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I describe two studies on firm dynamics and job creation. In Chapter 1, I iden-

tify a key predictor of the early growth trajectory of young firms: the outside options

of the business founders. I show that entrepreneurs with higher outside options as

paid workers tend to take larger business risks, and thus exhibit a more up-or-out

type of firm dynamics. I find empirical support for the model’s predictions using

a large founder-firm matched data set built from administrative databases of the

U.S. Census Bureau. I find that controlling for past business performance, young

firms operated by entrepreneurs with higher outside options exhibit (i) higher firm

exit rates, (ii) more growth dispersion, and (iii) faster growth conditioning on sur-

vival. With the calibrated model, I find that deterioration in the outside options

of entrepreneurs can have a sizable negative impact on aggregate output and pro-

ductivity via lower risk-taking by young firms and slower growth in their life cycle.

These findings indicate that the expected post-failure outcomes of entrepreneurs are

an important factor that governs young firm growth as well as aggregate output and



productivity.

Chapter 2 studies how firms’ lobby behavior affects the allocation of federal

procurement contracts during the fiscal stimulus period and the magnitude of the

local job creation effect. Using the allocation of contracts under the American

Recovery and Reinvestment Act (ARRA) as a laboratory, it is shown that among

firms with a similar propensity to lobby on ARRA in 2009, those firms that actually

lobbied on ARRA-related bills won 5% more contracts and 50% larger contracts than

firms that did not. We further investigate whether procurement spending channeled

through lobbying firms has a differential impact on MSA-level employment growth.

We find that $1 million procurement spending yields on average of 11.5 jobs, and

that the effect is entirely driven by contracts channeled through non-lobbying firms.

While procurement channeled through lobbying firms has no significant impact on

job creation, $1 million in procurement spending through non-lobbying firms yields

16 jobs.
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Preface

Who creates jobs in the aggregate economy? A misleading argument that still

persists today is that small firms account for the majority of job creation. A now

well-known empirical fact in the firm dynamics literature is that young firms, not

small firms, are the true engine of job creation (Haltiwanger, Jarmin, and Miranda,

2013). In fact, typical small firms are old and they do not create many jobs. This fact

has triggered a great deal of interest among macroeconomists on entrepreneurship,

new business formation, and growth and survival dynamics of young firms.

While young firms create massive number of jobs every year, it is important

to acknowledge two facts in order to better understand their contribution to the

aggregate job creation process. First, jobs created by young firms are not stable.

More than 50% of startup firms and the associated jobs are destroyed within their

first five years. Second, typical young firms exhibit little or no employment growth

(Decker, Haltiwanger, Jarmin, and Miranda, 2014; Hurst and Pugsley, 2011). In

fact, a relatively small fraction of young firms grow rapidly and make sustained and

large contribution to aggregate job creation. Therefore, it is critical to understand

the sources of heterogeneity of young firms, and most importantly, why some young

firms grow faster than the others.

Understanding entry, growth, and survival dynamics as well as sources of

heterogeneity of young firms has become particularly important in the U.S. The

U.S. economy has been experiencing a secular decline in entrepreneurship, business

dynamism, and labor market fluidity in the last three decades (Davis and Halti-

wanger, 2014; Decker, Haltiwanger, Jarmin, and Miranda, 2014). Moreover, growing
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evidence suggests that high-growth young firms are disappearing at a faster pace

than non-growing mom and pop stores (Decker, Haltiwanger, Jarmin, and Miranda,

2016).

As part of this research agenda, Chapter 1 of this dissertation provides one

answer to the question of “what types of entrepreneurs are more likely to create

high-growth young firms, and why?” I show that the entrepreneurs with better fall-

back options can afford to take larger business risks, and thus those entrepreneurs

are more likely to create high-growth young firms at a cost of higher failure risks.

I demonstrate this hypothesis through the lens of a dynamic occupational choice

model of entrepreneurship, and test its implications using a comprehensive admin-

istrative data that contains 1.7 million U.S. startup firms.

In Chapter 2, I conduct research (jointly with Veronika Penciakova and Felipe

Saffie) on job creation effect of the fiscal stimulus during recessions. We focus on

the American Recovery and Reinvestment Act (ARRA) enacted during the Great

Recession. The primary stated goal of ARRA was promoting aggregate job creation.

While most previous studies have focused on identifying the job creation effect of the

fiscal stimulus on local regions (local job multiplier), we focus on how firms lobbying

behavior affects the allocation of procurement contracts and the magnitude of local

job multiplier.

We find that lobbying firms tend to win government contracts with 5% higher

probability and 50% larger contracts. We also find that $ 1 million procurement

spending yields on average 11.5 jobs at the Metropolitan Statistical Area (MSA)

level, and that effect is entirely driven by procurement spending channeled through
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non-lobbying firms. While procurement channeled through lobbying firms has no

significant impact on local job creation, $ 1 million in procurement spending through

non-lobbying firms yields 16 jobs. Therefore, our finding cautions that when the al-

location of government spending is affected by firms lobbying behavior, job creation

effect may be mitigated.
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Chapter 1: Entrepreneurial Risk-Taking, Young Firm Dynamics, and

Aggregate Implications

1.1 Introduction

A long-standing literature in economics, dating back to at least Schumpeter

(1942), show that business startups and entrepreneurs play a critical role in inno-

vation, job creation, and productivity growth.1 Yet, recent studies caution that

there is a large heterogeneity in growth dynamics amongst young firms (see, e.g.,

Decker, Haltiwanger, Jarmin, and Miranda, 2014; Guzman and Stern, 2016; Hurst

and Pugsley, 2011; Schoar, 2010). In fact, typical startup firms either exit or exhibit

little or no growth, and a small fraction that grow rapidly—so-called high-growth

young firms—account for the vast majority of the aggregate contribution of young

firms (Decker, Haltiwanger, Jarmin, and Miranda, 2014). However, relatively lit-

tle is known regarding the economic factors that drive the large differences in the

growth dynamics of young firms, and more importantly, the mechanisms through

1For models of entrepreneurship and innovation, see, among others, Aghion and Howitt (1992),
King and Levine (1993), Acemoglu, Akcigit, Bloom, and Kerr (2013), and Acemoglu and Cao
(2015). Haltiwanger, Jarmin, and Miranda (2013) and Decker, Haltiwanger, Jarmin, and Miranda
(2014) provide empirical evidence on the importance of young firms in aggregate job creation. For
evidence on productivity growth, see Haltiwanger, Jarmin, Kulick, and Miranda (2016) and Alon,
Berger, Dent, and Pugsley (2017).
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which high-growth young firms are created.

In this paper, I propose a key predictor of the early growth trajectories of

young firms: the outside options of the business founders. I argue that startup en-

trepreneurs with higher levels of outside options, which I define by the level of labor

income they expect to earn in the event of business failure, are more likely to take

larger business risks and thus exhibit a more up-or-out type of firm dynamics. This

is because the option to cease business operations and switch to paid employment

serves as insurance against business failure, and better insurance enables individuals

to take larger risks. Therefore, entrepreneurs with better outside options are more

likely to create high-growth young firms at the cost of a higher failure risk, and those

with weaker outside options are more likely to create businesses that stay small.2

To formalize this argument, I construct a dynamic occupational choice model

in which individuals can choose between paid employment and entrepreneurship. I

build on earlier work by Vereshchagina and Hopenhayn (2009) and model risk-taking

by entrepreneurs as the choice of dispersion in the innovation to their business pro-

ductivity. I refer to this choice as risky experimentation. Success in experimenta-

tion delivers an increase in business productivity, which translates into growth in

firm profits and size. Failure in experimentation results in persistent damage to

business productivity, which leads to contraction or even to the exit of the firm.

Vereshchagina and Hopenhayn (2009) show that the option to return to paid em-

2I confine the scope of this study to firms that hire at least one employee and exclude nonem-
ployer self-employment activities. Given that the purpose of this study is to examine diverse firm
outcomes including employment growth, I consider this as a fair restriction. However, nonem-
ployer businesses are massive in number and deserve investigation as well. For a recent study on
the growth outcomes of nonemployer firms, see Fairlie and Miranda (2017).
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ployment creates a convexity around the exit margin of the objective functions of the

entrepreneurs, which endogenously generates risk-taking incentives. I extend and

modify their framework by introducing persistence in the firm productivity process

and heterogeneity in labor earnings to generate implications on the relationship

between the entrepreneurs’ outside options and their post-entry firm dynamics.

I begin the analysis by presenting a stylized two-period version of the model to

illustrate the mechanism in its simplest form and to derive analytical solutions that

can be mapped into empirically testable predictions. The simple model predicts

that firms operated by entrepreneurs with better outside options should exhibit (i)

higher exit rates, (ii) more growth dispersion, and (iii) faster growth conditioning on

survival compared to firms operated by entrepreneurs with weaker outside options,

holding lagged firm productivity constant. I show that it is important to control for

lagged productivity to uncover the predicted patterns in the data; the unconditional

correlations between outside options and firm exit is ambiguous, given the likely

positive correlation between outside options and initial business productivity. The

model also implies that when an entrepreneur has strong nonpecuniary incentives for

being an entrepreneur (e.g., being one’s own boss, having a flexibile work schedule),

the impact of his outside option on the three predicted outcomes stated above will

be mitigated. This is because if all else is equal, he will be more averse to losing the

nonpecuniary benefits of staying in entrepreneurship, and therefore will take fewer

risks. This result is consistent with evidence documented by Hurst and Pugsley

(2011) that startup business owners who report strong nonpecuniary motives also

tend to report a lack of willingness to take risks to grow their firms.
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I provide direct empirical evidence for the model’s predictions using a panel

data of 1.7 million startup firms. To test the model’s predictions, one needs a data

set that provides information on business founders as well as longitudinal records

of their firms, including firm productivity. I construct such unique data set by

combining individual- and firm-level administrative databases of the U.S. Census

Bureau. It not only contains the demographics and work histories (e.g., earnings,

workplaces) of the business founders, but also tracks annually each firm from its

first year of operation until exit (if it occurs). Because the outside option is not

directly observed in the data, I use the business founders’ annual labor earnings

prior to business entry as a proxy variable for their outside options. This approach

is based on empirical evidence that labor earnings prior to business entry is a strong

positive predictor of labor earnings post-business exit, especially for short spells of

entrepreneurship.3 I measure firm productivity by revenue per worker, which is a

frequently used measure in the firm dynamics literature.

A major concern of this empirical test is that the outside options of en-

trepreneurs are likely to be positively correlated with unobserved abilities, such as

managerial capabilities, which independently have a positive impact on firm growth

and survival outcomes. I find that higher outside options predict higher firm exit

rates, once I control for lagged firm productivity and size. A large component of

unobserved ability should be captured by lagged firm productivity and size, and if

3For example, see Williams (2000) and Bruce and Schuetze (2004). I also report a strong
positive correlation between prior and post entrepreneurship earnings for the entrepreneurs that
exit. The literature also finds that the effect of past entrepreneurship experience on wages is
generally smaller than the effect of experience in paid employment. This feature is reflected in the
quantitative model in section 1.4.
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any effect is left over, it should create a bias toward finding a negative relation-

ship between outside options and firm exit. In addition, it is unclear outside the

proposed model mechanism why better unobserved abilities should lead to a larger

growth dispersion.

Micro-level theoretical and empirical analyses indicate that the outside options

of business founders are important determinants of young firm growth and survival

dynamics. Yet, the question remains whether the proposed mechanism have quanti-

tatively meaningful implications for macro-level outcomes such as aggregate output

and productivity. To address this question, I embed the stylized model into a het-

erogeneous agent general equilibrium model and calibrate it to the U.S. economy.

I find that a decrease in outside options for startup entrepreneurs can have a siz-

able impact on aggregate productivity and output. In a counterfactual where the

option to return to paid employment is completely removed, aggregate output falls

by 8.9%, and aggregate output per worker falls by 4.4%. I find that this result is

mainly driven by a reduction in risk-taking by young firms, which results in slower

productivity growth along their life cycles. Therefore, outside options are impor-

tant factors that affect not only young firm growth and survival, but also aggregate

output and productivity.

This paper contributes to the entrepreneurship literature that attempts to

better understand the gap between a broad population of entrepreneurs with low

business growth prospects (e.g., Hamilton, 2000; Hurst and Pugsley, 2011) and a

small number of transformative entrepreneurs with strong capabilities and ambi-

tion for rapid growth (e.g., Guzman and Stern, 2016; Haltiwanger, Jarmin, Kulick,
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and Miranda, 2016). In the developing economy context, Schoar (2010) argues

that policy interventions which lack a clear understanding of the difference between

those two types of entrepreneurs may result in unintended adverse consequences.

While the existing studies tend to adopt such dichotomous view on the types of

entrepreneurship, I contribute to this literature by identifying outside options as a

relatively continuously distributed source of heterogeneity among entrepreneurs.

This paper also contributes to an emerging literature in firm dynamics and

macroeconomics that focuses on the determinants of firm entry and growth along

their life cycle. Recent empirical studies found that while young firms make sub-

stantial contribution to aggregate job creation and productivity growth, the U.S.

economy has been experiencing a secular decline in firm entry rates.4 In addition,

recent studies found that there is a tight linkage between life-cycle dynamics of plants

and firms and aggregate productivity (e.g., see Akcigit, Alp, and Peters, 2016; Hsieh

and Klenow, 2014). These findings triggered interest among macroeconomists in the

life-cycle aspects of firm growth, particularly those of young firms.5 I contribute to

this literature by showing that deterioration in the outside options of entrepreneurs

result in a decline in firm entry rates and slower life-cycle growth of young firms.

In addition, this paper contributes to the literature that investigates the exper-

imental aspect of entrepreneurship (e.g., Kerr, Nanda, and Rhodes-Kropf, 2014b).

This literature emphasizes that entrepreneurship should be viewed as an experiment

4For example, see Haltiwanger, Jarmin, and Miranda (2013), Decker, Haltiwanger, Jarmin,
and Miranda (2014), Decker, Haltiwanger, Jarmin, and Miranda (2016) and Alon, Berger, Dent,
and Pugsley (2017)

5For recent examples, see Pugsley and Sahin (2015), Arkolakis, Papageorgiou, and Timoshenko
(2017), Sedlácek and Sterk (2017), and Moreira (2017).
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that can be reversed, and that post-failure options should be taken into considera-

tion in analyzing entrepreneurship decisions. Work by Polkovnichenko (2003) and

Vereshchagina and Hopenhayn (2009), and more recently by Manso (2016) and Dil-

lon and Stanton (2017), confirms this idea, and demonstrates that the option to

return to paid employment can largely explain why some people enter entrepreneur-

ship despite the low risk premium of entrepreneurs relative to wage earners observed

in the cross-sectional earnings distribution (Hamilton, 2000). In a similar vein, em-

pirical studies find that providing insurance against failure from entrepreneurship

such as job-protected leave (Gottlieb, Townsend, and Xu, 2016), unemployment in-

surance (Hombert, Schoar, Sraer, and Thesmar, 2017), and cash transfers (Bianchi

and Bobba, 2012) spurs entry to entrepreneurship. I contribute to this literature

by providing new empirical evidence such that when lagged firm performance is

controlled, higher outside options are associated with higher exit rates and a larger

growth dispersion. This result is consistent with the experimentation view of en-

trepreneurship.

Lastly, this paper is closely tied to existing models of firm dynamics with

endogenous innovation choices that involve potential risks (e.g., see, among others,

Atkeson and Burstein, 2010, Gabler and Poschke, 2013, Caggese, 2016, and Buera

and Fattal-Jaef, 2016). I contribute to this literature by showing that modeling

heterogeneity in the post-exit value of firms is important in capturing the dynamics

of firms near the entry and exit margins. Typical existing models assume that firms

face homogeneous post-failure outcomes by specifying the value of exit as a constant,

which is typically set at zero, and focus on other frictions or distortions that affect

7



firms’ innovation decisions. Some of the existing models, such as that of Caggese

(2016), recognize that the existence of an exit option generates extra risk-taking

incentive for firms, but rarely go further to specify the source of the exit option. I

show that modeling the impact of outside options on firm dynamics is important

and that using prior earnings can be one way to discipline the distribution of post-

exit values. Capturing the dynamics of firms near the entry and exit margins is

important, as these firms include startups and young firms, which play an important

role in aggregate growth.

The paper is organized as follows. Section 1.2 develops a simple two-period

single-agent model that illustrates the risk-taking mechanism. Section 1.3 describes

the empirical investigation of the simple model predictions. Section 1.4 extends the

simple model to a quantitative heterogeneous agent general equilibrium model, and

Section 1.5 describes the model calibration and counterfactual exercises, and Section

1.6 concludes.

1.2 A Simple Model of Business Risk Taking

In this section, I present a simple two-period single-agent model of business

risk-taking. This model formalizes the mechanism of the hypothesis in its simplest

form. It generates a set of predictions on the relationship between outside options

and firm growth and survival, which are then empirically tested in Section 1.3. It

also serves as a key building block of the quantitative general equilibrium model

presented in Section 1.4.
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There are two periods, denoted as t = 1, 2. Consider an entrepreneur in t = 1

who is endowed with a business idea z1 and labor efficiency h.6 For simplicity, it is

assumed that the agent has log utility and all income is comsumed without saving

in each period; these assumptions are relaxed later in the quantitative model. In the

first period, he hires effective units of labor n1 and pays wn1 to workers, where w

is the wage per effective unit of labor. He produces output via production function

y1 = z1−α
1 nα1 . His next-period business idea z2 evolves according to a binomial risky

innovation process

z2 =


z1e

∆ with probability e−γ∆

z1e
−∆ with probability 1− e−γ∆

where ∆ ≥ 0 is a choice variable and γ > 0 is a parameter. Binomial innovation

process has been used in existing models of firm dynamics (see, e.g, Atkeson and

Burstein, 2010; Buera and Fattal-Jaef, 2016; Caggese, 2016). A key assumption

introduced in this model is that ∆ can be controlled by entrepreneurs, while ∆ has

been treated as a fixed parameter in previous models.7 This assumption enables the

model to predict that some types of firms exhibit larger growth dispersion or higher

exit rates than others. Hereafter, I refer to choosing a positive ∆ as conducting

6In the simple model, I abstract from entrepreneurship entry decisions and focus on post-entry
dynamics. I discuss how outside options affect individuals’ entry decisions later in section 1.5.3
using the quantitative model.

