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There is wide belief that a student’s behavior and academic outcome are af-

fected by her/his fellow students. This peer effect lies at the center of the debate

about education policy. My dissertation focuses on measuring peer effects in aca-

demic outcomes. It consists of a theoretical part and an empirical part.

In the theoretical part, I study a peer effects model with group-wise equal

interactions and random group effects. Identifying peer effects is notoriously chal-

lenging due to the reflection problem. Common shocks to the groups also generate

spurious peer effects. My model, therefore, controls for the common shocks to the

whole group with random group effects. My estimation strategy overcomes the iden-

tification problem with spatial econometrics techniques. I develop a quasi-maximum

likelihood estimator of the model. Monte-Carlo simulations show that the bias of the

estimator decreases with the number of groups and the variation in group size, and

increases with group size. Finally, I prove the consistency and asymptotic normality

of the estimator under standard assumptions.



In the empirical part, I apply the model to Project STAR data to study the

peer effects among kindergarten students. Peers constitute an important context

for children’s academic development. This empirical study measures peer effects on

math and reading scores of kindergarten children using data from Project STAR,

an experiment in Tennessee that randomly assigned both children and teachers to

classrooms of different sizes. It estimates the impact of peers’ scores and charac-

teristics on children’s individual scores, controlling among other things for random

class effects. In contrast to most existing studies, the estimated peer effects in the

empirical part are small and insignificant. The results are robust when allowing

peer effects to be heterogeneous by gender, using data from higher grades or con-

sidering alternative specifications. The findings of the empirical study cast doubt

on the effectiveness of programs that manipulate peer groups for better educational

outcomes.
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Chapter 1: Introduction

The empirical literature has documented that students’ behaviors and aca-

demic outcomes are influenced by their peers. This peer effect in education car-

ries broad policy implications. It affects the evaluation of education programs and

motivates regrouping policies that manipulate peer groups for better educational

outcomes. However, Manski (1993) points out that a linear-in-means peer effects

model, in which one’s outcome is linear in the mean outcome of his peers, suffers

from reflection problem. The reflection problem arises from the reciprocal nature

of peer effects. Peer’s outcomes affect one’s own outcome, which in turn affects

peers’ outcomes. This gives the linear-in-means peer effects model a simultaneous

equation feature and poses challenges to identification. Moreover, Angrist (2014)

criticizes the existing (peer effects) literature for overestimating peer effects. He

points out that peer effects model suffers from serious identification problem, and

that spurious intra-group correlation can easily arise with problematic methods and

confounding factors like common shocks to the whole group. Therefore, it’s valuable

for education policy to estimate peer effects with more reliable methods and better

control of confounding factors. That’s the goal of this dissertation.
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This dissertation studies a peer effect model that controls for the common

shocks with random group effects. It develops an estimation strategy of the model,

which overcomes the reflection problem. It then applies the model and estimation

method empirically to study peer effects among kindergarten students.

Chapter 1 is the introduction, describing the background and structure of

the dissertation. Chapter 2 reviews the three lines of literature this dissertation is

related to: empirical work on peer effects, studies with Project STAR data, spatial

econometric and peer effects.

Chapter 3 is the theoretical part. It studies a peer effects model where peers

interact in groups, one’s outcome is linear in the mean outcome and characteristics

of his peers in the group, and shocks to the whole groups are uncorrelated with char-

acteristics of the group and group members. I study the model under the framework

of spatial econometrics. Spatial econometrics models and identifies cross-sectional

dependence in a space, not limited to geographic space. Existence and strength of

social links can define the proximity in the social network space. Therefore spatial

econometrics offers valuable tools and insights into modeling and identification of

social network effects. I estimate the model with Quasi-maximum likelihood esti-

mation (QMLE). Identification comes from the variation of group size. I conduct

Monte-Carlo experiments to study the small sample properties of the QMLE es-

timator. Results show that the bias of the estimator is positively correlated with

the group size and negatively correlated with the number of groups and variation

of group size. Study of the large sample properties of the QMLE estimator shows

that under standard assumptions, the QMLE estimator is consistent and has an
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asymptotically normal distribution. Formal proof for consistency and asymptotic

normality is in Appendix E.

With enough variation of group size, the estimation strategy can overcome

the reflection problem and identify peer effects. Further investigation of the first

order moments reveals that identification is in fact based on both the within-group

variance and between-group variance. The intuition behind my estimation strategy

is that peer effects can reduce within-group variance and increase excess between-

class variance. The magnitude of the changes in these variances incurred by peer

effects depends on group sizes. For example, peer effects have smaller impacts on

the within-group variance of larger groups because each person has a smaller impact

on their peers. Identification is therefore possible with enough variation in class size.

Chapter 4 applies the model in Chapter 3 on Project STAR data. In kinder-

garten, Project STAR randomly assigned teachers and students to small classes and

regular classes to study the effect of class size. This chapter measures the impact

of peer’s average score and average characteristics on kindergarten students’ test

score in Project STAR. The empirical study is a revisit to Graham (2008), which

develops the conditional variance method to overcome the reflection problem and

measure peer effects. Graham (2008) then applies the model to Project STAR data

and find sizable peer effects in kindergarten children’s test score. Both Graham’s

model and my model study the impact of average peer outcome on an individual’s

outcome, controlling for random group effects. But I also include additional control

variables and relaxes some of the restrictions in his model. Likelihood ratio test also

rejects the specification of Graham (2008). In all, the empirical part finds that the
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average peer outcome has an insignificant impact on an individual’s outcome. The

finding of insignificant peer effects differs from many. Such difference is driven by a

new estimation strategy and a sufficient control of confounding forces. The finding

echoes Angrist’s argument that peer effects can easily arise from problematic meth-

ods and confounding factors like common shocks. Although the result does not

necessarily generalize to other settings, it does urge researchers to be more cautious

before attributing similarities in peer’s outcomes to peer effects.
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Chapter 2: Review of Literature

My dissertation contributes to three literature streams: empirical studies of

peer effects, research with Project STAR data, and spatial econometric literature on

group-wise interactions. This chapter reviews each of the three lines of literature.

2.1 Peer Effects in Education

Peer effects in education have drawn tremendous attention from researchers.1

Sacerdote (2011) and Epple and Romano (2011) offer detailed reviews of the litera-

ture.

One line of the research examines peer effects in student’s behaviors, e.g.,

risky behaviors (Eisenberg et al., 2014; Fletcher, 2011; Gaviria and Raphael, 2001),

choosing major (De Giorgi et al., 2010), academic cheating (Carrell et al., 2008).

Most of these studies find significant peer effects.

Another line of studies explores peer effects on academic performance, that

is, how a student’s academic achievement is affected by the academic ability of his

or her peers. One limitation of these studies is that most of them cannot estimate

1Peer effects studies in other contexts, like technology adoption (Case, 1992; Dupas, 2014),
welfare participation (Bertrand et al., 2000), insurance take-up (Cai et al., 2015), research produc-
tivity(Waldinger, 2012), charitable giving (Smith et al., 2015), workplace productivity (Mas and
Moretti, 2009), etc.
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the endogenous effects. Due to the reflection problem of the peer effects model,

empirical studies typically measure the reduced form peer effects with regression

methods. They either assume away endogenous effects (Carrell et al., 2009; Foster,

2006; Whitmore, 2005; Zimmerman, 2003) or acknowledge the distinction between

endogenous and exogenous peer effects but do not try to separate them (Lyle, 2007;

Sacerdote, 2001). Among these studies, some find significant positive peer effects

(Carrell et al., 2009). Some only find moderate peer effects (Foster, 2006; Lyle, 2007;

Angrist and Lang, 2004). For peer effects in academic achievement among children,

results are mixed but in general find small but significant peer effects (Betts and

Zau, 2004; Lefgren, 2004; Burke and Sass, 2013).

Some studies try to measure endogenous effects with the instrumental variable

method (Boozer and Cacciola, 2001; Fletcher, 2011; Gaviria and Raphael, 2001).

They find instruments for the mean peer outcome, as the reflection problem results

from the endogeneity of it. One common choice of instrument is the mean of some

individual characteristics. The validity of the instrumental variable requires that

the mean of these individual characteristics does not have a direct impact on one’s

outcome, i.e., no exogenous peer effects for these variables. A plausible instrument

variable is hard to find and its validity hard to justify. Angrist (2014) shows that

instrumental variable method is very vulnerable to weak instrument problem.

So far there are two major strategies that can overcome the reflection problem

and separate out the endogenous peer effects and exogenous peer effects. One is the

conditional variance method of Graham (2008). The model assumes random group

effects. It explores the relationship between within-group variance and between-
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group variance conditional on the difference in group size. The method does not

measure endogenous peer effects directly but instead tries to detect the existence of

peer effects.2 The other is the spatial method, notably the conditional maximum

likelihood estimation method of Lee (2007). Social networks or peer relationships

can be characterized by spatial weights matrix in a spatial model. Spatial econo-

metrics then provide a toolkit to estimate the model. Lee (2007) assumes fixed

group effects and eliminates then with a transformation. Estimation relies on the

distribution of deviations from the group mean conditional on fixed group effects.

More details of both methods are discussed in Appendix H and Appendix I.

Empirical studies of endogenous peer effects in academic achievement are rela-

tively rare but in general find significantly positive estimates for endogenous effects.

Lin (2010) uses Add Health data of high school students in the United States and

finds an endogenous peer effect of 0.27 for GPA. Boucher et al. (2014) use test

scores of secondary school students in Canada. They find a significant endogenous

peer effect in math scores of 0.83. But the endogenous peer effects are insignificant

for other subjects. Both Boucher et al. (2014) and Lin (2010) use the estimation

method in Lee (2007) and assume fixed group effects. Graham (2008) uses the con-

ditional variance method to measure the endogenous effect indirectly with Project

STAR data. His results are equivalent to an endogenous effect of 0.46 for math

scores and 0.57 for reading scores in Kindergarten, though the estimates for reading

is insignificant at the 5% level.

2For details of the method, see Appendix H.
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I revisit Graham’s paper and estimate peer effects in kindergarten with Project

STAR data. Graham’s model is estimated with a new methodology, which yields

similar estimates. Moreover, an alternative specification that controls for school by

class type fixed effects renders the endogenous peer effect insignificant.

2.2 Studies with Project STAR

The Project STAR data has been widely used to study the impact of class size,

teacher quality, peer characteristics and early education on children’s development.

For a review of the literature, see Schanzenbach (2006) and Sohn (2014).

While studies of class size generate mixed results (Chingos, 2012; Jepsen and

Rivkin, 2009), the studies with Project STAR data generally show that small classes

improve students’ test scores (Krueger, 1999).

There are two ways to measure teacher quality. One is to use observed teacher

characteristics like education and experience. The other is to attribute the between-

class variance to unobserved teacher effectiveness as in Rivkin et al. (2005). Chetty

et al. (2011) and Nye et al. (2004) both use within-school between-class variance in

Project STAR data to measure teacher quality and find significant teacher effects

on students’ academic performance.

The STAR data is also popular among peer effect studies (Boozer and Cacciola,

2001; Chetty et al., 2011; Graham, 2008; Sojourner, 2013; Whitmore, 2005). Among

them, only Boozer and Cacciola (2001) and Graham (2008) estimate endogenous

peer effects.
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Among the studies of exogenous peer effects, Whitmore (2005) finds that the

share of girls in class has a positive impact on students’ performance. Chetty et al.

(2011) show that peer’s test scores are positively related to one’s future outcome

like earnings and college attendance. Sojourner (2013) avoids the reflection problem

by using the leave-out-mean of lagged test scores as the regressor. He finds positive

impacts of peer’s previous scores on a student’s current academic performance.

Boozer and Cacciola (2001) try to overcome the reflection problem with instru-

ment variable method. They instrument the class mean score with the proportion

of peers assigned to small classes, switching classes or newly joining the class. They

find large endogenous peer effect, 0.86 in grade two and 0.92 in grade three, yet the

method may suffer from the weak instrument problem.

2.3 Spatial Econometrics and Peer Effects

In the theoretical part of my dissertation, model specification and estimation

are under the framework of spatial econometrics. The field of spatial econometrics

models and measures spillovers among units. Study of the model has expanded

considerably since the seminal work of Cliff and Ord (1973), Cliff and Ord (1981),

and Anselin (1988).3

The Cliff-Ord type models specify spatial weights as proximity between units,

including but not limited to geographic proximity, economic proximity, and social

proximity, therefore extend the application of spatial econometrics beyond the scope

3Anselin (2010) offers a brief review of the development of spatial econometrics literature over
the past thirty years.
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of geographic space. Empirical work of spatial econometrics originally concentrates

on the geographic space and has broad applications in regional and urban economics

(Anselin, 1988; LeSage, 2008). The spatial econometrics method is also increasingly

applied in a fuller range of economics topics like fiscal policy, household demand,

technology change, etc.4 Recently there is a growing literature using spatial meth-

ods to model social network effects, e.g., Lee (2007), Bramoullé et al. (2009), and

Kuersteiner and Prucha (2015). The strength of social links can be characterized

by proximity in the social network space.

The spatial models were traditionally estimated with maximum likelihood

(ML) estimation method, e.g., Ord (1975). Kelejian and Prucha (1998, 1999) de-

velop the generalized method of moments (GMM) estimator for spatial models,

which are based on the linear and quadratic moments. While this paper utilizes a

quasi-maximum likelihood estimation method, statistical analysis relies on the linear

quadratic forms of the error terms. The properties of quadratic moment conditions

were introduced by Kelejian and Prucha (1998, 1999) in the cross section case, and

Kapoor et al. (2007) and Kuersteiner and Prucha (2015) in the panel setting. More-

over, Kelejian and Prucha (2001) and Kelejian and Prucha (2010) introduce central

limit theorem for linear quadratic forms, which lays the foundation of asymptotic

properties of the estimator of the theoretical part.

The linear-in-means peer effect model in Manski (1993) is akin to a spatial

model with group-wise equal dependence,which has been studied by Kelejian and

4Some recent empirical applications of spatial models include Conley and Dupor (2003); Cohen
and Paul (2004); Case (1991, 1992); Parent and LeSage (2008); Ertur and Koch (2007); Agrawal
(2015); Case et al. (1993).
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Prucha (2002) and Kelejian et al. (2006). Kelejian and Prucha (2002) was the first

to study the group-wise equal dependence spatial model. They show that if there

is one group in a single cross section and the model has equal spatial weights, two-

stage least squares (2SLS) method, GMM and quasi-maximum likelihood estimation

(QMLE) methods all yield inconsistent estimators. With panel data so that the

model has blocks of equal weights, 2SLS and GMM estimator can be consistent.

However, Kelejian et al. (2006) point out that if group fixed effects are incorporated

and the panel is balanced, the estimators are inconsistent. The results in Kelejian

et al. (2006) show the importance of variation in group size in identification of spatial

models with blocks of equal weights. The quasi-maximum likelihood estimator in

this chapter and the conditional maximum likelihood estimator in Lee (2007) both

rely on group size variation for identification.

Lee (2007) works with a special case of the model in Kelejian et al. (2006)

where there are blocks of equal weights and fixed block effects, but the sizes of the

blocks are different. He interprets the model as a peer effects model. 5He eliminates

fixed group effects with a transformation and estimates the within-equations of the

model with maximum likelihood method and 2SLS method. Identification requires

variation in group size, echoing the conclusion in Kelejian et al. (2006). Lee (2007)’s

model is later extended to allow for specific social structure within the group (Lee

et al., 2010), non-row normalized weight matrix (Liu and Lee, 2010; Liu et al.,

2014). It has also been applied to the empirical evaluation of peer effects by Lin

(2010) and Boucher et al. (2014). Bramoullé et al. (2009) study a broader range

5For a detailed discussion of the model and estimation strategy of Lee (2007), see Appendix I.
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of social interaction models with spatial econometrics method, with Lee (2007)’s

model been a special case. In their models, the unobserved correlated effect is either

absent or assumed to be fixed effect and eliminated. Interactions are allowed to be

non-group-wise. They establish identification conditions for these models.

Chapter 3 extends the spatial model with blocks of equal weights in Kelejian

et al. (2006) and Lee (2007) by assuming random group effects.

12



Chapter 3: A Peer Effects Model with Random Group Effects

In this chapter, I provide a theoretical discussion of a peer effects model with

random group effects.

3.1 Model Setup

Suppose that there are R groups in the sample indexed by c = 1, ..., R. Let

nc be the size of group c. The total sample size is N =
∑R

c=1 nc. Assume equal

interaction within each group and no interaction across groups. Peer effects work

through the mean outcome and mean characteristics of peers in the same group.

The linear-in-means peer effects model in this chapter is

yic = β0 + λȳ(−i)c + x′1,icβ1 + x̄′2,(−i)cβ2 + x̄′3,cβ3 + αc + εic, (3.1)

where yic is the outcome variable of individual i in group c, ȳ(−i)c = 1
nc−1

∑nc
j 6=i yic is

the average outcome of i’s peers, x1,ic and x2,ic are both vectors of predetermined

characteristics of individual i in group c, x̄2,(−i)c = 1
nc−1

∑nc
j 6=i x2,jc is a vector of

average characteristics of i’s peers, x3,c is a vector of observed group characteristics.

The variables in x1,ic and x2,ic can be non-overlapping, partially overlapping or

totally overlapping. The error term consists of two components, the group effect

13



αc and the disturbance term εic. By assumption, x1,ic, x̄2,(−i)c, and x3,c are non-

stochastic.

In this model, peer effects work through the mean peer outcome ȳ(−i)c and

mean peer characteristics x̄2,(−i)c. The two terms are also known as the leave-

out-mean of y and x2, as they are means of the group leaving out oneself. In

Manski’s terminology, λ in equation (3.1) reflects endogenous peer effects, β2 reflects

exogenous peer effects.

Let zic = (1,x′1,ic, x̄
′
2,(−i)c,x

′
3,c) be the vector of all exogenous variables, γ =

(β0, β
′
1, β

′
2, β

′
3)′ be the corresponding coefficients vector. Denote the number of

columns in zic as kZ . A compact form of model (3.1) is

yic = λȳ(−i)c + z′icγ + αc + εic. (3.2)

The model can be further written as a Cliff-Ord type spatial model. Let Wc be

the weights matrix of group c, whose off-diagonal elements are 1
nc−1

and diagonal

elements are 0. Let Yc = (y1c, ..., yncc)
′, Zc = (z′1c, ..., z

′
ncc)

′, εc = (ε1c, ..., εncc)
′. Let

ιc = (1, ..., 1)′ be the nc dimensional vector of ones. The model for group c in matrix

form is

Yc = λWcYc + Zcγ + Uc, (3.3)

where Uc is the composite error term:

Uc = αcιc + εc. (3.4)

Let Y = [Y ′1 , Y
′

2 , ..., Y
′
R]′, Z = [Z ′1, Z

′
2, ..., Z

′
R]′, U = [U ′1, U

′
2, ..., U

′
R]′, and W =

diagRc=1{Wc}. The model for the whole sample, in matrix form, is given as

Y = λWY + Zγ + U. (3.5)
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Solving Y from equation (3.5) yields the reduced from:

Y = (I − λW )−1Zγ + (I − λW )−1U. (3.6)

3.2 Assumptions

For estimation, I make the following assumptions.

Assumption 1. For c = 1, ..., R, the group effects αc are independently and iden-

tically distributed, with Eαc = 0, Eα2
c = σ2

α0, where σ2
α0 > 0. There exists some

ηα > 0 such that E|αc|4+ηα <∞.

Under Assumption 1, the third and fourth moments of αc exist. Let E(αc)
3 =

µ
(3)
α and Eα4

c = µ
(4)
α .

Assumption 2. The disturbance terms εic are independently and identically dis-

tributed across all i and c, with E(εic) = 0, E(ε2ic) = σ2
ε0, where 0 < aε 6 σ2

ε0. There

some exists ηε > 0 such that E|εic|4+ηε <∞. Also, {αc, c = 1, ..., R} are independent

of {εic : i = 1, ..., nc, c = 1, ..., R}.

Under Assumption 2, the third and fourth moments of εc exists. Let E(εic)
3 =

µ
(3)
ε and Eε4ic = µ

(4)
ε .

Denote the variance-covariance (VC) matrix of Uc in equation (3.4) as Ωc and

the variance-covariance matrix of U = (U ′1, U
′
2, ..., U

′
R)′ as Ω. Under Assumptions 1

and 2,

Ωc = var(Uc) = σ2
αJc + σ2

ε Ic, (3.7)

where Jc = ιcι
′
c is the nc × nc matrix of ones, Ic is the nc−dimensional identity

matrix. Given the independence of αc and εc across groups, the variance-covariance
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matrix for the whole sample is

Ω = var(U) = diagRc=1{Ωc} = σ2
αJ̃ + σ2

ε I, (3.8)

where J̃ = diagRc=1{Jc}.

Let In be the index set of all groups with size equal to n. If c ∈ In, then

nc = n. Let Rn be the cardinality of In, or the number of groups with size equal to

n. Denote the share of groups with size n as ωn, ωn = Rn/R.

Assumption 3. (a) For all c = 1, 2, ..., R, group size nc is an integer greater than

2 and bounded above, 2 6 a 6 nc 6 ā <∞; (b) The limit of ωn exists, limR→∞ωn =

ω∗n. There exists some εω > 0, such that for a 6 n 6 ā, 0 6 ωn < 1− εω and hence

0 6 ω∗n < 1− εω ; (c) The number of groups R goes to infinity.

The restriction that group size is no smaller than two rules out single-member

groups. In such groups a student does not have any peers. Since group size nc >

a > 2, the total sample size N > aR > 2R. The sample size N goes to infinity as

the number of groups R goes to infinity. In the following I will also use the notation

NR instead of N when it is important to stress the dependence of the total sample

size on R.

Since
∑ā

n=aRn = R, we have
∑ā

n=a ωn = 1 and
∑ā

n=a ω
∗
n = 1. Condition

ω∗n < 1− εω in Assumption 3(b) ensures that in the limit, group size is not the same

for all groups. Assumption 3(b) also implies that the average group size converges

16



to a constant. Denote the limit of average group size as n∗,

n∗ = limR→∞
NR

R
= limR→∞

ā∑
n=a

Rn

R
n

=
ā∑

n=a
ω∗nn. (3.9)

Since nc is uniformly bounded, n∗ is uniformly bounded, 2 6 a 6 n∗ 6 ā <∞.

Assumption 4. The endogenous peer effect λ ∈ Λ, where Λ is a compact subset of

(1− a, 1).

Assumption 4 ensures non-singularity of Ic − λWc and hence non-singularity

of I − λW = diagRc=1{Ic − λWc} in equation (3.6). To see this,

Ic − λWc = (1 +
λ

nc − 1
)Ic −

1

nc − 1
Jc

= (1 +
λ

nc − 1
)I∗c + (1− λ)J∗c , (3.10)

where I∗c = Ic − Jc/nc, J∗c = Jc/nc. By Lemma A.3 in Appendix A, Ic − λWc is

nonsingular if 1 + λ/(nc − 1) 6= 0 and 1 − λ 6= 0. The inverse of Ic − λWc is in

equation (B.4). Since nc > a under Assumption 3, nc − 1 + λ > 0 if λ > 1 − a.

Meanwhile, 1−λ < 0 as λ < 1. Therefore, Ic−λWc is invertible under Assumption 4.

The parameters of interest are λ, σ2
ε , σ

2
α and γ. Their true values are λ0, σ

2
ε0, σ

2
α0

and γ0 respectively. As will be shown later, γ can be concentrated out from the

likelihood function and analysis will focuses on λ, σ2
ε , σ

2
α. Let ϑ = (λ, σ2

ε , σ
2
α) be the

parameter vector, ϑ ∈ Θ, where Θ is the parameter space. From Assumptions 1, 2,

and 4, Θ is a compact subset of the Euclidean space R3 .

For an NR × NR matrix AN(ϑ), denote the i, jth element as A(ϑ)ij,N . I call

the elements of the sequence of matrices AN(ϑ) are uniformly bounded in absolute
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value if supϑ∈Θ,16i,j6N |A(ϑ)ij,N | < āA, where āA is a finite constant that does not

depend on ϑ or N .

Let Ω(ϑ) = σ2
ε I + σ2

αJ̃ , where J̃ = diagRc=1{Jc}. According to Lemma A.3,

Ω(ϑ) is nonsingular for all ϑ ∈ Θ under Assumptions 1 and 2.

Let Z̄c = 1
nc
ι′cZc be the row vector of column means of Zc, Z∗c = Zc − ιcZ̄c be

the deviations from the column means.

Assumption 5. (a) The N × kZ matrix Z is non-stochastic, with rank(Z) = kZ,

wherekZ is a finite constant. The elements of Z are uniformly bounded in absolute

value.

(b)For a 6 n 6 ā, limR→∞R
−1
n

∑
c∈In Z

∗′
c Z
∗
c = κ∗n, limR→∞R

−1
n

∑
c∈In Z̄

′
cZ̄c =

κ̄n, limR→∞R
−1
n

∑
c∈In Z

′
cιn = Zn.

(c) For all ϑ ∈ Θ, Z ′Ω(ϑ)−1Z is nonsingular, and the elements of NR[Z ′Ω(ϑ)−1Z]−1

are uniformly bounded in absolute value.

Assumption 5 is necessary for identification. Since the elements of Z are

uniformly bounded in absolute value, κ∗n and κ̄n are finite kZ ×kZ matrices, and Zn

is a kZ × 1 vector of finite elements. With the closed form expression of Ω(ϑ)−1 in

equation (B.2) in Appendix B,

1

NR

Z ′Ω(ϑ)−1Z =
1

NR

1

σ2
ε

R∑
c=1

Z∗′c Z
∗
c +

1

NR

R∑
c=1

ncZ̄
′
cZ̄c

σ2
ε + ncσ2

α

, (3.11)

limR→∞
1

NR

Z ′Ω(ϑ)−1Z =
1

n∗

ā∑
n=a

ω∗n(
κ∗n
σ2
ε

+
nκ̄n

σ2
ε + nσ2

α

). (3.12)

Under Assumption 3, 2 6 a 6 n 6 ā < ∞, so 0 < 1/ā 6 1/n∗ 6 1/a < ∞. By

Assumption 2, σ2
ε > aε > 0, so 1/(σ2

ε + nσ2
α) 6 1/σ2

ε < 1/aε < ∞. Therefore, the
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right hand side of equation (3.12) is finite, limR→∞
1
NR
Z ′Ω(ϑ)−1Z exists and is finite.

By Assumption 5(c), limR→∞
1
NR
Z ′Ω(ϑ)−1Z are nonsingular.

3.3 Estimation Strategy

This chapter develops a quasi-Maximum likelihood estimation method for the

peer effects model in equation (3.2). Assumptions 1 and 2 do not assume normality

of the error terms. In this section, I will use a normality assumption to motivate the

criterion function for maximum likelihood estimation. But normality is not essential

for the consistency or the asymptotic normality of the estimator, as I will show in

later sections.

From equation (3.6), the distribution of Y is

Y ∼ ((I − λ0W )−1Zγ0, (I − λ0W )−1Ω0(I − λW )−1). (3.13)

If αc and εic follow normal distributions, the log likelihood function corresponding

to the distribution of Y in equation (3.13) is

logL(ϑ, γ) = −NR

2
ln(2π) + ln|I − λW | − 1

2
ln|Ω(ϑ)|

− 1

2
(Y − λWY − Zγ)′Ω(ϑ)−1(Y − λWY − Zγ), (3.14)

where Ω(ϑ) = σ2
ε IN + σ2

αJ̃ . The first order condition for γ is

∂logL(ϑ, γ)

∂γ
= (Y − λWY − Zγ)′Ω(ϑ)−1Z = 0. (3.15)

Solving equation (3.15) yields

γ̂(ϑ) = (Z ′Ω(ϑ)−1Z)−1Z ′Ω(ϑ)−1(I − λW )Y. (3.16)
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Plugging γ̂(ϑ) back into equation (3.14), the concentrated log likelihood function is

QR(ϑ) = −N
2
ln(2π) + ln|I − λW | − 1

2
ln|Ω(ϑ)|

− 1

2
Y ′(I − λW )′MZ(ϑ)(I − λW )Y, (3.17)

where

MZ(ϑ) = Ω(ϑ)−1 − PZ(ϑ), (3.18)

PZ(ϑ) = Ω(ϑ)−1Z(Z ′Ω(ϑ)−1Z)−1Z ′Ω(ϑ)−1. (3.19)

It is easy to see that QR(ϑ) is continuous in ϑ ∈ Θ.

3.4 Large Sample Properties

In this section, I describe the consistency and asymptotic distribution of the

quasi-maximum likelihood estimator.

Let ϑ̂R = (λ̂, σ̂2
ε , σ̂

2
α)R be the maximum likelihood estimator for the concen-

trated log likelihood function QR(ϑ) in equation (3.17),

QR(ϑ̂R) = maxϑ∈ΘQR(ϑ). (3.20)

Given the assumptions outlined in Section 3.2, the quasi-maximum likelihood esti-

mator is consistent.

Theorem 3.1. Under Assumptions 1-5, the maximum likelihood estimator ϑ̂R is

consistent, ϑ̂R →p ϑ0 as R→∞.

Proof of Theorem 3.1 is in Section E.1 of Appendix E.

Additional assumptions are needed for the asymptotic distribution of the quasi-

maximum likelihood estimator. Define 3 × 3 symmetric matrices Ξ2,n, Ξ3,n, Ξ4,n,
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Ξ0,n and Ξ1,n as in equations (D.7), (D.9), (D.11), (D.3), and (D.5) in Appendix D.

Note that Ξ0,n, Ξ1,n, Ξ2,n, Ξ3,n, and Ξ4,n are all symmetric so the dots in the upper

right part represent corresponding symmetrical elements.

Assumption 6. (a) Let Γ0 = 1
n∗

∑ā
n=a ω

∗
nΞ0,n , where Ξ0,n is defined in equa-

tion (D.3) in Appendix D, Γ0 is positive definite.

(b) Let

Ψ0 =
1

n∗

ā∑
n=a

ω∗n[Ξ0,n + (µ(4)
ε − 3σ

(4)
ε0 )Ξ1,n + (µ(4)

α − 3σ
(4)
α0 )Ξ2,n + µ(3)

ε Ξ3,n + µ(3)
α Ξ4,n],

(3.21)

where Ξ0,n, Ξ1,n, Ξ2,n, Ξ3,n, and Ξ4,n are defined in Appendix D. Let ρmin(Ψ0) be

the smallest eigenvalue of Ψ0, 0 < aρ 6 ρmin(Ψ0).

Appendix E shows that the limit of the Hessian matrix (observed information

matrix) at ϑ0 is −Γ0, and that the limit of the Fisher information matrix at ϑ0 is

Ψ0.

Theorem 3.2. Under Assumptions 1-7,
√
NR(ϑ̂R − ϑ0)

D−→ NR(0,Φ0) as R goes to

infinity, where Φ0 = Γ−1
0 Ψ0Γ−1

0 .

Note that if αc and εic follow normal distributions, µ(3)
α = 0, µ(3)

ε = 0, µ(4)
ε −

3σ
(4)
ε0 = 0, µ(4)

α − 3σ
(4)
α0 = 0. Therefore Ψ0 = 1

n∗

∑ā
n=a ω

∗
nΞ0,n = Γ0. In that scenario,

Φ0 = Γ−1
0 = Ψ−1

0 .

Proof of Theorem 3.2 is in Section E.2 of Appendix E.
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3.5 Finite Sample Properties

I conduct Monte-Carlo experiments to study the finite sample properties of

the quasi-maximum likelihood (QML) estimator ϑ̂R.

3.5.1 Design of the Monte Carlo Experiments

The simulations are based on a simplified version of the main model in equa-

tion (3.2). I reduce the vectors x1,ic, x2,ic, x3,c to be scalars x1,ic, x2,ic, x3,c. The

model is then

yic = λȳ(−i)c + β0 + β1x1,ic + β2x̄2,(−i)c + β3x3,c + αc + εic. (3.22)

I set the true value of the parameters to λ = 0.5, β0 = 1, β1 = 1, β2 = 1, β3 = 1,

σ2
α = 0.52, and σ2

ε = 0.52. The number of groups R is from the set {50, 100, 300}.

