILP solutions. As explained in Section 3.3.2, our MILP is a relaxation of the original

problem where some zs can be higher than their values under identity (3.9). The solution

reported by the MILP is therefore an over-estimate of the optimal reward. The table shows

the reward of the MILP and NLP policies as a percentage of this over-estimate. For smaller

instances, MILP and NLP give comparable rewards, but on larger ones, Knitro is unable to

produce good policies within 30 minutes.

Whereas we do not know of a way to improve the quality of the NLP solution, that of

the MILP can be improved by having a more faithful correspondence between the MILP

and the original problem, i.e. making the upper bounds on zs tighter and/or obtaining lower

bounds on z. This would result in a space of feasible solutions that better resembles that

of the original problem, and would prevent the solver from pursuing solutions that appear

to be good, but are sub-optimal in the original space. This represents an interested area for

future research.

3.3.4 Related work

Formulating decision problems as mathematical programs has been done by other re-

searchers, with the aim of making use of available industrial-grade solvers like Cplex. Aras

and Dutech proposed two MILP formulations for general DEC-POMDPs [8]. One of these

formulations was given in Table 3.3. The other uses game-theoretic concepts to linearize

the objective function. This latter formulation is out-performed by the one we reviewed

and built upon.

63

Petrik and Zilberstein [69] developed formulations of decision problems of cooperative

and self-interested agents as separable bilinear programs and presented an algorithm for

solving this class of programs. The QP discussed in this paper is itself a bilinear program,

because realization weights of one agent are only multiplied by weights of the other agent,

so the objective function is linear if the weights of one agent are fixed. Our previous work

on the EDI-CR model [60] used the bilinear formulation and solution algorithm.

Aras et. al [9] give a mathematical formulation for a special case of DEC-POMDP

called Network Distributed POMDP [67] (ND-POMDP) where agents have independent

transition and observation functions, but have reward interactions. In ND-POMDP, we can

decompose the set of agents into subsets, where an agent’s reward only depends on agents

belonging to its subset(s). Because they only consider problems where each subset contains

2 agents (i.e. binary interactions), Aras et. al were able to formulate this problem as a QP.

They present a linearization of the QP to a compact MILP that avoids having a compound

variable for each joint terminal history. However, they report that the compactness of their

formulation does not translate to savings in the time needed to solve the resulting MILP,

compared to a simple formulation with one variable per joint history. One explanation they

provide is that the compact MILP has a constraint matrix that is not sparse, making it hard

for Cplex to deal with it efficiently.

Besides the fact that ND-POMDP assumes transition independence and EDI-CR does

not, the difference between these two models is that in the former, agents belonging to the

same subset are assumed to have very tight reward interaction; there is a single reward

function per subset, and it is defined over joint actions and states of agents in the subset.

We can see this as a coarse-grained kind of independence where agents either have reward

interactions involving all their actions or none at all. EDI-CR captures a more fine-grained

kind of interaction where specific actions affect, or are affected by, what another agent does.

As a result of this difference, formulations of ND-POMDP would not be very useful, if at

all, when directly applied to EDI-CR, since they cannot capture and exploit fine-grained

64

interactions. The general ideas and techniques for linearizing a high order expression can,

however, be useful across models and formulations.

Another MILP formulation of Transition-Independent DEC-MDP [14] is given by Wu

and Durfee [95]. Their formulation is approximate and is the result of discretization and

piecewise linear approximation of non-linear constraints. This work therefore finds ex-

act, optimal solutions to an inexact model. The errors introduced by the discretization and

linearization can be controlled at the expense of introducing more variables into the formu-

lation. Because Transition-Independent DEC-MDP is a sub-class of EDI-CR, we cannot

use its MILP formulation for our model.

One way of decomposing a large mathematical program that encodes the decision prob-

lems of all agents is to break down this problem into 1) a search for optimal commitments

regarding each agent’s outgoing influences and 2) a search for optimal local policies that

respect the commitments decided upon. This is the approach taken by Witwicki et. al [92].

For a given set of commitments, they add constraints to the traditional Linear Program

formulation of MDPs to guarantee that a feasible policy respects the commitments. Each

agent can then solve its linear program separately.

3.4 Solving EDI-CR Using Homotopy Methods

In this section, we explore a different way of solving EDI-CR instances, and more

generally, DEC-MDPs. In previous sections, we formulated the problem of finding the

optimal policy as a mathematical program. We now show a different way of approaching

the same problem. We formulate the problem of finding the optimal policy as a system of

nonlinear equations and discuss the use of homotopy methods for solving this system.

We start by giving a background on homotopy methods then discuss the use of homo-

topy for EDI-CR and DEC-MDPs.

65

3.4.1 Introduction to homotopy

Continuation methods have been widely used in numerical analysis to solve systems

of nonlinear equations F (x) = 0. The system of equations can encode a constrainted or

unconstrained optimization problem, a problem of finding the zeros of a function, finding

the fixed point of a function, or tracking the curve of a function. The words continuation

and homotopy are often used interchangeably, but there are subtle distinctions between

them (which are beyond the scope of this thesis). Probability-one homotopy methods [90,

29, 91] are variants of homotopy methods that guarantee the convergence to a solution with

probability 1.

The Encyclopedia of Optimization [33] defines homotopy as a continuous map from

the interval [0,1] into a function space, where the continuity is with respect to the topology

of the function space. A homotopy ρ(λ) continuously deforms the function ρ(0) = g into

the function ρ(1) = f as λ goes from 0 to 1. In this case, f and g are said to be homotopic.

It is then clear how continuation methods got their name; they move along a continuum

between solving an easy variant of the original problem g and solving the original problem

f itself. Essentially, these methods find a solution to the easy variant, then try to calculate

the change that needs to be made to the previous solution to make it solve a new problem

that is a little closer to the original problem, eventually terminating with a solution to the

original problem.

We start by giving some notation used by Watson in [90] and will be used in this section.

Let En denote n-dimensional Euclidean space and Em×n the set of real m × n matrices.

The gradient of a differentiable function f : En → E is the row vector (∂f
∂x1

(x), ..., ∂f
∂xn

(x)).

The Jacobian matrix of F : En → Em is

∇F (x) =




∇F1(x)

...

∇Fm(x)




66

A homotopy map ρ is a mapping ρ : Em× [0, 1)×En → En. Simply put, ρ is a system

of n functions operating on vectors x ∈ En. The functions are parameterized by a vector

a ∈ Em and the homotopy parameter λ ∈ [0, 1). The shorthand ρa(λ, x) denotes ρ(a, λ, x).

Definition 10 A map is said to be transversal to 0 if its Jacobian ∇ρ has full rank on

ρ−1(0).

The following Lemma from [90] states the conditions ρ must meet to guarantee conver-

gence to a solution of the original problem.

Lemma 1 Suppose that ρ is transversal to 0 and for each a ∈ Em the system ρa(0, x) = 0

has a unique nonsingular solution x(0). Then for almost all a ∈ Em there is a smooth

zero curve γ ⊂ [0, 1)×En of ρa(λ, x), emanating from (0, x(0)), along which the Jacobian

matrix∇ρa(λ, x) has rank n. γ does not intersect itself or any other zero curves of ρa, does

not bifurcate, has finite arc length and either goes to infinity or reaches the hyperplane

λ = 1 at point (1, x∗). If rank ∇ρa(λ, x) = n, then γ has finite arc length.

The zero curve γ traces the change in the solution x as λ changes. For a given point

(λ̂, x̂) on γ, we have that ρa(λ̂, x̂) = 0. In other words, x̂ is the solution to the system

of equations when it is deformed by λ̂. x(0) is therefore the solution to the initial system

of equations and x∗ is the solution to the original system. The condition on the Jacobian

∇ρa(λ, x) guarantees that there is only one way to proceed along the zero curve, thus

avoiding bifurcation.

The lemma summarizes the improvement of probability one homotopy methods over

the original continuation methods which can fail to terminate because the curve can spiral,

return to λ = 0 or bifurcate, among other problems.

The high-level steps involved in solving a problem using homotopy methods are:

1. Formulate the problem as a system of n equations in n unknowns f(x) = 0.

2. Construct a homotopy map ρ(λ, x) satisfying the conditions of the homotopy method.

67

Figure 3.1. An example zero curve of a homotopy map. The x-axis is λ and the y-axis is
x.

3. Track the zero curve of ρ from the point (0, x(0)) to (1, x∗).

There are several ways of constructing the homotopy map ρ, and choosing the map that

will perform best is more of an art than an exact science.

3.4.1.1 Natural vs. ‘artificial’ parameter λ

Sometimes λ is a physical parameter in the original function f and we are interested

in how the solution of the deformed f(x; λ) changes as we change this physical parameter,

i.e., we are interested in the solution behavior as we change the natural parameter. But

it may also be the case that λ is an artificial parameter that just allows us to transition

smoothly from g to f , and solutions to ρ(λ, x) = 0 have no physical meaning for λ < 1.

One commonly used artificial parameter map is just a convex combination of the functions

g and f , which gives rise to the ‘canonical’ map

ρ(λ, x) = λf(x) + (1− λ)g(x) (3.15)

Note that unlike in continuation methods, in homotopy methods λ is not necessarily

monotonically increasing, as in Figure 3.1. The progress along γ is therefore not expressed

68

in terms of λ, but in terms of arc length. Let p denote the function that maps arc length,

denoted by s, to a point on γ, i.e.

p(s) = (λ(s), x(s))

3.4.1.2 Tracking the zero curve

Tracking the γ curve is a complicated matter that has been the subject of research in

numerical analysis. HOMPACK90 [91] is a software package for this kind of tracking

that has been used widely. For the rest of this section, we will be referring to a tracking

technique implemented in HOMPACK90 called the normal flow algorithm. This algorithm

has 3 phases repeated until λ reaches 1:

1. Prediction: For an estimate h of the optimal step size (in arc length) to take along

γ, and given 2 previous points on γ, P 1 = (λ(s1), x(s1)) and P 2 = (λ(s2), x(s2)),

predict the next point on the curve, Z(0) = p(s2 + h). The prediction is done using

Hermite cubic interpolation. The predicted point will typically not be on the γ curve.

2. Correction: Starting from the predicted point Z(0), apply the following Newton cor-

rector iteration until convergence (i.e. the change in Z is small enough)

Z(k+1) = Z(k) − [∇ρa(Z
(k))]† ρa(Z

(k))

where [∇ρa(Z
(k))]† is the Moore-Penrose inverse of the Jacobian of ρ at Z(k). The

goal of the corrector is to bring back the predicted point to the zero curve. When

the corrector iteration converges, the Z from the last iteration is accepted as the next

point on γ.

3. Step size estimation: this phase calculates an estimate h of the optimal size of the

next step taken on the zero curve. A large step size makes faster progress along the

69

curve, but may result in very inaccurate prediction that then requires many corrector

iterations to bring back to the zero curve. A smaller step size results in accurate

predictions but requires many iterations of the 3 phases. The details of this step are

such that h increases if the corrector phase needed a few iterations to converge and

decreases otherwise. Basically, if the previous prediction step resulted in a point far

off γ, the algorithm becomes more ‘cautious’ and takes a smaller step in the future.

3.4.2 Homotopy for linearly constrained optimization

Consider the following optimization problem where A ∈ Em×n and b ∈ Em

Maximize f(x)

subject to g(x) = Ax− b ≤ 0
(3.16)

The Karush-Kuhn-Tucker (KKT) conditions for this problem are

(∇f(x))T + ATu = 0

u ≥ 0

Ax− b ≤ 0

u(Ax− b) = 0

where u are the Lagrange dual variables for inequality constraints. The last 3 constraints

are called complementarity constraints. They can be expressed as a system of nonlinear

equations K(u, x) = 0 defined by

Ki(u, x) = −|bi − Aix− ui|3 + (bi − Aix)3 + u3
i 1 ≤ i ≤ m

A simple map for the above optimization problem is

ρa(λ, x, u) = λ




(∇f(x))T + ATu

K(u, x)


 + (1− λ)




x− x0

u− u0


 (3.17)

70

where a = (x0, u0). However, the above map can result in an unbounded zero curve. The

fix suggested by Watson [90] is to replace the constraint in (3.16) by

Ax− b− (1− λ)b0 ≤ 0

Basically, the above is a relaxation of the original constraints that allows Ax−b to be greater

than 0 if the constant b0 is non-zero. Consequently, K is now a function of λ, x, u, b0. A

similar relaxation is introduced to allow K(λ, x, u) to be greater than 0 if a parameter c0 is

positive. As a result of these changes, the original λK(x, u) + (1− λ)(u− u0) is replaced

by

Ki(λ, x, u, b0, c0) = −|(1− λ)b0
i + bi − Aix− ui|3 + ((1− λ)b0

i + bi − Aix)3 + u3
i − (1− λ)c0

i

and the map becomes

ρa(λ, x, u) =




λ[(∇f(x))T + ATu] + (1− λ)(x− x0)

K(λ, x, u, b0, c0)


 (3.18)

where a = (x0, b0, c0).

Watson [90] discussed the use of maps like the one above when the optimization prob-

lem (3.16) is non-convex, in which case the KKT conditions are satisfied by stationary,

as well as optimal, points. Nonetheless, Watson states that we can still use maps like the

one above because for the convergence proofs he gives, convexity is a sufficient, but not

necessary condition.

3.4.3 Solving DEC-MDPs using homotopy

Solving a 2-agent DEC-MDP can be formulated as solving the following bilinear pro-

gram [69]

71

Maximize f(x) = xT
i Cxj

subject to Aixi = bi

Ajxj = bj

xi, xj ≥ 0

(3.19)

xi and xj are the policies of the 2 agents and the matrix C encodes the rewards that depend

on actions of both agents. The constraints guarantee that xi and xj represent legal policies.

Clearly, if it was not for the bilinear term xT
i Cxj , the problem would degenerate into

2 independent optimization probelms that can be easily solved. This simple observation

suggests homotopy methods as a way of moving from a solution of the easy independent

problems (MDPs) to a solution of the original coupled problem (DEC-MDP).

The canonical map (3.15) does not involve the homotopy parameter λ in the function f .

But in our case, we would like to do just that. We would like to involve λ in the objective

function of (3.19) to transition from a problem that does not care about interactions to

one that takes all interactions into consideration. Involving λ in the problem is a called

embedding, a technique that has been used to solve problem which could not be solved

using the standard map (e.g., the Mixed Complementarity Problem [4]).

Using embedding, we want to optimize the following family of objective functions

f(x, λ) = (1− λ)xT
i ri + λxT

i Cxj + (1− λ)xT
j rj (3.20)

where ri and rj are the rewards from the agents’ individual MDPs. Note that because the

agents affect each other, the transition and reward functions of one agent’s MDP are under-

specified in the absence of any assumptions about what the other agent will do. So in order

to construct an MDP for agent i, for example, we assumed that agent j will act in a way

that is best for i. At λ = 0, the policies that maximize the above objective function are the

optimal policies of the individual MDPs.

72

Moving λ from 0 to 1 increases the importance of the bilinear term and therefore re-

quires the solver to consider the other agent’s actions when optimizing one agent’s problem.

In other words, the problem smoothly transitions from complete independence to a problem

with tighter interactions that requires more coordination.

We experimented with several maps that encode our optimization problem as a system

of equations that is 0 at the optimal policy. We started with a map similar to (3.18) but

adapted to deal with the equality constraints representing the policy constraints in (3.19).

ρa(λ, x, u, v) =




(∇f(x, λ))T − u + ETv

K(λ, x, u, b0, c0)

Ex− b




(3.21)

where E =




Ai 0

0 Aj


 is the constraint matrix of the policy constraints in (3.19),

and b = [bi; bj]. ∇g(x) = −I . In the above, ρa : RN + 1 → RN where N = 2(|Hi| +
|Hj|)+ |Coni|+ |Conj| and Con is the number of constraints. The top part of the map has

an equation per history per agent and K has an equation for each non-negativity constraints.

The bottom part has an equality per policy constraint.

The problem with the above map is that it results in a Jacobian ∇ρ that is of deficient

rank at λ = 0; some xs will have identical columns in ∇ρ. To see how this can happen,

consider 2 terminal histories of agent i, h1 and h2. If these histories are extensions of the

same parent history, the variables of their corresponding realization weights, xh1 and xh2 ,

will have identical columns in the constraint matrix Ai; having no children, they are both

involved in only the one constraint with the parent history. For variables in xi, the relevant

sub-matrix of ∇ρ is (dimensions indicated):

73

∂ρ

∂xi

=




0 |Hi|×|Hi|

λCT |Hj |×|Hi|
∂K1..|Hi|

∂xi
|Hi|×|Hi|

0 |Hj |×|Hi|

Ai |Coni|×|Hi|

0 |Conj |×|Hi|




N×|Hi|

At λ = 0,
∂K1..|Hi|

∂xi
= 0 and the columns belonging to xh1 and xh2 become identical,

violating the requirement of ρ being transversal to 0 in Lemma (1).

To remedy the above problem, we need to have a term in the first part of the map that

involves x and results in distinct columns in ∇ρ. One way of doing this is to use the

following map

ρa(λ, x, u, v) =




(∇f(x, λ))T − u + ETv + (1− λ)G(x− x0)

K(λ, x, u, b0, c0)

Ex− b




(3.22)

where a = (x0, b0, c0) and x0 = [x0
i ; x

0
j] is the solutions to the 2 independent MDPs. G

is a diagonal matrix that can be used for scaling, but here we just set it to I .

In our discussion so far, we have not used anything that is specific to EDI-CR; the opti-

mization problem in (3.19) represents a general DEC-MDP and the above map is therefore

valid for general DEC-MDPs. What makes homotopy methods particularly suited to solv-

ing EDI-CR instances is that in the latter, interaction among agents is relatively sparse.

Consequently, the starting point representing solutions to the MDPs under the assumption

of independence should be a good point. In a general DEC-MDP, the solution of the ac-

tual coupled problem may be completely different from the solution to the easy variant. In

EDI-CR, we hope that the solution of the MDPs is fairly close to the solution of the original

problem.

74

3.4.4 Challenges in using homotopy

We have encoded the above map in the homotopy software package HOMPACK [91].

We tried to solve simple instances of EDI-CR but faced many challenges in doing so, which

we discuss below. This discussion contains some very technical material, but we feel that it

is important to document these technicalities so that future researchers interested in using

homotopy methods in general, and HOMPACK in particular, can learn from our experience.

We hope the following discussion can serve as a kind of trouble-shooting guide, suggesting

possible culprits in the homotopy code and framework if the approach does not work out

of the box.

The first challenge was to get familiar with and understand the HOMPACK code, which

is in FORTRAN90 and does not come with very clear documentation. To start using HOM-

PACK, the user must first implement routines that encode her homotopy map and its Ja-

cobian. When the simple problems were taking too long to converge, we also needed to

understand the detailed linear algebra routines enough to find out which routines were re-

sponsible for this and modify some of their internal parameters.

3.4.4.1 Sparse linear algebra

Because our problems involve more than a few hundred variables, we needed to use

the sparse version of the linear algebra routines (for example, in one problem the Jacobian

has 63,000 elements, only 2585 of which are non-zero). A major challenge in using HOM-

PACK concerns the stability of the sparse linear solver. The same problem was reported by

Borkovsky et. al [22] who cautioned

“Both Layne Watson (the principal author of HOMPACK90) and Ken Judd (an

authority on numerical methods in economics) acknowledge that the GMRES

method can and does fail for some problems. There is no guidance as to which

problems are susceptible, but we strongly suspect problems with extremely

sparse Jacobians.”

75

We spent a lot of time trying to squeeze all the structural zeros out of our system of equa-

tions, thereby reducing the size of the Jacobian of ρ, which strongly affects the efficiency

of the homotopy method. On the other hand, Borkovsky recommends reducing the size and

sparsity of the Jacobian by eliminating variables. It is not clear whether we should strive

for more or less sparsity, but if we are to take Borkovsky’s advice, we need to completely

re-formulate the problem to use fewer variables.

Upon deeper inspection, we found that one routine that was taking very long to con-

verge is called during the corrector phase. Part of the corrector phase in the normal flow

algorithm (detailed in Section 3.4.1) involves solving a system of linear equations to cal-

culate the kernel of the Jacobian ∇ρ. This is done using the Generalized minimal residual

method (GMRES, [72]). GMRES is a Krylov subspace method; i.e. it approximates the

solution of the system of equations by the vector in a Krylov subspace with minimal resid-

ual. In iteration i, GMRES considers the ith Krylov subspace. For a matrix of rank m, the

mth subspace is the entire space and GMRES arrives at the exact solution, but the idea is

that after a few iterations, the solution obtained from the k < m subspace is a good approx-

imation. GMRES is often used with restarts; in GMRES(k),after the kth (inner) iteration,

accumulated data are cleared and the intermediate results are used as the initial data for

the next k iterations. These outer iterations continue until convergence. The difficulty is in

choosing an appropriate value for k. If k is too small, GMRES(k) may be slow to converge,

or fail to converge entirely. A larger k involves excessive work (and uses more storage).

In our experiments, we had to increase k from its default value, a recommendation

that was also made in [22]. We also increased the tolerance associated with the test for

convergence.

Another reason the GMRES routine was terminating with an error flag is that at some

point, the system it was solving was ill-conditioned. For a reason we could not find out,

GMRES was operating on a matrix with a very large condition number. We found a flag in

76

the code (called STRONG VERSION) which if set to False, stops GMRES from complain-

ing about large condition numbers. The root of the problem, however, is still unknown.