7Atkeson and Burstein (2010) and Buera and Fattal-Jaef (2016) assume that firms can increase
the success probability subject to an increasing cost function while ∆ is a fixed parameter. In
Caggese (2016), both success probability and ∆ are treated as parameters in which ∆ is specified
as risky innovation to fixed cost of operation. Gabler and Poschke (2013) study a firm dynamics
model with innovation dispersion choice. An important difference is that firms face a heterogeneous
post-exit state in this model, while the post-exit state is assumed to be homogeneous in their model.
This feature is at the core of the mechanism described in this paper.
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a risky experimentation. The success probability e−γ∆ is assumed to be decreas-

ing in ∆, indicating that riskier experiments are more challenging to implement

successfully.

This risky experimentation specification can be thought of as representing

several real-world business risk-taking choices made in the post-entry phase. For

instance, firms can try to adjust their target customer base: A firm that initially

targeted a niche market may try to expand to a broader customer base, in which

case it could lose its existing customers in the case of failure. Other examples of risk-

taking choices include adding or removing features of a product of service, changing

supply-chain systems that may incur disruptions (e.g., Hendricks and Singhal, 2005),

and adopting new technologies (e.g., see Holmes, Levine, and Schmitz Jr, 2012 and

the references therein).

When the entrepreneur arrives at t = 2, he decides whether to stay in business

or cease operations after observing the realization of z2. In the case of business exit,

he switches to paid employment and earns labor income wh, in which case he enjoys

the value of ln(wh). If he stays in business, he hires effective units of labor n2 and

earns a profit of z1−α
2 nα2 − wn2. He chooses n2 to maximize his utility, so that the

value of staying as an entrepreneur in period 2 is

max
n2≥0

ln(z1−α
2 nα2 − wn2) = ln(Γz2)

where n∗2 = (α
w

)
1

1−α z2 and Γ = (1 − α)(α
w

)
1

1−α . Therefore, the value function at the

10



beginning of period 2 can be summarized as

V2(z2, h) = max{ln(Γz2), ln(wh)}

Note that the entrepreneur stays in business if and only if z2 ≥ wh
Γ

. Taking V2(z2, h)

into account, the entrepreneur in period 1 chooses labor input n1 and experiment

risk ∆ to maximize expected lifetime utility. Specifically, he solves the problem

V1(z1, h) = max
n1≥0,∆≥0

ln(z1−α
1 nα1 − wn1) + β

{
e−γ∆ · V2(z1e

∆, h) + (1− e−γ∆) · V2(z1e
−∆, h)

}

where β is the time discount factor. The entrepreneur chooses n1 to maximize period

1 profits, and thus n∗1 = (α
w

)
1

1−α z1. The object of interest is the optimal ∆∗. It can

be shown that for a given z1, there exists h∗(z1) such that

∆∗ =


ln(wh)− ln(Γz1) + 1

γ
h ≥ h∗(z1)

∆̄(γ) 0 ≤ h < h∗(z1)

(1.1)

where ∆̄(γ) is a decreasing function of γ. The solution is derived in Appendix A.1.

The model predicts that an increase in h leads to a larger ∆∗, unless h is too low

relative to z1.

The core mechanism behind this result is the option value effect. The outside

option of switching to paid employment provides a lower bound in the value function

of the entrepreneur. This can be seen in Figure 1.1a, in which the value function

in t = 2 is the upper envelope of the two occupation-specific values ln(wh) and
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ln(Γz2). The value function is locally convex around exit threshold zexit due to the

lower bound, and an entrepreneur who has z1 around this region can increase his

expected utility by introducing a risk in z2. This endogenous risk-taking behavior is

modeled by Vereshchagina and Hopenhayn (2009) in an entrepreneurship context.8

(a) h case (b) h and h′ comparison

Figure 1.1: Value function in period 2

Notes: Figure (a) shows the value functions of entrepreneurs (ln(Γz)) and workers (ln(wh)) in

period 2. Figure (b) shows that when there is an increase in labor efficiency from h to h′, distance

between current productivity and the exit threshold becomes shortened, and risk-taking incentive

of the entrepreneur increase.

For a positive ∆, the ex post benefit in the case of success is the value gain

generated by improving z2 from z1 to z1e
∆. The ex post benefit is unbounded above,

and the expected marginal benefit with respect to ∆ diminishes due to the concavity

of the utility function and the curvature in the success probability function. In

contrast, the ex post cost in the case of failure is bounded below because of the

8Vereshchagina and Hopenhayn (2009) generates local convexity in the entrepreneurs’ value
functions along the asset dimension rather than the business productivity dimension. This is done
by introducing financial constraints as specified in Evans and Jovanovic (1989) and Holtz-Eakin,
Joulfaian, and Rosen (1994). The core mechanism of this paper is not affected by the presence of
financial constraints as long as the business productivity follows a persistent process. I introduce
financial constraints later in the quantitative model in Section 1.4.
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outside option. For any z2 realizations below zexit, the entrepreneur will exercise the

exit option to minimize the value loss. Hence the lower bound of the ex post cost

is determined by the distance between z1 and zexit, illustrated by the bold gray line

in Figure 1.1a. As shown in Figure 1.1b, an increase in outside option increases the

exit threshold zexit, and shortens the distance between z1 and zexit (bold gray line).

Therefore an increase in h lowers the expected marginal cost of choosing a large ∆,

which incentivizes risk-taking behavior.9

The positive relationship between h and ∆ for a given z1 generates several

testable implications on firm growth and survival. First, combining the optimal ∆∗

and the success probability function e−γ∆, the firm exit probability can be derived

as

Pr(Exit) =


1− (Γz1

wh
)γe−1 h ≥ h∗(z1)

0 0 ≤ h < h∗(z1)

(1.2)

Therefore, the model implies that holding z1 constant, wh and the exit probability

in period 2 should be positively correlated. Hence, the first prediction is derived.

Prediction 1. Controlling for zt−1, entrepreneurs with higher outside options will

exhibit higher firm exit rates in t.

The second prediction is on dispersion of firm growth. Given the specified

process for z, a higher ∆∗ directly implies a larger dispersion in the productivity

innovation. In the simple two-period setting, entrepreneurs readily exit when they

9In the quantitative model, I incorporate the direct resource cost of risk-taking. While this cost
affects the incentives of individuals for each h, the comparison across different h remains unaltered.
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fail in their risk-taking. Thus the observed innovation in z is truncated below, and

the model cannot speak to outcomes concerning dispersion. With a straightfor-

ward extension to a multiperiod setup, however, it can be shown that even when

entrepreneurs stay in business in the case of failure in risk-taking, their ∆∗t are pos-

itively associated with h for a given level of zt. The intuition is that even though

the entrepreneur may not exit in the contemporaneous period after receiving an

adverse outcome in zt, lower levels of zt increase the probability of exiting in the

future. Thus outside option wh still affects risk-taking incentives in the same way.

Therefore, the model predicts larger dispersion of firm growth for entrepreneurs with

higher outside options. This prediction is confirmed in the quantitative model, in

which agents are infinitely lived.

Prediction 2. Controlling for zt−1, entrepreneurs with higher outside options will

exhibit larger dispersion in growth between t and t− 1.

The third prediction is on average firm growth rate conditioning on survival.

Because taking a business risk leads to higher probability of exit in case of failure,

continuing firms are more likely to consist of risk-taking winners and non-risk-takers.

Given that z2 = z1e
∆∗ for risk-taking winners, their growth rate of z and n is

e∆∗ = wh
Γz0
e

1
γ . Since entrepreneurs with higher outside options (wh) tend to take

larger risks (∆∗), they are likely to exhibit faster growth conditioning on survival.

Prediction 3. Controlling for zt−1, entrepreneurs with higher outside options will

exhibit faster growth between t− 1 and t.
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Interaction with Nonpecuniary Motives For Self-employment Empirical studies in

the firm dynamics literature indicate that typical startups in the U.S. exhibit little

or no growth.10 The risk-taking mechanism developed in this paper can explain this

result if many business founders have low outside options and thus take little or

no risks. An alternative hypothesis was put forward by Hurst and Pugsley (2011),

who attribute this pattern to the nonpecuniary benefits of self-employment. Using

an occupational choice framework, Hurst and Pugsley (2016) show that individuals

with strong nonpecuniary motives tend to start businesses in sectors with few scale

economies and exhibit no growth. The authors find empirical support for their

model using the LBD.

Incorporating their argument into this model yields a unique testable pre-

diction. Following Hurst and Pugsley (2016), the nonpecuniary benefits of en-

trepreneurship can be incorporated as an additive utility term θ > 0 in the value

function of the entrepreneur. Thus the value function in period 2 can be rewritten

as

V2(z2, h; θ) = max{ln(Γz2) + θ, ln(wh)}

The entrepreneur in period 1 then solves the problem

max
n1≥0,∆≥0

ln(z1−α
1 nα1 − wn1) + θ + β

{
e−γ∆ · V2(z1e

∆, h; θ) + (1− e−γ∆) · V2(z1e
−∆, h; θ)

}

By solving this problem with an strategy identical to the benchmark model, the

10For example, see Hurst and Pugsley (2011) and Decker, Haltiwanger, Jarmin, and Miranda
(2014).
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optimal ∆∗ can be characterized as

∆∗ =


ln(wh)− ln(Γz1) + 1

γ
− θ h ≥ h∗(z1; θ)

∆̄(γ) 0 ≤ h < h∗(z1; θ)

(1.3)

where h∗(z1; θ) is increasing in θ. Consequently, exit probability becomes

Pr(Exit) =


1− (Γz1

wh
)γeγθ−1 h ≥ h∗(z1; θ)

0 0 ≤ h < h∗(z1; θ)

(1.4)

and the growth rate of z and n conditioning on survival is obtained as

e∆∗ =
wh

Γz1

e
1
γ
−θ (1.5)

Equations (1.4) and (1.5) indicate that for a given level of h and z1, entrepreneurs

with strong nonpecuniary motives take fewer risks, and thus exhibit higher survival

rates, less growth dispersion, and slower growth conditioning on survival. The in-

tuition behind this result can be understood through Figure 1.1a. Adding θ > 0

to the entrepreneur’s value function is equivalent to a parallel upward shifting of

ln(Γz2), keeping ln(wh) constant. In turn, the distance between z1 and zexit widens,

increasing the expected marginal cost of risk-taking. Intuitively, stronger nonpe-

cuniary motives increase the value cost of closing the business. Therefore, the last

prediction of the simple model is obtained.

Prediction 4. Controlling for zt−1, the impact of the outside options on the exit
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rate, growth dispersion, and average growth conditioning on survival between t −

1 and t is mitigated for entrepreneurs with strong nonpecuniary motives for self-

employment.

Two implications of the simple model should be highlighted. First, it is critical

to control for zt−1 to uncover the predicted patterns in the data. As shown below,

the data suggest that business founders with higher h tend to enter the market with

higher initial values of z.11 It can be seen from equation (1.1) that when there

is a positive correlation between h and z, the unconditional correlation between h

and ∆∗ is ambiguous. Second, the risk-taking incentives generated by the outside

option are greatest around the exit margin of z, and diminish as z takes on larger

values. Thus, in an environment in which startups enter the market with low levels

of z relative to older incumbents, the model predicts that young firms will exhibit

larger growth dispersion, higher exit rates, and faster average growth conditioning on

survival than older firms. This is a well-known feature of young business dynamics

in the U.S (e.g., see Haltiwanger, Jarmin, and Miranda, 2013, Decker, Haltiwanger,

Jarmin, and Miranda, 2014).

11This is partly driven by selection, as individuals tend to enter entrepreneurship when their
business ideas are worth pursuing relative to their outside option.
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1.3 Evidence on Outside Options and Business Risk-Taking

1.3.1 Data and Measurement

To empirically test the predictions established in section 1.2, I combine two

administrative databases of the U.S. Census Bureau. The first is the Longitudinal

Business Database (LBD), which tracks all U.S. non-farm private establishments

and firms with at least one employee since 1976. An establishment is a specific

physical location where business activities occur, and all establishments under com-

mon operational control are grouped under the same firm ID.12 The U.S. Census

Bureau identifies operational control across business entities through the Economic

Censuses and the Company Organization Survey. The LBD tracks business activ-

ity information on an annual basis. Data include industry, location, employment,

annual payroll, birth, death, and ownership changes (if any) at the establishment

level.13

Firm growth is measured in four dimensions in this analysis: employment,

payroll, revenue, and labor productivity. Payroll and revenue are real annual values,

where the CPI-U-RS and the GDP implicit price deflator, respectively, are used

for nominal-to-real conversion.14 Labor productivity is measured by real annual

revenue per worker. One limitation of this labor productivity measure is that it does

12It is important to distinguish establishments from firms, and the Federal Employment Iden-
tification Number (EIN) from the firm ID. While most firms start with one establishment and one
EIN, high-growth firms often expand to multiple establishments and occasionally obtain multiple
EINs.

13Employment is the number of employees reported to the IRS as of the pay period that includes
March 12. For more details on the LBD, see Jarmin and Miranda (2002)

14For detailed description of the revenue variable in the LBD, see Haltiwanger, Jarmin, Kulick,
and Miranda (2016).
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not account for cross-industry differences in the contribution of intermediate inputs

and prices. Thus, following Haltiwanger, Jarmin, Kulick, and Miranda (2016), all

regression analyses use only within-industry variation by including industry by year

fixed effects. Industry is classified by the four-digit NAICS code.

The second data is the Longitudinal Employer-Household Dynamics (LEHD),

which is a matched employer-employee dataset that covers 95% of private sector

jobs.15 The LEHD combines data from state Unemployment Insurance (UI) earnings

records and the Quarterly Census of Employment and Wages (QCEW) of the Bureau

of Labor Statistics. It tracks individuals at a quarterly frequency, and provides

information on earnings, workplace identifiers, and demographics (e.g., age, race,

gender).16 The highest level of business unit ID in the LEHD is the federal EIN.

I integrate federal EIN information from the Business Register with the LBD, and

use the crosswalk developed by Haltiwanger, Hyatt, McEntarfer, Sousa, and Tibbets

(2014) to merge the LEHD and LBD.17

By combining the two datasets, I construct a longitudinal sample of 1.7 million

startup firms. This sample is composed of 16 cohorts of startups established between

1999 and 2014 in 31 states.18 The data contain longitudinally stable identifiers of

15The LEHD also covers state and local government jobs, but not the federal government jobs.
16For more details on the LEHD, see Abowd, Stephens, Vilhuber, Andersson, McKinney, Roe-

mer, and Woodcock (2009).
17Due to the different processing of EINs by the IRS and states, some fraction of startup EINs

first appear in the two databases in different years. I only include EINs that show consistent
startup timing in both datasets: I require that an EIN that belongs to a startup firm ID in the
LBD in year t must appear in the LEHD either in the second, third, or fourth quarter of year t−1,
or the first quarter of year t.

18The 31 states are CA, CO, FL, GA, HI, ID, IL, IN, KS, LA, MD, ME, MN, MO, MT, NC,
ND, NJ, NM, NV, OR, PA, RI, SC, SD, TN, TX, VA, WA, WI, and WV. Because states joined
the LEHD program in a sequential manner, there is a trade-off between state coverage and time
length in constructing a balanced sample.
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individuals and firms, which enables tracking of individuals’ career trajectories, and

the formation, growth, and dissolution of the firms they create. For sole propri-

etorships, founders are identified based on their income tax filings (Schedule C) and

EIN applications (Form SS-4). For non-sole-proprietor firms (e.g., corporations),

however, business ownership information is not available in the data. Thus, the

founders of these firms are approximated with individuals who (1) appear in the

initial quarter of business operation, (2) stay within the business for at least three

quarters, and (3) are one of the top three earners in the second quarter of operation.

This approximation method is a modified version of the approach of Kerr and Kerr

(2016), which is frequently adopted in entrepreneurship studies that use the LEHD.

Earnings rankings are measured in the second quarter to ensure that the individuals

stayed within the firm throughout the quarter, given condition (2). In Appendix

A.2, I show that the empirical results are broadly robust to restricting the sample

only to sole proprietors.19

The key object of interest in this analysis is the outside options of the business

founders. In the simple model in section 1.2, outside options are defined by the

labor income founders expect to earn in the case of firm exit. In the empirical

analysis, founders’ outside option is proxied by their real annual labor earnings

prior to business entry.20 This is based on the assumption that a founder’s expected

income after his business failure would be in a range similar to his prior earnings.

While some empirical studies in the literature supports this assumption (e.g., Bruce

19In future drafts, additional robustness checks on founder identification will be conducted.
20Specifically, I measure prior earnings by the sum of real quarterly earnings from the most re-

cent four consecutive full-quarter main jobs. The CPI-U-RS is used for nominal-to-real conversion.
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and Schuetze, 2004; Williams, 2000), I also report a simple OLS regression of post-

entrepreneurship earnings on prior earnings in Table 1.1, in which both objects are

normalized by economy-wide average real earnings to remove the aggregate time

trend. I find a statistically significant coefficient of 0.52, and that prior earnings

alone account for 30% of the variation in post-entrepreneurship earnings.

Businesses are not included in the analysis if their founders did not have any

prior earnings records. However, I find that average and median founder ages are

around 39, and that most founders have at least one year of prior earnings record.

Therefore, I conclude that such sample selection is not likely to bias the results.

I further restrict the sample to the businesses where the average founder ages are

between 25 and 54. The upper bound is imposed to stay reasonably far from any

retirement considerations and the lower bound is set to increase the probability of

capturing the young founders’ full-year and full-time jobs prior to business entry.

The empirical results are robust to the sample without the age restrictions.

1.3.2 Descriptive Statistics

Table 1.2 provides summary statistics of the sample. Panel A shows the em-

ployment and productivity distribution of startups and employment growth rates of

year-to-year continuers up to age five. The employment growth rate between year

t − 1 and t is calculated as Empt−Empt−1

(Empt+Empt−1)/2
. This measure is known as the Davis-

Haltiwanger-Schuh (DHS) growth rate (Davis, Haltiwanger, and Schuh, 1996), and
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Table 1.1: Prior earnings and Post earnings

Log (relative) Post Earnings
Log (relative) Prior Earnings 0.520∗∗∗

(0.001)

Constant -0.115∗∗∗

(0.001)
Obs. 1090000
R-sq 0.300

Notes: The table reports results for OLS regressions in which the independent variable is founder

log prior earnings and the dependent variable is the same individual’s post-entrepreneurship earn-

ings. Observation counts are rounded to the nearest 10,000 to avoid potential unwarranted disclo-

sure. Prior earnings are measured as the sum of real quarterly earnings at the most recent four

consecutive full-quarter main jobs prior to business entry. Likewise, post earnings are measured as

the sum of real quarterly earnings at the first four consecutive full-quarter jobs post business exit.