As later results will show, the type of distribution of group size affects the

performance of the QML estimator. Therefore, I use different distributions of group

sizes. Group sizes follow a discrete uniform distribution or discrete normal distribu-

tion, with small/large mean, and small/large standard deviation. Table 3.1 offers

summary statistics of group sizes for both distributions.

I allow x1 and x2 to be the same or different in different experiments. In

case one, x1,ic = x2,ic ∼ N(0, 1) , so one’s characteristic x1 impacts oneself as

well as one’s peers directly. In case two, x1,ic ∼ N(0, 1) and x2,ic ∼ N(0, 1) are

independently drawn, so one’s characteristic x1 directly impact only oneself, and

one’s characteristic x2 directly impacts only peers. Group characteristics x3,c and

group effects αc are independently drawn from normal distributions, with x3,c ∼
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N(0, 1) and αc ∼ N(0, 0.52). The disturbance terms εic are independently drawn

from a normal distribution, εic ∼ N(0, 0.52). The dependent variable yic is generated

as in equation (3.3).

I generate 300 repetitions for each of the experiments. A summary of the

simulation results is in Tables 3.2, 3.3, 3.4, and 3.5. In both Tables 3.2 and 3.3,

group sizes follow a discrete uniform distribution. In Tables 3.4 and 3.5, group

sizes follow a normal distribution. In Tables 3.2 and 3.4, x1 and x2 overlap, so that

the model includes only one individual characteristic, which affects both oneself and

one’s peers directly. In Tables 3.3 and 3.5, x1 and x2 are different and independently

drawn, so that the model includes two types of individual characteristics, x1 directly

affects oneself only and x2 directly affects only peers.

3.5.2 Results

The key parameter of interest is λ. First let’s compare the results within

each table, i.e., within the same distribution type of group size (discrete normal or

discrete uniform) and the same relationship between x1 and x2 (x1 = x2 or x1, x2

are independent). One observation is that the bias and variance for the estimates

of λ decrease as the number of group R increases. This can be shown by comparing

the results as the size increases but the mean and standard deviation of group sizes

are fixed within each table. Another observation is that in general, the bias and

variance increase as the mean of group sizes increases or as the standard deviation

of group sizes decreases. Therefore, the estimator does not necessarily converge to
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the true value as the sample size increases. If the number of groups is fixed but

mean group size increases, the estimator deviates further away from the true value.

Second, the estimates for λ perform better when x1 and x2 are independent

than when they are equal. To see this, compare between the results in Tables 3.2

and 3.3, and between the results in Tables 3.4 and 3.5. Note that the difference

between Table 3.2 and Table 3.3, and between Table 3.4 and Table 3.5 is that in

Tables 3.2 and 3.4 x1 = x2 while in Tables 3.3 and 3.5 x1 and x2 are independent.

All other parameters are the same. The bias and variance of λ is smaller when x1

and x2 are independent.

Third, the QML estimator for λ has smaller bias and variance when the group

sizes follow a normal distribution than when they follow a uniform distribution.

In all, the performance of the estimator for λ improves as (1) the number

of groups increases; (2) the variance of group size increase; (3) average group size

decrease; (4) the model includes individual characteristics that does not directly

affect peers; (5) the group size follows a normal distribution rather than a uniform

distribution.

The performance of the estimators for other parameters is parallel to that of

λ. But estimates for σ2
ε and β1 get close to the true value with smaller variance even

under undesirable conditions: when the number of groups is small, group sizes have

a large mean and a small variance, x1 and x2 are the same.
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3.5.3 Comparison with Lee (2007)

The difference between my model and the model in Lee (2007) is that Lee

(2007) allows for group effects to be correlated with exogenous variables while I

assume random group effects. The conditional maximum likelihood estimator by

Lee (2007) is still consistent when the group effects are in fact random. But the

variance will be larger. To show this, I compare my simulation results with those in

Lee (2007).

In the Monte Carlo experiments of Lee (2007), group sizes are integers between

2 to 11 for the small interaction case, i.e., {2, 3, ..., 11}; or these integers multiplied

by 8 or 10 for the large interaction case, i.e., {16, 24, ..., 88} or {20, 30, ..., 110}. The

number of groups of each size is the same and equals to the total number of groups

divided by 10. Therefore, Lee’s simulation process fails to account for the impact of

variation and distribution type of group sizes on the estimator. As results in Tables

3.2, 3.3, 3.4, and 3.5 show, the bias and variance of the estimator both decrease with

the variance of group sizes and are affected by the distribution type of group sizes.

To better compare my results with Lee’s results, I use the same distribution

of group sizes as his. But the data generating process is different. There are no

group effects in the data generating process of Lee’s Monte Carlo experiments as

his research assumes fixed group effects. In this study, the data generating process

involves random group effects. I use my model in equation (3.22) as the true data

generating process, and estimate the sample with both my methodology and Lee’s
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conditional maximum likelihood estimator (CMLE). 1The results are in Tables 3.6

and 3.7.

Comparing the estimates for λ, the QML estimator in this study are generally

biased downward in small samples and the CMLE of Lee (2007) are biased upward.

When the average group size is small, my estimates are less biased than Lee (2007).

In all cases, the variance of Lee’s CMLE is much larger.

1In Lee’s data generating process,

yic = λȳ(−i)c + β1x1,ic + β2x̄2,(−i)c + εic. (3.23)

It differs from equation (3.22) in that β0, x3,c and αc are dropped, because demeaning the equation
by groups eliminates these variables.
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3.6 Tables

Table 3.1: Summary Statistics of Group Sizes
min max mean sd

Normal Distribution
small mean, small sd 6 13 9.5 1.76
small mean, large sd 2 17 9.5 3.50
large mean, small sd 16 23 19.5 1.76
large mean, large sd 12 27 19.5 3.50
Uniform Distribution
small mean, small sd 7 14 10.5 2.29
small mean, large sd 3 18 10.5 4.61
large mean, small sd 17 24 20.5 2.29
large mean, large sd 13 28 20.5 4.61
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Table 3.2: Monte Carlo Results: Uniform Distribution, x1 = x2

size mean size sd λ σε σα β0 β1 γ π
True value

0.500 1.000 0.500 1.000 1.000 1.000 1.000

Number of Groups R = 50
10.5 2.29 0.364 0.984 0.595 1.276 1.036 1.458 1.270

(0.361) (0.049) (0.506) (0.741) (0.112) (1.260) (0.733)
10.5 4.61 0.470 0.995 0.495 1.061 1.008 1.094 1.061

(0.164) (0.036) (0.253) (0.345) (0.064) (0.562) (0.348)
20.5 2.29 0.032 0.975 0.941 1.935 1.067 2.731 1.934

(0.959) (0.053) (1.075) (1.920) (0.143) (3.556) (1.934)
20.5 4.61 0.287 0.989 0.669 1.426 1.029 1.728 1.423

(0.525) (0.035) (0.612) (1.064) (0.079) (1.866) (1.051)

Number of Groups R = 100
10.5 2.29 0.426 0.991 0.544 1.148 1.022 1.259 1.151

(0.267) (0.036) (0.388) (0.544) (0.085) (0.963) (0.542)
10.5 4.61 0.483 0.996 0.501 1.036 1.005 1.046 1.033

(0.117) (0.025) (0.178) (0.244) (0.047) (0.411) (0.243)
20.5 2.29 0.143 0.982 0.842 1.716 1.052 2.342 1.703

(0.716) (0.039) (0.822) (1.447) (0.107) (2.667) (1.428)
20.5 4.61 0.363 0.993 0.615 1.275 1.020 1.504 1.272

(0.399) (0.025) (0.477) (0.805) (0.061) (1.471) (0.801)

Number of Groups R = 300
10.5 2.29 0.468 0.997 0.522 1.062 1.008 1.112 1.063

(0.165) (0.021) (0.235) (0.331) (0.052) (0.594) (0.331)
10.5 4.61 0.496 0.999 0.500 1.010 1.001 1.014 1.009

(0.068) (0.015) (0.103) (0.140) (0.028) (0.240) (0.141)
20.5 2.29 0.331 0.991 0.658 1.338 1.025 1.648 1.336

(0.444) (0.024) (0.532) (0.893) (0.068) (1.700) (0.890)
20.5 4.61 0.444 0.997 0.547 1.111 1.007 1.194 1.114

(0.253) (0.015) (0.306) (0.505) (0.039) (0.951) (0.509)
1 Means and standard errors (in the parentheses) of estimates across 1000 replications.
2 Simulation is based on model (3.22): yic = λȳ(−i)c+β0+β1x

′
1,ic+γx̄2,(−i)c+πx3,c+αc+εic,

with the ture value of the parameters on the top panel of the table.
3 Size of group c is drawn from a discrete uniform distribution. The mean and standard
deviation of the group size are in column 1 and 2. Summary statistics of the group size is in
Table 3.1. Sample is generated by: x1,ic = x2,ic ∼ N(0, 1), x3,c ∼ N(0, 1), αc ∼ N(0, 0.52),
and εic ∼ N(0, 0.52).
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Table 3.3: Monte Carlo Results: Uniform Distribution, x1, x2 i.i.d

size mean size sd λ σε σα β0 β1 γ π
True value

0.500 1.000 0.500 1.000 1.000 1.000 1.000

Number of Groups R = 50
10.5 2.29 0.477 0.995 0.492 1.048 0.997 1.016 1.041

(0.133) (0.038) (0.202) (0.278) (0.046) (0.281) (0.274)
10.5 4.61 0.487 0.997 0.483 1.028 0.999 1.015 1.026

(0.112) (0.034) (0.177) (0.249) (0.046) (0.254) (0.248)
20.5 2.29 0.451 0.996 0.525 1.101 0.998 1.036 1.097

(0.256) (0.027) (0.335) (0.516) (0.034) (0.397) (0.534)
20.5 4.61 0.434 0.996 0.540 1.127 0.998 1.040 1.133

(0.304) (0.028) (0.369) (0.614) (0.035) (0.396) (0.621)

Number of Groups R = 100
10.5 2.29 0.489 0.998 0.496 1.020 0.999 1.010 1.023

(0.086) (0.025) (0.133) (0.178) (0.032) (0.200) (0.180)
10.5 4.61 0.490 0.997 0.497 1.022 1.001 1.009 1.019

(0.072) (0.024) (0.114) (0.159) (0.032) (0.172) (0.158)
20.5 2.29 0.482 0.999 0.505 1.035 0.999 1.016 1.031

(0.123) (0.018) (0.152) (0.249) (0.023) (0.283) (0.253)
20.5 4.61 0.479 0.999 0.507 1.041 0.999 1.025 1.040

(0.135) (0.017) (0.161) (0.274) (0.023) (0.282) (0.278)

Number of Groups R = 300
10.5 2.29 0.497 0.999 0.498 1.006 0.999 1.005 1.007

(0.046) (0.014) (0.071) (0.101) (0.019) (0.107) (0.099)
10.5 4.61 0.498 0.999 0.498 1.005 0.999 1.002 1.003

(0.039) (0.014) (0.063) (0.087) (0.019) (0.101) (0.085)
20.5 2.29 0.494 0.999 0.502 1.012 1.000 1.002 1.011

(0.068) (0.010) (0.084) (0.143) (0.013) (0.154) (0.140)
20.5 4.61 0.490 0.999 0.507 1.020 0.999 1.008 1.022

(0.062) (0.009) (0.079) (0.128) (0.013) (0.156) (0.131)
1 Means and standard errors (in the parentheses) of estimates across 1000 replications.
2 Simulation is based on model (3.22): yic = λȳ(−i)c+β0+β1x

′
1,ic+γx̄2,(−i)c+πx3,c+αc+εic,

with the ture value of the parameters on the top panel of the table.
3 Size of group c is drawn from a discrete uniform distribution. The mean and standard
deviation of the group size are in column 1 and 2. Summary statistics of the group
size is in Table 3.1. Sample is generated by: x1,ic, x2,ic i.i.d ∼ N(0, 1), x3,c ∼ N(0, 1),
αc ∼ N(0, 0.52), and εic ∼ N(0, 0.52).
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Table 3.4: Monte Carlo Results: Normal Distribution, x1 = x2

size mean size sd λ σε σα β0 β1 γ π
True value

0.500 0.500 0.500 1.000 1.000 1.000 1.000

Number of Groups R = 50
9.5 1.76 0.483 0.498 0.479 1.039 1.001 1.013 1.029

(0.274) (0.024) (0.328) (0.563) (0.088) (0.930) (0.555)
9.5 3.5 0.494 0.498 0.483 1.015 0.997 0.993 1.017

(0.134) (0.020) (0.161) (0.280) (0.046) (0.433) (0.291)
19.5 1.76 0.204 0.492 0.751 1.602 1.039 1.972 1.597

(0.799) (0.024) (0.830) (1.638) (0.107) (2.583) (1.642)
19.5 3.5 0.382 0.496 0.587 1.231 1.013 1.335 1.230

(0.468) (0.016) (0.492) (0.916) (0.064) (1.538) (0.927)

Number of Groups R = 100
9.5 1.76 0.502 0.499 0.475 0.993 0.999 0.979 0.989

(0.206) (0.016) (0.243) (0.417) (0.068) (0.725) (0.413)
9.5 3.5 0.503 0.500 0.484 0.995 1.000 0.985 0.996

(0.091) (0.013) (0.111) (0.189) (0.034) (0.307) (0.190)
19.5 1.76 0.327 0.496 0.649 1.348 1.023 1.570 1.351

(0.570) (0.018) (0.610) (1.142) (0.082) (2.016) (1.149)
19.5 3.5 0.449 0.499 0.526 1.107 1.006 1.143 1.104

(0.327) (0.012) (0.350) (0.668) (0.050) (1.187) (0.657)

Number of Groups R = 300
9.5 1.76 0.499 0.500 0.495 1.002 1.000 1.000 1.002

(0.124) (0.010) (0.145) (0.251) (0.041) (0.444) (0.256)
9.5 3.5 0.496 0.499 0.501 1.008 1.001 1.018 1.007

(0.051) (0.007) (0.061) (0.108) (0.019) (0.173) (0.106)
19.5 1.76 0.492 0.500 0.491 1.016 1.000 1.024 1.015

(0.323) (0.010) (0.355) (0.645) (0.051) (1.229) (0.646)
19.5 3.5 0.492 0.500 0.499 1.015 1.000 1.012 1.016

(0.200) (0.007) (0.214) (0.399) (0.031) (0.736) (0.406)
1 Means and standard errors (in the parentheses) of estimates across 300 replications.
2 Simulation is based on model (3.22): yic = λȳ(−i)c+β0+β1x

′
1,ic+γx̄2,(−i)c+πx3,c+αc+εic,

with the ture value of the parameters on the top panel of the table.
3 Size of group c is determined by sizec = floor[meansize + expander ∗ Φ−1(vc)], where
vc i.i.d ∼ U(0.025, 0.975) and Φ is the Cumulative Distribution Function of the standard
normal distribution. Summary statistics of the group size is in Table 3.1. Sample is
generated by: x1,ic = x2,ic ∼ N(0, 1), x3,c ∼ N(0, 1), αc ∼ N(0, 0.52), and εic ∼ N(0, 0.52).
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Table 3.5: Monte Carlo Results: Normal Distribution, x1, x2 i.i.d

size mean size sd λ σε σα β0 β1 γ π
True value

0.500 0.500 0.500 1.000 1.000 1.000 1.000

Number of Groups R = 50
9.5 1.76 0.483 0.498 0.498 1.037 0.999 1.022 1.028

(0.094) (0.019) (0.114) (0.204) (0.027) (0.169) (0.213)
9.5 3.5 0.491 0.498 0.490 1.023 0.997 0.996 1.022

(0.089) (0.019) (0.113) (0.194) (0.026) (0.154) (0.201)
19.5 1.76 0.440 0.498 0.544 1.128 0.998 0.989 1.119

(0.417) (0.016) (0.455) (0.848) (0.027) (0.261) (0.779)
19.5 3.5 0.444 0.498 0.536 1.116 0.998 1.033 1.110

(0.202) (0.013) (0.220) (0.423) (0.019) (0.234) (0.438)

Number of Groups R = 100
9.5 1.76 0.496 0.499 0.495 1.005 1.001 1.005 1.003

(0.069) (0.012) (0.079) (0.148) (0.019) (0.113) (0.149)
9.5 3.5 0.496 0.499 0.492 1.009 1.001 1.003 1.010

(0.057) (0.013) (0.074) (0.125) (0.017) (0.104) (0.126)
19.5 1.76 0.479 0.500 0.510 1.042 0.999 1.007 1.042

(0.099) (0.009) (0.113) (0.203) (0.012) (0.186) (0.210)
19.5 3.5 0.483 0.500 0.506 1.036 1.000 1.001 1.039

(0.095) (0.009) (0.107) (0.204) (0.012) (0.160) (0.202)

Number of Groups R = 300
9.5 1.76 0.499 0.500 0.499 1.001 0.999 0.998 1.000

(0.036) (0.007) (0.046) (0.076) (0.011) (0.063) (0.080)
9.5 3.5 0.498 0.500 0.498 1.003 0.999 1.002 1.002

(0.034) (0.007) (0.046) (0.077) (0.011) (0.060) (0.076)
19.5 1.76 0.497 0.500 0.501 1.005 0.999 0.998 1.004

(0.055) (0.005) (0.063) (0.111) (0.007) (0.099) (0.114)
19.5 3.5 0.493 0.500 0.503 1.015 1.000 1.004 1.014

(0.051) (0.005) (0.056) (0.107) (0.007) (0.092) (0.106)
1 Means and standard errors (in the parentheses) of estimates across 300 replications.
2 Simulation is based on model (3.22): yic = λȳ(−i)c+β0+β1x

′
1,ic+γx̄2,(−i)c+πx3,c+αc+εic,

with the ture value of the parameters on the top panel of the table.
3 Size of group c is determined by sizec = floor[meansize + expander ∗ Φ−1(vc)], where
vc i.i.d ∼ U(0.025, 0.975) and Φ is the Cumulative Distribution Function of the standard
normal distribution. Summary statistics of the group size is in Table 3.1. Sample is gen-
erated by: x1,ic, x2,ic i.i.d ∼ N(0, 1), x3,c ∼ N(0, 1), αc ∼ N(0, 0.52), and εic ∼ N(0, 0.52).
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Table 3.6: Monte Carlo Results: Case 1, x1 = x2 ∼ N(0, 1)

group size Random effects model Fixed effects model
λ σε σα β0 β1 γ π λ σε β1 γ

True value
0.500 1.000 0.500 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000

Number of Groups R = 50
{2,3,...,11} 0.497 0.992 0.455 1.006 0.993 1.000 1.003 0.682 1.019 1.003 0.943

(0.097) (0.044) (0.193) (0.222) (0.081) (0.324) (0.201) (0.514) (0.093) (0.113) (0.456)
{16,24,...,88} 0.340 0.996 0.635 1.313 1.002 1.424 1.313 0.612 1.001 0.996 0.844

(0.476) (0.017) (0.503) (0.945) (0.027) (1.423) (0.950) (1.288) (0.029) (0.037) (2.045)

Number of Groups R = 100
{2,3,...,11} 0.490 0.997 0.491 1.021 1.005 1.028 1.022 0.561 1.007 1.011 1.015

(0.079) (0.032) (0.149) (0.170) (0.055) (0.259) (0.169) (0.320) (0.059) (0.078) (0.327)
{16,24,...,88} 0.440 0.998 0.557 1.113 1.002 1.160 1.116 0.545 1.000 0.999 0.918

(0.318) (0.012) (0.343) (0.629) (0.023) (1.119) (0.628) (0.898) (0.020) (0.027) (1.427)
1 Means and standard errors (in the parentheses) of estimates across 300 replications.
2 Simulation is based on the random effect model (3.22): yic = λȳ(−i)c + β0 + β1x

′
1,ic + γx̄2,(−i)c + πψc + αc + εic, with the ture value

of the parameters on the left of top panel.Sample is generated by: x1,ic = x2,ic ∼ N(0, 1), ψc ∼ N(0, 1), αc ∼ N(0, 0.52), and
εic ∼ N(0, 1).

3 Estimation strategy is the Maximum Likelihood estimation for the random group effect model as described in this paper (left);or
the Conditional Maximum Likelihood estimation for the fixed group effect model as described in Lee(2007)(right). In the fixed
group effect model, all group level variables are absorbed by the group fixed effects, so β0, π, and σα are not estimated.

4 Group sizes are non-random. They are either {2, 3, ..., 11} or {16, 24, ..., 88}.The number of groups of each size is the same.
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Table 3.7: Monte Carlo Results: Case 2, x1, x2 i.i.d ∼ N(0, 1)

group size Random effects model Fixed effects model
λ σε σα β0 β1 γ π λ σε β1 γ

True value
0.500 1.000 0.500 1.000 1.000 1.000 1.000 0.500 1.000 1.000 1.000

Number of Groups R = 50
{2,3,...,11} 0.493 0.991 0.467 1.014 0.991 1.005 1.015 0.591 1.004 1.006 1.028

(0.087) (0.044) (0.169) (0.202) (0.064) (0.191) (0.196) (0.375) (0.075) (0.087) (0.306)
{16,24,...,88} 0.379 0.997 0.604 1.246 0.995 1.033 1.240 0.546 1.000 0.998 0.982

(0.399) (0.016) (0.435) (0.844) (0.021) (0.570) (0.810) (1.037) (0.025) (0.027) (0.867)

Number of Groups R = 100
{2,3,...,11} 0.495 0.998 0.486 1.010 1.000 1.005 1.013 0.550 1.005 1.008 1.025

(0.055) (0.031) (0.110) (0.129) (0.041) (0.127) (0.133) (0.253) (0.048) (0.058) (0.204)
{16,24,...,88} 0.469 0.999 0.526 1.059 1.000 1.040 1.062 0.513 1.000 1.000 1.010

(0.166) (0.010) (0.186) (0.338) (0.016) (0.364) (0.334) (0.723) (0.017) (0.020) (0.582)
1 Means and standard errors (in the parentheses) of estimates across 300 replications.
2 Simulation is based on the random effect model (3.22): yic = λȳ(−i)c + β0 + β1x

′
1,ic + γx̄2,(−i)c + πψc + αc + εic, with the ture value

of the parameters on the left of top panel.Sample is generated by: x1,ic, x2,ic i.i.d ∼ N(0, 1), ψc ∼ N(0, 1), αc ∼ N(0, 0.52), and
εic ∼ N(0, 1).

3 Estimation strategy is the Maximum Likelihood estimation for the random group effect model as described in this paper (left);or
the Conditional Maximum Likelihood estimation for the fixed group effect model as described in Lee(2007)(right). In the fixed
group effect model, all group level variables are absorbed by the group fixed effects, so β0, π, and σα are not estimated.

4 Group sizes are non-random. They are either {2, 3, ..., 11} or {16, 24, ..., 88}.The number of groups of each size is the same.
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Chapter 4: Do Peers Matter for Children’s Academic Performance?

Evidence from Project STAR

4.1 Introduction

Early educational outcomes have an enduring impact on lifetime educational

and economic success (Heckman, 2006). Studies have shown that children with

higher academic achievement are more likely to attend college and receive higher

earnings (e.g., Chetty et al., 2011). Numerous policies are designed to improve early

educational outcomes, especially for disadvantaged children. It is therefore of crucial

interest to understand what factors impact children’s educational achievement and

how. In this chapter, I investigate how children’s academic performance is affected

by their peers in class as well as other factors such as class size and teacher quality.

There is widespread belief that peers matter for children’s academic perfor-

mance. According to theories in child psychology, the peer group is one of the most

important contexts shaping children’s behaviors and skills (Rubin et al., 2007).1

Children develop their cognitive skills by learning from adults and more knowledge-

1The nurture assumption theory, for example, argues that peer environment is more important
than parents for children’s development.
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able peers.2 In the field of education policy, the groundbreaking Coleman (1956) re-

port ascribes peer quality as a more valuable educational input than teacher quality

and school facilities. Following his report, a large number of studies have examined

peer effects in education, though with inconclusive results because of challenging

identification issues.

Peer effects can work through pre-determined characteristics such as sex and

race, therefore referred to as exogenous (peer) effects. For example, a higher share

of girls in a class may increase the academic performance of everyone in the class be-

cause girls are less disruptive than boys (Lavy and Schlosser, 2011). Peer effects can

also work through endogenously determined peer behaviors and outcomes, such as

knowledge, effort, and motivation (Fruehwirth, 2013), known as endogenous (peer)

effects. For example, Conley et al. (2015) find that high school students’ study time

is impacted by that of their peers. In- and out-of-class discussions lead to knowledge

spillover among classmates. Although these standard mechanisms underlying peer

effects may be invalid for children, children’s imitation of each other’s behavior and

their compliance with the group norm can also generate peer effects. In practice,

these endogenous characteristics are usually unobservable to researchers and proxied

by test scores.

Identifying endogenous effects is notoriously challenging (Angrist, 2014; Mof-

fitt, 2001). Manski (1993) highlights the “reflection problem” in identifying peer

effects. The idea is that with endogenous effects, contemporaneous achievement of

2This is the argument of Lev Vygotskyl’s “socialculture theory,” one of the most recognized
child development theories.
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peers is simultaneously determined. This simultaneous equation feature of the peer

effect model poses challenges for identification. Most studies identify the reduced

form of peer effect models but are unable to disentangle the endogenous effects and

exogenous effects in it. The few studies that achieve identification all find significant

positive endogenous effects (Boucher et al., 2014; Graham, 2008; Lin, 2010).

Distinguishing endogenous effects and exogenous effects is important. Peer ef-

fects are informative to regrouping policies like busing and school choice programs.

The reduced form estimates for peer effects are sufficient for regrouping policies

in certain circumstances, e.g., the school choice program studied by Altonji et al.

(2015). However, Fruehwirth (2013) points out that estimates of endogenous peer

effects are necessary under reasonable assumptions. For example, when peer ef-

fects are heterogeneous and when there is matching between teachers and children.

Second, endogenous peer effects generate social multiplier effect and confound the

evaluation of education policies (Imbens and Wooldridge, 2009). If a policy applies

to the whole group, e.g., assigning an effective teacher to class, the gross impact

constitutes both the net teacher effect and the social multiplier effect. If the pol-

icy applies to part of the group, e.g., giving half of the class special instruction,

then comparing the outcome of treated and untreated individuals underestimate

the policy effect because those not receiving the instruction also benefit indirectly.

In this chapter, I estimate both endogenous and exogenous peer effects on aca-

demic performance among kindergarten students. I use data from Project STAR, a

class size reduction experiment in Tennessee. Project STAR randomly assigned both

students and teachers to classes of different sizes. The exogenous group formation
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facilitates the estimation of peer effects because sorting into the same groups based

on similar characteristics can lead to spurious peer effects.

My model controls among other things for random group effects. I estimate

the model with maximum likelihood (ML) method. A closer look at the first order

conditions reveals that identification is based on second moments of within-class

variance and between-class variance. What’s more, identification comes from the

exogenous and systematic variation of class size, a key feature of Project STAR. The

model is developed and estimated under the framework of spatial econometrics.

In contrast to previous studies, this study finds insignificant endogenous peer

effects and exogenous peer effects in kindergarteners’ test scores. The results are

robust across different specifications. The results urge caution against overstating

the importance of peer effects and cast doubts on regrouping policies.

The difference from previous studies arises primarily from a relaxation of func-

tional form restrictions. Using the same data as in this study, Graham (2008) finds

significant endogenous peer effects with a model that controls for school fixed ef-

fects and class type fixed effects separately. Graham’s specification relies on the

assumption that the treatment effect of class size reduction is independent of school

characteristics. Regression analysis in this study provides evidence that this as-

sumption does not hold. A more flexible specification that controls for school by

class type fixed effects, in combination with random group effects, is used instead

and supported by specification tests.
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While focusing on peer effects, this study also sheds light on the effectiveness

of teacher quality and class size. The results also confirm with previous studies that

class size reduction improves children’s test scores in STAR schools.

The rest of the chapter is organized as follows. Section 4.2 describes Project

STAR and summary statistics of the data. Section 4.3 outlines the model speci-

fication and identification strategy. Section 4.4 discusses the results. Section 4.5

concludes.

4.2 Data

This study uses data from Project STAR (student-teacher achievement ratio),

a randomized experiment that assigned both students and teachers into classes of

different sizes.3The goal of Project STAR is to study the effect of small classes on

students’ development. The experiment began in the 1985-1986 school year and

ended in 1989. It followed a single cohort of students for four years, from kinder-

garten to third grade. Upon entry into the project, students and teachers were

randomly assigned to small classes (13-17 students), regular classes (22-26 students)

and regular classes with a full-time teacher’s aid. Academic and nonacademic mea-

surements of the students were taken at the end of each school year. Boyd-Zaharias

et al. (2007) and Mosteller (1995) offer detailed descriptions of project STAR. Here

I briefly describe the process of the experiment.

3The Project STAR data was originally posted on the project we-
biste (http://www.heros-inc.org/star.htm), which is no longer accessi-
ble. The data this chapter uses is downloaded from Harvard Dataverse
(https://dataverse.harvard.edu/dataset.xhtml?persistentId=hdl:1902.1/10766).
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4.2.1 Project STAR

Project STAR was implemented in the following steps.

In the preparation period, seventy-nine schools were selected to participate in

the experiment. All elementary schools in Tennessee were invited, but only schools

with enough students to have at least one class for each of the three class types

were eligible.4 Among the 180 schools expressing interest, 100 were eligible and 79

were selected. The selection of schools was nonrandom and over-sampled minority

schools. Four schools withdrew in the process of the experiment.

In the school year of 1985, students entering kindergarten of the experiment

schools were randomly assigned to small classes, regular classes and regular classes

with aid within school.5 Students were supposed to stay in the class type they were

initially assigned to throughout the experiment. Kindergarten teachers were then

randomly assigned to the three class types too.

In 1986, when the cohort of students entered first grade, students initially

assigned to regular class and regular class with aid were reassigned randomly to

these two class types. Students assigned to small classes remained in small classes.

Meanwhile, a large influx of new students joined the program because kindergarten

4The minimum number of students is 57: 13 for small class, 22 for regular class and 22 for
regular class with aid.

5No report describes the exact assigning process, a point criticized by Hanushek (2003). In
the footnote, Krueger (1999) briefly shows that schools assign students into class types by picking
every k-th student from the alphabeticalized enrollment list. The number k is calculated by some
algorithm depending on the number of students and classes of each type. The initial point is
generated randomly.
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was not mandatory in Tennessee at the time of the experiment. They were randomly

assigned to the three class types.

The experiment continued in grade two and grade three. No major change

occurred. The project ended in grade four. All students returned to regular-sized

classes. But students were followed through high school. Their participation ratings,

achievement test score, high school GPA, high school graduation status, SAT/ACT

score were recorded.

Students took the Stanford Achievement Tests (SAT) in spring each year.

SAT is a nationally normed standardized achievement test, covering reading, math,

spelling, and listening. The test was monitored by trained substitute teachers (Fol-

ger, 1989) and no special instruction was allowed before the tests. Other academic

and nonacademic measurement were also taken each year.

In general, students enrolled in the class types they were assigned to. Krueger

(1999) examines a subsample and finds that only 0.3% of the students enroll in a

class different from the type they were assigned to. Students were assigned to the

same class types if they migrated from one STAR school to another STAR school.

Students left the sample if they migrated to a non-STAR school, repeated a grade or

jumped a grade. New entrants to the participating schools were assigned randomly

to the three types of schools as well.

In total, there are 11601 students involved in the experiment. Due to migration

and grade repetition, only 26.57% of the students are in the experiment for all four

years. In each grade, there are around 6000 students and 300 classes.
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4.2.2 Randomness of Class Assignment

One merit of using project STAR data is the randomization of class assign-

ment. Assignment of students and teachers into classes were carefully conducted

and audited by Project STAR staff, leaving little room for parents or schools to

manipulate (Boyd-Zaharias et al., 2007; Krueger, 1999). The randomness of class

assignment in Project STAR has been examined carefully by a large number of

studies, e.g., Chetty et al. (2011) and Krueger (1999).

