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SUMMARY 

 

The application of heterogeneous materials has become common in modern 

product design such as composites and porous media. Computational design tools for 

such materials, with higher complexity than the traditional homogeneous ones, will be a 

critical component in the realization of the heterogeneity systematically. It is foreseen 

that computer-aided design (CAD) systems will include computer-aided materials design 

modules in future so that the design of functional materials and structures can be 

integrated for optimal product design. The traditional CAD systems model three-

dimensional (3D) geometry at macro-scales with boundary representation (B-Rep), 

whereas computer-aided materials design is concerned with the specification of material 

composition at scales ranging from nano-, meso-, to micro-. Thus, multi-scale CAD 

systems are desirable for the integration of product and materials information. The 

existing B-Rep based modeling scheme needs to be extended to incorporate 

heterogeneous material compositions. The new modeling scheme should also support 

seamless zoom-in and zoom-out operations in multi-scale CAD systems. 

Recently, a multi-scale model, dual-Rep, was proposed to represent geometry and 

material property distribution implicitly. The core part of dual-Rep is a new basis 

function called surfacelet. Surfacelet is able to represent boundary information more 

efficiently than the traditional wavelets, while keeping a unified form with wavelets so 

that the role exchange of boundary and internal structures during zooming operations is 

enabled. A surfacelet transform is able to represent microstructure distributions in 3D 

images with surfacelet coefficients. In this dissertation, three enabling techniques for 



xv 

 

surfacelet-based heterogeneous materials modeling are developed. First, a method of 

inverse surfacelet transform is developed such that the original images can be 

reconstructed from the surfacelet coefficients. The surface integrals of voxel (i.e., 

volumetric pixel) values are obtained from the surfacelet coefficients using the one-

dimensional inverse wavelet transform. The images are then reconstructed by solving 

linear equations from discretized surface integrals. The prior knowledge of material 

properties and distributions is applied to solve the under-constrained problems. Second, 

composite surfacelets with the combinations of different types of primitive surfacelets are 

created to increase the flexibility of the surfacelet transform with potentially fewer 

surfacelets and improved reconstruction accuracy. Third, a multi-scale materials 

modeling method is proposed to support interactive design and visualization of material 

microstructures at multiple levels of details. It has the capability to support seamless 

zoom-in and zoom-out. This method provides a feature-based design approach based on 

the surfacelet basis. 
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CHAPTER 1  

INTRODUCTION 

1.1 Multi-Scale Modeling 

1.1.1 The importance of multi-Scale modeling 

Almost all of the problems in science and engineering are multi-scale in nature. 

Objects are made up of atoms and molecules at the atomistic scale, whereas their 

measurable geometric dimensions are usually at some length scale of a few orders larger. 

Similarly, atomic events occur at the time scale of femto-seconds (10
−15

 second), whereas 

the events of engineering interest typically take place at scales of orders of magnitude 

slower. In the context of multi-scale modeling, we usually refer to the macroscopic scale 

as the largest scale at which the overall properties and performances that are the most 

important to us. The smaller scales are referred to as microscopic scales. Although 

engineers are mostly interested in the objects or events at macroscopic scales, in some 

cases, understanding the detailed information locally at microscopic scales can help us to 

achieve the desirable macroscopic performances in a fundamental way. However, 

modeling the entire objects or events at the smallest scale with the most detailed 

information we want to understand and tweak is too complex and computationally 

expensive. Furthermore, the most detailed information about those uninteresting portions 

of objects or time periods is redundant. More importantly, the overall picture of the 

problem is easily lost at the smallest scale with the abundant and big data.  

Therefore, a scheme that can simultaneously model the objects or events at both 

macroscopic and microscopic scales is needed. This is where multi-scale modeling comes 

in. By coupling macroscopic and microscopic models, we hope to take advantage of both 



 2 

the simplicity and efficiency of the macroscopic models, as well as the accuracy of the 

microscopic models. 

1.1.2 Multi-scale heterogeneous material modeling 

Among all scientific problems, the multi-scale modeling scheme is especially 

important in materials design, since designing materials for targeted performances 

requires multiple levels of information on material structures and compositions. Before 

the emergence of nanotechnology, multi-scale modeling was not as important for 

materials design as today. The reason is that, traditionally, new material properties were 

designed based on trying different processing methods. As a result, the microscopic 

structures and compositions were uniform, and we were not able to change them locally. 

In such cases, the materials are called “homogeneous”. However, with the advent of the 

nanotechnology, materials can be designed and realized a more flexible manner. 

Heterogeneous materials with more complex compositions and properties become 

available. 

The government of the United States launched the Material Genome Initiative 

(MGI) [1] in June 2011, aimed at developing a materials innovation infrastructure to 

accelerate advanced materials discovery and deployment in the United States. The 

structure of this materials innovation infrastructure is shown in Figure 1, which includes: 

Computational tools: software for predictive modeling, simulation, design and 

exploration 

Experimental tools: synthesis and processing; quantitative characterization and 

analytic tools; accelerated testing and rapid prototyping; techniques to validate and 

advance materials theory 
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Digital data: data and interoperability standards for material properties; advanced 

data mining, analytic tools and open/proprietary data warehouses 

Collaborative networks: integrated centers in computation, data informatics and 

experimentation; sharing of best practices across disparate centers via formal and 

informal networking; educational materials for the next generation workforce; 

public/private partnerships. 

 

Figure 1 The materials innovation infrastructure in the Material Genome Initiative [1] 

This dissertation is aimed at providing a fundamental methodology of material 

modeling and design that falls into the categories of Computational Tools and Digital 

Data in materials innovation infrastructure of MGI.  

The concept of computational design of materials was proposed almost two 

decades ago. In 1997, Olson [2] proposed a top–down, goal–oriented material design 

strategy, as shown in Figure 2. This method is aimed at establishing the process–
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structure–property–performance relations. In such strategy, material structure and 

composition are modeled at multiple scales.  

The purpose of the proposed multi-scale materials design method in this 

dissertation is for the ease of structure–property relation construction, as indicated in 

Figure 2.  

 

Figure 2 Olson’s three-link chain model of the central paradigm of materials science and 

engineering [2] 

1.1.3 Multi-scale CAD systems 

In recent years, due to the high demand of functional materials in product design, 

the application of complex heterogeneous materials is becoming common. Computer-

aided materials design has become a critical component in the realization of complex 

heterogeneity. It can be foreseen that, in future, computer-aided design (CAD) systems 

will include the computer-aided materials design modules so that the design of 

microscopic structures and materials can be integrated with macroscopic geometry for 

optimal product design, as illustrated in Figure 3. Within the same CAD systems, users 

can perform zoom-in and zoom-out operations to view and model at multiple scales. 

Performance 

Properties 

Structure 

Processing 

Cause and effect 

Goal/means 

Scope of this dissertation 
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Figure 3 The future CAD scheme with Multi-Scale Heterogeneous Material Modeling 

While traditional CAD systems only deals with the geometry in macro-scales or 

bulk scales (>10
-3

 m), computer-aided materials design deals with the specification of 

material compositions at scales ranging from nano- (10
-9

~10
-8

 m), meso- (~10
-7

 m), 

micro- (10
-6

~10
-4

 m), to macro-scales. Accordingly, the future CAD systems are called 

multi-scale CAD systems, because the systems can not only define the product geometry 

and material property distribution in as large as macro-scales, but also capture the most 

detailed material compositions in as small as nano-scales. 

Different from the traditional CAD systems, in multi-scale CAD systems, the 

specification of material composition distributions is as important as microscopic 

structures. The dependency of material properties on microscopic structures is more 

evident at nano-scales because the geometry and material property are one-to-one 

correspondent to each other.  

Bulk scale Micro scale 

Zoom-out 

Zoom-in  
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1.2 Key Concepts and Issues in Multi-scale Heterogeneous Material 

Modeling 

Because the overall material properties can be affected by the details of 

microstructures and compositions at all scales, materials modeling modules in multi-scale 

CAD systems should support multi-scale modeling for design specifications across 

multiple scales. Material properties are mainly determined by material microstructures 

and compositions. Therefore, multi-scale materials modeling for the purpose of materials 

design is the major enabling technology to engineer materials. In heterogeneous 

materials, the microstructure is the network of boundaries between different grains or 

lattices, or sharp change of material compositions, as shown in Figure 4(b). Here, the 

term microstructure does not particularly refer to the internal material structures at the 

micrometer scale only, but to those at any scales that are suitable for describing material 

distributions. Microstructures can strongly influence the overall physical properties of a 

material, such as strength, ductility, hardness, toughness, wear and corrosion resistance, 

thermal behavior, and etc.  

Material composition refers to the continuous material domains with the 

microstructure as its boundaries. It also plays an important role in the determination of 

physical properties of a material. The design of material microstructure forms the basis 

for the design of material composition. As the material microstructure defines the 

‘skeleton’ or major material distributions, the material composition is more like the ‘flesh 

and skin’ in addition to the microstructural information. That is, compositions depend on 

structures. Take the fiber-based composite as an example. The positions and orientations 

of the fibers define the microstructure and outline the overall distribution of materials, 
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whereas the material composition information in the regions of fibers, matrix and the 

fiber-matrix interphases follow the overall trend defined by the fiber microstructures. 

Therefore, the core of multi-scale materials modeling is multi-scale microstructural 

modeling.  

In the traditional bulk-scale geometric modeling, features are widely used to 

define geometries. In the domain of material microstructures, microstructures also show 

some patterns. Therefore, most of the microstructural information can be modeled by 

highlighting these patterns. These patterns are called microstructural features. The 

microstructural features are important in determining the material properties. Thus, how 

to effectively utilize microstructural features in materials design is key in multi-scale 

materials modeling.  

 
Figure 4 The illustration of material microstructure and composition 

1.3 The Image Representation of Material Compositions 

Different from the classic geometric modeling, heterogeneous materials modeling 

uses material images as the essential medium for both design and reverse engineering 

processes. Images of either material microstructures (optical or scanning electron 

microscope) or characterized properties have the most comprehensive and basic data 

about the materials. They also provide visual information of materials for engineers. As a 

  

  

  

  

  

  

    

  
    

  

(a) SEM image (b) Illustration of material microstructure  
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result, it is a common practice that in the reverse engineering process, material models 

are constructed from the images. On the other hand, in the materials design process, 

images constructed based on some underlying material models can also help engineers to 

visualize their design concepts during the process. Heterogeneous materials modeling 

typically uses grayscale images. In photography, a grayscale image is an image in which 

the value of each pixel shows the intensity information. Grayscale images are also known 

as black-and-white, varying from black at the weakest intensity to white at the strongest. 

In this section, how material images represent material compositions is 

introduced. The grayscale image representation principles for two-phase materials and 

multi-phase materials are introduced in Section 1.3.1 and Section 1.3.2 respectively. 

1.3.1 The linear relationship between two-phase material composition and 

grayscale value 

Since the brightness of pixels in an image varies when it captures two different 

materials such as in alloys and composites, the grayscale value of a pixel in a material 

image is able to give us the information of the material composition ratio at that location. 

However, this is true only for two-phase materials. The grayscale value of each pixel in 

the material image is linearly dependent on the material compositions or the volume or 

mass fraction of each material. Images of materials can be taken from multiple scales 

with different resolutions.  The grayscale value of each image pixel at the higher scale is 

the average of the sub-grayscales of all details at the lower scale in the region that the 

pixel covers, as shown in Figure 5. If the grayscale pixel value is regarded as the 

composition, the pixel value at the higher scale is related to the ones at the lower scale by 

a linear combination relationship as 



 9 

c = Φ
1
  a + Φ

2 
 b; 

where Φ
1
 and Φ

2
 are the mass or volume percentages of materials 1 and 2 respectively 

and Φ
1
 + Φ

2 
= 1, a and b are the corresponding pixel values of the two materials in the 

lower scale image, and c is the pixel value in the higher scale image. 

 

Figure 5 A pixel grayscale of the fiber represents the averaged sub-grayscales of all 

details in the region that covers [3] 

1.3.2 The image representation of multi-phase materials compositions 

The image representation of compositions of multi-phase materials (materials 

with more than two material components) is based on the separate representation of the 

relative compositions of every two materials. Suppose there are three materials, Φ
 1

 is the 

mass percentage of material 1, Φ
 2

 is the mass percentage of material 2, and Φ
 3

 is the 

mass percentage of material 3. By surfacelet modeling, the relative compositions of 

material 1 and 2, and of material 1 and 3 can be modeled. Therefore, it can be obtained 

that  

Φ
1
 / Φ

2 
= a 

and  

a 

b 
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Φ
1
 / Φ

3 
= b 

Then the compositions of all three materials can be obtained from Φ
1
 / Φ

2 
/ Φ

3 
= a 

b / b / a. The graphic illustration is shown in Figure 6. 

 

Figure 6 The representation of compositions of three materials by the relative 

compositions of every two materials 

1.4 Surfacelet and Surfacelet Transform 

It has been explained in Section 1.2 that the design of material microstructure 

forms the basis for the design of material composition. Both material microstructure and 

material composition play important roles in the determination of physical properties of a 

material. Therefore, in multi-scale heterogeneous material modeling, a basis function, 

which can effectively and simultaneously represent both microstructures and 

compositions, is desired.   

1.4.1 The surfacelet 

Wang & Rosen [4] proposed a so-called dual representation (dual-Rep) modeling 

approach. The core part of dual-Rep is a new basis function called surfacelet. A surfacelet 

is the combination of an implicit surface and a wavelet function. It is a 3D domain with 

wavelet distribution in the surface normal direction. The 3D surfacelet model is able to 

represent geometric boundary information or surface singularities more efficiently than 

Φ
1 

: Φ
3 = 

Φ
1

 : Φ
2 = : 

: 
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the wavelets, while keeping a unified form with wavelets. Since wavelet basis functions 

are better at modeling continuous distributions, a combination of wavelet and surfacelet 

basis functions is able to efficiently capture the boundary and internal structures at the 

same time. In addition, wavelet basis functions are multi-scale by nature: at larger scales, 

less wavelets are used for approximation with lower accuracy to show less detailed or 

global distribution; whereas, at smaller scales, more wavelets are used for approximation 

with higher accuracy to show more detailed or local distribution. Therefore, surfacelet is 

a good candidate for multi-scale material modeling. 

The details of surfacelet will be introduced in Section 2.1.2. 

1.4.2 Surfacelet transform 

In general, the surfacelet transform is the 1D wavelet transform of the surface 

integrals. As shown in Figure 7, from a 3D materials distribution, the surface integrals on 

surfacelets are calculated and arranged in a 3D matrix with orientation parameters   and 

 , and position parameter   as indices. Then 1D wavelet transforms along the   axis 

direction are performed for all  ’s and  ’s. The results are surfacelet coefficients for a 

particular angle. 

 

Figure 7 The process of surfacelet transform 

surface 

integrals  

x 
 
 

Ω 

b 

 

 

µ 

 

 

µ 

1D wavelet 

transforms 
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The surfacelet transform constructs the surfacelet model from images. The 

reconstruction of the original material images during the heterogeneous materials design 

process is also desirable so that the generated material distribution before physical 

experiments can be visualized. In other words, the method of inverse surfacelet transform 

is needed. As shown in Figure 7, the surface integrals can be directly obtained from the 

surfacelet coefficients via the inverse 1D wavelet transform. However, it is not as 

straightforward to retrieve the individual image pixel values from the surface integrals. In 

this dissertation, numerical algorithms are proposed to calculate individual image pixel 

values from surface integrals by solving the constrained least-squared-error problems 

based on an iterative scheme.  

1.5 Research Objective of the Dissertation 

The overall goal of this dissertation is to provide the multi-scale modeling and 

design methodologies for microstructure and continuous distributions of materials. These 

achievements will provide the foundation of a unified tool that design engineers, analysts, 

manufacturers, materials scientists, and others can all use, and enable an integrated 

CAD/CAE/CAM environment where every artifact that is designed is physically 

meaningful. By having heterogeneous material models integrated into CAD, the 

foundation is established for engineering design, analysis, and manufacturing to be 

performed with a common model that respects the physics of the constituent materials. 

This integration will consequently enhance the scientific and technological understanding 

of the future CAD systems. 
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1.6 Detailed Tasks of the Dissertation 

To achieve the research objective, four research tasks are conducted as enabling 

techniques of surfacelet-based heterogeneous materials modeling are developed for 

computer-aided materials design in future CAD systems. These four tasks are inverse 

surfacelet transform, composite surfacelets, the application of surfacelets on material 

distribution modeling, and a multi-scale materials design process with seamless zooming 

capability respectively. The structure of the tasks is shown in Figure 8. All of the four 

tasks are utilizing the transform basis or the implicit surface aspect of surfacelets. The 

tasks 3, which is the application of the surfacelet in materials modeling, is developed 

based on the combination of techniques of task 1 (the inverse surfacelet transform) and 

task 2 (composite surfacelets), with the approximation basis or the wavelet aspect of 

surfacelets. 

In the following chapters of this dissertation, the four tasks will be developed. 

First of all, the background and related work will be introduced in Chapter 2. Second, the 

method of inverse surfacelet transform is developed such that the original images can be 

reconstructed from the surfacelet coefficients, as discussed in Chapter 3. Third, 

composite surfacelets with the combinations of different types of primitive surfacelets are 

proposed to increase flexibility of the surfacelet transform with potentially fewer 

surfacelets and improved reconstruction accuracy, as discussed in Chapter 4. Fourth, the 

application of surfacelets on material distribution modeling will be introduced in Chapter 

5. Fifth, a multi-scale materials design process with seamless zooming capability will be 

developed. During the zoom-in and zoom-out operations, unevenly distributed grid points 

are created or chosen from the grids generated from the previous scale, as discussed in 
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Chapter 6. In the same chapter, the property-oriented materials design process will also 

be proposed. Last, the conclusions and future work will be discussed in Chapter 7.  

 

Figure 8 The structure of the tasks for multiscale heterogeneous materials modeling 

1.7 Technical Contributions 

This dissertation presents some fundamental methodologies for materials 

modeling and design. First of all, a general method of geometric feature identification 

from 3D material images based on the largest surface integrals is proposed. With this 

method, the high-level geometric information can be extracted from material 

microstructural images. Secondly, a method of image data compression based on the 

forward and inverse surfacelet transform is developed. Thirdly, a method of composite 

 Task 1 
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surfacelet for the identification of complex feature geometries is proposed. Fourthly, a 

general method of approximating material composition and local property distributions 

with surfacelets is proposed for the reverse engineering of materials design. Lastly, a 

generic multi-scale materials modeling method is proposed to support interactive design 

specification and visualization of material microstructures at multiple levels of details 

with seamless zooming capability. 
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CHAPTER 2  

RELATED WORK 

In this chapter, the background and literatures related to the tasks of the 

dissertation are introduced. Because the multi-scale heterogeneous materials modeling 

and design methodology proposed in this dissertation is developed based on surfacelet, 

the concept of surfacelet, as well as its related work will be introduced in Section 2.1. As 

related work to the inverse surfacelet transform, material characterization and image 

reconstruction methods will be discussed in Section 2.2. Because the feature 

identification or recognition plays an important role in the proposed heterogeneous 

materials modeling and design methodology, related methods will be discussed in Section 

2.3. In Section 2.4, existing heterogeneous materials modeling and design methods will 

be surveyed. In Section 2.5, limitations of the related work discussed in the previous 

sections will be explained.  

2.1 The Surfacelet Basis 

2.1.1 Wedgetlet, curvelet, and surflet 

Wavelets perform well for objects with point singularities in dimension 1. 

