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The dissertation focuses on two issues that are broadly related to the urban plan-

ning of Washington, DC. The first two chapters consider the burgeoning food truck

industry in Washington, DC and the third chapter considers public transit rider-

ship and the impact of large maintenance programs that cause temporary but large

decreases in service quality.

In Chapter 1 I build and estimate a tractable model that captures some key

characteristics of the food truck industry. Characteristics of the industry such as

there being many small firms playing an entry game with various dimensions of

heterogeneity (for example, cuisine genre and quality) render regulations and poli-

cies difficult to assess and design, leading to local regulators resorting to ‘ad hoc’

policies to regulate the industry. For example, in Washington, DC scarce parking

spots at popular lunch locations are allocated through a random lottery. This

highlights the importance of a tractable model that captures importance features



of the industry which can be estimated and used to consider counterfactual policies.

In Chapter 2 I consider two counterfactual scenarios. In the first counterfactual

scenario I reduce the reach of the lottery and I find that the lottery allows for the

survival of firms with lower quality and leads to higher prices. Expected utility for

consumers are lower and firm profits are higher in current regime compared to a

couterfactual regime where some locations are not included in the lottery. The net

welfare effect for this counterfactual scenario is an increase in total daily welfare

of $2.294.18. In my second counterfactual scenario where the non-lottery locations

have their parking capacity increased by 2 spaces, I find a positive impact for both

truck owners and consumers with a net increase in total daily welfare of $8,260.26.

Chapter 3 considers the impact of large public transit maintenance programs

on long-run ridership. An agency that manages large transit systems must make

investments to maintain a level of quality to sustain ridership. If consumers face

switching costs when changing their mode of transport, the large and unavoidable

disruptions to services resulting from a large maintenance program may provide

a sufficient negative utility shock for riders to substitute to alternative modes of

transport and not return after the repairs are completed. In this chapter I con-

sider such indirect costs that a transportation agency may incur in the context

of Metrorail, the subway system that stretches through the District of Columbia

(DC), Maryland (MD), and Virginia (VA) operated by the Washington Metropoli-

tan Area Transit Authority (WMATA). I find that there has been a persistent

drop in ridership up to 10 months after the repairs on certain tracks have been

completed.
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Introduction

This dissertation covers two topics. Chapter 1 and 2 deals with competition and

parking space allocation in the food truck industry in Washington, DC, and Chap-

ter 3 deals with public transit ridership and the long-run impacts of a large-scale

maintenance program.

An industry with many firms and various dimensions of heterogeneity is difficult

to analyze and consequently poses challenges for the assessment and implementa-

tion of regulatory policies. One such example is a young but booming food truck

industry. In this industry, hundreds of firms serve different types (‘cuisine genre’)

of products with varying quality at many different locations that have capacity

constraints (parking space is limited). Local regulators have responded to this

emerging industry in various ‘ad hoc’ ways. To obtain a better understanding of

the industry and assess counterfactual policies, in Chapter 1, I build a structural

model of the food truck industry that accounts for important dimensions of het-

erogeneity and competition to assess the welfare effects of counterfactual scenarios.

The model is kept tractable by borrowing ideas from the Oblivious Equilibrium

[Benkard et al., 2008] literature. I apply this model to the food truck industry in

Washington, DC and estimate its key parameters. I find that consumers prefer-

ences are only moderately correlated within cuisine genres and that trucks’ own

price elasticity’s are on average about -1.61. Firms price-cost margin is on average

0.66, which closely resembles industry insiders rule of thumb for a truck that can

operate into the foreseeable future. I find that the choice probabilities for lottery
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locations are higher than that of the non-lottery locations given both are in a

truck’s choices set. In my model, this implies that given the lottery, entry costs

for the lottery locations are lower than that of the non-lottery locations.

In Chapter 2, I employ the results from chapter one to shed light on the impacts

of counterfactual regulatory regimes. Under the current regime the allocation of

parking spaces for food trucks are determined by a lottery for some locations. My

counterfactual simulations of reducing the reach of the lottery to include fewer lo-

cations suggest that the lottery is dampening competition and decreasing the costs

that firms must incur to enter a market location. As a result, I find that it allows

for the survival of firms with lower quality, higher prices, while lowering expected

utility for consumers, and awarding higher profits to firms. The net welfare effect

for this counterfactual scenario is an increase in total daily welfare of $2.294.18.

I also consider a counterfactual scenario where the non-lottery locations increase

their parking capacity by 2 spaces. I find that this is beneficial for both truck

owners and consumers with a net increase in total daily welfare of $8,260.26.

Chapter 3 considers the impact of large public transit maintenance programs

on long-run ridership. An agency that manages large transit systems must make

investments to maintain a level of quality to sustain ridership. If consumers face

switching costs when changing their mode of transport, the large and unavoidable

disruptions to services resulting from a large maintenance program may provide

a sufficient negative utility shock for riders to substitute to alternative modes

of transport and not return after the repairs are completed. In this chapter I

consider such indirect costs that a transportation agency will incur in the context of

Metrorail, the subway system that stretches through the District of Columbia (DC),
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Maryland (MD), and Virginia (VA) operated by the Washington Metropolitan

Area Transit Authority (WMATA). I find that there has been a persistent drop

in ridership of about 1.68% up to 10 months after the repairs on certain tracks

have been completed. Also, commuters that are originating from VA seemed to

have substituted more heavily away from using Metrorail compared to their MD

counterparts.
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Chapter 1 Location Choice and Price Competition with

Differentiated Products and Many Firms: An

Application to the Mobile Vending Industry in

Washington, DC.

1.1 Introduction

In this chapter I build a structural model of the food truck industry that accounts

for important dimensions of heterogeneity, market entry, and competition. Sub-

sequently, I apply this model to the food truck industry in Washington, DC and

estimate its key parameters. To begin thinking about this market as an economic

issue, it is useful to observe the following: there are many small firms, who each

truck chooses to serve a well-defined market based on geographical location (for

example, street parking near a prominent park such as Franklin Square) and time

of day (for example, in DC the “lunch break” shift). There are a limited number of

parking spots at the most popular locations and different consumer demographics

and preferences at each location.

Space is a scarce resource in a congested city and it is important for local

regulators to allocate and manage such resources efficiently. For example, a regu-

lator may want to know the welfare impacts of expanding street parking spaces for

popular food truck lunch locations or they may want to consider how the current

regulatory policy is impacting the industry relative to other policies. To be able

to consider these counterfactual scenarios one needs a tractable but sufficiently
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realistic model.

Many industries are comprised of a large number of small firms that are het-

erogeneous in various dimensions. These industries are difficult to model and

analyze due to the rapid increase in computational burden for solving equilibria

with many firms and because most of the theoretical literature considers stylized

duopoly models. As a consequence most structural empirical industrial questions

center around oligopolistic industries inhabited by a handful of firms.1 Given these

modelling challenges, the assessment and design of regulatory regimes in these in-

dustries are difficult. For example, in the US food truck industry within a city,

there are hundreds of firms selling products of varying quality and type who must

choose the location to enter and compete in every day. Also, given entry to a

location, each type of firm may have different competitive effects on each other

implying the existence of informational and allocative externalities depending on

where a firm decides to operate in and the market structure that ensues from these

decisions.

The difficulty in modelling this environment comes from the fact there are

many heterogeneous firms. Outside of the food truck industry, any setting where

a firm must secure the right to operate and then compete with other firms who

have also secured this right will be similar. For example, the allocation of types

of shops in a newly developed mall, the allocation of bundles of licenses. In this

paper I build and estimate a model that attempts to account for these important

features of the food truck industry while maintaining tractability. The question

1In a dynamic context, Berry and Pakes [1993] explore the curse of dimensionality and how
quickly computational burden increases as the number of firms increases. My model is static;
however, it captures other dimensions of heterogeneity which increases computational burden
greatly if trying to solve for a standard Nash equilibrium.
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of designing a parking location allocation mechanism for the industry is interest-

ing. The multiple dimensions of firm and market heterogeneity, and the various

externalities imply a simple auction may not be the ideal mechanism for this allo-

cation problem. However, these interesting features are also the road blocks with

respect to methodology and theory. With this in mind, the goal of this chapter

is not to find and suggest some type of theoretically optimal mechanism, but to

assess and quantify how competing regimes perform. One counterfactual regime I

consider reduces the reach of the currently employed lottery system by 2 locations.

The second counterfactual regime increases non-lottery locations’ parking capacity.

My model of the food truck industry has buyers with nested logit utilities,

where the nests are formed around cuisine type, which is a dimension of hetero-

geneity in the firms. This modelling choice allows seller’s heterogeneity to impact

demand in a meaningful and tractable way. The sellers (trucks) play a two-stage

game where in the first stage given a conjecture about the state of each market

location, they choose prices and choose a location to enter where they incur a entry

cost that is specific to the location. Then in the second stage the trucks explicitly

compete with other firms that have entered the particular market. This ordering of

the seller’s decision where he chooses price then location, is novel in the literature

but is reasonable in my context. It is easily observed that the truck’s prices do not

vary over time but their locations change daily.2 I find that removing a key food

truck location (L’Enfant from the lottery increases daily total welfare by $2,294.18

and that increasing the parking space capacity of current non-lottery locations by

2 spaces increases daily total welfare by $8,260.26

2In Schmalensee [1992] the author briefly discusses motivations for the order in which firm
choices are made. It is argued that the dynamic differences between price choice and product
characteristic choice are not clear, and there is a tradition to think that maybe price is chosen
before other attributes.
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In Chapter 1, Section 1.2 will discuss where my work fits in the existing litera-

ture. Section 1.3 offers a description of institutional background for the food truck

industry in Washington, DC and describes the data used to estimate the model.

Section 1.4 will develop the structural model and provide an exposition of the equi-

librium. Section 1.5 interprets and discusses the estimation stages and estimation

results. Section 1.5 assesses the model’s performance by comparing the model’s

equilibrium solution outcomes and their estimated counterparts.

1.2 Related Literature

There is a rich body of literature that considers the endogeneity of market struc-

ture. Classic examples include Berry [1992] and Bresnahan and Reiss [1990]. We

learn from these seminal contributions that when a firm decides to enter a market

it is a strategic decision. Favorable states of a market will increase profits, but also

attract more entrants, hence a firm must evaluate these trade-offs before choosing

to enter himself. When it comes to empirically estimating these types of models

the researcher encounters a number of issues due to the large number of configu-

rations that must be checked to find whether a distribution of players constitute

an equilibrium. Such an example is Mazzeo [2002], where model of endogenous

product type choice and market structure is considered under the assumption of

complete-information. Mazzeo [2002] shows that even with two or three product

types, the number of profit inequality constraints that must hold is large and is

quite burdensome to estimate.

A paper that addresses these difficulties is Seim [2006]. Seim [2006] considers

the product characteristic choice decision of firms and applies this framework to
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the video rental industry. In this industry the product offered itself is relatively

homogenous, but location is a major source of product differentiation and Seim

considers this dimension as an endogenous choice by the firms. However, in Seim

[2006] demand and explicit competition is not modeled, and a reduced form ap-

proach is taken to estimate a firm’s entry probability. For me to estimate the dollar

value of location entry costs and industry welfare I model entry and price com-

petition. There is little work in the literature that models entry and also explicit

competition after entry. For example, Suzuki [2010] models hotel chain entry de-

cisions in a dynamic setting, but again doesn’t model competition explicitly. The

difficulties in modelling competition explicitly come from the lack of data and/or

the computational burden in solving for the equilibrium with many firms.

I overcome these difficulties in modelling the firm’s entry decision and the com-

petition following entry to a location by using self-collected data and by using a

simulation based iterative solution method. My model maintains tractability by

assuming that the average of the realized distribution of firms in the market is

equal to the firms’ long-run conjecture of the state of the market, and I with this

assumption can compute the equilibrium distribution of firm types, quality, and

number of operational firms within the modelled locations. This key assumption

is behaviorally plausible as it is reasonable to argue that individual small firms

use their experiences and observations for a market realization to come up with a

expected long run state of the market and is similar to the assumptions made for

oblivious equilibrium in Benkard et al. [2008].3

One method of dealing with the burden of solving for a complete-information

3For more recent papers using moment-based equilibrium concepts see Xu [2008], Qi [2013],
Saeedi [2014], Sweeting [2015].
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Nash equilibrium is to assuming incomplete-information to effectively render all po-

tential entrants to be homogenous as in Seim [2006]. This makes a model tractable,

but in the process interesting economic insights related to firm heterogeneity and

types may be lost. My model will allow the trucks to be of different types and

qualities. Allowing for firm types, while considering the entry decisions for firms

allows me to look at the equilibrium distribution of firm types that prevails in

equilibrium. This is important because in many contexts, it is not just the num-

ber of competing firms that matter in an entry decision, but the number of firms

that are more directly in competition to your type. This intuition is related to

Wollmann et al. [2014] where the author considers the importance of product po-

sitioning in the context of commercial vehicles. Wollmann et al. [2014] finds that

product entry has a dramatic impact on prices and purchases. In my context, this

finding emphasizes the importance for researchers to allow the firms not to only

choose whether to enter a market or not, but allowing them to strategically choose

which market to enter given the state of each market as it appears to your own type.

The food truck industry in Washington, DC has been examined by Anenberg

and Kung [2015]. The authors explore the impact of information technology on

food truck growth and suggest that an advantage of food trucks over traditional

brick and mortar establishments is that they can use mobility to capitalize on the

consumer’s taste-for-variety. Obtaining data from DC food trucks’ Twitter feed for

the trucks’ location choice, a logit model is estimated by defining a reduced form

profit function. Their results indicate that there is a negative impact of a truck

visiting the same location in short succession. Relying on strong assumptions on

industry total revenues, they estimate that the loss of choosing the same location

two days in a row results in a $257 loss in the day’s profit, which is about 38% of

9



average daily profits.

However, such reduced form analysis does not provide an opportunity for un-

derstanding the underlying parameters that dictate the consumer’s and vendor’s

market behavior and hence is limited in scope when considering policy simulations

and welfare analysis. Also, Anenberg and Kung [2015] does not deal with the cost

arising from the fact that at each location, parking spots are scarce, which is an

important factor when considering the industry from a regulation and policy per-

spective.