Both earnings are normalized by economy-wide average real earnings obtained from the LEHD

QWI. ***, **, and * indicate significance at the 1%, 5%, and 10% level, respectively.

is standard in the firm dynamics literature.21 The employment growth rate dis-

tribution is weighted by employment. Weighting the distribution by employment,

together with the use of the DHS growth measure, minimizes the negative relation-

ship between size and growth generated by scale differences. Panel A in Table 1.2

reconfirms the previous findings in the literature. Most startup firms are small, and

typical continuing young firms exhibit only little growth; the median growth rate is

1%. However, young firm growth rates show large dispersion and positive skewness,

driving the mean up to 6.5%.

The relative labor productivity of each startup is measured as the deviation

from its own industry’s average labor productivity in the same year. Reported la-

bor productivity statistics are calculated from an (unweighted) distribution that

21The DHS growth measure mitigates the problem known as the “regression to the mean ef-
fect,” and it is symmetric around zero. It is identical to the log differences up to a second-order
approximation. For details, see Törnqvist, Vartia, and Vartia (1985), Davis, Haltiwanger, and
Schuh (1996), and Haltiwanger, Jarmin, and Miranda (2013).
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Table 1.2: Summary Statistics

Obs. Mean Median St. Dev. p90 p10

Panel A. Firm Distributions
Age 0 employment 1.7m 6.7 3 21.4 14 1

Age 0 labor productivity 1.7m -.049 -.024 1.07 1.18 -1.24

Age 1-5 emp. growth 4.4m .065 .01 .45 .56 -.38

Panel B. Founder Distributions
Founder log prior earnings 1.7m 10.6 10.6 0.83 11.61 9.62

Founder age 1.7m 38.9 38.7 7.48 49.5 28.7

Notes: The table reports summary statistics for the data. To avoid potential unwarranted dis-

closure, median, 90th, and 10th percentiles are calculated as the averages of their one-percentile

neighborhood (e.g., p90 = (p89 + p91)/2). Relative labor productivity for each startup is mea-

sured by the deviation from its industry average labor productivity in its startup year, and the

statistics are calculated from the (unweighted) distribution that combines observations between

1999 and 2013 across all industries. Prior earnings of each founder are measured by the sum of real

quarterly earnings at four consecutive full-quarter main jobs prior to the startup quarter. Real

quarterly earnings are evaluated in 2012 Q1 dollars using the CPI-U-RS. If more than one founder

is identified for a given business, averages are taken across founders.

combines all observations between 1999 and 2013 across all industries. Labor pro-

ductivity for the average startup firm is 4.9% lower than its industry’s average. This

estimate is in line with Foster, Haltiwanger, and Krizan (2001), who find that en-

tering plants in the U.S. manufacturing sector in 1987 had 7% to 8% lower labor

productivity than incumbent plants. As stated above, average and median founder

ages are around 39, indicating that typical startup founders are at the peak of their

prime working age. Converting logs to levels, the average founder prior earnings is

around $40,134 in 2012 dollars.

Table 1.3 shows the relationship between founder prior earnings and their

initial performance, viewed through a simple OLS regression. Age 0 employment
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and relative labor productivity are regressed on founder log prior earnings. Industry

by year fixed effects are included for the reasons explained above. Unsurprisingly,

founders with higher prior earnings tend to start businesses with more employees

and higher productivity levels. Estimated coefficients indicate that a one standard

deviation increase in log prior earnings is associated with 1.93 more employees and

12.5% higher labor productivity in the firm’s first year of operation.

Table 1.3: Prior Earnings and Initial Performance

Age 0 emp. Age 0 relative labor productivity
Founder log prior earnings 2.337∗∗∗ 0.151∗∗∗

(0.343) (0.0108)
Ind-Year FE Yes Yes
Obs. 1.7m 1.7m
R-sq 0.06 0.21

Notes: The table reports results for OLS regressions in which the independent variable is founder

log prior earnings. Industry by year fixed effects are included in both regressions, where industry

is defined by the four-digit NAICS code. Standard errors are clustered at the industry (NAICS4)

level. ***, **, and * indicate significance at the 1%, 5%, and 10% level, respectively.

1.3.3 Regression Analysis

1.3.3.1 Prediction 1: Firm Exit

Do higher outside options of business founders predict higher firm exit rates?

To answer this question, I estimate linear probability regression models in which

the dependent variable is the firm exit indicator.22 Results are reported in Table

1.4. The first column shows the simplest case in which prior earnings is the only

independent variable. The estimated coefficient indicates that the unconditional

22Results are robust to using logit or probit regressions.

24



correlation between prior earnings and firm exit is negative. As explained in Section

1.2, however, it is critical to control for lagged business productivity to uncover the

patterns predicted by the model. This is particularly important as the findings re-

ported in Table 1.3 combined with Equation (1.1) imply an ambiguous unconditional

correlation between prior earnings and exit rates.

Table 1.4: Firm Exit Regressions

Dependent Variable: Firm exit indicator
(1) (2) (3) (4)

Log prior earnings -0.005∗∗ 0.003∗∗∗ 0.019∗∗∗ 0.019∗∗∗

(0.002) (0.001) (0.001) (0.001)

Lagged log employment -0.039∗∗∗ -0.055∗∗∗ -0.055∗∗∗

(0.001) (0.002) (0.002)

Lagged log labor prod. -0.082∗∗∗ -0.083∗∗∗

(0.005) (0.005)

Lagged log wage -0.001
(0.003)

Founder average age -0.001∗∗∗

(0.000)

Founder male share 0.004∗∗

(0.002)
Ind-Year FE No Yes Yes Yes
Firm age FE No Yes Yes Yes
State FE No No No Yes
Obs. (firm-year) 4920000 4920000 4920000 4920000
R-sq 0.00 0.03 0.09 0.10

Notes: The table reports results for a linear probability regression in which the dependent variable

is firm exit indicator. Observation counts are rounded to the nearest 10,000 to avoid potential

unwarranted disclosure. Standard errors are clustered at the industry (NAICS4) level. ***, **,

and * indicate significance at the 1%, 5%, and 10% level, respectively.

Indeed, regression results support the model’s prediction when lagged business

productivity indicators are included in the regression. Column (2) shows results with
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lagged firm size and firm age controls, as well as industry by year fixed effects. Firm

size is known to be highly correlated with firm productivity, and including it turns

the coefficient on prior earnings from negative to positive. When labor productivity

is also included in the regression as in column (3), the positive relationship between

prior earnings and firm exit probability is strengthened by an order of magnitude.

Column (4) shows that this result is robust to including additional controls. First,

I include the lagged log firm wage as an additional indicator of firm productivity,

where the firm wage is calculated as the payroll per worker in the first quarter

of each year. Second, I control for the average age and fraction of males among

founders within each firm to account for individual characteristics that might be

correlated with both prior earnings and their risk preferences. Older individuals may

be more risk-averse, and males are known to be more prone to risk-taking (Laasch

and Conaway, 2009). To the extent that age is positively associated with prior

earnings and that gender wage gaps exist, omitting age and gender will introduce

a downward and upward bias, respectively, in the estimate of the coefficient on

prior earnings. Lastly, state fixed effects are included, as some states have a more

dynamic business environments than others, and business dynamism is known to be

positively associated with labor market conditions (Davis and Haltiwanger, 2014).

1.3.3.2 Prediction 2: Growth Dispersion

Do business founders with better outside options exhibit larger firm growth

dispersion? To answer this question, a firm-level growth dispersion measure is con-
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structed following Castro, Clementi, and MacDonald (2009). To begin with, I com-

pute the portion of firm growth that is systematically predicted by firm-level and

aggregate factors by estimating the following regression model:

∆ lnYijt = β0 + β1ln(emp)ijt−1 + Firmageijt + ηjt + αi + εijt (1.6)

where ∆ lnYijt is the DHS growth rate of either log revenue or log labor productiv-

ity, Firmageijt is a series of dummies for firm age, ηjt are industry by year fixed

effects, and αi is a firm fixed effect. Only year-to-year continuers are included in

the estimation. The object of interest is ε̂ijt = ∆ lnYijt − ∆̂ lnYijt, the deviation of

growth from its conditional mean. Larger firm-level growth dispersion corresponds

to larger squared deviations from its conditional mean, ε̂2ijt.
23 It is assumed that

ε2ijt = f(Xijt) + νijt, where Xijt is a vector of factors that are systematically related

to firm-level growth dispersion. Approximating f(·) linearly, I estimate regression

equation (1.7) to test the model prediction in which X̃ijt is a vector of factors other

than log prior earnings. Table 1.5 shows the results.

ε2ijt = β0 + β1log prior earningsi + β2X̃ijt + νijt (1.7)

Results are consistent with the model prediction: Higher log prior earnings

predict larger firm-level growth dispersion. ε2ijt (∆ Rev) and ε2ijt (∆ Prod) are the

squared deviations obtained from estimating Equation (1.6), where Yijt are revenue

23The results are robust to using absolute deviations |ε̂ijt|.

27



Table 1.5: Growth Dispersion Regressions

ε2(∆ Rev) ε2(∆ Rev) ε2(∆ Prod) ε2(∆ Prod)
Log prior earnings 0.014∗∗∗ 0.007∗∗∗ 0.009∗∗∗ 0.004∗∗∗

(0.000) (0.000) (0.000) (0.000)

Lagged log employment -0.003∗∗∗ -0.011∗∗∗

(0.000) (0.000)

Ind-Year FE No Yes No Yes
Firm age FE No Yes No Yes
Obs. (firm-year) 4410000 4410000 4410000 4410000
R-sq 0.00 0.03 0.00 0.02

Notes: The table reports results from estimating Equation (1.7). ε2ijt (∆ Rev) and ε2ijt (∆ Prod)

are the squared deviations obtained from Equation (1.6), where Yijt are revenue and labor pro-

ductivity, respectively. Observation counts are rounded to the nearest 10,000 to avoid potential

unwarranted disclosure. ***, **, and * indicate significance at the 1%, 5%, and 10% level, respec-

tively.

and labor productivity, respectively. Two sets of regression models are estimated

for robustness analysis. In the first and third columns, only prior earnings is used

as the independent variable. The second and fourth columns add controls for firm

size, age, and industry by year fixed effects. Controlling for firm age accounts for

other mechanisms that can explain the high growth dispersion of young firms, such

as the learning and selection effects pioneered by Jovanovic (1982). Industry by year

fixed effects are included to control for time-varying industry-level factors such as

uncertainty shocks (see, e.g., Bloom, 2009) that can affect firm-level idiosyncratic

growth dispersion.

1.3.3.3 Prediction 3: Growth of Continuers

The simple model also predicts that conditioning on survival, entrepreneurs

with high outside options exhibit faster firm growth. To test this prediction, firm
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growth is regressed on the full set of controls used in Section 1.3.3.1. Firm growth is

measured in four dimensions: revenue, labor productivity, payroll, and employment.

All growth rates are measured using the DHS method. Results are reported in Table

1.6.

Table 1.6: Growth Regressions for Continuers

∆ Revenue ∆ Prod. ∆ Payroll ∆ Emp.
Log prior earnings 0.014∗∗∗ 0.02∗∗∗ 0.01∗∗∗ -0.006∗∗

(0.002) (0.003) (0.002) (0.002)

Lagged log employment -0.013∗∗∗ 0.048∗∗∗ 0.007∗∗∗ -0.063∗∗∗

(0.003) (0.003) (0.002) (0.004)

Lagged log labor prod. -0.05∗∗∗ -0.168∗∗∗ 0.098∗∗∗ 0.117∗∗∗

(0.005) (0.005) (0.004) (0.006)

Lagged log wage 0.014∗∗∗ -0.002 -0.104∗∗∗ 0.019∗∗∗

(0.003) (0.003) (0.003) (0.005)

Founder average age -0.002∗∗∗ -0.000∗∗ -0.001∗∗∗ -0.002∗∗∗

(0.000) (0.000) (0.000) (0.000)

Founder male share 0.013∗∗∗ 0.032∗∗∗ 0.007∗∗ -0.019∗∗∗

(0.003) (0.005) (0.003) (0.005)

Ind-Year FE Yes Yes Yes Yes
Firm age FE Yes Yes Yes Yes
State FE Yes Yes Yes Yes
Obs. 4410000 4410000 4410000 4410000
R-sq 0.05 0.11 0.06 0.12

Notes: The table reports results for OLS regression of firm growth on prior earnings. All growth

measures are calculated as the DHS growth rate. Observation counts are rounded to the nearest

10,000 to avoid potential unwarranted disclosure. Standard errors are clustered at the industry

(NAICS4) level. ***, **, and * indicate significance at the 1%, 5%, and 10% level, respectively.

Results are consistent with the model’s prediction, with the exception of em-

ployment growth. A one standard deviation increase in log prior earnings is associ-

ated with a 1.1% annual increase in revenue, a 1.6% increase in labor productivity,
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a 0.8% increase in payroll, and a 0.5% decline in employment on average. Note

that these are estimates only of the direct effects of prior earnings in each year.

The negative average effect of log prior earnings on employment growth can be ex-

plained by the larger growth dispersion of founders with higher prior earnings. That

is, founders with higher prior earnings must exhibit faster growth conditioning on

expanding, and also faster decline conditioning on contracting. If the latter effect

dominates the former, one may find the impact of prior earnings to be negative on

average. To see whether this explanation is supported by the data, employment

growth regressions are re-estimated separately for firms with positive employment

growth (expansions) and negative employment growth (contractions). Results are

shown in Table 1.7, in which other control variables are suppressed for simple ex-

position. Estimation results are consistent with the explanation, indicating that

employment growth patterns are also consistent with model predictions.

1.3.3.4 Prediction 4: Interaction with the Hurst-Pugsley Small Busi-

ness Sector

Lastly, the model predicts that all results presented so far will be mitigated

for business founders with a strong preference for self-employment. Although this

preference is not observable directly, Hurst and Pugsley (2016) show that individuals

with strong nonpecuniary motives are likely to be concentrated in sectors with small

natural scale. Their intuition is that if the primary goal is to become a business

owner and not to earn large profits, those individuals will do so in the most cost-
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Table 1.7: Conditional Employment Growth Regressions

∆ Emp > 0 ∆ Emp < 0
Log prior earnings 0.016∗∗∗ -0.023∗∗∗

(0.002) (0.002)

Lagged log labor prod. 0.06∗∗∗ 0.049∗∗∗

(0.004) (0.002)

Lagged log employment -0.164∗∗∗ 0.095∗∗∗

(0.003) (0.003)

Ind-Year FE Yes Yes
Firm age FE Yes Yes
Full controls Yes Yes
Obs. 1520000 1190000
R-sq 0.38 0.17

Notes: The table reports results for the OLS regression in which the dependent variable is annual

employment growth rate, conditioning on employment expansions and contractions separately.

Observation counts are rounded to the nearest 10,000 to avoid potential unwarranted disclosure.

Standard errors are clustered at the industry (NAICS4) level. ***, **, and * indicates significance

at the 1%, 5%, and 10% levels, respectively.

effective way. In their model, differences in natural scale are driven by heterogeneous

fixed costs of operation; hence, small natural scale sectors are the least costly to

enter. Hereafter, such small natural scale sectors are labeled collectively as the

Hurst-Pugsley (HP) sector.

Following Hurst and Pugsley (2016), the HP sector is defined by the top 40

(out of 294) four-digit NAICS industries in terms of small business intensity. Small

business intensity of industry j, xj, is calculated by

xj =
sj∑
k sk

where sj is the number of small businesses (fewer than 20 employees) in industry j.

The denominator is the sum of sk across all industries. Then an indicator variable
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HPj is created, which takes a value of one if industry j is in the HP sector and zero

otherwise. The regression models presented above are re-estimated including the

interaction term between the HP indicator and log prior earnings. Results for key

dependent variables are presented in Table 1.8. For all regression models, the esti-

mated coefficients on HP interaction terms have the opposite signs as the coefficients

on log prior earnings, and in many cases are statistically significant. Therefore, the

results are consistent with the model prediction.
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The Need for a Quantitative General Equilibrium Model The empirical

evidence mostly supports the prediction from the simple model that if business

founders have better outside options, they tend to take larger business risks and thus

exhibit a more up-or-out type of firm dynamics. This result suggests that factors

affecting the outside options of entrepreneurship (e.g. labor market frictions) would

alter risk-taking behavior by startups and growth dynamics along their life cycle.

However, whether this channel can be translated into a quantitatively significant

effect on the aggregate economy is unclear. For instance, because the share of

business activity accounted for by young firms is small, changes in their risk-taking

behavior may not generate sufficiently strong forces to affect macro-level outcomes.

Therefore, one needs a structural macroeconomic model disciplined by data

to investigate the quantitative importance of outside options and young firms’ risk-

taking behavior in shaping aggregate outcomes. Structural macro models also pro-

vide a useful laboratory to conduct experiments that cannot be done otherwise,

such as altering the outside options of startup entrepreneurs while holding all other

factors constant. In the following section, I embed the simple model presented in

Section 1.2 into a heterogeneous agent general equilibrium model to conduct this

analysis.

34



1.4 General Equilibrium Model

1.4.1 Model Description

Environment There is a continuum of individuals and time is discrete. At the

beginning of each period t, individuals randomly die with probability ζ, and the

same mass of individuals newly enter the economy. Individuals live infinitely unless

they are hit by the death shock. Upon entry to the economy, individuals receive

assets a0 from a distribution µa(a), and draw their effective units of labor h from a

Pareto distribution F (h),

F (h) = 1− h−λ, h ≥ 1 (1.8)

Also, individuals draw their initial business productivity z from a log-normal distri-

bution where

ln(z) ∼ N (µz(h), σ2
z) (1.9)

It is assumed that

µz(h) = z + ρh (1.10)

where z is a parameter that governs the overall location of the z distribution. The

dependence of µz(h) on h reflects the notion that individuals with different levels

of effective units of labor may have access to different types of business ideas. Indi-

viduals also draw preference for entrepreneurship θ ∈ {0, θ̄}, where θ = θ̄ > 0 with

probability pθ and 0 with probability 1 − pθ. For simplicity, θ is assumed to stay
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constant throughout individuals’ lifetime.