However they are not effective in dealing with edge discontinuities in dimension 2. 

Several approaches have been proposed to solve this issue, including wedgelet [5] and 

curvelet [6], as well as their close relatives such as ridgelet [7], contourlet [8], beamlet 

[9,10], and platelet [11].  

The wedgelet approach partitions 2D space into squares as building blocks 

bounded by line segments. 2D images then can be approximated by a collection of 

specifically chosen wedgelets. The curvelet function is an extension of the standard 
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wavelet function, which includes the concepts of statistical regression and a Radon 

transform. It was developed to compress images containing continuous line or curve 

segments, where the standard wavelets are not efficient. The basic idea is to introduce an 

angular element θ in the wavelet function as  

    , , , ,

1 cos sin
,a b a b

x y b
x y

aa
 

 
  

  
   

 
r   

where   is the wavelet function, x, y are the 2D coordinates, a is the scaling parameter, b 

is the translation parameter, and θ is the orientation parameter. If wavelets can be thought 

of as “fat” points with certain widths of local support, curvelets are “fat” needles.  

In 3D analysis, Ying et al. [12] extended 2D curvelet transform to 3D with similar 

frequency space tilings. Similarly, Lu and Do [13] extended contourlets to three 

dimensions in a discrete space. Chandrasekaran et al. [14] extended wedgelets to high-

dimensional space and approximate functions with polynomial building blocks, called 

surflets, instead of linear building blocks in wedgelets.  

2.1.2 Surfacelet 

A general surfacelet basis function [4] is defined as 

     1/2 1
, , ,a b ba a   p pr r   

where  , ,x y zr  is the location in the domain   in the Euclidean space, : R R  is 

a wavelet function, a R  is a non-negative scaling factor, 3
, :b p R R  is a surface 

function so that  , , , 0b x y z p  implicitly defines a surface, with the translation factor 

bR  and the shape parameter vector mp R  determining the location and shape of 
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surface singularity respectively. For instance, a 3D ridgelet that represents plane 

singularities is defined as 

     1/2 1
, , , cos cos cos sin sina b a a x y z b              r  (2.1) 

where  0,2   and  / 2, / 2     are angular parameters corresponding to 

rotations around z- and y-axes in the Euclidean space. Similarly, a cylindrical surfacelet 

(or cylinderlet) can be defined as 
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And an ellipsoidal surfacelet (or ellipsoidlet) is defined as 
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The geometric interpretations of the isosurfaces for the three surfacelets for plane, 

cylindrical, and ellipsoidal singularities are shown in Figure 9. 

 

Figure 9 Geometric interpretation of surfacelets 

(a) 3D Ridgelet  (b) Cylindrical surfacelet  (c) Ellipsoidal surfacelet  
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As can be seen from the illustrations, the 3D surfacelet model is able to represent 

geometric boundary information or surface singularities more efficiently than the 

wavelets, while keeping a unified form with wavelets. Since wavelet basis functions are 

better at modeling continuous distributions, a combination of wavelet and surfacelet basis 

functions is able to efficiently capture the boundary and internal structures at the same 

time.  

2.2 Material Characterization and Image Reconstruction Methods 

2.2.1 Radon transform and its inverse 

The surfacelet transform is a generalization of Radon transform. Radon transform 

[15] is the mathematical basis for reconstructing tomographic images from measured 

projection, which is given by 

( , ) ( , ) ( cos sin )p f x y x y dxdy         

where   is the Dirac delta function and the coordinates x, y,   and   are the horizontal 

coordinate, vertical coordinate, the intercept and the slope angle respectively. The 

geometric interpretation of the Radon transform is the integral along a straight line of 

cos sin 0x y      projected throughout the scanned target. In the parallel-beam 

tomography,   is varied so that detector acquires parallel projections; rotate circularly 

around the scanned object so that   is varied, then integrals over the whole    domain 

can be obtained. 

The task of tomographic reconstruction is to find ( , )f x y  given ( , )p   . 

Therefore, this process is also called inverse Radon transform or back projection. 

Mathematically, the inverse Radon transform is defined as 



 20 

( , ) ( , ) ( cos sin , )f x y p x y d d               

Geometrically, the inverse Radon transform simply propagates the    space 

back into the image space along the projection paths. 

Since Radon obtained the inverse formula of Radon transform in 1917, many 

tomographic reconstruction techniques have been proposed. The most famous one is the 

Direct Fourier reconstruction method. In this method, the solution to the inverse Radon 

transform is based on the central slice theorem. The central-slice theorem states that the 

2D Fourier transform of ( , )f x y  along a line at the inclination angle is given by the 1D 

Fourier transform of ( , )p   , that is  

 ( , ) ( cos , sin )P F       

where ( , )P    is the 1D Fourier transform of ( , )p   , ( , )x yF  
 
with parameters x  and 

y  is the 2D Fourier transform of ( , )f x y . Based on the central slice theorem, the inverse 

Radon transform can be realized by three steps: (1) 1D fast Fourier transform (FFT) of 

the projection to build a polar 2D Fourier space using the central-slice theorem; (2) Polar 

to Cartesian resampling; and (3) Inverse 2D-FFT to obtain the reconstructed slice. 

2.2.2 Material characterization and image reconstruction from physical 

projections 

To understand the detailed information about materials, it is important that the 

mapping images of material characteristics are obtained by physical projections. 

Specifically, there are three main reasons for material characterization from physical 

projections: (1) to obtain the material composition information; (2) to obtain the material 

microstructural information; (3) to obtain the physical property information.  
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There are two main experimental methods to collect characteristic information of 

materials. The first is the use of X-rays, which are nondestructive and therefore allow for 

time-dependent studies that examine microstructural changes due to thermal or 

mechanical input, i.e., 4D experiments [16]. There are a number of different techniques 

that can be used to provide image contrast in X-ray tomography experiments [17]. The 

most common method obtains information by reconstructing a suite of transmission 

(absorption) images taken at various projections. This technique is very sensitive to 

differences in atomic number and density, so that microstructural features which are quite 

different in these characteristics, such as porosity relative to the matrix, can be readily 

detected.  For example, the 3D reconstruction of the porosity in a cast single-crystal 

nickel base super alloy, CMSX-10, using transmission (absorption) X-ray tomography 

[18] is shown in Figure 10(a). The dimensions of the reconstructed volume are 500  500 

 800m. 

Other methods utilize diffraction contrast and either ray tracing methods 

[19,16,20] or other spatial localization methods [21,22] to define features such as 

individual grains from grain aggregates. These diffraction-contrast methods have been 

greatly advanced in the past few years, and 3D characterization data of grain ensembles 

can be obtained. As an example, the 3D reconstruction of the 3D grain structure of a 

tensile sample of β-21 titanium alloy [20] is shown in Figure 10(b). The reconstruction 

contains 1,008 grains, and was collected using X-ray differential contrast tomography. 
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Figure 10 Examples of microstructural data that can be obtained with synchrotron X-ray 

methods 

For opaque materials, serial sectioning has been the most widely used method to 

acquire raw 3D characterization data at the macro-to-micro scale. The first application of 

this methodology to examine the microstructure of structural metals was published over 

90 years ago [23]. Tomographic serial sectioning experiments are conceptually simple, 

being composed of two steps that are iteratively repeated until completion of the 

experiment. The first step is to prepare a nominally flat surface, which can be 

accomplished by a variety of methods such as cutting, polishing, ablating, etching, and 

sputtering, where ideally a constant depth of material removal has occurred between each 

section. The second step is to collect two-dimensional (2D) characterization data after 

each section has been prepared, although data could also be collected continually during 

material removal depending on the particular sectioning method that is employed. After 

collection of the series of 2D data files, computer software programs are used to construct 

a 3D array of the characterization data that can be subsequently rendered as an image or 

analyzed for morphological or topological parameters. As an example, the 3D 

reconstruction of the austenite phase in a commercial austenitic stainless steel alloy AL-

(a) The 3D reconstruction of the porosity 

in CMSX-10 using transmission 

(absorption) X-ray tomography [18] 

(b) 3D reconstruction of the 3D grain 

structure of a tensile sample of β-21 

titanium alloy [20] 
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6XN [24] is shown in Figure 11. The data set was produced via manual serial sectioning 

that incorporated collection of both optical images and electron backscatter diffraction 

(EBSD) maps. The volume contains 138 grains, and the arrow represents the normal of 

the serial sectioning plane. Although not readily visible because of the gray-scale 

coloring of this printing, the color of each grain corresponds to the crystallographic 

orientation relative to the arrow, which was determined by EBSD. 

 

Figure 11 3D reconstruction of the austenite phase in a commercial austenitic stainless 

steel alloy AL-6XN [24].  

One of the most significant limitations of these methods is that they are merely 

the 3D visualization of materials for the purpose of reverse engineering. Therefore, the 

models from these methods are difficult to modify for the purpose of materials design as 

tools for engineers. However, an explicit mathematical model with ease of modification 

is desired for a design-oriented modeling process. The modeling approach proposed in 

this dissertation is to provide an engineering tool for design of new materials as its major 

contribution. 

Images are typically obtained through the reconstruction from many forms of 

physical projections, such as spectral regions across the entire electromagnetic spectrum, 

transmission electron microscopy (TEM), scanning electron microscopy (SEM) and even 
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sound or pressure waves [25]. Among all forms, the positron emission tomography (PET) 

and single photon emission tomography (SPECT) used in γ-ray medical imaging, such as 

to identify infections or tumors in human bodies, are most widely applied. From the 

projections, measurements are obtained through line integrals along the projection paths. 

Image reconstruction is then performed from integrals to pixels in a computer 

with reconstruction algorithms. There are two types of algorithms for reconstructing 

images: analytical and iterative algorithms.  

2.2.3 Analytical algorithms for image reconstruction  

Shepp et al. [26] proposed the filtered back projection algorithm based on the 

closed form of inverse Radon transform in Section 2.1. In this method, an operation 

called ramp filter is introduced. The original images can be obtained by the back 

projection of the filtered projection profile derived from the ramp filter. Byrne et al. 

[27,28] developed methods of estimating Fourier transform of a function sampled at 

limited number of discrete data points by incorporating the prior knowledge of the 

transformed function. However, the prior knowledge utilized in these methods is limited 

to shape and support of object power spectrum.  

Analytical algorithms have closed-form mathematical expressions. They are 

efficient and elegant. However, they are unable to handle complicated factors such as 

scatter. Numerical algorithms were developed, as summarized next. 

2.2.4 Regularization of linear inverse problems 

Image reconstruction is one type of inverse problems. The field of inverse 

problems was first introduced by Soviet-Armenian physicist, Viktor Ambartsumian [29]. 

In this dissertation, the proposed methods are related to the linear inverse problems. 

http://en.wikipedia.org/wiki/Soviet_Union
http://en.wikipedia.org/wiki/Armenians
http://en.wikipedia.org/wiki/Viktor_Ambartsumian
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A linear system is described as  

AX B  

where A  is called the observation matrix,  X  is the unknown vector, and B  is a known 

vector.  

In the case that the observation matrix is not invertible, optimization methods are 

used to solve the inverse problem. In order to do so, an objective function is defined for 

the inverse problem. The objective function is to measure how close the predicted data 

from the recovered model fits the observed data.  

Regularization is the process of finding the solution to the optimization problem 

by trading off between different solutions or introducing additional information or 

constraints. For example, least-squares method for solving over-constrained linear 

equation set is a simple regularization method. When the problem is under-constrained, 

the constraint is usually added to the objective function in the form of a weighted penalty. 

More details about regularization techniques can be found at [30, 31, 32, 33, 34, 35, 36]. 

The inverse surfacelet transform developed in this dissertation as the first task uses the 

concept of regularization to reconstruct images from surfacelets. 

2.2.5 Iterative algorithms for image reconstruction 

The basic process of iterative reconstruction is that the image is discretized into 

pixels, and each pixel value is treated as an unknown. Then a system of linear equations 

is set up according to the imaging projections. Finally, the system of equations is solved 

by an iterative algorithm. The solution of pixels is unique and easy to obtain if there are 

enough data of projections. However most of the iterative algorithms deal with 

incomplete data.  Iterative reconstruction is popular for two reasons: (1) it is easy to 

http://en.wikipedia.org/wiki/Linear_system
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model and handle projection noise, especially when the counts are low; and (2) it is easy 

to model the imaging physics, such as geometry, non-uniform attenuation, scatter, and 

others [37]. 

The earliest iterative methods are the algebraic reconstruction techniques (ART). 

These are a class of numerical approaches designed for solving large sparse systems of 

equations. The method cycles through the measurements repeatedly and consider only 

one measurement at a time. Only the pixels involved in the measurement are updated. 

Herman et al. [38] improved the computational efficiency of the ART method by 

adjusting the order of accessing the collected data and the so-called relaxation parameters 

during the reconstruction procedure. Mueller et al. [39,40] adjusted the ART method for 

image reconstruction in 3D cone-beam computed tomography.  Shieh et al. [41] extended 

the analytical methods of [27,28] to an iterative one. 

Another important class of iterative algorithms is the maximum likelihood 

expectation maximization (ML-EM) or statistical image reconstruction algorithms 

[42,43,44,45,46,47], which is also the most commonly used algorithm in emission 

tomography. This algorithm is a general approach to estimate the best image from infinite 

candidates through the introduction of a set of ‘complete data’ and iterates between 

computing the mean of the complete data and maximizing the probability of the complete 

data over the image space. 

An alternative scheme to ART and ML-EM estimation is to use standard gradient-

based optimization procedures such as steepest ascent or the conjugate-gradient method. 

This usage started from Goitein [48] and Budinger et al. [49]. As the name indicates, the 

searching direction is in the gradient of the objective function at the current iteration. 



 27 

Therefore, the simplest method is the steepest ascent. However, the steepest ascent 

method has a low convergence rate. This is then resolved by conjugate gradient 

algorithms, which utilize symmetric and positive-definite coefficient matrices and 

therefore provide higher convergence rates. The new approach proposed in this research 

is based on the conjugate gradient algorithm.  

According to [50], one major challenge of using gradient-based methods in 

emission tomography is the inclusion of constraint guaranteeing the non-negativity of all 

pixel values, which is essentially nonlinear. The most common approach is to restrict the 

step size so that each update is non-negative. In order to deal with the non-negativity 

constraint in an easier way, the coordinate ascent (CA) methods were developed 

[51,52,53,54]. The basic idea of these methods is to sequentially update each voxel to 

maximize the objective function with respect to that voxel. However, the limitation of the 

CA algorithms is that the convergence rates are very sensitively dependent on the initial 

guess of images. 

Instead of approaching the emission tomography problem with well-known 

traditional numerical methods, some methods are developed to meet specific aspects of 

the problem. Functional substitution methods were developed to better address the sparse 

nature of the coefficient matrix. They replace the original cost function at each step with 

a substitutive function so that the value of the original function can be increased when 

maximized. The best known example of a functional substitution method in emission 

tomography is the EM algorithm of Dempster et al. [55]. 

On contrary to analytical algorithms, iterative reconstruction algorithms are less 

efficient and may not converge to the real solution. However, because of its higher 
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versatility and easier to implement on computer, the iterative reconstruction algorithms 

are increasingly used in applications. 

2.2.6 Conjugate-gradient-based iterative algorithms 

The conjugate gradient method is a well-known numerical method for solving 

linear least squares problems by iteratively minimizing the squared norm of the 

difference between the measured and the estimated data. However, such methods are not 

widely applied in tomographic image reconstruction. Very limited development has been 

made in this class of methods [56,57,58,59]. One possible reason for the limitation is that 

conjugate-gradient-based iterative methods usually have slow convergence in solving 

tomographic image reconstruction problems. Another possible reason is that the 

conjugate-gradient-based iterative methods can only solve over-constrained problems 

(that is, the projections should be more than the pixels), but usually the available data of 

projections are incomplete.  

Because of the incomplete data of projections, additional constraints are needed 

for rational solution of the linear equation system. The existing methods usually obtain 

the constraints from  prior information based on the non-negativity of the object intensity 

(or density) for the physical reason and/or the geometry of the featured objects. A typical 

example for the non-negativity of the object intensity is the reconstruction of impulsive 

object images [60,61]. For the geometric information, Tam et al. [56] and Kawata et al. 

[58] used the so-called object-boundary constraint. However, these two methods have 

three major disadvantages. First, the pixels are simply classified to be those inside and 

outside the object, and there are no independent constraints applied on the boundary 

pixels. These methods are therefore not suitable for image reconstruction in materials 
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science, where boundaries among multiple materials are often found in modern materials 

and therefore clear geometric information of which is required. Second, the pixels outside 

the object in these methods were simply constrained to be zero, leading to the result that 

the image information of outer portion is completely ignored and not reconstructed. 

Third, the pixel positions are manually assigned in both methods, which is obviously not 

applicable for complex and random object distributions, such as composites.  

Shariff [62] developed a constrained conjugate gradient method, which treats the 

constraints separately from equation system instead of directly adding them to the 

system. This method is able to emphasize the object boundaries. In this research, a novel 

image reconstruction method similar to this approach is developed, but with distinctions.  

2.3 Image-Based Feature Recognition Methods  

Edges define the boundaries between regions in an image, which help with feature 

recognition. The edge detection methods [63,64] can be categorized into two groups: 

search-based and zero-crossing based. The search-based methods capture the feature 

edges by first computing edge strength and then searching for the local maxima in a 

direction to match the edge profile. The edge strength and searching direction can be 

measured and defined in many different forms, such as the magnitude and the direction of 

the gradient of the image intensity. The gradient is usually represented by the first order 

derivative. On the other hand, the zero-crossing based methods search for zero crossings 

based on the second-order derivatives to detect feature edges.  

Other methods of identifying geometric features from images have also been 

developed. For instance, the Radon transform [15] has been applied to identify lines in 



 30 

2D images [65,66,67]. Similarly, the Hough transform was applied to recognize spherical 

features in 3D images [68].  

2.4 Computer-Aided Heterogeneous Materials Modeling and Design 

Methods 

2.4.1 Computer-aided heterogeneous materials modeling methods  

Two general approaches to heterogeneous modeling have been proposed [69]: 

discretized and non-discretized approaches.  In the first category, materials and geometry 

are modeled separately, such as mesh-based and voxel-based methods, where geometry is 

approximated by volume meshes or voxels [70], and material distributions are determined 

by topology optimization or numerical interpolation from control features [71].  Other 

researchers applied voxel-based representations that utilized spatial occupancy 

enumeration of part geometry.  Again, material composition information was applied to 

either individual voxels or interpolated over sets of voxels using a part’s bounding 

surface [72].  General cellular decompositions have also received considerable attention 

[73]. A general cellular decomposition-based approach integrated physical property 

distributions into the geometry+material model [74,75] that others have investigated.  

Some researchers have generalized the cellular modeling approach to include 

manufacturing process-related Local Composition Control (LCC) elements [76].   

In non-discretized approaches, some researchers have separated the representation 

of material compositions and properties from the underlying part geometry [77,78].  

Others have utilized implicit modeling approaches, which have advantages in that a 

common mathematical model is used for both geometry and material composition [79].  

Shapiro and coworkers have applied the theory of R-functions to show how material 
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composition [80] can be performed using implicit modeling approaches.  The advantage 

of their approach is the unifying nature of implicit modeling to model geometry, material 

composition, and distributions of any physically meaningful quantity throughout a part.  

A different group proposed a method based on hypertextures [81] that provides more 

intuitive user controls, according to the developers.  Similar to the implicit modeling 

approaches, material compositions were specified on part surfaces and similar types of 

distance measures were used to compute compositions internal to parts.  

