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Understanding how imperfect information affects firms’ investment decisions

helps answer important questions in economics, such as how we may better measure

economic uncertainty; how firms’ forecasts would affect their decision-making when

their beliefs are not backed by economic fundamentals; and what the impacts of

firms’ productivity uncertainty are in an environment of incomplete information.

This dissertation provides a synthetic answer to these questions, both empirically

and theoretically.

The first chapter provides empirical evidence to demonstrate that survey-based

forecast dispersion identifies a distinctive type of second moment shocks other than

the volatility shocks to productivity, i.e. uncertainty shocks. Such forecast dis-

agreement disturbances can affect the distribution of firm-level beliefs regardless

of whether or not belief changes are backed by changes in economic fundamentals.

At the aggregate level, innovations that increase the dispersion of firms’ forecasts

lead to persistent declines in aggregate investment and output, and a slow recovery.



Conversely, the larger dispersion of future firm-specific productivity innovations,

the standard way to measure economic uncertainty, generates the “drop-rebound-

overshoot dynamics for aggregate investment and production. At the firm level,

more productive firms increase investments given rises in future productivity dis-

persion, whereas investments drop when firms disagree more about the well-being

of their future business conditions.

The second chapter presents a general equilibrium model of heterogeneous

firms subject to the real productivity uncertainty shocks and informational disagree-

ment shocks. As firms cannot perfectly disentangle aggregate from idiosyncratic

productivity because of imperfect information, information quality drives the wedge

of difference between the unobserved productivity fundamentals, and the firms’ be-

liefs about how productive they are. Distribution of the firms’ beliefs is no longer

perfectly aligned with the distribution of firm-level productivity across firms. This

model not only explains why, at the macro and micro level, disagreement shocks are

different from uncertainty shocks, as documented in Chapter 1, but helps reconcile

a key challenge faced by the standard framework to study economic uncertainty: a

trade-off between sizable business cycle effects due to changes in uncertainty, and the

right amount of pro-cyclicality of firm-level investment rate dispersion, as measured

by its correlation with the output cycles.
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Chapter 1: Uncertainty, Heterogeneous Beliefs, and Firms’ Invest-

ments: Macro and Micro Evidence

1.1 Introduction

What is the impact of time-varying firms’ uncertainty about future business

conditions on their investment decisions and on the aggregate economy? This chap-

ter shows that empirically, the dispersion of business-level forecasts, one of the stan-

dard measures of “uncertainty”, differs from other canonical uncertainty proxies by

their different aggregate and micro-level implications.1 I provide novel aggregate

and firm-level evidence to demonstrate that the measure of cross-sectional forecast

disagreement helps identify shocks that are distinct from the uncertainty shocks, as

in Bloom (2009), which denote the exogenous changes in the variance of firms’ future

productivity. Such newly identified shocks are labeled, informational disagreement

shocks, as they affect the distribution of firm-level beliefs, even if the distribution of

firms’ productivity fundamentals is unchanged. Both shocks are considered second

moment shocks, as they affect the variance of pure beliefs, and the variance of real

1Dispersion of private agents’ point expectations about future inflation rate, GDP growth rates
among others, i.e. the forecast disagreement is considered one of the standard measures of uncer-
tainty about future price stability (Mankiw et al., 2004) and approximates the forecast error of
the future aggregate economy (Bloom, 2014).
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fundamentals respectively.

Distinguishing two different types of shocks helps better answer the question

on whether or not the uncertainty shocks are a crucial driver of business cycle fluctu-

ations. Within the framework of micro-level capital and labor adjustment frictions

in the form of irreversible investment and non-convex adjustment costs (Bernanke,

1983; Pindyck, 1991; Bloom, 2009; Bloom et al., 2014), the “wait and see” channel of

uncertainty shocks plays a pivotal role for uncertainty to have contractionary effects.

In specific, increases in the variance of future demand or productivity can raise the

option value of adopting a “wait and see” policy towards investment or hiring. As

a significant number of firms pause their capital and labor adjustment actions, this

leads to a large economic downturn. However, Bachmann and Bayer (2013) find

that in a well calibrated model based on German data, the quantitative importance

of such real-option effect can be very limited.2 Empirically, Bachmann et al. (2013b)

uncover that the magnitude of the impacts of identified uncertainty shocks largely

depends on how we measure economic uncertainty in the data. Precisely, they found

that for both Germany and the U.S., when uncertainty is measured by the disper-

sion of survey-based business forecasts, rises in the forecast dispersion will lead to

a large recession and slow recovery. Otherwise, jumps in stock market volatility,

another standard way of measuring uncertainty, would push the economy into a

recession, followed by a quick rebound, and then the economy overshoots within a

year (Bloom, 2009).

2Findings on the sign and the size of the predicted effect of uncertainty shocks can be very
mixed. For example, very moderate effects have been found in a model absent the market frictions
of price rigidity (Bundick and Basu, 2014), credit market friction (Gilchrist et al., 2014), or search
friction (Leduc and Liu, 2015).
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Therefore, I provide Vector Autoregression (VAR) evidence to demonstrate

that the identified impacts of changes in the survey-based forecast disagreement,

as in Bachmann et al. (2013b), do not correspond to the theoretical “wait and

see” channel in a model of uncertainty shocks à la Bloom (2009). Instead, my joint

identification exercise suggests that once isolated from disagreement shocks, the real

option effect associated with the “wait and see” channel can be well identified: in

response to uncertainty jumps, all major aggregate series experience “abrupt drops

and quick rebounds”. In addition, shocks that lead to more dispersed beliefs among

firms about their own future profitabilities, even though there is no change to the

de facto shape of distribution of productivity fundamentals, affect the economy

through a separate channel. Larger forecast disagreement tends to trigger a bigger

decline in investment, employment, and production, and is followed by a sluggish

recovery. In the near term of the shocks, the real option effect due to changes in

uncertainty about fundamentals may well explain 2 % of the variations in aggregate

investment. However, the “wait and see” channel quickly decays within one year

after the shocks of uncertainty. By contrast, as for the disagreement shocks, changes

to the distribution of firm-level beliefs affect the aggregate investment dynamics all

along, until the effect completely dies out after five years. Such evidence may well

suggest that an important channel through which heterogeneous beliefs matter for

the aggregate economy is mis-identified based on the current realm of theoretical

models, which have the sole emphasis on the impacts of changes to variance of

economic fundamentals.

Moreover, results show that the strong contractionary and slow recovery effects

3



of disagreement shocks are robust, regardless of how we measure the cross-sectional

belief difference. Following Bachmann et al. (2013b), I construct the business level

forecast disagreement based on Philadelphia Fed’s Business Outlook Survey (BOS)

data. The surveyed manufacturing firms’ beliefs about their future business condi-

tions better reflect the actual decision makers’ expectations. It thus helps explain

why the distribution of firms’ beliefs, whether or not they are backed by good or

bad fundamentals, could strongly affect their business activities, such as investment.

I also consider an alternative measure of belief dispersion using Philadelphia Fed’s

Survey of Professional Forecasters (SPF) data. Despite that SPF data captures

expectations of institutional forecasters rather than actual firm producers, findings

are that SPF forecast dispersion still helps identify information-based shocks that

are orthogonal from concurrent changes in the variance of economic fundamentals.3

The “wait and see” channel, however, is very pronounced when we stick to

the benchmark uncertainty measure following Bloom et al. (2014), the standard de-

viation of firm-level productivity shocks. This measure of uncertainty better aligns

itself to the theoretical notion of “uncertainty”, which approximates the forecast

error about future productivity fundamentals. However, using an alternative mea-

sure of uncertainty, the news-based Economic Policy Uncertainty (EPU) index, as

in Baker et al. (2015), I find that once the disagreement shocks are isolated, changes

in the EPU proxy no longer have any significant aggregate impacts. This leads to

the conclusion that pure information-based second moment disturbances may have

3A few papers have documented that based on U.S. and EU professional forecasters’ data, the
magnitude of disagreement in mean forecast about future economic aggregate variables is a poor
proxy for agents’ forecast uncertainty (D’Amico and Orphanides, 2008; Conflitti, 2010).

4



real impacts on business cycles by affecting the distribution of beliefs.

Using Compustat firm-level investment and operation data, this chapter fur-

ther presents micro-level evidence to identify the separate channels through which

uncertainty and disagreement would affect the firm-level investment. Firstly, I am

able to disentangle the “wait and see” effect of uncertainty at the firm-level that is

associated with short run drops, and the medium run “rebound and overshoot” of

aggregate investment at the macro level. A model of uncertainty shocks in Bloom

(2009) predicts that the extensive margin effect, i.e. more firms pause investment

during more uncertain periods, dominates the intensive margin effect in the short

run. In specific, the intensive margin operates through a convexity effect channel by

which more dispersed firm-specific productivity means on average, firms’ expected

marginal product of capital increases. Higher expected productivity translates into

larger aggregate investment. 4 As a result, the rebound and overshoot of aggregate

investment follows a brief disruption of economic activities due to “wait and see”

once the convexity effect dominates the “wait and see” effect in the medium-run. I

present evidence showing that there is a linear negative association between firm-

level investment and uncertainty measure, the trace for the “wait and see” effect. In

addition, the firm-level investment rebound dynamics through a non-linear term of

uncertainty, conditional on firm-level productivity growth rate can be also unraveled.

Such micro evidence on rebound and overshoot contributes well to the literature that

only focuses on the linear empirical relationship between uncertainty and firm-level

4Namely, this effect is also called Oi-Hartman-Abel effect, or simply, convexity effect (Oi, 1962;
Hartman, 1972; Abel, 1983).
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investment. 5 Specifically, I find that, conditional on the firm-specific Total Factor

Productivity (TFP) growth rate, the more uncertain environment leads a firm to

incur greater investment, a productivity-enhancing effect, in anticipation that they

will become more productive next period since the variance of future productivity

draws is larger.

Secondly, I provide micro-level evidence that is consistent with the very persis-

tent contractionary effect of disagreement shocks at the macro level. Apart from the

limited negative linear partial effect, conditional on a firm’s productivity growth,

greater disagreement significantly dampens the firm-level investment. This condi-

tional investment elasticity has the opposite sign, different from that of the non-

linear impact of productivity uncertainty. This finding is very important for the

following reasons. First, the productivity-enhancing effect of uncertainty suggests

that the cross-sectional dispersion of firm-level investment rate may shrink when

productivity dispersion is subdued in good times, which is at odds with its procycli-

cality observed in the data (Bachmann and Bayer, 2014). Therefore, such evidence

highlights a key shortfall faced by a model of uncertainty shocks, by which time-

varying variance of productivity fundamentals cannot simultaneously generate a

large recession and the pro-cyclicality of investment rate dispersion. Second, the

productivity-dampening effect of forecast disagreement suggests that after a second

moment shocks-triggered recession, the economy does not have to follow a counter-

5For example, Leahy and Whited (1995), and Gilchrist et al. (2014) finds the negatively cor-
related linear relationship between uncertainty and investment using U.S. firm-level panel data.
However, using U.K. manufacturing firm level data, Bloom et al. (2007) finds that the linear effect
is not statistically significant, but argues for a non-linear term of uncertainty, conditional on sales
growth, as evidence for the “wait-and-see” channel. This interpretation may be erroneous because
the non-linear term coefficient can well suggest an intensive margin effect of uncertainty.
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factual quick rebound and overshoot. Consistent with findings in Bachmann and

Bayer (2014), it is the otherwise large investment spikes of more productive firms

that are persistently depressed, which leads to gradual declines in aggregate invest-

ment and slower recovery. Third, the different predictions about the cyclicality of

investment rate dispersion can be well used to identify if the economy is shocked

by informational second moment shocks, or the real second moment shocks about

fundamentals.

This chapter unfolds as followed: Section 1.2 discusses the construction and

the time-series properties of the benchmark and alternative measures of productivity

uncertainty and forecast disagreement. Section 1.3 performs VAR analysis to pro-

vide aggregate evidence for the impacts of shocks to uncertainty and disagreement.

Section 1.4 provides micro-based evidence using panel data to uncover relationships

of uncertainty, disagreement and firm-level investment. Section 1.5 discusses the

consistency of macro and micro evidence. It also highlights the importance of using

disagreement to better explain the empirical findings that cannot be rationalized

using models of uncertainty shocks only. Section 1.6 provides concluding remarks.

1.2 Measurements

Despite the limited consensus on what best measures economic uncertainty

among private agents, a range of second moment measures based on time-series

volatility and cross-sectional dispersion of key economic variables are considered the

closet alternatives (Bloom, 2014). This selection of measures simply reflects the

7



rationale that higher volatility of data series means greater difficulty for forecasting

with good precision. Hence, commonly used uncertainty measures include: the

volatility of a range of aggregate economic indicators including stock market price

index, GDP growth rate, and Total Factor Productivity (TFP), along with the

dispersion of idiosyncratic variables, such as firm-level TFP and in particular, that

of forecasters’ point expectations about future aggregate or idiosyncratic conditions.

In this chapter, I comparatively study the dispersion of forecasts across firms and the

cross-sectional dispersion-based measures of uncertainty only. In addition, I abstract

from studying uncertainty measures based on stock market data, as they could

partly capture the changes over time in the degree of financial frictions (Caldara

et al., 2016).

Following Bachmann et al. (2013b), I construct the forecast disagreement mea-

sure (DIS) using Philadelphia Fed’s Business Outlook Survey data. Consistent with

Bloom et al. (2014), uncertainty is measured by the standard deviation of future

log firm-level TFP innovations (UNC), estimated from Compustat Data. To avoid

overuse of terminology, I call the former, “the measure of disagreement” and the

latter, “the measure of economic uncertainty”.6 As robustness checks, the forecast

dispersion index, based on the Survey of Professional Forecasters data (SPF), is con-

sidered an alternative measure of disagreement. The widely-used index of Economic

Policy Uncertainty (EPU), which counts newspaper references of policy-related un-

certainty keywords is also examined as another measure of uncertainty. I discuss

6Note that both Bachmann et al. (2013b) and Caldara et al. (2016) find that empirically fore-
cast disagreement can have quite different macro implications as contrasted to other measures of
uncertainty, despite they implicitly assume forecast disagreement is a measure of “uncertainty”.
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the data sources and construction method for DIS and UNC below and relegate

the reader to Appendix A.1 for additional details on SPF and EPU.

1.2.1 Measure of Forecast Disagreement

I constructed the forecast disagreement index based on the Business Outlook

Survey (BOS) monthly firm-level forecast data. Surveyed firms’ forecasts better

capture the difference in beliefs of actual decision makers, which can be directly used

to examine the economic impacts of changes in firms’ expectations. BOS surveys

big manufacturing firms located in the Third Federal Reserve District, but the data

is found to closely reflect the business outlook at the national level (Nakamura and

Trebing, 2008).7 I use data from January, 1970 to December, 2013 and then convert

the series to quarterly frequency to explore its time series dynamics.

The BOS survey records the numbers of firms who report an increase, decrease

or no change in their beliefs about the future business conditions. I focus on two

questions in the survey probing their views about the “General Business Conditions”

and their expected “New Orders” to be shipped in six months, relative to the survey

date. The two survey questions are framed as follows:

• General Business Conditions: What is your evaluation of the level of

general business activity six months from now versus [CURRENT MONTH]:

Decrease/No Change/Increase

• Company Business Indicators: New Orders. Six months from now versus

7This third district covers the state of Delaware, the southern half of New Jersey, and the
eastern two thirds of Pennsylvania. On average, about 100 to 125 firms responded to the survey
each month, out of 250 who received the survey questionnaire (Trebing, 1998).
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[CURRENT MONTH]: Decrease/No Change/Increase

Based on the fractions of responding firms for month t, with beliefs of increase and

decrease in response to the surveyed question, as denoted by F+
t and F−

t respectively,

the disagreement index (DIS) can be defined below:

DISt =
√

F+
t + F−

t − (F+
t − F−

t )
2. (1.1)

Figure 1.1 displays the two disagreement index series over time based on responses

to both questions. It suggests that forecasts about general business conditions and

about firm-specific new orders can be highly correlated, such that the disagreement

series keeps very close track of each over time.8 Without loss of generality, I use the

disagreement index based on forecast data about the general business conditions as

the benchmark disagreement measure labeled, DIS.

Equation 1.1 approximately measures the standard deviation of firm-level fore-

casts. It shows that increases in both fractions (larger F+
t and larger F−

t ) at the

same time, i.e. more opposed views about future, thus disagreement, are adjusted

for changes in the mean forecasts among firms. Mean forecast changes because firms

become more optimistic (larger F+
t and smaller F−

t ) or more pessimistic (smaller

F+
t and larger F−

t ). The closer this index is to 1 (when F+
t and F−

t both get closer

to 50 %), the greater is the magnitude of cross-sectional disagreement about their

own future profitability. The complete optimism or pessimism is characterized by

8Trebing (1998) first finds that firms’ responses to the question “general business condition” can
be highly correlated with their responses to the question asking for more firm-specific conditions
in the future such as shipments, and inventory among others.
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DISt = 0 (when F+
t or F−

t equals 1).

1.2.2 Measure of Economic Uncertainty

The benchmark uncertainty proxy is to capture the cross-sectional dispersion

of future firm-specific log productivity innovations, a micro-level measure. Hence,

greater variance in future productivity innovations leads to larger forecast errors of

a firm’s future business conditions. It can be seen from here that the dispersion of

firm-specific beliefs about their future fundamentals, forecast disagreement, does not

necessarily overlap with the dispersion of firms’ actual draws of future fundamentals,

i.e. real uncertainty.

Following Bloom (2014), idiosyncratic productivity is measured by firm-specific

slow residual (or, firm-specific TFP). The log TFP innovations (ei,t) are estimated

based on the following first order auto-regressive equation about log productivity

(zi,t):

ẑi,t+1 = ρz ẑi,t + µi + λt+1 + σe,tei,t+1. (1.2)

where ẑi,t denotes the estimated log TFP, as TFP is not directly observable. The

specification controls for the firm fixed-effect (µi: time-invariant cross-firm difference

in productivity) and the time fixed-effect (λt: cyclical changes in a firm’s produc-

tivity over time, which are common to all firms). The log firm-level TFP data

is directly from Imrohoroglu and Tüzel (2014), which adopts the Olley and Pakes

(1996) method for estimation, exploiting a Compustat panel of firm-level annual
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data from 1963 to 2013. The estimation of panel data about firm-specific TFPs

has controlled for the industry fixed-effects and the aggregate effect (yearly time

fixed effects). In this case, period t corresponds to a year. For more details, see

Imrohoroglu and Tüzel (2014).

The standard deviation, σe,t of next year TFP shocks proxies for forecast

uncertainty (UNC) regarding future firm-specific productivity to be realized. Un-

certainty dated in year t about year t+ 1 is thus given by

UNCt = σe,t (1.3)

It shows that the more dispersed idiosyncratic TFP shocks in year t, the larger the

forecast error for predicting firm i’s productivity of next year, t + 1. In order to

compare and contrast the estimated annual uncertainty series with the disagree-

ment series of higher frequency, the uncertainty series is interpolated for quarterly

frequency. I will show that the results in this chapter do not depend on whether or

not the interpolation is applied.

1.2.3 Exploratory Analysis

I firstly show the pairwise cross-correlations between disagreement measures

(DIS and SPF), and leads and lags of uncertainty measures (UNC and EPU)

using data of quarterly frequency. Following Bloom (2014), the SPF forecast dis-

persion series are constructed based on data from the year of 1990 going forward

when Philadelphia Fed started managing the SPF survey. Table 1.1 summarizes the
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results of correlations. In general, proxies for disagreement are strongly and posi-

tively correlated with uncertainty measures. This is true regardless of whether the

forecast disagreement among firms is about the “General Business Conditions” or

about the “New Orders” (DIS), or disagreement is among professional forecasters

(SPF) as they have different forecasts about future aggregate economic conditions

such as the real GDP and the industrial production. Over the short-term horizon

of three quarters of leads or lags, the positive co-movements between disagreement

and uncertainty measures are significant. This may well suggest that more uncer-

tain periods are associated with greater forecast disagreement among firms. It is

thus important to understand if the belief difference measures the forecast uncer-

tainty, and how disagreement and uncertainty would individually or jointly affect

the economy, given their tight interactions.

More specifically, BOS-based disagreement measures have the largest correla-

tions with the cross-sectional dispersion of future productivity innovations, UNC

for periods when disagreement lags uncertainty (h = 1, 2, 3). This may imply that

the past BOS disagreement indexes tend to indicate larger future productivity un-

certainty. Also, we see UNC has its largest correlations with SPF-based measures

when uncertainty lags or when it is contemporaneous with disagreement (h = −1, 0).

Fluctuations in uncertainty could then be informative about rises in SPF-based

forecast disagreement measures. In addition, I find that the EPU index tends to

be much more correlated with the BOS disagreement indexes based on forecasts

about general business conditions, relative to the index based on forecasts about

new orders. This suggests that disagreement about general business conditions are
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correlated with fluctuations of policy uncertainty at the aggregate level. Now we

move on to check the time evolution of proxies of uncertainty and disagreement.

The dashed line in Figure 1.2 indicates the time-varying BOS firm-level dis-

agreement index regarding their forecasts about their future general business con-

ditions. The solid line shows the interpolated quarterly time-variation in cross-

sectional productivity uncertainty as estimated from Equation (1.2). This pair of

series have been found to have strong positive correlations, based on the results from

Table 1.1. As documented by Bachmann et al. (2013b) and Bloom (2014), forecast

disagreement and uncertainty series are counter-cyclical : jumping before or dur-

ing a recession and decaying right after a recession. Disagreement tends to quickly

jump up and stays constant until further abrupt hikes reach its peak. The peaks

quickly turn to huge busts after the recessions. However, it takes time for uncer-

tainty to accumulate. For example, during the periods of 1985-1987 and 1995-1999

when uncertainty was climbing, belief dispersion was already quite stable at a high

level. Similarly, when disagreement was undergoing rapid changes, underlying pro-

ductivity uncertainty was sticky during 1982-1983, 1991-1993, and 2004-2006. Also,

note that disagreement had more bounded variance in the second half of the sample

compared to the first half of the time slice. In particular, we see BOS disagreement

typically jumps before climbs of uncertainty, except that during the 2008-2009 re-

cession, where very abrupt jumps in uncertainty and quick drops were followed by

greater disagreement.

Once converted from monthly to quarterly data, Figure 1.3 shows that if we are

using EPU to measure uncertainty as denoted by the solid line, hikes of uncertainty
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are also associated with recession periods. Also, we see more quick jumps and

slumps, based on EPU of higher frequency, and the second half of the sample

has larger variance in EPU. Similarly, we see EPU jumped before DIS picked

up disagreement for the recession period 2008-2009. Also, note that EPU produces

great spikes, for example, per the Black Monday in 1987, where we see little changes

to the forecast disagreement.

Figures 1.4 and 1.5 compare the SPF forecast dispersion (dashed line) mea-

sure using real GDP forecasts to the two uncertainty measures UNC and EPU,

respectively (solid line). These figures exhibit the SPF-based beliefs hiked tremen-

dously during the recessions of 1990-1991 and 2008-2009, but less so for the brief

period of 2000. Similarly, the SPF-based belief dispersion hiked following jumps in

productivity uncertainty during the 2008-2009 Great Recession.

In summary, both forecast disagreement and uncertainty are counter-cyclical,

and largely maintain synchronicity over time. However, it should be noted that

they did suspend synchronizing now and then, and the chronological order of jumps

may change for different episodes. Therefore, I proceed to examine the aggregate

impacts of innovations to disagreement and uncertainty proxies, given their close

but potentially different empirical relationships.

1.3 Aggregate Implications: Macro Evidence

To explore and quantify the dynamic aggregate effects of uncertainty and

forecast disagreement over business cycles, I employ standard recursive ordering
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identification by estimating different VAR systems in order to identify and examine

the impact of innovation changes to different measures.

Firstly, I isolate the exogenous changes that directly affect the dispersion of

firms’ views about the future, i.e. the disagreement shocks which affect distribution

of firms’ forecasts, by assuming that the exogenous changes to real productivity

dispersion, the uncertainty shocks, do not shift the forecast dispersion within the

same quarter. This benchmark identification shuts down the channel through which

disturbances to productivity uncertainty would affect the forecast dispersion on

impact (Scheme 1). Specifically, this scheme places the disagreement measure before

the uncertainty proxy, as followed by other real macroeconomic variables, which is

in line with the ordering adopted by Bloom (2009).

Secondly, I consider specifications that reverse the ordering between disagree-

ment and uncertainty, so as to first disentangle uncertainty shocks. This ordering

scheme assumes that the shocks that affect the dispersion of forecasts do not imme-

diately drive the productivity dispersion this quarter (Scheme 2).

Then, I verify if the impulse responses of major macro variables to isolated

disagreement shocks, using Scheme 1, are quantitatively similar to the impulse re-

sponses to the disturbances of disagreement, conditional on the restriction that

forecast disagreement can be affected by uncertainty shocks on impact with Scheme

2. Similar comparisons can be performed in order to examine the identified impacts

of the uncertainty shocks. Hence, we may conclude whether or not we can iden-

tify different types of shocks, and their different business cycle impacts if any. In

particular, it will be interesting to see how the aggregate changes in the forecast
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dispersion, which are not originated from changes in the variability of real produc-

tivity fundamentals, could affect the economy in a different way as compared to the

impacts of productivity uncertainty.

I first show the benchmark results, based on estimations of a range of trivari-

ate VAR systems, which place various disagreement and uncertainty proxies prior

to the U.S. aggregate investment series, as measured by the real gross private do-

mestic investment. I select the aggregate investment series for the following reasons:

(1) it is clearly a forward looking variable that is more closely related to forecasts

and uncertainty about future; (2) as documented by Gilchrist et al. (2014), uncer-

tainty shocks affect aggregate output primarily though the impacts on aggregate

investment.

I present the estimated impulse responses of aggregate investment to one stan-

dard deviation jumps in the innovations to proxies for uncertainty and disagreement

across various measurements. All variables are in log-levels with VARs estimated

with four quarterly data lags. The sample period covers from 1970 Q1 to 2013 Q4,

except for the system estimated using SPF data, which ranges from 1990 Q1 to 2013

Q4.

