

ABSTRACT

Title of Document: FLAT AND EGALITARIAN? EVALUATING

WORKER HIERARCHIES IN SOFTWARE
COMPANIES.

 Paul Dean, Master of Arts, 2007

Directed By: Bart Landry, Professor, Sociology

The common view in the organizations literature is that, in the new economy, traditional

worker hierarchies have now been replaced by flat, team-based arrangements. However,

there have been few empirical studies that have tested this phenomenon. This paper seeks to

fill this gap in the literature by evaluating the worker hierarchies of small and medium-sized

software companies. By drawing on 61 in-depth interviews with workers and managers at 31

software companies, I assess several dimensions of organizational hierarchy. I found that

worker hierarchies do not match our conceptions of traditional bureaucratic models, but

formal hierarchies do remain, albeit with fewer layers. Management has relinquished

decision-making on high-level decisions, while workers have gained more decision-making

in production-level decisions and autonomy. I also outline the characteristics of new project-

based hierarchies, which are more flexible worker hierarchies in which supervisory and

managerial roles are fluid and fluctuating from one project to another.

FLAT AND EGALITARIAN?
EVALUATING WORKER HIERARCHIES IN SOFTWARE COMPANIES

By

Paul Dean

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Master of Arts

2007

Advisory Committee:
Professor Bart Landry, Chair
Joe Lengermann
Alan Neustadtl

© Copyright by
Paul Dean

2007

 ii

Acknowledgements

I especially thank my advisor, Bart Landry, for many insightful conversations and his

helpful comments throughout the development of this thesis. His mentoring during

this and many other projects have been invaluable throughout my years in graduate

school. I also wish to thank my readers, Joe Lengermann and Alan Neustadtl, whose

time and comments have greatly improved and clarified this work. Finally, much

appreciation goes to Chris Andrews, Craig Lair, and Bart for use of their interview

data. Works such as this one are never the product of a single individual, and it is

these people who helped make this thesis possible.

 iii

Table of Contents

Acknowledgements ...ii
Table of Contents ...iii
List of Tables..iv
List of Figures ...v
Chapter 1: Introduction..1
Chapter 2: Literature Review ...5

The Social Organization of Work in the Knowledge Economy...............................5
Computing Culture and Hierarchy ...8
The Labor Process and Hierarchical Control ..12

Chapter 3: Theory and Research Questions..17
Chapter 4: Data and Methods...21
Chapter 5: Results..26

Dedicated Hierarchy ..30
Project Manager...31
Team Lead/Leader ...37
Developers...41

Project-based Hierarchy...45
Promoting the Ideology of Flatness ..50
Summary of Findings...53

Chapter 6: Discussion ...57
Chapter 7: Conclusion ..57
Appendices..63
Bibliography..68

 iv

List of Tables

Comparison of Dedicated and Project-Based Hierarchies…………………………...50

Comparing Hierarchies in Traditional Bureaucracies and Software Companies……56

 v

List of Figures

Ideal-Typical Organization of Software Companies………………………………28

 1

Chapter 1: Introduction

In “The Coming of the New Organization” (1988), management guru Peter

Drucker describes what new business organizations will look like “20 years hence”.

He compares the new organizational structure to a symphony: “A large symphony

orchestra is … instructive, since for some works there may be a few hundred

musicians on stage playing together … There is only the conductor-CEO and

everyone of the musicians plays directly to that person without an intermediary. And

each is a high grade specialist” (Drucker 1988: 48). In this metaphor, workers have

specialized roles, but are not differentiated by rank and authority. They work and

communicate with one another horizontally, but are not organized into a hierarchy.

Vertical separation between all workers and the head of the organization is

characterized by direct contact, rather than many layers of middle management.

 As we converge on Drucker’s prediction, it is an opportune moment to reflect

on the extent of changes to organizational hierarchy and its meanings for workers.

Indeed, there has been much attention on this subject in the interim. A myriad of

social analysts in various disciplines have noted the flatter, more egalitarian structures

of work organizations in the modern capitalist economy. Trends have been identified

in the delayering of corporate hierarchies, employee empowerment, workplace

democracy, and increasing worker autonomy (e.g. Piore and Sabel 1984; Jaffee 2001;

Coleman 1996; Burris 1998; Rajan and Wulf 2006). These changes have unfolded in

a diversity of sectors, including traditional industries such as automobile

 2

manufacturing and the apparel industry (Applebaum et al. 2000). However, changes

have been most profound in the new high-tech firms of the knowledge economy.

For obvious reasons, organizational structure is an important focus for

organizational scholars and practitioners. But for sociologists, it has long been an

important area of stratification research (dating back to Weber’s classic study of

bureaucracy). As Joan Acker (2006) argues, “work organizations are critical

locations for the investigation of the continuous creation of complex inequalities

because much societal inequality originates in such organizations.” Greater

understanding of the trends in organizational hierarchy, therefore, is particularly

salient for improving our knowledge of inequality. While much evidence has

established the lessening of hierarchy, it is not clear if hierarchy has been replaced by

flat, egalitarian teams as many commentators suggest (Cloke and Goldsmith, 2002;

Stewart, 1997; Kanter 1989), or to what degree hierarchy remains, and how it is

perceived by workers.

Improving our knowledge about organizational hierarchy also has important

implications for the burgeoning debates on organizational democracy and the nature

of work. Stohl and Cheney argue that participation has become a “fundamental social

right of people in the workplace that has value in and of itself” (Stohl and Cheney,

2001: 351). If business organizations have demonstrated an ability to maintain flat

structures with high participation, we can more thoroughly assess the compatibility of

democracy for profit-seeking entities (see e.g. Bernstein and Berger, 1998).

Similarly, many observers conclude that the new flatter forms are more humanistic

(Marchington, 1992) and have been advocated for by managers and labor alike

 3

(Collom, 2003). Radical theorists argue that their increased autonomy, active

participation, and flattened organizational structure are means for workers to

recognize that management and capitalist relations are not necessary and organize

themselves into a new communism (Negri, 1989/2005; Dyer-Witheford, 1999).

The pressures toward less hierarchical structures have been economic, and in

some cases, cultural in nature. Flattened hierarchies are thought to increase

productivity through a variety of means. In contrast to the hierarchical Fordist

organizations that used Taylor’s scientific management, the new organizational

structures are thought to maximize worker participation and “discretionary effort”

(Applebaum et al. 2000). By shifting decision-making authority to workers and

enabling them to alter their routines and the production process, organizations gain by

harnessing their skills and tacit knowledge while increasing motivation and

flexibility.

While economic forces have placed external pressure on companies to raise

productivity through organizational restructuring, cultural factors have acted

internally. Workers in the knowledge economy constitute a “creative class” that is

motivated by and demands greater authority in their work (Florida 2002). In software

development, this “creative core” represents a distinct “computing culture”

(Woodfield 2000). One of the quintessential elements of this computing culture is the

raised importance of technical skills over traditional forms of rank and hierarchy.

Andrew Ross, in his ethnography of a cutting-edge software company, characterized

this work culture as “an anti-authority work mentality” that “over time … grew its

own rituals of open communication and self-direction” (Ross 2003: 9). These

 4

different expectations of software workers, as highly valuable employees, have

further shaped the organization of work.

There is, however, reason to expect limitations to the flattening of hierarchy

and the prospects for egalitarian working arrangements in profit-seeking enterprises.

Writing within a Marxist theoretical framework, labor process scholars focus on the

role of management in transforming labor power into labor through control of the

labor process. As Bray and Littler (1988: 567) note, “this hierarchical control relation

is part of the economic exchange relations of capitalism which require the constant

generation of surplus value and accumulation of capital.” While management is

interested in empowering workers to harness their skills and knowledge, they also

recognize that workers’ decisions may diverge from the interests of management that

seek to maximize surplus. These structural interests emerge from the relationship

between labor and management and necessitates a hierarchical structure whereby

management maintains control.

Given these competing pressures, it is not clear how they materialize in

organizational structures and daily work experiences. Their dialectical relationship

and its organizational blueprint are the focus of this study. Each of these three forces

(economic, cultural, and political economic) will be explored in detail below to better

determine the mechanisms at work. This will create the backdrop for the empirical

study of organizational hierarchy in software firms that is to follow.

 5

Chapter 2: Literature Review

The Social Organization of Work in the Knowledge Economy

 The organization of work has changed significantly in the US since the post-

World War II boom. Until the 1970s, businesses were organized in hierarchical

Fordist structures that produced standardized products for mass markets. These large

bureaucratic structures were characterized by inflexible career ladders and chains of

command. Using Taylor’s “scientific management”, decisions were made higher up

in the hierarchy and dictated to those blow. This signified a clear separation between

conception and execution (Braverman 1974). Among workers, there was a highly

specialized division of labor. Workers lost nearly all decision-making authority and

jobs were highly alienating. All levels of the hierarchy were characterized by

unambiguous positions of rank and authority. Workers, and their unions, acquiesced

to this system in exchange for their share of the surplus in a time of rapidly rising

living standards. Productivity continued to rise and business prospered.

 Beginning in the early 1970s, productivity growth slowed sharply and

American business faced increasing competition in an expanding world market

(Harrison and Bluestone 1990). Deregulation and double-digit inflation from two oil

shocks compounded pressures in the new competitive environment. Many businesses

filed or were on the verge of bankruptcy, such as Chrysler, which required a taxpayer

bailout to stay afloat (Applebaum et al. 2000). Firms experimented with cutting labor

 6

costs, but failed to raise productivity. It became clear that rigid hierarchies

employing scientific management were often inefficient (Jaffee 2001; Heckscher

1994). Workers disengaged from the production process were not able or motivated

to share their tacit knowledge of the work. Elaborate hierarchies prevented timely

flow of accurate information. Clear positions of rank and authority made the labor

process inflexible and organizations were slow to adapt. Increasingly, businesses

looked toward the organization of work to improve productivity, and Japan became

the new model (Alcaly 2003; Jaffee 2001).

 New computer technologies were also important to improving productivity.

Not only did they perform labor-saving tasks, but they encouraged the delayering of

hierarchies (Alcaly 2003). They facilitated horizontal communication and quicker

learning across the organization and diminished the need for managerial controls.

Workers regained some autonomy and were granted decision-making authority in a

variety of contexts. These changes provided greater opportunities for workers to use

their skills, share their tacit knowledge, and motivated them to do so. Their

empowerment gave them the opportunity to alter how work was organized

(Applebaum et al. 2000).

Transforming layers of hierarchy into teams opened channels of

communication and facilitated further organizational changes and decision-making

(Alcaly 2003). Total Quality Management (TQM) and autonomous teams became the

favorite forms of restructuring (Harley 1999). These team organizations are said to

be self-managing and they coordinate themselves horizontally with other teams,

rather than a vertically positioned manager connecting them together. This

 7

restructuring was often complemented with other techniques in these “high-

performance work systems,” such as just-in-time inventories, small batch production,

incentive systems, and skill upgrading to improve flexibility and participation

(Applebaum et al. 2000). This qualitative shift in the organization of production was

famously labeled the “second industrial divide” and marked the transition to a Post-

Fordist economy (Piore and Sabel, 1984).

 While these new organizational structures and practices have been adopted in

traditional manufacturing industries (Applebaum et al. 2000), they are most

pronounced in high technology sectors of the knowledge economy. For example,

studies have demonstrated an association between “the use of sophisticated

technology and skill to the adoption of high-performance work practices” (Kalleberg

et al. 2006: 279), which include flattened hierarchies and greater worker autonomy

(Cappelli and Neumark, 2001; Gittleman et al., 1998; Osterman, 1994; Pil and

MacDuffie, 1996; Burris 1998). Of the high tech sectors adopting the new approach,

software production is particularly noted for it because of its dependence on rapid

innovation and highly creative work.

