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This dissertation contributes to the study of product introduction from two

aspects. Chapter 1 and 2 study firms’ strategic decisions in product release fre-

quencies as well as their dynamic pricing and innovation decisions in the flagship

smartphone market. Chapter 3 studies consumers’ multi-version consumption in

response to periodic new product releases in the video game industry.

In Chapter 1, I extend the dynamic innovation framework developed by Ericson

and Pakes [1995] by incorporating firms’ choices of their product release timing. In

this new framework, firms first commit to their product release frequencies, then

based on their committed schedules, I solve for their pricing and innovation decisions

upon each product release. The welfare analysis in the counterfactual analysis shows

that when the market shift from the duopoly to a monopoly, social welfare improves

as higher innovation dominates higher prices and slower releases in welfare impact.

In Chapter 2, I adopt the framework developed in Chapter 1, and further

extend the discussion to provide managerial implications on firms’ optimal prod-

uct release strategies in two dimensions: staggering in product release timing, and



maintaining regular release schedules. Based on the simulated market outcome,

firms should stagger their product releases with others and maintain the regular

form of their release schedules.

In Chapter 3, I study consumers’ responses to firms’ new product releases in

the video game industries. Video game players are observed to continue playing

their old games even after their new purchases, which contrasts with the single-

product consumption assumption in the existing durable good literature. This pa-

per develops a new framework where video game players allocate their playing time

within their game portfolios based on a latent variable, “game preference.” The

game preference is constructed to be flexible as it captures both contemporaneous

heterogeneities across game versions and game modes, and also intertemporal het-

erogeneities across individuals like past gaming activities. We estimate the model

parameters based on the data provided by Wharton Consumer Analytic Initiatives

and report how our model fits the data pattern in three dimensions: game purchase

decisions, game play decisions and game duration.
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Chapter 1: Overview

New product introductions are prevalent across various industries, and fre-

quently observed in our daily life: Apple’s new iPhone models with better graphics

and more features released in every autumn, Intel’s faster and more energy-efficient

CPU models released based on its “tick-tock” schedule, sports video games’ new ver-

sions released periodically in every game season, new car models with new designs

released at the end of each year, etc. It is natural to attribute these product intro-

duction scenarios to firms’ investment on product introduction, which generates the

potential new product features and better product components to be incorporated

into the new products. In this thesis, I highlight an equally important factor during

this process, firms’ product release strategy, and illustrate how firms utilize both

strategies to schedule their new product introductions.

I first became interested in the product introduction pattern when I started to

follow Apple’s new phone releases. In every autumn when it was close to the release

confeerence, Apple fans talked about what the new iPhone models look like, and

what upgrades would be incorporated in the new model. After the release, people

then shift their topic, get either excited or disappointed at the new phones, and start

another cycle of forecasting phones in the next year. While consumers may only
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focus on each specific iPhone model and comment on its specifications like “Why

does it come with only 1GB RAM while Android flagships are already equipped

with 3GB RAM,” what really attracts me and motivates the first two chapters

in this thesis is Apple’s long term plan of new product releases, where it has to

guarantee enough quality improvement between consecutive releases to motivate

the upgrade purchases while not making consumers concerned about being obsolete

when they make the purchase. After all, when a firm designs new products while

taking into account what it would release later, everything becomes complicated

and challenging.

Just take an easy example and think about how a new iPhone is “designed in

California”: engineers in Apple come up with ideas about how the new smartphone

looks like, then adopt its hardware components, e.g. CPU, RAM, GPU, battery,

from the suppliers. While Apple could become determined to introduce the best

phone ever and adopt the best of every component, it might risk losing current

sales because of the higher price tags due to the higher cost, and also the future

sales as the current buyers will have little incentive to buy if future products are

not significantly better than this model. A better solution would be to spread out

the potential improvement over several product generations and keep a steady pace

of product improvement. and, if necessary, even alter the pace of product releases.

Note that these adjustments are in addition to firms’ long term innovation decisions:

firms can choose their optimal investment decisions in improving product qualities in

the long run, but conditional on their investment level, they still have the flexibility

of materializing these improvement in one product or across several generations.
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The first two chapters propose a new framework which allows firms to ex-

plicitly choose the format of their release schedules. In this framework, firms first

simultaneously select their release frequencies, then they play a dynamic innovation

and pricing game conditional on the pre-committed release dates. This framework

facilitates the discussion of how different release schedules could impact the market

outcome, including both social welfare and firms’ profits. For marketing practices,

this framework can also be utilized to shed light on how firms should arrange their

product release schedules to maximize their long-term profits in the durable good

market.

One assumption imposed in this framework is that each consumer only uses

at most one unit of smartphone at any given time. This assumption is plausible

for smartphones where consumers gain little value from their second units, it is

hard to argue that consumers always shift their total product usage towards the

new products after purchase. In the third chapter, Andrew Sweeting and I use a

dataset which documents video game players’ activities in a major sports video game

franchise, and find two interesting patterns.

First, players utilize multiple game versions in their portfolios. Around 13%

to 20%, ranging across game versions, of players continue to play their old games

after buying the new game versions, which we term as “port-back.”

Second, players exhibit persistent gaming experiences towards certain game

modes over time. For example, a player may spent consistently more time in the

career mode than average, which cannot be explained by the game mode specific

preference.
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To accommodate these two patterns, we construct a framework where play-

ers allocate their playing time across different games modes and game versions in

their portfolios, and make purchase decisions in regards to new versions periodically

released in the market. With this framework, we find that players’ playing time

across different game versions are weakly substituted: when players are restricted

to only play the newest game version in their portfolio, their playing time in the new

game only increase by 0.3%. In contrast, we also find strong correlation in players

game preferences across periods: when players preferences are only determined by

common utility factors like version fixed effect, mode fixed effect, time fixed effect

and player random effect, their playing time in the new game will fall by 13.9%, and

in the old game by 6.9%.
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Chapter 2: Market Competition and Product Introduction: A Study

of the Flagship Smartphone Industry

2.1 Introduction

Successful firms in durable consumer technology industries (e.g., smartphones,

tablets, personal computers) are typically oligopolists who periodically release new

products that contain a number of incremental improvements. These firms have

to trade-off how frequently to release new products with how many innovations

they can incorporate in each release. However, this trade-off is absent from the

recent literature on innovation that has followed the tradition of Ericson and Pakes

[1995] (EP hereafter), because in these models firms simply choose how much to

invest in a stochastic innovation process and new innovations are assumed to be

incorporated into products as soon as they are realized. The objective of this paper

is to incorporate the distinction between release frequencies and quality changes

into a dynamic innovation model that can be used to examine both optimal firm

strategies and classic welfare questions from the literature on innovation.

There are at least three a priori reasons for including product releases explic-

itly into the model. First, in many consumer technology industries product releases

5



are observed to be very regular. For example, in the smartphone industry, Apple

releases new products around September each year, while Samsung has made two

releases per year, around March and around September. We also observe regular

product updates in the automobile industry [Blonigen et al., 2017], and in both

of these consumer-focused industries the pattern likely reflects the fact that new

releases can be made using incremental improvements in many components, and

do not require a single drastic innovation as in the hard drive [Igami, 2017] and

upstream CPU industries [Goettler and Gordon, 2011, GG hereafter]. In EP-style

models, however, realized innovations tend to be irregular, because innovation suc-

cess is stochastic even if a firm exerts steady effort over time

Second, the willingness to pay of forward-looking consumers for leading edge

durable products is likely to depend on when they expect new versions to be released.

Therefore if forward-looking consumers are to be included in the model as allowed

by GG, it is natural to also include an explicit model of the release decisions of

firms.

Third, it is plausible that some counterfactual environment changes will cause

release frequencies and the average magnitude of incremental improvements to change

in different directions whereas an EP-style framework would force them to change in

only one direction. I specifically find this to be the case when I change the market

structure from duopoly to monopoly, as a monopolist is predicted to release prod-

ucts less frequently but to increase the overall innovation rate, so that total welfare

increases.

The structure of my empirical model is that firms first choose, and fully commit
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to, the frequency with which they release new products, and then, conditional on

these frequencies, they play a dynamic game, with a Markov Perfect Equilibrium,

where they choose the prices of new releases and how much to invest to increase the

quality of each release. Consumers are forward-looking and make optimal choices

about when to replace their current holdings based on the products that are currently

available and their expectations of future prices and releases.

The model is estimated using data on flagship models sold by the leading

smartphone manufacturers, Apple and Samsung. The smartphone industry is a

consumer-oriented technology industry with regular release cycles and some uncer-

tainties about how innovative each release will be. It therefore fits the assumptions

of my model quite well. I allow for phones sold by other manufacturers to be present

in the market, but do not model these manufacturers in a strategic way, in order to

limit the computational burden. I develop a two-stage estimator that exploits the

fact that under my assumptions, consumer choice sets will be known to be fixed for

several periods. The supply side is estimated using a nested fixed point procedure

where, following GG, I use backwards induction in order to avoid problems that

may arise from a multiplicity of equilibria. Simulated and actual moments are very

close, indicating that this quite restricted parameterization is able to fit the data.

Given the parameter estimates, I use the model to examine the welfare im-

plications of market concentration, and to provide suggestions on firms’ optimal

product release schedules. When I change the market structure from a hypothetical

symmetric and single-product duopoly to a monopoly, price goes up by 30%, the

innovation rate goes up by 7.4%, and product releases become less frequent from
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once every 6 months to once every 12 months. Consumer surplus and social welfare

both increase as the monopolist’s higher innovation is only partially offset by the

higher prices and slower releases.

My model is simplified in several aspects, which facilitates the computation

but introduces several limitations as well. First, I adopt a single-product firm setup

where I interpret product quality as reflecting the average quality of the flagship

smartphones sold by each firm. In doing so I ignore important portfolio aspects of

firm’s problem. Second, I only include Apple and Samsung as strategic players, and

represent all other manufacturers as a composite and non-strategic firm “Other”.

While firms like HTC and LG also introduce popular flagship smartphones, their

quality frontiers fall behind the two major players and I assume they have very

limited market impact in the flagship market. Third, when I estimate the model I

assume that firms fully commit to their regular release schedules and cannot change

them afterwards. While I do not see changes in schedules, consumers may believe

that changes are possible and adjust their behaviors as a result. I examine this

assumption in the counterfactual by comparing outcome to a model with partial

commitment and show that commitment is valuable.

It has been discussed for decades whether, in general, market competition

increases innovation. Schumpeter [1942] proposed a negative relationship between

market competition and firms’ innovation, where Arrow [1962] argued that com-

petition might increase innovation, as a monopolist would not want to replace its

own profits. The empirical literature has found evidence of an inverted U-shaped

relationship between competition and innovation across industries [Aghion et al.,
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2005].

For the durable good markets, Carlton and Gertner [1989] show that com-

petition with consumers’ existing holdings incentivizes the monopolist to innovate

more and results in higher social surplus; Waldman [1993, 1996] further extends

this notion of competition with consumers’ holdings into planned obsolescence and

concludes that the monopolist over-invests to reduce the value of consumers’ cur-

rent holdings and increases consumers’ future upgrade purchases. Gowrisankaran

and Rysman [2012] provide a framework to track consumer demand in the durable

good market with a rapid price decline and fast quality improvement. These papers

highlight the importance of accounting for consumers’ current holdings when study-

ing durable good firms’ product innovation decisions, and this paper extends their

setup by allowing firms to control the pace of new product releases, which indirectly

affects the evolution of consumer holdings.

This paper also contributes to the literature of dynamic oligopoly competi-

tion. Pakes and McGuire [1994] and EP established the basis for the oligopoly

dynamic investment literature. This framework has been widely adapted and ap-

plied to various industries and problems, including mergers [Gowrisankaran, 1999,

Gowrisankaran and Holmes, 2004], research joint ventures [Song, 2011], and invest-

ment with product differentiation [Narajabad and Watson, 2011].1 Eizenberg [2014],

Nosko [2010], and Fan and Yang [2016] study firms’ product positioning decisions

in a static setting, and Sweeting [2013] in a dynamic setup. Papers studying smart-

1Pakes and McGuire [2001], Ferris et al. [2012], Doraszelski and Pakes [2007], Borkovsky et al.
[2010, 2012], and Farias et al. [2012] propose various algorithms and methods to solve this type of
dynamic problems.
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phone manufacturers focus on bargaining between smartphone manufacturers and

wireless carriers [Sinkinson, 2014, Luo, 2016], vertical integration of upstream hard-

ware makers and smartphone manufacturers [Yang, 2016], and smartphone manu-

facturers’ product portfolio choice [Fan and Yang, 2016, Wang, 2017].

This paper develops a dynamic oligopoly model in the durable good context,

and it is closely related to GG. GG also uses a dynamic demand and dynamic

supply framework to study firms’ competition in the CPU market. They show

that a more concentrated market structure leads to higher innovation and higher

price, and consumer surplus is lower as the loss of higher prices dominates the gain

from higher innovation. This paper extends their framework by allowing firms to

separately control their product releases aside from the innovation process.

The rest of the paper is organized as follows. Section 2 describes the model

setup. Section 3 provides details on data. Section 4 describes estimation strategies

and Section 5 provides the results. Section 6 presents counterfactual results on

product release frequencies.

2.2 Model

I present a dynamic model of a differentiated-product oligopoly selling durable

goods. Although this model is designed to describe the smartphone industry, it could

be applied to other industries where durable goods with regular release schedules are

sold, like the automobile industry where manufacturers carry out minor or major

improvements in their new products every year [Blonigen et al., 2017].

10



In this model, in every period each consumer observes all firms’ current prod-

uct offerings and either buys a new smartphone and scraps her current smartphone

(“purchasing”), or continues to use her current smartphone for another period

(“waiting”).2 Consumers’ values of purchasing and waiting, which govern their

purchase decisions, are affected by their expectations of firms’ product qualities,

prices, and future release schedules. For example, if future products are expected to

have higher qualities and lower prices, or if a better product will be available soon,

consumers prefer to wait rather than immediately buy new phones.

Firms choose and commit to their product release frequencies simultaneously

at the beginning of the model, which determines their product release schedules in all

future periods. Given these pre-committed schedules, firms play a dynamic oligopoly

game where they choose prices and invest to improve their product qualities when

they are scheduled to release new products, and continue with their previous product

offerings in other periods.

2.2.1 State space

Time is discrete with infinite horizon t = 1, 2, , . . ., and each period represents

one month in both estimation and the counterfactual analysis. A finite number of

firms are indexed by j = 1, 2, . . . , J , and an infinite number of consumers are indexed

by i. Both firms and consumers are infinitely present with no entry or exit. In the

model, there are two active firms (Apple and Samsung) making strategic choices of

2According to comScore reports, smartphone penetration in the US mobile market increased
from 60% in July 2013 to 79% in January 2016. This high penetration rate motivates my assump-
tion that every consumer uses smartphone when not buying.
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their release schedules, innovations, and product prices, and a third firm, “Other,”

included to capture competition from other firms in the flagship smartphone market,

with its product characteristics evolving over time in a deterministic form.3 I only

include firm “Other” in the model when estimating the parameters and remove it

in the counterfactual analysis.

Firms choose their release schedules, in terms of number of periods between

their consecutive releases, simultaneously before their further product decisions.4

To alleviate the computational burden, I restrict firms’ possible choices of interval

length, Rj, to factors of 12 months, e.g. 3, 6, 12, so firms’ release schedules take the

form of Z releases every year where Z is some positive integer. For example, Rj = 6

indicates that firm j releases a new product in every 6 months, or equivalently, twice

every year. In order to uniquely characterize firms’ release schedules given their

choices of release frequencies, I further assume that all firms release new products

simultaneously in at least one period, so starting from that period, both forward

and backward, all firms’ future release schedules are fully determined.5 Next I will

discuss how each state variable in consumer’s and firm’s problem is defined, and

how these variables evolve over time.

3In July 2013, the first month observed in my data, 92.2% of smartphone subscribers were using
iPhones or Android phones, and this percentage increased over time. So firm “Other” essentially
captures all other firms selling Android smartphones, such as HTC and LG. More details on firm
Other will be provided when setting up firm’s problem.

4This setup implicitly assumes that every firm’s new products are released regularly and re-
peatedly. This assumption is made in accordance with the observed release patterns in data where
both Apple and Samsung release new phones near September, while Samsung also release new
phones in March.

5One possibility ruled out by this assumption is that, two firms choose to both release once
every year, but their release periods are six months apart from each other. This is considered in
the counterfactual analysis where firms are allowed to stagger their releases from those of their
rivals.
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State of release schedule rt

In period t, each firm has an indicator, rjt = 1, 2, . . . , Rj, which measures

the number of periods left until its next scheduled product release. For example,

rjt = 1 means that at time t, firm j will release a new product in the next period.

The market level release state is defined by collecting all firm level indicators as

rt = (r1t, r2t, . . . , rJt). Given firm j’s commitment of release interval Rj, rjt evolves

in a deterministic way as follows:

rjt =


rj,t−1 − 1, if rj,t−1 > 1

Rj, if rj,t−1 = 1

.

That is, rjt will decrease by one in each period until it reaches one, after which it is

then set back to Rj and firm j’s new phone is released. Firms are denoted as “active”

in periods in which they are scheduled to release new products (i.e. rjt = Rj), and

“inactive” in other periods.

Quality vector qt

I adopt the single-product firm setup where each firm sells only one product at

any time t with quality qjt and price pjt, which can be interpreted as average quality

and average price for the multi-product firms observed in data. With this setup,

I ignore the portfolio management decisions and only capture the upward quality

trend resulting from firms introducing new products and discontinuing the old ones.

The market level quality and price vectors at time t collect all firms’ product
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characteristics as qt = (q1t, q2t, . . . , qJt), pt = (p1t, p2t, . . . , pJt), respectively. If

firm j releases a new product at time t, then qjt and pjt are set as its quality

and price; otherwise, firm j sells the same product as in the previous period (i.e.

qjt = qj,t−1, pjt = pj,t−1).6

Product quality is discrete with nq levels of constant increment of δ, defined as

qjt ∈ {q, q+δ, . . . , q̄ , q+(nq−1)δ}. When firms release new products, they choose

an investment amount which dictates the probability of the higher quality increment.