Occupational Choice At the beginning of each period, individuals decide whether

to become a worker or an entrepreneur. When individuals choose to become paid

workers, they supply their effective units of labor h to entrepreneurs and earn wages

wh, where w is the wage rate per effective unit of labor. Workers receive interest

payments by depositing their assets a, and consume c out of (1 + r)a + wh. Thus,

the workers’ problem is defined by

V W (a, z, h, θ) = max
c≥0

u(c) + β(1− ζ)V (a′, z, h, θ) (1.11)

s.t a′ = (1 + r)a+ wh− c ≥ 0

For simplicity, h is assumed to stay constant if the individuals stay in paid employ-

ment. Hereafter, next-period variables are denoted with superscript ′. The value

function V is defined as

V (a, z, h, θ) = max{V W (a, z, h, θ), V E(a− φ, z, h, θ)} (1.12)

where V E(a, z, h, θ) is the value of becoming an entrepreneur and φ is a fixed entry

and exit cost. When individuals enter entrepreneurship, they employ effective units

of labor n and rent physical capital k to produce output y via production function

y = z1−ν(kαn1−α)ν . α ∈ (0, 1) is the capital production share, and ν ∈ (0, 1) is the

decreasing returns to scale parameter, which stems from the limited span of control
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as in Lucas (1978).

Risky Experimentation and Incremental Innovation A key feature of the model is

that entrepreneurs can attempt to enhance their productivity levels through two

means of innovation: risky experimentation or incremental innovation. When an

entrepreneur engages in risky experimentation, his next-period business productivity

z′ evolves according to a binomial risky process, as in the simple model in Section

1.2:

z′ =


ze∆R

w/ prob. e−γ∆R

ze−∆R
w/ prob. 1− e−γ∆R

That is, his business productivity either increases or decreases by ∆R percent. γ > 0

is the success probability elasticity of risk choice, and ∆R is assumed to be a choice

variable implying that entrepreneurs can decide how much risk to take. To conduct

risky experiment, entrepreneurs must pay an experimentation cost Fz > 0.

When an entrepreneur attempts to achieve incremental innovation, his next-

period business productivity z′ evolves as

z′ =


ze∆I

w/ prob. u

z w/ prob. 1− u

where the ex post outcome is bounded below by the status quo. Innovation step

size ∆I > 0 is a fixed parameter, and success probability u is a choice variable.
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Entrepreneurs can increase u subject to the cost function

RI = χzuψ

where 1
ψ
< 1 is the success probability elasticity of research cost RI , and χ > 0 is a

scaling parameter. This is a standard functional specification for R&D activity in

the endogenous growth and innovation literature.24

Incremental innovation is introduced in the quantitative model to avoid po-

tential bias in quantitative evaluation of the risky experimentation channel. In the

absence of incremental innovation, the firm productivity distribution in the model is

completely pinned down by the initial z distribution and the risky experimentation

performed by young firms whose z’s are not too far from the exit margin. In reality,

however, large, mature firms often engage in innovation activities, including R&D.

Therefore, the quantitative relevance of the risky experimentation channel will be

overemphasized if aggregate research statistics are targeted in calibration and the

innovation tools used by mature incumbent firms are not introduced in the model.

Financial Market There are financial intermediaries who own a technology that

transforms consumption goods into physical capital, and vice versa, at a one-to-one

rate. Financial intermediaries receive deposits from workers and entrepreneurs, and

use the transformation technology to rent physical capital to entrepreneurs. It is as-

sumed that the financial market is perfectly competitive, and thus the capital rental

24For example, see Acemoglu, Akcigit, Bloom, and Kerr (2013) and Akcigit and Kerr (forth-
coming).
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rate is r + δ, where δ > 0 is the capital depreciation rate. Financial intermediaries

require collateral from entrepreneurs when engaging in capital rental contracts. De-

noting m ≥ 0 as the collateral amount, entrepreneurs can borrow capital only up

to a multiple of their collateral, i.e., k ≤ λm.25 At the beginning of each period,

entrepreneurs decide how much to consume out of their assets a, and the remainder

m = a − c is put up as collateral. Financial intermediaries pay interest on the

collateral at the beginning of the following period.

Entrepreneurs’ Optimization Problem The optimization problem for an entrepreneur

who engages in risky experimentation can be expressed as

V E,R(a, z, h, θ) = max
c,n,k,∆R

u(c) + θ + β(1− ζ)
[
e−γ∆R

Ṽ (a′, ze∆R

, h, θ) (1.13)

+ (1− e−γ∆R

)Ṽ (a′, e−∆R

, h, θ)
]

s.t a′ = m+ z1−ν(kαn1−α)ν − wn− (r + δ)k − Fz · I(∆R > 0) ≥ 0

m = (1 + r)a− c ≥ 0

k ≤ λm

where

Ṽ (a′, z′, h, θ) = max
{
V E(a′, z′, (1− δh)h, θ), V W (a′ − φ, z′, h, θ)

}
(1.14)

25This simple financial constraint is widely used in this class of models due to its tractability.
For example, see Buera and Shin (2013) and Moll (2014).
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and I(∆R > 0) is an indicator that takes a value of one if ∆R > 0. I assume that

labor efficiency depreciates by δh percent if an individual stays in entrepreneurship.

This assumption reflects the idea that individuals who enter entrepreneurship and

then return to paid employment generally end up on a worse career trajectory.26

Likewise, the optimization problem for entrepreneurs who attempt to achieve

incremental innovation can be expressed as

V E,I(a, z, h, θ) = max
c,n,k,u

u(c) + θ + β(1− ζ)
[
uṼ (a′, ze∆I

, h, θ) + (1− u)Ṽ (a′, z, h, θ)
]

(1.15)

s.t a′ = m+ z1−ν(kαn1−α)ν − wn− (r + δ)k − χzuψ ≥ 0

m = (1 + r)a− c ≥ 0

k ≤ λm

Entrepreneurs in a given period decide between risky experimentation or incremental

innovation (or no innovation), and cannot conduct both. Hence, the value function

of being an entrepreneur is

V E(a, z, h, θ) = max{V E,R(a, z, h, θ), V E,I(a, z, h, θ)} (1.16)

Figure 1.2 summarizes the timing of events.

26For example, see Williams (2000), Bruce and Schuetze (2004), and Baptista, Lima, and Preto
(2012).
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Figure 1.2: Timing of Events

1.4.2 Stationary Recursive Competitive Equilibrium

In the quantitative analysis, I focus on a stationary recursive competitive equi-

librium. The interest rate r is treated as exogenously given, so that the model

can be considered to be a small open economy. The state variables of individu-

als are assets, effective labor, business productivity, preference for entrepreneur-

ship, and occupation. A = [0,∞) is the set of possible asset holdings a, and

Z = [0,∞) is the space of business productivity z.27 Effective labor h is defined

over H = [0,∞), and preference for entrepreneurship θ is defined over Θ = {0, θ̄}

as above. Occupation is defined as o ∈ O = {w, er, ei}, where each element in O

represents being a worker, an entrepreneur conducting risky experimentation, and

an entrepreneur conducting incremental innovation, respectively. Then the distribu-

tion of individuals µ is defined as a probability measure µ(a, z, h, θ, o) : B → [0, 1],

where B is the Borel σ-algebra generated by the open sets of the product space

27The domain of the distribution needs to be a compact set when solving the model computa-
tionally. Hence, finite upper bounds are imposed on A and Z, and their values are set such that
there is no mass on those points under the stationary distribution.
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A × Z ×H ×Θ × O. Two additional auxiliary objects are defined. First, occu-

pational choice o′(a, z, h, θ, o) : A×Z ×H ×Θ×O → O is defined as a function

that solves (1.12) if o = w, and solves (1.14) and (1.16) if o ∈ {er, ei}. Second, the

state vector for each occupation o is defined as Ωo = (a, z, h, θ, o).

It is assumed that new entrants to the economy begin as workers, and ran-

domly draw assets a from the asset distribution in the previous period. Then the

distribution µ follows the law of motion µ′ = Φ(µ), where

µ′(ã, z̃, h, θ, õ) =(1− ζ) ·

{∫ ∫
1{ã=a′(Ωw),z̃=z,õ=o′(Ωw)}

µ(Ωw)dadz

+ e−∆R(Ωer)

∫ ∫
1{ã=a′(Ωer),z̃=ze∆

R(Ωer),õ=o′(Ωer)}
µ(Ωer)dadz

+ (1− e−∆R(Ωer))

∫ ∫
1{ã=a′(Ωer),z̃=ze−∆R(Ωer),õ=o′(Ωer)}

µ(Ωer)dadz

+ u(Ωei)

∫ ∫
1{ã=a′(Ωei),z̃=ze∆

I (Ωei),õ=o′(Ωei)}
µ(Ωei)dadz

+ (1− u(Ωei))

∫ ∫
1{ã=a′(Ωei),z̃=z,õ=o′(Ωei)}

µ(Ωei)dadz

}

+ ζ ·
∫
1(o=w)

dµa(a)dF (h)dG(z|h)

where

µa(a) =

∫ ∫ ∑
θ∈{0,θ̄}

∑
o

µ(Ωo)dzdh

A stationary recursive competitive equilibrium is defined as follows.
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Definition For a given interest rate r, a stationary recursive competitive equilibrium

is a set of value functions {V W , V E,R, V E,I}, policy functions {a′, c, k, n,∆R, u, o},

wage rate w, and distribution µ∗ such that

1. Individuals optimize:

V W , V E,R, V E,I satisfy (1.11), (1.12), (1.13), (1.14), (1.15), and (1.16). As-

sociated policy functions are as follows. a′ : A × Z × H × Θ × O → A

is the savings decision; c : A × Z ×H × Θ × O → R
++ is consumption;

k : A × Z ×H ×Θ × {er, ei} → R
+ is capital demand; n : A × Z ×H ×

Θ× {er, ei} → R
+ is labor demand; ∆R : A×Z ×H ×Θ× {er, ei} → R

+

is the risky experimentation choice; u : A × Z ×H ×Θ × {er, ei} → R
+ is

the incremental innovation choice; and o : A × Z ×H ×Θ ×O → O is the

occupational choice.

2. The labor market clears:

∑
θ∈{0,θ̄}

∫
n(Ωer)µ(Ωer)dadzdh+

∑
θ∈{0,θ̄}

∫
n(Ωei)µ(Ωei)dadzdh

=
∑

θ∈{0,θ̄}

∫ ∫ ∫
hµ(Ωw)dadzdh

3. Distribution is time-invariant:

µ∗(a, z, h, θ, o) = Φ(µ∗(a, z, h, θ, o))
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Luttmer (2012) shows that in a similar environment in which firm productivity

processes follow a standard Brownian motion, a stationary distribution µ∗ exists as

long as the death rate ζ is large enough and the dispersion of entrants’ productivity

distribution is not too large. The intuition is that even though each cohort of

innovating entrepreneurs moves upwards in productivity space Z, their mass is

reduced by rate ζ every period and eventually converges to zero. At the same

time, ζ mass of individuals enter the economy at the lower part of the productivity

distribution, balancing out overall growth in z achieved by entrepreneurs in the

previous period. Exogenous churning induced by ζ and entailed firm entry and exit

costs prevent assets from diverging.

1.5 Quantitative Analysis

1.5.1 Calibration

I calibrate model parameters to match certain key features of the U.S. non-farm

private sector between 1999 and 2014. This period is chosen so that I can exploit

the regression results obtained in Section 1.3 to discipline the model. A subset of

parameters are fixed at values commonly used in the macroeconomics literature.

The remaining parameters are chosen to minimize the distance between a set of

equilibrium moments obtained from model simulation and their data counterparts.

The model parameters are summarized in Table 1.9 and Table 1.10.
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Externally Calibrated Parameters The model period is equivalent to one year.

I set the time discount factor β to 0.968. The relative risk-aversion coefficient σ is

set to 2, which is standard in the literature. I set the decreasing returns to scale

parameter ν to 0.85, as in Atkeson and Kehoe (2007) and Midrigan and Xu (2014).

I set the capital depreciation rate δ to 0.065 and the interest rate to 0.03. The R&D

cost elasticity parameter ψ is set at 2, which is standard in the endogenous growth

and innovation literature (e.g., see Acemoglu, Akcigit, Bloom, and Kerr, 2013 and

Akcigit and Kerr, forthcoming). Labor efficiency depreciation rate of entrepreneurs,

δh, is set at 0.03. This value is taken from existing empirical studies which find

that returns to entrepreneurship experience are on average lower than the returns

to experience as paid workers.28 3% is within the range of estimates reported in the

literature. I set the labor efficiency distribution dispersion parameter ηh to 1.41, to

match the 90th to 10th percentile ratio of the weekly earnings distribution reported

by the BLS. The ratio is calculated as the average value between 1999 and 2014.29

Table 1.9: Externally Calibrated Parameters

Parameter Value Source
Discount factor β 0.968 Standard
Risk-aversion coefficient σ 2 Standard
Capital production share α 0.330 Standard
Returns to scale parameter ν 0.850 Standard
Capital depreciation rate δ 0.065 Standard
Interest rate r 0.030 Standard
R&D cost elasticity ψ 2 Akcigit and Kerr (2017)
Human capital depreciation rate δh 0.030 Literature
Labor efficiency dispersion ηh 1.410 p90/p10 week. earn. 1999-2014 (BLS)

28For example, see Bruce and Schuetze (2004), Kaiser and Malchow-Møller (2011), and Baptista,
Lima, and Preto, 2012.

29The BLS computes the weekly earnings distribution percentiles from the Current Population
Survey (CPS) sample that comprises of wages and salary workers who are 25 years or older.
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Internally Calibrated Parameters The exogenous death rate ζ is set to 0.05

to reproduce the exit rate of mature firms (age 6 or higher) observed in the data,

where the data moment is calculated as the average value between 1999 and 2014

from the Census Bureau’s Business Dynamics Statistics (BDS). The implied effective

discount rate β(1−ζ) is 0.92, which is consistent with the choice of Buera, Kaboski,

and Shin (2011) and Midrigan and Xu (2014). The financial frictions parameter,

λ, is set to 4.5 to match the average value of k−m
k

of all firms in the model to the

average ratio of liabilities to nonfinancial assets for the U.S. nonfinancial business

sector between 1999 and 2014.30

Hurst and Pugsley (2011) document that about 50% of startup entrepreneurs

in the Panel Study of Entrepreneurial Dynamics (PSED) report nonpecuniary mo-

tives as one of the primary reasons for starting their businesses, and the majority

of those entrepreneurs’ firms remained small throughout the sample period of their

study. In the model, higher values of θ induces individuals to enter entrepreneurship

with smaller sizes and to take smaller risks as shown in Prediction 4 in Section 1.2.

Thus, I jointly calibrate θ and pθ to replicate that startup entrepreneurs with θ = θ̄

comprise 50% of all startup entrepreneurs in the model, and to target the share of

small firms (less than 20 employees) in the economy.

The initial distribution of z is governed by three parameters: z, σz, and ρ. I

30I follow Buera and Nicolini (2017) and compute the statistics from the U.S. flow of funds. I
measure liabilities as the sum of total liabilities of noncorporate (FL114190005.Q) and corporate
(FL104190005.Q) firms in the nonfinancial sector minus the U.S. real estate owned by foreigners
(FL115114005.Q) and the foreign direct investment in the U.S. (FL103192005.Q). Similarly, I
measure nonfinancial assets as the sum of nonfinancial assets of noncorporate (FL112010005.Q)
and corporate (FL102010005.Q) firms in the nonfinancial sector minus the U.S. real estate owned
by foreigners (FL115114005.Q) and the foreign direct investment in the U.S. (FL103192005.Q).
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calibrate z and σz to match the (employment-weighted) firm entry rate and the ratio

between the average employment of entrants relative to the average employment of

incumbents, respectively. To discipline ρ, I use the micro-level relationship between

startup employment and log prior earnings reported in Table 1.3. I normalize startup

employment by the average employment over all firms calculated from the BDS,

which is 22.8, and obtain a normalized coefficient of 0.105. I simulate the model

and create a cohort of 100,000 startup firms, and run an identical regression with

the simulated data to calibrate ρ, in which employment levels of startups in the

simulated data are normalized by average employment over all firms in the model.

To calibrate the elasticity of the innovation success probability with respect to

risk choice, γ, I run a regression with the simulated data that is counterpart to the

regression of exit on log prior earnings and firm characteristics reported in Table

1.4. Because the model describes a single good economy with no price heterogeneity

and adjustment frictions, the simulated data do not show variation in revenue labor

productivity, as in the empirical data. Therefore, I use z in the simulated data

regression. I target the coefficient on log prior earnings of 0.019 reported in columns

(3) and (4) of Table 1.4. I set the experimentation cost parameter F , another

factor that strongly governs the risk-taking incentives of young firms, to match the

average employment growth rate of young firms. Because the exit rates of old firms

are determined by the exogenous death rate ζ, the fixed firm entry and exit cost φ

mostly governs the exit rate of young firms. Hence, I calibrate φ to match the average

exit rate of young firms. In the model, most incremental innovation is conducted

by old firms whose z’s have moved sufficiently far away from their exit margin.
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Therefore, I target the employment growth of old firms (age 10+) to calibrate the

incremental innovation step size ∆I . I choose the incremental innovation research

cost scale parameter, χ, to match the R&D intensity of innovating firms documented

by Akcigit and Kerr (forthcoming).
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1.5.2 Calibrated Model Properties

In this section, I document the key properties of the calibrated model. Figure

1.3 plots the average employment of each firm age group computed from the BDS and

those calculated using the data obtained from model simulation. The BDS statistics

are calculated as the average values between 1999 and 2014. Since employment in

the model is expressed in the effective unit of labor, employment levels in the BDS

and the model are not directly comparable. Therefore, I normalize the entrants’

average employment in both data series to one and compare the slope over the life

cycle. As shown in the figure, the model does a reasonable job in tracking the

average size by age observed in the empirical data.

Figure 1.3: Average Employment by Firm Age

Notes: The data corresponds to the average employment by firm age from the Business Dynamics

Statistics. The data values are computed as the average values between 1999 and 2014. Model

statistics are calculated from a simulated data that contains a cohort of 100,000 startup firms.

Figure 1.4 shows the mean employment growth rate of the continuing firms and

exit rates over firm age in the model-simulated data. Both series exhibit a convex
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decreasing shape: younger firms exit at a higher rate, but conditioning on survival,

they grow faster. This up-or-out growth dynamics of young firms implied by the

model is consistent with the empirical findings in the literature (e.g., see Dunne,

Roberts, and Samuelson, 1989; Evans, 1987; Haltiwanger, Jarmin, and Miranda,

2013).

Figure 1.4: Life-Cycle Growth and Survival Dynamics in the Model

(a) Mean Employment Growth Rate (Con-
tinuers) (b) Exit Rate

In this model, the decline in exit and employment growth rates with respect

to firm age is driven by the higher intensity of risk-taking behavior by young firms.