These changes have led some commentators to declare that hierarchy is

obsolete and that flat, egalitarian structures are the new mode of capitalist

organization in the knowledge economy (Kanter 1989). Stewart (1997: 192) explains

“how technology destroyed the hierarchy” and that “the flat, networked organization

triumphs because the underlying economics of communication and control have

changed in favor of small flexible organizations, not big ones.” Cloke and Goldsmith

(2002: 102) argue that “we have reached the end not only of management but of

 8

managerial approaches to organizational change” and that we are witnessing the

transformation into “organizations of, by, and for both the people who work in them

and the people they serve, without distinctions based on race, gender, social class,

condition of ownership, or position in organizational hierarchy.” While these views

are at the extreme end, they are part of a large body of literature making claim to this

powerful trend toward flatness.

In this literature, these work “practices are generally assumed to have replaced

hierarchical systems of control characteristic of Taylorist or Fordist production

regimes by a form of work organization that empowers workers to participate in

decision making, enables them to work in teams, and enhances their commitment to

the organization” (Kalleberg et al., 2006: 272). However, they have largely ignored

the actual existence of levels of hierarchy among high-tech workers, and relationships

between these workers. While numerous scholars have noted a “lessening of

hierarchy” and identified new work practices, they have missed the ways or the

degree to which these organizations have flattened out and what types of decision-

making has been devolved to teams of workers because of a dearth of empirical

studies.

Computing Culture and Hierarchy

 While economic forces have placed external pressure toward organizational

restructuring, cultural factors have acted internally. Through the construction of

specific norms, attitudes, values, practices, and expectations, culture can influence

how organizations are shaped (Woodfield 2000). Conceptions and applications of

 9

culture have varied widely in the social sciences and it requires clear elucidation of

the cultural context relevant here (Kunda 1992). I use the concept of a computing

culture here in a specific sense—one that relates to a specific of subgroup people and

not in the broad context of American or western culture. In particular, I differentiate

computing culture from the cyberculture studies that have gained significant attention

since the late 1990s.

Cyberculture refers to “the set of technologies (material and intellectual),

practices, attitudes, modes of thought, and values that developed along with the

growth of cyberspace” (Lévy 2001: xvi). Empirically, cyberculture has been studied

in relation to the internet (Bell 2001). Its diverse application has covered online

communities (Wellman 1997; Wellman and Gulia 1999), online identity (see Turkle

1995 for the classic study), cybersubcultures (see Bell 2001, chapter 8), and other

related topics. Conceptually, cyberculture is a nebulous structure. It captures many

different types of people with many different types of relationships to computers and

the knowledge economy. Instead, I focus on a more specific culture.

 The culture relevant to this study is the social group of computing

professionals who “eat, breathe, and sleep code.” Like the “ethos” of Florida’s

“creative class”, it is bounded by specific occupations (Florida 2002). These

computing professionals comprise much of the workforce of software companies and

computing departments in companies of the knowledge economy. They are part of

the “super-creative core” of the creative class. They cohabit much of the same social

space of cyberculture, but also maintain their own unique set of practices, norms, and

 10

values, that are distinct from other cultural spaces1. The computing culture is much

closer to the “creative ethos” of the creative class, but is even more specific.

Much of the literature and inhabitants of this cultural space define them as

hackers (e.g. Himanen 2001). While mainstream media and pop culture have referred

to malicious computer programmers as hackers, the traditional sense of the word is

closer to those individuals inculcated in the computing culture. Even though the field

has still produced a relatively modest number of empirical studies on computing

culture, there are a number of consistent themes that capture its “quintessential

character” (Woodfield 2000). Several authors have identified a “core ideology” of

this computing culture, with common norms and values.

Perhaps the strongest element of the computing culture is their passion for

their work, or their “hacker work ethic” (Himanen 2001). Hackers write and design

programs because they find the work intrinsically interesting. They tend to be

motivated more by this passion than the money that their employment provides

(which can be significant). Challenging programs can draw the most interest and

excitement, perhaps because they demand the greatest creativity. This culture

encourages and rewards the most “beautiful” or “aesthetically appealing” code (Case

and Piñeiro 2006).

 Secondly, computing culture emphasizes knowledge sharing and open access.

Computing culture has its roots in open-source software and free access. Before

commercial computing became an attractive opportunity, early computer

professionals survived through reciprocity and in a “culture of knowledge sharing,

1 See Woodfield (2000, pages 9-12) for a more thorough argument of why computing may be
considered a distinct culture.

 11

continuous improving, and sharing of software” (Bergquist 2003: 225). These roots

of early computing culture have been institutionally reproduced through the open-

source movement, actions against censorship, and expansion of computer and internet

access. Computing professionals have helped lead the broader cyberculture drive for

greater access and free distribution of knowledge, through organizations such as the

Free Software Foundation and the “copyleft” movement (Bergquist 2003).

The third and perhaps most pertinent cultural element to this study is attitudes

against hierarchy and authority. According to Himanen, the computing culture has

“always been anti-authoritarian” and “hackers oppose hierarchical operation” on both

normative and pragmatic grounds (Himanen 2001: 70). Hackers are encouraged to

“mistrust authority—promote decentralization” and “hackers are to be judged by their

hacking, not bogus criteria, such as degrees, age, race, or position” (Levy 1984,

quoted in Turner 2006: 261). Andrew Ross, in his ethnography of a cutting-edge

software company, characterized this work culture as “an anti-authority work

mentality” (Ross 2003: 9).

 This “core ideology” of computing culture is reproduced in chat rooms, on

FAQ documents, project manuals, and specialized conferences. A growing number

of scholars have studied this computing culture in these various domains. For

example, Case and Piñeiro (2006) studied an online programmer community that

talked passionately about their coding as an art form, emphasizing coding aesthetics.

Cultural reproduction in the open-source movement has gained particular attention

from anthropologists (e.g. Bergquist 2003) and other scholars. It has also been

 12

studied in more general terms at workplaces (Bloomfield 1989; Ross 2003) and

schools (Sproull et al. 1984).

 However, as Woodfield argues, “fewer commentators have examined the way

in which elements of the wider cultural framework itself can influence and determine

the nature of the immediate computing environment, or have reflected in detail upon

the way the nature of the immediate context continues to surround and shape the

production of the technology” (Woodfield 2000: 9). Specifically, it is not clear how

this computing culture affects organizational structure or if organizational objectives

are congruent with computing’s “core ideology.” One might reasonably expect that

in conjunction with management paradigms that emphasize horizontal, team-based

production, a culture that disdains authority, centralized power, and position based on

rank, that software firms and workers in particular would be organized into flat,

egalitarian structures.

The Labor Process and Hierarchical Control

In contrast to the flat organizational models and an anti-hierarchical

computing culture, labor process theory disputes claims that hierarchies are a thing of

the past, or that capitalist relations can achieve an egalitarian organization. Drawing

on Marxist principles of political economy, this literature focuses on the hierarchical

relationship between managers and workers in the labor process. In this relationship,

the function of management is to convert workers’ labor power (the potential to

work) into labor (actual work effort) to further capital accumulation (Braverman

1974). Workers may resist by withholding their labor or using their labor to satisfy

 13

their own interests, at the expense of management’s (or the capitalist’s) interests. “To

the extent that individual or collective worker resistance interferes with it,

management will be concerned to ‘control’ labor” (Bray and Littler 1988).

 Like mainstream approaches, labor process scholars have adapted their

theories to the broad organizational changes in capitalist firms. They recognize, for

instance, the adoption of TQM, work teams, and increased autonomy. Of particular

importance is the role of information and creativity in the knowledge economy.

When managers have extended Taylorist control mechanisms to knowledge workers,

such as computer programmers and software engineers, they have had poor results

(Kraft 1999). These techniques stifle the flow of information and are not conducive

to creative work (Andrews et al. 2005; Florida 2002). Within capitalistic enterprises

“managers seeking to extract the greatest value from ‘creative’ workers need to

manipulate not only behavior but imagination” (Kraft 1999: 21). These

organizational pressures have shifted the attention away from scientific management

toward construction of a workplace culture that attempts “to elicit and direct the

required efforts of members by controlling the underlying experiences, thoughts, and

feelings that guide their actions” (Kunda 1992: 11).

Rather than accepting these schemes of worker empowerment as new-found

egalitarianism, labor process theorists point to the reconfiguration of control

hierarchies. As Ezzamel and Willmott (1998: 359) note, “the intent to abolish some

features of [the traditional management] system, such as close supervision, should not

be uncritically conflated with the dilution or demise of an established top-down

structure of control.” Instead, management has reconfigured control structures to

 14

both “control and inspire” knowledge work in these organizations. They construct a

cultural environment that facilitates or “inspires” creative work, while simultaneously

guiding, redirecting, and placing limits upon the work. These management interests

often conflict with the workers’ interests (Applebaum et al. 2000) and their

computing culture (Himanen 2001). Subsequently, “a firm’s culture may be

understood as resulting from political processes where many different cultures

compete for hegemony, rather than a monolithic, unified system of shared values and

norms developed and promoted by management as described in the corporate culture

tradition” (Rasmussen and Johansen 2005: 102), or a similarly monolithic culture of

the hacker ethic. An important point is that these political processes are indeed

mediated by positions of authority and ownership within the organization. The

resulting control structures include specific workplace practices, organizational

cultures and normative controls, and finally, (sometimes hidden) organizational

hierarchies.

These competing cultures, and the organizational hierarchies they engender,

can be sources of conflict within the organization. Programmers who are motivated

by passion and the intrinsic interest of programming, seek interesting and challenging

projects, but capitalist organizations choose projects based on greater profitability

(Himanen 2001). While spaces of creativity are necessary in the labor process, the

maximization and exhibition of this creativity and mastery in “aesthetically

appealing” or “beautiful” code can hinder capitalistic objectives for quicker,

functional product delivery. Case and Piñeiro (2006), in their study of an online

computer programmer community, documented this conflict and the subversive

 15

rhetoric and activity of participants. Participants directed their incendiary rhetoric at

those with authority over them, including project managers and others having

hierarchical relationships to them. Non-technical superiors are particularly common

sources of conflict (e.g. see Lewis 1999; Zmud 1982; Burris 1998). These conflicts

may be further compounded by the tension between creating software with free

access versus proprietary software for maximum profit.

Recent qualitative studies have identified new strategies of control in

managing the labor process of knowledge work. For example, several studies have

shown that by using “soft control” (Florida 2002), workers “who are offered

autonomy over their work, including autonomy over their working time, are

motivated by this (Bailyn, 1988) and are willing to work long hours (Barrett, 2005;

Voss-Dahm, 2005)” (Rasmussen and Johansen, 2005: 102). Others have explored

how identity (Marks and Lockyer, 2005) and organizational policies (Baldry et al.,

2005) facilitate control and the extraction of greater value. However, these practices

exist within organizational structures that have not been sufficiently explored. In

much of the literature, organizational structure and the labor process are typically

conflated (Ezzamel and Willmott, 1998), but demand a greater focus in light of

current debates. Almost no empirical studies have assessed the flatness of

organizational hierarchy and critical scholarship has focused on the newer modes of

cultural control (Kunda 1992), while ignoring modes of control exercised through

organizational structures. When researchers have assessed the “flat thesis”, they have

focused exclusively on managerial hierarchies (Rajan and Wulf 2006), thereby

 16

ignoring the organization of worker hierarchies. A more nuanced analysis of

organizational hierarchies may reveal increasingly complex stratification structures.

 17

Chapter 3: Theory and Research Questions

This study seeks a grounded approach toward new forms of organizing work

in the post-industrial economy, focusing on software firms as exemplary of the

knowledge economy. While much of the literature has described it as a vague

“lessening of hierarchy”, many others have made more bold (but often less

empirically rigorous) arguments. They argue that new horizontal coordinating

mechanisms such as teams (Marchington, 1992) utilizing TQM and other HPWP

(Applebaum et al., 2000) have “destroyed the hierarchy” (Stewart, 1997) and ushered

in new workplace democracies (Cloke and Goldsmith, 2002). Managers support

these organizations because of greater efficiency, and workers inculcated in the

computing culture identify with the decentralized “hacker ethic” (Himanen, 2001)

and its “anti-authority work mentality” (Ross, 2001: 9). This study asks are these

organizational structures as flat and egalitarian as they are thought to be?

