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SUMMARY 

 
 
 
 A novel source model was developed to represent the radiation emanating from 

the head of linear particle accelerator for use in radiotherapy dosimetric calculations.  Of 

note is the use of a hemispherical harmonic expansion with the functional expansion 

tally method to model the photonic fluence.  The source is implemented in the COMET-

PE radiation transport code for dose calculations with varying field sizes in different 

phantoms.  The results are benchmarked against Monte Carlo reference solutions and 

compared with calculations performed with two popular commercially available treatment 

planning algorithms.   

 The results show that the proposed source model when implemented within the 

COMET-PE radiation transport code is capable of dosimetric calculations that in many 

cases more closely match the Monte Carlo reference solutions than the commercially 

available options.  The approach is therefore validated with the tradeoff of increased 

computation time.
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CHAPTER 1  

INTRODUCTION 

 

1.1 Area of Research 

This PhD dissertation is in the area of dose calculation algorithms and treatment 

planning for radiotherapy.  The focus of the dissertation is the development of a realistic 

source model for a dose calculation algorithm developed at the Georgia Institute of 

Technology and to compare sample calculations to commercially available products. 

1.2 Motivation 

 Cancer is an increasing cause of death in modern life.  In 2007 cancer caused 

about 13% of all human deaths [1].  One common form of treatment is the use of ionizing 

radiation to kill cancerous tumor cells within the body.  This form of therapy is typically 

delivered with a linear particle accelerator.  In order to safely and effectively treat 

patients with radiation, modern radiation oncology centers utilize three dimensional dose 

calculation algorithms to predict the dose distribution within a patient.  Three dimensional 

dose calculation algorithms allow a radiation treatment plan to be developed and 

optimized to deliver a therapeutic dose to the tumor while minimizing the radiation dose 

to normal tissue.  In recent years complicated techniques have been developed for 

delivering radiation to achieve these goals.  Techniques such as Intensity Modulated 

Radiation Therapy (IMRT), Image Guided Radiation Therapy (IGRT), and Volume 

Modulated Arc Therapy (VMAT) improve the clinician’s ability to deliver radiation 

accurately. 
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Intensity modulated radiation therapy (IMRT) has been called one of the most 

significant technical advances in radiation therapy since the advent of the medical linear 

accelerator [2].  IMRT seeks to shape dose distributions by modulating the intensity of 

each radiation field being delivered.  A variety of options are available for modulating the 

beam including: precision machined blocks and varying the leaf position in the multileaf 

collimator during irradiation.  Figure 1 shows an intensity pattern from a sample plan 

developed using a sliding window IMRT technique being delivered using a multileaf 

collimator.  It has been demonstrated that IMRT treatments can be delivered within 

0.05% of the planned dose at isocenter [3].   

 

 

Figure 1: Intensity pattern from an IMRT plan 
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 Another advancement that has impacted the accuracy of linear accelerator based 

radiotherapy is image guided radiation therapy (IGRT).  IGRT refers to the host of recent 

technologies that integrate image based techniques in tumor identification and 

delineation with patient positioning and delivery devices and/or radiation delivery guiding 

tools [4].  IGRT addresses uncertainties associated with tumor target definition, patient 

immobilization, and patient breathing motion, which complicate delivery of high radiation 

doses to a planned location.   The International Commission on Radiological Protection 

recommends that an accuracy of 2% and precision of 1% should be the target 

requirement for IMRT delivery using IGRT [5].   

 Volume modulated arc therapy has become a popular treatment option because 

it can be used to create treatment plans that are comparable to IMRT plans but can be 

delivered in a fraction of the time.  This is achieved by not only moving the leaves in the 

multileaf collimator during radiation delivery, but also rotating the gantry around the 

patient.  Figure 2 is an image of a sample VMAT patient plan.  The patient received 50 

Gy in 10 fractions using non-coplanar arcs to minimize low dose to normal lung.  

Treatment times in stereotactic lung cases have been shown to be shorter in VMAT 

treatments to an average of 6.6 minutes compared with 23.7 min with non-coplanar  

IMRT [6].  The reduced treatment time is an obvious benefit for the patients, many of 

whom have difficulty breathing and are in pain.  It is also of benefit in delivering radiation 

accurately.  It is intuitive that the longer a patient remains on the treatment table the 

more likely they are to move out of the treatment position.   
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Figure 2: VMAT plan for inoperable left lung tumor 

  

   It is logical to conclude that if we can deliver the therapeutic dose accurately, 

there is a need for treatment planning algorithms that are sufficiently capable of 

producing accurate calculations to match.  The effectiveness of radiation therapy 

depends on the ability to maximize the Tumor Control Probability (TCP) while minimizing 

Normal Tissue Complication Probability (NTCP).  TCP and NTCP are very sensitive to 

absorbed dose.  A 5% change in dose corresponds to a 20% change in NTCP as seen 

in Figure 3 [7].  Dose calculation algorithms that are currently in popular use have been 

shown commonly to have calculation discrepancies of up to 7% [8].  The gold standard 

for dose calculation has long been Monte Carlo methods.  The drawback of Monte Carlo 

methods is the extended calculation times.  In this research project reference 

calculations were generated that took as long as two weeks to calculate on a Dell 

Precision 490 Workstation with a quad-core Intel Xeon 5300 series processor.  In a busy 

clinical environment, calculation times should be on the order of a few minutes.     
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Figure 3: TCP & NTCP vs. Dose  

 

The heterogeneous coarse-mesh transport code COMET has been 

demonstrated by Satterfield to produce highly accurate dose models within the context 

of radiation therapy problems [9].  The code was further developed by Hayward et al. 

into the COMET-PE method to include a new angular basis and analytical source 

treatment making it more suitable for use in radiotherapy calculations [10].  It is a 

promising new approach to producing highly accurate dose distributions with calculation 

times that are much smaller than Monte Carlo methods.  The COMET-PE code was 

used for this work and will now simply be referred to as COMET.  The COMET code 

however needs a clinically realistic source model.  The source model should be 

representative of a clinical radiation beam emanating from the head of linear particle 

accelerator.  With the realistic source in place, the COMET code can then be 
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benchmarked against a Monte Carlo calculation.  It is also reasonable to compare the 

performance of COMET to existing commercially available software packages. 

 

1.3 Objectives 

The primary objective of this work is to construct a practical source model that 

can be incorporated into COMET.  It is important that the source mimic the physical 

characteristics of a typical beam from a clinical linear particle accelerator.  The source 

treatment should also not be so complex as to add an unacceptably long source 

integration time into the final dose calculation.   

A secondary goal of this research is to validate the COMET code against a 

known benchmark.  In this case Monte Carlo dose calculation has been chosen for the 

reference.  The Monte Carlo technique is the most accurate method for radiotherapy 

treatment planning dose calculation to date [11].  It is therefore an excellent choice for 

generating reference dose distributions. 

Finally, it is desirable to compare COMET calculations with commercially 

available calculation algorithms.  Two algorithms have been chosen for comparison: the 

Analytical Anisotropic Algorithm (AAA) and Acuros XB (AXB).  Comparisons will be 

made using phantoms of known composition and density and an actual computed 

tomography (CT) scan from a patient.  
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CHAPTER 2  

REVIEW OF DOSE CALCULATION 

 

 The attributes of a good dose calculation algorithm include a basis in first 

principles, accuracy as measured against a measured standard, speed, and 

expandability [7].  There have been a variety of methods used in treatment planning 

software since the mid 1950’s.  Early attempts at automated dose calculations were 

made with analog computers developed to reduce calculation times in calculating 2-D 

dose distributions.  In 1967 the International Atomic Energy Agency (IAEA), used a 

manual procedure to digitize single beam isodose charts and a computer was used to 

combine multiple single beams to generate an atlas of isodose distributions for arc and 

rotational therapy [12].  The advent of computed tomography in the 1970s made patient 

specific anatomical information available.  It became possible, for the first time, to 

actually derive electron density information in vivo, which could then be incorporated into 

the dose calculation process [13].   

Modern treatment planning derives precise three-dimensional information from 

various imaging modalities including CT, magnetic resonance (MRI), positron emission 

tomography (PET), single photon emission computed tomography (SPECT), digital 

angiography, and ultrasound.  Imaging data can be processed for improved tumor 

definition and identification of normal tissues.  The patient can be virtually simulated on a 

computer workstation and a variety of treatment options can be contemplated during the 

treatment planning process.  The culmination of all this technology is a sophisticated 

treatment simulation and planning process.  The manner in which dose is calculated has 

also made impressive advances.   
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This review will briefly describe the various methods that have been and are 

being used.  For reference, dose calculation algorithms can be categorized as either 

measurement based or model based [7].   

2.1 A Note on Phantoms and Patients 

 In this work the terms phantom and patient are often used to describe a medium 

being irradiated by a photon beam.  The ultimate goal of any dose calculation algorithm 

is the accurate calculation of dose within the patient.  To that end, extensive 

measurements are clinically taken to characterize the radiation beam being produced by 

linear particle accelerators used in radiotherapy.  Radiation beam measurements are 

often taken in various phantoms with some form of radiation detector. 

 Phantoms can be as simple as an acrylic tank filled with water or as complicated 

as an anthropomorphic phantom with simulated respiratory motion.  Water phantoms as 

a substitute for human tissue have been used from as early as 1918 [14].  In 1924, 

Quimby confirmed that water was a reasonable substitute for measurements in tissue  

by comparing measurements in a cadaver with measurements made in water, beeswax, 

paraffin, wood, and rice [15].   

 It is routine practice to confirm dose calculations using measurements taken in 

phantoms.  In this research the terms patient and phantom can often be used 

interchangeably.    

2.2 Measurement Based Algorithms 

 Measurement based algorithms are sometimes called correction based because 

they rely on measured data in water along with empirically derived correction factors.  

These correction factors account for patient contour, internal anatomy, and beam 
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modifiers [7].  While measurement based algorithms dominated radiation treatment 

planning for many years, they are not the norm in the modern radiation oncology 

department.   

2.2.1 Correction Based Algorithms 

 Correction based algorithms begin with a calculation made under somewhat 

idealized conditions.  Corrections based on measurements are applied to adjust the 

calculation to more realistic conditions.  Stated another way correction methods aim to 

convert phantom dose to patient dose.  Figure 4 demonstrates this concept in an 

illustrative way.  

In general, a calculation is started with the assumption of a cube shaped patient 

at a reference source to surface distance (SSD) with uniform tissue density.  The 

calculation is then adjusted for the patient contours, thickness, and composition.  Any 

beam modifiers, such as wedges, blocks, or compensators, also are taken into account 

in the calculation.   A host of correction factors and alternative ways of calculating such 

factors have been proposed, formulated, and clinically tested.  These algorithms quickly 

become quite complex.  A few of the more common correction methods are described 

here.   

2.2.2 Patient Contour Corrections 

 Contour corrections address the fact that a patient is not a cube of water like the 

phantoms that are frequently used to acquire characteristic beam data in radiotherapy.  

Often the approach taken is to account for the so called “missing” tissue, that is, the 

tissue that must be removed from a cuboidal phantom to match the shape of the patient.  
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 The effective source-to-surface distance method uses percentage depth dose 

(PDD) and the assumption that PDD is independent of SSD to scale the depth of 

maximum dose with an inverse square factor.  Figure 4 illustrates the concept [16].  The 

dose desired is at point A expressed as a percentage of the maximum dose at point Q 

shown below the 𝑆′ − 𝑆′ line. The dose can be calculated using the following equation:  

 

 𝐷𝐴 = 𝐷𝑚𝑎𝑥
′ ∙ 𝑃′ (1) 

   

 

where 𝐷𝐴 is the dose at point A, 𝑃′ is the percentage depth dose at A relative to  𝐷𝑚𝑎𝑥
′ .   

𝐷𝑚𝑎𝑥
′  is the maximum dose relative to the 𝑆′ − 𝑆′  line, taken as if the SSD at central axis 

is at the level of the line 𝑆′ − 𝑆′.  The desired dose is calculated relative to 𝐷𝑚𝑎𝑥, which 

is the true maximum dose along the central axis.  This is calculated by scaling according 

the inverse square law incorporated into equation 2.  

 

 
𝐷𝐴 = 𝐷𝑚𝑎𝑥 ∙ 𝑃

′ ∙ (
𝑆𝑆𝐷 + 𝑑𝑚

𝑆𝑆𝐷 + ℎ + 𝑑𝑚
)
2

   (2)) 
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Figure 4: Effective SSD method  

 

 Another method commonly used to account for contour irregularities is the tissue-

air ratio (TAR) method.  The TAR method is useful for clinical applications because it 

does not depend on the surface distance from the source but only depends on the field 

size at the depth.  This is especially useful in calculations for rotational therapy, where 

the linear accelerator rotates around the patient while delivering the therapeutic radiation 

dose.  The TAR method is formulated in equation 3:  

 𝑇𝐴𝑅(𝑑, 𝑟𝑑) =
𝐷𝑑
𝐷𝑓𝑠

 (3) 
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where 𝑑 is the depth within the phantom at which the measurement is taken, 𝑟𝑑 is the 

size of the radiation field at the depth 𝑑, 𝐷𝑑 is the dose at a given depth 𝑑 within the 

phantom, and 𝐷𝑓𝑠 is the dose in free space at the same point.  To use the TAR method 

to account for the contour of the patient a correction factor is calculated according to 

equation 4:  

 

 
𝐶𝐹 =

𝑇𝐴𝑅(𝑑, 𝑟𝑑)

𝑇𝐴𝑅(𝑑 + ℎ, 𝑟𝑑)
 (4) 

 

where 𝐶𝐹 is the correction factor, 𝑇𝐴𝑅(𝑑, 𝑟𝑑) is the TAR at depth 𝑑 where the tissue 

deficiency exists, 𝑇𝐴𝑅(𝑑 + ℎ, 𝑟𝑑) is the TAR at a depth of 𝑑 + ℎ, and ℎ is the distance 

between the surface used to define the SSD and the surface at the location of the tissue 

deficiency.  In this context the word deficiency is used to denote that the distance from 

the source to the surface is not at the reference SSD.  In some locations the surface of 

the patient is higher than the reference SSD and in other locations it is lower.  

 Many other methods have been used to correct for contour irregularities that are 

not mentioned here. 

 2.2.3 Heterogeneity Corrections 

 Another meaningful correction included in many algorithms accounts for the fact 

that patients are not homogeneous in composition.  The TAR method has also been 

used to calculate correction factors to account for the inhomogeneous nature of patients.  

In equation 5 a ratio of TAR’s is taken to account for a tissue inhomogeneity: 
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𝐶𝐹 =

𝑇(𝑑′, 𝑟𝑑)

𝑇(𝑑, 𝑟𝑑)
 (5) 

 

where 𝑑′ is the equivalent water depth 𝑑′ = 𝑑1 + 𝜌𝑒𝑑2 + 𝑑3 and 𝑑 is the depth of dose 

calculation,  𝑑1 is the distance from the surface to the heterogeneity, 𝑑2 is the distance 

from the top of the heterogeneity to the bottom, 𝜌𝑒 is the electron density of the 

heterogeneity relative to water, 𝑑3 is the distance from the bottom of the heterogeneity to 

the point of calculation, and 𝑟𝑑 is field size projected at the point of calculation.  Using a 

ratio of TAR to correct for inhomogeneity in the patient does not account for the position 

of the inhomogeneity.  A method that does consider the position of the inhomogeneity in 

the tissue is the Batho power law method. 

 The Batho power law was originally proposed by H.F. Batho in 1964.  The 

method was originally formulated as an empirical correction for a calculation point 

located in tissue-equivalent material below a lung-type heterogeneity in Co-60 irradiation 

[17].  Using the same notation in Equation 5, Equation 6 shows the correction factor 

calculated with tissue air ratios: 

 

 
𝐶𝐹 = [

𝑇𝐴𝑅(𝑑2 + 𝑑3, 𝑟𝑑)

𝑇𝐴𝑅(𝑑3, 𝑟𝑑)
]

𝜌𝑒
−1

 (6) 

 

   The power law was later reformulated by Sontag and Cunningham for the more 

general situation where the dose calculation point can be below the heterogeneity or 

within it [18].  This formulation is shown in equation 7: 
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𝐶𝐹 =

𝑇𝐴𝑅(𝑑3, 𝑟𝑑)
𝜌3−𝜌2

𝑇𝐴𝑅(𝑑2 + 𝑑3, 𝑟𝑑)
1−𝜌2

 (7) 

 

where 𝜌3 is the density of the material in which the calculation point lies, 𝑑3 is its depth 

within this material, 𝜌2 is the density of the overlying material, and (𝑑2 + 𝑑3) is the depth 

below the upper surface of it.  The generalized Batho power law is based on the 

following assumptions [18]: 

1. Only the material above the calculation point is considered in the calculation of 

the correction factor.  It is assumed that the material below the calculation point 

is the same at the material of the calculation point. 

2. The effect of heterogeneity on the dose is assumed to be independent of the 

thickness of the tissue-equivalent material located above the heterogeneity. 

3. Charged particle equilibrium exists at the point of interest. 

4. The lateral dimensions of all the regions are assumed to be at least as large as 

the beam dimensions. 

Not all of these assumptions hold in non-idealized calculations.  For example in high-

energy radiation beams, charged particle equilibrium does not always exist.  Also not all 

regions irradiated in the patient have lateral dimensions as large as the beam 

dimensions. 

 Other methods that have been used to correct for inhomogeneities include: the 

Equivalent Tissue-air Ratio Method and the Isodose Shift Method. 

2.2.4 Problems with Correction-Based Algorithms 

 There are several problems with correction-based algorithms that have 

contributed to their decline in popularity.  First they usually assume that a state of 

electronic equilibrium exists.  Electronic equilibrium is a state where as many electrons 
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are set in motion in a given volume by photon interactions as stop in the same volume.  

This state exists when the ionization lost in a given volume is compensated by the 

ionization gained.  It is well established that particularly in areas of the body with low 

electron densities, electronic equilibrium does not exist.   

 Correction-based algorithms are also inaccurate near heterogeneities.  

Calculation inaccuracies as high as 20% have been reported in the literature [19].  As 

has been already established, modern radiotherapy strives to attain a much higher level 

of accuracy in both calculation and delivery.  

 Another drawback of calculation based measurements is that they require 

copious measurements.  Huge lookup tables must be compiled for off-axis factors, beam 

output, wedge factors, etc.   

2.3 Model Based Algorithms  

  Unlike measurement based algorithms, model based algorithms simulate 

radiation transport using physical laws to calculate the dose distribution within a medium.  

These models use measured data to derive the parameters of the model.  They rely on 

fewer measurements than correction type dose calculation algorithms.  Measured data is 

used to modify parameters in order to better match the physical characteristics of the 

radiation beam.  Energy deposition at and around photon interaction sites is then 

computed with the model based algorithm.  The two most common model based 

algorithms are convolution superposition and Monte Carlo. 

2.3.1 Convolution-Superposition   

 Measurement based algorithms make the assumption that all charged-particle 

energy is deposited locally.  This is an acceptable assumption for cobalt-60 radiation but 
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is not valid for megavoltage beams, which are the norm in modern radiation therapy.  

Figure 5 demonstrates the radiation transport problem [17].  The interaction of a primary 

photon occurs at some point within the patient.  The scatter from that interaction 

contributes to the dose deposited at point P(x,y,z).   

 

 

Figure 5: Photon interaction and scatter 

 

 Primary photons are those photons that are incident upon the surface of the 

phantom or patient in this context.  Some primary photons have traveled directly from 

the radiation source to the position of their first interaction, while others are the product 

of an interaction in the head of the linear accelerator.  Most of these interactions are 

Compton scattering events, which also produce secondary electrons that can reach the 

phantom and contribute to dose deposition.  Primary photons contribute to the dose at a 
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point in the phantom when they have their first interaction within the medium and 

produce recoil electrons. 

   Scattered dose within the patient is the result of photon interactions from photons 

that have already interacted at least once within the phantom. The proportion of 

scattered and primary contributions to the dose at a particular point depends on many 

factors including position of the point, the energy of the beam, the field size of the beam, 

and the patient thickness.   

Scatter can be evaluated as originating from various depths, slabs, pencil beams, 

or from singular points within the phantom.  The dose is often therefore decomposed into 

primary and scatter components within the patient. 