Holding all other states as fixed, higher investment increases the probability of the

higher quality increment. More details are provided when I describe how I solve

firms’ optimal investment decisions.

In this model, firms’ product qualities are non-decreasing over time and will

exceed the upper bound after several product releases if not bounded. To maintain

this upward quality trend brought by new product introductions as well as restrict

quality values on the preset quality grids, I define the quality state space in a way

such that it is bounded, as in GG. More details are provided after I have defined

consumer’s and firm’s value functions are constructed.

Distribution of consumers’ holdings ∆t

Consumers are atomistic in the sense that each consumer believes her individ-

ual purchase decision has no effect on firms’ price and quality choices. To measure

competition from consumers’ current holdings in each firm’s problem, I follow GG

6Note that I assume prices cannot be adjusted when firms do not release new products so they
are informative when predicting sales in the future. This setup also assumes no quality depreciation
for the new products on sale.
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and assume that firms keep track of the distribution of consumers’ holdings ∆, which

is constructed as follows. Denote the proportion of consumers using firm j’s phones

with quality qk , q+ (k− 1)δ at time t as ∆j
kt. Summing up these proportions over

all manufacturers and quality levels gives
∑

j,k ∆j
kt = 1. The market level distri-

bution variable is defined by collecting proportion values of all three firms (Apple,

Samsung and Other) and all nq quality levels as ∆t = {∆j
kt}j,k.

In this model, ∆t evolves based on consumers’ purchase decisions. Intuitively

speaking, if firm j’s current product is not of quality qk, then ∆j
k,t+1 only includes

consumers in ∆j
kt choosing to wait; otherwise, ∆j

k,t+1 also includes consumers not in

∆j
kt but buying phones from firm j at time t. To formally express this evolution,

denote the probability of buying quality qk′ product from firm j′ when using quality

qk product from firm j as Prj→j
′

k→k′ , where the arrow denotes the direction of change

due to consumers’ purchases. Then the imputed consumer distribution, ∆̃j
k,t+1 is

calculated according to:

∆̃j
k,t+1 =


∆j
kt

1−
∑

j′,qk′=qj′t

Prj→j
′

k→k′

 , if qjt 6= qk

∑
j′,k′

∆j′

k′,tPr
j′→j
k′→k −∆j

kt

∑
j′,qk′=qj′t

Prj→j
′

k→k′ , if qjt = qk

. (2.1)

In this expression, the two sub-cases correspond to when firm j does and does not

sell a product with quality qk, which determines if there is an inflow of consumers

into ∆j
k,t+1. Note that the outflow of consumers only sums up over the qualities

of products that the other firms sell at time t instead of all quality levels. This is
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because consumers are assumed never to exit the market, and the only way to leave

∆j
k is to buy a new phone (other than firm j’s phone if its quality is qk).

The distribution variable ∆ is of high dimensions so it is necessary to use a

coarser approximation.7 To alleviate the computational burden while still including

∆ in the state space, I assume that ∆ can take values from 20 preset candidates

by first calculating imputed distribution ∆̃ as in (2.1), and then reallocating it

to its nearest candidate in terms of the average holding quality, to get the new

distribution ∆ in the new state. This reallocation proceeds as follows: for each ∆

candidate, calculate its average holding quality as q∆ =
∑

k,j qk∆
j
k; next, the closest

∆ candidate to ∆̃ is determined by:

∆t+1 = min
∆

∣∣∣∣∣
∣∣∣∣∣q∆ −

∑
j,k

∆̃j
k,t+1qk

∣∣∣∣∣
∣∣∣∣∣ . (2.2)

Equation (2.1), (2.2) jointly define the evolution of ∆ based on consumers’ purchases.

This assumption of using average holding quality to approximate ∆ evolution creates

bias in both mean quality and other moments like variances, skewness, etc. To

reduce the bias in mean quality, my 20 ∆ candidates are generated such that their

mean qualities are widely spread to cover extreme distributions, and also condense

around observed mean qualities so even minor changes in mean qualities are reflected

by moving across different ∆ candidates; for other biases like moments of second or

even higher orders, I assume that these biases do not affect firms’ profits significantly

when biases in mean quality levels are not large.

7Suppose each consumer proportion value ∆j
kt is discrete and takes 5 values, then with only 5

quality levels and 3 firms, there will be in total 55×3 ≈ 3× 1010 possible values for ∆t.
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Individual holding characteristics Iit

The individual holding characteristics Iit has two dimensions: its manufacturer

Jit and quality qit, which jointly determine consumers’ utilities of retaining their

current holdings. Iit stays the same if consumer i does not buy a new smartphone,

and this implicitly assumes no quality depreciation over usage; if she buys a new

phone, Jit and qit are set as the manufacturer and the quality of her new phone.

State space for consumers and firms

In each period, firms observe the state of the release schedule rt, market level

quality vectors qt, and distribution of consumers’ holdings ∆; consumers observe all

state variables that manufacturers observe as well as their own holdings.

2.2.2 Consumer’s problem

Each consumer uses one smartphone at any time. In each period, each con-

sumer attains utility from her smartphone based on its quality, manufacturer fixed

effect, other unobserved utility shock and any disutility of monetary payment for

the new phone purchase. If consumer i buys a new smartphone from firm j with

quality qjt, her utility of using this new smartphone for the current period is given

by 8

uijt(Iit) = αqqjt − αppjt + ξjt + εijt , Uijt + εijt, (2.3)

8I tried to allow for consumer types with different brand preferences but it did not help fit the
demand.
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where αq, αp measure her marginal utilities over the quality and the price, respec-

tively. ξjt indicates the brand preference for firm j, and εijt captures idiosyncratic

variations, which is independently and identically distributed across consumers,

products and time as type I extreme values. If consumer i keeps using her current

phone (“waiting”), her utility is determined by the quality and the manufacturer of

her current holding as

ui0t(Iit) = αqqit + ξit + εi0t , Ui0t + εi0t, (2.4)

where qit represents the quality of consumer i’s most recent purchase at time t.

ξit is the brand preference of her current phone, which is time varying because

of changes in her individual holding characteristics. Given the assumption that

consumers’ outside options are using smartphones as well, it is this relative quality

difference between consumers’ current holdings and new smartphones that motivates

consumers’ repeated purchases and firms’ new phone introductions over time.

Each consumer makes her purchase decisions by maximizing her expected dis-

counted utility of different purchase options and the outside option. Omitting the

time and the consumer subscript, using the prime sign to indicate values in the

next period, and using j = 0 to denote the no-purchase option, a consumer’s choice

specific value for product j is

vj(q,∆, I, r, ε) = uij+β
∑
q′

∫
V (q′,∆′, I ′j, r′, ε′)f(ε′)dε′×hc(q′|q,∆′, r, ε)g∆′(∆,q, r, ε),

(2.5)
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where hc is the consumer’s belief about future product qualities, g∆′ gives ∆′ after

consumers’ purchases in the current period, and f is the density function of ε. I ′

includes the j subscript to capture the information from consumer purchase. The

value of ∆′ is defined at the start of the next period, and so reflects consumers’

purchases in the current period. That is why the evolution of ∆ only depends on

the state in the current period (∆,q, r), while the transition of q′ depends on ∆′. As

is discussed above, ∆′ is calculated by reallocating the imputed value to its nearest

∆ candidate, which always gives a unique value instead of a probability distribution

over multiple values, so I use a degenerate function g∆′(∆,q, r, ε) for ∆′ evolution.

The consumer’s value function is defined by the value of her optimal choice,

including the no-purchase option, as

V (q,∆, I, r, ε) = max
j∈{0,...,J}

vj(q,∆, I, r, ε). (2.6)

Assuming that ε is distributed as type I extreme value, integrating over ε

yields

V̄ (q,∆, I, r) = log

 ∑
j∈{0,...,J}

exp

[
Uj + β

∑
q′

V̄ (q′,∆′, I ′, r′)hc(q′|q,∆′, r)g∆′(∆,q, r)

] ,

(2.7)

from which the choice-specific value function takes the form

v̄j(q,∆, I, r) = Uj + β
∑
q′

V̄ (q′,∆′, I ′, r′)hc(q′|q,∆′, r)g∆′(∆,q, r), (2.8)
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which differs from vj(q,∆, I, r, ε) only in the integration of ε. Using this choice-

specific value functions, consumer’s individual choice probability in state (q,∆, r, I)

is

sj|I(q,∆, r) =
exp(v̄j(q,∆, I, r))∑

k∈{0,...,J} exp(v̄k(q,∆, I, r))
. (2.9)

Finally, aggregating individual choice probabilities of buying from each firm

across all types of consumer holdings, the market share of product j is calculated as

sj(q,∆, r) =
∑
k

sj|I=(j,qk)(q,∆, r)∆j
k. (2.10)

2.2.3 Firm’s problem

In each period, active firms invest to improve qualities of their new products,

where higher investment increases the probability of the greater quality improve-

ments. Once the investment outcome is realized, active firms simultaneously choose

new prices which are fixed until the next release, and new products are available for

consumers to buy.

I adopt the single-product firm setup in this model because of the huge compu-

tational burden to allow for multiproduct firms. Accounting for multiple products

would be important for questions related to product portfolios, like product line

pricing problems and quality alignment problems [Eizenberg, 2014, Nosko, 2010,

Fan and Yang, 2016]. This paper studies firms’ competition over the release fre-

quency with a focus on the upward trend of product qualities and product portfolio

management decisions are ignored.
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I now present how I solve a firm’s problem using backward induction within

each period, by first solving for optimal prices given their investment outcomes, and

then solve for firms’ optimal investment decisions.

Optimal pricing

Given firms’ choices of prices, the period profit function for firm j, excluding

investment cost, is

πj(p,q,∆, r) = Msj(p,q,∆, r)[pj −mcj] (2.11)

where M is the fixed market size, sj(·) is the market share for firm j, p is the

vector of J prices and mcj is the constant marginal cost for firm j’s phones. Price is

included in the market share function just to explicitly denote firms’ price choices.

In this model, firms cannot adjust their product offerings, including both prices

and qualities, until releasing new products, so firm j should take into account all

of the profit in the next Rj periods when choosing new prices and investments.

Suppose firm j becomes active in period t0, then given its choice of product price

and quality, pj and qj for the newly released product, the sum of its discounted

profits until its next release takes the form

Πj,t0(pj, qj,q−j,t0 ,∆t0 , rt0) =

E

Rj−1∑
t=0

βtMπj,t0+t({pj} ∪ p−j,t0+t, {qj} ∪ q−j,t0+t,∆t0+t, rt0+t)

∣∣∣∣∣∣ pj, qj,q−j,t0 ,∆t0 , rt0

 ,

(2.12)
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where

E [πj,t0+t({pj} ∪ p−j,t0+t, {qj} ∪ q−j,t0+t,∆t0+t, rt0+t)|pj, qj,q−j,t0 ,∆t0 , rt0 ]

=
∑

q−j,t0+t

πj,t0+t({pj} ∪ p−j,t0+t, {qj} ∪ q−j,t0+t,∆t0+t, rt0+t)

×hfj(q−j,t0+t|qt0 ,∆t0 , rt0)Eg∆t0+t(∆t0 ,qt0 ,pt0)

(2.13)

In this expression, hfj is firm j’s belief about its competitors’ future qualities,

and Eg gives expected ∆ with randomness coming from the evolution of all other

state variables between t0 and t0 +Rj. {pj}∪p−j,t0+t and {qj}∪q−j,t0+t are market

level price and quality vectors, respectively, at time t, with firm j’s price and quality

explicitly specified as unchanged. In periods when no other firms are active, hfj is

degenerate and the quality will be the same as in the previous period. In other

periods when at least one other firm is active, hfj is firm j’s belief of those active

firms’ policies. All future expectations are conditional on state variables in period

t0, which is when firm j chooses optimal investment and prices.

With a slight abuse of notation, use a prime sign to denote variables when

firm j becomes active again (e.g. at t = t0 + Rj). After the investment outcome is

realized, firm j maximizes its expected discounted profits by choosing the optimal

prices, which solves the problem

W̃j(qj,q−j,∆, r) = max
pj

Πj(pj, qj,q−j,∆, r)+βRjE
(
Wj(qj,q

′
−j,∆

′, r′)|pj, qj,q−j,∆
)
.

(2.14)
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Optimal investment

In the smartphone industry, downstream manufacturers’ quality improvement

comes from adopting better components (like CPU, RAM and display technology)

and improving the manufacturing process (like optimizing hardware compatibility).

Potential quality improvement for new products accumulate over time, and more

frequent releases will result in less cumulative upstream innovations available for

each new product. To fit this pattern, I normalize the innovation outcomes for the

smartphone manufacturers based on their release frequencies. The intuition is that

firms with rare releases can increase the quality by a higher amount in each release,

while firms with frequent releases are constrained for minor quality improvements.

The ultimate goal is to guarantee the same range of possible quality increments in

each 12 months regardless of these manufacturers’ chosen release frequencies.

To be specific, each firm’s possible quality increment is defined as follows: if

Rj ≥ 6, its quality qj can be increased to either qj +
Rj

6
δ or qj +

2Rj

6
δ; if Rj < 6, then

its quality qj can be either unchanged, or increased to qj + δ. In this way, firms with

frequencies Rj ≥ 3 will have the same upper bound of quality increment per year

4δ, so in the long run, no firms will be at a systematic disadvantage from choosing

a particular schedule. More details can be found in Table 2.1.

For example, if firm A and firm B chooses RA = 12, RB = 6, then possible

qualities for their new products, given current quality level qA and qB, are q′A =

qA + 2δ or qA + 4δ, q′B = qB + δ or qB + 2δ. In this way, in every 12 months, both

firm A and B can increase their qualities by up to 4δ and down to 2δ so both firms
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Table 2.1: Possible quality increment

Per release Per 12 months

R τ ′ τ ′′ Upper bound Lower bound

3 0 δ 0 4δ
6 δ 2δ 2δ 4δ
12 2δ 4δ 2δ 4δ

have the same range of possible quality outcomes. To facilitate future expressions,

denote firm j’s higher and lower possible quality increment in each release as τ ′′j and

τ ′j, respectively.

It is also worth noting that my choice of τ ′, the quality increment when the in-

novation fails, is not zero for R = 6, 12. When the innovation outcomes are realized,

firms have to wait until their next releases to adjust their product qualities again,

which puts firms with less frequent releases at disadvantage. This “guaranteed”

quality increment reduces the potential loss as from failed innovation outcome, and

maintain the quality competition in the long run.9 A possible concern arising from

this setup is that, this guaranteed quality improvement is equivalent to guaranteed

product release, which may affect players’ expectation and the equilibrium outcome.

I tested my model framework by setting τ ′ to zero, and find that this has very lit-

tle impact on players’ strategies, as all players in the model are risk neutral and

they only care about expected quality increments. More details can be found in the

appendix in Chapter 2.

I also adjust investment cost in each product release. Firms invest for quality

increments every time they are scheduled to release new products, and this model

9Even with some success guaranteed, this model predicts that firms always invest.
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should guarantee that firms with similar expected quality increment per year need

similar investment regardless of their release frequencies. To incorporate this prop-

erty, I adjust firms’ investment costs based on their Rj such that firm j’s true cost

of investment xj is
Rj

3
xj.

10 For example, suppose RA = 12, RB = 6, and both

firms invest x0 in each release, then both firms pay the same investment cost per 12

months: xA = 12
3
x0 = 4x0, xB = 6

3
x0 · 2 = 4x0.

Denote the scale of quality improvement for firm j’s product as τj = q′j − qj,

which takes the value of τ ′j or τ ′′j . Given firm j’s investment xj, the probability of

higher quality outcome is formulated as

χj
(
τj = τ ′′j |x

)
=

aj(q)x

1 + aj(q)x
, (2.15)

where

aj(q) = a0,j max

{
1, a1,j

(
max q− qj

δ

)}
, max q , max

j
{qj}.11 (2.16)

a1,j > 0 introduces an “innovation spillover effect” by increasing the invest-

ment efficiency, aj(q) for lagging firms such that, holding investment and all other

state variables fixed, higher quality outcomes are more likely for the lagging firms

than the leader firms. This mechanism makes it easier for the lagging firm to catch

up with the leader firm.

Next, given the value function W̃j(qj,q−j,∆, r), which already incorporates

10The denominator 3 is included only to simplify the result. For Rj = 3, 6, 12,
Rj

3 = 1, 2, 4.
11This functional form is formuated in EP and adopted by GG.
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the optimal price choices, firm j chooses optimal investment by solving the following

problem,

Wj(qj,q−j,∆, r) = max
xj

W̃j(qj + τ ′j,q−j,∆, r)χ(τj = τ ′j|xj)

+W̃j(qj + τ ′′j ,q−j,∆, r)χ(τj = τ ′′j |xj)−
Rj

3
xj

, (2.17)

which takes weighted average between two investment outcome, qj + τ ′j and qj + τ ′′j ,

and deducted the adjusted innovation cost. Equation (2.14) and (2.17) jointly define

firms’ value functions.

Firms’ choices of Rj at the beginning of the model is determined by their

expected value for all the future periods. For each of firm’s states s = (q,p,∆, r),

denote the probability of its occurrence in a sufficiently long duration as ps, then

firm j’s value given choice of (Rj,R−j) is
∑

sWj(s)ps.
12 Given payoffs of each

combination of R, all firms simultaneously choose their optimal Rj, which completes

setup for firm’s problem.

Firm “Other”

Besides Apple and Samsung, I also include a third firm “Other” in the model

during estimation to capture competition from all other flagship smartphone man-

ufacturers, like HTC, Lenovo and LG. In general these firms’ quality frontier ex-

pansion paces are slower, and they sell their smartphones at cheaper prices. When

solving consumers’ problem, I assume that firm Other’s product quality qOt and pOt

12I assume a random steady state starting point to calculate this value.
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are completely determined by Apple and Samsung’s product characteristics in the

following way:

qOt = min{qAt, qSt} − δ, pOt = .45 ∗ (pAt + pSt).

With this setup, qOt is always slightly lower than Apple and Samsung’s product

qualities, but it will increase over time with Apple and Samsung’s release of better

products. In accordance to this relative quality, I set pOt to be .9 times average price

of Apple and Samsung’s product prices. Consumers also know this determination

rule of {qOt, pOt}, so they only form expectations over future Apple and Samsung

product characteristics.