Most studies with STAR data stress that students and teachers were assigned

randomly to class types within schools, possibly because the goal of the project

and their research interest is to analyze the impact of small classes. Studies whose

primary interest is not the impact of class size generally assume that assignment into

classes is random within school (Chetty et al., 2011; Graham, 2008).Chetty et al.

(2011) get confirmation from original STAR designer that students and teachers

were indeed randomly assigned into classrooms rather than class types. They also

provide statistical evidence for the statement.6

While the initial assignment is carried out carefully, there are possible devi-

ations from randomization in higher grades. The randomness of class assignment

suffers from non-random switching and non-random attrition in higher grades. Al-

though students were supposed to stay in the class types they were initially assigned

to through grade three, around 10 percent of the students switched class types be-

6Chetty et al. (2011) are able to provide more pre-determined variables such as family back-
ground because they link the STAR data with the tax return information of the students.
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tween grades “due to behavioral problems and parents complaints” (Krueger, 1999).

Attrition happens if students were retained, jumped grades, or moved out of the ex-

perimental schools. Fewer students in small classes were retained than regular/aid

classes (Finn et al., 2001). Kindergarten data is not affected by the non-random

switching or non-random attrition and therefore more reliable. I focus my analysis

on kindergarten students and also provide results for higher grades as a robustness

check.

In this chapter, I assume that assignment of teachers and students into classes

was random within the school in kindergarten. However, I control for school by class-

type fixed effect as school effect may interact with class-type effect. For example,

black students benefitted more from attending small classes than white students

(Schanzenbach, 2006). Fifteen out of the 79 schools have all black students in

kindergarten, while 15 schools have all white students in kindergarten. Class size

reduction may impact students in the all-black schools differently from all-white

schools. A likelihood ratio test supports using school by class type fixed effects.

4.2.3 Summary Statistics

The kindergarten sample includes 79 schools, 325 classes, and 6325 students.

There are 127 small classes, 99 regular classes and 99 regular classes with aid.

Tables 4.1 and 4.2 show summary statistics of student characteristics and class

characteristics separately.
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Over 98% of the minority students are black, so I use an indicator of black

to control for race. I use receiving free lunch as an indicator of low-income family

background. By this measure, 48.4% of the students are low-income (poor). Girls

represent 48.6% of the sample. Around 4% of the students were in kindergarten last

school year and repeating it in 1985. Age on September 1st, 1985 for each student

is calculated using their date of birth. The average age for kindergarteners is 5.4

and 86.6% of the students’ age is between 5 and 6.

The math score is between 288 and 626, with a mean of 485.38 and a standard

deviation of 47.79. The reading score is between 315 and 627, with a mean of 436.725

and a standard deviation of 31.71.with For easier comparison of the estimates across

exams and grades, I normalize the test scores with the mean and standard error of

the test scores of the grade. Possible consequences of the normalization are discussed

in the model specification part.

Class size ranges from 12 to 28, with the mean being 19.46. The class level

summary statistics also show that 16% of the classes have black teachers and 35%

percent of the kindergarten teachers have master’s degree or higher. I do not control

for teacher’s gender because all teachers in Kindergarten are female. The average

within-class standard deviation of the normalized math score is 0.82. The number

is 0.80 for the normalized reading score. The standard deviation of the class mean

is 0.58 and 0.57 respectively for the normalized math and reading score.
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4.3 Model Specification and Estimation Strategy

4.3.1 Model Specification

Suppose that students interact equally within the class and that there is no

interaction across classes. The main model of this study is

yic,ps = β0 + λȳ(−i)c,ps + x′ic,psβ + x̄′(−i)c,psγ + ψ′c,psπ + f ′c,psφ+ αc,ps + εic,ps, (4.1)

where yic,ps is the normalized Stanford Achievement Tests (SAT) math or reading

score of the student i in class c. Class c is a type p class in school s, with p = 1 for

small class, p = 2 for regular class, p = 3 for regular class with aid, s = 1, ..., S. For

simplicity of notation, I drop the subscript for class type p and for school s from

now on. The index for class c ranges from 1 to R, where R is the total number of

classes in the sample. Class c has nc students, indexed by i = 1, ..., nc. The total

sample size is N =
∑R

c=1 nc. A cleaner form of the model is

yic = β0 + λȳ(−i)c + x′icβ + x̄′(−i)cγ + ψ′cπ + f ′cφ+ αc + εic, (4.2)

where xic = (x1,ic, x2,ic, ..., xkx,ic)
′ is a kx dimensional vector of personal character-

istics, including gender, race, poor (receiving free lunch), age, and repeat (retained

from last year); ψc is a kψ dimensional vector of observed class characteristics, in-

cluding teacher’s education and race. αc is the unobserved class effect, εic is the

disturbance term. The indicator vector fc = (d11,c, d21,c, d31,c, ..., d1S,c, d2S,c, d3S,c)
′,

with dml,c = 1 if class c is a type m class in school l and zero if not. The parameter

for school by class type fixed effects is φ = (φ11,φ21, φ31, ..., φ1S, φ2S, φ3S)′ , with φps
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being the fixed effect of class type p in school s. Therefore, f ′cφ is the school by class

type fixed effect of class c.

A restricted version of this model can control for school by class type fixed

effects separately. To see this, let φ̄p be the class type fixed effect for class type p,

p = 1, 2, 3. Let φ∗s be the school fixed effect for school s, s = 1, ..., S. Then

φps = φ̄p + φ∗s + µps.

By imposing a restriction that µps = 0, the model controls for school fixed effects and

class type fixed effects separately. Recall that the kindergarten sample of Project

STAR includes 79 schools, each has three different class types. So the vector of school

by class type fixed effects φ has 237 elements. Meanwhile, the sample includes 325

classes. If instead the model controls for school fixed effects and class type fixed

effects separately, the vector of school fixed effects includes 79 elements.

The term ȳ(−i)c = 1
nc−1

∑nc
j 6=i yjc is the average test score of peers. This is the

mean score of the whole class leaving out oneself, therefore referred to as leave-out

mean. Likewise , x̄′(−i)c = 1
nc−1

∑nc
j 6=i x

′
jc is the leave-out mean of personal char-

acteristics.7 The parameter λ captures the endogenous effect and γ captures the

exogenous effect.

The dependent variable y is the normalized test score rather than the raw

score. The normalization scales the individual test score and the mean peer score

7For simplicity, x̄(−i)c is simply the leave-out mean of xic. The two are based on the same set
of variables. Although it is possible to allow xic and x̄(−i)c to include different variables, it is hard
to justify that some characteristics only affect oneself but not peers. Otherwise, reflection problem
is easily solved. To see this, suppose the k − th individual characteristics xk only has individual
effect, i.e., βk 6= 0 but γk = 0, then with reduced form of the peer effects one can identify both
endogenous peer effect and exogenous peer effect. Conceptually, it is even harder to argue that
some individual characteristics only affect peers but not oneself, i.e., βk = 0 but γk 6= 0. Therefore,
the specification of the model is plausible.

45



by the same factor. Hence it does not change the magnitude of the endogenous

effect λ. The normalization scales exogenous effect γ and the coefficient of other

control variables like β and π down by the standard deviation of yic.

A compressed form of the model is

yic = λȳ(−i)c + z′icδ + αc + εic, (4.3)

where zic = (1, x′ic, x̄
′
(−i)c, ψ

′
c, f
′
c)
′ is the vector of all exogenous variables, δ = (β0, β

′, γ′, π′, φ′)′

is the vector of corresponding coefficients.

The model can be rewritten as a Cliff-Ord type spatial model. Let Wc be the

weights matrix of class c, whose off-diagonal elements are 1
nc−1

and the diagonal

elements are 0. Yc = (y1c, ..., yncc)
′, Zc = (z′1c, ..., z

′
ncc)

′, εc = (ε1c, ..., εncc)
′, ιc =

(1, ..., 1)′ is the nc dimensional vector of ones. The model for class c in matrix form

is

Yc = λWcYc + Zcδ + Uc, (4.4)

Uc = αcιc + εc. (4.5)

I identify the model with a quasi-maximum likelihood estimation (QMLE)

strategy. Details of the assumptions, identification strategy and properties of the

estimator are in Chapter 3. Peer effects are identified from variation in group size.

The estimator is consistent if there are at least two different group sizes in the limit.

4.3.2 Estimation Strategy

Chapter 3 describes theoretical aspects of the QMLE. This section gives more

intuitive explanations of the estimation strategy. I will demonstrate that the model
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is identified based on the within-class variance and between-class variance. It utilizes

the exogenous variation of class size for identification.

For simplicity of illustration, I drop the covariates z except for the school by

class type fixed effects φps. Since both teachers and students were randomly assigned

into classes within school, student and teacher characteristics are independent of

class assignment conditional on school fixed effects. Excluding personal and teacher

characteristics therefore makes little difference to the estimates for λ. A simplified

model therefore is

yic = λȳ(−i)c + αc + φps + εic. (4.6)

Under Assumptions 1-3, the within-variance for class c is

E
1

(nc − 1)

nc∑
i=1

[(yic − ȳc)]2 = (1− λ

nc − 1 + λ
)2σ2

ε . (4.7)

If λ = 0, the right hand side becomes σ2
ε . Without peer effects, all classes have the

same within-class variance. If λ > 0, then the within-variance is (1− λ
nc−1+λ

)2σ2
ε < σ2

ε

and increases with class size. The idea is that positive endogenous effects reduce

within-class variance. But the reduction is smaller when class size is larger because

with larger class, each person has a smaller impact on their peers. Therefore, as

long as there is enough variation in class size, λ can be identified. This accord with

the conclusion in Kelejian et al. (2006) that identification of spatial model with

blocks of equal elements requires group size variation, which is also confirmed by

Lee (2007) in the fixed group effects model.

Project STAR is a class size reduction experiment and hence generates enough

class size variation for identification. Class level summary statistics in Table 4.2 show

that the largest class has 28 students and the smallest class has 12 students. The
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distribution of class size in Figure 1 also shows that class size varies greatly in the

sample. Class size also varies within small classes and regular classes.

If positive endogenous effects exist, within-class variance and class size are

positively correlated. However, Figure 2 and Figure 3 show little correlation between

within-variance and class size. This is an indication that there are no endogenous

peer effects.

The between-class variance is

E(ȳc −
φps

1− λ
)2 =

1

(1− λ)2
(σ2

α +
σ2
ε

nc
). (4.8)

Note that 1
(1−λ)2σ

2
α is a constant term and does not change with class size. If λ = 0,

then E(ȳc − φps
1−λ)2 − σ2

α

(1−λ)2 = σ2
ε

nc
. Without endogenous peer effects, the between-

variance can be explained by the individual heterogeneity. If λ > 0, then E(ȳc −

φps
1−λ)2 − σ2

α

(1−λ)2 >
σ2
ε

nc
. With positive peer effects, there is excess variance. This is the

idea that underlines Graham (2008).

My estimator is in fact based on both (4.7) and (4.8). To see this, define

ξwc =
1

(nc − 1)

nc∑
i=1

[(1 +
λ

nc − 1
)(yic − ȳc)]2 − σ2

εc,

ξbc = (ȳc −
φps

1− λ
)2 − 1

(1− λ)2
(σ2

α +
σ2
εc

nc
),

then Eξwc = 0 and Eξbc = 0 are two moment conditions that underly my estimator.

In most spatial models, calculation of (I−λW )−1 and |I−λW | is demanding.

But the special form of weights matrix and variance-covariance matrix allows for

explicit calculation of these qualities.8 The log likelihood function can be factored

8See Appendix B
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into a component of within-class variance and a component between class variance,

lnL = −N
2
ln(2π) +Rln|1− λ|+

R∑
c=1

[(nc − 1)ln(
nc − 1 + λ)

nc − 1
]

−
R∑
c=1

nc − 1

2
ln(σ2

ε )−
1

2

R∑
c=1

ln(σ2
ε + ncσ

2
α) (4.9)

− 1

2

R∑
c=1

nc∑
i=1

1

σ2
ε

[(
nc − 1 + λ

nc − 1
(yic − ȳc)]2 −

R∑
c=1

[(1− λ)ȳc − φps]2

2(σ2
α + 1

nc
σ2
ε )

.

The first order conditions for maximum likelihood are:

∂lnL

∂λ
=

R∑
c=1

(1− λ)

(σ2
α + σ2

ε/nc)
ξbc −

R∑
c=1

nc − 1

(nc − 1 + λ)σ2
ε

ξwc = 0, (4.10)

∂lnL

∂σ2
ε

=
R∑
c=1

1

2(nc − 1)σ4
ε

ξwc −
R∑
c=1

(1− λ)2

2nc(σ2
ε/n+ σ2

α)2
ξbc = 0, (4.11)

∂lnL

∂σ2
α

=
R∑
c=1

(1− λ)2

2(σ2
εc/n+ σ2

α)2
ξbc = 0. (4.12)

In this sense, estimation is based on finding the λ that best fits E(ξwc ) = 0 and

E(ξbc) = 0. There are several things to note here.

First, the moment conditions (4.7) and (4.8) hold regardless of the distribu-

tion of εic and αc. Therefore, while the log likelihood function is derived under the

assumption of Gaussian distributions, this assumption is not necessary for identifi-

cation. The maximum likelihood estimators are efficient if the true distribution is

Gaussian and consistent even if it is not.

Second, the moment conditions (4.7) and (4.8) can uniquely identify λ with

enough variation in class size as long as nc does not go to infinity.9

Third, the moment conditions also show that the model is identifiable even if

it incorporates class fixed effects for some classes. My main specification includes

9Combining (4.7) and (4.8),

Eȳc
2 =

σ2
α

(1− λ)2
+

(nc − 1 + λ)2

(nc − 1)3(1− λ)2
E

nc∑
i=1

(yic − ȳc)2. (4.13)
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school by class type fixed effects. For classes which are the only one of a particular

type within a school, the model essentially adds a class fixed effect for it. However,

adding class fixed effects does not change the within-class variance in (4.7). So the

model is identified even if all class fixed effects are added.

Consider a case when there are only two classes, indexed by c1 and c2. Suppose

the two classes are different in size, nc1 6= nc2 and the class fixed effects are included

for both. Then λ is still identified by
1

(nc1−1)

∑nc1
i=1[(yic1 − ȳc1)]2

1
(nc2−1)

∑nc2
j=1[(yjc2 − ȳc2)]2

=
(nc1 − 1)2

(nc1 − 1 + λ)2

(nc2 − 1 + λ)2

(nc2 − 1)2
. (4.15)

Meanwhile, among the 325 classes in my sample, 153 are the only one of a

particular type within the school. For these classes, school by class type fixed effect

is equivalent to class fixed effect. Therefore, between-class variance conditional on

school by class type fixed effect is 0 for them. But still, the between-class variance

from the rest 172 classes gives additional moment conditions. In this sense, using

school by class type fixed effects can control heterogeneous responses to class size

reduction across schools while offering additional moment conditions and increasing

efficiency of estimation.

If the leave-out-mean ȳ(−i)c in model (4.1) is replaced with the full mean ȳc = 1
nc

∑nc

i=1 yic, as
Graham (2008) does,

Eȳc
2 =

σ2
α

(1− λ)2
+

1

(1− λ)2
1

(nc − 1)
E

nc∑
i=1

(yic − ȳc)2. (4.14)

Equation (4.14) is the key equation underlying Graham(2008)’s estimation strategy. 1
(1−λ)2 is

identified by replacing both Eȳc2 and 1
(nc−1)E

∑nc

i=1(yic − ȳc)2 with their sample analog.
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4.3.3 Interpretation of the Coefficients

With the closed form of (I − λWc)
−1 in equation (B.4), the reduced form of

model (4.1) is

yic =
β0

1− λ
+ x′ic

(nc − 1)β − γ
nc − 1 + λ

+ x̄′c
nc(λβ + γ)

(1− λ)(nc − 1 + λ)
(4.16)

+ ψ′c
π

1− λ
+ f ′c

φ

1− λ
+

αc
1− λ

+
λnc

(1− λ)(nc − 1 + λ)
ε̄c +

nc − 1

nc − 1 + λ
εic,

where x̄c = 1
nc

∑nc
i=1 xic, ε̄c = 1

nc

∑nc
i=1 εic are the full mean of personal characteristics

and disturbance term respectively.

The total direct impact10 of one-unit increase in xic on yic, holding others

constant, is therefore

(nc − 1)β − γ
nc − 1 + λ

+
(λβ + γ)

(1− λ)(nc − 1 + λ)
=

[(nc − 1) + λ(2− nc)]β + λγ

(1− λ)(nc − 1 + λ)
. (4.17)

There are multiple channels through which a student’s characteristics xic can affect

his or her own score yic. First is the direct impact, as captured by coefficient β in

equation (4.1). The second effect is through affecting the peer score ȳ(−i)c, which

in turn affects student’s own score yic. For the second channel, xic can affect peer

scores either by affecting the own score yic and hence ȳ(−i)c through the endogenous

effects. Moreover, xic can affect x̄(−j)c and hence yjc through exogenous peer effects,

where j 6= i. The gross effect of xic is therefore the combination of the individual

effect β, the endogenous peer effect λ and the exogenous peer effect γ.

10“Total direct impact” is a terminology used in LeSage and Pace (2009) and Drukker et al.
(2013). It refers to the marginal effect of a change in exogenous variable on the dependent variable.
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The total direct impact of a one-unit increase in xjc on yic, holding everything

else constant, is

λβ + γ

(1− λ)(nc − 1 + λ)
.

Peer j’s characteristics xj, where j 6= i , can affect student i’s score yic directly

through exogenous peer effects γ, or indirectly through affecting individual j’s own

score yjc and hence yic through the endogenous peer effect.

The impact of teacher characteristics ψc is π
1−λ . The impact of school by class

type fixed effects is φ
1−λ . Both constitute the net effects and the magnification of the

endogenous peer effects. The coefficient λ for the mean peer score ȳ(−i)c in model

(4.1) has no easy interpretation (Fruehwirth, 2013). It is a structural rather than

causal parameter. One caveat is to draw causal inference from it. An analog is

the coefficient of the endogenous variable in a simultaneous equation system. The

coefficient λ reflects the magnitude in which a student’s score is affected by the

behavior and outcome of peers. In this study, I will simply refer to it as endogenous

effect.

4.3.4 Linear-in-means Model and Comparison with Manski (1993)

This chapter focuses on a linear-in-means model, in which peer effects work

through peers’ mean test score and mean characteristics. There are theoretical mod-

els suggesting alternative specifications. For example, the spotlight model suggests

that the best students in the class matter. The bad apple model suggests that the

low-achieving students in the class matter. These alternative models are not the
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focus of this study. The linear-in-means model is the most popular among all peer

effect models. It is also a good starting point for further exploring other specifica-

tions. The linear-in-means model can be motivated by “students conform to mean

behavior” of the group (Blume et al., 2015). Also, without specific information on

group structure, the mean peer achievement is a good proxy for the average academic

ability of the people an individual is actually interacting with.

Model (4.1) is different from Manski’s model. The Manski model is

yic = β0 + λE(yc|c) + x′icβ + E(xc|c)′γ + ψ′cπ + vic. (4.18)

In my model in equation (4.1), endogenous peer effects work through the actual

mean outcome of peers ȳ(−i)c. In Manski (1993), peer effects work through E(yic|c),

the “(population) mean outcome of the reference group”. The actual means specifi-

cation applies to a setting where people interact in small groups and each member

knows each other (Manski, 1993). Moreover, identification of endogenous effects

is difficult with regression methods based on population mean, e.g., ordinary least

squares (OLS) or instrumental variable (IV) method (Angrist, 2014). The actual

mean of one’s specific peer group reflects properties of the social network struc-

ture. Identification of endogenous peer effects is possible through social networks

(Bramoullé et al., 2009).
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4.3.5 Comparison with Graham (2008)

The main model in equation (4.1) is similar to the model in Graham (2008).11

Graham’s model is equivalent to

yic = λȳc + z∗′icδ
∗ + αc + εic, (4.19)

where ȳc = 1
nc

∑nc
c=1 yic is the mean score of the whole class, including individual i,

therefore referred to as full mean. The term z∗icδ controls for school fixed effects and

class type fixed effects. The vector of exogenous variables

zic = (1, reg, aid, sch1, sch2, ..., schS−1),

with reg = 1 if class c is a regular class and zero if not, aid = 1 if class c is a regular

class with aid and zero if not, schs = 1 if class c is in school s and zero if not, δ∗

is the corresponding parameter vector. The class effect αc and the disturbance εic

are the same as in (4.1). Both Assumption 1 and Assumption 2 are maintained in

Graham (2008).

Graham’s model differs from the main model in this study in two major ways.

First of all, Graham’s model uses a full-mean specification, and endogenous peer

effects work through mean class score ȳc. Model (4.1) uses a leave-out-mean speci-

fication, and endogenous peer effects work through mean peer score ȳ(−i)c. Putting

yic on both sides of the equation is conceptually inappropriate as it makes the de-

pendent variable also an independent variable, though it has a negligible impact

on the estimates. Second, in Graham (2008), the vector of exogenous variables z∗ic

11For a detailed discussion of Graham’s model and estimation strategy, see Appendix H.
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only includes school fixed effects and class type fixed effects separately.12 The main

model in (4.1) includes school by class type fixed effects fc as well as personal char-

acteristics xic, mean peer characteristics x̄(−i)c and teacher characteristics ψc. The

inclusion of personal, peer and teacher characteristics does not have a large impact

on the estimates of λ because of the random assignment of teachers and students

within the school.

Graham’s model can be estimated with maximum likelihood method under the

framework of spatial econometrics, in a similar manner as model (4.1) is estimated.

As a matter of fact, Graham’s conditional variance method utilize the first order

conditions of the maximum likelihood estimation, as shown in Appendix H. In this

respect, the estimation strategy in this study is a generalization of Graham’s method.

One limitation of Graham’s method is that it only identifies 1/(1 − λ)2 and is

therefore unable to identify the sign of λ.

4.4 Results and Discussion

4.4.1 Main Results

Results of the main model in (4.1) are in Columns 1 and 2 of Table 4.3. Column

1 is for math score, and Column 2 is for reading score. The top panel shows the

estimates for the endogenous peer effect λ. The estimates are 0.040 for the math

score and 0.035 for the reading score. The estimates are small in magnitude and

insignificant.

12Graham does not estimate δ but first regress y on z and then use the residual for estimation.
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The second panel shows the estimates for the exogenous peer effects γ, the

impact of average peer characteristics on individual scores. For example, if the

share of girls in peers increases by one percentage point, the net direct effect is that

individual math scores increase by 0.00172 standard deviation, which amount to

0.082 point while the average math score is 485.3 and the maximum score is 626. If

the average age of peers increases by one year, the net direct effect is a drop of 0.042

standard deviation in individual math score, which amounts to around 2 points.

But none of the exogenous peer effects are significant.

The third panel shows the impact of own characteristics on the individual

score β and the impact of class characteristics ψ. Academic achievement is higher

for older students and girls, and lower for black students, students receiving free

lunch and students repeating a grade. All estimates are significant at the 1% level.

If the age of a student increases by one year, the net direct effects are an increase in

the math score by 0.388 standard deviation (18.51 points) and an increase in reading

scores by 0.265 standard deviations (8.40 points). Note that math score ranges from

288 to 626 and the reading score ranges from 315 to 627. The net direct impact

of being black is having math score 0.377 standard deviation (17.98 points) lower.

Girls perform better than boys in both math and reading tests. Teacher’s race and

education have an insignificant impact on students’ achievements.

These net direct effects are combined with endogenous effects and exogenous

effects and generate a total effect as shown in Section 4.3.3. For example, to cal-

culate the total effect of gender, plug λ = 0.04, β = 0.14, and γ = 0.172 into
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equation (4.17). For a class of 20 students, the total effect of being a girl on one’s

math score is 0.14 standard deviation (or 6.70 points) .

All models in this chapter control for individual characteristics and class level

characteristics, unless otherwise specified. The estimates for coefficients of these

characteristics are very stable in magnitude and significance level across all specifi-

cations. Therefore, I will suppress their estimates in following tables.

My main model allows the disturbance terms εic to be heteroscedastic across

class types. The term σε1 is the standard deviation of εic in small classes, and σε2

is the standard deviation of εic in regular/aid classes. The term σα is the estimates

for the standard deviation of random class effects. It is close to 0. Note that my

model controls for school by class type fixed effects. Therefore, most of the class

level heterogeneity is absorbed by these fixed effects. Many studies interpret σα

as unobserved teacher effectiveness. Under this interpretation, the results show no

unobserved teacher effects. In general, my estimation finds few peer effects, either

endogenous or exogenous.

Model reported in Columns 3 and 4 are different in that they control for

school fixed effects and class type fixed effect separately. Endogenous peer effects

for reading and some of the exogenous peer effects become significant in this model.

But such significant peer effects are likely to be the result of class specific effects

that are correlated with student or class characteristics. A likelihood ratio test

rejects the hypothesis that class type effects are homogeneous across schools and

advocates using school by class type fixed effects. I will further show that class

type effects are heterogeneous across schools. Note that σα is again insignificant
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in this specification. The reason is that endogenous peer effects λ and individual

heterogeneity σε are sufficient to explain the between-class variation.

Table 4.4 provides the estimates for a model without endogenous peer effects

as a comparison. Columns 1 and 2 control for school by class type fixed effects.

The model for Columns 3 and 4 controls for school fixed effects and class type fixed

effects separately. Comparing Columns 1 and 2 of Table 4.4 with Columns 1 and 2

of Table 4.3, the coefficients for other variables do not change much after imposing

a restriction that the endogenous effect is zero. Also, a likelihood ratio test fails to

reject the null hypothesis that the endogenous effect is zero. These two facts further

support that endogenous effect is 0.

The difference between my results and Graham (2008)’s significant positive

endogenous effect is mainly due to the inclusion of school by class type fixed effects.

If school fixed effects and class type fixed effects are additive, as in Columns 3

and 4 of Table 4.3, the estimate for λ is 0.306 for math and 0.363 for the reading

score, where the latter is significant. This is close to Graham’s estimate of 0.45

for math score and 0.56 for the reading score in Columns 1 and 2 of Table 4.5. It

is also close to a maximum likelihood estimator for Graham’s full mean model in

Columns 1 and 2 of Table 4.6. Once school by class type fixed effects are controlled

for, Graham’s full mean model yields an insignificant λ, either with the conditional

variance method (See Columns 3 and 4 of Table 4.5) or with maximum likelihood

estimation (see Columns 3 and 4 of Table 4.6).

I also apply Graham’s method to data in grade one to three. If school fixed

effects and class type fixed effects are controlled for separately, as shown in Columns
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1 and 2 of Table 4.5, Graham’s conditional variance will yield positive and significant

peer effects for both reading and math scores in grade one, and reading scores in

grade three. The magnitude is greater than 0.5. If school by class type fixed effects

are controlled for, as shown in Columns 3 and 4 of Table 4.5, the estimator for

endogenous peer effects by Graham’s method is only significant for math scores in

grade one.

4.4.2 Missing Observations and Outliers

The initial kindergarten sample includes 6325 students and 325 classes. Stu-

dents with missing information are dropped out of the sample, mainly due to missing

test scores. Classes with less than two students with complete information or miss-

ing teacher information are dropped. The final sample includes 323 classes, 5804

students for math scores and 5723 students for reading scores. That is, about 10%

of the observations are missing.

Since identification comes from the within-class variance and between class

variance, how the missing observations affect the estimator for λ depends on how

they affect these two variances. The estimate for λ increases with between class

variance and decreases with within-class variances. Missing observations would bias

λ downward if they bias the within-class variance upward or between-class variance

downward. The within-class variance is biased upward if observations close to the

class mean is missing. Between-class variance is biased downward if high performers

in high-achieving classes or low performers in low-achieving classes are more likely
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to be missing. In practice, though, students with higher absent days and potentially

lower test scores are more likely to be missing across all classes.13 Therefore, the

missing observations can potentially bias the estimates upward. Given that the

estimates for λ is slightly above 0 and insignificant, the bias does not change the

conclusion of no peer effects.

Section 4.3.2 shows that identification of the model comes from within-class

variance and between-class variance. Theses variances may be sensitive to some ex-

treme values. Also, the spotlight model and the bad apple model suggest that peers

with very high scores or very low scores have special impacts on others. Therefore,

I exclude outliers and reestimate the main model to check robustness of the results.

Results after excluding the outliers are in Table 4.7. Columns 1 and 2 exclude

outliers for whole sample, whose score is outside three standard deviations of the

sample mean. Columns 3 and 4 exclude outliers of the class, whose score is outside

three standard deviations of the class mean. While the magnitude of the estimates

increases, endogenous peer effects remain insignificant. The exogenous effects, too,

are insignificant. Therefore, the results are robust to excluding outliers.

4.4.3 Alternative Assumptions on the Variance Structure

Graham’s method for identifying peer effects is variance-based rather than

regression-based. Therefore, assumptions on the structure of variances are key to

identification. A major critic on Graham (2008) is that its assumptions are unjus-

tified and may be too restrict (Durlauf and Tanaka, 2008; Blume et al., 2011).

13This is the result from regressing the indicator for missing test score on absent days.
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As demonstrated in Section 4.3.2, identification in this study is also variance-

based as it relies on the within-class variance and between-class variance. But my

model is more flexible than Graham (2008) in that it can relax some of the assump-

tions on class effect αc and the disturbance terms εic . Of course, certain restrictions

are still necessary for identification. Firstly, the assumptions that disturbance terms

are independent, class effects are independent, and disturbance terms are indepen-

dent of class effects are indispensable for identification. These assumptions are jus-

tified by the random assignment of teachers and students. Second, the endogenous

peer effect λ is unidentifiable when both εic and αc are heteroscedastic across classes.

In that scenario, the number of moment conditions from between-class variance and

within-class variance is less than the number of parameters to be estimated. But

my model can accommodate alternative assumptions on the homoscedasticity of εic.

Following Graham (2008), I assume that the disturbance terms εic are het-

eroscedastic across class types in model (4.1), i.e., σ2
ε,ic = σ2

ε1 if class c is a small

class and σ2
ε,ic = σ2

ε,2 if class c is a regular/aid class. Disturbance terms reflect unob-

served heterogeneity in student ability. Given the random assignments of students

within the school, a more plausible assumption is that εic is homoscedastic within

schools and heteroscedastic across schools.

I check the robustness of the results to alternative assumptions on εic by exam-

ining two extreme cases. In all cases, εic are independently distributed across i and

c. In the first case εic is homoscedastic across all classes, i.e., σ2
ic = σ2 for all i and c.

In the second case εic is homoscedastic within the class and heteroscedastic across

classes, i.e., σ2
ic = σ2

ε,c for any c. The estimates under these alternative assumptions
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are in Table 4.8. A key takeaway from the results is that endogenous effect is in-

significant under all specifications. Therefore, the insignificance of endogenous peer

effects is robust to alternative assumptions on variance structure.

4.4.4 Heterogeneous Peer Effects

Numerous authors have demonstrated that peer effects can be heterogeneous

within a group. The impact of a peer on a student can depend on the peer’s

characteristics and the student’s characteristics. For example, the influence of a boy

on another boy might be different from that of a boy on a girl. Peer effect studies

find that peer effects may change with student ability. For example, Carrell et al.

(2009) find that low-ability students benefit more from having high ability peers.

Hoxby and Weingarth (2005) discover that peer effects vary with one’s position in

the ability distribution. Meanwhile, peer effects may be underestimated if students

tend to interact more with students with similar ability (Marmaros and Sacerdote,

2006). Unfortunately, the Project STAR data does not have pre-experiment test

score to serve as an indicator of ability for kindergarten students. The data does

not have precise friendship structure inside classes, either.

However, observed characteristics like sex and race are strongly correlated

with one’s academic performance. Therefore, I set up an extended model that allow

peer effects to vary with student’s own and peer’s characteristics. Such models also

have implications for racial segregation and single-sex education. For example, if
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peer effects are larger among same-sex peers than among opposite-sex peers, then

single-sex classes can potentially promote performance.

The main model in equation (4.1) is extended to allow for higher order spatial

autocorrelation, thus enables estimation of heterogeneous endogenous peer effects.