1.3 Industry Details and Data

1.3.1 The Food Truck Industry

Food trucks are very common in large cities and each truck requires a parking spot

to operate. In these cities space is a scarce resource that needs to be carefully

managed. With relatively low start-up costs, mobile vending as opposed to tradi-

tional brick-and-mortar setups buy the entrepreneurs an opportunity to be more

experimental with their products. This coupled with an increase in the import and

export of culinary culture in the last decade, has led to the rapid penetration of

food truck food as standard meals and an increase in variety of the types of cuisine

offered. Accurate numbers depicting the growth of culinary experimentation and

the mobile vending industry are hard to come by, however a report by Mountain

View-based financial software company, Intuit [2012], forecasts that the “rolling

restaurants” are on track to be a $2.7 billion national industry in 2017 and its

market share for meals to jump to 3 or 4 percentage points in the next five years.
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This is particularly interesting when you consider the market research company,

NPD Group’s [2016] finding that for weekday casual dining and fast casual restau-

rants, food service lunch visits declined by 7% in the quarter ending June 2016

compared to same quarter the year before.

Simple Google trend searches support this phenomenon. In Figure 1.1 I show

web search trends for three keywords; donburi, kimchi and food trucks. It can

clearly be seen that the interests in foreign food items have increased noticeably

in the last decade, particularly since 2010. With interests in food trucks following

the pattern closely.4 In particular, this effect is likely to be much stronger in large

cities, where the growth of the food truck industries are concentrated. I can’t pin

down exactly why the mobile vending industry saw such an explosive growth and

this paper does not attempt to explain this. I will be focusing on the issues that

policy makers must consider now that this industry exists.

4The seasonal component of the interest in food trucks in panel (c) seem to be due to the fact
that warmer temperatures that allow a customer to eat outside garner more interest for food
trucks.
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(a) Interest in Donburi over time. (b) Interest in Kimchi over time.

(c) Interest in Food Trucks over time.

Figure 1.1: Web Search Trends in America for Keywords Gauging the Advent of
the Mobile Vending Industry.

These policy issues range from hygiene and quality regulation to parking, traffic

and licensing regulations. Out of the broad range of issues, this project will specifi-

cally look at parking allocation at various locations where food trucks agglomerate

at and the competition the food trucks engage in given a tendency for consumers

to have preferences over different cuisine genres as well as the overall quality of

the meals offered. Evidence of policy maker’s concerns can be seen in DC’s food

truck industry. The DC Department of Consumer and Regulatory Affairs (DCRA)

governs the licensing and regulation of mobile vendors in DC. Starting from De-

cember 2013 the DCRA has implemented a monthly lottery5 system that randomly

allocates vendors who register to enter the lottery to a predetermined list of pop-

ular locations. This system was the answer to the widespread problem of trucks

showing up extremely early in the morning to secure the best spots, consequently

congesting the area and inducing many parking violations and pedestrian safety

5The exact lottery mechanism is proprietary so I condition my analysis on the outcome of the
monthly lotteries.
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concerns. The officially designated lottery locations can be seen in Figure 1.2.6

Figure 1.2: The official DC Department of Consumer and Regulatory Affairs
(DCRA) designated lottery locations and number of parking spots allotted.

Although a simple lottery is easy to implement and reduces the various entry

6The exact page can be found at https://eservices.dcra.dc.gov/VendingLottery/MRVLocations.pdf
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costs that trucks need to incur to secure a popular spot, it may not be the ideal

mechanism for allocating these scarce parking locations. For example on the 8th

of November, 2016, at Union Station, there were 6 Asian trucks out of 11 trucks

which may indicate a lack of variety. The lottery can generate situations where

there is not an ideal level of variety at different locations, and at these locations

trucks could trade spots for a Pareto improvement. An extreme example would

be, assuming consumers like variety of cuisine genres, if there is no variety with

only Asian trucks at Franklin Square and no variety with only American trucks

at L’Enfant, it would be optimal to change the allocation of the trucks to reflect

more variety at both locations. Also, the marginal value of variety maybe greater

at L’Enfant where there are little outside options for lunch. Another dimension

that must be considered in this allocation problem is truck quality, which opens

up opportunities for more sophisticated mechanisms (for example, auctions) that

may correctly price the value of a scarce spot for different trucks.

A simple motivating example can shed some light onto the subtleties involved

in modelling competition and regulatory policies when consumers have preferences

that are nested within a particular cuisine genre category (for example, Asian cui-

sine and Mediterranean cuisine). Consider a parking lot with 2 food trucks and

no outside option for lunch. These two trucks are of different genres but have

exactly the same quality and suppose that the consumer’s preferences exhibit no

correlations between similar genres. We can model this with a simple logit model

and these two trucks will share the market evenly in equilibrium.

Under these circumstances, if we add a third truck to this location of the same

quality, regardless of genre, the third truck will take equal market share from the
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incumbent trucks ending up with a third of the market. However, if consumer’s

preferences are correlated within genres this will not be the case. Consider now a

nested logit model, where consumers have preferences with nests formed around

cuisine genres. Now the genre of the third truck impacts the incumbents and the

entrant differently. In particular, both incumbent trucks would prefer the genre of

the third truck to be different from their own, as then they will lose less market

share compared to if the third truck was of the same genre. In other words, as the

correlation within the nests become stronger, trucks and consumers want “more”

variety in the market place. Depending on the correlation of preferences within

cuisine genres, the optimal distribution of quality and types of trucks in the mar-

kets should be different. This simple example shows that when we are allocating

scarce parking spaces to vendors, we must take into account these trade-offs to

correctly measure and analyze welfare.

Allocative externalities where the value of entering a location for a truck de-

pends on the identity of who is going to be at the location makes the setting

theoretically intractable and characterizing and designing an optimal mechanism

in this setting is not the scope of this paper. Knowing these effects exist in the

market, I am attempting to build a model that captures these effects to assess

the current policy and the impact of counterfactual scenarios that need not be

theoretically optimal.

1.3.2 Data

The estimation of the model utilized data from multiple sources. Most of the de-

mand data used to estimate the nested logit demand model is manually collected

and processed in two stages. Firstly, to efficiently collect market share data I
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investigated the proportions of consumer arrivals at a food truck location during

different times of the consumer’s lunch break. Secondly, using these time dependent

proportions I scaled up the quantity count for each truck (number of consumers

served) during the specific time interval by this proportion to obtain the “total

lunch shift” market shares for each individual truck and the overall food truck

segment market share by comparing it with the number of primary jobs in the

area obtained from the publicly available Census Longitudinal Origin-Destination

Employment Statistics (LODES) data set which is derived from the Longitudinal

Employer-Household Dynamics (LEHD) data set.

In the process of collecting the arrival proportions I visited a total of 10 food

truck locations (lottery designated and non-lottery) from 11am to 1 35pm and

counted the stock of consumers in line at a truck at the location approximately

every 10 minutes. Then assuming an average departure rate of 2 customers per

minute per truck7 I backed out the number of new arrivals and computed the

proportion of arrivals that happened during each 10 minute interval. Effectively,

this is a probability distribution of the consumers arriving to buy lunch during

the aforementioned time frame. I conducted a Kolmogorov–Smirnov test on these

distributions to assess if any statistical differences exist between every pair and

find that any differences between all 10 of the distributions that I counted were

statistically insignificant. There are limitations to this data, as it is manually col-

lected and the sample size is limited, but it has helped me to collect market share

data from multiple locations each day.

The resulting market share data consists of 30 location observations from 12

7This number was obtained from conversations with truck owners and I believe it is reasonable
to believe that the rate at which a truck serves its customers are not time varying during the
shift.
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Figure 1.3: Map of Downtown Washington, DC and Surrounding Neighborhoods.
Markers Indicate Food Truck Locations Revealed by Trucks’ Twitter Feeds. The
Triangles and Squares make up 86% of the Observations.
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different locations, of which 9 are lottery and 3 are non-lottery and a total of 331

market share observations from 154 unique trucks (shown in Table 1.1). Location

specific data such as the market size and mean earnings from the LODES data

set8 and truck specific data such as the number of Twitter Followers and their

Yelp reviews are used to supplement the demand data. Figure 1.3 shows the food

truck lunch locations that are observed in the Twitter data colored by lottery (all

modelled), non-lottery but modelled, and not modelled.

I do not observe the average price of each order ticket for each truck, so we must

determine what price to use when we estimate the demand model. For a subset of

the data, I asked the truck owners at the end of the shift what the average price

of their sales item on that day was. For these trucks I use these prices, for others

I make an assumption. For example, I assume that for kabob trucks, that the

menu item of interest is the average price of their pita sandwiches, for taco trucks

I assume that a meal is buying 3 tacos, and for rice bowl trucks I use the median

price of their entrees. If revenue data was available the measure of average price

could be improved, but this was not available. I believe this method is a second

best to thinking about the prices of each vendor. Tables 1.1 and 1.2 show some

summary statistics from the demand data.

8Using the LODES OnTheMap web application (https://onthemap.ces.census.gov/) I drew a
0.15 mile radius circle and defined it as the “market”.
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Utilized
Locations Lottery Mean Monthly Earnings ($) Market Size
19th & L No 7,266.95 24,583
CNN (First St NE) No 6,725.52 16,365
Farragut Square Yes 7,439.35 23,779
Federal Center / Patriots Plaza Yes 7,149.01 3,659
Franklin Square Yes 7,996.54 14,317
Gallery Place / Chinatown No 6,511.07 10,783
L’Enfant Yes 6,974.15 16,901
Metro Center Yes 7,817.77 23,020
Navy Yard Yes 9,257.72 2,898
NoMa / New York Ave Metro Yes 7,128.24 6,074
State Department Yes 6,550.04 9,358
Union Station Yes 6,512.05 14,124

Note:The Market Size is the total number of primary workers.

Table 1.1: Location Characteristics from the LODES data

Variable Mean Std. Dev. Min. Max.
Truck Characteristics
Quantity 82.98 38.87 13 191
Price 9.48 1.47 7 16
Twitter Followers 1,385.20 2,228.03 0 14,000
Yelp Review 3.70 0.77 1 5
Market Share 0.0064 0.0062 0.0006 0.0614

Location Level Characteristics
Total Consumers Served 1,035.55 346.445 272 1717
Potential Market 15,705.13 4,856.113 2,898 24,583
Outside Option Share 0.93 0.03 0.81 0.98
Mean Daily Earnings 237.74 19.25 217.04 308.59

Note: Outside Option Share is computed as no. of primary jobs−total consumers served
no. of primary jobs

Table 1.2: Summary Statistic from the Demand Data

Another data set that was compiled and used in the estimation of the model is

Twitter data scraped from the DC food truck location aggregator www.foodtruckfiesta.com.

This data set contains individual food trucks location choices that have been an-

nounced via the truck’s Twitter account. In this data set I observe more locations
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than the ones I have collected demand data from and have included in my model.

The locations that I model account for approximately 86% of the Twitter data

location choices. The locations I have modelled were chosen to include all of the

lottery, and comparable key non-lottery locations. This means that the locations

that are not modelled are fringe DC locations and also university-oriented locations

such as George Washington University (Foggy Bottom) and Georgetown Univer-

sity (Georgetown). Due to the fact that the researcher does not observe exactly

how the lottery is conducted it is impossible to simulate over different lottery out-

comes, so my model takes the lottery outcomes as given (i.e. the trucks choice sets

are fixed when the trucks are making their location choices). This implies that

to complete this Twitter data, I must construct the choice set for each truck. I

do this by matching the monthly DCRA lottery outcomes and the Twitter data

over 4 months spanning July to October, 2017. This was a combination of a fuzzy

string matching problem9 and deducing the identity of trucks by matching where

a truck has tweeted to be and where the lottery outcome suggests a truck to be.

I have managed to match about 70% of all the trucks that appear in the Twitter

data and these trucks supplemented with the location and truck characteristics

from the above-mentioned data sources make up the final Twitter data set.

9This exercise involves scoring each pair of truck names in the Twitter data and the lottery
outcomes based on similarity of their string names. Once I obtained these scores I investigated
each Twitter data truck’s top 3 similar lottery data truck names to find the correct match.
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Figure 1.4: The official DC Department of Consumer and Regulatory Affairs
(DCRA) lottery outcomes.

The page from the actual lottery outcome of the month of June, 2017 available

at DCRA’s vending web page10 is shown in Figure 1.4. It lists the site permit

number, the name of the business, and the markets business is allowed to operate

in on each day of the week. To register to enter and operate at these locations there

is a total fixed cost of $175/month which is the sum of a $25 entry fee and a $150

location site permit fee [DCRA, 2013]. A truck can choose to not pay the permit

fee and forgo its allocation, also trucks may trade their location on a given lottery

draw with another truck if the DCRA approves the trade. This may explain some

10https://dcra.dc.gov/mrv
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of the misfit of my model to the data as the rejection of the allocation post lottery

entry and permit swaps are not modelled. My model assumes that the lottery

outcomes we see are strictly adhered too and there is no convincing evidence that

leads me to believe that a significant portion of the location allocations are traded

or rejected. I observe most of the trucks that are supposed to be at the location in-

ferring from the lottery to be at the location once I arrive to collect the data. From

my demand data I can identify 68% of the trucks I actually observe are supposed

to be there according to the lottery. Also, the non-adherence is typically not in the

form of a different truck being at the location but a designated truck not showing

up (i.e. location has fewer trucks than the lottery allocation suggests) implying

that permit trades don’t compose a significant share of my observations. There is a

total of 139 designated lottery spots across the 9 locations and various measures of

the total number of trucks operating in Washington, DC suggests there are many

more trucks in total. The food truck location aggregator www.foodtruckfiesta.com

lists 245 trucks listed as being permitted to operate in DC. In the lottery outcomes

posted by the DCRA, I consistently count more than 220 individual site permits

allocated through the week.

Given that I don’t observe the whole industry (due to lack of man power and

data collecting resources) I would want the Twitter data and the demand data to

both be representative of the whole industry. Comparing distribution of cuisine

genres which I have divided into 7 categories (dessert trucks have been dropped

from the analysis), American, Asian, Caribbean, Exotic, Indian, Latin American

and Mediterranean, the observations from the Twitter data and the demand data

seem to represent quite a similar sample of the population as shown in Table 1.3.