3.4.4.2 Small steps in prediction

As mentioned in Section 3.4.1, when the corrector phase of one iteration takes many

iterations to converge to a point on the γ curve, the step size h of the next iteration is

reduced. The predicted point in the new iteration depends both on h and on the previous 2

points on the curve and their tangents. One problem we faced was that the λ of a new point

was almost the same as that of the previous point, i.e. the predictor phase takes very small

steps along the λ dimension. In one case, the rate of change of λ with respect to the arc

length s was calculated to be 0.00695, which means there is virtually no progress. Given

that the predictor phase is what actually moves us along the γ curve, the algorithm as a

whole was not making much progress beyond the initial point.

We tried to force the algorithm to be less cautious by not penalizing h very much when

the corrector phase took a long time to converge. But the result was that the next prediction

did take a large step, but ended up so far from the curve that correction took even longer.

So it seems that caution is indeed justified, which suggests that the curve is highly winding.

The questions is whether this is a problem with the particular homotopy map we used, or a

more fundamental problem with using homotopy methods to solve our kind of problems.

3.4.4.3 Possible alternatives

As a final remark regarding our attempts with the homotopy method, we would like to

stress that even though homotopy methods did not work out-of-the-box for solving EDI-CR

instances, we believe there is a lot of potential to the general idea of gradually transitioning

from an easy to a hard problem, especially for EDI-CR where loose coupling usually im-

plies that a solution obtained assuming total independence may be somewhat close to that

of the original problem that takes all interactions into consideration.

77

We mentioned that one easy problem to start with is to ignore all interactions and pre-

tened the agents’ problems are completely separate. But other possibilities exist. We can

ignore some interactions while taking others into considerations. The choice of which in-

teractions to initially ignore is itself an interesting research question. We can also change

the fashion in which we transition from the easy to the hard problem. We discuss this and

other possible directions for future work in Section 7.2.

3.5 Summary

This chapter presented ways in which EDI-CR instances can be mathematically formu-

lated so that we can leverage available optimization packages. The first formulation we

give is as a MILP, both for 2-agent and more than 2 agent cases. We base our formulation

on the insight that most action histories of a group of agents have the same effect on a given

agent, thereby allowing us to treat these histories similarly and use fewer variables in the

formulation. We compare our formulation to 2 others: a nonlinear program and a formula-

tion devised for tightly coupled DEC-MDP. The first is expensive to solve and can result in

sub-optimal solutions. The second has the problem of resulting in programs of prohibitive

size.

Experiments show that our MILP is more compact and leads to faster solution times

and generally better solutions than formulations ignoring the structure of interactions. Our

formulation therefore allows us to solve larger problems which would otherwise be in-

tractable.

This chapter also presented our formulation of finding the optimal policy as a system

of non-linear equations. We discussed the use of homotopy methods as an alternative opti-

mization technique and the challenges we faced in doing so.

78

CHAPTER 4

COMMUNICATION IN COOPERATIVE EDI-CR

In this chapter, we return to settings with cooperative agents and discuss the impor-

tant issue of communication in problems with structured interactions. As we tackle more

complex problems requiring tighter coordination, we cannot ignore the possibility of, and

oftentimes need for, communication among the decision makers. Even when agents know

each other’s initial policies, uncertainty about action outcomes can create ambiguity about

what states the other agents are in and, consequently, what they will do in the future. This

ambiguity introduces the need for coordination during the execution of a distributed policy.

Communication raises a host of interesting and challenging problems which we believe can

particularly benefit from consideration in the structured interaction setting.

In Chapter 3, we discussed how the problem of finding optimal policies for a set of

cooperative agents can be formulated and solved as an optimization problem. The same

solution approaches can be used when the problem involves communication, as well as

domain, actions. But the main impediment to reasoning about communication offline is the

very large problems sizes that result from following each domain action with a communi-

cation action. Even if such problems can be represented, they are usually too large to solve.

Our approach to making offline planning for communication tractable [60] is to construct

a smaller problem whose optimal action and communication policies are the same as, or

close to, those of the original problem.

We start this chapter with a survey of work on communication in decision theoretic

models. In Section 4.2, we discuss the different kinds of communication costs and provide

an analysis that highlights the potential gains of restricting the number of points where

79

agents can communicate. Section 4.3 presents our heuristics for limiting the amount of

communication in situations with uni-directional transition interactions. Experimental re-

sults are given in Section 4.4. We extend our work to settings with bi-directional interac-

tions in Section 4.5, using Bayesian networks to calculate belief estimates.

In spite of several attempts to get around the complexity of offline reasoning, ours is

the first work to focus on making it more tractable by restricting the problem size in a way

that has little or no effect on solution quality, thereby making it possible to reason about

long-term consequences of communication without incurring the prohibitive costs typically

associated with doing so.

4.1 Related work: Communication in Decision Theoretic Models

In this section we compare and discuss some of the work that has been done on commu-

nication in decision theoretic models. We try to highlight the similarities and differences

among the different works in a way that makes it easier to understand how they stand in

relation to each other. The following are the criteria we use for comparison:

• Reasoning time: reasoning about communication can be done offline or online.

• Observability: models vary in what they assume an agent can observe. Observabil-

ity ranges from joint partial observability where combining all agents’ partial views

does not tell the agents the global state, to locally observable states.

• Independence assumptions: transition independence (T.I.) and/or observation in-

dependence (O.I.).

• Communication language: at one end of the spectrum, the agents can be verbose

and exchange their entire states (or their observation histories in case of partial ob-

servability) after each action. Where the interaction among agents is limited, a sum-

marization of an agent’s state often goes a long way. For example, in TI-DEC-MDP,

80

a fair degree of coordination can be obtained by exchanging a single bit of infor-

mation about each shared task indicating whether it was done or not [14]. Another

language can be the language of probabilities of doing actions that affect the other

agent. For example, an agent can inform another of the probability of doing a certain

critical action in the future, with drastic changes in this probability triggering com-

munication [96]. Generally, an agent can communicate any information that helps

the recipients refine their beliefs over what the sender will do/has done.

• Initial centralized policy: can make different assumptions about whether and how

much communication will be available during execution.

• Calculating the value of communication: refers to how an agent assesses the worth

of a communication action. One approach considers the effect of communication

myopically, i.e., considering only the immediate effects of communication without

regard to the long-term effects. Another approach considers the expected value of

the state resulting from communication. A different class of approaches does not

calculate a value for a communication action. Rather, communication is triggered

when a certain condition is met, e.g., when the actions taken by the team of agents

would change if they communicate.

• Digesting messages: different approaches react to receiving a message differently.

Some approaches make the agents re-plan in the light of the newly-received informa-

tion. Others use received information to refine beliefs. If the communicated informa-

tion is complete enough, the agents can purge the histories of observations they have

seen so far and proceed from a known global state. If there is partial observability,

the agents can still purge their histories, but they will start from a new belief over the

global state. For approaches where communication happens if a certain condition is

satisfied, one round of communication can trigger a second round and so on until the

most recent communication results in a state that does not invite further communi-

81

cation. If communication was planned for offline, the recipient simply follows the

path dictated by his state and the received information. In this case, the effect of the

message is “pre-compiled” in the agent’s plan.

Tables 4.1 and 4.2 compare some related work, as well as our suggested work, along the

above criteria. The following paragraphs give more details.

Reasoning about communication at execution time has been approached in a variety of

ways. Becker et. al [13, 11] assume at planning time that communication is not possible

and obtain a 0-communication policy. During execution, their agents myopically calcu-

late the value of synchronizing their states based on 1-step problem dynamics. Because

the approach is online, therefore restricted to reachable states, and the model is transition-

independent, the calculation is fast and simple. However, the communication decisions in

this case are only optimal assuming further communication is not possible, which some-

times results in over-communication. Improvements on the value-of-communication cal-

culation which vary the degree of myopia of an agent, as well as take the other agent into

consideration, are given in [11]. However, as the agent becomes less myopic, the compu-

tational cost of calculating the value of communication increases because the agent needs

to look further ahead when deciding whether to communicate.

The work of Xuan [97] moves in the opposite direction, assuming free communication

at planning time and deciding where it is possible to skip communication during execution

by considering the utility of communication. Roth et. al [71] tackle Dec-POMDPs and also

assume free communication at planning time, thereby obtaining a single-agent POMDP

whose policy is then used as an approximate solution for the Dec-POMDP. During execu-

tion, an agent communicates its observation history if doing so benefits team performance.

So the decision to communicate does not consider a cost for communication. Upon receiv-

ing an observation history, an agent prunes beliefs that disagree with the received histories,

as a result of which it may find that communicating its own history is useful, thereby trig-

gering a new round of communication.

82

Goldman and Zilberstein [38] introduce the Dec-POMDP-Com model that explicitly

represents communication actions and messages.1 The setting considered throughout that

work is a goal-oriented one where agents are trying to meet in a grid. Two approaches are

presented; one involves agents communicating upon reaching sub-goals, thereby setting

new goals. The other involves agents act myopically optimizing the choice of when to send

a message, assuming no additional communication is possible.

To get around the complexity of offline reasoning, Communicative JESP [65] requires

agents to communicate at least every K time steps, thereby only considering messages that

encode observation histories up to length K. However, this restriction means agents com-

municate not to improve performance but to make policy computation tractable. They do,

however, address the general Dec-POMDP case and make no independence assumptions.

The work of Spaan [80] also does offline reasoning and is close to ours in that both

works treat communication actions as just another kind of actions and have messages ap-

pear to the recipient as observations. Their work, however, deals with DEC-POMDPs while

our agents are assumed to observe their local states. The major difference is that their work

optimizes the communication policy and action policy iteratively with respect to each other,

whereas we solve for the optimal policy (containing both domain and communication ac-

tions) as a whole. We suspect that Spaan’s iterative mutual improvement of action and

communication policies is an attempt to avoid the complexity of optimizing both policies

simultaneously. As will be detailed in Sections4.3 and 4.5, we propose heuristics to reduce

the size of the problem, thereby allowing us to do the desired simultaneous optimization.

Another work that reasons about communication offline is that of Beynier et. al [18]

where communication is added to the Opportunity Cost DEC-MDP (OC-DEC-MDP) model

that was originally proposed in [17]. OC-DEC-MDP handles temporal and precedence

constraints on agent tasks with complexity polynomial in |S|. It has local full observability

1Shen et. al[77] proved that this explicit representation does not increase the expressiveness of the model;
communication actions are just special types of actions and messages are special types of observations.

83

Table 4.1. Related work

Becker IAT’05 [13]
Nair et al.

AAMAS’04 [66]
Spaan et al.

AAMAS’06 [80]
Reasoning

time
Online Offline Offline

Language Local state
History of observations
since last sync

No explicitly defined
language

Independence
assumptions

T.I. and O.I. None

Domain T.I. and O.I.
Messages modeled as
observations so com-
munication introduces
dependence

Observability Local full obs. Joint partial obs. Joint partial obs.

Centralized
policy

Assumes no
communication

Assume synchronizing
is possible. One variant
enforces a sync every k
time units

Mutual optimization of
action and communica-
tion policies w.r.t. each
other until convergence

Solution
Method

Coverage Set
Algorithm (CSA) for

centralized policy
JESP-like iterations

JESP-like iterations to
optimize domain pol-
icy w.r.t communica-
tion policy. Heuristics
for calculating commu-
nication policy.

VoC

Myopically calculated
online based on ex-
pected increase in util-
ity after doing 1 sync
given belief over other
agent’s state

Value of a sync calcu-
lated offline as an ex-
pected value over the
belief states that can re-
sult from the sync

Information content of
a message measured by
entropy over the exter-
nal uncontrolled state
s0

Digesting
messages

Re-run CSA from new
global state

Discard observation
history and adopt new
belief state. Further
reactions are compiled
into policy

Update belief over s0

and observation independence. The task graph (where tasks are nodes and arcs are pre-

decessor relations) is acyclic. Each task has a time window and a reward. The time and

resources taken by a task’s execution are probabilistic. Each agent i individually constructs

its MDP. The agents start from some initial set of policies from which they calculate the

84

Table 4.2. Related work (cont.)

Roth et al.
AAMAS’05 [71]

Goldman et al.
AAMAS’03 [37]

This work

Reasoning
time

Online Online Offline

Language History of observations Local state
Signaling action

completion
Independence
assumptions

None
T.I. and O.I. (goal

oriented)
Structured transition &

reward dependence

Observability Joint partial obs.
Joint full obs. but local

state not known
Local full obs.

Centralized
policy

Assumes free commu-
nication which trans-
forms problem to 1
large POMDP

Assumes no communi-
cation

Assumes communica-
tion is possible (with re-
strictions) but does not
enforce it

Solution
Method

Q-POMDP heuristic
approximates best joint
action for the large
POMDP. It calculates
distribution over joint
beliefs. Choose action
with the best expected
value.

Greedy myopic ap-
proach. For each
possible distance be-
tween 2 robots, there
is a communication
policy

Reason about com-
munication offline.
Formulate problem as
mathematical program
and solve for com-
munication and action
policy

VoC

Myopic online calcula-
tion. Communication
if sharing local obser-
vation history would re-
sults in a different joint
action.

Greedy myopic online
calculation

Calculated at planning
time given impact on
self and other agent

Digesting
messages

Prune possible joint be-
liefs that disagree with
received histories. Can
trigger further commu-
nication

Set global state, purge
observation history, set
new goal

Reaction to a message
already compiled into
policy

85

opportunity cost (OC) of their actions, given the policies of other agents. From these OCs,

each agent then calculates a policy that considers both its local rewards and the effects of

its actions on the team’s rewards (as mirrored by the OCs). The agents then have a new

set of policies which they can use for the next iteration. This whole process rests on the

assumption that the task graph of each agent is linear (the task execution order is fixed),

otherwise the effects of changing the starting time of a task would not propagate properly.

Also, this assumption allows the state to only store the last executed task rather than all

tasks and their outcomes.

The OC-DEC-MDP model is yet another sub-class of general DEC-MPDs that overlaps

with ours. Both models have local full observability and transition dependence. However,

whereas OC-DEC-MDP models only a specific kind of transition dependence (precedence

constraints), we model arbitrary (and more general) transition dependence. We also have

reward interactions, which are not in OC-DEC-MDP while the latter has resource con-

straints, which are not in our model.

Communicative OC-DEC-MDP allows an agent to communicate the end time of a pre-

vious successfully executed task. So both our communication models and that of Beynier

use the same communication language. The latter, however, can deal with non-instantaneous

communication with probabilistic cost. Planning for communication is done offline where

the benefit of a communication action (increasing recipient’s expected utility) is weighed

against its cost (time delay and resources consumed). However, there is still a decoupling

between agents’ MDPs because the effect of communication on the other agent is calcu-

lated only from the sender’s perspective given the recipient’s policy during the last iteration,

again aided by the fairly simple task graph.

The above work uses a kind of decoupling where each agent solves his MDP individ-

ually given the last known policy of other agents. This decoupling greatly facilitates the

process of coordination. A different kind of decoupling is seen in the work of Witwicki et

al. [92] where they decouple agents’ execution by first deciding on a set of commitments

86

and then having each agent plan for itself assuming these commitments will be respected.

The first phase, searching the commitment space, is done using a heuristic algorithm while

the second phase is done using linear programming to force the committing agent to respect

the commitments. This work therefore coordinates agents using up-front commitments

rather than communication, which has the advantage of reducing the size of the policy

space. The downside is that if a commitment fails to be met, there is no way to alert the

dependent agent. An extension of this work iteratively increases the number of parameters

associated with a commitment, thus allowing agents to model each other more accurately

at the expense of a larger problem size [93]. However, this is only done in the context of

a sub-class of Becker’s Event-Driven Interaction DEC-MDPs where the agent interaction

graph is acyclic and, other than time and commitment-related flags, there are no commonly

observed state features.

Another work that uses commitments for coordination is that of Xuan et. al [96]. They

identify sources of uncertainty inherent in commitments and discuss ways to incorporate

them into the modeling of commitments, as well as mechanisms to handle these uncertain-

ties, such as contingency analysis. The search for what commitments each agent should

make is done through a negotiation process. This work has the advantage that it does not

assume that commitments are fixed; it admits the possibility of commitment changes (e.g.

failure).

Whereas decoupling, whether of the first or second kind shown above, makes problem

solving easier, it is prone to converging to a local optimum and failing to find the global

optimum that would be achieved if both sub-problems (in the first case, problems of both

agents, and in the second, finding commitments and policies) were solved simultaneously.

Another difference in modeling communication relates to whether it is modeled im-

plicitly or explicitly. In the former, one agent’s actions affect observations seen by another

agent. In explicit modeling, communication is a first-class action and a message vocabulary

is part of the model. It has been shown for least one model that adding explicit communi-

87

cation does not increase the expressiveness of a model; Shen et. al show that DEC-MDP-

Com as introduced in [38] is equivalent to DEC-MDP [77]. However, it is sometimes done

for the sake of clarity. Another reason for explicitly modeling communication is that it

makes it easier to delineate communication-related issues and parameters and add more so-

phistication to the model (e.g. complex communication cost, communication delay, noisy

communication channels and dropped messages [81]).

4.2 Communication Costs

In this section, we discuss the different kinds of communication costs, with a focus on

the computational cost introduced when we reason about communication. We then analyze

the effect of limiting communication on problem size.

The first, and more obvious, kind of communication costs are operational costs due to

things like transmission cost, cost in reduced battery life in the case of sensors transmitting

data and privacy loss in adversarial settings or where the communication channel is not

secured, to name a few examples. A modeler would typically assign such costs a quanti-

tative value that is commensurate with whatever unit is used for rewards, thus allowing an

agent to conduct a cost-benefit analysis of the effect of communicating this or that piece of

communication on the team’s overall reward. This is the kind of cost that has garnered the

most attention in the literature (e.g., [13, 11]).

The second kind of cost is the computational cost associated with reasoning about com-

munication. This cost is in terms of the increase in problem size (and the computational

effort of solving it) and the size of the resulting policies. The action space increases with

the introduction of communication actions while the state space increases because a state

typically needs to store message (in explicit communication) or observation history (in im-

plicit communication). The main impetus behind our work is that even if communication

in a particular domain were entirely free, it would still be necessary to limit communication

in order to keep the problem size tractable.

88

The amount of increase depends on what is communicated and when. Obviously, the

more frequent the communication, the longer the message/observation histories will be.

What is communicated affects the number of possible histories. A richer communication

language (one with a larger vocabulary) results in a larger number of possible histories. For

example, when there is local full observability, the richest language is that of local states

where agents synchronize their local states, thus disclosing the global state and achieving

maximum coordination. This language is very expensive because in the worse case, the

number of histories of length T is O(|S|T). An example at the other extreme is a very

limited language with Boolean vocabulary that just tells the recipient whether a certain

action was done or not.

In our work, we address both operational and computational costs. We use heuristics

to limit the availability of communication, thus reducing problem size and computational

cost without greatly harming solution quality. We then calculate the optimal action and

communication policy of the resulting problem so that operational cost of communication

is minimized while maximizing team reward.

4.2.1 Limiting communication

Like offline reasoning about domain actions, offline reasoning about communication

attempts to consider all the ramifications of all actions/communications before execution

starts. The result is a policy dictating what, if anything, should be communicated in each sit-

uation. However, reasoning about communication offline is notorious for being intractable.

The number of messages agents can send can grow as large as the set of all possible ob-

servation histories (or set of states in locally fully observable domains), since every his-

tory/state may represent a different belief that an agent may wish to convey. Offline rea-

soning would require the enumeration of all possible messages, as well as their intended

effect on the team belief.

89

To make offline reasoning about communication tractable, we limit the number of com-

munication possibilities. A communication possibility after an action means the solution

algorithm can choose whether to communicate after that action. It does not mean that

communication will actually take place at that point, only that it is possible. Full-fledged

communication considers all communication possibilities, and that is what makes it in-

tractable. An important observation, however, is that very few of these possibilities are

useful.

Definition 11 A useful communication possibility is one at which the optimal action is to

actually communicate.

If we can find useful communication possibilities in advance and only add these to our

problem, we can get (near) optimal solutions with much smaller problem sizes and thereby

solve problems that are intractable if all communication possibilities are considered.

4.2.2 Problem size analysis

In this section, we motivate the effort to limit the number of communication possibilities

by analyzing the relation between the amount of communication available to agents and

the problem size. This analysis is for a particular state representation (one that stores

the sequence of actions taken and outcomes obtained, together with timestamped sent and

received message histories), and measures the problem size in terms of a particular metric;

the number of sequences in an agent’s MDP.

In this analysis, and in our work on settings with uni-directional interactions in Sec-

tion 4.3, we use a limited communication language that only allows an agent to signal the

successful completion of an action, and we only allow this right after the action is finished.

Even though a message does not tell the recipient exactly where the sender is in its state

space, it does serve to refine the recipient’s belief over the sender’s state and, hopefully,

allow him to better respond to execution-time eventualities.

90

We express problem size in terms of the number of actions available at every state, A,

the number of outcomes per action, O, the number of messages an agent can send and re-

ceive in a given time unit, M and R, respectively. Note that an agent actually sends/receives

only one of these messages in a given time unit. For this analysis, we make the simplifying

assumptions that these four quantities are the same for both agents (agent sub-problems are

of equal sizes) and are the same across time units. We also assume an action takes a single

time unit, so for horizon T , an agent goes through T act-send-receive iterations.

4.2.2.1 No communication

If no communication is allowed anywhere (no communication possibilities), the num-

ber of sequences in an agent’s MDP is
∑T

k=1 AkOk−1 which is O(AT+1OT).