2.4.2 Computer-aided heterogeneous materials design methods based on 

structure–property relations 

The core research issue of materials design is to establish process–structure–

property–performance relations [82]. As stated in Section 1.1.2, the purpose of the 

proposed multi-scale materials design method in this dissertation is for the ease of 

structure–property relation construction, by using a feature-based interactive 

microstructural modeling approach. It can be used for both top-down and bottom-up 

design processes.  

In constructing structure–property relations, the existing design methods are all 

based on the statistical distributions of materials. For bottom-up design, Kalidindi et al. 

[83,84] used a so-called microstructure function to measure the spatial correlations of 

material microstructures to capture the material microstructural information.  

For top-down design, a so-called microstructure sensitive design (MSD) was 

developed based on spectral representations to capture polycrystalline or anisotropic 

materials information [85,86,87,88,89]. In this method, a proper orthogonal tensor was 

used to capture the local orientation of the crystal lattice or phases in composites with 
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respect to a fixed sample (or global) reference frame bin in the microstructure. The 

statistical description is then used in predicting mechanical properties of materials 

[90,91,92,93,94,95]. A so-called “microstructure knowledge systems” (MSK) was 

recently developed [96,97,98,99,100], which includes higher-order descriptors of 

microstructures for higher accuracy compared to MSD. MKS is able to describe the 

spatial distribution of the response field of interest (e.g. stress or strain fields) at small 

scales for loading conditions at large scales. Chen et al. [101,102] also used the statistical 

correlation method for material characterization and reconstruction for materials design.  

In addition to the above methods to capture the statistical information of 

microstructures based on material images, little research is done to generate material 

images systematically. Wu et al. [103] proposed a method of generating 3D image 

models of stochastic porous media. Kou et al. [104] proposed a microstructural modeling 

method based on stochastic Voronoi diagram and B-Spline representation. These two 

methods only model geometries of porous media at a particular scale. 

2.5 Limitations of Existing Literatures in the Applications on Multi-scale 

Heterogeneous Materials Modeling 

First of all, for image recognition, current methods are not suitable for 

heterogeneous materials modeling. The reason is that, for the purpose of materials design, 

not only the pixels on the feature edges need to be recognized, it is also important to 

represent geometric information, such as shapes, dimensions, locations and orientations, 

of the features at a higher-level abstraction than pixels. 

It is well known that the method of convolution is able to find the largest integrals 

and therefore identify geometric features. However, in this dissertation, it is not used for 
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the following three reasons. Firstly, the method of convolution only returns the largest 

integrals for feature identification, and other smaller integrals are ignored for restoration. 

However, these smaller integrals are also important in the full reconstruction of the 

material images by inverse surfacelet transform. Secondly, in computer-aided material 

modeling, the material images are only the media for us to understand the material 

compositions and structures. We only care about the feature geometries, instead of the 

detailed pixel values on them. However, the method of convolution only returns the 

pixels and their values of the matching features, instead of the extracted geometric 

information. Lastly, the searching step size of the method of convolution is always one 

pixel’s space. However, in the method of largest surface integrals, the step size is 

flexible. This can effectively enhance the searching efficiency. 

Second, for heterogeneous material modeling methods, the limitation of all work 

described in Section 2.4 is that the models are not multi-scale; at best some can be called 

multi-resolution. Even then, the resolutions are limited to the overall part geometry and 

the particular decomposition into cells, voxels, or mesh elements.   
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CHAPTER 3  

INVERSE SURFACELET TRANSFORM 

 The surfacelet transform was proposed so that the image pixels can be converted 

into surface integrals and then wavelet coefficients. From the surface integrals, material 

features can be identified. In this chapter, the method of inverse surfacelet transform for 

retrieving the image pixels from the surface integrals based on the feature identification 

results is proposed. By the complete method of forward and inverse surfacelet transform, 

the compression of material image data is realized.  

The overview of the complete process of surfacelet transform and inverse 

surfacelet transform is shown in Figure 12. In the surfacelet transform, surface integrals 

are obtained from image pixels. 1D wavelet transform is then applied to obtain wavelet 

coefficients. In the inverse surfacelet transform, the inverse 1D wavelet transform easily 

retrieves surface integrals from wavelet coefficients. The scope of this chapter is denoted 

by the dashed box in Figure 12. The inverse problem of retrieving image pixel values 

from surface integrals is solved based on three constrained conjugate-gradient-based 

methods with combinations of boundary constraints and inner constraints on internal 

distributions. The features that determine the boundary constraints are identified from the 

surfacelet transform process. The locations of internal pixels in the inner constraints can 

then be calculated from the features. Furthermore, different levels of rigidity associated 

with the constraints proposed in this chapter provide more flexibility in controlling the 

constraints than a single-level approach. 
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Figure 12 The process of coupled surfacelet transform and inverse surfacelet transform 

3.1 The Significance of Material Image Data Compression and 

Dimensionality Reduction 

Nowadays, the data storage media, such as computer hard drives, are becoming 

cheaper, and large data storage is not a big problem anymore. However, people are still 

seeking for the compression of data of many types because of the expensive reading, 

writing and transferring times. For example, audio files are still transformed into the MP3 

format to store and share, and images are still transformed into the JPEG format. For 

material images, the requirement of storage space particularly high. For example, a small 

3D material image with the size of 1000×1000×1000 resolution has 1 billion pixels. 

Therefore, this image may have a size of hundreds of Mega Bytes even with the 

compressed JPEG format. Therefore, data compression for material images is important. 
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In addition, material data represented by pixels do not provide information of 

microstructural features of materials, such as boundaries and singularities. A more 

abstract level of description is useful to capture and preserve material knowledge, and 

help both human users and computers to perform design tasks without losing the essential 

information. Therefore, data-compression and dimension reduction are important in 

materials information processing.  

3.2 The General Idea of Inverse Surfacelet Transform  

In the surfacelet transform, the surface integrals can be obtained by the 

summation of all the pixel values on the surfacelets. For instance, for each integral 

( , , )qt     corresponding to a cylindrical surfacelet with the orientation parameters   

and  , and the position parameter , there exists a simple linear relationship of 

summation to approximate the integral. Here,  is the translation along x-axis. 

[0,2 )   and [ / 2, / 2]     are the angular parameters corresponding to rotations 

around z- and y-axes in the Euclidean space respectively. When this summation is 

applied to all of the surface integrals with P pixels and Q surfacelets, it can be obtained 

that  

 AV T  (3.1) 

where A is a Q P  matrix with coefficient components qpa  as either 1 or 0, ( )pvV  is 

a P-dimensional vector for pixel values pv ’s ( 1, ,p P ), and ( )qtT  is a Q-

dimensional vector for surface integrals qt ’s ( 1, ,q Q ). 1qpa   if the corresponding 

pixel is on the surfacelet; and 0qpa   otherwise. Suppose that the numbers of discretized 

,  , and   are u, f, and g respectively. The number of surface integrals is Q u f g   . 
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At the same time, if the dimension of each image is L M  and there are N parallel 

images, then the total number of pixels is P L M N   . It should be noted that the 

number of pixels on a surfacelet varies from surfacelet to surfacelet, which means that the 

numbers of ones and zeros on each row of matrix A vary. Furthermore, a zero integral 

will be obtained if the surfacelet is positioned or oriented such that it is out of the image 

domain. In this case, it does not provide useful information and should be avoided if 

possible. When a surfacelet only covers the pixels that are also covered by other 

surfacelets, dependency between rows in the coefficient matrix A occurs, which is very 

likely to occur. As a result, the Q linear equations with non-zero integrals are not 

necessarily linearly independent. 

The solution of Eqn. (3.1) depends on the relationship between P and Q. It is 

obvious that when P Q  and the Q linear equations with non-zero integrals are 

independent, there is only one exact real solution. When P Q , the unknown pv ’s are 

over-constrained and there is no exact solution. When P Q , the unknown pv ’s are 

under-constrained and there are an infinite number of solutions. Even in the ideal case of 

P Q , it is possible that a zero integral occurs or the equations are dependent. Then the 

coefficient matrix A is singular, and the equation will have an infinite number of 

solutions.  

The approaches proposed in this chapter solve both cases of P Q  and P Q . 

The case of P Q  applies when lossless restoration of image data is desired. In contrast, 

P Q  is the case when the surfacelet transform is used in lossy compression, which is 

more common in applications. In the inverse surfacelet transform, classic numerical 

methods are utilized to solve the case of P Q . A new prior-knowledge-based image 
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reconstruction method is proposed here for the case of P Q , where the boundaries of 

the key geometric features known a priori are automatically identified and located by the 

primitives of surfacelets. Then the boundary and/or inner pixels are constrained based on 

the prior knowledge in order to add more conditions to those from surfacelets. A 

constrained conjugate gradient algorithm is used to treat these conditions as independent 

constraints. In addition, a new semi-rigid constrained conjugate gradient algorithm is also 

proposed to provide a more flexible way to constrain pixels.  

3.3 The Inverse Surfacelet Transform without Constraints 

Solving the linear equation BX = b  is equivalent to solving 

1
min ( )

2
F  T T

X X BX - X b  

which can be done by convex quadratic programming.  

In the case of P Q , approximation methods are available to numerically solve 

the over-constrained problems. The two most used ones are the general least-square and 

conjugate gradient methods.  Both are based on the minimization of least-square errors. 

Eqn. (3.1) is then formulated as  

2

1

min( ( ) )
Q

q q
q

t


 A V  

where qA  is the q
th

 row of matrix A. The solution of the general least-square method is 

obtained by 1( )T TV A A A T  where A is not necessarily a square matrix. 

The conjugate gradient method is an iterative approach to search for the numerical 

solution of linear equation systems with a symmetric and positive-definite coefficient 

matrix. The idea is that V is iteratively searched for as the solution of  
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1

min
2

T T
V

V BV V b  (3.2) 

corresponding to BV = b , where B is a symmetric and positive-definite matrix. Since 

matrix A in Eqn. (3.1) is not symmetric and positive-definite, it cannot be directly applied 

to the method.  Rather, the equation is transformed to 

 T TA AV A T   (3.3) 

and let T A A B  and T A T b , since T
A A  is symmetric. Additionally, because 0it  , 

( ) 0T T T T  T T AV AV V A AV . Therefore, T
A A  is also positive-definite. Thus, by 

applying the conjugate gradient method to Eqn. (3.3), the linear equations can be solved.  

Although a numerical solution can be obtained for the case of P Q , it 

contradicts to the initial intention of surfacelets, which is designed for image 

compression. As a result, the case of P Q  also needs to cope with, where there are 

many solutions of the minimization problem in Eq. (3.2). Extra knowledge with respect 

to the materials applications acting as constraints can help us to narrow the scope of 

solutions, as discussed in the next subsection.  

3.4 The Inverse Surfacelet Transform with Constraints 

3.4.1 General procedure of inverse surfacelet transform with constraints 

The main goal of inverse surfacelet transform with constraints is to add more 

equations as constraints in an under-constrained system so as to reduce the number of 

possible solutions and convert it to an over-constrained system. In order to make P Q  

possible, even when limited surfacelets are available, additional constraints based on the 

prior knowledge of materials can be added. One possible type of constraint is based on 

geometry, or the shape of the object of interest that is already known in the images. Take 
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fibrous porous media as an example. Suppose the geometry of the fibers is already 

known, and obtaining the information of orientations and positions of the fibers is 

generally of more interest than the detailed microstructures of the fibers and matrix from 

reconstruction. As a result, the pixels on the fibers are more important than others. By 

properly restricting the pixel values of the interested object based on prior knowledge, the 

additional constraints provide more information of the object. Since the object is 

identified as a geometric feature in the inverse surfacelet transform, hereafter, the object 

is called feature.  

In the forward surfacelet transform, the type and parameters of surfacelets are 

determined by the geometric similarity between the material compositions and some 

surfacelet primitives, such as 3D ridgelet, cylindrical surfacelet (or cylinderlet), and 

ellipsoidal surfacelet (or ellipsoidlet). For instance, images for fibers in composites can 

be reconstructed by the cylindrical surfacelet, whereas those for nano ellipsoidal fillers in 

nano-reinforced composites can be reconstructed by the ellipsoidal surfacelet. In grey 

scale images, white pixels have the value of 255, black ones have 0, and grey ones have 

intermediate values according to the corresponding grey scales. Usually, the geometry in 

the images of materials of interest is brighter than other regions. The surfacelets that 

cover the feature boundary thus have the largest integral values. The shape and dimension 

of the surfacelet should be chosen to simulate the reconstructed geometry boundary with 

the largest integral value achieved when the surfacelet is overlapped with the feature 

boundary.  

Boundary features are identified as follows. If there is more than one target 

feature to be reconstructed, such as many fibers in composite materials, it is likely that 
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the largest integrals for each target are very close to each other and it is difficult to 

differentiate. In this case, the integrals can be grouped into different clusters according to 

their positions and orientations, and the largest integral in each cluster determines a 

feature boundary.  

Once the corresponding pixels are identified by the rule of the largest surface 

integral described above, their values are set to be equal based on the fact that the grey 

scale of the geometry is relatively uniform. The equal values are transformed into 

additional linear equations by each two adjacent pixels forming an equation, such as 

1p pv v  . The set of newly formed equations is represented in a matrix form as CV = 0 , 

where C is the S P
 
constraint coefficient matrix for S constraints with components spc

as −1, 0, or 1. 1spc   when the corresponding voxel is on the left of the equation; 

1spc    when the corresponding voxel is on the right of the equation; 0spc   when the 

corresponding voxel is not in the equation. The S linear equations are from the S+1 pixels 

with equal values on the boundary. Since the number S+1 is usually very large, when 

these equations are combined with Q equations from surface integrals, the number of 

known conditions can be dramatically increased. When the total number of equations is 

larger than the number of unknowns, the number of solutions is no longer infinite. As a 

result, fewer surfacelets are required so that the surface integral data needed for image 

reconstruction can be reduced and compression can be achieved. 

Furthermore, if the inner structure or geometry of the feature is not of interest, or 

it has identical grey scale with the boundary such as the inside portion of fibers, the 

constraint can be further extended such that both the boundary pixel values and the inner 
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ones are set to be equal. Thus, the number of constraint equations can be further 

increased and the data needed for image reconstruction can be further compressed. 

3.4.2 Inverse surfacelet transform with soft constraints 

If the constraint equations are directly added to the ones from surface integrals to 

form a new set of equations, all equations are treated equally. The equation set is 

formulated as 

   
   
   

A T
V =

C 0
 

The requirement is that after the addition of constraints, the total number of 

equations is larger than the number of pixels. In other words, all equations have the same 

weight. In this case, the constraints are called soft, because these constraints will not 

necessarily be all satisfied in solving the over-constrained system by the least-square 

methods.  

3.4.3 Inverse surfacelet transform with rigid constraints 

If the constraint equations are treated separately from the ones from surface 

integrals and more rigidly restricted, the constraints weigh more. In other words, the 

constraints are stronger than otherwise being directly added to the equations from surface 

integrals. In this case, the constraints are called rigid. It is solved by the constrained 

conjugate gradient method with constraints separate from the equation system, similar to 

[105]. This is an extension of the conjugate gradient method described in the Section 

2.2.6. The problem can be described as 

 

1
min

2

. . 0

T T T T

s t





V
V A AV V A T

CV

 (3.4) 
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The conjugate gradient algorithm under rigid constraints to solve Eqn. (3.4) is 

listed in Table 1. The main procedure is an Arnoldi style iteration. The enforcement of 

rigid constraints is by a projection of the residual r to z through an orthogonal projection 

matrix 1( )T TH Z Z Z Z , where Z forms a basis for the null space of C, that is CZ = 0 .  

It should be noted that in this method, it is not required that P<Q for matrix A. 

Table 1 Rigid constrained conjugate gradient algorithm 

INPUT: matrix A, constraint matrix C, initial guess V0 

OUTPUT: 1kV  

1.     0:T T   

2.     1( )T TH Z Z Z Z  where CZ = 0  

3.     0 0: T T r A AV A T  

4.     0 0:z Hr  

5.     0 0:d z  

6.     : 0k   

7.     Repeat 

8.          

 

:
T

k k
k T T

k k





r d

d A Ad
  

9.           1 :k k k k  V V d  

10.          1 : T
k k k k  r r A Ad  

11.          1 1:
T

k k
k T

k k

  
r z

r z
 

12.          1 1:k k k k   d z d  

13.          If 1 1
T
k k d d  is sufficiently small  

14.                exit loop  

15.          End If 

16.          : 1k k   
17.   End Repeat 

18.   Return 1kV  
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3.4.4 Inverse surfacelet transform with semi-rigid constraints 

The method with soft constraints in Section 3.4.2 does not enforce the constraints, 

whereas the one with rigid constraints in Section 3.4.3 requires all constraints to be 

satisfied. Here a third option with more flexibility about the constraints is also provided, 

which is called semi-rigid. The semi-rigid constraints are realized through an exterior 

penalty function, which includes constraints in the objective function. The rigidity of the 

constraints can be controlled by their weights in the objective function. With the exterior 

penalty function, Eqn. (3.4) can be transformed into an optimization problem with the 

objective function only as 

2

1

1
( )

2

S
T T T T

i i
i

w 


 V A AV V A T C V  

where iC  is the i
th

 row vector of the constraint coefficient matrix C. When all weights 

are set to be equal, the objective function can be further simplified as 

 
1

1

2

S
T T T T T T

i i
i

w  


  V A AV V A T V C C V  (3.5) 

In order to use the conjugate gradient method to solve the new objective function in Eqn. 

(3.5), it needs to be further transformed into 

T T TV GV V A T  

where 
1

1

2

S
T T

i i
i

w  


  G A A C C .  

In the proposed method of semi-rigid constrained conjugate gradients, some 

constraints can be treated in a different way other than strictly soft or rigid. For instance, 

in a fiber, the constraints on the internal pixels can be softer than the ones for the 

boundary pixels. Then the weights associated with the constraints for the internal pixels 
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are smaller than the ones for the boundaries. Once the rigidity is controlled by assigning 

different weight values, softer constraints can be introduced based on the inner pixels in 

addition to the boundaries. With more constraints, the number of required surfacelets can 

be potentially further reduced without losing the information of pixels outside the object 

boundary.  

3.5 Examples And Results 

In this section, examples and results for the methods described in Section 3.3 and 

Section 3.4 are demonstrated and compared. The experiment is conducted in MATLAB. 

For all examples, nine images of a small portion of a nano-fiber composite are used. The 

images are in the format of JPEG, one of them is shown in Figure 13(a). The full size of 

the picture is 80 80  pixels. Thus, the total number of pixels is 80 80 9 57600P     , 

and the dimension of the coefficient matrix A is large. The original images are down 

sized to 20 20 , as shown in   Figure 13(b)-(c), and used in the demonstration. Although 

the blurring image in Figure 13(b) and the non-blurring image in Figure 13(c) are visually 

different, they are exactly the same in terms of pixel values. The images are then 

converted into grey scale in MATLAB. The total number of pixels used in the following 

examples is 20 20 9 3600P     . The nine resized images are shown in Figure 14. 

They are slightly different from each other, and form a 3D image. 

To quantitatively compare the results of different methods, the error measurement  

0 2

1

1
( )

P

i i
i

e v v
P 

   

is introduced, where 0
iv  is the i

th
 pixel value in the original images and iv  is the one 

from the reconstructed images.  
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The cylindrical surfacelet is used for the forward and inverse surfacelet 

transforms in all examples of this chapter. The equation of a cylindrical surfacelet is 

shown in Eqn. (2.2). The shape parameters of the implicit surface of the cylindrical 

surfacelet are 1 1r   and 2 2r  . The ranges of the orientation parameters are set to be 

( / 2, / 2) ( 14.84,14.84)D D    , [0,2 )   and [ / 2, / 2]     to ensure that the 

surfacelets cover all of the pixels, where 2 2 220 20 9D     is the diagonal length of 

the 3D image. 