2.2.4 Equilibrium

Firms choose their optimal release frequency {Rj}j by solving for Nash equilib-

rium, where their payoffs are expected values given different combinations of {Rj}j

and all firms’ optimal price and investment choices conditional on the corresponding

release frequencies. I assume that such a pure strategy Nash equilibrium exists.

Conditional on the choices of {Rj}j, I adopt the symmetric pure-strategy

Markov-Perfect Nash equilibrium (MPNE) to solve for firms’ product choices and

consumers’ purchase decisions. This MPNE specifies that (1) firms’ and consumers’

equilibrium strategies depend only on current state, which consists of all payoff-

relevant variables; (2) consumers have rational expectations about firms’ policy

functions, which determine future qualities and prices, and the evolution of the
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ownership distribution; and (3) each firm has rational expectations about its com-

petitors’ prices and investment and about the evolution of the consumer holding

distribution.

Formally speaking, an MPNE for this model, given the choice of {Rj}j is the

set

{V ∗, h∗c , g∗c , {W ∗
j , x

∗
j , p
∗
j , h
∗
fj
, g∗fj}

J
j=1},

which includes consumers’ equilibrium value V ∗, consumers’ beliefs about future

product quality and ownership distribution h∗c and g∗c , firms’ equilibrium value func-

tions W ∗
j , their optimal policy functions of investment and prices x∗j , p

∗
j , firms’ beliefs

about future qualities and the transition of consumer holding distribution h∗fj , g
∗
fj

.

The expectation over future qualities is rational in that the expected distribution

matches the distribution resulting from consumers and firms behaving according to

their optimal policy functions.

One difficulty in estimating dynamic discrete games and conducting the coun-

terfactual analysis is the multiplicity of equilibrium in product choice and purchase

decisions, and release frequency choices. The literature has addressed this issue in

numerous ways, among which one choice is to use backward induction and derive

players’ values starting from given future values. When solving the model, I start

from a future period where I assume both consumers’ and firms’ values are only

determined by their payoffs in that period, and then using backward induction to

solve for their optimal policy functions holding fixed their actions in the next pe-

riod. For choices of release intervals, it is easy to check for the existence of multiple
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equilibria in the normal form.

2.2.5 Bounding the state space

Firms’ product qualities increase in every product release so that, over time,

they can increase without bound. To numerically solve the model, I transform the

state space to finite size by redefining all qualities as relative qualities to a pre-

set quality boundary q̄. The capability to implement this quality transformation

without changing the dynamic game itself comes from the following proposition.

Proposition 1 (Goettler and Gordon (2011)) Shifting down qualities of the two

firm, q and q̃, by δ has no effect on firms’ payoffs and lowers consumers’ payoffs in

each state by αqδ

1−β , the discounted value of the reduced utility in each period. More

formally,

firms:

Wj(qj − δ,q−j − δ,∆, r) = Wj(qj,q−j,∆, r)

consumers:

V (q− δ,∆, I = (q̃ − δ, J̃), r) +
αqδ

1− β
= V (q− δ,∆, I = (q̃, J̃), r)

The proof for this proposition rests on the following properties of the model:

(1) quality enters linearly in the utility function, so adding a constant to the util-

ity of each alternative, including new purchase and outside option, has no effect

on consumers’ choices within a logit demand system; (2) firms’ innovation only af-
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fects probabilities of different quality increments, and cost of innovation, as well

as marginal cost per unit, is independent of quality levels; (3) ∆ tracks consumer

holding quality relative to the quality frontier so it is unaffected by a shift for all

quality levels. In practice, when a firm’s product quality is at the highest level, q̄,

and it invests to improve it by τ , I will then use this proposition and shift all quality

entries by τ .

2.3 Data and industry background

Smartphones were first introduced in 1999, and became widespread in the late

2000s.13 One distinction between the smartphone and its predecessor, the feature

phone, is that smartphone is capable of handling more complicated tasks, like play-

ing games, GPS navigation, taking photos, etc. To meet the hardware requirement

for performing these functions , smartphone manufacturers incorporate new and

better hardware components into their new smartphone models, resulting in rapid

improvement in smartphone qualities.

Figure 2.1 depicts this quality increasing trend from 2008 to 2016 by plotting

the quality frontier for the five largest manufacturer in the US market, Apple, Sam-

sung, LG, Motorola and HTC, where quality is measured using the benchmark score

collected from http://www.iphonebenchmark.net/ and http://www.androidbenchmark.net/.

These websites measure the smartphone performance on CPU, 2D and 3D graphics,

memory and disk, then combine these statistics to report an aggregate benchmark

score for each smartphone model, which I assume represents a smartphone’s overall

13https://en.wikipedia.org/wiki/Smartphone
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performance. According to the figure, within the Android makers, which include

all firms except Apple, Samsung is leading the Android quality frontier and the

other three firms are mostly followers.14 We can also see that Apple’s own quality

frontier interacts with the Android frontier, which indicates active quality competi-

tion. Based on these two observations, I model the US flagship smartphone market

as Apple competes with Samsung in quality improvement, with all other firms as

followers and represented by a non-strategic firm “Other”.

Figure 2.1: Smartphone quality frontier for top five manufacture in the US
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Note: Vertical axis represents quality, represented by benchmark scores, and horizontal axis

represents time. Quality frontier is defined as the highest quality among all smartphones all

manufacturers sold in each period.

A second observation from Figure 2.1 is that, product release schedules are

14Some of the smartphones from Samsung and HTC use the Windows Phone system, but market
shares of these smartphones are relatively small. By 2013 January, about 90% smartphones
being used adopted iOS and Android systems, so I only consider smartphones using these
two operating systems. Data source: http://www.comscore.com/Insights/Press-Releases/

2013/3/comScore-Reports-January-2013-U.S.-Smartphone-Subscriber-Market-Share?cs_

edgescape_cc=US.
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very regular for both Apple and Samsung. Table 2.2 reports release dates of Apple

and Samsung’s flagship smartphone models. Samsung typically releases twice every

year: Galaxy S series in late February/March and Galaxy Note series in every late

August/September, while Apple only releases once every year in September after

2012. This regular release schedule can not be explained by the standard innovation

model, where investment outcomes are random and new products are automatically

released with successful outcomes. Instead it seems more plausible that firms commit

to a regular release schedule, and random outcomes only affect product qualities

and prices, not product release arrangements. Based on this release pattern, I

approximate release schedules by assuming that Samsung releases twice every year

in September and March, and Apple releases once every year in September.

To measure consumers’ responses to each smartphone release, I collected weekly

user percentages of major smartphone models from Fiksu.com from July 2013 to

January 2016. Fiksu publishes statistics from its two user trackers, iOS trackers

and Android trackers, each of which publishes weekly user percentages of smart-

phone models within that operating system.15 To calculate user percentages of each

smartphone model among all users, not just users from the same operating system,

I collected monthly subscriber percentages of iOS and Android smartphones in the

US for the same period from comScore reports, and aggregated weekly Fiksu data

to monthly data by only keeping data in the first week of each month.

15One caveat of this data source is that, users tracked in these services are from both US
and Europe, so I have to assume that user percentage of major smartphone models within their
corresponding operating system are similar between US and Europe market. Note that there is
no requirement for iOS and Android user percentage, which are quite different between US and
Europe.
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Table 2.2: Announcement dates of smartphones expanding quality frontier from
Apple and Samsung

Release date

Samsung

Galaxy Note October 29, 2011
Galaxy S3 May 3, 2012
Galaxy Note 2 September 26, 2012
Galaxy S4 March 14, 2013
Galaxy Note 3 September 25, 2013
Galaxy S5 February 24, 2014
Galaxy Note 4 September 3, 2014
Galaxy S6 Edge March 1, 2015
Galaxy Note 5 August 21, 2015
Galaxy S7 February 21, 2016
Galaxy Note 7 August 19, 2016

Apple

iPhone 4s October 4, 2011
iPhone 5 September 12, 2012
iPhone 5s September 20, 2013
iPhone 6 September 9, 2014
iPhone 6s Plus September 9, 2015
iPhone 7 September 7, 2016

Note: In case where multiple smartphones are re-
leased simultaneously, only the model with the high-
est benchmark score is listed. Data were collected
from Wikipedia.

Smartphone sales prices are collected from archived manufacturer webpages.

I use full retail prices, instead of contract prices for two reasons. First, since 2013,

carriers started “unbundling” by encouraging consumers to buy new smartphones at

full price and enjoy discounts on their monthly service fees.16 Given these discounts,

the actual cost of acquiring a new smartphone, with or without the subsidized price,

has been close to the full retail price. Second, I am only modeling manufacturers’

16For example, AT&T offers a $25 discount per line for a family account if consumers buy
phones at full price, and this discount will be removed if a consumer chooses to buy smartphones
at the contract price. Overall expenditure between these two methods over two years are close,
but the contract price locks consumers in by disallowing them to buy other smartphones during
that two-year period.

33



pricing decisions, and in the smartphone market, this price is represented by the

full retail price.17 All prices are adjusted to the 2013 price level. My modeling

assumption of constant prices within each product cycle comes from the fact that

manufacturers hardly adjust their retail prices unless new phones are released, and

I do not have data of discounting in the retail channels.

Smartphone benchmark scores are collected from Passmark Rating. I assume

that the benchmark score of each smartphone model represents the quality of that

model and it is time invariant. In case a certain smartphone model has multiple

submodels, I select the submodel with the highest benchmark to represent the qual-

ity of that model.18 Table 2.3 reports the means and standard deviations of prices

and qualities for Apple and Smasung smartphones.

Table 2.3: Summary statistics

Mean Std. Dev.

Apple Price ($) 558.7 40.8
Quality (Passmark Score) 4152.1 1205.4

Samsung Price ($) 629.6 31.7
Quality (Passmark Score) 4973.5 1238.6

Finally, I also collected Apple and Samsung Electronics’ R&D expenditure

and total revenues from their quarterly SEC filings. I only collected these two firms’

17This choice of retail price as marginal revenue per unit is only an approximation in the firm’s
problem. In reality, both Apple and Samsung sell their smartphones through wireless carriers and
retailers, where they sell their smartphones to these vendors at discounted prices and earn less
mark-ups then selling directly on their websites. So my estimated marginal cost will be higher
than the actual manufacturing cost. But this retail price is accurate in estimating consumers’
preferences as it is close to consumers’ actual payments regardless of their purchase methods (pay
in full, special financing where consumers split the full retail price in 12 or 24 months or subsidized
price where consumers pay less for the smartphone, but have to pay more for their monthly bills).

18For example, there are 25 sub models for Samsung Galaxy S6 smartphone, and these sub
models differ slightly in hardware components like network devices. Benchmark scores among these
submodels are very similar, so I choose the top performance model to represent the quality of that
phone. Source: https://www.handsetdetection.com/properties/devices/Samsung/Galaxy%20S6.
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overall R&D expeditures and revenues, as their smartphone-specific investments are

not publicly available. But given that smartphone sales are the largest revenue

sources for both firms, and flagship models require much more investment than the

nonflagship model, I assume that these collected numbers are informative on firms’

actual investments in their flagship models.19 These data are used to construct

moments for ratio of investment over total revenue.

2.4 Estimation

In this section, I provide details on how I estimate my model parameters using

my collected data. One data constraint to studying firms’ product introduction

decisions is that firms are inactive for most of the time, and there are not many

observations for firms’ choices of new product qualities and prices. In the total

31 months of data I collected, Apple and Samsung only released for three and six

times, respectively. To alleviate this constraint, I conduct my demand and supply

estimation separately: first, I utilize user number variations on smartphone model

level and estimate demand parameters, then given demand estimates and aggregated

firm-level data, I use simulated method of moments (SMM) to estimate the supply

parameters. The complete list of parameters to be estimated is as follows:

19In 2016, roughly 60% of Apple’s revenue came from iPhone sales in 2016, and
in 2016Q1, Samsung’s mobile decision generates 63% of Samsung Electronics’ total rev-
enue. Source: http://www.businessinsider.com/apple-iphone-sales-as-percentage-of-total-revenue-
chart-2017-1, http://www.eweek.com/mobile/samsung-smartphone-sales-help-hike-q1-2016-profit-
revenue
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Table 2.4: List of parameters to be estimated

Demand estimation
αq Quality coefficient
αp Price coefficient
ξA, ξS Apple, Samsung fixed effects

Supply estimation
λA, λS Marginal cost
a0,A, a0,S Investment efficiency
a1,A, a1,S Spillover effect

2.4.1 Demand estimation

Given the release schedule that Apple introduces new phones in every Septem-

ber, and Samsung in every March and September, their flagship offerings do not

change for several months, which provides an opportunity to separate variations in

consumers’ expectations due to product changes and time changes.20

For example, suppose there are two periods, t = 1, 2, and each firm’s product

quality has not changed in these two periods. Denote consumer’s choice specific value

function for product j (use j = 0 for current holding) at time t as vjt(q, r,∆, I).

Then in the second period, consumer’s inclusive value before purchase is

Vt=2(q, r,∆, I) = log

( ∑
j∈Jt=2

exp(vj,t=2(q, r,∆, I = (qj,t=2, j))

)
(2.18)

At t = 1, consumer’s choice specific value for product j is

vj,t=1 = uj + βVt=2(q, r,∆, I = (qj,t=1, j)) (2.19)

20In this subsection, I will denote smartphone model, instead of firms, as j. This notation only
applies when describing demand estimation.
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which governs consumers’ purchase decisions at t = 1. Note that there is no un-

certainty in this expression: q is not changed in the next period, r and ∆ evolve

deterministically, and I is solely determined by consumer’s individual purchases. So

if all choice specific values at t = 2 are available, consumers’ demand at both t = 1

and t = 2 can be derived in a deterministic way.

My demand estimation proceeds in three steps. First, I truncate my observed

periods into non-overlapping and consecutive intervals such that new product re-

leases only occur in the last period of each interval. Next, I calculate consumers’

choice-specific value functions in the last period of each interval. Finally, values

for all other periods within the same interval are calculated through backward in-

duction. Approximation only exists in the second step, where consumers’ value

functions in the last period of each interval are approximated by assuming con-

tinuous usage of their current phone in that period for a fixed amount of periods.

Conditional on these values in the last period of each interval, values imputed for

the previous periods are rational. This is because there are no uncertainties between

consecutive periods (except the last period) within the same interval as both firms’

product offerings have not changed. With the assumption that consumers’ values

in the last period of each interval is correctly calculated, all their purchase decisions

are rational.

To be specific, each interval is denoted as I = 1, 2, . . . , nI , and the first and

last period in interval I are tI , t̄I , respectively. Choice specific values of buying

(using if j = 0) product j at time tt̄I is assumed to be 24 months of discounted
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utilities, that is,

Vj,t̄I = −αppj,t̄I × 1{j 6= 0}+
23∑
t=0

βtuj,t̄I

where β is the value discount factor per period, and uj denotes utility flow of using

smartphone j for one period.

Given these choice-specific values, consumers’ inclusive value at t̄I , which mea-

sures consumers’ value before their idiosyncratic shocks are realized and purchases

are made and after new products are released, is, (omitting other state variables for

simplicity)

Vt̄I (I) = log

∑
j∈Jt̄I

exp(Vj,t̄I ) + exp(V0,t̄I (I))


Then in periods tI , tI + 1, . . . , t̄I − 1, consumers correctly anticipate firms’

choices of prices and qualities in t̄I , and their value functions in period t are solved

using backward induction as

vj,t(I) = uj,t − αppj,t + βVt+1(I = (qjt, j)), V0,t(I) = u0,t + βVt+1(I)) (2.20)

and inclusive value is

Vt(I) = log

(∑
j∈Jt

exp(Vj,t(I)) + exp(V0,t(I))

)
(2.21)

Given these choice specific values and inclusive values, in period t, demand for

product j among consumers with holding characteristic I is
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sj|I =
exp(vj,t(I))

exp(Vt(I))
(2.22)

Then the imputed user number for product j at time t+1, denoted as ñj,t+1 is

calculated as consumers who newly purchased phone j (if it is on sale) minus those

who previously were using phone j but purchased another phone at t.

ñj,t+1 =
∑
j′

sj|I=(qj′ ,j
′)nj′,t −

∑
j′

sj′|I=(qj ,j)njt (2.23)

Note that I use actual instead of imputed phone users in period t, just to

avoid bias to accumulate over time. Finally, demand parameters are estimated by

minimizing distances between this imputed and actual user numbers in periods when

no phones are released.

min
θD
||ñ(θD)− n|| (2.24)

2.4.2 Supply estimation

Given demand estimates, I use simulated method of moments estimator that

minimizes the distances between a set of conditional moments and their simulated

counterparts from the model. To apply the model developed in the previous section,

first I convert Apple and Samsung into single-product firms. For each firm in each

month, I collect its flagship smartphone models on sale and take their average quality

and average price as the firm’s product quality and price in that month, respectively.
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For each candidate value of supply parameter estiamtes θS, I solve the model

given RA = 12, RS = 6, and simulate S times for T periods each, starting at the

industry state in the first month of my data, (q, r,∆). The SMM estimator θ̂S is

θ̂S = arg min
θ∈Θ

[mS,T (θ)−mT ]′AT [mS,T (θ)−mT ] (2.25)

where mT and mS,T (θ) are observed and simulated moments, and AT is a positive

definite weighting matrix. My weighting matrix is attained directly from the stan-

dard deviations of moments in actual data. In the data I observe that in all of

three Apple releases, Apple’s product quality increased by approximately .14, and

Samsung’s product quality increment ranges from .02 to .1. So I set the quality step

size δ such that 4δ = .14, and the lowest quality level q as Apple’s quality in July

2013. In addition I choose quality levels nδ = 13 so Apple and Samsung’s simulated

qualities within the observation period will not be bounded.

My choice of moments to be matched captures firms’ competitions in new

product qualities and prices, given their committed product release schedules. My

moment vector consists of the following 12 moments:

• Average price across all periods for each firm.

• Percentage of R&D investment over total revenue.

• Average ratio of pj over qj′ where j, j′ = A, S.

• Average ratio of each firm’s own quality over industry quality frontier, i.e. the

higher of Apple and Samsung’s product qualities.
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• Average ratio of product quality over mean holding qualities.