4.2.2.2 Full-fledged communication

With full-fledged communication, each of the T stages consists of choosing an action,

getting an outcome, choosing what message to send, and probabilistically receiving a mes-

sage. At the beginning of the kth time unit, there are Ak−1Ok−1Mk−1Rk−1 states where any

of A actions can be taken, resulting in AkOk−1Mk−1Rk−1 sequences. Each of these actions

has O outcomes, leading to AkOkMk−1Rk−1 states where an agent send any of the M

messages, giving AkOkMkRk−1 new sequences. Therefore the number of new sequences

generated during the kth time unit is:

AkOk−1Mk−1Rk−1 + AkOkMkRk−1

and the total number of sequences in an agent’s MDP is

T∑

k=1

AkOk−1Mk−1Rk−1 + AkOkMkRk−1 = O(AT+1OT+1MT+1RT) (4.1)

To get a feel for how large the problem is, we apply the above general formula to the

Mars rovers domain. If d is the number of sites that can be visited then A = d and O = 2

91

for the fast and slow outcomes. R = d+1 because the other agent can signal the completion

of any of d sites or nothing. M = 2 because after a given action, the agent can signal it or

send nothing. The total number of sequences therefore approximately (because of using d

instead of (d + 1) for simplification) reduces to:

T∑

k=1

d2k−122k−2 + d2k−122k = O(d2T+122T)

4.2.2.3 Limited communication

We now see how restricting the amount of communication affects problem size. Specifi-

cally, we want to see the effect of the number of communication possibilities on the number

of sequences in an agent’s MDP. Of course, this depends on where the possibilities are; the

earlier they are in time, the larger their effect on the MDP size (because of earlier branch-

ing). As a worst-case analysis, we assume that if we have C communication possibilities,

they are located at the first C levels of the MDP. Note that we do not have a possibility after

each action in the first C levels; we have a possibility after a single action at each level. For

this reason, we cannot just take the general formula and apply it for the first C time units

then take the no-communication formula and apply it to the remaining time units. Also for

the sake of a worst-case analysis, we assume all C possibilities can be encountered; i.e.,

they are on the same path. To see why this is the worst-case, consider the other extreme

where each possibility is on a different path. In this latter case, the number of possible

message histories is only C + 1 whereas in the former case, there are 2C histories, since

each possibility can actually be used or not.

During each of the first C stages, and for only one action at a stage, an agent sends one

of M messages or nothing. The number of sequences resulting from domain actions during

the first C stages is

c−1∑
i=1

AiOi−1MRi(c− i) +
c∑

i=1

AiOi−1MRi−1

92

Each of these stages has exactly one occasion where the agent can choose which of M mes-

sages to communicate, if any. So the number of sequences resulting from communication

actions is c(M + 1). The number of sequence from domain actions in the remaining T − c

stages is Q
∑T−c

i=1 AiOi−1 where Q is the number of states at the end of the first C stages

and isO(AcOcRc +Ac−1Oc−1MRc). The second factor in the product isO(AT−c+1OT−c).

The total number of sequences, from domain and communication actions, is therefore of

the order of

c−1∑
i=1

AiOi−1MRi(c− i) +
c∑

i=1

AiOi−1MRi−1 + c(M + 1)

+ (AcOcRc + Ac−1Oc−1MRc)(AT−c+1OT−c)

(4.2)

which reduces to O(AT+1OT Rc + AT OT−1MRc).

The reduction in problem size from full to limited communication is therefore con-

siderable. For the Mars rover example, full communication gives MDPs whose size is

O(d2T+122T) whereas C communication possibilities give O(dT+c+12T).

4.3 Heuristics For Uni-directional Interactions

In this section, we propose three heuristics, H1 through H3, for deciding where to

add communication possibilities. The heuristics assume that transition dependence and

communication are uni-directional; agent j affects and can send messages to agent i. H1

and H2 rely on analyzing the static structure of the MDPs while H3 is more sophisticated

and relies on an initial policy in addition to the static structure. In Section 4.5, we show

how we extended and improved H2 and H3 for the case with bi-directional interactions.

The general plan: For H2 and H3, we start with a base no-communication pair of

MDPs and set C, the number of communication possibilities we allow the heuristic to add.

A heuristic considers the set of communication possibilities and assigns a score to each

possibility based on its perceived usefulness (impact). This is done by first calculating a

93

no-communication policy then using it as a context for evaluating the impact of potential

communication points. The top C communication possibilities are then added to the base

MDPs (in MDPj as communication actions and in MDPi as possible received messages)

and the resulting pair is solved using the techniques in Chapter 3. If a heuristic makes

good decisions regarding which points to add, a solution using C + 1 possibilities should

not be worse than one using C possibilities because all points in the latter are available to

the former. We can then use C to control the tradeoff between problem size and solution

quality.

4.3.1 Heuristics based on static structure

4.3.1.1 H1: Add after critical actions

The simplest heuristic is to add communication possibilities only after critical actions.

The intuition is that these are the actions that affect i, so they are the ones i cares about.

The problem with H1, though, is that it can make communication available when it is too

late for i to benefit from it, resulting in j never actually using the added possibilities and

following a zero-communication policy.

4.3.1.2 H2: Add after actions with very different outcomes

H2 tries to analyze MDPj to determine which actions have outcomes with very differ-

ent effects on j’s probability of starting future critical actions early enough for i to benefit

from them. A communication possibility considered by H2 is characterized by a sequence

of finished actions and their outcomes, done, together with a potential next action anext. A

possibility’s usefulness score is proportional to the difference between the effects entailed

by anext’s outcomes. The intuition is that if an action’s outcomes have very different conse-

quences, the particular outcome obtained during execution will greatly influence i and thus

i will need to know about it.

94

For an outcome oc of anext, the effect on future critical actions is obtained by inspecting

the sub-tree in MDPj rooted at the state where oc is obtained after the sequence done. The

impact of oc is given by

∑

a∈criticals

w(a) ∗
∑

t∈start(a)

(T − t) ∗ P (t)

where criticals is the set of j’s critical actions and start(a) is the set of possible times j can

start action a, (T - t) favors earlier start times and P (t) is the probability that in the subtree,

j starts a at t. w(a) is a way of giving more weight to more lucrative critical actions. If

a is part of a shared task, it is proportional to the common reward and, if a affects the

other agent, it is proportional to the reward of doing the affected action. According to this

formula, an outcome resulting in j being more likely to start future critical actions earlier is

going to be associated with a larger value, assuming that the earlier j satisfies a dependency,

the better. For a dependency where j’s action affects i negatively, we can use 1
T−t

to favor

later start times.

4.3.2 Heuristic based on an initial policy

The problem with basing our scores solely on an analysis of the structure of the agents’

MDPs is that we do not have any indication of which actions will actually be taken by the

optimal policy, therefore the communication possibilities we introduce may actually never

be encountered because they are in a part of the state space that is never visited by the

optimal policy. We therefore need some kind of guide as to which parts of the space will

be visited. One possible guide is the zero-communication optimal policy which consists

of the domain actions that would be optimal if communication were not possible. Even

though this is not necessarily the optimal policy when we do introduce communication, as

we will see in the experimental results section, this policy serves as a good approximation

and helps focus our attention on important parts of the space.

95

4.3.2.1 H3: Add where it causes most belief change

H3 tries to assess i’s “surprise” after a given communication, with the intuition that the

most useful communications are those that inform the recipient of something thought very

unlikely. To do this, H3 reasons about i’s beliefs before and after a potential communi-

cation. To calculate the former beliefs, we need some kind of initial policy, since beliefs

induced solely from the agents MDPs are very loose. We therefore solve the (smaller)

no-communication problem to get a pair of initial policies. The score of communication

possibility k is proportional to the difference between i’s beliefs derived from j’s initial

policy πj and its beliefs if possibility k is added and used. i’s beliefs are over the times j

can finish future critical actions. We use the KL-divergence as a measure of the difference

in beliefs and express the score of a possibility as

∑
a∈important

KL(B(finish(a)|πj) || B(finish(a)|πj, k))

where B is the probability distribution specifying i’s belief over a’s finish time. The more

a communication possibility causes i’s beliefs to change from the base beliefs, the higher

its score will be.

H3 does not consider all future actions because even if a communication drastically

changes i’s belief over a given action a, this change has no consequences on i’s decisions

if none of its future actions are affected by a. We therefore want to find out which of

j’s critical actions affect i’s future. To reason about i’s future, we calculate a probability

distribution over i’s state at the time of communication given i’s initial policy. For each

possible state, we traverse all its descendants to determine which affected actions can be

done in the future and thus which of j’s critical actions matter.

4.3.3 Evaluating communication points in context

Because H3 is concerned with measuring the belief change induced by a communica-

tion point, the top C points should not be added at once because some points may provide

96

no new information given other points in the added set. Rather, the top point is added and

subsequent points are evaluated in the context of previously added points. Note, however,

that we are not solving the problem for each added point. We merely assume that the added

point is indeed used and calculate the various beliefs accordingly. For in-context evalu-

ation, the scoring formula is modified to measure the departure of B(finish(a)|πj, k, e)

from B(finish(a)|πj, e) where e is the set of previously added points. We may therefore

have two points that individually cause a large departure from the belief induced by πj , but

one of them may become completely useless given the other if it conveys no new informa-

tion about what j will do in the future. By iteratively adding points, H3 avoids adding such

useless points.

Taking a closer look at the set of already-added points e, we see that we only need to

include in e points that are earlier in time than point k, since at the time of getting the

message associated with k, the receiver will not have received messages from later points.

Points in e can either be on the path leading to k or not. The points on the path are

referred to as e+ and, by our assumption that earlier points are indeed used, should be set

to True while evaluating k to reflect the assumption that the receiver already got messages

from these points when it gets a message from k. Points that are not on the path to k

could not have been encountered by the sender before getting to k, and so the messages

there could not have been received. The receiver, however, does get some information

merely from not getting these messages that it knows would have been sent if the sender

had encountered the associated points. We refer to these points as e− and set them to False

in evaluating k. The impact of k in the context of the set of points e is therefore

∑
a∈important

KL(B(finish(a)|πj, e
+=T, e−=F) || B(finish(a)|πj, e

+=T, e−=F, k))

Clearly, if there is a point in e+ that imparts the same information as k, k will have

no impact. Similarly, if the receiver knows that the sender will encounter either a certain

97

point in e− or k, and there are no other possibilities, then again k has no impact because

the sender already learned what information it can from not getting messages from e−.

4.3.4 Automatically determining needed communication

As mentioned earlier, H2 and H3 accept a parameter that specifies the number of com-

munication possibilities they should add. A different alternative is to allow these points to

determine how many possibilities they need to add.

We would like to determine the number of communication possibilities needed to achieve

optimal reward (what full communication would get) a priori rather than in retrospect after

actually solving the problem. We believe that the scores calculated by H3 can guide us in

this process. These scores measure the belief change induced by adding one more commu-

nication possibility in the context of previous ones. The hypothesis is that if, after adding

some possibilities, the remaining possibilities all have low scores, then adding more pos-

sibilities will not increase reward because they are not actually going to be used, since the

solution algorithm will not choose a communication that does not very much affect beliefs.

Therefore, if a heuristic sees a significant drop in impacts of potential points in the context

of n previously added points, it can conclude that only n communication points are needed

for this instance.

We believe the number of needed points is a measure of how tightly coupled the dif-

ferent sub-problems in a problem instance are. It says how much coordination is needed

among agents to achieve (near) optimal reward. Equally importantly, it tells us how large

(and thus usually how difficult) the instance will be when we reason about communica-

tion offline; since the state keeps track of sent and received messages, the more frequently

agents communicate, the larger the state space.

If a heuristic can indeed determine how much communication is needed to achieve

(near) optimal reward, we can use this as a measure of problem difficulty that not only

depends on the static structure of the problem (like the measure in [6]), but also takes

98

into consideration what actions the agents will actually take. The more we refine the way

our heuristics calculate the impact of a potential communication, the more accurate our

measure will be. Given the large variation in difficulty among instances of the same model,

a measure of difficulty is an interesting area for future research.

4.4 Experimental Results: Uni-directional Heuristics

In this section, we compare the performance of our three heuristics in choosing useful

communication possibilities. For H2 and H3, we see the effect on allowing a larger problem

size on solution quality.

4.4.1 Experimental setup

Using the Mars rovers scenario introduced in Section 2.2.1.3, we conducted experi-

ments to investigate how much our heuristics can reduce the size of the problem (given

by the total number of sequences in the agents’ MDPs), and the effect of this reduction

on solution quality (given by the sum of the agents’ rewards). The main parameters that

affect an instance’s size are the number of sites available to each rover, the time horizon

and the number of dependencies. One notable observation is the difficulty of obtaining ran-

dom scenarios whose optimal policies actually contain communication. Apparently, purely

randomly generated scenarios are not tightly-coupled enough to warrant communication;

knowing each other’s initial policies often goes a long way in coordinating the agents.

We ran experiments on 21 instances whose composition is shown in Table 4.3. The

“small” group contains 12 instances for which full communication produced a problem

small enough to be solved. The “big” group contains 9 instances for which this is not pos-

sible. The “Average full size” column gives the average size (in terms of the number of ter-

minal sequences) when full communication is allowed. All instances have uni-directional

dependence and communication from rover j to rover i. The instances we address are con-

siderably larger than those attempted by Becker et. al using the EDI-DEC-MDP model

99

Table 4.3. Instance composition

instances i sites j sites Time # deps Average full size
12 3-9 3-11 7-10 2-6 3422
9 10-21 10-21 8-12 7-19 42955

where there are 5 sites per agents and the number of dependencies ranges between 2 and

4 [12]. Our instances are also much larger because our agents can visit the sites in any

order whereas Becker has a fixed order for visiting sites.

4.4.2 Performance of heuristics

For the two heuristics H2 and H3 where we can control the size of the MDPs (by

setting the number of communication points c), we investigate the effect of increasing

the size on solution quality. Figure 4.1 shows how H2 and H3 behave on the small and

big instances. The x-axis gives problem size as a fraction of the size obtained when full

communication is allowed. We move along this axis by increasing the value of c. The

y-axis gives solution quality as a fraction of the maximum quality we could obtain; for

small problems, this is the quality with full communication but for larger problems, this

is the best quality achieved by H2 or H3. Only 3 of the big instances could be solved

using H1, so the figure only shows the average size and reward obtained by H1 on the

small instances (which is a single data point, since H1 is not parameterizable by c). The

curves were obtained by averaging the curves of individual instances after doing linear

interpolation between an instance’s points. We extrapolated an instance’s curve towards the

lower left corner using data obtained from solving its no-communication version (which,

by definition, has minimum size and rewards) and towards the top right corner of the graph

using the point (1, 1) (which, by definition, holds for all instances, regardless of whether

they could actually be solved using full communication).

As the figure clearly shows, as we increase the number of communication points, H3’s

reward rises more sharply than H2 and H1 does much worse than H2 and H3 on small

instances and results in instances too large to solve on the larger instances. To see why,

100

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.7

0.75

0.8

0.85

0.9

0.95

1

Number of sequences as fraction of full size

R
ew

ar
d

as
 fr

ac
tio

n
of

 m
ax

 r
ew

ar
d

H2 small

H3 small

H2 big

H3 big

H1 small

Figure 4.1. Effect of problem size on solution quality

remember that H3 adds points much more judiciously than H2; it 1) relies on an initial

policy 2) assesses the belief change caused by a message and 3) considers i’s policy from

the communication point onward. Besides failing to do these things, H2’s problem is that

even if an action’s outcomes have very similar effects, it may still be important for i to

know about it if the action itself is very unexpected, something that H2 does not account

for. Also, H2 makes a single decision for adding possibilities after all outcomes of an

action, but in fact, the usefulness of communicating the different outcomes may vary, so

deciding whether to add a communication possibility after each outcome should be done

separately. H1 adds communication possibilities after all critical actions, so it adds many

useless possibilities, but still fails to add possibilities that are early enough in time to be

useful.

The net result is that H3 adds useful communication points earlier while H2 may add

several useless points, the penalty of which is an increase in size with little or no increase

in reward. The figure shows that the difference between H2 and H3 is more pronounced in

101

larger instances. The reason is that the increase in size itself (the penalty) depends on the

how big an MDP was before adding a point.

As for the number of communication possibilities added, H3 needed to add 1-2 possibil-

ities to the small instances to obtain optimal reward (which we know, since these instances

could be solved with full communication). To achieve the same reward, H2 needed to add

an average of 3 points for instances that need 1 point and 6 for those that need 2. For the

large instances, H3 could add 3-4 points before the instances got too large to solve.

4.4.3 Effect on execution time

To demonstrate that H3’s limited problem sizes do translate to solution time speedups,

we averaged the time taken to solve the small instances with full communication compared

to using H3 (and achieving the same optimal reward). On average, H3 took only 19% of

the time taken by full communication. This means that even though H3 incurs an overhead

due to building and solving the initial no-communication pair of MDPs, the overall solu-

tion time is dramatically decreased. For larger instances, we cannot calculate the speedup

because a full communication solution is not possible.

In all our experiments, the time of determining the communication possibilities that

should be added is insignificant compared to the times of building and solving the no-

communication MDPs (in H3) and the final MDPs (in all heuristics). For the small in-

stances, H3 took 43 msec on average to choose the possibilities to add. For the larger

instances, H3 took on average 188 msec. H2 takes even less time, since its scoring calcu-

lations are less sophisticated.

4.4.4 Automatically determining needed communication

We conducted experiments to investigate whether we can indeed use the scores calcu-

lated by H3 to determine the number of communication points needed by the (near) optimal

policy before actually solving the problem. We use the same test cases as in the previous

sections to get the following preliminary results.

102

Figures 4.2 and 4.3 show H3 scores for the group of small and big instances. We divide

the small instances into those that required 1 (left) and 2 (right) communication possibilities

to achieve optimal reward (which we know because we could solve these instances with full

communication). We divide large instances into those that become too large to solve after

adding 3 (left) and 4 (right) possibilities. The y-axis shows H3 scores normalized by the

maximum score obtained by any point in the context of πj only (i.e., when no points have

been added yet), averaged over the relevant instances. The figure shows the top 2 scores

obtained in each successive context; first in the context of just πj then in the context of πj

and all previously added.

As can be seen, scores decrease as we add more points, since the most informative

points are added first. Also, for the small instances that require n (=1 or 2) points to achieve

optimal reward, we see a large drop in the top score after n points are added, indicating

that indeed adding further points is useless. For the larger instances, we do not know the

optimal reward, so we cannot be sure what the necessary number of points is. Nonetheless,

the figure does support the fact that the 3rd and 4th points proved useful for instances in the

left and right parts of the figure, respectively. In the left part, the top score obtained in the

context of the first 3 added points is low, but not much lower than the previous top score,

suggesting that reward may further improve if we could add a 4th point. In the right part,

however, the drop in the last top score seems significant, suggesting that a fifth point will

not be useful.

4.5 Heuristic For Bi-directional Interactions

So far, we have been dealing with uni-directional interactions. This section presents a

heuristic, H3B, whose main idea is like H3 in subsection 4.3.2, but which deals with bi-

directional interactions and communication in ways that will be detailed in the following

sub-sections. In each iteration of H3B, each agent assesses its potential communication

103

0

0.2

0.4

0.6

0.8

1

P
er

ce
n

ta
g

e
sc

o
re

1
communication
possibility

2
communication
possibilities

Figure 4.2. H3 Scores of successively added communication possibilities in small in-
stances

0

0.2

0.4

0.6

0.8

1

P
er

ce
n

ta
g

e
sc

o
re

4
communication
possibilities

3
communication
possibilities

Figure 4.3. H3 Scores of successively added communication possibilities in large instances

104

points and the one with the highest impact among all agents’ points is added to the problem.

The process repeats until the desired number of points are added.

Another main difference between H3 and H3B is that the latter considers reward when

deciding whether to include a communication possibility.

4.5.1 Incorporating reward

The heuristic H3 in subsection 4.3.2 measures the impact of a communication possibil-

ity as the amount of change it causes in the recipient’s beliefs. Suppose agent i’s action a1

affects the transition probability of agent j’s a2, and that i is using H3B to assess a com-

munication possibility k. In general, i may be interested in the change of receiver’s (j’s)

belief over any of the following:

1. Whether/when the sender will do its affecting action, i.e. i’s probability of doing a1

2. The receiver’s transition probability, i.e. j’s probability of transitioning to possible

next states after doing a2

3. The receiver’s future reward, i.e. j’s expected future reward from the point of receiv-

ing i’s message onward

If we choose the first option, it may be the case that even though the message associ-

ated with k implies that i’s probability of doing a1 changed from 0.9 to 0.1, a1 does not

significantly change the transition probability of a2, so the large change in a1’s probability

does not translate to a large change in a2’s transitions, so agent j will not find the message

very useful. In other words, j will take the same actions whether or not the message is

received. As a result, measuring this kind of belief change does not give a good indication

of the impact a communication point has.

If we choose the second option, again, even if the message implies the transition prob-

ability of a2 does change a lot, it may be the case that the next states that a2 can transition

to (its outcomes) are more or less close in terms of the long-term consequences, so again j

105

will not find the message very useful because the change implied by the message does not

really change its prospects.

We believe the third option, beliefs over future rewards, is indeed the kind of belief

that we should reason about when assessing the impact of a communication possibility. An

agent is ultimately only interested in maximizing reward, and as long as a change does not

affect its expectations about its reward, it will not be important for the agent. Furthermore,

we argue that if a message causes an agent’s expectations about its future rewards to in-

crease, then again, the agent will not find it useful in that it will not be motivated to act

differently upon getting the message.

Based on the above intuitions, the bi-directional heuristic H3B calculates the impact of

a message sent at communication possibility k on recipient j as

max(E(rj|π)− E(rj|π, k), 0) (4.3)

where π is the initial zero-communication policy and E(rj) is j’s expected future reward.

In the uni-directional case, belief depends on the policy of the sender only. Here, belief

depends on the policies of both agents because interaction is bi-directional.

4.5.2 Using Bayesian networks to calculate beliefs

Now that we decided what beliefs a sender needs to calculate, we need to decide how

to calculate them. Basically, if agent i is assessing a communication possibility, i wants

to calculate j’s expected belief over j’s future reward. This calculation is complicated by

the fact that j’s belief over its rewards (collected at the leaves at time T) depends on its

belief over transitions at time T − 1 which can be affected by the actions i did prior to

time T − 1. The latter can similarly depend on i’s previous transitions which depend on j’s

earlier actions. Clearly, bi-directional transition interactions make the calculation of belief

very complicated.