One exception is in the Indian genre which tends to have less online presence than
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other genres, hence also Tweeting less.

Demand Data Twitter Data

Genre Freq. % Freq. %

Asian 60 18.13 516 16.14
American 118 35.65 1,073 33.55
Mediterranean 64 19.34 678 21.20
Latin American 38 11.48 387 12.10
Indian 23 6.95 66 2.06
Caribbean 20 6.04 223 6.97
Exotic 8 2.42 67 2.10

Total 331 3,198

Table 1.3: Comparison of the distribution of cuisine genres within each data set

Comparing the two data sets across the number of Twitter followers and Yelp

reviews, the Twitter data seems to be capturing trucks that have on average more

followers and higher Yelp reviews. This may be due to the fact that it is more

likely that a truck with more online presence is more likely to be broadcasting

their daily location through Twitter.

Truck heterogeneity and Quality

Trucks differ in both the quality of the product offered and their cuisine type. The

paper focuses on taking into account these dimensions of heterogeneity in assessing

regulatory policy. Figure 1.5 describes these features in the demand data. From

Table 1.3 we can see that there are overwhelmingly more American genre trucks

which are trucks that serve burgers, sandwiches, pizzas, Barbecue, etc. Mediter-

ranean and Asian trucks are a distant second and third. Now considering this
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together with the information in Figure 1.5, we can see that while there are an

abundant number of Mediterranean trucks, they don’t seem to be very active on

social media (less Twitter followers on average) and also seem to have a wider

distribution of Yelp reviews compared to the Asian trucks. This kind of hetero-

geneity will imply heterogeneous impacts given a change in regulatory regime. In

particular, we could expect that the low quality metric genres like Indian and

Mediterranean trucks along with abundant genre trucks like American trucks to

be affected most heavily by a regime that does away with the lottery.

(a) Number of Twitter followers by Cuisine Genre
(Accounts with followers above 5000 excluded)

(b) Yelp Review Stars by Genre

Figure 1.5: Descriptive Truck Heterogeneity

1.4 Model

1.4.1 Demand

Suppose a location l ∈ {1, ..., L} has entry cost cl, market size Ml, capacity con-

straint µl, and mean income Ȳl. g ∈ {0, .., G} denotes different cuisine types and

g = 0 denotes the outside option. j ∈ {1, ..., J} is an individual truck with quality

to consumers vj and marginal cost mcj. Hence, a triplet (vj, g(j),mcj) defines an

individual vendor and these parameters are all exogenous. The model does not
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consider cuisine genre choice of the food truck entrepreneur. Finally, let Γg(j)l de-

note the set of all trucks at location l with the same genre as truck j.

Given the firms’ prices and location outcomes (which will be described below),

consumers at the location have nested logit demand with nests formed around the

genre. This implies that the indirect utility of consumer i eating in location l,

consuming truck j’s product is:

Ulij = vj + α ln(Ȳl − pj) + ξlj + ζig(j) + (1− σ)εij (1.1)

and the indirect utility of consuming the outside good is:

Uli0 = α ln(Ȳl) + ζi0(j) + (1− σ)εi0 (1.2)

Where ε is i.i.d. Type I extreme value across products, ζig(j) is the group spe-

cific taste of the consumer, and σ measures the relative weight of idiosyncratic and

group preferences. Empirically, vj will be parameterized by the truck’s charac-

teristics like Yelp reviews and the number of Twitter followers. Note that in this

chapter including an income effect is important for two reasons. Firstly, it adds

more variation in the variable such that I can estimate α. Secondly, buying lunch

for consumers is a daily decision and is plausibly budgeted given the consumer’s

income.
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The above setup implies location market shares:

Sjl =
exp

(
vj+α ln(Ȳl−pj)

1−σ

)(∑
k∈Γg(j)l

exp
(
vk+α ln(Ȳl−pk)

1−σ

))−σ
∑G

g=0

(∑
k∈Γgl

exp
(
vk+α ln(Ȳl−pk)

1−σ

))1−σ (1.3)

1.4.2 Trucks

The Truck’s expected profit11 maximization is as follows. Firstly, he chooses a

price, and then given this price and vendor’s conjectures of the cuisine genre and

location specific market shares, he selects a location to enter which I model as a

standard logit discrete choice problem with zero profits if the choice is to not enter

any locations. In other words, profits of vendor j at location l are:

Πjl

(
pj, p−j, vj,mcj, g(j),Ml, Ȳl

)
= (pj −mcj)S

(
pj, p−j, vj, g(j), Ȳl, σ

)
Ml

− cl + λ(εjl − εj0) (1.4)

The λ is the scaling parameter12 and the ε are Type I Extreme Value. This

ordering of events, where price choice happens before location choice is an inno-

vation to the literature. An additional exogenous state of the model is the set

of locations that each truck can choose from and the number of parking spots at

each location. This location choice set is governed by the policy regime and the

number of parking spots by physical space. In the data, this is the DCRA lottery

outcome and respective parking space allotments as seen previously in Figure 1.2

11Expectations are taken over the truck’s own location choice probabilities and rival’s loca-
tion probabilities through some equilibrium conjecture about cuisine genres and location specific
market shares which will be introduced below.

12Since the “utility” of the truck is in actual dollars, the scale is important here
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and the number of street parking spaces at the locations on non-lottery locations.

Backwards induction implies the following maximization problem for truck j where

Lj denotes truck j’s location choice set:

max
pj

∑
l∈Lj

exp

(
Π̂jl(pj ,p−j ,vj ,mcj ,g(j),Ml,Ȳl,cl,σ)

λ

)
1 +

∑
l∈Lj

exp

(
Π̂jl(pj ,p−j ,vj ,mcj ,g(j),Ml,Ȳl,cl,σ)

λ

) ...
... ∗ Π̂jl

(
pj, p−j, vj,mcj, g(j),Ml, Ȳl, cl, σ

)
(1.5)

s.t. E[nl|c1, ..., cL] ≤ µl (1.6)

E[nl|c1, ..., cL] denotes the expected number of trucks at location l given the

entry costs of the locations, note that the entry costs are the parameters which in

equilibrium keep the number of trucks at a location feasible. More specifically, the

entry costs affect the location choice probability and the average location choice

probability determines the expected number of trucks at the location. An intu-

itive motivation for the entry costs is that it reflects the value of an additional spot

added to a location. The exogenous µl is effectively the fixed supply of parking

spots, while E[nl|c1, ..., cL] is the demand for parking spots in the market. The

difference between these two variables can be thought of as the excess demand

for parking at a location, and the vector of cl i.e c will be such that the market

in equilibrium clears. With this motivation, the interpretation of the entry costs

become clear and practical. For example, if c1 = 100, this would imply that a

truck is willing to pay up to $100 for an additional free parking spot at location

1. It is the fixed costs of securing a spot at a location relative to entering a fringe

location where capacity doesn’t matter. An alternative way to think about the
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entry costs is to think of them as some kind of congestion cost arising out of excess

demand. Too many trucks flock to one location inducing costs to the trucks if they

are to secure a spot and do business. The entry costs in equilibrium will settle

on a value such that a feasible number of trucks enter each location in expectation.

Π̂ denotes expected profits at each location. To calculate this entity, you need

to know the probability density for the numerous market configuration outcomes

that can occur. This is intractable with over 200 vendors operating in the DC area,

at many locations, several cuisine genres, and differing qualities. I assume that the

exact price and location choices of the other truck vendors are not observed by

the trucks, however an equilibrium conjecture of the ‘inclusive values’ provides a

sufficient statistic that reflects the number of rival vendors and their genres, rival’s

prices and values. This assumption renders the problem tractable.

1.4.3 Equilibrium

Definition 1. An equilibrium is a G× L matrix of conjectures of Igl denoted Îgl

where:

Igl = ln

∑
k∈Γgl

exp

(
vk + α ln( Ȳl−pk

Ȳl
)

1− σ

)
and,

Îgl =

∑S
s=1 Igls
S
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where S is the number of simulated outcomes given a) a set of prices (J × 1) such

that:

max
pj

∑
l∈Lj

exp

(
Π̂jl(pj ,p−j ,vj ,mcj ,g(j),Ml,Ȳl,cl,σ)

λ

)
1 +

∑
l∈Lj

exp

(
Π̂jl(pj ,p−j ,vj ,mcj ,g(j),Ml,Ȳl,cl,σ)

λ

) ...
... ∗ Π̂jl

(
pj, p−j, vj,mcj, g(j),Ml, Ȳl, cl, σ

)

and is solved and b) entry costs (L× 1) such that location choice probabilities

simulate outcomes which satisfy:

E[nl|c1, ..., cL] ≤ µl

Specifically, the assumptions that I make is that the commonly perceived values

of the inclusive values are formed as the average of actual outcomes of these inclu-

sive values. Each individual firm does not perceive its own impact on the Îgl and

the restriction of the equilibrium concept to focus on the average of the inclusive

values means that the market share (Ŝgl) is an approximation of the nested logit

shares. This greatly simplifies computation. I forward simulate to compute each

Îgl.

The equilibrium is computed with the following iterative process:

On iter1 = 1 and iter2 = 0:

1. Guess a matrix Î iter2=0 of size G × L and vector citer2=0 of size L × 1. Set

piter2=0=0 and set up a grid of v and g.
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2. Draw S simulations from the random events of the model (i.e. Realizations

of the trucks’ logit location errors), and set tolerances εc, εI , and εp to assess

convergence. Update iter2 = 1.

Then for iter2 = m > 0.

3. Set iter1 = 1 , set Î iter2=m−1 = Î iter1=1 and citer2=m−1 = citer1=1. Now given

Î iter1=1 and citer1=1 solve for the profit maximizing prices (piter2=m) for the

firm using Ŝ, on a grid of genres (g), qualities (v), and marginal costs (mc).

Then for iter1 = k > 0

(a) Given Î iter1=k and piter2=m, solve the minimization problem

minc
∑L

l=1 (E[nl|c1, ..., cL]− µl)2. Forward simulate using the S simula-

tion draws for obtaining E[nl|c1, ..., cL]. Denote the solution citer1=k+1

(b) Given the solution citer1=k+1 compute Î iter1=k+1 by forward simulating

S times and taking the average over the simulated Is.

(c) Compute the distance.13 between Î iter1=k+1 and Î iter1=k. Compute the

distance between citer1=k+1 and citer1=k.

(d) If the distances in the previous step are less than εI and εc respectively,

stop and save (citer1=k+1 = citer2=m and Î iter1=k+1 = Î iter2=m). Other-

wise return to the nested step a) with the updated inclusive values and

costs (citer1=k = citer1=k+1 and Î iter1=k = Î iter1=k+1)

4. Compute the distance between piter2=m−1 and piter2=m, citer2=m−1 and citer2=m,

and Î iter1=m−1 and Î iter1=m).

5. If the distances computed in 4. is less than εp, εc, εI respectively, stop.

13Note that one may choose different updating rules or distance measures for the iteration.
I update the relevant variables in each iteration such that the latest iterations are a weighted
average of the current iterations values and the past iterations values. I do this such that the
model outcomes are not too volatile between iterations.
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Otherwise update price vector (piter2=m = piter2=m−1). Update the index

iter2 = m+ 1 and return to step 3.

With 224 trucks, 7 cuisine genres, 13 (12 actual locations and 1 outside option)

locations, tolerances set at 0.0001 for prices, entry costs, and the inclusive values

solving the model takes approximately 17 minutes to simulate and solve.

1.5 Estimation

Estimation of the model will proceed in multiple stages:

1. Estimate demand parameters (α, β, σ) using demand data.

2. Estimate a reduced form conditional logit model of location choice using the

Twitter data.

3. Using the estimates from Stage 1 and 2 and the trucks first order conditions

back-out the marginal costs (J × 1 vector mc) for a set of observed trucks

and lottery outcomes.

4. Match model moments derived from estimates in stage 1 and stage 3 to

moments generated from stage 2 to obtain estimates for entry costs and the

scaling parameter (L× 1 vector c, λ).

I will consider each stage in more detail in the following subsections.

1.5.1 Demand

I estimate demand using the realized observations after the firms have entered

a location assuming that this is the equilibrium outcome given the entry game,

more heterogeneity in the consumers was not modelled or estimated, for example,

in the form of random coefficients because the data I am using to estimate the

demand model doesn’t allow me to observe the empirical distribution of consumer
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characteristics.14 Due to Berry [1994] we know there is a simple inversion for the

nested logit model. Performing the inversion on the indirect utility formulation

outlined in the previous section, the demand model that I estimate is the following:

ln(sjl)− ln(s0l) = Xjβ − α ln(
Ȳl − pj
Ȳl

) + Ll +Gj + σ ln sj,g(j) + ξjl (1.7)

Xj denotes truck characteristics such as Yelp reviews and the number of Twit-

ter followers. Ȳl denotes the location specific average daily earning and pj is vendor

j’s price as before. Ll is a location dummy variable, Gj is a genre dummy variable

and sj,g(j) denotes vendor j’s share within his genre nest. The endogeneity of price

is a general issue in demand estimation but on top of this I have the issue of there

being very little price variation between and within food trucks. I alleviate these

issues by including the difference between mean daily worker (consumer) earnings

for a certain location and the truck’s price in the utility function and to identify

this earnings-price coefficient. The intuition is that I will compare the relative

market shares of two trucks that are observed to compete in two different loca-

tions that have different mean earnings. This strategy adds variation and also

somewhat deals with the endogeneity of price, as we are looking at the change in

relative market share between two trucks and it is reasonable to assume that the

quality differential between these two trucks shouldn’t change with mean earnings.

I try a variety of specifications but find that including truck specific fixed effects

give me the most favorable estimates which I choose to use (specification (1) in

Table 1.4).15 The reason for this is as Nevo [2001] describes. I observe the same

14For example, income data from the LODES data set is top coded such that there is no
meaningful variance data do be used.

15Robustness checks including day of the week dummies, controlling for the weather don’t seem
to make a significant difference on the key parameters of interest.
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truck in multiple locations I can include these fixed effects and because the truck

specific unobservables are not changing as the location of the truck changes the

fixed effect accounts for these unobservables that may be correlated with price.