Figure 1.6 illustrates the impulse responses of aggregate investment, under

the identification Scheme 1, where changes to uncertainty measures can respond to

exogenous shocks that lead to more dispersed forecasts about the future. When

uncertainty is measured by future TFP shocks innovations,UNC, aggregate invest-

ment drops on impact to the adverse uncertainty shocks until bottoming out at 1.5

to 2 % below the pre-shock level in about five quarters. Importantly, we find strong
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rebound and overshooting expansion, such that in five years, the mean prediction

about aggregate investment is to reach 1-2 % above the pre-shock level. These “drop-

rebound-overshoot” dynamics are consistent with the model-predicted real option

effect of “wait and see” for uncertainty shocks. In addition, the identified effects of

uncertainty shocks are robust regardless of how we measure forecast disagreement.

In response to shocks that trigger greater disagreement but are not due to

fundamental changes in real productivity dispersion, aggregate investment experi-

ences a persistent decline. Compared to the impacts of uncertainty shocks, the

drops in investment reach the bottom with a greater decline of 3 % below the pre-

shock level in about two years after the shock. Nonetheless, we see no sign of the

“rebound-overshoot” path of investment, even five years following the disagreement

shocks.

When uncertainty is measured as news-based reference frequency, EPU, we

still see that aggregate investment can achieve a maximal drop of 3 % with limited

recovery in response to increases in BOS disagreement. Conversely, the magnitude

of the drops can be smaller and the estimated post-shock path to disagreement

shocks is less precise when using SPF to proxy for disagreement. In addition, we

get very imprecisely estimated impulse response paths of aggregate investment to

jumps in EPU from two years after the shocks. Also, we only see weak rebound.

Intuitively, the reason why the drop and rebound dynamics in case of uncertainty

shocks is missing could be due to the fact that EPU captures more of the public

attention towards uncertain public policies, which is no measure of the firms’ pro-

ductivity variance. For larger standard errors associated with impulse responses, it
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could be that as EPU counts for crisis and uncertainty related news, it already con-

ditions itself on changes that directly affect private agents’ beliefs. Therefore, the

orthogonal changes in EPU, the supposedly identified uncertainty shocks would no

longer have significant aggregate effects as disagreement shocks that affect disper-

sion of firms’ beliefs are isolated first. In addition, since the SPF-based dispersion

measure does not necessarily reflect the actual decision makers’ forecast differences,

this may also help explain the large variance of impulse responses of investment to

both uncertainty and disagreement shocks when SPF enters the system.

Figure 1.7 shows the estimated impulse responses of aggregate investment,

when Scheme 2 of identification is at work. The uncertainty shocks are first isolated

when exogenous changes to disagreement do not, on impact, alter the distribu-

tion of real productivity fundamentals across firms. We found almost exact drops,

quick rebound and overshoot of aggregate investment in response to the enlarged

uncertainty shocks, in terms of the magnitude and timing of changes in aggregate

investment dynamics. This is also true for the responses of investment to disagree-

ment shocks, namely, persistent decline and very slow recovery if any. In addition,

we found greater standard errors associated with estimations using EPU and SPF.

Table 1.2 summarizes the forecast error variance decomposition of aggregate

investment at different forecast horizons, based on estimation of the trivariate VAR

systems under identification of Scheme 1 ordering. For the near term of one quar-

ter, innovations in UNC explain about 2 % of the variance of aggregate investment,

while changes in the disagreement measure, DIS explain less than 1 % of variance

in investment. However, in three years, innovations of disagreement proxies of both
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DIS and SPF would explain around 30 % to 40 % of the variance, whereas changes

in UNC explain at most 15 %. In about five years, more than half of the variance in

investment, a significant magnitude of variations, can be explained by the dynamics

of belief dispersion. Conversely, the fraction of the variance in aggregate invest-

ment, which can be explained by the dispersion of real productivity fundamentals,

decays to roughly 12 % at most. In addition, when uncertainty is measured by

EPU and the VAR estimation is coupled with SPF, we could still see a dominant

fraction of aggregate investment dynamics as explained by the time-varying forecast

disagreement.

I further show that with a larger VAR system, these empirical results are

robust. In particular, consistent with the ordering considered in Bloom (2009), I es-

timate a 10-variable VAR system with Scheme 1 ordering: log(S&P500 stock market

index) , log(disagreement measure), log(uncertainty measure), Federal Funds Rate ,

log(average hourly earnings in manufacturing) , log(consumer price index) , weekly

average hours in manufacturing , log(non-farm payroll employment) , log(real gross

private domestic investment) , and log(industrial production) . Such a benchmark

identification proposes to isolate shocks to the belief dispersion, which are not due to

changes in the variance of productivity fundamentals. Similarly, I consider the case

when the disagreement and uncertainty measures are flipped in Scheme 2 ordering.

Rows (I) and (II) in Figure 1.8 display the impulse responses of aggregate in-

vestment, non-farm payroll employment, industrial production in logs to one stan-

dard deviation increase in innovations of UNC and DIS. Firstly, we still see the

drop-rebound-overshoot pattern for the impulse responses of aggregate investment
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to increases in uncertainty shocks. The drop-rebound dynamics are also seen for

the employment and industrial production, though limited overshoots are found.

Note that the aggregate investment now bottoms at 1% below the pre-shock level

around four quarters after the shocks, a smaller impact compared to the effect of

uncertainty shocks identified for a trivariate system. On the contrary, in response to

jumps in disagreement shocks, the aggregate investment, employment, and indus-

trial production all undergo a persistent decline until reaching the bottom beyond

two years. Despite the larger standard errors are associated with these impulse re-

sponses in the medium run to the disagreement shocks, we see no sign for rebounds,

let alone overshoots. On expectation, it takes about five years for the investment,

employment and production to fully return to the pre-shock levels subsequent to

the disagreement shocks.

Rows (III) and (IV) plot the impulse responses of the three aggregate variables

in a system when uncertainty is measured by EPU. Consistent with what we found

based on the tri-variate system, we no longer found the drop-rebound-overshoot

dynamics of these series in response to increases in the EPU-based uncertainty

measure. Moreover, these impulse response paths are estimated very imprecisely,

and the empirical effects of the EPU-based uncertainty shocks seem very trivial.

This finding contrasts the Bloom et al. (2014), in which rises in the EPU index

exhibit significant impacts that a contraction and a slow recovery are followed after

the shocks. In our VAR system, note that it is the increases in the disagreement

shocks that drive major macroeconomic series to drop and to stay low without a

quick rebound. Therefore, it’s intrigue to understand why the documented strong
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effects of EPU are gone, and why the disagreement shocks initiate the contraction

effects. Some explanations can be offered here: first,the EPU does not necessarily

reflect the decision makers’ forecast errors about future productivity, as it is not

a direct measure of the future productivity variance. Rather, it is a measure of

the intensity of public attention paid to crisis events. That’s why the “wait and

see” dynamics as predicted by a model of productivity uncertainty shocks may not

directly apply to a case when EPU is changed. Second, given the strong correlations

between EPU andDIS index highlighted in Table 1.1, it may suggest that in absent

of the forecast disagreement series as in Bloom et al. (2014), changes in EPU depress

the economy by picking up the channel of the disagreement shocks, through which

the economy is affected.

Again, under the reversed ordering of disagreement and uncertainty measure,

Figure 1.9 demonstrates that our findings are robust such that rises in uncertainty

have a short-run recessionary effect, which is followed by a quick rebound of ex-

pansion. Differently, the effects of disagreement shocks can have more persistent

dampening effects for a duration of up to two or three years following the shocks.

Table 1.3 shows the forecast error variance decomposition of aggregate investment

and industrial production at horizons up to five years, based on estimation of the

larger VAR system with Scheme 1 ordering. It shows that at three-years up to

five-years, changes in the disagreement measure over time can account for up to 15

% of the variance in aggregate investment and approximately 8% to 14 % of the

variance in production. By contrast, less than 5 % of the variances in investment

and production can be explained by variations in the uncertainty about productivity
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fundamentals.

When the forecast disagreement is measured by the SPF-based forecast disper-

sion index, the estimated impulse responses are attached with very large standard

errors such that neither the impacts of uncertainty nor those of disagreement can

be well-identified. Figures 1.10 and 1.11 show that regardless of ordering scheme,

estimation of a large VAR system with SPF included introduces too much noise

that the effects of uncertainty and disagreement shocks are no longer statistically

distinguishable from zero. It could be well due to the fact that the SPF data does

not capture the firms’ own views. In addition, a smaller sample size from 1990 with

only three marked recession periods is also responsible for not being able to deliver

the intended effects.

In sum, based on the results from a range of VAR exercises, I may conclude

that the survey-based disagreement index and dispersion of future firm-level produc-

tivity fundamentals identify two separate channels, through which the economy are

very differently affected. However, one concern to this argument is that the policy,

for example, the monetary authority’s intervention, may endogenously react differ-

ently to movements in disagreement and uncertainty measures, which then leads

to different aggregate impacts. Figure 1.12 shows the impulse responses of Federal

Funds Rate to increases in uncertainty and disagreement shocks. It suggests that

little evidence can be found to support the argument that the active management

of monetary policy is the cause for the different aggregate effects. Hence, it is

safe to conclude that there exist two types of second moment shocks. In addition,

we propose that the disagreement shocks are related to the information diffusion

23



among firms, thus “informational disagreement shocks”, for the following reasons.

First, these shocks, by construction, affect the firms’ belief distribution, which are

orthogonal to changes to the distribution of economic fundamentals that are rele-

vant for firms’ decision-making, i.e. “real uncertainty shocks”. Second, we see that

by including forecast disagreement series, the significant effects associated with the

Economic Policy Uncertainty Index that counts the number of news coverage are

muted. Last but not least, I find the “wait and see” effect of real uncertainty shocks

robust as long as the empirical measure of uncertainty corresponds to the theoret-

ical notion of future productivity variance. Now, we proceed to provide additional

micro-based evidence that lends further credence to these arguments.

1.4 Firm-level Investment: Micro Evidence

In this section, I provide micro evidence to demonstrate how the firm-level

business investment is differently associated with changes in disagreement and un-

certainty measures. In addition, I examine the consistency from evidence on firm-

level investments to macro evidence found in Section 1.3. Estimations of firm-level

investment dynamics are based on Compustat annual data from 1970 to 2013. My

identification strategy is to augment the baseline empirical firm-level investment

equation following Bloom et al. (2007) and Gilchrist et al. (2014) by incorporating

the aggregate measures of forecast disagreement and uncertainty:

log[I/K]i,t = βi,0 + θ logMPKi,t + β1 logDISt + β2 logUNCt + ǫi,t (1.4)
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where [I/K]i,t denotes the firm-level investment rate, which is measured by a firm’s

investment-capital ratio in year t. βi,0 denotes the firm-specific fixed effect such

that the time-invariant differences across firms in investment rate are controlled for.

MPKi,t refers to the empirical proxy for the marginal product of capital, a measure

for future investment opportunities (Gilchrist et al., 2014). I consider a range of

MPKi,t proxies including [Y/K]i,t (current sales-to-capital ratio), [π/K]i,t (current

operating income-to-capital ratio) following Gilchrist and Himmelberg (1999), along

with Tobin’s Q measure, Qi,t. In addition, the cash flow - capital ratio [CF/K]i,t, an

empirically found strong predictor of firm-level investment, is considered the fourth

proxy.9 In the benchmark estimation, marginal product of capital is measured by

the sales-capital ratio. See details on defining these empirical measures in Appendix

A.2 and the data summary in Appendix A.3.

In addition, I continue with the BOS measure of forecast disagreement regard-

ing firm-level six-month future forecasts about the General Business Conditions

(DIS), which is annualized from monthly data by averaging within a year, and

the measure of uncertainty based on the dispersion of future firm-level TFP shocks

(UNC). These measures have been found to have better identification of the effects

associated with disagreement and uncertainty shocks at the aggregate level. Note

that the regression equation (1.4) does not accommodate a time fixed effect per the

presence of the time-varying second moment measures. Partial effect coefficients,

β1 and β2, capture the signs and magnitudes of linear relationships between un-

9Little consensus has established on how we interpret why cash flow matters for firm’s in-
vestment. Fazzari et al. (1988) argue that cash flow reflects the financial constraint of the firm.
Gilchrist and Himmelberg (1999) find it is also a measure of expected marginal product of capital,
or a measure related to future demand and profitability growth (Bond et al., 2004).
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certainty or disagreement measures with the firm-level investment rate. Because

the uncertainty proxy dated in year t measures the future productivity dispersion in

year t+1, and disagreement dated in year t incorporates two-quarter ahead forecasts

difference across firms, these linear coefficients exhibit the “en-ante” associations of

firm-level investments with the dispersion of to-be-realized firms’ productivities and

the dispersion of expectations. In addition, I include lagged uncertainty and forecast

disagreement dated in t−1 so as to explore the linear “ex-post” relationships about

dispersion of realized productivities and “now-forecasts”.

Moreover, a main task to establish the consistency between macro- and micro-

based evidence is to identify the firm-level investment rebound dynamics associated

with increases in productivity uncertainty, and the absence of a rebound in invest-

ment for greater forecast disagreement. By Bloom (2009), the key mechanism for

rebound and overshoot of aggregate investment hinges on an intensive margin effect

of uncertainty, i.e. the convexity effect, or Hartman-Abel effect (Hartman, 1972;

Abel, 1983; Bloom, 2009). That is, firms see themselves more productive in expec-

tation, as the variance of future idiosyncratic productivity increases. This implies

that firms with larger productivity draws have larger investments when uncertainty

goes up, because of the increased expected future productivity. Hence, to identify

the “rebound and overshoot” dynamics, I further consider the non-linear associa-

tions of disagreement and uncertainty with the firm’s investment rate, conditional

on how productive a firm is. I use the estimated log firm-level TFP à la Imrohoroglu

and Tüzel (2014), based on the Compustat firm sample to measure firm-specific pro-

ductivity. Then, I merged the estimated TFP panel data with the firms’ operation
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metrics. Thus, a futher augmented specification of the empirical equation about the

firm-level investment rate is given by:

log[I/K]i,t =βi,0 + θ logMPKi,t + β1 logDISt + β2 logUNCt

+β3TFPi,t + β4∆TFPi,t + β5[∆TFPi,t]
2

+β6 logDISt ×∆TFPi,t + β7 logUNCt ×∆TFPi,t + ǫi,t (1.5)

In particular, as shown in Equation (1.5), logged firm-level TFP (TFPi,t) interacts

with disagreement and uncertainty in terms of its growth rate ∆TFPi,t. By dropping

the linear terms of disagreement and uncertainty, I also consider the case when the

time fixed effect is controlled for to disentangle the non-linear relationships between

firm-level investments and these interaction terms.

Table 1.4 summarizes the key estimation results. Columns 1 and 2 show that

the associations of uncertainty or disagreement about the to-be-realized productiv-

ity fundamentals with firm-level investment rates are statistically positive, while

the “ex-post” associations are statistically negative for the lagged linear terms. The

positive associations are not surprising for the following reason: the estimated coef-

ficients pick up the theoretically documented convexity or Hartman-Abel effects, as

both proxies of uncertainty and disagreement could approximate for the firms’ fore-

cast errors about future economic fundamentals. Increased forecast errors lead to

larger expected future productivity for all the firms, and thus larger investments on

average. Important to note that such evidence is not directly comparable with the

findings documented in other empirical works using micro-level data that find neg-
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ative associations. Firstly, the empirical literature about uncertainty mainly relies

on a particular type of proxies, which are mainly constructed from the firms’ stock-

market returns (Leahy and Whited, 1995; Bloom et al., 2007). However, as Caldara

et al. (2016) shows, these uncertainty measures are highly correlated with the firms’

financial distress measures, only through which, changes in uncertainty could have

contraction effects. Secondly, those documented negative linear associations are “ex-

post” regarding stock return realizations (Bloom et al., 2007). Therefore, based on

our specification that includes both the contemporaneous and lagged disagreement

and uncertainty terms, we still obtained the statistically significant negative partial

effects for UNCt−1 and DISt−1. In the spirit of Bloom et al. (2007); Gilchrist et al.

(2014), these negative relationships are considered evidence for the “wait and see”

real-option effects. Firms pause without taking additional investments upon more

dispersed productivity and more dispersed beliefs about “now”.

Results in column 3 further suggests that controlling both uncertainty and

disagreement measures, the positive “ex-ante” associations are robust, despite the

reduced sizes of both convexity effects. Importantly, we see that the magnitudes of

negative associations between firm-level investments and “now-cast” disagreement

measure is no longer significant, and the magnitude is lessened by a tremendous

degree. This suggests that changes in realized productivity dispersion are more

likely linked to the “wait and see” motive in line with Bloom (2009) whereas the

real option effect can be very trivial, if present at all, for ex-post disagreement

changes.

Columns 4-6 show the estimation results for Equation (1.5). Firstly, we still
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see the following: (1) the convexity effects are pronounced for both uncertainty

and forecast disagreement about to-be-realized productivity; (2) rises in the ex-post

productivity dispersion are associated with drops in firm-level investment. Despite

it still being significant at the 5 % level, the negative and linear real-option ef-

fect associated with forecast disagreement about the current period is very limited,

when uncertainty and disagreement proxies are both controlled; (3) once controlled

for both second moment proxies, all the partial effects related to uncertainty and

disagreement are smaller, relative to the results presented in columns 4 and 5.

Particularly, we focus on the partial effects of the two interaction terms that

involve firm-level TFP growths. According to columns 4-6, more productive firms, as

measured by greater firm-level log TFP growths, are associated with larger firm-level

investment rates when uncertainty is higher. This positive effect of the interaction

term of uncertainty, conditional on productivity growth, confirms the hypothesis

for the existence of rebound dynamics per higher uncertainty. Therefore, produc-

tivity uncertainty yields a productivity-enhancing effect because when the variance

of future productivity increases, firms with larger productivity draw would have a

greater expected productivity draw, which translates into a larger investment.

Conversely, column 5 finds a productivity-dampening effect for larger forecast

disagreement. For firms that disagree more about their future business conditions

by 1 %, more productive firms reduce their investments, while less productive firms

increase their investments by 0.18 %. Therefore, we found both decreases and in-

creases in investments, conditional on how productive firms are. It implies that,

as the firm-level investment responds to changes in firm-specific productivity, large
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investment spikes that are otherwise taken by firms with greater productivity draws,

are knocked down when firms disagree more about their future business conditions,

even if the fundamental productivity distribution does not change. When control-

ling both second moment measures, column 6 finds statistically significant positive

and negative signs, respectively, for the two interaction terms as well as significant

effects. These results suggest that there are two separate channels through which

forecast disagreement and future productivity uncertainty are related to firm-level

investments. Column 7 illustrates that, with linear effects of disagreement and un-

certainty captured by time fixed effects, non-linear impacts are robust with very

little changes to the estimated coefficients, relative to the data in column 6.

Table 1.5 shows the results that validate our main findings are robust using

different proxies for the marginal product of capital. Column 1 has the exact same

numbers as column 6 in Table 1.4 to aid comparisons across the specifications. It

shows that across the specifications of column 1-3, apart from the convexity effects

and “wait and see” effects, the productivity-enhancing effect of uncertainty and the

dampening effect of forecast disagreement are statistically significant. Interesting

to note, we still find that the negative association between ex-post productivity

uncertainty and firm-level investment is substantial, suggesting a strong “wait and

see” channel. However, such real-option effect for forecast disagreement is very

limited. In addition, the estimated elasticity for forecast disagreement, conditional

on productivity growth, is consistently around -0.43, an economically significant

number. For the case where MPKi,t is measured by Tobin’s Q, the non-linear

effects for both uncertainty and disagreement are no longer well estimated. This
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can be due to the fact that a significant number of year-firm observations of market

value of total equity are missing.

I further provide additional evidence of robustness of these micro-level find-

ings by controlling the lagged firm-level investment rate. As found by Gilchrist

and Himmelberg (1999) and Eberly et al. (2012), lagged firm-level investment is a

strong predictor of firm-level investment dynamics. Since the lagged investment is

correlated with the unobserved firm-level individual effect, the OLS estimator is no

longer consistent. Following Bloom et al. (2007), I adopt the Arellano-Bond GMM

estimation procedure à al Arellano and Bover (1995); Blundell and Bond (1998). I

consider the following all endogenous: the TFPi,t, MPKi,t, disagreement and un-

certainty measures, along with their respective interactions with TFP growth rates.

Three lags in log levels of these variables are included in the difference equation of

the GMM system as instruments. In addition, the difference in log levels of these

variables, up to three lags, are included in the level equation of the GMM system

as instruments.

Table 1.6 summarizes the estimation results of dynamic specifications. It shows

that the lagged investment is positively correlated with current firm-level investment

rate, with elasticity estimated around 0.4-0.5. We observe little change to the signs

and the magnitudes of the partial effects related to the linear relationships between

uncertainty or disagreement and firm-level investment. However, the “wait and see”

effect related to the firms’ disagreement is found to be larger, which is at the sim-

ilar degree of magnitude compared to the counterpart coefficients for uncertainty.

Regarding the non-linear effects, the statistically significant coefficient for the inter-
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action term of uncertainty and productivity growth rate is positive, around 0.2 when

MPKi,t is measured by sales-capital ratio and profit-capital ratio, which is compa-

rable with the magnitude of the estimate based on the static specifications. Using

cash flows or Tobin’s Q measures of MPKi,t, such a partial effect of the interaction

term is imprecisely estimated. By contrast, firms with greater productivity growth,

conditional on a 1 % increasing disagreement environment, would cut their logged

investment rates by 0.45 % unless MPKi,t is measured by Tobin’s Q. This estimate

of elasticity is of similar magnitude to that obtained from static estimations.

In summary, micro evidence exhibits that productivity uncertainty has the

convexity effect and the “wait and see” effect, consistent with a model of uncer-

tainty shocks. In addition, it shows a productivity-enhancing effect such that more

productive firms would increase investment when productivity becomes more dis-

persed for the future. This serves the micro-foundation for a quick rebound and

overshoot of investments at the aggregate level. On the contrary, the convexity

effect can be stronger than its trivial “wait and see” effect associated with fore-

cast disagreement. More importantly, it is the partial effect of the non-linear term,

marked by a productivity-dampening effect that the forecast disagreement differs

from productivity uncertainty by its distinctive effect on firm-level investment.

1.5 Discussion: Shock Identifications

At both the aggregate level and the firm level, we found that innovations

to the firms’ forecast disagreement can affect aggregate dynamics and the firm-

32



level investment in a different way, as compared to the impacts of productivity

uncertainty shocks. The distinct feature that distinguishes impulse responses of

major macroeconomic aggregates to uncertainty shocks from those to disagreement

shocks, is whether or not there is quick rebound and overshoot dynamics. At the firm

level, whether the elasticity of the firm-level investment conditional on uncertainty

productivity growth with respect to changes to second moment proxy is positive or

negative, helps identify if disturbances originate from changes to the spread of real

economic fundamentals, or from changes to the dispersion of heterogeneous beliefs.

A more general implication can be drawn to implement the identification of

the different types of second moment shocks in the data. As larger productivity

uncertainty pushes more firms into the inaction band, through the “wait and see”

channel (Bloom, 2009), the dispersion of firm-level investment rates across firms is

reduced. However, the non-linear productivity-enhancing effect associated with pro-

ductivity uncertainty suggests that greater dispersion of future productivity shocks

will translate into increased dispersion of investment rates. It is less clear how

these two offsetting forces, due to jumps in productivity uncertainty, will drive the

investment rate dispersion.10 However, the presence of the similar but trivial “wait-

and-see” channel, and the productivity-dampening effect associated with forecast

disagreement could both reduce the dispersion of investment rates across firms.

Hence, this implication for identification is tested by estimating the forecasting

equation shown below, regarding the firm-level investment rate dispersion. The

10Bachmann and Bayer (2014) is the first paper that highlights such ambiguity and theoretically
examines the trade-off between real-option effect and productivity-enhancing effect, with respect
to how the cyclicality of firm-level investment rates dispersion is determined.
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specification in Caldara et al. (2016) is followed, which examines the near-term

aggregate implications of various uncertainty measures.

∆ log σt,I/K = β0 + β1UNCt−h + β2DISt−h +

q
∑

i=0

θi∆ log σt−h−i,I/K + ǫt (1.6)

The dependent variable is the growth rate of standard deviation of firm-level investment-

capital ratios [I/K]i,t across firms. The coefficients of β1 and β2 provide how changes

to the dispersion of firm-level investment rates are related to the productivity dis-

persion and forecast disagreement h > 0 quarters in the past. Based on the OLS

estimation, I estimate this equation to examine the effects of uncertainty and dis-

agreement for different horizons: h = 1, 2, 3, 4. I consider q = 1 such that the

growth rates of investment rate dispersion dated in quarters t− h and t− h− 1 are

controlled. The estimation results are summarized in Table 1.7.

As illustrated in Table 1.7, both uncertainty and disagreement increases are

associated with slower growth of investment rate dispersion regardless of the length

of forecast horizon. However, when forecast disagreement and productivity uncer-

tainty are both controlled, only the increases in the past disagreement suggest the

significant shrinkage in the growth rate of the investment rate dispersion in the fu-

ture, whereas uncertainty does not help predict the dynamics of the investment rate

dispersion. These results can be explained by the fact that productivity uncertainty

could have shifted the dispersion of investment rates because of its high correlation

with the disagreement series. Hence, we have verified the implication for identifi-

cation that it is the changes in belief difference over time instead of changes to the
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productivity uncertainty, which contributes to the time variation of the investment

rate dispersion.

In addition, we see that the macro- and micro-based evidence are consistent

with each other. Aggregate rebound and overshoot of aggregate investment after

jumps in uncertainty shocks could be consequences of the increased size of individual

investment spikes taken by more productive firms. Qn the contrary, when belief

changes are not backed by good or bad economic fundamentals, innovations that

increase the dispersion of the firms’ heterogeneous beliefs about future business

conditions could increasingly dampen the size of investment spikes taken by more

productive firms. As a result, in absent of the rebound dynamics, we could see a

slower recovery of aggregate investment.