The convolution-superposition algorithm was proposed by Mackie et. al in 1985 

[20].  It is currently the most popular dose calculation algorithm used in the clinic [7]. The 

convolution superposition algorithm accounts for nonlocal energy deposition by 

rigorously tracking the lateral spread of scattered photons and charged particles 

liberated by primary photons.  The pattern of energy from a primary interaction is called 

a scatter kernel.  Various methods have been employed to calculate scatter kernels 

including derivation from measurement and pre-calculation using Monte Carlo methods 

(see section 2.3.6) [21, 22].   

The convolution equation for calculating dose is given below:  

   

 
𝐷(𝑟) = ∫

𝜇

𝜌
Ψ𝑝(𝑟

′)𝐴(𝑟 − 𝑟′)𝑑3𝑟′ = ∫𝑇𝑝(𝑟
′)𝐴(𝑟 − 𝑟′)𝑑3𝑟′ (8) 

 

where µ/ρ is the mass attenuation coefficient, Ψ𝑝(𝑟
′) is the primary photon energy 

fluence, and 𝐴(𝑟 − 𝑟′) is the convolution kernel.  The kernel is obtained by Monte Carlo 
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simulation of photons of a given energy interacting at a point and spatially mapping the 

absorption of the resulting release of energy or it is derived from measurements.   𝑇𝑝(𝑟
′) 

is the TERMA, which is an acronym for Total Energy Released per unit MAss.  The 

terma is the product of the mass attenuation coefficient and the primary photon energy 

fluence.  It represents the total amount of radiation energy available at 𝑟′ available for 

deposition.  The product of terma and the dose kernel integrated over volume is the 

dose 𝐷(𝑟). 

The convolution-superposition algorithm is obtained by correcting equation 8 for 

radiologic path length. 

 

𝐷(𝑟) = ∫𝑇𝑝(𝜌𝑟′ ∙ 𝑟
′)𝐴(𝜌𝑟−𝑟′ ∙ (𝑟 − 𝑟

′))𝑑3𝑟′ (9) 

    

Radiologic path length is the distance corrected for electron density relative to water.  

Radiologic path length from the source to the primary photon interaction site is given by 

𝜌𝑟′ ∙ 𝑟
′ and the radiologic path length from the site of primary photon interaction to the 

site of dose deposition is given by 𝜌𝑟−𝑟′ ∙ (𝑟 − 𝑟
′).   

2.3.2 Pencil Beam Convolution (PBC)  

 The pencil beam convolution (PBC) calculates dose according to the method 

described above with the addition of polyenergetic pencil beam kernels [23].  These 

polyenergetic kernels are pre-calculated for a megavoltage narrow (“pencil”) beam in 

water and can be described analytically by the sum of the two exponentials shown 

below.   
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𝑝

𝜌
(𝑟, 𝑧) =

𝐴𝑧𝑒
−𝑎𝑧𝑟

𝑟
+
𝐵𝑧𝑒

−𝑏𝑧𝑟

𝑟
 (10) 

where 𝑟 is the cylindrical radius from the pencil beam axis and 𝐴𝑧, 𝑎𝑧, 𝐵𝑧, 𝑏𝑧 and  are 

fitting parameters dependent on the depth 𝑧 and  
𝑝

𝜌
 is used to represent the energy 

fraction deposited per unit mass.  The first term in equation 10 represents primary dose 

and the second term results from scatter dose.  Other kernels are calculated for specific 

clinical conditions such as calculating dose in the penumbra region, accounting for 

charged particle contamination, and photon contamination.  Each pencil beam 

contributes dose to a point based on the point’s position relative to the pencil beam, 

making the convolution calculation relatively fast.   

 The pencil beam convolution does have several disadvantages.  It is not scaled 

laterally to account for changes in radiation transport due to inhomogeneities.  It also 

breaks down at interfaces and for structures smaller than the pencil beam.  

 In 2006, Rassiah-Szegedi compared finite-size pencil beam/equivalent path-

length (FSPB/EPL) and Monte Carlo computations for use in stereotactic body radiation 

therapy [24].  They reported that FSPB/EPL consistently overestimated minimum doses 

to the clinical target volume and planning target volumes by an average of 18.1±7.15% 

and 21.9±10.4% respectively.  Mean target dose differences were 15.5±7.4% and 

19.2±7.6%.  The differences were shown to be dependent on lesion size and location.  

Smaller lesions completely surrounded by lung tissue were found have the greatest 

differences while larger lesions in contact with the chest wall or mediastinum were found 

to have the least. 
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2.3.3 Analytical Anisotropic Algorithm (AAA) 

 The analytical anisotropic algorithm (AAA) is a convolution-superposition 

algorithm implemented in the Eclipse treatment planning system produced by Varian 

Medical Systems, Palo Alto, CA.  It was proposed by Waldemar Ulmer and Wolfgang 

Kaissl in 1995 [25].  AAA uses a multiple-source model to represent the clinical beam.   

Patient scatter is represented with density scalable poly-energetic kernels. 

 In the clinical implementation of AAA, the broad clinical beam is divided into 

finite-sized beamlets.  Each beamlet is modeled using several monoenergetic scatter 

kernels to produce poly-energetic scatter kernels.  The cross-sectional dimensions of the 

beamlet correspond to the resolution of the calculation being performed.  Calculation 

grid size can be varied from 2-5 mm.   

The beamlet energy fluence is separated into contributions from primary photons, 

extrafocal photons, and contaminant electrons [26].  Dose contribution from a beamlet 𝛽 

is modeled through the convolution of its fluence Φ and energy deposition density 

function 𝐼(𝑧, 𝜌) with scatter kernel (𝑥, 𝑦, 𝑧, 𝜌) , that defines the lateral dose scattering in 

the medium.   

𝐷𝛽(𝑥, 𝑦, 𝑧) = Φ𝛽 × 𝐼𝛽(𝑧, 𝜌) ×∬𝐾𝛽(𝑥
′ − 𝑥, 𝑦′ − 𝑦, 𝑧, 𝜌)𝑑𝑥′𝑑𝑦′

𝛽

 (11) 

 

Depth-dependent functions used in the beamlet convolutions are computed along the 

central fanline of the beamlet.  Scatter dose is defined on the spherical shell 

perpendicular to the central fanline of the beamlet.  Total dose 𝐷(𝑥, 𝑦, 𝑧)deposited at a 

point (𝑥, 𝑦, 𝑧) by a therapeutic beam is calculated as a superposition of beamlet 

contributions, 𝐷𝛽(𝑥, 𝑦, 𝑧). 
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 The main feature of AAA that distinguishes it from PBC is the treatment of scatter 

kernels.  AAA scatter kernels are density dependent and are evaluated in multiple lateral 

directions from the beamlet.   

The photon scatter is also convolved with a density-scaled kernel along the 

beamlet direction.  This method more accurately reproduces the dose at the border of 

heterogeneities. 

 In 2006 Gagne and Zavgorodni, evaluated the differences between AAA and 

PBC calculations versus Monte Carlo in water-lung interface phantoms.  The results 

showed that AAA is significantly more accurate than PBC in this situation.  Confidence 

limits on AAA calculations were calculated at 4% while PBC confidence limits ranged 

from 3.5% to 11.2% [27].   

2.3.4 Collapsed Cone Convolution 

 The collapsed cone convolution is a convolution dose calculation algorithm that 

discretizes point kernels with respect to angle.  All energy released into coaxial cones of 

equal solid angle, from volume elements on the cone axis, is rectilinearly transported, 

attenuated, and deposited in elements on along each angle [28].  In other words, the 

cones are collapsed onto their central axes.  The number of angles used to discretize 

the kernel is typically on the order of 100 to 128.  Density scaling is applied along each 

discretized angle. 

The kernel is also parameterized in a manner similar to pencil beam convolution.  

Equation 12 demonstrates this parameterization.  

 

 
ℎ(𝑟) =

𝐴𝜃𝑒
−𝑎𝜃 +𝐵𝜃𝑒

−𝑏𝜃

𝑟2
 (12) 
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where 𝐴𝜃, 𝑎𝜃, 𝐵𝜃, and 𝑏𝜃 are fitting parameters depending on the scaterring angle 𝜃.  As 

with pencil beam convolution the first term describes the primary dose fraction and the 

second term describes the scatter dose fraction [29]. 

 Combining the angular discretization along with the above parameterizations 

yields the following equation describing the collapsed cone convolution point kernels.  

Each discrete angular sector (cone) is represented by Ω𝑖. 

 

 
∬

ℎ𝜌0
𝜌Ω𝑖

(𝑟, Ω)𝑟2𝑑2Ω = 𝐴Ω𝑖𝑒
−𝑎Ω𝑖𝑟 + 𝐵Ω𝑖𝑒

−𝑏Ω𝑖𝑟 
(13) 

   

 

 The collapsed cone convolution method does suffer from displacement errors.  

The displacement increases with distance from the point of primary interaction but is 

somewhat compensated by the fact that the first scatter fraction decreases with 

increasing distance.  This makes the approach acceptable because the total energy 

deposited is conserved.  Displacement errors are less important in the calculation 

because most energy is deposited close to where it is released.   

 In 2007 Hasenbalg, et al. compared dose calculations from collapsed cone 

convolution and analytical anisotropic algorithms to Monte Carlo calculations in clinical 

cases [30].  Hasenbalg reported that in the five clinical cases studied the CCC 

performed better than AAA when compared to Monte Carlo.  Dose differences between 

the algorithms for the median value of the planning target volume (PTV) were reported to 

be typically 0.4% in the lung and -1.3% in the breast. 
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2.3.5 Acuros XB 

 An alternative to correction based methods and convolution methods for dose 

calculation, is to numerically solve the Linear Boltzmann Transport Equation (LBTE).  

The LBTE is the governing equation that describes the macroscopic behavior of ionizing 

particles as they travel through and interact with matter.  Within a given volumetric 

domain of matter subject to a radiation source, the solution to the LBTE would give an 

exact description of the dose [31].  Analytical solutions to the LBTE can only be obtained 

for a few simplified problems.  Therefore practical implementation of the LBTE involves 

solving the equation in a non-analytical manner.   

 Numerical methods explicitly solve the LBTE by discretizing the equation in 

space, angle, and energy.  The system is then solved in an iterative manner.  Methods 

which deterministically solve the LBTE are referred to as grid-based Boltzmann solvers 

(GBBS) [32].  Because of the discretization, methods for solving the LBTE inherently 

introduce errors.  Larger steps in the discretization produce a faster calculation but less 

accuracy.  

 Acuros XB is a grid-based Boltzmann solver developed by Varian Medical 

Systems, Inc. for use in external beam radiotherapy calculations.  It is based on a solver 

called Attila, which was co-authored by the founders of Transpire, Inc. while at Los 

Alamos National Laboratory [33].   

 Attila employs linear discontinuous finite-element spatial differencing on a 

computational mesh consisting of tetrahedral elements.  The primary photon fluence is 

analytically transported through ray tracing, and the discrete ordinates method is used 

for angular differencing of the scattered fluence.   

Acuros XB transports fluence through a patient by the following four steps: 
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1. Transport of source model fluence into the patient. 

2. Calculation of scattered photon fluence into the patient. 

3. Calculation of scattered electron fluence in the patient. 

4. Dose calculation. 

Unlike convolution superposition algorithms, Acuros XB requires a material map 

of the imaged patient.  Algorithms like AAA account for heterogeneities using density-

based corrections, but Acuros XB explicitly models the physical interactions of radiation 

with matter.  Thus not only is material density required but also the chemical composition 

of each material.  In the Varian implementation of Acuros XB, a material library of 5 

biological materials and 16 non-biological materials are provided to generate the 

material map.  Table 1 lists materials stored in the material library.  The material map is 

generated by matching the mass density in each voxel of the image grid with the 

associated material type. 
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Table 1: Material specification Acuros 

Material Density 

  

Minimum 
(g/cm3) 

Default (g/cm3) 
Maximum 

(g/cm3) 

Biological Materials 

Lung (ICRP 1975) 0.011 0.26 0.6242 

Adipose Tissue (ICRP 1975) 0.5539 0.92 1.001 

Muscle, Skeletal (ICRP 1975) 0.9693 1.05 1.0931 

Cartilage (ICRP 1975) 1.0556 1.1 1.6 

Bone (ICRP 1975) 1.1 1.85 3 

Non-Biological 

Air 0.0012 0.0012 0.0204 

Aluminum 2.275 2.7 3.56 

Titanium Alloy 3.56 4.42 6.21 

Stainless Steel 6.21 8 8 

Water 0.0012 1 3 

Wood 0.3 0.7 1 

Cork 0.1 0.19 0.4 

Polystyrene 0.59 1.05 1.075 

Epoxy  1.04  

PMMA  1.19  

Radel  1.3  

PEEK  1.31  

PVC  1.38  

Acetal  1.42  

PVDF  1.77  

PTFE  2.2  
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Acuros XB solves a system of coupled time-independent three-dimensional linear 

Boltzmann transport equations.  For a problem spatial domain with volume, 𝑉, and 

surface, 𝛿𝑉, the equations take the following form. 

 

Ω̂ ∙ ∇⃗⃗⃗Φ𝛾 + 𝜎𝑡
𝛾
Φ𝛾 = 𝑞𝛾𝛾 + 𝑞𝛾 (14a) 

 
Ω̂ ∙ ∇⃗⃗⃗Φ𝑒 + 𝜎𝑡

𝑒Φ𝑒 −
𝜕

𝜕𝐸
(𝑆𝑅Φ

𝑒)

= 𝑞𝑒𝑒 + 𝑞𝛾𝑒 + 𝑞𝑒 

(14b) 

  

Equation 14a solves for photon transport and 14b solves for electron transport.  Photons 

are denoted by 𝛾 and electrons are denoted by 𝑒.  Note that the dependent variables 

have been suppressed in equations 14a and 14b for brevity.  The variables used in each 

equation are defined in Table 2. 

 

Table 2: LBTE variable definitions 

Φ𝛾(𝑟, 𝐸, Ω̂) is the photon angular fluence 

Φ𝑒(𝑟, 𝐸, Ω̂) is the electron angular fluence 

𝑟 = (𝑥, 𝑦, 𝑧) is the spatial position vector 

𝐸 is energy 

Ω̂ = (𝜇, 𝜂, 𝜉) is the unit direction vector 

�⃗⃗� is the outward directed unit normal to surface 𝛿𝑉 

 

 

Equations 14a and 14b are subject to the conditions 𝑟 ∈ 𝑉, Ω̂ ∈ 4𝜋, and 𝐸 > 0.   

 The terms from the left side of equations 14a and 14b are summarized in Table 

3.   
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Table 3: Left side terms of LBTE 

Ω̂ ∙ ∇⃗⃗⃗Φ𝛾, Ω̂ ∙ ∇⃗⃗⃗Φ𝑒 are the streaming operators 

𝜎𝑡
𝛾
Φ𝛾, 𝜎𝑡

𝑒Φ𝑒 are the collision operators 

𝜎𝑡
𝛾
(𝑟, 𝐸), 𝜎𝑡

𝑒(𝑟, 𝐸) are the macroscopic photon and electron total cross sections 

respectively 

𝜕

𝜕𝐸
(𝑆𝑅Φ

𝑒) is the continuous slowing down operator, where 𝑆𝑅(𝑟, 𝐸) is the restricted 

collisional plus radiative stopping power 

 

 

The terms on the right side of equations 14a and 14b include scattering, 

production, and extraneous source terms.  Table 4 summarizes these terms. 

 

Table 4: Scattering and production sources LBTE 

𝑞𝛾𝛾(𝑟, 𝐸, Ω̂) =  ∫ 𝑑𝐸′
∞

0

∫ 𝑑Ω̂′

4𝜋

𝜎𝑠
𝛾𝛾
(𝑟, 𝐸′ → 𝐸, Ω̂ ∙ Ω̂′)Φ𝛾(𝑟, 𝐸′, Ω̂′) 

𝑞𝛾𝑒(𝑟, 𝐸, Ω̂) =  ∫ 𝑑𝐸′
∞

0

∫ 𝑑Ω̂′

4𝜋

𝜎𝑠
𝛾𝑒
(𝑟, 𝐸′ → 𝐸, Ω̂ ∙ Ω̂′)Φ𝛾(𝑟, 𝐸′, Ω̂′) 

𝑞𝑒𝑒(𝑟, 𝐸, Ω̂) =  ∫ 𝑑𝐸′
∞

0

∫ 𝑑Ω̂′

4𝜋

𝜎𝑠
𝑒𝑒(𝑟, 𝐸′ → 𝐸, Ω̂ ∙ Ω̂′)Φ𝑒(𝑟, 𝐸′, Ω̂′) 

 

 

In Table 4, 𝑞𝛾𝛾 is the photon source resulting from photon interactions, 𝑞𝛾𝑒 is the 

electron source resulting from photon interactions, and 𝑞𝑒𝑒 is the electron source 

resulting from electron interactions.  The macroscopic photon-to-photon differential 

scattering cross section is represented by 𝜎𝑠
𝛾𝛾

.   𝜎𝑠
𝛾𝑒

 is the macroscopic photon-to-
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electron differential production cross section and 𝜎𝑠
𝑒𝑒 is the macroscopic electron-to-

electron differential scattering cross section [31]. 

 Equation 14a and 14b include several assumptions.  First both charge pair 

production secondary particles are assumed to be electrons instead of an electron and a 

positron.  The partial coupling technique is assumed, whereby photons can produce 

electrons, but electrons do not produce photons.  The energy from Bremsstrahlung 

photons is assumed negligible.   

 Acuros XB models the anisotropic behavior of the differential scattering and 

production sources by expanding the macroscopic differential scattering cross sections 

into Legendre polynomials.  Angular fluence appearing in the scattering source is 

expanded into spherical harmonic moments.  The reader is referred to the published 

literature for the details of this expansion [31].   

 Acuros XB uses several discretization methods to iteratively solve the LBTE.  

The calculation grid is determined using a spatially variable Cartesian grid, where the 

local element size is adapted to produce a finer mesh inside the beam and a coarser 

mesh in the penumbra region, umbra region, and outside the field.  Spatial discretization 

is accomplished using a linear discontinuous Galerkin finite-element method, providing a 

linear solution variation throughout each element, with discontinuities permitted across 

element faces [34].   

 Energy treatment is handled by discretizing through standard multigroup 

methods [32].    The photon cross section library for Acuros XB includes 25 photon 

groups and 49 electron energy groups, although not all groups are used for energies 

lower than 20 MV.   

 The discrete ordinates method is used for angular discretization.  The discrete 

ordinates method requires that the scattered photon fluence and scattered electron 
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fluence holds for a fixed number of directions, Ω̂𝑛.  The discrete directions are chosen 

from an angular quadrature set that also serves to compute the angular integrals for the 

generation of the scattering source.  Square-Tchebyshev Legendre quadrature sets are 

used.  The quadrature order ranges from N=4 to N=16 corresponding to 32 and 512 

discrete angles respectively.  The angular quadrature order varies by particle type and 

energy.  Higher energy particles have longer mean free paths, or ranges for electrons.  

For each particle type, the angular quadrature order is increased with the particle 

energy.  

 When the energy of a particle falls below the cutoff energy, Acuros XB assumes 

that all remaining energy is deposited locally in that voxel. The cutoff energy for photons 

is 1 keV and for electrons is 500 keV.   

 The numerical methods used by Acuros XB require that a convergence tolerance 

be selected.  Errors that result from convergence tolerance are reported to be on the 

order of 0.1% of the local dose in any given voxel [32]. 

 The dose calculation in Acuros XB, for any output grid voxel 𝑖, of the problem is 

calculated according to equation 15. 

 

 
𝐷𝑖 = ∫ 𝑑𝐸

∞

0

∫ 𝑑Ω̂
𝜎𝐸𝐷
𝑒 (𝑟, 𝐸)

𝜌(𝑟)
Φ𝑒(𝑟, 𝐸, Ω̂)

4𝜋

 (15) 

   

 

where 𝜎𝐸𝐷
𝑒  is the macroscopic electron energy deposition cross sections in units of 

MeV/cm and 𝜌 is the material density in g/cm3.   
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The dosimetric accuracy of Acuros XB was explored by Han et al. in comparison 

to AAA and CCC using a Monte Carlo generated dose distribution as the reference 

calculation.  Calculations were performed using a 30x30x30 cm3 water phantom and 

30x30x30cm3 layered slab phantom.  The slab phantom consists of a soft tissue layer 3 

cm thick with a density of 1.0 g/cm3, a bone layer 2 cm thick with a density of 1.85 g/cm3, 

a lung layer 7 cm thick with a density of 0.26 g/cm3, and a soft tissue layer 18 cm thick 

with a density of 1.0 g/cm3. 