Consider the case when each class is divided into two subgroups based on observed

characteristics, e.g, each class can be divided into girls and boys. The number of

boys and girls in class c is nbc and ngc respectively. The outcome of boys is determined

by

yic = β0 + λ1ȳ
b
(−i)c + λ2ȳ

g
c + x′icβ + x̄′b(−i)cγ1 + x̄′gc γ2 + ψ′cπ + f ′cφ+ αc + εic, (4.20)

and the outcome of girls is determined by

yic = β0 + λ3ȳ
b
c + λ4ȳ

g
(−i)c + x′icβ + x̄′bc γ3 + x̄′g(−i)cγ4 + ψ′cπ + f ′cφ+ αc + εic, (4.21)

where ȳb(−i)c is the leave-out mean of outcome of boys in class,

ȳb(−i)c =
1

nbc − 1

nc∑
j 6=i

[(1− 1
g
jc)yjc], (4.22)

dummy variable 1gic is an indicator for individual i in class c being girl, ȳgc is the

mean outcome of girls in class

ȳgc =
1

ngc

nc∑
j=1

1
g
jcyjc, (4.23)

ȳg(−i)c is the leave-out mean of outcome of girls in class,

ȳg(−i)c =
1

ngc − 1

nc∑
j 6=i

[1gjcyjc], (4.24)

ȳbc is the mean outcome of boys in class,

ȳbc =
1

nbc

nc∑
j=1

(1− 1
g
jc)yjc. (4.25)

The parameters λ1, λ2, λ3, λ4 are the endogenous peer effects of boys on boys, girls

on boys, boys on girls and girls on girls respectively. Coefficients γ1, γ2, γ3, γ4 are
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the exogenous peer effects of boys on boys, girls on boys, boys on girls and girls on

girls respectively.

An alternative specification is to make the weight reciprocal of total number of

peers in the class, i.e., 1/(nc−1) in class c. Then the outcome of boys is determined

as

yic = β0 + λ1ỹ
b
(−i)c + λ2ỹ

g
c + x′icβ + x̃′b(−i)cγ1 + x̃′gc γ2 + ψ′cπ + f ′cφ+ αc + εic, (4.26)

and the outcome of girls is determined as

yic = β0 +λ3ỹ
boys
c +λ4ỹ

girls
(−i)c +x′icβ+ x̃′boysc γ3 + x̃′girls(−i)cγ4 +ψ′cπ+ f ′cφ+αc + εic, (4.27)

where

ỹb(−i)c =
1

nc − 1

nc∑
j 6=i

[(1− 1
g
jc)yjc],

ỹgc =
1

nc − 1

nc∑
j=1

1
g
jcyjc

ỹboyc =
1

nc − 1

nc∑
j 6=i

[(1− 1
girl
jc )yjc],

ỹgirl(−i)c =
1

nc − 1

nc∑
j 6=1

1
girl
jc yjc.

If λ1 = λ2 = λ3 = λ4 = λ, then the model is the same as model (4.1).

Models (4.20) and (4.21) are plausible if both interaction intensity and influ-

ence vary with gender, as both the weight (reflecting interaction intensity) and the

endogenous peer effects λ (representing peer influence) depend on the gender. Mod-

els (4.26) and (4.27) are plausible if interaction intensity is the same across gender

but influences differs by gender because weight only depends on class size and is not

impacted by gender. Both models can be estimated under the framework of spatial

econometrics like the main model, see Appendix G.
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Results are in Columns 1 and 2 of Table 4.9. An alternative model uses

1/(nc−1) as spatial weights as characterized by equations (4.26) and (4.27). Results

are in Columns 3 and 4 of Table 4.9. The estimate for λ is insignificant for both

math and reading score in both models, demonstrating the robustness of the result

to alternative weights matrix.

4.4.5 Peer Effects in Higher Grades

Due to deviation from the randomization scheme in higher grades, this chap-

ter analyzes academic performance of kindergarten students. The results show in-

significant peer effects in kindergarten. However it is possible that peer effects are

significant in higher grades. Peer effects may grow stronger as children get older

and more socialized. In this section, I discuss results for higher grades.

I estimate the main model in equation (4.1) by test and grade with kinder-

garten to grade three data. Since grade repetition status is not available for all

grades, the individual characteristics only include age, race, gender, and poor (free

lunch status). All else is the same. Results for math scores are in Table 4.10 and

results for reading score are in Table 4.11. The model for Column 1 of Table 4.10

and Table 4.11 is the same as the model for Column 1 and 2 of Table 4.3 except that

repeat (the variable indicating grade repetition) is dropped. The estimates change

little after dropping the variable.
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The first observation is that the endogenous effects remain insignificant for

both math score and reading score across all grades. For math score in grade one,

the estimate for λ is 0.135, but only significant at the 10% level.

Some of the exogenous peer effects in reading scores become significant in

higher grades. For example, in grade three, if the mean peer age increases by one

year, the individual reading scores decreases by 0.69 standard deviation as a net

direct effect. In grade two, individual reading score increases with the share of black

students in class. One has to keep in mind that these estimates are subject to the

problem of endogenous group formation due to non-random switching and attrition

of students.

4.4.6 Class Size Effects

Endogenous peer effects generate social multiplier effects and affect policy eval-

uation. Since Project STAR is a class size reduction experiment, this study studies

how incorporating peer effects will influences the assessment and interpretation of

class size effect.

In the reduced form of the peer effect model, the total effect of class char-

acteristics ψ is π
1−λ . If 0 < λ < 1, the net direct impact of ψ on the dependent

variable is magnified by 1/(1 − λ). Boozer and Cacciola (2001) point out that the

reduced-form class size effect “constitute a ’black box’ of underlying components”.

Their estimated “pure class size effect” net of the peer effect is much smaller than
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previous studies and mostly insignificant. But their estimates for endogenous peer

effect may be upward biased due to weak instrument problem.

In the model controlling for school fixed effects and class type fixed effects

separately, the class size effect is measured directly. As Columns 3 and 4 of Table

4.3 shows, students in regular/aid classes perform worse than students in small

classes.

In the model controlling for school by class type fixed effects, I regress the

estimates for school by class type fixed effects on school fixed effects and class type

fixed effects as well as the interaction term between class type fixed effects and

percent of black students in school. Results are in Table 4.12. Columns 1 and 2

use the school by class type fixed effects obtained from the main model (4.1). They

correspond to the estimates in Columns 1 and 2 of Table 4.3. Columns 3 and 4 use

the estimates for school by class type fixed effects of the model without peer effects,

corresponding to Columns 1 and 2 and of Table 4.4. Estimates in Columns 1 and 2

are only slightly smaller than those in Column 3 and 4 as peer effects are close to 0

and insignificant.

The results confirm previous studies that students in smaller classes have bet-

ter academic performance than those in regular sized classes. Compared to students

in small classes, math scores are 0.114 standard deviation lower for students in reg-

ular classes and 0.123 standard deviation lower for students in the regular classes

with aid. The results are significant at the 10% level. Class size effect on read-

ing scores is stronger. Students in regular classes have a 0.136 standard deviation

lower reading score than students in small classes. Regular/aid class students have
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a 0.166 standard deviation lower reading score. Both estimates are significant at

the 5% level.

The table also shows that the class size effect is heterogeneous across schools

with different shares of black students. If the proportion of black students in school

increases by one percentage point, the achievement gap between small and regular

classes increases by 0.261 standard deviation. The estimate is significant at the 5%

level. This illustrates the importance of controlling for school by class type fixed

effects.

Results above show that at the class level, the class type effect vary with the

percent of black students in schools. One may wonder if such variation persists if

the interaction term between students’ race and class type effect is is controlled for.

The answer is yes, because the heterogeneous responses to class reduction cannot

be controlled simply by heterogeneous response to class reduction at the individual

level. I reestimate the model by adding the interaction term of individual’s race and

the dummies for class types. The results are in Table 4.13. The interaction term

between regular class and percent of black students in school is still significant.

4.5 Conclusion

This chapter assesses peer effects in kindergarten student’s reading and math

scores, along with the effects of teacher quality, class size, and other factors. Data

is from Project STAR, which randomly assigned teachers and students to small

classes, regular aid classes and regular classes with aid within the school. This
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chapter models and measures peer effects under the framework of spatial economet-

rics. Identification is based on within-class variance and between-class variance and

hinges on variation in class size. It relaxes the functional assumptions of Graham

(2008) by replacing the school plus class type fixed effects with the more flexible

school by class type fixed effects, so that Graham’s finding of sizable endogenous

peer effects does not hold.

By and large, this study finds that peer characteristics (age, gender, race,

poverty status, and grade repetition) and peer scores have insignificant impacts on

individual scores. While the results do not necessarily generalize to other settings,

like college students or teenagers, they do cast doubts on the effectiveness of poli-

cies that try to manipulate peer groups for better outcomes. This study also does

not find any teacher effects, either measured by observed teacher characteristics or

unobserved class effects. In accordance with previous studies of the class size effect

using Project STAR data, the results show that small classes improve children’s

academic performance.

While finding different results from the peer effects literature, particularly Gra-

ham (2008), the finding of few peer effects in this chapter may not be too surprising.

Empirically, there is evidence that regrouping programs do not bring the anticipated

change to the academic performance of students. For example, assigning low-ability

students to high-ability peers even leads to a decrease in the score of the low-ability

students (Carrell et al., 2013). Hurricane-induced reallocation of students does not

lower the average score of incumbent students in receiving schools (Imberman et al.,

2012). Theoretically, Angrist (2014) cautions against “spurious correlation” that is
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usually mistaken as peer effects and can easily arise from problematic identification

strategy or common shocks to the groups. This study accounts for common shocks

by including the random class effects and school by class type fixed effects. After

taking into account these “perils of peer effects,” the endogenous effects do fade

away.

While it is possible that previous findings of significant peer effects are con-

taminated by insufficient control of confounding factors or reflection problems, the

finding of insignificant peer effects in this study may also be due to that kinder-

garten students are just too young to interact academically. A majority of empirical

studies finding strong peer effects use samples for high school or college students,

when individuals are more socialized. Another explanation is that Project Star

over-sampled schools in poor areas (Boyd-Zaharias et al., 2007). Rescores are more

limited in such schools. The competition for recourses can generate negative peer

effects, offsetting the positive peer effects generated from knowledge sharing, con-

forming to group norms, etc. For example, Antecol et al. (2016) find negative peer

effects in disadvantaged primary schools and show that the results are likely to be

driven by using the sample of disadvantaged schools.
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4.6 Figures and Tables

Figure 4.1: Distribution of class size
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Figure 4.2: Within-class variance v.s. class size
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Note: Size of the circle is proportional to the number of classes for that size.
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Table 4.1: Summary Statistics for Students
observations mean sd

poor 6300 0.484 0.500
black 6322 0.326 0.469
girl 6325 0.486 0.500
repeat 6297 0.040 0.196
age 6317 5.428 0.349
math score 5871 485.377 47.698
reading score 5789 436.725 31.706
black teacher 6282 0.165 0.371
teacher has M.A. 6304 0.347 0.476
1 The sample size is 6325.
2 Repeat means grade repetition. Poor indicates receiving free lunch.

Table 4.2: Summary Statistics for Classes
obs mean sd min max

class size 325 19.46 4.14 12.00 28.00
within-class sd of mathnorm 325 0.82 0.22 0.41 2.01
within-class sd of readnorm 325 0.80 0.31 0.24 1.91
class mean of mathnorm 325 0.02 0.58 -1.58 2.00
class mean of readnorm 325 0.02 0.57 -1.39 1.79
1 There are 325 classes in kindergarten.
2 Mathnorm is the normalized math score. Readnorm is the normalized reading score.
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Table 4.3: Results for the Main Model
School by Class Type FE School FE+Class Type FE

math reading math reading
Endogenous peer effect λ

λ 0.040 0.035 0.306 0.363***
(0.080) (0.084) (0.961) (0.042)

Exogenous peer effect γ
age -0.042 -0.526 0.318 -0.073

(0.383) (0.382) (0.196) (0.169)
black -0.615 -0.628 0.190 -0.240

(0.642) (0.521) (0.333) (0.256)
girl 0.172 0.173 0.254** 0.210*

(0.264) (0.304) (0.119) (0.113)
poor 0.068 -0.050 0.090 0.181*

(0.283) (0.283) (0.128) (0.106)
repeat -0.746 0.720 -0.505 0.206

(0.693) (0.705) (0.337) (0.291)
Coefficients of personal and class characteristics: β and π

age 0.388*** 0.265*** 0.414*** 0.298***
(0.045) (0.044) (0.041) (0.041)

black -0.377*** -0.261*** -0.337*** -0.243***
(0.059) (0.057) (0.052) (0.051)

girl 0.140*** 0.168*** 0.147*** 0.173***
(0.026) (0.029) (0.023) (0.024)

poor -0.404*** -0.458*** -0.409*** -0.453***
(0.031) (0.032) (0.028) (0.028)

repeat -0.464*** -0.400*** -0.456*** -0.440***
(0.078) (0.070) (0.066) (0.060)

tchblack 0.012 0.098 0.022 0.024
(0.105) (0.105) (0.054) (0.053)

tchms 0.065 0.055 -0.007 0.012
(0.064) (0.058) (0.029) (0.026)

regular class -0.106*** -0.123***
(0.033) (0.029)

regular aid -0.107*** -0.101***
(0.031) (0.028)

σε1 0.781*** 0.803*** 0.795*** 0.820***
(0.014) (0.022) (0.043) (0.023)

σε2 0.866*** 0.855*** 0.876*** 0.870***
(0.024) (0.031) (0.063) (0.033)

σα 1.8e-05 7.6e-06 0.111 6.0e-05
(4.0e-05) (1.5e-05) (0.629) (2.4e-04)

R 323 323 323 323
N 5804 5723 5804 5723
lnf -6982.9 -6974.8 -7138.9 -7116.3
1 Columns 1 and 2 show estimation results of the main model (3.2), which controls for
school by class type fixed effects.The model for Columns 3 and 4 differs from the model
3.2 only in that it controls for school fixed effects and class type fixed effects separately.
The dependent variable is normalized SAT score. Both models control for personal
characteristics(gender,race, poor (receiving free lunch),repeat), teacher characteristics
(teacher’s highest education and race).

2 *,0.1,**,0.05,***, 0.01. Robust standard errors in the parentheses.
3 Following Graham (2008), disturbance terms are allowed to be heteroscedastic by class
types. σε1 is the standard deviation of εic in small classes. σε2 is the standard deviation
of εic for regular/aid classes. σα is the standard deviation of class effect α.

4 Observations with missing information are dropped. N is the number of students, R is
the number of classes, and lnf is the log likelihood.
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Table 4.4: Model with No Endogenous Effects
School × class type FE School FE+ class type FE

Math Reading Math Reading
Estimates for average peer characteristics

age -0.029 -0.535 0.660** -0.031
(0.399) (0.395) (0.283) (0.267)

black -0.654 -0.658 0.174 -0.437
(0.668) (0.540) (0.468) (0.369)

girl 0.183 0.184 0.394** 0.371**
(0.275) (0.315) (0.171) (0.187)

poor 0.049 -0.069 -0.075 -0.041
(0.295) (0.293) (0.181) (0.168)

repeat -0.787 0.730 -0.904* 0.209
(0.720) (0.730) (0.477) (0.440)

tchblack 0.012 0.101 0.046 0.063
(0.109) (0.109) (0.078) (0.085)

tchms 0.068 0.057 -0.007 0.011
(0.067) (0.060) (0.042) (0.040)

regular class -0.150*** -0.195***
(0.047) (0.046)

regular aid -0.152*** -0.156***
(0.045) (0.044)

σε1 0.780*** 0.803*** 0.783*** 0.805***
(0.013) (0.023) (0.013) (0.023)

σε2 0.867*** 0.855*** 0.855*** 0.846***
(0.025) (0.032) (0.024) (0.033)

σα 0.027 0.022 0.262*** 0.248***
(0.106) (0.121) (0.016) (0.022)

R 323 323 323 323
N 5804 5723 5804 5723
lnf -6983.5 -6975.3 -7140.2 -7120.0
1 Estimates from the model without endogenous peer effect.
2 *,0.1,**,0.05,***, 0.01. Standard errors in the parentheses. The dependent variable
is the normalized test score. The model controls for individual characteristics(age,
gender,race, poverty status and whether one is repeating a grade)

3 The model for in Columns 1 and 2 controls for school by class type fixed effects. The
model for Columns 3 and 4 controls for school fixed effects and class type fixed effects.
Both models allow disturbance terms to be heteroscedastic by class types.
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Table 4.5: Estimates of Endogenous Effects with Graham’s Method
Original grham model Modified Graham model

γ2
0 corresponding

λ
γ2

0 corresponding
λ

Original Graham (2008) data: Kindergarten
math 3.469(1.033)** 0.463 1.895(0.622) 0.274
reading 5.282(2.481)* 0.565 2.913(1.684) 0.414

New data:Kindergarten
math 3.241(1.038)** 0.445 2.107(0.666)* 0.311
reading 5.058(2.221)* 0.555 3.223(1.600) 0.443

New data:Grade One
math 7.045(2.094)*** 0.623 3.316(1.123)** 0.451
reading 4.589(1.209)*** 0.533 1.727(0.540) 0.239

New data:Grade Two
math 4.355(1.811)* 0.521 1.698(0.530) 0.233
reading 4.435(2.099) 0.525 1.438(0.547) 0.166

New data: Grade Three
math 2.516(1.401) 0.370 1.474(0.786) 0.176
reading 4.024(1.086)*** 0.501 1.742(0.620) 0.242
1 *,0.1,**,0.05,***, 0.01 for test γ2

0 = 1, with the endogenous peer effect being λ = 1− 1
γ0
,

so γ2
0 = 1 corresponds to λ = 0 if |λ| < 1. Robust standard errors in the parentheses.

2 This table shows estiamtes for peer effects using the conditional variance method in
Graham (2008). Model for Columns 1 and 2 uses the original model in Graham(2008)
as shown in (H.3) and controls for school fixed effects and class type fixed effects
separately. Results in Columns 1 and 2 of the top panel are the replication of the
Graham(2008) results. Model for Columns 3 and 4 controls for school by class type
fixed effects.

3 Graham’s data is slightly different from mine. The data in this paper is published
in 2008, long after Graham (2008) was written. Besides offering more varialbes and
slightly more observations, the data this paper uses also gives explicit class assignment
information. Graham (2008) constructs the class assignment variable from teacher
characteristics.
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Table 4.6: ML Estimates for Graham’s Full Mean Model
School FE+class type FE School by class type FE

math reading math reading
Endogenous peer effect

λ 0.373 0.377*** 0.022 0.027
(0.615) (0.042) (0.093) (0.090)

σε1 0.821*** 0.840*** 0.818*** 0.837***
(0.015) (0.023) (0.014) (0.023)

σε2 0.889*** 0.880*** 0.897*** 0.888***
(0.027) (0.036) (0.025) (0.035)

σα 0.073 4.4e-06 2.1e-04 6.8e-09
(0.573) (1.2e-05) (5.9e-04) (1.0e-08)

R 323 323 323 323
N 5828 5747 5828 5747
lnf -7431.8 -7388.6 -7267.7 -7245.2
1 *,0.1,**,0.05,***, 0.01. Robust standard erros in the parentheses. λ is the endogenous
effect, σε1 and σε2 are the standard deviations of the disturbance terms for small classes
and regular/aid classes respectively, σα is the standard the deviation of randome class
effect αc. R is the number of classes, N is the number of students, lnf is the log
likelihood.

2 The results are the maximum likelihood estimates for Graham’s full mean model in
(4.19). The first model for Columns 1 and 2 has exactly the same specification as Gra-
ham (2008) and controls for school fixed effects and class type fixed effects separately.
The second model for Columns 3 and 4 is the same as model (4.19) except that it
controls for school by class type fixed effects.

3 Following Graham(2008), both models do not control for personal characteristics, peer
characteristics and teacher characteristics.
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Table 4.7: Robustness to Excluding Outliers
Excluding outliers of the sample Excluding outleirs of the class
math reading math reading

Endogenous peer effect
λ 0.060 0.112 0.052 0.117

(0.080) (0.076) (0.078) (0.076)

Exogenous peer effect
age -0.071 -0.456 -0.083 -0.489

(0.374) (0.324) (0.382) (0.356)
black -0.645 -0.669* -0.622 -0.734

(0.653) (0.404) (0.633) (0.448)
girl 0.227 0.251 0.190 0.126

(0.269) (0.223) (0.262) (0.270)
poor 0.083 0.175 0.091 -0.072

(0.279) (0.227) (0.281) (0.262)
repeat -0.648 0.578 -0.739 0.777

(0.676) (0.588) (0.688) (0.686)

tchblack 0.023 0.094 0.014 0.079
(0.103) (0.092) (0.103) (0.101)

tchms 0.062 0.089* 0.064 0.069
(0.063) (0.050) (0.063) (0.052)

σε1 0.778*** 0.679*** 0.773*** 0.724***
(0.014) (0.013) (0.014) (0.020)

σε2 0.856*** 0.706*** 0.866*** 0.791***
(0.020) (0.018) (0.024) (0.029)

σα 4.0e-07 1.2e-04 5.3e-05 1.8e-04
(8.1e-07) (5.9e-04) (1.3e-04) (4.6e-04)

R 323 323 323 323
N 5797 5630 5796 5675
lnf -6937.6 -5877.1 -6931.6 -6372.4
1 Columns 1 and 2 exclude outliers of the whole sample, that is above or below 3 standard
deviations of the sample mean. Columns 3 and 4 exlude outliers of the classe, that is
above or below 3 standard deviations of the class mean.

2 *,0.1,**,0.05,***, 0.01. Robust standard errors in the parentheses.
3 Both models control for individual characteristics(gender, race, age, poverty sta-
tus,repeat), teacher characteristics (teacher’s highest education and race)

4 Observations with missing information are dropped. N is the number of students and
R is the number of classes in the final sample. In the original sample, N=6325, R=325.
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Table 4.8: Homoscadastic and Heteroscadastic Disturbance Terms
Homoscedastic εic Heteroscadastic εic

math reading math reading
Endogenous peer effect

λ 0.054 0.042 -0.130 -0.112
(0.078) (0.084) (0.128) (0.142)

Exogenous peer effect
age -0.072 -0.573 -0.232 -0.500

(0.374) (0.372) (0.385) (0.398)
black -0.548 -0.590 -1.279* -0.514

(0.641) (0.510) (0.689) (0.429)
girl 0.145 0.173 0.098 0.211

(0.254) (0.304) (0.229) (0.226)
poor 0.026 -0.067 -0.033 -0.297

(0.282) (0.283) (0.291) (0.239)
repeat -0.632 0.787 -0.556 0.660

(0.670) (0.690) (0.726) (0.752)

tchblack 0.009 0.095 -0.058 0.145*
(0.106) (0.104) (0.088) (0.084)

tchms 0.070 0.055 0.068 0.155***
(0.064) (0.058) (0.060) (0.053)

σε 0.808*** 0.819***
(0.012) (0.018)

σα 1.3e-08 6.0e-08 2.3e-06*** 1.1e-07***
(2.4e-04) (2.1e-04) (4.9e-07) (2.6e-08)

R 323 323 323 323
N 5804 5723 5804 5723
lnf -6996.3 -6979.5 -6604.2 -6173.1
1 The model for Columns 1 and 2 assume homoscedestic disturbance terms. The model
for Columns 3 and 4 allows for heteroscedastic disturbance terms.

2 *,0.1,**,0.05,***, 0.01. Robust standard errors in the parentheses.
3 Both models control for individual characteristics(gender,race, age, poverty sta-
tus,repeat), teacher characteristics (teacher’s highest education and race)

4 Observations with missing information are dropped. N is the number of students and
R is the number of classes in the final sample. In the original sample, N=6325, R=325.
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Table 4.9: Peer Effects by Gender
Model one Model two

math reading math reading
Endogenous peer effect

boy on boy 0.177 0.211 0.033 0.140
(0.169) (0.231) (0.211) (0.257)

girl on boy -0.229 -0.294 -0.063 -0.277
(0.196) (0.259) (0.268) (0.337)

boy on girl 0.219 0.246 0.025 0.156
(0.196) (0.282) (0.246) (0.328)

girl on girl -0.132 -0.128 0.015 -0.073
(0.120) (0.151) (0.196) (0.280)

Exogenous peer effect:Boy on boy
age -0.030 -0.421 -0.536 -0.952**

(0.283) (0.258) (0.462) (0.453)
black -0.847* -0.435 -2.086*** -1.755**

(0.440) (0.467) (0.745) (0.725)
poor 0.144 -0.030 0.353 0.038

(0.171) (0.157) (0.325) (0.311)
repeat -0.588 0.180 -0.411 0.941

(0.429) (0.435) (0.750) (0.761)

Exogenous peer effect:Girl on boy
age 0.274 0.244 -0.178 -0.571

(0.260) (0.250) (0.439) (0.450)
black -0.181 -0.415 -0.040 0.034

(0.428) (0.398) (0.730) (0.608)
poor 0.076 0.149 0.123 0.280

(0.220) (0.221) (0.421) (0.416)
repeat -0.957 -0.162 -0.750 1.316

(0.596) (0.660) (1.222) (1.252)
to be continued
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Table 4.9: Peer Effects by Gender:Continued
Model one Model two

math reading math reading
Exogenous peer effect:Boy on girl

age -0.272 -0.699** -0.621 -1.110**
(0.264) (0.273) (0.429) (0.442)

black -0.662 -0.664 -1.805** -1.870***
(0.454) (0.491) (0.745) (0.708)

poor 0.239 0.190 0.622** 0.534*
(0.182) (0.182) (0.313) (0.315)

repeat -0.632 0.439 -0.773 0.995
(0.449) (0.455) (0.730) (0.761)

Exogenous peer effect:Girl on girl
age 0.232 0.234 -0.173 -0.671

(0.260) (0.247) (0.438) (0.459)
black -0.210 -0.118 0.109 0.401

(0.400) (0.363) (0.723) (0.614)
poor -0.086 -0.102 -0.403 -0.359

(0.200) (0.194) (0.415) (0.407)
repeat -0.307 -0.145 0.349 1.320

(0.529) (0.606) (1.151) (1.332)

tchblack -0.005 0.122 0.023 0.173
(0.106) (0.100) (0.106) (0.106)

tchms 0.080 0.054 0.106* 0.102*
(0.068) (0.068) (0.063) (0.059)

σε1 0.778*** 0.800*** 0.777*** 0.798***
(0.014) (0.022) (0.014) (0.022)

σε2 0.869*** 0.855*** 0.868*** 0.852***
(0.024) (0.031) (0.024) (0.031)

σα 8.2e-05 8.7e-06 2.5e-05 4.3e-05
(1.4e-04) (2.4e-05) (3.4e-05) (9.2e-05)

R 323 322 323 322
N 5804 5719 5804 5719
lnf -6968.6 -6940.5 -6964.0 -6936.1
1 *,0.1,**,0.05,***, 0.01. Robust standard errors in the parentheses. The dependent
variable is the normalized score.

2 In model one as shown in equation (4.20) and ( 4.21), each weights matrix is row-
normalized. Weight is 1/(nbc − 1), 1/ngc , 1/nbc and 1/(ngc − 1) for effect of boys on
boys, girls on boys, boys on girls and girls on girls. nbc and n

g
c are the number of boys

and girls in class c. In model two as shown in equation (4.26) and ( 4.27), weight is
1/(nc − 1) for all regardless of gender. nc is the number of students in class c.

3 Both models control for individual characteristics(race, age, poverty status,repeat,),
teacher’s highest education and race and school by class type fixed effect.

4 Observations with missing information are dropped. N and R are the number of stu-
dents and classes in the final sample. In the original sample, N=6325, R=325.80



Table 4.10: Peer Effects by Grade: Math
Kindergarten Grade 1 Grade 2 Grade 3

Endogenous peer effect
λ 0.044 0.135* -0.081 0.060

(0.081) (0.081) (0.108) (0.081)

Exogenous peer effect
age -0.180 -0.201 -0.227 -0.271*

(0.358) (0.178) (0.173) (0.159)
black -0.517 0.229 -0.561 0.222

(0.634) (0.379) (0.544) (0.485)
girl 0.216 -0.006 0.414* -0.145

(0.263) (0.283) (0.251) (0.178)
poor 0.072 -0.095 -0.344 -0.105

(0.285) (0.189) (0.211) (0.177)

tchblack 0.022 0.140** 0.121 -0.120
(0.108) (0.070) (0.091) (0.083)

tchms 0.057 0.130** 0.018 0.028
(0.064) (0.064) (0.050) (0.050)

σε1 0.786*** 0.778*** 0.761*** 0.774***
(0.014) (0.012) (0.012) (0.011)

σε2 0.866*** 0.819*** 0.791*** 0.793***
(0.024) (0.019) (0.018) (0.015)

σα 8.3e-07 1.1e-04 1.8e-06 1.1e-06
(2.2e-06) (1.7e-04) (3.0e-06) (1.4e-06)

R 323 336 321 323
N 5806 6419 5755 5830
lnf -7010.0 -7591.0 -6661.0 -6824.5
1 *,0.1,**,0.05,***, 0.01. Robust standard errors in the parentheses. The dependent
variable is the normalized Math score.

2 Estimator for model 3.2 by grade. The first column is estimator for kindergarten and
comparable to column 1 in table 4.3 excepet that the exogeneous variables change.

3 The model controls for individual characteristics(gender,race, poverty status). It does
not control for retention status because it is not available for certain grade. The
model also controls for teacher characteristics (teacher’s highest education and race)
and school by class type fixed effect.

4 Observations with missing information are dropped. N is the number of students and
R is the number of classes in the final sample.
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Table 4.11: Peer Effects by Grade: Reading
Kindergarten Grade 1 Grade 2 Grade 3

Endogenous peer effect
λ 0.031 -0.066 -0.158 -0.151

(0.084) (0.096) (0.117) (0.111)

Exogenous peer effect
age -0.368 0.043 -0.195 -0.690***

(0.360) (0.166) (0.172) (0.187)
black -0.649 0.870** -0.676 0.730

(0.523) (0.377) (0.531) (0.518)
girl 0.159 0.180 0.476* -0.080

(0.303) (0.302) (0.244) (0.243)
poor -0.030 -0.323 -0.492** -0.342

(0.283) (0.197) (0.206) (0.208)

tchblack 0.095 0.099 0.041 -0.067
(0.106) (0.071) (0.085) (0.068)

tchms 0.056 0.030 0.019 0.008
(0.059) (0.062) (0.050) (0.054)

σε1 0.806*** 0.781*** 0.762*** 0.774***
(0.022) (0.012) (0.013) (0.011)

σε2 0.860*** 0.824*** 0.782*** 0.822***
(0.032) (0.016) (0.019) (0.015)

σα 2.3e-07 8.8e-07 8.6e-05 1.3e-05
(4.5e-07) (1.5e-06) (1.1e-04) (1.2e-05)

R 323 332 321 318
N 5725 6237 5764 5752
lnf -7000.5 -7405.9 -6660.4 -6802.9
1 *,0.1,**,0.05,***, 0.01. Robust standard errors in the parentheses. The dependent
variable is the normalized Reading score.

2 Estimator for model 3.2 by grade. The first column is estimator for kindergarten and
comparable to column 2 in table 4.3 excepet that the exogeneous variables change.

3 The model controls for individual characteristics(gender,race, poverty status). It does
not control for retention status because it is not available for certain grade. The
model also controls for teacher characteristics (teacher’s highest education and race)
and school by class type fixed effect.

4 Observations with missing information are dropped. N is the number of students and
R is the number of classes in the final sample.
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Table 4.12: Class Type Effects
Peer effect model Linear model

math reading math reading
regular class -0.114* -0.136** -0.119* -0.141**

(0.065) (0.061) (0.068) (0.063)
regular aid -0.123* -0.166*** -0.128* -0.172***

(0.065) (0.061) (0.068) (0.063)
reg*pctblack -0.130 -0.261** -0.135 -0.271**

(0.134) (0.125) (0.140) (0.130)
regaid*pctblack -0.083 0.003 -0.086 0.003

(0.132) (0.123) (0.138) (0.128)
1 Results from regressing the school by class type fixed effects on class type fixed effects
and school fixed effects separately.The school by class type fixed effects are obtained
from the main model in equation (4.1).