It shows that by isolating the time-varying disagreement shocks, we are better

equipped to understand the mechanism that drives the dynamics of firm-level in-

vestment rate dispersion. As larger disagreement dampens investment spikes among

more productive firms and induces investment jumps among less productive firms,

the dispersion of the investment rate can be shrunk.

1.6 Conclusion

This chapter provides empirical evidence at both the aggregate level and the

firm level to demonstrate that survey-based forecast dispersion identifies a different

type of second moment shocks that affect firm-level belief dispersion, which are not

backed by good or bad economic fundamentals. Such pure informational disagree-
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ment shocks differ from the canonical uncertainty shocks that directly affect the

variance of real economic fundamentals, given their very different macro and micro

implications.

Using firm level forecasts dispersion to measure disagreement, macro series

such as aggregate investment, employment, and industrial production, all experience

a persistent decline followed by a slow recovery in response to greater disagreement

shocks. Conversely, when uncertainty is measured by the cross-sectional dispersion

of future firm-specific productivity innovations that corresponds well to the theoreti-

cal concept of productivity uncertainty in the model of uncertainty shocks, the “wait

and see” effect of drop-rebound-overshoot of macro aggregates is robust, following

jumps in productivity uncertainty.

At the micro-level, conditional on being more productive, firm producers tend

to invest more as a larger variance of future productivity increases the expected

marginal product of capital. Such findings confirm the source at the firm-level,

for a macroeconomic rebound. However, by creating informational confusion about

future business conditions, innovations that trigger greater disagreement among

firms dampen the size of investment spikes among more productive firms, which

results in a more persistent economic downturn and a weak recovery.

Isolating disagreement shocks helps better explain two major facts that cannot

be reconciled with a model of counter-cyclical uncertainty shocks only as found in

Bachmann and Bayer (2014): (1) It is the dampened investment spikes during bad

times that lead to drops in aggregate investment; (2) The dispersion of firm-level

investments is pro-cyclical.
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By isolating the informational disagreement shocks, this chapter finds that

the dispersion of firms’ heterogeneous beliefs is not a good measure of the concept

of economic uncertainty, as defined to be the variance of future productivity in

a model. In addition, given that the forecast disagreements have been found to

be negatively correlated with changes in dispersion of firm-level investment rates.

Understanding the dynamics about time-varying forecast disagreement helps answer

why the firm-level investment rate dispersion is pro-cyclical in the data.

1.7 Tables

Table 1.1: Correlations Between Proxies of Disagreement and Uncertainty

Forecast DIS (General) DIS (Order) SPF (Real GDP) SPF (IP)

Lag/Lead (h) UNC EPU UNC EPU UNC EPU UNC EPU

-3 0.230*** 0.107 0.115 -0.02 0.270*** 0.091 0.207** 0.154
-2 0.243*** 0.138* 0.120 -0.01 0.350*** 0.171* 0.248** 0.215**
-1 0.271*** 0.223*** 0.137* 0.090 0.401*** 0.330*** 0.273*** 0.289***
0 0.307*** 0.286*** 0.163** 0.180** 0.417*** 0.300*** 0.271*** 0.274***
1 0.339*** 0.268*** 0.187** 0.146* 0.393*** 0.239** 0.243** 0.246**
2 0.372*** 0.224*** 0.213*** 0.111 0.351*** 0.265 0.190* 0.235**
3 0.400*** 0.207*** 0.242*** 0.105 0.287*** 0.197* 0.116 0.165

Notes: Numbers are the pairwise correlation coefficients between a time series of disagreement mea-
sure in quarter t and series of uncertainty dated at quarter t + h. h reflects leads and lags about
uncertainty proxies UNC and EPU. “General” and “Order” respectively refer to the BOS disagree-
ment index (DIS) using forecast data about General Business Condition and about New Order in
six months relative to the survey date. Monthly disagreement index and monthly Economic Policy
Uncertainty Index EPU are converted to quarterly using within-quarter averages. “GDP” and “IP”
respectively refer to Survey of Professional Forecasters quarterly forecast dispersion series (SPF) re-
garding forecasts about Real GDP and about Industrial Production two quarters ahead. Quarterly
data of UNC is obtained via interpolation of yearly data. Sample period: 1970Q1 - 2013Q4 except
that series of SPF from 1990Q1-2013Q4 is used for computing its correlations with uncertainty prox-
ies. * p < 0.10, ** p < 0.05, and *** p < 0.01.
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Table 1.2: Aggregate Investment: Forecast Variance Due to Innovations in Disagree-
ment and Uncertainty (Trivariate VARs)

VAR System Horizon: One Quarter One Year Three Years Five Years

(1) UNC 2.22 11.32 14.39 11.56
DIS 0.70 10.53 38.83 51.00

(2) EPU 2.28 7.42 6.36 4.99
DIS 0.10 10.68 42.19 55.82

(3) UNC 0.54 4.80 7.52 15.38
SPF 3.30 21.18 57.77 58.41

(4) EPU 7.10 11.97 5.57 4.03
SPF 4.61 16.55 27.67 30.11

Notes: Each cell number in a row denotes the fraction (in percent) of the total fore-
cast error variance of log aggregate investment due to innovations in either uncertainty
proxy (UNC or EPU) vs. in disagreement proxy (DIS or SPF) for a particular VAR
system estimated. Column 1 refers to the four trivariate VAR systems estimated us-
ing different combinations of uncertainty and disagreement measures (Disagreement
ordered before uncertainty proxy: Scheme 1 Ordering); see text for details on speci-
fication of these VARs. Sample period: 1970Q1 - 2013Q4 except those systems that
involve series of SPF, which has data ranging from 1990Q1-2013Q4.
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Table 1.3: Aggregate Investment and Industrial Production: Forecast Variance Due
to Innovations in Disagreement and Uncertainty (Large VAR Systems)

VAR System Horizon: One Quarter One Year Three Years Five Years

Aggregate Investment

(1) UNC 0.10 2.92 3.13 2.99
DIS 2.58 8.21 13.45 13.11

(2) EPU 1.39 0.90 0.57 1.00
DIS 0.33 8.63 15.68 15.03

Industrial Production

(1) UNC 0.22 4.82 3.64 3.05
DIS 3.90 7.22 7.56 7.76

(2) EPU 0.51 0.26 0.24 0.33
DIS 2.46 9.09 13.44 13.93

Notes: Each cell number in a row denotes the fraction (in percent) of the total forecast error
variance of log aggregate investment due to innovations in either uncertainty proxy (UNC or
EPU) vs. in disagreement proxy (DIS or SPF) for a particular VAR system estimated. Col-
umn 1 refers to the large VAR systems estimated using either pair of proxies DIS and UNC;
system (1) or DIS and EPU; system (2) with disagreement measure ordered before uncertainty
proxy: Scheme 1 Ordering; see text for details on specification of these VARs. Sample period:
1970Q1 - 2013Q4.

1.8 Figures

Figure 1.1: BOS Forecast Disagreement: Forecast of General Business Condition and
Forecast of of New Orders
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NOTES: Sample period: 1970:Q1 - 2013:Q4. The dashed line captures the magnitude of cross-
sectional difference in six-month ahead forecast of “general business condition” and the solid line
denotes the forecast difference in “new orders” forecasts among manufacturing firms based on
Philadelphia Fed Business Outlook Survey. The disagreement indexes are constructed in line with
Bachmann et al. (2013b). The shaded bars indicate the NBER-dated recession periods.
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Figure 1.2: BOS Forecast Disagreement and Dispersion of Firm-level TFP Shocks
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NOTES: Sample period: 1970:Q1 - 2013:Q4. The dashed line captures the magnitude of cross-
sectional difference in six-month ahead forecast of “general business condition” among manufac-
turing firms based on Philadelphia Fed Business Outlook Survey data. The disagreement index is
constructed in line with Bachmann et al. (2013b). The solid line depicts the estimate of dispersion
of firm-level TFP innovations based on Compustat non-financial firms’ data in line with Bloom
et al. (2014).The shaded bars indicate the NBER-dated recession periods.

40



Figure 1.3: BOS Forecast Disagreement and Economic Policy Uncertainty
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NOTES: Sample period: 1970:Q1 - 2013:Q4. The dashed line captures the magnitude of cross-
sectional difference in six-month ahead forecast of “general business condition” among manufac-
turing firms based on Philadelphia Fed Business Outlook Survey data. The disagreement index
is constructed in line with Bachmann et al. (2013b). The solid line depicts the media-based es-
timate of economic policy uncertainty based on Baker et al. (2015).The shaded bars indicate the
NBER-dated recession periods.
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Figure 1.4: SPF Forecast Disagreement and Dispersion of Firm-level TFP Shocks
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NOTES: Sample period: 1990:Q1 - 2013:Q4. The dashed line captures the magnitude of 75
percentile relative to 25 percentile difference in six-month ahead forecast of “Real GDP” among
professional forecasters published by Philadelphia Fed Survey of Professional Forecasters (SPF)
data. The solid line depicts the estimate of dispersion of firm-level TFP innovations based on
Compustat non-financial firms’ data in line with Bloom et al. (2014).The shaded bars indicate the
NBER-dated recession periods.
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Figure 1.5: SPF Forecast Disagreement and Economic Policy Uncertainty
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NOTES: Sample period: 1990:Q1 - 2013:Q4. The dashed line captures the magnitude of 75
percentile relative to 25 percentile difference in six-month ahead forecast of “Real GDP” among
professional forecasters published by Philadelphia Fed Survey of Professional Forecasters (SPF)
data. The solid line depicts the media-based estimate of economic policy uncertainty based on
Baker et al. (2015).The shaded bars indicate the NBER-dated recession periods.
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Figure 1.6: IRFs of Aggregate Investment: Uncertainty and Disagreement Shocks

(Trivariate VAR - Ordering: Disagreement, Uncertainty and Investment)
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NOTES: This figure plots impulse responses of U.S. Real Gross Private Domestic Investment to
1 % increase in disagreement proxies (DIS and SPF) and uncertainty proxies (UNC and EPU)
based on the estimation of a tri-variate VAR system (all in log levels) with 4 lags using quarterly
data; see the text for details. Left column: responses to uncertainty shocks. Right column:
responses to disagreement shocks. Each row shows the estimated responses to a particular pair
of measures as indicated in the brackets. DIS is based on forecast data for “General Business
Condition”. SPF is based on forecast data for Real GDP. Sample period: 1970Q1 - 2013Q4
except for VAR systems involving SPF data: 1990Q1-2013Q4. Area between red dashed lines
defines 95 % confidence interval based on 1000 bootstrap simulations
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Figure 1.7: IRFs of Aggregate Investment: Uncertainty and Disagreement Shocks

(Trivariate VAR - Reversed Ordering: Uncertainty, Disagreement and Investment)
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NOTES: This figure plots impulse responses of U.S. Real Gross Private Domestic Investment to
1 % increase in disagreement proxies (DIS and SPF) and uncertainty proxies (UNC and EPU)
based on the estimation of a tri-variate VAR system (all in log levels) with 4 lags using quarterly
data; see the text for details. Left column: responses to uncertainty shocks. Right column:
responses to disagreement shocks. Each row shows the estimated responses to a particular pair
of measures as indicated in the brackets. DIS is based on forecast data for “General Business
Condition”. SPF is based on forecast data for Real GDP. Sample period: 1970Q1 - 2013Q4
except for VAR systems involving SPF data: 1990Q1-2013Q4. Area between red dashed lines
defines 95 % confidence interval based on 1000 bootstrap simulations
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Figure 1.8: Aggregate Implications: Uncertainty and Disagreement Shocks

[Disagreement Index (DIS) Ordered Before Uncertainty)]

Investment

0 2 4 6 8 10 12 14 16 18 20

P
er

ce
nt

-3

-2

-1

0

1

2

3

Employmenet

0 2 4 6 8 10 12 14 16 18 20

P
er

ce
nt

-0.5

0

0.5

Industrial Production

0 2 4 6 8 10 12 14 16 18 20

P
er

ce
nt

-1

-0.5

0

0.5

1

(I) Responses to an Uncertainty Shock (DIS-UNC)

Investment

0 2 4 6 8 10 12 14 16 18 20

P
er

ce
nt

-4

-3

-2

-1

0

1

2

3

Employmenet

0 2 4 6 8 10 12 14 16 18 20

P
er

ce
nt

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Industrial Production

0 2 4 6 8 10 12 14 16 18 20

P
er

ce
nt

-2

-1.5

-1

-0.5

0

0.5

1

1.5

(II) Responses to an Disagreement Shock (DIS-UNC)
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(III) Responses to an Uncertainty Shock (DIS-EPU)
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(IV) Responses to an Disagreement Shock (DIS-EPU)

NOTES: This figure plots impulse responses of U.S. real private domestic investment (first col-
umn), non-farm payroll employment (second column), and industrial production (third column)
to 1 % increase uncertainty (UNC or EPU)and disagreement proxies (DIS), obtained from es-
timation of a ten-variable system of VAR with Scheme 1 Cholesky recursive ordering; see details
in text. The frequency of data is quarterly and the VARs are estimated with 4 lags. The sample
covers 1990Q1 to 2013Q4. Area between red dashed lines defines 95 % confidence interval based
on 1000 bootstrap simulations.
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Figure 1.9: Aggregate Implications: Uncertainty and Disagreement Shocks

[Uncertainty Measure Ordered Before Disagreement Index (DIS)]
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(III) Responses to an Uncertainty Shock (EPU-DIS)
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(IV) Responses to an Disagreement Shock (EPU-DIS)

NOTES: This figure plots impulse responses of U.S. real private domestic investment (first col-
umn), non-farm payroll employment (second column), and industrial production (third column)
to 1 % increase uncertainty (UNC or EPU)and disagreement proxies (DIS), obtained from es-
timation of a ten-variable system of VAR with Scheme 2 Cholesky recursive ordering; see details
in text. The frequency of data is quarterly and the VARs are estimated with 4 lags. The sample
covers 1990Q1 to 2013Q4. Area between red dashed lines defines 95 % confidence interval based
on 1000 bootstrap simulations.
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Figure 1.10: Aggregate Implications: Uncertainty and Disagreement Shocks

[Disagreement Index (SPF) Ordered Before Uncertainty)]
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(IV) Responses to an Disagreement Shock (SPF-EPU)

NOTES: This figure plots impulse responses of U.S. real private domestic investment (first col-
umn), non-farm payroll employment (second column), and industrial production (third column)
to 1 % increase uncertainty (UNC or EPU)and disagreement proxies (SPF), obtained from es-
timation of a ten-variable system of VAR with Scheme 1 Cholesky recursive ordering; see details
in text. The frequency of data is quarterly and the VARs are estimated with 4 lags. The sample
covers 1990Q1 to 2013Q4. Area between red dashed lines defines 95 % confidence interval based
on 1000 bootstrap simulations.
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Figure 1.11: Aggregate Implications: Uncertainty and Disagreement Shocks

[Uncertainty Measure Ordered Before Disagreement Index (SPF)]
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(IV) Responses to an Disagreement Shock (EPU-SPF)

NOTES: This figure plots impulse responses of U.S. real private domestic investment (first col-
umn), non-farm payroll employment (second column), and industrial production (third column)
to 1 % increase uncertainty (UNC or EPU)and disagreement proxies (SPF), obtained from es-
timation of a ten-variable system of VAR with Scheme 2 Cholesky recursive ordering; see details
in text. The frequency of data is quarterly and the VARs are estimated with 4 lags. The sample
covers 1990Q1 to 2013Q4. Area between red dashed lines defines 95 % confidence interval based
on 1000 bootstrap simulations.
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Figure 1.12: IRFs of Federal Funds Rate: Uncertainty and Disagreement Shocks

[Disagreement Index (DIS) Ordered Before Uncertainty)]
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NOTES: This figure plots impulse responses of U.S. Federal Funds Rate to 1 % increase uncer-
tainty (UNC) or disagreement proxy(DIS), obtained from estimation of a ten-variable system of
VAR with Scheme 1 Cholesky recursive ordering; see details in text. The frequency of data is
quarterly and the VARs are estimated with 4 lags. The sample covers 1990Q1 to 2013Q4. Area
between red dashed lines defines 95 % confidence interval based on 1000 bootstrap simulations.
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Table 1.4: Uncertainty, Disagreement, and Firm-level Investment

(1) (2) (3) (4) (5) (6) (7)

log[Y/K]i,t 0.804*** 0.799*** 0.799*** 0.732*** 0.721*** 0.724*** 0.735***

(0.014) (0.014) (0.015) (0.015) (0.014) (0.015) (0.015)

log[UNC]t 0.405*** 0.252*** 0.364*** 0.243***

(0.020) (0.021) (0.020) (0.021)

log[UNC]t−1 -0.561*** -0.513*** -0.520*** -0.489***

(0.022) (0.023) (0.021) (0.022)

log[DIS]t 0.340*** 0.320*** 0.342*** 0.319***

(0.020) (0.021) (0.019) (0.020)

log[DIS]t−1 -0.174*** -0.013 -0.187*** -0.039**

(0.019) (0.020) (0.019) (0.019)

TFPi,t 0.699*** 0.704*** 0.699*** 0.623***

(0.023) (0.022) (0.023) (0.022)

∆TFPi,t -0.252** -0.508*** -0.133 -0.095

(0.118) (0.038) (0.121) (0.120)

(∆TFPi,t)
2 0.080*** 0.073*** 0.082*** 0.066***

(0.014) (0.013) (0.014) (0.013)

log[UNC]t ×∆TFPi,t 0.117 0.285*** 0.293***

(0.072) (0.083) (0.082)

log[DIS]t ×∆TFPi,t -0.189** -0.403*** -0.405***

(0.092) (0.110) (0.110)

No. Obs 88415 89432 77456 77456 89432 77456 77456

R2(Within) 0.192 0.183 0.199 0.244 0.233 0.248 0.274

Time Fixed-Effect N N N N N N Y

Notes: Sample covers annual data from 1970 - 2013. Dependent Variable: yearly firm-level investment-
capital ratio in log log[I/K]i,t. Measure of Uncertainty: UNCt, dispersion of next year t + 1 log TFP
shocks. Measure of Disagreement: DISt, annualized dispersion index of six-month ahead forecasts for
the “General Business Conditions” among manufacturing firms; see text for details. Firm-level fixed ef-
fects are included for all specifications (not reported). Estimations are done through OLS. Bootstrapped
S.E. in parentheses based on 100 repetitions and is clustered at the firm level. Significance levels: 10%
*, 5% **, 1% ***
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Table 1.5: Robustness Checks: Various Measures of Marginal Product of Capital

(1) (2) (3) (4)

log[UNC]t 0.243*** 0.314*** 0.312*** 0.145***
(0.021) (0.022) (0.022) (0.038)

log[UNC]t−1 -0.489*** -0.619*** -0.680*** -0.382***
(0.022) (0.022) (0.023) (0.040)

log[DIS]t 0.319*** 0.390*** 0.451*** 1.517***
(0.020) (0.022) (0.022) (0.089)

log[DIS]t−1 -0.039** -0.060*** -0.080*** -0.063
(0.019) (0.020) (0.021) (0.082)

log[UNC]t ×∆TFPi,t 0.285*** 0.461*** 0.251*** -0.107
(0.083) (0.092) (0.090) (0.224)

log[DIS]t ×∆TFPi,t -0.403*** -0.448*** -0.469*** -0.214
(0.110) (0.125) (0.122) (0.434)

TFPi,t 0.699*** 0.506*** 0.874*** 0.516***
(0.023) (0.028) (0.027) (0.037)

∆TFPi,t -0.133 0.115 -0.178 -0.457
(0.121) (0.135) (0.131) (0.288)

(∆TFPi,t)
2 0.082*** 0.073*** 0.060*** 0.029

(0.014) (0.016) (0.016) (0.021)
log[Y/K]i,t 0.724***

(0.015)
log[π/K]i,t 0.527***

(0.020)
log[CF/K]i,t 1.380***

(0.254)
logQi,t−1 0.427***

(0.016)

No. Obs 77456 77456 77456 20451
R2(Within) 0.248 0.156 0.123 0.212

Notes: Sample covers annual data from 1970 - 2013. Dependent Variable: yearly
firm-level investment-capital ratio in log log[I/K]i,t. Measure of Uncertainty: UNCt,
dispersion of next year t + 1 log TFP shocks. Measure of Disagreement: DISt, an-
nualized dispersion index of six-month ahead forecasts for the “General Business
Conditions” among manufacturing firms; see text for details. Firm-level fixed ef-
fects are included for all specifications (not reported). Estimations are done through
OLS. Bootstrapped S.E. in parentheses based on 100 repetitions and is clustered at
the firm level. Significance levels: 10% *, 5% **, 1% ***
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Table 1.6: Robustness Checks: GMM Estimation of Dynamic Specifications

Regressand: log[I/K]i,t (1) (2) (3) (4)

log I/Ki,t−1 0.544*** 0.422*** 0.419*** 0.459***
(0.013) (0.009) (0.009) (0.021)

log[UNC]t 0.203*** 0.166*** 0.113*** 0.173***
(0.020) (0.020) (0.021) (0.040)

log[UNC]t−1 -0.279*** -0.405*** -0.381*** -0.326***
(0.021) (0.020) (0.023) (0.044)

log[DIS]t 0.273*** 0.402*** 0.433*** 0.943***
(0.022) (0.020) (0.020) (0.098)

log[DIS]t−1 -0.179*** -0.280*** -0.260*** -0.940***
(0.020) (0.020) (0.021) (0.096)

log[UNC]t ×∆TFPi,t 0.223** 0.175* 0.054 -0.375
(0.098) (0.101) (0.103) (0.251)

log[DIS]t ×∆TFPi,t -0.442*** -0.485*** -0.420*** 0.283
(0.135) (0.141) (0.145) (0.540)

TFPi,t 0.714*** 0.338*** 0.559*** 0.461***
(0.027) (0.038) (0.042) (0.052)

∆TFPi,t -0.250* 0.064 -0.041 -0.564*
(0.140) (0.139) (0.150) (0.336)

(∆TFPi,t)
2 0.092*** 0.061*** 0.053*** 0.011

(0.014) (0.015) (0.017) (0.029)
log[Y/K]i,t 1.073***

(0.059)
log[Y/K]i,t−1 -0.717***

(0.059)
log[π/K]i,t 0.375***

(0.055)
log[π/K]i,t−1 0.230***

(0.046)
log[CF/K]i,t 0.949

(0.586)
log[CF/K]i,t−1 6.001***

(0.632)
logQi,t−1 0.425***

(0.038)
logQi,t−2 -0.186***

(0.033)

Goodness of Fit (Corr) 0.451 0.422 0.348 0.499
Test Serial Correlation (P-value) 0.150 0.147 0.003 0.262

Notes: Sample covers annual data from 1970 - 2013. Firm-level fixed effects are
included for all specifications (not reported). See details about measurements and
instruments used for GMM estimation in text. Goodness of Fit is computed as the
correlation coefficient of predicted log investment rate with the actual series. Boot-
strapped S.E. in parentheses based on 100 repetitions and is clustered at the firm
level. Significance levels: 10% *, 5% **, 1% ***
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Table 1.7: Predictions: Changes in Dispersion of Firm-level Investment Rates

Horizon h One-Quarter Forecast Two-Quarter Forecast

log[UNC]t−1 -0.013** -0.008
(0.006) (0.005)

log[DIS]t−1 -0.016** -0.012**
(0.006) (0.005)

log[UNC]t−2 -0.023** -0.010
(0.011) (0.009)

log[DIS]t−2 -0.036*** -0.031***
(0.011) (0.010)

Adj. R2 0.571 0.575 0.577 0.307 0.358 0.361

Horizon h Three-Quarter Forecast Four-Quarter Forecast

log[UNC]t−3 -0.032** -0.016
(0.014) (0.011)

log[DIS]t−3 -0.047*** -0.039***
(0.013) (0.012)

log[UNC]t−4 -0.032** -0.015
(0.015) (0.012)

log[DIS]t−4 -0.048*** -0.042***
(0.012) (0.012)

Adj. R2 0.209 0.282 0.295 0.083 0.174 0.183

Notes: Sample covers quarterly data from 1970Q4 - 2013Q4. Dependent variable
∆ log σt,I/ki is the quarterly growth rate of firm-level investment rate dispersion in
quarter t, which is measured by the quarter t and t − 1’s log difference in cross-
sectional standard deviation of quarterly firms’ investment-capital ratios. Quarterly
firm-level investment rates dispersion series, and quarterly productivity uncertainty
series are interpolated from annual data. Specification includes a constant and two
past lags of ∆ log σt−h,I/ki and ∆ log σt−h−1,I/ki (estimates not reported). Newey-west
standard errors are reported in brackets. Significance levels: 10% *, 5% **, 1% ***
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Chapter 2: Disagreement vs. Uncertainty: Investment Dynamics and

Business Cycles

2.1 Introduction

In this chapter, I develop a general equilibrium theory that finds that changes

in the magnitude of disagreement about aggregate productivity among firms can be

an important driver of business cycles. The theory incorporates two intrinsically

different forces: shocks to the dispersion of idiosyncratic productivity, and shocks to

the dispersion of heterogeneous information. The former, known as swings in uncer-

tainty, is argued to be a strong factor that triggered significant damages during the

08-09 recession (Bloom et al., 2014; Christiano et al., 2014). However, the business

cycle impacts of time-varying information quality that shapes the distribution of

firms’ beliefs are largely under-explored. More dispersed information causes more

firms to act on imprecise signals, which prevent them from being well informed of

the economic status quo and from forming good forecasts of future profitability.

Larger information dispersion can increase the heterogeneity of firms’ beliefs about

aggregate as well as firm-specific productivity, which results in greater informational

disagreement, even if the distribution of productivity fundamentals is unchanged.
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The model shows that larger informational disagreement makes more productive

firms believe the unobserved good idiosyncratic productivity draws are not good

enough to justify investment, which leads to capital mis-allocation and contrac-

tion. As it takes time for firms to update beliefs with good precision, post-recession

recovery of aggregate investment and production can be sluggish.

Conventionally, uncertainty is measured by the mean-preserving spread of a

distribution about real economic fundamentals, for example, cross-sectional disper-

sion of firm-specific productivity, and time-series volatility of aggregate productivity.

Shocks that increase fundamental uncertainty raise firms’ forecast error and force

firms to “wait and see” such that aggregate investment and labor hours drop (Bloom,

2009).