 Much of this literature implicitly and explicitly conceives of this transition as

an act of replacement (e.g. Kalleberg et al., 2006). As hierarchical structures

diminish (approaching absolute dissolution), horizontal coordinating mechanisms are

developed proportionally. This transformation is subsequently interpreted by scholars

and practitioners as democratic and egalitarian. However, the literature errs by

conflating “processes of coordination … with structures of control” (Ezzamel and

Willmott, 1998: 362). This conceptual distinction is of utmost importance to this

study. The relationship must be seen as processes of coordination embedded within

 18

hierarchical structures of control. For example, teams of empowered workers may be

organized horizontally, but be assigned to specific projects conceptualized by those

above them. Workers may be free to determine how tasks are carried out, but work

within prescribed parameters. Furthermore, these hierarchical structures may be

characterized by varying degrees of formality and informality.

Critical scholarship from within Marxian labor process theory has illustrated

this distinction. Rather than emerging from a natural and functional necessity, these

hierarchical structures remain because of the structural imperative of capitalist

organizations. Workers’ interests may be structurally different (Ezzamel and Willmot

1998; Applebaum et al. 2000: 8) and often overtly opposed to the interests of

management. To the extent that this is the case, managers construct both normative

and organizational controls to ensure that their interests are met. These controls may

result in both formal and informal organizational hierarchies. To evaluate these

hierarchies (or lack thereof) in software firms, I am concerned with three separate but

highly related questions.

 First, what formal positions do workers occupy in the organizational

structure? Titles differentiate workers from one another, but organizational contexts

attribute ranking and ordering of these positions. The focus here is on how workers

are arranged, relative to one another (i.e. who reports and is responsible to who). Are

workers arranged horizontally in teams with direct reporting to a CEO (similar to

Drucker’s symphony metaphor)? Or are they arranged in vertical hierarchies and

interface with middle management (bearing resemblance to traditional

bureaucracies)? By workers, I mean those individuals that directly execute the design

 19

and development of software products. I do not evaluate managers who focus

exclusively on managing developers or the organization. One could similarly look at

the management structure, but this is beyond the scope of this study.

 Second, how is decision-making authority distributed among workers? Since

Weber, authority over decision-making has always been a key attribute in the study of

hierarchy and bureaucracy. In a hierarchical organization, decisions are made from

above and dictated to those below. In this way, workers receive orders rather than

make decisions. In flat structures, all members participate in decision-making,

perhaps as individuals, or in groups through voting and committees. These may

range from high-level decisions such as budgeting, hirings and promotions, and

setting policies and procedures, to lower level decisions including task assignments,

setting deadlines, and task execution. It is often taken for granted that workers do not

participate in strategic company decisions, but this remains an important component

of hierarchical control and inequality (Acker 2006). Higher-level decision-making is

also still very important for workers because such decisions have daily impact on

workers and the organization of work. It is logical to assume that the degree of

flatness will coincide with the devolution and sharing of such decision-making. I

follow Wright et al. (1995) in viewing decision-making authority as separate and

unique from offering input and advice.

Third, do workers experience upward mobility in their organizations? As

Barley and Kunda (2001: 87) state, “hierarchy not only defines the distribution of

authority in a bureaucracy, it provides a blueprint for constructing organizational

careers.” Vertical mobility in an organization requires multiple levels in a hierarchy.

 20

Generally, but not always, such a move will result in greater decision-making

authority and supervisory/managerial responsibilities over subordinates. This is

contrasted with horizontal mobility, where workers may attain new formal positions

with new specialization, but without new authority and power. This latter movement

could occur in either flat or hierarchical structures, and is therefore not indicative of

either. It is not a focus here.

These three questions seek to paint a more nuanced picture of hierarchy

among workers in knowledge economy firms. They strive to capture the objective

existence of organizational structure in software companies. This will subsequently

improve our understanding of stratification within organizations.

The nature of this study lends itself to an exploratory analysis. While

literatures on the social organization of work, workplace democracies, and computing

culture suggest pressures toward flatness, labor process theory that hierarchy and

complex inequalities remain despite these pressures. It is unclear how these forces

will bear themselves out in the software companies that are the focus here. Answers

to my three research questions can only be found in rigorous empirical analysis in

hopes of contributing to these lively debates.

 21

Chapter 4: Data and Methods

This analysis draws on in-depth interviews with 61 respondents at 31 different

software companies. All companies represented in the interviews are considered

small to medium sized businesses (based on US standards). At most companies, two

or three interviews were conducted, including the founder and/or CEO and one or two

programmers.

 All interviews were conducted in-person in the summer and fall of 2001 using

semi-structured questionnaires. Interviews took place in the Washington,

DC/Baltimore metropolitan area, home to the third largest concentration of software

firms in the US. Initial contacts were identified through personal acquaintances and

friends. Subsequent respondents were found through referrals to co-workers, friends,

and acquaintances using snowball sampling (Weiss, 1994). Additional respondents

were recruited by identifying potential subjects in newspaper articles, news releases,

and web-based directories. These people were then contacted via phone or email

requesting interviews with the CEO and a software developer or similar position. Out

of a total of about 100 companies that were contacted, interviews were conducted

with approximately 31. The remaining companies either declined to participate,

failed to respond, or postponed participation until a later date.

While this data is not representative of all software companies, efforts were

made to construct an appropriate sampling frame. Companies ranged in size from a

startup with a few individuals to established companies with several hundred

 22

employees at offices spread around the US. The smallest companies had only two to

four full-time employees, but many hired part-time freelance programmers. The

largest companies occupied offices on multiple floors in high-profile office buildings.

Some of these companies also had satellite offices in Europe or had recently closed

them. However, given the timing of this data collection (the dot-com bubble burst in

March of 2000 and effects were continuing to be felt through 2001 and beyond),

personnel numbers were not entirely stable. In particular, many companies were

downsizing and some smaller companies were struggling to survive. Companies also

varied in their location within the Washington, DC/Baltimore metropolitan area.

They were spread around downtown Washington, Baltimore City, suburban

Maryland, and the Virginia high-tech corridor. Finally, individual respondents varied

in terms of their position within the organization, title, and level of responsibility.

These included senior and non-senior management, workers of various titles, and

both technical and administrative positions.

 Interview questions covered titles, mobility, company structure, occupational

roles, the labor process, and company culture. The Appendix provides sample

questions on the questionnaires administered to programmers and technical

leads/project managers respectively. Sometimes it was only possible to ask specific

questions of a single person in a company. Other times, the same questions were

asked of multiple people, allowing checks for consistency. The majority of the

interviews took place at respondents’ offices. They averaged one to two hours in

length, and all interviews were transcribed for data analysis. The interviews were

conducted by a member of the university faculty and four graduate students. The

 23

author did not conduct the interviews and therefore transcripts are treated as

secondary data.

 The exploratory nature of this research lends itself to an inductive approach.

During the course of data collection, the use of a semi-structured questionnaire

permitted modifications as new themes arose or specific topics required further

probing. This research design incorporates a grounded theory methodology, which

emphasizes theory construction from data (Glaser and Strauss 1967; Charmaz 1983).

This is further employed throughout the data analysis.

Consistent with grounded theory principles, themes were first identified in the

interview data. By first reading through interview transcripts, I constructed several

themes related to hierarchy in software companies. I then developed a list of search

terms that corresponded to each theme. Using the software package Atlas/ti, I

systematically searched all 61 transcripts for each instance of the search terms. The

search terms enabled me to identify relevant quotes/phrases and based on these

quotes, I acquired new search terms that were then used to continue my search

(search terms were also obtained from the literature). In grounded theory, this

process of linking quotes to emergent themes is called coding.

As the coding process continued, the software package enabled me to merge

or delete redundant codes, while new codes could be further assigned to emergent

themes. This coding occurred concurrently with readings from the literature in an on-

going process that integrates the data with existing literature. During this process of

triangulation between data, codes, and the literature (Charmaz 1983), I constructed

 24

several memos that facilitated the inductive development of new concepts. The

software’s functionality permits such memos to be connected to these codes.

When all coding was completed, I was left with a refined list of relevant codes

with many quotes connected to each code. However, these quotes represented both

supporting and disconfirming evidence for each particular theme. To evaluate the

strength of each theme, I constructed a data matrix (Miles and Huberman 1984). This

matrix consisted of columns of supporting and disconfirming evidence for each theme

and each respondent. The matrix served as a visual aid to identify the relative support

for each theme and facilitated the identification of clusters of relevant data. This

technique prevents making claims on scant or ambiguous evidence.

The use of interviews with both workers and management is a unique facet of

this study. Not only did this allow me to generate better images of work

organizations through multiple perspectives, it provided valuable insights from

individuals performing the actual development work. While most studies exploring

organizational structure, coordination mechanisms, and HPWP have used surveys

answered by human resource administrators and managers (e.g. Osterman 2000;

Eriksson 2001; Caroli and Van Reenen 2001), these miss the perspective of the

workers themselves (Applebaum et al. 2000). Such one-sided views may not

necessarily reflect worker relationships, decision-making, and mobility opportunities,

and are greatly enriched when complemented by interviews with workers. While a

handful of ethnographic studies (Ross 2003; Woodfield 2000; Barker 1993) have

captured workers’ perspectives in teams through in-depth interviewing and

observation, these studies have tended to focus on a single company. Furthermore,

 25

most have only marginally considered organizational structure and authority (Ross

2003; Woodfield 2000).

 26

Chapter 5: Results

The results reported here test the “flat thesis” by focusing on worker

hierarchies in software companies. To evaluate worker hierarchies in this study, I

focused on three primary questions: 1) what formal positions do workers occupy in

the organizational structure?; 2) how is decision-making authority distributed among

workers?; and 3) do workers experience upward mobility in their organizations? I

have constructed a typology of worker hierarchies, which weaves together evidence

that addresses these questions.

In order to fully appreciate the relative positioning of worker hierarchies, it is

also helpful to understand the broader organizational context within which these

worker hierarchies are situated. Therefore, I begin reporting results by briefly

looking at the organization as a whole. It is my intention that this holistic approach

will help our broader understanding of the depth between workers and the top of the

organization, and keep us conscious of the decisions affecting work which remains

entirely with management. This introduction will set the stage for evidence presented

on worker hierarchies, which comprise the focus of this analysis.

As stated earlier, I differentiate between workers and managers in this study.

By workers, I mean those individuals who directly execute the design and

development of software products. I do not evaluate managers who focus exclusively

on administrative and managerial tasks. These full-time managers comprise a

managerial hierarchy that exists above all workers in the organization. For example,

 27

consider John2, who worked as the Vice President of Product Development at a

software company. In a position of middle management, he saw hierarchy above and

below his position.

When it comes down to it, there’s a clear chain of command. I know exactly

what I’m – [the CEO] tells me exactly what I’m responsible for. And then I

delegate that and tell people what they’re responsible for.

(John, VP of Product Development, Company D)

John’s comments reflect a common observation in software firms. Not only did a

chain of command exist, but individuals understood it and their position within it, if

only subconsciously. Furthermore, these hierarchical relations existed among both

managers and workers themselves.

By drawing widely on interview transcripts, I was able to trace the structure

and flow of these chains of command3. When I compared these organizational

structures, I found some variation existed between organizational hierarchies,

particularly in the number of layers of management, which generally varied with

company size. The fact remained, however, that all companies did adopt a

managerial hierarchy. Furthermore, there was considerable continuity in the positions

and organization of worker hierarchies and the worker-management interface.

Based on these chains of command, I constructed an ideal-typical

organizational chart of software companies (I have chosen not to look at other

departments, such as Sales or Human Resources, and focused only on Software

2 Actual names of all respondents and their companies have been removed to maintain confidentiality.
Pseudonyms have been used in their place.
3 Using available information, I was able to reconstruct organizational charts for half (16 of 31) of the
companies in the sample. I lacked information to reconstruct an adequate chart for the remaining 15
companies, but I did gather detailed information on the worker hierarchies within most of these firms.

 28

Figure 1. Ideal-Typical Organizational Structure of Software Companies

 Hierarchy Relevant Titles/Positions

 Executive/Upper Management CEO; President

 Managerial Middle Management CTO; COO; CFO; Vice President (VP) of Technology;
 Hierarchy VP of Product Development; VP of Engineering; Consultant .