 

Figure 13 The full and down-sized images of nano-fiber composites  

(a) The full-size image
 (b) The down-sized 

image with blurring
 

(c) The down-sized 

image without blurring
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Figure 14 The original nine slices of the 3D image of nano-fiber composites for 

reconstruction 

3.5.1 Without Constraints 

Reconstruction with both the least-square and conjugate gradient methods without 

constraints was conducted. The result shows that the full reconstruction of the original 

images occurs when 80u  , 80f  , and 5g  . The total number of surfacelets are 

32000Q u f g     and Q P . These threshold values of u , f , and g  allow all of 

the pixels in the images to be covered by the surfacelet boundaries without missing any. 

The reconstruction results of the least-square and conjugate gradient methods are shown 

in Figure 15 and Figure 16 respectively. With a careful comparison between pixel values, 
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it is concluded that the least-square and conjugate gradient methods provide the same 

reconstruction result with these 32,000 surfacelets. The original images are retrieved 

losslessly.  

 
Figure 15 The full reconstruction result with the least-square method. The error is e=0. 
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Figure 16 The full reconstruction result with the conjugate gradient method. The error is 

e=0. 

3.5.2 With Constraints 

3.5.2.1 Method of automatic fiber boundary identification 

For the example of the nano-fiber composites, the positions and orientations of 

the fibers are of interest. Geometric information of the fibers, such as the shape and size 

as prior knowledge to us, can be utilized as additional constraints. The constraints are 

imposed by examining the surfacelet integrals. As shown in Figure 17, the cylindrical 

surfacelet denoted by the solid circle is overlapped with a fiber surface and has a larger 

integral value than others such as the two denoted by the circles of dashline. Therefore 
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surface integrals help determine the positions and orientations of the nano-fibers. If there 

is only one nano-fiber, its position and orientation can be directly estimated by the 

cylindrical surfacelet with the largest integral. This can be realized by sorting the surface 

integrals from the results of forward surfacelet transform. If there is more than one fiber, 

the largest integral for one fiber can be very close to the one for another fiber, because 

some surfacelets are overlapped with multiple fibers. In this case, the integrals are 

grouped into different clusters according to their positions and orientations, and the 

largest integral in each cluster determines a fiber. As the constraints, the pixel values on 

the surfacelets can be set to be equal to each other. 

 

Figure 17 The cylindrical surfacelet overlapped with a fiber surface has the maximum 

integral 

As can be seen from Figure 13, there are four fibers in the images. However, there 

is only one complete fiber. As a result, the boundary integrals for other fibers are much 

smaller than that of the complete one. The nano-fibers are close to each other, so the 

small surfacelet clusters of the partial fibers could be mixed with the complete one. 

Therefore, it is hard to identify those partial fibers. This problem will be addressed in the 
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future work. In this dissertation, only complete fibers are identified, and there is only one 

in this example.  

3.5.2.2 Soft constraints 

In the case of soft constraints, the constraints of equal pixel values at the fiber 

boundaries are directly added to the original set of equations. The number of pixels on the 

identified fiber boundary is 340. Therefore, 339 constraint equations are added. In other 

words, the dimension of the constraint matrix C  is 339 3600 . As stated in Section 

3.4.2, the requirement is that the total number of equations is larger than the number of 

pixels. The results with the least-square method are shown in Figure 18, where the 

number of surfacelets used from the forward surfacelet transform is 

58 58 4 13456Q     , 60 60 4 14400Q     , and
 

70 70 5 24500Q      

respectively. Since the nine resulted images are similar, only one image is shown in 

Figure 18 for comparison. It can be seen that when 70 70 5 24500Q     , the error 

e=4.8 is the smallest among the three. The images in this case are very close to the 

original ones. Similar results are obtained with the conjugate gradient method, as shown 

in Figure 19. Thus, with the soft boundary constraints, the number of surfacelets required 

to retrieve the original images is smaller than the one in the methods without constraints 

in Section 3.5.1. However, the number of surfacelets is still larger than that of pixels.   
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( ) 58 58 4 13456a       ( ) 60 60 4 14400b         ( ) 70 70 5 24500c     
151.1e 

                          
31.2e 

                            
4.8e   

Figure 18 The reconstruction results of soft boundary constraints with the least-square 

method (first slices only) 

 

( ) 58 58 4 13456a          ( ) 60 60 4 14400b         ( ) 70 70 5 24500c     
151.1e 

                           
31.2e 

                           
4.8e   

Figure 19 The reconstruction results of soft boundary constraints with the conjugate 

gradient method (first slices only) 

In order to further increase the number of constraints, the inner pixels of the 

surfacelets are also set to be equal but different from the boundary ones. Therefore, the 

problem can be formulated as 

   
   
   
      

1

2

A T

C V = 0

C 0

 

where 1C  is the constraint coefficient matrix for fiber boundary pixels, and 2C  is the 

constraint coefficient matrix for fiber inner pixels. Since the number of inner pixels is 

large, the increase of the number of constraint equations is significant. The number of 
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pixels inside the identified fiber boundary is 995. Therefore, the dimension of the 

constraint matrix 2C  is 994 3600 . The results of the method are shown in Figure 20. 

When the number of surfacelets is too small as in the case of Figure 20(a), the effective 

(linear independent) equations can be fewer than the unknown. Therefore, the solution is 

actually not unique.  

From the results, it can be seen that the number of surfacelets can be further 

reduced from the ones with only boundary constraints as in Figure 18 and Figure 19 to 

achieve similar results. After the addition of constraining equations, the equation system 

becomes over-constrained. The numerical solutions by minimizing the errors provide the 

approximations of the true values.  

 

( ) 30 30 3 2700a           ( ) 40 40 2 3200b           ( ) 58 58 4 13456c     
N/Ae 

                             
28.9e 

                              
15.4e   

Figure 20 The reconstruction results of soft fiber boundary and inner constraints (first 

slices only) 

3.5.2.3 Rigid constraints 

When rigid constraints of boundaries are applied, the results are shown in Figure 

21. Compared to the method with soft fiber boundary and inner constraints, the method 

with rigid boundary constraints is able to reconstruct the image by much fewer 

surfacelets with similar errors. More importantly, this method realizes image 
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compression, which is one of the important intentions of the surfacelet transform. It can 

be seen in Figure 21(c) that as few as 1875 surfacelets can be used to reconstruct 3600 

pixels with a small error. The compression rate is approximately 50% in this example. All 

of the resulting nine images are shown in Figure 21. 

 

 

( ) 14 14 2 392a              ( ) 15 15 3 675b             ( ) 25 25 3 1875c     
24.7e 

                          
22.8e 

                           
13.2e 

 
Figure 21 The reconstruction results of rigid fiber boundary constraints (first slices only) 

Further compression may be realized if the inner pixels are also constrained. In 

other words, equality constraints are separately applied on both fiber boundary and fiber 

inner pixels. The problem can be formulated as the objective function of Eqn. (3.4) with 

constraints 1 C V 0  and 2 C V 0 . The results are shown in Figure 23. It can be seen that 

the number of surfacelets is significantly reduced. 

The drawback of this method is that although the key features of the complete 

fiber remain, the detailed information about the partial fibers is lost. The reason is that the 

constraints have a significant influence on the solution. Therefore, weaker constraints 

may provide better results.  
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Figure 22 The full reconstruction result of rigid fiber boundary constraints in the case of 

Q=25×25×3=1875 . The error is e=13.2. 

 

( ) 14 14 2 392a            ( ) 15 15 3 675b           ( ) 25 25 3 1875c     
34.3e 

                         
29.8e 

                        
78.4e 

 
Figure 23 The reconstruction results of rigid fiber boundary and inner constraints (first 

slices only) 
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3.5.3 Semi-rigid constraints 

From the results of Section 3.5.2, it can be seen that some tradeoffs are needed in 

selecting the reconstruction methods. When the rigid constraints are applied on the 

boundary only, the number of surfacelets is more than the one when the rigid constraints 

of boundary and inner pixels are both applied, where the number of constraints increases. 

However, the errors with the rigid boundary constraints are smaller. Here, it is shown that 

the method of semi-rigid constraints provides a third option with more flexibility. 

The results for semi-rigid fiber boundary and inner constraints with different 

combinations of weights are shown in Figure 24, Figure 25, and Figure 26 respectively. It 

can be seen that when penalty weights for boundary pixels are equal to 1×10
10

, the results 

have the smallest error.  Compared to the method with rigid fiber boundary and inner 

constraints, the results of the semi-rigid method have clearer fiber boundaries. Besides, 

compared to the method with only rigid fiber boundary constraints, although the error is 

relatively the same, the pixels inside the fiber have smoother transition, which increases 

the contrast between the pixels on and off the fiber. Although the contrast is also 

increased if rigid constraints are added on both boundaries and inner pixels as in Figure 

23, the boundary is not as clear as in Figure 25. 
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Figure 24 The full reconstruction result of semi-rigid constraints with penalty weights for 

boundary pixels equal to 1×10
10

 and for inner pixels equal to 10. The error is e=13.2. 
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Figure 25 The full reconstruction result of semi-rigid constraints with penalty weights for 

boundary pixels equal to 1×10
10

 and for inner pixels equal to 1×10
3
. The error is e=12.9. 

The new constrained conjugate gradient methods developed in this chapter can be 

generalized to the image reconstruction of any composite material with emphasis on the 

locations and orientations of the boundaries of the fillers.  
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Figure 26 The full reconstruction result of semi-rigid constraints with penalty weights for 

both boundary and inner pixels equal to 1×10
10

. The error is e=16.5. 

3.6 Evaluation and Comparison 

The quasi-Newton method with line search is used as a comparison with the 

proposed constrained conjugate gradient methods. When the constraints are only applied 

on the boundary, the results for different number of equations are as shown in Figure 27.   
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( ) 14 14 2 392a           ( ) 15 15 3 675b           ( ) 25 25 3 1875c     
30.0e 

                      
16.7e 

                         
15.2e 

 
Figure 27 The reconstruction results of Quasi-Newton method with line search with fiber 

boundary constraints (first slices only) 

 The comparison of the results from the different methods is shown in Table 2. 

The experiments are conducted on a PC with 2.00GHz CPU and 4.00GB RAM. The 

number of equations used in the comparison is 25 25 3 1875   , and the constraints are 

for the boundary pixels only.  

Table 2 The comparison among different methods 

Optimization Method Average error CPU time 
Iterations 

(generations) 

Direct linear equations 

solution 

31   (but with 7 

times more 

equations required) 

186s N/A 

Rigid constrained conjugate 

gradient algorithm 
13.2 219s 522 

Quasi-Newton method with 

line search 
8 4230s 139 

Semi-rigid constrained 

conjugate gradient 

algorithm 

12.9 2025s 2512 

 



 61 

The robustness of the methods is evaluated by using three different initial guesses 

(0, 1, and 100) for all pixel values to start the optimization algorithms. If the optimization 

results of an algorithm are the same for those three guesses, the algorithm is regarded as 

being robust. Results show that all these methods are robust. As can be seen from the 

results in Table 2, the conjugate gradient algorithm with rigid constraints and the quasi-

Newton method with line search show the best results in terms of error and time 

efficiency. Between the quasi-Newton method and the constrained conjugate gradient 

algorithm, the latter shows slightly better results with less error but much better 

computational efficiency. The constrained conjugate gradient method is 20 times more 

efficient than the quasi-Newton method. The constrained conjugate gradient method 

realizes image compression, which is important for the surfacelet transform. It can be 

seen that 1875 surfacelets can reconstruct 3600 pixels reasonably well with small errors. 

The rigid and semi-rigid constrained conjugate gradient methods show different 

advantages. The rigid method produces more precise results, whereas the semi-rigid 

method produces more distinguishable boundaries of objects.  

The proposed methods for inverse surfacelet transform are based on solving a 

quadratic optimization problem from linear equations. The computational time is related 

to the number of pixels in the images. The CPU time of 219 seconds for the rigid 

constrained conjugate gradient algorithm is not short for the small example images. Yet, 

if implemented in other languages such as C++, the computational time can be reduced. 

3.7 Conclusion and Future Work 

In this paper, we proposed a constrained conjugate-gradient based strategy for the 

inverse surfacelet transform to complete the surfacelet transform formalism. By 
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identifying and applying constraints on important pixels of interest, features can be 

preserved and retrieved during reconstruction. The proposed methods of inverse 

surfacelet transform with constraints are able to reconstruct images with fewer surfacelets 

than image pixels for the purpose of compression, by utilizing the prior knowledge of 

geometric features. Compared to the generic image compression methods, our method 

allows us to preserve boundary information of features more efficiently in material 

images, in addition to the integrated capability of feature identification.  

In future, the proposed algorithm will be further optimized for the improvement 

of computational efficiency, which will enable larger images of more complex material 

microstructures to be processed. Parallel computing and a machine-oriented language can 

be utilized. Furthermore, the prior knowledge of microstructure characteristics other than 

feature geometry, such as mechanics of materials, can also be considered. 
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CHAPTER 4  

COMPOSITE SURFACELETS 

It has been demonstrated in Chapter 3 that existing primitive surfacelets are able 

to identify inner boundaries of material microstructures with simple geometries. In this 

chapter, in order to increase the flexibility and efficiency of feature identification, the 

existing primitive surfacelets are extended by composite surfacelets. Particularly, cubic 

and v-joint surfacelets are developed, as two examples.   

It should be noted that the convolution method, Radon transform, and Hough 

transform can also identify geometric features. However, composite surfacelets are 

essentially different from them in the following senses. 

As stated in Section 2.5 that the method of convolution is able to find the largest 

integrals and therefore identify geometric features. However, it is not suitable for 

heterogeneous material modeling for the following three reasons. Firstly, the method of 

convolution only returns the largest integrals for feature identification, and other smaller 

integrals are ignored for restoration. However, these smaller integrals are also important 

in the full reconstruction of the material images by inverse surfacelet transform. 

Secondly, in computer-aided material modeling, the material images are only the media 

for us to understand the material compositions and structures. We care the most about the 

feature geometries, instead of the detailed pixel values on them. However, the method of 

convolution only returns the pixels and their values of the matching features, instead of 

the extracted geometric information. Lastly, the searching step size of the method of 

convolution is always one pixel’s space. However, in the method of largest surface 

integrals, the step size is flexible. This can effectively enhance the searching efficiency. 
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 In addition, Hough transform is able to identify linear or spherical features, but it 

not designed for image compression and reconstruction.  

Last but not least, composite surfacelets can provide thickness information of 

features. In contrast, the traditional Radon or Hough transform only considers edge 

feature without thickness information. 

4.1 Cubic Surfacelet 

4.1.1 The construction of a cubic surfacelet 

The cubic surfacelet is constructed by three sets of parallel 3D ridgelets or planar 

surfacelets that are perpendicular to x-, y-, and z-axis respectively, as shown in Figure 28. 

The equation of a 3D ridgelet is shown in Eqn. (2.1). Its implicit surface portion is used 

for the construction of a cubic implicit surface. The cubic surfacelet can then be 

constructed by the combination of the cubic implicit surface and a wavelet function. 

 

Figure 28 The scheme for the construction of the cubic surfacelet from three sets of two 

parallel ridgelets perpendicular to x-, y-, and z-axis 

 

x 

y 
x 

z 

y

 

z

 

0



 65 

4.1.1.1 The construction of a rectangular column in the cubic surfacelet 

To show the construction of a cubic implicit surface, the construction of a 

rectangular column is shown first. A rectangular column can be constructed by two sets 

of parallel planes. For example, if the two sets of parallel planes are defined as y=a and 

y=b, x=c and x=d respectively, as illustrated in Figure 29, the first set of two planes 

perpendicular to the x-axis, denoted by x, can be represented implicitly as 

1( , , ) ( )( ) 0x y z x c x d     . Similarly, the y set can be represented as 

2( , , ) ( )( ) 0x y z y a y b     . Here, a, b, c, d are translation parameters of the individual 

plane. For both x and y, the isovalues of the spatial points which are not on the surfaces 

are negative between the two planes and positive outside. Therefore, the rectangular 

column intercepted by the two sets of planes can be constructed by the intersection 

operation of the two implicit functions. 

According to the R-function representations [106, 107], the union of two implicit 

functions 1 and 2 is 1 2min( , )  , and can also be represented as  

 2 2

1 2 1 2 1 2 1 2

1
( 2 ) 0

2
              (4.1) 

The intersection of the two implicit functions is 1 2max( , )  , and can also be 

represented as  

2 2

1 2 1 2 1 2 1 2

1
( 2 ) 0

2
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Figure 29 The construction of a column along z-axis with rectangular cross-section from 

two sets of two parallel planes in x- and y- axis 

4.1.1.2 The construction of a cubic implicit surface 

Similar to the construction of the x and y sets in Section 4.1.1.1, the third set of 

planes, which is the z set, can be constructed by the planes of z=e and z=g. It can be 

represented as 3( , , ) ( )( ) 0x y z z e z g     , where e and g are translation parameters of 

the two planes along the z-axis. When the intersection operation is conducted to the z set 

3  and the rectangular column 1 2   intercepted by x and y, a cubic implicit surface can 

be constructed.  

Therefore the cubic implicit surface formed by 1, 2, and 3 is  

 2 2

1 2 3 1 2 3 1 2 3

1
( 2 ) 0

2
c              .   

The final form of c in the cubic surfacelet is shown in Section 4.1.2. 
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4.1.2 The derivation of the cubic implicit surface function with three dimensional 

translation and rotation  

Six parameters are used to decide the location and orientation of a cubic surfacelet 

in 3D space, three for the translation along x-, y-, and z-axis and three for the rotation 

about these axes. Suppose that the sizes of the cube are l1, l2 and l3. They are constant 

once the shape of the cubic surfacelet is determined. The translation parameters a, b, c, d, 

e and g are related by b=a+l1, d=c+l2, and g=e+l3. Therefore, the three translation 

parameters along the x-, y-, and z- axis can be assigned as the translation of the center 

point of the cube. With the translation and rotation involved, the implicit function 

representation of the three sets of planes 1, 2, and 3 can be derived. The details are 

discussed as follows, and the scheme is illustrated in Figure 30.  

 

Figure 30 The three dimensional translation and rotation of a cubic implicit surface 

Suppose  ,   and   are the rotation angles around the x-, y-, and z-axis 

respectively. Then the rotation matrices are 
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The overall rotation matrix that include three rotations is
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Suppose that m, n, and k are the x-, y-, and z-coordinates of the center of the cube 

respectively. The implicit functions of the planes with orientation and translations are  

1 1

1

1

1

( ; , , , ; , , )

( ' )( ' )

((cos cos (sin sin cos cos sin )

(cos sin cos sin sin ) / 2)

(cos cos (sin sin cos cos sin )
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l m x y z

x a x a l
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z m l

x y
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2 2

2
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( ; , , , ; , , )
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3 3

3

3

3
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(( sin sin cos cos cos / 2)

( sin sin cos cos cos / 2))

0

l k x y z

z e z e l

x y z k l
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When these functions are substituted into the R-function, the explicit function of 

the implicit surface in the cubic surfacelet can be obtained. The final implicit function is  

1 2 3

1 2

3

2

1 2

2

3

1 2

( , , ; , , , , , ; , , )

1
[ ( sin sin cos cos cos )

2

( sin sin cos cos cos )
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c l l l m n k x y z

x y z e
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where 

1 2

1

1

1
(((cos cos (sin sin cos cos sin )

2

(cos sin cos sin sin ) / 2)

(cos cos (sin sin cos cos sin )
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4.2 V-joint Surfacelet  

General polyhedral shapes other than the rectangular ones are also seen in 

microstructures. The rectangular feature is only a special case of the polyhedral ones. The 

grain shapes of many traditional materials are very close to polyhedrons, such as the 

forms of polygonal crystals in many alloys. One example is Al2O3 particle shown in 

Figure 31(a). The two-phase structure of Al2O3–Fe obtained through infiltration of the 
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porous ceramic matrix formed by the Al2O3 powder in Figure 31(a) is shown in Figure 

31(b) [108].  