Subsequently I project these fixed effect estimates on to the observed truck spe-

cific characteristics to obtain estimates for β.

In order to estimate the nesting parameter, I must instrument for the within

group market share. I deal with this by using the DCRA lottery outcome. This

source of randomization of vendors to locations gives me an exogenous number for

how many vendors of a certain cuisine genre may be present at a given location.

In my estimation, I have found this to be a good instrument with first stage

F − stat = 27.27. Staiger and Stock [1997] suggest that instruments be declared

weak if the first-stage F − stat < 10 and the first stage in my estimation clearly

passes this rule of thumb. The demand estimates are shown in Table 1.4 and 1.5.
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(1) (2) (3)
FE 2SLS 2SLS

ln sj,g(j) 0.241 0.158 0.195
(0.178) (0.127) (0.124)

ln(
Ȳl−pj
Ȳl

) 33.16 23.44*** 21.87***

(20.52) (4.457) (4.112)
Twitter followers 4.33e-05*** 4.82e-05***

(1.15e-05) (1.08e-05)
Yelpstars 0.117***

(0.0292)
Constant -4.397*** -5.047*** -5.073***

(0.729) (0.323) (0.252)
Genre FE No Yes Yes
Yelp FE No Yes No
Location FE Yes Yes Yes
Truck FE Yes No No

Observations 331 305 305
R-squared 0.865 0.673 0.681

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.4: Nested Logit Estimation Specifications

Table 1.5 shows the full specification including the location fixed effects. The

location fixed effect coefficients suggest that Navy Yard, Federal Center, and State

Department are the top three highest demand locations, which reflects the lack of

outside options at these locations. Also, the fixed effects are driven by my assump-

tion of the market size (i.e. using the number of primary jobs at each location for

market size). For example, the high fixed effects in small markets such as Navy

Yard may be due to the specified total market being very small, implying that the

food truck segment of the market will be large. Table 1.6 shows the estimates of

the projection of the fixed effect estimates on individual characteristics such as the

number of Twitter followers, Yelp stars and genre. I will use these estimates in my
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counterfactual simulations and in the process of backing out the marginal costs.

The average price elasticity implied by the point estimates of α and σ is -1.61

(standard error = 0.7351). The nesting coefficient is estimated to be 0.241 and is

feasible and consistent with utility maximization (i.e. between 0 and 1) however

it is not significantly different from zero (p-value=0.116 ). I suspect with more

observations (especially with the truck level fixed effects) these estimates will have

tighter confidence intervals, but I proceed with these point estimates to the next

stages of estimation. Other observations that can be made is that the Asian trucks

tend to on average have larger market shares than any other genres. The signs on

the number of Twitter followers and Yelp review stars are positive as expected.
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Preferred
Specification

ln sj,g(j) 0.241
(0.178)

ln(
Ȳl−pj
Ȳl

) 33.16

(20.52)
19th & L 1.029***

(0.270)
CNN (First St NE) 0.949***

(0.241)
Farragut Square 0.195

(0.281)
Federal Center / Patriots Plaza 1.919***

(0.506)
Franklin Square 0.711***

(0.258)
Gallery Place / Chinatown 1.038***

(0.307)
L’Enfant 0.891***

(0.271)
Metro Center -0.0350

(0.310)
NOMA 1.625***

(0.307)
Navy Yard 2.514***

(0.426)
State Department (20th & Virginia Ave NW) 1.711***

(0.266)
Union Station 1.043***

(0.292)
Constant -4.488***

(0.729)

Observations 331
Number of Truck id 154

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.5: Location F.E. from Consumer Demand Estimates

36



Projection of Ind. F.E
on Characteristics

Yelpstars=2 0.134
(0.0866)

Yelpstars=3 0.376***
(0.0629)

Yelpstars=4 0.392***
(0.0629)

Yelpstars=5 0.450***
(0.109)

American -0.155***
(0.0516)

Mediterranean -0.624***
(0.0582)

Latin American -0.465***
(0.0653)

Indian -0.682***
(0.0636)

Caribbean -0.544***
(0.0809)

Exotic -0.607**
(0.236)

Twitter followers (000s) 0.478***
(9.87e-06)

Constant -0.0414
(0.0692)

Observations 305
R-squared 0.516

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 1.6: Truck Fixed-Effects OLS Projection on Individual Characteristics.

1.5.2 Conditional Logit Location Entry Probabilities

Using with Twitter data, I fit a conditional logit model. Truck j’s utility from

entering location l is modeled as:
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Vjl = LStage2l +GStage2
j × LStage2l +Xjβ

Stage2
l × LStage2l + εjl (1.8)

εij are Type I extreme value errors. Estimating the model above is simply a

conditional logit regression with a dummy variable indicating the location choice

made on the left-hand side with a full set of interactions between truck specific

characteristics (cuisine genre, Twitter followers, and Yelp stars) and location dum-

mies on the right-hand side. In the Twitter data, I see more locations tweeted by

the trucks than I model. I model a total of 12 locations, and these locations account

for approximately 86% of the locations visited by the trucks in the data. Loca-

tions that are not included are mostly in the fringes of central Washington, DC,

one example of such a location is South Capitol (the most southern point in Figure

1.3). Other non-modeled locations include locations such as George Washington

University (Foggy Bottom), Georgetown University (Georgetown) etc. I exclude

these university-based locations as the markets that realized at these locations are

different to the standard ‘lunch shift’ locations on many dimensions. In the empir-

ical estimation, these non-modeled locations make up the outside option and net

profits are normalized to be $500, this helps me pin down the scaling parameter

as it provides a more stable outside option probability in the iterations where I

am matching the moments for this parameter. In terms of interpretation, we can

simply add this constant to the fixed entry costs once they have been estimated,

to interpret the entry costs as a dollar value relative to the outside option being

normalized to $0.

The specification that I proceed with has the full set of interactions as outlined
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above but has the Yelp stars converted to a dummy variable for whether it is ‘high’

or ‘low’, where the category for ‘high’ is a rating of greater than 3.5 stars. Other

specifications I’ve attempted to estimate faced issues in the estimation with non-

convergence and non-convexity of the maximum-likelihood objective function. The

model has an Pseudo R2 of 0.1859. The coefficients of this estimation are not of

interest directly and merely used to match with model moments in the next stages

of estimation, hence I do not report the table of estimated coefficients. However,

interesting patterns in the location choice probabilities can be observed to get a

clear idea of the data moments that are being matched with the model moments for

estimation of the location entry costs. Figure 1.6 shows a box plot of the estimated

location entry choice probabilities. The figure excludes outliers to being out the

relevant features of the estimates better. The vertical axis of Figure 1.6 shows the

estimated choice probability of the location marked on the horizontal axis being

chosen by a truck, given that the location is in his choice set. The variation in the

mean of these estimates across locations will play a crucial role in the estimation

of the location entry costs in the next estimation stage.
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Figure 1.6: Variation in the Estimated Conditional Location Choice Probabilities
by Locations.

The choice probabilities of the non-lottery locations (colored in red) are much

lower than the lottery locations, this is because these locations appear in every

truck’s choice set but are not chosen as frequently as the locations that only ap-

pear in a truck’s choice set if allocated by the lottery, which are chosen more

frequently. In other words, trucks on a random day of the week, are more likely to

be visiting a lottery allocated location over a non-lottery location given the lottery

location is in the trucks’ choice set. With respect to the structural model, these

estimates imply that the implied entry costs will be lower in locations we observe

with high choice probabilities and similarly, low choice probability locations will

have high entry costs. This is discussed in more detail below.
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1.5.3 Marginal Costs

In this stage I back out the constant marginal costs for a set of trucks. I model

224 individual trucks that I see consistently in the lottery outcome data. Given

that www.foodtrukfiesta.com lists the total number of trucks permitted to operate

in DC to be 245 trucks, my model contains the vast majority of the trucks that

are operating consistently in Washington, DC.

Taking the first order conditions of the truck’s maximization from above we

get that the truck j’s marginal costs are:

mcj = pj −
∑L

l SljMlPrj(l)∑L
l Prj(l)

∂Slj

∂pj
Ml

(1.9)

Where Ml is the total number of primary jobs at location l and Prj(l) is the

location choice probability of truck j choosing to enter l which I estimate using a

reduced form conditional logit model in Stage 2. Computing the marginal costs

requires the derivatives:

∂Slj
∂pj

=
−αSlj(1− σSj|g − (1− σ)Slj)

(1− σ)(Ȳl − pj)
(1.10)

Which I simulate using the estimated conditional logit choice probabilities given

lottery designated choice sets. The distribution of marginal costs and price-cost

margins16 in the DC food truck industry derived from my model are shown in

16price-cost margin = p−c
p
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Figure 1.6. With these marginal costs, the average price-cost margin is calculated

to be 0.6602. There is little past work on food truck competition and margins

to compare this estimate with. However, to shed some light on its plausibility I

interviewed an acclaimed industry leader. I learned that the general consensus rule

of thumb in the industry was that for a truck truck to successfully operate in the

long-run the food cost component of a menu item should be no higher than 1/3

of the price (i.e. a price-cost margin of 0.66). Interpreting the marginal costs in

my model as the food costs required to make an additional order and assuming

that labor costs are a longer-run decision,17 the average price-cost margins that I

find are strikingly similar to this number. In my estimates however, there is large

variability in the price-cost margins but approximately 95% of the trucks have

margins greater than 0.55.

Figure 1.7: Marginal Costs ($) and Price Cost Margins. Recovered from Model
First Order Conditions.

17It is plausible to think that the number of cooks on a truck are predetermined and they are
paid by hours worked, not numbers of orders produced.
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1.5.4 Location Entry Costs and Scale Parameter

All the estimates from Stages 1-3 are used to estimate the location specific entry

costs and the scaling parameter. The scale parameter is usually unidentified solely

with discrete choice data, however, in my model the profit function for the firm

is not reduced form and the scale of the firm’s utility is in dollars. Hence it is

important to get the scale/variance of the conditional logit model correct.

The discrete choice model for the vendors can be written by re-scaling the

location specific profit - entry costs (i.e. firm “utility”) terms by λ. If we knew the

entry costs, we could run a simple multinomial logit model on the actual firm utility

and the coefficient on this variable will absorb the scale parameter. However, I

don’t observe the entry costs which also need to be scaled. I estimate the scaling

parameter using the following definition and a fixed-point algorithm:

λ =

1
J

∑
j E
(

maxl Π̂jl − cl
)

1
J

∑
j E (maxl Vjl + εjl − εj0)

(1.11)

This definition follows Anenberg and Kung [2015] and can be interpreted as

defining the scale parameter as the ratio between the average expected maximum

profit in dollar terms (the numerator), and the average expected maximum value

in normalized utility terms (the denominator). More specifically, we this identity

comes from the fact that the reduced form logit model (using reduced form profit

functions) doesn’t separately identify the scale parameter separately but estimates

the product λβ. To identify λ we need to determine the scale of the reduced form

profits.
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Empirically, the expected maximum profit are the profits that we compute

given the demand and marginal cost estimates. So, for some entry costs cl, I will

approximate the numerator as the average of estimated observed profits − costs

over the trucks I model. The denominator is obtained from calculating the truck’s

inclusive values from the estimation of the conditional logit model above.

Note that the algorithm will take the denominator as data, but in each iteration

re-compute the numerator. The fixed-point algorithm for estimating the entry

costs and the scaling parameter is as follows: Guess an initial value of λiter=0, set

tolerances εc and εσ.

1. Scale each Π̂jl − cl by λiter=k .

2. Given the scaled profit − costs (i.e. utility) solve the following minimiza-

tion problem minc
∑L

l=1

(
PrModel

l − E[Prl]
)2

to obtain a solutions vector of

c which is a L× 1 vector of cls.

3. Now given the solution vector of c, compute the scaling parameter with the

above definition for the scaling parameter and define as λiter=k+1.

4. Compute the distance between λiter=k+1 and λiter=k check if it is less than

the tolerance, if so, stop. otherwise update λiter=k = λiter=k+1 and repeat

from 1.

Where:

PrModel
l =

1

J

J∑
j=1

exp
(

Π̂jl

λ

)
1 +

∑
l∈Lj

exp
(

Π̂jl

λ

)
This equation is a part of a system of L+ 1 equations, one each for each mod-

eled location and the outside option. Practically, the outside option that has the

utility being normalized are the non-modelled locations. These include locations

such as university car parks and more of the fringe DC locations marked on the
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map shown in Figure 1.3. The total of 13 parameters to be estimated (L = 12

location specific entry costs and the scaling parameter) in this routine are the

values of the parameters such that the model moments and the data moments

are matched. Matching the model entry probabilities of firms and the observed

probability of entry is similar to the strategy employed by Seim [2006] to obtain

coefficient estimates on how the number of competitors within a distance band

impact profitability. The difference is that in my model, I also need to consider

the scaling parameter which requires an additional condition to pin down.

The estimates I obtain for the location specific entry costs are shown in Table

1.8. These estimates are taking the demand parameters as data, and have not been

corrected for the imprecision in the demand estimation stage. We can observe the

patterns in Figure 1.6, the lottery locations entry costs are in general lower than

the non-lottery locations and also larger markets exhibit higher entry costs.

Locations Lottery Entry Costs ($) GMM s.e.
19th & L Area No 543.55 14.14
CNN (First St NE) No 861.09 24.75
Farragut Square Yes 122.64 6.96
Federal Center / Patriots Plaza Yes 107.27 4.43
Franklin Square Yes 142.02 7.27
Gallery Place / Chinatown No 412.53 15.14
L’Enfant Yes 76.23 7.53
Metro Center Yes 76.40 6.48
Navy Yard Yes 146.03 4.58
NoMa / New York Ave Metro Yes 556.30 5.85
State Department Yes 145.02 5.92
Union Station Yes 159.95 6.54

Table 1.8: Estimated Entry Costs.