106

One way around carrying these calculations ourselves is to formulate the calculation as

inference in a Bayesian Network (BN). By including random variables representing reward

in the BN, we can calculate the expectations in (4.3) as prior and posterior beliefs over

these variables.

The idea of building a BN from a given pair of policies was used by Jiang et. al [46]

who used the BN to formulated the problem of calculating the expected utility of a strategy

profile as an inference problem. The resulting network is called the induced BN. In our

case, the induced BN of a pair of policies < πi, πj > contains four kinds of nodes (in the

following, assume each action has m probabilistic outcomes):

• Action nodes: For each agent k, there is an action node representing doing that action

in a particular state. We do not, however, create nodes for actions done after the last

critical action, because these are not affected by another agent, so their expected

reward can just be folded into the reward nodes discussed below. For an agent k,

the parents of a node ns
a associated with doing action a at state s are the previous

action node and its associated outcome node (unless s is k’s start state, in which case

the node has no parents in the BN). Each action node ns
a has an associated binary

random variable that says whether the action is actually done, which will only be true

if outcomes of previous actions lead the agent to state s. The sum of probabilities

of all the nodes associated with action a being true is the probability that agent k

following policy πk takes action a at some point.

• Outcome nodes: Each action node ns
a is the parent of an outcome node ns

o represent-

ing the probabilistic outcome of that action. The associated random variable has m

values. If action a is affected by another agent, ns
o will also have as parents all nodes

associated with the affecting action that are earlier than the current node.

• Reward nodes: To every leaf (action node-outcome node) pair in the BN, attach a

reward node whose parents are these 2 nodes only. The random variable of the reward

107

node has m + 1 values. The first m values are the the future rewards of the agent

who owns the node for each of the m possible outcomes of the last critical action.

As mentioned above, given the outcome of the last critical action, these rewards are

independent of the other agent. The last value is 0, reflecting the fact that if the states

leading to this reward node are not reached, no reward should be collected.

• Complex reward nodes: for the kth reward interaction < (sk1 , ak1), ..(skn , akn), rk >

in ρ in the EDI-CR definition of the problem, create a node representing the complex

reward for this interaction. The parents of the node are all action nodes associated

with actions ak1 ..akn . The node’s random variable has 2 values, rk and 0.

Note that a single BN is constructed for all agents, allowing the evidence provided by

one agent (in the form of a message) to affect posteriors over nodes belonging to another

agent. For 2 agents, the BN has 2 ‘root’ nodes, one for the action taken by each agent at its

start state. Figure 4.4 shows an example induced BN.

The way we construct our induced BN implies that the nodes have some kind of ‘mem-

ory’. The advantage of this is that it precludes having action and reward nodes depend on

every one of their ancestors, which would lead to very large conditional probability tables

(CPTs). The downside is that we have many nodes in the BN. However, because the BN is

for a given pair of policies, the number of nodes is still limited. In the experimental results

subsection (4.5.4), we investigate the time taken to do inference on the induced BN.

Now we turn to the issue of setting the CPTs for the nodes in the BN.

• Action nodes: The CPT of an action node ns
a reflects the probability of taking action

a in state s according to the policy. Because there is always an optimal joint policy

that is deterministic, the CPT of an action node is deterministic. If s is the start state,

the node’s random variable is always True. Otherwise, the variable is only True if

the previous action’s variable is true and its outcome leads to state s.

108

Figure 4.4. Induced Bayesian Network. Blue nodes belong to i and green ones to j.

109

• Outcome nodes: The CPT of an outcome node depends on the agent’s local transi-

tion function and whether the action in question is affected by a transition interaction.

• Reward nodes: The CPT of a reward node is deterministic. If the parents of the

reward node are ns
a and ns

o, the probability of the vth value of the associated random

variable, where v ≤ m, is 1 if ns
a = T and ns

o = v. The probability of the last value

(which is 0) is 1 if ns
a = F .

• Complex reward nodes: Again, the CPT here is deterministic. For the node repre-

senting the kth reward interaction, the probability of the associated random variable

taking on the value rk is 1 if the parent action nodes are all True. Otherwise, the

variable is 0 with probability 1.

Once the induced BN is constructed, we can calculate the impact of a communication

possibility. Suppose communication possibility k of agent i is associated with commu-

nicating after doing action a in state s and getting the vth outcome. The impact of k is

calculated by setting ns
a = T and ns

o = v and using an inference engine to calculate the

posterior expected reward of j. For reward node nr, pact(nr) is nr’s parent action node

and poc(nr) is its parent outcome node and r[v] is its vth reward value. Agent i calculates

agent j’s posterior expected reward given initial policy π and possibility k as the sum of

j’s individual rewards and a portion of the shared rewards from reward interactions.

E(rj|π, k) =
∑
nr

P (pact(nr)|π, k)
m∑

v=1

P (poc(nr) = v|pact(nr), π, k) ∗ r[v]

+
1

2

∑
ncr

rew(ncr)
∏

pact(ncr)

P (pact(ncr)|π, k)

(4.4)

For a complex reward node ncr, rew(ncr) is the extra reward/penalty associated with the

node and pact(ncr) iterates over the parent action nodes, i.e. the actions involved in the

reward interaction represented by ncr.

110

To calculate priors and posteriors, we used the inference engine in JavaBayes, a Bayesian

Networks package developed by Fabio Cozman [31].

4.5.3 Evaluating communication points in context

As in the uni-directional case, a communication possibility may be rendered useless by

the addition of another. In other words, communicating at the former gives the receiver

no new information beyond what conveyed by communication at the latter. However, be-

cause in the bi-directional case both agents can send messages, calculating the impact of a

communication possibility in the context of already-added ones is more complicated.

As before, a sender, for example agent i, needs to take into consideration the set of its

own earlier points chosen so far e = e+ ∪ e−. Additionally, it needs to consider communi-

cation points added so far that belong to the receiver j, again assuming that all previously

added points are actually used. The rationale is that when i is evaluating a point, i is trying

to measure how much j already knows, and taking into consideration where j can be in its

state space (as indicated by j’s earlier points) helps i refine its beliefs over j.

For the sender to evaluate communication point k in the context of e and the set of

points belonging to the receiver C, the sender partitions C into groups where points in each

group are on the same path (i.e. can all be encountered in a given run). If the set of groups

is G, we take the impact of a point k to be its maximum impact in the context of any group

g ∈ G:

maxg∈GE(rj|π, e+=T, e−=F, g = T, C \ g = F)− E(rj|π, e+=T, e−=F, g = T, C \ g = F, k)

4.5.4 Experimental results

In this section, we give sample results of the heuristic for bi-directional interactions

given in Section 4.5. We compare H3B to a bi-directional (and slightly improved) version

of H2, which we call H2B. The improvement comes from performing the H2 scoring calcu-

111

(a) Case 1 (b) Case 1

(c) Case 2 (d) Case 2

(e) Case 3 (f) Case 3

Figure 4.5. Time vs. Quality (left column) and Size vs. Quality (right column) of H3B vs.
H2B

112

(a) Case 4 (b) Case 4

(c) Case 5 (d) Case 5

(e) Case 6 (f) Case 6

Figure 4.6. Time vs. Quality (left column) and Size vs. Quality (right column) of H3B vs.
H2B (cont.)

113

lations in the context of the initial no-communication policy; the probability that a critical

action starts at time t is calculated based on the initial policy rather than just the transition

function of the problem.

We use bi-directional scenarios from the Mars rovers domain (Section 2.2.1.3). We

present and discuss results of H3B and H2B on 5 sample cases that illustrate the different

ways these heuristics can behave. In our experiments, there are two issues that we want to

verify:

• H3B is better than H2B at picking communication points to add to the problem. As

a result, as H3B adds communication points, it achieves higher gains in solution

quality than H2B.

• The time taken by the inference process in H3B to calculate beliefs does not out-

weight the benefits. H2B is a far simpler heuristic whose scoring calculations take

almost 0 time. The question is whether the additional time taken by H3B is justified.

If the above hypotheses hold, H3B would result in steeper Time (or Size) vs. Quality

curves than H2B.

In Figures 4.5 and 4.6, each row shows results from a given test case. Quality is the

sum of the expected rewards of the agents under the optimal policy and Size is measured

in terms of the number of compound variables added in the MILP formulation of an in-

stance (Section 3.3). We feel that this measure may be more reflective of the size of the

problem than the number of terminal histories that was used in our older results for the

uni-directional case.

Each of the 3 quantities Time, Quality and Size is reported as a fraction of the max-

imum value attained by this quantity using any heuristic and number of communication

points. It is important to note that the Time includes time taken by the heuristic to evaluate

communication points, so for H3B, it includes the time to construct the Bayesian Network

and run inference on it. Another thing to note about Time is that the values reported are the

114

first times at which the solver found the solution it terminated with, not the time it took to

verify that the found solution is optimal. With bi-directional communication, problem size

grows much more significantly as we add communication points, making it impossible to

evaluate what full-fledged communication would result in and use that for normalization.

Successive points on the same curve are obtained by adding communication points,

one at a time. For scenarios where only 1 point is added, we just show a single data

point rather than a curve. In each figure, the Time, Quality and Size obtained without any

communication is labeled ‘0 pts’.

In all the figures, the steeper the curve, the better; for the same increase in Time or Size,

a heuristic with a steeper curve obtains more quality improvement than a heuristic with a

flatter curve.

Policies for the instances we used in our experiments were calculated by formulating

the problem as a Mixed Integer Linear Program (MILP) using the idea of binning as shown

in Chapter 3 and solving the MILP using IBM ILOG Cplex [2].

4.5.5 Discussion

For cases 1 and 2 (first two rows in Figure 4.5), only 1 communication point was needed

to get maximum quality. In both these cases, H3B decides to add only 1 point; all other

points evaluated in the context of this point have no impact on the other agent’s beliefs,

which strongly indicates that only this point is actually needed.

In case 1, we allowed H2B to add another point and got no improved quality. This

highlights that whereas H2B continues to give positive scores to successive communication

points, H3B knows when to stop adding points. Both heuristics added a point each that

resulted in maximum quality. Although they added different points, these points resulted

in instances with very similar sizes that were solved in very similar times.

In case 2, H3B adds a point that results in a slightly higher rewards than H2B, as well as

a smaller instance that is solved faster. Allowing H2B to add a second point (not shown in

115

the graph) still does not lead it to choose the same point that H3B added, so H2B still does

not get the maximum quality. In fact, H2B does not get any quality improvement from this

second point.

In case 3, H3B does not realize that additional communication points are not useful. It

adds 3 points but obtains no improvement in quality beyond the first point. The question

now is: When is H3B more likely to realize that no more communication points are added?

In other words, when do additional points get zero score in the context of existing points?

Looking closely at H3B’s evaluations, we found that in cases 1 and 2, H3B added a point

after state {0=1} of the second agent, i.e., after it executes action 0 and gets outcome 1,

the agent has the option to communicate. In case 3, however, H3B adds a communication

point (call it P1) after state {6=0,1=1,2=1} of the second agent, i.e. after these 3 actions are

done and these outcomes are obtained. So the first point added in case 3 is late in the game.

When H3B is evaluating further points in the context of P1, most of them are earlier than

P1 an therefore their impacts on the other agent’s beliefs are the same with and without P1.

In contrast, in cases 1 and 2, most communication points are later than the first added point,

and are therefore unlikely to contribute much beyond what was communicated at the first

point. This results in these later points getting mostly zero scores and H3B deciding there

is no benefit in adding further points.

H3B currently does not retract points once they are added, and the above observation

does not suggest that H3B should retract P1 and add an earlier point instead. One impor-

tant fact to keep in mind is that making communication available early results in a larger

increase in problem size than having a later communication point. Consider increasing the

branching factor right after the root of the decision tree rather than right before the leaves:

the latter will result in fewer states than the former.

The behavior of H2B in case 3 is also interesting. H2B starts by adding a communi-

cation point that is never used by the optimal policy, resulting in an increase in problem

size with no corresponding increase in solution quality. The second point added by H2B

116

does increase quality, although not to the maximum. The third point causes no improve-

ment beyond the second one. Adding a fourth point results in a much larger problem that

the MILP solver can find no optimal policy for within 300 seconds (which is 15x the time

required for H3B with 1 point). The reported quality is the quality obtained at that cutoff

time, which is no better than the no-communication policy, even though one of the added

points is actually used.

Case 3 therefore illustrates that in addition to resulting in larger problems that take

longer to solve, choosing the wrong communication points to add can actually have a nega-

tive impact on quality if so many points are added that the solver fails to find a good policy

for the resulting large problem.

In case 4, H2B chooses a better first point than H3B; the H3B point results in lower

quality than the H2B point. The size of the resulting problems is about the same, although

the time needed for the problem constructed by H3B is lower. The second point added

by H3B, however, is much more useful. It achieves the maximum quality that H2B can

only achieve after adding two more points. H3B decides no more points should be added.

Indeed, allowing H2B to add a fourth point (not shown) does not improve quality.

In case 5, H3B decides to add a point, which is indeed used in the optimal policy, but its

use causes an imperceptible improvement in reward. In this case, H3B decides that further

communication points are useless. H2B adds a first point (different from the one added by

H3B) which is never used. Allowing H2B to add another point results in a larger problem

for which again, the solver does not find a good solution, even though the second added

point is the same as the H3B point.

Case 5 illustrates a situation that we had to deal with frequently in running experiments:

communication does not always make a significant improvement in quality. We found it

rather hard to generate scenarios where communication makes a big difference, and where

multiple communication points are needed. We believe this is partially an artifact of our

random instance generator and the domain we use. It is possible that in a domain with

117

non-unit action durations, we can have scenarios where an action that does not get enabled

takes longer to execute, possibly leaving insufficient time for remaining actions. In this

case, it may be more urgent to communicate if the enabling action is not done. Another

possible cause is that the time horizons we use are too short. Having bi-directional com-

munication increases problem size, so we could not push the time horizons to the values

of the uni-directional instances used in Section 4.4. Shorter horizons prevent us from hav-

ing significant long-term effects for an un-enabled action. Shorter horizons also mean less

uncertainty, again reducing the impact of communication.

To demonstrate that the particular rewards used make a big difference in the impact

of communication, we took the scenario from case 5 (where communication made almost

no difference in quality) and changed the rewards. We kept the problem structure intact,

in terms of interactions and action pre-requisites. The resulting scenario is shown in case

6. Adding a communication point now improves reward from 94% to 100%. As in most

previous cases, H3B decides not to add further points, and it takes H2B two communication

points to get close to full reward.

4.6 Summary

In this chapter, we addressed the problem of the explosion of problem size when we

try to reason about communication offline. We proposed the idea of restricting the points

where agents have the option to communicate and analyzed the effect of this restriction

on problem size, highlighting the significant reduction in size that can be obtained. We

presented three heuristics for strategically choosing the set of points where communica-

tion is available when interaction among agents is uni-directional. Experimental results

show that we can achieve a large fraction of the solution quality obtained from full-fledged

communication at a small fraction of the computational cost.

For the bi-directional case, we presented an extention to the uni-directional heuristics

that takes belief about reward into consideration and calculates belief estimates as inference

118

in a Bayesian network. Again, we compared this heuristic to a simple heuristic which does

take the initial no-communication policy into consideration, but does not assess the impact

of communication on the other agent’s beliefs. As in the uni-directional case, our heuristics

obtains the benefit of communication (in scenarios where communication matters), at a

fraction of the problem size and computation time of the simpler heuristic.

We believe that our approach for limiting the computational cost of reasoning about

communication offline is an important step towards the goal of being able to reason about

domain and communication actions simultaneously. The particular scoring rules we gave

in this chapter are for the EDI-CR model, but similar scoring rules that assess the impact

of a communication point can be crafted for other models using their particular interac-

tion structures. Applying the idea of introducing limited communication possibilities to

improve coordination in a model with structured interactions (e.g. DPCL [87]) can be an

interesting area of future work.

119

CHAPTER 5

COMMUNICATION AMONG SELFISH AGENTS

In this chapter, we present work that we did prior to the idea of structured interaction.

This work still fits in the larger picture of the thesis in that like all the previous chapters, it

is concerned with multi-agent sequential decision-making, but with self-interested agents.

We study the problem of multiple self-interested agents deciding whether to commu-

nicate information when doing so is necessary to accomplish a collective task, but incurs

individual costs. As an example of such settings, we present the view maintenance problem

with self-interested database managers (Section 5.1) . In this problem, database managers

need to disclose information to keep a database view updated (and thus collect rewards),

but they incur individual costs for disclosing information.

We give a brief background about games of incomplete information and their solutions

in Section 5.2. We then formulate the view maintenance problem as a game of incomplete

information in Section 5.3. Section 5.4 presents our general anytime algorithm for solving

games of incomplete information. When used to solve games derived from instances of the

view maintenance problem, the algorithm tells each selfish agent what to communicate, and

when, in order to maximize its net reward (profit associated with problem solving, minus

communication costs) with respect to the strategies of other agents.

Our algorithm has three novel features: it collapses the game tree as a pre-processing

step, resulting in more tractable trees; it generates local measures that guide the search

by indicating which parts of a strategy profile are least stable; and it proposes a global

measure of the stability of a profile as a whole by calculating upper bounds on players’

regrets when playing this profile. To do the search, our algorithm uses hill-climbing to

120

find strategy profiles with lower regrets and thus higher stability (an equilibrium profiles

has zero regret). Section 5.5 gives experimental results on both random game trees and

game trees derived from the view maintenance problem. We compare our algorithm to the

Quantal Response Equilibria (QRE) algorithm [86] that is part of the software package

Gambit [57]. Our algorithm can reduce the level of regret to 5% faster, and on a larger

fraction of test cases, than QRE.

5.1 The View Maintenance Problem

A database view is a dynamic, virtual table composed of the result set of a query exe-

cuted over one or more data sources. The view maintenance problem [20, 25, 28, 40, 54]

concerns how a view is refreshed when its underlying data sources are updated. This prob-

lem has been studied in settings where view refreshing is expensive due to factors like the

communication cost of transferring large amounts of data.

We study the view maintenance problem when self-interested database managers from

different institutions are involved [63]. Ideally, whenever any of the underlying data sources

is modified, the change will be reflected in the view. However, because the database man-

agers operate on behalf of different self-interested institutions, privacy is a concern, so a

database manager may not always be willing to disclose information about changes made

it its database. However, some level of cooperation among the managers is needed to en-

sure the view is somewhat maintained. Each piece of information has an associated cost

incurred by the manager disclosing it and a reward distributed equally among all managers.

The reward depends on the disclosed information as well as previously disclosed infor-

mation, creating a reward interaction among the different database managers. A database

manager has to decide how much it contributes to refreshing the view, and consequently

how much privacy loss it suffers. Because a manager’s final payoff also depends on the

actions of other managers, each manager needs to reason about the nature and number of

121

updates at other databases, what they can reveal in the future and the probability of their

revealing it.

In our setting, the database managers (DBMs) disclose some information about their

database updates in order to provide the view holder (VH) with a more up-to-date view.

In return, VH gives the coalition of DBMs a reward that depends on how much infor-

mation about their updates they disclosed and how much is still hidden. The reward is

divided equally among the DBMs; VH does not care about the individual contributions of

the DBMs.

The updates made to the base relations are processed in batches; the process of re-

freshing the view happens at intervals rather than continuously as updates are made. These

intervals can be fixed in length or can depend on the number of updates made. At the end of

an interval, the updates made since the last refresh make up the input to the refresh process.

We assume that the VH gives the DBMs T time steps to (partially) update the view. There

are therefore T decision points for each DBM.

An episode of the view maintenance problem starts with each manager having a set of

changes (insertions, modifications and deletions) known only to itself. The managers are

given a fixed number of stages where at each stage, each manager decides what kind of

change to disclose, if anything.

5.2 Games Of Incomplete Information

In this section, we give some background material on a class of games called games of

incomplete information. We also discuss a characterization of a strategy as a point in space

and what an approximate equilibrium means.

5.2.1 Background

Games of incomplete information are used to model situations where each player has

private information, his type, that affects his own payoffs but is unknown to the other play-

122

ers. However, the prior probability distribution over agents’ types is common knowledge.

Such game of incomplete information, where an agent is missing some information about

one or more aspects of the other agents, is transformed to a game of imperfect information

where the the agent knows some probability distribution over the missing information, but

does not have perfect knowledge of what it is exactly [42]. This transformation is effected

by adding random moves of Nature assigning a type for each player according to the prior

distribution. The rules of the game may stipulate that certain actions by other players are

not observable by this player. As a result, a player may not be able to distinguish among a

set of nodes in the game tree if all these nodes have the same observable history from this

player’s perspective. An information set is a set of nodes (members of the information set)

indistinguishable to a player. Consequently, a player makes its decision as a function of the

information set, rather than the particular node, it is at.

In incomplete information games, the first n levels of the game tree represent chance

nodes where at level i, Nature assigns player i’s type with probability specified by the

commonly known probability distribution over i’s type space. A strategy σ for player i

is a complete plan covering all possible contingencies for every possible type. For each

information set h ∈ Hi, a behavior strategy is σi(h) ∈ ∆(Ai(h)) where ∆(Ai(h)) is the

set of all probability distributions over actions available at information set h.

A Bayesian Nash equilibrium (BNE) of a game with incomplete information Γ corre-

sponds to the Nash equilibrium of the normal form game derived from Γ. BNE is defined as

a strategy profile and beliefs specified for each player about the types of the other players.

Each player maximizes its expected payoff given its beliefs about the other players’ types

and the strategies they play. Note that in this solution concept, players do not update their

beliefs about each other as the game progresses.