 

Figure 31 Microstructure of Al2O3 and Al2O3–Fe composites [108] 

Another significant characteristic about the powder composite materials and many 

alloys is that the grains are compactly packed and the binding phase is in a network form 

with nodes and connecting edges, as shown in Figure 31(b). Together with the fact that 

the polyhedral grain features have more irregular shapes than the rectangular feature, the 

scheme in Chapter 3 is not effective to represent or identify the grains. Instead, 

representing and identifying the binding phase including nodes and edges, such as the Fe 

phase in Figure 31, is a better choice. Based on the geometric similarity, the cubic 

surfacelet can be parameterized as very narrow rectangles to identify the edges. However, 

the information of the node locations cannot be directly captured.  

The v-joint surfacelet is a new composite surfacelet that unites two narrow 

rectangular cubic surfacelets to form a V shape. The V shape can identify both the node 

locations and edge orientations simultaneously. The construction of the v-joint composite 

surfacelet is described as follows and illustrated in Figure 32. The shape parameters of 

(a) SEM image of 

Al2O3 ceramic 

particles 

(b) Image of ceramic–metal composites (dark 

region is Fe, and light region is Al2O3) 

node 

edge 
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the v-joint surfacelet are the width W, the edge length L, and the depth D. Two narrow 

cubic surfacelets with the same sizes are combined at the ends along the edge length 

direction to form a pivot with a v-joint angle θ, by the union operation for implicit 

surfaces. During the surfacelet transform, the shape parameters are fixed. They are 

adjusted to match those of the connection phase of the material at the beginning of the 

surfacelet transform. The location parameters, including the overall translation distances, 

rotation angles, and v-joint angle θ, vary. Note that θ is not defined as a shape parameter. 

This allows for more flexibility in pattern matching. 

The union between the two rectangular implicit surfaces in the v-joint surfacelet is 

done by the R-function similar to Eqn.(4.1). There are also seven location parameters to 

locate a v-joint surfacelet, three (m, n, and k) for the translation, three (, , and ) for the 

orientation, and the v-joint angle θ. The three translation parameters along the x-, y-, and 

z-axis can be assigned as the translation of the pivot. The rotation angle around the x-, y-, 

and z-axis are  ,   and   respectively. The rotation and translation methods for the v-

joint surfacelet are exactly the same as the cubic surfacelet in Section 4.1. The final form 

of the implicit surface in the v-joint surfacelet is shown as following.  
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where 
1c  and 

2c  are the two respective rectangular implicit surfaces in the v-joint. 

An example for identifying the connection features with v-joint composite 

surfacelets will be given in Chapter 5. 

 

Figure 32 The construction of v-joint composite surfacelet based on two cubic surfacelets 

composites  

4.3 Feature Identification with the Cubic and V-joint Surfacelets 

The feature identification with composite surfacelets is based on the largest 

surface integrals, similar to the one based on the primitive surfacelets [4]. Typically, the 
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locations and orientations of the features are of interest to identify. Geometric 

information of the target features, such as the shape and size, are prior knowledge to us. 

The features are captured by examining the surface integrals. In addition, some image 

processing methods can be used to increase the contrast and highlight the features by 

increasing the greyscale values of the feature pixels.  

When a surfacelet is overlapped with the feature (e.g., a cylindrical surfacelet is 

overlapped with a fiber surface), its corresponding surface integral value is larger than 

those of other surfacelets. Therefore surface integrals help determine the positions and 

orientations of the target feature geometries. If there is only one feature geometry to 

identify, its position and orientation can be directly estimated by the corresponding 

surfacelet with the largest integral. This can be realized by sorting the surface integrals 

from the results of surfacelet transform. If there are more than one feature geometry, the 

largest integral for one feature geometry can be very close to the one for another feature 

geometry, because some surfacelets can be overlapped with multiple feature geometries. 

In this case, the integrals are grouped into different clusters according to their positions 

and orientations. The largest integral or the best estimate based on some criteria in each 

cluster determines the feature geometry. This clustering process is regarded as an 

averaging or homogenization scheme in the multi-resolution surfacelet representation. 

4.3.1 Feature identification with the cubic surfacelet 

In existing materials, it is common that the cubic or rectangular particles of 

interest have various sizes. In order to identify all feature geometries, the shape 

parameters of the cubic surfacelet are chosen to be identical to the smallest particle. For 

those particles that are larger than the surfacelet, multiple surfacelets with the largest 
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integrals are needed to identify the location and orientation of one particle. The union of 

these surfacelets, which is the overall profile of the surfacelets, is able to show the 

location and orientation of a particle. For those particles almost in the same size as the 

surfacelet, only the largest integral is needed to identify the location and orientation of 

one particle.  

4.3.2 Feature identification with the v-joint surfacelet 

It can be seen in Figure 31(b) that the greyscale pixel values and the widths of the 

nodes and edges for the metal binding phase are not uniform. The image can be processed 

so that the binding phase has larger pixel values. After the surfacelet transform is 

conducted, most of the largest integrals will be from the brighter and wider nodes and 

edges. Therefore, in order to identify those darker or narrower feature geometries, much 

more surfacelets are needed.  

Most of the surfacelets for those brighter and wider nodes and edges do not 

exactly overlap with the feature geometries. Therefore, in order to clearly capture the 

feature geometries, those surfacelets with correct locations and orientations should be 

extracted. In this dissertation, the scheme of averaging locations and orientations of v-

joint surfacelets is used for each feature geometry. The process of feature identification is 

graphically illustrated in Figure 33 and summarized as the flow chart in Figure 34. The 

seven steps are described as follows.  

In the first step, the shape parameters of the v-joint surfacelet are designed to 

match the edge lengths and angles in-between. Then the surfacelet transform is conducted 

to obtain the surface integrals, as illustrated in Figure 33(a). 
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In the second step, the number of surfacelets with the largest integrals is chosen 

such that all important feature geometries can be covered, as illustrated in Figure 33(b).  

In the third step, these surfacelets are grouped into clusters based on relative 

locations and orientations so that all surfacelets in the same cluster are for the same 

feature geometry, as illustrated in Figure 33(c).  

In the fourth step, the average pivot location and orientation of each cluster are 

calculated. A new surfacelet with the average location and orientation is created, and all 

old surfacelets are discarded, as illustrated in Figure 33(d). After this step that reduces the 

resolution in the surfacelet domain, the number of surfacelets for feature identification is 

significantly reduced. It should be noted that if there are multiple surfacelets for one 

feature geometry, the pivots of these surfacelets are distributed around the node. Because 

the nodes in the images actually have non-zero areas, the average location is able to 

approximately reflect the geometric center of the node.  

For feature identification, the center of the node is desired. Since the three edges 

at one node need at least two v-joint surfacelets to cover, these two surfacelets should be 

properly coordinated to form a neat one-node and three-branch geometry. Therefore, in 

the fifth step, those surfacelets with close pivot locations are translated to their average 

pivot location so that two surfacelets for one node are connected and the locations of the 

nodes are identified, as illustrated in Figure 33(e). The reason that the surfacelets for 

different aspects of the three edges at a node are not mixed in the clusters is as follows. If 

one of the three edges has a very large width, then most surfacelets in the cluster may 

locate on that edge. Then the average pivot is pulled towards that edge instead of 

reflecting the geometric center, because the surfacelets on that edge account for a larger 
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weight. With the above separate averaging steps for individual clusters for the multi-

branch cases, there are no more than two surfacelets on one node so that one edge cannot 

overweight others. After averaging pivot locations, the v-joint surfacelets with close 

orientations at the same pivot location should be rotated to the average orientation.  

To improve the accuracy of identification, a v-joint surfacelet can be broken into 

two separate cubic surfacelets and rotate each cubic surfacelet separately so that the v-

angles can be further fine-tuned. Therefore, in the sixth step, the average orientations of 

the cubic surfacelets that share the same pivot location and have the similar orientations 

are calculated. The old cubic surfacelets can also be removed for better clarity and 

accuracy, as illustrated in Figure 33(f). In order to make the surfacelets better match the 

edges, the averaged cubic surfacelets are further rotated around the pivots based on the 

principle of largest integrals, as illustrated in Figure 33(g). 



 78 

 

Figure 33 Graphic illustration of the feature identification process with the v-joint 

surfacelet   
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Figure 34 The process of the feature identification with the v-joint surfacelet 

4.4 Demonstrations and Results  

In this section, the proposed cubic and v-joint surfacelets for feature identification 

are tested on the microstructures of nano-C60 [109] for biomolecular sensing, shown in 

Figure 35(a), and the Al2O3–Fe composites in Figure 31 respectively. The composite 
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surfacelets are implemented in MATLAB on a PC. For both examples, three slices of 

images are used. To better demonstrate the details, only a portion of the images is used 

here. The spatial domain in the images is normalized to be [ 1,1]  for all ranges of x, y, 

and z directions. The ranges of the translation parameters are m, n, and k [ 1,1]  , and the 

ranges of the rotation angles are , , and  [0,2 ]  to ensure that the surfacelets cover 

all target features.  

4.4.1 Cubic surfacelet to identify nano-C60 particles 

Because of the limited CPU capability of the PC, in this example, a small 

representative portion of the image with one particle is used, as shown in Figure 35(b). 

The same image is stacked three times to form the 3D slices in this example. The images 

are treated as 3D cross-section slices of the particle. The top and bottom boundaries of 

the particle are not included in the three images, as shown in Figure 35(c). Therefore, the 

size of the particle along z-axis direction is assumed to be large, and the corresponding 

shape parameter l3 is set to be a large value. The size of each image is 76×76, thus the 

total number of pixels for three images is P=76×76×3=17328.  
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Figure 35 The 3D images of nano-C60 particle  

The shape parameters of the cubic surfacelet are l1=1.34, l2=1, and l3=3, which are 

designed to match the size of the particle. The translation along the z-axis is set as zero. 

The number of cubic surfacelets used is m n        10×10×1×1×6=600. The 

surfacelet with the largest integral is used for identification. The feature identification 

result is shown in Figure 36. 

(b) The image portion used in 

the example 

(a) Nano-C60 particles 

[109] 

0 

z 

y 

x 

Cubic Surfacelet 

(c) Three identical images 

stacked in parallel 
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Figure 36 Identifying a rectangular feature with a cubic surfacelet with matching shape 

parameters 

As stated in Section 4.3.1, particles in images may have varied sizes. In order to 

identify all feature geometries, the dimensions of the cubic surfacelet are chosen to be 

identical to the smallest particle. Therefore, to demonstrate the generality of feature 

identification based on the cubic surfacelet, a cubic surfacelet that is smaller than the 

rectangular particle is intentionally chosen. The number of surfacelets used is 

m n        20×20×1×1×30=12000. The shape parameters of the cubic surfacelet 

are l1= l2= 0.5, and l3=3, and the translation along the z-axis is set as zero. Because l1=l2 

thus the chosen cubic surfacelet is self-symmetric, the range of rotation angles  ,  ,   

can be reduced to [0, / 2] . The feature identification result is shown in Figure 37. It can 

be seen that the size, location, and orientation of the particle can be better recognized if 

more integrals with the largest values are utilized.  

The identified feature can be applied for the reconstruction of the original images 

by inverse surfacelet transform. The reconstruction is conducted with a constrained 

conjugate-gradient method. Only the boundary pixels are added as constraints. In this 

example, there is no need to translate the cubic surfacelet in the z-direction, i.e. k=0. To 
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decrease the computational cost, the size of each image is reduced to 20×20, thus the total 

number of pixels for three images is P=20×20×3=1200. The number of surfacelets used 

in reconstruction is m n        8×8×1×1×10=640. The results of reconstructed 

images are shown in Figure 38, where one to twenty integrals with the largest values are 

chosen to be constraints respectively. The data compression rate is 47%. 

 

Figure 37 Identifying rectangular features with cubic surfacelets in smaller size 

 

(a) The largest one integral (b) The largest 50 integrals 

(c) The largest 456 

integrals 
(d) The overall profile by 

union operation 
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Figure 38 Image reconstruction results with different constraints of cubic surfacelets 

4.4.2 V-joint surfacelet to identify Al2O3–Fe composite 

Al2O3–Fe composite in Figure 31(b) is used as the example to illustrate feature 

identification based on the v-joint surfacelet. Two portions are selected from the original 

image to test the scalability. The first one contains one grain as shown in Figure 39(a), 

and the second one has multiple grains as shown in Figure 39(b). Because the largest-

integrals-based feature identification method requires that the feature to be identified has 

a larger greyscale value than the rest of the image, the images are inverted first.  

Similar to the previous example in Figure 35, the same image is stacked to form 

three slices of 3D images. In this example, based on the estimated average size of the 

metal phase in the image, the shape parameters of the v-joint surfacelet are chosen as 

W=0.02, L=0.4, and D=4. Similar to the example of the cubic surfacelet in Section 4.4.1, 

the size of the v-joint D along the z-axis direction is chosen to be larger than the image 

(d) The largest 20 integrals (c) The largest 10 integrals 

(a) The largest 1 integral (b) The largest 5 integrals 
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domain [ 1,1]z  . The v-joint angle θ=100º is fixed. This can significantly reduce the 

computational time of surfacelet transform, because the dimension of the reciprocal 

surfacelet space is reduced without varying the v-joint angle. The number of surfacelets 

used here is 30 30 1 1 30 27000m n             . There is no need to translate the 

v-joint surfacelet in the z-axis direction, i.e. k=0.  

 

Figure 39 The two example images of Al
2
O

3
–Fe composites for testing the v-joint 

surfacelet  

With the largest-integrals-based feature identification method, the identification 

results for different numbers of largest integrals are compared in Figure 40. It can be seen 

that since the values of pixels within the metal phase are not equal to each other, neither 

the widths of the nodes and edges, much more surfacelets are needed to identify those 

features with either brighter pixels or narrower geometries. As shown in Figure 40, when 

more than 100 largest integrals are used, most feature geometries in the image are 

covered after STEP 1. Then the surfacelets with similar locations and orientations are 

(a) Image with one grain 

 
  

(b) Image with multiple grains 
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clustered and averaged. The result after STEP 4 is shown in Figure 41(a). The number of 

surfacelets is reduced from 150 to 12. The result after STEP 6 is shown in Figure 41(b). 

The number of surfacelets is further reduced from 12 to 9. The result after STEP 7 is 

shown in Figure 41(c). Figure 41(d) shows the cubic surfacelets derived from the v-joint 

surfacelets match the feature in the original image fairly well. 

In order to demonstrate the scalability of the proposed method, the image with 

multiple grains is also tested. The identification result is shown in Figure 42. Notice that 

in this example the width of the v-joint is small because it needs to match the thinnest 

feature in the original image. It will be increased if the original feature width is larger. In 

contrast, the traditional Radon or Hough transform only considers edge feature without 

thickness information. 

 

Figure 40 Features identified after STEP 1, with different numbers of largest integrals 

(a) The largest 30 integrals (b) The largest 80 integrals 

(d) The largest 150 integrals (c) The largest 100 integrals 
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Figure 41 The intermediate results during the process of the feature identification  

 

Figure 42 The identification result for the image with multiple grains  

So far, the feature identification is only for the positions and orientations of 

boundaries. However, the thickness information cannot be captured.  This can be realized 

by regarding the thickness as the extra dimension in the surfacelet space. Therefore, a 

better feature identification process can be proposed by tweaking the seventh step. 

(d) The result matching the 

original image 

(a) The result of STEP 4 

(12 surfacelets) 

(b) The result of STEP 6 

(9 surfacelets) 

(c) The result of STEP 7 

(a) The feature 

identification result 

(b) Result matching the 

original image 



 88 

Instead of only rotating the averaged cubic surfacelets around the pivots, the thickness is 

also adjusted based on the principle of largest-integrals-based feature identification to 

match the boundaries.  In the same example, the thickness is adjusted in the range of 

[0.01, 0.03] with step size of 0.005. The results for one-grain and multiple-grain images 

are shown in Figure 43 and Figure 44 respectively.  

 

Figure 43 The identification result with thickness recognition for the image with one 

grain 

 

Figure 44 The identification result with thickness recognition for the image with multiple 

grains 

It can be seen from Figure 43 and Figure 44 that not only the positions and 

orientations of boundaries, but also the variable thickness can be identified. 

There are two major benefits of cubic and v-joint surfacelets over straight line or 

planes for feature identification. First, on one hand, straight lines or planes with finite 

(a) The feature 

identification result 

(b) Result matching the 

original image 

(a) The feature 

identification result 

(b) Result matching the 

original image 
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lengths are hard to be represented implicitly. On the other hand, although straight lines or 

planes can be represented implicitly with finite lengths, they are not able to identify 

straight boundary features with finite lengths efficiently and accurately. On contrary, 

cubic or v-joint surfacelets have finite lengths to better match straight boundary features. 

Second, cubic and v-joint surfacelets have non-zero thickness, which is very important in 

feature identification for the following reasons. 

First, by the simple union operation, cubic and v-joint surfacelets can be 

combined into a single implicit surface so that a complex boundary geometry can be 

represented by a group of simple implicit surfaces, as shown in the examples in Section 

4.4.1 and Section 4.4.2. However, this operation is hard to implement on straight lines or 

planes. Second, straight boundaries such as the Fe phase in the example of Al2O3–Fe 

composite in Section 4.4.2 usually have non-zero thickness. Therefore, v-joint surfacelets 

with non-zero thickness can capture the thickness information of such boundaries more 

efficiently and accurately. 

The resulting composite surfacelets, cubic and v-joint for example, can be utilized 

for feature identification both globally and locally. Globally, composite surfacelets can be 

combined into a single implicit surface by the union operation so that a complex 

boundary geometry, such as the boundary network of Al2O3–Fe composite in Section 

4.4.2, can be implicitly represented. In other words, the discrete pixels on material 

boundaries in images can be abstracted into a continuous geometric representation. This 

provides the global high level information of material images. One usage of this 

geometric representation is: combined with wavelets approximation, composite 

surfacelets are able to model material distributions. The detailed method will be 
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introduced in Chapter 5. Locally, the location, orientation and thickness information, 

such as that of individual edges and joints of the boundaries identified the v-joint 

surfacelets, can be obtained from corresponding surfacelets. For local features identified 

by a group of overlapping composites, the information can be easily obtained by 

clustering algorithms, such as K-means.  

4.5 The Improvement of Surfacelet Location Evaluation based on the 

Consideration of Pixel Variation 

In Section 4.4, the feature identification method based on the largest surface 

integrals is introduced so that the boundary of the target features can be captured. 