Identification

The demand parameters are identified by variations in different phones’ user

numbers and their corresponding characteristics. αq and αp affect user shifts among

phone models with different qualities and prices, and manufacturer fixed effect ξA, ξS

are identified by relative changes in total user base among Apple, Samsung and other

manufacturers.

The supply parameters are identified through variations in simulated moments.

Firms’ marginal cost parameters λA, λS are identified by average prices, where higher

marginal costs will increase firms’ prices. Spillover effect parameters a1,A, a1,S are

mainly identified by the ratio of each firm’s own product quality over industry quality

frontier, which measures to what extent each firm keeps up with its competitors in

quality advancement. Larger spillover parameters will improve firms’ investment

efficiencies when firms lag behind, and more likely to catch up with the industry

frontier, and therefore increase this ratio. Finally, investment efficiency parameters

a0,A, a0,S are identified from the ratio of investment over revenue, where higher

investment efficiency will lead to less investment and smaller ratio values. Other

moments, including ratio of prices over qualities, and new product qualities over

consumer holding qualities are also sensitive to variation in these parameters and

add to their identifications.
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2.5 Estimation result

2.5.1 Estimates

I use the SMD estimator in (2.24) and (2.25) to estimate demand and sup-

ply parameters, respectively. Model setup parameters for supply estimations are

fixed as follows: product prices and qualities are normalized by 1/100 and 1/1000

respectively.

Table 2.5: Parameter Estimates

Estimates Std. Err.

Demand Parameters

αq Quality coef 10.3560 0.4007
αp Price coef 12.3640 3.7034
ξA Apple FE 1.6794 0.1527
ξS Samsung FE 0.2996 0.1789

Supply Parameters

λA Marginal cost
0.3938 0.0005

λS 0.5466 0.0180

a0,A Investment efficiency
10.0942 0.4711

a0,S 19.3900 0.4400

a1,A Spillover effect
9.8869 0.8300

a1,S 9.8136 0.6214

Parameter estimates are reported in Table 4.9, and model’s fit in Table 2.6.

Implied price elasticity by demand estimates varies from 6 to 9, and for supply

estimation, the model fits the 12 moments reasonably well, despite having only 6

parameters. All demand parameters are statistically significant (except Samsung

fixed effect) given the relatively small standard errors. Dividing the estimated qual-

ity coefficient by the price coefficient implies that consumers are willing to spend

120 dollars for a 1000 units increase in benchmark scores (remember that price and
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Table 2.6: Empirical and Simulated Moments

Fitted Value Avg moment value in actual data Std. dev. in actual data

Average price
Apple 0.5156 0.5587 0.0408
Samsung 0.6296 0.6165 0.0317

Ratio of investment over revenue
Apple 0.0062 0.0361 0.0073
Samsung 0.0723 0.0722 0.0025

Ratio of price over quality
pA/qA 1.3371 1.4597 0.4699
pA/qS 1.0502 1.1767 0.2284
pS/qS 1.2759 1.3177 0.3428
pS/qA 1.6296 1.6413 0.6226

Ratio of own quality over frontier
qA/q̄ 0.8035 0.8290 0.1180
qS/q̄ 1.0000 0.9975 0.0139

Ratio of new product quality over consumer holding quality
qA/qi 1.1757 1.2101 0.1600
qS/qi 1.4666 1.4652 0.1369

qualities are normalized by 1/100 and 1/1000, respectively). Relative brand val-

ues for Apple and Samsung with respect to other brands, calculated by dividing

their brand fixed effects by price coefficients, are 13 dollars and 2.42 dollars, re-

spectively. Investment efficiency and spillover estimates imply strong incentives in

quality catch-up.

2.5.2 Empirical results

Figure 2.2 presents firms’ prices, investments and profits for both Apple and

Samsung across states. The three rows correspond to prices, probabilities of higher

quality increment and market shares for each firm. The two columns correspond

to firms’ quality difference, in terms of qA − qS, and the average qualities of con-
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Figure 2.2: Firms’ prices, investments and profits over quality differences and con-
sumers’ average holding quality
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Note: First column corresponds to firms’ quality difference, in terms of
qA − qS. Second column corresponds to consumers’ average holding qual-
ity where larger number indicates higher quality. Three rows represent
firms’ prices, probabilities of higher quality increment and market share. In
all the graphs, solid line denotes Apple, and dashed line denotes Sam-
sung. Mean values are calculated with equal weights given to all states.

sumers’ holdings, where larger numbers indicate higher quality of consumers’ hold-

ings. When a firm’s product quality is higher than its competitors, it increases its

price and earns higher market share.

Another important feature of this model is that, consumers are forward looking

and their purchase decisions will be affected by the number of periods until the next

product release. Figure 2.3 depicts average market share for Apple and Samsung

in each 12-month window, plotted separately for the highest and lowest levels of

consumer holding quality. These two subfigures correspond to Apple and Samsung’s
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Figure 2.3: Apple and Samsung’s market share within each 12-month window
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Figure 2.4: Apple and Samsung’s quality path
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market shares in terms of units sold within each 12-month window, where the first

month is set as each September. In general, both firms’ market shares decline as new
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product release is approaching (T = 7 for Samsung only, and T = 13 for both Apple

and Samsung). At T = 6 both Apple and Samsung’s market shares decline, but

given its (slightly) higher brand preference, Apple’s market share is less affected,

and Samsung’s market share is restored to a higher level with its newly released

product. When T is close to 12, consumers will mostly stop buying and waiting for

new product to release.

Finally, to see how my model fits the data, Figure 2.4 reports the actual and

average simulated qualities for both Apple and Samsung starting from the industry

state in the first observed month for 31 months. My model fits Apple’s quality path

much better than Samsung, mostly because of its almost constant quality increment

in each product release. For Samsung, my model fits the average quality increment,

but there is a long lasting gap just because of quality discretization.21

2.6 Counterfactual: effects of different release schedules

In this section, I try to understand the effects of different release schedules,

in particular the trade-off between “more-but-minor” and “less-but-major”. First,

under a symmetric duopoly market setup, I show how firms’ optimal policies (i.e. in-

novation and prices) change when firms choose different release frequencies, which il-

lustrates the importance of considering product release frequencies separately. Next,

with the same analysis but in a monopoly market, I discuss a monopolist’s optimal

product release strategy. By further comparing this monopoly market outcome with

21For example, when at T = 5, which corresponds to 2013 November, Samsung’s quality is 3678
which is located between 3550 and 3900 on the quality grid, and therefore cannot be perfectly
fitted.
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the duopoly case, I provide analysis on overall welfare impact of market concentra-

tion and decompose the source of this impact into changes in prices, innovation and

release frequencies.

2.6.1 Release schedules in the duopoly market

I adopt a symmetric duopoly market structure which is modified from the

previous model as follows: there are two firms, denoted as j = 1, 2. The composite

firm “Other” is removed; both firms’ marginal costs, investment efficiency, and

spillover effects are set as Apple’s parameter estimates; consumers’ brand preferences

are set as zero for any firm.22 With this market setup, I can ignore other firm-specific

characteristics that could potentially affect the market outcome, and evaluate the

pure effect of different release schedules.

One challenge to evaluate consumer surplus in this framework is that, con-

sumers benefit from accumulated quality increment in the past, but these increments

are removed when I shift all quality entries downward to bound the state space. To

address this issue, I store the accumulated quality improvement along with each

simulation, and use this accumulation, rather than the quality value in the state

space, to calculate consumer welfare. To make the results comparable, I simulate

the model for 1,000 periods in all counterfactual experiments, so higher consumer

surplus only comes from higher innovation and/or lower prices.

22Conditional on the symmetric duopoly structure, this zero brand preference is a normalization
rather than an assumption. This is because brand preference enters consumer’s utility of both new
purchase and current holding, and increasing these preferences by the same amount will not affect
consumers’ purchase decisions due to the logit demand form. So as long as these two firms have
the same brand preference (because of symmetry) and consumer’s brand preference comes from
her past purchase, I can set both brand preferences to zero without loss of generality.
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At the beginning of the model, each firm chooses its release interval Rj from

{3, 6, 12} simultaneously to maximize their sales. Given this symmetric setup, firm

1’s policy functions in {R1, R2} = {R,R′} are the same with firm 2’s policy functions

in {R1, R2} = {R′, R}, so without loss of generality, I only report summary statistics

for R1 ≥ R2, i.e. firm 1 has equally or less frequent releases than firm 2. Table 2.7

reports summaries of these two firms’ policies.

Table 2.7: Simulated policy function: Symmetric duopoly

Price Firm 1 Firm 2

R2 12 6 3 12 6 3

R1

12 $ 548.36 $ 569.05 $ 608.80 $ 547.13 $ 590.26 $ 583.35
6 $ 572.20 $ 617.61 $ 571.29 $ 607.92
3 $ 552.67 $ 555.64

Prob of higher quality increment Firm 1 Firm 2

R2 12 6 3 12 6 3

R1

12 0.940 0.977 0.981 0.938 0.869 0.863
6 0.912 0.966 0.911 0.808
3 0.708 0.721

Firms’ profit per period Firm 1 Firm 2

R2 12 6 3 12 6 3

R1

12 0.078 0.100 0.132 0.077 0.104 0.091
6 0.085 0.123 0.085 0.120
3 0.063 0.065

Consumer Surplus Social Surplus

R2 12 6 3 12 6 3

R1

12 3.797 4.563 4.906 3.952 4.766 5.129
6 3.866 4.572 4.035 4.815
3 4.030 4.157

Note: All numbers are average value of simulated market outcomes. Differences in
two firms’ diagonal elements come from simulation errors.

From this table we can see that a firm charges higher prices when its competitor

releases new products more frequently. For example, as firm 2’s release frequency

speeds up from one release per year (R2 = 12) to four releases per year (R2 = 3), firm
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1’s prices increase. One possible explanation for this pattern is that, per the model

setup, any firm with less frequent product releases has higher quality advancement

in each release, and this “temporary” quality boost, as compared to its competitor

with frequent but smaller quality advancement, establishes quality advantage and

enables it to charge higher prices. For the firm with more frequent releases, however,

it does not necessarily charge higher prices. For R2 = 12 or 3, firm 1’s prices increase

as R1 decreases from 12 to 3, but for R2 = 6, firm 1’s prices peak when R1 = 6.

Firms’ investment levels are represented by their probabilities of the higher

quality increment. Note that the investment outcomes are normalized conditional

on each firm’s release schedules, where possible quality improvements are smaller

in frequent release schedules and larger in less frequent release schedules, namely

”more-but-minor” and ”less-but-major”. Conditional on these normalized invest-

ment outcomes, we can see that when the competitor’s release becomes more fre-

quent, a firm invests more and improves its probability of the minor quality in-

crement. This pattern suggests that release frequencies and innovations are com-

plimentary in firms’ dynamic competition conditional on the normalized quality

increments: when a firm cannot match its competitor’s more frequent releases, it

invests more for higher quality increment in each release; if instead this firm chooses

to speed up its release frequency as well, it will spend less on its innovation.

With all these results combined, we can see how firms choose their release

schedules and product characteristics: firms balance between innovation and release

frequencies where high innovation is adopted in compensation for low release fre-

quency and vice versa; in response to its competitor’s more frequent releases, a firm
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increases its innovation, but may or may not increase its release frequency; firms

with major product improvement charge higher prices.

Note that I have not identified a fixed cost associated with each product release

because I only observe market outcome when RA = 12, RS = 6, and any parameter

governing firms’ choices of release schedules cannot be identified. But it is interesting

to see that even where there is no fixed cost included, firms are still bounded from

choosing too frequent releases. For example, when R2 = 3, firm 1’s profit decreases

when R1 shifts from 12 to 3.

One reason for this finding is that more frequent releases do not necessarily

increase aggregate demand. To see this, I calculated firm 1’s market share within

each 12-month period, and it is averaged across all states for each combination of

(R1, R2). These average market shares are plotted in Figure 2.5.

Figure 2.5: Firm 1’s market share in each 12-month period with different release
schedules
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These two subfigures in Figure 2.5 correspond to R2 = 12 and R2 = 3, and in

each graph, three lines correspond to firm 1’s three choices of release frequencies:

R1 = 3, 6, 12. When both firms choose R = 12, market share slowly declines over

time as time approaches for the next product release (at t = 1, which is after t = 12);

if firm 1 chooses to release additionally at T = 7, i.e. change R1 to 6, then there

is an additional decline in its market share near T = 6 just as consumers expect

new release in the next period. Finally with more frequent releases, firm 1’s market

share decreases right before every product release, with a general declining trend in

each 12-month period for R2 = 12.

From this figure we can also see the sales decline before each new product

release, which can possibly offset sales boost brought by the additionally released

products and decrease the aggregate sales. For example, when R2 = 12, aggregate

demand for firm 1 decreases when it speeds up its frequency from R1 = 12 to

R1 = 6, where most of sales decline comes from consumers’ purchase delay at t = 6

anticipating a new product to be released at t = 7. Another finding is that the

extent of consumers’ purchase delay is correlated with the number of firms releasing

new products in the near future. For example, when R1 = 6 and R2 shifts from 12 to

3, firm 2 starts to release at t = 7 as well along with firm 1. As a result, consumers’

demand at t = 6 becomes much lower as they expect new products introduced by

both firms instead of just firm 1.

In conclusion, aggregate demand does not always increase when firms release

products more frequently because consumers’ demand declines significantly when

they expect new products to be released soon and this decline can offset the sales
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boost brought by the new products. It is this property that bounds firms from

choosing too frequent release schedules.

2.6.2 Release schedules in the monopoly market

When a durable good market becomes more concentrated, existing firms may

alter their policies, including price, innovation, and as newly considered in this

paper, product release schedules, and all of these changes will affect social surplus.

GG studies a possible market structure change where AMD is no longer present in

the CPU market, and finds that Intel will innovate more and charge higher prices;

total surplus is lower though as gains from higher innovation is dominated by loss in

consumer surplus due to higher prices. Their analysis fits R&D intensive industries

where firms concentrate on innovation and release new products when they are

available, but could lead to biased welfare estimates in downstream manufacturer

industries, like smartphone and many other consumer electronics, where firms can

alter their schedules of new product release in the new market structure.

To examine the welfare impact from market concentration with possible changes

of release schedules considered, I change the market structure to monopoly and com-

pare its outcome to the duopoly market. To make the results comparable, I set the

monopolist’s marginal cost and investment efficiency as Apple estimates and remove

the brand preference as well. I also chose the duopoly market where R1 = R2 to be

compared with the monopoly market such that the duopoly market can be seen as

dividing the monopolist firm into two symmetric firms while still preserving its prod-
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uct release schedules. In this way, differences in market outcome between monopoly

market with RM = R′ and duopoly market with R1 = R2 = R′ only come from

changes in market structure. For each choice of monopolist’s release schedule from

R = 3, 6, 12, I solve the model, simulate the market for 1,000 periods, and repeat

the simulation process for 500 times. Results are summarized in Table 2.8.

Table 2.8: Simulated policy function: Monopoly and symmetric duopoly

Price Profit Prob of τ ′′ Consumer Surplus Social Welfare

Monopoly R1

12 $ 746.23 0.238 0.986 5.154 5.392
6 $ 729.64 0.189 0.989 5.194 5.383
3 $ 649.13 0.148 0.988 5.216 5.364

Duopoly R1 = R2

12 $ 548.36 0.078 0.940 3.797 3.875
6 $ 572.20 0.085 0.912 3.866 3.950
3 $ 552.67 0.063 0.708 4.030 4.092

Note: Profits reported are average per-period profits in all the simulated periods,
with market size set as one. Units for profits, consumer surplus and social welfare
are in dollars.

From Table 2.8 we can see that, when the market becomes more concentrated,

the monopolist charges higher prices but also invests more in quality improvement,

which is consistent with Schumpeter’s hypothesis and the findings in GG. But in

this model, consumer surplus is higher in the monopoly market than in the duopoly

market, which implies that gains from monopolist’s higher innovation rates are only

partly offset by loss from its higher price levels. Because of higher consumer surplus

and higher profit levels in monopoly market, social surplus is also higher in the more

concentrated market structure.

A second observation is that a monopolist prefers less frequent product re-

leases, as profit of choosing R = 12 is higher than that of R = 3, 6. This preference

towards less frequent release schedules is because the monopolist only needs to com-
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pete with consumers’ holdings, and as more frequent releases actually result in less

aggregate sales (as is shown in Figure 2.6), the monopolist would slow down its pace.

The monopolist’s choice of higher innovation and less frequent releases also

highlights the importance of separately modeling firms’ choices of frequency and

size of innovation. In a model where new product releases are driven by successful

innovation outcome, we can only see firms with either higher innovation and implied

frequent product releases, or lower innovation and rare releases, which will lead to

biased estimates of social welfare.

Figure 2.6: Firm 1’s market share over time
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A further examination of consumers’ demand over each 12-month window,

as presented in Figure 2.6, suggests that consumers will still hold off purchasing

products immediately before each new product releases. By comparing demand

between R1 = 12 and R1 = 6 we can also see that speeding up release frequency

will not increase total sales, which is consistent with the finding in the symmetric
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duopoly market.

2.7 Appendix: Algorithms for solving the model

The algorithm I implement for solving the dynamic model takes as input the

model structure and parameter values, and returns firms’ policies and consumers’

choice probabilities. There are n∆ × n2
q × (12/Rj) states in firm j’s problem (that

is how many possibilities for each type of consumer distribution with each possible

combination of new product qualities and each possible release state),23 and n∆ ×

n2
q × 12× nC holding states in each consumer’s problem, which expands firms’ states

into full 12 months and also includes all possible values of consumers’ holdings

(nCbasic = nq × 3). For each firm, the algorithm returns its optimal price and

investment, and for each consumer, the algorithm returns her purchase probabilities

for the three possible choices (Apple, Samsung and “Other”).

My model is solved by iterating between updating firms’ and consumers’ val-

ues until convergence. The outer loop checks if firms’ and consumers’ values have

converged between two consecutive iterations, and inner loops update firms’ policies

and consumers’ purchase probabilities. Detailed algorithm to solve this dynamic

model is as follows.