Young firms tend to take larger risks because of the following reasons: First, en-

trepreneurs start their firms with lower levels of productivity compared to those

of the incumbents, and secondly, labor market clearing condition determines the

wage such that startup entrepreneurs are close to their occupation switching mar-

gin. Therefore, returning to paid employment is a viable exit option for startup

entrepreneurs in the case of failure from risky experimentation, which incentives

them to take larger risks as shown in Section 1.2. As firms get older, risk-taking

winners achieve an increase in their business productivity and risk-taking losers
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either shrink or exit. Therefore, the productivity levels of continuing firms grad-

ually move away from the exit threshold and the entrepreneurs conduct less risky

experimentation as their firms age.

In Figure 1.5, I plot the experimentation and innovation patterns of continuing

firms over their life cycle. Figure 1.5a shows the fraction of entrepreneurs who engage

in risky experimentation, or incremental innovation, or neither. Figure 1.5b shows

the average choice of ∆R conditioning on ∆R > 0, and the average incremental in-

novation success probability u conditioning on u > 0. The fraction of entrepreneurs

conducting risky experimentation and their risk-taking intensity declines as their

firms age. Simultaneously, entrepreneurs gradually switch over to incremental in-

novation. Also in the early phase of the firm life cycle, a significant fraction of

entrepreneurs do not engage in any innovation activities. For instance, at age zero,

when the risk-taking incentives are the greatest, about 10% of entrepreneurs do not

conduct any experimentation or innovation and 20% of entrepreneurs exert only

negligible effort in incremental innovation (average u of 0.006). Therefore, about in

total 30% of firms show little or no growth in productivity at age one.

A higher intensity of risky experimentation results in a more rapid pace of

selection and reallocation, which in turn drives up the average productivity of the

continuing firms. Since the intensity of risky experimentation is higher for younger

firms, growth in average productivity declines in firm age as illustrated in Figure

1.6. This model implication is consistent with the recent empirical findings of Alon,

Berger, Dent, and Pugsley (2017) where they show in the U.S nonfarm business sec-

tor, the relationship between firm age and productivity growth is downward sloping
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Figure 1.5: Experimentation and Innovation of Continuing Firms

(a) Share of Risky Exp. vs. Incremental In-
nov. (b) Experimentation / Innovation Intensity

and convex, and that most of the productivity growth is concentrated among firms

less than five years old.

Figure 1.6: Growth of Average Productivity by Firm Age

In addition, since entrepreneurs with better outside options tend to take larger

risks as shown in Section 1.2 and 1.3, average productivity of the firms operated

by those entrepreneurs will grow faster. In Figure 1.7, I plot growth in average
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productivity for firms operated by entrepreneurs with h in the 10th, 50th, and

90th percentile in the h distribution. The figure shows faster growth in average

productivity for firms operated by a higher h.

Figure 1.7: Growth of Average Productivity by Firm Age with Different Outside
Options

1.5.3 Counterfactual Exercises

1.5.3.1 Removing the Outside Option

To study the quantitative importance of outside options and the associated

risk-taking behavior of young firms in the aggregate economy, I study a counterfac-

tual situation in which entrepreneurs cannot return to paid employment. Though

this is an extreme experiment, it provides a useful insight on how the existence of

outside options affects the composition of startup firms and their life-cycle dynam-

ics. It also provides an estimate of the upper bound of the output and productivity
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losses an economy can suffer from overall deterioration of the outside options of

startup entrepreneurs.

Table 1.11 shows a comparison of key statistics between the benchmark econ-

omy and the counterfactual economy. By construction, the firm exit rate falls to the

exogenous death rate in the counterfactual case. Interestingly, the average produc-

tivity and size of entrants increase in the counterfactual economy. This is because

if individuals know that they can never go back to paid employment, they will en-

ter entrepreneurship only if their initial business productivity endowments are high

enough. This positive selection effect, together with the steady-state force which

equates the entry rate to the exit rate, induces the firm entry rate to fall. This

result also indicates that an overall decline in outside options generates fewer but

initially better startup firms.

Table 1.11: Overall Effect of Removing the Outside Option

Benchmark Counterfactual % Changes
Firm entry rate 0.065 0.050 -23%
Firm exit rate (age 1-5) 0.104 0.050 -51.9%
Firm exit rate (age 6+) 0.055 0.050 -9.1%
Average entrant size (h) 5.775 6.576 13.9%
Average entrant z 4.403 5.314 20.7%
Aggregate output 2.797 2.547 -8.9%
Aggregate output per worker 1.438 1.375 -4.4%

However, aggregate output and labor productivity fall significantly in the coun-

terfactual economy, by 8.9% and 4.4%, respectively. This is driven by differences

in the growth rates of young firms along their life cycle. Because entrepreneurs in

the counterfactual economy do not have an exit option to exercise in the case of

business failure, they do not take risks early in their life cycle and thus show little
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or no growth as a group. On the other hand, although startups in the benchmark

economy begin with lower productivity, they take larger risks and thus grow much

faster as they age. Figure 1.8 illustrates this point by plotting the growth rates

of the average productivity by firm age group. Therefore, this counterfactual ex-

periment reveals that deterioration (or, for the same reason, improvement) of the

outside options of startup entrepreneurs can have a sizable impact on aggregate

output and productivity.

Figure 1.8: Growth of Average Productivity by Firm Age: Benchmark vs. Coun-
terfactual

Notes: This figure shows the growth rate of average productivity by firm age in the benchmark

economy and counterfactual economy where the outside options of the entrepreneurs are removed.

Statistics are calculated from panel data with 100,000 startup firms obtained from the model

simulation.

1.6 Conclusion

In this paper I show that the outside options of startup entrepreneurs, which I

define as the level of labor income they expect to earn in the case of business failure,

are a key predictor of the early growth trajectories of young firms. Better outside
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options serve as an effective channel of insurance against business failure, which

enables entrepreneurs to take larger business risks. Larger risk-taking behavior

translates into a more dispersed, up-or-out type of firm dynamics. I test these

predictions using a large founder-firm matched administrative data set and find

that the model implications are empirically supported.

I also show that large changes in the outside options of startup entrepreneurs

can potentially have a large impact on aggregate output and productivity. An

improvement in outside options induces smaller and less productive firms to enter,

but incentivizes them to engage in riskier experimentation and exhibit faster average

productivity growth along their life cycle. Therefore, the post-failure options of

entrepreneurs are an important factor that governs not only young firm growth and

survival, but also aggregate output and productivity growth.

The quantitative framework established in this paper can be extended to study

several critical questions posed in macroeconomics. First, the model can be used

to study whether the rise in labor income inequality in the U.S. during the last

three decades have had an impact on the decline in high-growth entrepreneurship

and business dynamism (Decker, Haltiwanger, Jarmin, and Miranda, 2016). While

individuals with higher labor earnings are more likely to create high-growth young

firms, it is possible that the rapid increase in their labor earnings may have made

them less likely to enter entrepreneurship in the first place. Second, one can study

the business cycle implications of this mechanism by introducing aggregate uncer-

tainty and unemployment shocks in the model. When the aggregate economy is in

a downturn and the unemployment rate is high, startup entrepreneurs would expect
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to experience difficulties finding a job if they cease their business operation. This

would incentivize them to take less risks, further reducing young firm growth and

thus resulting in lower levels of job creation in the economy. Therefore, risk-taking

by startup entrepreneurs may work as a propagation mechanism of aggregate shocks.

58



Chapter 2: Lobbying, Procurement Allocation, and the Employment

Effect of Fiscal Stimulus (coauthored with Veronika Pen-

ciakova and Felipe Saffie)

2.1 Introduction

Fiscal stimulus packages aim to stabilize employment and output during crises,

and their effectiveness remains an open question. The enactment of the $832 billion

American Recovery and Reinvestment Act (ARRA) in the midst of the Great Reces-

sion in February 2009 renewed interest in the impact of stimulus spending. One of

the primary goals of ARRA was to save or create up to 3.5 million jobs, with over 90

percent of those jobs being in the private sector. Recent empirical macroeconomics

literature has primarily focused on the employment effect of aid to state govern-

ments (Chodorow-Reich, Feiveson, Liscow, and Woolston, 2012) and government

purchases (Dube, Kaplan, and Zipperer, 2014; Dupor and Mehkari, 2016; Feyrer,

2011; Wilson, 2012). We take an additional step forward and ask how stimulus

spending was allocated, and whether its impact on employment depends on who it

was allocated to.

We focus on the allocation and impact of one important component of ARRA
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spending: government purchases through federal procurement. Between 2009 and

2014, ARRA-supported federal procurement contracts amounted to $130 billion.

Deteriorating economic conditions, combined with this influx of money, may have

generated incentives for firms to try to influence the allocation of these contracts.

In this paper, we emphasize political influence through lobbying. We know that

lobbying firms are active participants in the Federal procurement market. Each

year, they account for 1.5% of the 165,000 procurement contractors and 55% of total

procurement spending. We therefore ask whether corporate lobbying influenced the

allocation of contracts during the crisis; and whether contracts subject to lobby have

a differential impact on employment outcomes.

To answer the first question we need to identify the causal relationship between

lobbying and procurement outcomes. There are several threats to identification.

First, in the data it is challenging to link lobbying activity on particular issues with

expenditure on particular procurement contracts. Second, lobbying is an endogenous

choice made by firms that may be driven by observable (e.g., firm size, industry)

and unobservable characteristics (e.g. political connections). Fortunately, ARRA

provides a suitable laboratory.

In particular, the richness of the procurement and lobbying data allows us to

identify both lobbying activity associated with ARRA and the allocation of indi-

vidual procurement contracts supported by ARRA at the firm level. Additionally,

the swift introduction and passage of the stimulus bill assuage concerns regarding

lobbying behavior in previous years being targeted toward ARRA contracts; these

contracts after all did not exist prior to the passage of the bill. In fact, the first
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version of ARRA was introduced in early January 2009, and was signed into law

less than two months later in February.

To resolve the challenges associated with selection into lobbying on ARRA,

we first prune the sample by matching on a number of observable characteristics.

These include firm size, industry, prior lobbying status, and both the number and

average size of past procurement contracts. After matching, we obtain 1,061 firms

that lobbied on ARRA (treated) matched with 498 similar firms that did not lobby

(control). We validate our pruning strategy by ensuring that our resulting treatment

and control groups are similar in all observable dimensions and that they have similar

pre-ARRA procurement outcomes. We then assess the impact of lobbying on the

allocation of ARRA-supported procurement contracts and find that firms that lobby

on ARRA are more likely to win these contracts and win 5.3% more and 50% larger

ARRA contracts.

This matching approach may not fully capture all the unobserved heterogene-

ity. For example, even after matching, firms that lobby on ARRA could be more

politically connected to the government. In such cases, firms that lobby on ARRA

should win more procurement contracts in general, and we might wrongfully at-

tribute this effect to lobby. We validate our identification strategy by showing that

ARRA lobbying only has an effect on ARRA procurement outcomes and does not

have any significant impact on the corresponding non-ARRA outcomes.

A critical question remains. Did contracts subject to lobbying on ARRA have

the same effect on local employment as other procurement contracts? To answer

this question we build on the rich literature assessing the employment effect of
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stimulus spending (Chodorow-Reich, Feiveson, Liscow, and Woolston, 2012; Dube,

Kaplan, and Zipperer, 2014; Dupor and Mehkari, 2016; Feyrer, 2011; Wilson, 2012).

We establish causal relationship between ARRA spending and employment growth

outcomes in Metropolitan Statistical Area (MSA) by constructing a set of Bartik

instruments.

We take advantage of pre-ARRA (2007) procurement information and aggre-

gate to the MSA-sector level to determine how reliant procurement in each sector

is on each MSA. We assume this reliance is relatively sticky and use it to allocate

national ARRA spending in a particular sector across MSAs. By aggregating over

all the sectors within a MSA, we get an instrument for total ARRA spending. To

instrument for the share of procurement spending through lobbying firms, we take

advantage of persistence in corporate lobbying (Kerr, Lincoln, and Mishra, 2014a)

and variation in the intensity of procurement through lobbying firms across sectors.

Over 90% of firms that lobbied on ARRA in 2009 had lobbied on other issues in the

previous three years. And while some sectors channel over 80% of total procurement

through lobbying firms, others channel as little as 1%. We first calculate the pre-

ARRA (2007) share of procurement spending in each sector channeled through firms

that lobbied on budget and appropriation. This share is then combined with our

MSA-sector reliance measure and national sector-level ARRA spending. The result-

ing MSA-sector estimate of ARRA spending through lobbying firms is aggregated

to the MSA level to obtain our second instrument.

After constructing our instruments, we first estimate that ARRA procurement

spending yields 11.5 jobs per $1 million spent. This estimate are broadly consistent
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with the fiscal multiplier reported in Dube, Kaplan, and Zipperer (2014) who re-

ports 7.5 job-years created per $1 million spent, or Wilson (2012) who reports eight

jobs. We then disaggregate total ARRA procurement per capita into the amount

channeled through firms that lobbied on ARRA and those that did not. We find

a striking result. The effect of ARRA procurement spending on employment is en-

tirely driven by non-lobbying firms. Stimulus money channeled through these firms

yields 16 jobs per $1 million spent, while money channeled through lobbying firms

has no effect on employment. Although this estimate does not take into account

general equilibrium effects, it does suggest that the impact of stimulus spending on

employment is attenuated by the allocation of contracts to lobbying firms. In short,

it is not only the amount, but also the allocation of stimulus spending across firms

that matter for employment outcomes.

The paper is organized as follows. Section 2.2 reviews the related literature.

Section 2.3 describes the goals and characteristics of the American Recovery and

Reinvestment Act. Section 2.4 describes the construction of the data. Section 2.5

discusses the impact of lobbying on procurement allocation. Section 2.6 documents

the differential effects of ARRA on employment. Finally, section 2.8 concludes.

2.2 Literature Review

This paper belongs at the intersection of three strands of literature. Our

focus on whether and how lobbying affects the allocation of procurement spend-

ing connects us to the literature investigating various mechanisms through which
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procurement spending is allocated to firms. The empirical literature on public pro-

curement examines the factors that shape competitiveness and contractual terms

(Bajari, McMillan, and Tadelis, 2008; Bajari and Tadelis, 2001; Warren, 2014), and

how different designs of procurement processes affect their efficient allocation out-

comes (see Bhattacharya and Sweeting (2015) for a review). Further, Liebman and

Mahoney (2013) show that wasteful year-end fiscal spending leads to inefficient pro-

curement allocation in general. In contrast to these studies, we examine lobbying

as a determinant of procurement allocation.

Our emphasis on the effect of corporate lobbying on the allocation of procure-

ment contracts during the stimulus closely connects us to the broader literature on

the implications of corporate lobbying. This literature has primarily focused on pref-

erential tax treatment (Arayavechkit, Saffie, and Shin, 2014; Meade and Li, 2015;

Richter, Samphantharak, and Timmons, 2009) and trade policy (Bombardini, 2008;

Bombardini and Trebbi, 2012; Gawande and Bandyopadhyay, 2000). Lobbying has

also been found to increase the likelihood of receiving government relief (Adelino

and Dinc, 2014; Blau, Brough, and Thomas, 2013; Duchin and Sosyura, 2012) and

to generate high returns when policies are enacted (Kang, 2015). With the excep-

tions of Brogaard, Denes, and Duchin (2016) and Adelino and Dinc (2014), there are

few examinations of how corporate lobbying affects the allocation of procurement

contracts.

Whereas Brogaard, Denes, and Duchin (2016) identifies the positive effect

of corporate political connections on the allocation of procurement contracts by ex-

ploiting campaign contributions (PAC) in close elections, we use corporate lobbying.
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The use of lobbying affords us two advantages. Corporate lobbying expenditure is

seven times larger than corporate campaign contributions, and we can directly link

lobby expenditure to particular bills. Adelino and Dinc (2014) document a positive

correlation between lobbying and the receipt of ARRA stimulus funds. By link-

ing of ARRA-related lobbying with ARRA-related procurement and correcting for

selection bias, we take the analysis one step further and establish the causal link

between lobbying and the allocation of procurement contracts.

Finally, by assessing the importance of procurement allocation for real out-

comes, we contribute to the empirical literature evaluating the effectiveness of stim-

ulus spending. The recent literature in this area has focused primarily on ARRA.

Some consider the bill’s provisions regarding aid to state governments (Chodorow-

Reich, Feiveson, Liscow, and Woolston, 2012; Wilson, 2012), while others emphasize

the provisions for low-income households, infrastructure spending (Feyrer, 2011),

and total government purchases (Dube, Kaplan, and Zipperer, 2014; Dupor and

Mehkari, 2016; Wilson, 2012). This strand of literature is principally concerned with

estimating the local employment multiplier. Dube, Kaplan, and Zipperer (2014) es-

timate an annualized employment multiplier of 7.5 job-years per $1 million, which is

close to the eight jobs estimated by Wilson (2012). Meanwhile, Dupor and Mehkari

(2016) estimates that ARRA increases local employment by 9.53 persons at the

commuting zone level. We use insights from these papers regarding the regres-

sion framework and appropriate controls to ensure that our approach and results

are comparable to previous work. We contribute to this literature by focusing on

an understudied, yet important, category of government purchases during stimulus
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– Federal procurement. More importantly, we emphasize the differential effect of

spending through lobbying and non-lobbying firms on local employment outcomes.

2.3 The American Recovery and Reinvestment Act

To assess the impact of political influence on the allocation and employment

effect of procurement contracts during periods of fiscal stimulus, we consider the

passage of the American Recovery and Reinvestment Act. ARRA was passed in

February 2009 in response to the Great Recession with a stated goal of stabilizing the

economy and saving jobs through temporary relief programs, federal tax incentives,

and government purchases. Of the estimated $831 billion to be spent beginning

in 2009, 31% was allocated to loans, grants, and procurement for infrastructure,

energy, communications and scientific research. In total between 2009 and 2014,

approximately $130 billion was allocated towards federal procurement. The majority

of this contracting occurred between 2009 and 2010. As figure 2.1 shows, by the end

of 2010, 61% ($79 billion) of contract dollars had been spent.