 Lower Management Director of Development; Director of Software Developmnt; .
 Engineering Manager; Development Manager; Program
 Manager- Manager; Technical Director; Creative Director
 Worker Project Manager Project Manager
 Interface

 Worker Team Lead Technical Lead; Project Leader; Team
 Hierarchy Leader/Team Lead

 Developer Developer; Programmer; Software Engineer;
 Junior/Senior Software Engineer; Associate
 Engineer; Software Engineer A/B;
 Programmer Analyst; Architect

Development). This chart is represented in Figure 1. At the top of the hierarchy is

the management hierarchy, which I represented simply as Executive/Upper

Management, Middle Management, and Lower Management. I have also identified

the titles that correspond to each layer of management. No organizations had all titles

that are listed and managerial hierarchies normally had two or three, and sometimes

four layers. For example, at Company K, the CEO sat atop the managerial hierarchy,

with the Vice President of Engineering reporting to him, and the Director of

Development, and Project Manager, at respectively lower levels below. At Company

N, the Project Manager reported to the Technical Director, who reported to the

President.

 29

In most organizations, the Project Manager was the interface between workers

and managers. I have included it in both the worker and management hierarchies

because the Project Manager often performed development duties, in addition to

his/her managerial responsibilities. This dynamic is explored in greater detail below.

Under the Project Manager is the Team Lead, and finally developers are at the bottom

of the hierarchy. Most organizations had both a Project Manager and Team Lead, but

this was not true in all cases. However, even in their absence, respondents often

referred to them as typical positions in the industry. Developers had the most variety

in titles within their position (e.g. Associate Engineer, Programmer, Junior/Senior

Software Engineer, etc.). While some of these positions implied hierarchy (i.e.

Junior/Senior Software Engineer), there was no differences in formal decision-

making authority or supervisory relationships within these positions and they have

been subsequently grouped together. Many developers reported that such distinctions

had no meaning (“titles don’t really count too much” (Anad, Developer, Company I)

or “titles in the company mean nothing” (John, VP of Product Development,

Company D), but they did tend to reflect differences in skill levels, experience, and

often status.

The existence of hierarchy was nearly universal4 in the software companies

studied. Even small companies adopted minimal hierarchical forms that had

permanent managerial and administrative positions with superordinate positions over

workers designing and developing software products. As stated previously, my focus

4 One company, Company G, did appear to be truly flat. However, this company had only three
individuals who created the organization as a limited liability partnership. Karl, a Founder and
“Principle” of Company G, reported, “in order to be three equal partners, we're sharing the decisions,
and sharing the revenue.” He and his partners avoided arranging themselves hierarchically because “a
hierarchy, by definition, is not that” (that being the equal sharing of decisions and rewards).

 30

is specifically on the worker hierarchy within these organizations. I found that the

organizational structure of these worker hierarchies can be classified into two general

and distinct hierarchical forms. First, there are dedicated hierarchies with relatively

static vertical relationships that reflect many of our traditional notions of

organizational hierarchy. Second, there are more dynamic project-based hierarchies,

where selected workers temporarily assume superordinate positions, and are

subsequently de-activated from their position and replaced by another worker as

projects reach completion. Each of these forms are explored below.

The images of organizational work charts given above accurately portray

formal positions and implicitly assume delegation of authority and power

relationships. However, such assumptions do not necessarily reflect daily work

practices. To understand the nature of the relationships, we must “bring work back

in” (Barley and Kunda, 2001; Barley, 1996) by evaluating worker experiences and

meanings. Within these positions, how is decision-making authority distributed? Do

workers experience vertical mobility between positions? Answers to these questions

are woven together to construct an understanding of the two hierarchical forms

(dedicated hierarchies and project-based hierarchies). Accordingly, the focus shifts

from the abstracted role of various positions to the concrete experiences of workers

and managers occupying those roles.

Dedicated Hierarchy

In a dedicated hierarchy, superordinate and subordinate workers maintain

relatively static relationships, relative to one another. The positions have clearly

 31

understood boundaries; titles tend to reflect and communicate such boundaries.

These boundaries and vertical relationships are understood within the three positions

of the worker hierarchy and worker-management interface: Project Manager, Team

Lead, and Developer.

Project Manager

The Project Manager’s duties are diverse. Just some of the Project Manager’s

responsibilities include communicating between clients and the development group,

interfacing with management, sales, and development, drafting requirements

documents for new projects, and coordinating the design of new projects. However,

the position of Project Manager cannot be viewed as simply a managerial position.

Rather, in many companies, large and small, the Project Manager is directly involved

in designing and coding of software products. In other words, they both managed the

software development process and developed the software itself, but they did tend to

dedicate more of their time to managing. The extent to which their tasks covered

either managerial or development duties varied both across and within organizations.

Accordingly, the Project Manager position ambiguously represents both the worker-

management interface and the pinnacle of the worker hierarchy. For instance, Syd is

a Project Manager that does coding occasionally, but focuses mostly on managerial

responsibilities.

Question: Did you do any developing and actual coding as the Project

Manager?

 32

A bit, on some of the smaller ones I had to lend some coding help. That was

mainly for projects that were less than a month in scope, two to three

resources. The big ones I haven’t.

(Syd, Project Manager, Company C)

In other (often larger) companies, Project Managers may “just mange perk charts and

everything, and they don't even know anything about programming” (Kevin, Team

Lead, Company M). In addition to variation across companies, there was also

differences among Project Managers within companies. Trey is a Developer who has

worked for both types of Project Managers.

There are project managers who … are close to senior software engineers, and

the project managers that are closer to being just plain managers.

(Trey, Developer, Company K)

Regardless of the distribution of coding and managerial duties, Project Managers

required certain levels of technical skill. This is evidenced in the fact that many

Project Managers interviewed were actually upwardly mobile developers and

architects. In some cases, such as John, Developers were promoted to Project

Manager, and continued their climb through the managerial hierarchy.

Question: What position did you come on as?

A developer.

Question: So you went from developer to—

Project Manager, to Director of Operations for the East. I used to run

Operations for the East. From there, I went to—I had a lot of success at sales

and starting new offices … so they had me switch over to new office

 33

development, and I managed all the new offices … and then, from there, VP

of Product Development.

(John, VP of Product Development, Company D)

Nonetheless, a few companies had professional managers with only supplemental

technical training. However, many developers spoke negatively of non-technical

project managers, which confirms previous findings (Zmud 1982).

 Despite responsibilities in coding and software development, Project

Managers maintained superordinate positions, over other workers (i.e. Team Leads

and Developers). Project Managers reported directly to managers higher up in the

hierarchy, such as a Director of Engineering or Vice President of Software

Development. They were responsible for individual projects and the individual

workers assigned to those projects. Syd, the Project Manager who stated earlier that

he does occasional coding, made this relationship explicit.

Basically you have a fairly hierarchical vertical structure. You’re supposed to

have every project manager managing a project, every project manager

reporting to a director.

(Syd, Project Manager, Company C)

As part of the management team, Project Managers reported participating in higher-

level decision-making functions. For example, they determined the number of

“resources” (Developers) necessary for a project and in some companies, they

assisted in developing the budget. Developers and Team Leads rarely participated in

these decisions. Project Managers also usually set deadlines, and while the scope of

 34

individual pieces were negotiated between Developers and managers, Project

Managers made the final decisions.

While the team lead was most often the position directly below the Project

Manager, the Project Manager also assisted in the management and supervision of the

Developers. This management relationship included a number of directives and

means of control over the work of Developers. Ahmet, the Co-founder and CTO of

one company, identified their Project Managers’ role in task assignment.

The project manager really has the authority and the judgment to say “Hmm,

I’ve done a skills assessment and I think this person is better capable of doing

this than this person.”

Question: Do the members of the team have some say in what they’re

assigned to?

They do. Sometimes you get volunteers, saying “hey, I really want to work

on this.” Sometimes you have to play Spock, and you’re to say “Sure, I know

you want to work on this, but in the interests of time and the fact that we don’t

want a lot of R&D, I’d like X, Y, Z to work on it because, you know, they’ve

really done it before.”

(Ahmet, Co-founder/CTO, Company L)

At Company L, Project Managers did not exhibit direct control of assignment of

tasks. Instead, Developers were given opportunities to volunteer for and give input

on tasks they wanted. However, it was the Project Manager who got to make the final

decision. The assignment process was done informally, with the goal of seeking

consent, but was an unobtrusive means of control mediated by this higher position. In

 35

fact, this authority was common across many organizations and decisions. A Project

Manager at Company J, Jack, reiterated this authority.

Question: Is there one person who’s kind of in charge of [task assignment], or

is it more of a communal offering?

I have the final say on kind of everything that happens, so I put myself at the

top.

(Jack, Project Manager, Company J)

According to Jack, he had the final say on “everything” with Developers. Other areas

of decision-making attributed to Project Managers included setting deadlines, the

level of documentation necessary in coding, hiring, firing, and promotions. At

Company D, Project Managers were also responsible for monitoring the actual coding

and selecting relevant features in a software product.

One of the biggest challenges for a Project Manager, and something that I'd

like to think I was always good at—developers have this inherent quality, if

you will, where they want to build a monument to themselves. And they

introduce complexity, because, "It would be really cool if I could do this

thing. And it provides me with all of this future ability to do something the

customer's not asking for." So as a Project Manager, as a manager in any

respects, you look for those people who like to build a monument to

themselves. You keep an eye on those people. And I used to come back to

them, say, "It's got to be simpler than that."

(John, VP of Product Development, Company D)

 36

This struggle between Developers and Project Managers (and to a lesser

extent, Team Leads) was a common occurrence in these software companies.

Developers often favored writing “elegant code” that was “cool.” We know from

recent studies on computing culture (Himanen 2001; Case and Pineiro 2006) that the

writing of such “beautiful” and “aesthetically appealing” is encouraged within the

profession. In fact, status rewards can accrue to those who have demonstrated such

coding skills. However, managers, including Project Managers, have different

priorities. They are under constant market pressure to make productive use of their

resources (including Developers) and the time necessary to write such code (or

“monuments”) comes at the expense of other projects and tasks. Accordingly, this

hierarchical authority over workers serves the interests of the founders and owners to

improve the surplus of software development.

 These comments have demonstrated that Project Managers occupy a formal

position between the worker and managerial hierarchies, while existing in both

simultaneously. They have some authority and input in high-level decisions, and

significant decision-making authority in production-level decisions. In most

organizations, the Project Manager yields significant decision-making authority over

Team Leads and Developers, but this is not always the case. Some organizations,

such as Company C, view this position as more of a coordinating position.

The Project Manager owns this whole thing and brings in other people, if

necessary. [But] the team model is based on a team of peers. And so that’s

where you have, even though the project manager is responsible for this, the

project manager isn’t the boss guy.

 37

 (Roger, Founder/CEO, Company C)

Accordingly, it is important to keep in mind the variation among organizations in

distributing power and authority throughout the hierarchy. Indeed, a few

organizations did not have anyone in this position. Nonetheless, Project Managers in

dedicated hierarchies tended to be technically-trained individuals in formal

hierarchical positions and given decision-making authority over workers and

participation in broader organizational processes.

Team Lead/Leader

Team leads generally report to the Project Manager, or Director of

Development/Engineering, if a Project Manager is not present or nonexistent. In

dedicated hierarchies, they also blended managerial and development responsibilities.

But in comparison to Project Managers, they focused more on coding and

development and less on general and higher-level managerial tasks. In dedicated

hierarchies, Team leads were all Developers and designers at some point in the past

(and in certain ways, they still are) and usually had achieved their position through

formalized promotion processes. This was the case for Thom, who started as a senior

software engineer and was recently promoted.

This year, um… I get promoted to be Technical Lead.

Question: What will be the change in responsibilities that will go with that?

When you work as a software engineer, pretty much you’re responsible for

your own developments … But if, um, you become Technical Lead, then you

have much broader responsibilities that you have to work with, a lot more

people … it’s more like, uh, a lot more to do with management and control.