For sequential games, BNE suffers from the same problems in imperfect information

settings as Nash equilibrium in perfect information settings. When using BNE or NE, the

players may reach an unrealistic equilibrium that does not make sense. The reason is a

123

phenomenon known as incredible threats where a player i tries to avoid a threat made by

another player j but the threat is implausible in that j would not carry out the threat if it is

playing rationally.

To remedy the incredible threats problem of NEs and BNEs, we need to ensure that

players make a rational decision even at nodes off the equilibrium path. In other words,

players should play rationally in every subgame; a part of the game tree that does not cut

across any information set. In games of complete information, every node is the root of a

subgame and this equilibrium refinement is called subgame perfect equilibrium. In games

of incomplete information, however, a game generally has only one subgame, which is the

game itself. Perfect Bayesian equilibrium is a refinement that specifies a belief-strategy

pair that satisfies the following condition: the beliefs are consistent with the strategy and

the strategy is rational given the beliefs. Equilibrium refinements are beyond the scope of

this thesis.

5.2.2 A strategy as a point in multi-dimensional space

As mentioned earlier, at each h ∈ Hi, σ specifies a probability distribution over ac-

tions available at information set h. It is therefore straightforward to think of a strat-

egy profile as a point in multi-dimensional space. The dimensionality of the space is
∑n

i=1

∑
h∈Hi

(|Ai(h)| − 1), where each dimension extends from 0 to 1. For each player

i, and each of his information sets h, there is a dimension for each action available to i at

h, except the last action which is assigned the probability left over from the other actions.

Because probabilities of actions at an information set must add up to 1, not all points in

the space correspond to valid strategy profiles. The search for a BNE is a search in this

multi-dimensional space for a point that satisfies the equilibrium condition: given the other

player’s part of the profile represented by the point, no player would like to deviate from

its strategy.

124

5.2.3 Approximate equilibria

A point in the above multi-dimensional space is a BNE if it satisfies certain constraints

which guarantee that at each information set of each player, the player’s strategy is rational.

In other words, if there is a single action with maximum expected value, that action is

played with probability 1. If there are several such actions, the probability mass is divided

among them such that the same rationality holds for the other player. Thus no player

is tempted to deviate from the prescribed strategy. Stated more formally, the following

condition should hold at each information set h:

∑

a∈Ai(h)

σi(h, a) ∗ E(Payoffi(a)) = maxa(E(Payoffi(a))) (5.1)

where σi(h, a) is the probability that strategy σ assigns to taking action a at h and E is the

expected value, to player i, of taking action a. This expected value is calculated in terms of

the payoffs of the leaf nodes that i can end up in when taking action a and the probabilities

of actions along the branches from the root to these leaves passing through a.

Now, consider a situation where some of these constraints are violated. For example, at

an information set h, the above equation does not hold; the right-hand side is greater than

the left-hand side by 0.5. This means that, holding the other player’s strategy fixed, this

player gains 0.5 if he switches to the action that maximizes the right-hand side. We refer to

the amount by which a constraint c is violated as δc, known in the literature as regret.

A search for an exact equilibrium corresponds to a Constraint Satisfaction Problem. The

search for an approximate equilibrium where some δs are non-zero can be thought of as a

Constraint Optimization Problem (COP). In both cases, the variables are the probabilities

assigned to actions by strategies and the constraints are as described above. In this work,

we try to find an approximate equilibrium by solving a COP.

125

5.3 View Maintenance As A Game

In this section we detail how the view maintenance problem is formulated as a sequen-

tial game of incomplete information. We start by presenting the abstraction we will be

using, then give a formal definition of the view maintenance game.

5.3.1 Problem abstraction

Consider 2 base relations; Authors and Books with DBMs DBMA and DBMB. Con-

sider a view whose query is "SELECT Title, Author FROM Books, Authors

WHERE Books.Pages > 600 AND Authors.City = Manhattan" displaying

the titles of all books with more than 600 pages whose authors live in Manhattan. Denoting

insertion by i and deletion by d, the elements of the vector vj
all =< ijall, d

j
all > represent the

number of i and d updates made to relation Rj since the last maintenance process. While

vj
all shows the counts of all the changes made, vj

pr =< ijpr, d
j
pr > shows counts for only

those tuples that are judged by DBMj to be potentially relevant (PR) to the view, i.e. tuples

that meet the selection filter specified by the view query for Rj . In our example, a tuple in

the books relation is potentially relevant if the book has more than 600 pages. Depending

on whether the tuple(s) from other relation(s) that a tuple joins with (which we henceforth

refer to as complementary tuples) meet their respective filters, the update may or may not

actually be relevant to the view.

We believe elements of the vector vj
pr represent strategic information that DBMj would

not like to reveal. The importance of this information is if DBMj has many PR tuples, it

may want to withhold this fact and wait for some DBMi to disclose tuples rather than

go ahead and disclose tuples itself. In this case, DBMi, not knowing exactly how many

PR tuples DBMj has, may worry that not enough reward is being accumulated and thus

choose to disclose its own tuples. This situation is clearly to DBMj’s advantage.

126

5.3.2 The view maintenance game

Our view maintenance problem can be formulated as a sequential game of incomplete

information. Let n be the number of relations and assume each DBM is responsible for

exactly 1 relation. Let c ∈ {i, d} denote a change made to a relation, which can be insertion

or deletion. Let pk
c be the probability that a relation has k changes of type c ∈ {i, d}. For

simplicity, we assume this probability is independent of the particular relation in question.

The view maintenance game therefore has the following components 1:

• I = {DBM1, ..., DBMn}

• Aj(h) is the set of pieces of information that player j possesses but has not revealed

on the path from the root to members of the information set h

• The type space of player j is Tj = {vj
pr | 0 ≤ vj

pr[c] ≤ vj
all[c] ∀c ∈ {i, d}}; each

type corresponds to a pair of possible counts of PR tuples for the 2 kinds of change.

If there are m tuples as a whole affected by a given kind of change, the number

of PR tuples is anywhere in [0,m]. The size of the type space is therefore |T | =

Πc∈{i,d}(v
j
all[c] + 1) 2

• The transition probability of the chance move assigning player j’s type is p ∈ ∆(Tj)

where ∆(Tj) is the set of all probability distributions over Tj . Assuming the numbers

of i and d changes are independent, the probability of a type is p(vj
pr) = Πc∈{i,d}p

vj
pr[c]

c

• The payoff u(z) at a terminal node z is determined by the sequence of actions taken

on the path from the root to z. We need to specify, for each action, the cost to the

1We assume that moves are sequential rather than simultaneous; a player taking an action can observe all
earlier actions.

2To see how vi
pr affects the reward function, we follow the argument in [64] whereby information affecting

the set of actions available to a player can be thought of as affecting the player’s reward function. We can think
of all the actions being available all the time, with the resulting payoffs depending on the private information.

127

player disclosing the information and the common reward that all players get when

this information is disclosed

• T specifies the number of stages in the game

We assume that initially, each DBMj discloses its vj
all. Alternatively, this informa-

tion can be obtained from statistics about how many changes of each type are made to

the database, on average. The probability of a given vj
pr can be estimated from historical

statistics.

As for the reward, we base the reward for a piece of information on 3 factors: 1) the type

of change (i or d); 2) the base relation affected by the change and 3) whether the information

represents a main tuple or the complementary of an already disclosed tuple. The rationale

is that user preferences can be such that one type of change is more important than the other

and some relations need to be more up-to-date than others. The third factor allows the VH

to express different preferences for knowing different kinds of information. As in the case

of rewards, disclosing different pieces of information incurs different amounts of privacy,

communication and other kinds of costs. The incurred cost can also depend on what has

been revealed so far (e.g. privacy costs can be sub- or super-additive).

5.4 Anytime Algorithm for Computing Approximate BNE

The algorithm we propose operates on the tree of an Extensive Form Game. For ex-

ample, it can operate on the game tree representing an instance of the view maintenance

problem. The algorithm first collapses the game tree by making “obvious” decisions and

backing up values wherever possible. This backing up eliminates parts of the tree that will

obviously never be reached, resulting in a collapsed tree of smaller size. The algorithm

then tries to satisfy constraints derived from the collapsed game tree (of the form given in

Equation 5.1) as much as possible in a hill-climbing manner. It generates a initial random

strategy profile and iteratively improves it until either the profile becomes “stable”, or no

128

further improvement is possible. In the latter case, the profile is randomly perturbed and

the process repeats. We discuss a range of stability measures that we can use in assessing a

profile. The following paragraphs elaborate on these steps.

5.4.1 Collapsing the game tree

Our experiments in building game trees from instances of the view maintenance prob-

lem show that the size of the raw game tree (the tree before any collapsing) tends to be

very large. Examining raw trees shows that there are some nodes at which decision making

is not complicated by the incompleteness of information. These are nodes where a player

would choose to reveal the same piece of information regardless of the type of the other

player. We therefore collapse the raw tree using the following simple algorithm. Initially,

all nodes are assumed to be roots of collapsible subtrees. We work from the leaves of the

tree upward, determining which nodes are indeed roots of collapsible subtrees. For each

such node, we collapse its subtree using simple backups, excising the collapsed subtree.

The node becomes a terminal node whose payoffs reflect backed up values. Algorithm

5.4.1 shows how this is done.

for all level such that 0 ≤ level ≤ 2T do
collapsible[level] = non-terminal nodes at depth level

end for
for all level such that 0 ≤ level ≤ 2T do

for all node in collapsible[level] do
i = Player(node)
if best action is the same across h(node)∨ (|h(node)| == 1)∨ (|Ai(h(node))|==1)
then

children = node.children
node.payoffi = maxc∈children c.payoffi
delete node.children

else
remove all ancestors of node from their respective collapsible[level] arrays

end if
end for

end for
Algorithm 1: Simple algorithm for collapsing trees

129

The algorithm starts by assuming all nodes are collapsible. For each node, it checks

if at least one of three conditions holds: 1) incompleteness of information does not affect

the player’s decision, so the best action is the same regardless of which particular node the

player is at; 2) h(node), the node’s information set, contains only this node, so the best

action is just chosen; 3) a node belongs to an information set with a single available action.

Figure 5.1 shows these three situations. Action nodes are in circles enclosing the index

of the acting player. Terminal nodes are shown in black circles with a pair of numbers

specifying the associated payoff for each player. A dotted box encloses nodes in the same

information set. Because we work from the leaves upward, a node eligible for collapsing

always has terminal children. This simple collapsing algorithm is very effective for game

trees derived from the view maintenance problem. In Section 5.5.1, we give supporting

experimental results and discuss why collapsing is effective.

5.4.2 Iteratively improving a point

To iteratively improve a point (strategy profile), the following 3 issues need to be ad-

dressed:

1. Which component(s) of the point should we improve? Should we focus on improving

individual constraints or the profile as a whole?

2. How should we explore the space? How do we generate neighboring points to which

we can move?

3. How do we assess a point? What measure of a point indicates the algorithm is moving

in the right direction in the multi-dimensional space?

What should we improve? As mentioned in earlier, an equilibrium point/profile must

satisfy certain constraints. Improving individual constraints or the profile as a whole

amounts to making local or global changes to a profile, respectively. A local change tries

to improve a constraint associated with some information set h ∈ Hi to reduce the regret of

130

Figure 5.1. Collapsible subtrees: (a) action b is the best across the information set (b)
singleton information set (c) single available action

131

player i at h. A global change completely overhauls one or both players’ strategies to get to

a more “stable” point; one at which the players’ motivations to deviate is lower. Owing to

the complexity of overhauling a profile, we improve individual constraints with the hope of

effecting a global improvement through local changes. Because it is not easy to determine

which local changes produce the largest global improvement, we use the local regret, δ,

as a heuristic to decide which parts of a strategy profile are more important to improve.

Constraints with high δs are associated with information sets with high regrets.We greedily

attempt to improve first. Empirical observations indicate that this heuristic is indeed useful;

improving constraints with high δs results in more stable points. We quantify the notion of

stability later in the text.

Generating potential next points For each variable (action probability) v involved in

the constraint c with the maximum δc, we calculate the required change in v to bring δc

down to 0, assuming all other variables are unchanged. We assess the impact of changing

v on the δs of other constraints by evaluating the partial derivatives of affected constraints

w.r.t. v. If changing v results in a point with greater than or equal stability than the current

point, the new point is added to the list of Potential Next Points (PNPs).

The approach described above is one of two ways of decreasing a given δc. Instead

of changing the probabilities of actions involved in c as done above, we can switch the

player’s preference for two actions a and b by switching their probabilities. We generate

points from such reversals and, as with the first approach, we assess the broader impact of

the change and decide whether to admit the points to PNP.

Assessing a point Now that we have a set of PNPs, we need to move to the most sta-

ble PNP. Even though δs determine which part of the profile to improve first, these local

measures do not provide good basis for comparing the stability of different points. The

problem is that each δ specifies the additional reward a player gets if it deviates at a single

information set. This says nothing about the player’s potential gains if it deviates at multi-

132

ple information sets, nor about the change in the regret of the other agent resulting from the

deviation. We therefore need a global measure that specifies a player’s overall motivation

to deviate from (or completely overhaul) its strategy.

Following the notion of ε-BNE, we consider a profile stable if no player stands to make

more than ε% more reward by changing its prescribed strategy. We define a global measure

called Maximum Overall Motivation (MOM) to deviate. MOM(σ) is the maximum, over all

players, upper bound on motivation to deviate from σ, assuming strategies of other players

are held constant. MOM is therefore an upper bound on ε. The lower the MOM, the more

stable σ is. Approximating an equilibrium this way makes sense because practically, a

player will not want to take on the difficult task of calculating its best response strategy if

it knows that it stands to increase its payoff by no more than ε%.

We propose a simple way of calculating MOM. To calculate the upper bound on the

motivation of player i under the strategy profile σ, we build a modified game Γrevealed from

the original game Γ. Γrevealed is a single-player perfect information game where i plays

with Nature. We construct it as follows. Each node n ∈ h where h ∈ Hj 6=i is changed

to a chance node where the probability of Nature playing action a is σj(h, a). In addition,

the information sets in the original game tree are revealed, i.e. i is granted full access to

the history of play including the moves of Nature that determined players’ types, thereby

removing i’s uncertainty about where it is within a given information set. Γrevealed, being a

perfect information game, can be solved by doing simple backups. i’s payoff in Γrevealed is

an upper bound on the payoff of its best response strategy in Γ, since i can do no better than

having perfect information. Because of the simplicity of doing backups, we can quickly

evaluate MOMs for a large number of PNPs.

To summarize, we use a local measure (δ) to generate PNPs and a global measure

(MOM) to assess and compare points. The global measure indicates how stable a point is,

but does not give indication of how it should be improved. The local measure indicates

where it may be effective to try to improve.

133

A range of approximations: Examining the MOM landscape in some of the experi-

ments we conducted showed that sometimes the upper bound provided by MOM is very

loose; e.g., the MOM landscape is everywhere higher than 20%. The reason is that Γrevealed

is too easy compared to Γ. We can obtain a tighter upper bound if we calculate payoffs in

a game that is harder than Γrevealed but still easier than Γ. In fact, there is a whole spectrum

of such games with varying levels of difficulty. At one end of the spectrum is Γrevealed

where all information sets are disclosed. These games are very easy to solve but provide

very loose upper bounds. At the other end is Γ where no information sets are disclosed.

To illustrate the kind of bound we get from a slightly harder game than Γrevealed, con-

sider the game ΓLI which differs from Γrevealed only in that all information sets except the

highest-level sets are revealed. Clearly, the payoff in this game is at least as high as that ob-

tained in Γ but no higher than in Γrevealed. Solving this game is still easy; do regular backups

from the bottom of the game tree upwards, and, on reaching the highest-level information

sets, choose the action that maximizes reward in expectation over the turn player’s beliefs

about where it is within this information set. We call the maximum motivation to deviate

from σ in this game MOM-LessInformation(MOM-LI).

To illustrate the different possible payoffs with an example, Table 5.1 shows the payoffs

achieved by player i’s different strategies when its opponent plays its part of the strategy

profile σ in different variants of an example game. Payoff(σ) is i’s payoff from playing σi

in the original game Γ. PBR is i’s payoff from its best response to σj in Γ. It is not easy

to compute and requires calculating i’s payoff in a transformed game where j’s nodes are

changed to chance nodes with action probabilities as dictated by σj . PPI is i’s payoff from

its best response to σj in the easy perfect information game Γrevealed. PLI is i’s payoff from

its best response to σj in the slightly harder game ΓLI with less-than-perfect information.

Since Payoff(σ) ≤ PBR ≤ PLI ≤ PPI , the overall motivations calculated using PLI

and PPI (MOM-LI and MOM, respectively) are upper bounds on a player’s actual regret.

134

Table 5.1. Calculating MOM With Different Amounts of Information

Quantity Player 1 Player 2
Payoff(σ) 8.97 7.88

Payoff of B.R.in Γ (PBR) (unknown) 10.39 8.48
Payoff in Γrevealed (PPI) 12 9.09

Payoff in ΓLI (PLI) 11 9
Overall Motivation 25.25% 15.26%

(PPI-Payoff(σ))/PPI * 100%
MOM 25.25%

Overall Motivation LessInfo 18.45% 12.4%
(PLI-Payoff(σ))/PLI * 100%

MOM-LI 18.45%

In Table 5.1, we get a much tighter bound on regret when using PLI rather than PPI

(18.45% vs 25.25%) at the cost of a slightly more involved computation.

5.5 Experimental Results

In this section, we present results of our efforts to solve games of incomplete infor-

mation, whether they are general games or games derived from instances of the view

maintenance problem introduced in Chapter 5.1. We start by analyzing the efficacy of

our pre-processing step which tries to losslessly collapse the game tree. We then compare

the performance of our anytime hill-climbing algorithm to that of the Quantal Response

Equilibria (QRE) algorithm [86].

5.5.1 The effect of collapsing

The first set of experiments we conducted investigates the efficacy of our collapsing

algorithm for trees from random instances of the view maintenance problem (henceforth

called VM trees) as well as general trees. Table 5.2 shows the result of collapsing VM

trees. Both players have the same type space (vall). Unless indicated otherwise in brackets,

we generated 10 random instances per configuration, for a total of 65 instances. As can be

seen, the size of the collapsed tree is roughly an order of magnitude smaller than the raw

135

Table 5.2. Collapsing VM trees

T vall Raw Avg %
Size Reduction

2

< 1, 1 > 716 84.3
< 1, 2 > 2253 89.5
< 2, 1 > 2253 88.8
< 2, 2 > 6847 84.7

3
< 1, 1 > 3608 91.2
< 2, 1 > 15423 88.9

< 3, 1 >(5) 36232 92.9

tree. This pre-processing step is therefore very useful for providing our anytime algorithm

with tractable input.

To see how much general game trees collapse, we generated trees where both players

have the same number of types and the same number of actions is available at each informa-

tion set. We generated 10 random trees for each configuration < T ,numTypes,numActions>

where 1 ≤ T ≤ 4 and both numTypes and numActions are 2 or 3. Payoffs were gener-

ated randomly in the range [0,15]. Table 5.3 shows the raw tree size and average percentage

reduction for these configurations. N/A entries were too large to generate. Collapsing gen-

eral trees yields a reduction in the number of nodes in a tree that ranges from 4 to 27%.

Clearly, trees derived from the view maintenance problem are much more susceptible

to collapsing. To understand why this is the case, we need to remember the source of

uncertainty faced by a player in a VM tree. With imperfect information about player j’s

type, player i is uncertain about the number and nature of tuples yet undisclosed by j.

However, there is no uncertainty regarding the payoffs of actions. This results in the lowest

level of the tree always collapsing, making it more likely that levels higher up in the tree

collapse as well (a node is eligible for collapsing only if its children are terminals).

5.5.2 Performance of the search algorithm

We compared our anytime algorithm to the Quantal Response Equilibria (QRE) algo-

rithm [86] as implemented in Gambit [57]. QRE has the advantage of being an anytime

136

Table 5.3. Collapsing general trees with 2 (top) and 3 (bottom) types per player

#Actions=2 #Actions=3
T Raw Avg % Raw Avg %

Size Reduction Size Reduction
1 34 23.5 58 15.5
2 130 25.5 490 21.9
3 514 27.3 4378 22.3
4 2050 24.9 N/A N/A
1 70 11.1 124 4.4
2 286 11.7 1096 7.5
3 1150 13.5 9844 7.9
4 4606 12.6 N/A N/A

algorithm, so we can calculate regret values for its intermediate results and compare them

to intermediate results from our algorithm.

We ran the two algorithms (anytime search and QRE), on 2 tree types (VM and general

trees) using MOM and MOM-LI for a total of 8 sets of experiments. In all our results, we

are interested in the average time, in seconds, needed to reduce regret (MOM or MOM-LI)

to 5%. We bin results by tree size and show the percentage of trees in each size bin for

which the algorithm could reach the desired regret within the indicated time range. Note

that the reported tree size is the size of the collapsed, rather than the original, tree. We

omit from our tables time or size bins that were found to be empty. Because results using

MOM-LI are always better than using MOM, we only present the former.