ARRA was first introduced in the Senate on January 6, 2009 and in the House

on January 26. It was signed into law by President Obama on February 17. The

swift introduction and passage of ARRA reduce the likelihood that firms changed

their behavior in anticipation of receiving ARRA-supported contracts, which would

bias our empirical results. ARRA’s $831 billion price tag made it the largest single

stimulus bill in U.S. history and efforts were made to monitor spending. In particu-

lar, legislation required that all awards funded by ARRA be reported on quarterly
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Notes: This figure shows the total spending on ARRA supported procurement between 2009 and

2014. It The totals include initial obligations, as well as follow-up contract modifications.

Figure 2.1: Arra Contracts: Spending by Year (2009-2014)

and that these reports be made public. Our empirical strategy takes advantage

of this publicly available information to identify procurement contracts associated

with ARRA. We then integrate publicly available information on lobbying to iden-

tify procurement contractors that lobbied on ARRA. Our ability to both identify

ARRA procurement and ARRA lobbying allows us to more tightly isolate how po-

litical influence, exerted through corporate lobbying, affects the allocation and local

employment impact of federal procurement during the stimulus.
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2.4 Data Description

2.4.1 Firm-level analysis

Our empirical analysis relies on several sources. Federal procurement data is

obtained from USAspending.gov, a website mandated by the Federal Funding Ac-

countability and Transparency Act of 2006. This site hosts data on the universe of

federal procurement contracts awarded since 2000, with size above $3,000 ($25,000

prior to 2005). The data contain detailed contract-level information, including con-

tract size, terms, awarding agency, location of performance, and product/service

type. Additionally, information is available on the recipient, including business

name, location and employment.

Among all the contracts awarded, we identify the ARRA-supported contracts

using the Recovery Report data from the Federal Procurement Data System (FPDS).

Section 1512 of the ARRA requires that recipients of ARRA resources report certain

information such as the amount of recovery funds received and a list of projects for

which funds will be used. Further, government agencies are required to review

the Recovery Report posted on the FPDS website every day to ensure that all

entries are accurate. We match the USAspending.gov data and Recovery Report

to identify ARRA supported contracts among all procurement contracts. Linking

ARRA contracts to the universe of federal procurement contracts is central to our

empirical strategy. By doing so, in our firm-level analysis we can control for past

procurement experience, and in our Metropolitan Statistical Area (MSA)analysis

68



we can use pre-ARRA procurement in constructing our Bartik instruments.

The federal procurement data are used to construct several outcome variables

of interest. For our firm-level analysis we construct a dummy equal to one if the

contract is associated with ARRA (DARRA), total number of ARRA contracts

(Narra), total first-year value of ARRA contracts (V arra), total number of non-

ARRA contracts (NnonARRA), and total first-year value of non-ARRA contracts

(V nonARRA). When validating our matching strategy we also use the fraction of

contracts awarded competitively (COMP ), where competitive contracts are defined

as those classified as being awarded under full and open competition. We also

construct key control variables: log average first-year value of new contracts in

the previous three years (MP3) and log total number of new contracts won in the

previous three years (NP3), employment (EMP ), and 2-digit industry (NAICS).

Because our employment data is derived from reports filed by contracting firms,

which is not as reliable as employment from administrative records, rather than use

a continuous measure of employment, we place firms into four bins. The first bin

contains firms with less than 50 employees, the second with 50 to 249 employees,

the third with 250 to 999 employees and the fourth with 1,000 or more employees.

Lobbying data are obtained from the Center for Responsive Politics (CRP).

The Lobbying Disclosure Act of 1995 requires the disclosure of lobbying activity to

the Clerk of the U.S. House of Representatives and Secretary of the U.S. Senate

when expenditure exceeds $3,000 during a quarter. In addition to the total amount

of expenditure, disclosures also report which issue areas and bills were targeted

in lobbying efforts. The data also include the name of organizations or firms on
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behalf of which lobbying is done. We use this information and a probabilistic name

matching algorithm to link lobby data to federal procurement data.

In particular, we first standardize names in the procurement and lobbying

data to eliminate punctuation, legal form information, and make adjustments for

common acronyms. The names in each data set are further processed to generate

match-codes. The procurement and lobby data are then matched based on these

codes. More often than not, each entity in the procurement data will at first be

matched to multiple entities in the lobby data. We use a Jaro-Winkler distance score

to evaluate matches and for each firm keep the match with the highest score. Among

the remaining matches, those with a low score are also dropped. We end up finding

approximately 3% of contractors in the lobby data, and conversely, contractors

account for nearly 30% of lobbying entities during the period 2008 through 2015.

In our empirical analysis we use two variables derived from the lobbying data.

The first is a time-varying dummy equal to one if a firm lobbied on any issue in the

previous three years (LP3) and the second is a time-invariant dummy equal to one

if a firm lobbied on ARRA (LARRA). We identify a firm as lobbying on ARRA

if during the 111th Congress it lobbied on any of the House or Senate versions of

ARRA, or related bills (H.R.1 and S.1). Lobbying on these bills is identified in the

cleaned bill-level data available from CRP.

Our firm-level data set contains a little over 1 million procurement contracts

awarded between 2008 and 2015 to 306,000 contractors. Around 42,000 of these are

ARRA-supported contracts awarded to over 10,000 contractors. A total of 5,000

firms in the data lobby between 2008 and 2015, while only 850 (17%) of these lobby
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specifically on ARRA. Firms that lobby on ARRA represent only 1.5% of the total

number of firms awarded ARRA contract, yet they account for around 34% of ARRA

contracts and around 30% of ARRA contract spending between 2009 and 2015.

2.4.2 MSA-level analysis

For our MSA-level analysis, we use the procurement data to construct aggre-

gate measures of procurement. Since we are interested in identifying the impact of

spending on local employment outcomes, we focus on the location of performance,

rather than the location of firms. Further, we measure spending as the sum of

all spending obligations, which include initial contract value along with all subse-

quent contract modifications.1 We calculate total ARRA spending by MSA and

three-digit NAICS (ARRA), as well as total ARRA spending channeled through

firms that lobbied on ARRA (ALOB). Our Bartik instruments are built using pre-

ARRA procurement information. At the national level, we measure the share of

2007 procurement spending in each sector going to each MSA (ProcShare), as well

as the total share of 2007 procurement spending in each sector channeled through

firms that lobbied on budget and appropriations in 2006 or 2007 (BLOB).

We incorporate additional data sources to generate control variables previously

emphasized in the literature. Our measure of 2009 working age population (POP )

is obtained from the U.S. Census Bureau. MSA-level quarterly employment infor-

mation is obtained from the Quarterly Census of Employment and Wages (QCEW)

1Contract modifications involve additional work, changes in costs, termination, etc. We do not
distinguish between the type of modification when calculating spending.
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hosted by the Bureau of Labor Statistics (BLS). Using this information, we calculate

the 2009Q1 employment to population ratio (EMP
POP

). These data are also used in

the construction of a Bartik measure of predicted change in employment between

2009Q1 and 2011Q1, as emphasized by Dube, Kaplan, and Zipperer (2014). We

also control for the change in housing price index between 2003 and 2007 (HPI),

using data from the Federal Housing and Finance Agency (FHFA); the share of

less-educated young men in 2008 (SLME) from the American Community Survey

(ACS); 2008 unemployment rate (UNEMP ) from the BLS; and a dummy variable

identifying whether a county in the MSA was represented by a congressperson on a

committee that ARRA legislation went through.

2.5 Lobbying and ARRA Procurement

2.5.1 Descriptive Statistics

Before formally identifying the causal impact of ARRA lobbying on the al-

location of ARRA contracts, let us explore what the raw data suggest about this

relationship. The lobbying data show that the American Recovery and Reconstruc-

tion Act attracted significant attention from lobbying firms. In 2009, approximately

$2.4 billion were spent on lobbying and ARRA-related lobby alone accounted for

around 7% of the total expenditure.2 A significant fraction of the entities lobbying to

shape ARRA were firms active in the procurement market. Among the 2,100 entities

2Lobbying disclosure requirements do not require firms to report expenditure separately for
each bill. As is standard in this literature, we divide expenditure equally across all bills listed in
each disclosure. As such, we anticipate that the ARRA lobby expenditure reported here is a lower
bound.
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(e.g. foreign governments, associations of firms, associations of consumers, public

entities, and companies) 850 (40%) are procurement contractors. These contractors

account for two-thirds of all ARRA lobbying expenditure. Nevertheless, lobbying

on ARRA-related bills does not guarantee that firms win ARRA contracts. Among

the contractors that lobbied on ARRA, approximately 18% were awarded at least

one ARRA contract between 2009 and 2014.

Yet, the returns to winning contracts appear quite high. Figure 2.2 compares

the size distribution of the average ARRA and non-ARRA contract awarded to firms,

where size is measured as the first year dollar value of a contract. To be clear, if a

firm has two ARRA contracts and three non-ARRA contracts, the average first-year

value of the first two contracts is used to build the distribution of ARRA contracts

and the average of the other three is used to build the distribution of non-ARRA

contracts. Every firm in the procurement database with active contracts is used to

generate this figure. The average ARRA contract awarded to firms is on average

larger than the average non-ARRA contract awarded to firms. In fact, the average

size of an ARRA contract is nearly $1.6 million compared to $250,000 for non-ARRA

contracts.

Figure 2.3 divides the aforementioned size distribution of ARRA contracts

between contractors that lobbied on ARRA and those that did not. Figure 2.3

suggests that large ARRA contracts are more likely to be awarded to firms that

lobbied on ARRA. The average ARRA contract size to non-lobbying firms is $1.3

million compared to $8.6 million to lobbying firms. There is a similar fraction of

lobbying and non-lobbying firms receiving small contracts. But, non-lobbying firms
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Figure 2.2: Distribution of first-year value: ARRA & Non-ARRA contracts (2009-
2015)

are more likely to receive medium-sized contracts, whereas lobbying firms are more

likely to receive large contracts. Perhaps most striking is the fact that firms that

lobby on ARRA account for around 1.5% percent of the total number of firms

awarded ARRA contracts. Yet, these firms were awarded 34% of ARRA contracts

and 30% of the total ARRA contract spending between 2009 and 2015.
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Figure 2.3: Distribution of average value of ARRA contracts (2009-2015)

2.5.2 Pooled OLS Specification

Our first aim is to assess whether lobbying is causally linked to procurement

allocation during the stimulus period. We take advantage of detailed disclosures

that identify lobbying related to the American Recovery and Reinvestment Act,

along with ARRA’s transparency provisions, which allow us to identify procurement

contracts related to the stimulus package. ARRA contracting began in 2009 and

we therefore restrict our analysis to 2009 onward. Our empirical approach is cross-
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sectional in nature and compares outcomes of firms that lobbied on ARRA versus

those that did not. We estimate the following regression:

Yit = αst + βLARRAi + δ1MP3it + δ2NP3it + δ3EMPit + δ4LP3it + εit (2.1)

where Yit is our outcome variable of interest and αst captures industry-year

fixed effects. MP3 measures the average first-year value of contracts awarded in

the previous three years and NP3 measures the total number of new contracts

awarded in the previous three years. Both control for the fact that firms may be

awarded more and larger ARRA and/or non-ARRA contracts simply because they

have experience in handling such contracting volume and size. EMP controls for

the correlation between firm size and federal contracting. And LP3 controls for the

possibility that corporate lobbying of any kind, rather than targeted lobbying on

ARRA, influences outcomes. The coefficient on β captures the effect of lobbying on

ARRA (LARRA).

Given our working hypothesis that corporate lobbying influences procurement

allocation, we expect the coefficient of β to be positive and significant for outcome

variables associated with ARRA contracting, and insignificant for outcome vari-

ables not directly associated with ARRA. Our preliminary results from pooled OLS

regressions are reported in Table 2.1.

Consistent with our expectations, we find that lobbying on ARRA is positively

associated with obtaining an ARRA contract (column 1), the number of ARRA
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contracts (column 2) and the total first-year value of these contracts (column 3).

However, inconsistent with our expectations, is the fact that lobbying on ARRA

is also positively (and significantly) correlated with the number of non-ARRA con-

tracts awarded in the post-2009 period, though it is not significantly correlated with

with the value of non-ARRA contracts awarded during this period.

Table 2.1: Corporate lobbying and procurement allocation (pooled OLS regression)

(1) (2) (3) (4) (5)
DARRA NARRA VARRA nonNARRA nonVARRA

LARRA 0.0544∗∗∗ 0.0844∗∗∗ 0.742∗∗∗ 0.161∗∗∗ 0.0108
(0.00615) (0.0107) (0.0826) (0.0189) (0.0469)

Ind-Year FE Yes Yes Yes Yes Yes
Full Controls Yes Yes Yes Yes Yes
Obs. 706,628 706,628 706,628 706,628 706,625
R-sq 0.0827 0.0782 0.0909 0.678 0.378

Notes: The dependent variable in the first column is a dummy whether the firm was awarded

any ARRA contract; in the second column is the number of ARRA contracts awarded; and in the

third column is the total first-year value of ARRA contracts. The fourth column is the number

of non-ARRA contracts awarded and the last column is the total first-year value of non-ARRA

contracts. We only report the coefficient of interest, namely the time-invariant dummy LARRA,

which is equal to one if the firm lobbies on ARRA. In all regressions we also control for industry-

year fixed effects and for firm-level employment, lobbying in the previous three years, and the

average value and total number of new contracts awarded in the previous three years. Standard

errors are robust. ***, **, and * indicates significance at the 1%, 5%, and 10% levels, respectively.

2.5.3 Propensity Score Matching Approach

One important concern regarding the full sample used in our analysis thus far

is selection bias. As table 2.2 shows, well under 1% of all procurement contractors

lobby on ARRA, but those that do are quite different from the rest. In particular,

they have earned more and larger contracts in the past (NP3 and MP3); have

virtually all lobbied in the previous three years (LP3); and have higher employment
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Table 2.2: Pre-matching difference between ARRA lobbying and non-lobbying firms

Mean
Variable Sample ARRA Lobby Non Lobby Bias

#FIRMS Unmatched 541 117,963
EMP Unmatched 2.57 1.30 118.6
LP3 Unmatched 0.99 0.01 877.6
MP3 Unmatched 10.33 7.25 69.8
NP3 Unmatched 3.64 1.51 104.5

Notes: The table reports the comparison of means between treated (ARRA lobby) and untreated

(Non Lobby) firms in the unmatched sample for all variables that will be used in our propensity

score matching.

(EMP ). The average ARRA lobbying firm belongs to the size bin representing

employment above 50 (and likely closer to above 250) and the average non-lobbying

firm belongs to the size bin representing employment below 50. Ideally, we would

like to know the counter-factual award of ARRA contracts to firms that lobbied

on ARRA if they had instead chosen not to lobby. Since such a counter-factual is

unobservable, we are forced to rely on a control group of firms that did not lobby

on the stimulus bill. Since lobbying is an endogenous choice and correlated with

factors such as firm size, which also affect contract allocation, the sample of all firms

that did not lobby on ARRA is not an appropriate counter-factual. We address this

selection bias by using a standard propensity score matching approach.

For the results reported in the next section, we restrict ourselves to a sample

of firms that lobbied on ARRA in 2009 (treatment group) and a sample that is

observationally similar to the treated group, but that did not lobby (control group).

In the first stage, we focus on the cross-section of firms in 2009 since this is the

year in which treatment status is determined. We estimate a logit model to predict
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whether a firm lobbies on ARRA as a function of all the firm characteristics used in

the pooled regression, including employment (EMP ), industry (NAICS), lobbying

status over the previous three years (LP3), number of new contracts awarded in the

previous three year (NP3), and the mean value of those contracts (MP3). Formally,

we estimate:

LARRAi = λs + η1MP3it + η2NP3it + η3EMPit + η4LP3it + εit (2.2)

We then use the resulting propensity scores to construct a nearest-neighbor

matched sample of firms. Once we identify our control group in 2009, we track the

group from that year onward in our second stage regressions. With this approach

we eliminate from our sample procurement contractors that are observationally very

different from those firms that lobbied on ARRA in 2009.

Before turning to our matched sample estimation results, it’s helpful to review

the results from our first stage in table 2.3. Because we allow for matching with

replacement, our 541 firms that lobbied on ARRA are matched to a sample of 367

firms that did not. As a result, our second stage regressions will employ frequency

weight. Table 2.3 confirms that our nearest neighbor matching virtually eliminates

selection on observables.

As suggested in Imbens and Rubin (2015), we consider an additional validation

exercise. If our matched sample does well in addressing selection, we would expect

no differences in pre-ARRA (2006-2008) procurement outcomes for the treated and
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Table 2.3: First-stage: post-estimation comparison

Mean
Variable Sample ARRA Lobby Non Lobby Bias

#FIRMS Unmatched 541 117,963
Matched 541 367

EMP Unmatched 2.57 1.30 118.6
Matched 2.56 2.52 4.2

LP3 Unmatched 0.99 0.01 877.6
Matched 0.99 0.99 0.0

MP3 Unmatched 10.33 7.25 69.8
Matched 10.32 9.96 8.0

NP3 Unmatched 3.64 1.51 104.5
Matched 3.62 3.47 7.8

Notes: The table reports the comparison of means between treated (ARRA Lobby) and untreated

(Non Lobby) firms in the unmatched and matched sample for all variables used in the first-stage

regressions.

control groups. Table 2.4 considers the total number (NUM) and total first year

value (V AL) of contracts in the first two columns. As should be the case, lobbying

on ARRA has no significant effect on these outcomes. We might be concerned that

these outcomes are highly correlated with the procurement related variables used in

our first stage. In column (3) we find that for a non-targeted outcome, the share of

contracts awarded competitively (COMP ), there is still no statistically significant

difference between our treatment and control groups.

The results from our second stage regressions, reported in table 2.5 show that

lobbying is indeed influential in shaping the allocation of ARRA-supported procure-

ment contracts. After controlling for selection into lobby by restricting the analysis

to a smaller sample of firms that are similar in size, past lobbying and experience in

federal procurement, we still find that firms that lobbied on ARRA are on average

significantly more likely to win ARRA contracts. Importantly, the magnitudes are
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Table 2.4: Placebo Test

(1) (2) (3)
NUM VAL COMP

LARRA -0.0552 -0.1678 0.1906
(0.039) (0.108) (0.0134)

Ind-Year FE Yes Yes Yes
Full Controls Yes Yes Yes
Obs. 839 839 839
Freq. Weighted Yes Yes Yes
R-sq 0.923 0.739 0.117

Notes: The period of analysis is 2006-2008. The dependent variable in the first column total

number of contracts; in the second column is total first year value; and in the third column is

the share of contracts awarded competitively. We only report the coefficient of interest, namely

the time-invariant dummy LARRA, which is equal to one if the firm lobbies on ARRA. In all

regressions we also control for industry-year fixed effects and for firm-level employment, lobbying

in the previous three years, and the average value and total number of new contracts awarded in

the previous three years. Standard errors are robust. ***, **, and * indicates significance at the

1%, 5%, and 10% levels, respectively.

economically significant. When the regression is evaluated at the mean, the results

imply that firms that lobbied on ARRA-related bills won 8% more and 68% larger

ARRA-contracts than firms that did not lobby on ARRA.