However, this method is not successful when some inner portion of the target feature has 

similar greyscale value to outer environment. For example, Figure 45(a) shows the AFM 

image of the carbon fiber reinforced polymer composites (CFRPs) [110]. The bright part 

is the fiber and the rest is resin. For the purpose of better illustration, the contrast of the 

image is increased by Photoshop, as shown in Figure 45(b). It can be seen that the portion 

of the fiber in the dashed ellipse has the color very close to the environment. Therefore, 

the greyscale value will also be similar in the greyscale image. As a result, for example, 

the two cubic surfacelets shown in Figure 45(b) have the same surface integral. Thus, 

surfacelet 2 is also regarded as inside the fiber by the feature identification method 

discussed in the previous subsection. The identification result therefore has a huge error. 

Therefore, in order to accurately determine if the surfacelet is inside or outside the feature 

boundary, a new evaluation method should be introduced so that surfacelet 1 has larger 

evaluation value than surfacelet. Even when the colors are similar, human eyes can still 

easily identify the boundary because they are able to capture the boundary based on the 
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sharp gradient change of pixel values across the boundary. Therefore, based on this 

observation, the variation of the pixel values along the surfacelet should be considered.  

 

 

Figure 45 The original AFM image of carbon fiber reinforced polymer composites 

(CFRPs) and the one with increased contrast 

In this dissertation, the variation of the pixel values is evaluated by the standard 

deviation. It can be estimated that a surfacelet with more evenly distributed pixel values 

or inside the feature boundary, such as surfacelet 1 in Figure 45(b), has a smaller standard 

deviation than those with less evenly distributed pixel values or outside the feature 

boundary, such as surfacelet 2. In order to make the evaluation of surfacelets inside the 

feature larger than that of those across the boundary, the surface integral and the standard 

deviation are proposed to be combined in the following ways of 
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where iv  is the i
th

 pixel value, N is the number of pixels on the surfacelet, 

1

1
( )Nv v

N
    , w is the weight parameter and d is an integer power, t is original 

evaluation of the surfacelet integral. t is referred to as the improved surface integral. 

It should be noted that t  is only used for the purpose of feature identification. 

The inverse surfacelet transform is still based on t . 

In the following subsection, the feature identification results of these three 

formulas are compared, and the formula with the best result is determined. The example 

of CFRPs in Figure 45 is used for the comparison of the three formulas. 

In order to quantitatively compare the feature identification results of these three 

formulas, the real boundary feature is needed as the comparison datum. Many existing 

boundary recognition methods are available to obtain the real boundary feature. The 

results of Sobel, Prewitt, Roberts, Log and Canny methods are shown in Figure 46 (a), 

(b), (c), (d) and (e) respectively. It can be seen that the best result is from the Canny 

method, since most part of the boundary is recognized. However, it is still not the real 

boundary feature. Therefore, manual modification is conducted based on the Canny 

method. The result is shown in Figure 46 (f), and the result matching the boundary in the 

original image is shown in Figure 46 (g).  
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Figure 46 The results of different boundary recognition methods 

The following measure properties of image regions are used to compare the 

feature identification results: 

'Number of pixels' — the actual number of pixels in the region;  

(a) Sobel (b) Prewitt (c) Roberts 

(d) Log  (e) Canny (f) Manual modification 

result of the Canny method 

(g) Manual modification result matching 

the boundary in the original image 
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'Centroid' — the center of mass of the region. The first element of Centroid is the 

horizontal coordinate (or x-coordinate) of the center of mass, and the second element is 

the vertical coordinate (or y-coordinate); 

'Orientation' — the angle (in degrees ranging from -90 to 90 degrees) between the 

x-axis and the major axis of the ellipse that has the same second-moments as the region; 

'Eccentricity' — the eccentricity of the ellipse that has the same second-moments 

as the region. The eccentricity is the ratio of the distance between the foci of the ellipse 

and its major axis length. The value is between 0 and 1.     

Because some of the feature identification results are not close loops in the 

images, and some have two or more regions, it is necessary that the datum boundary for 

comparison is divided into two portions (left and right), and the comparison is conducted 

on both portions. As shown in Figure 47(a), the boundary is divided by the vertical line 

that has average x-coordinate of the four extrema points of the entire boundary. The two 

centroids and the two ellipses with the same second-moments are shown in Figure 47(b). 

The corresponding measure properties are listed in Table 3. 

Table 3 Measure properties of the datum boundary 

 Number of 

pixels 

Centroid Orientation Eccentricity 

Left portion 117 (16.5,   35.4) -87.1 0.9463 

Right portion 112 (51.1,  36.0) -89.9 0.9653 

 

In the following subsections, for each formula and parameter configuration, the 

property measurement is conducted on the visually best results.  
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Figure 47 The calculation of the geometric properties of the datum boundary for 

comparison 

4.5.1 The implementation with the original AFM image 

The shape parameters of the cubic surfacelet are l1=0.6, l2= 0.4, and l3=3. The 

translation along the z-axis is set as zero. The number of cubic surfacelets used is 

m n        20×20×1×1×30=12000. The original image with low contrast is used. 

When d=1, the new evaluation of the improved surfacelet integral t  can be 

obtained as 

2

1

=
1

( )
N

i

i

w
t t

v
N




 



 

 

When 10w  , the feature identification results are shown in Figure 48. The 

measure properties for Figure 48(f) are listed in Table 4. 

Extrema points Ellipses with the same 

second-moments 

Centroids  

(a) Dividing the boundary 

into two portions 
(b) The illustration of the geometric 

properties of the datum boundary 

* *

* *
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Figure 48 Feature identification results when 10w   

Table 4 Measure properties for Figure 48(f) 

 Number of 

pixels 

Centroid Orientation Eccentricity 

Left portion 77 (15.0,  39) -86.6 0.9912 

Right portion 77 (60.4,  39) -89.2 0.9938 

 

When 310w  , the feature identification results are shown in Figure 49. The 

measure properties for Figure 49(f) are listed in Table 5. 

 

(a) The largest 200 integrals (b) The largest 300 integrals (c) The largest 600 integrals 

(e) The largest 1000 integrals (f) The largest 1200 integrals (d) The largest 800 integrals 
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Figure 49 Feature identification results when 3
10w   

Table 5 Measure properties for Figure 49(f) 

 Number of 

pixels 

Centroid Orientation Eccentricity 

Left portion 77 (15.2,   39) -85.8 0.9907 

Right portion 77 (60.46,  39) -89.2 0.9938 

 

When 510w  , the feature identification results are shown in Figure 50. The measure 

properties for Figure 50(f) and (g) are listed in 

Table 6 and Table 7 respectively. 

 

(e) The largest 1000 integrals (f) The largest 1200 integrals (d) The largest 800 integrals 

(a) The largest 200 integrals (b) The largest 300 integrals (c) The largest 600 integrals 
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Figure 50 Feature identification results when 5
10w   

(a) The largest 200 integrals (b) The largest 300 integrals (c) The largest 400 integrals 

(d) The largest 600 integrals (f) The largest 1000 integrals 

(g) The largest 1200 integrals 

(e) The largest 800 integrals 

(h) The largest 1400 integrals (f) The largest 1600 integrals 

(g) The largest 1800 integrals 
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Table 6 Measure properties for Figure 50(f) 

 Number of 

pixels 

Centroid Orientation Eccentricity 

Left portion 77 (16.9,  39) -83.4 0.9897 

Right portion 77 (56.9,  39) -88.4 0.9966 

 

Table 7 Measure properties for Figure 50(g) 

 Number of 

pixels 

Centroid Orientation Eccentricity 

Left portion 77 (15.5,  39) -85.2 0.9903 

Right portion 77 (57.7,  39) -87.4 0.9940 

 

When 1010w  , the feature identification results are shown in Figure 51.  

 

 

Figure 51  Feature identification results when 10
10w   

When 1510w  , the feature identification results are shown in Figure 52.  

(a) The largest 200 integrals (b) The largest 300 integrals 

(c) The largest 400 integrals (d) The largest 600 integrals 
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Figure 52 Feature identification results when 15
10w   

When d=4, the new evaluation of the improved surfacelet integral t  can be 

obtained as 
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When 10w  , the feature identification results are shown in Figure 53. The 

measure properties for Figure 53(e) and (f) are listed in Table 8 and Table 9 respectively. 

 

(a) The largest 200 integrals (b) The largest 300 integrals 

(c) The largest 400 integrals (d) The largest 600 integrals 
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Figure 53 Feature identification results when 10w    

Table 8 Measure properties for Figure 53(e) 

 Number of 

pixels 

Centroid Orientation Eccentricity 

Left portion 77 (17.6,  39) -89.2 0.9938 

Right portion 77 (58.7,  39) -89.4 0.9862 

 

Table 9 Measure properties for Figure 53(f) 

 Number of 

pixels 

Centroid Orientation Eccentricity 

Left portion 77 (15.0,  39) -86.6 0.9912 

Right portion 77 (60.4,  39) -89.2 0.9938 

 

When 310w  , the feature identification results are shown in Figure 54. The 

measure properties for Figure 54(e) and (f) are listed in Table 10 and Table 11 

respectively. 

(e) The largest 1000 integrals (f) The largest 1200 integrals (d) The largest 800 integrals 

(a) The largest 200 integrals (b) The largest 400 integrals (c) The largest 600 integrals  
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Figure 54 Feature identification results when 310w   

Table 10 Measure properties for Figure 54(e) 

 Number of 

pixels 

Centroid Orientation Eccentricity 

Left portion 77 (17.6,  39) -89.2 0.9938 

Right portion 77 (58.7,  39) -89.4 0.9862 

 

Table 11 Measure properties for Figure 54(f) 

 Number of 

pixels 

Centroid Orientation Eccentricity 

Left portion 77 (15,   39) -86.6 0.9912 

Right portion 77 (60.4,  39) -89.2 0.9938 

 

When 510w  , the feature identification results are shown in Figure 55.  

(e) The largest 1000 integrals (f) The largest 1200 integrals (d) The largest 800 integrals 

(a) The largest 200 integrals (b) The largest 400 integrals (c) The largest 600 integrals 
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Figure 55 Feature identification results when 510w     
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When 10w  , the feature identification results are shown in Figure 56.  

(e) The largest 1000 integrals (f) The largest 1200 integrals (d) The largest 800 integrals 

(a) The largest 200 integrals (b) The largest 400 integrals (c) The largest 600 integrals 
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Figure 56 Feature identification results when 10w    

When 310w  , the feature identification results are shown in Figure 57. The measure 

properties for Figure 57(e) and (f) are listed in Table 12 and  

 

 

Table 13 respectively. 

 

(e) The largest 1000 integrals (d) The largest 800 integrals 

(a) The largest 200 integrals (b) The largest 400 integrals (c) The largest 600 integrals 
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Figure 57 Feature identification results when 
3

10w      

Table 12 Measure properties for Figure 57(g) 

 Number of 

pixels 

Centroid Orientation Eccentricity 

Left portion 81 (18.5,  40.7) -78.8 0.9819 

Right portion 77 (55.5,  39) -86.8 0.9908 

 

 

 

 

(a) The largest 200 integrals (b) The largest 400 integrals (c) The largest 600 integrals 

(d) The largest 800 integrals (f) The largest 1200 integrals 

(g) The largest 1800 integrals 

(e) The largest 1000 integrals 

(h) The largest 2200 integrals 
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Table 13 Measure properties for Figure 57(h) 

 Number of 

pixels 

Centroid Orientation Eccentricity 

Left portion 77 (15.8,  39) -83.7 0.9867 

Right portion 77 (56.7,  39) -87.7 0.9965 

 

When 510w  , the feature identification results cannot be obtained.  

 

When d=4, the new evaluation of the improved surfacelet integral t  can be 

obtained as 

4 2

2 2

1 1

1 1
= ( ) ( )

N N

i i

i i

t t w v t w v
N N

 
 

                 
   

 

When 10w  , the feature identification results are shown in Figure 58.  

 

Figure 58 Feature identification results when 10w   

(e) The largest 1000 integrals (f) The largest 1200 integrals (d) The largest 800 integrals 

(a) The largest 200 integrals (b) The largest 400 integrals   (c) The largest 600 integrals 
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, when d=1, the feature identification results are 

shown in Figure 59. The measure properties for Figure 59 (e) are listed in Table 14. 

 

Figure 59 Feature identification results when d=1 

Table 14 Measure properties for Figure 59(e) 

 Number of 

pixels 

Centroid Orientation Eccentricity 

Left portion 77 (16.8,  39) -81.7 0.9814 

Right portion 77 (56.3,  39) -86.9 0.9966 

 

When d=4, the feature identification results are shown in Figure 60.  

 

(e) The largest 2000 integrals (d) The largest 1400 integrals 

(a) The largest 600 integrals (b) The largest 800 integrals (c) The largest 1000 integrals 
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Figure 60 Feature identification results when d=4 

When d=6, the feature identification results are shown in Figure 61.  

 

 

Figure 61 Feature identification results when d=6 

4.5.2 The implementation with the contrast-increased AFM image 

The shape parameters of the cubic surfacelet and the number of cubic surfacelets 

used remain the same as in Section 4.5.1. The contrast-increased AFM image in Figure 

(b) is used. 
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, and 10w  , the feature identification results are 

shown in Figure 62.  

(a) The largest 600 integrals (b) The largest 800 integrals (c) The largest 850 integrals 

(a) The largest 600 integrals (b) The largest 800 integrals (c) The largest 850 integrals 
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Figure 62 Feature identification results when 10w   
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, the feature identification results are shown in Figure 

63.  

(a) The largest 200 integrals (b) The largest 300 integrals (c) The largest 600 integrals 

(e) The largest 1000 integrals (f) The largest 1200 integrals (d) The largest 800 integrals 
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Figure 63 Feature identification results when d=1 

4.5.3 The implementation with the contrast-increased AFM image and different 

surfacelet shape parameters 

The shape parameters of the cubic surfacelet are l1=0.84, l2= 0.64, and l3=3. The 

translation along the z-axis and the number of cubic surfacelets remain the same. The 

contrast-increased AFM image is used. 

When d=1, the new evaluation of the improved surfacelet integral t  can be 

obtained as 
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(e) The largest 2000 integrals (d) The largest 1400 integrals 

(a) The largest 600 integrals (b) The largest 800 integrals (c) The largest 1000 integrals 
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When 10w  , the feature identification results are shown in Figure 64. The 

measure properties for Figure 64(a) and (c) are listed in Table 15 and Table 16 

respectively. 

 

 

Figure 64 Feature identification results when 10w   

Table 15 Measure properties for Figure 64(a) 

 Number of 

pixels 

Centroid Orientation Eccentricity 

Left portion 79 (18.2,   39.9) -81.7 0.9715 

Right portion 79 (54.8,  39.9) 81.3 0.9789 

 

Table 16 Measure properties for Figure 64(c) 

 Number of 

pixels 

Centroid Orientation Eccentricity 

Left portion 79 (18.1,   39.9) -79.5 0.9822 

Right portion 79 (54.9,  39.9) 80.7 0.9837 

 

When 310w  , the feature identification results are shown in Figure 65.  

 

(a) The largest 200 integrals (b) The largest 300 integrals (c) The largest 400 integrals 
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Figure 65 Feature identification results when 310w   

When 1010w  , the feature identification results are shown in Figure 66.  

 

 

Figure 66 Feature identification results when 1010w   

4.5.4 Conclusion of comparison results of the three formulas 

Based on the comparison result, it can be concluded that increasing the image 

contrast does not improve the quality of the feature identification. The possible reason is 

that increasing the image contrast enlarges the differences between all pixels values. 

When the boundary of features has sharper change of pixel values, the variance of other 

regions are also increasing. As a result, the boundary of features can still not stand out 

from the rest of pixels. Therefore, for feature identification with or without considering 

the standard deviation, the original and contrast-increased images show no difference. 

(a) The largest 200 integrals (b) The largest 300 integrals (c) The largest 400 integrals 

(a) The largest 200 integrals (b) The largest 300 integrals (c) The largest 400 integrals 
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From the comparison of the three formulas in Sections 4.5.2 and 4.5.3, it can be 

seen that the result that best matches the boundary is as follows.  

When 2
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    , and 310w  , that is 3 2
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    , 

with the largest 1800 surface integrals, the result is shown in Figure 67(b). This is 

regarded as the best, because the number of pixels and positions of the centroids are the 

closest to the real values. Meanwhile, the orientation and eccentricity are also very close 

to the real values. It can be seen that the proposed method with considering the gradient 

information of pixels can improve the feature identification result. 

 

Figure 67 The best feature identification result, when 3 2
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      with the 

largest 1800 integrals compared to result without considering the gradient information 

Although the 3 2
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     produces the best result in this example, 

other methods proposed in Section 4.5 could have better results in other examples. More 

research is needed in order to systematically utilize the proposed methods. However, this 

research will not be covered in this dissertation, because the aim of this subsection is 

mainly to propose possible approaches for the improvement of surfacelet location 

(a) The feature identification 

result without gradient 

information   

(a) The best feature 

identification result with 

gradient information   
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evaluation. In addition, the best result for a particular example is given, because this 

result will be used in Chapter 5 for the material distribution modeling  

4.6 Conclusion and Future Work 

In this chapter, a new concept of composite surfacelets is proposed to represent 

and identify complex microstructures. Composite surfacelets can be constructed from 

existing primitive or composite surfacelets. As two examples, cubic and v-joint 

surfacelets are developed to identify line-edged features. They are tested with real 

microstructure images. The results show that with the surfacelet transform and the 

largest-integrals-based feature identification method, these two composite surfacelets are 

able to identify the locations and orientations of features. It should be noted that the 

concept of composite surfacelets is general. Composite surfacelets are not limited to these 

two demonstrated in this chapter. More types of composite surfacelets can be designed 

for different microstructural features. 

In order to improve the feature identification results for material images without 

clear feature boundaries, a method of improving the surfacelet location evaluation based 

on the consideration of pixel variation is proposed. An example is given, and different 

new improved evaluations are compared. The results show that with all improved 

evaluations, the feature boundary can be better identified. However, there exists one 

method which gives the best result depending on the example.  

The identification approach presented in this chapter is mainly for important 

features. If other details about material microstructures in images are of interest and the 

reconstruction of the original images is desired, the inverse surfacelet transform can be 
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applied. More surfacelets are required if more details need to be captured and 

reconstructed.  

Compared to the traditional edge detection methods, the proposed method extracts 

the important geometric features (shapes, sizes, locations, and orientations), which 

provide parametric-level information to determine material properties. That is, the 

proposed method uses only a few parameters to represent important features instead of 

pixels. For the purpose of reducing computational time, only three stacked identical 

images are used in the examples. The features identified in the examples are just 2.5-D. 

In the future work, the proposed approach will be tested on truly 3D examples.  
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CHAPTER 5  

APPLICATION OF SURFACELETS IN MATERIALS MODELING 

It has been demonstrated in Chapter 3 and Chapter 4 that, with the primitive or 

composite surfacelets, the microstructural features of material images can be identified. 

As such, the microstructural information of 3D material images can be extracted and 

converted into implicit surface models. Based on these representations, material 

composition or local property distributions can be further modeled with extra information 

from the material images, since the material microstructure defines the ‘skeleton’ or 

major material distributions, whereas the material composition is more like the ‘flesh and 

skin’ in addition to the microstructural information.  

The goal of this chapter is to find a method for modeling the continuous 

distributions of materials, such as material compositions or local properties, based on the 

identified boundaries of microstructures. The assumption is that the material composition 

or local property distributions are similar in all directions, i.e. nearly isotropic. Therefore, 

the 2D distributions can be simplified as 1D ones. For example, as shown in Figure 68, in 

all directions inside the material domain, as indicated by the straight lines crossing the 

center of the object, the 1D distributions of material are very similar along the lines. In 

other words, if the distributions along the lines are normalized to ones with a single 

radius and the distributions are mapped to a new domain with the boundary represented 

as a circle, the distributions then have rotational symmetry.  As a result, the 2D 

distributions can be approximated by 1D distributions along the radial lines.  