This chapter is motivated by a key shortfall of models of real uncertainty

shocks. If uncertainty shocks are critical triggers of economic downturns, the post-

recession recovery should take place immediately after the adverse shocks, and the

overshoots of aggregate investment lead to an ensuing economic expansion. There-

fore, unless additional negative aggregate TFP shocks are imposed,11 the model

predictions are at odds with the empirics (Bloom et al., 2014). Therefore, building

upon the evidence documented in Chapter that disturbances that affect the forecast

disagreement could have very persistent contractionary effects, this chapter builds a

model by incorporating firms’ heterogeneous beliefs in order to better align a model

of uncertainty shocks with the data. Precisely, heightened productivity uncertainty

11Economists have been long critical about what are the negative technology shocks that drive
business cycles. For example, Summers (1986).
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shocks can still generate abrupt disruptions of economic activities, while informa-

tional disagreement shocks, by driving the distribution of firms’ beliefs, can slow

down the recovery path.

In addition, the model economy addresses another key challenge using a stan-

dard framework to study economic uncertainty. Models with shocks to fundamental

uncertainty cannot generate sizable business cycles while at the same time deliver

the right amount of procyclicality of the firm-level investment rates dispersion as

found in the data (Bachmann and Bayer, 2014), which is measured by its correla-

tion with cycles of aggregate output. This is because after economic uncertainty is

resolved, decayed “wait-and-see” effect pushes firms to restart investing and hiring,

which expands the investment rate dispersion, whereas shrinkage of productivity

dispersion as uncertainty subdues tightens the dispersion of firm-level investment

rates. Given that forecast disagreement is negatively correlated with investment rate

dispersion shown in Chapter , the model relies on information frictions to generate

the procyclicality of investment rate dispersion. Importantly, unlike Bachmann and

Bayer (2014), the model does not impose restrictions on the size of “wait-and-see”

effect associated with uncertainty shocks.

Regarding the model ingredients, this chapter builds an imperfect informa-

tion environment in which firms care about the difference between aggregate and

idiosyncratic productivity. However, firms can only imperfectly disentangle the ag-

gregate from idiosyncratic draws through noisy signals. How much they are “uncer-

tain” about future profitability is driven by both factors: the dispersion of future

idiosyncratic productivity, i.e. the real uncertainty about fundamentals, and the
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imprecision of the information contained in their signals. This chapter answers the

following question: how can changes in the dispersion of pure noises, which drive

cross-sectional disagreement about aggregate productivity, have real and sizable ef-

fects on business cycles? Importantly, without disregarding real uncertainty shocks,

how can we disentangle effects of informational disagreement from those caused by

real uncertainty?

The theoretical framework extends real business cycle general equilibrium

models of heterogeneous firms with firm-level non-convex adjustment costs (Khan

and Thomas, 2003, 2008) and those with uncertainty shocks (Bloom et al., 2014)

to aid comparisons with existing work. It deviates from these benchmarks in the

following ways: (1) subject to information frictions, firms cannot distinguish the

aggregate from the idiosyncratic component despite their observations of the total

TFP. (2) Idiosyncratic productivity is more persistent than the aggregate counter-

part as suggested in the data (Cooper and Haltiwanger, 2006). Thus, firms extract

separate beliefs about the levels of the two productivity components based on the

observed total TFP and a noisy signal that indicates aggregate productivity. (3)

Information precision of the signals is governed by an aggregate variable, the disper-

sion of firm-specific signals, or equivalently, the standard deviation of noises within

the public signals. I show that modeling the imperfect signal either as public or

private does not affect the results. It is the aggregate information precision that

is time-varying and subject to exogenous disturbances. More dispersed information

renders larger informational disagreement among firms. (4) Firm-level adjustment of

capital incurs both convex and non-convex adjustment costs, though, for simplicity,
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labor hiring is free of adjustment frictions.

The model economy is hit by two types of exogenous disturbances. The first

is, second moment shocks to non-fundamentals, i.e., dispersion of noisy signals,12

along with those that affect fundamentals of real productivity: uncertainty shocks,

which capture perturbations to the dispersion of idiosyncratic productivities across

firms. The drawn distinction intends to emphasize that deterioration in information

quality does not necessarily suggest the economy is undergoing larger variability in

real productivity. The second type of exogenous disturbance is first moment shocks

to the levels of aggregate productivity, idiosyncratic productivity, and the signal

noise. All shocks are orthogonal.

The key mechanism arising from information frictions is that more productive

firms underestimate their idiosyncratic productivity when they disagree more about

future aggregate productivity. This is because imperfect information prevents firms

from perfectly disentangling productivity components. For larger informational dis-

agreement, firms increasingly mis-attribute more of the productivity variation due

to the more persistent idiosyncratic productivity shocks to the less persistent aggre-

gate counterpart and vice versa. As a result, the magnitude of insufficient firm-level

investment response to idiosyncratic productivity increases. This leads to greater

capital mis-allocation and a drop in aggregate investment. In addition, firms as-

sign smaller weights to new productivity draws when they know their information is

12A large number of very recent theoretical works study the effect of confidence, sentiment,
exuberance, and news on business cycles. This literature mainly focuses on the first moment time
variation of aggregate noise shocks (Lorenzoni, 2009; Angeletos and La’O, 2011; Schmitt-Grohé
and Uribe, 2012; Blanchard et al., 2013; Benhabib et al., 2015b). Few studies have explored the
second moment shocks that change the variance of signal noise.
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getting less precise. Therefore, as firms carry the erroneous perceptions over time,

capital mis-allocation and contraction effects can be persistent.

The model predicts that pure informational second moment shocks can gener-

ate a real recession followed by a slow recovery even if fundamentals are not changed.

Conversely, the real-option effect of “wait-and-see” brought about by jumps in fun-

damental uncertainty is only short-lived. In the medium run, when firms are pushed

out of the inaction band, the pent-up investment triggers a quick rebound. There-

fore, this chapter provides a theoretical explanation for why the impulse responses

of aggregate investment to the changes in fundamental uncertainty and informa-

tional disagreement can differ as we found in Chapter . These results suggest that

a sharp drop of aggregate investment as followed by a slow recovery can be a result

of adverse shocks to both real uncertainty and informational disagreement without

triggering negative aggregate TFP shocks. In addition, since informational dis-

agreement shocks generates mis-perceptions about productivity, this model is able

to deliver that more productive firms decrease their investments when they disagree

more. Such model prediction is also consistent with firm-level evidence documented

in Chapter .

In addition, the model finds that absent aggregate TFP shocks, greater infor-

mational disagreement shocks generates a recession while at the same time shrinks

investment rate dispersion. When fewer firms form beliefs with good precision, firms

disagree more about future aggregate productivity. Very productive firms increas-

ingly believe that the de facto good idiosyncratic productivity draws are not that

good, and less productive firms further embrace a more optimistic view. This gener-
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ates greater underinvestment and overinvestment from both sides, which leads to an

increasing shrinkage in dispersion of firm-level investment rates. It turns out time-

varying forecast disagreement is crucial to give the right amount of procyclicality of

investment rate dispersion.

A strong implication of the model is that we can rely on the dispersion of firm-

level investment rates as the key data moment to identify whether firms become more

uncertain because of more variability in real productivity, or because they are more

misinformed. In addition, the model suggests that pure noise dispersion can drive

important business cycles even if, on average, the economy does not have aggregate

noise.

The rest of this chapter proceeds as follows: Section 2.2 summarizes the related

literature. Section 2.3 illustrates a simple partial equilibrium model that compares

and contrasts effects of fundamental uncertainty and informational disagreement.

Section 2.4 gives the description of a full DSGE model. Section 2.5 discusses pa-

rameter values used to solve the full model. Section 2.6 presents the numerical

results of the model. Section 2.7 concludes.

2.2 Related Literature

This chapter is related to several strands of the literature. Firstly, this chap-

ter contributes to the stream of work that finds uncertainty and, more recently,

stochastic volatility shocks can affect investment and hiring. Through two well-

documented channels, i.e. the convexity and the real-option mechanism, changes
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in real uncertainty affect business cycles. Specifically, theories with convex capital

adjustment cost or with convex marginal product of capital function in productivity

predict that higher uncertainty increases investment given that expected marginal

revenue of capital is higher (Oi, 1962; Hartman, 1972; Abel, 1983). When micro-

level non-convexity is considered, the contractionary real-option effect dominates

the expansionary convexity effect in the short run, though the convexity effect will

kick in very quickly (Bloom, 2009; Bloom et al., 2014). By raising the expected

marginal product of capital while forcing some firms to pause investment until more

precise information arrives, this model finds that larger informational disagreement

can affect business cycles similarly through these two channels despite sizes of effects

are limited.

Secondly, the recent literature finds that the sign and the quantitative im-

portance of real uncertainty shocks for business cycles are sensitive to the model

structure and parameterization. Counterfactual expansionary effects or moderate

negative impacts on output or investment are found if the model lacks additional

market frictions such as price rigidity (Bundick and Basu, 2014), credit market fric-

tion (Gilchrist et al., 2014), or search friction (Leduc and Liu, 2015). Bachmann

and Bayer (2013) find that, when calibrating with German data, the role of the real-

option effect, as a key channel through which uncertainty can trigger a recession, is

very limited. This chapter shows that the impacts of real uncertainty can survive

in the presence of information frictions. However, to be able to generate the right

amount of procyclicality of investment rate dispersion, it is crucial to differentiate

shocks due to time-variation in information quality from real uncertainty shocks.
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An emerging literature argues that various sorts of information frictions that

affect precision of agents’ learning endogenously determine uncertainty and drive

business cycles: changes in estimated tail risk for forecasting (Orlik and Veldkamp,

2014), time-variation in the cost of information acquisition (Benhabib et al., 2015a),

and agents’ learning from the actions of others subject to information externalities

(Fajgelbaum et al., 2015).13 Instead of modeling how exactly information precision is

shifted by endogenous actions, this chapter treats precision of signals firms receive

as distinctive sources of exogenous perturbations. Importantly, the merit of this

modeling approach is that results do not rely on the assumption that worsened

information precision is due to adverse first moment shocks. Rather, informational

disagreement shocks can be the primitive shocks that drive the cycles.

Evidence from Eisfeldt and Rampini (2006) suggests that the cost of capi-

tal reallocation across firms must be countercyclical, given that capital reallocation

is procyclical and the benefit of reallocation as measured by firm-level productiv-

ity dispersion is countercyclical. This chapter rationalizes jumps in cross-sectional

disagreement as the information cost that prevents more productive firms from ac-

cumulating capital when aggregate output is low. The closely related paper that

generates similar capital mis-allocation based on information frictions is David et al.

(2014). However, their paper models information frictions such that firms cannot

perfectly learn their firm-specific demands via private information. Instead, this

chapter builds information frictions on imperfect disentangling such that firms can-

13This stream of work addresses the concern in the literature on uncertainty shocks that the
source of exogenous disturbances to uncertainty is unclear. Other endeavors to endogenize uncer-
tainty shocks include Bachmann and Moscarini (2011) and Decker et al. (2014)
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not distinguish aggregate from idiosyncratic productivity. I show that, as long as

the additional information on which firms rely for disentangling purposes is imper-

fect, capital misallocation associated with mis-perceptions among firms is a natural

consequence regardless of whether information is public or firm-specific.

The idea that imperfect disentangling of two different types of shocks triggers

partial adjustment in decision variables can be dated back to Lucas (1972). Recent

papers apply the noisy and dispersed private information to study optimal monetary

policy (Woodford, 2001; Adam, 2007; Lorenzoni, 2010) and business cycles (Loren-

zoni, 2009; Blanchard et al., 2013). Differently, within a neoclassical framework,

this chapter studies the business cycle effects of second moment time variations in

information quality rather than the impacts of the first moment shocks to aggregate

noise.

2.3 A Simple Model

I present a three-period partial equilibrium simple model to illustrate the key

mechanisms at work in the full model. Specifically, firms care about differentiating

between aggregate and firm-specific productivity as they are separately driven by

different shocks. However, firms cannot perfectly disentangle what fraction of their

observed total productivity should be attributed to aggregate component and what

fraction to idiosyncratic counterpart. Therefore, firms rely on additional noisy in-

formation to form separate beliefs. I show that changes in precision of information,

which shifts the extent of cross-sectional disagreement, affect how precise firms’ be-
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lieves about their draws of productivity components are and how good the firms’

expectations about future marginal product of capital are.

Firstly, results suggest that firms’ investments in response to changes in ei-

ther fundamental uncertainty or informational disagreement are affected by two off-

setting forces: contractionary real-option effect and expansionary convexity effect.

Secondly, I show that the capital misallocation due to rises in informational dis-

agreement is the key mechanism that shrinks the dispersion of firm-level investment

rates while drives down aggregate investment.

2.3.1 Environment

The economy is populated by a unit measure of firms and each firm is indexed

by i. With the same initial capital stock k0 > 0 across firms, firm i produces output

for three periods. Firms’ profit function is given by AK technology for the first two

periods

yi,t = Ai,tki,t−1 (2.7)

where total factor productivity Ai,t has an aggregate component Xt and an idiosyn-

cratic component Zi,t such that Ai,t = XtZi,t. ki,t−1 is the predetermined capital

stock; the only factor input for t = 1, 2. Output in period 3 (last period) has

decreasing returns to scale (DRTS) in capital such that

yi,3 = A1−α
i,3 kαi,2 (2.8)

65



α ∈ (0, 1) captures the magnitude of DRTS. Assuming DRTS for last period pro-

duction is simply for the purpose of deriving tractable analytical results. 14

Productivity and Uncertainty. Firm i enters period 1 with observed TFP Ai,1,

produces output yi,1, makes investment decision Ii,1 but is uncertain about the to-be-

realized Ai,2. Once Ai,2 is known to the firm at the beginning of period 2, uncertainty

clears as firm knows perfectly that TFP will stay constant such that Ai,3 = Ai,2.

The firm then produces yt,2 and decides on investment Ii,2 given the expected gain

from producing in the last period. Uncertainty affects period 1’s investment decision

only.

I use lower cases to denote productivity factors in natural log, which are as-

sumed to follow AR(1) processes.

x1 = σv,0 · v , x2 = ρxx1 + σv · v2 (2.9a)

zi,1 = σe,0 · ei , zi,2 = ρzzi,1 + σe · ei,2 (2.9b)

Period 2 log productivity components are linked to their period 1 realizations

through an auto-regressive system with persistence ρj ∈ (0, 1) for j ∈ {x, z}. Ev-

idence suggests idiosyncratic productivity is more persistent ρz > ρx (Davis and

Haltiwanger, 1992; Cooper and Haltiwanger, 2006), as is assumed throughout the

model section of this chapter.

In period 1, each log productivity component is written in products of the

14In the full quantitative model, this assumption is relaxed and the results derived here are not
affected.
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realized first moment shock innovations: v and ei and the corresponding predeter-

mined second moments : standard deviations σv,0 and σe,0 of innovations. These

first-moment innovations are i.i.d. draws from N(0, 1). We call v and ei that af-

fect period 1 TFP components respectively TFP shocks and firm-level TFP shocks,

similarly for v2 and ei,2 with respect to period 2 TFP.

It exhibits that the second moments σv and σe scale the standard deviations of

two future TFP shocks: v2 and ei,2. These second moments are treated as parameters

here for simplicity. Stochastic shocks to σv and σe are known as uncertainty shocks

à la Bloom (2009). Specifically, shocks to σv that affect the volatility of future

aggregate productivity are called the macro uncertainty shocks, whereas shocks to

σe that shape the dispersion of future idiosyncratic productivity across firms are

known as the micro uncertainty shocks. It will be shown that qualitatively, the

effects of σv and σe are the same. In addition, since these second moments are

predetermined variables, it implies that firms observe them and know how volatile

aggregate productivity and how dispersed firm-specific productivity will be next

period.

Noisy Information and Disagreement. Since aggregate and idiosyncratic com-

ponents are governed by different dynamics, firms care about individually the ag-

gregate and idiosyncratic productivity realized in period 1. In order to pin down

investment Ii,1 in period 1, firms form expectations about period 2 TFP Ai,2 condi-

tional on their beliefs of realized productivity components.

However, I assume firms do not separately observe x1 and zi,1 though they
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observe the total sum of the log productivity factors ai,1. In addition, firms have

access to noisy public signals s about aggregate productivity with an i.i.d. noise

shock ξ ∼ N(0, 1).

ai,1 = x1 + zi,1 (2.10)

s = x1 + σξ · ξ (2.11)

Firms are assumed to know how imprecise the signal is given the standard devi-

ation σξ of noise shocks. Knowing both ai,1 and s facilitates the firm to extract

separate beliefs about the two productivity components E(x1|s, ai,1) = xi,1|1 and

E(z1|s, ai,1) = zi,1|1.

I will delegate later sections to show that as long as the signals are imper-

fect, regardless of whether it’s public or firm-specific, model predictions are robust.

Hence, we see firms disagree about future x2 and zi,2. It is that different forecasts

about future productivity components ρxxi,1|1 and ρzzi,1|1 are given by the hetero-

geneity in current beliefs xi,1|1 and zi,1|1.

It is clear that if firms are perfectly informed of the two components as σξ → 0,

firms would not disagree about current aggregate productivity since signal truly

reveals the aggregate state s = x1. Everyone expects the future aggregate TFP

with identical forecast ρxx1. In this case, dispersion of heterogeneous beliefs about

future idiosyncratic productivity zi,2 is simply governed by the real productivity

dispersion as E(zi,2) = ρzzi,1 as zi,1 is observed.

Therefore, imprecision of information σξ 6= 0 could shift the cross-sectional
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disagreement about aggregate and idiosyncratic productivity components for non-

fundamental reasons. Magnitude of belief differences changes even if nothing changes

to the distribution of aggregate and idiosyncratic productivity. 15 When modeled as

exogenous shocks in the full model, changes in σξ are called informational disagree-

ment shocks. Calling it informational is because it generates disagreement per signal

noisiness, which differs from fundamental uncertainty that captures TFP volatility

and firm-level TFP spread σv and σe. Such distinction is to emphasize the idea that

changes in measurement error in public signals may not necessarily imply or must

be due to swings in fundamental uncertainty.

To characterize the simple model, Figure 2.13 plots the time line along which

firms form beliefs and make investment decisions. The reason why a third period of

production is needed is because some firms may take delayed investment in period

2 after staying inaction in period 1. To justify period 2 investment, there should be

expected gain from producing in period 3.

2.3.2 Productivity Beliefs, Disagreement, and Expectation

I examine how firms form separate productivity beliefs xi,1|1 and zi,1|1 and form

expectations about future productivity in this section. Belief formations can be

crucial as they determine firms’ investment decisions. Greater σξ, lower the quality

of information contained in a received signal. I will show σξ not only affects firm’s

forecasts but also shifts the cross-sectional disagreement about future aggregate

15Besides σξ 6= 0, another key requirement is that firms should have different priors. That is,
they differ in idiosyncratic productivity draws. However, this requirement is trivial in the sense
that shutting down productivity heterogeneity means shutting down cross-sectional dimension.
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productivity.

Productivity Beliefs. Assume TFP shocks v and ei and noise shocks ξ are or-

thogonal. Note that variability of period 1 TFP shocks σv,0 and σe,0 are predeter-

mined. Applying Bayes’ Rule, we can characterize the firms’ posterior beliefs about

aggregate productivity x1 and idiosyncratic productivity zi,1. The magnitude of

information precision affects these perceptions.

Lemma 1 With imperfect information, upon observing s and ai,1, firm i’s posterior

expectations of x1 and zi are given by







xi,1|1

zi,1|1






= κ







ai,1

s







(2.12)

where κ =







κ11 κ12

κ21 κ22






=







b/(a+ b+ c) c/(a+ b+ c)

1− b/(a+ b+ c) −c/(a+ b+ c)







a = 1/σ2
v,0, b = 1/σ2

e,0, c = 1/σ2
ξ

Proof. See Appendix B.1

Lemma 1 suggests that with noisy signals, firms’ posterior beliefs about each

productivity component are linear combinations of observables ai,1 and s weighted

by precision parameters (inverse of variances) a,b, c. The weights can be well sum-

marized in a Kalman gain matrix κ that elements sum up to 1. Changes in infor-
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mation quality (or, informational disagreement) c clearly shifts individual beliefs.

The following proposition sees that precision of information can shift cross-sectional

forecast disagreement.

Proposition 1 Greater imprecision of signals raises cross-sectional dispersion of

forecasts about future aggregate productivity.

Proof. By Lemma 1, the standard deviation of cross-sectional forecasts of Ai,2

in period 1 after applying law of large numbers
∫ 1

0
zi,1di = 0 is given by σE(x2) =

ρxσxi,1|1 =
ρx

√
b

a+b+c
. Hence

∂σE(x2)
∂σξ

> 0 (2.13)

Q.E.D.

Then we compute firm i’s expected period 2 TFP Ai,2 exploiting the auto-

regressive system (2.9a) and (2.9b). The following lemma summarizes the key result.

Lemma 2 For ρz > ρx,

EAi,2 = exp[µi + 0.5Σ(σv, σe, σξ)] (2.14)

where

µi = (ρx +M)x1 + (ρz −N)zi,1 −Pξ (2.15)

71



is the mean forecast of future TFP in log. Terms M,N,P and Q are positive and

functions of disagreement σξ in period 1 and predetermined uncertainty σv,0 and σe,0.

M′(σξ) > 0, N′(σξ) > 0 , and Q′(σξ) > 0. Forecast variance Σ is a function of

period 1 realized parameters of uncertainty and disagreement.

M = a · d, N = b · d, P =
√
c · d, Q = (ρz − ρx)

2/(a+ b+ c)

d = (ρz − ρx)/(a+ b+ c) > 0, Σ = σ2
v + σ2

e +Q

Proof. See Appendix B.2

E is firm i’s expectation operator conditional on its information set at the

beginning of period 1. Lemma 2 shows that the expected next period TFP depends

on period 1 realizations of TFP shocks v, firm-level TFP shocks ei, noise shocks

ξ, three second moment parameters of uncertainty and disagreement σv, σe and σξ

and predetermined uncertainty σv,0 and σe,0. Larger TFP and firm-level TFP shocks

increase firm’s expected total TFP.

In addition, more persistent idiosyncratic shocks ρz > ρx, firms would mis-

attribute part of the variation of productivity due to aggregate changes to the more

persistent idiosyncratic shocks via a positive termM. Vice versa, firms mis-attribute

part of variation due to the idiosyncratic changes in productivity to the less per-

sistent aggregate shocks through a negative term −N. This mechanism of making

perception errors is known as mis-attribution of signals.

Presence of noisy signals makes firms’ expected next period total productivity

negatively affected by rising noise shocks ξ. This is because firms know that they will
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mis-attribute signals and the errors of having noises within signals is captured by

P > 0. Apart from the real uncertainty terms σ2
v and σ2

e , Q captures the additional

forecast variance brought by informational disagreement in period 1.

If firms have perfect information (zero noise variation such that s = x1) across

firms as σξ → 0, the mis-attribution of signals effect is completely gone as M,

N, P and Q all collapse to zero. This mis-attribution mechanism is pivotal as it

differentially enhances and mutes the marginal impact of aggregate productivity

shocks v and idiosyncratic shocks ei on firms’ expected total productivity relative

to the perfect information benchmark. 16 In addition, by ∂M
∂σξ

> 0 and ∂N
∂σξ

> 0, we

see that the larger disagreement among firms when firms act upon more imprecise

signals to extract separate beliefs, the magnitudes of both enhancing and dampening

effects will increase.

2.3.3 Informational Disagreement vs. Real Uncertainty

In this section, I show that imperfect information brings forth a distinctive ef-

fect of capital mis-allocation due to the mis-perceptions among firms about produc-

tivity realizations. Rises in disagreement reduce aggregate investment and shrinks

the dispersion of firm-level investment rates. In addition, changes in both real un-

certainty and informational disagreement can trigger the expansionary convexity

16Note that if ρx = ρz , there is no mis-attribution effect. With no difference in persistence
between aggregate and idiosyncratic productivity shocks, firms do not need to differentiate them
at all because firms’ investment decisions in response to these level shocks will be no different.
However, if ρx > ρz , though contradictory to the empirical evidence, mis-attribution mechanism
is still there but the directions of enhancing and dampening effects will be reversed. The bottom
line is that firms would always want to mis-attribute the changes due to less persistent shocks to
more persistent changes. (See Appendix B.10 for details about other scenarios.)
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effect and contractionary real-option effect. Mis-perception effect and convexity ef-

fect shift aggregate investment on the intensive margin, whereas real-option effect

operates through the extensive margin.

2.3.3.1 Firm-level Investment

I study the effects of real uncertainty and informational disagreement (σv,

σe and σξ) on investment in period 1 when firms are subject to uncertainty and

imperfect information.

Non-convex and Convex Capital Adjustment Costs. Use δ to denote the

capital depreciation rate in period 1. Investment in period 1 is given by Ii,1 =

ki,1 − (1 − δ)k0. For simplicity, I assume after period 2 and 3 productions, capital

stock ki,1 and ki,2 will be fully depreciated. Therefore, period 2 investment is easily

characterized as Ii,2 = ki,2 ≥ 0. Firms would only incur non-negative investment in

period 2. By contrast, firms may invest (Ii,1 > 0), disinvest (Ii,1 < 0) and take no

investment action (Ii,1 = 0) in period 1.

I assume that if investment is non-zero Ii,t 6= 0 in period 1 or 2, firm has to pay

a non-convex fixed cost ck per unit of existing capital stock. In addition, following

Lee and Shin (2000), I assume the fixed cost is avoidable in period 2 if a firm already

paid the cost for non-zero investment in period 1. This assumption of cost avoidance

is for the purpose of maintaining tractability of results only, the full model will be

in line with standard fixed cost assumption as in Gilchrist et al. (2014). Investment
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in period 1 is also subject to a quadratic convex adjustment cost 1
2
I2i,1.

Firms’ Problem. Firm i maximizes the sum of three expected dividends with no

inter-temporal discounting.