 38

(Thom, Team Lead, Company B)

As Team Lead, Thom gained a managerial, or supervisory position, among the

developers which gave him more control. He became responsible for both his own

work and the work of his team. When asked if there was a lot of upward mobility at

his company, Thom indicated that there was.

This additional responsibility was normal for Team Leads in this type of

hierarchy. This added responsibility and control made Team Leads feel and appear as

quasi-managers. This point was made by Kevin, a Team Lead, and confirmed by the

CEO of his company, Company M.

A lot of companies, larger companies, what they do is they divide the work

between the manager, who just mange perk charts and everything, and they

don't even know anything about programming. Sometimes it's difficult to

work in that environment, but you know, to each their own. And then other

times, you know, they have a senior engineer, and they're the ones that are

actually making all the decisions and doing what I would say is the real work

inside there, and here at Company M, we have a team leader position, which

is a combination of the both, which...

Question: Your team leader is also a part manager?

Well, that's what I'm saying. It's the best of both worlds, in my opinion.

(Kevin, Team Lead, Company M)

Now a project leader is, I mean, it’s kind of a management position, but, I

mean, the project lead is also writing code as well.

 39

(Michael, CEO, Company M)

With new responsibilities, Team Leads also attained greater authority over the

Developers in their team. They were assigned more decision-making authority in a

variety of situations. In traditional hierarchical organizations, this authority is

normally granted only to managers. In fact, many of these areas overlapped with the

authority of Project Managers. For example, Team Leads, such as Kevin, were often

responsible for decisions on task assignments.

I’m the team leader. I’m responsible for all of my guys, and if they’re not, if

they’re not doing that, it’s my problem, not theirs … As a team leader you

have to be able to understand the strengths and weaknesses of everybody on

your team so you can decide who’s gonna be working what task and where

they’re going to be placed to best … accomplish the goal, if you will. And

that’s pretty much how it works out.

(Kevin, Team Lead, Company M)

In addition to task assignment, Team Leads often set deadlines and maintained

project schedules.

Question: How did you all decide on what portions you all would get to

work?

Let the team lead take care of that. She asked us, “Do you have anything in

particular that you want to work on?” But the project schedule and who was

working on what was all decided by the team lead.

(Salih, Developer, Company E)

 40

Because they were responsible for their Developers, Team Leads were concerned

about their the Developer’s productivity. They monitored individual member’s

progress and could sometimes sanction team members for not meeting standards or

objectives.

However, it was rare for Team Leads to be involved in high-level decision

making such as company strategy, creating budgets, resource allocation, drafting

policies and procedures, etc. These were normally reserved for full-time managers

and sometimes, Project Managers. Occasionally, however, Team Leads were given

higher level authority. For instance, Team Leads did have some decision-making

over hiring.

The project leaders look at the resume, if the resume really looks interesting

we'll bring the person in and as part of bringing the person in, they sit down

with them, grill ‘em about what they've done … then we usually take the

person out to lunch and whatever the team they'd be working with and then a

few other people from some of the other disciplines. You know, we all throw

rocks at each other and have a good time and then uh, everybody writes up

their impressions and staples them together and gives those to the project

leader, project leader makes an assessment from that, and I either give the

thumbs up or the thumbs down and I never question those recommendations

because at that point, you have to trust the process.

(Michael, CEO, Company M)

In this case, Michael, the CEO, had formal decision-making authority over hiring new

Developers. On the one hand, his Team Leads only made a “recommendation” on

 41

new hires, but on the other hand, the CEO always trusted and reiterated their

recommendation. His rationale was that “because even if you bring somebody in

over that kind of recommendation, then what are you saying to your existing

employees?” Accordingly, recommendations took more the form of decisions than

advice.

 It became clear that many Team Leads understood their position as partially

managerial, in a vertical relationship to Developers. Successful developers, like

Thom, were promoted into the position, thereby receiving additional responsibility

and decision-making authority. In many ways, however, the position was spoken in

terms of coordinating among teams or being a contact person during projects.

The majority of the responsibility that qualifies them as a lead, they’re going

to be the ones that coordinate between other groups and, you know, gather

requirements or discuss what will be necessary from Group A to work with us

and talk to Group C when they have a request for an enhancement or

something like that.

(Salih, Developer, Company E)

Therefore, the Team Lead should not be thought of entirely as a vertically

hierarchical position, but one that also coordinates horizontally. Because the Team

Leads also do coding and executing the technical design, they do work alongside

Developers in a way that managers would not.

Developers

Developers work at the bottom of the hierarchy in software companies.

Unlike full-time managers, Project Managers, and sometimes Team Leads, they

 42

almost never have decision-making authority concerning high-level affairs or

authority over the concerns of other workers. While some are able to work their way

up into the managerial hierarchy, many workers lack the requisite managerial

training, and are therefore often excluded from positions of power and authority

within the organization.

 However, developers do not fit our traditional notions of powerless workers in

pyramidal bureaucracies. Despite being in dedicated hierarchies, they do have a level

of control and authority over production-level decisions and aspects of their own

position that other types of workers lack. As professionals, these advantages cover a

variety of aspects of their jobs. For example, Developers have task autonomy, where

they can exercise discretion in determining how best to complete a task, or set of

tasks. Eddie, the Director of Development at Company A, makes such a point.

You have a certain amount of freedom in the things that you can develop here.

You know, you don’t have… big brother, for example, telling you what

everything is gonna have to look like and act like. You have a certain amount

of freedom to do what you like. As long as it meets the core requirement of

doing whatever it’s supposed to do right.

(Eddie, Director of Development, Company A)

Regardless of one’s position in the hierarchy, they almost always have time autonomy

at their jobs.

The hours are what we make them. It depends. Nobody’s punching a clock

here. Generally we come in sometime between 9:00 and 10:00. And we’re

 43

here until some obligation has pulled us away, or we decide that we’ve had

enough of the office and need to go home and eat, or whatever.

(Clayt, VP Engineering, Company F)

These findings are congruent with other research on software workers and

professionals in general.

 For some Developers, however, this is not enough for them. There were times

when developers felt that information about the company’s status or direction were

being held from them. At times, there were decisions made within the organization

that effected them, for which they felt they had no control over. For example, Jessica

enjoyed control over her own position, but was upset with not having decision-

making authority on hiring.

Question: How much control would you say you have over the decisions that

affect your position?

… I think I have good control over that. What I feel I don’t have control over

is like we’re hiring all these … visas, and I’m like, “Hello, when are we going

to stop doing this?” And I keep saying to [the co-founder], “We’re not getting

quality people this way” And [the co-founder] goes, “Well, we’re getting

them at a pretty good rate.” I’m like, “Well you get what you pay for.” You

know, like, “Look at the situation here. When are we going to stop this?”

(Jessica, Developer, Company L)

Despite this power differential, there appeared to be little conflict or resistance. In

actuality, some developers did not indicate dismay at their position’s lack of authority

in the organization. Many developers were interested only in the development

 44

aspects of the business, and they indicated they would not want a managerial position

because it would give them a different focus than developing. In doing so, they

normally accepted the unobtrusive commands of management.

On the other hand, many Developers were interested in attaining greater

authority and managerial responsibilities in their companies. Rather than hoping

management would devolve these responsibilities downward through delayering, they

sought to climb the organizational hierarchy individually. Because of the number of

layers in the organization, they perceived vertical mobility opportunities through the

hierarchy. While he was still a Developer, Eric envisioned such a path for himself.

There’s a lot of different positions and different levels within the company,

lots of opportunities, things going on. So I would like a career with a

company, rather than just to move around every couple of years.

(Eric, Developer, Company D)

Smaller companies often had less opportunities for vertical mobility, but Developers

did not always see this as a permanent limitation for their upward mobility. Instead,

they envisioned organizational growth that would allow them such access to a blend

of development and managerial tasks.

My titles probably changed because we are supposedly growing, you know,

we are growing, we’re hiring more people, and, um, eventually I will be doing

more management, versus just execution of the tasks.

(Nam, Developer, Company P)

In sum, Developers did not entirely resemble workers in traditional bureaucracies.

They possessed greater (but still limited) production-level decision-making and

 45

individual autonomy, but like Team Leads and Project Managers, they still lacked

decision-making and even input on higher-level decisions. They did perceive vertical

mobility opportunities through these respective positions, commensurate with levels

in the worker hierarchy, and even possibilities of mobility within managerial

hierarchies.

Project-Based Hierarchy

In each of the positions of a dedicated worker hierarchy, the individuals

occupying those positions were stable over time. That same individual occupied that

position from one project to the next, until he or she would leave the company or get

promoted into another “permanent” position. When Thom got promoted from being a

“Senior Software Engineer,” his title and responsibilities changed, then becoming

“Technical Lead.” In other words, he became dedicated to that position, and once he

attained that position, his role remained stable and consistent over time. After time

there, he may have been promoted to Project Manager, or another higher position, or

eventually left the company, but he probably would have never returned to his

position as Developer. This is certainly no profound observation, as it matches our

traditional notions of organizational hierarchy. The interesting part, however, is that

not all of the organizations sampled fit this profile.

Instead, some organizations adopted what I have called a project-based

hierarchy. Workers could be assigned, removed from, and re-assigned into lead

positions from project to project. Unlike in dedicated hierarchies, when developers

were assigned as Team Leads, their title did not change and this was not viewed as a

promotion. One developer, Salih, described this fluidity.

 46

I’m not sure what [title]’s written on [the lead’s] business card right now. I

know people whose title have changed six times, and it’s not because their

responsibilities have necessarily changed that much. … There’s someone

who’s acting as a lead right now because of a project that we’re working on,

but not in an everyday sort of sense.

(Salih, Developer, Company E)

In project-based hierarchies, the Team Lead was not a permanent position and

different Developers served as Team Leads on different projects. During the project,

they particularly acquired greater authority in production-level decisions. Anad made

this similar point.

To be frank, titles don’t really count too much [laughter]. I’ve pretty much

had, uh, the same set of responsibilities of maybe about, less than a month…in

a month’s time, I had the same set of responsibilities that I had then till now.

Its just been growing, as things change and things improve and uh, I pretty

much take up the lead in designing and uh, conceptualizing and strategizing

products. Uh, I also take up the lead in managing the system and setting up

one part exclusively and another person takes up uh, the same way and trying

to manage the site, if we have a site coming up, trying to set it up, uh,

managing different boxes.

(Anad, Developer, Company I)

Project Managers and other managers are still located atop worker hierarchies

in this organizational form. In general, managerial hierarchies are stable and

enduring in either type of hierarchy; it is mostly the relationships among Developers

 47

and Team Leads that change. In a project-based hierarchy, the worker hierarchy is

constructed, deconstructed, and re-constructed as projects are completed and replaced

by new ones.

We have technical leads. They would not be titled. Okay, we had like a

Project Manager and Technical Lead. So Technical Lead would be a senior

technical guy just advising the team. Technical Lead, because that was more

on a project by project basis … but he wasn’t their boss, real boss, because

they worked on different projects under different bosses.

(Antonio, Co-founder/COO, Company O)

Because individual developers move into and out of the Team Lead position, it is not

part of anyone’s title. They fulfill much of the same role as Team Leads in a

dedicated hierarchy, but serve more of an advisory function. Because of this

temporality, team leads are not viewed as fulfilling managerial roles in a project-

based hierarchy. They were not viewed as “bosses”, or supervisors, in the normal

(vertical) sense of the word. Another Team Lead, Samir, bounced back and forth

between designing and leading on different projects. He reiterated Antonio’s

conception of the Team Lead, in terms of its temporality and lesser authority.

There’s an authority structure below [the Creative Director] if there’s a

project, and someone has been appointed the design lead. And then they kind

of are saying how stuff is going, but you know it’s not like they’re your boss

at that point.

(Samir, Developer/Team Lead, Company N)

 48

In project-based hierarchies, the Team Lead’s position is characterized by ambiguity.