Table 5.4 compares the percentage of VM trees in a given size range that were solved

within the indicated time by our algorithm and QRE when using MOM-LI. We randomly

generated costs and rewards, which sometimes result in a tree that collapses to an empty

game. This happens if, for example, it is always lucrative to disclose all information re-

gardless of any uncertainty. Out of the 65 VM trees reported in Table 5.2, 52 collapse to

non-empty games. For each of these 52 trees, we ran our search algorithm 3 times starting

from different random points. As can be seen in Table 5.4, for most of the trees in any given

tree size bin, our algorithm reaches the required level of regret within 100 seconds. Our

137

Table 5.4. Percentage of VM trees solved by our algorithm (top) vs. QRE (bottom)

Tree ≤ 20 21-100 101-500 501-1000 > 1000
Size sec sec sec sec sec

0-200
100
88.9 11.1

200-400
96.1 3.9
94.1 5.9

400-1000
66.7 20.8 8.3 4.2
50 25 12.5 12.5

1000-2000
28.5 47.6 14.3 4.8 4.8

14.3 28.6 57.1

2000-3600
44.4 48.1 3.7 3.7

22.2 77.8

Table 5.5. Percentage of general trees solved by our algorithm (top) vs. QRE (bottom)

Tree ≤ 20 21-100 101-500 501-1000 > 1400
Size sec sec sec sec sec

0-200
96.2 2.9 0.9
97.1 2.9

200-400
85.3 12 2.7
40 56 4

400-600
44.4 55.6

100

800-1100
20 40 20 20

80 10 10

anytime search algorithm performs better than QRE on smaller trees and much better than

it on larger trees. QRE fails to finish within the allocated time on a much higher fraction of

larger trees than our algorithm.

Table 5.5 compares the performance of our algorithm on general trees to QRE. We

generated 73 random trees, none of which collapsed to an empty tree Again, on each tree

we ran our search algorithm 3 times starting from different random points. General trees

proved to be more challenging than VM trees. Our algorithm performs better than QRE on

smaller trees and is comparable to it on larger ones.

Some remarks about our results are in order. First, it should be noted that there are

many possibilities for fine-tuning the search algorithm (e.g. random restarts and changing

138

the magnitudes of random perturbations as the search proceeds), but we leave this for future

work. Second, it is important to remember that a strategy profile provides players with a

plan of action for every type with non-zero probability in the game definition. Therefore

we only need to run the search algorithm when the players’ type spaces, or the probability

distributions over them, change. In the view maintenance problem, database managers

can continue using a strategy as long as the number of potentially relevant tuples and the

probability distributions over them are unchanged. So the time taken to calculate a strategy

profile is amortized over all the view maintenance episodes for which the profile is valid.

5.6 Summary

In this chapter, we studied communication among self-interested decision makers whose

goal is to maximize their individual payoffs. As an example of such settings, we presented

the view maintenance problem with self-interested database managers. We formulated

this problem as a game of incomplete information and presented a general anytime hill-

climbing algorithm for solving this class of games, i.e. for finding (approximate) equi-

librium profiles. To aid the hill-climbing search, we developed local and global profile

stability measures.

We experimentally investigated two aspects of our work. First, we verified the effective-

ness of a pre-processing step that we developed to losslessly collapse game trees whenever

possible. This step proved very effective when applied to games derived from the view

maintenance problem, and somewhat effective on general trees. Second, we compared the

time taken by our algorithm to reduce regret (and thus increase stability) compared to an

existing algorithm. Our algorithm reduces regret to 5% faster, and on a larger fraction of

test cases, than the Quantal Response Equilibria algorithm in Gambit.

139

CHAPTER 6

GAME-THEORETIC MODELS AND OPTIMIZATION

In previous chapters, we were concerned with structured interaction among coopera-

tive agents. Now we turn our attention to self-interested agents whose goal is to maximize

their individual rewards, rather than team rewards. Interaction among self-interested agents

takes place in the context of a game. Our model Event-Driven Interactions with Complex

Rewards (EDI-CR) can be used to represent loosely coupled stochastic games, which have

the same characteristics as their cooperative counterpart in Section 2.2.2. As in the cooper-

ative case, generically representing this kind of games in extensive form without regard to

their special structure results in very large problems.

In this chapter, we discuss the use of optimization techniques to find equilibrium poli-

cies for our class of games. We give a brief background on games and equilibria in Sec-

tion 6.1. In Section 6.2 we re-state an existing formulation of finding an equilibrium profile

as a bilinear program and compare this approach to representing our games in extensive

form and solving them using a game-theoretic software package. We provide analytical

and experimental results to show the representational and computational savings we obtain

compared to extensive form in settings with different amounts of interaction. Noting that

self-interest does not preclude communication, we use communication to vary the amount

of interaction among agents. So to create settings with different amounts of interaction, we

experiment with different communication schemes.

In Section 6.3, we discuss a different approach where finding an equilibrium is formu-

lated as a problem of solving a system of non-linear equations. The system of equations can

be solved using continuation methods which are discussed in this section, with references

140

to related work. Although this work is in its early stages, the resulting formulation has the

advantage of allowing for more than two agents.

6.1 Background

The field of game theory focuses on situations where self-interested players make de-

cisions that affect each other and/or affect a common environment. Each agent tries to

respond to the decision-making strategies of the others in a way that maximizes his own

reward.

Games can be categorized along several axes. Perfect recall (vs. imperfect recall)

games involve players who never forget actions, whether theirs or others’, once they ob-

serve them. In games of incomplete information (vs. perfect information), a player does not

know what moves have already been played by other players, resulting in uncertainty about

the current state of the world and multiple game situations being indistinguishable to that

player. Games can also be classified by the number of stages (decision-making points) they

contain; 1-stage games involve only one stage of decision making. A sequential stochastic

game describes a situation where agents interact over a number of stages. Each stage begins

with the game at some state. Agents take actions simultaneously and, in general, receive

rewards based on the actions taken by all agents and the particular state the game was in.

The game then probabilistically transitions to a new state based on the previous state and

joint actions. In a general game, the agents are tightly coupled; each action of each agent

affects the rewards and next games of all others.

A strategy profile is a set of strategies σ = (σ1, ..., σn), one per player. σ−i denotes the

set of strategies of all players except i. The goal in competitive settings is typically to find

an equilibrium strategy profile from which no player has motivation to deviate. In games of

perfect information, the Nash equilibrium is a commonly used solution concept. A strategy

profile σ is a Nash equilibrium if, for every player i, ui(σi, σ−i) ≥ ui(σ
′
i, σ−i) for all σ′i,

where ui is i’s utility.

141

6.2 EDI-CR With Varying Communication As A Bilinear Program

In this section, we review an existing formulation of a stochastic game as a bilinear

program (BLP) derived by Petrik and Zilberstein [69]. We then introduce varying levels of

communication and investigate the effect this has on the representational and computational

savings obtained using EDI-CR and BLP versus representing and solving the problem as

an extensive form game (EFG, see Section 2.1.2).

The formulation of extensive form games as BLP is as follows:

Maximize xT
i ri + xT

i (Ci + Cj)xj + xT
j rj − λT

i bi − λT
j bj

subject to Aixi = bi Ajxj = bj

ri + Cixj − AT
i λi ≤ 0

rj + xT
i Cj − AT

j λj ≤ 0

xi, xj ≥ 0

(6.1)

As in Chapter 3, agents’ policies are represented using sequence form [50]. xi and xj

are vectors of realization weights of agent i and j’s action sequences, respectively. ri (resp.

rj) is a vector representing the individual rewards of agent i (resp. j); those rewards that

do not depend on what the other agent does. Ci and Cj represent rewards of i and j whose

attainment depends on what both agents did. Ai, Aj , bi and bj form the policy constraints.

λi and λj are the variables of each agent’s dual optimization problem. Their presence in

the objective function reflects our interest, not in a solution that maximizes the sum of

rewards, but in one that is an equilibrium. The above bilinear program is solved using the

Multi-agent Planning Bilinear Program algorithm [69] to find a Nash equilibrium.

We believe the idea of binning can be used to linearize the above bilinear program, as

we did in the cooperative case in Section 3.3. The first part of the objective function in

(6.1) is the same as in the cooperative case, and can be linearized in the same way. An

advantage of our binning technique for linearization is that it saves us from dealing with

the large reward matrices by representing only distinct entries in these matrices. But in

142

(6.1), unlike in the cooperative case, the reward matrices also appear in the constraints. We

need to find a way to collapse them in the constraints. We leave the details of using binning

in the self-interested case for future work.

6.2.1 Analytical and experimental setup

We now investigate how the degree of coupling affects the relative savings of using EFG

and EDI-CR. One simple way to change the degree of coupling is by introducing different

amounts of communication among agents. Communication is a special kind of transition

interaction; sending a message makes the recipient transition to a state where the message

is observed, thereby affecting its transition probability. As such, communication can be

handled by any solution method used in the no-communication case.

We present experimental results from 8 instances of a self-interested variant of the Mars

rovers domain (Section 2.2.1.3) where the rovers belong to different countries and each

one has its own reward function. As in the cooperative case, a rover’s action can affect the

reward and/or transition of another rover. Although self-interested, a rover can benefit from

communicating its progress to another rover. For example, consider 2 rovers i and j where

i’s visiting site 1 accomplishes some initial work that makes it useful for j to visit site 2,

which would otherwise not be worthwhile. Suppose that j can only visit site 3 after visiting

site 2, and that j’s visit to site 3 also sets the stage for i’s visit to site 4. In this case, even

if communication has a cost, i may choose to tell j that it visited site 1 to tempt j to visit

site 2 and then 3, eventually setting the stage for i’s visit to site 4. The decision whether to

communication can be reasoned about in a decision-theoretic manner similar to reasoning

about domain actions.

Communication among self-interested agents raises many issues that are of no concern

in the cooperative case, like truthfulness, issues of trust and privacy concerns. In this

chapter, we assume truthful communication.

143

We present three communication schemes; no, mandatory and optional communication.

For each, we analyze the effect on the size of an instance when represented using EDI-CR

and EFG. For EFG and EDI-CR, we measure size as the number of states in the joint game

tree and in each agent’s decision process, respectively. We express these quantities in terms

of A actions, O outcomes per action, T time steps, k reward interactions and m transition

interactions, with k + m ≤ A. The variables k and m allow us to investigate how the

number of interactions and their nature affect the size of a representation. We stress that

our analysis is not specific to the Mars rover example. It applies to any loosely coupled

game that fits the characterization we give in Section 2.2.2. To simplify the analysis, we

assume that an action takes one time unit and that actions can repeat.

We also look at the effect of communication on the time to find the first Nash equilib-

rium1. EFGs are solved using the logit solver in the game theoretic package Gambit [57]

and reported as “Gambit” (more details about this algorithm in Section 6.3.4). EDI-CR is

solved as a bilinear program reported as “BLP”. We time out a solver after 30 minutes and

report “N/A”.

In our Mars rovers instances, T ∈ [6, 8] and the number of actions is 5 or 6 (unlike the

analytical model, an action here can take more than one time unit). To avoid generating

very large games that would not fit in memory regardless of the representation, we specify

restrictions over actions by having earliest start times before which they cannot proceed.

6.2.2 No communication

We first look at the case where communication is not allowed. An agent makes de-

cisions based only on its local state, which keeps track of what actions have been done

so far and the outcomes obtained for them. With EFG, each stage consists of actions and

outcomes for both agents. The number of nodes is therefore O(A2T O2T).

1Because it is hard to compare solution qualities in selfish settings, we are concerned with finding any
equilibrium

144

Table 6.1. Size and performance comparison for the no-communication case (times in
seconds)

EFG EFG EDI-CR % Gambit BLP
infosets size size reduction time time

49 1301 132 89.85% 9 2
68 1618 140 91.35% 18 9

100 3195 216 93.24% 63 2.4
151 7987 303 96.21% 306 2.5
173 11.2k 348 96.89% 1080 3
296 25.1k 610 97.57% N/A 2.5
333 44.4k 695 98.43% N/A 2.6
841 473k 2079 99.56% N/A 8

In EDI-CR, each stage in an agent’s decision process consists of an action and outcome

for this agent only, resulting in O(AT OT) states per agent. Because there are transition

interactions, an agent needs to remember the outcome of affected actions, but our state

representation remembers all outcomes, so states space size is independent of m.

While theoretically the sizes of EFG and EDI-CR are both exponential in the time

horizon T , Table 6.1 shows that in practice, doubling the exponent results in game trees

that are too large to build and/or solve.

6.2.3 Mandatory communication

We now model situations where communication is inherently part of the setting, rather

than a conscious decision on the part of the agents. An agent i doing its part of a reward or

transition interaction involuntarily leaves a trace that it has done this action. Consequently,

the other agent j will see this trace upon doing its part of the action. An agent does not

suffer a cost for this implicit communication, but cannot avoid it either. To allow an agent

to make decisions based on the traces it sees, an agent’s state keeps track of a flag denoting

whether a trace was seen upon doing each reward or transition interaction.

In EFG, even though the state now stores the actions, outcomes and k + m flags of

each agent, the number of states is not O(A2T O2T 22k+2m). The reason is that the values

of an agent’s flags are fully determined by earlier actions of the other agent, so when an

145

agent does an ineteraction, there is no branching over whether it will see a trace there. In

fact, there is no more branching in this communication scheme than in the case without

communication, and the number of nodes in the EFG tree is still O(A2T O2T).

Even though they are of the same size, the EFG representation of the no communica-

tion case and the mandatory case are not the same. To see why, note that because of the

additional flags, an agent has more information available to make its decisions when there

is communication. This translates into the game tree having more information sets per

agent; nodes that were indistinguishable in the absence of communication can now be told

apart. Comparing Tables 6.1 and 6.2 shows how much the number of information sets in

an EFG increased. Since a policy specifies a distribution over actions for each information

set, mandatory communication increases the size of the policy space and makes finding a

Nash equilibrium more difficult. Table 6.2 indeed shows that even though the size of EFG

did not change, the solution time generally increased.

As for EDI-CR with mandatory communication, there is probabilistic branching in an

agent’s decision process over whether or not it sees a trace upon doing an interaction, since

that depends on what the other agent has done. The size of each agent’s process is therefore

O(AT OT 2k+m).

It is interesting to note the effect of mandatory communication on the size gap between

EFG and EDI-CR. Compared to no-communication, mandatory communication results in

EDI-CR achieving less reduction in size. The increased coupling introduced by commu-

nication makes EFG less inadequate, compared to EDI-CR, although the savings obtained

by EDI-CR are still quite significant. If we increase the frequency and language of com-

munication so that the agents communicate their entire states at every state, the decision

processes will be so tightly coupled that EDI-CR’s advantage of representing them sepa-

rately will be lost.

146

Table 6.2. Size and performance comparison for the mandatory communication case (times
in seconds)

EFG EFG EDI-CR % Gambit BLP
infosets size size reduction time time

82 1301 1107 14.91% 21 2.7
83 1618 377 76.70% 29 6

135 3195 600 81.22% 120 6.5
204 7987 1481 81.46% 460 3
201 11.2k 2600 76.80% 900 4
574 25.1k 3475 86.17% N/A 5
630 44.4k 3000 93.24% N/A 14.3
1438 473k 7823 98.35% N/A 5.6

6.2.4 Optional communication

We now look at optional communication where an agent can choose whether to leave a

trace upon doing its part of an interaction. Even though communication here does have a

cost, an agent may still decide to communicate if it knows that communication will cause

the other agent to do something beneficial to it. For example, in the Mars rovers scenario,

if rover j knows from i’s policy that if i visits site si, then i will visit sj , and if sj has a

much higher value if visited by both rovers, then rover i will choose to leave a trace at si as

an inducement for j to go there too.

To represent optional communication in EFG, in addition to actions and outcomes for

each agent, there is an action node with two branches (leave trace or not) after every deci-

sion to do part of an interaction. A state keeps track of the actions and outcomes of both

agents, as well as at most k + m binary communication decisions per agent, for a total of

O(A2T O2T 22(k+m)) states. Note that even though in this scheme an agent can potentially

have the same information to make its decisions as in the mandatory case, the number

of decisions itself is much larger, because of the communication decisions, resulting in a

larger number of information sets.

In EDI-CR, again, there are communication decision nodes, in addition to branching

over whether an agent will see a marker upon visiting a site. The number of states is

O(AT OT 22(k+m)).

147

Table 6.3. Size and performance comparison for the optional communication case (times
in seconds)

EFG EFG EDI-CR % Gambit BLP
infosets size size reduction time time

547 21.1k 6213 70.58% N/A 8.6
136 3777 671 82.23% N/A 3
190 7511 1093 85.45% N/A 2.8
602 51.6k 5651 89.06% N/A 214
589 68.3k 5766 91.57% N/A 11

2668 295k 13.9k 95.29% N/A 35
2004 316k 10.2k 96.76% N/A 32
N/A 2200k 21.8k 99.01% N/A 195

Table 6.3 shows that having communication decisions results in huge EFG trees, mak-

ing it impossible for Gambit to solve them within a reasonable amount of time. However,

the 4th instance shows that solution time and size are not always correlated, which can be

explained by the fact that we are searching for the first equilibrium we can find, and the

time this takes depends on both the size of the problem and the structure of the search

space.

The results in this section show that even as we increase the amount of interaction

among agents by introducing communication, EDI-CR is still much more compact, and

allows the use of faster solution algorithms, than a general representation like extensive

form games. In fact, many of the instances we obtained after introducing communication

are too large to represent using EFG, let alone solve.

6.3 Finding Equilibria As A System Of Non-linear Equations

In Section 3.4, we formulated the problem of finding the optimal policy for cooperative

agents as a problem of solving a system of non-linear equations. The same can be done for

the problem of finding an equilibrium strategy profile for a group of self-interested agents.

This system can then be solved using continuation methods or using a general-purpose

solver.

148

The formulations as a system of equations discussed in this section have the key advan-

tage of allowing for more than two agents, unlike the bilinear program formulation from

the previous section. For this reason, we believe it is important to include them in this

thesis, even though this line of work is still in its early stages. We start an investigation into

how existing formulations as a system of equations can be adapted to exploit structured in-

teractions in EDI-CR, in which case we will have a formulation that can both be efficiently

solved and admit more than two agents. The initial investigation in this section raises many

interesting questions for future research.

We start with a background on the use of continuation methods for normal and extensive

form games (NFG, EFG) in the work of Govindan and Wilson [39] which was reviewed in

the work of Blum et. al [51]. We then go into some detail for the case of EFG and discuss

the possibility of adapting the EFG formulation to EDI-CR problems. In Section 6.3.4, we

give a brief survey of related work that demonstrates that continuation, and later homotopy,

methods have a long history of application in game theory.

6.3.1 Continuation for NFG

As with homotopy methods, in continuation methods we formulate the problem at hand

as a system of non-linear equations F (x, λ) = 0 characterized by a parameter λ. As

opposed to homotopy methods, λ moves from 1 to 0 and is interpreted as the magnitude

of the perturbation. At λ = 1, the initial system is maximally perturbed and this perturbed

system has an easy solution. Continuation methods trace the solution as λ moves to 0. If we

have a solution (x, λ), to arrive at a nearby solution with a slightly lower λ, the differential

changes in x and λ must cancel out so that F remains 0. We therefore need to solve the

following equation:

[∇xF ∇λF]




dx

dλ


 = 0 (6.2)

149

When applied to games, the perturbation is a vector of bonus rewards that transforms

the original game into one that is easy to solve. Each agent is given a fixed bonus, scaled

by λ, for each of its actions, irrespective of what the other agents play. If the bonuses are

large enough, the best response of each agent is easy to find and is independent of other

agents, giving a unique pure strategy equilibrium to the perturbed game.

For normal form games (NFGs), the perturbation bonus vector b contains an element for

each action of each agent. Following the convention in [51], we denote a game G perturbed

by payoff vector b as G⊕ b. In this game, for each action a of agent n, a ∈ An, and set of

actions t of all other agents, t ∈ A−n, the payoff to agent n is (G⊕b)n(a, t) = Gn(a, t)+ba.

If b is large enough, the game has a unique equilbiruim where each agent plays the action

for which ba is maximum.

To formulate the problem of finding an equilibrium as a system of equations, Govindan

and Wilson introduced a vector function, called deviation function, which Blum et. al call

V G. For a game with m actions, V G maps a strategy profile σ, of length m, to a vector,

also of length m. For an action a of agent n, V G
a (σ) is the payoff to n of playing a while

all other agents follow σ. In other words, it is n’s payoff for deviating from σ to play the

pure strategy a.

V G
a (σ) =

∑
t∈A−n

Gn(a, t)
∏

k∈N\{n}
σtk (6.3)

where N is the set of all agents.

The literature also defines a retraction operator R that retracts a point inRm to the space

of legal profiles Σ. Govindan and Wilson use the following lemma by Gul et. al [36].

Lemma 2 If σ is a strategy profile of G, then σ = R(V G(σ) + σ) iff σ is an equilibrium.

Using this lemma, an equilibrium can be defined as the solution to the following system

of equations

150

F (x, λ) = x−R(x)− V G(R(x))− λb (6.4)

V G + λb is the deviation function of the perturbed game G ⊕ λb, so F (x, λ) = 0 if and

only if x is an equilibrium of G⊕ λb.

The expensive step is the calculation of the Jacobian ∇xF for equation (6.2). This

involves calculating the m×m Jacobian ∇V G. For actions a ∈ An and a′ ∈ An′ ,

∇V G
a,a′(σ) =

∑
t∈A−n,n′

Gn(a, a′, t)
∏

k∈N\{n,n′}
σtk

The entry for (a, a′) is the expected payoff to agent n when it deviates to a and n′ deviates to

a′ while all other agents follow σ. As can be seen, the summation in the above computation

involves a number of terms that is exponential in the number of agents.

6.3.2 Continuation for EFG

In extensive form games, the bonus vector, and the deviation function, have one entry

per history of actions, rather than per action. Another difference from the NFG formulation

is that the payoff function is defined over leaves. Therefore, in the perturbed game, for each

leaf z ∈ Z, (G ⊕ b)n(z) = Gn(z) + bHn(Z), where Hn(z) is the action history of agent n

that leads to leaf z.