The estimates must be understood with careful consideration of the limitations
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of the model. For example, for CNN the entry costs are estimated to be very high

($861.09), while this may be in line with the fact that this location is not part of

the lottery, its market size is much smaller than 19th & L which is also not part

of the lottery but has a much lower entry cost. This implies that the Twitter data

predicted choice probabilities for CNN are lower than the what the small market

size in the model would imply. The reason seems to be that the model is not

capturing the decisions of the trucks that are going to CNN well. In my Twitter

data, I observe a few of the same trucks entering this location, maybe due to some

type of dynamic reason such as customer base loyalty. Hence, the estimated choice

probabilities for this location on average are quite low which then the model com-

pensates by boosting the entry cost parameter. This is a issue that is present in

all of the estimates but it seems to be more pronounced with the CNN entry cost

estimate.

Another observation of note is that even among the lottery locations, there is

considerable variation in the estimated entry costs. This suggests that despite the

lottery in practice homogenizing the entry costs for designated locations (recall

the $175 monthly total fee) these locations are still not valued equivalently to the

trucks. There are events in reality where allocations awarded by the lottery are

forgone and not entered, this behavior is unmodeled and inflates the entry cost

parameter. The locations where the this seems to be an issue are the relatively

less populous locations like NoMa.

1.6 Model Performance

Here I use the estimates discussed above and re-solve the model’s equilibrium to

assess how the model performs in explaining the data. Firstly, I consider consumer
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utilities. Given the nested logit structure of my demand model, from [Train, 2009]

we know that the expected utility for consumer i making a choice among alterna-

tives in Γgl is:

Iigl = ln
∑
j∈Γgl

exp(
Vij

1− σ
) (1.12)

Figure 1.8 shows a scatter plot for quantity in equation (1.12) as predicted by

the model and as implied by the location choice probabilities and prices observed

in the data. The model captures the expected utilities quite well.

Figure 1.8: Model Fit of Location/Genre Specific Expected Utilities

Checking the model fit for prices (Figure 1.9 Panel (a)), we can see that the

observed prices tend to be higher, also we see that the prices observed in the

market are set in a almost discrete way (for example, 8.99, 9.99, etc.), and this

bunching seen in reality throws the fit of the model off. It appears that the model

is consistently predicting prices that are lower than we observe in the data. Given

the bunching it is plausible that in reality the sellers round their price up to the

47



nearest 0.99 and this explains the consistent under-prediction. Given these features

of the data, I believe the model fit is quite good. The market shares for the trucks

at each location seem to be predicted well by the model too (Figure 1.9 Panel (b).
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(a) Model Fit of Prices.

(b) Model Fit of Market Shares.

Figure 1.9: Model Fit at Competition Level (Second Stage of Model).

49



Figure 1.10 shows the panel of location choice fit checks for each location, with

the conditional logit estimated choice probabilities from the Twitter data on the

horizontal axis and the model predicted choice probabilities on the vertical axis.

The model seems to do fairly well in some locations and less well in others. Recall,

the issue with the CNN entry costs. This is reflected in the CNN panel of Figure

1.10. Firstly, the choice probabilities are small in general (all less than 0.03 per-

cent) and also the conditional logit model predicts a near zero choice probability

for a lot of trucks. The other location with predictions that don’t seem to be doing

very well is Gallery Place. Here for a lot of the trucks, the Twitter data implies

a much higher choice probability than the model predicts. Further examination

shows that the trucks that the model is not performing well for are disproportion-

ately Asian and Latin American trucks. There must be some unmodeled reason

that these genres of trucks enter non-lottery but very active locations with a higher

probability than the other genres.
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Figure 1.10: Model Fit of Location Choice Probabilities

1.7 Conclusion

In this chapter I have collected data on and estimated a model of the food truck

industry in Washington, DC. Due to the novelty of this industry, regulators in prac-

tice fall back on ad hoc policy regimes without understanding the consequences of

potential regulations and/or regulations already implemented. Theoretically, it is

also a challenging landscape to model and analyze due to the large number of firms,

locations, and externalities arising out of who the locations are the allocated to.

Building on a large and well-developed literature dealing with endogenous product

positioning and firm entry, chapter 1 offers a structural model as an example of

how, despite the challenges, this industry can be analyzed and scrutinized in a
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rigorous way.

I find that consumers preferences are only moderately correlated within cuisine

genres (σ̂ = 0.241) and that trucks’ own price elasticity’s are on average about

-1.61. Firms price-cost margin is on average 0.66, which closely resembles industry

insiders rule of thumb for a truck that can operate into the foreseeable future. I

find that the choice probabilities for lottery locations are higher than that of the

non-lottery locations given both are in a truck’s choices set. In my model, this

implies that given the lottery, entry costs for the lottery locations are lower that

of the non-lottery locations. However, the heterogeneity of each lottery location is

still reflected in my estimates.

My model seems to perform well in predicting post-entry competition but is

worse at predicting the location choice and entry stage of the model. This is due

to the myriad of factors that the model fails to capture completely such as truck

specific location choice decision rules, lottery allocations forgone and swapped by

trucks, and any other general non-adherence to the allocation mechanism.

In chapter two I will use these estimates and the to consider two counterfactual

policy regimes. Firstly, a scenario in which some locations are removed from the

lottery and open to entry to all of the trucks and secondly, a counterfactual policy

where the parking capacity of the non-lottery locations are increased. This coun-

terfactual policy will be compared with the model prediction to assess the welfare

effects of going from the current regime to another.
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Chapter 2 Counterfactual Policy Analysis: Examining the

Welfare Impacts of Washington, DC’s Mobile

Roadside Vending License Program

2.1 Introduction

The food truck industry in Washington, DC relied on a propriety lottery run by the

DC Department of Consumer and Regulatory Affairs (DCRA), namely the Mobile

Roadside Vending License Program. The program allocates registered trucks to a

set list of locations (see Figure 1.2). I assess the welfare impacts of two alternative

regulatory policies in the Washington, DC food truck industry. Firstly, a counter-

factual policy where some locations are removed from the lottery, such that trucks

are allowed to enter more locations without being subject to the lottery, up to

the location specific capacity constraint being satisfied in expectation. Secondly,

I will consider a counterfactual policy where the number of parking spaces are

increased by 2 spots in each non-lottery location (CNN, L’Enfant, Gallery Place

in my model). In Chapter 1 I have introduced and estimated the model that I

will utilize in this counterfactual analysis. The importance of these counterfactual

policy questions are not limited to academic curiosity, it is also practical for policy

makers in many cities all over America. This dissertation chapter will assess real

policies that can be implemented by a regulatory body. Such motivation is quite

novel in the literature.

The initial motivation for the implementation of the current lottery system, was

53



both to protect brick-and-mortar stores and to stop trucks from engaging showing

up earlier and earlier to secure a space at favorable locations. In 2018 it has now

been 5 years since the inception of this policy and some negative side-effects seemed

to have emerged. Not only are trucks continuing to show up early to secure loca-

tions in the non-lottery spots anyway [MacFarlane et al., 2018] while the DCRA

is slow to respond by adding such locations to the official lottery. There seems to

be a slowing down of the industry with truck owners reporting declining revenues.

Anecdotal evidence suggests this is due to a lack of innovation and market shares

being taken by food trucks that are similar and low quality but are able to stay in

business anyway by simply obtaining the right to operate in the lottery designated

locations, which are the most popular locations in DC [Hayes, 2018].

This anecdotal consensus combines both long-run and short-run arguments. In

the long-run, allowing the market to be overrun by similar and low quality trucks

is bad for the entire industry as the appeal of food trucks in general may decrease.

In the short-run this suggests a benefit to some of the food trucks, as it is allowing

the non-differentiated low quality trucks to survive. In my counterfactual analysis

I focus on relatively marginal changes to policies. This is because my model is

geared to predict short-run states of the market, as key important long-run as-

pects of the industry are not modelled. For example, I don’t model the stage of a

food truck entrepreneurs decision to enter the industry in general and his choice

of cuisine genre and quality. I take these long-run aspects as exogenous and solely

focus on the pricing and location choice aspects of the industry. That said, with

my model, by looking at how the lottery is impacting consumer surplus and the

distribution of trucks operating in the modelled locations, we can get an idea of

the direction of the long-run implications.
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The first counterfactual policy will open up some of the currently lottery lo-

cations, which are in general the more popular locations to entry, by more trucks

which in the model should increase the entry costs to these locations and decrease

the entry costs to other locations. My second counterfactual policy will slacken

up the capacity constraint for each non-lottery location while keeping the set of

lottery locations unchanged. This will reduce entry costs for the trucks but make

competition fiercer at these locations (more firms competing for the same mar-

ket). As the parking spot allocation mechanisms and capacity constraints change,

there are various trade-offs that must be considered. In the current regime, the

various costs that a truck may experience to secure a spot for the most popular

locations are artificially decreased by removing these locations from the choice sets

of many trucks and reducing the number of potential entrants. From the truck’s

perspective this is a good thing as long as the entry costs to the location without

the lottery is higher than the costs to register for the lottery. But the lottery

may have an adverse impact for the truck’s too. For example, if you are a high

quality and popular truck that has high market shares, your potential profits may

be decreased due to the fact that the lottery is not allowing you to enter only the

most populous locations every day. Effectively the lottery may be propping up

lower quality trucks in two ways; by decreasing the entry costs to a location which

would be unaffordable for a low quality truck without the lottery, and also allowing

them to face a less competitive market place once they have entered the popular

location by distributing these high profit parking spots to arbitrary trucks that

are not the most competitive. In this scenario the lottery would be benefiting low

quality trucks and hurting high quality trucks. In other words, the lottery’s and

capacity constraint’s implications on industry profits and utilities are ambiguous.
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In terms of prices, the lottery should be reducing the downwards pressure on

prices by restricting the intensity of competition. This again may allow lower qual-

ity trucks that otherwise wouldn’t be able to compete to survive resulting in higher

prices and lower average quality for the consumers. There are also implications of

the parking space allocations on the distribution of truck types. If the distribu-

tion of the cuisine genre is not even across genres (like in reality), a lottery that

randomly allocates a set of trucks to a location may result in a distribution that

is not preferred by the trucks and/or by the consumers (for example, if demand

resembles nested logit utilities). In this case getting rid of the lottery will help

even out the variety of trucks across the different locations.

2.1.1 Method of Comparison for Counterfactual Scenarios

The counterfactual scenarios will be compared to the status quo across several

dimensions. Below I outline them before heading into the comparison itself.

Supply Side: Trucks

I will assess how the counterfactual scenario has impacted the supply side of the

model by looking at the entry costs, prices, and expected profits. The entry costs

are calculated by matching the location average choice probability implied by the

locations capacity constraint and the analogous model moments. For example if

there are 200 trucks active, then the average choice probability for Union Station

would be PrUnionStation = 14/200 because 14 is the capacity constraint at Union

Station. In other words, the entry costs will adjust the model’s location choice

probabilities such that on average, the capacity constraint will be satisfied for
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every location.1 Looking at the change in prices will help me gauge the impact

of the change in competitive structure due to the counterfactual scenario and the

changes in expected profits will assess the net effect of the changes on the trucks.

Demand Side: Consumers

To calculate the net welfare effect of the policy change we must also calculate the

net effect on consumer surplus. Given the nested logit demand structure, following

[Train, 2009] I can calculate the expected utility of a whole location in the standard

‘inclusive value’ formulation, for each l ∈ 1, ..., L and denoting the outside option

as g = 0:

Il = ln

 G∑
g=0

∑
k∈Γgl

exp

(
vk + α ln(Ȳl − pk)

1− σ

)1−σ (2.1)

Where an approximation of the inner sum is obtained in solving the model

(i.e. Îgl) I can then obtain the dollar representation of the expected utility by

multiplying Il by the inverse of the marginal utility of income. In my model, the

marginal utility of income is:

MUlY =
α

(Yl − p)
(2.2)

In my calculation I simply use the average price of all the trucks that are

operating in the modelled locations in the equilibrium.

1The standard deviation of the number of trucks at each location during the simulation is
reasonable. The location with the most spread is L’Enfant with a standard deviation of 4.19.
This implies that a capacity constraint violation of more than 4 trucks is quite unlikely.
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2.2 The Impact of the Counterfactual Policies

2.2.1 Counterfactual I: Reducing the Reach of the Lottery

Supply Side: Trucks

The counterfactual policy I consider first is for the DCRA to reduce the reach of

the lottery by removing some key locations as a lottery designated location. Dur-

ing estimation, the truck’s choice sets were restricted and the model took what was

determined by the publicly available DCRA lottery outcomes as given. In contrast,

in this counterfactual scenario some lottery locations are added to every trucks’

choice set. Given these expanded choice sets, the trucks make entry decisions and

choose prices such that their profits are maximized as outlined in Chapter 1.

I solve the model for two scenarios for this counterfactual analysis. Firstly,

releasing L’Enfant from the lottery and secondly, releasing L’Enfant and Franklin

Square. These locations have been chosen because they large and prominent loca-

tions in the DC food truck industry.

The changes to the entry costs can be seen in Table 2.1. We can observe the

entry cost increases in the hypothetically excluded locations. Column (2) which

show the entry costs when only L’Enfant is excluded shows that entry costs will

increase from $123 to $282.62. On the other hand, all the other locations’ entry

costs decrease. This is expected, as L’Enfant is now accessible to all trucks, there is

more pressure on L’Enfant ’s capacity constraint whereas there is now less pressure

on the capacity constraint of the other locations. From column (3), which shows

the entry costs if Franklin Square is also excluded from the lottery we can see a

similar change. The entry costs for Franklin Square increases while the entry costs
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for the other locations fall. To assess the impact of the counterfactual policies on

trucks, we will need to look at the equilibrium prices and profits.