23For example, if Samsung releases twice every year (RS = 6), then holding all other state
variables constant, releasing in the 1st and 7th month are in two different states.
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Algorithm 1 Dynamic model algorithm

1: Set initial consumer’s value V and firm’s value W as zero for all states.
2: while max |V k − V k−1| ≥ 1e− 5 or max |W k −W k−1| ≥ 1e− 5 do
3: for each firm j chooses each value on the price grid do . Solve for each

firm’s optimal prices
. Calculate intermediate values given preset price values, then extrapolate.

4: Simulate forward for Rj periods.
5: For each possible evolution path, calculate its probability Prm, cumula-

tive profits Πm and value of final state W k−1
m .

6: Values of choosing current price is
∑

m Prm(Πm + βRjW k−1
m )

7: end for
8: Extrapolate and update firms’ optimal prices.
9: for each firm j do . Solve for optimal investment and value

10: Simulate forward for Rj periods with optimal prices.
11: Calculate values of different innovation outcomes, then solve for optimal

investment.
12: Given firms’ optimal investment and prices, update their values to {W k

j }j.
13: end for
14: Given firms’ policies, update consumers’ values and purchase probabilities

to {V k
i , P r

k
ij}i,j

15: Given firms’ policies and consumers’ purchase probabilities, update transi-
tion rules for ∆.

16: end while
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Chapter 3: Managerial Implications for Durable Goods Release Sched-

ule

3.1 Introduction

In this chapter, I adopt the model framework developed in Chapter 1, and

apply it in the general durable goods market to provide managerial implications

on product release schedule arrangement. As discussed in the previous chapter,

product release schedule in the model introduces several additional implications for

firms’ strategic choices.

First, release frequencies determine the pace of materializing up-to-date in-

novation outcomes, where firms can release products more frequently to improve

product qualities and outperform competitors for most of the time, but this fre-

quent releases also raise consumers’ awareness of new product releases in the near

future and increase their value of waiting rather than buying the current products.

Second, firms can alter their relative release timing with respect to others’

strategically, either capture the market with early releases, or postpone the releases

to incorporate the most recent innovation outcomes.

Third, firms can also alter their format of product release schedules, like speed-
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ing up/slowing down the pace of their product introduction or even transform into

irregular release schedules, which can have long term effects because consumers’

expectations of future releases are also updated based on the new schedule.

The first implication has been discussed in Chapter 1 where the market out-

comes under duopoly and monopoly are compared. Firms choose their release fre-

quency by balancing between the gains of selling more products with frequent quality

updates and the loss of sales due to consumers’ frequent expectations of new releases.

When the market becomes more competitive, firms’ concern of frequent consumer

expectation is alleviated and the gains from additional releases become dominant.

As a result, firms introduce products more frequently with more firms present in

the market.

This chapter studies the second and third implications, or more specifically,

the market outcome when firms change their relative release timing or switch their

release frequency along the time. Based on the simulated results, I find that a

duopolist can benefit from staggering its releases relative to those of the other firm, as

firms can spend the additional time increasing its product qualities and outperform

other firms’ new products. This result also suggests no additional value for the

simultaneity in releases. I also show that it is valuable for a firm to be seen as

committed to a regular release schedule, as the possibility of switching schedules in

the future affects consumers’ current purchases and hurts firms’ values.

There is a branch of literature that studies firms’ product release decisions in

the presence of strategic consumers. Borkovsky [2017] studies innovators’ timing

decisions of their product releases in a non-durable good context and finds that
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firms innovate and release more aggressively when products are vertically, rather

than horizontally, differentiated. Cohen et al. [1996] and Lobel et al. [2015] analyze

the trade-off between release frequency and quality improvement in the monopoly

market. Cohen et al. [1996] finds that more frequent releases are not necessarily

profitable if the existing product has a high margin and the new product has a large

market potential. Lobel et al. [2015] further compare the monopolist’s profit in two

scenarios, “varying schedule with fixed investment” and “varying investment with

fixed schedule”, concluding that the schedule commitment is valuable. My paper

generalizes their discussions with more flexible release schedules and an empirical

application in an oligopoly market. I show that the market structure affects firms’

product release scheduling as well. Casadesus-Masanell and Yoffie [2007] examine

the release decisions for complementary products and find that upstream suppliers

release aggressively while downstream manufacturers delay the adoption to profit

from the installed base. Paulson Gjerde et al. [2002], Balcer and Lippman [1984] and

Farzin et al. [1998] study firms’ technology adoption decisions given an exogenous

advance of the technological frontier in a limited dynamic framework.

3.2 Staggering product releases

In the model I make an assumption that all firms release simultaneously in

at least one period. While this assumption is helpful in sufficiently determining all

future release schedules given firms’ choices of release intervals {Rj}j, it also rules

out some examples of interest. For example, in a duopoly market where both firms
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choose R = 12, this assumption only allows for the schedule where both firms release

new products simultaneously and repeatedly every 12 months. It is also possible,

however, that these two firms still release new products every 12 months, but their

releases are 6 months apart from each other (say, one in every January and the

other in every July); in this case, by setting its new product release apart from

its competitor, which I term as “staggering,” a duopolist firm can outperform its

competitor with better quality products for 6 months, at a cost of being dominated

by its competitor’s product for the other 6 months.

My analysis is based on the symmetric duopoly market as constructed in Sec-

tion 2.6.1, and I limit both firms’ release frequencies as R1 = R2 = 12. To capture

the relative timing of product releases, I define a new variable, “release difference

∆R”, which is the number of periods between two firms’ nearest product releases.

For example, suppose firm 1 releases at t, t+ 12, t+ 24, . . ., and ∆R = 1, then with-

out loss of generality, firm 2 is assumed to release at t− 1, t+ 11, t+ 23, . . ., which

means that firm 2 always releases products relatively earlier than, if not together

with firm 1. With R = 12 for both firms, ∆R takes value between 0 and 6,1 where

∆R = 0 represents the simultaneous “conglomerate” release, and ∆R = 6 means

6-month-apart “dispersed” release.

Figure 3.1 shows how both firms’ average prices vary based on their relative

product qualities. A firm charges higher price when it sells higher quality products,

and its price will increase with this quality advancement. We can also see that when

these two firms’ product releases are less concentrated (∆R increases from 0 to 6),

1∆R = 7 for example, is equivalent to ∆R = 5 and switching two firms’ moving order.
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Figure 3.1: Optimal prices over quality differences in different staggering release
schedules
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both firms charge higher prices which indicates softened market competition.

Note that these two firms are symmetric when ∆R = 0 or 6, and their corre-

sponding price curves are also symmetric in Figure 3.1. For ∆R = 3, firm 2 releases

new products 3 months ahead of firm 1. By comparing firms’ price curves when ∆R

increases from 0 to 6, we can find that firm 2’s prices are monotonically increasing

while firm 1’s prices peak at ∆R = 3. This pattern implies that when firm 2 shifts

away from firm 1’s product releases and introduces products earlier, both firms ben-

efit from softened market competition and firm 1 can extract more surplus from its

innovation at ∆R = 3. This is a result of the number of periods that each firm’s

product dominates the market, which is shown in Figure 3.2.

Figure 3.2 illustrates how release timing affects firms’ market dominance.

Firms have equal market dominance when ∆R = 0 or 6: when ∆R = 0, both firms
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Figure 3.2: Graphic illustration of ∆R = 0, 3, 6, R1 = R2 = 12
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release simultaneously across all times and no firm has any advantage/disadvantage

in release timing; when ∆R = 6, each firm “dominates” the market by 6 months

with its new products just released, and then becomes “dominated” by another 6

months with its competitor’s even newer products. Firms’ symmetric positions in

these two cases guarantee that their optimal policies and value functions are also

symmetric, which leads to the same shape of price curves as in Figure 3.1. When

∆R = 3, firm 2 releases new products and dominates the market for only 3 months,

and then becomes dominated by firm 1 for 9 months, which gives firm 1 higher mar-

ket power to extract surplus from its quality advancement and explains why firm

1’s prices are the highest when ∆R = 3. To better understand the welfare implica-

tion of these three release schedules, Table 3.1 reports summary statistics of both

firms’ policies, including price, profit and probability of higher quality increment,

and welfare impacts.

Consistent with the graph, both firms’ policies are the same when ∆R = 0
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Table 3.1: Simulated policy function: R1 = R2 = 12, ∆R = 0, 3, 6

Price Profit Pr(τ ′′) Consumer surplus Social Welfare

∆R = 0
Firm 1 $ 548.36 0.0780 0.9399

3.7910 3.9461
Firm 2 $ 547.13 0.0771 0.9382

∆R = 3
Firm 1 $ 636.53 0.1240 0.9917

3.6380 3.8469
Firm 2 $ 560.81 0.0849 0.9928

∆R = 6
Firm 1 $ 610.58 0.1086 0.9930

3.6194 3.8350
Firm 2 $ 616.26 0.1070 0.9930

and 6, and the differences in these statistics only come from simulation errors. Firm

1’s price and profit are the highest at ∆R = 3. The welfare estimates suggest

that consumers’ surplus and social welfare are the highest at ∆R = 0 where firms’

compete in simultaneous release schedules and charge lower prices.

Based on this result, we can see that firms should focus on their market domi-

nance and try to make their products among the best choices for longer periods. For

example, if no competitor firm will release new product in the next few months, and

a firm can either introduce a new product now with similar quality to its competi-

tors, or improve and release a better product in the next period, my result shows

that this firm should choose the latter option.

3.3 Release schedule switching

In the previous analysis, I adopt the model assumption that firms take full

commitment on their release schedules: once they have made their choices, they

have to release products accordingly throughout the dynamic innovation and pricing

game that follows. This assumption helps focus my discussion on firms’ dynamic
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competition while treating firms’ release schedules as exogenous, and the results

provided using this framework can be interpreted as firms’ strategies in the long run

given their current release schedules.

Another way to approach the observed regular release schedule in the data

is to assume that firms keep introducing new products regularly to build up their

“reputations” of regular release schedules. In other words, firms are not bounded

by any pre-set release rules; they can release new products whenever they want, but

preferably they choose to maintain their regular release schedules. This alternative

model setup cannot be rejected by the data either, and it can also provide insights on

the regular form of firms’ release schedules: by comparing market outcomes between

the full commitment and the partial commitment model setup, I can evaluate both

the value of maintaining uncommitted release schedules, and the cost of switching

to alternative schedules. Based on the simulated market outcome, I find that firm’s

schedule commitment is valuable, and it is costly to switch schedules.

To implement this flexible choice of schedules and relax the full commitment

assumption, I modify the model framework by allowing firms to deviate from their

previously chosen schedules in the dynamic pricing and innovation game for at most

once, then be committed to their new schedules. The feasibility of this “deviate-

then-commit” setup, which I term as “partial commitment”, is still restrictive con-

sidering that firms could deviate regardless of their past histories, but it is flexible

enough to capture the two features of interest: the value of maintaining regular re-

lease schedules comes from the difference between full-commitment case and firms’

strategies before their deviations; the cost of switching can be evaluated from firms’
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delaying deviations. Without much modification from the previous framework, this

new model setup is also computationally feasible.

This subsection proceeds as follows. First, the new model setup is described

in details to show how I modify the model to accommodate the partial commitment

setup; next, with the new model setup applied in the monopoly market, I evaluate

the value of maintaining the uncommitted release schedules by studying how the

monopolist keeps its favorite schedule without deviating to others; finally I evaluate

the cost of switching schedules by studying how the monopolist delays its deviation

to its favorite schedule.

3.3.1 Model setup

To accommodate firms’ flexibility in adjusting their release schedules, I adopt

partial commitment to release schedules where I allow for a firm to deviate from its

initial schedule at most once. For example, firm 1 first chooses to release once every

12 months, then after 2 years, switches to and commits to releasing once every 6

months, as is illustrated in Figure 3.3.

Figure 3.3: Partial commitment: example

Time
Product releases: t = 1

Firm 1 chooses R1 = 12

t = 13 t = 25

Deviate to R1 = 6

t = 31 t = 37 t = 43 t = 49

To be more specific, I adopt the monopoly model as in Section 2.6.2 where

the monopolist’s innovation efficiency and marginal cost are the same with Apple

parameter estimates, and consumers’ preferences over brand are removed (with only
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quality and price preferences left).2 The model timing under this framework is as

follows:

1. At the very beginning, the monopolist chooses its temporary release frequency

R1 = RT
1 . (T for temporary)

2. STAGE 1: Given R1, the monopolist becomes active if it is scheduled to

release new products and remains inactive otherwise.

• In each period, if the monopolist is active:

(a) If the monopolist has never deviated, it decides whether to deviate

and commit to a new release schedule R1 = RC
1 6= RT

1 (C for com-

mitment) or not. After deviation, the game enters STAGE 2.

(b) The monopolist invests to improve the quality of its new product,

and conditional on the investment outcome, sets price for this new

product.

(c) Every consumer observes the updated product offering and decides

whether to buy it or keep using her current phone.

• If the monopolist is inactive:

(a) The monopolist’s product offering remains unchanged from the pre-

vious period.

(b) Every consumer observes the updated product offering and decides

whether to buy it or keep using her current phone.
2This monopoly setup is to remove market competition’s impact, and only focus on firms’

management over its product life cycles. I will evaluate how rival competitors’ strategies affect a
firm’s release schedules in future research.

66



It is worth noting that the monopolist is restricted to change its release sched-

ule when it is active rather than in every period. This restriction on the timing

of deviation helps simplify the monopolist’s strategy space and consumers’ beliefs,

and reduce the computational burden. Another assumption is that RC
1 6= RT

1 , which

indicates that the monopolist cannot commit to its current temporary release sched-

ule. This is to avoid the degenerate case where the monopolist commits to the new

schedule right at the beginning, which is equivalent to the full commitment prob-

lem. This forced schedule switching setup is also necessary to learn the importance

of commitment in two ways. First, if RT
1 = 12, which is also the monopolist’s most

preferred release schedule in the full commitment case, how would the monopolist

maintain this preferred schedule without commitment? Second, if RT
1 6= 12, then

the monopolist would want to switch to RC
1 = 12, but is there any cost associated

with the schedule switching that delays the change?

I use backward induction to solve this partial commitment game. First, I

calculate the monopolist’s payoff after deviation (Stage 2) by solving the full com-

mitment game with the newly committed release schedules. Next, given the payoff

of deviating, the monopolist’s innovation and pricing decisions before the deviation

(Stage 1) are solved through iteration. Consumers’ beliefs about possible deviations

are also updated.
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STAGE 2: After deviation

When the monopolist deviates and commits to an alternative release schedule,3

the whole game is the same as in the full commitment. Denote the industry state is

(q,∆, r) when the monopolist deviates, where q and ∆ represent the product quality

and consumer distribution, respectively, and r is the number of periods before the

monopolist’s next release. Based on the model timing, q represents the product

quality before the new product release in the current period, and r takes the value

of RC
1 , the newly committed release frequency. Given the new release schedule RC

1 , I

can solve the optimal pricing and innovation decisions as well as consumers’ purchase

decisions, and the monopolist’s payoff of deviation, represented by its value in the

corresponding industry state, can be written as WD(q,∆, r = RC
1 ) (D for deviation).

STAGE 1: Before deviation – General

Before the deviation, the monopolist makes innovation and pricing decisions

as well, but during each product release, it also decides on whether to change its

product release schedules. To facilitate the expression, denote the monopolist’s

payoff after deciding not to deviate as WND(q,∆, r = RT
1 ), where r takes value

of RT
1 , the current temporary release schedule. Set d(q,∆, r = RT

1 ) = 1 if the

monopolist deviates at state (q,∆, r = RT
1 ), and zero otherwise, then

3Consistent with the previous model, release frequency R still takes value from {3, 6, 12}.
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d(q,∆, r = RT
1 ) = 1⇔ WND(q,∆, r = RT

1 ) ≤ max
RC

1 6=RT
1

WD(q,∆, r = RC
1 ), (3.1)

and the monopolist’s value before deviation decisions is defined as

W (q,∆, r = RT
1 ) =

(
1− d(q,∆, r = RT

1 )
)
WND(q,∆, r = RT

1 )︸ ︷︷ ︸
Value of no deviation

+ d(q,∆, r = RT
1 ) max

RC
1 6=RT

1

WD(q,∆, r = RC
1 )︸ ︷︷ ︸

Value of deviation

.

(3.2)

WND(q,∆, r = RT
1 ) is computed in two steps: first, compute consumers’ value

with their beliefs of future deviations included; second, given updated demand,

iterate and update WND until convergence.

STAGE 1: Before deviation – Consumer’s problem

Iteration on consumer’s value function is the same with the main model, except

in periods right before each product release. In these periods, consumers form ex-

pectations on the monopolist’s deviation decisions as well alongside with its pricing

and innovation decisions. Similar with the notation for the firms, denote consumer’s

value under deviation and no-deviation as V D(q,∆, r, I) and V ND(q,∆, r, I), and

their beliefs of the monopolist’s deviation decision as dc(q,∆, r = RT
1 ),4 then their

4RT
1 is consumers’ believed optimal deviation. For simplicity I use the same notation as the

monopolist’s choice.
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value function before the monopolist’s deviation decision is calculated as

V (q,∆, r, I) = dc(q,∆, r = RT
1 )V D(q,∆, r, I)+(1−dc(q,∆, r = RT

1 ))V ND(q,∆, r, I),

(3.3)

which completes updating the iteration over consumers’ values.

STAGE 1: Before deviation – The monopolist’s problem

As is in the main model, I use backward induction by first solving the monop-

olist’s optimal investment decisions, and then its optimal pricing decisions. What is

different here is that the value function achieved with these two decisions only gives

WND(q,∆, r = RT
1 ), i.e. the payoff without deviation, and the monopolist’s value

function used in future iterations, W (q,∆, r = RT
1 ), needs an additional round of

calculation based on (3.2).

With iterations on updating consumers’ and the monopolist’s value functions,

as well as their policy functions, conditional on consumers’ beliefs of deviation are

rational, i.e. dc(q,∆, r = RT
1 ) = d(q,∆, r = RT

1 ), I can then solve for the equilibrium

of this STAGE 1 game.