Acuros XB was found to be closer to the Monte Carlo calculation than both AAA 

and CCC for all investigated plans.  The average differences of depth dose profiles 

between Monte Carlo and Acuros XB, AAA, or CCC was within 1.1, 4.4, and 2.2%, 

respectively.  The authors concluded that Acuros XB dose prediction ability is 

comparable to Monte Carlo and superior to current clinical convolution methods. 

2.3.6 Monte Carlo 

 Complex systems are often difficult or impossible to solve analytically.  Monte 

Carlo methods are a class of numerical computer simulation techniques that utilize 

statistical resampling to solve such systems.  The Monte Carlo method was originally 

developed by a group of radiation physicists during the Manhattan nuclear project [35]. 

This class of numerical solvers has been applied to fields such as quantum physics, 

electrical and telecommunication engineering, computational biology, and weather 

forecasting.    

 When used in radiation transport, Monte Carlo techniques simulate the random 

trajectories of the individual particles by using machine generated random numbers to 

sample the probability distributions governing the physical processes involved [36].  A 

number of particles is simulated and followed through their interactions and energy loss.  
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Probability distributions dictate the fate of a particle as it interacts in the medium.  By 

simulating large numbers of histories, information can be obtained about the average 

values of macroscopic quantities such as energy deposition.  The accuracy of this 

method increases with the number of particle histories generated.   

 Monte Carlo methods are considered the gold standard for calculating dose 

distributions.  They are the often used to extract dosimetric information when physical 

measurements are difficult or impossible to perform.  These algorithms are not the most 

popular clinically because they consume great amounts of computing resources and 

therefore are not as fast as the methods previously described.  To produce faster 

calculations electron and photon Monte Carlo rely on condensed history algorithms that 

employ some assumptions, yielding systematic errors.   

2.3.7 EGSnrc 

  The Monte Carlo software that is used in this research utilizes EGSnrc.  EGSnrc 

is a Monte Carlo simulator code package distributed by the National Research Council of 

Canada for applications in coupled electron-photon transport.  It is a code that is based 

on the EGS4 software package originally developed at Stanford Linear Accelerator 

Center (SLAC).  EGS is an acronym for Electron Gamma Shower.   

 EGSnrc has been widely used in medical physics applications.  A search of the 

PUBMED US National Library of Medicine database at the time of this work for the 

search term ‘EGSnrc’ resulted in 348 unique publications that referred to EGSnrc.   

 The EGSnrc code has also been extensively benchmarked for applications in 

radiotherapy.  One significant paper compared the results of three Monte Carlo systems 

(EGSNRC, GEANT4, PENELOPE) to published measurements of bremsstrahlung yield 

from thick targets for 10-30 MV beams [37].  Monte Carlo simulation was shown to be 
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capable of producing calculations of photon yield in the experimental geometry used to 

5% out to 30°, 10% at wider angles, and photon spectra to 10% at intermediate photon 

energies, 15% at lower energies.  EGSNRC and PENELOPE calculations were the most 

accurate codes showing results within 2 standard deviations of the measured photon 

yield at all beam energies and angles.  GEANT4 was shown to be within 3 standard 

deviations. 

2.3.8 BEAMnrc 

 BEAMnrc is a Monte Carlo simulation system for modeling radiotherapy sources.   

It is based on the EGSnrc code system for modeling coupled photon and electron 

transport [38].  The motivation behind developing BEAMnrc was to develop a user code 

for the EGSnrc system that addresses the challenges associated with modeling a 

radiotherapy source, such as a linear particle accelerator, while being accurate and 

straightforward for routine use.  To that end, extensive work was done to document all 

aspects of the BEAMnrc user code.  For example, all variables and input requirements 

are defined within the source code and scripts are available to extract stand-alone files 

containing these descriptions.   

  Figure 6 presents a schematic of the steps necessary for performing an 

accelerator simulation in BEAMnrc [39]. 
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Figure 6: Steps required to simulate an accelerator in BEAMnrc 

  

 One of the outputs from such a simulation is a phase space file (i.e., the position, 

energy, direction, charge, and history tag for each particle) with size typically on the 

order of hundreds of megabytes.  This type of output is generally the most important.  

The files contain the variables LATCH, E, X, Y, U, V, SIGN(W), WT, IQ and NPASS.  

The definitions of these variables are summarized in Table 5. The phase space data can 

be used as an input to an EGSnrc calculation to obtain dose to the patient.  Various 

scripts are available to facilitate the conversion of computed tomography data into a 

format can be used directly in such an EGSnrc simulation.  Phase space data generated 

with BEAMnrc was used to generate reference solutions for this work and in deriving 

primary and secondary photon fluence as will be discussed. 
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Table 5: Phase space file variables 

Variable Definition 

LATCH The history variable 

E Energy 

X,Y Position coordinates in the scoring plane 

U,V 
Direction cosines with respect to the X 
and Y axes 

SIGN(W) 
Sign of W, the direction cosine with 
respect to the Z axis 

WT Weight of the particle 

IQ Particle charge (-1, 0, +1) 

NPASS 

Specifies whether this is the first or later 
time that the particle has crossed this 
coring plane 

  

2.3.9 DOSXYZnrc 

 DOSXYZnrc is a Monte Carlo simulation code based on EGSnrc.  It is used for 

calculating dose distributions in a rectilinear voxel phantom.  This is relevant in 

radiotherapy calculations as most if not all commercially available treatment planning 

systems calculate and report dose using a rectilinear voxel phantom decomposition.  

 DOSXYZnrc can be utilized with a variety of sources including full phase-space 

files from BEAMnrc and beams characterized using beam characterization models [40].     

A companion program is available that is capable of reading in a CT data set of 

Hounsfield numbers and converting it into the information needed by DOSXYZnrc to 

simulate transport in a phantom. 

2.3.10 Coarse Mesh Transport Method (COMET) 

 COMET is a coarse-mesh transport method that was developed by the 

Computational Reactor and Medical Physics Group at the Georgia Institute of 

Technology.  COMET is based on incident flux response expansion theory in general 

geometry developed by Mosher and Rahnema [41].  In the cited work, the methods’ 
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implementation was limited to 2-dimensional Cartesian geometry in which the energy 

variable was treated using multigroup theory.  The original application was to solve the 

neutron transport equation using the deterministic discrete ordinates method in large 

heterogeneous problems with high fidelity and efficiency.  Zhang and Rahnema 

extended this method to coupled photon-electron transport with the same fidelity and 

high efficiency [42].  This method, which is known as COMET-PE, is a hybrid 

stochastic/deterministic continuous energy transport method in which incident flux 

response expansion coefficients for each unique coarse mesh are generated a priori.  

The theory was developed in general geometry but implemented in 2-dimensional 

Cartesian geometry with a monoenergetic and monodirectional incident source.  Using 

this implementation, Satterfield demonstrated the viability of COMET-PE in calculating 

dose distributions for radiation therapy problems [9].  Hayward and Rahnema 

subsequently extended the implementation of the COMET-PE method to a more general 

incident source distribution in angle and energy [43].  Using a heterogeneous interface 

phantom composed of water, aluminum, and lung it was demonstrated that the 

enhanced implementation of COMET-PE is capable of producing calculations that agree 

with a reference DOSXYZnrc calculation within 1.5% maximum and 1.5% root-mean-

square error.  COMET-PE was the basis for all COMET method calculations performed 

in this work. 

As previously mentioned, COMET-PE is a hybrid stochastic and deterministic 

code/method that combines the accuracy of Monte Carlo with the precision of 

deterministic transport theory.  In broad terms, the method solves the transport equation 

by coupling the stochastically generated response functions using a deterministic solver 

[44].  The response functions need only be generated once because they are a function 



36 

 

of material density and independent of the patient.  Thus the computational time 

necessary for computing response functions is not included in a clinical calculation. 

 COMET utilizes the particle transport equation shown below in its’ typical form. 

 
Ω̂ ∙ ∇⃗⃗⃗𝜓 + 𝜎𝑡(𝑟, 𝐸)𝜓 − ∫ 𝑑𝐸′

∞

0

∫ 𝑑Ω̂′
4𝜋

𝜎𝑠(𝑟, Ω̂, 𝐸; Ω̂
′, 𝐸′)𝜓 = 𝑞(𝑟, Ω̂, 𝐸) 

𝑟𝜖𝑉 

(16) 

The boundary condition is given in equation 17. 

 𝜓(𝑟, Ω̂, 𝐸) = 𝛾(𝑟, Ω̂, 𝐸) 

𝑟𝜖𝜕𝑉 

�̂� ∙ Ω̂ < 0 

(17) 

The variable  𝜓(𝑟, Ω̂, 𝐸) represents the differential energy fluence (cm-2).  The differential 

energy fluence is a function of the phase space variables 𝑟, Ω̂, and 𝐸.  𝑟 represents the 

spatial variable, Ω̂ is the angle, and 𝐸 is the energy (MeV).  The spatial domain of the 

problem is given by a volume 𝑉.  The external boundary of the system is 𝜕𝑉, and the 

outward normal vector �̂� is given with respect to this external boundary.  The differential 

energy fluence can originate from a source that is either internal to the spatial domain or 

external to it.  A description of the terms in equations 16 and 17 is provided in Table 6. 
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Table 6: Terms in the Boltzmann transport equation 

Ω̂ ∙ ∇⃗⃗⃗𝜓 
Net energy of particles streaming out of 

the differential phase space 𝑑𝑟𝑑Ω̂𝑑𝐸 

𝜎𝑡(𝑟, 𝐸)𝜓 

Describes the removal of particles from 
the phase space due to collision 
interactions, 𝜎𝑡 is the total cross section 

∫ 𝑑𝐸′
∞

0

∫ 𝑑Ω̂′
4𝜋

𝜎𝑠(𝑟, Ω̂, 𝐸; Ω̂
′, 𝐸′)𝜓 

Describes the distribution of particles 
emerging from scattering interactions, 𝜎𝑠 
is the double differential cross section 

𝑞(𝑟, Ω̂, 𝐸) 
Source internal to the problem spatial 

domain 𝑉 

𝛾(𝑟, Ω̂, 𝐸) 
Source external to the problem spatial 

domain 𝑉 

  

As mentioned, the larger problem is decomposed into a set of smaller non-

overlapping regions 𝑉𝑖.   Each region composes a single coarse-mesh.  Let 𝜕𝑉𝑖 denote 

the boundary of mesh 𝑉𝑖, let 𝜕𝑉𝑖𝑠 denote surface 𝑠 of mesh 𝑖, and let �̂�𝑖𝑠 denote the 

outward unit normal on this surface.   The transport equation is now represented by 

equation 18. 

 
Ω̂ ∙ ∇𝜓𝑖 + 𝜎𝑡(𝑟, 𝐸)𝜓𝑖 −∫ 𝑑𝐸′

∞

0

∫ 𝑑Ω̂′
4𝜋

𝜎𝑠(𝑟, Ω̂, 𝐸; Ω̂
′, 𝐸′)𝜓𝑖

= 𝑞𝑖(𝑟, Ω̂, 𝐸) 
(18) 

In this equation 𝜓𝑖 is the fluence within the volume 𝑉𝑖.  If 𝑠 is an external surface 

(𝜕𝑉𝑖𝑠′ ⊂ 𝜕𝑉), the external boundary condition 𝛾 in equation 17 defines the incoming 

fluence.  If 𝑠 is not an external surface then it must be an internal surface (𝜕𝑉𝑖𝑠′ ⊊ 𝜕𝑉), 

and the continuity condition in equation 19 determines the incoming fluence.   



38 

 

 𝜓𝑖𝑠
−(𝑟, Ω̂, 𝐸) = 𝜓𝑖�̃�

+(𝑟, Ω̂, 𝐸) 

𝑟𝜖𝜕𝑉𝑖𝑠 

�̂�𝑖𝑠 ∙ Ω̂ < 0 

(19) 

In equation 19 + and – superscripts denote incoming and outgoing fluence respectively.  

The mesh index 𝑖 ̃and the surface index �̃� define neighbors to surface 𝑠 of mesh 𝑖 such 

that 𝜕𝑉𝑖𝑠 = 𝜕𝑉𝑖�̃� = (𝜕𝑉 ∩ 𝜕𝑉�̃�).  The problem has now been decomposed into N local fixed 

source problems, which can be solved using Monte Carlo methods thereby generating a 

set of response functions.   

The response function describes how a single mesh responds to internal and 

external source distributions.  The response function for a particular mesh is a 

combination of solutions to many simpler problems.  Such problems are defined as 

either surface-to-volume or volume-to-volume [42, 45].  A surface-to-volume response is 

generated by imposing a unit incoming fluence on a single surface of a mesh.  The unit 

incoming fluence can also be considered as a surface source.  The incoming fluence 

distributions are chosen from a set of basis functions and the process is repeated for 

each member of the set of basis functions.  A similar process is performed to compute 

volume-to-volume responses that correspond to the result of imposing a unit volumetric 

source distribution on a single mesh.   

Both types of sources correspond to a fixed basis set.  They are therefore known 

and can be pre-computed and stored.  An arbitrary source can be constructed by 

superposition of the pre-computed responses.  Outgoing and incoming fluences on the 
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mesh surfaces are found by expanding the same basis functions.  Because of this, the 

response functions can be connected to solve the global problem.   

In order to solve the global problem, the response to a fixed source must be 

calculated.  An external source can be treated as either an incoming fluence or 

alternatively it can be considered as the source resulting from the distribution of first-

collisions.  The global solution can then be found using an iterative scheme that refines 

the fluence distributions that couple the meshes.  The iteration converges the initially 

discontinuous fluence distributions at the mesh interfaces to a continuous distribution.  

After a solution has converged, the energy distribution can be rapidly computed.  See 

references [10, 42] for a more detailed description of the COMET-PE method.   
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CHAPTER 3  

SOURCE TREATMENT IN TREATMENT PLANNING 

 

 A clinical radiation beam generated in a linear particle accelerator is composed of 

more than the photons created in the target of the machine.   A typical methodology for 

handling the various components of a clinical radiation beam is to divide the source into 

three components: primary photons, extra-focal photons, and contamination electrons 

[46].    

 Primary photons are generated by electron bremsstrahlung interactions in the 

target and do not interact further in the linac head, although they may have further 

interactions in the target.  Extra-focal photons may be generated or scattered in the 

various components of the head of the linac other than the target, such as the primary 

collimator, the secondary collimator, or the flattening filter.  Electron contamination 

describes the dose deposition in the build-up region of the phantom or patient that has 

not been accounted for by the primary and extra-focal photon source components.  The 

electron contamination includes any contribution from positrons as well. 

 It is common when modeling a clinical photon beam to treat each of these 

components separately.  This approach is used by the Eclipse treatment planning 

system in the implementation of both the Analytic Anisotropic Algorithm (AAA) and the 

Acuros XB (AXB) dose calculation algorithm.   

 A review of the Eclipse triple source implementation is included in section 3.1.  

This is instructive both to introduce key concepts and as a basis of comparison for the 

current work. 
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3.1 AAA/AXB Source 

 Eclipse uses a parameterized model of the radiative output from a medical linear 

accelerator that is based on Monte Carlo simulations of the treatment unit head for both 

the AAA and AXB algorithms.  One advantage to this approach is that the parameters of 

the model can be adjusted so that the phase-space source can be constructed to match 

the radiation produced by a specific accelerator.  The adjustments are made based on 

comparisons of calculated dose distributions to measurements made on-site in a large 

water phantom.  All model parameters for AAA and AXB are computed in a water-

equivalent medium.   

 One important parameter is the photon energy spectrum.  As indicated the 

spectrum is initially determined through Monte Carlo simulation of the Bremsstrahlung 

interactions of electrons in the target.  A sample photon spectrum for a 6 MV beam is 

shown in Figure 7.   
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Figure 7: Example photon spectrum for 6 MV photons 

 

 Another important source parameter that must be modified is the mean radial 

energy with distance from the central axis of the beam.  The spectral shift that occurs off 

central axis is due primarily to the influence of the flattening filter.  Figure 8 shows the 

rapid falloff of mean energy that occurs with radial distance.  

 Figure 9 illustrates the varying intensity of the photon beam with distance from 

the central axis.  This parameter is also the result of the flattening filter in the head of the 

machine.  The flattening filter in this example is considered to be made of copper.  The 

intensity is computed as the photon energy fluence (number · energy of photons) as a 

function of the radial distance from the beam central axis.
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Figure 8: Mean radial energy as a function of radial distance from central axis of a 6 MV 
photon beam 

 

Figure 9: Intensity profile from a 6 MV photon beam

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0 50 100 150 200 250 300

M
e

a
n

 e
n

e
rg

y
 (

M
e

V
) 

Offaxis distance (mm) 

0

0.2

0.4

0.6

0.8

1

1.2

0 50 100 150 200 250 300 350 400

R
e

la
ti

v
e

 i
n

te
n

s
it

y
 (

%
) 

Offaxis distance (mm) 



44 

 

 

The AAA and AXB algorithms use a source model that is divided in the usual way 

into the following main components: primary photon energy fluence (primary source), 

extra-focal photon energy fluence (extra-focal source), and contaminating electron 

fluence (electron contamination source) [47].  A diagram of the head of the accelerator is 

shown in Figure 10. 

 

 

Figure 10: Components of a linear accelerator head 

 

 The primary source is a point source located at the target plane. It models 

bremsstrahlung photons that do not interact in the treatment unit head.  Separate energy 

spectra for every fanline of the broad beam are derived from the mean energy curve. 
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  The extra-focal source is a Gaussian plane source located at the bottom plane 

of the flattening filter.  It models the photons that are created as a result of interactions in 

the accelerator head outside the target.  The extra-focal photons are assumed to be 

uniformly distributed across the broad beam, and they are modeled with a secondary 

source having a configurable intensity. 

 Electron contamination models electrons produced from photon interactions in 

the head of the accelerator.  The electron contamination strongly depends on the field 

size and beam energy.  In AAA and AXB electron contamination is modeled with a depth 

dependent curve that describes the total electron contamination dose at a certain depth. 
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CHAPTER 4  

COMET SOURCE 

 

 In order for COMET to be useful in clinical application the radiation source should 

have characteristics that closely model the radiation produced by a linear particle 

accelerator.  The model used by AAA/AXB has proven to produce excellent results when 

implemented in the Eclipse treatment planning system [8, 48, 49].  It would therefore be 

desirable to implement the same source model into COMET.  This implementation would 

have the added advantage of facilitating a more direct comparison of the performance of 

COMET versus AAA and AXB.  It was the original intent of this work to implement such a 

source model.  During the course of the project, it was realized that not all of the 

information regarding how the AAA/AXB source is implemented in Eclipse is readily 

available.  Additionally a number of assumptions were necessary to adapt the model for 

use in COMET.  As the assumptions grew in number, it became clear that the 

aforementioned benefits of using the AAA/AXB source were increasingly less applicable.  

The performance of such an implementation could not be assumed to produce 

comparable results to those previously studied.  Also with such assumptions a direct 

comparison of the performance of COMET with AAA/AXB was not truly direct as the 

input radiation from the source was not necessarily identical.   

 The focus was therefore shifted to finding an efficient and accurate method of 

modeling the radiation from a clinical accelerator that works within the COMET 

framework.  The idea of separating the source into three components is conceptually 

sound and has been demonstrated to be effective [46].  It was retained in this work, with 

the definitions of each component remaining the same, namely: primary photons are 
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those which are directly from the target and reach the patient without any interactions 

elsewhere, extra-focal photons are those which are generated or scattered in the 

component modules other than the target, and contamination electrons (including 

positrons) are those created anywhere in the accelerator head. 

4.1 Primary Source 

 As implied by the name, the majority of photons that reach the patient originate in 

the primary source.  The contribution of direct photons to the photon energy fluence in a 

10x10 cm2 field with a 6 MV beam energy varies between 92% and 97% [50].  An 

accurate representation of the primary source is therefore critical in any attempt to model 

the energy fluence from a linear accelerator.   

 Some important characteristics of the primary source that must be accounted for 

include the energy spectrum, angular distribution, and change in energy with radial 

distance from central axis.  These characteristics were modeled in this research by first 

dividing the photon distribution into energy bins and expanding the angular distribution of 

photons in each bin using an orthonormal basis.  The background and justification of this 

technique is discussed further in the following sections.  