Entry Costs ($)
L’Enfant L’Enfant + Franklin

Lottery Current Excluded Excluded
(1) (2) (3)

19th & L No 499.95 493.76 492.76
CNN (First St NE) No 657.15 652.17 650.39
Farragut Square Yes 101.24 84.10 84.56
Federal Center / Patriots Plaza Yes 82.38 60.21 57.41
Franklin Square Yes 141.93 129.97 287.74
Gallery Place / Chinatown No 400.54 396.40 394.50
L’Enfant Yes 123.00 282.62 281.08
Metro Center Yes 68.50 64.29 54.44
NOMA Yes 155.67 146.52 144.96
Navy Yard Yes 440.17 425.31 416.85
State Department Yes 167.56 159.83 148.22
Union Station Yes 128.37 128.28 115.42

Table 2.1: Entry Cost Changes Under the Counterfactual Policy

Figure 2.1 shows the prices in the scenarios I am considering. Prices do not

seem to have changed too much in the counterfactual scenario.
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(a) L’Enfant Excluded (b) L’Enfant + Franklin Sq. Excluded

Figure 2.1: Current Regime Model Predicted Prices ($) VS. Counterfactual Regime
Prices ($)

While prices do not change much, profits for the trucks decrease as the reach

of the lottery is reduced (Figure 2.1). which shows a scatter plot of the simulated

trucks’ profits under the current and counterfactual scenarios. Current regime

profits are higher than the counterfactual profits and we can see that as more lo-

cations are taken out of the lottery, profits fall lower. How much a truck’s profit is

impacted in the counterfactual scenario is dependent on many factors such as your

quality, genre, and marginal costs but on average it seems like it is a net negative

impact on profits. Taking a closer look at how the counterfactual regime impacts

on profits, I find that having a lot of trucks in your own genre has large impacts

on your profits. The trucks that are impacted the most by the removal of these

locations from the lottery were American, the most common genre.
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(a) L’Enfant Excluded (b) L’Enfant + Franklin Sq. Excluded

Figure 2.2: Current Regime Model Predicted Profits ($) VS. Counterfactual
Regime Profits ($)

There are some trucks that stop operating in the modelled locations and this

impacts the distribution of genres in these locations (i.e. no feasible price to the

profit maximization problem). In particular as it is the more common cuisine gen-

res that will be affected the most by the lack of a lottery, the model would suggest

that the distribution of genres become more even distributed. Another force that

will impact whether a truck continues operating or not is the truck’s quality i.e.

given a distribution of genre types, lower quality trucks will be the quickest to stop

operating as entry costs and competition increases. If there is some strong correla-

tions between a particular genre and quality, the lottery may not necessarily make

the distribution of trucks more even. This is what I observe in my counterfactual

analysis.

Removing one location from the lottery results in one truck not operating in the

modelled locations. In particular this truck is a low quality Indian truck and in the

scenario with two locations removed from the lottery we see an additional Ameri-

can truck cease to operate in the modelled locations. These observations suggest
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that Indian trucks must on average be low quality trucks and this is a stronger

force than the more intense competition that American trucks’ experience from

other trucks of their genre. In other words, Indian truck qualities should be much

lower than the American trucks. We can confirm this is indeed the case, by look-

ing at the estimated quality measures (i.e. the empirical parameterization of vj

estimated from the demand estimates). Figure 2.2 shows that Indian trucks have

low quality, compared to the American trucks. Given that I only find the nesting

parameter in the nested logit model to be 0.241 it is reasonable that the impact of

there being a lot of trucks in your own genre isn’t a strong driver of who exits or

stays in the market but despite this I observe an American truck which on average

has relatively high quality choosing the outside option location.
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Figure 2.3: Box Plots of Estimated Quality (vk) by Cuisine Genre

With all these considerations, the decrease in total industry profits from the

counterfactual policy amount to $2,698.06 and $5,289.85 respectively for the two

scenarios.

Demand Side: Consumers

Table 2.2 shows the computed average consumer surplus for each location. The

interpretation of column (1), (2) or (3) is the dollar value of the expected utility

of having lunch at each location. The counterfactual scenarios change consumer

surplus due to various reasons and the effect shown in the table is the net impact

of a combination of lower prices, higher value trucks, and consumers demand being
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factored in with less constraint when firms decide which location to enter. The im-

plied increase in consumer surplus after getting is $4,992.24 and $5,435.83 each day

respectively for the two scenarios. To separate the effect of prices and other factors

that influence consumer surplus, I calculate the change in consumer surplus under

the counterfactual equilibrium but holding prices at the status quo equilibrium.

This change should capture the consumer surplus gains from non-price impacts

such as variety and quality. I find the in both scenarios the consumer surplus

increase from non-price effects are approximately $3,938 out of the total aforemen-

tioned change.

Considering the changes in consumer surplus with the change in truck profits,

in the first scenario the net impact on welfare is an increase of $2,294.18 and in

the second scenario an increase of $145.98.
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L’Enfant L’Enfant + Franklin
Current Excluded Excluded Market Size Implied Change in CS ($)

(1) (2) (3) (4) ((2)-(1)) × (4) ((3)-(1)) × (4)
19th & L 0.289 0.288 0.291 24,583 -20.12 59.38
CNN (First St NE) 0.086 0.051 0.051 16,365 -576.07 -569.17
Farragut Square 0.309 0.363 0.366 23,779 1,280.82 1,358.19
Federal Center / Patriots Plaza 0.087 0.133 0.136 3,659 168.72 178.07
Franklin Square 0.355 0.410 0.422 14,317 799.73 968.36

Gallery Place / Chinatown 0.173 0.128 0.129 10,783 -491.58 -471.18
L’Enfant 0.267 0.367 0.372 16,901 1,684.53 1,777.21
Metro Center 0.279 0.338 0.338 23,020 1,362.39 1,359.18
NOMA 0.265 0.190 0.192 6,074 -453.40 -443.10
Navy Yard 0.193 0.192 0.192 2,898 -2.50 -4.28
State Department 0.150 0.214 0.216 9,358 589.88 609.06
Union Station 0.200 0.241 0.244 14,124 579.84 614.11
Total 4,922.24 5,435.83

Table 2.2: Consumer Surplus (CS) per Consumer by location and Implied Total Change in CS
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2.2.2 Counterfactual II: Increasing Parking Capacity at Market Locations

In this counterfactual scenario I increase the parking space constraints at non-

lottery modelled locations. This will have impacts on entry costs to both lottery

and non-lottery locations. The locations directly impacted are 19th & L, CNN, and

Gallery Place, where I increase the number of parking spaces here by 2 spaces. We

would expect to see entry costs to these locations decrease directly as a function

of the capacity constraint not binding as tightly. Also, as more trucks can enter

these locations, the demand for the other locations will decrease and we should see

a indirect decrease in entry costs to the locations where the capacity remains the

same. This is a benefit to the trucks, as a crucial input (parking space) to doing

business is less scarce and consequently costs to entry have reduced. However,

there is a trade-off. With more parking spaces at these locations there are more

trucks and hence competition within the location is fiercer. The simulations of this

counterfactual scenario will shed light on the magnitude of such effects.

Supply Side: Trucks

Table 2.3 shows the changes in entry costs under the counterfactual scenario. We

can see that the entry cost decreases due to the direct effect of a location obtain-

ing more parking spaces is larger than the indirect effect that the other locations

experience. CNN especially experiences a large entry cost change as it is a very

constrained location to begin with (only has 4 spaces where trucks can park), while

19th & L and Gallery Place see changes in the magnitude of about $40-$50. The

lottery locations only see entry cost changes of approximately $15-$17.
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Entry Costs ($)
Current Counterfactual Difference

(1) (2) (1)-(2)
19th & L 499.95 457.20 42.75
CNN (First St NE) 657.15 537.44 119.71
Farragut Square 101.24 84.69 16.55
Federal Center / Patriots Plaza 82.38 65.40 16.98
Franklin Square 141.93 125.37 16.55
Gallery Place / Chinatown 400.54 350.93 49.61
L’Enfant 123.00 107.28 15.72
Metro Center 68.50 51.85 16.66
NOMA 155.67 138.00 17.67
Navy Yard 440.17 422.93 17.24
State Department 167.56 151.81 15.75
Union Station 128.37 111.99 16.38

Table 2.3: Change in Entry Costs Under Counterfactual Parking Capacities.

Figure 2.4 shows the change in prices as the additional parking spaces become

available. Prices fall considerably for a moderate number of trucks while for most

trucks prices aren’t changing. For most trucks, their choice probabilities of enter-

ing these non-lottery locations are quite low hence it makes sense that the impact

of prices aren’t ubiquitous across all trucks.
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Figure 2.4: Current Capacity Model Predicted Prices ($) VS Counterfactual Ca-
pacity Prices ($)

Investigating how expected profits have changed in Figure 2.5, profits have on

average increased under the counterfactual scenario. The figure suggests that the

impact of increased competition due to the increased capacity does not erode away

the benefits of the reduced entry costs (the average profit increase is $8.08) and

results in a net profit increase to the trucks. The total increase in profits in the

industry is $1,810.22.
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Figure 2.5: Current Capacity Model Predicted Profits ($) VS Counterfactual Ca-
pacity Profits ($)

Demand Side: Consumers

I calculate consumer surplus in the same way as above and these calculations

are shown in Table 2.4. I also plot the equilibrium prices under the current and

counterfactual capacity. With the counterfactual parking capacities, prices fall and

consumer surplus increases.
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Current Counterfactual Market Size Implied Change in CS ($)
(1) (2) (3) ((2)-(1)) ×(3)

19th & L 0.29 0.32 24,583 755.26
CNN (First St NE) 0.09 0.09 16,365 11.39
Farragut Square 0.31 0.36 23,779 1,276.56
Federal Center / Patriots Plaza 0.09 0.13 3,659 171.76
Franklin Square 0.35 0.41 14,317 852.88
Gallery Place / Chinatown 0.17 0.15 10,783 -212.45
L’Enfant 0.27 0.35 16,901 1,368.49
Metro Center 0.28 0.34 23,020 1,432.57
Navy Yard 0.26 0.20 6,074 -396.55
NOMA 0.19 0.19 2,898 -1.94
State Department 0.15 0.21 9,358 591.58
Union Station 0.20 0.24 14,124 600.47
Total 6,450.04

Table 2.4: Consumer Surplus (CS) per Consumer by location and Implied Total Change in CS
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Again, keeping the prices at the status quo equilibrium to calculate utilities

to gauge the impact of the non-price effects of the counterfactual scenario I find

that $6,450.04 of the $5,112.67 consumer surplus increase is due to such non-price

changes. In contrast to the prior counterfactual scenario, this counterfactual gives

rise to an unambiguous welfare increase of $8,260.26.

2.2.3 Conclusion

I find that the net change in welfare going from the current policy to counter-

factual policies I consider are positive. I consider counterfactual scenarios where

fewer locations are a part of the lottery and where the capacity of food truck lunch

locations parking spaces is increased. Note that this doesn’t account for a variety

of other factors that may be considered in a broader definition of welfare. For

example, how the DCRA is spending the revenue generated from the lottery. It

may be that the enforcement of the parking capacities and increasing the safety of

passers-by in these parking locations generates considerable welfare not quantified

in my analysis.

The short-run implications of the lottery are clear from the results of my first

counterfactual analysis. The lottery is facilitating the survival of trucks that would

otherwise not enter any of the modelled locations (recall, that I model most of the

most popular and largest locations). My results agree with the anecdotal consensus

of veteran truck owners in DC as interviewed in [Hayes, 2018]. The article paints

a picture of deeply worried food truck vendors that have been operating in DC

for much longer than the lottery has been around, for example, Kirk Francis who

co-owns the Captain Cookie & the Milk Man food trucks has been quoted to claim:

“If you went to Franklin Square five years ago during lunch, 12 out
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of 15 trucks would be “great” and “chef-driven” such as Cap Mac,

TaKorean and Dangerously Delicious Pies. Only three would be ...

“budget trucks.” Now it’s the reverse”.

This is exactly what I find the effect of the lottery to be. The lottery is depressing

the quality and variety of the trucks in the market to the extent that quality is cor-

related with genre. The long-run implications of these results on consumer surplus

and the existing trucks are beyond the scope of this chapter, but as the expected

utility from the food truck segment decreases due to the lottery the market may

not be able to support the large number of heterogeneous trucks in the market

going into the future.

My second counterfactual analysis considering the expansion of parking fa-

cilities for food trucks at non-lottery locations suggests that this is a Pareto-

improvement. Both profits and consumer surplus increases. The total benefit

that arises from lower entry costs and greater competition generates a surplus to

both sides of the market. The surplus increase sum to $8,260.26. However, to cap-

ture these benefits, Washington, DC will need to add a total of 6 parking spaces

across 3 already very congested locations.

My findings suggest that reducing the reach of the lottery to include less lo-

cations and adding additional parking spaces, will be beneficial for the food truck

industry of Washington, DC.
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Chapter 3 The Impacts of Large Disruptions on Long-Run

Public Transit Ridership: An Analysis of Wash-

ington, DC’s Subway Transit System.

3.1 Introduction

Public transit systems are very important in congested cities for many reasons.

The positive externalities of a well-functioning public transit system are primarily

based on improved efficiencies with respect to; congestion, environmental harm,

and labor mobility. Hence, public transit is of direct interest to many parties, in-

cluding but not limited to; governments, engineers, environmental scientists, and

economists, consequently there is a large body of interdisciplinary work attempting

to model and understand public transit. Modeling demand for transport is compre-

hensively outlined in Domencich and McFadden [1975], and ever since, countless

authors in various locale and continents have applied discrete choice models to

understand the behavioral and economic aspects of transport mode choice.1 Sim-

ilarly, there are abundance of research on the costs and benefits of a successful

public transit system.2 This chapter does not attempt to model the decision mak-

ing process of a consumer of transportation and/or attempt to uncover the various

costs and benefits of a public transit system.

This chapter explores more specific questions that must be considered for agen-

1Some examples include; Beirão and Cabral [2007], Paulley et al. [2006], dell’Olio et al. [2011],
Paulley et al. [2004].

2Some examples include;Litman [2017], Rissel et al. [2012], Geurs and van Wee [2004].
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cies that manage large metropolitan subway systems using reduced form methods.

Transportation agencies need to decide whether to invest in quality improvements,

such as making repairs to improve reliability and reduce delays. There are two

types of costs that the agency must consider. Firstly, the direct cost of the re-

pairs and maintenance and secondly, any reductions in ridership that occur before,

during, and after the repairs. This chapter focuses on the latter type of costs an

agency must consider. I will be exploring impacts on ridership of a large-scale

system repair program geared to increase quality. Lastly, I will also quantify the

magnitude of these impacts in terms of price changes using an observed fare in-

crease. The background for this analysis is the DC Metrorail system, operated

by the Washington Metropolitan Area Transit Authority (WMATA) and their

year-long system repair program SafeTrack which lasted between June, 2016 to

June, 2017. SafeTrack systematically closed down and “single-tracked”3 segments

of the subway system. There are policy implications regarding fare increases and

large-scale maintenance that arise out of the analysis that may be of value when

designing future large repair programs and fare hikes.