3.3.2 The value of commitment

To study how the monopolist maintains reputation over its current release

schedule without making any commitment, I set the monopolist to choose R = 12

first, which is its most preferred release schedule in the full commitment case, and

only allow it to deviate/commit to R = 3 or R = 6 later. Intuitively, one might
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expect that the monopolist should, on average, keep its R = 12 schedule and earn

more profits without any deviation, but based on the model outcome, I find that it

does deviate in some states, which is depicted in Figure 3.4.

Figure 3.4: Deviation decisions by new product quality and consumers’ holdings
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From Figure 3.4 we can see that, when the new product quality is high, and

consumer holdings are of low quality, the monopolist would prefer to deviate from

R = 12.5 This is even more interesting when one considers how the market evolves:

the monopolist improves its product quality until it reaches q̄, then stays at q̄ with

decreasing consumers’ holding quality to enlarge the relative quality difference be-

tween new products and consumer holdings. Based on this evolution model, the de-

viation always happens after a sufficiently long period where qj = q̄ and consumer

holding qualities are pushed down by new releases, which contrasts the intuition

that the monopolist wants to maintain R = 12 schedule.

To see why this happens, in Figure 3.5, (a) and (b) present the monopolist’s

payoff in three cases: (1) deviation to one of the other two schedules (R = 3, 6),

5In this outcome, the monopolist only deviates to R = 6 if possible so I suppress the expression
of solving for optimal deviation schedules.
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Figure 3.5: Firm’s payoff and average price across new product quality and con-
sumers’ holdings
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(2) no deviation with current R = 12 schedule, and (3) full commitment model

without possibility of deviation. We can see that the monopolist’s incentive to

deviate (represented by the relative difference between (1) and (2)) is larger when

consumers are using lower quality products and new product qualities are high,

which is consistent with Figure 3.4. But we can also see that with possible deviations

in the future, the monopolist’s payoff becomes flatter: it is not so low in “bad

situations” like higher quality holding or low quality new product to sell, and not so

high in “good situations” either. In this sense, the ability to deviate in the future

serves as partial insurance. By further comparing (1), (2) with (3), the removal of

the commitment device still hurts the monopolist so it is no longer able to extract

that much surplus from its sales, which shows that the full commitment assumption

does provide the monopolist additional market power.

By further comparing the monopolist’s average prices, as is shown in (c) and

(d), we can see that the price before deviation lies between R = 12, its current release

schedule, and R = 6 its target deviation schedule. In other words, the monopolist

charges lower prices when it no longer has commitment power, to be closer to the

schedule it is likely to deviate to.

3.3.3 The cost of switching

An alternative aspect of the commitment decisions is whether there is any

cost associated with the deviation from a firm’s previously uncommitted release

schedules. To see this, I assume that the monopolist chooses R = 3 or 6 at first, and
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can deviate to one of the other two release schedules later. Given that R = 12 is

the monopolist’s most preferred schedule, the monopolist should deviate it as early

as possible, and any deferral will be explained by costs of this schedule switching.

Figure 3.6 reported the monopolist’s deviation decisions for each combination

of new product qualities and consumers’ holdings.6 In these two cases, the monop-

olist’s deviation decisions are more randomized than R = 12, but we can still see

that the deviation occurs more frequently when the firm’s new product is of high

quality; for some low quality states, the monopolist would rather continue with its

current release schedule for the moment and postpone the deviation.

To better understand the occurrence of this “deviation delay,” Figure 3.7 plots

the monopolist’s payoff and prices over its new product qualities for R = 3 and

R = 6. In (a) and (b), the payoff of deviation and no-deviation intertwines which

leads to the irregular deviation decisions, but as the monopolist’s product is of

higher quality, deviation dominates in both cases. By comparing these payoffs with

their counterpart in full commitment, we can see that the possibility of deviation to

better release schedules significantly increases the firm’s payoffs. In (c) and (d), the

monopolist’s price choices are not much different from the full-commitment choices

under the same release schedule.

3.4 Appendix: Commitment vs. no-commitment in product releases

In the durable goods market, the manufacturer’s ability to commit to future

prices and quality improvement is influential on consumers’ demand. Without com-

6For both R = 3 and R = 6, the monopolist only deviates to R = 12 if possible.
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Figure 3.6: Deviation decisions by new product quality and consumers’ holdings
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(b) R = 6
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Figure 3.7: The monopolist’s value and prices across new product quality for R = 3
and R = 6

(a) Firm’s value: R = 3
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(b) Firm’s value: R = 6
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(c) Average price: R = 3
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(d) Average price: R = 6
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mitment, durable goods firms have the incentive to charge lower prices or improve

product qualities to cater to the rest of the market after consumers with higher

willingness to pay have made the purchase. If consumers are rational and forward-

looking, they can expect firms’ such behavior and postpone their purchase, which

in turn hurts firms’ sales. This problem can be alleviated when firms have a com-

mitment device: firms can commit to their future prices and qualities which could

totally be different from their ex post optimal choices, but consumers’ beliefs in this

commitment can increase their demand and may increase firms’ total revenue as a

result.

This paper modifies the framework in Ericson and Pakes [1995] and Goettler

and Gordon [2011] by assuming that firms commit to their product release schedules

and release new products when they are scheduled to, rather than may or may not

release new products depending on the innovation outcome. This framework allows

me to study the role of product release frequency explicitly, but it also endows these

durable goods firms the ability to commit, which is a strong assumption considering

that there is hardly any firm making promises on how often it will release new

products in the future. Take Apple for example: new iPhone models are released

every year in September after iPhone 4S,7 so it is natural for people to believe that

new iPhone models will be released like this in the future as well. But Apple is not

bounded by this pattern; it can definitely skip one year, or release its new models

“irregularly” in August or November. Even though this irregular release is not highly

7Excluding iPhone SE which was released in March 2016, because it is not considered as a
flagship model.
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likely, consumers can still expect it and adjust their purchase behavior accordingly,

e.g. someone bought an iPhone in August rather than waiting for another month

because she did not believe a new iPhone to be introduced in the next month. So it

remains a question whether this assumption of full commitment is too strong and

leads to biased welfare analysis.

In this section, I studies the role of firms’ commitment to their release schedules

in my model and examines its impact on the market outcome. To see this, I adopt

the monopoly model used in 2.6.2 and modify it as follows.

1. In this model, the monopolist’s new product release is represented by the

increase in relative quality of its product to consumers’ holdings. Therefore

to allow the monopolist not to release any new product even if it is scheduled

to, I set the lower possible quality increment (τ ′) as zero for “no-committed

release” cases.

2. To make the market outcome comparable when the monopolist chooses dif-

ferent release schedules, I adjust the higher possible quality increment (τ ′′) to

equalize the upper bounds of quality increment per year.

3. The control group, “committed release” is constructed by setting τ ′ to δ, so

the monopolist always release new products when it is scheduled to.

In total there are five cases to be considered: three no-commitment cases and

two commitment cases. Setup details are summarized in table 3.2.

Case 2 and 4, as well as case 3 and 5, are designed to compare firms’ policies

and market response when new product releases are committed or stochastic. In
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Table 3.2: Model specifications with or without committed product releases

Possible quality increment Range of Q increase per year

R τ ′ τ ′′ Lower bound Upper bound

Case 1
No commit

1 0 δ 0 12δ
Case 2 2 0 2δ 0 12δ
Case 3 3 0 3δ 0 12δ

Case 4
Commit

2 δ 2δ 6δ 12δ
Case 5 3 δ 3δ 4δ 12δ

case 4 and 5, the monopolist is guaranteed to release a new product every time it

is scheduled to with at least δ increase in its product quality, while in case 2 and 3,

the monopolist’s product quality might be unchanged. Other model components,

including the upper bound of quality increment per year, and the distribution of

consumers’ holdings are not different, so discrepancies in the market outcome will

mostly result from firms’ commitment of new product releases.8

Figure 3.8 shows how the monopolist’s market share and price changes over

its product quality in both committed and non-committed case, where the top two

subfigures correspond to case 2 and 4, and the bottom two figures correspond to

case 3 and 5. From the graph, for both average price and average market share,

they are almost the same with or without commitment to product releases and

the minor discrepancy comes from changes in the monopolist’s innovation problem

as illustrated in footnote 8. This suggests that both consumers and firms are not

affected by firms’ commitment to product releases, what they care about is the

8 The other source of the possible discrepancy comes from the changes in the monopolist’s
innovation. By increasing τ ′, the lower possible quality increment from 0 to δ, the monopolist’s
gain by switching from τ ′ to τ ′′ decreases so it will invest less in quality improvement. This
changes in investment cost then affects firms’ value functions and price choices, and furthermore,
consumers’ demand. Based on the results, the impact from this mechanism is of limited scale.
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Figure 3.8: Average price and market share over product qualities: with or without
commitment of release
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possibility of product releases. To see this, I plot the consumers’ demand within

each 12-month period in case 1 through 3 and it is presented in figure 3.9.

Figure 3.9: Consumers’ demand within each 12-month for R = 1, 2, 3
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Note that in case 1, new product releases are not committed; in each period
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firms may or may not release new products depending on the investment outcome,

which is the same setup as the innovation structure. Given this setup, the mo-

nopolist’s market share averaged across other state variables (product quality and

consumer distribution) is the same over time and results in a horizontal line.

When case 2 and 3 are added where new product releases are still not com-

mitted at any time, but for some periods new products are guaranteed not to be

introduced, consumers’ demand starts to fluctuate where they buy more right after

the new product is released, and hold up their purchase before each new release.

When the new product is potentially of higher quality (R = 3 as compared to R = 2

or 1), more consumers choose to wait.

This pattern suggests that if the new products differ from the current products

only in qualities, firms’ commitment of product release does not have any effect on

consumers’ and firms’ problem.9 Instead, it is the expectation of possible quality

increase in the future that induces consumers’ purchase delays. This is an interesting

result as it implies that in the innovation model where firms make investment and

may or may not increase its product quality in every period, consumers’ demand

are both boosted by the innovation outcome (if successful) and weakened by their

expectation of possible quality increase in the future at the same time. So it is

necessary to separate these two effects to better evaluate firms’ innovation strategies.

9If consumers’ value new products in other dimensions, like fashion or advertisement exposure,
this result will no longer hold.
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Chapter 4: A Tale of Old and New: Multi-Version Consumption in

the Video Game Industry

(Co-authored with Andrew Sweeting)

4.1 Introduction

Empirical models of demand for durable goods typically assume that con-

sumers use and derive utility from the most recent version of the product that they

own. While this assumption is sensible for some products, like large appliances, it is

inaccurate for products which are almost costless to store and where older versions

may offer a different and not necessarily inferior user experiences. In this paper,

we establish the empirical evidence for multi-product consumption in a video game

franchise, where video game players may continue to play the old games after buying

the new versions, and provide a framework to analyze their optimal time allocation

decisions among their game portfolios.

There are various reasons that consumers may continue to use their old units

after buying the upgraded ones. For example, the old product may include certain

features that consumers value but removed in the new products, or the old and new

products may be complementary in usage. In our empirical setting, we assume that
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players develop their product-specific preferences through usage, and their relatively

high preferences towards the old games, as compared to the new ones, incentivize the

continuing usage of the old games. This assumption is supported by two empirical

findings.

First, players spend relatively more time in “serially-featured modes,” like the

career mode, when they play the old game after new purchases. In these modes,

players develop their game progress through consecutive matches and their game

progress cannot be transferred to other game versions. These non-transferrable

game progresses result in individual specific preference towards the old game versions

relative to the new games.

Second, players more likely to play old games after new purchases are also less

likely to buy future game versions. Players make their purchase decisions based on

the additional value brought by the new game, so if they enjoy their old versions

and will spend much time on it regardless of their purchase decisions, they will not

value their new games much.

Based on these empirical evidence, we develop a framework where players al-

locate playing time within their game portfolios and across different game modes,

based on a latent variable, “game preference.” Players’ game preferences include

common components across individuals like game-specific and mode-specific prefer-

ences, and heterogeneous components as well including individual effects and each

player’s past gaming preferences in the same game mode. We show that incorporat-

ing individual heterogeneity is important to fit this detailed usage data and capture

the variations.
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We estimate the model parameters using a proprietary dataset provided by

Wharton Consumer Analytic Initiative, which documents players’ play and purchase

activities in a major sports video game franchise from 2011 to 2016. In the data

we focus on three types of player strategies: game purchase decisions, choices of

game versions and modes to play, and game play duration. Given the parameter

estimates, we show how the model fits the data in these three dimensions.

Product development and updates are among the most important marketing

questions [Norton and Bass, 1987]. Past research on product innovation focus on

consumer purchase decisions [Mahajan et al., 1991, Rogers, 2010], where the de-

pendent variables are the timing and the rate of consumer adoption decisions rather

than consumers’ product usage patterns. As more detailed usage data is made avail-

able, recent studies show that post-purchase behavior is important to understand

consumers’ incentives of upgrade purchase and evaluate the impact on long-term

purchasing and usage patterns [Golder and Tellis, 2004]. This paper utilizes the

observed video game activities to impute their real-time game preferences and their

purchase intentions for the future game releases.

Consumers’ product usage patterns are determined by their endogenous prod-

uct preferences, and previous research focus on how consumer involvement with the

products and learning process motivate their continued product usage [Westbrook

and Oliver, 1991, Holt, 1995]. Albuquerque and Nevskaya [2012] and Nevskaya and

Albuquerque [2012] use data on players’ game activities in a multiplayer game and

evaluate players’ responses to introduction of new game contents. They find that

the success of game version updates depends on consumer heterogeneity, rate of
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content consumption and social interaction. This paper further allows players to

allocate their playing time in multiple game versions in their portfolios, and develop

version-specific game preferences.

The rest of this paper is structured as follows. Section 2 describes the data and

provide empirical evidence on players’ multi-game consumption behavior. Section

3 sets up the model and Section 4 provides details about the estimation strategy,

with estimation result and model fit presented in Section 5. Section 6 presents the

counterfactual analysis, and Section 7 concludes the chapter.

4.2 Data and empirical summaries

This section describes the data format and the game franchise we study, and

also provide empirical support on key model setup, including players’ multi-product

consumption and persistent gaming preferences.

4.2.1 Data Description

Our data is provided by Wharton Consumer Analytic Initiative and it docu-

ments game players’ play activities in a major sports video game franchise.1 The

publisher of this game franchise releases a new game version every summer and

is named after the following year to distinguish from previous game versions. To

facilitate the expression without revealing the game identity, we rename the game

version named after year 201X as game GX. For example, game G5 was released

1To comply with the data usage agreement, we will not reveal the game title or the identity of
its publisher. All relevant information that could potentially reveal the entity is also anonymized
in this paper.
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in 2014 summer with 2015 in its name.

Players in our data are randomly selected from the population as follows:

around 20,000 players are selected from those whose first observe game version is G2

or earlier version; for each game from G3 to G6, around 10,000 players are selected

from those who purchased the game as their first game versions in the franchise.

Once a player is selected, all his future game session activities until summer 2016

are included.2 Since we do not observe players’ actual date of purchases directly,

we take each player’s initial observed game play date for each game version as his

purchase date.

For each game session, we observe its date, game mode, game version and the

session duration. Given that the original game mode descriptions might reveal the

identity of the game, we combine similar game modes into major categories and

rename them in more general terms that still reflect the game mode features but

could apply for general sports video games as follows:

• “Career” mode: players act as athletes to improve their skills or act as a

manager to run a team. Players can save their current game progress and

resume later.

• “Instant Play” mode: players choose their teams and compete with the CPU

for a single match. Match results have no cumulative effects.

• “Ultimate Mode”: players trade cards of professionals with each other or buy

them from the system, and use them to form their teams. Their purchased

2Since we do not observe the total sales of each game version, in this paper we focus on players’
individual behavior rather than making inference on the aggregate level statistics like market share.
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cards may be valid for a short time.

• “Occasional Play” mode: players initiate a match series like a championship

cup, which requires playing for several matches until winning the final or being

eliminated. Players play fewer games than in the career mode, and they can

save game progress and continue later.

Table 4.1 provides summaries on player count and average total duration across

players. Career mode, ultimate mode and occasional play mode are the three most

popular game modes in terms of game session count and session duration. Career

mode is consistently popular among all game versions in terms of game duration,

whereas the Ultimate Mode gains popularity starting from G5. The ultimate mode’s

significantly higher standard deviations suggests that game time in this mode is more

concentrated into a smaller group of players.

Figure 4.1 plots the number of new game activation in each month based

on the buyers’ initial game version observed in the data. When a new version is

released, there will be two peaks in purchases: right after the new game release,

and during the holiday seasons. If we further look into the composition of game

buyers, those who buy the new games are most likely the existing players who have

played previous game versions, while new comers who are new to the franchise are

more likely to buy the game during holidays. Based on this difference, we define

“pre-holiday” periods as dates after release and before November 15 each year, and

“holiday” periods as the rest of the annual cycle. The different types of buyers in

these two periods will be captured by their time-specific purchase costs.

86



Table 4.1: Summary statistics: by players

(a) Player count

Game Version

G2 G3 G4 G5 G6

Game Mode

Career 7,953 13,090 12,652 15,056 16,476
Instant Play 11,303 14,291 16,960 23,449 22,526
Ultimate Mode 3,012 6,900 10,785 12,812 13,517
Occasional Play 7,633 13,754 9,852 11,157 16,849

(b) Average total duration across players (seconds)

Game Version

G2 G3 G4 G5 G6

Game Mode

Career 59869 86484 105212 105288 91754
Instant Play 13227 21172 24067 24358 17489
Ultimate Mode 24006 45403 67618 136819 106507
Occasional Play 58616 61938 79388 80065 68273

(c) Standard deviation of total duration across players (seconds)

Game Version

G2 G3 G4 G5 G6

Game Mode

Career 157387 195829 198001 193502 153279
Instant Play 32888 49280 56784 63507 38868
Ultimate Mode 70578 139855 215969 312891 228893
Occasional Play 167403 196234 206518 213324 146489

Notes: All players who have played at least one game session in any game are
included.

4.2.2 Multiproduct consumption

In the durable good literature, it is commonly assumed that consumers’ outside

options are completely represented by their more recent purchases. In the video

game industry, this would predict that a player should completely shift his playing

time to the new game version after purchase and discontinue his game play in the

old games. While this prediction is intuitive as the new game has better graphics
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Figure 4.1: Game activation over time
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performance, in data we observed that some players still play their old games after

buying the new game versions, which we term as “port-back.” The formal definition

of “port-back” is as follows.