4.1.1 Harmonic Expansion Background 

 Harmonic functions are the solutions to Laplace’s equation. They are widely used 

by many sciences [51].   A useful subset of harmonic functions is spherical harmonics, 

which is the angular portion of harmonic functions.  In other words, spherical harmonics 

are the solutions to Laplace’s equation when restricted to the sphere.  They have been 

used in physics to solve potential problems associated with the heat equation, 

gravitation, and electromagnetics [52, 53].  In quantum physics and chemistry, they have 
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been used to model the electron configuration of atoms and quantum angular 

momentum [54, 55].  In three dimensional computer graphics, spherical harmonics have 

been extensively applied to a variety of topics but especially to those involving lighting 

[56-59]. 

 Spherical harmonics are an analog to the Fourier series but defined for the 

sphere.  Just as the Fourier series is used to expand periodic signals into a sum of sines 

and cosines, spherical harmonics can be used to expand a spherical function into a set 

of coefficients and basis functions.  This means that a set of coefficients can be 

calculated and then later used to analytically reconstruct an approximation of the original 

function.  The power of this method is illustrated in Figure 11.  As is evident in the figure, 

the reconstruction is increasingly accurate as the expansion order increases.  The 

details of spherical harmonic expansions are well document and the reader is referred to 

the literature for an in depth analysis. 

 

 

Figure 11: Spherical harmonic expansion with increasing orders of approximation 

 

 However, the primary source from a linear accelerator is not well modeled with a 

spherical function but rather hemispherical.  In his paper on hemispherical harmonics, 

Gautron  points out that hemispherical functions introduce discontinuities in the spherical 

domain at the boundary of the hemisphere [60].  Therefore their accurate representation 
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using a spherical basis requires a large number of coefficients.  It is therefore logical to 

utilize hemispherical harmonics in the expansion of the primary source.   

4.1.2 Hemispherical Harmonics 

 A detailed explanation of hemispherical harmonics as they are defined for this 

work can be found in the paper by Hayward and Rahnema [10].  Their work 

demonstrates that the hemispherical harmonic basis used represents a complete and 

orthonormal basis.  Amongst other things, orthogonal and orthonormal basis functions 

allow the expression of any piecewise continuous function over their domain as a linear 

combination of an infinite series of linearly independent basis functions.   

 In general, to approximate a given function 𝑓 to an arbitrary accuracy, 

coefficients 𝑘𝑛 are calculated that describe how much each basis function 𝑝𝑛 is like 𝑓.  

This is done by integrating the product shown in equation 20 over the domain of 𝑓. 

 

 
∫𝑓(𝑥)𝑝𝑛(𝑥)𝑑𝑥 =  𝑘𝑛 (20) 

 

This process is referred to as a projection or expansion of the original function.  

The inverse process is called reconstruction and is performed by linear combination of 

all of the basis functions scaled by their associated coefficients as shown in equations 

21 and 22.   

 

 
𝑓(𝑥) = ∑𝑘𝑛𝑝𝑛

∞

𝑛=0

 (21) 
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𝑓(𝑥) =  ∑𝑘𝑛𝑝𝑛

𝑁

𝑛=0

 (22) 

 

Equation 21 shows an exact reconstruction and equation 22 is an approximate 

reconstruction truncated at an arbitrary expansion order N. 

The hemispherical harmonics basis functions used in this work are defined in 

spherical polar coordinates as 

 

�̂�𝑙𝑚(𝜃, 𝜙) =

{
  
 

  
 
2

√𝜋
𝐽𝑙
(−𝑚)(2 cos𝜃 − 1) sin(−𝑚𝜙) , 𝑚 < 0

2

√𝜋
𝐽𝑙
(0)(2 cos 𝜃 − 1), 𝑚 = 0

2

√𝜋
𝐽𝑙
(𝑚)(2 cos𝜃 − 1) cos(𝑚𝜙) , 𝑚 > 0

 (23) 

 

for 𝑙 ≥ 0 and |𝑚| ≤ 𝑙 where 𝐽𝑙
(𝑚)(𝑥) is a normalized adjoint Jacobi function.  The adjoint 

Jacobi functions are defined as  

 

 
𝐽𝑙
(𝑚)(𝑥) =  𝑐𝑙𝑚(1 − 𝑥

2)
𝑚
2
𝑑𝑚

𝑑𝑥𝑚
𝑃𝑙
(0,1)

(𝑥) (24) 

 

where 𝑐𝑙𝑚 is a constant factor chosen such that 

 

 
∫ 𝑑𝑥(1 + 𝑥)
1

−1

(𝐽𝑙
(𝑚)(𝑥))

2

= 1. (25) 

 

The 𝑃𝑙
(0,1)(𝑥) term in equation 24 is a Jacobi polynomial.  Jacobi polynomials are 

orthogonal on the interval [-1,1] with respect to the weighting function 𝑤(𝛼,𝛽) =

(1 − 𝑥)𝛼(1 + 𝑥)𝛽.  They can be defined as 
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𝑃𝑛
(𝛼,𝛽)(𝑥) =

(−1)𝑛

2𝑛𝑛!𝑤(𝛼,𝛽)(𝑥)

𝑑𝑛

𝑑𝑥𝑛
[𝑤(𝛼,𝛽)(𝑥)(1 − 𝑥

2)𝑛]. (26) 

 

The index 𝑙 represents the band.  An order 𝑛 hemispherical harmonic expansion uses all 

of the basis functions through degree 𝑛 − 1.  

  The hemispherical harmonics presented are orthonormal by the condition given 

in equation 27. 

 ∫𝑑Ω̂(�̂� ∙ Ω̂)�̂�𝑙𝑚(Ω̂)�̂�𝑙′𝑚′(Ω̂) = 𝛿𝑙𝑙′𝛿𝑚𝑚′
𝑯

 (27) 

 

𝑯 denotes the hemisphere such that (�̂� ∙ Ω̂) > 0 for some unit normal �̂�, and 𝛿 is the 

Kronecker delta.  The coordinate system is chosen such that  

 

 
∫ 𝑑Ω̂ = ∫ 𝑑𝜙∫ 𝑑𝜃 sin𝜃

𝜋/2

0

2𝜋

0𝑯

 

�̂� ∙ Ω̂ = cos 𝜃. 

(28) 

 

There are several methods for visualizing harmonic basis functions.  One 

standard way is to distort a unit sphere/hemisphere, by scaling each point radially by the 

absolute value of the function and coloring it based on the sign.  Figure 12 uses this 

method to visualize the first few hemispherical harmonics based on the formulation by 

Gautron, et al. [60].  These are the more commonly used hemispherical harmonic basis 

functions.  Figure 13 uses the same method to visualize the first few hemispherical 

harmonics based on the formulation by Hayward and Rahnema [10].  The plots are 

colored based on the sign.  Red represents positive values and green represents 
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negative.  The plots were generated using a purpose built Matlab R2009b (The 

MathWorks, Inc. Natick, MA) function.  The main difference between these two 

approaches is that Gautron uses Legendre Polynomials as the orthogonal basis 

functions on which the hemispherical harmonics are built and Hayward, et al. uses 

adjoint Jacobi basis functions.  The orthogonality condition also differs between the two 

sets of basis functions.  This will become important later but it is worth noting now 

because although the basis derived by Gautron is more commonly used there are sound 

reasons for choosing the basis formulated by Hayward and Rahnema for this work.
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Figure 12: The first four hemispherical harmonics from the basis proposed by Gautron et al. 
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Figure 13: The first four hemispherical harmonics from the basis proposed by Hayward et al.
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The functions in the central columns of Figures 12 and Figure 13 are called zonal 

harmonics (ZH).  They have the property of rotational symmetry in the azimuthal 

direction.   This is of note because accelerator fluence (ignoring jaws and multileaf 

collimators) has only very weak azimuthal dependence.  This conclusion is supported by 

the absence of any correction for azimuthal dependence in the treatment planning 

algorithms in common use [23, 25, 26, 28].   Dropping all expansion coefficients with 

𝑚 ≠ 0 and assuming azimuthal symmetry is an appealing option for expansion 

techniques because far fewer expansion coefficients will be necessary.  Both methods 

were explored in this work. 

Using the process of expansion and reconstruction previously described, 

hemispherical harmonics can be used to approximate functions on the hemisphere.  

Figure 14 shows the expansion of the clamped cosine function shown in equation 29, 

with increasing orders of approximation. 

 

 𝑓(𝜃, 𝜙) = max (0,5 cos(𝜃) − 4) (29) 

 

Note that the same coloring was used as in Figures 12 and 13, so that red represents 

positive values and green represents negative.  The clamped cosine function presented 

is a smooth function and is well approximated with a small number of expansion 

coefficients.  The number of coefficients necessary to approximate a function in this 

manner is governed by (𝑙 + 1)2.  For an expansion order of 𝑙 = 8 the number of 

coefficients required is 81.  It is clear that the number of expansion coefficients can grow 

rapidly and must be taken into consideration when performing an expansion as the size 

can quickly become unmanageable.  If only the zonal harmonics are considered, the 
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number of expansion coefficients is governed by the equation 𝑙 + 1.  So for an expansion 

order of 𝑙 = 8, only 9 coefficients are necessary.  This clearly demonstrates the 

advantage of being able to assume azimuthal symmetry.    
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Figure 14: Hemispherical harmonic expansion of clamped cosine function with increasing 
orders of approximation 
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4.1.3 Monte Carlo Functional Expansion Tallies 

 It has now been demonstrated that a hemispherical function can be expanded 

and reconstructed to an arbitrary order of approximation using hemispherical harmonics.  

To use this method to model the energy fluence from a linear accelerator, the functional 

expansion tally approach can be used. 

 The functional expansion tally (FET) method has been shown to be an effective 

approach for constructing functional estimates of unknown tally distributions produced by 

Monte Carlo simulation [61].  As previously discussed Monte Carlo methods are widely 

used in particle transport and radiative transport calculations to model processes within 

complex systems.  In this approach, particles are sampled from a source distribution.  

The trajectories of the individual particles are tracked using machine generated random 

numbers to sample the probability distributions that govern the physical processes 

involved.  Each particle is typically tracked until it leaks from the system or is absorbed.   

 Monte Carlo techniques in particle transport are commonly used to estimate 

particle flux or reaction rates. Such values can be calculated by keeping track of a tally 

during the simulation.  A common value that is tracked by use of a tally is the number of 

particles that cross a surface for use in the statistical estimation of planar fluence.  Such 

methods are well suited to estimating integral values, such as total reactions, particle 

current, etc. 

 To gain information about the higher order shape of simulations from Monte 

Carlo simulations, the traditional approach has been to divide the phase space into bins 

and calculate an average over each bin, resulting in a histogram approximations of the 

true tally distribution [61].  It is instructive at this point to reintroduce a common result of 

the Monte Carlo simulation of the head of a linear accelerator known as the phase space 
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file.  A phase space file contains data relating to particle position, direction, charge, 

energy and weighting for every particle crossing a user defined scoring plane [39].   

 To obtain a finer resolution for values such as angular distribution of the photons 

emerging from a radiation source a larger number of bins must be used.  If one is using 

the data from a Monte Carlo generated phase space file to fill the bins in the histogram, 

then there are a finite number of particles available.  Meaning when there are a larger 

number of bins then there are fewer particles per bin which can lead to large statistical 

uncertainties.   

 The functional expansion tally approach is an alternative method for obtaining 

high order shape information from Monte Carlo simulations.  Chadsey introduced the 

FET method in 1975 and initially used it to estimate spherical harmonic expansion 

coefficients of the angular distribution of X-ray photoemission [62].  The data from a 

Monte Carlo run can be used to estimate functional expansion coefficients of the true 

distribution with respect to a set of orthogonal basis functions.  There are several 

advantages of this method over the traditional histogram approach.  First, every tally in 

the region contributes to every expansion coefficient, yielding information regarding the 

shape of the phase space distribution as well as its average value.  Second, it is 

possible to choose a set of basis functions such that the lowest order term preserves the 

integral quantity over the region of interest.  So the average value estimated by the 

conventional tallies is preserved.  Third, the estimated solution is a continuous function, 

which in many cases is more useful than a histogram for extensive calculation and 

analysis.  Griesheimer, et al. demonstrated that for a sufficiently smooth distribution the 

functional expansion tally approach converged faster, and achieved a lower residual 

error, than a histogram approach [61].    
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4.1.4 Derivation of the FET Method 

 The following is a summary of the derivation presented by Griesheimer et al, in 

their paper on the convergence properties of Monte Carlo functional expansion tallies 

[61].  Consider a particle transport problem that is simulated using the Monte Carlo 

method, in which a random variable 𝑥 is distributed according to a particular probability 

density function 𝑃(𝑥).  The probability density function (PDF) tells us the relative 

probability that a variable will take on a specific value.  Traditionally to obtain shape 

information about the PDF, the domain of the random variable would be divided into 

bins 𝑏 = [1,2, … ,𝑀] and then the number of events that occur in each bin 𝑁𝑏 are counted 

during the simulation.  The total score in each bin divided by the number of independent 

trials, 𝑁, is an unbiased estimator for the probability that a given sample will fall within 

the bin, as seen in equation 30: 

 

 
𝐸 [
𝑁𝑏
𝑁
] = 𝑃(𝑥𝑏−1 ≤ 𝑥 < 𝑥𝑏) (30) 

   

where 𝑥𝑏−1 and  𝑥𝑏 denote the bounds of bin 𝑏.  The process can be repeated for all 

bins and the result is a histogram that approximates the actual PDF shown in equation 

31 and 32, 

 

 
𝑃(𝑥) = ∑(𝑃𝑀,𝑏

ℎ𝑖𝑠𝑡̅̅ ̅̅ ̅̅ (𝑥) + 𝑂[∆𝑥𝑏])

𝑀

𝑏=1

 (31) 

 

 



61 

 

 
𝑃𝑀,𝑏
ℎ𝑖𝑠𝑡̅̅ ̅̅ ̅̅ (𝑥) =

𝑃(𝑥𝑏−1 ≤ 𝑥 < 𝑥𝑏)

∆𝑥𝑏
 (32) 

 

where ∆𝑥𝑏 is the width of bin 𝑏, and 𝑃𝑀,𝑏
ℎ𝑖𝑠𝑡̅̅ ̅̅ ̅̅ (𝑥) is the true value of the histogram in bin 𝑏.  

As the number of bins 𝑀 increases, the error associated with truncating the distribution 

decreases and the histogram approximation converges to the continuous distribution.   

 The FET uses a complete set of basis function to expand an unknown PDF  𝑃(𝑥).  

Using a set of independent samples from 𝑃(𝑥), an estimate of the coefficients of the 

expansion can be made.  This is shown by letting {𝜓𝑛}0
∞ be a complete orthogonal set 

with respect to a weighting function 𝜌 in 𝐿𝜌
2(Γ), the space of all square integrable 

functions over some bounded domain Γ.  Any 𝑃(𝑥)𝜖𝐿𝜌
2(Γ) can be written as 

 

 
𝑃(𝑥) = ∑ �̅�𝑛

∞

𝑛=0

𝑘𝑛𝜓𝑛(𝑥), (33) 

 

where �̅�𝑛 is the true 𝑛th expansion coefficient defined by the inner-product, 

 

 
�̅�𝑛 = ∫𝜓𝑛(𝑥)𝜌(𝑥)𝑃(𝑥)𝑑𝑥,

Γ

 (34) 

 

and 𝑘𝑛 is the normalization constant for the 𝑛th basis function, 

 

 
𝑘𝑛 =

1

‖𝜓𝑛‖
2
 . (35) 
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 To create a functional approximation to 𝑃(𝑥), the expansion coefficients �̅�𝑛 must 

first be determined.  The integral shown in equation 34 can be estimated by Monte Carlo 

integration methods in order to determine the coefficients.  It can be shown that the 

statistic in equation 36 is an unbiased analog estimator for the true expansion 

coefficient �̅�𝑛, where 𝑁 is the number of histories tallied [63, 64]. 

 

 
�̂�𝑛 =

1

𝑁
∑𝜓𝑛(𝑥𝑖)𝜌(𝑥𝑖)

𝑁

𝑖=1

 (36) 

 

4.1.5 Phase Space Files for 6 MV 

 It has been demonstrated that the functional expansion tally method can be used 

effectively to extract source shape information from a Monte Carlo simulation.  In this 

research, phase space files generated by Cho et al. were used to provide the particle 

simulations necessary to calculate primary photon expansion coefficients with the 

hemispherical harmonic basis proposed by Hayward and Rahnema [10, 65].   

 The 6 MV photon energy is a logical starting place for this work because it is a 

common and well researched energy in radiotherapy.  Although a search revealed no 

hard statistics, it is likely that 6 MV is the most selected energy currently used for 

external beam therapy treatments.   

In their research Cho et al., produced reference phase space data (RPSD) for 

the 6 MV photon beam from Varian 2100 series linear accelerators [65].  This data was 

acquired using the BEAMnrc/DOSXYZnrc code system with 6.2 MeV electrons striking a 

target to produce the typical 6 MV clinical photon beam.  A spread of 3% full width at half 

maximum energy and 1.0 mm full width at half maximum radial spread of the Gaussian 
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electron pencil beam incident on the target were implemented.  Detailed specifications 

provided by the manufacturer were used to model the head of the linear accelerator for 

simulation.  The target, primary collimator, flattening filter, monitor chamber, upper (Y) 

and lower (X) jaws were modeled.  The phase space data were collected at a plane 

located right below the lower jaws.   

 The phase space data generated was matched to measured reference photon 

dosimetry data constructed by compiling average data based on the analysis of more 

than 50 sets of measured data from the Radiological Physics Center (RPC) at MD 

Anderson, and 10 sets of clinical dosimetry data obtained from 10 different institutions 

participating in the RPC’s quality assurance monitoring program.  The matching was 

performed by varying the energy (𝐸𝑒) and the radial spread (𝑅𝑒) of a Gaussian electron 

beam incident on the target.  All other parameters that might be included in the 

simulation were kept constant including the densities of the target and flattening filter.  It 

was assumed that the material specifications provided by the manufacturer were 

accurate.   

 Upon completion of the matching process the reference phase space data has 

been demonstrated to be capable of producing dosimetric results that agreed with 

reference photon dosimetry data within 1% or 1 mm for depth dose.  Such a high level of 

accuracy is obviously desirable in a project such as this and so the RPSD was chosen 

for use in this work.   

4.1.6 Reading Phase Space Data and Primary Fluence Expansion 

 The reference phase space file set produced by Cho et al. consists of 7 files 

produced for the following field sizes:  4x4, 6x6, 10x10, 15x15, 20x20, 30x30, and 40x40 

cm2.  All of the files sizes are on the order of 1-2 GB.  The phase space files are in 
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binary format and so a custom Fortran90 code called phase_source was developed to 

read the files, one particle at a time, and perform the functional expansion tally to 

generate expansion coefficients.  The LATCH parameter was used to sort the particles 

into primary, extra-focal, and electron. 

 The distance from the target to the scoring plane of the phase space files is given 

as the bottom surface of the lower collimator jaw.  A numerical value is not explicit in the 

file set.  The AAA and AXB algorithms assign a value of 44.5 cm to the bottom of the 

lower collimator jaw.  The schematics of the 2100C linear accelerator report a distance 

of 44.43 cm from the target to the bottom of the lower collimator jaw [66].  An experiment 

was performed to discover the target to scoring plane distance of the reference phase 

space data. 

 The distance of the scoring plane to the source along the z axis (the axis from 

source to the isocenter of the machine), was determined by backprojecting the primary 

photons from their position in the scoring plane to their z-intercept point and averaging 

those values.   Table 7 summarizes the results for the 4x4, 10x10, 20x20, and 40x40 

cm3 field sizes.   

 

Table 7: Source to phase space scoring plane distances 

Field Size 
(cm2) 

Average Source to Scoring Plane Distance 
(cm) 

Standard 
Deviation 

4x4 44.48 0.56 
10x10 44.47 0.54 
20x20 44.39 0.47 

40x40 44.26 0.40 
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 The average distance of the values reported in Table 7 is 44.4 cm which is 

remarkably close to the reported value of 44.43 cm and 1 mm from the value used by 

AAA and AXB of 44.5 cm.  For the sake of consistency between the calculation methods 

used in this work, a value of 44.5 cm was adopted as the source scoring plane distance.  

The source to isocenter distance was therefore maintained at 100 cm. 