Although the control group from the matched sample closely resembles the

treated group, there is still room for unobserved factors that make firms both lobby

more intensively on ARRA and win more contracts. For this reason, we evaluate

non-ARRA contract outcomes of ARRA lobbying and non-lobbying firms. In con-

trast to the pooled regression approach, once we correct for selection, we find that

lobbying on ARRA has not impact on the number or size of non-ARRA contracts

awarded. Because it is unlikely that the unobserved factors differentially affect

ARRA and non-ARRA contracts the relationship uncovered in this section between

lobbying and procurement is likely to be causal.
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Summarizing, after correcting for selection bias by employing nearest neighbor

matching, we find a strong positive effect on the probability, number, and size of

ARRA-contracts awarded to firms engaged in corporate lobbying on ARRA and

the non-causal correlation between ARRA lobbying and non-ARRA contracting

vanishes.

Table 2.5: Corporate lobbying and procurement allocation (Second-stage regression)

(1) (2) (3) (4) (5)
DARRA NARRA VARRA nonNARRA nonVARRA

LARRA 0.0469∗∗∗ 0.0776∗∗∗ 0.679∗∗∗ -0.0104 -0.0690
(0.00802) (0.0129) (0.104) (0.0199) (0.0531)

Ind-Year FE Yes Yes Yes Yes Yes
Full Controls Yes Yes Yes Yes Yes
Obs. 5,201 5,201 5,201 5,201 5,201
R-sq 0.240 0.217 0.240 0.899 0.725

Notes: The table reports results for the matched sample of firms obtained from nearest neighbor

matching. The dependent variable in the first column is a dummy whether the firm was awarded

any ARRA contract; in the second column is the number of ARRA contracts awarded; and in the

third column is the total first-year value of ARRA contracts. The fourth column is the number

of non-ARRA contracts awarded and the last column is the total first-year value of non-ARRA

contracts. We only report the coefficient of interest, namely the time-invariant dummy LARRA,

which is equal to one if the firm lobbies on ARRA. In all regressions we also control for industry-

year fixed effects and for firm-level employment, lobbying in the previous three years, and the

average value and total number of new contracts awarded in the previous three years. Standard

errors are robust. ***, **, and * indicates significance at the 1%, 5%, and 10% levels, respectively.

2.5.4 Matching Approach with Compustat Sample

One threat to the results presented in the previous section is that firms that

lobbied on ARRA and won ARRA contracts may simply be more efficient. These

firms have the resources to lobby, but win contracts because they have a reputation

for being more productive. To address this concern, we focus on a sub-sample
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of firms that appear in both the Federal procurement data and Compustat. For

these firms we estimate and control for total factor productivity (TFPR) in our

regressions.

We begin by augmenting our analysis data with Compustat. Since both the

procurement and Compustat data contain firm names and detailed address infor-

mation, we use an iterative probabilistic name and address matching procedure to

combine the two. Through this procedure, we identify nearly 2,100 publicly-listed

firms in the procurement data, 300 (14%) of which are awarded ARRA contracts.

Of publicly-traded contractors, about 790 (38%) are also present in the lobby data,

25% of which lobby on ARRA. Of the 200 listed firms that lobby on ARRA, about

38% are awarded ARRA contracts.

Following Imrohoroglu and Tuzel (2014), we use firm-level value added, em-

ployment, investment, physical capital, and 2-digit NAICS codes to estimate firm-

level productivity. We integrate data from the Bureau of Economic Analysis for

the GDP deflator, which is used to deflate value added; and the price index for

private fixed investment, which is used to deflate investment and capital. TFPR is

estimated using the Wooldridge (2009) extension of Levinsohn and Petrin (2003).

In the estimation procedure, we choose investment as our proxy for the correlation

between inputs and productivity shocks.

The analysis from the previous section is repeated. In particular, we first

perform nearest neighbor matching to obtain a sample of treated and control firms

that are observationally similar. The first-stage results are reported in table 2.6.

Compared to the full Federal procurement sample, as expected, the Compustat
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subset consists of firms that are larger, more likely to have lobbied in the previous

three years, and more experienced on the procurement market. Comparing now

the publicly-listed firms that lobbied on ARRA with those that did not, we observe

important differences. Namely, as in the full procurement data, firms that lobbied on

ARRA are larger and have more prior experience with lobbying and the procurement

market. They are also slightly more productive. These differences suggest that our

nearest neighbor matching approach is indeed warranted. Post matching, these

observational differences between the two groups are substantially reduced and we

proceed to the second stage regressions.

Table 2.6: First-stage: post-estimation comparison

Mean
Variable Sample ARRA Lobby Non Lobby Bias

#FIRMS Unmatched 143 1,049
Matched 143 86

EMP Unmatched 3.90 3.56 63.2
Matched 3.90 3.91 -1.7

LP3 Unmatched 0.98 0.28 210.8
Matched 0.98 0.98 0.0

MP3 Unmatched 11.67 10.45 50.0
Matched 11.65 11.86 -8.9

NP3 Unmatched 5.82 3.76 94.5
Matched 5.63 5.88 -11.3

TFPR Unmatched 10.04 9.95 8.5
Matched 10.07 10.32 -21.5

Notes: The table reports the comparison of means between treated (ARRA Lobby) and untreated

(Non Lobby) firms in the unmatched and matched sample for all variables used in the first-stage

regressions.

The results presented in the previous section are confirmed in the publicly-

listed subsample. Even after controlling for productivity, we find that lobbying on

ARRA influences procurement allocation. Firms that lobby on ARRA are 6% more
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likely to win ARRA contracts, win 12% more ARRA contracts; and are awarded

contracts that are 98% larger than firms that did not lobby on ARRA. Moreover,

lobbying on ARRA has no significant effect on non-ARRA procurement outcomes.

Table 2.7: Compustat Sample: Lobbying and procurement allocation (Second-stage
regression)

(1) (2) (3) (4) (5)

DARRA NARRA VARRA nonNARRA nonVARRA

LARRA 0.0592∗∗ 0.120∗∗∗ 0.980∗∗∗ -0.0117 -0.0103

(0.0247) (0.0457) (0.329) (0.0391) (0.0654)

ln(TFPR) -0.00396 0.0132 -0.0235 -0.0744 -0.119

(0.0215) (0.0325) (0.290) (0.0522) (0.0797)

Ind-Year FE Yes Yes Yes Yes Yes

Full Controls Yes Yes Yes Yes Yes

Obs. 1092 1092 1092 1092 1092

R-sq 0.347 0.328 0.385 0.932 0.905

Notes: The table reports results for the matched sample of firms obtained from nearest neighbor

matching for the Compustat-Federal procurement subsample. The dependent variable in the first

column is a dummy whether the firm was awarded any ARRA contract; in the second column is the

number of ARRA contracts awarded; and in the third column is the total first-year value of ARRA

contracts. The fourth column is the number of non-ARRA contracts awarded and the last column

is the total first-year value of non-ARRA contracts. We only report the coefficients of variables

of interest, namely the time-invariant dummy LARRA and estimated productivity TFPR. In all

regressions we also control for industry-year fixed effects and for firm-level employment, lobbying

in the previous three years, and the average value and total number of new contracts awarded in

the previous three years. Standard errors are robust. ***, **, and * indicates significance at the

1%, 5%, and 10% levels, respectively.

2.6 Differential Effects of ARRA Procurement on Employment Growth

2.6.1 Descriptive Statistics

Having shown that lobbying effects the allocation of ARRA-supported con-

tracts, we now turn to whether this influence has implications for local employment
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outcomes. The foundation of our empirical approach is the well-established use of

geographic variation in stimulus spending to identify the effect of this spending on

labor market outcomes (Chodorow-Reich, Feiveson, Liscow, and Woolston, 2012;

Dube, Kaplan, and Zipperer, 2014; Dupor and Mehkari, 2016; Feyrer, 2011; Wilson,

2012). As figure 2.4 shows, there is quite a bit of variation in ARRA supported

federal procurement per capita in 2009 and 2010 across MSAs. This geographic

variation helps us achieve identification by asking whether regions that received

more money per capita created or saved more jobs.

634.3 − 2,447.0
365.3 − 634.3

238.0 − 365.3
189.2 − 238.0

84.2 − 189.2
0.0 − 84.2

Notes: This figure shows the distribution of total ARRA procurement spending per capita across

MSAs between 2009 and 2010.

Figure 2.4: Distribution of ARRA Procurement across MSAs

We are interested in whether ARRA spending channeled through firms that

lobbied for ARRA contracts has a different effect on employment than ARRA spend-

ing channeled through other firms. To identify this effect, we need sufficient geo-
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graphic variation to ask whether regions that received less money per capita through

lobbying firms were able to create or save more jobs. Figure 2.5 shows the fraction

of total ARRA procurement awarded to firms that lobbied on ARRA.

0.4 − 0.9
0.2 − 0.4

0.0 − 0.2
0.0 − 0.0

Notes: This figure shows the distribution of the share of total ARRA procurement spending

channeled through firms that lobbied on ARRA across MSAs between 2009 and 2010.

Figure 2.5: Distribution of Lobbying share of ARRA Procurement across MSAs

2.6.2 Baseline OLS Regressions

We are interested in estimating the following baseline model:

Li,T − Li,0
POPi,0

= β0 + β1
NonLobi
POPi,0

+ β2
Lobi
POPi,0

+X
′

i,0δ + γ + εi (2.3)

The dependent variable is change in employment in MSA i between the first

quarter of 2009 and the first quarter of 2011, scaled by the population of the MSA

in 2009. We control for a list of covariates (X ′i,0) that the literature has found
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to strongly predict changes in employment, particularly during the recent financial

crisis. These include the size of the economy as measured by the working-age pop-

ulation in 2009 and short-run economic conditions measured by the unemployment

rate in 2009. To account for the fact that industry composition is heterogeneous

across different MSAs and certain industries are associated with stronger decline in

employment to population ratios, we control for the predicted change in employment

over 2009-2011 period.3 To construct the predicted change variable, we first multi-

ply the employment share of sector s in MSA i in 2008 with the national changes

in employment in sector s between 2009 and 2011, and sum the products across

all s for each MSA. This Bartik-style variable strongly predicts the actual changes

in employment to population ratio in MSA i over 2009-2011 period, which allows

us to control for the changes in employment caused by industry composition of the

area. We also control for the share of young (age 18-24) men with less than a col-

lege education to take into account that they exhibited the sharpest decline in the

employment-to-population ratio during the crisis. Finally, to account for the fact

that the areas experiencing the largest housing boom were also the hardest hit by

the financial crisis, we control for the increase in the rate of the housing price index

between 2003 and 2007. Finally, we include a dummy variable that takes on a value

of one if MSA includes a county represented by a congressperson in a committee

that ARRA legislation went through.

Our two variables of interest are NonLob
POP

and Lob
POP

, which measure the total

3For example, Charles, Hurst, and Notowidigdo (2013) show that the decline in manufacturing
industry had a large impact on the decline in non-employment.
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amount of ARRA procurement per capita through firms that did not lobby on

ARRA and the total amount of ARRA procurement per capita through firms that

did lobby, respectively. We are particularly interested in differences between the

coefficients β1 and β2.

We estimate our baseline model first using total ARRA procurement spending

per capita. Our OLS results in table 2.8 estimate that every $1 million in procure-

ment spending between 2009 and 2010 created or saved 6.9 jobs. In the second

column, we decompose ARRA procurement spending into that channeled through

non-lobbying and lobbying firms. The decomposition suggests that lobbied and non-

lobbied contracts have no significant effect on employment growth between 2009 and

2011.

Table 2.8: County Emplyoment Outcomes & ARRA Procurement (OLS)

(1) (2)

4 (
EMP
POP

)
0911
4 (

EMP
POP

)
0911

ARRA
POP

6.90∗∗

(3.07)

NonLOB
POP

4.72
(4.47)

LOB
POP

23.72
(17.46)

State FE Yes Yes
Full Controls Yes Yes
Observations 338 338

Notes: The table reports results for MSA-level regressions. The dependent variable is the change

in employment-to-working age population ratio between the first quarter of 2009 and the first

quarter of 2011. We only report the coefficients of variables of interest, namely total ARRA

procurement spending per capita (ARRA
POP ), total ARRA spending channeled through firms that did

not lobby on ARRA (NonLob
POP ), and total ARRA spending channeled through firms that lobbied

on ARRA (LOB
POP ). In all regressions we also control for INSERT LIST OF CONTROLS. Standard

errors are robust. ***, **, and * indicates significance at the 1%, 5%, and 10% levels, respectively.

89



One challenge we face that is common to other papers assessing the employ-

ment impact of stimulus spending, is that regional variation in spending is not

exogenous. During the Great Recession, harder hit areas tended to receive more

funding, which biases OLS estimates downwards. We face an additional challenge

since we may be missing an unobserved factor at the MSA level that is simulta-

neously correlated with receiving more procurement through lobbying firms and

employment outcomes. For instance, if a firm is a large employer in the MSA, it

will have a large effect on employment. And if at the same time, that firm is being

adversely affected in the recession, it may lobby on the stimulus package to insulate

its sales or employment from the crisis as much as possible. In the next section we

attempt to address these concerns by constructing a set of Bartik instruments to

use in our estimation.

2.6.3 Instrumental Variables

Let us first consider the concern that harder hit areas receive more fund-

ing. Others have addressed this issue by using various instrumentation strategies,

including the use of exogenous formulary allocation factors Wilson (2012) and pre-

recession spending levels Chodorow-Reich, Feiveson, Liscow, and Woolston (2012).

Our approach is similar in spirit to Chodorow-Reich, Feiveson, Liscow, and Wool-

ston (2012) who use state pre-recession Medicaid spending levels to instrument for

ARRA state fiscal relief.

We take full advantage of our detailed federal procurement data, which covers
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the period 2005 onward. Our instrument for total ARRA procurement is a Bartik

measure that relies on variation in national ARRA spending across sectors, and

on variation across sectors in the degree of reliance on different counties prior to

the recession. To be more precise, we construct a predicted measure of total ARRA

procurement to a MSA i (ÂRRAi) by first calculating total U.S. ARRA procurement

channeled to each three-digit NAICs sector after excluding procurement to a MSA

i. This gives us a measure of national allocation to each sector that is exogenous of

the particular MSA. We then calculate the fraction of overall U.S. procurement in

each sector that was channeled to MSA i in 2007. This measure of reliance, since

it is measured prior to the passage of ARRA, should be unaffected by the stimulus

package. We use these two measures to allocate ARRA spending in each sector

to MSA i and obtain a MSA-level measure by aggregating across all sectors. The

strength of our instrument relies on the validity of two assumptions: that i) if the

government is heavily reliant on a particular MSA for procurement in sector s, it is

likely to remain reliant during the stimulus period; and ii) if a large amount of ARRA

is channeled to sector s, then counties on which the government was previously more

reliant might be expected to get a greater fraction of that spending.

ÂRRAi =
∑
s

ProcShare{i,s}ARRAsn{i,s} (2.4)

Once we instrument for total ARRA spending, we are still faced with the

potential endogeneity of ARRA spending channeled through lobbying firms. To

address this, we take advantage of the fact that corporate lobbying is persistent Kerr,
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Lincoln, and Mishra (2014a) and that there is substantial variation across sectors

in the fraction of procurement awarded through lobbying firms. Since lobbying is

associated with high fixed costs, it is not surprising that over 90% of firms that

lobbied on ARRA in 2009 had previously lobbied on other issues. Further, some

sectors channel as little as 1% of procurement through lobbying firms, while others

channel as much as 80%. The strength of our instrument relies on the assumption

that sectors that heavily relied on lobbying firms prior to the crisis will continue

to do so, and that these lobbying firms are likely to continue to lobby in 2009. In

particular, to construct our instrument (L̂OBi) for MSA i we first calculate the share

of total procurement spending channeled through lobbying firms for each sector in

2007. We then combine this share with our how reliant procurement in each sector

was on MSA i in 2007 and how much ARRA spending, net of the amount to MSA

i, went to each sector. Our MSA-level instrument is obtained by aggregating across

all sectors. Finally, we construct our instrument for procurement through non-

lobbying firms by taking the difference between predicted total ARRA procurement

and predicted ARRA procurement through lobbying firms.

L̂OBi =
∑
s

ProcShare{i,s} × ARRAsn{i,s} × Lobs (2.5)

̂NonLOBi = ÂRRAi − L̂OBi (2.6)

In table 2.9 we first report the results from the first stage of our 2SLS re-

gression model. We include, but do not report, the full set of controls used in our
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baseline regressions. The results confirm that our instruments are strong predic-

tors of actual ARRA spending, as well as ARRA spending through lobbying and

non-lobbying firms. As expected, the relationship between all of the actual and the

predicted measures is positive and significant.

Table 2.9: First-Stage Instrumental Variable Regression Results

ARRA
POP

NonLOB
POP

LOB
POP

ÂRRA
POP

0.616∗∗∗

(0.14)

̂NonLob
POP

0.554∗∗∗ -0.404
(0.12) (0.50)

L̂OB
POP

-0.027 0.466∗∗

(0.02) (0.19)

Census Division FE YES YES YES
Full Controls YES YES YES
Observations 338 338 338
R-sq 0.35 0.39 0.31
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The table reports results of the first stage for our IVs. The dependent variable in the first

column is total ARRA procurement spending per capita (ARRA
POP ); in the second column is total

ARRA spending channeled through firms that did not lobby on ARRA (NonLob
POP ); and in the third

column is total ARRA spending channeled through firms that lobbied on ARRA (LOB
POP ). We only

report the coefficient estimates for our Bartik instruments ÂRRA
POP , N̂onLob

POP , and L̂OB
POP , respectively.

In all regressions we also control for INSERT LIST OF CONTROLS Standard errors are robust.

***, **, and * indicates significance at the 1%, 5%, and 10% levels, respectively.

2.6.4 Regression Results

Instrumenting for ARRA procurement spending, we estimate the effect of the

stimulus on net employment growth in table 2.10. In the first column we estimate

that every $1 million in ARRA supported procurement spending saves or creates
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11.5 jobs. Our estimate is similar to the estimate of 8 jobs saved reported in Dube,

Kaplan, and Zipperer (2014) and Wilson (2012).

In the second column of table 2.10 we find a striking result. The entire em-

ployment effect of ARRA procurement spending is explained by money channeled

through non-lobbying firms. Every $1 million in ARRA-supported procurement

through these firms supported 16 jobs. In contrast, the employment effect of pro-

curement through firms that lobbied on ARRA is insignificant. Our results suggest

that the impact of stimulus spending weakened when procurement is allocated to

firms that lobby. Note that the employment multiplier is much two times larger

when we move from the first column to the coefficient for non-lobbying contractors

on the second column. This large change comes from the fact that a significant

share of procurement money is going to lobbying firms. In short, we find that it is

not only the amount of stimulus spending that matters for employment outcomes,

but also how that spending is allocated.