2 *,0.1,**,0.05,***, 0.01. Standard errors in the parentheses.
3 The first two columns use school by class type fixed effects from the main model,
corresponding to Columns 1 and 2 of Table 4.3. Columns 3 and 4 use school by class
type fixed effects from the linear model, corresponding to Columns 1 and 2 of Table
4.4.

Table 4.13: Class Type Effects: Controls for Students’ Race by Class Type
Peer effect model Linear model

math reading math reading
regular class -0.113* -0.136** -0.118* -0.141**

(0.065) (0.061) (0.068) (0.063)
regular aid -0.121* -0.166*** -0.127* -0.172***

(0.065) (0.061) (0.068) (0.063)
reg*pctblack -0.357*** -0.275** -0.362** -0.284**

(0.134) (0.125) (0.140) (0.130)
regaid*pctblack -0.215 -0.050 -0.218 -0.050

(0.132) (0.123) (0.138) (0.128)
1 Results from regressing the school by class type fixed effects on class type fixed effects
and school fixed effects separately.The school by class type fixed effects are obtained
after controlling for the interaction term between students’ race and class type fixed
effects, in addition to other variables in model (4.1).

2 *,0.1,**,0.05,***, 0.01. Standard errors in the parentheses.
3 The first two columns use school by class type fixed effects from the main model,
corresponding to Columns 1 and 2 of Table 4.3. Columns 3 and 4 use school by class
type fixed effects from the linear model, corresponding to Columns 1 and 2 of Table
4.4.
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Appendix A: Analytical Properties of Matrices pIm + qJm in General

Many matrices in this paper can be written in the form of blocks of pIm+ qJm

type of matrices, where Im is the identity matrix of size m, Jm = ιmι
′
m is the m×m

matrix of ones, p and q are some real numbers. Let I∗m = Im − Jm/m, J∗m = Jm/m,

then

pIm + qJm = pI∗m + sJ∗m,

where s = p+mq. The pIm + qJm, or pI∗m + sJ∗m type of matrices bear some special

properties, which can facilitate the calculation and proof in this research and may

be of interest more generally. This appendix lists properties of pI∗m + sJ∗m (and

pIm + qJm) in general.

Both I∗m and J∗m are projection matrices, with I∗m + J∗m = Im, and I∗mJ∗m = 0.

For any m × k matrix X, let X̄ = ι′mX/m be the k−dimensional row vector of

column means of X. Let X∗ = X − ιmX̄ be the deviations from column means of

X. Then I∗mX = X∗, J∗mX = ιmX̄. Also, X ′X = X∗′X∗ +mX̄ ′X̄.

While matrix multiplication obeys distributive and associative rules, the mul-

tiplication of pI∗m + sJ∗m type of matrices further obeys the commutative properties.

Lemma A.1. If A = pAI
∗
m + sAJ

∗
m, B = pBI

∗
m + sBJ

∗
m, then AB = BA.

Remark A.1. Equivalently, if A = pAIm+qAJm, B = pBIm+qBJm, then AB = BA.
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Proof. First note that pI∗m + sJ∗m type of matrices are symmetric. Since I∗m and J∗m

are projection matrices and I∗mJ∗m = 0, the product of pI∗m + sJ∗m type matrices are

also in the format of pI∗m + sJ∗m and hence symmetric. Therefore AB = (AB)′ =

B′A′ = BA.

Lemma A.2. The determinant of pI∗m + sJ∗m is

|pI∗m + sJ∗m| = pm−1s. (A.1)

Remark A.2. Since pIm + qJm = pI∗m + (p+mq)J∗m, the lemma implies that

|pIm + qJm| = pm−1(p+mq). (A.2)

Proof. Using Proposition 31 in the appendix of Dhrymes (1978)1,

|pI∗m + sJ∗m| = |pIm +
(s− p)/m

p
Jm|

= pm|Im +
(s− p)/m

p
ιmι
′
m|

= pm|Im|(1 +
(s− p)/m

p
ι′mI

−1
m ιm)

= pm(
s

p
m) = pm−1s.

Lemma A.3. The matrix pI∗m + sJ∗m is nonsingular if p 6= 0 and s 6= 0. Its inverse

matrix is

(pI∗m + sJ∗m)−1 =
1

p
I∗m +

1

s
J∗m. (A.3)

1The proposition states that, suppose A is an m × m matrix, a is a scalar, α and β are m
dimensional vector, then

|A+ aαβ′| = |A|(1 + aα′A−1β).
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Remark A.3. Since pIm + qJm = pI∗m + (p + mq)J∗m. The lemma is equivalent to :

The matrix pIm + qJm is nonsingular if p 6= 0 and p+mq 6= 0. Its inverse matrix is

(pIm + qJm)−1 =
1

p
Im −

q

p(p+mq)
Jm. (A.4)

Proof. According to Lemma A.2, |pI∗m + sJ∗m| = pm−1s. So |pI∗m + sJ∗m| 6= 0 if p 6= 0

and s 6= 0. Besides,

[
1

p
I∗m +

1

s
J∗m](pI∗m + sJ∗m) = (pI∗m + sJ∗m)[

1

p
I∗m +

1

s
J∗m] = I∗m + J∗m = Im.

Lemma A.4. Product of matrices:
L∏
l=1

(plI
∗
m + slJ

∗
m)kl = (

L∏
l=1

pl
kl)I∗m + (

L∏
l=1

sl
kl)J∗m,

where ks can be any integer. If kl < 0, pl 6= 0 and sl 6= 0.

Remark A.4. Since pIm + qJm = pI∗m + (p+mq)J∗m, the lemma is equivalent to
L∏
l=1

(plIm + qlJm)kl ] =
L∏
l=1

(pl
kl)Im + [

L∏
l=1

(pl + qlm)kl −
L∏
l=1

(pl
kl)]

Jm
m
.

Proof. By Lemma A.3, if kl < 0,

(plI
∗
m + slJ

∗
m)kl = [(plI

∗
m + slJ

∗
m)−1]|kl|

= [
1

pl
I∗m +

1

sl
J∗m]|kl|

= [p
sgn(kl)
l I∗m + s

sgn(kl)
l J∗m]|kl| (A.5)

where sgn(kl) is the sign function, sgn(kl) = 1 if kl > 0, sgn(kl) = 0 if kl = 0, and

sgn(kl) = −1 if kl < 0. Equation (A.5) clearly holds when kl > 0. Since I∗m and
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J∗mare projection matrices, and I∗mJ∗m = 0,
L∏
l=1

(plI
∗
m + slJ

∗
m)kl =

L∏
l=1

[p
sgn(kl)
l I∗m + s

sgn(kl)
l J∗m]|kl|

= (
L∏
l=1

pl
sgn(kl)|kl|)I∗m + (

L∏
l=1

sl
sgn(kl)|kl|)J∗m,

= (
L∏
l=1

pl
kl)I∗m + (

L∏
l=1

sl
kl)J∗m.

Lemma A.5. Trace of the product of matrices:

tr[
L∏
l=1

(plI
∗
m + slJ

∗
m)kl ]] = (m− 1)

L∏
l=1

(pl
kl) +

L∏
l=1

skll .

where kl can any integer. If kl < 0, pl 6= 0 and sl 6= 0.

Remark A.5. Equivalently, tr[
∏L

l=1(plIm + qlJm)kl ] =
∏L

l=1(pl + qlm)kl + (m −

1)
∏L

l=1(pl
kl), where kl can any integer.

Proof. Since tr(I∗m) = m− 1, tr(J∗m) = 1, the lemma follows from Lemma A.4.
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Appendix B: Analytical Properties of Matrices in the Theoretical Part

In the theoretical part , most matrices are formulas of two types of matrices.

The first type is block diagonal matrix with the diagonal blocks being pcI∗c + scJ
∗
c ,

where pc and sc are uniformly bounded in absolute value. For example, W =

diagRc=1{− 1
nc−1

I∗c + J∗c }. This type of matrices includes W , Ω(ϑ), Ω(ϑ)−1, I − λW ,

(I−λW )−1, J̃ and I. The second type is PZ(ϑ) = Ω(ϑ)−1Z[Z ′Ω(ϑ)−1Z]−1Z ′Ω(ϑ)−1.

Note that MZ(ϑ) = Ω(ϑ)−1 − PZ(ϑ) is a formula of these two types of matrices. In

this appendix, I discuss analytical properties of these matrices.

A majority of the matrices in this paper can be written as the products of

some or all of the four matrices in the table below.

Table B.1: Matrices in the Form of pI∗c + sJ∗c

pI∗c + sJ∗c p s

Jc 0I∗c + ncJ
∗
c 0 nc

Wc − 1
nc−1

I∗c + J∗c − 1
nc−1

1

Ωc σ2
ε I
∗
c + (σ2

ε + ncσ
2
α)J∗c σ2

ε σ2
ε + ncσ

2
α

Ic − λWc (1 + λ
nc−1

)I∗c + (1− λ)J∗c 1 + λ
nc−1

1− λ
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Applying the formulas for trace and determinant from Lemma A.2 and Lemma A.3,

the closed form expressions for |Ωc(ϑ)|, Ω−1
c (ϑ), |Ic − λWc| and (Ic − λWc)

−1 in the

concentrated log likelihood function QR(ϑ) in equation (3.17) are

|Ωc(ϑ)| = (σ2
ε )
nc−1(σ2

ε + ncσ
2
α), (B.1)

Ω−1
c (ϑ) =

1

σ2
ε

I∗c +
1

(σ2
ε + ncσ2

α)
J∗c , (B.2)

|Ic − λWc| = (1− λ)(1 +
λ

nc − 1
)nc−1, (B.3)

(Ic − λWc)
−1 = (

nc − 1

nc − 1 + λ
)I∗c +

1

1− λ
J∗c . (B.4)

Lemma B.1. If an nc × nc matrix Gc can be written in the form of

Gc = JmJc WmW
c Ωc(ϑ)−mΩΩmΩ0

c0 (Ic − λWc)
mS(Ic − λ0Wc)

−mS0 , (B.5)

where mJ , mW , mΩ0, mΩ , mS0 and mS are non-negative integers. Then

Gc = pG,cI
∗
c + sG,cJ

∗
c , (B.6)

tr(Gc) = sG,c + (nc − 1)pG,c, (B.7)

where

sG,c = nmJ1mW (σ2
ε + ncσ

2
α)−mΩ(σ2

ε0 + ncσ
2
α0)mΩ0(1− λ)mS(1− λ0)−mS0 , (B.8)

pG,c = 0mJ (− 1

nc − 1
)mW (σ2

ε )
−mΩ(σ2

ε0)mΩ0(1 +
λ

nc − 1
)mS(1 +

λ0

nc − 1
)−mS0 . (B.9)

Remark B.1. Under Assumptions 1, 2, and 3, pG,c and sG,c are uniformly bounded

in absolute value.

Proof. The lemma follows from Lemma A.4, Lemma A.5 and Table B.1.

Lemma B.2. Let BN×m(ϑ) = (Bij,N×m(ϑ)) be an N × m matrix, where m is a

finite positive integer. The elements of BN×m(ϑ) are uniformly bounded in absolute

value by a finite constant āB, supϑ∈Θ,16i6N,16j6m|Bij,N×m(ϑ)| 6 āB. Let AN(ϑ) be

an N ×N matrix, AN(ϑ) = diagRc=1{pc(ϑ)I∗c + sc(ϑ)J∗c }, where pc(ϑ) and sc(ϑ) are
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uniformly bounded in absolute value. Then under Assumptions 1, 2, and 3, the

elements of AN(ϑ)BN×m(ϑ) are uniformly bounded in absolute value.

Remark B.2. Here BN×m(ϑ) can be an N ×N matrix like Ω(ϑ), W and I − λW . It

can also be the N × kZ matrix Z or the N × 1 vector Zγ0. The matrix AN(ϑ) can

be I − λW , (I − λW )−1, W , Ω(ϑ), Ω(ϑ)−1, J̃ and their products and sums.

Proof. Partition BN×m(ϑ) into R blocks, BN×m(ϑ) = [B′1,N×m(ϑ), ..., B′R,N×m(ϑ)]′,

where Bc,N(ϑ) is an nc ×m matrix, then

AN(ϑ)BN×m(ϑ) =


(p1(ϑ)I∗1 + s1(ϑ)J∗1 )B1,N×m(ϑ)

...

(pR(ϑ)I∗R + qR(ϑ)J∗R)BR,N×m(ϑ)

 . (B.10)

For any 1 6 c 6 R, since pc(ϑ) and sc(ϑ) are uniformly bounded, nc is bounded, and

the elements of Bc,N×m(ϑ) are uniformly bounded in absolute value, the elements

of (pc(ϑ)I∗c + sc(ϑ)J∗c )Bc,N×m(ϑ) are uniformly bounded. Therefore, the elements of

AN(ϑ)BN×m(ϑ) are uniformly bounded in absolute value.

Lemma B.3. For l = 1, 2, A(l)
N (ϑ) = diagRc=1{p

(l)
c (ϑ)I∗c + s

(l)
c (ϑ)J∗c }, where p

(l)
c (ϑ)

and s
(l)
c (ϑ) are uniformly bounded in absolute value. Under Assumptions 1, 2, 3,

and 5,

supϑ∈Θ|limR→∞N
−1/2
R tr[A

(1)
N (ϑ)PZ(ϑ)]| = 0,

supϑ∈Θ|limR→∞N
−1/2
R tr[A

(1)
N (ϑ)PZ(ϑ)A

(2)
N PZ(ϑ)]| = 0.

Remark B.3. Since MZ(ϑ) = Ω(ϑ)−1 − PZ(ϑ), the lemma implies that

limR→∞N
−1
R tr[A

(1)
N (ϑ)MZ(ϑ)] = limR→∞N

−1
R tr[A

(1)
N (ϑ)Ω(ϑ)−1],

limR→∞N
−1
R tr[A

(1)
N (ϑ)MZ(ϑ)A

(2)
N MZ(ϑ)] = limR→∞N

−1
R tr[A

(1)
N (ϑ)Ω(ϑ)−1A

(2)
N Ω(ϑ)−1]|.
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Proof. By Assumption 5, the elements of [N−1
R Z ′Ω(ϑ)−1Z]−1 are uniformly bounded

in absolute value. Since the number of columns in Z is kZ <∞ and the elements of

Z are uniformly bounded in absolute value, the elements of Z[ 1
NR
Z ′Ω(ϑ)−1Z]−1Z ′

are uniformly bounded in absolute value. Since Ω(ϑ)−1 = diagRc=1{σ−1
ε I∗c + (σ2

ε +

ncσ
2
α)−1J∗c }, σ−1

ε , (σ2
ε+ncσ

2
α)−1 are uniformly bounded in absolute value, by Lemma B.2

the elements of NRPZ = Ω(ϑ)−1Z[ 1
NR
Z ′Ω(ϑ)−1Z]−1Z ′Ω(ϑ)−1 are uniformly bounded

in absolute value.

Since A(l)
N (ϑ) = diagRc=1{p

(l)
c (ϑ)I∗c + s

(l)
c (ϑ)J∗c }, p

(l)
c (ϑ) and s(l)

c (ϑ) are uniformly

bounded in absolute value, the elements of NRA
(1)
N (ϑ)PZ(ϑ), NRA

(1)
N (ϑ)PZ(ϑ)A

(2)
N (ϑ)

andNRAN(ϑ)PZ(ϑ)A
(2)
N (ϑ)PZ(ϑ) are uniformly bounded in absolute value (Lemma B.2).

Therefore tr[(AN(ϑ)PZ(ϑ)], tr[AN(ϑ)PZ(ϑ)BN(ϑ)] and tr[AN(ϑ)PZ(ϑ)BN(ϑ)PZ(ϑ)]

are uniformly bounded in absolute value, the lemma then follows.
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Appendix C: Asymptotic Properties of Linear Quadratic Forms

In this section, I describe the asymptotic properties of linear quadratic forms of

U . First, I describe the expected value and variance of the linear quadratic forms in

Lemma C.1. Then I describe the central limit theorem for vectors of linear quadratic

forms in Theorem C.2.

Let SN(ϑ) be a linear quadratic form of U ,

SN(ϑ) = U ′AN(ϑ)U + U ′BN(ϑ)Zγ0. (C.1)

Note that either AN(ϑ) or BN(ϑ) can to be 0. If AN(ϑ) = 0N×N , then SN(ϑ)

becomes a linear form of U . For notational simplicity, let ηN(ϑ) = BN(ϑ)Zγ0, then

SN(ϑ) = U ′AN(ϑ)U + U ′ηN(ϑ).

Partition the NR × NR matrix AN into R × R blocks, with the c, rth block

being an nc × nr matrix. Denote the c, rth block of AN as Acr,N , the c, cth block

of AN as Ac,N . Denote the i, jth element of Acr,N as Aij,cr,N , 1 6 i, j 6 nc. Denote

the ĩ, j̃ th element of AN as A(̃i,j̃),N , 1 6 ĩ, j̃ 6 N . I put parentheses over ĩ, j̃ to

avoids confusion of the i, jth block. I call the row sums of AN(ϑ) are uniformly

(in R) bounded in absolute value if sup16ĩ6N,R>2

∑N
j̃=1 |AN(ϑ)(̃ij̃,N)| <∞. Partition

the NR × 1 vector ηN into R components, with the cth component being an nc × 1

vector. Denote the cth component of η as ηc, the ith element of ηc as ηic.
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The following lemma describes the expected value of linear quadratic forms.

Lemma C.1. (1) For l = 1, 2, let

S
(l)
N (ϑ) = U ′A

(l)
N (ϑ)U + η

(l)′
N (ϑ)U.

Under Assumptions 1 and 2,

E[S
(l)
N (ϑ)] = tr(Ω0A

(l)
N (ϑ)), l = 1, 2 (C.2)

E(S
(l)
N (ϑ)S

(m)
N (ϑ)) = tr[Ω0A

(l)
N Ω0(A

(m)
N + A

(m)′
N )] + tr(Ω0A

(l)
N )tr(Ω0A

(m)
N ) + η(l)′Ω0η

(m)

+ (µ(4)
ε − 3σ4

ε0)
R∑
c=1

nc∑
i=1

(A
(l)
ii,cA

(m)
ii,c )

+ (µ(4)
α − 3σ4

α0)
R∑
c=1

tr(A(l)
c Jc)tr(A

(m)
c Jc)

+ µ(3)
ε

R∑
c=1

nc∑
i=1

η
(l)
ic A

(m)
ii,c + µ(3)

ε

R∑
c=1

nc∑
i=1

η
(m)
ic A

(l)
ii,c

+ µ(3)
α

R∑
c=1

η(l)′
c JcA

(m)
cc ιc + µ(3)

α

R∑
c=1

η(m)′
c JcA

(l)
c ιc, m, l = 1, 2 (C.3)

where A(l)
c is the c− th diagonal block of matrix A(l), and is an nc× nc matrix, A(l)

ii,c

is the ii − th entry of matrix A(l)
cc , η(l)

c is the cth component of η(l)and is a nc × 1

vector, η(l)
ic is the ith element of η(l)

c .

Proof. The proof is adapted from the appendix of Kelejian and Prucha (2001) and

Kelejian and Prucha (2010). For notational simplicity, I will drop the argument ϑ

and subscript N from AN(ϑ), ηN(ϑ), SN(ϑ) in the proof. Under Assumptions 1 and

2, Uc and Ur are independent if c 6= r. Let α = (α1, ..., αR)′ be a R × 1 vector

of the group effect, ε be the N × 1 vector of individual effects ε = (ε′1, ε
′
2, ..., ε

′
R)′ .

Note that under Assumption 1 and Assumption 2, the elements of α are identically

and independently distributed with E(αc) = 0, V ar(αc) = σ2
α0, E(α3

c) = µ
(3)
α ,

E(α4
c) = µ

(4)
α . The elements of ε are identically and independently distributed, with
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E(εic) = 0, V ar(εic) = σ2
ε0, E(ε3ic) = µ

(3)
ε , E(ε4ic) = µ

(4)
ε . Also α is independent of ε.

Define a N ×R matrix F as

FN×R =



ι1 0n1×1 · · · 0n1×1

0n2×1 ι2 · · · 0n2×1

...
... . . . ...

0nR×1 0nR×1 · · · ιR


. (C.4)

Then FF ′ = J̃ ,

U = Fα + ε. (C.5)

For l = 1, 2, The linear quadratic form S(l) then can be divided into three

linear quadratic forms of α and ε as

S(l) = U ′A(l)U + U ′η(l) = α′F ′A(l)Fα + ε′A(l)ε+ α′F ′(A(l) + A(l)′)ε+ α′F ′η(l) + ε′η(l)

= (α′F ′A(l)Fα + α′F ′η(l)) + (ε′A(l)ε+ ε′η) + (α′F ′(A(l) + A(l)′)ε)

= S(l)
α + S(l)

ε + S(l)
α,ε, (C.6)

where S(l)
α = α′F ′A(l)Fα+α′F ′η(l), Sε = ε′A(l)ε+ ε′η(l) and S(l)

α,ε = α′F ′(A(l) +A(l)′)ε.

Since α is independent of ε, S(l)
α , S(l)

ε and S(l)
α,ε are uncorrelated with each other for a

given l. Using Lemma A.1 in appendix A of Kelejian and Prucha (2010), E(S
(l)
α ) =

σ2
α0tr(F

′A(l)F ) = tr(σ2
α0J̃A

(l)), E(S
(l)
ε ) = σ2

ε0tr(A
(l)), E(S

(l)
α,ε) = 0. Therefore,

E(S(l)) = tr(σ2
α0J̃A

(l) + σ2
ε0A

(l))

= tr[(σ2
α0J̃ + σ2

ε0I)A(l)] = tr(Ω0A
(l)). (C.7)

Since α is independent of ε,

cov(S(l), S(m)) = cov(S(l)
α , S

(m)
α ) + cov(S(l)

ε , S
(m)
ε ). (C.8)
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Using Lemma A.1 in appendix A of Kelejian and Prucha (2010),

cov(S(l)
α , S

(m)
α ) = σ4

α0tr[F
′A(l)FF ′(A(m) + A(m)′)F ] + σ2

α0η
(l)′FF ′η(m)

+
R∑
c=1

[F ′A(l)F ]cc[F
′A(m)F ]cc(µ

(4)
α − 3σ4

α0)

+
R∑
c=1

[(F ′A(l)F )cc(F
′η(m))c + (F ′A(m)F )cc(F

′η(l))c]µ
(3)
α

= σ4
α0tr[A

(l)J̃(A(m) + A(m)′)J̃ ] + η(l)′(σ2
α0J̃)η(m)

+
R∑
c=1

tr(A(l)
cc Jc)tr(A

(m)
cc Jc)(µ

(4)
α − 3σ4

α0)

+
R∑
c=1

[(ι′cA
(l)
cc ιcι

′
cη

(m)
c ) + (ι′cA

(m)
cc ιcι

′
cη

(l)
c )]µ(3)

α , (C.9)

cov(S(l)
ε , S

(m)
ε ) = σ4

ε0tr[A
(l)(A(m) + A(m)′)] + σ2

ε0η
(l)′η(m)

+
R∑
c=1

nc∑
i=1

[A
(l)
ii,cA

(m)
ii,c ](µ(4)

ε − 3σ4
ε0) +

R∑
c=1

nc∑
i=1

[A
(l)
ii,cη

(m)
ic + A

(m)
ii,c η

(l)
ic ]µ(3)

ε .

(C.10)
Plugging equations equation (C.7), (C.9), and (C.10) into the following equa-

tion,

E(S(l)S(m)) = cov(S(l), S(m)) + E(S(l))E(S(m))

= cov(S(l)
α , S

(m)
α ) + cov(S(l)

ε , S
(m)
ε ) + tr(Ω0A

(l))tr(Ω0A
(m)).

So the lemma follows.

The lemma below describes the central limit theory for vectors of linear quadratic

form.

Lemma C.2. Let SN(ϑ) be an L× 1 vector of linear quadratic forms,

SN(ϑ) = (S
(1)
N (ϑ), S

(2)
N (ϑ), .., S

(L)
N (ϑ))′,
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where L <∞ is a constant, S(l)
N (ϑ) is a linear quadratic form of U :

S
(l)
N (ϑ) = U ′A

(l)
N (ϑ)U + U ′B

(l)
N Zγ0,

A
(l)
N (ϑ) = diagRc=1{p

(l)
A,c(ϑ)I∗c + s

(l)
A,c(ϑ)J∗c },B

(l)
N (ϑ) = diagRc=1{p

(l)
B,c(ϑ)I∗c + s

(l)
B,c(ϑ)J∗c },

p
(l)
A,c, s

(l)
A,c, p

(l)
B,c, s

(l)
B,c are uniformly bounded in absolute value. If for some ϑ∗ ∈ ϑ,

limR→∞N
−1
R V ar(SN(ϑ∗)) = ΣS̄(ϑ∗), with 0 < aρ 6 ρmin(ΣS̄(ϑ∗)), where ρmin(ΣS̄(ϑ∗))

is the smallest eigenvalue of ΣS̄(ϑ∗). Then under Assumptions 1,2, and 3, there exists

a symmetric nonsingular real matrix Σ
1/2

S̄(ϑ∗)
such that ΣS̄(ϑ∗) = (Σ

1/2

S̄(ϑ∗)
)(Σ

1/2

S̄(ϑ∗)
), and

N−1
R Σ

−1/2

S̄(ϑ∗)
(SN(ϑ∗)− E(SN(ϑ∗)))

D−→ N(0, IL) as R goest to infinity.

Proof. The proof builds on Theorem A.1 in Appendix A of Kelejian and Prucha

(2010). Let

ξ = (α1/σα0 , ...., αR/σα0 , ε
′
1/σε0 , ..., ε

′
R/σε0)′. (C.11)

The error term U is then U = Hξ,where H = [σα0F, σε0IN×N ], F is the N × R

matrix defined in equation (C.4). For l = 1, ..., L, let η(l)
N (ϑ) = B

(l)
N Zγ0, the linear

quadratic form S(l)(ϑ) is

S
(l)
N (ϑ) = U ′A

(l)
N (ϑ)U + U ′η

(l)
N (ϑ)

= ξ′[H ′A
(l)
N (ϑ)H]ξ + ξ′[H ′η

(l)
N (ϑ)]. (C.12)

Under Assumptions 1 and 2, ξ is a (N + R) dimensional vector of indepen-

dent random variables, E(ξ) = 0, V ar(ξ) = IN+R. There exists some ηξ > 0

such that E|ξi|4+ηξ < ∞ . Therefore, Assumption A.1 and A.3.(b) of Kelejian

and Prucha (2010) hold. Since A(l)
N (ϑ) = diagRc=1{p

(l)
A,c(ϑ)I∗c + s

(l)
A,c(ϑ)J∗c , H ′A(l)H

is symmetric. It remains to verify Assumption 2 of Kelejian and Prucha (2010):

(a) the row sums of H ′A(l)
N (ϑ)H are uniformly (in R) bounded in absolute value,
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sup16ĩ6N+R,R>2

∑N+R
j̃=1
|(H ′AN(ϑ)H)(̃i,j̃)| < ∞; (b) For all ϑ ∈ Θ, there exists some

ηb > 0 such that supR 1
NR+R

∑N+R
ĩ=1
|H ′BNZγ0|2+ηb

(̃i)
<∞. Since H = [σα0F, σε0IN×N ],

H ′AN(ϑ)H =

 σ2
α0F

′A(ϑ)F σε0σα0F
′A(ϑ)

σα0σε0A(ϑ)F σ2
ε0A(ϑ)

 . (C.13)

First of all, since nc is bounded, the row sums of A are uniformly bounded in absolute

value. Second,

F ′A(ϑ) =



ι′1A11 0 · · · 0

0 ι′2A22 · · · 0

...
... . . . ...

0 0 · · · ι′RARR


. (C.14)

The row sums of the F ′A are uniformly bounded in absolute value, as the elements

of A are uniformly bounded and nc is bounded. Similarly, the row sums of the AF

are uniformly bounded in absolute value. Third, F ′A(1)(ϑ)F = diagRc=1{ι′cAccιc},

where Acc is the c − th block along the diagonal of matrix A, ι′cAccιc is uniformly

bounded as the elements of Acc are uniformly bounded and nc is bounded. In all,

such that for all ϑ ∈ Θ, supĩ
∑N+R

j̃=1
|H ′A(ϑ)H|(̃ij̃) <∞. Note that

H ′ηN = [σα0ι
′
1η1,N , ...σα0ι

′
RηR,N , σε0η

′
N ]′,

and that nc is bounded. Since the elements of η(ϑ) are uniformly bounded (Lemma B.2),

the elements ofH ′ηN are uniformly bounded, and for all ϑ ∈ Θ, 1
N+R

∑N+R
ĩ=1
|H ′BNZγ0|3ĩ <

∞.

Using Theorem A.1 of Kelejian and Prucha (2010), 1√
NR

Σ
−1/2

S̄
(S − µS)

D−→

N(0, IL) as R goest to infinity.
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Appendix D: Asymptotic Variance-Covariance Matrix

This appendix derives the closed forms of Ψ0 and Γ0, which are components

of the asymptotic variance-covariance matrix of ϑ̂R as described in Theorem 3.2.

As shown in Section E.2, the score function the limiting matrix of the information

matrix is limR→∞N
−1
R E[f1R(ϑ0)f1R(ϑ0)′] = Ψ0, where f1R(ϑ0) is in equation (E.44).

Let G(1) = Ω−1
0 W (I − λ0W )−1, G(2) = 1

2
Ω−2

0 , G(3) = 1
2
Ω−2

0 J̃ , η(1) = G(1)Zγ0,

η(2) = η(3) = 0, then

f1R(ϑ0) =


U ′G(1)U + U ′η(1)

U ′G(2)U

U ′G(3)U

−

tr[Ω0G

(1)]

tr(Ω0G
(2))

tr(Ω0G
(3))

 .
Note that G(1), G(2), G(3) are all block diagonal matrices. For l = 1, 2, 3,

denote the c th block of G(l)as Gl)
c , the i, j the element of G(l)

c as G(l)
ij,c. The N × 1

vector η(l)can be partitioned into R vectors, with the c the being a nc × 1 vector,

η(l) = (η
(l)
1 , ..., η

(l)
R ). Therefore, η(1)

c = G
(1)
c Zcγ0. Denote the ith elment of η(l)

c as η(l)
ic .

By Lemma C.1, for i, j = 1, 2, 3,
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E(
∂QR(ϑ)

∂ϑi

∂QR(ϑ)

∂ϑj
)

= 2tr[Ω0G
(i)Ω0G

(j)] + η(i)′Ω0η
(j)

+ (µ(4)
ε − 3σ4

ε0)
R∑
c=1

nc∑
l=1

(G
(i)
ll,cG

(j)
ll,c) + (µ(4)

α − 3σ4
α0)

R∑
c=1

tr(G(i)
c Jc)tr(G

(j)
c Jc)

+ µ(3)
ε

R∑
c=1

nc∑
l=1

η
(i)
lc G

(j)
ll,c + µ(3)

ε

R∑
c=1

nc∑
l=1

η
(j)
lc G

(i)
ll,c

+ µ(3)
α

R∑
c=1

η(i)′
c JcG

(j)
c ιc + µ(3)

α

R∑
c=1

η(j)′
c JcG

(i)
c ιc. (D.1)

Therefore,

E[f1R(ϑ0)f1R(ϑ0)′] = Ξ0 + (µ(4)
ε − 3σ4

ε )Ξ1 + (µ(4)
α − 3σ(4)

α )Ξ2 + µ(3)
ε Ξ3 + µ(3)

α Ξ4,

where Ξ0, Ξ1, Ξ2, Ξ3, Ξ4 are defined in equations (D.2), (D.4), (D.6), (D.8), and

(D.10). Their closed forms are calculated with Lemma B.1.