 The phase_source Fortran code performed in-group expansions using the same 

energy groups that are used in the spectrum when generating necessary material cross 

section data in the COMET code.  The energy groups are summarized in Table 8.  The 

primary source is then defined as 14 sources of different energies. 

 

Table 8: Energy groups used for in-group expansion 

6.0 ≤ 𝐸 < 6.5 

5.5 ≤ 𝐸 < 6.0 

5.0 ≤ 𝐸 < 5.5 

4.5 ≤ 𝐸 < 5.0 

3.5 ≤ 𝐸 < 4.5 

3.0 ≤ 𝐸 < 3.5 

2.5 ≤ 𝐸 < 3.0 

2.0 ≤ 𝐸 < 2.5 

1.5 ≤ 𝐸 < 2.0 

1.0 ≤ 𝐸 < 1.5 

0.5 ≤ 𝐸 < 1.0 

0.25 ≤ 𝐸 < 0.5 

0.05 ≤ 𝐸 < 0.25 

𝐸 < 0.05 
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 The angular component of the fluence of each of the in-group sources that 

comprise the primary source is accounted for by the hemispherical harmonic expansion.    

The relative fluence of each in-group expansion is determined by normalizing the 

expansion coefficients by the total statistical weight within the energy group.  This 

approach means the relative fluence is being approximated by the FET method instead 

of the expected value of the fluence.  This formulation is used so that the photonic 

spectrum can be applied separately.  In the AAA and AXB source model the spectrum is 

optimized so that the calculated results match a measured data set.  Separating the 

spectral component leaves this option open for future work. 

The equation for approximating an in-group expansion coefficient can be seen in 

equation 37.  Note that a single index 𝑛 is used for projection coefficients 𝑙 and 𝑚. 

 

 
�̂�𝑛 =

1

𝑤𝑡𝑜𝑡
∑𝑤𝑖𝐻𝑛(Ω̂𝑖)

𝑁

𝑖=1

 (37) 

 

In equation 37 𝑁 is the number of particle histories, 𝐻𝑛 represents the hemispherical 

harmonic basis functions, 𝑤𝑖 is the statistical weight, 𝑤𝑡𝑜𝑡 is the total in-group statistical 

weight, and Ω̂ is the angle.  All primary particles in the phase space file were used to 

generate the expansion coefficients.  Such calculations are performed when establishing 

the source model but are not repeated.  They do not therefore contribute to the clinical 

calculation time for patient related dosimetry.  The total time to calculate the expansion 

coefficient from a reference phase space file depends greatly on the expansion order 

and is typically 0.5 to 4 hours. 

 For dosimetric calculations in COMET, a reconstruction must be performed.  This 

was accomplished for each energy group in the usual way through linear combination of 
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all basis functions scaled by their associated coefficients.  The equation governing the 

primary fluence reconstruction is shown in equation 38, 

 

 
𝜙(Ω̂) = ∑ �̅�𝑛𝐻𝑛(Ω̂)

∞

𝑛=0

 

 

(38) 

 

where 𝜙 represents the primary fluence,  �̅�𝑛 represents the true expansion coefficient, 

and {𝐻𝑛}0
∞ are the hemispherical harmonic basis functions that form a complete set over 

Ω̂.  The expansion coefficients are defined exactly in equation 38, but for calculation 

purposes are approximated using equation 37 and the expansion order is necessarily 

truncated.   

 The value of using the hemispherical harmonic basis formulated by Hayward and 

Rahnema is now evident.  Consider a tally on a surface with normal �̂� where every 

particle that crosses in the positive direction is counted.  For every particle, score the 

statistical weight by the 𝑚𝑡ℎ hemispherical harmonic ℎ𝑚.  In this case the tally mean is 

  

 
∫ 𝐽(Ω̂)ℎ𝑚(Ω̂)𝑑Ω̂
𝑯

 (39) 

where 𝐽 is the planar fluence. 

By applying the tally to the fluence equation and using the orthogonality 

relationship from equation 27, we can see that the tally gives us the 𝑚𝑡ℎ fluence 

expansion coefficient:  
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∫ 𝐽(Ω̂)ℎ𝑚(Ω̂)𝑑Ω̂ = ∫ (�̂� ∙ Ω̂)𝜙(

𝑯𝑯

Ω̂)ℎ𝑚(Ω̂)𝑑Ω̂ 

= ∫ (�̂� ∙ Ω̂)∑�̂�𝑛
𝑛𝑯

ℎ𝑛(Ω̂)ℎ𝑚(Ω̂)𝑑Ω̂ 

=∑�̂�𝑛∫ (�̂� ∙ Ω̂)
𝑯𝑛

ℎ𝑚(Ω̂)ℎ𝑛(Ω̂)𝑑Ω̂ 

=∑�̂�𝑛𝛿𝑚𝑛
𝑛

 

= �̂�𝑚. 

 

(40) 

The fluence can then be converted to planar fluence by multiplying by (�̂� ∙ Ω̂).  If a basis 

that utilizes Legendre polynomials was used then the tally would calculate planar fluence 

and would have to be converted to fluence by multiplying by (�̂� ∙ Ω̂)
−1

, but this introduces 

a singularity for grazing angles. 

4.1.7 Sources of Error in the Expansion 

 There are two sources of error associated with the functional expansion tally 

method: statistical and truncation.  Statistical errors occur because equation 37 is an 

estimate of the true expansion coefficient and therefore has some associated statistical 

uncertainty.  The sample variance for an expansion coefficient �̂�𝑛 can be estimated by 

utilizing the customary method.  This involves using equation 41 as an unbiased 

estimator for the true variance. 
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�̂��̂�𝑛
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∑ (𝑤𝑖𝐻𝑛(Ω̂))
2 −

1
𝑁

𝑁
𝑖=1 (∑ 𝑤𝑖𝐻𝑛(Ω̂)

𝑁
𝑖=1 )

2

𝑁(𝑁 − 1)
 (41) 

 

In equation 41, 𝐻𝑛(Ω̂) is a basis function, 𝑖 is a single particle history, 𝑤𝑖 is the statistical 

weight and 𝑁 is the total number of particle histories.  Equation 41 can be used to 

estimate the statistical uncertainty of an individual expansion coefficient.  It is also 

possible to derive a result that gives the pointwise variance of the reconstructed 

functional estimate rather than individual coefficients but as Griesheimer et al. 

demonstrate, such an estimate is computationally intensive and can present an undue 

burden on the code [61]. 

A two-norm estimate of the variance has been previously derived and can be 

used to estimate the variance of the reconstructed functional estimate.  Using the two-

norm estimate of the variance provides a way to evaluate the overall statistical 

uncertainty rather than the individual expansion coefficients. Applying the orthogonality 

of the basis functions, it can be shown that  

 

 

∫�̂��̂�(Ω̂)
2 𝑑Ω = ∑ �̂��̂�𝑛

2 ,

𝑀

𝑛=0

 (42) 

 

where �̂� represents the reconstructed functional approximation of the fluence, Ω̂ 

represents the angle, and �̂�𝑛 is the estimate of an individual expansion coefficient for the 

𝑛th basis function [61].   Equation 42 is used in this project to provide an estimate of the 

statistical error for each expansion performed. 
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 The second source of error associated with the FET is truncation, which arises 

from the approximation of the true distribution with a truncated series expansion.  

Truncation error is not given by the magnitude of individual expansion coefficients, but 

rather is associated with the rate at which the sequence of coefficients converges toward 

zero.  The 2-norm measure of the truncation error in a finite series expansion is given by 

equation 43 [67].   

 

 
‖𝐸𝑀‖

2 = ∫𝜙(Ω̂)
2
𝑑Ω̂ −∑ �̅�𝑛

2

𝑀

𝑛=0

 

 

(43) 

 

The 𝑀th partial sum of the squared expansion coefficients will approach a constant 

value as the truncation error goes to zero. As is evident in equation 43, an approximation 

for the error requires knowledge of the true expansion coefficient, which is not available.  

The influence of truncation error will therefore be assessed when comparing the final 

results from COMET to the reference benchmark results produced in DOSXYZnrc.  This 

approach is similar to that taken by other projects that implement the FET method [68].   

 Truncation error and statistical error are inversely related.  If the expansion order 

is large the statistical uncertainty increases because the basis functions become more 

difficult to integrate.  If the expansion order is small, the statistical uncertainty is lower 

but the truncation error increases.  Large truncation error results in lower resolution.  

Care must be taken to achieve a balance when performing the FET method that 

produces results with acceptable truncation error and statistical uncertainty.  Methods 

have been investigated to derive a cost-to-benefit metric that can be used to optimize 

the FET [61].  While interesting, this work does not focus entirely on the FET.  Therefore 
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it was decided the best measure of results is in the final comparison with the Monte 

Carlo reference calculation.  A more thorough investigation of the properties of the use 

of the FET in conjunction with linear accelerator phase space files is left for future work. 

4.1.8 Source Spectrum 

 Accurate radiotherapy calculations depend greatly on implementing a method 

that includes a well modeled energy spectrum.  Research into the energy spectrum 

produced from linear accelerators can be found as far back as 1955 [69].  This continues 

to be an active area of research, with investigational methods ranging from 

measurement to functional approximation [70-72].    

 The energy spectrum used in this work was taken from the BEAM user code for a 

6 MV beam produced on a 2100C Varian clinic.  It is shown in Figure 17.  The shape of 

the 6 MV spectrum used is similar to that used in the source model for both the AAA and 

AXB algorithms.  This is not unexpected as they were generated to match Varian C-

series linear accelerators.  The same spectrum is used for both the primary source and 

the secondary source.  This approach has been adopted by other researchers with good 

results and for simplicity is also adopted in this work [73]. 
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Figure 15: Photon spectrum for 6 MV photon beam from a 2100C linear particle accelerator 

  

4.2 Extra-focal Photons 

  As previously mentioned, extra-focal photons are those generated or scattered 

in components other than the target.  Liu et al., found that the extra-focal photon 

contribution to the photon fluence at isocenter was between 11% and 16 % [46]. 

 The AAA and AXB algorithms model extra-focal fluence using a plane source 

located at the bottom of the flattening filter.  The intensity distribution of the finite-size 

extra-focal source is Gaussian.  The energy spectrum is scaled to obtain a given mean 

energy.  The off-axis energy variation is not modeled.  The weight of the extra-focal 

source compared to the primary source and the mean energy are free parameters that 

are adjusted to match calculated dose to measurement.   
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 This project used the FET method and the reference phase space data to 

calculate the fluence generated by extra-focal photons in the same manner outlined in 

section 4.1.  Adopting this approach allows the variation in intensity as a function of 

angle from the source to be well modeled. 

 Because the extra-focal photons are scattered or generated in components other 

than the target, the field size of extra-focal photons is larger than that projected by the 

collimator jaws at isocenter.  The optimal field size for the secondary source in the work 

was determined empirically by comparing COMET calculated results with reference 

results. 

4.3 Contamination Electrons 

 Sheikh-Bagheri and Rogers report that for a 6 MV Varian linear accelerator with 

a  10x10 cm2 field at an SSD of 100 cm impinging on water,  the dose from electron 

contamination accounts for 7.7% of the dose at the surface and 0.16% of the dose at the 

depth of maximum dose [50].   

 Although many approaches to modeling the electron contamination in a photon 

beam have been proposed, a relatively simple approach was chosen for this work [74, 

75].  The broad beam depth dose behavior of the contaminant electrons has been 

shown to be almost exponential [76].  Therefore, the contaminant electrons were 

modeled with the exponential equation 44.   

 

 

𝑝𝑐
𝜌
(𝑧) = 𝛼𝑒−𝛽𝑧 (44) 
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In equation 43, 𝑝𝑐 is the energy deposition due to contaminant electrons, 𝜌 is the unit 

incident primary photon energy, 𝑧 is the depth in centimeters, and 𝛼 and 𝛽 are free 

parameters [77].  The parameters 𝛼 and 𝛽 were found by manually fitting the percentage 

depth dose curve along the central axis calculated by COMET to the reference result 

calculated with the RPSD and the DOSXYZnrc user code.  The parameters were set 

using calculations made in a water phantom. 

 This approach of using a fitted parameter to match the source model with a 

calculation or measurement is commonly used in source modeling.  For example the 

AAA and AXB model, runs an extensive optimization to fit source model parameters 

such as mean radial energy of primary photons, intensity profile of primary photons, the 

weight of the extra-focal photon source with respect to the primary photon source, etc. to 

that measured clinically [78].
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CHAPTER 6  

TESTING THE FUNCTIONAL EXPANSION TALLY 

 

5.1 FET and Phase Space Data 

 The approach of using the FET with phase space data to produce functional 

approximations of the photon fluence is a new concept in the source modeling of linear 

accelerators.  To test the efficacy and to better quantify the behavior of this approach 

functional approximations of the planar fluence were generated with increasing 

expansion orders and compared with binned tally results generated from the same 

phase space file.  The planar fluence was chosen to facilitate the comparison between 

the functional expansion and the binned tally.  Expansions were also performed using 

increasing numbers of particle histories to investigate the impact of statistical error on 

the FET.  The results were again compared to binned tally results computed from the 

same phase space file namely the 40x40 cm2.     

The functional value was calculated for a plane placed at 44.43 cm from a point 

source of radiation.  This corresponds to the position of the plane on which the reference 

phase space data was tallied.  The 40x40 cm2 phase space file was read and the 

particles sorted into meshed bins to serve as the reference solution of the planar 

fluence.  The square mesh size was set to 0.25 cm resolution.  Particles histories were 

sorted using the LATCH parameter into primary, extra-focal, and electron.  The 

functional value over the same mesh was obtained so that the relative difference 

between the FET and the Monte Carlo phase space fluence could be calculated.  Both 

sets of data were normalized so that the central pixel has unit value so that results can 
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be compared when generated from differing numbers of particle histories.  Comparisons 

were made with expansions performed using all basis functions and using only zonal 

harmonics. 

The root-mean-square (RMS) difference was calculated for increasing expansion 

orders to investigate the effect of truncation error on the expansion and calculated with 

increasing particle histories to investigate the effect of statistical error.  A similar 

approach has been used in other work with nuclear engineering applications [68].  The 

resulting comparisons were also separated according to typical field sizes used in 

radiotherapy applications.  The field sizes are listed as nominal field size at isocenter.  

This approach serves to quantify the effect of truncation and statistical error for various 

field sizes and excludes error introduced at the square collimated field edges of the 

40x40 cm2 beam when using zonal harmonics. 

 

5.2 FET and Binned Tally Comparison 

 The results of the comparisons of the planar fluence and the functional 

approximations of the planar fluence are shown in Tables 9 and 10. 

 The minimum RMS error for primary photon planar fluence was found with an 

expansion order of 𝑙 = 75, 75,000 histories, and a zonal harmonic basis for all three field 

sizes.  The lowest RMS error overall for primary photons was with the 10x10 cm2 field 

size.  The largest reductions in RMS error occurred as the expansion order increased.  

Increasing the number of particle histories used to generate the expansion coefficients 

had a much smaller, though apparent, impact on the RMS error.  Increasing the number 

of histories did not necessarily reduce the RMS error with a fixed expansion order but 
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rather a minimum was reached and then the error began increasing with particles 

histories.  The RMS error was systematically lower using the zonal harmonic basis. 

 The total number of extra-focal photons in the phase space file for the 40x40 cm2 

field size was 179,868.  Consequently that is the highest number of particle histories 

used in the functional approximations.  The minimum RMS error for the 5x5 cm2 and the 

10x10 cm2 field sizes had an expansion order of 𝑙 = 50.  The minimum RMS error for the 

20x20 cm2 field size was found to be 𝑙 = 75. For the 5x5 cm2 field size the minimum 

RMS error was found at 25,000, 75,000, and 179,868 particle histories. For the 10x10 

cm2 field size the minimum RMS error was found at 75,000 particle histories and for the 

20x20 cm2 field size the minimum RMS error was found at 100,000 particle histories.  

The RMS error with the extra-focal photons was in general higher than the RMS error 

with primary photons with the minimum RMS error being 0.2302 in contrast to the 

primary photon minimum RMS error of 0.0158.  The increase in expansion order did not 

have the same impact on the RMS error in extra-focal photons as it did with the primary 

photons.  Again the RMS error was systematically lower using a zonal harmonic basis.   

 This brief investigation demonstrates that implementing the FET method with 

phase space data is capable of producing functional approximations that well represent 

the photon distributions from a linear accelerator.  There is also strong evidence that 

indicates that using a zonal harmonic basis will produce a functional approximation that 

better agrees with measured data.
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Table 9: Root-mean-square error of primary planar fluence for various field sizes, 
expansion orders, and number of particle histories.  Results are presented for functional 

approximations with a full basis and zonal harmonic basis. 

  Primary Photons Full Basis  Primary Photons Zonal Harmonic Basis  

5x5 cm
2
   

   
  

     # histories l=15 l=25 l=35 l=50 l=75 l=15 l=25 l=35 l=50 l=75 

25000 0.040 0.039 0.074 0.072 0.076 0.038 0.029 0.067 0.066 0.026 

50000 0.038 0.034 0.074 0.057 0.042 0.038 0.032 0.069 0.055 0.037 

75000 0.038 0.031 0.074 0.054 0.033 0.038 0.031 0.071 0.053 0.021 

100000 0.038 0.030 0.076 0.061 0.054 0.038 0.029 0.075 0.059 0.040 

200000 0.038 0.033 0.079 0.065 0.066 0.038 0.032 0.077 0.065 0.051 

10x10 cm
2
                     

# histories l=15 l=25 l=35 l=50 l=75 l=15 l=25 l=35 l=50 l=75 

25000 0.077 0.116 0.154 0.113 0.105 0.076 0.104 0.139 0.098 0.047 

50000 0.075 0.121 0.153 0.082 0.088 0.074 0.115 0.141 0.075 0.061 

75000 0.075 0.115 0.157 0.075 0.049 0.075 0.110 0.147 0.070 0.016 

100000 0.076 0.111 0.165 0.086 0.063 0.076 0.106 0.156 0.085 0.039 

200000 0.075 0.118 0.170 0.096 0.071 0.077 0.113 0.162 0.097 0.055 

20x20 cm
2
   

   
  

     # histories l=15 l=25 l=35 l=50 l=75 l=15 l=25 l=35 l=50 l=75 

25000 0.187 0.352 0.212 0.126 0.129 0.187 0.316 0.183 0.082 0.053 

50000 0.180 0.385 0.203 0.090 0.118 0.182 0.346 0.183 0.055 0.075 

75000 0.182 0.368 0.218 0.074 0.066 0.184 0.333 0.196 0.054 0.020 

100000 0.185 0.356 0.232 0.089 0.069 0.187 0.321 0.213 0.077 0.044 

200000 0.184 0.373 0.237 0.095 0.076 0.187 0.339 0.220 0.090 0.063 
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Table 10: Root-mean-square error of extra-focal planar fluence for various field sizes, 
expansion orders, and number of particle histories.  Results are presented for functional 

approximations with a full basis and zonal harmonic basis. 

  
Extra-Focal Photons Full Basis 

Extra-Focal Photons 
 Zonal Harmonic Basis 

5x5 cm2   
   

  
     # histories l=15 l=25 l=35 l=50 l=75 l=15 l=25 l=35 l=50 l=75 

25000 0.238 0.241 0.260 0.242 0.275 0.237 0.236 0.241 0.231 0.252 

50000 0.238 0.237 0.247 0.243 0.312 0.238 0.237 0.241 0.232 0.262 

75000 0.238 0.236 0.242 0.238 0.272 0.238 0.236 0.238 0.231 0.249 

100000 0.238 0.236 0.238 0.236 0.253 0.238 0.237 0.236 0.232 0.236 

179868 0.238 0.236 0.238 0.233 0.246 0.238 0.236 0.236 0.231 0.233 

10x10 cm2                     

# histories l=15 l=25 l=35 l=50 l=75 l=15 l=25 l=35 l=50 l=75 

25000 0.242 0.243 0.284 0.256 0.319 0.243 0.240 0.253 0.231 0.278 

50000 0.246 0.243 0.264 0.253 0.303 0.246 0.244 0.254 0.232 0.271 

75000 0.245 0.241 0.252 0.249 0.275 0.245 0.242 0.244 0.230 0.255 

100000 0.247 0.244 0.248 0.251 0.255 0.246 0.242 0.240 0.233 0.239 

179868 0.247 0.241 0.246 0.243 0.262 0.246 0.241 0.240 0.230 0.234 

20x20 cm2   
   

  
     # histories l=15 l=25 l=35 l=50 l=75 l=15 l=25 l=35 l=50 l=75 

25000 0.272 0.295 0.322 0.315 0.340 0.267 0.280 0.291 0.254 0.266 

50000 0.282 0.305 0.301 0.301 0.293 0.279 0.305 0.280 0.280 0.259 

75000 0.280 0.296 0.279 0.279 0.284 0.276 0.296 0.279 0.258 0.255 

100000 0.286 0.302 0.270 0.272 0.277 0.281 0.300 0.270 0.252 0.251 

179868 0.288 0.293 0.262 0.264 0.284 0.281 0.295 0.268 0.256 0.265 
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CHAPTER 6  

SOURCE EVALUATION 

 

6.1 Water Phantom 

The true test of the proposed source model is in the final dose calculation 

performed when coupled with the COMET code.   A logical starting point for such 

calculations is with a water phantom. 