94



Table 2.10: MSA Employment Outcomes & ARRA Procurement (IV regression)

∆
(
EMP
POP

)
(11−09)

∆
(
EMP
POP

)
(11−09)

ÂRRA
POP

11.48∗∗∗

(4.35)

̂NonLob
POP

16.07∗∗

(6.49)

L̂OB
POP

-1.28
(35.79)

Census Division FE Yes Yes
Full Controls Yes Yes
Observations 338 338
F-statistic 141.7 40.5
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Notes: The table reports results for MSA-level regressions after instrumentation for variables of

interest. The dependent variable is the change in employment-to-working age population ratio

between the first quarter of 2009 and the first quarter of 2011. We only report the coefficients

of variables of interest, namely the Bartik instruments for total ARRA procurement spending

per capita ( ÂRRA
POP ), total ARRA spending channeled through firms that did not lobby on ARRA

( N̂onLob
POP ), and total ARRA spending channeled through firms that lobbied on ARRA ( L̂OB

POP ). In

all regressions we also control INSERT LIST OF CONTROLS. Standard errors are robust. ***,

**, and * indicates significance at the 1%, 5%, and 10% levels, respectively.

2.7 A Simple Theoretical Explanation

In this section, we provide a simple theoretical explanation for why we find

a smaller employment growth effect from procurement spending that is channeled

through lobbying firms. The intuition is as follows. Suppose firms lobby in period

t and procurement contracts are awarded in period t+ 1. As shown in Section 2.5,

lobbying firms win government contracts with a higher probability. Therefore, if

private demand is equal, lobbying firms expect a higher future demand compared

to the firms that do not lobby. Higher expected demand incentivizes lobbying firms
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to accumulate more physical capital in t. If lobbying firms indeed win government

contracts in t+ 1, they can fulfill the demand with less labor input, and fewer jobs

are created for each procurement dollar spent in t+ 1.

This simple explanation can tested using our matched Federal procurement-

Compustat sample. In particular, if the posited theoretical explanation is true,

we should observe that firms lobbying on ARRA have higher marginal product of

labor (MPL) and lower marginal product of capital (MPK) than firms that do not

lobby on ARRA. Figure 2.6, tests this hypothesis by comparing the distributions

of log(MPL) and log(MPK) for firms that lobbied on ARRA versus those that

did not. These figures suggest that firms that lobby on ARRA have higher MPL.

The results for MPK are less clear, though it appears that lobbying firms do have

slightly higher MPK than those that do not.
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Notes: This figure shows the distribution of log(marginal product of labor) [left panel] and

log(marginal product of capital) [right panel], separately for firms that lobby on ARRA (solid

green line) and firms that do not (dashed purple line). The underlying sample is the Federal

procurement data matched to Compustat.

Figure 2.6: Distribution of MPL and MPK: Lobbying vs. Non-lobbying firms

We now test this hypothesis more formally. We first match firms that lobbied

on ARRA (treatment) with those that did not (control) based on employment,

past lobbying experience, past procurement experience, and industry. We then take

the resulting matched sample and regress LARRA on the same variables, as well as

log(MPL) and log(MPK). The results in column 2 of table 2.11 are consistent with

our hypothesis. Firms lobbying on ARRA have higher MPL and lower MPK, even

after matching on other firm-level characteristics. As our theoretical explanation
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suggests, it could be that lobbying firms adopt capital intensive technologies and

therefore do not hire more labor.

Table 2.11: Compustat Sample MPL and MPK Regression Results)

(1) (2)
ln(MPL) 0.174∗∗∗

(0.0277)

ln(MPK) -0.0721∗∗∗

(0.0157)
NP3 0.0214∗∗ 0.0313∗∗∗

(0.00880) (0.00840)

MP3 0.0283∗∗∗ 0.0286∗∗∗

(0.00964) (0.00916)

LP3 0.572∗∗∗ 0.580∗∗∗

(0.0277) (0.0289)
Ind-Year FE Yes Yes
Size bins Yes Yes
Obs. 1,176 1,117
R-sq 0.210 0.259

Notes: The table reports results for firm-level regressions post implementation of nearest neighbor

matching. The dependent variable is a time-invariant dummy LARRA, which is equal to one if

the firm lobbies on ARRA. The main coefficients of interest are those associated with ln(MPL)

and ln(MPK). In all regressions we also control for industry-year fixed effects and for firm-level

employment, lobbying in the previous three years, and the average value and total number of new

contracts awarded in the previous three years. Standard errors are robust. ***, **, and * indicates

significance at the 1%, 5%, and 10% levels, respectively.

2.8 Conclusion

This paper studies the allocation and effectiveness of procurement spending

during the largest stimulus package in American history. In particular, by match-

ing data on firm lobbying and federal procurement contracts during the American

Reinvestment and Recovery Act of 2009, we investigate i) how firm lobbying activi-

ties impact the allocation of procurement spending across firms, and ii) if the effect
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on MSA employment differs when most of the contracts are channeled by lobbying

contractors.

We answer the first question using a propensity score matching approach and

estimate that firms that lobbied on ARRA win 5.3% more and 50% larger ARRA-

supported contracts. We validate our identification strategy by showing that after

matching, ARRA lobbying only influences ARRA procurement outcomes and does

not have any significant impact on past or future corresponding non-ARRA contract

outcomes.

We tackle the second question using Bartik instruments to address potential

endogeneity concerns. We estimate that $1 million of total procurement spending

yields 11.5 jobs at the MSA level, which is broadly consistent with previous estimates

in the literature. Yet, we find that this effect is entirely driven by non-lobbying firms;

$1 million channeled through non-lobbying firms yields 16 jobs, while that channeled

through lobbying firms has no significant effect on employment.

We also provide a simple theoretical explanation on why procurement spending

on lobbying firms generated fewer jobs. Lobbying firms in general tend to expect to

win government contracts with higher probability. Facing higher expected demand

from the public sector, lobbying firms tend to accumulate more physical capital in

advance. Therefore, when lobbying firms indeed win government contracts, they

can fulfil the demand with fewer workers. We document indirect evidence for this

explanation by showing that lobbying firms tend to exhibit lower MPK and higher

MPL compared to non-lobbying firms, even after controlling for size and industry.

Our explanation is not necessarily based on rent-seeking behavior or distortions.
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However, our findings cautions that when the allocation of government spending is

affected by firms’ lobbying behavior, job creation effect may be mitigated.
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Appendices

A Appendix for Chapter 1

A.1 Simple Model Solution Derivation

Note that the entrepreneur in period 1 chooses labor n1 to maximize period

1 profits and it does not affect period 2 expected utility. Explicitly writing out

V2(z1, h), the optimization problem of ∆ can be re-written as

max
∆≥0

ln(Γz1) +
{
e−γ∆ ·max{ln(Γz1e

∆), ln(wh)}+ (1− e−γ∆) ·max{ln(Γz1e
−∆), ln(wh)}

}

There are four possible objective functions depending on the realization of z2 and the

occupational choice. First, he can stay in business regardless of the z2 realization,

which delivers

V E,E
1 (z1, h) = max

∆≥0
ln(Γz1) + β

{
e−γ∆ · ln(Γz1e

∆) + (1− e−γ∆) · ln(Γz1e
−∆)
}

(7)

Second, he can stay in business in the high z2 outcome and exit in the low z2

outcome. In this case he gets

V E,W
1 (z1, h) = max

∆≥0
ln(Γz1) + β

{
e−γ∆ · ln(Γz1e

∆) + (1− e−γ∆) · ln(wh)
}

(8)
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Third, he can exit regardless of the z2 realization, in which case he gets the value

V W,W
1 (z1, h) = max

∆≥0
ln(Γz1) + β ln(wh) (9)

Lastly, he can stay in business in the low z2 and exit in the high z2.

V W,E
1 (z1, h) = max

∆≥0
ln(Γz1) + β

{
e−γ∆ · ln(wh) + (1− e−γ∆) · ln(Γz1e

∆)
}

(10)

One can solve the problem by first deriving the optimal ∆∗ and the associated value

functions conditioning on each case, and then finding the upper envelope of the

conditional value functions over (z1, h).

Case 1: V E,E
1 (z1, h)

The Kuhn-Tucker theorem implies that the necessary conditions for the optimal ∆∗

are

− 2∆∗γe−γ∆∗ + 2e−γ∆∗ − 1 ≤ 0(
− 2∆∗γe−γ∆∗ + 2e−γ∆∗ − 1

)
·∆∗ = 0

∆∗ ≥ 0

Since ∆∗ = 0 violates the first condition, ∆∗ is strictly positive. Thus ∆∗ is the

root of −2∆∗γe−γ∆∗ + 2e−γ∆∗ − 1 = 0. Denote the solution as ∆̄(γ). The implicit

function theorem implies that ∆̄ is decreasing in γ.
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Note that equation (7) can be re-written as

V E,E(z1, h) = ln(Γz1) + β
{

ln(Γz1) + 2∆̄e−γ∆̄ − ∆̄
}

Define the second term inside of the bracket as C(γ) = 2∆̄e−γ∆̄ − ∆̄. C(γ) is non-

negative at the optimum. It is because if C(γ) were negative, a higher objective

function value can be achieved under ∆∗ = 0, which violates the first necessary

condition.

Case 2: V E,W
1 (z1, h)

The necessary conditions for the optimal ∆∗ are

− ln(Γz1)−∆∗ +
1

γ
+ ln(wh) ≤ 0

(
− ln(Γz1)−∆∗ +

1

γ
+ ln(wh)

)
·∆∗ = 0

∆∗ ≥ 0

Define h̄(z1) = e
−1
γ Γz1
w

. Note that − ln(Γz1) + 1
γ

+ ln(wh̄(z1)) = 0. Then the optimal

∆∗ can be characterized as

∆∗ =


ln(wh)− ln(Γz1) + 1

γ
h ≥ h̄(z1)

0 h < h̄(z1)
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Replacing ∆ in equation (8) with ∆∗, the conditional value function is solved as

V E,W (z1, h) =


ln(Γz1) + β

{
ln(wh) + 1

γ
(Γz1
wh

)γe−1
}

h ≥ h̄(z1)

ln(Γz1) + β ln(Γz1) 0 ≤ h < h̄(z1)

Case 3: V W,W
1 (z1, h)

This case can be ignored as it is strictly dominated by V E,W . Suppose wh ≥ Γz1.

Then h > h̄ and thus V E,W > V W,W . On the other hand, if wh < Γz1, V E,W > V W,W

regardless of the value of h within the range.

Case 4: V W,E
1 (z1, h)

This case can be ignored as it is weakly dominated by V W,W and V E,E. Suppose

wh ≥ Γz1. Then ln(wh) − ln(Γz1) ≥ 0. Subtracting V W,E from V W,W , one can

obtain V W,E −V W,W = (1− e−γ∆)
(

ln(wh)− ln(Γz1) + ∆
)
, which is weakly positive.

On the other hand, suppose wh < Γz1. Then ln(Γz1) > ln(wh). Subtracting V W,E

from V E,E, one can obtain V E,E − V W,E = e−γ∆
(

ln(Γz1) + ∆ − ln(wh)
)
, which is

strictly positive.

Therefore it only requires comparing V E,E
1 (z1, h) and V E,W

1 (z1, h) to uncover

the upper envelope and the optimal solution ∆∗. This can be done by fixing z1 to

an arbitrary value and varying the value of h. First, consider h = 0. At this point,

V E,W (z1, 0) = ln(Γz1) + β ln(Γz1) and V E,E(z1, 0) = ln(Γz1) + β(ln(Γz1) + C(γ).

Since C(γ) > 0, V E,W (z1, 0) < V E,E(z1, 0).

Note that ∂V E,E(z1,h)
∂h

= 0, thus V E,E stays constant for all values of h. On the
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other hand, ∂V E,W (z1,h)
∂h

= 0 for 0 ≤ h < h̄(z1), and ∂V E,W (z1,h)
∂h

> 0 for all h > h̄(z1).

Therefore as h moves from 0 to infinity, V E,W continuously increases starting from h̄,

and V E,W and V E,E crosses once and only once at a value h∗(z1) > h̄(z1). Therefore,

the optimal ∆∗ can be characterized by

∆∗ =


ln(wh)− ln(Γz1) + 1

γ
h ≥ h∗(z1)

∆̄(γ) 0 ≤ h < h∗(z1)

A.2 Robustness Check: Sole-proprietor Sample

This section shows that the empirical evidence presented in section 1.3 are

robust to restricting the sample to sole-proprietor firms. The purpose of this ro-

bustness analysis is to show an evidence that the results are not likely driven by

potential errors in the founder approximation method. Table A1 reports the re-

sults from the linear probability regression where the dependent variable is the firm

exit indicator. Table A2 reports the regression on firm-level growth dispersion, and

Table A3 shows results for growth conditioning on survival. In contrast to the

main regressions, I find insignificant coefficient for labor productivity growth while

all other results are robust. Lastly, Table A4 shows results for the Hurst-Pugsley

sector indicator interactions which shows less consistency for sole-proprietor firms.
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Table A1: Firm Exit Regressions for Sole-Proprietors

(1) (2) (3) (4)
Exit Exit Exit Exit

Log prior earnings -0.015*** 0.001 0.015*** 0.016***
(0.005) (0.003) (0.002) (0.002)

Lagged log employment -0.060*** -0.112*** -0.113***
(0.002) (0.003) (0.004)

Lagged log labor prod. -0.132*** -0.135***
(0.007) (0.008)

Lagged log wage 0.004
(0.003)

Founder average age -0.002***
(0.000)

Founder male share 0.005
(0.003)

Ind-Year FE No Yes Yes Yes
Firm age FE No Yes Yes Yes
State FE No No No Yes
Birth year FE No No No Yes
Obs. 450000 450000 450000 450000
R-sq 0.001 0.104 0.194 0.197

Notes: The table reports results for a linear probability regression where the dependent variable

is firm exit indicator. The sample is restricted to sole-proprietors, whose business ownership

information can be obtained from the Business Register (BR). Standard errors are clustered at

the industry (NAICS4) level. ***, **, and * indicate significance at the 1%, 5%, and 10% level,

respectively.
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Table A2: Growth Dispersion Regressions for Sole-Proprietors

(1) (2) (3) (4)
ε2 (Rev) ε2 (Rev) ε2 (Prod) ε2 (Prod)

Log prior earnings 0.008*** 0.007*** 0.005*** 0.004***
(0.000) (0.000) (0.000) (0.000)

Lagged log employment 0.002*** -0.003***
(0.000) (0.000)

Ind-Year FE No Yes No Yes
Firm age FE No Yes No Yes
Obs.
R-sq 360000 360000 360000 360000
r2 0.001 0.023 0.000 0.021

Notes: The table reports results from estimating equation (1.7) for sole-proprietor sample. ε2ijt
(∆ Rev) and ε2ijt (∆ Prod) are the squared deviations obtained from equation (1.6) where Yijt are

revenue and labor productivity, respectively. ***, **, and * indicate significance at the 1%, 5%,

and 10% level, respectively.
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Table A3: Growth Regressions for Sole-Proprietor Continuers

(1) (2) (3)
∆ Rev ∆ Prod ∆ Emp

Log prior earnings 0.009*** -0.003 0.012***
(0.003) (0.005) (0.003)

Lagged log labor prod. -0.078*** -0.198*** 0.119***
(0.006) (0.007) (0.007)

Lagged log employment -0.049*** 0.063*** -0.116***
(0.004) (0.006) (0.008)

Lagged log wage 0.020*** -0.009*** 0.032***
(0.003) (0.003) (0.003)

Founder average age -0.002*** -0.000*** -0.002***
(0.000) (0.000) (0.000)

Founder male share 0.025*** 0.0434*** -0.019***
(0.003) (0.005) (0.004)

Ind-Year FE Yes Yes Yes
Firm age FE Yes Yes Yes
State FE Yes Yes Yes
Birth year FE Yes Yes Yes
Obs. 360000 360000 360000
R-sq 0.063 0.139 0.155

Notes: The table reports results for OLS regression of firm growth on prior earnings where the

sample is restricted to the sole-proprietors. All growth measures are calculated as the DHS growth

rate. Standard errors are clustered at the industry (NAICS4) level. ***, **, and * indicate

significance at the 1%, 5%, and 10% level, respectively.
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Table A4: Regression Results with the Hurst-Pugsley Sector Interactions: Sole-
Proprietor Sample

(1) (2) (3) (4) (5)
Exit ∆ Rev ∆ Prod ∆ Emp ε2 (Rev)

Log prior earnings 0.014∗∗∗ 0.009∗∗∗ -0.003 0.011∗∗∗ 0.008∗∗∗

(0.001) (0.002) (0.004) (0.003) (0.001)

HP × log prior earnings 0.003 0.000 -0.001 0.001 -0.002∗∗∗

(0.002) (0.004) (0.008) (0.005) (0.001)

Lagged log labor prod. -0.135∗∗∗ -0.078∗∗∗ -0.198∗∗∗ 0.119∗∗∗

(0.008) (0.006) (0.007) (0.007)

Lagged log employment -0.113∗∗∗ -0.049∗∗∗ 0.063∗∗∗ -0.117∗∗∗ 0.002∗∗∗

(0.004) (0.004) (0.006) (0.008) (0.000)

Lagged log wage 0.004 0.020∗∗∗ -0.009∗∗∗ 0.032∗∗∗

(0.003) (0.003) (0.003) (0.003)

Founder average age -0.002∗∗∗ -0.002∗∗∗ -0.000∗∗ -0.002∗∗∗

(0.000) (0.000) (0.000) (0.000)

Founder male share 0.005∗∗ 0.025∗∗∗ 0.043∗∗∗ -0.019∗∗∗

(0.003) (0.003) (0.005) (0.004)

Ind-Year FE Yes Yes Yes Yes Yes
Firm age FE Yes Yes Yes Yes Yes
State FE Yes Yes Yes Yes No
Birth year FE Yes Yes Yes Yes No
Obs. 450000 360000 360000 360000 360000
R-sq 0.197 0.063 0.139 0.155 0.023

Notes: The table reports results for linear regressions re-estimated after including the interaction
between HP indicator and log prior earnings. The sample only includes sole-proprietor firms.
Standard errors are clustered at the industry level (NAICS4). ***, **, and * indicate significance
at the 1%, 5%, and 10% level, respectively.
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