Definition 1 (Porting Back in Video Game) Player A is defined as porting

back in game version x if

1. Game version x is player A’s most recent purchase in his game portfolio X.

2. There exists a version x′, where x′ 6= x, x ∈ X, such that player A played

version x′ after buying version x.

There are several implications from this definition. First, a player needs at

least two game versions to be eligible, as he needs an old game version to port back
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to, and this requirement excludes players’ initial versions. Second, porting back

behavior is player-version specific, so it is possible that player A ported back in G4

but not in G5 because he stopped playing old games (including G4) after buying

G5. To facilitate the expression, we denote porting back players as PB players, and

non-porting back players as NPB players. Similarly we define game sessions when

players port back as PB sessions, and others as NPB sessions.

Table 4.3: Summaries on PB player count

Player count
PB %

NPB player PB player Total

Current game

G3 6,027 1,414 7,441 19.00%
G4 8,192 1,935 10,127 19.11%
G5 10,959 2,868 13,827 20.74%
G6 14,389 2,237 16,626 13.45%

Notes: “Current game” denotes players’ most recent game versions
in terms of purchase date. For each game version, define a player
to be PB player if he ported back to earlier versions when this
version is his current version. Discrepancy in the player count be-
tween this table and player purchase statistics comes from players
with no active game sessions observed.

Table 4.4: Summaries on PB percentage across initial and current games

Current game

G3 G4 G5 G6

Initial game

G2 19.00% 17.75% 18.51% 11.49%
G3 21.44% 19.86% 12.30%
G4 25.01% 16.27%
G5 14.64%

Notes: “Initial game” is defined as the first game a player
bought. For each combination of initial game and current
game, the number reported is the percentage of PB play-
ers among total players.

Table 4.3 provides summaries on the distribution of PB players across different
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game versions. Approximately 13% to 20% of players ported back in our example,

which is a large base considering the popularity of this sports game franchise. But

we can also see that game G6 has a significantly lower portion of PB players than

other games, and this portion is unanimously lower regardless of their initial game

versions. Therefore it is necessary to incorporate game version specific fixed effect

when modeling players’ PB choices. Table 4.4 further disentangles the percentage

of PB players based on the current game version and players’ initial game version.

On average, less players would port back when their current versions are more

recent as compared to their initial versions, which could be potentially explained

as players buying multiple game versions are more likely those who appreciate the

game features brought by the new game versions.

4.2.3 Persistent gaming preferences

All game versions in the game franchise we study here are similar in design,

where game versions only differ in graphics, up-to-date sports information and cer-

tain game contents, so we assume that each player has correlated game preferences

over time and across different versions he has played. Given that players’ purchase

intentions are determined by the additional values of the new game, which is also

affected by players’ values of the old game in the portfolio, this assumption estab-

lishes correlations between players’ purchase activities and past playing activities as

well.

To validate this assumption, we regress players’ purchase probabilities and
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playing hours for the next game over their current game session duration. Several

data patterns can be found in Table 4.5.

Table 4.5: Regression of players’ future purchase probabilities on current playing
time and PB behavior

If buy next Dur in next ver If buy next Dur in next ver
If PB -0.251∗∗∗ -1.965∗∗∗

(-5.75) (-9.60)

Log(duration) in current ver 0.0809∗∗∗ 0.494∗∗∗ 0.113∗∗∗ 0.667∗∗∗

(97.78) (109.66) (29.82) (42.01)

If PB × Log(duration) in current ver 0.0179∗∗∗ 0.160∗∗∗

(4.78) (9.44)

Duration in PB session -0.0263∗∗∗ -0.0210
(-8.00) (-1.65)

Current game FE Yes Yes Yes Yes

Initial game FE Yes Yes Yes Yes
Observations 79236 39870 6225 4049
R2 0.201 0.278 0.141 0.318
t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

First, for any game version, if a player ports back, he will play less in the next

new game version purchased. Players’ port-back behavior indicates their higher

preferences towards the old game relative to the new game, so this pattern can be

explained if these port-back players’ higher preferences towards the old games are

persistent over time.

Second, longer playing time is associated with higher purchase probabilities.

To incorporate this pattern, we associate both players’ playing time and purchase

intentions with their game preferences γ.

Third, longer playing time in PB sessions is linked to lower purchase probabil-

ities. In our model, PB players have higher game preferences towards the old game,

so the lower purchase intentions can be explained as lower additional value brought
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by the new game relative to their current game portfolios.

Table 4.6 also describes the average duration each player spent across different

modes. The statistics are categorized between PB and NPB players, and for PB

players, the average duration in PB and NPB sessions. As is in the last column,

which reports the ratio of PB and NPB sessions for the PB players, we can see that

PB players spend more in Career Mode, as compared to others.

Table 4.6: Average total duration across players (seconds)

NPB Players PB Players
PB/NPB ratio

NPB Sessions PB sessions

G3

Career 103458 76566 14699 0.19
Instant Play 21743 21455 2762 0.13
Ultimate Team 24321 35921 1250 0.03
Occasional Play 75842 59326 4735 0.08

G4

Career 100662 74728 12946 0.17
Instant Play 22471 28845 4034 0.14
Ultimate Team 42454 82601 3265 0.04
Occasional Play 56481 49693 7222 0.15

G5

Career 91797 71836 12550 0.17
Instant Play 26451 35541 5585 0.16
Ultimate Team 82614 145385 5323 0.04
Occasional Play 48246 47471 5748 0.12

G6

Career 77739 68949 8442 0.12
Instant Play 17254 23019 4336 0.19
Ultimate Team 69001 125796 5769 0.05
Occasional Play 55924 76922 2778 0.04

Finally, to see how game durations within each player is correlated over time

and within each game mode, we run two regressions on game duration and a dummy

variable that equals one if the play plays the corresponding mode in a period over

past game activities, as in Table 4.7.

Both game duration and game play dummy are positively correlated with
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Table 4.7: Regression on game duration and game play dummy over past duration
in the same mode

(1) (2)
Total duration If play (1=play, 0=no play)

Past duration 0.365∗∗∗ 0.00000336∗∗∗

(13.78) (15.30)

Instant Play × Past duration -0.397∗∗∗ 0.00000434∗∗∗

(-5.59) (7.39)

Ultimate × Past duration 0.0277 -0.00000142∗∗∗

(0.58) (-3.68)

Occasional Play × Past duration -0.158∗∗∗ -0.000000562
(-3.91) (-1.66)

Time FE Yes Yes

Player FE Yes Yes
Observations 2853 5815
R2 0.281 0.206

Notes: t statistics in parentheses. * p < .05, ** p < .01, *** p < .001. Obser-
vation unit is user-mode-period level. “Past dur” is each player’s duration in the
same mode in the previous period (zero if not played). In the first regression, only
observations with positive duration are included.

players’ past game duration in the career mode (the base level) and the ultimate

mode. For example if a play plays a lot in Career mode at t, he is also predicted to

play the Career mode at t+ 1 and spend more time on the mode as well. Duration

in Occasional mode is less predictive for future duration, and for Instant Play mode,

players’ game duration is almost uncorrelated (=.365-.397). Such differences across

different modes motivate our model setup that players’ preferences are correlated

over time, and such correlations are mode-specific.

In regards to predicting whether a player would play a mode, as reported in

the second column, the instant play mode is the most predictable among others as

93



it has the highest correlation with past game duration activities. The relatively low

R2 may indicate, however, that game play dummies could be hard to fit.

4.2.4 Data processing

Data is processed into player-mode-version-period level observations. For each

group of players defined by their initial game versions played, we drop the top 10%

players in terms of their total playing time in their initial and subsequent versions.3

In each period, assume each player has 500 hours to allocate across different game

modes and the outside option.

There are two periods defined between each two consecutive releases: “pre-

holiday”, defined as between the release and November 15 each year, and “holiday”

for the rest of the annual cycle. After dropping the top 10% players, there are 53,076

players remaining in the sample. In estimation, we take a 2% random sample, which

includes 1087 players, to facilitate the computation while maintaining enough player

heterogeneity.

4.3 Model

In this section, we develop a model framework that incorporates both players’

game purchase decisions and game play activities. Players observe the newest game

version in each period, and decide whether to buy it to be included in their game

portfolios for all of the future periods; conditional on their updated game portfolios,

3The cumulative playing time thresholds are 2654.48 hours, 1275.68 hours, 1247.08 hours, 906.79
hours, 297.88 hours for players initially played in G2 through G6, respectively.
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they allocate their playing time across different game modes and game versions.

Denote player as i, game mode as m, game version as v and period as t. At

the beginning of period t, denote player i’s game portfolio as Vi,t−1. In each period,

the model proceeds as follows.

1. For all the games v ∈ Vi,t−1, players observe their realized preferences in period

t, {γimvt}m∈M,v∈Vi,t−1
.

2. If a player is eligible to purchase in period t (defined below), he receives a

signal of his preference towards the game modes in the new game version v̄t,

and decide whether to buy the new game (Vit , Vi,t−1 ∪ {v̄t}) or continue to

play his current game portfolio (Vit , Vi,t−1).

3. If the player buys the new game, his preference towards the new game is

realized as {γimvt}m∈M,v=v̄t .

4. Based on the realized game preferences, the player allocates his playing time.

A player is defined as “eligible to purchase in period t” if (1) he has not

purchased v̄t yet; (2) he has purchased an earlier version before period t. The first

requirement rules out repeated purchases of the same game version. The second

requirement rules out players potentially buying the new game as their first game

versions. As will be illustrated in the data section, we do not observe the market

size of all potential game buyers; therefore we only model players’ upgrade purchase

decisions when they already play the game franchise for at least one period.

In the rest of this section, we first present players’ utility function from playing
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the game conditional on their game portfolios and realized gaming preferences; then

given the utility specification, we solve for players’ game purchase decisions.

4.3.1 Utility from game play

We follow Crawford and Yurukoglu [2012] and assume that players’ maximize

their utilities by allocating their time across all the modes and versions they have

access to, in the form, 4

max
{dimvt}

=
∑

m∈M,v∈Vit,dimvt>0

γimvt log dimvt, s.t.
∑

m∈M,v∈Vit

dimvt ≤ D. (4.1)

Players’ outside options, i.e. other entertainment activities, are included in

all players’ choice sets as v0 ∈ Vit. dimvt ≥ 0 denotes the time spent in the corre-

sponding mode, version and period. D represents the total time spent in all forms

of entertainment in each period. Player preference γimvt takes the form

γimvt =


χimvt ◦ (γ̃imvt)

1−αm(γ̄im,t−1)αm , if #(Vi,t−1) ≥ 1

χimvt ◦ γ̃imvt, if #(Vi,t−1) = 0

(4.2)

where

γ̃imvt = exp (ηi + ξm + ξv + ξt + ζimvt) , γ̄im,t−1 = γimv′,t−1|v′=v̄i,t−1
. (4.3)

4Players’ game duration is in the units of second. In our data, there is no observation with
dimvt ∈ (0, 1).
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γ̃imvt represents the “contemporary component” of the game preference, which in-

cludes mode-specific preference ξm, game-specific preference ξv, period-specific pref-

erence ξt and individual random effect ηi ∼ N(µη, σ
2
η). ζimvt ∼ N(0, σ2

ζ ) represents

other unobserved utility components that are independent across modes, versions,

time and individuals. γ̄im,t−1 represents players’ game preferences in the most recent

game version in the previous period. χimvt ∈ {0, 1} is a random process to fit the

data patterns that players only play certain game modes and game versions, with

the probability form constructed as

Pr(χimvt = 1) =


exp(a0m + a1mγimv,t−1)

1 + exp(a0m + a1mγimv,t−1)
, for newest game in the portfolio

exp(a0m + a1mγimv,t−1 + a2m)

1 + exp(a0m + a1mγimv,t−1 + a2m)
, for other games

(4.4)

The presence of player’s game preference in the previous period in this functional

form captures the empirical pattern that longer playing time is associated with

higher future play probabilities. We allow such correlation to vary across game

modes, and also between PB and NPB sessions as captured by a2m.

Players’ optimal time allocation {d∗imvt} solves (4.1), and by normalizing play-

ers’ preferences towards the outside option as γi0t = 1, it takes the form

d∗imvt =


0, if γimvt = 0

γimvt
1 +

∑
m′∈M,v′∈Vit γim′v′t

D, if γimvt > 0

, (4.5)

This solution form can be interpreted as if a player plays individual sessions

repeatedly, and for each session the player only chooses one version-mode combina-
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tion. In this way, players’ playing time for each mode-version is determined by its

relative game preference with respect to others.

With the optimal time allocations, players’ indirect utilities conditional on the

game portfolio Vit and game preference γit = {γimvt}m∈M,v∈Vit , are

u(Vit,γit) =
∑

m∈M,v∈Vit,γimvt>0

γimvt log

(
γimvt

1 +
∑

m′∈M,v′∈Vit γim′v′t
D

)
, (4.6)

which is used to facilitate the computation of players’ values under different game

purchase decisions.

4.3.2 Game purchase decision

In the game franchise that we study, new versions are released every year,

and players keep buying new game versions to be added to their portfolios. There

are two periods between each two consecutive gam4e releases: “pre-holiday” which

starts from the game release and ends at Nov 15th, and “holiday” which covers the

rest of annual cycle until the next game release.

From this piont, we denote the most recent game available for purchase as “new

game”, and all the other games as “old game.” When a new game is released, a player

chooses from the following options: (1) pay the full retail price p to buy the game in

pre-holiday period; (2) pay the discounted price δp to buy the game in post-holiday

period; (3) not buy the game. To simplify the computation, assume that players

only evaluate the purchase decisions based on their value in the current period, or

in another word, players’ lifetime value of buying the new game is proportional to
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the value in the current period.

To formalize the discussion of purchase decisions, we make the following as-

sumptions.

Assumption 1 Players keep at most two game versions at any time; when a player

already has two versions in his portfolio and buys another game, the oldest version

is automatically removed.

Assumption 2 A player has access to all the game modes, denoted as M, for all

the games in his portfolio.

Assumption 3 Players can only buy the most recent game version in each period.

For the newest version in period t, denoted as v̄t, a player who is eligible to

buy the game compares his value of buying and not buying the new game and make

his purchase decision accordingly.

Since a player knows his game preferences towards the owned games Vi,t−1 at

the time of purchase decision, his value of “no-purchase” is deterministic and takes

the form

uNo-Buy
it = u(Vi,t−1,γit = {γimvt}m∈M,v∈Vi,t−1

) (4.7)

To evaluate the utility of buying the new game, assume that a player receives a

random shock ζ̃imvt ∼ N(0, σ2
ζ ) for the new game when he decides on the new game

purchase, and this random shock is not observable to the econometrician. With this

shock, the player can calculate his preference for the new game, and his value of
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“purchase” is (denote Vit as the updated game portfolio after purchase)

uBuy
it = u(Vit, {γimvt}m∈M,v∈Vit) (4.8)

The player will buy the game if the additional value brought by the new game

is larger than a time-specific threshold pt. Denote players’ purchase behavior as

sit ∈ {0, 1}, the player’s purchase probability is

Pr(sit = 1) = Pr
(
uBuy
it − u

No-Buy
it ≥ pt

∣∣∣Vi,t−1, {γimvt}m∈M,v∈Vi,t−1

)
(4.9)

which completes the model setup of players’ purchase and play decisions.

4.4 Estimation

Our model parameters, as summarized in Table 4.8, are estimated using max-

imum likelihood function over players’ observed play and purchase activities. In the

rest of this section, we provide detailed description on how the likelihood function for

players’ game play activities and game purchase decisions, as well as the estimation

algorithm imposed in the estimation.

4.4.1 Likelihood function of game play

Denote the set of parameters to be estimated as Θ, and the set of a player’s

state variable after the purchase decision and before time allocation decision at

period t as X1
it = {Vit,γit,γi,t−1}. For each mode and version in the portfolio,
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Table 4.8: List of parameters to be estimated

Function Count

A. Utility function
a0m, a1m, a2m Pr(simvt = 1) 12

B. Specification of γimvt
ξm Mode FE 4 (1 default)
ξv Version FE 5 (1 default)
ξt Time FE 2 (1 default)
uη, ση Distribution of ηi 2

C. Specification of εimvt
αm Correlation within game modes 4
σζ Distribution of ζi 1
αp Value threshold for purchase 2

conditional on the value of individual random effect ηi, the log likelihood function

of observed playing time, dimvt is

fd(dimvt = d|Θ, X1
it, ηi) = Y (d = 0) log

(
Pr(d = 0|X1

it,Θ)

)

+ Y (d > 0) log

(
(Pr(d > 0|X1

it,Θ)f(d|X1
it,Θ, ηi, d > 0)

)
,(4.10)

where f(·) is the probability density function for dimvt, and Y (·) is the indicator

function which equals one if the condition is met, and zero otherwise.

Given the parameter value {a0m, a1m, a2m}m∈M, and game preference in the

last period γi,t−1, Pr(d > 0|Xit,Θ) can be calculated based on (4.4). To calculate the

probability density function f(d|Xit,Θ, d > 0), first impute players game preference

as γ̃imvt = d∗imvt/d
∗
0, then the imputed random term ζ takes the form

ζ̃imvt = log(γ̃imvt)− ηi − ξm − ξv − ξt − αmγimv′,t−1|v′=v̄i,t−1
(4.11)
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From this expression we can see that probability density of positive game duration is

equal to φ(ζ̃imvt|Xit,Θ, ηi) where φ(·) is the density function for normal distribution

with mean zero and standard deviation of σζ .

4.4.2 Likelihood function of game purchase

Denote players’ state variables before making purchase decisions as X0
it =

{Vi,t−1, {γimvt}m∈M,v∈Vi,t−1
}, which differs from X1

it in that, if the player buys the

new game v̄t, X
0
it does not include players’ realized game preference towards the new

game. In each period, the log likelihood function for the observed game purchases,

sit ∈ {0, 1}, and game play activities, {dimvt}, is

f(sit , dit = {dimvt}m∈M,v∈Vit|Θ, X0
it, ηi) =

Y (sit = 1)

[
log
(
Pr(sit = 1|Θ, X0

it)
)

+ E
∑
m,v

fd(dimvt = d|Θ, X1
it, ηi, sit = 1)

]

+Y (sit = 0)

[
log
(
Pr(sit = 0|Θ, X0

it)
)

+
∑
m,v

fd(dimvt = d|Θ, X1
it = X0

it, ηi, sit = 0)

]
(4.12)

where the expectation is taken over preferences in the new game.