Π = max
Ii,1,Ii,2

Ai,1k0 − Ii,1 −
1

2
I2i,1 − ck[Ickk0 + (1− Ick)ki,1] + E[Ai,2ki,1 − ki,2 + A1−α

i,3 kαi,2]

(2.16)

where

Ick =







1, if Ii,1 6= 0

0, if Ii,2 6= 0

, Ai,3 = Ai,2 = ex2+zi,2 , Ii,1 = ki,1 − (1− δ)k0

Solving the problem backwards, conditional on realized Ai,2, if firms take positive

investment in period 2, then investment for period 3 production is given by

k∗i,2 = α
1

1−αAi,2 > 0 (2.17)

Equation (2.17) says that higher realized period 2 productivity induces larger capital

demand in order to reap higher profit from period 3 production.

Firms with non-zero investment in period 1. If a firm has paid a fixed cost for

non-zero investment in period 1, total profit from period 2 and period 3 production
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conditional on realized Ai,2 is given by

Πi,2(Ii,1 6= 0;Ai,2) = Ai,2(ki,1 + ψ)

where ψ = α
α

1−α − α
1

1−α > 0

This shows if firms adjust capital in period 1, it is always optimal to invest positive

k∗i,2 to reap revenue of period 3 production rather than have zero investment with a

smaller profit Ai,2ki,1. The marginal gain from investing in period 2 as captured by

ψ appears not dependent on investment actions in period 1. The optimal investment

in period 1 is given by

I∗i,1 = EAi,2 − 1 (2.18)

Investment in period 1 positively responds to expected productivity in period 2, the

forecast. It must be the case that EAi,2 > 1 for positive investment (Ii,1 > 0) and

EAi,2 < 1 for negative investment (Ii,1 < 0). Then we can express the expected

total profit for firms taking non-zero action (Adj) of investment or disinvestment in

period 1 in the following

ΠAdj = Ai,1k0 + EAi,2I
∗
i,1 + EAi,2(1− δ)k0 + EAi,2ψ − I∗i,1 −

1

2
I∗2i,1 − ckk0 (2.19)

The first four terms in Equation (2.19) consist of the revenue to firms with non-zero

action in period 1: period 1 output, expected gain from taking additional non-zero
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investment, expected gain from production using the net depreciation capital stock,

and the expected return from taking positive investment in period 2. The other

terms capture the cost expenditure including investment goods input, quadratic

and fixed costs of capital adjustment.

Firms taking no investment action in period 1. Firms will take positive

investment in period 2 for ψ > 0 even if they do not adjust capital stock in period 1.

However, those firms that enter period 2 with existing capital stock (1 − δ)k0 have

to pay a fixed cost to have optimal investment as given by Equation (2.17). The

period 2 and period 3 total profit conditional on taking no investment in period 1 is

Πi,2(Ii,1 = 0;Ai,2) = max{Ai,2((1− δ)k0 + ψ)− ck(1− δ)k0, Ai,2(1− δ)k0}

Expected total profit for these firms with no action (Non-Adj) is thus given by

ΠNon−Adj = Ai,1k0 + EAi,2(1− δ)k0 + E[max{Ai,2ψ − ck(1− δ)k0, 0}] (2.20)

For firms taking no action in period 1, they also receive output from period 1 and the

expected return from net depreciation capital. However, they also retain an option

value from waiting in period 1 as captured by the third term in Equation (2.20).

This option is said to be “in the money” when the realized period 2 productivity

Ai,2 is greater than a fixed cost that a firm has to pay for such a delayed capital

adjustment.
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Option of Waiting. The option value is defined as the expected value of payoffs

from all scenarios. The value cannot be negative because if the realized period 2

productivity is small enough, the firm can walk away from this option. Therefore,

the higher the option value, the more likely a firm would wait a period without

taking any investment or disinvestment actions. Exploiting the property of max

function and truncated log-normality, we can re-express the option value as below:

Voption =

∫ ∞

A

[ψAi,2 − ck(1− δ)k0]dF̂ (Ai,2) = [1− F̂ (A)][ψφEAi,2 − ck(1− δ)k0] ≥ 0

(2.21)

where A = ck(1−δ)k0
ψ

. φ =
Φ(

√
Σ− logA−µi√

Σ
)

Φ(− logA−µi√
Σ

)
> 1. Φ is the CDF of standard normal

distribution and F̂ (Ai,2) is the posterior cumulative distribution about Ai,2 which

follows log-normal distribution ∼ lnN(µi,Σ) with mean and variance as in Equation

(2.15).

Profit Maximization Then we can recast firm’s problem using Equations (2.19)

and (2.20)

Π = max
Ii,1

{ΠAdj ,ΠNon−Adj} (2.22)

We then define a Ψ function that captures the gain from taking non-zero investment
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action in period 1 relative to waiting.

Ψ = ΠAdj −ΠNon−Adj =
(EAi,2)

2

2
− ζ · EAi,2 + γ (2.23)

where γ = 1
2
−ckk0[1−(1−δ)(1−F̂ (A)]. I further assume ζ = 1−ψ+ψ·φ[1−F̂ (A)] >

0 and γ > 0 to examine equilibrium of interest. We plot this difference function

in Figure 2.14 in which it traces out a parabolic and symmetric function about

the expected value of period 2 total productivity. To simplify notations, use Ei to

denote firm i’s forecast of Ai,2. Two roots EI
i and ED

i of function Ψ make firms

are indifferent between taking non-zero investment and waiting in period 1 (ΠAdj =

ΠNon−Adj). Note that the two trigger points are firm-specific because each firm has

its own posterior belief of the distribution of next period total TFP. Therefore, we

have the following lemma and we can characterize the optimal policy function for

investment.

Lemma 3 (Investment/Disinvestment Thresholds) For ζ > 0 and γ > 0,

there exist thresholds about expected next period TFP factor EI and ED such that

ΠAdj = ΠNon−Adj where EI = ζ+
√

ζ2 − 2γ > 0 and ED = ζ−
√

ζ2 − 2γ > 0, which

are functions of aggregate variables σv, σz, and σξ and depend on posterior beliefs

about distribution of future Ai,2. Loss from waiting increases in Ei when Ei > ζ and

decreases in Ei when Ei ∈ (0, ζ).

Proposition 2 Firm i invests if Ei > EI
i , disinvests if Ei < ED

i and takes no

action if E ∈ [ED
i , E

I
i ].
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Proposition 2 suggests that firm i would take positive (negative) investment

in period 1 only if its expected value of next period total productivity is sufficiently

higher (lower) than some threshold. This suggests that with mediocre future fore-

cast, the option value of waiting outweighs all the other gains from taking investment

or disinvestment.

2.3.3.2 Effects of Uncertainty vs. Disagreement

Through three propositions in the following, I compare and contrast between

effects of real uncertainty and those of informational disagreement upon firm-level

and aggregate investment.

Capital Mis-allocation Effect. This is the effect that forces firms’ forecasts to

deviate from the truth, which pushes quantity of investment and disinvestment away

from optimal. The effect arises from the imperfect information, and is determined

by the magnitude of informational disagreement. We examine the quasi-elasticity

of investment with respect to changes in the three second moments. Define ii,1 =

log(1 + Ii,1),

Lemma 4 In an economy with imperfect disentangling, firm-level investment and

disinvestment would over-react to TFP shocks and under-react to firm-level TFP

shocks relative to a perfect information scenario conditional on firm’s taking non-

zero investment.

Proof. Evaluate the partial derivatives of ii,1 with respect to the TFP x1 and
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firm-level TFP zi,1. We have φx > 0 and φz > 0 in the following:

φx =
∂ii,1
∂x1

= ρx +M > ρx = φ∗
x (2.24a)

φz =
∂ii,1
∂zi,1

= ρz −N < ρz = φ∗
z (2.24b)

The inequality conditions are given by the fact that M > 0 and N > 0. φ∗
x

and φ∗
z denote the corresponding partial derivatives in case of perfect information

when σξ → 0. Regarding disinvestment, the overreaction and underreaction still go

through as |φx| > |φ∗
x| and |φz| > |φ∗

z|. Q.E.D.

Lemma 4 is a direct result of firms’ mis-attributing signals due to information

frictions. Firms are unable to perfectly identify productivity components and thus

mis-attribute variation of productivity due to changes in less persistent aggregate

TFP shocks v to changes in more persistent idiosyncratic shocks ei and vice versa.

Presence of imperfect information creates a gap between firm’s belief and the realized

but unobserved draw, which leads to the over-reaction and under-reaction of firm-

level investment.

Importantly, this gap of misperception is governed by how much firms disagree

with each other, or how much firms are mis-led by the signal noisiness. The degrees

of these mis-perception are exactly the magnitudes of amplified and dampened in-

vestment. Given M and N both increase in σξ, we have the following:

Proposition 3 Larger disagreement increases (1) the amplification of firm-level in-

vestment to TFP shocks v and (2) further dampens its response to idiosyncratic

shocks ei, conditional on firm’s taking non-zero action.
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Proof. Evaluate the cross-partial derivative of ii,1 with respect to both TFPs and

disagreement:

∂i2i,1
∂x1∂σξ

=
∂M

∂σξ
> 0 (2.25a)

∂i2i,1
∂zi,1∂σξ

= −∂N
∂σξ

< 0 (2.25b)

Q.E.D.

According to Equations (2.25a) and (2.25b), amplified and dampened effects of

firm-level investment both increase in informational disagreement. This is because

rising disagreement enhances the firm-level extent of signal misattribution for all

firms. A key proposition regarding the capital misallocation is stated below:

Proposition 4 (Capital Mis-allocation Due to Firms’ Mis-perceptions) When

aggregate TFP shocks are at v = 0, more productive firms increasingly cut in-

vestment and less productive firms increasingly increase investment in response to

greater disagreement among firms.

Given imperfect disentangling, firms with good realized draws of firm-level TFP

shocks would not believe the draws are that good to justify investment. Therefore,

Proposition 4 says more productive firms are not investing enough while less pro-

ductive firms are investing too much relative to the reality, which are unobserved to

all firms. Capital is hence mis-allocated to less productive firms. Critically, when

the magnitude of mis-perception rises due to more imprecise information, the extent

of capital mis-allocation rises. We call this effect the capital mis-llocation effect.
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Convexity Effect. The following proposition considers another effect which applies

to both uncertainty and disagreement conditional on firms’ taking non-zero actions.

We consider the case when all first moment shocks: TFP shocks v, firm-level TFP

shocks ei, and the noise shocks ξ are at zero in order to isolate the impacts of second

moments.

Proposition 5 When first moment shocks are at zeros, conditional on taking non-

zero investment action, firm-level investment increases in both uncertainty and dis-

agreement.

Proof. By Equations (2.14) and (2.18), with shocks v = 0, ei = 0 and ξ = 0, we

have

φσv =
∂ii,1
∂σv

> 0 , φσe =
∂ii,1
∂σe

> 0 , φσξ =
∂ii,1
∂σξ

> 0 (2.26)

Similarly, for disinvestment, higher second moments all reduce the quantity a firm

takes for disinvestment. Q.E.D.

By Equation (2.18), the amount of firm-level investment is positively respond-

ing to firm’s expected marginal product of capital, i.e. the expected productivity

in period 2. When the marginal production function Ai,2 = ex2+zi,2 is convex in

log productivity component, higher variance increases the expected value EAi,2 due

to Jensen’s Inequality. What’s new in this noisy information environment is that

informational disagreement brings about a second source of forecast variance Q that
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is added to the real uncertainty σv and σe.
17 As a result, investment or disinvest-

ment would respond to disagreement similarly as if it responds to changes in real

productivity uncertainty.

Real-Option Effect. We consider the second shared effect of uncertainty and

disagreement with respect to their impacts on firm’s hazard of capital adjustment.

Proposition 6 For A ≥ e
√
Σ, a firm with all first moment shocks at zero in face

of larger uncertainty and greater disagreement sees greater gain from waiting and

taking no investment action.

Proof. See proof in Appendix B.3

This proposition says rises in either uncertainty or informational disagreement

could enlarge a firm’s inaction region such that for j ∈ {x, z, ξ}

∂EI
i

∂σj
> 0 ,

∂ED
i

∂σj
< 0 (2.27)

Therefore, as the probability of taking positive (negative) investment when

Ei > EI
i (Ei < EI

i ) both decreases, a firm becomes more likely to be pushed into

the enlarged inaction region of waiting. The reason is that larger uncertainty or

disagreement increases the option value of waiting.

The following section is then devoted to check the macro implications of all

these effects on aggregate investment. I show that the misallocation effect arising

from jumps of informational disagreement can generate real recession.

17In the perfect information case, the forecast variance is just given by σ2

v + σ2

e .
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2.3.3.3 Aggregate Investment

Here we examine the aggregate economy when aggregate TFP shocks v = 0

and aggregate noise shocks ξ = 0 whereas firms differ in firm-specific TFP shocks as

if we are considering the ergodic distribution of firms in a dynamic setting at steady

state. As firm i would incur positive investment Ei − 1 > 0 if its forecast Ei > EI
i

or disinvestment Ei − 1 < 0 if Ei < ED
i . I assume a single crossing property in the

following to exclude the possibility for multiple equilibria in order to ensure that

conditional upon taking non-zero action, further favorable or unfavorable firm-level

productivity draws should not push the firm back to the inaction region.

Assumption 1 At steady state with v = 0 and ξ = 0, conditional on taking positive

(negative) investment, increase of the option value of waiting for a firm in response

to larger (lower) firm-level productivity, is bounded such that eµi+Σ|eµi+Σ − ζ(ei)| ≥

|ζ ′(µi)e(µi+Σ) − γ′(µi)| where µi = (ρz −N)ei.

The assumption above says no firm with a better forecast of the future relative

to an investing firm would want to pause and the reverse is true for disinvesting firms:

with even worse expected future productivity, firms will take disinvestment. This

global continuity assumption helps us to use idiosyncratic productivity shocks ei to

describe the entire firm distribution and to examine an aggregate “inaction band”.

Lemma 5 For v = 0 and ξ = 0, firms would invest if firm-specific productivity draw

ei is greater than eI and disinvest if ei < eD where eI uniquely solves Ei(e
I) = EI

i

and eD uniquely solves Ei(e
D) = ED

i .
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Proof. See proof in Appendix B.4

Lemma 6 If
∂EI

i

∂σj
> E ′

i(σj) and
∂ED

i

∂σj
< E ′

i(σj), higher uncertainty or disagreement

expands the aggregate inaction band such that ∂eI

∂σj
> 0 and ∂eD

∂σj
< 0.

Proof. See proof in Appendix B.5

Lemma 6 holds when the magnitude of firm-level real option effect dominates

the convexity effect, the inaction band of the aggregate economy expands in face of

higher uncertainty and disagreement. This implies that more firms would do nothing

for higher uncertainty or disagreement because they see larger gains from waiting

relative to the higher expected marginal return from taking additional investment.

Then we can characterize the aggregate investment I by integrating the capital

increments across firms who are investing and the firms who are disinvesting.

I =

∫ ∞

eI
(Ei − 1)dΦ(e)−

∫ eD

−∞
(1− Ei)dΦ(e) (2.28)

Proposition 7 In an economy with more investing firms relative to disinvesting

firms 1 − Φ(eI) > Φ(eD), in response to larger disagreement, aggregate investment

responds (1) negatively to the capital mis-allocation effect; (2) positively to convexity

effect; (3) negatively to the real-option effect that reduces the number of firms who

are investing.
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Proof. We take the partial derivatives of I with respect to disagreement

∂I

∂σξ
=

∫ ∞

eI
Ei[−Nσξσe,0ei +Σ′(σξ)]dΦ(e)− (e(ρz−N)eI+Σ − 1)

∂eI

∂σξ

+ (e(ρz−N)eD+Σ − 1)
∂eD

∂σξ
+

∫ eD

−∞
Ei[−Nσξσe,0ei +Σ′(σξ)]dΦ(e)

Rearrange this equation, we have

∂I

∂σξ
=

∫ ∞

eI
EiΣ

′(σξ)dΦ(e) +

∫ eD

−∞
EiΣ

′(σξ)dΦ(e)

︸ ︷︷ ︸

intensive margin : convexity effect>0

+ (e(ρz−N)eD+Σ − 1)
∂eD

∂σξ
︸ ︷︷ ︸

extensive margin :fewer disinvesting firms>0

−(e(ρz−N)eI+Σ − 1)
∂eI

∂σξ
︸ ︷︷ ︸

extensive margin :fewer investing firms<0

−
∫ ∞

eI
EiNσξeidΦ(e)−

∫ eD

−∞
EiNσξeidΦ(e)

︸ ︷︷ ︸

intensive margin: capital mis−allocation effect < 0

(2.29)

To see why the sign of the mis-allocation effect is negative, we consider the case

when 1− Φ(eI) > Φ(eD). If eD < eI < 0, we have

− [

∫ ∞

eI
EiNσξeidΦ(e) +

∫ eD

−∞
EiNσξe(i)dΦ(e)]

=−Nσξ [

∫ ∞

0

e−2Nσe,0zieidΦ(e)−
∫ eI

eD
EieidΦ(e)] < 0

In case of eD < 0 < eI , we can again rearrange the integral to be

∫ ∞

eI
(Ei − 1)NσξeidΦ(e) +

∫ eD

−∞
(Ei − 1)Nσξe(i)dΦ(e)−

∫ eI

eD
Nσξe(i)dΦ(e) > 0
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Because investment (disinvestment) is positive (negative), the first two terms in the

bracket are positive. The last term (with the minus sign) will be positive due to the

fact that there are more investing firms. Q.E.D.

Absent the channel of capital misallocation, in response to higher productivity

uncertainty, aggregate investment is subject to two offsetting forces: expansionary

convexity effect and contractionary real-option effect. To be consistent with VAR-

based impulse response evidence in Chapter , wait-and-see effect should dominate

in the short run and convexity effect later kicks in to generate rebound of aggregate

investment.

To be consistent with the evidence, in case of greater informational disagree-

ment, combined effects of capital mis-allocation and real-option should dominate

convexity effect in the short run. For a slow recovery after the adverse informational

shocks, the capital misallocation effect should be sizable and persistent enough to

offset the effect when more firms are pushed out of inaction region and restart in-

vesting. I delegate the full model to quantitatively assess their joint impacts on

aggregate investment. In addition, I delegate Appendix B.8 to show that building

upon firm-specific signals, these effects on aggregate investment still hold.

2.3.3.4 Dispersion of Investment Rates

The simple model predicts that if uncertainty jumps, then more firms pause

investing and hiring. Therefore, dispersion of investment rates could shrink. How-

ever, uncertainty jumps suggest that productivity shocks will be more dispersed next
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period. Hence, conditional on more firms restarting to invest and hire when they

get out of the inaction band, the dispersion of investment rates should be larger.

The trade-off of real-option effect and convexity effect drives the correlation between

uncertainty shocks and investment rate dispersion across firms.

Conversely, larger disagreement not only pushes firms into inaction region to

wait for clearer information, but generates capital mis-allocation, which reinforces

the shrinkage in dispersion of investment rates. On the intensive margin, such

capital-misallocation effect could partly offset the convexity effect that may expand

investment rate dispersion. Therefore, quantitative model will gives a full assessment

of interplay of these effects in terms of driving the movement of investment rate

dispersion.

2.4 The Full Model

A dynamic stochastic general equilibrium framework is built to quantitatively

evaluate the impacts of uncertainty and disagreement on firm-level and aggregate

investment. I consider firm-specific signals instead of public signals about the ag-

gregate productivity in the full model. In addition, results in the simple model

section suggest that macro and micro uncertainty affect firm-level and aggregate

investment via same channels: convexity effect and real-option effect, at least qual-

itatively. The full model is thus devoted to compare and contrast effects associated

with disagreement shocks and those due to micro-level uncertainty shocks that shift

cross-sectional productivity dispersion.
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Precisely, the model economy is hit by exogenous shocks to dispersion of infor-

mation or signals (informational disagreement shocks) and shocks to dispersion of

idiosyncratic productivity (real uncertainty shocks). Heterogeneity on the produc-

tion side is driven by persistent differences in firm-specific productivity and different

draws of signals about aggregate productivity each period. Firms make investment

decisions subject to a fixed cost and a quadratic capital adjustment cost.

The model differs from the neoclassical model with non-convex adjustment

costs (Khan and Thomas, 2008) in that firms infer the unobserved productivity

components with imperfect signals. The precision of signals is determined by the

dispersion of firm-specific signals. This setup thus augments the framework with

conventional uncertainty shocks (Bloom, 2009) by having non-fundamental shocks

to dispersion of signal noises.

2.4.1 Firms

2.4.1.1 Technology

There are a large number of production units in the model economy. 18 In pe-

riod t, firm i produces output yi,t using predetermined capital stock ki,t−1 and labor

ni,t via a Cobb-Douglas Decreasing Returns to Scale (DRS) production technology:

yi,t = ext+zi,tkαk

i,t−1n
αn

i,t . (2.30)

18I do not differentiate the terms ”firm”, ”establishment” or ”plant”
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The log stochastic productivity has a common component xt (aggregate produc-

tivity) and a firm-specific component zi,t (idiosyncratic productivity). αk and αn

respectively refers to share of capital and labor in production. αk + αn ∈ (0, 1)

captures the degree of decreasing returns to scale for all firms. Firm i has an infinite

horizon.

2.4.1.2 Imperfect Information: Recursive Signal Extraction

At the beginning of period t, firm i does not separately observe the realized

components of productivity. Rather, it solves a signal extraction problem at the

beginning of each period upon observing the productivity sum ai,t and the signal

si,t. These exogenous processes are defined in the following.

Exogenous Processes. The aggregate and idiosyncratic productivity components

xt and zi,t of firm i’s total productivity, ai,t = xt + zi,t, are assumed to follow

stationary AR(1) processes:

xt = ρxxt−1 + σvvt (2.31a)

zi,t = ρzzi,t−1 + σe,t−1ei,t. (2.31b)

ρj ∈ (0, 1) with j ∈ {x, z} are persistence parameters with ρz > ρx. Innova-

tions vt ∼ N(0, 1) and ei,t ∼ N(0, 1) are identically and independently distributed

over time and across firms. These are first moment shocks that affect productivity

levels. σe,t are time-varying standard deviations that scale the dispersion of next

91



period t + 1 idiosyncratic productivity shocks, which are realized at the beginning

of period t. The dynamics of productivity uncertainty is given by:

log(σe,t) = (1− ρσe) log(σ̄e) + ρσe log(σe,t−1) + ησeǫσe,t. (2.32)

The standard normal innovations ǫσe known as uncertainty shocks affect the dis-

persion of firms’ cross-sectional idiosyncratic productivity. σ̄e is the unconditional

mean of dispersion of productivity shocks ei,t.

The signal that contains information regarding the aggregate productivity is

contaminated by the idiosyncratic noise shocks ξi,t, which are an i.i.d. draw from

N(0, 1) over time and across firms such that

si,t = xt + σξ,tξi,t. (2.33)

The common parameter σξ,t captures the spread of heterogeneous information

quality or “noisiness” across firms at the beginning of period t, a non-fundamental

shiftier of cross-sectional disagreement. I similarly assume that σξ,t in log follows a

stationary AR(1) process with unconditional mean σ̄ξ,

log(σξ,t) = (1− ρσξ) log(σ̄ξ) + ρσξ log(σξ,t−1) + ησξǫσξ ,t (2.34)

The innovation term ǫσξ ,t ∼ N(0, 1) denotes shocks to the dispersion of firm-specific

noises. Similarly to modeling imperfect information as public signal, larger σξ,t

makes more firms acting on imprecise firm-specific signals, which also measures the
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aggregate information precision. Thus, I call ǫσξ ,t shocks to information precision

that affect disagreement, the informational disagreement shocks. ρσξ ∈ (0, 1) is

the persistence parameter and ησξ is the standard deviation of the innovation to

disagreement.

Swings in this noise spread can be interpreted as firms exogenously hold more

or less dispersed beliefs about the latent unknown, which arises from the sources

other than the true dynamics of economic fundamentals. 19. I assume uncertainty

shocks and disagreement shocks {ǫσe , ǫσξ} are mutually orthogonal for the sake of

identifying their individual contributions to investment dynamics. Note that with

this assumption, firms disagree due to dispersed information does not necessarily

suggest the real economy is undergoing changes in uncertainty.

Information Set. The only information learned by the firm in order to infer the

productivity components is the received noisy signal about aggregate productivity

and the observable productivity sum. I assume firms do not learn from the other

firms’ information sets and thus do not act upon other firms capital and labor

decisions. 20 In addition, I assume that firms would never know what the history of

true realizations of aggregate productivity shocks is.

19The driver of distributional changes in firms’ beliefs about fundamentals may be due to a
sunspot variable that “conveys no information about technology, preference or endowments and
does not directly enter the equilibrium conditions” (Woodford, 1990) It is possible that changes
in belief dispersion are in fact endogenous and driven by optimal information updating by firms.
While this is an interesting idea, it is beyond the scope of this chapter.

20This model thus abstracts from the complication that firms need to care about what other
firms think about what others think, i.e. higher order beliefs. Implicitly, firms are assumed not
to communicate with each other and do not coordinate to reach a consensus or maintain a given
noise dispersion.
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As firm i enters period t, it carries a few state variables that characterize

the imperfect information environment: (1) period t− 1 posterior beliefs about the

then productivity components xi,t−1|t−1 and zi,t−1|t−1; (2) posterior variance and co-

variance matrix, or forecast variance about xt−1 and zi,t−1 in period t− 1, Σ̂t−1|t−1.

This variance matrix is an aggregate variable as all firms are subject to the same

second moment dynamics that affect the precision of forecasting; (3) t − 1 uncer-

tainty realizations that govern how dispersed the period t’s idiosyncratic productiv-

ity shocks σe,t−1.

As period t unfolds, firm i knows (1) how disagreed they are among themselves

about aggregate productivity xt due to imprecise information σξ,t; (2) how uncertain

the zi,t+1 productivity will be: σe,t; (3) observes the realized total productivity sum

ai,t, and (4) receives a signal si,t.

Signal Extraction. Firm i’s profit maximization problem consists of solving

a signal extraction problem and making optimal labor and investment decisions.

Bayesian firms use a recursive Kalman Filtering way to optimally update prior

beliefs to form posterior estimates of productivity components. Acting upon the

posterior beliefs about current productivity xi,t|t and zi,t|t, firms compute future ex-

pectation of marginal product of capital in order to pin down the investment decision

given they know the shock persistence.