Under Assumptions 3 and 5, for l = 0, 1, ..., 4,

limR→∞
1

NR

Ξl =
1

n∗

ā∑
n=a

ω∗nΞl,n,

where Ξ0,n, Ξ1,n, Ξ2,n, Ξ3,n, and Ξ4,n are defined in equations (D.3), (D.5), (D.7),

(D.9), (D.11). Therefore,

Ψ0 =limR→∞N
−1
R E[f1R(ϑ0)f1R(ϑ0)′]

=
1

n∗

ā∑
n=a

ω∗n[Ξ0,n + (µ(4)
ε − 3σ

(4)
ε0 )Ξ1,n + (µ(4)

α − 3σ
(4)
α0 )Ξ2,n + µ(3)

ε Ξ3,n + µ(3)
α Ξ4,n].

Below are the expressions for Ξ0, Ξ1, Ξ2, Ξ3, Ξ4 , Ξ0,n, Ξ1,n, Ξ2,n, Ξ3,n, and

Ξ4,n:
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Ξ0 =


2tr[W 2(I − λ0W )−2] + γ′0Z

′(I − λ0W )−1WΩ−1
0 W (I − λ0W )−1Zγ0 ... ...

tr[W (I − λ0W )−1Ω−1
0 ] 1

2
tr(Ω−2

0 ) ...

tr[W (I − λ0W )−1Ω−1
0 J̃ ] 1

2
tr[Ω−2

0 J̃ ] 1
2
tr[Ω−2

0 J̃2]



=



2
∑R

c=1
nc(nc−1+λ2)

(1−λ)2(nc−1+λ)2 + 1
σ2
ε

∑R
c=1( nc−1

nc−1+λ0
)2γ′0Z

∗′
c Z
∗
c γ0

+ 1
(1−λ0)2

∑R
c=1

ncγ′0Z̄
′
cZ̄cγ0

σ2
ε+ncσ2

α
... ...∑R

c=1
λ0nc−(nc−1)nc(1−λ0)σ2

α0

(1−λ)(nc−1+λ)σ2
ε0(σ2

ε0+ncσ2
α0)

1
2

∑R
c=1

ncσ4
ε+2nc(nc−1)σ2

ε0σ
2
α0+(nc−1)n2

cσ
2
α0

(σ2
ε0+ncσ2

α0)2σ4
ε0

...∑R
c=1

nc
(1−λ0)(σ2

ε0+ncσ2
α0)

1
2

∑R
c=1

nc
(σ2
ε0+ncσ2

α0)2
1
2

∑R
c=1

n2
c

(σ2
ε0+ncσ2

α0)2


,

(D.2)

limR→∞
1

NR

Ξ0 =
1

n∗

ā∑
n=a

ω∗nΞ0,n,

Ξ0,n =


2

n(n−1+λ2
0)

(1−λ0)2(nc−1+λ0)2 + 1
σ2
ε
( n−1
n−1+λ0

)2γ′0κ∗nγ0 + 1
(1−λ0)2

nγ′0κ̄nγ0

σ2
ε+nσ2

α

λ0n−(n−1)n(1−λ0)σ2
α0

(1−λ0)(n−1+λ)σ2
ε0(σ2

ε0+nσ2
α0)

1
2

nσ4
ε0+2n(n−1)σ2

ε0σ
2
α0+(nc−1)n2σ2

α0

(σ2
ε0+nσ2

α0)2σ4
ε0
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n
(1−λ0)(σ2

ε0+nσ2
α0)

1
2

n
(σ2
ε0+nσ2

α0)2
1
2

n2

(σ2
ε0+nσ2

α0)2
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c=1

∑nc
i=1{G

(1)
ii,c}2 ... ...∑R

c=1

∑nc
i=1G

(1)
ii,cG

(2)
ii,c
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∑nc
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ii,cG
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∑nc
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ii,cG
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ii,c
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c=1

∑nc
i=1[G

(3)
ii,c]

2

 ,

=


∑R

c=1 nc[
λ0σ2

ε0−(nc−1)(1−λ0)σ2
α0

(1−λ0)(nc−1+λ0)σ2
ε0(σ2

ε0+ncσ2
α0)

]2 ... ...∑R
c=1

nc[λ0σ2
ε0−(nc−1)(1−λ0)σ2

α0][σ4
ε0+(n2

c−nc)σ4
α0+2(nc−1)σ2

ε0σ
2
α0]

2(1−λ0)(nc−1+λ0)σ6
ε0(σ2

ε0+ncσ2
α0)3
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nc[σ4
ε0+(n2

c−nc)σ4
α0+2(nc−1)σ2

ε0σ
2
α0]2

4σ8
ε0(σ2

ε0+ncσ2
α0)4 ...∑R

c=1
nc[λ0σ2

ε0−(nc−1)(1−λ0)σ2
α0]

2(1−λ0)(nc−1+λ0)σ2
ε0(σ2

ε0+ncσ2
α0)3
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c=1

nc[σ4
ε0+(n2

c−nc)σ4
α0+2(nc−1)σ2

ε0σ
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4σ4
ε0(σ2

ε0+ncσ2
α0)4
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c=1

nc
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ε0+ncσ2
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(D.4)

limR→∞
1

NR

Ξ1 =
1

n∗

ā∑
n=a

ω∗nΞ1,n,

Ξ1,n =


n[

λ0σ2
ε0−(n−1)(1−λ0)σ2

α0

(1−λ0)(n−1+λ0)σ2
ε0(σ2

ε0+nσ2
α0)
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ε0−(n−1)(1−λ0)σ2
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ε0+(n2−n)σ4

α0+2(n−1)σ2
ε0σ
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α0]
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ε0(σ2

ε0+nσ2
α0)3

n[σ4
ε0+(n2−n)σ4

α0+2(n−1)σ2
ε0σ

2
α0]2

4σ8
ε0(σ2

ε0+nσ2
α0)4 ...

n[λ0σ2
ε0−(n−1)(1−λ0)σ2

α0]

2(1−λ0)(n−1+λ0)σ2
ε0(σ2

ε0+nσ2
α0)3

n[σ4
ε0+(n2−n)σ4

α0+2(n−1)σ2
ε0σ
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α0]

4σ4
ε0(σ2

ε0+nσ2
α0)4

n
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(1)
c Jc)

2 ... ...∑R
c=1 tr(G

(1)
c Jc)tr(G
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c Jc)
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2 ...∑R
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c Jc)tr(G

(3)
c Jc)
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c Jc)tr(G

(3)
c Jc)

∑R
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(3)
c Jc)
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c
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α0)2 ... ...∑R
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2

n2
c

(1−λ0)(σ2
ε0+ncσ2

α0)3
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c=1

1
2

n2
c

(σ2
ε0+ncσ2
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c=1

1
2
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c
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ε0+ncσ2
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4
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ε0+ncσ2
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1
4

n4
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ε0+ncσ2

α0)4

 , (D.6)

limR→∞
1

NR

Ξ2 =
1

n∗

ā∑
n=a

ω∗nΞ2,n,

Ξ2,n =


n2

(1−λ0)2(σ2
ε0+nσ2

α0)2 ... ...

n2
c

(1−λ0)(σ2
ε0+nσ2

α0)3
1
2

n2

(σ2
ε0+nσ2

α0)4 ...

n3
c

(1−λ0)(σ2
ε0+nσ2

α0)3
1
4

n3

(σ2
ε0+nσ2

α0)4
1
4

n4

(σ2
ε0+nσ2

α0)4
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∑nc
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(1)
ii,c ... ...∑R
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∑nc
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ii,c 0 ...∑R

c=1

∑nc
i=1[G(1)Zγ0]icG

(3)
ii,c 0 0
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(1−λ0)2(nc−1+λ0)σ2
ε0(σ2

ε0+ncσ2
α0)2 ... ...∑R

c=1
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ε0+(n2

c−nc)σ4
α0+2(nc−1)σ2

ε0σ
2
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ε0+ncσ2
α0)3 0 ...∑R

c=1
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ε0+ncσ2
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limR→∞
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NR
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1
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ā∑
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[λ0σ2
ε0−(n−1)(1−λ0)σ2

α0]nZnγ0

(1−λ0)2(n−1+λ0)σ2
ε0(σ2

ε0+nσ2
α0)2 ... ...

[σ4
ε0+(n2−n)σ4

α0+2(n−1)σ2
ε0σ
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α0]n(Znγ0)
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ε0(σ2
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nZnγ0
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Ξ4 =
1

n∗

ā∑
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Appendix E: Proof of Theorem 3.1 and Theorem 3.2

E.1 Proof of Theorem 3.1

To prove the consistency of ϑ̂R in Theorem 3.1, if suffices to prove Proposi-

tion E.1 on this page, Proposition E.2 on page 108 and Proposition E.3 on page 114.

1

Proposition E.1. Q̄(ϑ) = limR→∞N
−1
R EQR(ϑ) exists and is finite and continuous

on Θ.

Proof. Using Lemma C.1, the expected value of the the concentrated log likelihood

function QR(ϑ) in equation (3.17) is

E(QR(ϑ)) = Q
(1)
R (ϑ) +Q

(2)
R (ϑ),

where2

Q
(1)
R (ϑ) = −N

2
ln(2π) + ln|I − λW | − 1

2
ln|Ω(ϑ)|

− 1

2
tr[(I − λ0W )−2(I − λW )2MZ(ϑ)Ω0], (E.1)

Q
(2)
R (ϑ) = −1

2
γ′0Z

′(I − λ0W )−1(I − λW )MZ(ϑ)(I − λW )(I − λ0W )−1Zγ0.(E.2)

1See Lemma 3.1 in Pötscher and Prucha (1991).
2Note that by the quasi-commutative properties of matrix trace and the commutative property

of pIm + sJmtype of matrices,

tr[(I − λ0W )−1(I − λW )MZ(ϑ)Ω0(I − λW )(I − λ0W )−1] = tr[(I − λ0W )−2(I − λW )2MZ(ϑ)Ω0].
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Next I will show that limR→∞N
−1
R Q

(1)
R (ϑ) and limR→∞N

−1
R Q

(2)
R (ϑ) both exist

and are finite. To calculate limR→∞N
−1
R Q

(1)
R (ϑ), first note that by Lemma B.3,

limR→∞
1

NR

tr[(I − λ0W )−2(I − λW )2MZ(ϑ)Ω0]

= limR→∞
1

NR

tr[(I − λ0W )−2(I − λW )2Ω(ϑ)−1Ω0].

Therefore,

limR→∞
1

NR

Q
(1)
R (ϑ) = limR→∞

1

NR

{−N
2
ln(2π) + ln|I − λW | − 1

2
ln|Ω(ϑ)|

− 1

2
tr[(I − λ0W )−2(I − λW )2Ω(ϑ)−1Ω0]}.

Calculating the closed form expression for the trace above with Lemma B.1,

and using the closed form expression for |I −λW |, (I −λW ), |Ω(ϑ)|, and Ω(ϑ)−1 in

equations (B.1), (B.2), (B.3), and (B.4),

limR→∞
1

NR

Q
(1)
R (ϑ)

=limR→∞{−
1

2
ln(2π) +

R

NR

ln(1− λ) +
1

NR

R∑
c=1

[(nc − 1)ln(nc − 1 + λ)]

−NR −R
2NR

ln(σ2
ε )−

1

2NR

R∑
c=1

ln(σ2
α +

1

nc
σ2
ε )−

(1− λ)2

2NR(1− λ0)2

R∑
c=1

(σ2
ε0 + ncσ

2
α0)

(σ2
ε + ncσ2

α)

− σ2
ε0

2NRσ2
ε

R∑
c=1

(nc − 1)(nc − 1 + λ)2

(nc − 1 + λ0)2
}.

Recall that the number of groups with size n is Rn. Under Assumption 3, a 6

nc 6 ā and limR→∞Rn/R = ω∗n. The limit of average group size is limR→∞NR/R =
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n∗. For n = a, ..., ā, limR→∞NR/Rn = ω∗n/n
∗.In all,

limR→∞
1

NR

E(Q
(1)
R (ϑ))

=limR→∞{−
1

2
ln(2π) +

R

NR

ln(1− λ) +
1

NR

ā∑
n=a

Rn[(n− 1)ln(n− 1 + λ)]

− 1

2NR

ā∑
n=a

Rn(n− 1)ln(σ2
ε )−

1

2NR

ā∑
n=a

Rnln(σ2
α +

1

n
σ2
ε )

− (1− λ)2

2NR(1− λ0)2

ā∑
n=a

Rn
(σ2

ε0 + nσ2
α0)

(σ2
ε + nσ2

α)
− σ2

ε0

2NRσ2
ε

ā∑
n=a

Rn
(n− 1)(n− 1 + λ)2

(n− 1 + λ0)2
}.

=− 1

2
ln(2π) +

1

n∗
ln(1− λ) +

1

n∗

ā∑
n=a

ω∗n[(n− 1)ln(n− 1 + λ)]

−n
∗ − 1

2n∗
ln(σ2

ε )−
1

2n∗

ā∑
n=a

ω∗nln(σ2
α +

1

n
σ2
ε )−

(1− λ)2

2n∗(1− λ0)2

ā∑
n=a

ω∗n
(σ2

ε0 + nσ2
α0)

(σ2
ε + nσ2

α)

− σ2
ε0

2n∗σ2
ε

ā∑
n=a

ω∗n
(n− 1)(n− 1 + λ)2

(n− 1 + λ0)2
}

=− 1

2
ln(2π) +

1

n∗

ā∑
n=a

ω∗ng(n, ϑ), (E.3)

where

g(n, ϑ) = ln(1− λ) + (n− 1)ln(n− 1 + λ)− n− 1

2
ln(σ2

ε )−
1

2
ln(σ2

α +
1

n
σ2
ε )

− 1

2

(1− λ)2

(1− λ0)2

(σ2
ε0 + nσ2

α0)

(σ2
ε + nσ2

α)
− (n− 1)

2

(n− 1 + λ)2

(n− 1 + λ0)2

σ2
ε0

σ2
ε

. (E.4)

Under Assumptions 1, 2, 3, and 4, g(n, ϑ) is finite and continuous, so limR→∞N
−1
R E(Q

(1)
R (ϑ))

is finite and continuous.

Next I will calculate limR→∞N
−1
R Q

(2)
R (ϑ). With Q

(2)
R in equation (E.2), and

MZ(ϑ) in equation (3.18),
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limR→∞
1

NR

Q
(2)
R (ϑ)

=limR→∞γ
′
0Z
′(I − λ0W )−1(I − λW )Ω(ϑ)−1(I − λW )(I − λ0W )−1Zγ0

−γ′0{[limR→∞
1

NR

Z ′(I − λ0W )−1(I − λW )Ω(ϑ)−1Z][limR→∞
1

NR

Z ′Ω(ϑ)−1Z]−1

×[limR→∞
1

NR

Z ′Ω(ϑ)−1(I − λW )(I − λ0W )−1Z]}γ0. (E.5)

Using Lemma B.1,

(Ic − λ0Wc)
−1(Ic − λWc)Ωc(ϑ)−1 =

1

σ2
ε

(
nc − 1 + λ

nc − 1 + λ0

)I∗c +
1− λ
1− λ0

1

σ2
ε + ncσ2

α

J∗c ,

(Ic − λ0Wc)
−2(Ic − λWc)

2Ωc(ϑ)−1 =
1

σ2
ε

(
nc − 1 + λ

nc − 1 + λ0

)2I∗c + (
1− λ
1− λ0

)2 1

σ2
ε + ncσ2

α

J∗c .

Also note that Z ′cI∗cZc = Z∗′c Z
∗
c and Z ′cJ∗cZc = ncZ̄

′
cZ̄c. Therefore,

Z ′(I−λ0W )−1(I−λW )Ω(ϑ)−1Z =
1

σ2
ε

R∑
c=1

(
nc − 1 + λ

nc − 1 + λ0

)Z∗′c Z
∗
c+

1− λ
1− λ0

R∑
c=1

ncZ̄
′
cZ̄c

σ2
ε + ncσ2

α

,

Z ′(I − λW )−2
0 (I − λW )2Ω(ϑ)−1Z =

1

σ2
ε

R∑
c=1

(
nc − 1 + λ

nc − 1 + λ0

)2Z∗′c Z
∗
c + (

1− λ
1− λ0

)2

R∑
c=1

ncZ̄
′
cZ̄c

σ2
ε + ncσ2

α

.

I have shown in Section 3.2 that limR→∞N
−1
R Z ′Ω(ϑ)−1Z exists and has a closed

form expression in equation (3.12). By Assumption 3, limR→∞Rn/NR = ω∗n/n
∗.

By Assumption 5, limR→∞R
−1
n

∑
c∈In Z

∗′
c Z
∗
c = κ∗n, limR→∞R

−1
n

∑
c∈In Z̄

′
cZ̄c = κ̄n,

where κ∗n and κ̄n are both finite. In all,

limR→∞
1

NR

Z ′(I − λW )−1
0 (I − λW )Ω(ϑ)−1Z

=limR→∞
1

NR

1

σ2
ε

ā∑
n=a

Rn(
n− 1 + λ

n− 1 + λ0

)(
1

Rn

∑
c∈In

Z∗′c Z
∗
c )

+limR→∞
1

NR

1− λ
1− λ0

ā∑
n=a

Rn
n

σ2
ε + nσ2

α

(
1

Rn

∑
c∈In

Z̄ ′cZ̄c)

=
1

n∗

ā∑
n=a

ω∗n[(
n− 1 + λ

n− 1 + λ0

)
κ∗n
σ2
ε

+ (
1− λ
1− λ0

)
nκ̄n

σ2
ε + nσ2

α

], (E.6)
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limR→∞
1

NR

Z ′(I − λW )−2
0 (I − λW )2Ω(ϑ)−1Z

=limR→∞
1

NR

1

σ2
ε

ā∑
n=a

Rn(
n− 1 + λ

n− 1 + λ0

)2(
1

Rn

∑
c∈In

Z∗′c Z
∗
c )

+limR→∞
1

NR

(
1− λ
1− λ0

)2

ā∑
n=a

Rn
n

σ2
ε + nσ2

α

(
1

Rn

∑
c∈In

Z̄ ′cZ̄c)

=
1

n∗

ā∑
n=a

ω∗n[(
n− 1 + λ

n− 1 + λ0

)2κ∗n
σ2
ε

+ (
1− λ
1− λ0

)2 nκ̄n
σ2
ε + nσ2

α

]. (E.7)

Plugging equations (3.12), (E.6), and (E.7) into equation (E.5),

limR→∞
1

NR

Q
(2)
R (ϑ)

=
1

n∗

ā∑
n=a

ω∗n[(
n− 1 + λ

n− 1 + λ0

)2γ
′
0κ∗nγ0

σ2
ε

+ (
1− λ
1− λ0

)2 ncγ
′
0κ̄nγ0

σ2
ε + ncσ2

α

]

− 1

n∗
γ′0{

ā∑
n=a

ω∗n[(
n− 1 + λ

n− 1 + λ0

)
κ∗n
σ2
ε

+ (
1− λ
1− λ0

)
ncκ̄n

σ2
ε + ncσ2

α

]}{
ā∑

n=a
ω∗n(

κ∗n
σ2
ε

+
ncκ̄n

σ2
ε + ncσ2

α

)}−1

×{
ā∑

n=a
ω∗n[(

n− 1 + λ

n− 1 + λ0

)
κ∗n
σ2
ε

+ (
1− λ
1− λ0

)
ncκ̄n

σ2
ε + ncσ2

α

]}γ0. (E.8)

Since κ∗n, κ̄n and n are finite, limR→∞N
−1
R E(Q

(2)
R (ϑ)) is finite and continous. In all,

Q̄(ϑ) = limR→∞N
−1
R E(QR(ϑ)) exists and is finite and continuous on Θ.

Proposition E.2. The parameter space Θ is compact and ϑ0 is the unique maxi-

mizer of Q̄(ϑ) on Θ.

The compactness of Θ follows from Assumptions 1, 2, and 4. Since Q̄(ϑ) =

limR→∞N
−1
R [Q

(1)
R (ϑ) + Q

(2)
R (ϑ)], and the closed form for limR→∞N

−1
R Q

(1)
R (ϑ) is in

equation (E.3),

Q̄(ϑ) = −1

2
ln(2π) +

1

n∗

ā∑
n=a

ω∗ng(n, ϑ) + limR→∞N
−1
R Q

(2)
R (ϑ). (E.9)

To prove Proposition E.2, it then suffices to show Lemma E.1, Lemma E.2 and

Lemma E.3 below.
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Lemma E.1. Under Assumptions 1, 2, 3, and 5, ϑ0 is a global maximizer of Q(2)
R (ϑ)

on Θ, Q(2)
R (ϑ)) 6 Q

(2)
R (ϑ0)) for any ϑ ∈ Θ.

Remark E.1. As shown above, limR→∞N
−1
R E(Q

(2)
R (ϑ)) exists and is finite. The

lemma therefore implies that limR→∞N
−1
R Q

(2)
R (ϑ)) 6 limR→∞N

−1
R Q

(2)
R (ϑ0)) for all

ϑ ∈ Θ.

Proof. Define a projection matrix M̃Z(ϑ) as

M̃Z(ϑ) = I − Ω−1/2Z ′(Z ′Ω(ϑ)Z)−1ZΩ−1/2.

Then MZ(ϑ) = Ω(ϑ)−1/2M̃Z(ϑ)Ω−1/2(ϑ), Q(2)
R (ϑ) can be rewritten as

Q
(2)
R (ϑ) = −1

2
ηZ(ϑ)′M̃Z(ϑ)ηZ(ϑ),

where

ηZ(ϑ) = Ω(ϑ)−1/2(I − λW )(I − λ0W )−1Zγ0.

Since M̃Z(ϑ) is a projection matrix, it is positive semidefinite,

η(ϑ)′M̃Z(ϑ)η(ϑ) = η(ϑ)′M̃ ′
Z(ϑ)M̃Z(ϑ)η(ϑ)

= [M̃Z(ϑ)η(ϑ)]′[M̃Z(ϑ)η(ϑ)]

> 0.

Therefore Q(2)
R (ϑ) 6 0. Also note that

Q
(2)
R (ϑ0) = γ′0Z

′MZ(ϑ0)Zγ0 = 0.

Therefore, ϑ0 is a global maximizer of Q(2)
R (ϑ) on Θ.

Note that ϑ0 is not the unique global maximizer of Q(2)
R (ϑ0). For ϑ∗ =

(λ∗, σ2∗
ε , σ

2∗
α ) ∈ Θ, Q(2)

R (ϑ∗) = 0 as long as λ∗ = λ0.

Lemma E.2. Under Assumptions 1-5, ϑ0 is a global maximizer of g(n, ϑ) on Θ for

n = a, ..., ā.
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Proof. It can be shown that the Hessian matrix ∂2g(n, ϑ)/∂ϑ∂ϑ′ is singular, g(n, ϑ) is

flat on a two-dimensional surface (ζ1(n, ϑ), ζ2(n, ϑ)) defined on the three dimensional

parameter space Θ, where

ζ1(n, ϑ) =
(1− λ)2

(σ2
ε + nσ2

α)
, (E.10)

ζ2(n, ϑ) =
(n− 1 + λ)2

σ2
ε

. (E.11)

Note that ζ1(n, ϑ) > 0 and ζ2(n, ϑ) > 0,

g(n, ϑ) =
1

2
lnζ1(n, ϑ) +

(n− 1)

2
lnζ2(n, ϑ)− 1

2

ζ1(n, ϑ)

ζ1(n, ϑ0)
− n− 1

2

ζ2(n, ϑ)

ζ2(n, ϑ0)
. (E.12)

The first order derivates of g(n, ϑ) with respect to ζ1(n, ϑ) and ζ2(n, ϑ) are

∂g(n, ϑ)

∂ζ1(n, ϑ)
=

1

2
(

1

ζ1(n, ϑ)
− 1

ζ1(n, ϑ0)
), (E.13)

∂g(n, ϑ)

∂ζ2(n, ϑ)
=
n− 1

2
(

1

ζ2(n, ϑ)
− 1

ζ2(n, ϑ0)
). (E.14)

The first order conditions are ζ1(n, ϑ) = ζ1(n, ϑ0) and ζ2(n, ϑ) = ζ2(n, ϑ0).

The second derivatives are

∂2g(n, ϑ)

∂ζ1(n, ϑ)2
= −1

2

1

ζ1(n, ϑ)2
< 0, (E.15)

∂2g(n, ϑ)

∂ζ2(n, ϑ)2
= −n− 1

2

1

ζ2(n, ϑ)2
< 0, (E.16)

∂2g(n, ϑ)

∂ζ1(n, ϑ)∂ζ2(n, ϑ)
= 0. (E.17)

The Hessian matrix is negative definite. Any ϑ∗ ∈ Θ satisfying the first order

conditions ζ1(n, ϑ∗) = ζ1(n, ϑ0) and ζ2(n, ϑ∗) = ζ2(n, ϑ0) is a global maximizer of

g(n, ϑ). Therefore, the global maximizer of g(n, ϑ) on Θ is defined by:

ζ1(n, ϑ∗) = ζ1(n, ϑ0)⇐⇒ (1− λ∗)2

(1− λ0)2
=

(nσ2∗
α + σ2∗

ε )

(nσ2
α0 + σ2

ε0)
, (E.18)

ζ2(n, ϑ∗) = ζ2(n, ϑ0)⇐⇒ (n− 1 + λ∗)2

(n− 1 + λ0)2
=
σ2∗
ε

σ2
ε0

(E.19)
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If equations (E.18) and (E.18) hold, ϑ∗ is a global maximizer of g(n, ϑ) on Θ. It’s

easy to see that ϑ0 satisfies the two conditions for any n, so ϑ0 is a global maximizer

of g(n, ϑ) for any n. Hence ϑ0 is a global maximizer of
∑ā

n=a ω
∗
ng(n, ϑ).

Lemma E.3. Under Assumptions 1-5, for any ϑ∗ ∈ Θ and ϑ∗ 6= ϑ0, g(n1, ϑ0) =

g(n1, ϑ
∗) and g(n2, ϑ0) = g(n2, ϑ

∗) do not hold simultaneously if n1 6= n2.

The idea behind Lemma E.2 and Lemma E.3 goes as follows. For each n,

there is a two-dimensional surface (ζ1(n, ϑ), ζ2(n, ϑ)) in the three dimensional space

Θ that globally maximizes g(n, ϑ). The true parameter ϑ0 is on this surface for any

n. Therefore ϑ0 is a global maximizer of g(n, ϑ) for any n. With variation in group

size, the two-dimensional maximization surface (ζ1(n, ϑ), ζ2(n, ϑ)) for each g(n, ϑ)

is different, and ϑ0 is the unique interception of these surfaces. Therefore ϑ0 is the

unique global maximizer of
∑ā

n=a ω
∗
ng(n, ϑ).

Proof of Lemma E.3. By Lemma E.2, ϑ0 is a global maximizer of g(n, ϑ) on Θ for

any n. To have g(n1, ϑ0) = g(n1, ϑ
∗) and g(n2, ϑ0) = g(n2, ϑ

∗), we need ϑ∗ to be

a global maximizer for both g(n1, ϑ) and g(n2, ϑ). Recall that ϑ∗ = (λ∗, σ2∗
ε , σ

2∗
α )

is a global maximizer of of g(n, ϑ) if it satisfies equations (E.18) and (E.19). From

equation (E.19),

σ2∗
ε =

(n− 1 + λ∗)2

(n− 1 + λ0)2
σ2
ε0. (E.20)

Plugging equation (E.20) into equation (E.18), the global maximizer should satisfy

equation (E.20) and the following condition:

(λ∗ − λ0)%(n, λ∗) = [
(1− λ∗)2

(1− λ0)2
σ2
α0 − σ2∗

α ]
(1− λ0)2

σ2
ε0

, (E.21)
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where

%(n, λ∗) =
n[(1− λ0) + (1− λ∗)]− 2(1− λ0)(1− λ∗)

(n− 1 + λ0)2
. (E.22)

Given equations (E.20) and (E.21), ϑ∗ 6= ϑ0 is equivalent to λ∗ 6= λ0. 3Note

that the right hand side of equation (E.21) does not depend on group size n. With

λ∗ 6= λ0, a necessary condition for equation (E.21) to hold for both n1 and n2 is

that %(n1, λ
∗) = %(n2, λ

∗). If %(n1, λ
∗) 6= %(n2, λ

∗), then g(n1, ϑ0) = g(n1, ϑ
∗) and

g(n2, ϑ0) = g(n2, ϑ
∗) do not hold simultaneously. Therefore, it suffices to show that

if n1 6= n2, %(n1, λ
∗) 6= %(n2, λ

∗).

Let l0 = 1 − λ0 and l∗ = 1 − λ∗. Then under Assumption 4, 0 < l0 < a,

0 < l∗ < a, where a is the lower bound of nc and a > 2.Let m be the continuous

counterpart of n, m > a,

%̃(m, l∗) =
m(l0 + l∗)− 2l0l

∗

(m− l0)2
. (E.23)

Therefore %(n, λ∗) = %̃(m, l∗) if n = m. Below I will show that %̃(m, l∗) is decreasing

in m. The first derivative of %̃(m, l∗) with respect to m is

∂%̃(m, l∗)

∂m
=
−l02 −m(l0 + l∗) + 3l0l

∗

(m− l0)3
. (E.24)

3Clearly ϑ∗ 6= ϑ0 if λ∗ 6= λ0. If λ∗ = λ0, then equation (E.20) gives σ2∗
ε = σ2

ε0, and equa-
tion (E.21) gives σ2∗

α = σ2
α0. Therefore if ϑ∗ 6= ϑ0, λ∗ 6= λ0. So λ∗ = λ0 is equivalent to ϑ∗ = ϑ0.
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The denominator (m− l0)3 > 0 as m > a and l0 < a. Since l0 + l∗ > 0 and m > a,

the numerator

−l02 −m(l0 + l∗) + 3l0l
∗ 6 −l02 − 2(l0 + l∗) + 3l0l

∗

= −l20 − 2l0 + (3l0 − 2)l∗
6 −l20 − 2l0 + 2 ∗ (3l0 − 2) if 2/3 6 l0 < a

6 −l20 − 2l0 if 0 < l0 < 2/3

(E.25)

When 2/3 6 l0 < a, −l20 − 2l0 + 2 ∗ (3l0 − 2) = −(l0 − 2)2 < 0. When 0 < l0 < 2/3,

−l20 − 2l0 < 0. In all, the numerator is negative. Therefore ∂%̃(m, l∗)/∂m < 0

and %̃(m, l∗) is decreasing in m. If n1 6= n2, then %̃(n1, l
∗) 6= %̃(n2, l

∗) and hence

%(n1, λ
∗) 6= %(n2, λ

∗). Therefore if λ∗ 6= λ0 , equation (E.21) does not hold for both

n1 and n2 if n1 6= n2. As a result, g(n1, ϑ0) = g(n1, ϑ
∗) and g(n2, ϑ0) = g(n2, ϑ

∗)

cannot hold simultaneously if n1 6= n2.

Identification uniqueness follows from Lemma E.1, Lemma E.2, and Lemma E.3.

Proof of Proposition E.2. Given Q̄(ϑ) in equation (E.9), and that for any ϑ∗ ∈ Θ

and ϑ∗ 6= ϑ0, limR→∞N
−1[Q

(2)
R (ϑ0)−Q(2)(ϑ∗)] > 0 (Lemma E.1),

Q̄(ϑ0)− Q̄(ϑ∗) >
1

n∗

ā∑
n=a

ω∗n[g(n, ϑ0)− g(n, ϑ∗)]. (E.26)

Under Assumption 3, 1/n∗ > 1/ā > 0. It suffices to show that for any for any

ϑ∗ ∈ Θ and ϑ∗ 6= ϑ0,
∑ā

n=a ω
∗
n[g(n, ϑ0)− g(n, ϑ∗)] > 0.
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Under Assumption 3, there exists some ξ∗ω > 0 and n1 6= n2, such that ω∗n1
> ξ∗ω

and ω∗n2
> ξ∗ω. Since g(n, ϑ0)− g(n, ϑ∗) > 0 for any a 6 n 6 ā (Lemma E.2),

ā∑
n=a

ω∗n[g(n, ϑ0)− g(n, ϑ∗)] > ξ∗ω[g(n1, ϑ0)− g(n1, ϑ
∗) + g(n2, ϑ0)− g(n2, ϑ

∗)].