On the one hand, the Team Lead is given authority over a project. They may assign

tasks, monitor project status, and manage the various components. On the other hand,

the Team Lead is not considered the Developer’s boss. Instead, they report to a

Director or Project Manager. Samir’s comments reveal another important point about

the Team Lead. At Company N, Team Leads are “appointed” by a Director, another

indicator of the hierarchy existing above the workers. The Team Leads are not peer-

elected positions and they are not shared equally among workers. This was the norm

among project-based hierarchies.

In a project-based hierarchy, the Team Lead generally had less decision-

making authority than a Team Lead in a dedicated hierarchy. The Lead will often

still make task assignments and shape project deadlines, but they are much less likely

to sanction co-workers and make hiring decisions.

I’m still like one of their peers, you know? So… I-I am… it’s difficult for me

to face someone … one of these people face to face … “this is what you’re

doing wrong.” And you know, if I was an authority figure here, it would be a

different thing, but I’m not, you know?

(Samir, Developer/Team Lead, Company N)

In either case, they will almost never shape company strategy, design policies and

procedures, decide on pay scales, and set budgeting priorities. These were reserved

for dedicated managers.

Finally, in project-based hierarchies, Developers perceived less vertical

mobility within the worker hierarchy. In contrast to dedicated hierarchies, the Team

 49

Lead was not seen as a promotion, because it was a temporary assignment and many

Developers could achieve Team Leads on different projects.

Question: Overall, do you see a lot of mobility amongst the developers?

Not really. Everyone, you know, I think has gained a lot of experience

working here. But because of the size of the organization and … what

direction we’re moving in, there’s not a lot of room for growth from a

management or organizational standpoint. Your skills will grow, but there’s

not really any room for you to branch out and do more management. You

might manage a particular project by creating a particular section of the

application. But, overall, we’re very targeted.

(Salih, Developer, Company E)

At Company E, workers were highly specialized and focused. Unlike workers in

many other software companies, they did not have opportunities to expand into

managerial tasks as dedicated Team Leads or Project Managers did. With fewer

layers in the worker hierarchy, the project-based hierarchy could be more flat, relative

to dedicated hierarchy. The Team Lead position is less of a layer in the hierarchy.

They remain more flexible from project to project and access to the Team Lead role is

temporary and fluid.

 In sum, there were several important differences between dedicated and

project-based hierarchies. While the managerial hierarchies are similar in those two

forms, the worker hierarchies (especially the Team Lead position) and mobility

patterns are considerably different. In a dedicated hierarchy, a Developer acquires the

Team Lead position through being promoted and subsequently gains significantly

 50

Table 1. Comparison of Dedicated and Project-based Hierarchies

 Element of Hierarchy
Dedicated
Hierarchy

Project-Based
Hierarchy

 Temporality of Worker Hierarchy Stable, Consistent Fluid, Reconfigurable
 Temporality of Managerial Hierarchy Stable, Consistent Stable, Consistent
 Use of Teams Yes Yes
 Authority of Team Leader (TL) More authority Less authority
 Mode of Acquisition for TL Promoted Assigned/Replaced
 Developer Has Same Supervisor
 From Project to Project More common Less common

more authority. There are three primary layers in the worker hierarchy (Project

Manager, Team Lead, and Developer) with mobility among them. While this

organization is stable and consistent, the project-based worker hierarchy is fluid and

reconfigurable. Developers are temporarily appointed to the Team Lead position, but

gain relatively less authority. Without this layer of hierarchy, Developers perceive

less vertical mobility. Table 1 highlights these main differences.

Promoting the Ideology of Flatness

It is clear that neither dedicated nor project-based hierarchies are the

traditional hierarchical form written about in Weber’s ideal-typical bureaucracy or

promoted by Taylor’s scientific management. They are of a different type, or types,

of hierarchy. In these new structures, some decision-making has been devolved to

workers, and they have gained autonomy over certain areas of their jobs, such as

limited authority over the organization of work, and task and time autonomy. They

are self-managed to a degree, but at the same time, hierarchy does remain. Much

high-level decision-making remains at upper levels of management and possible

 51

career tracks remain, although not entirely, in vertical paths. Significant decision-

making authority at the production-level has been devolved to workers, but authority

is often further stratified among workers in the worker hierarchy.

This dual perception of hierarchy is no accident. Executive officers

repeatedly discussed strategic utilization of informality, openness, and shared

decision-making with workers, or developers/engineers. Luke, the CEO and founder

of his company, found that this environment can increase efficiency.

I also find it to be productive that when something comes up that is not

confidential that [the engineers] can hear about it, that they can feel like, “hey,

I am involved in the whole process by the way he is doing the deal.” Or

talking to an investor while that is exciting. I can learn from that or I can

understand the whole process better when they all contribute.

Question: How much input do they have?

Lots of input. At the end of the day I make the decisions. That's the way it has

to be I guess. You got to have a hierarchy at some level. You have to work.

(Luke, Founder/CEO, Company H)

Luke permitted openness and solicited input in a strategic manner, but only when it

does not get in the way of his control over the organization. Worker participation in

decision-making did have economic benefit to the company, but he was clear about

being the decision-maker. He legitimated this supposed need for hierarchy in terms

of fulfilling organizational needs. John, a VP of Product Development,

communicated the same point in slightly different terms.

 52

Most of the people on the team, except for some of the newer people, are

more than comfortable with walking in here, shutting the door and talking

candidly. And that’s kind of the lack of chain of—if you think about it, that’s

kind of the lack of chain of command, the fact that people feel comfortable

talking candidly … but when it comes down to it, there’s a clear chain of

command. I know exactly what I’m – [the CEO] tells me exactly what I’m

responsible for. And then I delegate that and tell people what they’re

responsible for.

(John, VP of Product Development, Company D)

For John, a high degree of informality and accessibility in interpersonal interactions

does not mean equality and flatness in positional authority within the organization.

Hierarchy still remains in his company, despite greater ability to talk frankly with

individuals at different levels. For Ahmet, a CTO and founder, a flatter, more equal

distribution of decision-making authority would harm the company.

You have to be democratic at the right times. And you have to be socialist at

the right times. You can’t afford to be democratic all the time because it will

hurt you, ‘cause you can’t afford to leave decision-making to, you know,

everyone in the company. But certain cases, you have to make them feel, you

have to enable them, you have to let them know that they’re participating in

the process by being democratic.

(Ahmet, Founder/CTO, Company L)

For Ahmet, being a “socialist” meant being autocratic. According to him, the

authority that he possessed and deployed as the autocrat was necessary to guide the

 53

company. For Ahmet, workers did not have the capacity, or maybe the incentive, to

make the appropriate decisions. However, he felt that to maximize their productivity

and get them to accept his decisions, he required their consent. To do so, he fostered

an ideology of democracy and flatness.

As we can see from these quotes, workers are subordinated, vis-à-vis

management, through formal positions and decision-making authority. Behind an

ideology of democracy, involvement, and participation, there exists a clear

hierarchical structure that influences the distribution of power and authority between

management and workers. Management, while allowing certain decision-making to

devolve to workers, was strategic in their selection of worker participation, and

targeted types of authority (high-level versus production-level) to specific positions

within the organization. The evidence shows that this hierarchical distribution

extends into both the managerial and work hierarchies, even if those worker

hierarchies are less rigid than traditional bureaucracies.

Summary of Findings

 The evidence presented here reveals many interesting things about hierarchy

in software companies. First, worker hierarchies existed as components within

broader organizational hierarchies. Worker hierarchies were positioned below

managerial hierarchies with varying (2-4) levels. Together, they comprised a multi-

tiered structure.

 Second, worker hierarchies maintained similar positions across the

organizations sampled here (Project Manager, Team Lead, and Developer). While all

 54

worker hierarchies used teams and were positioned under stable managerial

hierarchies, the relationships among these positions were different in dedicated and

project-based hierarchies. In dedicated hierarchies, individuals were fixed, or

dedicated, to their positions. The structure of the hierarchy was stable and consistent

over time. Developers were promoted into the Team Lead position and gained

significant authority over their subordinates. Team Leads and Developers were

respectively more likely to work below the same Project Managers and Team Leads

from project to project.

 In a Project-Based Hierarchy, worker hierarchies were much more fluid and

reconfigurable. Developers were temporarily assigned (by managers) to function as

Team Lead on a given project. The assignment was not viewed as a promotion

because the Developer would later be unassigned at the project completion, and

would function as a Developer on other projects. In this temporary position of a

authority, the Team Lead was granted some decision-making authority but was not

viewed as the Developers’ supervisor in the same way as a dedicated hierarchy. This

resulted, in part, because Developers were more likely to work for different Teams

Leads and Project Managers on different projects.

 Several conclusions may be drawn from the flatness of these companies’

hierarchies. First, in the general literature, flattening out explicitly and implicitly

refers to the delayering or reduction of hierarchical levels. It is assumed that

delayering results in the diffusion of decision-making authority (Harley 1999), and

many times this is the case. However this unitary diffusion obscures the complexity

 55

of organizational restructuring. The evidence here portrays a much more nuanced,

and perhaps multidimensional, picture.

 In order to tease out these several nuances, it is helpful to compare these

organizational hierarchies with ideal-typical organizational bureaucracy. The

traditional bureaucracy is known to have a high number of layers between top and

bottom. At the bottom of the hierarchy, workers’ decision-making authority in both

high-level functions (i.e. resource allocation; budgeting; hiring, firing, and

promotions; drafting policies and procedures; the distribution of rewards) and

production-level functions (i.e. developing schedules and setting deadlines;

documentation requirements; coding standards, including complexity; selecting

features for a project; task assignment) is low. Furthermore, workers rarely have

input on such matters. Workers also have very little individual autonomy (i.e. task

and time aunotomy). However, because of the rigid pyramidal hierarchy, workers

had high opportunities for vertical mobility and paths were clearly defined.

 On the other hand, the number of layers in sampled software companies

would be less than those in traditional bureaucracies. But like traditional

bureaucracies, workers rarely had decision-making authority, or even input, in high-

level decisions. Workers did have greater authority in production-level decisions, but

even here such authority was distributed hierarchically among both management and

workers. Production-level decisions were split between workers and management,

with workers having a high level of input. As Wright et al. (1995) discuss, the ability

to offer input and make decisions are not equal. Decision-making authority is a gate

keeping position and a vehicle for exercising power over others within the

 56

Table 2. Comparing Hierarchies in Traditional Bureaucracies and Software Hierarchies

 Traditional Software
 Elements of Hierarchy Bureaucracy Hierarchies
 Number of Layers high low-med
 Workers make high-level decisions low low
 Workers input on high-level decisions low low
 Workers make production-level decisions low med
 Workers input on production-level decisions low high
 Workers have individual autonomy low high
 Opportunities for and Clarity of Vertical Mobility high low-med

organization, while the solicitation of input guarantees no such control. Nonetheless,

the degree of input and informal advice offered by Developers was not entirely trivial,

in comparison to traditional bureaucracies. Managers sometimes relied on the expert

advice of their Team Leads and Developers (e.g. in hiring new Developers).

Furthermore, workers exercised high levels of individual autonomy, but had lesser

opportunities for vertical mobility. Table 2 summarizes these differences between

traditional bureaucracies and the hierarchies of software companies sampled here.

 Finally, the degree of input and decision-making that was devolved to workers

was not a universal or benign shift in authority. Rather, managers strategically

permitted workers authority to promote the ideology of “democracy”, “participation”,

or flatness. Devolving such decision-making authority to workers not only provided

economic advantages of flexibility and knowledge utilization, but also obfuscated

more explicit authority attributed to these positions. Supervisors and managers were

able to override input from Developers, and workers were excluded from higher-level

decisions entirely.