A water phantom of 30x30x30 cm3 was developed in COMET, the Eclipse treatment 

planning system, and in the DOSXYZnrc user code.  The water phantom was placed at 

a nominal source-to-surface distance of 100 cm and calculations were performed with a 

4x4, 10x10, and 20x20 cm2 field sizes.   

The Eclipse calculations were performed with a 0.25 cm grid spacing for both AAA 

and AXB calculations.  Beam data used in source modeling was from the Varian gold 

beam data set for 6 MV photons.  Eclipse version 11.0 was used along with AAA version 

11.0 and AXB version 11.0.  All Eclipse calculations were performed on a Dell Optiplex 

755 computer (Dell Inc., Round Rock, TX) with an Intel Core 2 Duo CPU at 2.33GHz and 

8.00 GB of RAM. 

COMET calculations were also performed with 0.25 cm grid spacing.  Response 

functions were pre-calculated according to the method outlined in Hayward’s doctoral 

dissertation and the parameters reported in Appendix A [45].  The notation for 

expressing the expansion orders of the response functions used in each calculation was 

adopted from Hayward’s work and is as follows:   
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(𝑜1𝑜2𝑜3𝑜4𝑜5𝑜6) 

where 

  𝑜1= angular expansion order for uncollided fluence 

𝑜2= spatial expansion order for uncollided fluence 

  𝑜3= angular expansion order for photon fluence 

  𝑜4= spatial expansion order for photon fluence 

  𝑜5= angular expansion order for electron fluence 

  𝑜6= spatial expansion order for electron fluence 

 

The example presented by Hayward is for order=(917062).  This denotes and 

expansion of 9th order in uncollided angle, 1st order in uncollided space, 7th order in 

photon angle, 0th order in photon space, 6th order in electron angle, and 2nd order in 

electron space. 

All response functions were calculated with the hemispherical harmonic orders set 

to 7 and the Legendre orders set to 2.  That limits the maximum order that can be 

chosen in further COMET calculations with this set of response functions.  The 

maximum angular expansion that can be chosen is 7 and the maximum spatial 

expansion that can be chosen is 2.   COMET calculations were performed in the water 

phantom for comparison to the DOSXYZnrc calculated reference data and the AAA and 

AXB results. 

The DOSXYZnrc user code was used to generate reference results to test the 

accuracy of the proposed source model when coupled with the COMET code.  The 

research in this work, such as the fluence shape, was performed using the phase space 

files provided by Cho et al. [65].  All DOSXYZnrc calculations were run on a cluster with 
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4 compute nodes, each with 31 GB of memory and 12 six-core AMD Opteron 2427s 

clocked at 2.2 GHz. 

The 4x4 cm2 reference solution followed 1 x 1010 source particle histories and took 

21.347 hours to calculate on a 10 processors.  The average percentage error of the 20 

highest doses was 0.091% and the quadrature average percentage of the doses greater 

than half of the maximum dose was 0.010%. 

 The 10x10 cm2 reference solution followed 1 x 1011 source particle histories and 

took 101.283 hours to calculate on a 30 processors.  The average percentage error of 

the 20 highest doses was 0.105% and the quadrature average percentage of the doses 

greater than half of the maximum dose was 0.125%.   

 The 20x20 cm2 reference solution followed 1 x 1011 source particle histories and 

took 101.330 hours to calculate on 30 processors.  The average percentage error of the 

20 highest doses was 0.208% and the quadrature average percentage of the doses 

greater than half of the maximum dose was 0.244%.   

6.2 Slab Phantom 

Rogers and Mohan developed a benchmark for testing Monte Carlo methods with 

strong heterogeneities [79].  The phantom consists of 4 layers of water, aluminum, lung 

and water respectively.  To adapt the benchmark to better match the characteristics of a 

typical patient, the aluminum layer was replaced with a slab of bone and water was 

replaced with soft tissue.  This is the approach taken by Han et al. when evaluating AXB 

calculations in heterogeneous media described in section 2.3.5 [49].   

Matlab was used to create a series of axial DICOM-CT images that were used by 

DOSXYZnrc, Eclipse, and COMET when performing calculations.  The phantom was 

created to have dimensions of 30x30x30 cm2 and is composed of 4 layers of varying 
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thicknesses.  The layers, listed in order from proximal to the source to the most distal 

are: 3 cm of soft tissue (1.0 g/cm3), 2 cm of bone (1.85 g/cm3), 7 cm of lung tissue (0.26 

g/cm3), and 18 cm of soft tissue (1.0 g/cm3).  Figure 16 shows the phantom imported in 

the Eclipse treatment planning system.   

DOSXYZnrc, COMET, and Eclipse have differing methods of using DICOM-CT 

images to create data sets containing the density and material composition necessary 

for dose calculation.  DOSXYZnrc uses a program called CTCREATE to import the 

necessary data [40].  CTCREATE uses a set of conversion ramps to convert CT 

numbers stored in the DICOM-CT images to map each voxel to density and material 

composition.  A total of 4 materials are specified for import in CTCREATE.  The ramp 

used for importing the slab phantom DICOM-CT images is shown in Figure 17 [80].  The 

process is described in more detail in the DOSXYZnrc User’s Manual [40]. 

COMET performs a conversion in a similar way to CTCREATE.  The density is 

mapped to a set of discrete values and the CT to material conversion is accomplished 

using the values in Table 11.  The process is described in detail by Hayward in his 

dissertation [45].



84 

 

 

 

 

Figure 16: Slab phantom in Eclipse.  Dicom-CT images were generated with Matlab and imported.
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Figure 17: The ramp for converting CT values to material and density used with 
CTCREATE 

 

 

 

Table 11: CT to material conversion 

Range of Hounsfield Units Material Density (g/cm3) 

-1000  HU  -950 Air 1.2048 x 10-3 

-950  HU  -700 Lung 0.26 
-700  HU  125 Soft Tissue 1.0 
125  HU  2000 Bone 1.85 
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 Like DOSXYZnrc, Eclipse uses a series of conversion ramps to convert CT 

number to material assignment and density.  The conversion ramps used in this 

research project are shown in Figure 18, which is taken directly from the Eclipse 

treatment planning system.  The HU values in each slab were checked in Eclipse to 

ensure that the phantom was imported and reconstructed with the correct material 

specification and density.   

 

 

Figure 18: Graph of CT number and material assignment versus density used by Eclipse 
for the AXB algorithm 

 

 The choice to use a phantom that was digitally produced and imported rather 

than creating the phantom within each software package was made in an attempt to 

ensure consistency between dose calculation methodologies being tested.   
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 DOSXYZnrc calculations were performed to generate a set of reference solutions 

for use in comparing the performance of all calculation methods being tests.  Efforts 

were made to keep the relative uncertainty low by following a large number of source 

particle histories.   

 The 4x4 cm2 reference solution followed 1 x 1010 source particle histories and 

took 21.078 hours to calculate on 10 processors.  The average percentage error of the 

20 highest doses was 0.135% and the quadrature average percentage of the doses 

greater than half of the maximum dose was 0.185%.   

The 10x10 cm2 reference solution followed 1 x 1011 source particle histories and 

took 105.557 hours to calculate on a 30 processors.  The average percentage error of 

the 20 highest doses was 0.470% and the quadrature average percentage of the doses 

greater than half of the maximum dose was 0.626%.   

The 20x20 cm2 reference solution followed 5 x 1011 source particle histories and 

took 101.522 hours to calculate on 30 processors.  The average percentage error of the 

20 highest doses was 0.202% and the quadrature average percentage of the doses 

greater than half of the maximum dose was 0.272%.   

 COMET calculations were performed with the slab phantom for the purpose of 

testing the influence of the expansion order.  To that end, sample runs were made with 

orders (727272), (717171), (525252), (515151), (323232), and (313131) and the results 

were compared to the Monte Carlo generated reference solutions.  The calculations 

were performed with a 10x10 cm2 field size and the phantom size was reduced to 

15x15x30 cm2 to reduce the computation time.  All COMET calculations were done on a 

cluster with 4 compute nodes, each with 31 GB of memory and 12 six-core AMD 

Opteron 2427s clocked at 2.2 GHz. 
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6.3 Sample Lung Patient CT Phantom 

 Figure 19 shows the axial, sagittal, and coronal views of a lung patient used to 

create the lung phantom for dose calculation comparisons.  A lung patient was chosen 

with a mediastinal tumor because the highly inhomogeneous nature of the lung region 

will best reveal the capabilities of each calculation method. The tumor is clearly visible 

on the axial slice close to the mediastinum and the isocenter is placed inside the tumor.   

The DICOM image data was first truncated to a smaller size to facilitate faster 

calculation times for COMET.  This was necessary because the current version of 

COMET calculates dose for the entire image set being used even in areas far outside of 

the field.  The voxel size was set to 0.25x0.25x0.25 cm3 and each voxel was mapped to 

four materials and densities according to the methods outlined in section 6.2.  The 

phantom was slightly modified for the use of each calculation method to ensure that the 

correct material and density was assigned during import. Figure 20 shows the truncated 

DICOM patient images with the resampled voxels size and density. 
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Figure 19: Patient DICOM images used to create the lung phantom.  Note the mediastinal tumor in the right lung. 
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Figure 20: The truncated lung phantom mapped to 4 materials and densities 
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6.4 Tests for Inter-comparison 

 To evaluate the results of the dosimetric calculations performed with 

DOSXYZnrc, COMET, AAA, and AXB a series of tests were used.  First all results 

needed to be normalized in a consistent manner.  A commonly used method of 

normalizing to the dose maximum along the central axis was chosen. This method was 

applied to the homogeneous water phantom and the inhomogeneous slab phantom.  

This approach presents the percentage depth dose data in a format that is customary in 

medical physics.  For the lung phantom calculations all results were normalized to the 

global dose maximum. 

 It is common when evaluating the accuracy of dose calculations to examine the 

central axis percentage depth dose curves and profiles at various depths.  That method 

was adopted for both the homogeneous water phantom and the inhomogeneous slab 

phantom.  Profiles are reported for depths of 1.5, 10, and 20 cm.  The dose difference 

was calculated as a percentage relative to the DOSXYZnrc dose.  Results are graphed 

and maximum and root-mean-square error is reported.   

 Two dimensional comparisons were also performed based on the work of Low, et 

al. in a technique known as the gamma method [81].  When comparing two dose 

distributions a simple dose difference or isodose comparison may not be appropriate.  

Comparisons of two dose distributions are vulnerable to misjudgment in the following 

cases [82]: 

 The difference between two dose-distributions can be large in high-gradient 

regions, even if the isodoses are relatively close to each other. 

 The isodose distance between two dose distributions can be large in regions 

with a flat dose distribution, although the difference in dose may be quite small. 
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The gamma method can accommodate both scenarios.  The gamma value for the 

measurement point 𝑟𝑚 is shown in equation 45: 

 

 𝛾(𝑟𝑚) = min{Γ(𝑟𝑚, 𝑟𝑐)} ∀{𝑟𝑐} (45) 

where 

 Γ(𝑟𝑚, 𝑟𝑐) = √
𝑟2(𝑟𝑚, 𝑟𝑐)

Δ𝑑𝑀
2 +

𝛿2(𝑟𝑚, 𝑟𝑐)

Δ𝐷𝑀
2  (46) 

  

 𝑟(𝑟𝑚, 𝑟𝑐) = |𝑟𝑐 − 𝑟𝑚|  (47) 

and 

 

 
𝛿(𝑟𝑚, 𝑟𝑐) = 𝐷𝑐(𝑟𝑐) − 𝐷𝑚(𝑟𝑚) (48) 

 

where 𝑟𝑚 is the position of a single measurement point, 𝑟𝑐 is the spatial location of the 

calculated distribution relative to the measurement point, Δ𝑑𝑀 is the passing criteria for 

isodose distance, Δ𝐷𝑀 is the passing criteria for dose, 𝐷𝑐(𝑟𝑐) is the calculated dose in 𝑟𝑐, 

and 𝐷𝑚(𝑟𝑚) is the measured dose in 𝑟𝑚.  The pass and fail criteria are shown in 

equations 49 and 50. 

 

 
𝛾(𝑟𝑚)  ≤ 1 calculation passes (49) 

 



93 

 

 

 
𝛾(𝑟𝑚)  ≥ 1 calculation fails (50) 

 

 

 To implement the gamma method two criteria for a passing result must be 

chosen: the dose difference and the distance to agreement (DTA).  DTA is defined as 

the distance between a dose point in the calculated distribution and the nearest point in 

the measured distribution containing the same dose value.  For example a commonly 

used criteria IMRT quality assurance testing is 2% dose difference and 2 mm DTA with a 

90% passing rate considered acceptable.   

 All gamma comparisons were performed with the OmniPro I’mRT software 

version 1.7.0021 by IBA Dosimetry (IBA Dosimetry GmbH, Schwarzenbruck, Germany).  

The criterion chosen for comparison of the water and slab phantoms was 1% dose 

difference and 1mm DTA.  Such a tight tolerance was chosen to uncover deviations from 

the reference solution that are even smaller than that which is generally clinically 

acceptable.  A more clinically applicable criterion of 2% dose difference and 2% DTA 

was used when performing gamma tests on the lung phantom. 
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CHAPTER 7  

RESULTS 

7.1 Primary Source 

7.1.1 Expansion Coefficients 

 Estimates for the statistical error of the expansions using the FET method are 

shown in Tables 12 and 13 for both a full expansion and an expansion using only the 

zonal harmonics respectively.  Some trends that can be seen in the data include the 

increase in variance of the overall expansion with increase in expansion order for the 

same number of particles and the decrease in variance with increased particle histories.  

One trend that is particularly important for this study is the decrease in variance for the 

same field size and number of particles when zonal harmonics are used when compared 

to the same expansion using a full expansion basis.  
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Table 12: Full expansion with primary photons 

Field Size 
(cm2) 

Number of 
Histories 

Expansion 
Order l 

2-norm 
Variance 

Average Coefficient 
Value 

4x4 1000 10 3.62E-05 4.75E-03 

 
10000 10 3.38E-06 4.62E-03 

 
100000 10 3.31E-07 4.60E-03 

 
1000 25 2.17E-04 2.78E-03 

 
10000 25 2.02E-05 2.75E-03 

 
100000 25 1.99E-06 2.71E-03 

 
1000 35 4.40E-04 2.24E-03 

 
10000 35 4.11E-05 2.21E-03 

 
100000 35 4.05E-06 2.18E-03 

10x10 1000 10 1.94E-05 3.33E-03 

 
10000 10 2.06E-06 3.40E-03 

 
100000 10 2.08E-07 3.41E-03 

 
1000 25 1.37E-04 1.72E-03 

 
10000 25 1.45E-05 1.68E-03 

 
100000 25 1.47E-06 1.68E-03 

 
1000 35 2.97E-04 1.15E-03 

 
10000 35 3.11E-05 1.11E-03 

  100000 35 3.15E-06 1.12E-03 

20x20 1000 10 1.80E-05 2.38E-03 

 
10000 10 1.84E-06 2.48E-03 

 
100000 10 1.66E-07 2.42E-03 

 
1000 25 1.28E-04 6.77E-04 

 
10000 25 1.32E-05 6.49E-04 

 
100000 25 1.20E-06 6.31E-04 

 
1000 35 2.54E-04 2.91E-04 

 
10000 35 2.60E-05 2.33E-04 

  100000 35 2.38E-06 2.24E-04 
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Table 13: Zonal harmonics with primary photons 

Field Size 
(cm2) 

Number of 
Histories 

Expansion 
Order l 

2-norm 
Variance 

Average Coefficient 
Value 

4x4 1000 10 2.52E-05 4.72E-03 

 
10000 10 2.40E-06 4.63E-03 

 
100000 10 2.36E-07 4.61E-03 

 
1000 25 1.22E-04 2.78E-03 

 
10000 25 1.14E-05 2.73E-03 

 
100000 25 1.12E-06 2.71E-03 

 
1000 35 2.11E-04 2.24E-03 

 
10000 35 2.00E-05 2.19E-03 

 
100000 35 1.97E-06 2.18E-03 

10x10 1000 10 1.19E-05 3.38E-03 

 
10000 10 1.25E-06 3.39E-03 

 
100000 10 1.29E-07 3.42E-03 

 
1000 25 4.43E-05 1.69E-03 

 
10000 25 4.54E-06 1.68E-03 

 
100000 25 4.70E-07 1.70E-03 

 
1000 35 6.87E-05 1.13E-03 

 
10000 35 7.07E-06 1.12E-03 

  100000 35 7.20E-07 1.13E-03 

20x20 1000 10 7.77E-06 2.47E-03 

 
10000 10 7.44E-07 2.50E-03 

 
100000 10 6.47E-08 2.44E-03 

 
1000 25 2.31E-05 7.10E-04 

 
10000 25 2.31E-06 6.89E-04 

 
100000 25 2.09E-07 6.80E-04 

 
1000 35 3.61E-05 3.13E-04 

 
10000 35 3.68E-06 2.90E-04 

  100000 35 3.65E-07 2.88E-04 
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7.1.2 Source Shape 

 In a plot of the primary photon fluence it is expected that the effect of the 

flattening filter be evident.  Figures 21 and 22 show the plots of the primary source for 

increasing expansion orders generated from the 40x40 cm2 reference phase space file 

using a purpose built Matlab function.  Note that the scale is adjusted to better illustrate 

the fluence shape.  The normalization is that described in section 4.1.6.   For the 

purpose of visual inspection and comparison to previously published data, no energy 

discretization was used.  All plots generated in this section are based on expansions and 

reconstructions of 100,000 particles.  The fluence emanates from a single point and the 

value of the functional approximation is based on the expansion and reconstruction 

using hemispherical harmonics with adjoint Jacobi basis functions.    The influence of the 

flattening filter and the rectilinear collimation are evident by an expansion order of 𝑙 = 15 

and clearly visible by 𝑙 = 25.  By 𝑙 = 75 the expansion is no longer smooth for 100,000 

particle histories. 

  For the expansion order 𝑙 = 75, the number of coefficients necessary, given by 

the equation (𝑙 + 1)2, is 5,776.  Taking into consideration the total number of energy 

groups, to perform such an expansion for the primary source and 14 energy groups 

requires a total of 80,864 expansion coefficients.  Of note is the large disc shape in the 

reconstruction at angles where 𝜃 approaches 90°.  This is a consequence of performing 

the hemispherical harmonic expansion with the basis that was previously described.  

Attempts to correct for this phenomenon destroy the integral value of the expansion and 

so it was not accounted for in this work.  The radiation emanating from the head of linear 

accelerator from such large polar angles does not reach the patient and therefore does 

not influence the final dose calculations.   
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 A large number of expansion coefficients takes away some of the advantage of 

using an orthogonal expansion technique, namely the computational simplicity.  For 

example the integration of a product of any two arbitrary piecewise continuous functions 

using this technique is simplified to a series of dot product computations of the 

expansion coefficients.  This is a prime format for parallel computation, thus further 

reducing calculation times.  When the total number of expansion coefficients increases 

to such large numbers, it is clear that the computational burden can quickly become 

unacceptable.  It is desirable to reduce the total number of expansion coefficients to a 

manageable size, while retaining the primary photon source properties necessary for 

accurate dose calculation.  Since the primary source has small or no azimuthal 

dependence, it is reasonable to drop the expansion coefficients with 𝑚 ≠ 0, and retain 

only the zonal harmonics  [46].  Figures 23 and 24 show the zonal harmonic expansion 

using increasing orders.  The influence of the flattening filter is quickly apparent, even in 

the lower order expansions.   