(E.27)
By Lemma E.3, if ϑ∗ 6= ϑ0 and n1 6= n2, g(n1, ϑ0) − g(n1, ϑ

∗) > 0 or g(n2, ϑ0) −

g(n2, ϑ
∗) > 0 or both. Therefore, for any ξϑ > 0, there exists some ξg > 0 such that

infϑ∗∈Θ,||ϑ∗−ϑ0||>ξϑ{[g(n1, ϑ0)− g(n1, ϑ
∗)] + [g(n2, ϑ0)− g(n2, ϑ

∗)]} > ξg. (E.28)

Combining equations (E.26), (E.27) and (E.28), for any ξϑ > 0, there exists

some ξg > 0 and ξ∗ω > 0, such that

infϑ∗∈Θ,||ϑ∗−ϑ0||>ξϑ [Q̄(ϑ0)− Q̄(ϑ∗)] >
1

ā
ξ∗ωξ
∗
g > 0.

In sum, ϑ0 is the unique global maximizer of Q̄(ϑ) = limR→∞N
−1
R E[QR(ϑ)].

Proposition E.3. supϑ∈Θ|N−1
R QR(ϑ)− Q̄(ϑ)| →p 0 as R goes to infinity.

Proof of this proposition is in Appendix F on page 119.

E.2 Proof of Theorem 3.2

To prove Theorem 3.2, I first derive the score function here. Then I show the

convergence of the Hessian matrix in Proposition E.4. Next I show the asymptotic

normality of the score function at ϑ0 in Proposition E.5. Proof of Theorem 3.2 is

based on Proposition E.4 and Proposition E.5, and is at the end of this section.

Since ϑ = (λ, σ2
ε , σ

2
α), I denote λ as ϑ1, σ2

ε as ϑ2 and σ2
α as ϑ3. Note that

∂Ω(ϑ)/∂ϑ2 = I and ∂Ω(ϑ)/∂ϑ3 = J̃ . The first derivatives of QR(ϑ) with respect to
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ϑ are

∂QR(ϑ)

∂λ
= −tr[(I − λW )−1W ] + Y ′(I − λW )MZ(ϑ)WY, (E.29)

For i = 2, 3,

∂QR(ϑ)

∂ϑi
= −1

2
tr(Ω(ϑ)−1 ∂Ω

∂ϑi
)+

1

2
Y (I−λW )MZ(ϑ)

∂Ω(ϑ)

∂ϑi
MZ(ϑ)(I−λW )Y. (E.30)

Since Y = (I − λW0)−1(Zγ0 +U) and Z ′MZ0 = 0, first order derivatives at ϑ0

are

∂QR(ϑ)

∂λ
|ϑ0 = −tr[(I − λ0W )−1W ] + U ′MZ0W (I − λ0W )−1(Zγ0 + U). (E.31)

∂QR(ϑ)

∂ϑi
|ϑ0 = −1

2
tr(Ω−1

0

∂Ω

∂ϑi
|ϑ0) +

1

2
U ′MZ0

∂Ω

∂ϑ
|ϑ0MZ0U, i = 1, 2. (E.32)

Using Lemma C.1 and the commutative properties of diagRc=1{pcIc+qcJc} type

of matrices in Lemma A.1, the expected value of the score function at ϑ0 is

E[
∂QR(ϑ)

∂λ
]ϑ0 = −tr[(I − λ0W )−1W ] + tr[MZ0W (I − λ0W )−1Ω0]

= −tr[PZ0W (I − λ0W )−1Ω0],

E[
∂QR(ϑ)

∂ϑi
]ϑ0 = −1

2
tr(Ω−1

0

∂Ω

∂ϑi
|ϑ0) +

1

2
tr(MZ0

∂Ω

∂ϑ
|ϑ0MZ0Ω0)

= −tr(PZ0
∂Ω0

∂ϑi
) +

1

2
tr(PZ0

∂Ω0

∂ϑi
PZ0Ω0), i = 2, 3.

Note thatW (I−λ0W )−1Ω0, ∂Ω0/∂ϑi, and Ω0 are all in the form of diagRc=1{pcI∗c+

scJ
∗
c }, with pc and sc uniformly bounded in absolute value. Using Lemma B.3,

limR→∞N
−1
R tr[PZ0W (I − λ0W )−1Ω0] = 0, (E.33)

limR→∞N
−1
R tr[PZ0

∂Ω0

∂ϑi
] = 0, (E.34)

limR→∞N
−1
R tr[PZ0

∂Ω0

∂ϑi
PZ0Ω0] = 0. (E.35)

Therefore, limR→∞E[N−1
R ∂QR(ϑ)/∂ϑi]ϑ0 = 0 but E[N−1

R ∂QR(ϑ)/∂ϑi]ϑ0 6= 0. The

expected value of the score function is not 0 because we are using the concentrated
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maximum likelihood estimator here. Concentrating out γ leads to loss of degree of

freedom.

Proposition E.4. N−1
R ∂2QR(ϑ̂R)/∂ϑ̂∂ϑ̂′ converges to matrix Γ0 uniformly as R goes

to infinity and ϑ̂R → ϑ0, where Γ0 = 1
n∗

∑ā
n=a ω

∗
nΞ0,n, Ξ0,n is in D of Appendix D.

Proof. Recall that λ = ϑ1, σ2
ε = ϑ2 , σ2

α = ϑ3. Note that Ω(ϑ) = σ2
ε I + σ2

αJ̃ , for

i, j = 1, 2, 3, we have ∂2Ω(ϑ)/∂ϑi∂ϑj = 0. Therefore, the second derivatives are

∂2QR(ϑ)

∂λ2
= −tr[(I − λW )−2W 2]− Y ′WMZ(ϑ)WY, (E.36)

∂2QR(ϑ)

∂λ∂ϑi
= −Y ′(I − λW )MZ(ϑ)

∂Ω(ϑ)

∂ϑi
MZ(ϑ)WY, i = 2, 3, (E.37)

∂2QR(ϑ)

∂ϑi∂ϑj
=

1

2
tr(Ω−2 ∂Ω

∂ϑi

∂Ω

∂ϑj
)− Y ′(I − λW )MZ(ϑ)

∂Ω

∂ϑi
MZ(ϑ)

∂Ω

∂ϑj
MZ(ϑ)(I − λW )Y, i, j 6= 1.(E.38)

Therefore ∂2QR(ϑ)/∂ϑ∂ϑ′ exits and is continuous in ϑ ∈ Θ.

Using Lemma C.1 for the expected value of linear quadratic forms,

E[
∂2QR(ϑ)

∂λ2
]ϑ0 = −tr[(I − λ0W )−2W 2]− γ′0Z ′(I − λ0W )−1WMZ0W (I − λ0W )−1Zγ0,

− tr[Ω0(I − λ0W )−1WMZ0W (I − λ0W )−1] (E.39)

E[
∂2QN

∂λ∂ϑi
]ϑ0 = −tr[∂Ω(ϑ)

∂ϑi
MZ0W (I − λ0W )], i = 2, 3, (E.40)

E[
∂2QR(ϑ)

∂ϑi∂ϑj
]ϑ0 =

1

2
tr(Ω−2 ∂Ω

∂ϑi

∂Ω

∂ϑj
)|ϑ0 − tr(

∂Ω

∂ϑi
MZ0

∂Ω

∂ϑj
Ω−1

0 ), i, j 6= 1.(E.41)

Using Lemma B.3,

limR→∞
1

NR

tr[Ω0(I−λ0W )−1WMZ0W (I−λ0W )−1] = limR→∞
1

NR

tr[(I−λ0W )−2W 2],

limR→∞
1

NR

tr[
∂Ω(ϑ)

∂ϑi
MZ0W (I − λ0W )] = limR→∞

1

NR

tr[
∂Ω(ϑ)

∂ϑi
Ω−1

0 W (I − λ0W )],

limR→∞
1

NR

tr(
∂Ω

∂ϑi
MZ0

∂Ω

∂ϑj
Ω−1

0 ) = limR→∞
1

NR

tr(Ω−2
0

∂Ω

∂ϑi

∂Ω

∂ϑj
).

Therefore,

limR→∞
1

NR

E[∂QR(ϑ)/∂ϑ∂ϑ′]ϑ0 = −limR→∞
1

NR

Ξ0,
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where Ξ0 is defined in equation (D.2) in Appendix D. Under Assumptions 3 and 5,

limR→∞
1

NR

Ξ0 =
1

n∗

ā∑
n=a

ω∗nΞ0,n,

where Ξ0,n is in equation (D.3) in Appendix D. For more details of derivation, see

Appendix D. Under Assumption 6,

limR→∞
1

NR

E(
∂2QR(ϑ)

∂ϑ∂ϑ′
)ϑ0 = −limR→∞

1

NR

Ξ0 = − 1

n∗

ā∑
n=a

ω∗nΞ0,n = −Γ0. (E.42)

Finally, 1
NR

∂2QR(ϑ̂)
∂ϑ∂ϑ′

converges to limR→∞
1
NR
E(∂

2QR(ϑ)
∂ϑ∂ϑ′

)ϑ0 uniformly in proba-

bility as ϑ̂R →p ϑ0 and R goes to infinity (See proof in Appendix F). In all, we have

1
NR
E(∂

2QR(ϑ̂R)
∂ϑ∂ϑ′

)→p −Γ0 as ϑ̂R →p ϑ0 and R→∞.

Proposition E.5. N−1/2(∂QR(ϑ)/∂ϑ)ϑ0

D−→ N(0,Ψ0), where Ψ0 is defined in equa-

tion (3.21).

Proof. From equation (E.31) and equation (E.32), the score function at ϑ0 is

(
∂QR(ϑ)

∂ϑ
)ϑ0 = f1R(ϑ0)− f2R(ϑ0), (E.43)

where

f1R(ϑ0) =


U ′Ω−1

0 W (I − λ0W )−1(U + Zγ0)

1
2
U ′Ω−2

0 U

1
2
U ′Ω−2

0 J̃U

−

tr[Ω0W (I − λ0W )−1]

1
2
tr(Ω−1

0 )

1
2
tr(Ω0J̃)

 ,(E.44)

f2R(ϑ0) =


U ′PZ0W (I − λ0W )−1(U + Zγ0)

1
2
U ′[PZ0Ω−1

0 + Ω−1
0 PZ0 − PZ0PZ0]U

1
2
U ′[PZ0J̃Ω−1

0 + Ω−1
0 PZ0J̃ − PZ0J̃PZ0]U

 .
Using Lemma C.1,

Ef2R(ϑ0) =


tr[PZ0W (I − λ0W )−1Ω0]

1
2
tr[2PZ0 − Ω0PZ0PZ0]

1
2
tr[2PZ0J̃ − PZ0J̃PZ0Ω0]

 .
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By Lemma B.3, limR→∞
1√
NR
Ef2R(ϑ0) = 0, and limR→∞

1
NR
V ar[f2R(ϑ0)] = 0. By

Chebychev’s inequality, limR→∞
1√
NR
f2R(ϑ)→p 0. Therefore, it suffices to show that

N−1/2f1R(ϑ0)
D−→ N(0,Ψ0).

By Lemma C.1, E(U ′Ω−1
0 W (I − λ0W )−1(U + Zγ0)) = tr[Ω0W (I − λ0W )−1],

E(U ′Ω−2
0 U) = tr(Ω−1

0 ), and E(U ′Ω−2
0 J̃U) = tr(Ω0J̃). Therefore Ef1R(ϑ0) = 0.

Using Lemma C.1, Lemma B.1 and Assumption 5,

limR→∞
1

NR

E[f1R(ϑ0)f1R(ϑ0)]

=
1

n∗

ā∑
n=a

ω∗n[Ξ0,n + (µ(4)
ε − 3σ

(4)
ε0 )Ξ1,n + (µ(4)

α − 3σ
(4)
α0 )Ξ2,n + µ(3)

ε Ξ3,n + µ(3)
α Ξ4,n],

where Ξ0,n, Ξ1,n, Ξ2,n, Ξ3,n, and Ξ4,nare defined in equations (D.3), (D.5), (D.7),

(D.9), (D.11) in Appendix D respectively. Under Assumption 6, the limiting matrix

of the information matrix is limR→∞
1
NR
E[f1R(ϑ0)f1R(ϑ0)]]ϑ0 = Ψ0. For more details,

see Appendix D.

Note that f1R(ϑ0) = [S(1), S
(2)
2 , S

(3)
3 ], with for i = 1, 2, 3, S(l) can be written

in the form of S(l) = U ′A(l)U + U ′B(l)Zγ0, where A(l), B(l) can all be written in the

form of diagRc=1{pcI∗ + qcJc}. Using the CLT for vectors of linear quadratic forms

in Theorem C.2, 1√
NR
f1R(ϑ0)

D−→ N(0,Ψ0), and hence 1√
NR

(∂QR
∂ϑ

)ϑ0

D−→ N(0,Ψ0).

With Proposition E.4 and Proposition E.5, Theorem 3.2 follows.

Proof of Theorem 3.2. From equations (E.36),(E.37), and (E.38), the second deriva-

tive ∂2QR(ϑ)/∂ϑ∂ϑ′ exists and is continuous in ϑ ∈ Θ. By Proposition E.4, 1
NR

∂2QR(ϑ̂R)

∂ϑ̂∂ϑ̂′

converges to matrix −Γ0 as R goes to infinity and ϑ̂R → ϑ0. By Proposition E.5,

N−1/2(∂QR(ϑ)/∂ϑ)ϑ0

D−→ N(0,Ψ0). Therefore,
√
N(ϑ̂R−ϑ0)

D−→ NR(0,Φ0) as R goes

to infinity, where Φ0 = Γ−1
0 Ψ0Γ−1

0 .
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Appendix F: Proof of Uniform convergence

In this section, I will prove the following two arguments.

1. supϑ∈Θ|N−1
R QR(ϑ)− Q̄(ϑ)| →p 0 as R goes to infinity.

2. supϑ∈ΘN−1
R |

∂2QN
∂ϑi∂ϑj

− E ∂2QN
∂ϑi∂ϑj

| →p 0 as R goes to infinity.

Note that limR→∞N
−1
R EQR(ϑ) = Q̄(ϑ),

QR(ϑ)− EQR(ϑ) = U ′A1(ϑ)U − tr(A1(ϑ))− 2U ′A1(ϑ)Zγ0,

where

A1(ϑ) = −1

2
(I − λ0W )−1I − λW )MZ(ϑ)(I − λW )(I − λ0W )−1.

Also, the hessian matrix can be written as

∂2QR(ϑ)

∂λ2
= (Zγ0 + U)′A2(ϑ)(Zγ0 + U)− tr[(I − λW )−2W 2],

∂2QR(ϑ)

∂λ∂ϑi
= (Zγ0 + U)′A

(i)
3 (ϑ)(Zγ0 + U)− tr[(I − λW )−2W 2], i = 2, 3,

∂2QR(ϑ)

∂ϑi∂ϑj
=

1

2
tr(Ω−2 ∂Ω

∂ϑi

∂Ω

∂ϑj
)− (Zγ0 + U)′A

(i,j)
4 (ϑ)(Zγ0 + U), i 6= 1, j 6= 1

where

A2(ϑ) = (I − λ0W )−1WMZ(ϑ)W (I − λ0W )−1,

A
(i)
3 (ϑ) = (I − λ0W )−1(I − λW )MZ(ϑ)

∂Ω(ϑ)

∂ϑi
MZ(ϑ)(I − λW )(I − λ0W )−1,

A
(i,j)
4 (ϑ) = (I − λ0W )−1(I − λW )MZ(ϑ)

∂Ω(ϑ)

∂ϑi
MZ(ϑ)

∂Ω

∂ϑj
MZ(ϑ)(I − λW )(I − λ0W )−1.

Let G be the set of matrices which can be written in the form of diagRc=1{pc(ϑ)I∗c+

sc(ϑ)J∗c }, where both pc(ϑ) and sc(ϑ) are uniformly bounded in absolute value,
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continuously differentiable in the interior of Θ, and the derivatives are uniformly

bounded,

G = {diagRc=1{pc(ϑ)Ic + sc(ϑ)Jc}|}, (F.1)

where supϑ∈Θ|pc(ϑ)| < āg, supϑ∈Θsc(ϑ) < āg, supϑ∈int(Θ)|∇ϑpc(ϑ)| < āg,supϑ∈int(Θ)|sc(ϑ)| <

āg, āg is a finite constant.

Note A1(ϑ), A2(ϑ), A(i)
3 (ϑ) and A(i,j)

4 (ϑ) can all be written as the products of

matrices in the following matrix set

A = {0N×N , IN , J̃ ,W, (I − λW ), (I − λ0W )−1,Ω(ϑ)−1,Ω0,MZ(ϑ)} (F.2)

= A ∗ ∪ {MZ(ϑ)}, (F.3)

where

A ∗ = {0N×N , IN , J̃ ,W, (I − λW ), (I − λ0W )−1,Ω(ϑ)−1,Ω0}. (F.4)

Note that A ∗ ⊂ G , and A ∗ ∩ {MZ(ϑ)} = ∅.

If the elements of matrixA(ϑ) is uniformly bounded in absolute value, supϑ∈Θ|A(ϑ)|ij <

āA, where āA is a finite constant, I denote A(ϑ) = OU(1). If the elements of ma-

trix A(ϑ) is uniformly of order 1/NR, supϑ∈ΘNR|A(ϑ)|ij < āA, I denote AN(ϑ) =

OU(1/N).

In this section, I will demonstrate that products of matrices in A have some

special properties in Lemma F.1, with such properties, the quadratic forms associ-

ated with these products converges uniformly to the expected value.

Lemma F.1. Suppose matrix A(ϑ) =
∏K

k=1 Ak(ϑ), where 1 6 K <∞, Ak(ϑ) ∈ A ,

A is the matrix set defined in equation (F.2). Then

(a) A(ϑ) = Ã(ϑ) + Ă(ϑ), where Ã(ϑ) ∈ G , and Ă(ϑ) = OU(1/N).
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(b) A(ϑ) is continuous in ϑ and continuously differentiable on ϑ ∈ Θ, with

∇ϑÃ(ϑ) ∈ G , and ∇ϑĂ(ϑ) = OU(1/N).

(c) The elements of A(ϑ) and A(ϑ)Zγ0 and are uniformly bounded in absolute

value.

(d) There exists some KA < ∞ and Kη < ∞, such that for all ϑ1, ϑ2 ∈ Θ,

|Ãij,N(ϑ1) − Ãij,N(ϑ2)| 6 KA||ϑ1 − ϑ2||, N |Ăij,N(ϑ1) − Ăij,N(ϑ2)| 6 KA||ϑ1 − ϑ2||,

|A(ϑ1)Zγ0 − A(ϑ2)Zγ0| < Kη||ϑ1 − ϑ2||.

(e) 1
NR
tr(A(ϑ)Ω0) is uniformly continuous.

Proof. (a) Since A = A ∗ ∪ {MZ(ϑ)} and A ∗ ∩ {MZ(ϑ)} = ∅, if Ak(ϑ) ∈ A , then

either Ak(ϑ) ∈ A ∗ or Ak(ϑ) = MZ(ϑ). Define A∗k(ϑ) and A�(ϑ) as

A∗k(ϑ) =


Ak(ϑ) if Ak(ϑ) ∈ A ∗

Ω(ϑ)−1 if Ak(ϑ) = MZ(ϑ)

. (F.5)

A�k(ϑ) =


0N×N if Ak(ϑ) ∈ A ∗

−P̃Z(ϑ) if Ak(ϑ) = MZ(ϑ)

. (F.6)

Clearly, 0N×N is OU(1/N). By Lemma B.3, P̃Z = OU(1/N). If Ak(ϑ) ∈ A , then

Ak = A∗k(ϑ) + A�k(ϑ), where A∗k(ϑ) ∈ A ∗, and A�k(ϑ) = OU(1/N). By Lemma B.2,

A∗k(ϑ)OU(1/N) = OU(1/N), and OU(1/N)OU(1/N) = OU(1/N). Therefore,

A(ϑ) =
K∏
k=1

Ak(ϑ) =
K∏
k=1

[A∗k(ϑ) +OU(1/N)]

=
K∏
k=1

A∗k(ϑ) +OU(1/N). (F.7)
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Note that
∏K

k=1A
∗
k(ϑ) ∈ G . Let

Ã(ϑ) =
K∏
k=1

A∗k(ϑ), (F.8)

and Ă(ϑ) = A(ϑ) − Ã(ϑ). Then A(ϑ) = Ã(ϑ) + Ă(ϑ), with Ã(ϑ) ∈ G and Ă(ϑ) =

OU(1/N).

(b) From Table B.1, if Ak(ϑ) ∈ A ∗, Ak(ϑ) can be written in the form of

diagRc=1{pc(ϑ)Ic + qc(ϑ)Jc}, where pc(ϑ) and qc(ϑ) are uniformly bounded and con-

tinuous in Θ. Since (Z ′Ω(ϑ)−1Z)−1 is continuous in ϑ ∈ Θ, Ω(ϑ)−1 is continuous in

ϑ ∈ Θ, MZ(ϑ) defined in (3.18) is continuous in ϑ ∈ Θ. In all, if Ak(ϑ) ∈ A , Ak is

continuous in ϑ ∈ Θ. Therefore A(ϑ) =
∏R

k=1 Ak(ϑ) is continuous in ϑ ∈ Θ.

Next I will show the continuous differentiability of A(ϑ). Denote λ as ϑ1, σ2
ε

as ϑ2, σ2
α as ϑ3. Note that

∂Ω(ϑ)/λ = 0, (F.9)

∂Ω(ϑ)/∂σ2
ε = I, (F.10)

∂Ω(ϑ)/∂σ2
α = J̃ , (F.11)

For i = 1, 2, 3, ∂Ω(ϑ)/∂ϑi ∈ A ∗, and

∂Ω(ϑ)−1/∂ϑi = −Ω(ϑ)−1∂Ω(ϑ)

∂ϑi
Ω(ϑ)−1, (F.12)

Since Ω(ϑ)−1, ∂Ω(ϑ)/∂ϑi ∈ A ∗ , ∂Ω(ϑ)−1/∂ϑi ∈ G . Note also that

∂(I − λW )/∂λ = −W, (F.13)
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∂(I − λW )/ϑi = 0, i = 2, 3. (F.14)

Besides, 0N×N , IN , J̃ ,W , (I−λ0W )−1, and Ω0 are constant matrices that do not de-

pend on ϑ. So their derivatives are 0. In all, if Ak(ϑ) ∈ A∗, ∇ϑiAk(ϑ) = ∇ϑiA
∗
k(ϑ) ∈

G defined in equation (F.1). When Ak(ϑ) = MZ(ϑ),

∂MZ(ϑ)/∂ϑi

= −Ω(ϑ)−1∂Ω(ϑ)

∂ϑi
Ω(ϑ)−1 + Ω(ϑ)−1∂Ω(ϑ)

∂ϑi
Ω(ϑ)−1Z(Z ′Ω(ϑ)−1Z)−1Z ′Ω(ϑ)−1

(F.15)

+ Ω(ϑ)−1Z(Z ′Ω(ϑ)−1Z)−1Z ′Ω(ϑ)−1∂Ω(ϑ)

∂ϑi
Ω(ϑ)−1

− Ω(ϑ)−1Z(Z ′Ω(ϑ)−1Z)−1Z ′Ω(ϑ)−1∂Ω(ϑ)

∂ϑi
Ω(ϑ)−1Z(Z ′Ω(ϑ)−1Z)−1Z ′Ω(ϑ)−1

= −Ω(ϑ)−1∂Ω(ϑ)

∂ϑi
[Ω(ϑ)−1 − Ω(ϑ)−1Z(Z ′Ω(ϑ)−1Z)−1Z ′Ω(ϑ)−1]

+ Ω(ϑ)−1Z(Z ′Ω(ϑ)−1Z)−1Z ′Ω(ϑ)−1∂Ω(ϑ)

∂ϑi
[Ω(ϑ)−1 − Ω(ϑ)−1Z(Z ′Ω(ϑ)−1Z)−1Z ′Ω(ϑ)−1]

= [Ω(ϑ)−1Z(Z ′Ω(ϑ)−1Z)−1Z ′Ω(ϑ)−1 − Ω(ϑ)−1]
∂Ω(ϑ)

∂ϑi
[Ω(ϑ)−1 − Ω(ϑ)−1Z(Z ′Ω(ϑ)−1Z)−1Z ′Ω(ϑ)−1]

= −MZ(ϑ)
∂Ω(ϑ)

∂ϑi
MZ(ϑ). (F.16)

Since MZ(ϑ) = Ω(ϑ)−1 + OU(1/N), ∂Ω(ϑ)
∂ϑi
∈ G for i = 1, 2, 3. By Lemma B.2,

Ω(ϑ)−1OU(1/N) = OU(1/N) and ∂Ω(ϑ)
∂ϑi

OU(1/N) = OU(1/N). Therefore,

MZ(ϑ)
∂Ω(ϑ)

∂ϑi
MZ(ϑ) = −Ω(ϑ)−1∂Ω(ϑ)

∂ϑi
Ω(ϑ)−1 +OU(1/N)

=
∂Ω(ϑ)−1

∂ϑi
+OU(1/N). (F.17)

To sum up, if Ak(ϑ) = MZ(ϑ), ∇ϑAk(ϑ) = ∇ϑA
∗
k(ϑ) +OU(1/N).

In all, if Ak(ϑ) ∈ A as defined in equation (F.2), ∇ϑAk(ϑ) = ∇ϑA
∗
k(ϑ) +

OU(1/N), with∇ϑA
∗
k(ϑ) ∈ G . By Lemma B.2, [∇ϑiA

∗
k(ϑ)]OU(1/N) = OU(1/N) and
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Ak(ϑ)OU(1/N) = OU(1/N), OU(1/N)OU(1/N) = OU(1/N). Therefore, if A(ϑ) =∏R
k=1Ak(ϑ),

∇ϑiA(ϑ) = ∇ϑi(
R∏
k=1

A∗k(ϑ)) +OU(1/N),

= ∇ϑiÃ(ϑ) +OU(1/N). (F.18)

Since Ã(ϑ) ∈ G , ∇ϑiÃ(ϑ) ∈ G . Since A(ϑ) = Ã(ϑ) + Ă(ϑ), ∇ϑiĂ(ϑ) =

OU(1/N).

(c) From (a), A(ϑ) = Ã(ϑ)+Ă(ϑ), where Ã(ϑ) ∈ G , and Ă(ϑ) = OU(1/N). So

the elements of A(ϑ) are uniformly bounded in absolute value. Decompose A(ϑ)Zγ0

as

A(ϑ)Zγ0 = Ã(ϑ)Zγ0 + Ă(ϑ)Zγ0. (F.19)

Under Assumption 5, the elements of Z are bounded in absolute value. Using

Lemma B.2, the elements of Ã(ϑ)Zγ0 and Ă(ϑ)Zγ0 are uniformly bounded in abso-

lute value. Therefore the elements of A(ϑ)Zγ0 are uniformly bounded in absolute

value.

(d) Using the mean value theorem, for any ϑ1, ϑ2 ∈ Θ, there exists some

t1, t2, t3 ∈ [0, 1], such that for ϑ∗(i) = tiϑ1 + (1− ti)ϑ2, i = 1, 2, 3,

|Ãij(ϑ1)− Aij(ϑ2)| 6 ||∇ϑÃij(ϑ
∗
(1))||||ϑ1 − ϑ2||, (F.20)

N |Ăij(ϑ1)− Ăij(ϑ2)| 6 ||N∇ϑĂij(ϑ
∗
(2))||||ϑ1 − ϑ2||, (F.21)

|A(ϑ)Zγ0 − A(ϑ)Zγ0|ij 6 ||∇ϑA(ϑ∗(3)))Zδ||ij||ϑ1 − ϑ2||. (F.22)
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By (b), there exists some KA < ∞ such that ||∇ϑÃij(ϑ
∗
(1))|| < KA and

||N∇ϑĂij(ϑ
∗
(2))|| < KA uniformly. Therefore |Ãij,N(ϑ1)− Ãij,N(ϑ2)| 6 KA||ϑ1−ϑ2||,

N |Ăij,N(ϑ1)− Ăij,N(ϑ2)| 6 KA||ϑ1 − ϑ2||.

Since ∇ϑA(ϑ∗(3)) = ∇ϑÃ(ϑ∗(3) + ∇ϑĂ(ϑ∗(3)), ∇ϑÃ(ϑ∗(3) ∈ G and ∇ϑĂ(ϑ∗(3)) =

OU(1/N). By Lemma B.2, the elements of ∇ϑA(ϑ∗(3))Zδ are uniformly bounded

in absolute value. Therefore, there exists some Kη < ∞ such that |A(ϑ)Zγ0 −

A(ϑ)Zγ0|ij 6 Kη||ϑ1 − ϑ2||.

(e) Let A? = A(ϑ)Ω0. Since Ω0 ∈ A , A?(ϑ) =
∏K+1

k=1 Ak(ϑ) , with Ak(ϑ) ∈ A .

Therefore, A?(ϑ) = Ã?(ϑ)+Ă?(ϑ). By (d), there exists some KA? <∞ such that for

all ϑ1, ϑ2 ∈ Θ, |Ã?ij,N(ϑ1)− Ã?ij,N(ϑ2)| 6 KA?||ϑ1 − ϑ2||, N |Ă?ij,N(ϑ1)− Ă?ij,N(ϑ2)| 6

KA? ||ϑ1 − ϑ2||. Therefore,

1

NR

|tr(A?(ϑ1))− tr(A?(ϑ2))| = 1

NR

|tr[Ã?(ϑ1)− Ã?(ϑ2)]|+ 1

NR

|tr[Ă?(ϑ1)− Ă?(ϑ2)]|

6
1

NR

N∑
l=1

KA?||ϑ1 − ϑ2||+
1

NR

N∑
l=1

1

NR

KA?||ϑ1 − ϑ2||

6 KA?(1 +
1

NR

)||ϑ1 − ϑ2|| < 2KA?||ϑ1 − ϑ2||. (F.23)

Therefore, 1
NR
tr(A(ϑ)Ω0) is uniformly continuous .

The lemma above shows that the products with matrices in A can be divided

into two types of matrices, one from G , the other has elements that are uniformly

of order 1/N . Below I will show the uniform convergence of the quadratic forms

associated with each type.
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Theorem F.1. For a quadratic form SN(ϑ) = U ′AN(ϑ)U + U ′BN(ϑ)Zγ0, where

AN(ϑ), BN(ϑ) ∈ G . Under Assumptions 1, 2, and 3, the quadratic form SN(ϑ)

converge to its mean uniformly in ϑ, supϑ∈Θ 1
NR
|SN(ϑ)−E[SN(ϑ)]| →p 0 as R→∞.

Proof. First I will prove the point-wise convergence. Since AN(ϑ) ∈ G , AN(ϑ) =

diagRc=1{Acc(ϑ)}. By Lemma C.1, the expected value of the quadratic form is

E(SN(ϑ)) =
R∑
c=1

tr(Ωc0Acc,N(ϑ)). (F.24)

The deviation of the quadratic form from its mean is the sum of R independent

quadratic forms as follows:

SN(ϑ)− E(SN(ϑ)) =
R∑
c=1

vc,N(ϑ), (F.25)

vc,N(ϑ) = [U ′cAcc,N(ϑ)Uc − tr(Ωc0Acc,N(ϑ))] + η′c(ϑ)Uc. (F.26)

Since Uc are independent across all c, vc are independently distributed across c, with

E(vc) = 0. By Lemma C.1, the variance of vc,N(ϑ) is

V ar(vc(ϑ)) = 2tr[Acc(ϑ)Ωc0Acc(ϑ)Ωc0] + η′c(ϑ)Ωc0ηc(ϑ)

+
nc∑
i=1

[Aii,cc(ϑ)]2(µ(4)
ε − 3σ4

ε ) + tr(Acc(ϑ)JcAcc(ϑ)Jc)(µ
(4)
α − 3σ2

α0)

+ 2[µ(3)
α ι′cAcc(ϑ)ιcη

′
c(ϑ)ιc + µ(3)

ε

nc∑
i=1

Aii,cc(ϑ)ηic]. (F.27)

By Lemma F.1, the elements of A(ϑ) and η(ϑ) are uniformly bounded. Under

Assumptions 1-5, nc is bounded, µ(3)
α , µ(3)

ε , µ(4)
α , and µ

(4)
ε are bounded. Therefore

V ar(vc) is uniformly bounded. Using law of large numbers, for all ϑ ∈ Θ, 1
NR

(S(ϑ)−

µS(ϑ))→p 0 as R goes to infinity.