 57

Chapter 6: Discussion

The findings in this study provide little support that hierarchies have been

replaced by flat, horizontally coordinated structures. This empirical analysis has

demonstrated that a more nuanced form of organizational restructuring has occurred,

with varying dimensions of flatness. The optimistic idea that hierarchies have

become obsolete and that they have been replaced by more flat and humane team-

based structures is more a by-product of conceptual inversion (and perhaps wishful

thinking!) than empirical analysis. In the words of Barley and Kunda (2001: 77),

“conceptual inversion occurs when theorists formulate images of postbureaucratic

organizing by contrasting traditional models of organizing with their perceived

opposites.” Concepts such as “network organization” have emerged and been

presented as the opposite of hierarchy and bureaucracy to create sharp contrasts

between past and present. These sharpened concepts have since become fads, much

like Post-Fordism did in the 1980s and worker empowerment did in the 1990s

(Harley 1999). In this debate (and likely in the case of other such fads), such inverted

claims of flatness have not been tested (with the exception of Rajan and Wulf (2006),

who empirically assessed the flattening of managerial hierarchies). The evidence

presented above fills this void by constructing an empirically-grounded image of

modern forms of organizational structures in software development companies.

The findings presented in this study favor the rejection of such conceptual

inversions that have plagued much of organizational theorizing on “postbureaucratic”

work organizations. Unlike the teams studied by Barker (1993), these software

 58

companies did not exhibit the flat structures of entirely horizontally-networked teams.

Barker’s (1993: 416) ethnographic study of a small manufacturing company

identified a two-tiered structure whose worker teams “had to negotiate such

supervisory issues as accepting responsibility, making decisions, and setting their

own ground rules for doing good work, such as deciding who was going to perform

which tasks, whether or not the team needed to work overtime or on weekends, and

whether to hire or fire team members.” In the companies studied here, like most

other organizations (Acker 2006: 446; Harley 1999), power within the company and

high-level decision-making remained almost entirely at higher managerial levels.

Developers, Team Leads, and to some extent, Project managers, had virtually no

control over company goals, strategy, resources and budgeting, the distribution of

rewards, and company policies and procedures, including those for promotion, and

firing workers. Furthermore, decision-making authority remained stratified within

both managerial hierarchies (Rajan and Wulf 2006) and worker hierarchies. Many

companies maintained dedicated hierarchies with production-level decisions

(regarding project specifications and functionalities, schedules and deadlines, coding

requirements and standards, task assignments, etc.) further stratified by position (i.e.

among Project Managers, Team Leads, and Developers).

However, these companies also cannot be considered traditional

bureaucracies, in the ideal Weberian sense. Significant decision-making authority has

been diffused throughout the worker hierarchy and down to Developers themselves

(Kraft 1999). Some decision-making was shared by teams with reduced managerial

supervision. Developers typically enjoyed considerable task autonomy, time

 59

autonomy, and input on deadlines, task assignments, and the general organization of

work.

In this context, then, what kind of organizational image are we left with? Like

the teams studied in Ezzamel and Willmott (1998: 391), the evidence here

demonstrates “how teamwork reforms and elaborates, rather than replaces or

eliminates, a traditional hierarchical system of management control.” Within the

teams, there was a horizontal division of labor, but clear organizational hierarchies

operated above and around these teams of Developers. Coordination was not through

self-managed teams, peer-elected coordinators, and ad-hoc meetings (Barker 1993),

but through vertically positioned Project Managers, Team Leads, and other managers

(in the case of dedicated hierarchies) or Project Managers and assigned Team Leads

(in project-based hierarchies). In other words, teams were embedded within

hierarchical structures. Furthermore, the image of a networked organization is not

entirely inaccurate. Rather, “the claim that organizations are suddenly ‘becoming

networks’ and that these network are not hierarchical is overstated” (Barley and

Kunda 2001: 77). This has not been an act of replacement, but an act of reform and

modification. Network analysis remains a valuable means to understand these

structures, as long as one recognizes that any organization may be understood as a

network and “that hierarchy is a property of a network’s structure, not something that

a network replaces” (Barley and Kunda 2001: 78).

Barley and Kunda (2001) noted these new structures have been described in a

variety of ways, such as shamrock organizations (Handy 1989), boundaryless

organizations (Arthur and Rouseau 1996), and network organizations (Powell 1990),

 60

to name a few. Such terminology makes it clear that extant concepts and language of

organizational theory do not capture and reflect the new ways of organizing work and

structuring organizations today. Paradoxical concepts such as “flat hierarchies” are a

reflection of researchers struggling (and failing) to come to terms with the significant

changes in the restructuring of work. Barley and Kunda (2001) are right to note that

new concepts are needed (see also Barley 1996). Through grounded empirical

analysis, I have identified and elaborated a new image of organizing work—project-

based hierarchies (in contrast to dedicated hierarchies)—in an effort to better

understand these changes. This terminology is meant to simultaneously signal their

temporal nature in which segments of the hierarchy can be reconfigured from project

to project, and their embeddedness within hierarchical forms. It is my hope that it is

neither a contradiction in terms nor too vague to lose its meaning. The weight of this

concept, and any such emergent concepts, however, must stand the test of time and

depth across a range of organizations.

It is worth noting that hierarchies did not acquire the same form across all

organizations. Rather than pressures of institutional isomorphism (DiMaggio and

Powell 1983), firms developed different means of organizing work among workers.

Given that companies here operated in similar external environments (including

geographical, sectoral, and market locations), this finding supports other research

(Mueller 1994) that suggests that the use of teams and how they are integrated into

the organizational structure can be shaped by the company’s internal environment.

Mueller’s (1994) study of automobile companies demonstrated that a company’s

implementation of teamworking strategies may be constrained by structural and

 61

historical realities, such as the company’s management style and company culture.

My findings on the different adaptations of team implementation into dedicated

versus project-based hierarchies supports such a contingency approach.

Understanding the conditions under which companies adopted a dedicated or project-

based hierarchy, however, was beyond the scope of this study. My data was also not

suitable to analyze how such hierarchical structures change over time and the growth

of the firm. These two limitations suggest rich areas for future research.

Finally, we return to Marxist theory to help us understand how the

restructuring of work is mediated by the conflictual relationship between workers and

managers. Based in their differing relationship to the mode of production, workers

and managers have divergent interests in controlling production (Harley 1999;

Ezzamel and Willmott 1998). For example, workers, or Developers at these software

companies, were motivated by writing elegant code, working on the most interesting

and challenging projects, working on a variety of different projects, sought control

over their own work schedule, and were unconcerned with documenting their code.

However, managers sought code that did the job as simply as possible (“You look for

those people who like to build a monument to themselves. You keep an eye on those

people.”), with no additional functionalities, and was properly documented. They

assigned tasks mostly based on time and budget restraints (allowing developers to

select their assignments when project schedules allowed it), sometimes requiring

developers to work long hours and weekends against their will. Managers controlled

how many developers were allotted to specific projects and who was hired, fired, and

promoted. While contemporary labor process scholars have identified a variety of

 62

cultural techniques (Kunda 1992; Barrett 2005; Voss-Dahm 2005; Rasmussen and

Johansen 2005; Marks and Lockyer 2005; Florida 2002) to exercise managerial

control, these results here show that they continue to exercise power through

organizational structures as well. By virtue of their position, managers at various

levels were responsible for producing surplus-value and ensuring that work was done

in a manner that guaranteed as great of a surplus as possible. Furthermore, to reduce

conflict in the organization, management strategically included Developers in

decision-making processes “because you have to be democratic at the right times.” In

doing so, they promoted an ideology of flatness that obfuscated the hierarchical

structure and managerial control.

 63

Chapter 7: Conclusion

 Work organizations have always been important locations for the reproduction

of much inequality in society (Acker 2006). However, some scholars have argued

that the restructuring of formerly hierarchical organizations into flat structures of self-

managing teams has alleviated much organizational inequality and produced a new

structure of egalitarianism. This transformation has been understood in the context of

economic gains delivered by greater flexibility, increased flow of information, and

motivational qualities of worker autonomy. Culturally, workers in software

development have come to expect and demand such autonomy, furthering the push

toward flat, horizontally coordinated structures.

 This study was meant to contribute to such debates by evaluating the nature of

worker hierarchies in software companies. It has yielded several general conclusions.

First, my results indicate that companies are not flat, but instead that hierarchies

remain. The degree to which they have flattened out depends on the measures of

hierarchy considered (layers, high-level decision-making, production-level decision-

making, etc.) Secondly, I have outlined several dimensions along which flattening can

occur and indicated how companies here have become more flat. Third, I have

elaborated precisely how teams are embedded within organizational hierarchies

through the devolution of decision-making authority into quasi-managerial positions

within the worker hierarchy, and the strategic distribution of authority among those

positions. Fourth, I have emphasized the need for new concepts in organizational

theorizing by demonstrating both the inadequacy of existing concepts and identifying

 64

a new form of hierarchical relations (project-based hierarchies). Fifth, because

companies exhibited two distinct forms of hierarchy, I highlighted the usefulness of a

contingency approach in analyzing organizational hierarchies in knowledge work.

Finally, I argued that the gains in productivity achieved by transforming

organizational hierarchies into flat, team-based structures, are mediated by the

divergent interests between management and workers, as characterized within a

Marxist framework. Hierarchy, therefore, remains a defining characteristic of

software companies, and a mechanism for the reproduction of organizational and

social inequality.

 65

Appendices

Sample Questions: Programmer Questionnaire

6. Has your title changed since joining the company?
 a) What about the things you do, your functions, have they changed? Why?
 b) Have you moved up in the company? Among programmers?
 c) How has your salary changed as a result?
 d) Has there been much mobility among the programmers or not?

7. We know that some companies have many levels while other companies are very

flat, can you tell us about the structure of your company?

8. Are there different titles for different programmers? What are these and what do

they represent?

a) Do these different titles mean anything? Do people with different titles
perform

 different tasks? Have different responsibilities?
b) Is this true most of the time, or just sometimes?c) Is there some overlap in the

 tasks performed by programmers with different titles? PROBE
 c) Is every programmer able to do the same things?

d) What about specialization? How much are programmers specialized here?
 e) Please describe each specialty. (Languages?)

 f) Do you ever feel the work you do is routine or over-specialized? Why?

12. Let’s talk about this in relation to a specific project that you’re working on now.

 a) Would you briefly describe this project (or application)?
 b) Who’s involved at these various stages (programmers/developers, project
 managers, technical leads)?:
 a)
 b)
 c)?....
 c) Others involved?
 ~Testing, Implementation, or Release groups ?
 ~others?
 d) Is this typical of other projects you have worked on?

 e) For this project, how did this process workout for you?
 f) Overall, how do you feel about this process?

 66

 g) Are there any changes you would like to see in this process? If so, what are
these?
 h) How did the implementation of this process change your job?

13. Let's talk a little about the stage during which code for the project is actually
being written.

a) Who were/are the people involved and how were/are they organized?
b) Who was the team leader?
c) Others under the leader?
d) How did you decide on assignments? Did the programmers have a choice?
e) Do people always perform the same tasks? Or do they move around?

14. We've heard a bit about "builds" and other types of regular meetings where
project members coordinate and compile work and discuss project progress....

a) Do you have these at your company? What does you company call them?
b) Do you attend these? Do you participate?
c) Does someone "run" the meeting? Who?

15. In general, how does management communicate with you?

a) Regular meetings or "builds"?
b) Emails?
c) Memos?
d) One-on-one in person meetings

18. We hear a lot about deadlines on projects.... a) How do these affect the hours that
you work?

a) Do deadlines ever change or move?
b) Who creates the deadlines? Did you have any input in this decision process?
c) Are there any incentives for meeting deadlines or completing project early?
d) Do you feel that the deadlines are reasonable?
e) How do you meet deadlines?

25. How does management manage you? (Probe)

a) Is there a specific management paradigm at this firm?
b) Is this ever problematic?
c) How do you feel about this?

26. Does management do anything to increase the productivity of code writing?

Sample Questions: Project Manager/Technical Lead Questionnaire

Note: These questions are supplemental to the questions above.

12. Could you please describe your role as a technical lead or project manager within
_____(company name)______?

 67

a) What are your specific responsibilities?

13. What is your relationship to the software programmers and developers?

a) Supervisory/Managerial or Peer or Cooperative?

14. What is your relationship to upper (executive) management?

20. How do the programmers work with other programmers on this project?

a) Together or independently?
b) Where is everybody else when you're working?
c) Are there any specific problems with this arrangement?