My analysis focuses on the “AM Peak” riders to focus on the morning com-

muter market. I find that the price hike implemented at the end of June, 2017

of $0.10 on every ‘tier’ of AM Peak fares decreased average monthly ridership by

2.05%. I also find that the disruptions caused by SafeTrack have a dynamic im-

pact on ridership. There is initially an anticipatory effect as scheduled repair dates

loom. This is expected as WMATA was encouraging people to look for alternative

modes of commuting well before the actual beginning of the repairs. One month

prior to the repairs on a segment, the original-destination station pairs that are

3Where only one side of the rail tracks are used between stations for trains going in either
direction. This induces major delays and unpredictability in train schedules.
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directly affected, see an average decrease of 2% in ridership. During the month

of the repairs the station pairs that are directly affected see an average of 9.11%

decrease in ridership and I find that there is a persistent decrease to ridership even

after the repairs have been complete. For about 10 months after the repairs have

been finished, ridership doesn’t fully recover to pre-repair levels, persistently being

about 1.68% lower than pre-repair periods.

This chapter will be organized as follows. In section 3.2 I will discuss the insti-

tutional background. Section 3.3 will describe the data and illustrate descriptive

patterns in the data. Sections 3.4 will discuss my estimation methods and esti-

mates, and Section 3.5 will conclude.

3.2 Institutional Background

Metrorail, a subway system whose network spreads across DC, MD, and VA has

seen a large decline in ridership in the last 4-5 years, and the cause4 of this exodus

of metro riders seems to be the persistent degradation of service quality (including

fatal accidents [Jansen, 2016]). The National Transportation Safety Board (NTSB)

has voiced concern over the state of Metrorail and SafeTrack was WMATA’s re-

sponse to the situation. WMATA describes SafeTrack in the following way on their

website:5

What is SafeTrack?

SafeTrack is an accelerated track work plan to address safety

4Simultaneously, with the system’s degrading quality over time, Washington, DC embraced
the advent of the car sharing industry [Moylan and Graves, 2015] which worsened the situation.
However, the impact of car sharing on public transit ridership is not the focus of the chapter.

5https://www.wmata.com/service/SafeTrack.cfm
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recommendations and rehabilitate the Metrorail system to

improve safety and reliability. Through SafeTrack, Metro will com-

plete approximately three years’ worth of work into approximately one

year. The plan significantly expands maintenance time on weeknights,

weekends and midday hours and includes 16 “Safety Surges” - long

duration track outages for major projects in key parts of the

system.

Why is SafeTrack necessary?

Metrorail is currently open 135 out of 168 hours per week, leaving insuf-

ficient time for maintenance and other necessary track work. By closing

the system at midnight on weekends and expanding weekday main-

tenance opportunities, SafeTrack addresses FTA and NTSB safety

recommendations and deferred maintenance backlogs while restoring

track infrastructure to good health. In addition the 16 “Safety Surges”

will utilize long-duration track outages through around-the-

clock single tracking or line-segment shutdowns that will im-

pact rush hour commutes.

How will SafeTrack impact my commute?

Due to reduced capacity and expected longer travel times, Metrorail

riders are encouraged to consider using alternate travel op-

tions while safety surge work is scheduled on their line. Trains

and platforms may be extremely crowded during peak periods and cus-

tomers may experience extended delays. Review the links below for

more information about each surge project and potential impacts on
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your commute.

I have emphasized the parts of WMATA’s SafeTrack description that is directly

relevant to this chapter. SafeTrack was undoubtedly an important and ambitious

undertaking. I will be exploring how ridership has been evolving before, during,

and after SafeTrack to better understand the impact and results of this program.

WMATA explicitly states to metro users that commute times will be longer dur-

ing SafeTrack impacted stations and that the consideration of alternative travel

options are encouraged. This potentially gives rise to dynamic impacts, which I

explore.6

Table 3.1 and Figure 3.1 shows the schedule of repairs and the network segments

that fell under SafeTrack. We can see that not all of the repairs are of the same

magnitude, some are much larger than others. There are two types of repairs.

Repairs can either lead to trains on a segment shutting down or to single tracking.

During the repairs that require a full segment shut down, a free shuttle service is

provided between the closed stations. Also, on June 25th, 2017 a fare increase of

$0.10 across all tier of peak time fares was implemented.

6My analysis ignores the indirect impacts of a disruption. The subway system is a large
network where there is a persistent disruption through the entire system even if only a small
segment of the system was disrupted. These impacts are ignored.
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Date Duration (Days) Line Type of Impact Segment Affected
1 Jun 4 - 16, 2016 13 Orange Single Track East Falls Church to Ballston
2 Jun 18 - July 3, 2016 16 Orange Shutdown Eastern Market to Minnesota Ave & Benning Road
3 Jul 5 - 11, 2016 7 Yellow Shutdown National Airport to Braddock Road
4 Jul 12 - 18, 2016 7 Yellow Shutdown Pentagon City to National Airport
5 Jul 20 - 31, 2016 12 Orange Single Track East Falls Church to Ballston
6 Aug 1 - 7, 2016 7 Red Single Track Takoma to Silver Spring
7 Aug 9 - 21, 2016 13 Red Single Track Shady Grove to Twinbrook
8 Aug 27 - Sep 11, 2016 16 Yellow Single Track Franconia-Springfield to Van Dorn Street
9 Sep 15 - Oct 26, 2016 42 Orange Single Track Vienna to West Falls Church
10 Oct 29 - Nov 22, 2016 25 Red Shutdown Fort Totten to NoMa
11 Nov 28 - Dec 20, 2016 23 Orange Single Track East Falls Church to West Falls Church
12 Feb 11 - 28, 2017 18 Blue Shutdown Rosslyn to Pentagon
13 Mar 4 - Apr 12, 2017 40 Blue Single Track Braddock Rd to Huntington/Van Dorn St
14 Apr 15-May 14, 2017 30 Green Shutdown Greenbelt to College Park/Prince George’s Plaza
15 May 16 - Jun 15 31, 2017 Orange Shutdown New Carrollton to Stadium-Armory
16 Jun 17 - 25 9, 2017 Red Shutdown Shady Grove to Twinbrook

Table 3.1: SafeTrack Repairs Schedule.
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Figure 3.1: The Metrorail system and SafeTrack Repair Segments
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3.3 Data

3.3.1 Data Sources

The data I use for the analysis is from two sources. One is a data set obtained

directly from WMATA of monthly average ridership between an origin-destination

pair, by time of day divided into 5 time-intervals and by service type consisting

of Weekday, Weekends and various others (for example public holidays). I only

use the weekday data to focus on commuters. There are a couple of reasons for

this. Firstly, AM and PM peak ridership constitutes on average 56.2% of the rid-

ers while only taking 44.7% of operating time of the system. Secondly, to capture

the persistent impacts of a repairs program such as SafeTrack, I want to focus

on the segment of the market that is actively and repeatedly making a transport

mode choice. The daily time intervals in the data are AM Peak, Midday, PM Peak,

Evening, and Late Night Peak. This monthly data goes from June, 2013 to October,

2017. Out of these I only consider the AM Peak ridership, because the PM Peak

ridership seems to be strongly correlated with the AM Peak ridership. To verify

this, I run a regression of log monthly average ridership on each station pair’s cor-

responding AM-PM commute origin-destination match (for example, regress AM

ridership of Crystal City-Dupont on PM ridership of Dupont-Crystal City). The

coefficient on this regression is 0.97 and is not statistically significantly different

from 1 where standard errors are calculated using pairwise clustering on origin-

destination. Given this, I carry out the rest of the analysis using only the AM

Peak data. In the analysis below, the treatments I focus on are repairs 1-13 in

Table 3.1. I avoid the others because the data set ends not long after these events

which means that I am unable to track the long-run impacts of these treatments.
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The second data set is from a publicly available data set, that contains data on

the length of every delay that the Metrorail system experienced from September,

2012 to September, 2016 categorized by cause of the delay. Unfortunately, this data

set only encompasses the very beginning of SafeTrack so I am unable to observe

actual quality changes after SafeTrack is complete. However, this data can shed

light on the relationship between delay (a primary quality measure for consumers)

and ridership. I use this data to control for the effect of delays on ridership when

I estimate how the price increase implemented at the end of SafeTrack impacted

ridership.

3.3.2 Descriptive Statistics

From the monthly ridership data, it can clearly be observed that ridership has

been falling for the last 4-5 years. Figure 3.2 shows the sum over all station pairs’

monthly average daily ridership and the average daily system wide delays over

time, the latter number is calculated by adding all the reported service delay min-

utes over a given month and dividing by 60 × 30 = 1800 to obtain average daily

delays in hours. The sum over all station pairs’ ridership approximately represents

the average system wide daily ridership for a given month. The raw data is very

jagged, because there are strong seasonal effects in the data (people ride the metro

more during the warmer months as opposed to winter, also during the holiday sea-

son AM Peak ridership is limited) so I plot the 6 month moving average to bring

out the more important features of the data. Some features of note are the grad-

ual decline in total ridership from late 2013 until the beginning of SafeTrack that

and the clear dip in ridership during SafeTrack starting June, 2016 and somewhat

recovering by March, 2017, by when most of the repairs have been executed.
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Figure 3.2: 6 Month Moving Average of the Sum of Average Ridership At Every
Origin-Destination Pair. and Average system wise delays.

The increase in total daily delays the whole system accrues can be seen to

sharply increase around March, 2014. This coincides with when the declining

ridership trend begins. Wait time and timeliness seems to be a strong determinant

in consumers commute mode choice. The causes listed for the increase in delays

are primarily due to increased train and infrastructure related issues. In light

of these descriptive figures, it seems that a large-scale repair program seems to

have been the right solution. It makes sense to drive delays down, to decrease the

rate of ridership decline or even increase ridership to 2013-2014 levels. However,

it is difficult to eyeball these effects. The next section will assess the impacts of

SafeTrack and the following fare increase in a more systematic way.
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3.4 Estimation and Analysis

3.4.1 The Impact of SafeTrack on Ridership

The Magnitude of Impact and SafeTrack Characteristics

We have seen on Table 3.1 that not all SafeTrack repairs are born equal. There is

heterogeneity in the treatment. For example, the treatment for repairs that last 7

days on continuous single tracking are likely to have different impacts on ridership

to repairs that last 25 days with complete segment shut downs. I explore the re-

lationship between these heterogeneities and the magnitude of impact on ridership.

Firstly, I estimate a regression equation with SafeTrack repairs 1-13 in Table

3.1 each coded as separate treatments.7 The corresponding coefficients on these

treatment dummies can be interpreted as the impact of each repair treatment on

the corresponding treated stations pairs and will uncover the differences in mag-

nitude of the effect of each treatment. Secondly, I will consider each treatment’s

affect in light of the treatment’s characteristics to discern any relationships be-

tween the magnitude of impact at treatment characteristics.

The regression equation estimated is:

ln(Ridershipijt) = α +

I×(I−1)∑
1

O.D. FEij +
T∑
1

Time FEt

+
12∑
k=1

βkSafeTrack Repair kijt + εijt (3.1)

7Repairs 3 and 4 are combined into one treatment because they are chronologically and
geographically contiguous. This gives me 12 treatments to consider.

83



Subscript ij denotes a original-destination (O.D.) pair respectively for i 6= j and

i, j ≤ I. SafeTrack Repair kijt is the treatment variable, a dummy variable that

is equal to 1 if the station pair ij in period t is “affected” by scheduled SafeTrack

repair k where k indexes the treatment number (i.e. SafeTrack repair). I define

“affected” observations as station pairs where a segment scheduled for SafeTrack

repair lies in between the origin and destination that defines the observation and if

the origin station is not a inner-Washington station. This is because I am focusing

on the AM commuters that are commuting into Washington. How the treatment

variable is formulated is illustrated in Figure 3.3. I control for the time trend not at

the pair specific level (there are too many pairs) but by sample groups categorized

by level of ridership. Pairs of stations are categorized as; HIGH if there are more

than or equal to 400 riders, MEDIUM if there are between 3 and 400 and LOW if

there are 2 or less riders. These cutoffs were determined by eyeballing the data and

it is reasonable to think there are different time trends for stations with less than 3

riders vs. a station with more than 400 riders. Each group LOW, MEDIUM, and

HIGH make up approximately 55%, 44%, and 1% of the stations pairs respectively.

The identification strategy to estimate equation (3.1) is a difference-in-differences

which requires a common pre-treatment trend assumption.
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● ●

Metro Line orange silver Treatment ● Under Repairs Affected

Figure 3.3: Graphical Interpretation of Treatment 1. Station Pairs where the
Origin Station is Not on the Inner-Washington” Side of the DC, MD, VA Area
and Hence “Affected” (Triangles) are Defined as Treated, Along with the Stations
Directly Affected by the Repairs (Dots).
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OLS
Treated 0.00127

(0.00133)
Constant -0.0296***

(0.000991)

Observations 154,000
R-squared 0.000

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 3.2: OLS Regression of Pre-treatment Growth Rates for Treated and Control
Stations Pairs

Another important note is how we should calculate the standard errors. As-

suming each station pair is independent is not a very good assumption because

there may be arbitrary correlation between pairs if the same origin or destination

is part of another observation. Given this, I cluster observations across two dimen-

sions, original and destination following Cameron et al. [2006], to account for the

fact that each observation falls into both of these dimensions. In Table 3.2 I show

the results of a regression on the growth rates8 on a treatment dummy variable

to investigate whether the common pre-existing trends assumptions are met for

identification of the above equation. I find that there is no significant difference

in the pre-treatment trends. Table 3.3 shows the estimation results for the above

equation. Controls and fixed effects coefficients are not reported.