The deviation function in EFG is defined as follows:

V G
h (σ) =

∑
z∈Zh

Gn(z)
∏

k∈N\{n}
σk(z)

where Zh is the set of leaves reachable by playing actions in h. V G
h (σ) is the portion of

agent n’s payoffs for playing history h, unscaled by n’s probability of playing h. The

151

Jacobian is along the lines of that of the NFG case. For histories h of n and h′ of agent n′,

we have

∇V G
h,h′(σ) =

∑
z∈Zn,n′

Gn(z)
∏

k∈N\{n,n′}
σk(z) (6.5)

where Zh,h′ is the set of leaves reachable by playing actions in h and h′. The sum is over

the leaves of the tree, which may be exponential in the number of agents.

6.3.3 Continuation for EDI-CR

For NFGs, Blum et. al provide an informal proof of Gul’s lemma (Lemma 2) for

the special case where the strategy profile is perfectly mixed, i.e. each pure strategy has

a non-zero probability. Let V G
n (σ) be agent n’s portion of the vector V G(σ), and let Σn

be the simplex of legal profiles of n. Σn is defined by 1′x = 1. For a perfectly mixed

profile, V G
n (σ) must be a scalar multiple, c, of the all ones vector, since at equilibrium,

no pure strategy can have a higher payoff than others in the support. We believe there is

a mis-statement in the informal proof given by Blum et. al whereby V G
n (σ) is said to be

orthogonal to Σn
2. It is clear that for any vector x ∈ Σn, V G

n (σ).x = c. To understand the

origins of the proof, and to see how it extends to EFG, we went back to the original paper

of Gul et. al [36] referenced by Govindan and Wilson, as well as Blum et. al. Gul dicusses

the more general case where the support of a mixed strategy is allowed to be smaller than

the set of all pure strategies. For this more general case, the following lemma is given:

Lemma 3 σ is an equilibrium profile σ1, ..., σ|N | with value v = (v1, ..., v|N |) iff for each

player n there exists xn ∈ Rmn such that

V G
n (σ) + xn = vn1, xn ≥ 0, and σn.xn = 0

2The first author, Ben Blum, could not be reached for verification.

152

where mn is the dimensionality of agent n’s strategy space.

To see why the above conditions are necessary and sufficient, consider an agent n with

3 actions. Suppose that for a strategy profile σ, V G
n (σ) = (3, 3, 1)T. One vector xn that

satisfies the lemma is xn = (0, 0, 2)T, with vn = 3. If similar vectors can be found for all

other agents in the game, then σ is an equilibrium. For agent n, the lemma simply says

that all pure strategies in the support should have equal payoffs, and any strategy that has a

lower payoff, hence a non-zero entry in xn, cannot be in the support, which is guaranteed

by the requirement that the dot product of xn and σn be 0, i.e. the corresponding entry for

the inferior strategy in σn must be 0. We see that if σ is an equilibrium, xn is orthogonal to

σn, rather than V G
n (σ) being orthogonal to the space Σn.

For the case of sequential games like games in extensive form or EDI-CR, we cannot

require that for a given agent, every history with non-zero realization weight have the same

payoff. We should instead require that competing histories have the same payoff. Two

histories are competing if they cannot both be part of the support of a pure policy. As we

saw in Section 3.1, because of chance outcomes, even a pure policy will have multiple

histories with non-zero weight in its support. So the requirement is that if h and h′ are both

in agent n’s support, and they dictate different actions in a given information set, then they

should have the same expected reward. Therefore, in the sequential case, instead of having

one scalar value vn associated with each agent n as in Lemma 3, we need multiple scalars

per agent. In their work on using continuation methods to solve MAIDs [21], Blum et. al

use the NFG characterization of equilibria (Lemma (2)), so we assume that they were able

to devise a variant of Lemma (3) for the sequential case.

The main deciding issue in whether continuation methods are efficient for a given prob-

lem is whether there is an efficient way of computing the Jacobian in equation (6.5). Note

that this calculation is done in the context of a given strategy profile. In the case of MAIDs,

fixing the strategy profile results in a Bayesian network (the induced BN), and the calcula-

tions required for the Jacobian amount to doing inference on this BN. Blum et. al use the

153

special structure of the induced BN (e.g., a given decision node only depends on a subset

of earlier decision nodes) to avoid duplicate calculations of certain probability distributions

that are part of the Jacobian calculations.

In previous work, we cast EDI-CR instances as MAID [61]. However, the MAID repre-

sentation of our problems has some drawbacks. The structure in our loosely coupled games

(the independence of most actions’ rewards and transitions) is obscured because a MAID

decision node does not branch over the possible decisions, so we cannot isolate a single

action and represent its dependence on another. Second, MAIDs do not naturally capture

dependencies that are temporally nonlocalized, forcing us to resort to constructs that “re-

member” actions done in the past and allow them to affect future actions without having

the latter depend on all previous decisions. A MAID representation is essentially stateless,

and trying to capture a game in which agents have local state that is affected by previous

actions and affects the choice of future actions is problematic.

Because of the above problems with MAID, we believe that it is much better to work on

improving the Jacobian calculation while operating directly on the EDI-CR representation.

Looking at equation (6.5) and how each entry is for a tuple of histories, it is clear that

structured interaction implies many duplicate entries in the Jacobian, and using the idea

of binning, we can avoid duplicating these calculations. Moreover, in calculating a single

entry, we suspect that structured interaction can again allow us to reduce the amount of

computation required.

6.3.4 Related Work

6.3.4.1 Tracing procedure

The linear tracing procedure of Harsanyi and Selten [43] adjusts arbitrary prior beliefs

into equilibrium beliefs. First, the players play best responses against identical prior beliefs

concerning the play of the other players. Next, they observe that their beliefs are not met

154

and subsequently update their beliefs and play the best response to the new beliefs. This

continues until equilibrium beliefs for the game have been found.

This general tracing procedure was implemented using homotopy methods to solve n-

person games in normal form by Herings and van den Elzen [44] where the homotopy

transforms the problem of playing a best response to the initial prior beliefs to the problem

of playing a best response to opponents’ actual play to form an equilibrium. Each point

on the path is an equilibrium of a restricted game where the prior is played with some

probability that is initially one and decreases to zero.

This work was extended by von Stengel [84] et. al to solve extensive form 2-player

games. They generate a piece-wise linear path in strategy space, representing using the

sequence form. The starting point again represents a prior and players adjust their behaviors

based on information about the strategies that are actually being played.

6.3.4.2 Logit equilibria

The tracing procedure discussed above is similar to another procedure for finding a

game’s equilibrium strategy profile. McKelvey and Palfrey [58, 59] define a kind of equi-

librium called Quantal Response Equilibrium (QRE). QRE is the fixed point of the process

of players choosing among strategies based on expected utility, but make choices based on

a quantal choice model. This choice model accounts for variations in the choice of a player

by assuming the player maximizes his utility, but the observed utility is distorted by a ran-

dom additive error. McKelvey and Palfrey interpret mixed strategy profiles as the observed

distribution of strategy choices when players’ choices are modeled using the quantal choice

model. If the errors are drawn independently from an extreme value distribution with pa-

rameter λ (larger λ mean smaller error), the form of the rule determining quantal response

equilibrium choice probabilities is logistic. McKelvey and Palfrey refer to QREs arising

from this kind of error distribution as logit equilibria.

155

The set of logit equilibria can be viewed as a correspondence from λ to the set of mixed

strategy profiles. At λ = 0 maps to the mixed strategy giving equal probabilities to all

pure strategies. As λ approaches infinity, the correspondence is structured to converge to a

unique Nash equilibrium. McKelvey and Palfrey use homotopy to reach the logit solution.

6.3.4.3 Easy initial game

Govindan and Wilson [39] modify the payoffs of the original game sufficiently so that

the perturbed game has a unique equilibrium, then trace back to the original game. They

establishes the conditions for application of the homotopy method for reversing the defor-

mation of the original game to one with a unique equilibrium. They show how homotopy

can be implemented with the global Newton method.

Turcoy [86] presents a homotopy approach to tracing a branch of the logit equilibrium

correspondence, with application to the problem of computing a single Nash equilibrium.

The logit equilibria are expressed as the zeroes of a system of equations parameterized by

λ. Turcoy’s algorithm is implemented in the logit solver in the game-theoretic software

package Gambit [57].

Blum et. al solve games represented as Multi-Agent Influence Diagrams (MAIDs) [51],

discussed in Section 2.3.2.1, using continuation methods. A large perturbation is applied to

the rewards in the form of a bonus vector that rewards an agent for its actions regardless of

anything else that happens in the game. If large enough, these bonuses dominate the orig-

inal game rewards and simply determine what the optimal strategies are. The continuation

method traces a path from the solution of the deformed game to that of the original. Blum

et. al exploit the special structure in MAIDs to improve the efficiency of a key step in the

algorithm, that of calculating the Jacobian of a certain function.

156

6.4 Summary

In this chapter, we addressed the decision-making of self-interested agents whose goal

is to maximize their individual rewards, rather than team rewards. We used our model,

Event-Driven Interactions with Complex Rewards (EDI-CR), to represent the loosely cou-

pled stochastic games that arise due to structured interactions among selfish agents. As in

the cooperative case, generically representing this kind of games in extensive form without

regard to their special structure results in very large problems.

We discussed the use of optimization techniques to find equilibrium policies for EDI-

CR games. We used an existing formulation of finding an equilibrium profile as a bilin-

ear program and compared this approach to representing our games in extensive form and

solving them using a game-theoretic software package. Analytical and experimental results

show the representational and computational savings we achieved in settings with differ-

ent amounts of interaction, which we obtained by introducing different communication

schemes to the problem.

Finally, we discussed a second optimization-based approach where finding an equilib-

rium is formulated as a problem of solving a system of non-linear equations. The system

of equations can be solved using continuation methods and has the advantages of allowing

more than two agents. This line of work is in its early stages and raises many interesting

questions for future research.

157

CHAPTER 7

CONCLUSIONS

In this chapter, we conclude the thesis with a summary of the contributions presented

therein, followed by a discussion of possible directions for future work.

7.1 Thesis contributions

The contributions of this thesis are in the area of multi-agent decision making in set-

tings where agents are largely independent except for some structured interactions among

their decision processes. These interactions arise due to some actions of an agent having

non-local effects on rewards and transitions of other agents. I consider both cooperative and

self-interested decision makers. I studied the problem of representing situations with struc-

tured interactions, formulating and solving the decision making problem as an optimization

problem, and reasoning about communication. The following is a list of my contributions:

Representation for cooperative and self-interested agents: I developed Event-Driven In-

teraction with Complex Rewards (EDI-CR), a decision-theoretic model for representing

structured transition and reward interactions. This model advances the state of the art by

filling a gap in both decision- and game-theoretic models; most existing models address

different kinds of structured interactions. Those that address non-local action effects ei-

ther cannot capture both reward and transition interactions, or represent independence at a

coarse level where agents either fully interact or not at all. Using EDI-CR, we can represent

instances that are too large to represent using existing models. EDI-CR’s representational

savings do not come at the expense of expressiveness; EDI-CR has the same expressive

158

power as DEC-MDP with factored state and local observability. Depending on the amount

of interaction, experimental results show 1-2 order of magnitude reduction in problem size

when using EDI-CR compared to general unstructured models.

Solving cooperative EDI-CR using optimization techniques: I exploited structured in-

teraction to develop compact Mixed Integer Linear Program (MILP) formulations of EDI-

CR instances. The key insight I used is that because agent interactions are structured, most

action sequences of a group of agents have the same effect on a given agent. This allows

us to bin these sequences and thus use fewer variables in the formulation. For the case

of 2 agents, my formulation solves the exact problem while for 3 or more agents, the for-

mulation represents a relaxation of the original problem. Experimental results comparing

our EDI-CR MILP formulation to a formulation that ignores structure shows a significant

reduction in the number of variables introduced, which translates to faster solution times.

We are able to find the optimal solution, and verify its optimality, in a larger fraction of

instances using our formulation. My second contribution in this area is formulating the

problem of policy calculation as a continuum of problems with varying levels of difficulty

and studying the use of homotopy methods to solve this continuum.

Solving self-interested EDI-CR using optimization techniques: For an existing formu-

lation of calculating an equilibrium as a bilinear program, I studied the effect of changing

the amount of interaction among agents on the size of the formulation and the speed of solv-

ing it. I experimentally compared this to representing the same instances as extensive form

games (EFGs) and solving them using the game theoretic package Gambit. The amount of

interaction is varied by varying the amount of communication the agents can have. Starting

from an existing formulation of calculating an equilibrium in general sequential games as

a system of nonlinear equations, I developed a formulation for EDI-CR that addresses the

159

structured interactions among agents.

Communication among cooperative agents: I exploited the structure explicitly represented

by EDI-CR to make offline reasoning about communication tractable. Starting with a no-

communication version of the problem, I devised heuristics that strategically choose com-

munication decision points to add to the problem. This results in a new decision problem

far smaller than what would be obtained if full-fledged communication were available,

while including enough communication that allows agents to coordinate their actions and

get higher rewards. My main heuristics decide whether to add a communication point

based on the impact of communication at that point on the other agent. For the case of

bi-directional interactions, my heuristic calculates beliefs by formulating the problem as a

Bayesian Network and relegating belief calculations to an inference engine. Experimen-

tal results show that in the case with uni-directional interactions, our most sophisticated

heuristic can almost achieve the full benefit of communication at a fraction of the prob-

lem size (thus solution time) of full-fledged communication. In the bi-directional case,

the full-fledged communication problem is too large to solve, so we do not know what

the maximum reward is, but we see that this heuristic again achieves higher reward at an

overall lower computational cost than a simpler heuristic. Experiments also show that in

many cases, our heuristic can determine how many communication points that are actually

needed.

In spite of several attempts to get around the complexity of offline reasoning, ours is

the first work to focus on making it more tractable by restricting the problem size in a way

that has little or no effect on solution quality, thereby making it possible to reason about

long-term consequences of communication without incurring the prohibitive costs typically

associated with doing so. Also, by controlling the amount of communication introduced,

our approach allows a modeler to control the tradeoff between solution quality and problem

160

size.

Communication among self-interested agents: I studied the problem of multiple agents

deciding whether to communicate information when doing so is necessary to accomplish

a collective task, but incurs individual costs. I modeled this situation as a sequential game

of incomplete information and developed an anytime hill-climbing algorithm that finds an

approximate Nash equilibrium. Our algorithm has three novel features: it collapses the

game tree as a pre-processing step, resulting in more tractable trees; it generates local

measures that guide the search by indicating which parts of a strategy profile are least

stable; and it proposes a global measure of the stability of a profile as a whole by calculating

upper bounds on players’ regrets when playing this profile. Experimental results show that

the pre-processing step is very effective in reducing the tree size. They also show that our

search has a better anytime performance than a state-of-the-art game-theoretic package.

7.2 Future Directions

In the following paragraphs, we discuss some of the possible future directions of our

work.

7.2.1 Decomposition-based optimization

A large part of the work done in this thesis uses optimization methods and available

packages to solve mathematical formulations of EDI-CR instances. The optimization tech-

niques we used try to find policies of all agents simultaneously. However, given that EDI-

CR caters to problems where interactions among agents are relatively few, the idea of sep-

arately optimizing policies of different agents then somehow piecing them together is very

attractive. We referred to some existing works that employ this idea, but noted that current

approaches do not solve the sub-problems of the different agents in a principled manner,

and are therefore prone to getting stuck in local optima.

161

Decomposition methods have been used very successfully in mathematical optimiza-

tion [16]. The general idea is that to overcome the super-linear growth in problem com-

plexity, a problem is broken down into a set of subproblems that can either be solved

sequentially or in parallel. We identify a set of complicating variables; ones which, if fixed,

render the subproblems independent. There are several ways of handling interactions (in

the form of complicating variables) among the subproblems. In primal decomposition, an

iterative solution algorithm optimizes each of the subproblems then adjusts the values of

the complicating variables until convergence. In dual decomposition, we give each sub-

problem its local version of the complicating variables and enforce equality of the local

versions.

The advantages of applying decomposition to EDI-CR are obvious. If each subproblem

corresponds to an agent, we will be solving a series of MDPs rather than a single EDI-

CR. So in essence, decomposing a monolithic decision process will not only be done in

the representation (which EDI-CR already does), but also in the computation. Another

important advantages is that all the approaches we discuss in this thesis involve centralized

planning. Decomposition-based approaches allow each agent to work on its subproblem,

with some supervision to direct future subproblem and integrate their solutions.

7.2.2 Homotopy-inspired optimization

The idea behind homotopy methods is to move along a continuum between solving an

easy variant of the given problem and solving the given problem itself. These methods

find a solution to the easy variant then calculate the change that needs to be made to the

previous solution to make it solve a new problem that is a little closer to the original prob-

lem. As we reported in Section 3.4, homotopy methods did not work out-of-the-box for

solving EDI-CR instances. However, we believe that there is a lot of potential to the idea

of gradually transitioning from an easy to a hard problem, especially for EDI-CR where

these problems have physical significance (the easy problem is a set of MDPs ignoring all

162

interactions and the hard problem considers all interactions). The open question is what

form this gradual transition from easy to hard should take. The formulation we gave grad-

ually increases the emphasis on interactions, but there are other possibilities, one of which

is gradually increasing the number of interactions taken into consideration while planning.

Note that although this is homotopy-inspired, it is not allowed under homotopy because of

discontinuities it introduces (at one point a given interaction is not considered, at the next

it is). Another possibility is alternate between adding a new interaction and smoothly in-

creasing the weight on this interaction. The first step can use heuristics to pick interactions

in the order of importance and the second step can use the usual curve-tracing methods

from homotopy. We suspect that the heuristics we developed for assessing potential com-

munication points in terms of their impact on the receiver (Section 4.5) can be useful in

assessing the impact of a given interaction.

7.2.3 Optimization for self-interested EDI-CR

Our work presented in Chapter 6 raises many interesting questions regarding the use

of optimization techniques to find equilibria in self-interested EDI-CR. First, it would be

interesting to see how the idea of binning that we used for solving cooperative problems can

be applied to formulations of problems involving self-interested agents. Chapter 3 showed

the very good results we obtained from binning in the cooperative case, and we feel that

similar advantages can be obtained in the selfish case.

Second, our discussion of formulations of finding equilibria as a system of non-linear

equations is just the beginning of a line of research that can potentially yield a formulation

that is both open to having more than two agents and amenable to efficient calculation

using the special structure in EDI-CR. Again, the indifference of an agent to many of the

details of another agent’s actions can make much of the calculations in a key step of the

continuation method (computing the Jacobian) redundant.

163

7.2.4 Measuring problem difficulty

In Section 4.4, we presented experimental results suggesting that it may be possible to

automatically determine the number of communication points needed to achieve optimal

reward. After adding a sufficient number of communication points, a good scoring heuristic

will give a low score to remaining points, indicating that adding these points will not have

a strong impact on reward.

One direction of future research is to investigate the use of the number of points added

by a heuristic as a measure of how much coordination is needed in a given instance. If it is

true that problems requiring tighter coordination are more difficult to solve, the number of

added points can serve as an indicator of the degree of difficulty of a probelm.

7.2.5 State representation

The work in this thesis employs a state representation that stores the actions taken by

an agent (in the order they were taken) and their outcomes. Where there is communication,

it keeps track of sent and received messages and their timestamps as well. A received

message’s content and time provides information about where the other agent is and what

it will do in the future. Likewise, the time at which an affected action resulted in a given

outcome provides information about the probability that the affecting action was done by

another agent at a given point in the past.

This verbose state representation is important in a tightly coupled DEC-MDP where an

agent cares about all the future actions of another agent. However, in the case of EDI-CR,

an agent only cares about the critical actions in another agent’s future. And because of

structured interactions, two different states are more likely to induce the same belief over

the other agent’s future critical actions (in which case the optimal action is the same at

these states) than in a general DEC-MDP.

This observation suggests that we can obtain more a compact state representation if we

discard the exact action and message history and instead keep track of an agent’s belief

164

over the other agent’s execution of future critical actions. In this alternative representation,

the size of the state space will change depending on the number of interactions, unlike our

current representation. More interactions result in a wider range of beliefs about the other

agents.

Expressing policies as mappings from beliefs, rather than entire observation histories,

to actions has been considered in the literature. In the single-agent setting, many POMDP

algorithms reason over belief states. In the multi-agent setting, this approach is less com-

mon. The work of Zettlemoyer et. al [98] presents a way of calculating infinitely-nested

beliefs (beliefs over what the other agents belief...etc.) about the global state at a given

time. Their main concern, however, is efficient belief update given a new action and ob-

servation. They do not address planning; they assume policies for both agents are given up

front.

Oliehoek et al. [68] use policies that map observation histories to actions, but they

cluster observation histories that induce the same belief over the other agent’s histories and

over states, either in a lossy or lossless manner. This results in a smaller number of distinct

(with respect to induced beliefs) observation histories and thus a smaller policy space. And

because they do not directly deal with beliefs, they do not worry about belief updates.

Incomplete representations: So far, we have only been discussing representations

that retain all information necessary for making optimal decisions; when we suggested

forgetting certain information, it was because it doesn’t not affect the optimal decision. A

different approach would be to deliberately omit necessary pieces of information, resulting

in sub-optimal solutions in return for a smaller state space. The question then would be

which pieces of information have the least impact on solution quality. Intuitively, if, for

agent j, a certain dependency does not affect agent i that much (e.g., does not dramatically

change its transition function), then j need not remember exactly when the affecting action

was started and both agents can just ignore this interaction. We would like to investigate

whether some of the analysis approaches used in our communication heuristics can discover

165

such weak interactions. The result of this investigation would be another way to control

the tradeoff between problem size and solution quality in addition to the one provided by

limiting communication possibilities.

...

166

BIBLIOGRAPHY

[1] http://www.robocuprescue.org.

[2] IBM ILOG Cplex Academic Initiative.

[3] Knitro, Ziena Optimization, Inc. http://www.ziena.com/knitro.htm.