In this chapter, a systematic surfacelet selection and modeling mechanism to 

support material distribution modeling with surfacelets is developed. From the images of 
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material properties or compositions, wavelet analysis is applied to identify the number 

and type of wavelets to describe the 1D distribution along the radial lines. Then 

surfacelets are constructed based on the identified wavelets and the 2D distributions can 

be modeled by the surfacelets. 

In the rest of the chapter, the general procedure of the surfacelet selection and 

modeling is described in Section 5.1. The wavelet transform is introduced in Section 5.2. 

An example is implemented and demonstrated in Section 5.3. The analysis of the results 

is given in Section 5.4. In Section 5.5, the contribution and limitation of the proposed 

method and the future work of this chapter are discussed.  

 

Figure 68 The isotropic distribution of property along the radius directions of the material 
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5.1 The General Procedure of Approximating Material Composition or 

Local Property Distributions with Surfacelets 

The general procedure is shown in the flow chart in Figure 69 and described as 

follows. 

In STEP 1, appropriate surfacelet shape parameters are chosen to match the 

microstructural features of interest. 

In STEP 2, surfacelet transform is performed so that all microstructural features 

of interest are identified. Together with STEP 1, this part is for feature identification. 

In STEP 3, 1D material composition or local property distribution around the 

microstructures of interest is obtained by the distribution of image pixel value or 

experimental data.  

In STEP 4, 1D wavelet transform is conducted to approximate the material 

composition or local property distributions obtained from STEP 3. This 1D wavelet 

transform is only for 1D material composition or local property distributions in a 

representative direction. Together with STEP 3, this part is for wavelet transform. 

In the final STEP 5, the obtained wavelets and the implicit surfaces from feature 

identification are combined into surfacelets. This is conducted by plugging the implicit 

surfaces into the obtained wavelets, simply by the definition of a general surfacelet basis 

function described in [4]. The resulting surfacelets construct the model of the 3D material 

images. 
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Figure 69 The general procedure of approximating material composition or local property 

distributions with surfacelets 

5.2 The Wavelet Transform 

In the domain of 2D shape representations, wavelets are among the most popular 

multi-resolution representations. Similar to Fourier analysis, wavelet analysis is to 

represent and approximate signals (or functions in general) with orthogonal or non-

orthogonal basis functions. Both methods can be used to uncover frequency components 

of signals. Both can be used to represent multi-resolution subspaces and fast algorithms 

are available for both. However, instead of sinusoidal functions in Fourier analysis, the 

functional space for wavelet analysis is decomposed based on a scaling function ( )t  and 

a wavelet function ( )t with one dimensional variable t for multi-resolution analysis. 
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In the continuous wavelet transform (CWT) basis functions are called wavelets 

( )t . The CWT compares the signal to the shifted and compressed or stretched (scaled) 

versions of these allowed wavelets.  If the signal is a real value, the CWT is a real-valued 

function of scale and position. For a scale parameter (a>0) and position (b) the CWT is: 

1
( , ) ( ) ( )

t b
c a b f t dt

aa







   

There are many different admissible wavelets that can be used in the CWT, which 

is actually the strength of wavelet analysis, although certain forms such as Haar, 

Daubechies, Morlet, etc. have been used more extensively. 

Using MATLAB wavelet tool box and using the Mexican hat as the wavelet 

function the wavelet transformation is conducted. The mirrored signal is saved in .mat 

format and inserted to the toolbox. The value of σ for the Mexican hat function has been 

selected as 0.5 which is the default value. The number and the range of the scales are 

optional and are inserted as inputs to the wavelet toolbox. 

5.3 An Example and Results 

In this subsection, an example of modeling material local property distribution is 

demonstrated. The example image is chosen the same as Figure 45(a). All experimental 

images in this chapter are from the work of Gu et al. [110] 

In STEP 1, the surfacelet shape parameters are chosen identical to those used in 

Section 4.5.1. 

In STEP 2, surfacelet transform is performed to identify the microstructural 

feature. In this Chapter, the best feature identification result shown in Figure 67 is used.  
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In STEP 3, material local property distribution around the microstructure is 

obtained by experimental data. In this chapter, the storage modulus is used an example 

for material local property. From experimental results, the 2D storage modulus map is 

shown in Figure 68. The discrete storage modulus data points along the dashed straight 

line indicated in Figure 68 are shown in Figure 70. 

 

Figure 70 The discrete storage modulus data along the straight line indicated in Figure 68 

In STEP 4, 1D wavelet transform is conducted to approximate the material local 

property distributions obtained from the data points in Figure 70. The approximated and 

the original results are shown in Figure 71. The blue curve is the cubic spline fitting of 

the original data (100 data points), and the red one is the wavelet approximation result. 

This 1D wavelet transform is conducted in MATLAB wavelet toolbox. 50 evenly 

distributed sample data points are chosen from Figure 70 so that the computational cost 

can be lowered, but they are enough to represent the entire distribution.  
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Figure 71 The wavelet transformation results for the discrete storage modulus data shown 

in Figure 70 

In STEP 5, the obtained wavelets and the implicit surfaces from feature 

identification are combined into surfacelets. 

Based on the feature identification and wavelet transformation results, the storage 

modulus distribution can be approximated. Because the result surfacelet model is in 3D, 

only the 2D distribution in the middle plane of the model is shown and compared. The 

results for Mexican hat with 25 data points, Mexican hat with 50 data points, Beta 

wavelet with 25 data points, and Beta wavelet with 50 data points are shown in Figure 72, 

Figure 73, Figure 74, and Figure 75 respectively.  
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Figure 72 The 2D distribution in the middle plane of the surfacelet model from Mexican 

hat wavelet with 25 data points 

 
Figure 73 The 2D distribution in the middle plane of the surfacelet model from Mexican 

hat wavelet with 50 data points 
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Figure 74 The 2D distribution in the middle plane of the surfacelet model from Beta 

wavelet with 25 data points 

 
Figure 75 The 2D distribution in the middle plane of the surfacelet model from Beta 

wavelet with 50 data points 
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5.4 Analysis of the Result Accuracy  

In order to quantitatively determine the accuracy of the proposed method, the 

results of the surfacelet model are compared to the storage modulus map. Theoretically, 

the accuracy depends on two aspects: the feature identification accuracy and the wavelet 

approximation accuracy.  

Although the 2D storage modulus map is given, the detailed data is not directly 

available from the reference. Therefore, the storage modulus values have to be obtained 

from Figure 68 based on the value matching between the pixels in the map and those in 

the legend bar. In order to simplify the calculation, sample data points are used for 

comparison. Therefore, the resolution of storage modulus map is decreased to 30×30, as 

shown in Figure 76(a). The storage modulus values are compared to the 30×30 data 

points in the same locations in the surfacelet model.  

 
Figure 76 The derivation of the storage modulus values 

The error measurement is evaluated by:  
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where 0
iM  is the i

th
 storage modulus value in the original storage modulus map in Figure 

76 (a), and iM  is the one from the surfacelet model.  

The resulting errors for different wavelet transforms are shown in Table 17. It can 

be seen from the table that the Mexican hat wavelet has smaller errors than the Beta 

wavelet. In addition, with the same wavelet but more data points, the error becomes 

smaller.  

Table 17 The resulting errors between the surfacelet model and the original values for 

different wavelet transforms 

 
Mexican hat 

wavelet with 25 

data points 

Mexican hat 

wavelet with 50 

data points 

Beta wavelet 

with 25 data 

points 

Beta wavelet 

with 50 data 

points 

e 8.3 8.1 10. 7 9.9 

 

5.5 Discussions and Future Extensions 

In this chapter, a general method to approximate material composition and local 

property distributions is proposed. This method is based on the feature identification 

result of the 3D material images, and wavelet approximation of the material composition 

or local property distributions along radial lines. An example is used to demonstrate the 

method. The proposed method is able to model the material composition and local 

property distributions with certain levels of accuracy, based on a proposed error metric. 

The limitation of the proposed method is that it has the isotropic assumption about 

the material compositions or properties. The distributions are nearly identical along all 

radial directions and exhibit the rotational symmetry. For strong anisotropic materials, the 

error of the approximation is expected to be significant. Therefore, the future extension of 
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this method should meet the need of anisotropic materials. One possible way to do so is 

to combine the wavelet approximation for 1D distribution with the surface boundary 

approximation during the surfacelet selection process. In current procedure, the surface 

boundaries are united into one single implicit surface, and then plugged into 1D wavelet 

functions. Therefore, the current boundary domain can be represented as: 


, , ,

( ) (min(min(min( ( )))))
j k l m n

l m n
a b a b ma b m

y j rr r  

where  , ,x y zr  is the location in the domain   in the Euclidean space, j  is a 

wavelet function, ja  and kb  are the wavelet parameters,   is a surface function so that 

 , , 0x y z   implicitly defines a surface, 
n

m  is the translation parameter of the surface,  

and 
l

a  and 
m

b are the orientation parameters. In this method, the parameters of wavelets 

(type, number, etc.) and surfacelet (shape, orientation, location) are pre-selected in the 

current work. In future, by the combination of the wavelet approximation for 1D 

distribution and the surface boundary approximation, the boundary domain can be 

represented as: 

  , , ,
( ) ( ( ))

j k l m n

l m n j k

a b
a b

a b m
a b m

y j rr r  

Optimization will be conducted for the parameters of 
n

m , 
l

a , 
m

b , ja , kb , with the 

objective of minimizing approximation errors. The numerical approaches need to be 

further explored. 
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CHAPTER 6  

A MULTI-SCALE MATERIALS DESIGN METHOD WITH 

SEAMLESS ZOOMING CAPABILITY  

In Chapter 3, Chapter 4, and Chapter 5, feature identification and modeling 

methods for material microstructures and compositions based on 3D material images 

from experiments are developed, which can be used in reverse engineering. In this 

chapter, the focus is on the design of material microstructures and compositions 

according to the specification. That is, the microstructural specification method for 

materials design from scratch will be developed. 

As stated in Section 2.5, currently, there is no mechanism of microstructural 

modeling that supports multi-scale materials specification and visualization. In this 

chapter, a new multi-scale materials specification scheme that supports interactive design 

based on microstructural features is proposed. In a multi-scale design environment, a 

design engineer needs to specify material microstructures, compositions, and properties at 

certain regions of interest. Thus, a specification scheme that captures the designer’s 

intended material distributions (microstructures, compositions, and properties) with ease 

of use is required. In the proposed scheme, microstructural features are used as the 

building blocks to allow the designer to quickly specify the material distributions. Most 

importantly, the proposed materials specification scheme for design has a seamless zoom-

in and zoom-out capability such that materials information at multiple scales can be 

modeled and exchanged.  

In the surfacelet based design environment, the designer can perform design 

specifications in both image (real) space and surfacelet (reciprocal) space. As mentioned 
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in Section 1.3, images are commonly used as the medium in materials design and 

characterization. Thus images are used to visualize specified material distributions. The 

image representation of materials in the image space is called visualization model. 

Surfacelet space on the other hand is used for the ease of specifying microstructural 

features. The most of design specification procedure is done in the surfacelet space. A 

user can specify the values of microstructures, compositions, or properties at discrete 

locations or called collocation points in the region of interest within the surfacelet space. 

The local property distribution within the domain can then be created based on a 

continuous distribution model, which is the result of interpolation from the specification. 

The visualization model in the image space is an evaluation of the distribution model in 

the surfacelet space for a particular image resolution. Since the collocation points could 

be selected at any locations based on the designer’s need whereas regular spacing is 

required to generate the interpolated distribution model, a regular grid in the region of 

interest will be generated based on the collocation points. The regularly generated 

locations on the grid are called grid points. Some of the grid points are the specified 

collocation points as a result of spatial overlapping. The additional grid points are 

generated from the collocation points by interpolation or extrapolation.  

Figure 77 illustrates the general procedure of the proposed materials specification 

scheme. The designer starts with specifying some collocation points in the surfacelet 

space. The material distributions then are generated in the image space accordingly. The 

specification in the surfacelet space provides the basic feature information that quickly 

creates the distribution. Yet, some special artifacts such as impurity, defects, and 

discontinuity cannot be specified easily in the surfacelet space. Therefore, the use of the 
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image space for specification is also necessary. After the specification of the special 

artifacts, a surfacelet transform can generate the corresponding specification in the 

surfacelet space. The special artifacts in the surfacelet space after the surfacelet transform 

may be continuous and represented by many discrete collocation points in the 

implementation. With the specified collocation points, the grid and grid points are 

generated. The continuous distribution model then is created by interpolation. The final 

specification in the image space is then generated by the inverse surfacelet transform 

from the evaluated distribution model in the surfacelet space. The detailed numbered 

steps will be explained in Section 6.2.2. 

 

 

Figure 77 The general procedure of the proposed materials specification method  
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If the user would like to inspect the modeled materials in a specific region with 

finer details, he or she can perform a zoom-in operation. A smaller scale model of the 

region will be generated based on his or her specifications. To show the effect in a larger 

region as a result of the design procedure, a zoom-out operation can be performed. The 

operation is straight-forward. Some collocation points will be selected to generate a 

coarser-grid interpolation model at a larger scale. Therefore, compared to zoom-out, the 

zoom-in operation is more complex in a multi-scale modeling method. 

In the rest of this chapter, Section 6.1 describes a collocation method that selects 

necessary collocation points and generates grid points in the surfacelet space at different 

scales during the zoom-in operation. Not all collocation points will be used in generating 

the distribution model at one scale. Rather, they are assigned to different levels of grids 

based on their spatial relationships. Only those collocation points at a particular grid level 

are used for a distribution model for the corresponding scale. From the specified values at 

the collocation points for a particular grid level, the interpolation procedure is applied to 

predict the values at the grid points. In Section 6.2, the details of specification scheme 

shown in Figure 77 will be described. During the interactive specification process, two 

models are kept in the design environment. One is the continuous distribution model in 

the surfacelet space that specifies the material distribution. The other is a discrete 

visualization model in the image space that shows the evaluated distribution on screen. 

Section 6.3 demonstrates the proposed specification scheme with examples. Section 6.4 

illustrates how the proposed scheme can be integrated with material property prediction 

for an iterative design process.  
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6.1 The Collocation Method for Zoom-in Operation 

The collocation method proposed here is to effectively and efficiently use the 

specified collocation points for interpolation at different scales. In a multi-scale modeling 

environment, interpolation and extrapolation are conducted based on the collocation 

points at different scales to generate necessary grid points in the surfacelet space. A 

continuous distribution model is an interpolation from the grid points. Therefore, the 

representation of the material distribution based on the collocation method is efficient.  

The feasibility of interpolation and extrapolation in the surfacelet space is studied 

and discussed in Section 6.1.1. The results show that the interpolation can provide good 

predictions of grid points from the collocation points. In addition, the specified 

collocation points need to be organized to form a multi-level grid. Generally speaking, 

coarser collocation points covering a larger domain are utilized at a larger scale, whereas 

denser collocation points covering a smaller domain are utilized at a smaller scale. A 

mechanism to organize the collocation points into different levels based on their spatial 

relationships is introduced in Section 6.1.2. 

6.1.1 Interpolation and extrapolation in the surfacelet space 

Although collocation in the image space is possible in implementing a multi-scale 

modeling environment, it is not efficient in capturing material distributions because the 

pixel values representing microstructural and compositional information are independent 

from each other and the interpolation or extrapolation of pixel values loses the feature 

information. In contrast, the interpolation or extrapolation in the surfacelet space retains 

feature information and provides good continuity. The idea is to predict the surface 

integral values in a domain from some specified ones with an interpolation model. 
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Adjacent surfacelets have some pixels in common, and therefore their surface integral 

values are dependent with each other. The interpolation thus can have good accuracy. In 

the interpolation model, surface integral values are functions of position and orientation 

parameters. Some surfacelets with selected positions and orientations are used to predict 

the others.  

In this chapter, an example 3D image of fiber-based composite, as shown in 

Figure 78, is used for the demonstration of the proposed approach. Here it is also used to 

demonstrate the advantage of interpolation in the surfacelet space. 

 

Figure 78 An example 3D image of fiber-based composite  

To illustrate the interpolation in the surfacelet space, a surfacelet transform is first 

applied to the images in Figure 78. The ranges of the orientation parameters are set to be 
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( / 2, / 2) ( 14.84,14.84)D D    , [0,2 )   and [ / 2, / 2]     to ensure that the 

surfacelets cover all of the pixels, where 
2 2 220 20 9D     is the diagonal length of 

the 3D images. Suppose that the numbers of discretized ,  , and   are u, f, and g 

respectively. The number of surfacelets 11 11 3Q u f g       is used to predict the 

number of surfacelets 22 22 3Q u f g      . Since it is unnecessary to approximate 

cylindrical surfacelets in the axial direction, the interpolation of   is not shown.  

6.1.1.1 1D interpolation in the surfacelet space 

Suppose that there are n surfacelets available and the prediction of other 

surfacelets along the direction of rotational angle α is conducted. Here cubic spline 

interpolation is used. The cubic spline interpolation can be mathematically represented as 

  
' 2 ' ' 3 ' '

1 1 1 1( ) (3( ) 2 ) (2( ) )

( 1,..., 1)

k k k k k k k k k kI I I t t I I I I t I I I I

k n

             

 
 (6.1) 

where 
1( ) / ( )k k kt       , 

k  is the thk  discretized parameter α, 
kI  is the surface 

integral corresponding to 
k , '

kI  is the first-order derivative of the surface integral with 

respect to parameter α at 
k . It has the continuity of first-order derivative at the 

connection point between two pieces of curves. 

The resulting cubic spline interpolation for parameter α is shown in Figure 79, 

where β=π/90 and µ=0 are fixed, the ‘*’ indicates the data point values used for the 

interpolation. The interpolated curve is then used to predict the values of some new 

surface integrals corresponding to the dots. Here both ‘*’ and dots are evenly spaced. 
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Figure 79 Result of cubic spline interpolation for parameter α 

A piecewise cubic Hermite interpolation is also used. It is mathematically 

represented as 

 3 2 3 2 ' 3 2 3 2 '

1 1( ) (2 3 1) ( 2 ) ( 2 3 ) ( )k k k kI t t I t t t I t t I t t I              (6.2) 

where 
1( ) / ( )k k kt       , 

k  is the thk  discretized parameter α, 
kI  is the surface 

integral corresponding to 
k , '

kI  is the first-order derivative of the surface integral with 

respect to parameter α. Although Eqn. (6.1) and Eqn. (6.2) have the same results for one 

curve piece, the curves for entire domain are different, because the cubic Hermite 

interpolation does not have the continuity of first-order derivative. 

With the same β and µ values, the result of piecewise cubic Hermite interpolation 

for parameter α is shown in Figure 80. It can be seen that the piecewise cubic Hermite 

method has better interpolation result than the cubic spline method. The smoothness of 

 α 

 Integral 

   π  π/5  2π/5  3π/5  4π/5 
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the interpolated curve maintained by the cubic spline becomes not important in the 

prediction of values. 

 

Figure 80 Result of piecewise cubic Hermite interpolating polynomial for parameter α 

When interpolation is performed along the translation direction , the result of the 

cubic spline interpolation for parameter  is shown in Figure 81, where α=0 and β=π/90 

are fixed.  