Above has proven point-wise convergence on Θ. Meanwhile, Θ is compact

under Assumptions 1, 1, and 4. According to Lemma F.1(b), 1
N
E(S(ϑ)) is uniformly

continuous. Therefore, according to Corollary 2.2 of Newey (1991), it suffices to show
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that for any ϑ1, ϑ2 ∈ Θ, 1
NR
|S(ϑ1) − S(ϑ2)| 6 CNh(d(ϑ1, ϑ2)) , where CN is Op(1),

h : [0,∞)→ [0,∞), with h(0) = 0.

Using Holder’s inequality,

1

NR

|S(ϑ1)− S(ϑ2)|

=
1

NR

|
R∑
c=1

{U ′c[Acc(ϑ1)− Acc(ϑ2)]Uc + U ′c[(ηc(ϑ1)− ηc(ϑ2)]|

6
1

NR

R∑
c=1

nc∑
i=1

nc∑
j=1

|[α2
c + αcεic + αεjc + εicεjc][Aij,cc(ϑ1)− Aij,cc(ϑ2)]|

+
1

NR

R∑
c=1

nc∑
i=1

|αc[(ηc(ϑ1)− ηc(ϑ2)]i + εic[(ηic(ϑ1)− ηic(ϑ2)]|

6 [(
1

NR

R∑
c=1

n2
cα

4
c)

1/2 + 2(
1

NR

R∑
c=1

nc∑
i=1

ncα
2
cε

2
ic)

1/2 + (
1

NR

R∑
c=1

nc∑
i=1

nc∑
j=1

ε2icε
2
jc)

1/2]

× { 1

NR

R∑
c=1

nc∑
i=1

nc∑
j=1

[Aij,cc(ϑ1)− Aij,cc(ϑ2)]2}1/2

+ [(
1

NR

R∑
c=1

ncα
2
c)

1/2 + (
1

NR

R∑
c=1

nc∑
i=1

ε2ic)
1/2][

1

NR

R∑
c=1

nc∑
i=1

(ηic(ϑ1)− ηic(ϑ2)2]1/2

6 [(
ā

N

R∑
c=1

α4
c)

1/2 + 2(
ā

N

R∑
c=1

α2
c

nc∑
i=1

ε2ic)
1/2 + (

1

NR

R∑
c=1

nc∑
i=1

ε4ic +
1

NR

R∑
c=1

nc∑
i=1

nc∑
j 6=i

ε2icε
2
jc)

1/2]

× { 1

NR

R∑
c=1

nc∑
i=1

nc∑
j=1

[Acc(ϑ1)− Acc(ϑ2)]2ij}1/2

+ [(
ā

N

R∑
c=1

α2
c)

1/2 + (
1

NR

R∑
c=1

nc∑
i=1

ε2ic)
1/2][

1

NR

R∑
c=1

nc∑
i=1

(ηic(ϑ1)− ηic(ϑ2))2]1/2

6 CN g̃(ϑ1, ϑ2), (F.28)

where
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CN = [(
āR

N

1

R

R∑
c=1

α4
c)

1/2 + 2(
ā

N

R∑
c=1

α2
c

nc∑
i=1

ε2ic)
1/2 + (

1

NR

R∑
c=1

nc∑
i=1

ε4ic +
1

NR

R∑
c=1

nc∑
i=1

nc∑
j 6=i

ε2icε
2
jc)

1/2]

(F.29)

+ [(
āR

N

1

R

R∑
c=1

α2
c)

1/2 + (
1

NR

R∑
c=1

nc∑
i=1

ε2ic)
1/2][

1

NR

R∑
c=1

nc∑
i=1

(ηic(ϑ1)− ηic(ϑ2))2]1/2,

g̃(ϑ1, ϑ2) = { 1

NR

R∑
c=1

nc∑
i=1

nc∑
j=1

[Aij,cc(ϑ1)−Aij,cc(ϑ2)]2}1/2+[
1

NR

R∑
c=1

nc∑
i=1

(ηic(ϑ1)−ηic(ϑ2))2]1/2.

(F.30)

Next I will show that CN is Op(1). By Assumption 1, αc are identically

and independently distributed with E(α2
c) = σ2

α0
and Eα4

c = µ
(4)
α < ∞, there-

fore 1
R

∑R
c=1 α

2
c →p σ

2
α0, and

1
R

∑R
c=1 α

4
c →p µ

(4)
α . By Assumption 2, εic are iden-

tically and independently distributed across i and c with E(ε2ic) = σ2
ε0

and Eε4c =

µ
(4)
ε < ∞, therefore 1

NR

∑R
c=1

∑nc
i=1 ε

2
ic →p σ

2
ε0, and

1
NR

∑R
c=1

∑nc
i=1 ε

4
ic →p µ

(4)
ε . Since∑nc

i=1

∑nc
j 6=i ε

2
icε

2
jc are independently distributed across c, with E[

∑nc
i=1

∑nc
j 6=i ε

2
icε

2
jc] =

(nc − 1)ncσ
4
ε0,

V ar[
nc∑
i=1

nc∑
j 6=i

ε2icε
2
jc] = E

nc∑
i=1

nc∑
j 6=i

nc∑
s=1

nc∑
k 6=s

ε2icε
2
jc]− [(nc − 1)ncσ

4
ε0]2

= E[2
nc∑
i=1

nc∑
j 6=i

ε4icε
4
jc + 4

nc∑
i=1

nc∑
j 6=i

nc∑
k 6=i,,j

ε4icε
2
jcε

2
kc

+
nc∑
i=1

nc∑
j 6=i

nc∑
s 6=i,j

nc∑
k 6=i,js

ε2icε
2
jcε

2
scε

2
kc]− (nc − 1)2n2

cσ
8
ε0 (F.31)

= 2nc(nc − 1)(µ(4)
ε )2 + 4nc(nc − 1)(nc − 2)(µ4

εσ
4
ε0) (F.32)

+ nc(nc − 1)(nc − 2)(nc − 3)σ8
ε0. (F.33)

Since µ(4)
ε < ∞ and nc is bounded, V ar(

∑nc
i=1

∑nc
j 6=i ε

2
icε

2
jc) < ∞. Therefore

1
NR

∑R
c=1

∑nc
i=1

∑nc
j 6=i ε

2
icε

2
jc →p

1
NR

∑R
c=1 nc(nc − 1)σ4

ε0. Finally, α2
c

∑nc
i=1 ε

2
ic are inde-
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pendently distributed with Eα2
c

∑nc
i=1 ε

2
ic = ncσ

2
α0σ

2
ε0, and

V ar[α2
c

nc∑
i=1

ε2ic] = E(α4
c)E(

nc∑
i=1

ε2ic)
2 − (ncσ

2
α0σ

2
ε0)2

= µ(4)
α [ncµ

(4)
ε + nc(nc − 1)σ4

ε0]− n2
cσ

4
α0σ

4
ε0.

Therefore, 1
N

∑R
c=1 α

2
c

∑nc
i=1 ε

2
ic →p

1
N

∑R
c=1 ncσ

2
α0σ

2
ε0 = σ2

α0σ
2
ε0. In all, CN = Op(1).

By Lemma F.1(d), there exists some KA < ∞ and Kη < ∞ such that for all

i, j, c and ϑ1, ϑ2 ∈ Θ,

|A(ϑ1)− A(ϑ2)|ij,cc 6 KA||ϑ1 − ϑ2||, (F.34)

([A(ϑ1)− A(ϑ2)]Zγ0)ic 6 Kη||ϑ1 − ϑ2||. (F.35)

Therefore,

g̃(ϑ1, ϑ2) 6 { 1

NR

R∑
c=1

nc∑
i=1

nc∑
j=1

K2
A||ϑ1 − ϑ2||2}1/2 + [

1

NR

R∑
c=1

nc∑
i=1

K2
η ||ϑ1 − ϑ2||]1/2

(F.36)

= (KA +Kη)||ϑ1 − ϑ2||. (F.37)

The following theorem describes the central limit theorem of the quadratic

form SN(ϑ) defined in equation (C.1).

Theorem F.2. For a quadratic form SN(ϑ) = U ′AN(ϑ)U + U ′BNZγ0, if

(a) The elements of NRA(ϑ) and NRB(ϑ)are uniformly bounded in absolute

value;

(b) There exist someKA < ∞ and Kη < ∞ such that for all ϑ1, ϑ2 ∈ Θ,

N |Aij,N(ϑ1)− Aij,N(ϑ2)| 6 KA|ϑ1 − ϑ2| and |ηi,N(ϑ)− ηj,N(ϑ)| 6 Kη|ϑ1 − ϑ2|;
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(c) The trace 1
N
tr[Ω0AN(ϑ)] is uniformly continuous in ϑ.

Then supϑ∈Θ 1
NR
|S(ϑ)− E(SN(ϑ))| →p 0 as R→∞.

Proof. Let η(ϑ) = U ′BNZγ0, using Lemma C.1,

V ar(S(ϑ)) = tr[Ω0A(ϑ)Ω0(A(ϑ) + A′(ϑ))] + η′(ϑ)Ω0η(ϑ)

+ (µ(4)
ε − 3σ4

ε )
R∑
c=1

nc∑
i=1

(Aii,cc(ϑ))2 + (µ(4)
α − 3σ2

α0)
R∑
c=1

tr(Acc(ϑ)Jc)
2

+ 2µ(3)
ε

R∑
c=1

nc∑
i=1

Aii,cc(ϑ)ηic(ϑ) + 2µ(3)
α

R∑
c=1

η′c(ϑ)ιcι
′
cAcc(ϑ)ιc. (F.38)

Since the elements of AN(ϑ) and BN(ϑ) are uniformly of order 1/N , using

Lemma B.2, Ω0A(ϑ)Ω0[A(ϑ) + A′(ϑ)] is OU(1/N) and, so tr[Ω0A(ϑ)Ω0(A(ϑ) +

A′(ϑ))] = OU(1). SinceA isOU(1/N),
∑R

c=1

∑nc
i=1(Aii,cc(ϑ))2 isOU(1/N),

∑R
c=1 tr(Acc(ϑ)Jc)

2

is OU(1/N). Since BN(ϑ) is OU(1/N), η(ϑ) is OU(1), (Lemma B.2) by Lemma B.2,

η′(ϑ)Ω0η(ϑ) =
∑R

c=1 η
′
cΩc0ηc is O(N) as ηc, Ωc0 and nc are bounded. Moreover,

Aii,cc(ϑ)ηic(ϑ) and η′c(ϑ)ιcι
′
cAcc(ϑ)ιc areOU(1/N),

∑R
c=1

∑nc
i=1 Aii,cc(ϑ)ηic(ϑ) = OU(1)

and
∑R

c=1 η
′
c(ϑ)ιcι

′
cAcc(ϑ)ιc = OU(1).

In all, V ar(S(ϑ) is O(N), hence V ar{ 1
NR
S(ϑ)]} = 1

N2
R
V ar(SN(ϑ)) → 0 as

R→∞. By Chebychev’s inequality, for all ϑ ∈ Θ, 1
NR

(S(ϑ)− E(S(ϑ)))→p 0 as R

goes to infinity.

Note that 1√
NR

(S(ϑ)−µS(ϑ))→p 0 implies 1
NR

(S(ϑ)−E(S(ϑ)))→p 0. Above

has proven point-wise convergence of 1
NR

(S(ϑ)−E(S(ϑ))) to 0 on Θ. Meanwhile, Θ is

compact under Assumptions 1, 1, and 4. From Lemma C.1, E(S(ϑ)) = tr(Ω0A(ϑ)).

By assumption, E( 1
N
S(ϑ)) is uniformly continuous in Θ. Therefore, according to

Corollary 2.2 of Newey (1991), it suffices to show that for any ϑ1, ϑ2 ∈ Θ, 1
NR
|S(ϑ1)−

S(ϑ2)| 6 BNh(d(ϑ1, ϑ2)) , where BN is Op(1), h : [0,∞)→ [0,∞), with h(0) = 0.
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Using Holder’s inequality,

1

NR

|S(ϑ1)− S(ϑ2)|

=
1

NR

|
R∑
c=1

R∑
r=1

U ′c[Acr(ϑ1)− Acr(ϑ2)]Ur +
R∑
c=1

U ′c(ηc(ϑ1)− ηc(ϑ2))]| (F.39)

=
1

NR

|
R∑
c=1

R∑
r=1

nc∑
i=1

nc∑
j=1

[(αcαr + αcεjr + αrεic + εicεjr)(Aij,cr(ϑ1)− Aij,cr(ϑ2))]

+
1

NR

R∑
c=1

nc∑
i=1

[αc(ηic(ϑ1)− ηic(ϑ2) + εic(ηic(ϑ1)− ηic(ϑ2))]|

6 [(
1

N2

R∑
c=1

R∑
r=1

ncnrα
2
cα

2
r)

1/2 + (
1

N2

R∑
c=1

R∑
r=1

nr∑
j=1

ncα
2
cε

2
jr)

1/2 + (
1

N2

R∑
c=1

R∑
r=1

nc∑
i=1

nrα
2
rε

2
ic)

1/2

+ (
1

N2

R∑
c=1

R∑
r=1

nc∑
i=1

nc∑
j=1

ε2icε
2
jc)

1/2]{ 1

N2

R∑
c=1

R∑
r=1

nc∑
i=1

nc∑
j=1

(NAij,cr(ϑ1)−NAij,cr(ϑ2))2}1/2

+ [(
1

NR

R∑
c=1

ncα
2
c)

1/2 + (
1

NR

R∑
c=1

nc∑
i=1

ε2ic)
1/2][

1

NR

R∑
c=1

nc∑
i=1

(ηic(ϑ1)− ηic(ϑ2)2]1/2

6 BNg(ϑ1, ϑ2), (F.40)

where

BN = (
1

N2

R∑
c=1

R∑
r=1

ncnrα
2
cα

2
r)

1/2 + 2(
1

N2

R∑
c=1

R∑
r=1

nr∑
j=1

ncα
2
cε

2
jr)

1/2 + (
1

N2

R∑
c=1

nc∑
i=1

R∑
r=1

nr∑
j=1

ε2icε
2
jr)

1/2

(F.41)

+ (
1

NR

R∑
c=1

ncα
2
c)

1/2 + (
1

NR

R∑
c=1

nc∑
i=1

ε2ic)
1/2,

= (
1

N

R∑
c=1

ncα
2
c) + 2(

1

N

R∑
c=1

ncα
2
c)

1/2(
1

N

R∑
c=1

nc∑
i=1

ε2ic)
1/2 + (

1

N

R∑
c=1

nc∑
i=1

ε2ic) (F.42)

+ (
1

NR

R∑
c=1

ncα
2
c)

1/2 + (
1

NR

R∑
c=1

nc∑
i=1

ε2ic)
1/2, (F.43)

g(ϑ1, ϑ2) = { 1

N2

R∑
c=1

R∑
r=1

nc∑
i=1

nc∑
j=1

(NAij,cr(ϑ1)−NAij,cr(ϑ2))2}1/2+[
1

NR

R∑
c=1

nc∑
i=1

(ηic(ϑ1)−ηic(ϑ2)2]1/2.

(F.44)
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By assumption, |NAij,cr(ϑ1) − NAij,cr(ϑ2)| 6 KA|ϑ1 − ϑ2|, and |ηic(ϑ1) −

ηic(ϑ2)| 6 Kη|ϑ1 − ϑ2|. Therefore,

g(ϑ1, ϑ2) 6 { 1

N2
R

R∑
c=1

R∑
r=1

nc∑
i=1

nc∑
j=1

K2
A||ϑ1 − ϑ2||2}1/2 + [

1

NR

R∑
c=1

nc∑
i=1

K2
η ||ϑ1 − ϑ2||2]1/2.

= KA||ϑ1 − ϑ2||+Kη||ϑ1 − ϑ2|| = (KA +Kη)||ϑ1 − ϑ2||. (F.45)

Therefore, h(||ϑ1 − ϑ2||) = (KA + Kη)||ϑ1 − ϑ2||. Next I will demonstrate that

BR = Op(1).

Since α2
c are i.i.d across c, ε2jr are i.i.d across j and r, by law of large numbers,

1
R

∑R
c=1 α

2
c →p σ

2
α0, and

1
NR

∑R
c=1

∑nc
i=1 ε

2
ic →p σ

2
ε0. Therefore, BR = Op(1).

Corollary F.1. Suppose SN(ϑ) = U ′AN(ϑ)U + U ′BN(ϑ)Zγ0, where AN(ϑ) =∏K
k=1Ak,N(ϑ), BN(ϑ) =

∏J
j=1Bj,N(ϑ), Ak,N(ϑ) ∈ A , and Bj,N(ϑ) ∈ A , A is a ma-

trix set defined in equation (F.2). Then under Assumptions 1-5, supϑ∈Θ 1
NR
|S(ϑ)−

E(S(ϑ))| →p 0 as R goes to infinity.

Proof. From Lemma F.1(a),A(ϑ) = Ã(ϑ)+Ă(ϑ), where Ã(ϑ) ∈ G is a block diagonal

matrix, Ă(ϑ) = OU(1/N). Rewrite S(ϑ) as

S(ϑ) = [U ′Ã(ϑ)U + U ′B(ϑ)Zγ0] + U ′Ă(ϑ)U. (F.46)

By Lemma C.1,

E(S(ϑ)) = tr(Ω0Ã(ϑ)) + tr(Ω0Ă(ϑ)). (F.47)

By Lemma F.1(c), B(ϑ)Zγ0 is OU(1). From Lemma F.1(d), there exists some

KA <∞, Kη <∞, such that for all ϑ1, ϑ2 ∈ Θ, |Ãij,N(ϑ1)− Ãij,N(ϑ2)| 6 KA||ϑ1 −

ϑ2||, N |Ăij,N(ϑ1)−Ăij,N(ϑ2)| 6 KA||ϑ1−ϑ2||, |B(ϑ1)Zγ0−B(ϑ2)Zγ0| < Kη||ϑ1−ϑ2||.

From Lemma F.1(e), 1
NR
tr(Ω0Ã(ϑ)) and 1

NR
tr(Ω0Ă(ϑ)) are uniformly continuous.
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By Theorem F.2,

supϑ∈Θ
1

NR

[U ′Ă(ϑ)U − tr(Ω0Ă(ϑ))]→p ∞. (F.48)

By Theorem F.1,

supϑ∈Θ
1

NR

|U ′Ã(ϑ)U + U ′B(ϑ)Zγ − tr(Ω0Ã(ϑ)]| →p 0. (F.49)

Therefore, supϑ∈Θ 1
NR
|S(ϑ)− E(S(ϑ))| →p 0 as R goes to infinity.
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Appendix G: Estimation of the Heterogeneous Peer Effects Model

This appendix discusses about the estimation strategy of the heterogeneous

peer effects model in Section 4.4.4. Let Yc = (y1c, ..., yncc)
′, Xc = (x1c, ..., xncc)

′,

and εc = (ε1c, ..., εncc)
′. The matrix form of the heterogeneous peer effects model in

equations (4.20) and (4.21) is

Yc = ιcβ0 +
4∑
p=1

λpWp,cYc +Xcβ +
4∑
p=1

Wp,cXcγp + ιcψ
′
cπ + ιcf

′
cφ+ ιcαc + εc

=
4∑
p=1

λpWp,cYc + Zcδ + Uc, (G.1)

where W1,c, W2,c, W3,c and W4,c are weight matrices. If i and j are both boys in

class c and i 6= j, (W1,c)ij = 1/(nbc − 1), otherwise (W1,c)ij = 0. If i is a boy

and j is a girl,(W2,c)ij = 1/ngc , otherwise (W2,c)ij = 0. If i is a girl and j is a

boy, (W3,c)ij = 1/nbc , otherwise (W3,c)ij = 0. If both i and j are girls 0 and

i 6= j, (W4,c)ij = 1/(ngc − 1), otherwise (W4,c)ij = 0. The matrix Zc includes all the

exogenous variables,

Zc = (ιc, Xc,W1,cXc,W2,cXc,W3,cXc,W4,cXc, ιcψ
′
c, ιcf

′
c).

The vector δ = (β0, β
′, γ′1, γ

′
2, γ
′
3, γ
′
4, π

′, φ′)′ is the vector of corresponding coefficients.

The model for the whole sample is

Y =
4∑
p=1

λpWpY + Zδ + U, (G.2)

where Y = (Y ′1 , ..., Y
′
R)′, Z = (Z ′1, ..., Z

′
R)′, U = (U ′1, ..., U

′
R)′,Wp = diag(W1,p, ...,WR,p).
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The variance-covariance matrix is the same as in the main model, and is defined

in equation (3.7). The distribution of Y is

Y ∼ ((I −
4∑
p=1

λpWp)
−1Zδ, (I −

4∑
p=1

λpWp)
−1Ω(I −

4∑
p=1

λpW
′
p)
−1).

The model can be estimated with maximum likelihood method, with the log likeli-

hood function being

lnL = −N
2
ln(2π) + ln|I −

4∑
p=1

λpWp| −
1

2
ln|Ω|

−1

2
(Y −

4∑
p=1

λpWpY − Zδ)′Ω−1(Y −
4∑
p=1

λpWpY − Zδ). (G.3)
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Appendix H: Graham’s Conditional Variance Method

Graham (2008) directly explores the relationship between within-class variance

and between-class variance conditional on different class sizes. The original Graham

(2008) model is

yic = νc + (γ0 − 1)ε̄c + εic. (H.1)

where εic are unobserved individual characteristics, ε̄c =
∑nc

i=1 εic is the full mean of

ε, and νc is the random class effect. The model can be written as a linear-in-means

model with endogenous effects and random class effects as

yic = (1− 1

γ0

)ȳc +
νc
γ0

+ εic (H.2)

= λȳc + αc + εic,

where λ = 1− 1
γ0
, αc = νc/γ0.

Equation (H.2) is similar to the main model in equation (3.2) except that: (a)

equation (H.2) uses full-means rather than leave-out means. Hence I will refer the

model as the full-mean model; (b) it does not include individual or class character-

istics.1 Equivalently, equation (H.1) is comparable to the reduced form of the main

model in equation (4.16).

1The Graham (2008) model can include individual characteristics and characteristics, but only
if peers effect work through the full-mean rather than the leave-out mean. An extended version of
model H.1 is

yic = θ0 + x′icθ1 + x̄′cθ2 + ψ′cθ3 + νc + (γ0 − 1)ε̄c + εic
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Let C1 and C2 be the index set of small classes and regular/aid classes respec-

tively. If c ∈ C1, class c is a small class. If c ∈ C2, class c is a regular/aid class.

Graham (2008) makes three assumptions:

(1) The disturbance terms εic are independent of class effect νc , and εic are inde-

pendently distributed within each class. Denote the variance of εic as σ2
εc. It

represents “heterogeneity of peer quality”. It varies across class types: σ2
εc = σ2

1

if c ∈ C1 and class c is a small class, σ2
εc = σ2

2 if c ∈ C2 and class c is a regu-

lar/aid class.

(2) The variance of random class effects is var(νc) = σ2
ν for all c.

These two assumptions are similar Assumptions 1 and 2, expect that I assume

homoscedasity of εic across all classes while Graham (2008) assume homoscedasity

within each class type. The between class variance is var(ȳc) = σ2
ν +

γ2
0σ

2
εc

nc
and the

within-class variance is var(yic − ȳc) = nc−1
nc

σ2
εc. Therefore,

var(ȳc) = σ2
ν + γ2

0

var(yic − ȳc)
nc − 1

. (H.3)

Since var(yic−ȳc)
nc−1

= σ2
εc

nc
is a function of class size, and assignment into small

classes and large classes is random, Graham (2008) instruments var(yic−ȳc)
nc−1

with an

indicator for small class and estimates γ2
0 . The sample within-class variance and

The model can be written as a linear-in-means model with endogenous effect and random class
effect as:

yic =
θ0
γ0

+ (1− 1

γ0
)ȳc + x′icθ1 + x̄′c

θ2 − (γ0 − 1)θ1
γ0

+ ψc
θ3
γ0

+
νc
γ0

+ εic

= β0 + λȳc + x′icβ + x̄′cγ + ψcπ + αc + εic

where β0 = θ0/γ0, λ = 1− 1
γ0
, β = θ1, π = θ3

γ0
, γ = θ2−(γ0−1)θ1

γ0
, π = θ3

γ0
, αc = νc/γ0.
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between class variance are constructed from residuals from equation (H.1). For the

validity of the method, Graham (2008) further assumes

(3) [var(yic−ȳc)
nc−1

|small class] 6= [var(yic−ȳc)
nc−1

|large class].

Assumption (3) is the rank condition for equation (H.3). Note that var(yic−ȳc)
nc−1

=

1
nc
σ2
εc, and nc is smaller for small classes than for regular/aid classes. If εic is ho-

moscedastic across classes, i.e., σ2
εc = σ2

1 = σ2
2 for all c, then condition is automati-

cally satisfied. Note that this assumption implicitly assumes that there is variation

in class size and class size nc does not go to infinity.

Graham (2008)’s innovative method captures the essence of peer effect iden-

tification: utilization of between-class variance and within-class variance. But the

method has its limitation. It identifies γ2
0 but not λ directly. It works only for the

full-mean specification. Most importantly, applying the method to other datasets

is difficult. The method works specifically for the Tennessee Project STAR, where

teachers and students were randomly assigned to two types of classes. Graham’s

method does not work if classes cannot be grouped into two types. In contrast, my

methodology works as long as the assignment of students of students into classes is

random.

The method proposed in this paper can be viewed as a generalization of the

Graham (2008)’s conditional variance method. It shares the model specification and

the idea of using between-class variance and within-class variance for identification

of Graham (2008). It also overcomes the three limitations of Graham (2008) and

can be adapted for different specifications and applied to more general settings.
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Graham’s full-mean model in equation (H.2) can be estimated by quasi-maximum

likelihood. The log likelihood function is the same as equation (3.14) of my model

except that the weight matrix is now W ∗
c = 1

nc
Jc, and

lnL∗ = −N
2
ln(2π) + ln|I − λW | − ln|Ω|

− 1

2
(Y − λW ∗Y − Zδ)′Ω−1(Y − λW ∗Y − Zδ). (H.4)

Given the special form of weights matrix and variance-covariance matrix2, the

log likelihood function can be rewritten as

lnL∗ = −N
2
ln(2π) +Rln|1− λ| −

R∑
c=1

nc − 1

2
ln(σ2

εc)−
1

2

R∑
c=1

ln(σ2
α +

1

nc
σ2
εc)

− 1

2

R∑
c=1

nc∑
i=1

[(yic − ȳc)]2

σ2
εc

−
R∑
c=1

[(1− λ)ȳ]2

2(σ2
α + 1

nc
σ2
εc)
. (H.5)

The first order conditions are

∂lnL∗

∂λ
= − R

1− λ
+

R∑
c=1

(1− λ)ȳ2
c

(σ2
α + 1

nc
σεc)

= 0, (H.6)

∂lnL∗

∂σ2
p

=
R∑

c∈CP

−nc − 1

2σ2
p

+
1

2

∑R
c∈CP

∑nc
i=1[(yic − ȳc)]2

(σ2
p)

2
+

R∑
c∈CP

nc[(1− λ)ȳc]
2

2(σ2
p + ncσ2

α)2
= 0, p = 1, 2

(H.7)

∂lnL∗

∂σ2
α

= −1

2

R∑
c=1

nc
σ2
εc + ncσ2

α

+
R∑
c=1

n2
c [(1− λ)ȳc]

2

2(σ2
εc + ncσ2

α)2
= 0. (H.8)

Let

ς1c = σ2
α +

σ2
εc

nc
, (H.9)

ξc = ȳ2
c −

ςic
(1− λ)2

, (H.10)

χc = nc

nc∑
c=1

(yic − ȳc)2 − nc(nc − 1)σ2
εc. (H.11)

2See Appendix B.
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The first order conditions are equivalent to
R∑
c=1

ξc
ςc

= 0,∑
c∈Cp

χc
σ4
εc

= 0, p = 1, 2,

R∑
c=1

ξc
ς2
c

= 0.

The first order conditions for the maximum likelihood are equivalent to that some

weighted average of ξc and χc are 0.

Combining equations (H.9), (H.10), (H.11),

ȳ2
c =

σ2
α

(1− λ)2
+ γ2

0

∑nc
c=1(yic − ȳc)2

nc(nc − 1)
+ ξc −

χc
n2
c(nc − 1)(1− λ)2

. (H.12)

Since αc = νc/γ0, σ2
α/(1 − λ)2 = σ2

ν . Since var(ȳc) = σ2
ν +

γ2
0σ

2
εc

nc
, E(ξc) = 0. Since

E(yic − ȳc)
2 = nc−1

nc
σ2
εc, E(χc) = 0. Taking expectation of equation (H.12) leads

to equation (H.3), the main model for Graham (2008). In all, Graham (2008)’s

method is based on the moment condition that E(ξc− χc
n2
c(nc−1)(1−λ)2 ) = 0, while the

maximum likelihood estimation is based Eξc = 0 and E(χc) = 0.
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Appendix I: Model and Estimation Strategy of Lee (2007)

The model in my dissertation is closely related to Lee (2007), who studies a

conditional maximum likelihood estimator for the peer effect model with fixed group

effects. The model in Lee (2007) is different from the one in Chapter 3 in that it

assumes fixed group effect. He eliminates the group effect αc and estimates uses

within group equation.

The writeup of Lee’s model is the same as equation (3.2) and the reduced form

is equation (4.16). The within equation is

nc − 1 + λ

nc − 1
(yic − ȳc) = (xic − x̄c)(β −

γ

nc − 1
) + (εic − ε̄c) (I.1)

The between equation is

(1− λ)ȳc = β0 + x̄c(β + γ) + ψ′cπ + αc + ε̄c. (I.2)

Note that cov(yic − ȳc, ȳc) = 0 . So yic − ȳc is independent of ȳc under Gaus-

sianity. The log likelihood function for the within equation is

lnLwc = −nc − 1

2
ln(2π) +

1

2
ln(nc)−

nc − 1

2
ln(σ2

εc) + (nc − 1)ln(
nc − 1 + λ

nc − 1
) (I.3)

− 1

2σ2
εc

nc∑
i=1

[
nc − 1 + λ

nc − 1
(yic − ȳc)− (xic − x̄c)(β −

γ

nc − 1
)]2
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The log likelihood function for the between equation is

lnLbc = −1

2
ln(2π)− 1

2
ln(

σ2
εc

nc
+ σ2

α)− 1

2
ln(nc) + ln|1− λ| (I.4)

− 1

2(σ2
α + σ2

εc/nc)
[(1− λ)ȳc − β0 − x̄c(β + γ)− ψ′cπ]2

The sum of lnLwc and lnLbc over all classes is the log likelihood function in

equation (4.9) of the main model.

Lee (2007) allows αc to be correlated with exogenous variables. His conditional

maximum likelihood method is based on equation (I.3), the distribution of yic − ȳc

conditional on ȳc. Identification comes from within-group variation. The method

in Chapter 3 takes into account the distribution of ȳc and includes equation (I.4).

Identification comes from both the within-group variance and between-group vari-

ance.

Lee’s fixed group effect model is plausible if the difference of group averages ȳc

is driven mainly by unobserved factors correlated with member and group character-

istics. In the case when unobserved group characteristics are randomly distributed,

i.e., in the random group effect setting, the distribution of group averages is reveal-

ing for the presence of peer effect. For example, Glaeser et al. (1996) shows that the

large between-city variance of crime rates can be attributed to social interactions.

The random effects model can help explain how peer effects lead to high variance of

outcomes across groups. In that scenario, incorporating the distribution of ȳc im-

proves the efficiency of estimation. In the setting of my dissertation, where people

are randomly assigned into groups, it is reasonable to assume random group effects.
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