8Calculated as the first difference of log ridership.
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(1) (2) (3)
Treatment Quadratic Linear No

k= Time Trend Time Trend Time Trend

1 -0.101*** -0.101*** -0.115***
(0.0260) (0.0260) (0.0313)

2 -0.0553 -0.0553 -0.0615
(0.0403) (0.0402) (0.0488)

3 -0.0572 -0.0572 -0.0616
(0.0362) (0.0361) (0.0445)

5 -0.0637** -0.0636** -0.0702**
(0.0301) (0.0301) (0.0350)

6 -0.0138 -0.0139 -0.0175
(0.0134) (0.0134) (0.0164)

7 -0.0293 -0.0294 -0.0322
(0.0642) (0.0643) (0.0739)

8 -0.0224 -0.0224 -0.0223
(0.0254) (0.0255) (0.0264)

9 -0.429*** -0.429*** -0.518***
(0.131) (0.131) (0.156)

10 -0.0411 -0.0412 -0.0559
(0.0348) (0.0348) (0.0421)

11 -0.0891** -0.0892** -0.102**
(0.0392) (0.0391) (0.0462)

12 -0.0623*** -0.0621*** -0.0640**
(0.0209) (0.0210) (0.0253)

13 -0.195*** -0.196*** -0.238***
(0.0416) (0.0415) (0.0510)

Observations 361,199 361,199 361,199
R-squared 0.235 0.235 0.094

Number of OD id 8,183 8,183 8,183

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Note:Repair k = 3 combines repair 3 and 4 in Table 3.1.

Table 3.3: Heterogeneity in the Impact of SafeTrack

The results are robust to different specifications, and we can clearly observe

the heterogeneity in each repair. There are some obvious relationships that can

be drawn. Firstly, as expected the treatments with the largest negative impacts

87



are the ones with the longest duration. For example, treatment 9 and 13 are the

repairs that lasted 42 and 40 days respectively. Also, treatments with line segment

shut downs seemed to have non-significant effects, with the exception of treatment

12. This may seem counter-intuitive, but it could simply reflect the fact that the

shuttle service between closed segments are quite effective in moving the passen-

gers between the segment that is shut down. Table 3.4 summarizes some of these

comparisons.

Treatment Index to % Change Statistically Shutdown? Duration State
k= Table 3.1 Significant?
1 1 -10.10% Yes No 13 VA
2 2 -5.53% No Yes 16 MD
3 3+4 -5.72% No Yes 7 VA
4 5 -6.36% Yes No 12 VA
5 6 -1.39% No No 7 MD
6 7 -2.94% No No 13 MD
7 8 -2.24% No No 16 VA
8 9 -42.87% Yes No 42 VA
9 10 -4.12% No Yes 25 MD
10 11 -8.92% Yes No 23 VA
11 12 -6.21% Yes Yes 18 VA
12 13 -19.56% Yes No 40 VA

Results from Specification (2) in Table 3.2 are used to construct this table.

Table 3.4: Treatment Characteristics and Estimation Results.

However, the most striking and robust relationship between treatment charac-

teristic and magnitude of effect is geographic in nature. It seems that all of the

statistically significant decreases are treatments that are on the VA side of the

Metrorail system. Only one of the VA treatments (treatment 3) is insignificant.

Treatment 3 is found to have an insignificant effect, but in all 3 specifications the

t− stat is very close from being large enough for significance despite the fact that

this treatment only lasts 14 days. My findings suggest that commuters commuting
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in from VA substituted the most heavily away from riding the subway.

The Dynamic Impact of SafeTrack on Ridership

There is reason to believe that SafeTrack has an impact on ridership that follows a

dynamic path that starts and continues, before and after the actual repairs. Firstly,

there is potential for an anticipatory effect. SafeTrack repairs did not start sud-

denly with no warning. WMATA announced SafeTrack one month prior to the first

set of repairs beginning and encouraged commuters to look for alternative modes

of transport. Secondly, during the repairs we would see a big decrease in ridership,

both due to the fact that there is literally less trains moving less passengers be-

tween origin and destination, and also because less people are choosing this mode

of transport for their daily commute as there are more delays.9 Thirdly, we could

expect to see a persistent impact on ridership for the stations that went through

the repairs. For example, if there are significant switching and re-optimization

costs to researching to switch to another form of transport for the daily commute,

then we would expect a large negative shock to utility from programs like Safe-

Track would push these people to actually switch to another mode of commuting

and not return to the metro even if the delays have shortened and quality has in-

creased. If this is indeed the case, simply assessing the impact of SafeTrack with a

treatment dummy variable as in equation (3.1) will fail to capture these dynamics.

To capture these effects, I estimate the following regression equation:

9WMATA’s data driven blog documents big surges in Metrobus utilization during repairs
[Catherine, 2016]
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ln(Ridershipijt) = α +

I×(I−1)∑
1

O.D. FEij +
T∑
1

Time FEt + β0Repair Monthijt

+
−1∑
l≥L

βlRepairs to begin l periods laterijt

+
K∑
k≥1

βkRepairs completed k periods agoijt + εijt (3.2)

The subscripts for station pairs and time are as in equation (3.1). With equa-

tion (3.2), I am tracing out the full path of how a treatment of getting a repair

done impacts the station pair’s ridership. My choice of L and K are -2 and 10 re-

spectively. By looking at these before, during, and after repair dummies we can get

a better understanding of whether the aforementioned dynamics are present in the

data. The time fixed effects will capture unobserved month-year specific variables

that impacted the entire metro system, such as seasonal effects and the impact of

delays. Later, when I explore the impact of delays and the post-SafeTrack fare in-

crease, I use these month-year fixed effect coefficients as the left-hand side variable.

Table 3.2 shows the set of estimations (fixed effects are not reported) and Fig-

ure 3.2 visually depicts the estimates from the linear time trend estimates. The

variable on the left-hand side is a log transformation and the coefficients are on

dummy variables so can be interpreted as a percentage change given the dummy

is turned on, for example, β−1 = −0.0251 can be interpreted as, there being on

average 2.5% less riders one month before a station pair is scheduled for SafeTrack

repairs.
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The estimates are robust to different ways of controlling for the time trend and

we can see the dynamic path of ridership as a station pair experiences a SafeTrack

repair. Ridership fell about 2.5% a month before the actual repairs (i.e. anticipa-

tory effect) and it takes about 2 months for ridership to recover from the shock.

I observe a consistently negative point estimate of the post-repair coefficients al-

though some of the coefficient aren’t significantly different from 0. However, an

F-test for joint significance for all the coefficients for k > 2 suggest that jointly,

the coefficients are all indeed significant (F −Statistic = 31.97). There is indeed a

long-run impact from the disruptions caused by SafeTrack. About 1.68% percent

of former Metrorail commuters seem to have switched to another mode of trans-

port for good.

Figure 3.4: Graphical Interpretation of Regression Coefficients and Confidence
Intervals.
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(1) (2) (3)
Months to/from Quadratic Linear No

Repair time trend time trend time trend

-2 -0.00221 -0.00223 -0.00342
(0.00825) (0.00826) (0.00992)

-1 -0.0251*** -0.0251*** -0.0305***
(0.00793) (0.00793) (0.00936)

0 -0.0911*** -0.0911*** -0.108***
(0.0185) (0.0185) (0.0221)

1 -0.0441*** -0.0441*** -0.0545***
(0.0102) (0.0102) (0.0121)

2 -0.0230*** -0.0230*** -0.0316***
(0.00742) (0.00741) (0.00793)

3 -0.0151 -0.0151 -0.0183
(0.0139) (0.0139) (0.0160)

4 -0.0130 -0.0130 -0.0169
(0.00992) (0.00989) (0.0113)

5 -0.0141* -0.0141* -0.0161*
(0.00832) (0.00829) (0.00933)

6 -0.00740 -0.00741 -0.0110
(0.00754) (0.00749) (0.00845)

7 -0.0213*** -0.0213*** -0.0236***
(0.00708) (0.00703) (0.00801)

8 -0.0294*** -0.0294*** -0.0364***
(0.00682) (0.00678) (0.00778)

9 -0.0158** -0.0157** -0.0189**
(0.00714) (0.00710) (0.00762)

10 -0.0124 -0.0123 -0.0148
(0.00906) (0.00902) (0.00994)

Observations 361,199 361,199 361,199
R-squared 0.234 0.234 0.093

Number of OD id 8,183 8,183 8,183

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 3.5: The Dynamic Impact of SafeTrack on Ridership.
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3.4.2 The Impact of Service Quality and Fares on Ridership

In this section I look at how service quality and fares impact ridership. Due to

the absence of delay data during and after SafeTrack, it is not possible to assess

exactly how much of an impact SafeTrack has had on actual level of delays. I

replace the missing data, with zeros and then account for the missing time periods

with a dummy variable. This should allow me to capture the impact of delays

on ridership for the parts where data is not missing, and then when it is missing,

account for it in levels.

The left-hand side variable I use are the estimated the month-year dummy

coefficients from the previous regression estimation (in particular, specification

(1)). These coefficients capture the unobserved characteristics (characteristics not

included in the previous regression) of the monthly average ridership in a particular

month-year. Recall, the regression in the previous section is in log scale, which

means that the interpretation of the coefficient estimates in this section are in

percentage changes per unit change in the right-hand side variable. Firstly, I

estimate the following equation:

Time FEt = Month FEt + α + β1Delayt + β2Post fare increaset (3.3)

+ β3SafeTrack + β4Missing + +β5time+ εt

The month fixed effects should capture any seasonal fluctuations that are a

function on month of year. The effect of delay on ridership is captured by the

β1 (delays are a continuous measure). β2 captures the impact of the fare increase

on ridership. This should capture solely the fare increase because firstly, the time
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fixed effect has a lot of the variation coming from other relevant dependent vari-

ables stripped out from it already. Secondly, the delays and month fixed effects

are controlling for any variation in the time fixed effects that don’t vary within

month-year but do vary across month-year. These variations would have all been

pushed into the time fixed effects we are using in the estimation of equation (3.1).

β3 captures the impact of SafeTrack at the system level. Note that the treatments

in equation (3.1) are determined at the origin-destination pair level so indirect,

system wide impacts of SafeTrack are not fully extracted from the time fixed ef-

fects. β4 captures the levels difference of ridership while delays are missing. Lastly,

β5 controls for the time trend.

OLS

Fare Increase -0.0205
(0.0176)

Delays -0.001916
(0.0091)

Safetrack -0.0298847**
(0.0110)

Missing Delays Dummy 0.0118
(0.0290)

Constant 1.8486***
(0.2569 )

Time (months) -0.0030***
(0.0004)

Observations 46
R-squared 0.947

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 3.6: The Impact of Delays and Fare Increases on Ridership.

Table 3.6 shows the estimated coefficients for equation (3.3), because of the
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correlation between delays and the time trend variable, we see that delays are

not found to be statistically significant in the estimated equation. The estimates

suggest that per year, ridership has been falling on average 3.6%. I have also

examined the impact of lagged delays on ridership, however, lagged delays do not

affect ridership at the time interval the data comes in (i.e. one month intervals).

This suggests that most commuter transport mode substitutions happen within a

month. The fare’s impact on ridership is insignificant. The point estimate suggests

that post-fare increase, ridership is on average 2.05% lower than before the fare

increase. The absolute value of the change in fares is $0.1 for any destination

originating from a peak time entry.10 The actual average percentage change in

fare is more convoluted to calculate because the fares are calculated in a non-

linear way, as a function of distance travelled on the track and the coordinate

distance between two stations. However, the price change in percentages ranges

from being a 4.56% increase ($2.15 to $2.25) to a 1.89% increase ($5.90 to $6.00)

and in 2013 the average fare collected by WMATA was $2.90 [Duggan, 2013]. This

would imply an average effective fare increase of 3.45% which suggests ridership

elasticity with respect to fare is -0.59. This is in line with the literature’s prior

findings. Paulley et al. [2004] and Litman [2017] both offer a comprehensive survey

on transit elasticities. The authors in both surveys suggest that metro ridership’s

short-run elasticities are in the range of -0.3 to -0.6, while long-run elasticities are

close to 1.

To compare these estimates with the persistent impacts of SafeTrack, taking

the back of the envelope elasticity calculation above, the estimates suggest that

10Price changes on weekly and monthly passes are different. I couldn’t get data on the market
share for these pass holders and single trip pay-as-you-go card holders, but it is reported at
https://planitmetro.com/?s=smartbene that 87% of Federal Metrorail customers are pay-
ing for the usage using a pay-as-you-go standard fare payment method. This may suggest that
the aforementioned fare increase is relevant to the vast majority of Metrorail users.
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the impact that SafeTrack had on ridership in the long-run is similar to an average

fare increase of 2.85%.11 The average daily ridership across all treated origin-

destination pairs for the time periods before SafeTrack (June, 2013 to May, 2017)

is 135,767.4. My dynamic coefficients then imply there is about 2,279 (135, 767.4×

0.0168 = 2, 279.36) less AM Peak commuters riding Metrorail to get into DC in the

morning. Assuming that an average commuter pays $3.00 for his/her commute,

this a fare revenue loss of about 204, 840 per month from the AM commute market.

Assuming that the commuters who substituted away from the subway may also

not be riding in the PM Peak time period, the total daily impact is possibly closer

to double the amount above.

3.5 Conclusion

I find that the commuter origin-destination pairs that suffered the largest losses

during SafeTrack are ones that are originating from Virginia, quantifying why this

might be the case goes beyond the scope of the current chapter. There is an indirect

cost to investing in a large maintenance program such as SafeTrack in the form of

persistent rider losses. If consumers face switching costs, the disruptions caused

by maintenance may provide a sufficiently large negative utility shock such that

riders consider other options for transportation. This chapter explored this indirect

cost to assess the persistent impact that SafeTrack had on Metrorail ridership in

the DC, Maryland, Virginia (DMV) area. Considering how delays were increasing

and ridership was decreasing consistently since 2013-2014 a big push to increase

reliability and timeliness seems to have been a good idea. However, I find evidence

of persistent ridership losses. Ridership for the subway system in the DMV area

does not fully recover to pre-SafeTrack levels even up to 10 months after a segment

11
∑10

k=2 β̂k/9

0.59 = 2.85. Using estimates from specification (2) in Table 3.5.
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has been worked on. My estimates suggest that 2 to 10 months after the repairs

ridership is on average 1.68% lower compared to 2 months before the repairs.

This level of persistent ridership loss translates approximately to losses of about

$410,000 per month. I also find that ridership is inelastic with respect to fares.

This is in line with the literature’s findings.
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