29. How do you manage your programmers? What is the management
philosophy/paradigm of this firm?

a) Is this the philosophy you use?
b) Is this ever problematic?

 68

Bibliography

Acker, Joan. 2006. "Inequality Regimes: Gender, Class, and Race in Organizations."
Gender and Society 20:441-464.

Alcaly, Roger. 2003. The New Economy. New York: Farrar, Straus, and Giroux.
Andrews, Christopher, Craig Lair, and Bart Landry. 2005. "The Labor Process in

Software Startups: Production on a Virtual Assembly Line?" in Management,
Labour Process and Software Development, edited by R. Barret. New York:
Routledge.

Appelbaum, Eileen, Thomas Bailey, Peter Berg, and Arne L. Kalleberg. 2000.
Manufacturing Advantage: Why High-Performance Work Systems Pay Off.
Ithaca: Cornell University Press.

Arthur, Michael and Denise Rousseau. 1996. The Boundaryless Career: A New
Employment Principle for a New Organizational Era. New York: Oxford
University Press.

Bailyn, Lotte. 1988. "Autonomy in the Industrial R&D Lab." in Managing
Professionals in Innovative Organizations, edited by R. Katz. New York:
Ballinger.

Baldry, Chris, Dora Scholarios, and Jeff Hyman. 2005. "Organizational Commitment
Among Software Developers." in Management, Labour Process and Software
Development, edited by R. Barret. New York: Routledge.

Barker, James. 1993. "Tightening the Iron Cage: Concertive Control in Self-
Managing Teams." Administrative Science Quarterly 38:408-437.

Barley, Stephen. 1996. "Technicians in the Workplace: Ethnographic Evidence for
Bringing Work into Organizational Studies." Administrative Science
Quarterly 41:404-441.

Barley, Stephen and Gideon Kunda. 2001. "Bringing Work Back In." Organization
Science 12:76-95.

Barrett, Rowena. 2005. "Managing the Software Development Labor Process: Direct
Control, Time and Technical Autonomy." in Management, Labour Process
and Software Development, edited by R. Barrett. New York: Routledge.

Bell, David. 2001. An Introduction to Cybercultures. New York: Routledge.
Bergquist, Magnus. 2003. "Open-Source Software Development as Gift Culture:

Work and Identity Formation in an Internet Community." in New
Technologies at Work: People, Screens, and Social Virtuality, edited by C.
Garsten and H. Wulff. NY: Berg.

Bernstein, Ann and Peter Berger. 1998. Business and Democracy: Cohabitation or
Contradiction? Washington, DC: Pinter.

Bloomfield, Brian. 1989. "On Speaking About Computing." Sociology 23:409-426.
Braverman, Harry. 1975. Labor and Monopoly Capital: The Degradation of Work in

the Twentieth Century. New York,: Monthly Review Press.
Bray, Mark and Littler, Craig. 1988. "The Labor Process and Industrial Relations:

Review of the Literature." Labour and Industry 1:551-587.

 69

Burris, Beverly. 1998. "Computerization of the Workplace." Annual Review of
Sociology 24:141-157.

Cappelli, Peter and David Neumark. 2001. "Do "High-Performance" Work Practices
Improve Estalishment-level Outcomes?" Industrial & Labor Relations Review
54:737-775.

Caroli, Eve and John Van Reenen. 2001. "Skill-Biased Organizational Change?
Evidence from a Panel of British and French Establishments." Quarterly
Journal of Economics 116:1449-1492.

Case, Peter and Erik Pineiro. 2006. "Aesthetics, Performativity and Resistance in the
Narratives of a Computer Programming Community." Human Relations
59:753-782.

Chandler, Alfred. 1984. "The Emergence of Managerial Capitalism." Business and
History Review 58:473-503.

Charmaz, Kathy. 1983. "The Grounded Theory Method: An Explication and
Interpretation." in Contemporary Field Research: A Collection of Readings,
edited by R. Emerson. Prospect Heights, IL: Waveland Press.

Cloke, Ken and Joan Goldsmith. 2002. The End of Management and the Rise of
Organizational Democracy. San Francisco: Jossey-Bass.

Coleman, Henry. 1996. "Why Employee Empowerment is Not Just a Fad."
Leadership and Organization Development Journal 17:29-36.

Collom, Ed. 2003. "Two Classes and One Vision? Managers' and Workers' Attitudes
Towards Workplace Democracy." Work and Occupations 30:62-96.

DiMaggio, Paul and Walter Powell. 1983. "The Iron Cage Revisited: Institutional
Isomorphism and Collective Rationality in Organizaitonal Fields." American
Sociological Review 48:147-160.

Drucker, Peter. 1988. "The Coming of the New Organization." Harvard Business
Review:45-53.

Dyer-Witheford, Nick. 1999. Cyber-Marx: Cycles and Circuits of Struggle in High-
Technology Capitalism. Urbana: University of Illinois Press.

Eriksson, Tor. 2001. "The Effects of New Work Practices - Evidence from Employer-
Employee Data." in International Conference on Organizational Design,
Management Styles, and Firm Performance. University of Bergamo.

Ezzamel, Mahmoud and Hugh Willmott. 1998. "Accounting for Teamwork: A
Critical Study of Group-based Systems of Organizational Control."
Administrative Science Quarterly 43:358-396.

Florida, Richard. 2002. The Rise of the Creative Class. New York: Basic Books.
Gittelman, Maury, Michael Horrigan, and Mary Joyce. 1998. ""Flexible" Workplace

Practices: Evidence from a Nationally Representative Survey." Industrial &
Labor Relations Review 52:99-115.

Glaser, Barney G. and Anselm L. Strauss. 1967. The Discovery of Grounded Theory:
Strategies for Qualitative Research. Chicago: Aldine Pub. Co.

Handy, Charles. 1989. The Age of Unreason. Boston, MA: Harvard University Press.
Harley, Bill. 1999. "The Myth of Empowerment: Work Organisation, Hierarchy, and

Employee Autonomy in Contemporary Australian Workplaces." Work,
Employment and Society 13:41-66.

 70

Harrison, Bennett and Barry Bluestone. 1988. The Great U-turn: Corporate
Restructuring and the Polarizing of America. New York: Basic Books.

Heckscher, Charles. 1994. "Defining the Post-Bureaucratic Type." in The Post-
Bureaucratic Organization, edited by C. Heckscher and A. Donnelson.
Thouasand Oaks, CA: Sage.

Himanen, Pekka. 2001. The Hacker Ethic, and the Spirit of the Information Age. New
York: Random House.

Jaffee, David. 2001. Organization Theory: Tension and Change. Boston: McGraw
Hill.

Kalleberg, Arne L., Peter V. Marsden, Jeremy Reynolds, and David Knoke. 2006.
"Beyond Profit? Sectoral Differences in High-Performance Work Practices."
Work and Occupations 33:271-302.

Kanter, Rosabeth Moss. 1989. When Giants Learn to Dance. New York: Simon and
Schuster.

Kraft, Philip. 1999. "To Control and Inspire: US Management in the Age of
Computer Information Systems and Global Production." Pp. 17-36 in Labor
and Monopoly Capital in the Late Twentieth Century, edited by M. Wardell,
Peter Meiksins, and Thomas Steiger Albany, NY: SUNY Press.

Kunda, Gideon. 1992. Engineering Culture: Control and Commitment in a High-Tech
Corporation. Philadelphia: Temple University Press.

Lévy, Pierre. 2001. Cyberculture. Translated by R. Bononno. Minneapolis:
University of Minnesota Press.

Levy, Steven. 1984. Hackers: Heroes of the Computer Revolution. Garden City,
N.Y.: Anchor Press/Doubleday.

Lewis, Michael. 1999. The New New Thing: A Silicon Valley Story. New York: W.
W. Norton.

Marchington, Mick. 1992. Managing the Team: A Guide to Successful Employee
Involvement. Oxford, OX, UK ; Cambridge, Mass., USA: Blackwell Business.

Marks, Abigail and Cliff Lockyer. 2005. "Professional Identity in Software Work." in
Management, Labour Process and Software Development, edited by R.
Barret. New York: Routledge.

Miles, Mattew and Micahel Huberman. 1984. Qualitative Data Analysis: A
Sourcebook of New MEthods. Beverly Hills, CA: Sage.

Mueller, Frank. 1994. "Teams Between Hierarchy and Commitment: Change
Strategies and the 'Internal Environment'." Journal of Management Studies
31:383-403.

Negri, Antonio. 1989/2005. The Politics of Subversion: A Manifesto for the Twenty-
first Century. Cambridge, UK ; Malden, MA: Polity Press.

Osterman, Paul. 1994. "How Common is Workplace Transformation and Who
Adopts It?" Industrial and Labor Relations Review 47:173-188.

—. 2000. "Work Reogranization in an Era of Restructuring: Trends in Diffusion and
Effects on Employee Welfare." Industrial and Labor Relations Review
58:179-196.

Pil, Frits and John Paul MacDuffie. 1996. "The Adoption of High-Involvement Work
Practices." Industrial Relations 35:423-455.

 71

Piore, Michael J. and Charles F. Sabel. 1984. The Second Industrial Divide:
Possibilities for Prosperity. New York: Basic Books.

Powell, Walter. 1990. "Neither Market Nor Hierarchy: Network Forms of
Organization." in Research in Organizational Behavior, vol. 12, edited by B.
Staw and L. Cummings. Greenwich, CT: JAI Press.

Rajan, Raghuram and Julie Wulf. 2006. "The Flattening Firm: Evidence from Panel
Data on the Changing Nature of Corporate Hierarchies." Review of Economics
and Statistics 88:759-773.

Rasmussen, Bente, and Johansen, Birgette. 2005. "Trick or Treat? Autonomy as
Control in Knowledge Work." in Management, Labour Process and Software
Development, edited by R. Barret. London: Routledge.

Ross, Andrew. 2003. No-Collar: The Humane Workplace and its Hidden Costs. New
York, NY: Basic Books.

Sproull, Lee, Sarah Kiesler, and David Zubrow. 1984. "Encountering an Alien
Culture." Journal of Social Issues 40:31-48.

Stewart, Thomas A. 1997. Intellectual Capital: The New Wealth of Organizations.
New York: Doubleday / Currency.

Stohl, Cynthia and George Cheney. 2001. "Participatory Processes/Paradoxical
Practices: Communication and the Dilemmas of Organizational Democracy."
Management Communication Quarterly 14:349-407.

Turkle, Sherry. 1995. Life on the Screen: Identity in the Age of the Internet. New
York: Simon & Schuster.

Turner, Fred. 2006. "How Digital Technology Found Utopian Ideology: Lessons
From the First Hacker's Conference." Pp. xvii, 323 p. in Critical Cyberculture
Studies, edited by D. Silver and A. Massanari. New York: New York
University Press.

Voss-Dahm, Dorothea. 2005. "Coming and Going at Will? Working Time
Organization in German IT Companies." in Management, Labour Process and
Software Development, edited by R. Barrett. New York: Routledge.

Weiss, Robert Stuart. 1994. Learning From Strangers: The Art and Method of
Qualitative Interview Studies. New York: Free Press.

Wellman, Barry. 1997. "An Electronic Group is Virtually a Social Network." in
Culture of the Internet, edited by S. Kiesler. Mahway, NJ: Lawrence Erlbaum.

Wellman, Barry and Milena Gulia. 1999. "Virtual Communities as Communities: Net
Surfers Don't Ride Alone." Pp. x, 323 p. in Communities in Cyberspace,
edited by M. A. Smith and P. Kollock. New York: Routledge.

Whyte, William Hollingsworth. 1956. The Organization Man. New York,: Simon and
Schuster.

Woodfield, Ruth. 2000. Women, Work and Computing. Cambridge, UK ; New York,
NY, USA: Cambridge University Press.

Wright, Erik Olin, Janeen Baxter, and Gunn Elisabeth Birkelund. 1995. "The Gender
Gap in Workplace Authority." American Sociological Review 60:407-435.

Zmud, Robert. 1982. "Diffusion of Modern Software Practices: Influence of
Centralization and Formalization." Management Science 28:1421-1431.