To effectively calculate players’ game purchase probabilities, note that players’

indirect utilities take the analytic form (as in (4.6)) of

U buy
it = E

∑
m∈M,v∈Vit∪{v̄t}

γimvt log

(
γimvt

1 +
∑

m′∈M,v′∈Vit∪{v̄t} γim′v′t
D

)
. (4.13)

To empirically evaluate this expectation, we take nr random draws of game prefer-

ences in the new game, based on the current parameter trial in the estimation, as
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{γrimvt}m∈M,v=v̄t where r = 1, 2, . . . , nr. Then players’ value of buying new games

can be calculated as (γrimvt = γimvt for preferences of old games)

U buy
it =

1

nr

nr∑
r=1

∑
m∈M,v∈Vit∪{v̄t}

γrimvt log

(
γrimvt

1 +
∑

m′∈M,v′∈Vit∪{v̄t} γ
r
im′v′t

D

)
. (4.14)

Players’ values of no-purchase are deterministic as players observe their re-

alized game preferences for all their available games before making the purchase

decisions. Denote the value of no purchase as Uno−buy
it , then players’ purchase prob-

abilities are

Pr(sit = 1|Θ) = Pr(U buy
it − U

no−buy
it ≥ pt). (4.15)

Finally, the aggregate likelihood function sums up individual likelihood of

purchase and play behaviors, and is integrated over individual random effect as

L(Θ) =
∑
i

∫ ∑
t

f(sit,dit|ηi,Θ)dF (ηi|Θ) (4.16)

Our estimation proceeds as follows: for each player and each period, first impute

the game preference and calculate the likelihood for the observed game duration;

then given the imputed preference value, simulate and calculate players’ purchase

probabilities. The detailed algorithm is as follows.
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Algorithm 2 Calculate likelihood function for parameter estimation

1: Generate a vector of the random effect ηi candidate values, chosen as 1% to 99%
quantiles with 1% increment.

2: for Each ηi value, each player and each period do
3: Impute players’ preferences for the games they played based on observed

game duration
4: Impute ζ from players’ preferences. Calculate its density as the likelihood

for players’ game duration.
5: Impute probabilities of game play, and calculate likelihood function for ob-

served game play choices.
6: For players eligible to buy new games, calculate their values of “buy” and

“no-buy” choices and impute their purchase probabilities.
7: end for
8: For each ηi value, calculate the aggregate likelihood function, then integrate over

all ηi based on distribution parameters.

4.5 Estimation result

4.5.1 Parameter estimates

This section reports estimation results based on 1078 players, a 2% random

sample selected from the original dataset. For each selected player, we include all

of his game sessions for all game versions and modes observed in the original data.

Parameter estimates are reported in Table 4.9.

For common utility components, which are homogeneous across all individu-

als, the fixed effect estimates suggest that players’ favorite modes are career mode

(as the base) and Occasional Play Mode, and favorite game version is G2 (as the

base) and G6. Differences in estimates across modes are higher than across game

versions. On average, players play mode in the pre-holiday season, and within-player

heterogeneity (measured by σζ) dominates cross player heterogeneity (measured by

ση).
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Table 4.9: Parameter estimates

Parameter description Param Est. Std. Err.

A. Common utility components

Fixed Effect

ξm

Career - -
Instant Play -1.5556 0.0020
Ultimate Mode -1.5300 0.0020
Occasional Play -0.8361 0.0005

ξv

G2 - -
G3 -0.0963 0.0003
G4 -0.1057 0.0008
G5 -0.0752 0.0012
G6 -0.0445 0.0015

ξt
Pre-holiday - -
Post-holiday -0.0360 0.0015

Random Effect
µη -4.0516 0.0001
ση 0.0239 0.0060

ζ σζ 2.1896 0.0005

B. Correlation with past game experiences

Correlation with γt−1 αm

Career 0.0967 0.0001
Instant Play 0.1196 0.0001
Ultimate Mode 0.0373 0.0003
Occasional Play 0.0769 0.0007

Pr(d > 0)

a0m

Career 0.7592 0.0006
Instant Play 0.6113 0.0003
Ultimate Mode 0.2676 0.0118
Occasional Play 0.2275 0.0004

a1m

Career 1.3037 0.8341
Instant Play 1.5743 0.0004
Ultimate Mode 0.2657 0.3597
Occasional Play 2.1730 0.5820

a2m

Career 0.5240 0.0604
Instant Play 0.6559 0.0653
Ultimate Mode 0.2225 0.0409
Occasional Play 0.5154 0.0505

C. Monetary preference

Price coefficient Pre-holiday 0.1685 0.0003
Holiday 0.2199 0.0003
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The second part reports estimates that determines the probability of play

and correlation with past gaming activities. Players’ playing time is correlated the

Ultimate Mode and Career Mode, and given the fact that players spend the most

time in Career Mode, we can say that it is the most correlated game mode in game

play. By comparing the estimates of a0m, we can see that players are more likely to

play in their initial game versions.

The third part reports players’ value threshold of buying the new game in each

period. In general, the additional value required for new purchase is higher during

the holiday season, mostly because of player selection: those who would wait until

holiday seasons to buy the game are less enthusiastic about the game franchise, and

the higher value threshold reflect their lower willingness to play.

4.5.2 Model fit

This paper focuses on players’ individual behavior, rather than aggregate mar-

ket level statistics. The additional data details provide more variations in identifi-

cation, but also levels up the difficulty for model fit: each individual player could be

affected by various factors not captured by the model, and exhibit higher variations

than the market average. In this section, we provide measures on how our model

structure fits the data in players’ three major decision categories: game duration,

game play probability, and game purchase probabilities.
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Figure 4.2: Correspondence between imputed and actual game duration
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Based on our model parameter estimates, we first calculate the imputed game

preference as

γ̃imvt = exp
(
ηi + ξm + ξt + αmγimv′,t−1|v′=v̄i,t−1

)
, (4.17)

which differs from the model structure in ζimvt as it is assumed to be mean zero.5

Figure 4.2 plots the correspondence between predicted and actual game duration

for observations with dimvt > 0.

Based on the figure, the imputed and actual duration coordinates are clus-

tered around the 45 degree line, but with a high degree of variance. This suggests

5Another interpretation is that γ̃ measures the “predicted” component of player preference, and
ζimvt measures the unpredictable component.
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that the model captures the average duration level but there are still factors not

captured by the model, and these factors could potentially affect players’ game play

decisions. To further check the model fit for the duration, Table 4.10 reports the

average imputed and actual game duration across periods, versions and modes, as

well as their standard deviations. On average, game duration fits better across pe-

riods and games than across modes, which is mostly driven by certain mode-version

combinations. More details can be found in the appendix.

Play probabilities

Given the parameter estimates, we also calculate the imputed probability of

players playing each game mode and game version in each period, and the compari-

son in this imputed probability between no-play and play observations are reported

in Table 4.11. While the predicted play probabilities are higher in the play observa-

tions than no-play observations, the differences are small compared to their standard

deviation which suggests the model cannot predict which mode and version a player

would play. To overcome this difficulty, we hold fixed the versions and game each

player actually played in the counterfactual analysis.

Purchase probabilities

Finally, we also impute players’ purchase probabilities and report them across

periods in Table 4.12. Note that in our model, players are only allowed to buy the

newest game version, so the reported imputed purchase probabilities across periods
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Table 4.10: Imputed and actual game session durations (in seconds)

Imputed Observed
Mean Std. Dev. Mean Std. Dev.

A. By period
2012 Holiday 19869 18993 27940 62653
2013 Pre-holiday 22841 21220 25203 46054
2013 Holiday 18545 17294 22961 50306
2014 Pre-holiday 20728 19292 19730 34878
2014 Holiday 17273 17892 23618 55269
2015 Pre-holiday 21005 19643 23763 46971
2015 Holiday 17611 17462 24392 53382
2016 Pre-holiday 21754 20334 23648 45961
2016 Holiday 18198 18333 21138 43681

B. By game
G2 16326 35613 18034 45465
G3 18801 38909 19915 43984
G4 24752 43435 21866 51007
G5 21253 35682 23066 47398
G6 32365 47787 26437 49874

C. By mode
Career 52474 66080 37948 61992
Instant Play 16937 24272 11374 21000
Ultimate Mode 16534 25481 26276 64432
Non-game 2293.7 3601.2 6372 19118
Occasional Play 9809.4 12724 23761 47279

Note: Observation units are player-game-mode-time specific.
Only observations with positive game play are included.

are also across different game versions as indicated in the first column.

In general the model predicts the purchase instances well as the predicted

purchase probabilities for non-buyers are around 0.2 and for buyers are around 0.9.
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Table 4.11: Imputed probabilities of game play between play and no-play observa-
tions in players’ most recent version

Play observations No-play observations
Mean Std. Dev. Mean Std. Dev.

A. By period
2012 Holiday 0.3286 0.1029 0.2787 0.1027
2013 Pre-holiday 0.3426 0.1146 0.2921 0.1041
2013 Holiday 0.3383 0.1134 0.2948 0.1051
2014 Pre-holiday 0.3454 0.1103 0.2982 0.1064
2014 Holiday 0.3426 0.1106 0.2945 0.1061
2015 Pre-holiday 0.3529 0.1075 0.2953 0.1063
2015 Holiday 0.3497 0.1109 0.2939 0.1064
2016 Pre-holiday 0.3472 0.1140 0.2974 0.1062
2016 Holiday 0.3389 0.1115 0.2976 0.1063

B. By mode
Career 0.4921 0.0230 0.4882 0.0190
Instant Play 0.5608 0.0367 0.5568 0.0374
Ultimate Mode 0.2911 0.2427 0.2809 0.2394
Non-game 0.4709 0.0669 0.4677 0.0674
Occasional Play 0.5347 0.0064 0.5333 0.0040

Table 4.12: Imputed purchase probabilities between buyers and non-buyers

New game Period
Buyers Non-buyers

Mean Std. Dev. Mean Std. Dev.

G3 2013 Pre-holiday 0.2521 0.0622 0.8302 0.0683
2013 Holiday 0.1640 0.0648 0.8760 0.0746

G4
2014 Pre-holiday 0.2351 0.0782 0.8536 0.0765
2014 Holiday 0.1430 0.0502 0.9058 0.0544

G5
2015 Pre-holiday 0.2392 0.0773 0.8653 0.0761
2015 Holiday 0.1633 0.0555 0.9088 0.0593

G6 2016 Pre-holiday 0.2445 0.0810 0.8716 0.0675
2016 Holiday 0.1652 0.0599 0.9155 0.0491

4.6 Counterfactual analyasis

In this section, we simulate players’ game play activities based on two potential

game mechanism changes that could be of interest for the video game publishers:
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restriction of game access to new game version only, and removal of past game

preferences.

Single-game restriction

As is illustrated in the data section, around 13% to 20% of players continue to

play their old games after buying the new games, which makes it natural for firms

to wonder what would happen if these players are restricted to play their newest

game version only. After all, when these players have no access to their old games,

they should spend more time in their new games, and higher playing time in the

new game can facilitate even higher game duration in the future through correlation

in the game preferences.

To see how players would reallocate their playing time in the new games, we

simulate players game duration by restricting them playing in the newest game

version in their portfolios. We hold the mode-version each player actually played

and players’ purchase decisions fixed as the same with the actual observations. The

results are reported in Table 4.13.

From the table we can see that, players play more in the new game, but the

extent of such game play increase is very limited to the scale of 0.3%. This suggests

very weak substitution in players’ game duration between the old and the new game,

and removing players’ access to their old games will significantly reduce their playing

time.
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Table 4.13: Comparison of game duration with and without the single-game restric-
tion

Period
Original Single-game restriction

New game Old game New game

2013 Pre-holiday 9934 3019 9985
2013 Holiday 5975 1917 5996
2014 Pre-holiday 4385 1064 4384
2014 Holiday 4595 1692 4606
2015 Pre-holiday 4688 1183 4691
2015 Holiday 4435 1441 4452
2016 Pre-holiday 4899 1313 4922
2016 Holiday 4079 976 4083

Average 5374 1576 5390

Note: numbers reported are average duration (in seconds) in each
version-mode-period that players played.

Correlation in intertemporal game preferences

One of the data patterns in the data is that players spend consistently high or

low time in certain game modes over time, and this persistence cannot be explained

by common utility factors like game mode fixed effect and individual random effect.

To evaluate how these correlated game preference in the past affect players’ current

game play activities, we change players’ game preferences, originally in the form of

γimvt =


χimvt ◦ (γ̃imvt)

1−αm(γ̄im,t−1)αm , if #(Vi,t−1) ≥ 1

χimvt ◦ γ̃imvt, if #(Vi,t−1) = 0

(4.18)

to

γimvt = χimvt ◦ γ̃imvt (4.19)

In another word, players are treated as if they have no prior playing expe-
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riences, although their game purchase records and game portfolios in each period

are unaffected. Table 4.14 compares players’ game duration with and without the

previous game preferences.

Table 4.14: Comparison of game duration with and without game preferences

Period
Original With no previous preference

New game Old game New game Old game

2013 Pre-holiday 9934 3019 7970 2852
2013 Holiday 5975 1917 5597 1751
2014 Pre-holiday 4385 1064 3507 985
2014 Holiday 4595 1692 4350 1619
2015 Pre-holiday 4688 1183 3831 1118
2015 Holiday 4435 1441 4100 1307
2016 Pre-holiday 4899 1313 3903 1225
2016 Holiday 4079 976 3746 882

Average 5374 1576 4625 1467

From the table, when players’ game preferences are only determined by con-

temporary component γ̃imvt, players on average spend 13.9% less time (from 5374

to 4625) in their new games, and 6.9% less time (from 1576 to 1467) in their old

games.

4.7 Conclusion

This paper provides a framework to analyze video game players’ multi-version

consumption behavior in the video game industry. In this framework, players al-

locate their playing time across game versions and game modes in their portfolios,

and their purchase decisions of new game versions are also endogenously determined

by the additional value brought by players’ portfolios. This framework is developed
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to fit two patterns found in the data, where players are observed to continue to play

their old games after buying the new versions, and they spend consistently higher

time in certain game modes over time.

Given the parameter estimates, we conduct two sets of counterfactual analy-

sis by simulating players’ game activities under two alternative model alternative.

When players are restricted to play their newest game only in the portfolio, players

spend on average 0.3% more time in their new game while they completely stop

playing the old game, which suggests very weak substitutions across game versions

in players’ portfolios. When we remove players’ past game experiences from their

current game preferences, players spend on average 14% less time in the new game,

and 7% less time in the old game, which suggests strong intertemporal correlation

in players’ game preferences.

In the next step, we will further relax players’ choices in the counterfactual

analysis by allowing them to change their purchase decisions from the data, and

re-evaluate the impacts of alternative game designs, like the single-game restriction,

on players’ play activities through their purchase changes. It is also worthwhile to

study how players’ purchase intentions for the new game would vary across their

past game experiences, and examine how common marketing strategies like targeted

discount would change players’ play and purchase activities.
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4.8 Appendix: Supplemental summary statistics

Table 4.15 reports statistics based on game session level, as compared to player

level in Table 4.1. One significant difference from the player level statistics is that

number of sessions and average session duration in the Ultimate mode is higher than

career mode, while the session count and session average duration are not. This

suggests that ultimate mode is played by relatively less players with each player,

which is also consistent with the high standard deviation for the ultimate mode.
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Table 4.15: Summary statistics: by game sessions

(a) Game session count

Game Version

G2 G3 G4 G5 G6

Game Mode

Career 95,876 305,131 339,275 379,602 376,141
Instant Play 57,890 87,438 126,465 184,970 147,041
Ultimate Mode 18,882 95,928 209,438 492,554 464,937
Non-game 56,180 14,954 16,700 12,600
Occasional Play 96,474 222,748 165,973 173,936 318,249

(b) Average session duration (seconds)

Game Version

G2 G3 G4 G5 G6

Game Mode

Career 4966.20 3710.15 3923.51 4175.99 4019.06
Instant Play 2582.54 3460.45 3227.59 3087.91 2679.24
Ultimate Mode 3829.36 3265.80 3482.00 3558.84 3096.44
Non-game 1762.77 1467.86 873.89 1348.55
Occasional Play 4637.72 3824.48 4712.42 5135.74 3614.58

(c) Standard deviation of game duration (seconds)

Game Version

G2 G3 G4 G5 G6

Game Mode

Career 5278.83 4550.10 4693.03 4986.39 4124.25
Instant Play 3796.91 4097.38 4426.34 6035.28 4210.36
Ultimate Mode 3815.01 3622.08 4101.47 4887.49 3875.17
Non-game 2957.91 2271.58 2170.36 4629.76
Occasional Play 4669.90 4556.51 5090.76 7061.29 4946.02

Notes: All players who have played at least one game session in any game are in-
cluded.
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Table 4.17: Imputed and actual game duration by game mode and version

Imputed Actual Difference

Career

G2 40944.41 27900.76 13044
G3 43257.92 34744.04 8514
G4 55510.35 40208.36 15302
G5 48213.91 41084.46 7129
G6 71162.91 42013.31 29150

Instant Play

G2 13443.12 7822.75 5620
G3 13398.06 11342.42 2056
G4 18931.81 12225.94 6706
G5 15416.23 12295.3 3121
G6 22237.7 11508.45 10729

Ultimate Mode

G2 12597.58 27109.37 14512
G3 12001.79 15840.33 3839
G4 14170.85 20018.06 5847
G5 16649.87 29564.68 12915
G6 22686.89 35258.37 12571

Non-game

G2 2758.367 11350.73 8592
G3 2698.665 4202.941 1504
G4 1900.088 1727.875 172
G5 1334.252 2961.453 1627
G6 - - -

Occasional Play

G2 7835.61 27043.21 19208
G3 8116.8 20728.86 12612
G4 11069.44 24846.95 13778
G5 8294.879 23630.92 15336
G6 13173.69 24879.55 11706
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