[4] Ahuja, Kapil, Watson, Layne T., and Billups, Stephen C. Probability-one homotopy

maps for mixed complementarity problems. Journal Of Computational Optimization

and Applications 41 (December 2008), 363–375.

[5] Allen, Martin. Agent Interactions In Decentralized Environments. PhD thesis, Uni-

versity of Massachusetts, Amherst, 2008.

[6] Allen, Martin, Petrik, Marek, and Zilberstein, Shlomo. Interaction structure and di-

mensionality reduction in decentralized mdps. In Proceedings of the Twenty-Third

National Conference on Artificial Intelligence (Illinois, July 2008).

[7] Altman, Eitan, Avrachenkov, Konstantin, Marquez, Richard, and Miller, Gregory.

Zero-sum constrained stochastic games with independent state processes. Mathemat-

ical Methods of Operations Research 62, 3 (2005), 375–386.

[8] Aras, Raghav, and Dutech, Alain. An investigation into mathematical programming

for finite horizon decentralized POMDPs. Journal of Artificial Intelligence Research

37 (2010), 329–396.

[9] Aras, Raghav, Dutech, Alain, and Charpillet, François. Quadratic Programming for

Multi-Target Tracking. In MSDM Workshop, AAMAS 2009 (Budapest, Hungary,

2009), pp. 4–10.

167

[10] Becker, Raphen. Exploiting Structure In Decentralized Markov Decision Processes.

PhD thesis, University of Massachusetts, Amherst, 2006.

[11] Becker, Raphen, Carlin, Alan, Lesser, Victor, and Zilberstein, Shlomo. Analyzing

Myopic Approaches for Multi-Agent Communication. Computational Intelligence

25, 1 (2009), 31–50.

[12] Becker, Raphen, Lesser, Victor, and Zilberstein, Shlomo. Decentralized markov de-

cision processes with event-driven interactions. In Proceedings of The Third Inter-

national Joint Conference on Autonomous Agents and Multi Agent Systems (AAMAS

2004) (USA, 2004), pp. 302–309.

[13] Becker, Raphen, Lesser, Victor, and Zilberstein, Shlomo. Analyzing My-

opic Approaches for Multi-Agent Communication. In Proceedings of the 2005

IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT 05)

(Compiegne, France, September 2005), IEEE Computer Society, pp. 550–557.

[14] Becker, Raphen, Zilberstein, Shlomo, Lesser, Victor, and Goldman, Claudia V. Solv-

ing transition independent decentralized markov decision processes. Journal of Arti-

ficial Intelligence Research 22 (2004), 423–455.

[15] Bernstein, Daniel, R. Givan, R., Immerman, Neil, and Zilberstein, Shlomo. The

complexity of decentralized control of markov decision processes. Mathematics of

Operations Research 27, 4 (2002), 819–840.

[16] Bertsekas, D. P. Nonlinear Programming, second ed. Athena Scientific, 1999.

[17] Beynier, Aurélie, and Mouaddib, Abdel-Illah. A polynomial algorithm for decentral-

ized markov decision processes with temporal constraints. In AAMAS ’05: Proceed-

ings of the fourth international joint conference on Autonomous agents and multiagent

systems (New York, NY, USA, 2005), ACM, pp. 963–969.

168

[18] Beynier, Aurélie, and Mouaddib, Abdel-Illah. Communicative opportunity cost de-

centralized mdps for improving agent coordination. In Workshop on Multi-Agent

Sequential Decision Making in Uncertain Domains (MSDM) (2008).

[19] Bhat, Navin A. R., and Leyton-Brown, Kevin. Computing nash equilibria of action-

graph games. In Proceedings of the 20th Conference in Uncertainty in Artificial In-

telligence (July 2004), University of Toronto.

[20] Blakeley, Josh A, Larson, Per Ake, and Tompa, Blank Wm. Efficiently updating ma-

terialized views. In Proceedings of the 1986 ACM SIGMOD International Conference

on Management of Data (Washington, D.C., USA, 1986).

[21] Blum, Ben, Shelton, Christian R., and Koller, Daphne. A continuation method for

nash equilibria in structured games. Journal of Artificial Intelligence Research (2006).

[22] Borkovsky, Ron N., Doraszelski, Ulrich, and Kryukov, Yaroslav. A user’s guide to

solving dynamic stochastic games using the homotopy method. Operations Research

58 (2010), 1116–1132.

[23] Boutilier, Craig. Planning, learning and coordination in multiagent decision pro-

cesses. In TARK ’96: Proceedings of the 6th conference on Theoretical aspects of

rationality and knowledge (San Francisco, CA, USA, 1996), Morgan Kaufmann Pub-

lishers Inc., pp. 195–210.

[24] Cafieri, Sonia, Lee, Jon, and Liberti1, Leo. Comparison of convex relaxations of

quadrilinear terms. Ma, C., Yu, L., Zhang, D., Zhou, Z. (eds.) Global Optimization:

Theory, Methods and Applications I. Lecture Notes in Decision Sciences 12(B) (2009),

999–1005.

[25] Candan, K., Agrawal, D., W. Li, O. Po, and Hsiung, W. View invalidation for dynamic

content caching in multitiered architectures. In Proceedings of the 28th Very Large

Data Bases Conference (Hongkong, China, August 2002).

169

[26] Carlin, Alan, and Zilberstein, Shlomo. Value-based observation compression for dec-

pomdps. In Proceedings of the 7th international joint conference on Autonomous

agents and multiagent systems (2008), International Foundation for Autonomous

Agents and Multiagent Systems, pp. 501–508.

[27] Chalkiadakis, G., Robu, V., Kota, R., Rogers, A., and Jennings, N. Cooperatives of

distributed energy resources for efficient virtual power plants. In Tenth International

Conference on Autonomous Agents and Multiagent Systems (AAMAS-2011) (Taipei,

Taiwan, 2011).

[28] Choi, Chun Yi, and Luo, Qiong. Template-based runtime invalidation for database-

generated web contents. In Proceedings of Advanced Web Technologies and Applica-

tions, 6th Asia-Pacific Web Conference, APWeb 2004 (Hangzhou, China, 2004).

[29] Chow, Shui-Nee, Mallet-Paret, John, and Yorke, James A. Finding zeroes of maps:

Homotopy methods that are constructive with probability one. Mathematics of Com-

putation 32, 143 (1978), 887–899.

[30] Conitzer, Vincent, and Sandholm, Tuomas. New complexity results about nash equi-

libria. Games and Economic Behavior 63, 2 (July 2008), 621–641.

[31] Cozman, Fabio. The javabayes system. The ISBA Bulletin 7 (2001), 16–21.

[32] Dudik, Miroslav, and Gordon, Geoffrey. A sampling-based approach to computing

equilibria in succinct extensive-form games. In Proc. 25th Conference on Uncertainty

in Artificial Intelligence (Montreal, Canada, 2009).

[33] Floudas, Christodoulos A., and Pardalos, Panos M. Encyclopedia of Optimization,

Volume 1. Springer, 2001.

[34] Gilboa, Itzhak, and Zemel, Eitan. Nash and correlated equilibria: Some complexity

considerations. Games and Economic Behavior 1 (1989), 80–93.

170

[35] Gilpin, Andrew, and Sandholm, Tuomas. Finding equilibria in large sequential games

of imperfect information. In ACM Conference On Electronic Commerce (2006),

pp. 160–169.

[36] Gl, Faruk, Pearce, David, and Stacchetti, Ennio. A bound on the proportion of pure

strategy equilibria in generic games. Mathematics of Operations Research 18, 3

(1993), pp. 548–552.

[37] Goldman, Claudia, and Zilberstein, Shlomo. Optimizing information exchange in

cooperative multi-agent systems. In Proceedings of the second international joint

conference on Autonomous agents and multiagent systems (AAMAS) (New York, NY,

USA, 2003), ACM, pp. 137–144.

[38] Goldman, Claudia, and Zilberstein, Shlomo. Decentralized control of cooperative

systems: Categorization and complexity analysis. Journal of Artificial Intelligence

Research 2 (2004), 143–174.

[39] Govindan, Srihari, and Wilson, Robert. A global newton method to compute nash

equilibria. Journal of Economic Theory 110, 1 (May 2003), 65–86.

[40] Gupta, Ashish, Mumick, Inderpal Singh, and Subrahmanian, V. S. Maintaining views

incrementally. In Proceedings of ACM SIGMOD Conference on Management of Data

(Washington D.C., USA, 1993).

[41] Hansen, Eric A., Bernstein, Daniel S., and Zilberstein, Shlomo. Dynamic program-

ming for partially observable stochastic games. In Proceedings of the Nineteenth

National Conference on Artificial Intelligence (AAAI) (2004), pp. 709–715.

[42] Harsanyi, John C. Games with incomplete information played by bayesian players,

part i. the basic model. Management Science (November 1967), 159–182.

171

[43] Harsanyi, John C., and Selton, Reinhard. A General Theory of Equilibrium Selection

in Games. MIT Press, 1988.

[44] Herings, P. Jean-Jacques, and van den Elzen, Antoon. Computation of the nash equi-

librium selected by the tracing procedure in n-person games. Games and Economic

Behavior 38, 1 (2002), 89 – 117.

[45] Howard, R. A., and Matheson, J. E. Influence diagrams. Readings on the Principles

and Applications of Decision Analysis (1984), 721–762.

[46] Jiang, Albert, Leyton-Brown, Kevin, and Pfeffer, Avi. Temporal action-graph games:

A new representation for dynamic games. In Proc. 25th Conference on Uncertainty

in Artificial Intelligence (Montreal, Canada, 2009), pp. 268–276.

[47] Kearns, Michael, Littman, M., and Singh, S. An efficient exact algorithm for singly

connected graphical games. In Proceedings of Advances in Neural Information Pro-

cessing Systems (British Columbia, Canada, 2001).

[48] Kearns, Michael, Littman, M., and Singh, S. Graphical models for game theory. In

Proceedings of the 17th Annual Conference on Uncertainty in Artificial Intelligence

(CA, USA, 2001).

[49] Kim, Yoonheui, Nair, Ranjit, Varakantham, Pradeep, Tambe, Milind, and Yokoo,

Makoto. Exploiting locality of interaction in networked distributed pomdps. In AAAI

Spring Symposium on Distributed Planning and Scheduling (2006).

[50] Koller, Daphne, Megiddo, Nimrod, and von Stengel, B. Efficient computation of

equilibria for extensive two-person games. Games and Economic Behavior 14 (1996).

[51] Koller, Daphne, and Milch, B. Multi-agent influence diagrams for representing and

solving games. In Proceedings of the Seventeenth International Joint Conference on

Artificial Intelligence (2001), pp. 1027–1034.

172

[52] La Mura, Pierfrancesco. Game networks. In Proceedings of the 16th Annual Confer-

ence on Uncertainty in Artificial Intelligence (San Francisco, CA, 2000), pp. 335–343.

[53] Lemke, Carlton, and Howson, Joseph. Equilibrium points of bimatrix games. Journal

of the Society of Industrial and Applied Mathematics 12 (1964), 413–423.

[54] Manjhi, Amit, Gibbons, Phillip B., Ailamaki, Anastassia, Garrod, Charles, Maggs,

Bruce M., Mowry, Todd C., Olston, Christopher, Tomasic, Anthony, and Yu, Haifeng.

Invalidation clues for database scalability services. In Proceedings of the 23rd Inter-

national Conference on Data Engineering (Istanbul, Turkey, April 2007).

[55] Maranas, C., and Floudas, C. Finding all solutions to nonlinearly constrained systems

of equations. Journal of Global Optimization 7 (1995), 143–182.

[56] McKelvey, Richard D., and McLennan, Andrew M. Computation of equilibria in

finite games. Handbook of Computational Economics (1996), 87–142.

[57] McKelvey, Richard D., McLennan, Andrew M., and Turocy, Theodore. Gambit: Soft-

ware tools for game theory, 2007.

[58] McKelvey, Richard D., and Palfrey, T. Quantal response equilibria for extensive form

games. Games and Economic Behavior 10 (1995), 6–38.

[59] McKelvey, Richard D., and Palfrey, T. Quantal response equilibria for extensive form

games. Experimental Economics 1 (1998), 9–41.

[60] Mostafa, Hala, and Lesser, Victor. Offline planning for communication by exploiting

structured interactions in decentralized MDPs. In 2009 IEEE/WIC/ACM International

Conference on Web Intelligence and Intelligent Agent Technology (Italy, 2009), IEEE

Computer Society, pp. 193–200.

173

[61] Mostafa, Hala, and Lesser, Victor. Exploiting structure to efficiently solve loosely

coupled stochastic games. In AAMAS 2010 Workshop on Multi-agent Sequential

Decision-Making in Uncertain Domains (Toronto, Canada, 2010), pp. 46–53.

[62] Mostafa, Hala, and Lesser, Victor. Compact Mathematical Programs For DEC-MDPs

With Structured Agent Interactions. In Proceedings of the 27th Conference on Un-

certainty in Artificial Intelligence (UAI 2011) (Barcelona, Spain, July 2011).

[63] Mostafa, Hala, Lesser, Victor, and Miklau, Gerome. Self-interested database man-

agers playing the view maintenance game. In Proceedings of the Seventh Interna-

tional Conference on Autonomous Agents and Multi-Agent Systems (Estoril, Portugal,

May 2008), IFMAAS, pp. 871–878.

[64] Myerson, Roger B. Game Theory: Analysis of Conflict. Harvard University Press,

1991.

[65] Nair, R., Tambe, M., Yokoo, M., Pynadath, D., and Marsella, S. Taming decentralized

pomdps: Towards efficient policy computation for multiagent settings. In Proceedings

of the Eighteenth International Joint Conference on Artificial Intelligence (IJCAI)

(2003), pp. 705–711.

[66] Nair, Ranjit, Tambe, Milind, Roth, Maayan, and Yokoo, Makoto. Communication for

improving policy computation in distributed pomdps. In Proceedings of The Third In-

ternational Joint Conference on Autonomous Agents and Multiagent Systems (2004),

ACM Press, pp. 1098–1105.

[67] Nair, Ranjit, Varakantham, Pradeep, Tambe, Milind, and Yokoo, Makoto. Networked

distributed pomdps: A synthesis of distributed constraint optimization and pomdps.

In Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI-

05) (2005).

174

[68] Oliehoek, Frans A., Whiteson, Shimon, and Spaan, Matthijs T. J. Lossless clustering

of histories in decentralized POMDPs.

[69] Petrik, Marek, and Zilberstein, Shlomo. Anytime coordination using separable bilin-

ear programs. In Proceedings of the Twenty-Second Conference on Artificial Intelli-

gence (2007), pp. 750–755.

[70] Pynadath, David V., and Tambe, Milind. The communicative multiagent team deci-

sion problem: Analyzing teamwork theories and models. Journal of Artificial Intelli-

gence Research 16 (2002), 2002.

[71] Roth, Maayan, Simmons, Reid, and Veloso, Maria Manuela. Reasoning about joint

beliefs for execution-time communication decisions. In Proceedings of The Fourth In-

ternational Joint Conference on Autonomous Agents and Multi Agent Systems (2005).

[72] Saad, Youcef, and Schultz, Martin H. GMRES: A generalized minimal residual algo-

rithm for solving nonsymmetric linear systems. SIAM Journal on Scientific Comput-

ing 7, 3 (1986), 856–869.

[73] Seuken, Sven, and Zilberstein, Shlomo. Improved memory-bounded dynamic pro-

gramming for decentralized pomdps. In Proceedings of the 23rd Conference on Un-

certainty in Artificial Intelligence (UAI) (July 2007).

[74] Seuken, Sven, and Zilberstein, Shlomo. Memory-bounded dynamic programming for

dec-pomdps. In Proceedings of the 20th International Joint Conference on Artificial

Intelligence (IJCAI) (January 2007).

[75] Seuken, Sven, and Zilberstein, Shlomo. Formal models and algorithms for decentral-

ized decision making under uncertainty. Autonomous Agents and Multi-Agent Systems

17, 2 (2008), 190–250.

175

[76] Shakshuki, Elhadi, Koo, Hsiang-Hwa, Benoit, Darcy, and Silver, Daniel. A dis-

tributed multi-agent meeting scheduler. Journal of Computer and System Sciences

74, 2 (2008), 279–296.

[77] Shen, Jiaying, Becker, Raphen, and Lesser, Victor. Agent interaction in distributed

mdps and its implications on complexity. In Proceedings of the Fifth International

Joint Conference on Autonomous Agents and Multi-Agent Systems (AAMAS 2006)

(Japan, 2006), ACM, pp. 529–536.

[78] Shen, Jiaying, Lesser, Victor, and Carver, Norman. Minimizing communication cost

in a distributed bayesian network using a decentralized mdp. In Proceedings of Sec-

ond International Joint Conference on Autonomous Agents and MultiAgent Systems

(AAMAS 2003) (Melbourne, AUS, July 2003), vol. AAMAS03, ACM Press, pp. 678–

685.

[79] Sims, Mark, Mostafa, Hala, Horling, Bryan, Zhang, Haizheng, Lesser, Victor, and

Corkill, Dan. Lateral and Hierarchical Partial Centralization for Distributed Coordi-

nation and Scheduling of Complex Hierarchical Task Networks.

[80] Spaan, Matthijs T. J., Gordon, Geoffrey J., and Vlassis, Nikos. Decentralized plan-

ning under uncertainty for teams of communicating agents. In Proceedings of the

Fifth International Joint Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2006) (2006), pp. 249–256.

[81] Spaan, Matthijs T. J., Oliehoek, Frans A., and Vlassis, Nikos. Multiagent planning

under uncertainty with stochastic communication delays.

[82] Spaan, Matthijs T.J., and Melo, Francisco S. Interaction-driven markov games for

decentralized multiagent planning under uncertainty. In Proceedings of the 7th In-

ternational Joint Conference on Autonomous Agents and Multiagent Systems (Estoril,

Portugal, 2008), pp. 525–532.

176

[83] Stengel, Bernhard Von. Efficient computation of behavior strategies. Games and

Economic Behavior 14 (1996), 220–246.

[84] Stengel, Bernhard Von, van den Elzen, H., and Talman, A. J. J. Tracing equilibria in

extensive games by complementary pivoting. Discussion paper No. 9686, CentER for

Economic Research, Tilburg University, 1996.

[85] Szer, Daniel, and Charpillet, Francois. Point-based dynamic programming for dec-

pomdps. In Proceedings of the National Conference on Artificial Intelligence (AAAI)

(2006).

[86] Turocy, Theodore. A dynamic homotopy interpretation of the logistic quantal re-

sponse equilibrium correspondence. Games and Economic Behavior 51 (2006), 243–

263.

[87] Varakantham, Pradeep, young Kwak, Jun, Taylor, Matthew, Marecki, Janusz, Scerri,

Paul, and Tambe, Milind. Exploiting coordination locales in distributed pomdps via

social model shaping. In Proceedings of the International Conference on Automated

Planning and Scheduling (Thessaloniki, Greece, 2009).

[88] Velagapudi, Prasanna. Distributed Planning for Large Teams. PhD thesis, Carnegie

Mellon University, 2010.

[89] Vickrey, David, and Koller, Daphne. Multi-agent algorithms for solving graphical

games. In Eighteenth national conference on Artificial intelligence (Alberta, Canada,

2002), pp. 345–351.

[90] Watson, Layne T. Theory of globally convergent probability-one homotopies for non-

linear programming. SIAM Journal on Optimization 11 (March 2000), 761–780.

[91] Watson, Layne T., Sosonkina, Maria, Melville, Robert C., Morgan, Alexander P.,

and Walker, Homer F. Algorithm 777: Hompack90: a suite of fortran 90 codes

177

for globally convergent homotopy algorithms. ACM Transactions on Mathematical

Software (TOMS) 23 (December 1997), 514–549.

[92] Witwicki, Stefan, and Durfee, Edmund. Commitment-driven distributed joint pol-

icy search. In Proceedings of the 6th international joint conference on Autonomous

Agents and Multiagent Systems (2007), pp. 480–487.

[93] Witwicki, Stefan, and Durfee, Edmund. Flexible approximation of structured inter-

actions in decentralized markov decision processes. In Proceedings of the 8th in-

ternational joint conference on Autonomous Agents and Multiagent Systems (2009),

pp. 1251–1252.

[94] Witwicki, Stefan J., and Durfee, Edmund H. Influence-based policy abstraction for

weakly-coupled Dec-POMDPs. In Proceedings of the 20th International Conference

on Automated Planning and Scheduling (ICAPS-2010) (Toronto, Canada, May 2010),

pp. 185–192.

[95] Wu, Jianhui, and Durfee, Edmund H. Mixed-integer linear programming for

transition-independent decentralized MDPs. In AAMAS 2006 (Hokkaido, Japan,

2006).

[96] Xuan, Ping, and Lesser, Victor. Incorporating Uncertainty in Agent Commitments.

In Proceedings of the Sixth International Workshop on Agent Theories, Architectures,

and Languages (ATAL-99) (January 1999), pp. 57–70.

[97] Xuan, Ping, and Lesser, Victor. Multi-agent policies: From centralized ones to de-

centralized ones. In Proceedings of the First International Joint Conference on Au-

tonomous Agents and Multi Agent Systems (2002), ACM Press, pp. 1098–1105.

[98] Zettlemoyer, Luke S., Milch, Brian, and Kaelbling, Leslie Pack. Multi-agent filtering

with infinitely nested beliefs. In NIPS (2008).

178

[99] Zhang, Chongjie, and Lesser, Victor. Multi-Agent Learning with Policy Prediction.

In Proceedings of the 24th AAAI Conference on Artificial Intelligence (Atlanta, 2010),

pp. 927–934.

179

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	9-2011

	Exploiting Structure in Coordinating Multiple Decision Makers
	Hala Mostafa
	Recommended Citation

	tmp.1323441779.pdf.Rko0r