 The primary fluence is only one factor in the complex transport processes 

involved in radiotherapy dose deposition.  To ensure that an expansion order is adopted 

that produces optimal end results further testing is required, but the estimates for the 

statistical error in Tables 12 and 13 and the reconstructions in Figures 21, 22, 23, and 24 

strongly indicate that zonal harmonics be adopted.   
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Figure 21: Reconstruction of the approximate function describing the primary fluence derived from phase space files.  Expansion 

orders l = 0, 5, 10, 15. 
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Figure 22: Reconstruction of the approximate function describing the primary fluence derived from phase space files.  Expansion 

orders l = 25, 35, 50, 75. 
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Figure 23: Reconstruction of the approximate function describing the primary fluence derived from phase space files using zonal 

harmonics.  Expansion orders l = 0, 5, 10, 15. 
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Figure 24: Reconstruction of the approximate function describing the primary fluence derived from phase space files using zonal 

harmonics.  Expansion orders l = 25, 35, 50, 75.
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7.2 Extra-Focal Source 

7.2.1 Expansion Coefficients 

 Tables 14 and 15 display estimates of the 2-norm variance for expansions of the 

extra-focal photons.  Similar trends to the primary source expansion variance are seen 

here.  The statistical uncertainty of the overall expansion decreases with the increase in 

the number of particle histories.   The statistical uncertainty of the overall expansion 

increases with expansion order for the same number of particles.  The trend that is 

particularly important for this study is the decrease in statistical uncertainty for the same 

field size and number of particles when zonal harmonics are used when compared to the 

same expansion using a full expansion basis.  
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Table 14: Variance estimates for full expansion with extra-focal photons 

Field Size 
(cm2) 

Number of 
Histories 

Expansion 
Order l 

2-norm 
Variance 

Average Coefficient 
Value 

4x4 1000 10 1.68E-04 9.23E-04 

 
10000 10 1.46E-05 1.00E-03 

 
100000 10 1.45E-06 1.06E-03 

 
1000 25 9.27E-04 2.93E-04 

 
10000 25 8.06E-05 3.62E-04 

 
100000 25 8.00E-06 3.90E-04 

 
1000 35 1.77E-03 1.80E-04 

 
10000 35 1.54E-04 2.52E-04 

 
100000 35 1.53E-05 2.69E-04 

10x10 1000 10 8.59E-05 8.50E-04 

 
10000 10 8.38E-06 8.03E-04 

 
100000 10 8.26E-07 7.76E-04 

 
1000 25 4.70E-04 2.84E-04 

 
10000 25 4.59E-05 2.89E-04 

 
100000 25 4.53E-06 2.77E-04 

 
1000 35 8.98E-04 1.65E-04 

 
10000 35 8.75E-05 1.79E-04 

  100000 35 8.65E-06 1.67E-04 

20x20 1000 10 5.69E-05 8.41E-04 

 
10000 10 5.90E-06 6.46E-04 

 
100000 10 6.08E-07 6.39E-04 

 
1000 25 3.11E-04 1.88E-04 

 
10000 25 3.23E-05 1.69E-04 

 
100000 25 3.33E-06 1.43E-04 

 
1000 35 5.93E-04 7.25E-05 

 
10000 35 6.16E-05 8.07E-05 

  100000 35 6.35E-06 6.49E-05 
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Table 15: Variance estimates for zonal harmonics with extra-focal photons 

Field Size 
(cm2) 

Number of 
Histories 

Expansion 
Order l 

2-norm 
Variance 

Average Coefficient 
Value 

4x4 1000 10 2.89E-05 1.08E-03 

 
10000 10 2.77E-06 1.12E-03 

 
100000 10 2.84E-07 1.16E-03 

 
1000 25 9.47E-05 4.01E-04 

 
10000 25 9.07E-06 4.08E-04 

 
100000 25 9.34E-07 4.24E-04 

 
1000 35 1.42E-04 2.71E-04 

 
10000 35 1.34E-05 2.76E-04 

 
100000 35 1.39E-06 2.87E-04 

10x10 1000 10 2.04E-05 9.02E-04 

 
10000 10 1.86E-06 8.18E-04 

 
100000 10 1.89E-07 8.30E-04 

 
1000 25 6.30E-05 3.38E-04 

 
10000 25 5.41E-06 2.84E-04 

 
100000 25 5.54E-07 2.95E-04 

 
1000 35 8.74E-05 2.09E-04 

 
10000 35 7.51E-06 1.71E-04 

  100000 35 7.77E-07 1.78E-04 

20x20 1000 10 1.29E-05 7.59E-04 

 
10000 10 1.29E-06 7.03E-04 

 
100000 10 1.28E-07 6.85E-04 

 
1000 25 2.71E-05 1.44E-04 

 
10000 25 2.97E-06 1.54E-04 

 
100000 25 3.05E-07 1.56E-04 

 
1000 35 3.78E-05 5.28E-05 

 
10000 35 4.19E-06 6.70E-05 

  100000 35 4.27E-07 7.26E-05 
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7.2.2 Source Shape 

 Figures 25 and 26 display the reconstructed functional approximation of the 

extra-focal photon fluence based on a full hemispherical harmonic expansion.  Figures 

27 and 28 represent the reconstructed functional approximation of the extra-focal photon 

fluence using only the zonal harmonics.  All plots were generated using the RPSD with 

40x40 cm2 field size.  As with the primary photon source no energy discretization was 

used to generate these plots.  All plots generated in this section are based on 

expansions and reconstructions of 100,000 particles.  The scale of the plots was 

adjusted to best illustrate the shape of the plots.  

While no published image could be found for the shape of the secondary source 

to use as a reference, these plots are instructive.  The full expansion begins displaying 

the effect of the flattening filter and the rectilinear collimation by expansion order 𝑙 = 15.  

This is not surprising as most of the extra-focal photons are generated in either the 

primary collimator or the flattening filter and thus travel through both the flattening filter 

and the collimator jaws on their way out of the head of the machine.  There is more 

fluence at large polar angles than with the primary source as expected because all 

photons in the extra-focal source have undergone at least one scattering event.     

As with the primary source, the evidence from the variance analysis and the plots 

of the source shape strongly favor using zonal harmonics rather than a full hemispherical 

harmonic expansion.  Adopting this approach has the added advantage of reducing the 

computational time necessary to calculate the fluence at each point within the phantom.   
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Figure 25: Reconstruction of the approximate function describing the extra-focal photon fluence derived from phase space files.  

Expansion orders l = 0, 5, 10, 15. 
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Figure 26: Reconstruction of the approximate function describing the extra-focal photon fluence derived from phase space files.  

Expansion orders l = 25, 35, 50, 75. 
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Figure 27: Reconstruction of the approximate function describing the extra-focal photon fluence derived from phase space files using 

zonal harmonics.  Expansion orders l = 0, 5, 10, 15. 
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Figure 28: Reconstruction of the approximate function describing the extra-focal photon fluence derived from phase space files using 

zonal harmonics.  Expansion orders l = 25, 35, 50, 75.
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7.3 Expansion Order Analysis 

While it is tempting to adopt the coefficients generated from the highest 

expansion order, it is also necessary to consider the broader context.  The ultimate goal 

is to produce a source model and radiative transport method that when coupled produce 

dosimetric calculations that closely reflect the actual dose delivered.  The ability of a 

calculation model to perform is often evaluated when compared to measurement or 

Monte Carlo calculations.  To investigate further what expansion order produces optimal 

results, COMET(515151) calculations were performed using expansion orders of l = 0, 5, 

15, 25, 35, and 45 for a 20x20 cm2 field size.  The 20x20 cm2 field size was chosen to 

best illustrate the change associated with increasing the expansion order.  Given the 

evidence from the preceding sections, zonal harmonics were exclusively used to 

generate the results.  The resultant profiles at depths of 3 cm, 5 cm, and 10 cm were 

normalized to 100% at the central axis and compared with a DOSXYZnrc calculation 

using RPSD.  The central 80% of the profile was used for this analysis so that the large 

dose differences seen in the penumbra region would not obscure the results. 

Figure 29 shows dose in color wash format calculated by DOSXYZnrc with 

RPSD and COMET with increasing expansion orders.  The lowest expansion order 𝑙 = 0 

is an isotropic point source and because of the large distance from source to phantom 

results in distribution that is almost flat at a plane perpendicular to the impinging 

radiation.  As the expansion order increases the influence of the flattening filter can be 

seen.  Also the dose falloff near the edge of the field increases with increasing 

expansion order. 

Figures 30, 31, and 32 show plots of the profiles at depths of 3 cm, 5 cm, and 10 

cm all normalized to 100% at the central axis.  It is difficult to visually decide which 
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expansion best fits the reference calculation and the data from these profiles was used 

to generate Table 16.  The data shows that for all depths, 𝑙 = 25 has the lowest root-

mean-square error.  At 3 cm depth 𝑙 = 25 and 𝑙 = 35 have the same maximum error and 

at 5 cm and 10 cm 𝑙 = 25 has the lowest maximum error.   

The optimal expansion order therefore was chosen to be 𝑙 = 25. 
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Figure 29: DOSXYZnrc calculation performed with RPSD and COMET calculations 
performed with increasing zonal harmonic expansion orders.  A 6 MV photon beam with 

20x20 cm
2
 field size is impinging on a 30x30x30 cm

3
 water phantom. 
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Figure 30: Profile comparison for a DOSXYZnrc calculation with RPSD and COMET calculations with increasing expansion orders at a 
depth of 3 cm.

0

20

40

60

80

100

120

-20 -15 -10 -5 0 5 10 15 20

R
e
la

ti
v
e

 D
o

s
e

 (
%

) 

Radial (cm) 

d = 3 cm 

DOSXYZnrc

l = 0

l = 5

l = 15

l = 25

l = 35

l = 45



115 

 

 

Figure 31: Profile comparison for a DOSXYZnrc calculation with RPSD and COMET calculations with increasing expansion orders at a 
depth of 5 cm.  
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Figure 32: Profile comparison for a DOSXYZnrc calculation with RPSD and COMET calculations with increasing expansion orders at a 
depth of 10 cm. 
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Table 16: Profile relative dose error analysis for increasing zonal harmonic expansion 
orders at depths of 3, 5, and 10 cm.  RPSD was used to generate the reference to which 
these profiles were compared. 

 

 

  

depth (cm)  Expansion Order Maximum Error (%) RMS Error 

3 l = 0 3.66 2.53 

 
l = 5 1.45 0.92 

 
l = 15 4.39 2.34 

 
l = 25 1.39 0.47 

 
l = 35 1.39 0.44 

  l = 45 5.65 2.20 

5 l = 0 3.07 2.16 

 
l = 5 1.32 0.80 

 
l = 15 3.20 1.94 

 
l = 25 0.45 0.21 

 
l = 35 0.55 0.30 

  l = 45 4.71 1.93 

10 l = 0 2.18 1.38 

 
l = 5 2.38 0.86 

 
l = 15 1.84 1.15 

 
l = 25 1.76 0.80 

 
l = 35 1.79 0.93 

  l = 45 3.12 1.04 
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7.4 Electron Contamination 

The free parameters 𝛼 and 𝛽 of the electron contamination curve were manually 

selected to best match the dose in the buildup region to the reference dose calculated by 

DOSXYZnrc.  The electron contamination accounts for less than 10% of the dose at the 

surface and exhibits a rapid falloff with depth.  These characteristics are reflected in the 

electron contamination curve used for COMET calculations and shown in Figure 33. 

 

 

Figure 33: Relative electron fluence  
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error is reported.  All dose distributions were normalized with the point of maximum dose 

along central axis equal to 100%.  This method of normalization is customary when 

presenting PDDs.   The prescription dose was also set as 100 cGy the point of maximum 

dose along central axis.   The percentage depth doses and profiles for field sizes 4x4, 

10x10, and 20x20 cm2 are illustrated in Figures 34-45.  Tables 17 and 18 summarize the 

results of the error analysis.   

COMET(515151) had a lower maximum percentage error and lower root-mean-

square error in all percentage depth dose comparisons performed except in the root-

mean-square error past Dmax for the 20x20 cm2 field and the maximum error past Dmax 

for the 4x4 cm2 and 20x20 cm2 field.  Both AAA and AXB exhibited very high errors in 

the buildup region when compared to the DOSXYZnrc calculation.   

The results of the comparisons of the profiles at depth varied more than the 

percentage depth doses.  AAA had the lowest error values in 3 out of the 36 tests, AXB 

had the lowest error values in 10 out of the 36 tests, and COMET had the lowest error 

values in 23 out of the 36 tests.  The highest percentage error values were seen in the 

penumbra regions with maximum percentage error reaching as high as 62.82%.  This is 

expected and illustrates the importance of also using a method of comparison that takes 

into account both dose and spatial agreement such as the gamma method. 
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Table 17: Maximum and root-mean-square error for central axis percentage depth doses in a water phantom.  All curves are normalized 
with Dmax=100%. 

  4x4 cm2 10x10 cm2 20x20 cm2 

  All Depths All Depths All Depths 

 
Maximum Error (%) RMS Error Maximum Error (%) RMS Error Maximum Error (%) RMS Error 

AAA 35.33 4.35 28.73 3.34 37.41 4.21 

AXB 40.20 4.61 16.96 1.83 34.57 4.14 

COMET(515151) 27.51 3.79 2.01 0.81 3.19 0.71 

  Past Dmax Past Dmax Past Dmax 

  Maximum Error (%) RMS Error Maximum Error (%) RMS Error Maximum Error (%) RMS Error 

AAA 4.46 2.54 5.05 1.68 4.08 2.26 

AXB 4.38 2.46 2.40 0.92 2.89 1.39 

COMET(515151) 5.00 2.22 2.01 0.80 3.19 0.68 
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Table 18: Maximum and root-mean-square relative dose error for profiles in a water 
phantom.  

  4x4 cm
2
 10x10 cm

2
 20x20 cm

2
 

d=1.5 cm Central 80% Central 80% Central 80% 

 

Maximu
m Error 

(%) RMS Error 
Maximum 
Error (%) RMS Error 

Maximum 
Error (%) 

RMS 
Error 

AAA 0.90 0.37 1.29 0.62 1.74 0.68 

AXB 0.80 0.35 1.11 0.48 1.45 0.81 

COMET(515151) 1.28 0.59 1.79 1.07 3.81 1.90 

 
80-120% 80-120% 80-120% 

 

Maximu
m Error 

(%) RMS Error 
Maximum 
Error (%) RMS Error 

Maximum 
Error (%) 

RMS 
Error 

AAA 23.08 14.28 47.04 24.39 62.82 27.63 

AXB 23.08 14.09 47.04 23.36 62.71 25.30 

COMET(515151) 45.17 19.61 47.59 24.58 61.41 22.94 

d=10 cm Central 80% Central 80% Central 80% 

 

Maximu
m Error 

(%) RMS Error 
Maximum 
Error (%) RMS Error 

Maximum 
Error (%) 

RMS 
Error 

AAA 1.61 1.03 1.22 0.75 3.05 2.04 

AXB 1.45 0.91 0.90 0.57 2.07 1.21 

COMET(515151) 1.31 1.03 1.35 0.53 1.13 0.58 

 
80-120% 80-120% 80-120% 

 

Maximu
m Error 

(%) RMS Error 
Maximum 
Error (%) RMS Error 

Maximum 
Error (%) 

RMS 
Error 

AAA 42.84 19.42 41.40 17.82 50.58 18.86 

AXB 42.84 19.45 40.81 13.69 52.17 19.13 

COMET(515151) 23.24 9.94 22.16 10.55 39.52 12.87 

d=20 cm Central 80% Central 80% Central 80% 

 

Maximu
m Error 

(%) RMS Error 
Maximum 
Error (%) RMS Error 

Maximum 
Error (%) 

RMS 
Error 

AAA 2.99 2.46 2.39 1.40 1.49 1.00 

AXB 2.99 2.46 1.31 0.78 1.19 0.73 

COMET(515151) 1.83 0.68 1.03 0.49 1.83 0.68 

 
80-120% 80-120% 80-120% 

 

Maximu
m Error 

(%) RMS Error 
Maximum 
Error (%) RMS Error 

Maximum 
Error (%) 

RMS 
Error 

AAA 37.03 13.59 32.62 11.31 36.06 13.43 

AXB 37.03 13.59 31.59 6.82 36.06 13.42 
COMET(515151) 14.92 6.13 17.98 6.59 14.92 6.13 
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Figure 34: Water phantom percentage depth dose with a field size of 4x4 cm
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Figure 35: Water phantom profile at a depth of 1.5 cm with a 4x4 cm
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Figure 36: Water phantom profile at a depth of 10 cm with a 4x4 cm
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Figure 37: Water phantom profile at a depth of 20 cm with a 4x4 cm
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Figure 38: Water phantom percentage depth dose with a field size of 10x10 cm
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Figure 39: Water phantom profile at a depth of 1.5 cm with a 10x10 cm
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Figure 40: Water phantom profile at a depth of 10 cm with a 10x10 cm
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Figure 41: Water phantom profile at a depth of 20 cm with a 10x10 cm
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Figure 42: Water phantom percentage depth dose with a field size of 20x20 cm
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Figure 43: Water phantom profile at a depth of 1.5 cm with a 20x20 cm
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Figure 44: Water phantom profile at a depth of 10 cm with a 20x20 cm
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Figure 45: Water phantom profile at a depth of 20 cm with a 20x20 cm
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7.5.2 Gamma Evaluation 

 Calculations were performed that represent the dose deposited in a 30x30x30 

cm3 water phantom by a 6 MV therapeutic radiation beam.  The results of each method 

were compared to the reference calculation generated using RPSD and DOSXYZnrc.  

The gamma method was used to compare the dose planes along the central axis in the 

radial direction.  The region of interest used for evaluating each result was set as a 

rectangle that encompasses the entire 30 cm depth and 1 cm laterally beyond the field 

edge at the point where the field exits the phantom.  For example the region of interest 

for the 4x4 cm2 field size is a rectangle 30 cm in the z-direction and 5.2 cm in the x-

direction.  The results are shown in Figures 46, 47, and 48.  Blue represents the pixels 

that have passed with a 1%/1mm DTA criteria and red represents those that have failed.  

In all calculation methods failing pixels occur mainly in the buildup region and in the 

penumbra.  This is expected because of the tight pass/fail criteria. 

Table 19 summarizes the percentage of pixels in each analysis that have 

passed.  COMET(515151) calculations in water demonstrate a higher percentage of 

pixels with passing gamma scores than both AAA and AXB for all field sizes tested.  

AAA exhibited the lowest percentage of passing pixels for the 4x4 cm2 and the 10x10 

cm2 field sizes and AXB had the lowest percentage for the 20x20 cm2 field size, although 

the difference between AAA and AXB at 20x20 cm2 was only 0.23%.  

 

Table 19: Gamma Scores for Water Phantom 

Field Size 4x4 cm2 10x10 cm2 20x20 cm2 

 
  Γ < 1 (%)   Γ < 1 (%)   Γ < 1 (%) 

AAA 60.79 76.50 78.35 

AXB 65.05 78.07 78.12 

COMET(515151) 83.89 84.94 83.62 



135 

 

 

 

Figure 46: Gamma results in water phantom 4x4 cm
2
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Figure 47: Gamma results in water phantom 10x10 cm
2
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Figure 48: Gamma results in water phantom 20x20 cm
2
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7.6 Slab Phantom 

7.6.1 Profiles 

 Analysis of the percentage depth doses and profiles at various depths were 

performed similar to that of the water phantom.  However for the percentage depth dose 

curves, each slab was analyzed separately.  Using the same convention as section 7.5, 

central axis percentage depth doses are normalized with the maximum dose equaling 

100%. 

 Tables 20 and 21 summarize the numerical results of the error analysis.  Figures 

49-60 show the percentage depth doses and profiles at depths of 1.5, 10, and 20 cm.  

COMET and AXB had very similar results along the central axis.  AXB did outperform 

COMET in the 4x4 cm2 field.  AAA did not have the lowest error in any tests along the 

central axis. 

The highest maximum relative error in central axis percentage depth dose was 

14.38% in the bone region using AAA and a 4x4 cm2 field size.  AAA consistently 

underestimated the dose deposited in the lung region for all field sizes.  It also did not 

predict the peak-and-trough curves caused by the backscatter effect near the bone 

interfaces. 