How firms form new beliefs are derived in Appendix B.6. Important to note

that the uncertainty realizations σe,t−1 about current period productivity shocks ei,t,

along with the disagreement σξ,t affect the precision of forming beliefs about current
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period t. However, precision of future expectation about period t + 1 productivity

will depend on both current informational imprecision σξ,t and the newly realized

uncertainty σe,t.

2.4.1.3 Capital Adjustment: Non-convex and Convex Costs

I assume firms have to pay a fixed cost ck > 0 per unit of their existing capital

stock ki,t−1 as long as it decides to invest or disinvest (Ii,t 6= 0) each period. In

addition, capital adjustment incurs a quadratic adjustment cost given by

θ

2
[
Ii,t
ki,t−1

]2ki,t−1 (2.35)

where θ > 0 indexes the level of the cost.

Empirical evidence lends support to modeling adjustment costs (Cooper and

Haltiwanger, 2006). In addition, non-convex fixed cost is necessary to generate a

region of inaction in which firms do not take investment and disinvestment actions

in equilibrium (Bloom, 2009). Firm-level non-convex adjustment cost is critical for

uncertainty and disagreement to affect aggregate investment through the real-option

effect channel. Quadratic adjustment cost is to attenuate the excessive responses of

investments to productivity shocks.

2.4.1.4 Profit Maximization

Each firm can be denoted by its predetermined stock of capital ki,t−1 and

its previous period posterior estimates of productivity components mi,t−1|t−1 =

95



{xi,t−1|t−1, zi,t−1|t−1}. Then we can fully describe the distribution of firms over the

Borel algebra S for the space S = R+ × R2 on which the probability measure µt−1

is defined. µt−1 denotes the firm distribution in the end of period t − 1 (beginning

of period t) and is varying over time. The capital stock ki,t at any point of time is

non-negative.

The aggregate state of the economy at the beginning of period t is described by

Ωt = {xt, σe,t, σξ,t, σe,t−1, µt−1} as disagreement, and uncertainty are time-varying.

The reason why σe,t−1 enters the aggregate state vector is because it matters for

firms to form current period posterior beliefs about productivity components. Law

of large numbers average out idiosyncratic productivity shocks and noise shocks and

they do no enter as aggregate state variables. I assume a mapping Γ of Ωt as some

aggregate laws of motion, which moves the firm distribution over time such that

µt = Γ(Ωt).

Labor Demand. Given existing capital stock ki,t−1, aggregate law of motion Γ(Ωt),

and wage wt, along with a stochastic discount factor βQt+1|t in numeraire of con-

sumption goods, firm i maximizes expected profit among options of being inaction

and taking non-zero investment subject to the adjustment costs.

Firm i’s labor demand can be separately determined apart from the dynamic

programming problem by solving a static optimization problem each period:

max
ni,t

ext+zi,tkαk

i,t−1n
αn

i,t − wtni,t
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to have the optimal labor demand ni,t = [
αne

xt+zi,tk
αk
i,t−1

wt
]

1
1−αn . Net the wage bill pay-

ment, firm i’s operating profit is (1− αn)yi,t where

yi,t = [
αn
wt

]
αn

1−αn exp [
xt + zi,t
1− αn

]k
αk

1−αn

i,t−1 (2.36)

Profit Maximization. Then firm’s dynamic optimization problem is defined as:

V(ki,t−1, mi,t−1|t−1; Ωt) = max
ki,t

{VAdj,VNon−Adj} (2.37)

where

VAdj(ki,t−1, mi,t−1|t−1; Ωt) =max
ki,t

(1− αn)yi,t − Ii,t − ckki,t−1 −
θ

2
[
Ii,t
ki,t−1

]2ki,t−1

+ βEQt+1|tV(ki,t, mi,t|t; Ωt+1) (2.38)

VNon−Adj(ki,t−1, mi,t−1|t−1; Ωt) =max
ki,t

(1− αn)yi,t

+ βEQt+1|tV((1− δ)ki,t−1, mi,t|t; Ωt+1) (2.39)

yt by Equation (2.36) and Ii,t = ki,t − (1− δ)ki,t−1.

2.4.2 Households

I assume there is a representative household who has quasi-linear utility in la-

bor hours and owns all the firms. It solves the following lifetime utility maximization
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problem:

W(Ωt) = max
{ct,nh

t }∞t=0

log(ct) + ψ(1− nht ) + βEtW(Ωt+1) (2.40)

subject to

ct = wtn
h
t +

∫

S

Πi,tµ(d[ki,t−1, xi,t−1|t−1, zi,t−1|t−1]). (2.41)

ψ is the marginal disutility of labor. Take wage wt as given, household chooses

consumption ct and total labor hours nht , which are to be allocated among firms.

The household does not save but receives the profits of all the firms each period 21.

Optimization yields the following first order conditions:

wt = ψct (2.42)

Λt =
1

ct
(2.43)

Λt is the Lagrangian multiplier associated with the budget constraint and has the

interpretation of the marginal utility of consumption. In general equilibrium, this

term enters firm i’s stochastic discount factor.

21Household can save through buying shares of firms. Abstract from saving, the results about
identifying responses of aggregate investment dynamics to different types of second moment shocks
are not changed.
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2.4.3 Recursive Competitive Equilibrium

Use prime and subscript -1 to respectively denote future and predetermined

variables, a recursive competitive equilibrium is defined as collection of functions

{V,W, N,K, λ,Λ, C, w,Nh,Γ,Ξ} such that

1. Given predetermined capital stock k−1, observables a, and signal s, wage w,

and stochastic discount factor βQ, the firm’s value function V, the policy

function of optimal capital stock demand K, and labor demand policy N

satisfy the firm’s recursive problem (2.37).

2. Given wage w, the welfare function W satisfies household’s utility maximiza-

tion problem (2.40). The marginal value of consumption Λ and the policy

function for consumption C satisfy (2.43) and (2.42).

3. The labor market clears with wage w. The labor supply Nh and demands

satisfy

Nh =

∫

S

N(k−1, m−1|−1, µ−1; x, z, ξ, σe, σξ)µ(d[k−1, m−1|−1])

4. The goods market clears:

C =

∫

S

{[αn
w

]
αn

1−αn exp [
a

1− αn
]k

αk
1−αn

−1 − [K − (1− δ)k−1]

− Ickckk−1 −
θ

2

[K − (1− δ)k−1]
2

k−1

}µ(d[k−1, m−1|−1])
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where K = K(k−1, m−1|−1, µ−1; x, z, ξ, σe, σξ) and IP and Ick some indicator

functions such that

Ick =







1 : K 6= (1− δ)k−1

0 : K = (1− δ)k−1

5. Stochastic discount factor is given by:

Ξ =
C

C ′ =
w

w′

6. The aggregate law of motion defines the dynamics of the probability measure

µt of firms over space S: µ = Γ(x, σe, σξ, σe,−1, µ−1)

7. The state variables of posterior beliefs m satisfy the recursive time-varying

Kalman Filter conditions given by Equations (B.47a), (B.47b) and (B.47c).

In addition, the productivity level and second moment stochastic processes

are given by Equations (2.31a)-(2.34).

2.4.4 Approximate Aggregation

Firm i enters period t carrying the key state variable, µ(ki,t−1, mi,t−1|t−1), end

of period t−1 joint distribution of firm-level capital stock and beliefs about aggregate

productivity and firm-level productivity across firms. Firm’s investment decision in

period t and newly formed posterior beliefs, which move firms in the distribution

over time, depend on a range of aggregate state variables and µt−1, i.e. defined in Ωt
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vector. Hence the aggregate law of motion µt = Γ(Ωt) cannot be written in closed

form.

Following literature on the general equilibrium of heterogeneous agents, I as-

sume firms are bounded rational such that they only use a finite number of distri-

butional moments to infer evolution of joint distribution over time, and the market-

clearing prices (Krusell et al., 1998). Specifically, I use the cross-sectional means

of capital stocks k̄t−1 and mean of posterior beliefs about the log aggregate pro-

ductivity x̄t−1|t−1 to describe µt−1, which turns out to be sufficient to describe the

joint distribution. 22 Market-clearing wage wt taken as given for firms’ investment

decisions is also assumed to be function of these two means.

Firms thus take the following log-linear perceived laws of motion to infer the

distribution dynamics and equilibrium wage:











log(k̄t)

x̄t|t

log(wt)











= Γ0 + Γ1







log(k̄t−1)

x̄t−1|t−1






+ Γ2











log(σξ,t)

log(σe,t)

log(σe,t−1)











(2.44)

Where Γ0,Γ1 and Γ2 are conformable vectors or matrices of coefficients. It should be

noted that the de facto aggregate productivity xt is not included as aggregate state

variable because firms never truly act upon it per the information frictions. In addi-

tion, a number of second moment state variables are to augment the laws of motion

in order to capture the aggregate impacts of uncertainty and disagreement shocks.

22By law of large numbers, mean of posterior beliefs about idiosyncratic productivity should be
intrinsically zero, which does not affect the aggregate dynamics.
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The lagged uncertainty enter the laws of motion simply because it directly affects

the newly formed posterior beliefs about current period productivity components.

2.4.5 Sketch of Model Solution

The equilibrium definition requires that with the acceptable error tolerance,

these approximate laws of motions should “rationalize” the actual equilibrium dy-

namics. Precisely, the actual market-clearing wage series, aggregate capital stock

and mean forecast of TFP series move closely enough as if their actual dynamics are

following these laws. Therefore, these equations will be determined in equilibrium.

Taking conjectured policy function for a firm’s optimal investment as solved

under a given parameter conjecture of aggregate laws of motion, I simulate the

economy for a fixed number periods after burning 1000 initial periods of data. Sim-

ulation is done following Young (2010), which moves firm density across grid nodes

over time. Then a non-linear solver is used to clear the labor market to obtain a time

series of equilibrium real wage. Then I re-estimate the equation systems (2.44) using

OLS based on the simulation data and update the Γj, j ∈ {0, 1, 2} coefficients. The

equilibrium is solved by looping over policy function and updating laws of motion

coefficients until full convergence is reached.

To save computational complexity, the exogenous processes: uncertainty, and

disagreement are discretized into two-state Markov chain processes using Tauchen

method. Aggregate, idiosyncratic productivity and noise shocks are discretized into

three states. The exact solution algorithm is detailed in Appendix B.11.
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2.5 Parameter Values

The full set of parameter values that feeds into the full quantitative model is

pinned down through combinations of estimations and calibrations.

2.5.1 Measurement and Estimation

First, to measure the productivity uncertainty process defined in the model, I

estimate Equation (1.2) based on estimated TFP panel using annual firm-level data

from Compustat sample in Imrohoroglu and Tüzel (2014). The dispersion of next

year productivity shocks denotes the level of current year uncertainty. For quarterly

frequency, annual uncertainty series is linearly interpolated with a year. Second,

the disagreement index constructed from Philadelphia Fed Business Outlook Survey

data is used to approximate for cross-sectional disagreement; see details in Chapter

. Empirical evidence has shown that magnitude of cross-sectional disagreement is

not measuring the right concept of productivity uncertainty as defined in our model.

Following Leduc and Liu (2015), parameters on the persistence and innovation

S.D.s for fundamental uncertainty and informational disagreement processes are ob-

tained by estimating a large VAR system with both uncertainty and disagreement

measures included along with major macro aggregates. Specifically, estimations are

based on the VAR system with Cholesky ordering restriction that augments the

ordering structure as specified in Bloom (2009). I have shown estimated impulse re-

sponses of aggregate investment, output and employment to shocks to disagreement

and uncertainty in Chapter .

103



Here, to reiterate, I examined the ordering that puts uncertainty measure first

and also the case when disagreement is put prior to uncertainty. These ordering

assumptions are to isolate the non-fundamental sources of second moment shocks

that shift cross-sectional disagreement but do not immediately affect the dispersion

of real idiosyncratic productivity. Or, jumps in productivity uncertainty shocks do

not quickly translate into a disagreement spike within a quarter. It shows ordering

between uncertainty and disagreement does not affect the estimation results and the

estimates are robust across VAR specifications. I plot the IRFs of uncertainty and

disagreement to their own innovations in Figure 2.15.

Figure 2.15 shows that after reaching the peak of jumps in one year, it takes

four years for uncertainty to fully decay. On average, uncertainty falls about 25

% of its peak within a year. Then by the AR(1) formulation, the quarterly un-

certainty shock persistence is implied by ρσe = (1 − 0.25)1/4 = 0.93. By contrast,

within a year, the disagreement index drops about 85.7 % off its peak, the quar-

terly persistence is thus given by ρσξ = (1 − 0.857)1/4 = 0.615. On impact, the

percent jump directly translates into the standard deviation numbers that capture

changes in innovations to uncertainty or disagreement. Hence, the estimation shows

that uncertainty shocks are more persistent than that of informational shocks to

disagreement. However, shocks to uncertainty has one tenth of its innovation size

relative to that of disagreement shocks.

Parameter values for the aggregate productivity and idiosyncratic productivity

processes are directly borrowed from Cooper and Haltiwanger (2006), which esti-

mates the persistence and standard deviation using constructed plant capital series
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based on data on retirements and investment constructed from the Longitudinal Re-

search Database (LRD). Following Edmond and Veldkamp (2009), I convert their

annual persistence numbers to quarterly counterparts using ρquarter = ρ
1/4
annual. Then

I convert S.D. of their aggregate productivity innovations by σquarter = σannual/(1+

ρquarter + ρ2quarter + ρ3quarter). Hence, ρx = 0.93 < ρz = 0.97, σv = 0.014 and the

unconditional dispersion of log idiosyncratic productivity σ̄e = 0.15. I note that the

sample mean of cross-sectional annual S.D. of log firm-level TFPs based on Com-

pustat data is 0.42, which falls in the range of 0.3 as in Gilchrist et al. (2014) and

0.64 as in Cooper and Haltiwanger (2006). Therefore, the magnitudes of firm-level

productivity dispersion σ̄e are close enough regardless of whether it’s based on Com-

pustat or LRD sample, despite I set it to be the number that is more consistent with

Cooper and Haltiwanger (2006)’s other estimates on productivity levels.

For the sample average of business outlook disagreement index is around 0.68,

given that this index does not perfectly correspond to the informational noisiness

or dispersion measure defined in the full model, I thus simply set the unconditional

noise dispersion σ̄ξ =
√
0.682 − 0.152 = 0.66, assuming that the dispersion of real

productivity and the dispersion of noises are additively shaping the business outlook

disagreement index. In Table 2.8, I summarize the parameter values as estimated

based on the VAR system.
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2.5.2 Calibration

Some parameter values are standard as in the literature. One period corre-

sponds to a quarter. I take numbers on the capital and labor shares in production

technology from Khan and Thomas (2008) such that αk = 0.256 and αn = 0.64 so

that capital cost share is about one third. The subjective discount factor β = 0.99

implies an annualized real interest rate of 4 % at the steady state.

A stationary distribution of firms is computed by solving the model with all

aggregate shocks turned off. I discretize idiosyncratic productivity and the firm-

specific noise into three states. Wage is pinned down by having the wage taken by

the firms close enough to the market clearing wage. Equilibrium is solved based

on the exact firm mass distribution over the grids. The steady state firm distribu-

tion in capital stock helps calibrate parameters on capital depreciation, adjustment

costs, and marginal disutility of labor (δ, θ, ck, ψ). They are jointly pinned down by

matching the model-implied moments to the data moments of the cross-sectional

distribution of plant-level annual investment rates as in Cooper and Haltiwanger

(2006).23 Table 2.9 lists the moment targets and reports the calibrated parameters.

The process of calibrating the model is supposed to align the model so as to gener-

ate the right fraction of firms who incur large investment spikes as defined to have

annual investment rate greater than 20%, the lumpy investment, and the fraction of

firms with disinvestment, i.e. annualized investment rate smaller than -1%.

Table 2.9 shows that the calibrated adjustment costs, both convex and non-

23 The moment targets are estimates of annual rates. I convert my model-predicted quarterly
investment rates to get annual equivalents according to

ki,t

ki,t−1

− (1− δ)4.
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convex, are small in size, which are in line with estimates based on Simulated Method

of Moment estimation of a partial equilibrium model as in Cooper and Haltiwanger

(2006). The calibrated quarterly capital depreciation rate is 2.37 %, which is close

enough to 2.5 % as usually assumed in the literature, for example, Gilchrist et al.

(2014) and Bloom (2014). The marginal dis-utility of labor falls in the range of

2 ∼ 4 as commonly documented in the literature, e.g. Hansen (1985).

2.6 Quantitative Results

2.6.1 Steady State

The full quantitative model generates a number of key moments of firm-level

investment rate distribution at steady state, which well match the data targets.

Table 2.10 summarizes the statistics of the distribution. It should be noted that a

few trade-offs for matching the data moments exist. First, despite the band of firms’

inaction region is not targeted in the calibration process, presence of fixed cost for

capital adjustment still delivers 2.4 % of firms with no investment or disinvestment

actions taken at steady state.24 Larger fixed cost parameter ck, the greater the range

of inaction band is. However, as the fixed cost is symmetric for both investment and

disinvestment efforts, higher ck will reduce the average investment rates across firms.

Second, to generate sufficient mass of investment spikes, the convex adjustment cost

parameter θ cannot be overly large. Also, it cannot be too small as the model will

generate excessively large investment drops among disinvesting firms.

24However, this number is smaller than the 8 % found in the U.S. data (Cooper and Haltiwanger,
2006).

107



Despite all these, it is important that the model is able to generate the right

fraction of investing firms at steady state, which is about seven to eight times the

mass of disinvesting firms. This well matches the U.S. micro-level data. Moreover,

as shown in the simple model, this relative mass guarantees that in response to rises

in informational disagreement, drops in investments among more productive firms

outweighs the increased investments from those less productive firms, which leads

to drops in aggregate investment.

2.6.2 Macro Implications: Aggregate Investment Dynamics

In order to examine the effects of informational disagreement shocks and real

uncertainty shocks on aggregate investment, I compute the Impulse Response Func-

tions (IRFs) of aggregate investment rate to one standard deviation (S.D.) increases

in shocks to productivity uncertainty, and to the dispersion of signal noises. Im-

pulse responses averages out across 10000 simulations. For each simulation, exoge-

nous increases in shocks are imposed in period 101 after first 100 quarters burned.

Firm-level investments are then aggregated and divided by the aggregated capital

stock.

Figure 2.16 plots the impulse responses of quarterly aggregate investment rate

given one S.D. jumps of two different second moment shocks, individually or jointly,

imposed in quarter 2. The black line displays the impulse responses to increases in

productivity uncertainty shocks only. Aggregate investment rate drops immediately

in response to uncertainty jumps. This is due to the fact that more firms would
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pause, wait, and see until uncertainty is cleared when they see greater gain form

waiting for one quarter. Drops in aggregate investment rate are almost 1 percentage

point are economically large as the steady state aggregate investment rate is around

2.5 %. Afterwards, the convexity effect brought by uncertainty jumps quickly dom-

inates the died wait-and-see channel. More firms are getting outside the inaction

region as productivity draws are realized and productivity draws are more dispersed

across firms. Therefore, ex-post, conditional on taking actions, on average, firms

found themselves more productive and expect themselves being more productive.

Restarting investments generates quick rebound of aggregate investment and ag-

gregate investment even overshoots. Overall, the found “drop-rebound-overshoot”

dynamics is consistent with the predictions of a model about uncertainty shocks

(Bloom, 2009). Moreover, we see these effects associated with uncertainty shocks

are robustly sizable even in the presence of imperfect information environment.

Focusing on the blue dashed line, given more dispersed information that trig-

gers informational disagreement, we see a very trivial decline of aggregate investment

in quarter 2. This can be a result of the interplay of three forces ongoing. First,

the extensive margin real-option effect could be limited for not many firms pause

adjusting capital in response to such informational second moment shocks. Second,

conditional on the capital adjustment margin, the convexity effect is still present and

firms have greater expected marginal product of capital as forecast error increases

with informational noisiness. Third, on impact, firms start making perception mis-

takes due to the information frictions that firms cannot perfectly disentangle aggre-

gate from idiosyncratic productivity. Firm-level investments are being cut among
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more productive firms as they would not believe their idiosyncratic productivity

draws are good enough. Similarly, less productive firms are investing more. As a

result, cuts in investments among a much larger mass of investing firms hammers

aggregate investment. Hence, it shows that all these forces are offsetting each other

right at the moment of shocks, which means very moderate changes to aggregate

investment.

However, going forward, the mis-perception effect starts dominating convexity

effect. We see a very gradual decline and much slower recovery compared to the

impulse response to uncertainty shocks. Note that the wait-and-see effect is only

short-lived and limited in case of informational disagreement shocks. The plot shows

that it takes about three to four years for aggregate investment rate to return to the

steady state. As firms’ are dynamically extracting beliefs over time using Kalman

Filtering, their beliefs are weighted averages of prior beliefs and new measurements

of total factor productivity ai,t and productivity signal si,t. Thus persistence of im-

perfect information builds in some belief inertia. The gradually formed false beliefs

means that more productive firms would slowly accumulates cuts in investments

until the right capital targets are reached. The reason why the recovery is slow

is because larger dispersion of noises also force firms to increasingly under-weigh

new measurements of total factor productivity as the Kalman gain from learning is

smaller when information gets nosier. Therefore, more productive firms’ pessimistic

beliefs won’t go away quickly. Such gradual decline in aggregate investment won’t

stop until firms start weighing more on measurements when informational nosiness

eventually decays. Firms finally realize that there was no fundamental shocks oc-
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curred at the very beginning. Hence, such mis-perception effect is critical to deliver

a real recession even if shocks are not backed by economic fundamental changes.

Moreover, such effect helps generate a gradual decline and slower recovery.

The red dotted line plots the impulse response of aggregate investment rate

to one S.D. increases in shocks to both real and informational second moments im-

posed in quarter 2. In reality, it is possible that both shocks can be present, this

exercise helps understand the relative roles for real uncertainty shocks and informa-

tional disagreement shocks in terms of shifting the aggregate investment dynamics.

It shows that the “wait-and-see” effect associated with jumps in real uncertainty

dominates in the short run, which generates a sharp decline of aggregate investment

in quarter 3. However, conditional on firms taking investment and disinvestment

actions, the mis-perception effect associated with informational disagreement shocks

can be strong so that the recovery path is largely delayed. In addition, there is no

overshoot of aggregate investment.

Important implications can be drawn from here. We still need second moment

shocks to economic fundamentals, by affecting the spread of real productivities, to

generate very abrupt disruptions of economic activities through channels of “wait-

and-see”. However, some informational disturbances are also indispensable, by in-

jecting inertia and wrong firms’ beliefs, in order to slow down the recovery path.

Therefore, impulse response analysis shows how firms’ imperfect learning can be

critical to propagate the contraction effects of jumps in real uncertainty.
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2.6.3 Micro Implications: Firm-level Investments

I then proceed to check if the three separate effects, i.e. convexity effect,

wait-and-see effect, and the mis-perception effect, which are important to drive the

aggregate investment dynamics, can be well identified at the micro-level and are

differently associated with real uncertainty and informational disagreement shocks.

The model is simulated for 400 quarters and for a panel of 2000 firms continuously

given the optimal policy function for firm-level investment. I estimate the following

equation based on the simulated data:

log(1 + [I/K]i,t) =βi,0 + β1 log(σe,t) + β2 log(σξ,t)

+β3 log(σe,t)×∆zi,t + β4 log(σξ,t)×∆zi,t + β5∆zi,t + ǫi,t (2.45)

Here, t corresponds to a quarter. To account for the negative investment rates,

the dependent variable is log transformed. Note that log(1 + [I/K]i,t) ≈ [I/K]i,t

when investment-capital ratio is small. Therefore, the estimated coefficients can

be roughly interpreted as semi-elasticity such that changes in investment rate are

associated with the percentage changes in controlled variables. β1 measures the

partial linear effect of real uncertainty shocks on firm-level investment. Note that

σe,t is realized this period but governs the dispersion of to-be-realized idiosyncratic

productivity shocks for quarter t+1. β2 captures the linear effects of informational

disagreement shocks on firm-level investment. σξ,t measures how dispersed, or noisy

a firm’s signal is at quarter t. The non-linear effects β3 and β4 are considered as
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we aim to gauge how the investments taken by more productive firms are affected

in different ways by real and informational second moment shocks. β5 captures the

coefficient that is associated with the impacts of growth rate of firm-level TFP on

firm-level investment rate. Table 2.11 summarizes the OLS estimations results.

Columns 1-2 display the point estimates for β1 and β2 when uncertainty and

disagreement enters the specification separately. We see that the linear term coef-

ficients are both negative and are statistically significant. This result suggest that

wait-and-see channel dominates the convexity effect for both second moment shocks

on impact. columns 3 and 4 show that by including lagged linear terms of uncer-

tainty and disagreement, we can better decompose the linear effect into the convexity

and wait-and-see channels. Uncertainty about future productivity variance triggers

higher investments, whereas realized productivity variance pushes more firms into

inaction by knocking down investments. Conversely, the negative effect is picked up

by the contemporaneous σξ,t, while the expansion effect is captured by the lagged

disagreement term. This difference may be due to the fact that signal nosiness is

modeled to be about the unobserved and realized productivity realizations. This

helps explain why the similar linear effects associated with terms of uncertainty and

disagreement are not concurrently dated. Apart from these linear effects, we still

find the productivity-enhancing and dampening effects associated differently with

uncertainty and disagreement shocks. Note that the magnitude of dampening effect

due to jumps in disagreement is smaller than the enhancing effect associated with

larger uncertainty shocks. However, this comparison only captures the difference of

shock effects on impact. As we seen from Section 2.6.2, the accumulated effects of
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disagreement shocks over time can be economically significant. When both linear

and non-linear terms of productivity uncertainty and informational disagreement

enter the specification for estimation, column 5 still finds that more productive

firms cut investments when they are more disagreed because of noisier information

while they increase investments when they see larger productivity variance in the

future. Therefore, these productivity-enhancing and dampening-effects are consis-

tent with the empirical findings in Chapter . The negative effects associated with

the interaction term of disagreement are direct results of the mis-perception effect of

disagreement shocks due to imperfect information. Also, the productivity-enhancing

effect associated with real uncertainty shocks confirms the micro-foundation for a

quick rebound of aggregate investment.

Hence, we see that it is the combined convexity effect and wait-and-see effect

associated with productivity uncertainty, and the interplay of all three effects includ-

ing the mis-perception effect related to informational disagreement that determines

the firm-level investment decision. These model-implied effects are well-identified at

the micro-level, which helps understand the model-predicted aggregate investment

dynamics. Moreover, both macro and micro implications from the quantitative

model match the counterpart empirical findings documented in Chapter .
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2.6.4 Cyclicality of Investment Rate Dispersion: Role of Informa-

tional Disagreement Shocks

Apart from identifying the different macro and micro-level effects associated

with real productivity uncertainty and informational disagreement shocks, I explore

the quantitative role for disagreement shocks to drive the dynamics of investment

rate dispersion across firms. As found in Chapter , real productivity uncertainty

have offsetting forces, i.e. convexity effect and wait-and-see effect, that complicates

the movement of investment rate dispersion over time. According to Bachmann and

Bayer (2014), in order to generate pro-cyclical investment rate dispersion as found in

the data, they engineered a model of uncertainty shocks such that the wait-and-see

channel is present but bounded, and impose that uncertainty shocks are negatively

correlated with aggregate TFP shocks. Their model can deliver the right magnitude

of pro-cyclicality only at the cost that uncertainty shocks are no longer significant

business cycle drivers.

I delve into the question that without imposing additional restrictions on the

property of real uncertainty shocks, whether the presence of information frictions

helps deliver the right amount of pro-cyclicality of firm-level investment rate disper-

sion. Firstly, I compute correlation coefficient between yearly firm-level investment

rate dispersion, and the annual U.S. real gross domestic product. Both series are HP

detrended. Using annual data for correlation computations is because only yearly

firm-level investment rates are readily available based on the Compustat sample

from Chapter . Also, correlation coefficients based on yearly data are directly com-
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parable to the data moment in Bachmann and Bayer (2014). It shows that the

data moments in the first panel of Table 2.12, the choice of HP-filtering smoothing

parameter matters. However, despite the variations, we see that investment rate

dispersion is strongly pro-cyclical.

Then I simulate the model of quarterly frequency for 40 years (160 quarters)

and average the investment rates and total output within a year to get annual data.

Firstly, using a smoothing parameter of 100, the correlation between investment rate

dispersion and output is around 0.73 when both second moment shocks are shut off

but the TFP shocks at the aggregate level. This model-implied correlation clearly

overshoots the 0.45 or 0.6 data moment. Such overshoot is also found in Bachmann

and Bayer (2014) based on model simulations with only aggregate TFP shocks. The

reason for this overshoot is that increases in aggregate TFP shocks select excessive

amount of huge investment spikes in good times. Therefore, the correlation is overly

large. Secondly, I further simulate the model with both aggregate TFP shocks and

real productivity uncertainty shocks turned on. We see that the correlation number

does not get closer to the data moment if not gets even worse. The reason why

we have very trivial changes here is that despite wait-and-see channel that shrinks

investment rate dispersion is short-lived, it partly offsets the convexity effect that

productivity dispersion would drive more investment spikes. Therefore, unless we

impose that aggregate TFP shocks and uncertainty shocks are negatively correlated,

and the wait-and-see channel is bounded as in Bachmann and Bayer (2014), we won’t

be able to nail down the overshot number.

Finally, I simulate the model with all shocks turned on. It turns out that
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the simulation of full model gives a number of cyclicality that is closer to the data

moments. To understand why a model with all these orthogonal shocks can jointly

deliver the right amount of pro-cyclicality of investment rate dispersion, I estimate

regression models of logged firm-level investment rate dispersion on three factors:

aggregate productivity xt, uncertainty measure σz,t in log, along with informational

disagreement σξ,t in log. As shown in Table 2.13, across specifications, we found

that both expansion force and shrinkage force on the investment rate dispersion

associated with real uncertainty are present with the former dominating the lat-

ter. Differently, the effects of rising informational disagreement are unambiguously

reducing the investment rate dispersion because more productive firms are cutting

investments and less productive firms are investing more. In addition, we see that

the TFP shocks are the very significant driver of the dispersion of investment rate

dynamics for it selects the right amount of investment spikes.

Here, we see the additional merit of considering stochastic informational second

moment shocks, i.e. they helps better align a model of second moment shocks

with the data without muting the business cycle effects of real uncertainty shocks.

Moreover, the model setup does not have to impose shock correlations, or restrict

the parameters associated with firm-level non-convex adjustment costs.

2.7 Conclusion

In this chapter, I study a general equilibrium model of heterogeneous firms

that face shocks to aggregate productivity and more persistent firm-specific pro-
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ductivity in an environment with imperfect information. Firms care about each

productivity component but can only imperfectly disentangle them from the total

TFP through imperfect signals, regardless of whether the signals are public or pri-

vate. I disentangle two distinctive sources of business cycles: uncertainty shocks as

in Bloom (2009) and shocks to the precision of signals through which firms learn

about aggregate productivity.

Information imprecision driven by pure information dispersion can shift the

cross-sectional dispersion in firms’ beliefs about aggregate and idiosyncratic pro-

ductivity over time. I refer to the exogenous informational shocks that affect dis-

agreement among firms as “informational disagreement shocks”. When the level of

pure disagreement rises, firms become increasingly confused. Investment decisions

continue under-reacting to idiosyncratic productivity draws. When more productive

firms perceive that good idiosyncratic productivity draws are not good enough to jus-

tify investments, this leads to underinvestment. Aggravated capital mis-allocation

can have real and sizable impacts on business cycles by driving down aggregate

investment, which is simply due to the presence of non-fundamental sources of in-

formational disturbances, even if there are no adverse TFP shocks nor shocks that

affect dispersion of real firm-level productivity.

This chapter makes three main contributions. (1) It generates the right amount

of pro-cyclicality regarding the dispersion of investment rates, a key empirical regu-

larity that, according to Bachmann and Bayer (2014), models of uncertainty shocks

cannot explain well. (2) Through an aggregate investment channel, the model ex-

plains why we see macro aggregates undergo a quick rebound after a rise in volatility-
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based measures of uncertainty but a gradual decline and slow recovery in response

to larger forecast disagreement in the data. (3) The model also suggests that we

can use dispersion in firm-level investment rates as a key identifier to determine

when the economy is hit by real uncertainty shocks and when the economy is simply

driven by informational disagreement shocks.

2.8 Tables

Table 2.8: Parameter Values: Fundamental Uncertainty and Informational Dis-
agreement

Parameter Value Interpretation

ρσe 0.930 Persistence of Micro Uncertainty
ρσξ 0.615 Persistence of Informational Disagreement

σ̄z 0.150 Unconditional Mean of Uncertainty
σ̄ξ 0.660 Unconditional Mean of Informational Disagreement
ησe 0.007 Standard Deviation of Uncertainty Shocks
ησξ 0.070 Standard Deviation of Informational Disagreement Shocks

Notes: Parameters are based on 10 variable Structural VAR estimations. See details in
the text.

Table 2.9: Calibrated Parameters and Data Targets

Symbol Value Parameter Target Number

θ 0.0656 Quadratic Cost Frac. investment spikes 18.6 %
ck 0.0270 Fixed Cost Frac. of disinvestment 10.4 %
ψ 3.3606 Marginal Dis. of Labor Labor Hours 0.33
δ 0.0237 Capital Depreciation Rate Investment Rate 12.2 %
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Table 2.10: Calibrated Model: Steady State Moments

Moments Data Source Data Model

Labor Hours Standard 0.33 0.322
Fraction of disinvesting firms LRD 10.4 % 12.5 %
Fraction of investment spikes LRD 18.6 % 15 %
Average Investment Rate LRD 12.2 % 10.2 %
Fraction of investing firms LRD 81.6 % 85.1 %

Notes: The moments of the steady state cross-sectional firm-level investment rates are
computed based on a continuous simulation of firm’s grid-based investment policy func-
tion after 200 quarters are burned for a panel of 10,000 firms.

Table 2.11: Simulation and Estimation: Effects on Firm-level Investment Rates

(1) (2) (3) (4) (5)

log(σe,t) -0.0003*** 0.0054*** 0.0054***
(0.0000) (0.0001) (0.0001)

log(σξ,t) -0.0002*** -0.0007*** -0.0004***
(0.0000) (0.0001) (0.0001)

log(σe,t−1) -0.0062*** -0.0062***
(0.0001) (0.0001)

log(σξ,t−1) 0.0004*** 0.0003***
(0.0001) (0.0001)

log(σe,t)×∆zi,t 0.0134** 0.0135**
(0.0067) (0.0067)

log(σξ,t)×∆zi,t -0.0028* -0.0028*
(0.0020) (0.0020)

∆zi,t 0.0520* -0.0134 0.0416*
(0.0280) (0.0129) (0.0309)

N 800000 800000 798000 798000 798000

Notes: Based on a simulated panel of 2000 firms for 400 periods. Dependent vari-
able: log(1+Ii,t/ki,t−1) to account for negative investments. Measure of Uncertainty:
σe,t, dispersion of quarter t+1 idiosyncratic productivity shocks ei,t. Measure of In-
formational Disagreement: σξ,t, dispersion of quarter t firm-specific noise shocks ξi,t.
zi,t: idiosyncratic productivity. Firm-level fixed effects are included for all specifi-
cations (not reported). Estimations are done through OLS. Robust standard errors
reported in parentheses are clustered at the firm level. Significance levels: 10% *,
5% **, 1% ***
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Table 2.12: Cyclicality of Investment Rate Dispersion

Correlations with HP-filtered Aggregate Output

Data Moments

Data1 (Compustat; H-P λ = 6.25) 0.70***
Data2 (Compustat; H-P λ = 100) 0.45***
Data3 (Bachmann and Bayer, 2014) 0.60***

Models

Only Aggregate TFP shocks 0.73***
Aggregate TFP shocks + Uncertainty Shocks 0.75***
Baseline Model 0.68***

Notes: Data moments 1: correlations with the cyclical component of annual U.S.
Real Gross Domestic after HP-detrend with filtering parameter of 6.25; Data mo-
ments 2: correlations with the cyclical component of annual U.S. Real Gross Do-
mestic after HP-detrend with filtering parameter of 100; These two data moments
are computed based on yearly data from 1970 to 2013. Data moments 3: correla-
tions with the cyclical component of annual real gross value added of the nonfinan-
cial private business sector from NIPA data after HP-detrend with filtering param-
eter of 100 (Bachmann and Bayer, 2014). Model with only Aggregate TFP shocks:
both types of second moment shocks are off. Model-implied correlation coefficient is
computed based on simulated series of investment rate dispersion for 40 years (160
quarters) averaging across 100 simulation samples. Real output and investment rate
dispersion series are annualized and then HP detrended using filtering parameter of
100. Product Baseline Model: aggregate TFP shocks, aggregate uncertainty shocks,
and informational disagreement shocks are all present. Aggregate TFP shocks +
Uncertainty Shocks: informational disagreement shocks are shut off. Significance
levels: 10% *, 5% **, 1% ***
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Table 2.13: Simulation and Estimation: Dispersion of Firm-level Investment Rates

(1) (2) (3) (4)

log(σz,t) 1.0355*** 0.9573*** 0.8769***
(0.0191) (0.0191) (0.0190)

log(σz,t−1) -0.7345*** -0.6735*** -0.6566***
(0.0193) (0.0194) (0.0193)

log(σξ,t) -0.0666*** -0.0604*** -0.0056
(0.0103) (0.0103) (0.0101)

log(σξ,t−1) -0.3813*** -0.3792*** -0.4259***
(0.0104) (0.0104) (0.0102)

xt 25.2664***
(0.2845)

Adj R2 0.0046 0.0169 0.0209 0.0306

Notes: Based on a simulated panel of 2000 firms for 400 quarters. Dependent vari-
able: logged standard deviation of investment-capital ratios across firms. Measure
of Uncertainty: σz,t, dispersion of quarter t+1 idiosyncratic productivity shocks ei,t.
Measure of Informational Disagreement: σξ,t, dispersion of quarter t firm-specific
noise shocks ξi,t. Measure of aggregate productivity in log xt. Robust standard er-
rors to heteroskedasticity are reported in parentheses. Significance levels: 10% *,
5% **, 1% ***

2.9 Figures

Figure 2.13: Timeline Firm’s Decision

t = 1 t = 2 t = 3

(Period of Uncertainty and Disagreement)
observes TFP Ai,1
produces yi,1
receives signal s
observes σv, σe and σξ
form beliefs xi,1|1 and zi,1|1
makes investment Ii,1

At,2 reveals
produces yi,2
makes investment Ii,2
knows Ai,3 = Ai,2

produces yi,3
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Figure 2.14: s-S Policy
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Figure 2.15: VAR-based IRFs: Bloom (2009) with Disagreement, Uncertainty and
Investment
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Figure 2.16: Model-based IRFs: Shocks to Uncertainty and Disagreement in Period
2
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Concluding Remarks

A firm’s uncertainty about its future productivity depends on both the under-

lying variance of its productivity, and the accuracy of the firm’s information about

this productivity. Literature that examine the nature and the business cycle impacts

of uncertainty, mainly study the changes in the former, i.e. the volatility of economic

fundamentals. This dissertation is devoted to empirically and theoretically assess-

ing how information frictions interact with volatility changes of real productivity, in

order to understand how the firms’ beliefs about future profitability are determined,

and how firm-level and aggregate investment are affected by changes in the firms’

beliefs.

The first chapter finds that firms’ forecast dispersion identifies a different type

of second moment shocks other than shocks that affect the variance of real produc-

tivity. By affecting the distribution of firm-level beliefs, even if nothing changes

to the economic fundamentals, greater heterogeneity in the firms’ forecasts triggers

persistent declines in aggregate investment, employment, and output as followed

by a sluggish recovery. At the firm-level, increasing belief heterogeneity is found

to render more productive firms to decrease investments even more, which leads

to drops in aggregate investment. Conversely, more dispersed firm-specific future
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productivity shocks, conventional measure of economic uncertainty, generates the

“drop-rebound-overshoot” dynamics for macro aggregates. At the micro-level, more

productive firms increase investments when they see productivity variance becomes

larger.

To explain these identified impacts of disagreement and productivity uncer-

tainty in the data, Chapter 1.8 presents a general equilibrium model of heterogeneous

firms, when the firms’ forecasts about their future productivities do not necessarily

overlap with the underlying productivity draws because of the imperfect informa-

tion. When firms rely on noisy signals to disentangle the unobserved aggregate and

idiosyncratic productivity, they disagree about the future productivities for pure in-

formational reasons. The model finds that informational disagreement makes firms

underestimate de facto idiosyncratic productivity draws. Therefore, more produc-

tive firms carry increasingly pessimistic forecasts and cut firm-level investments.

At the aggregate level, non-fundamental second moment shocks can lead to a real

recession by bringing down aggregate investment. Hence, imperfect information

helps explain why firm-level and aggregate investment responds quite differently to

changes in cross-sectional dispersion of beliefs, as opposed to the variance changes

of real productivity. Theses results suggest that a sharp drop of aggregate invest-

ment as followed by a slow recovery can be a result of adverse shocks to both real

uncertainty and informational disagreement without triggering negative aggregate

technological shocks. Precisely, heightened productivity uncertainty shocks can still

generate abrupt disruptions of economic activities, while informational disagreement

shocks, by driving the distribution of firms’ beliefs, can slow down the recovery path.
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Nonetheless, uncertainty and disagreement variations are treated to be exoge-

nous in this dissertation. In the future, endogenizing the process of information

acquisition to justify how these second moments change over time can be an in-

teresting extension. Empirically, understanding which sources of information noise,

such as policy signals and private information, contributes the most to the time-

varying disagreement changes among firms, and which types of firms will be more

likely to be affected by belief-driven disturbances can be very useful. These research

endeavors will greatly help examine the role of belief-driven shocks in other contexts

on labor market dynamics, corporate borrowing, and taxation policy, among other

domains.
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Addendum to Chapter 1

A.1 Alternative Measures of Disagreement and Uncertainty

Index of Economic Policy Uncertainty (EPU): based on the frequency of news-

paper references to policy-related economic uncertainty, the index has been found

to spike near tight presidential elections, Gulf Wars I and II, the 9/11 attacks, the

failure of Lehman Brothers, the 2011 debt-ceiling dispute and other major battles

over fiscal policy. See details in Baker et al. (2015).

Dispersion of Forecasts Measures Based on Philadelphia Fed’s Survey of Pro-

fessional Forecasters data (SPF): the survey is conducted quarterly among profes-

sional forecasters regarding their forecasts about major macroeconomic variables of

the U.S. for the quarter of survey, and up to one year or two years ahead. The

survey started in 1968 and the Federal Reserve Bank of Philadelphia took over the

collection from the National Bureau of Economic Research, and maintained the sur-

vey since 1990. It has been claimed that measurement issues can be severe fore the

data before 1990 and I use the data from 1990Q1 up to 2013Q4 in line with Bloom

(2014).

Cross-sectional forecast dispersion measures the degree of disagreement among

the expectations of different forecasters. I use the forecast dispersion index published
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by Philadelphia Fed’s regarding forecasts about the U.S. real GDP and the industrial

production. The exact measure of dispersion is taken as the difference between the

75th percentile and the 25th percentile (the interquartile range) of the point forecasts

surveyed. To aid the comparisons with the BOS survey-based forecast disagreement

which is constructed based on six month ahead forecast data, I consider two quarters

ahead SPF forecast dispersion measure as benchmark SPF measure. As robustness

checks, I found no evidence that one-year ahead SPF forecast dispersion measure

would significantly alter the benchmark VAR estimation and the empirical impulse

responses.

A.2 Measures of Operation Ratios For the Empirical Investment

Equations

Firm-level data of annual frequency is used in the firm-level investment equa-

tion estimations. I stick to the Compustat fiscal year definitions so that a firm’s

operation is considered in year t − 1 data entry if this firm has its end of the fis-

cal year from January through May of calendar year t otherwise in year t. The

definitions of empirical measures are listed below:

1. [I/K]i,t: investment-capital ratio, Capital Expenditures in year t divided by

Property, Plant and Equipment - Total (Net) in year t− 1.

2. [Y/K]i,t: current sales-to-capital ratio, Sales/Turnover (Net) in year t divided

by Property, Plant and Equipment - Total (Net) in year t− 1.
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3. [π/K]i,t: current operating income-to-capital ratio, Operating Income Before

Depreciation in year t divided by Property, Plant and Equipment - Total (Net)

in year t− 1.

4. Qi,t: average Q measure, (market value of common equity in year t + book

value of total liabilities in year t) then divided by book value of total assets in

year t.

5. [CF/K]i,t: cash flow-capital ratio, Income Before Extraordinary Items - Ad-

justed for Common Stock Equivalents in year t divided by Property, Plant and

Equipment - Total (Net) in year t− 1.

A.3 Compustat Data Summary

Compustat annual data from 1970 to 2013 is used for estimating the empirical

relationship between firm-level investment and uncertainty/disagreement measures.

I restrict the sample to reflect non-financial firms and also exclude regulated utility

firms. In specific, I remove firm-year observations with Standard Industry Classifi-

cation (SIC) codes between 6000 and 6999 (inclusive), and exclude range between

4900 to 4999 (inclusive). In addition, firm-year observations are dropped if a firm

did not continuously operate in the investment margin at least for three years. I fur-

ther make sure that firm-year observations included in the sample have the following

properties:

• total asset is positive
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• number of employees is greater than one.

• Property, Plant and Equipment - Total (Net), the capital stock measure is

positive

After removing outliers with statistical filters, I have the following data summary

results: It shows that this unbalanced panel has 104799 firm-year observations in

Table A.14: Summary Statistics of Sample Firm Characteristics

Variable Obs Mean Std. Dev. Min Max Median

[I/K]i,t 104799 0.23 0.17 0 1 0.19
[Y/K]i,t 104799 5.13 3.44 0.03 15 4.48
[π/K]i,t 104799 0.55 0.47 -0.5 2.5 0.44
Qi,t 31091 1.42 1.3 0.03 58.04 1.08
[CF/K]i,t 104799 0.14 0.5 -12.29 12.08 0.13
TFPi,t 104799 -0.33 0.38 -5.53 3.36 -0.32

total. On average, each year, we have about 4333 firms in the sample. Due to

the missing market value data, Tobin’s Q measure has very few valid observations.

Note that the TFPi,t is already in log and the data is directly from Imrohoroglu and

Tüzel (2014) which is merged with firm profiles by fiscal year and Global Company

Key (GVKEY). Following Gilchrist et al. (2014), I restrict the investment-capital

ratio to be bounded between 0 and 1.
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Addendum to Chapter 2

B.1 Proof of Lemma 1

Proof. Define vector Xi as firm i’s information set known at the onset of period 1:

Xi =







s

ai






=







x1 + σξξ

x1 + zi,1






.

xi,1|1 and zi,1|1 are linear projections of x1, zi,1 on Xi such that

xi,1|1 = µx + ΣxXΣ
−1
XX(X − µX)

zi,1|1 = µz + ΣzXΣ
−1
XX(X − µX)

where µx, µz, µX are prior means. Given the zero mean and orthogonality properties,

variance co-variance matrix ΣXX is defined as below. The firm index and period 1

index in the expectation operator are suppressed:

ΣXX = E(XX ′) =







σ2
v,0 + σ2

ξ σ2
v,0

σ2
v,0 σ2

v,0 + σ2
e,0






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By the matrix inverse property,

Σ−1
XX =

1

σ2
v,0σ

2
e,0 + σ2

e,0σ
2
ξ + σ2

v,0σ
2
ξ

·







σ2
v,0 + σ2

e,0 −σ2
v,0

−σ2
v,0 σ2

v,0 + σ2
ξ







Similarly, ΣxX = [σ2
v,0, σ

2
v,0] and ΣzX = [0, σ2

e,0]. Therefore, it yields

xi,1|1 =
σ2
v,0σ

2
ξ · ai + σ2

v,0σ
2
e,0 · s

σ2
v,0σ

2
e,0 + σ2

e,0σ
2
ξ + σ2

v,0σ
2
ξ

zi,1|1 =
σ2
e,0(σ

2
v,0 + σ2

ξ ) · ai − σ2
v,0σ

2
e,0 · s

σ2
v,0σ

2
e,0 + σ2

e,0σ
2
ξ + σ2

v,0σ
2
ξ

Redefine a = 1/σ2
v,0, b = 1/σ2

e,0 and c = 1/σ2
ξ , we get the formulations of xi,1|1 and

zi,1|1 in Lemma 1 Q.E.D.

B.2 Proof of Lemma 2

Proof. By Lemma 1, xi,1|1 and zi,1|1 are linear combinations of standard normal

variables and thus follow normal distribution. Hence, expectation of the exponential

of these variables are log-normal. We have

Eeai,2 = exp [E(ai,2) + 0.5Σ] = exp [ρxxi,1|1 + ρzzi,1|1 + 0.5Σ]
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where Σ is the forecast variance co-variance term of Ai,2 conditional on receiving

the noisy signal, which measures the precision of expectation. Hence we have

Σ = E(x2 − ρxxi,1|1)
2 + E(zi,2 − ρzzi,1|1)

2 + 2E(x2 − ρxxi,1|1)(zi,2 − ρzzi,1|1)

= E(ρxx1 + σvv2 − ρxxi,1|1)
2 + E(ρzzi,1 + σeei,2 − ρzzi,1|1)

2

+ 2E(ρxx1 + σvv2 − ρxxi,1|1)(ρzzi,1 + σeei,2 − ρzzi,1|1)

By Lemma 1, substituting out xi,1|1 and zi,1|1, we then have

Σ = σ2
v + σ2

e +
(ρz − ρx)

2

a+ b+ c

Therefore, it yields

Eeai,2 = exp [(ρx +M)x+ (ρz −N)zi,1 −Pξ + 0.5(σ2
v + σ2

e +Q)]

Where Q = (ρz−ρx)2
a+b+c

and

M =
(ρz − ρx)a

a+ b+ c
> 0, N =

(ρz − ρx)b

a+ b+ c
> 0, P =

(ρz − ρx)
√
c

a+ b+ c
> 0

It shows that M′(σξ) > 0, N′(σξ) > 0 and thus Q′(σξ) > 0. We see for perfect

information case σξ → 0 when x1 and zi,1 are separately observed, M,N,P and Q

terms go to zero. The expectation term is standard given by

Eeai,2 = exp [ρxx1 + ρzzi,1 + 0.5(σ2
v + σ2

e)]
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Q.E.D.

B.3 Proof of Propositions 6

Proof. • EI
i and ED

i are two roots of the gain from taking non-zero investment Ψ

function. Within these two bounds, firms would not take any investment action for

ΠNon−Adj > ΠAdj . By the implicit function theorem:

dEi
dσj

= −∂Ψ/∂σj
∂Ψ/∂Ei

=
[ck(1− δ)k0 − ψ · φEi]dF̂ (A)

dσj
+ ψEi[1− F̂ (A)] dφ

dσj

Ei − ζ

It shows that for range EI
i ∈ (ζ,∞), denominator is positive whereas range ED

i ∈

(0, ζ) leads to negative denominator where ζ = 1− ψ(1− φ).

By Equaton (2.21), the numerator of the equation above is exactly given by the

partial derivative of the option value with respect to the second moment parameter:

∂Voption
∂σj

=

∫ ∞

A

integral[
∂

∂σj

1√
2πAi,2

Σ−0.5e−
(logAi,2−µi)

2

2Σ ]dAi,2

=

∫ ∞

A

integral

2
√
2πAi,2

Σ−1.5e−
(logAi,2−µi)

2

2Σ [
(logAi,2 − µi)

2

Σ
− 1]Σ′(σj)dAi,2

where integral = ψAi,2 − ck(1 − δ)k0 > 0, Σ′(σj) > 0 and Ai,2 ≥ A > 0. By the

assumption of A ≥ e
√
Σ > 1, when all first moment shocks are at zeros: v = 0,

ei = 0, and ξi = 0 that makes µi = 0, we have the following

(logAi,2)
2

Σ
≥ 1

136



for all Ai,2 ≥ A. Thus the numerator is positive.