 The profiles again had varied results, but overall COMET had the lowest error in 

18 of the 36 tests performed.  AAA performed poorly with the lowest error in only 5 of the 

36 tests.  The error remains high in the penumbra region but these regions of the beam 

are better evaluated using the gamma method due the rapid dose falloff.
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Table 20: Maximum and root-mean-square error for central axis percentage depth doses in a slab phantom.  All curves are normalized 
with Dmax=100%.  Results are reported in each slab. Note that the results in Tissue 1 are reported at depths > 1 cm to exclude the high 

percentage differences in the buildup region. 

  4x4 cm2 10x10 cm2 20x20 cm2 

  All Depths All Depths All Depths 

AAA Maximum Error (%) RMS Error Maximum Error (%) RMS Error Maximum Error (%) RMS Error 

Tissue 1 2.58 0.96 2.85 1.13 2.87 1.45 

Bone 14.38 6.71 11.64 6.20 12.08 5.17 

Lung 9.36 7.64 11.64 9.59 12.08 8.57 

Tissue 2 14.38 6.54 10.30 4.40 10.27 2.90 

AXB Maximum Error (%) RMS Error Maximum Error (%) RMS Error Maximum Error (%) RMS Error 

Tissue 1 2.03 0.83 1.49 0.67 1.72 1.08 

Bone 2.70 1.00 4.89 2.30 4.53 2.11 

Lung 2.70 1.34 2.79 2.00 3.84 2.40 

Tissue 2 2.36 0.68 4.89 2.51 4.53 2.07 

COMET(515151) Maximum Error (%) RMS Error Maximum Error (%) RMS Error Maximum Error (%) RMS Error 

Tissue 1 3.28 1.60 2.56 1.93 3.76 1.62 

Bone 3.58 1.90 3.87 1.20 3.77 1.56 

Lung 3.58 2.84 1.72 0.79 3.30 1.82 

Tissue 2 2.28 1.48 2.72 1.10 3.77 1.49 
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Table 21: Slab phantom profile error at depth of 1.5, 10 and 20 cm
2
. Results are reported 

for the central 80% and 80-120% of the field size. 

  4x4 cm
2
 10x10 cm

2
 20x20 cm

2
 

d=1.5 cm Central 80% Central 80% Central 80% 

 

Maximum 
Error (%) RMS Error 

Maximum 
Error (%) 

RMS 
Error 

Maximum 
Error (%) 

RMS 
Error 

AAA 0.75 0.41 1.23 0.52 2.82 1.21 

AXB 1.35 0.49 1.63 0.74 2.23 0.91 

COMET(515151) 1.47 0.61 0.92 0.54 3.42 1.44 

 
80-120% 80-120% 80-120% 

 

Maximum 
Error (%) RMS Error 

Maximum 
Error (%) 

RMS 
Error 

Maximum 
Error (%) 

RMS 
Error 

AAA 49.13 25.37 19.75 10.34 19.58 7.17 

AXB 49.13 17.97 28.33 16.25 19.48 6.71 

COMET(515151) 27.38 15.55 42.44 23.74 42.30 23.47 

d=10 cm Central 80% Central 80% Central 80% 

 

Maximum 
Error (%) RMS Error 

Maximum 
Error (%) 

RMS 
Error 

Maximum 
Error (%) 

RMS 
Error 

AAA 9.22 7.82 11.80 10.86 11.95 10.37 

AXB 4.71 1.81 3.25 2.26 3.93 2.31 

COMET(515151) 4.26 2.66 3.55 2.22 3.44 1.51 

 
80-120% 80-120% 80-120% 

 

Maximum 
Error (%) RMS Error 

Maximum 
Error (%) 

RMS 
Error 

Maximum 
Error (%) 

RMS 
Error 

AAA 29.00 15.47 23.82 15.12 28.66 16.27 

AXB 29.00 5.90 22.65 4.61 28.43 5.88 

COMET(515151) 9.65 5.93 15.94 5.66 22.52 9.32 

d=20 cm Central 80% Central 80% Central 80% 

 

Maximum 
Error (%) RMS Error 

Maximum 
Error (%) 

RMS 
Error 

Maximum 
Error (%) 

RMS 
Error 

AAA 8.02 7.22 5.84 4.59 3.33 1.88 

AXB 2.10 1.27 3.78 2.84 3.08 1.65 

COMET(515151) 2.79 2.46 1.66 1.41 2.91 1.06 

 
80-120% 80-120% 80-120% 

 

Maximum 
Error (%) RMS Error 

Maximum 
Error (%) 

RMS 
Error 

Maximum 
Error (%) 

RMS 
Error 

AAA 40.02 15.25 34.06 11.41 22.68 6.36 

AXB 40.02 13.81 34.06 8.98 21.64 6.04 

COMET(515151) 5.60 3.74 23.07 8.40 26.65 6.70 
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Figure 49: Slab phantom percentage depth dose with a field size of 4x4 cm
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Figure 50: Slab phantom profile at a depth of 1.5 cm with a 4x4 cm
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Figure 51: Slab phantom profile at a depth of 10 cm with a 4x4 cm
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Figure 52: Slab phantom profile at a depth of 20 cm with a 4x4 cm
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Figure 53: Slab phantom percentage depth dose with a field size of 10x10 cm
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Figure 54: Slab phantom profile at a depth of 1.5 cm with a 10x10 cm
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Figure 55: Slab phantom profile at a depth of 10 cm with a 10x10 cm
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Figure 56: Slab phantom profile at a depth of 20 cm with a 10x10 cm
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Figure 57: Slab phantom percentage depth dose with a field size of 20x20 cm 
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Figure 58: Slab phantom profile at a depth of 1.5 cm with a 20x20 cm
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Figure 59: Slab phantom profile at a depth of 10 cm with a 20x20 cm
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Figure 60: Slab phantom profile at a depth of 20 cm with a 20x20 cm
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7.6.2 Gamma Evaluation 

 The gamma evaluation of the slab phantom results are summarized in Table 22 

and shown in Figures 61, 62, and 63.  COMET had the highest percentage of pixels with 

a passing score with the 10x10 cm2 and 20x20 cm2 field size and AXB had the highest 

percentage of pixels passing with the 4x4 cm2 field size.  This is due mainly to COMET 

underestimating the dose in the lung region for this field size.  The effect can be seen 

along the central axis percentage depth dose in Figure 49.  The smaller field size 

calculations are greatly affected by how well the field edge is modeled.  If the field size is 

slightly increased more lateral scatter adds dose to the central region of the field.   

 

  

 

Table 22: Gamma Scores for Slab Phantom 

Field Size 4x4 cm2 10x10 cm2 20x20 cm2 

 

  Γ < 1 (%)   Γ < 1 (%)   Γ < 1 (%) 

AAA 36.26 58.43 56.69 

AXB 81.78 81.50 72.62 

COMET(515151) 77.40 82.09 79.03 
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Figure 61: Gamma results in slab phantom 4x4 cm
2
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Figure 62: Gamma results in slab phantom 10x10 cm
2
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Figure 63: Gamma results in slab phantom 20x20 cm
2
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7.7 Sensitivity Study 

 The influence of selecting various values for the expansion orders with regard to 

the response functions was investigated.   To that end five calculations were performed 

and compared to the reference Monte Carlo calculation using the gamma method with a 

1%/1mm DTA.  To reduce the calculation time, calculations were performed with a 

10x10 cm2 field size in a 15x15x30 cm3 slab phantom with the same material 

composition as the slab phantom previously described.  The region of interest was set at 

the borders of the phantom.  All calculations were performed on 10 processors.    Figure 

64 shows the results.  The results are summarized in Table 23. 

   

Table 23: Gamma comparison of COMET results for 10x10 cm
2
 field size and various 

expansion orders in the response functions 

    Γ < 1 (%) Calculation Time (h) 

COMET(313131) 51.48 1.52 

COMET(323232) 54.14 5.38 

COMET(515151) 76.70 3.00 

COMET(525252) 76.70 7.35 

COMET(717171) 80.78 5.93 

COMET(727272) 80.84 13.56 

 

 

 These results indicate that the increase in angular expansion order has a much 

greater impact on the final results than the spatial expansion order.  The increase in 

spatial expansion order also dramatically increases the calculation time with little or no 

improvement in percentage of pixels passing the gamma tests.  Expansion orders 

(515151) were adopted for general use in this work as they generated results with good 

agreement with the reference solution and an acceptable calculation time.  
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Figure 64: Gamma results for 10x10 cm
2
 field size with various spatial and angular expansion orders set in COMET 
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7.8 Calculation Times 

 Calculations with DOSXYZnrc and COMET were performed on a Linux cluster 

with 4 nodes each with 31 GB of memory and 12 six-core AMD Opteron 2427s clocked 

at 2.2 GHz.  Due to availability on the cluster, computations were performed with 10 and 

30 processors. The AAA and AXB calculations were performed on a Dell Optiplex 755 

computer (Dell Inc., Round Rock, TX) with an Intel Core 2 Duo CPU at 2.33GHz and 

8.00 GB of RAM. 

 Table 24 compares calculation times necessary for calculations of the water and 

slab phantoms.   The calculations performed with AAA and AXB were dramatically faster 

than those with DOSXYZnrc or COMET.  It is instructive to consider that COMET treats 

the voxels inside the treatment field equally to those outside the treatment field.  The 

treatment time for the same response function expansion coefficients and 10x10 cm2 

field size reported in section 7.7 was 2.21 hours as opposed to the 7.42 hours reported 

in this section.  The difference is that the lateral phantom dimensions were reduced from 

30 cm to 15 cm for section 7.7 indicating that a significant reduction in the calculation 

time of COMET can be achieved by treating low dose regions outside the field with less 

mathematical rigor.   

   COMET was faster than the DOSXYZnrc calculations by factors ranging from 

2.87 to 12.15.  COMET computations were performed using more than 10 processors 

but this did not result in decreased calculation times.   
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Table 24: Calculation times for water and slab phantom 

 
Water Phantom 

   

 

 
Time (h:m:s) 

 
 

Processors 
 

 
4x4 cm2 10x10 cm2 20x20 cm2 4x4 cm2 10x10 cm2 20x20 cm2 

DOSXYZnrc 21:20:47 101:17:50 101:19:48 10 30 30 

AAA 0:00:11 0:00:15 0:00:22 1 1 1 

AXB 0:00:26 0:01:03 0:02:19 1 1 1 

COMET(515151) 6:36:45 7:03:56 9:10:42 10 10 10 

     

 
Slab Phantom 

 

  
Time (h:m:s) 

  

  
Processors 

  

 
4x4 cm2 10x10 cm2 20x20 cm2 4x4 cm2 10x10 cm2 20x20 cm2 

DOSXYZnrc 21:00:47 105:33:43 101:31:34 10 30 30 

AAA 0:00:13 0:00:16 0:00:23 1 1 1 

AXB 0:00:26 0:01:10 0:02:57 1 1 1 

COMET(515151) 7:18:57 7:25:59 8:21:20 10 10 10 
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7.9 Lung Phantom 

Figures 65-68 show the isodose plots of the axial, coronal, and sagittal slices for 

calculations performed with DOSXYZnrc, AAA, AXB, and COMET respectively.  All 

calculations were performed with a 10x10 cm2 6MV field centered on the mediastinal 

tumor.  The field size is larger than necessary to treat the mass and would typically be 

collimated further using a block or multileaf collimator.  Calculating a 10x10 cm2 field 

through such a highly inhomogeneous region should illuminate any deficiencies in the 

calculation methods. 

The isodose plots for DOSXYZnrc and COMET calculations were generated 

using the dosxyz_show utility provided in the DOSXYZnrc distribution.  The AAA and 

AXB isodose plots were generated using the Eclipse treatment planning system.  The 

immediate difference is that dosxyz_show does not smooth the isodose lines for display.  

A moderate smoothing would be desirable in the clinical setting but is not necessary for 

the analytical purposes of this work.   

All three calculations produce isodose plots that are similar in shape to the 

DOSXYZnrc reference calculation.  The most apparent differences on the axial slices 

occur in the tumor at the 60-70% isodose levels.  AAA does not account for the tissue 

inhomogeneities as well as the other algorithms. 
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Figure 65: DOXYZnrc isodose plots for a 10x10 cm
2
 field 
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Figure 66: AAA isodose plots for a 10x10 cm
2
 field 
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Figure 67: AcurosXB isodose plots for a 10x10 cm
2
 field 
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Figure 68: COMET isodose plots for a 10x10 cm
2
 field 
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 The gamma method was again used to compare the axial dose distributions 

when compared to a DOSXYZnrc reference calculation.  The reference solution was 

calculated using 5x1011 histories and had an average percentage error of the 20 highest 

doses of 0.043%.  The average percentage error of doses greater than half of the 

maximum dose was 0.061%. 

 For these tests a DTA criteria of 2%/2mm was chosen to better represent a 

gamma test that would be performed clinically.  The region of interest used when 

calculating the percentage of pixels with a gamma score less than one was a rectangle 

set to extend 1 cm laterally beyond the field edge at the most posterior point in the 

patient and the anterior and posterior borders were set to the surface of the patient.  This 

region of interest was chosen to exclude the regions of air outside the patient body 

contour because Eclipse excludes these regions from the final dose calculation.   Figure 

69 shows the results of the gamma analysis.  AAA had the poorest performance with 

56.3% of the pixels having a passing score of less than one.  The AXB calculation 

resulted in 77.9% of the pixels passing and COMET produced 90.7%.  The vertical line 

of failing pixels in the lung region of the AXB calculation is posterior to a rib along the 

anterior chest wall. 
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Figure 69: Gamma scores from lung phantom with 10x10 cm
2
 field size and 2%/2mm DTA
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CHAPTER 8  

CONCLUSION 

 

8.1 Discussion 

8.1.1 Source Model 

 The source model developed in this work was formulated to represent the 

physical characteristics of the radiation emanating from the head of a linear particle 

accelerator used in the radiotherapeutic treatment of cancer patients.  The model 

separated the source into primary photons, extra-focal photons, and electrons.  Primary 

and extra-focal photon fluence was modeled using the functional expansion tally method 

and reference phase space data to produce functional approximations of the fluence at 

the energy levels determined by the energy spectrum discretization.  The energy 

spectrum was taken from the BEAM user code for a 6 MV photon beam produced on a 

2100C Varian clinac and discretized into 14 bins.  Electron contamination was modeled 

using an exponential decay equation that was manually optimized to match Monte Carlo 

generated reference results. 

 The results of tests performed to evaluate the statistical and truncation error 

associate with the functional expansion tally method strongly suggested that an 

expansion used to model linac photon fluence should use a zonal harmonic 

hemispherical harmonic basis.  This approach adopts the assumption of azimuthal 

symmetry in the clinical radiation beam.  The azimuthal symmetry assumption is 

commonly used in beam modeling.   
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 Plots of the functional approximations of the primary and extra-focal fluence were 

instructive in selecting a starting point for the expansion order.  The influence of the 

flattening filter could clearly be seen using a zonal harmonic basis in expansion orders 

as low as 𝑙 = 15.  Tests were performed to evaluate the optimal expansion order 

necessary to produce a high level of agreement between COMET and DOSXYZnrc dose 

calculations.  An optimal expansion order of 𝑙 = 25 was ultimately selected. 

 While the proposed source model was implemented in COMET for this work, the 

method could easily be implemented in other treatment planning algorithms.  The 

number of expansion coefficients using a zonal harmonic basis is low, which has allowed 

an expansion to be performed within each energy group.  The source model for AAA and 

AXB for example apply the same intensity profile to all energies in the spectrum.   

8.1.2 Phantom Tests 

 The performance of COMET with the developed source model was tested using 

a water phantom, a slab phantom, and a lung phantom generated from an actual patient 

computed tomography scan and compared to two commercially available treatment 

planning algorithms, namely Analytical Anisotropic Algorithm and AcurosXB.   Central 

axis depth doses and profiles at depths of 1.5, 10, and 20 cm were compared for both 

the water phantom and the slab phantom.  COMET had the lowest error when compared 

to Monte Carlo generated reference dose in 64 out of the 108 profile and percentage 

depth dose tests performed.   

 Comparisons were also made using the gamma method with the water phantom, 

slab phantom, and lung phantom.  A tight distance-to-agreement of 1%/1mm for the 

water and slab phantom and 2%/2mm for the lung phantom was chosen to illuminate 

even the smallest errors in the various algorithms tested.  COMET had the highest 
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percentage of passing pixels in all but one of the tests performed.  These results 

demonstrate the viability of the proposed source model and the COMET method in 

dosimetric calculations.   

 The tradeoff in using the COMET method is increased calculation times.  While 

the COMET code is faster than DOSXYZnrc by a factor of approximately 3-12, it was 

much slower than AAA or AXB.  This is due in part to the manner in which the problem is 

decomposed by COMET.  The dose outside the field is calculated using the same 

mathematical rigor as that inside the field.  Also the dose is calculated outside the body 

contour when an actual patient scan is used.  Now that the capabilities of COMET have 

been demonstrated it is recommended that future work focus on increasing the 

computational speed and user friendliness. 

8.2 Future Work 

 There are many opportunities for extending the work done in this research 

project.  The novel source treatment developed here can be applied to any treatment 

planning algorithm including AAA, CCC, and AXB. 

  The collimator jaws on the linear accelerator limit the maximum polar angle to 

less than 12 degrees.  The functional expansions performed in this work covered the 

entire range of the hemisphere.  A functional expansion that more densely samples the 

range of polar angles within the restrictions of the collimator jaws and excludes those 

outside regions under the collimator could improve the accuracy and speed of the 

source integration step of the calculation.   

The same expansion order was used for both the primary and the extra-focal 

photon sources.  The extra-focal photon source accounts for between 11% and 16% of 

the photon fluence at isocenter [46].  Because the extra-focal photon source contributes 
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significantly less dose, it may be possible to model it with a lower expansion order and 

still achieve a high degree of accuracy in the final results.  

The electron source in this work was modeled using a very basic exponential 

equation.  While this approach was logical for this work, there have been developed 

many more sophisticated electron contamination source models that could be included.  

One approach that could be considered is to apply an electron contamination source 

within each energy group.  Some energy groups may not produce significant numbers of 

contaminant electrons and the electron treatment disregarded altogether. 

 The source model used by Eclipse includes a sophisticated optimization routine 

that varies the parameters of the source model to produce dosimetric calculations that 

closely match measurements made on a particular machine.  Such an approach could 

be implemented with COMET, particularly in regards to the energy spectrum.  The 

energy spectrum used in this work was taken from the BEAMnrc user code.  It could be 

used as a starting point for an optimization routine that produces a spectrum that better 

matches measured or ideal results.   

 The energy spectrum was discretized into 14 bins for this project.  The number of 

energy bins could be varied to investigate the optimal number.  A lower number would 

be preferable to computational simplicity but may not produce the desired level of 

accuracy. 

 Response functions were generated for a 6 MV photon beam and five materials, 

namely water, air, lung, soft tissue, and bone.  A possible step in further improving the 

results could be to generate response functions for more materials.  AXB for example 

uses a material library of 5 biological materials and 16 non-biological materials.  Also an 

adaptive algorithm could be developed that selects the response function expansion 

order that best applies depending on the source energy, area inside or outside the field, 
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or tissue inhomogeneity.  Although it probably will lead to longer calculation times, it 

would be interesting to decompose the problem into a tetrahedral mesh rather than 

cuboidal.  That would mean generating response functions for the new mesh shape. 

 Some additional functionality would make the COMET method more applicable to 

clinical environment.  One addition that will be necessary is the modeling of the multileaf 

collimator.  This will be crucial in calculating intensity modulated and volumetric 

modulated arc plans.  Also it may not be necessary to calculate the dose outside the 

field with the same mathematical rigor as the dose inside the field because it is low and 

in many cases will have little or no impact on the patient’s outcome.  One method would 

be to implement a spatially varying Cartesian grid for dose calculation, where the local 

element size is a finer mesh inside the beam.   
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APPENDIX A 

 EGSNRC TRANSPORT PARAMETERS 

 

 

Table 1. EGSnrc Transport Parameters 

Parameter Value 

Photon Energy Cutoff 10 keV 

Electron Energy Cutoff 700 keV 

Photon Cross Sections XCOM 

Electron Step Algorithm PRESTA-II 

Boundary Crossing Algorithm EXACT 

Spin Effects On 

Bound Compton Scattering norej 

Photoelectron Angular Sampling On 

Rayleigh Scattering On 

Atomic Relaxations On 

Bremsstrahlung Cross Sections NIST 

Bremsstrahlung Angular Sampling KM 

Pair Production Angular Sampling KM 
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