The results above are largely due to the fact that a mean-preserving spread in-

crease of a convex function (max function) such, as uncertainty or disagreement, in-

creases the expected value of future TFP thus the option value of waiting. Therefore

larger fundamental uncertainty and non-fundamental disagreement enlarges firm’s

inaction band by having EI′
i (σj) > 0 and ED′

i (σj) < 0.

• Therefore, firms see greater gain from waiting and pausing actions in case of

larger uncertainty or in more disagreed environment. This is true regardless whether

or not this is for macro or micro uncertainty.

Q.E.D.

B.4 Proof of Lemma 5

Proof. We consider the partial derivative of gain from taking non-zero action (Ψ)

with respect to idiosyncratic TFP shocks ei:

∂Ψ

∂ei
=

∂

∂ei
[
e2(µi+Σ)

2
− ζ(ei)e

(µi+Σ) + γ(ei)]

= µ′
i(ei)[e

2(µi+Σ) − ζ(ei)e
(µi+Σ) − ζ ′(µi)e

(µi+Σ) + γ′(µi)]

µ′
i(ei) = (ρz −N)σe,0 = ρza+ρzc+ρxb

a+b+c
> 0. For eµi+Σ > EI

i > ζ(ei), by Assumption

(1), We have ∂Ψ
∂ei

> 0 while ∂Ψ
∂ei

< 0 for eµi+Σ < EI
D < ζ(ei). For e

I solves EI
i = eµi+Σ

such that ΠAdj = ΠNon−Adj , firms would invest if ei > eI . Similarly, firms would

disinvest if ei < eD where eI and eD are common to all firms for a given ξi.
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Q.E.D.

B.5 Proof of Lemma 6

Proof. By implicit function theorem, we have

∂eI

∂σj
= −∂(Ei(ei)− EI

i )/∂σj
∂(Ei(ei)− EI

i )/∂ei

∂eD

∂σj
= −∂(Ei(ei)− ED

i )/∂σj
∂(Ei(ei)− ED

i )/∂ei

By Assumption (1),

eµi+Σ − |ζ ′(µi)e(µi+Σ) − γ′(µi)|
|eµi+Σ − ζ(ei)|

≥ 0

Hence, ∂(Ei(ei) − ED
i )/∂ei > 0 and ∂(Ei(ei) − EI

i )/∂ei > 0. Therefore, for
∂EI

i

∂σj
>

E ′
i(σj) and

∂ED
i

∂σj
< E ′

i(σj),

∂eI

∂σj
> 0 ,

∂eD

∂σj
< 0

The inaction band expands for a given level of ξi. Q.E.D.
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B.6 Time-varying Recursive Kalman Filtering

Firm i’s inference problem has a state space representation:

mi,t = Fmi,t−1 + ζi,t (State Equation)

ni,t = Hmi,t + ui,t (Measurements Equation)

where

mi,t =







xt

zi,t






, F =







ρx 0

0 ρz






, ζi,t =







σvvt

σe,t−1ei,t






, ζi,t ∼ N(0, χt)

ni,t =







at

si,t






, H =







1 1

1 0






, ui,t =







0

σξ,tξi,t






, ui,t ∼ N(0, Rt)

χt =







σ2
v 0

0 σ2
e,t






, Rt =







0 0

0 σ2
ξ,t







Firm i uses a recursive linear projection algorithm each period to form new

posterior estimates object m̂i,t|t = E(mt|at, si,t). The posterior expectations are func-

tions of period t − 1 posterior estimates m̂i,t−1|t−1, period t − 1 posterior variance

covariance matrix (matrix of imprecision) Σ̂t−1|t−1 = E[(mi,t−1− m̂i,t−1|t−1)(mi,t−1−

m̂i,t−1|t−1)
′], newly observed magnitude of disagreement σξ,t and predetermined un-

certainty σe,t−1, as well as the observable object ni,t. The projection rules are stated
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below:

m̂i,t|t = (ι− κtH)Fm̂i,t−1|t−1 + κtni,t (B.47a)

where κt = (F Σ̂t−1|t−1F
′ + χt)H

′[H(F Σ̂t−1|t−1F
′ + χt)H

′ +Rt]
−1 (B.47b)

Σ̂t|t = (I − κtH)(F Σ̂t−1|t−1F
′ + χt) (B.47c)

ι is a 2 by 2 identity matrix and a prime denotes the matrix transpose. Equa-

tions (B.47b) and (B.47c) show that all firms attach the same weights to previous

period posterior estimates and the new observables. Specifically, κt known as the

Kalman gain is the optimal weights for ni,t. κt resembles the weights we see in

Lemma 1. Equation (B.47c) is the discrete time Riccati equation that updates

posterior variance covariance matrix and the thus Kalman gain each period.

By Equation (B.47b), rising disagreement for higher noise dispersion passes

larger Rt term into a higher discount of the Kalman gain whereas larger uncer-

tainty terms increases the κ term. This suggests that noise dispersion makes firm

underweigh the new observations of productivity draws rather than overweigh as

uncertainty shocks do. It also implies noise dispersion shocks can create some ex-

pectation inertia such that firms still weigh more on previous period estimates.

Specifically, to derive Equations (B.47a)(B.47b)(B.47c), suppress the firm i

index, the updating is through a linear projection rule as derived below following
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Hamilton (1994):

m̂t|t = m̂t|t−1 + κtυ̃t

Σ̂t|t = (I − κtH)Σ̂t|t−1

where

m̂t|t−1 = Fm̂t−1|t−1

Σ̂t|t−1 = F Σ̂t−1|t−1F
′ + χt

Σ̂t|t = (I − κtH)(F Σ̂t−1|t−1F
′ + χt)

υ̃t = nt −Hm̂t|t−1

κt = Σ̂t|t−1H
′(HΣ̂t|t−1H

′ +Rt)
−1

B.7 Goodness of Fit Checks

Following Krusell et al. (1998), the accuracy of the approximated aggregate

laws of motion is measured based on the two goodness of fit statistics, i.e. adjusted

R2 and the standard error of residuals from regressions per the system (2.44). Ag-

gregate time series are simulated given the optimal investment policy functions. The

table below reports the statistics.

The aggregate laws of motion are estimated and converged to a tolerance range

of smaller than 0.1 and the policy function is solved with convergence tolerance of

0.1. For more refined tolerance, the convergence may not be achievable. Also, for
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Table B.15: Approximate Aggregate Laws of Motion

State Var log(k̄t) log(wt) x̄t|t

constant 0.51904 -0.67227 0.00411

log(k̄t−1) 0.88565 0.95341 -0.00047

log(x̄t−1|t−1) 0.33 1.7086 0.98236

σξ,t -0.02425 0.3058 0.00019

σe,t -0.0976 2.1719 0.00067

σe,t−1 0.02589 -0.27906 -0.00019

Adj.R2 0.9974 0.85 0.9704

s.e. 0.0002 0.051 0.0007

Notes: Regressions are done using OLS in line with Equations (2.44).

more more refined grids, a very slow speed of convergence will result. The aggregate

capital stock equation is solved with very high precision. In order to improve the

accuracy of other equations, I tried to augment with interactions and other higher

order moments. However, adding more moments creates explosiveness in the sense

that the path-searching may drift away from converging to an equilibrium. There-

fore, I maintained with a smaller set of state variables. Estimated coefficients for

the persistence of aggregate capital stock has comparable magnitudes and signs as

in Khan and Thomas (2008).

B.8 Robustness Checks: Public Signals vs. Private Signals

I check if or not when signals are defined as firm-specific signals, the key results

would be altered. The answer is no. Following Lemma 1, by derivation of Appendix
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B.1, we can redefine information vector Xi at the onset of period 1 by labeling signal

as firm-specific si attached with a firm-specific noise.

Xi =







si

ai






=







x1 + σξξi

x1 + zi,1






.

Note that the aggregate parameter that governs the dispersion of information still

measures the aggregate information precision σξ: more dispersed information, more

fraction of firms are acting upon less precise information with noises of larger mag-

nitude |ξi|. As a result, firms still follow the same rule of extracting beliefs about

current period aggregate and idiosyncratic productivity as given by Lemma 1.

The only difference resulting from firm-specific noises is that by derivation

of Appendix B.2, firm i’s expectation of future productivity will now depend on

firm-specific noise ξi.

Eeai,2 = exp [(ρx +M)x+ (ρz −N)zi,1 −Pξi + 0.5(σ2
v + σ2

e +Q)]

Therefore, firm’s over-reaction of investment to aggregate TFP shocks and under-

reaction of investment to idiosyncratic TFP shocks are still there. Change in non-

fundamental disagreement parameter σξ would change the extent of capital mis-

allocation. On average, when first moment shocks are at zero, both jumps in uncer-

tainty and disagreement can increase firm’s option value of waiting and also increase

expected value of marginal product of capital by increasing forecast variance term

Σ = σ2
v + σ2

e +Q.
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For aggregate implication, the following shows that we can still define the

aggregate cutoff points in terms of real firm-specific productivity conditional on

a distribution of firm-specific noises. The impact of disagreement would not be

changed at all.

∂I

∂σξ
=

∫ ∞

−∞

∫ ∞

eI
EiΣ

′(σξ)dΦ(e)dΦ(ξ) +

∫ ∞

−∞

∫ eD

−∞
EiΣ

′(σξ)dΦ(e)dΦ(ξ)

︸ ︷︷ ︸

intensive margin : convexity effect>0

+

∫ ∞

−∞
(e(ρz−N)eD−Pξi+Σ − 1)

∂eD

∂σj
dΦ(ξ)

︸ ︷︷ ︸

extensive margin :fewer disinvesting firms>0

−
∫ ∞

−∞
(e(ρz−N)eI−Pξi+Σ − 1)

∂eI

∂σj
dΦ(ξ)

︸ ︷︷ ︸

extensive margin :fewer investing firms<0

−
∫ ∞

−∞

∫ ∞

eI
EiNσξeidΦ(e)dΦ(ξ)−

∫ ∞

−∞

∫ eD

−∞
EiNσξe(i)dΦ(e)dΦ(ξ)

︸ ︷︷ ︸

intensive margin : capital mis−allocation<0

The reason why macro implications are not affected is that firm-specific noises on

average will equal to zero, and the noises are i.i.d. over time. Therefore, aggregation

of firm-level investment decisions from intensive margin washes out the effect of

firm-specific noise when log expectation is linear in firm-specific noises. Therefore,

convexity effect and misallocation effect go through for aggregate. Regarding the

real-option effect, firm-specific noise does not affect the cutoff points of investing

mass and dis-investing mass conditional on distribution of firm-specific noises. It is

that uncertainty and disagreement who will affect forecast variance alter the relative

mass since firms see greater gain from waiting on average.

In sum, modeling signals as private or public do not affect the main results of

this paper. The full model solution that builds on firm-specific information further

confirms this robustness.
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B.9 Robustness Checks: Noisy Signal About the Idiosyncratic Pro-

ductivity

I examine the case when firm i receives a firm-specific signal about its id-

iosyncratic productivity rather than the aggregate plus a firm-specific noise. The

information set at the onset of period 1 is reformulated below:

Xi =







si

ai






=







zi,1 + σξξi

x1 + zi,1






.

By the matrix inverse property,

Σ−1
XX =

1

σ2
v,0σ

2
e,0 + σ2

e,0σ
2
ξ + σ2

v,0σ
2
ξ

·







σ2
v,0 + σ2

e,0 −σ2
e,0

−σ2
e,0 σ2

z,0 + σ2
ξ







Since Σx1X = [0, σ2
v,0] and ΣzX = [σ2

e,0, σ
2
e,0], it yields

xi,1|1 =
σ2
v,0(σ

2
e,0 + σ2

ξ,0) · ai − σ2
v,0σ

2
e,0 · si

σ2
v,0σ

2
e,0 + σ2

e,0σ
2
ξ + σ2

v,0σ
2
ξ

zi,1|1 =
σ2
e,0σ

2
ξ,0 · ai + σ2

v,0σ
2
e,0 · si

σ2
v,0σ

2
e,0 + σ2

e,0σ
2
ξ + σ2

v,0σ
2
ξ

Reevaluate Equation (2.14), using notations of inverse of variances, we have

E(ex2+zi,2) = [ρx +
(ρz − ρx)a

a+ b+ c
]x1 + [ρz −

(ρz − ρx)b

a+ b+ c
]zi,1 +

(ρz − ρx)
√
c

a+ b+ c
ξi + 0.5(σ2

v + σ2
e +Q)

We see that firms’ investment would exactly under-react to idiosyncratic productiv-
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ity and over-react to aggregate productivity in line with what we had in Appendix

B.1.

In summary, as long as the idiosyncratic productivity component is more per-

sistent than the aggregate component, amplification and dampening effects are still

present. The reason is that firms still use imperfect information to disentangle the

two components even if the information is about the idiosyncratic productivity.

B.10 Robustness Checks: Permanent and Transitory Component +

Firm-specific Noisy Signal

Use notations x and z to denote two different but unobserved aggregate pro-

ductivity components that enter production function. Absent the idiosyncratic

shocks, a firm observes total productivity sum a = x+ z but relies on noisy signal

si = x + σξξi to disentangle them. Without loss of generality, the signal can be

defined about z as well. We can think of one is permanent and one is transitory

component. Then the firm solves a signal extraction problem in line with Appendix

B.1. Firm i has separate beliefs as below

xi,1|1 =
σ2
v,0σ

2
ξ · ai + σ2

v,0σ
2
e,0 · si

σ2
v,0σ

2
e,0 + σ2

e,0σ
2
ξ + σ2

v,0σ
2
ξ

zi,1|1 =
σ2
e,0(σ

2
v,0 + σ2

ξ ) · ai − σ2
v,0σ

2
e,0 · si

σ2
v,0σ

2
e,0 + σ2

e,0σ
2
ξ + σ2

v,0σ
2
ξ
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Using notations of inverse of variances, we have

E(ex2+zi,2) = [ρx +
(ρz − ρx)a

a+ b+ c
]x+ [ρz −

(ρz − ρx)b

a+ b+ c
]z − (ρz − ρx)

√
c

a+ b+ c
ξi + 0.5(σ2

v + σ2
e +Q)

Clearly, in line with what we had in Appendix B.1. Specifically, to take an extreme

example, if x is the permanent component with ρx = 1 whereas z is transitory with

ρz = 0. We have the following such that

E(ex2+zi,2) = (1− a

a+ b+ c
)x+

b

a+ b+ c
z +

√
c

a+ b+ c
ξi + 0.5(σ2

v + σ2
e +Q)

In summary, depending on the relative persistence of aggregate components,

firm’s investment would always over-react to the one with smaller persistence and

under-react to the one with larger persistence.

B.11 Iterative Steps for Equilibrium Solution

The following are the general steps used to solve for the recursive competitive

equilibrium. I borrow ingredients from the Approximate Aggregation procedure in

Krusell et al. (1998).

a Assume that the aggregate capital stock k̄t−1 and the mean level of TFP

forecasts x̄t−1|t−1 at the beginning of period t are sufficient to summarize the

beginning-of-period distribution of firms, µt−1, we come up with Equation

system (2.44). Taking parameter conjectures Γj, j ∈ {0, 1, 2}, solve for the

individual firm’s policy functions using Value Function Iteration that accounts
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for micro-level nonconvexity.

b Using the capital stock decision rule, simulate actual firm distribution follow-

ing Young (2010) for T periods and compute the aggregate capital stock and

posterior mean belief about TFP time series by taking the cross-sectional av-

erage. Each period in this model corresponds to a quarter. I set T = 5000

periods with the first 1000 periods burned. Using the same innovations that

generate the panel, the goods market clearing condition generates a time se-

ries of the equilibrium real wage. Do OLS regressions on the burned-in sample

using actual series and obtain new estimates of parameters Γ′
j, j ∈ {0, 1, 2}.

c Evaluate if max(|Γ′
j − Γj|) < ǫ, a tolerance range. If true, stop. Otherwise,

update conjectures via Γj = λΓj + (1 − λ)Γj , where λ is the convergence

speed control on how much weights are assigned to the previous parameter

conjectures.

d With updated parameters Γj , solve the individual policy functions again until

the vector of Γj converges. Each converged parameter vector is associated with

a particular set of exogenous innovations on which aggregation is obtained.

Repeat the convergence for Tmc times and obtain the average 1
Tmc

∑Tmc

t=1 Γj.

148



References

Aastveit, K. A., Natvik, G. J., and Sola, S. (2013). Economic uncertainty and the

effectiveness of monetary policy. Working Paper 2013/17, Norges Bank.

Abel, A. B. (1983). Optimal Investment under Uncertainty. American Economic

Review, 73(1):228–33.

Adam, K. (2007). Optimal Monetary Policy with Imperfect Common Knowledge .

Journal of Monetary Economics, 54(2):267 – 301.

Andreasen, M. M., Fernndez-Villaverde, J., and Rubio-Ramrez, J. (2013). The

Pruned State-Space System for Non-Linear DSGE Models: Theory and Empir-

ical Applications. NBER Working Papers 18983, National Bureau of Economic

Research, Inc.

Angeletos, G.-M. and La’O, J. (2011). Optimal Monetary Policy with Informational

Frictions. NBER Working Papers 17525, National Bureau of Economic Research,

Inc.

Arellano, M. and Bover, O. (1995). Another look at the instrumental variable

estimation of error-components models. Journal of Econometrics, 68(1):29–51.

149



Aruoba, S. B., Cuba-Borda, P., and Schorfheide, F. (2013). Macroeconomic Dy-

namics Near the ZLB: A Tale of Two Countries. NBER Working Papers 19248,

National Bureau of Economic Research, Inc.

Bachmann, R. and Bayer, C. (2013). ‘Wait-and-See’ Business Cycles? . Journal of

Monetary Economics, 60(6):704 – 719.

Bachmann, R. and Bayer, C. (2014). Investment Dispersion and the Business Cycle.

American Economic Review, 104(4):1392–1416.

Bachmann, R., Caballero, R. J., and Engel, E. M. R. A. (2013a). Aggregate Im-

plications of Lumpy Investment: New Evidence and a DSGE Model. American

Economic Journal: Macroeconomics, 5(4):29–67.

Bachmann, R., Elstner, S., and Sims, E. R. (2013b). Uncertainty and Economic

Activity: Evidence from Business Survey Data. American Economic Journal:

Macroeconomics, 5(2):217–49.

Bachmann, R. and Moscarini, G. (2011). Business Cycles and Endogenous Uncer-

tainty. 2011 Meeting Papers 36, Society for Economic Dynamics.

Baker, S. R., Bloom, N., and Davis, S. J. (2015). Measuring Economic Policy

Uncertainty. Working Paper 21633, National Bureau of Economic Research.

Bartelsman, E., Haltiwanger, J., and Scarpetta, S. (2013). Cross-Country Differ-

ences in Productivity: The Role of Allocation and Selection. American Economic

Review, 103(1):305–34.

150



Beaudry, P. and Portier, F. (2006). Stock Prices, News, and Economic Fluctuations.

American Economic Review, 96(4):1293–1307.

Benhabib, J., Liu, X., and Wang, P. (2015a). Endogenous Information Acquisition

and Countercyclical Uncertainty. Working paper.

Benhabib, J., Wang, P., and Wen, Y. (2015b). Sentiments and Aggregate Demand

Fluctuations. Econometrica, 83:549–585.

Bernanke, B. S. (1983). Irreversibility, Uncertainty, and Cyclical Investment. The

Quarterly Journal of Economics, 98(1):85–106.

Bernanke, B. S. (2012). Monetary Policy since the Onset of the Crisis : a speech at

the Federal Reserve Bank of Kansas City Economic Symposium, Jackson Hole,

Wyoming, August 31, 2012. Speech 645, Board of Governors of the Federal Re-

serve System (U.S.).

Bils, M. and Klenow, P. J. (2004). Some evidence on the importance of sticky prices.

Journal of Political Economy, 112(5):947–985.

Blanchard, O. J., L’Huillier, J.-P., and Lorenzoni, G. (2013). News, Noise, and Fluc-

tuations: An Empirical Exploration. American Economic Review, 103(7):3045–70.

Bloom, N. (2009). The Impact of Uncertainty Shocks. Econometrica, 77(3):623–685.

Bloom, N. (2014). Fluctuations in Uncertainty. Journal of Economic Perspectives,

28(2):153–76.

151



Bloom, N., Bond, S., and Reenen, J. V. (2007). Uncertainty and Investment Dy-

namics. Review of Economic Studies, 74(2):391–415.

Bloom, N., Floetotto, M., Jaimovich, N., Saporta-Eksten, I., and Terry, S. J. (2014).

Really Uncertain Business Cycles. Working Papers 14-18, Center for Economic

Studies, U.S. Census Bureau.

Blundell, R. and Bond, S. (1998). Initial conditions and moment restrictions in

dynamic panel data models. Journal of Econometrics, 87(1):115–143.

Bond, S., Klemm, A., Newton-Smith, R., Syed, M., and Vlieghe, G. (2004). The

roles of expected profitability, Tobin’s Q and cash flow in econometric models of

company investment. Bank of England working papers 222, Bank of England.

Born, B. and Pfeifer, J. (2014). Policy risk and the business cycle. Journal of

Monetary Economics, 68(C):68–85.

Bundick, B. and Basu, S. (2014). Uncertainty shocks in a model of effective demand.

Research Working Paper RWP 14-15, Federal Reserve Bank of Kansas City.

Caballero, R. J., Engel, E. M. R. A., Haltiwanger, J. C., Woodford, M., and Hall,

R. E. (1995). Plant-level adjustment and aggregate investment dynamics. Brook-

ings Papers on Economic Activity, 1995(2):pp. 1–54.

Caldara, D., Fuentes-Albero, C., Gilchrist, S., and Zakraj̆sek, E. (2014). The

Macroeconomic Impact of Financial and Uncertainty Shocks. Working paper.

Caldara, D., Fuentes-Albero, C., Gilchrist, S., and Zakraj̆sek, E. (2016). The

152



Macroeconomic Impact of Financial and Uncertainty Shocks. NBER Working

Papers 22058, National Bureau of Economic Research, Inc.

Calvo, G. A. (1983). Staggered prices in a utility-maximizing framework. Journal

of Monetary Economics, 12(3):383–398.

Campbell, J. R., Evans, C. L., Fisher, J. D., and Justiniano, A. (2012). Macroeco-

nomic Effects of Federal Reserve Forward Guidance. Brookings Papers on Eco-

nomic Activity, 44(1 (Spring):1–80.

Chari, V. V., Kehoe, P. J., and Mcgrattan, E. R. (2000). Sticky price models of

the business cycle: Can the contract multiplier solve the persistence problem?

Econometrica, 68(5):1151–1179.

Christiano, L. J., Eichenbaum, M., and Evans, C. L. (1999). Monetary policy shocks:

What have we learned and to what end? In Taylor, J. B. and Woodford, M.,

editors, Handbook of Macroeconomics, volume 1 of Handbook of Macroeconomics,

chapter 2, pages 65–148. Elsevier.

Christiano, L. J., Eichenbaum, M., and Evans, C. L. (2005). Nominal Rigidities

and the Dynamic Effects of a Shock to Monetary Policy. Journal of Political

Economy, 113(1):1–45.

Christiano, L. J., Motto, R., and Rostagno, M. (2014). Risk Shocks. American

Economic Review, 104(1):27–65.

Conflitti, C. (2010). Measuring Uncertainty and Disagreement in the European

153



Survey and Professional Forecasters. Working Papers ECARES ECARES 2010-

034, ULB – Universite Libre de Bruxelles.

Cooper, R. W. and Haltiwanger, J. C. (2006). On the Nature of Capital Adjustment

Costs. Review of Economic Studies, 73(3):611–633.

D’Amico, S. and Orphanides, A. (2008). Uncertainty and disagreement in economic

forecasting. Technical report.

David, J. M., Hopenhayn, H. A., and Venkateswaran, V. (2014). Information, Mis-

allocation and Aggregate Productivity. Working Paper 20340, National Bureau

of Economic Research.

Davis, S. J. and Haltiwanger, J. C. (1992). Gross Job Creation, Gross Job De-

struction, and Employment Reallocation. The Quarterly Journal of Economics,

107(3):819–63.

Decker, R., D’Erasmo, P., and Moscoso Boedo, H. J. (2014). Market exposure and

endogenous firm volatility over the business cycle. Working Papers 14-12, Federal

Reserve Bank of Philadelphia.

Eberly, J., Rebelo, S., and Vincent, N. (2012). What explains the lagged-investment

effect? Journal of Monetary Economics, 59(4):370 – 380.

Edmond, C. and Veldkamp, L. (2009). Income dispersion and counter-cyclical

markups. Journal of Monetary Economics, 56(6):791–804.

Eggertsson, G. B. and Woodford, M. (2003). The Zero Bound on Interest Rates and

154



Optimal Monetary Policy. Brookings Papers on Economic Activity, 34(1):139–

235.

Eisfeldt, A. L. and Rampini, A. A. (2006). Capital reallocation and liquidity. Journal

of Monetary Economics, 53(3):369–399.

Engen, E. M., Laubach, T., and Reifschneider, D. L. (2015). The Macroeconomic

Effects of the Federal Reserve’s Unconventional Monetary Policies. Finance and

Economics Discussion Series 2015-5, Board of Governors of the Federal Reserve

System (U.S.).

Fajgelbaum, P., Schaal, E., and Taschereau-Dumouchel, M. (2015). Uncertainty

Traps. Working paper.

Fazzari, S. M., Hubbard, R. G., and PETERSEN, B. C. (1988). Financing Con-

straints and Corporate Investment. Brookings Papers on Economic Activity,

19(1):141–206.

Fernald, J. G. (2012). A quarterly, utilization-adjusted series on total factor pro-

ductivity. Technical report.

Fernández-Villaverde, J., Guerrón-Quintana, Pablo, K. K., and Rubio-Ramı́rez, J.

(2015). Fiscal Volatility Shocks and Economic Activity. American Economic

Review, 105(11):3352–84.

Fernández-Villaverde, J., Guerrón-Quintana, P., Rubio-Ramı́rez, J. F., and Uribe,

M. (2011). Risk Matters: The Real Effects of Volatility Shocks. American Eco-

nomic Review, 101(6):2530–61.

155
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