 α 

 Integral 

   π  π/5  2π/5  3π/5  4π/5 
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Figure 81 Result of cubic spline interpolation for parameter µ 

6.1.1.2 2D interpolation in the surfacelet space 

The 2D interpolation in the surfacelet space is also conducted to show the 

feasibility of surface integral prediction. The 2D cubic spline interpolation is 

mathematically represented as: 

3 3

0 0

( , ) i j

ij

i j

I x y a x y
 


 

where the x coordinate is the value of parameter α, and the y coordinate is the value of 

parameter µ, and 
ija are the coefficients of the polynomial. 

When β=π/90 is fixed, and the interpolation for both rotation α and translation µ is 

applied, the result of the cubic spline interpolation for parameter α and µ is shown in 

Figure 82. In Figure 82, ‘*’ indicates the data point values used for the interpolation. The 

interpolated curve is used to predict the values of some new surface integrals that 

correspond to the red dots. Both types of dots are evenly spaced. It can be seen from the 

 µ 

 Integral 

   π  π/5  2π/5  3π/5  4π/5 
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figure that, the red dots are very close to the interpolated surface. Therefore, the 

interpolation of both rotation α and translation µ can well predict surface integral values.  

 

 

Figure 82 Result of 2D cubic spline interpolation for parameter µ and α 

From the results of both 1D and 2D interpolation, it can be seen that the true value 

can be predicted by the interpolated curves or surfaces. The interpolation of surface 

integral values provides a good prediction without losing feature information. 

Throughout the process, the information of spatial correlation among pixels that form the 

feature is maintained. 

6.1.2 Collocation for zoom-in and zoom-out operations 

In this subsection, the proposed collocation method for zoom-in and zoom-out 

operations is described. The proposed method is general enough for all interpolation or 

extrapolation basis functions. The general principle for 2D cases is described as follows.  
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6.1.2.1 Collocation grid 

From user specified data points, a regular collocation grid needs to be determined 

such that the spatial relationship of the data points is determined, and spatially organized 

collocation points can be generated for interpolation. The grids represent levels of data, 

whereas the collocation points are selected for interpolation and extrapolation at different 

levels. The general rule of grid generation is that grids should be oriented to cover all 

collocation points in the domain but with the smallest grid area.  The subdivision patterns 

used to generate multi-level grids used in this research are bi-sectional and golden-ratio, 

although other patterns can also be applied for the proposed zoom operations. Bi-

sectional pattern just simply divides each side of the domain by halves with one 

additional grid point introduced (as shown in Figure 83), whereas golden-ratio pattern 

introduces two additional grid points for each side with the golden ratio of distances (as 

shown in Figure 85).  

A 1D example of the bi-section collocation scheme is shown in Figure 83(a), and 

a 2D case is shown in Figure 83(b). In Figure 83(a), ‘*’ represents a first-level 

collocation point, and ‘º’ represents a second-level collocation point between the two 

first-level collocation points.  As shown in Figure 83(b), the collocation points are 

formed at different levels, which are used in the zoom operation. All collocation points ar 

specified by the user. The collocation points of the first level are predetermined, which 

are the four corner points in the whole domain. The point located at the middle of the line 

formed by two first-level collocation points, as the result of bi-section, is at the second 

level. Similarly, the point at the middle of the line formed by a pair of second-level 

collocation points is at the third level. It is possible that the collocation points cannot be 
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categorized in adjacent levels, such as the example in Figure 83(b) where no collocation 

points are at level 2. When a point is specified in the surfacelet space, the level where the 

point belongs to can be calculated. When a collocation point has a distance to a grid point 

that is within a given tolerance, it is moved to the corresponding grid point as the 

quantization to reduce the total number of levels in the problem.  

 

 
Figure 83 Determination of the levels of collocation points 

 

6.1.2.2 Zoom-in operation 

For a material region that the user is interested in specifying the details, a zoom-in 

operation is conducted. The zoom-in operation is realized by interpolation in the 

surfacelet space. For the interpolation, three adjacent levels of collocation points are 
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illustrated in Figure 84(a). In this 1D example, the grid is bi-sectional. The original 

collocation points correspond to the value pairs at P1=[0, 0], P2=[0.5, 0.25], P3=[0.625, 

0.39], and P4=[0.75, 0.5625], where the first value is the x coordinate and the second one 

is its surface integral value I(x). The first-level grid points are those at x=0.5N, where N is 

an integer, such as P1 and P2. The second-level grid points include the first-level ones as 

well as those grid points between the first-level ones by bi-section, such as P1, P2, and P4. 

Similarly, the third-level grid points include the first-level, second-level, as well as those 

between the second-level grid points, such as P1, P2, P3, and P4. To zoom into the sub 

region of [0.5,1]x , a new grid point P5 at x=1 is needed. The surface integral value of 

P5 is estimated by extrapolation from P1, P2, and P4.  In this example, a cubic spline is 

used. The result P5=[1,1] is obtained. Then P2, P3, P4, and P5 are utilized to generate an 

interpolation model that can be used to describe other intermediate points in the region of 

[0.5,1]x . The interpolation is the resulting model after the zoom-in operation. 

Similarly, a 2D example is shown in Figure 84(b). Notice that extrapolation is always 

conducted based on the data points on two adjacent levels of grid points, and the 

extrapolated grid points are always on the lower level grid. 
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Figure 84 1D and 2D zoom-in examples 

(a) A 1D zoom-in example 

(b) A 2D zoom-in example 
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6.1.2.3 Zoom-out operation 

After the user specifies the detailed material information at small scales with the 

zoom-in operation, the user usually wants to zoom out to check the overall microstructure 

and material distribution, or move to another region to perform the zoom-in operation. In 

the zoom-out operation, there are two approaches to create grid points of a larger scale 

model. The first approach is to choose some existing grid points that also belong to a 

smaller scale so that the larger scale model can be generated. The second approach is a 

homogenization approach where the surface integral value at a grid point of the larger 

scale is the average of the values at some adjacent grid points in the smaller scale model. 

After the grid points of the larger scale model are chosen, the interpolation scheme is 

applied to predict any unknown position following the same procedure in the zoom-in 

operation. For instance, in Figure 84(a), if the user wants to visualize the entire material 

domain, the grid points P1, P2, and P5 can be chosen for a larger scale model from the 

original small one. The larger scale model is the interpolated model based on P1, P2, and 

P5. 

6.1.2.4 The golden-ratio pattern for zoom-in and zoom-out operations 

Multiscale zoom-in and zoom-out operations are usually conducted with uniform 

grids, such as in Wang et al. [4]. In this collocation grid scheme, the size of the domain in 

the next finer scale is restricted to one half of the current scale. As a result, domains at 

other scales in-between are neglected. This makes the zoom-in and zoom-out operations 

not as flexible and smooth as the users want. Therefore, zoom-in and zoom-out 

operations with other grid schemes are desirable. In this research, a golden-ratio based 

collocation grid method is proposed for more flexible zoom operations to support 
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multiscale design.  The golden ratio is widely used in optimization, esthetics, and music. 

It has the capability of scaling down to a smaller scale with only one additional point, as 

shown in Figure 85. The ratio is utilized as the basis of a new zooming scheme. Similar 

to the uniform grid, the golden ratio grid pattern ensures that the relative distances among 

the grid points are not changed for each zoom operation. Therefore the interpolation basis 

functions can remain the same. This provides numerical convenience during the zoom 

operations. 

As shown in Figure 86, the next finer scale based on the golden-ratio collocation 

grid scheme has a larger domain than the one based on the uniform grid scheme. In each 

zoom-in operation, the dimension of the domain shrinks 50% for the uniform grid but 

only 38.2% for the golden ratio grid. Therefore, the zoom-in operation of the golden ratio 

grid is smoother than that of the uniform grid. At the same time, the number of the 

additional grid points is relatively smaller. For a 2D domain, 7 new grid points out of a 

total of 16 in the complete grid need to be inserted for each zoom operation, whereas in 

the uniform grid scheme 5 new grid points out of a total of 9 need to be inserted. The 

number of the additional grid points for the uniform grid in 3D is 19 out of a total of 27, 

while the number of the additional grid points for the golden ratio grid in 3D is 37 out of 

a total of 64. The relatively grid point addition is 70.4% for the uniform grid and 57.8% 

for the golden ratio grid.  
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Figure 85 The illustration of golden ratio 

 

Figure 86 Comparison between uniform and golden ratio grid in zoom-in operations for 

2D and 3D domains 
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6.2 Multi-scale Materials Design Process 

6.2.1 The combination of the distribution model in the surfacelet space and the 

visualization model in the image space 

Here the visual zoom operations are differentiated from the material model zoom 

operations. During the material model zoom operations in the surfacelet space, the 

underlying material distribution models are created or modified. In contrast, the zoom 

operations in the image space only provide different visualization models without 

affecting the distribution models in the surfacelet space.  

Because the size of 3D material images is usually large, in order to improve 

computational efficiency, it is desirable to use images with the resolution as low as 

possible in the design process. During the visual zoom-in and zoom-out operations, 

images at different visual scales have the same underlying material distribution model in 

the surfacelet space, although more pixels may be shown for a region of interest with 

more detailed material information to be visualized.  The visual zoom-in and zoom-out 

operations can be simply conducted through changing the image resolution and re-

evaluating the underlying material distribution model in the surfacelet space.  

6.2.2 Detailed design steps 

The general procedure of the multi-scale design process is shown in Figure 77. 

The detailed steps are listed in Figure 87 and descried as follows. 

In Step 1, appropriate types and shape parameters of surfacelets are decided to 

represent the geometry of the microstructural features. The determined surfacelet forms 

affect the data exchange between the image and surfacelet spaces. It should be noted that 
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the type of the surfacelet is not limited to the existing surfacelet primitives. It can also be 

composite surfacelets that are combined with those surfacelet primitives. 

In Step 2, the location and orientation of a feature are specified as a point in the 

surfacelet space. Once the type and size of a surfacelet are determined, a microstructural 

feature in the image space can then be created based on the specified point in the 

surfacelet space.  This makes the design process easier and more accurate than directly 

creating features in the image space.  

In Step 3, the visualization model in the 3D material image space can be obtained 

through the inverse surfacelet transform of the intermediate result from Step 2 in the 

surfacelet space. Since only the boundaries need to be reconstructed, the general 

optimization based approach for the inverse surfacelet transform, as illustrated in Chapter 

3, is not necessarily applied. Instead, a simple scheme that set the pixels on the 

boundaries to be equal can be used. 

In Step 4, more detailed material microstructural information, i.e. special artifacts, 

is specified in the image space across different visual scales. The microstructural 

information specified in this step is usually irregular, such as cracks or impurities, which 

are not efficient to be specified in the surfacelet space. 

In Step 5, the forward surfacelet transform is applied so that the surfacelet 

representation of the resulting material images from Step 4 is obtained.  

In Step 6, the interpolation or extrapolation is applied to build the grid based on 

the specified collocation points from Step 5. The continuous material distribution model 

is then constructed in the surfacelet space.  
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In Step 7, the continuous distribution model constructed in Step 6 is evaluated 

first in the surfacelet space so that the desirable resolution is obtained by introducing 

more surfacelets. 

In Step 8, the inverse surfacelet transform is applied to the evaluated distribution 

model in the surfacelet space and the final material distribution as the result of 

specification process is obtained in the image space. 

If zoom-in or zoom-out operations are needed, the above eight-step specification 

process can be repeatedly applied. Based on the zoom procedures in Sections 6.1.2.2, 

6.1.2.3, and 6.1.2.4, new specified collocation points in the new scale are obtained. Then 

these collocation points in the surfacelet space will be used as the initial specification for 

Step 1 of the above process. The zoom-in and zoom-out operations can be applied 

repeatedly.  
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Figure 87 The general procedure of the computer-aided material microstructure design 

process 

6.3 Examples and Results 

6.3.1 Bi-sectional grid 

In this section, an example of fiber-based composites is used to demonstrate the 

proposed multi-scale materials specification method. In this example, a representative 
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volumetric element (RVE) of the fiber composite is used, which contains three fibers 

with different locations and orientations. The composite has three regions: the fiber, the 

matrix, and the fiber-matrix interphase. The interphase is the gradient mixture between 

the fiber and matrix materials in the fiber boundaries. Both the fiber and the matrix 

materials are homogeneous. The fiber-matrix interphase is also of the interest for multi-

scale material specification in addition to the fiber and the matrix. In this example, all 

images that show the intermediate results during the design specification process have the 

same resolution. The image size is chosen as 20×20×9 pixels. The origin of the image 

space is at the middle of the 3D image. The size of the image domain is , , [ 1,1]x y z   for 

all visual scales.   

In the first step, the shape parameters of the fibers are specified. In this example, 

the only shape parameters, which are the radii of fibers, are set to be 0.5. It should be 

noted that this number is proportional to the image domain, which is [-1,1] for all x, y, 

and z directions.  

In the second step, the locations and orientations of the three fibers are specified 

in the surfacelet space. As discussed in Section 3.2, the dimension of the surfacelet space 

generally corresponds to the number of orientation and position parameters used in the 

surfacelets. However, for this example, the fourth parameter, the radius r, is introduced as 

the shape parameter in addition to α, β, and µ in order to model the gradient of the 

interphase region.  

In this example, the size of the surfacelet domain is 30 30 4 6g su f    . 

The ranges of the orientation parameters are set to be (0, / 2) (0,1.73)D  , 

[0,2 )  , [ / 2, / 2]     and [0,3]r  to ensure that the surfacelets cover all of the 
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possible surfacelet positions and orientations, where 
2 2 22 2 2D     is the diagonal 

length of the 3D images. The user specified coordinates for the three collocation points in 

the surfacelet space are [0.692, 1.257, 0.5], [1.386, 1.885, 0.5], and [0.693, 4.398, 0.5], or 

at the indices of [12, 6, 6], [24, 9, 6], and [6, 21, 6] respectively. They are shown in 

Figure 88. The surfacelet space is 4D. Because the three fibers have the same parameter 

value of β, only the subspace of α, µ, and r is shown in the figure. The three collocation 

points have the same value for parameter r, which indicates that the three surfacelets have 

the same radius.  

In the third step, by the inverse surfacelet transform, the 3D material images can 

be obtained. The pixel values on the boundaries are set to be equal. In this example, all 

pixel values are set to be 255. The result is shown in Figure 89. To show the contrast with 

the result in a higher resolution (more discrete values in the image space), an image with 

the resolution of 50×50×9 with the same material distribution model is shown in Figure 

90. It can be seen from Figure 90 that the position and orientation, as well as the 

boundary information of the fibers, are visually very clear. In contrast, in Figure 89, 

because the image resolution is low, only the position and orientation information of the 

fibers is identifiable, and the boundary information is not clear. Therefore, the visual 

zoom-in operation is typically required for specifying the interphase of fiber composites. 

The zoom-in ratio is 4 in this example. The result of the visual zoom-in operation is 

shown in Figure 91 (b). 
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 Figure 88 The specification result of locations and orientations of the three fibers in the 

surfacelet domain at STEP 2 
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Figure 89 The result of inverse surfacelet transform at STEP 3 (the size of the 3D image 

is 20×20×9) 

 
 

Figure 90 The first slice of the resulting image of inverse surfacelet transform at Step 3 

with enhanced resolution (the size is 50×50×9) 
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In the fourth step, more detailed material microstructural information is specified 

in the image space. This is essential for specifying a nonlinear gradation of material 

composition. In this example, four additional isosurfaces are specified with two for the 

interphase region and the other two for the internal region of the fiber. There is no crack 

or impurity specified in this example. The four additional isosurfaces for Fiber 2 are 

specified in the image space with four different isovalues of the surfacelet, which are -

0.2, -0.1, 0.05 and 0.1 respectively, in order to model the interphase and internal region of 

Fiber 2. As an example, for the interphase region, the pixel values on the isosurface with 

the isovalue of 0.03 are set to be 173, and the ones with the isovalue of 0.06 are set to be 

32. For the internal region, the pixel values on the two additional isosurface are all set to 

be 255, assuming a uniform composition inside the fibers. It should be noted that the 

direct specification of the four additional isosurfaces on the resulting image of Step 3 is 

technically feasible. However, since the interphase regions are usually thin compared to 

the radius of the fibers, and one pixel represents a large region in the low-resolution 

images, it is likely to be inaccurate and inconvenient to specify with these images. The 

first slice of the result is shown in Figure 91 (c) for comparison. The full 3D image is 

shown in Figure 92. 

In the fifth step, the forward surfacelet transform is applied so that the surfacelet 

representation of the material images from Step 4 is obtained. Since the origin of the 

image space is always in the middle of the 3D image at the current visual scale, the 

coordinate system is changed during the visual zoom-in operation, and the parameters 

and all of the coordinates for all five surfacelets are changed. When there is no crack or 

impurity specified in STEP 4, the new parameters and coordinates of the surfacelets can 
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either be obtained through coordinate system transformation or feature identification in 

the forward surfacelet transform. In this chapter, to demonstrate the general method, the 

method of feature identification is utilized. The result is shown in Figure 94, where the 

sizes of the circular markers indicate the surface integral values. To show the accuracy of 

the feature identification result, the surfacelets are shown in the image space by the 

inverse surfacelet transform. The result is shown in Figure 91 (d) for comparison. The 

full 3D image is shown in Figure 93. It can be seen that there is only slight difference 

between the results in Figure 91 (c) and (d), and also between Figure 92 and Figure 93. 

 

Figure 91 Zoom-in and details design of fiber-matrix interphase 

(a) The resulting image of STEP 3 

(d) The reconstructed image of the 

resulting surfacelets in STEP 5 
(c) The resulting image of STEP 4 

(b) The resulting image after 

visual zoom-in operation 
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Figure 92 The full resulting 3D image of STEP 4 
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Figure 93 The full reconstructed 3D image of the resulting surfacelets in STEP 5 

In the sixth step, the continuous material distribution model is constructed by 

interpolating the five collocation points in the surfacelet space for fiber 2 as a result of the 

previous step. A cubic spline is used in this example. 

In the seventh step, the continuous distribution model constructed in the sixth step 

is evaluated in the surfacelet space. Surface integral values of the surfacelets between the 

five specified ones in the surfacelet space are predicted with from the cubic spline. The 

result is shown in Figure 95.  
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Figure 94 The result of STEP 5 

 

Figure 95 The result of STEP 7 
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In the last step, the visualization model in the image space is obtained through the 

inverse surfacelet transform from the evaluation of the distribution model from the 

seventh step. The pixel values on the same surfacelet are assumed to be the same in this 

example. When a pixel is on two surfacelets at the same time, the pixel value is the 

average of the two possible values. The full reconstruction result is shown in Figure 96.  

Some of the detailed pixel values of the resulting image after the model zoom-in 

operation in the box region indicated in Figure 96 are listed in Table 18. It is seen that a 

continuous distribution of materials in the interphase region is obtained. 

After the specification of the detailed interphase information of Fiber 2, a zoom-

out operation can be conducted for the visualization of the overall microstructure. In this 

example, the image is zoomed out by 4 times of the original visual scale. The surface 

integral value at the specified middle collocation point in Figure 94 is used. The result of 

the zoom-out operation is shown in Figure 97. It is seen that the interphase region has no 

continuous distribution any more. Suppose that the designer would like to zoom into the 

interphase region further from the result in Figure 96, the new set of collocation points 

can be generated either by new specifications in the smaller region from the designer, or 

by evaluating the distribution model created in the above procedure at the user-specified 

locations. The new set of collocation points then are used to create the more detailed 

distribution model, following the same procedure in Figure 77. 
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Figure 96 The image reconstruction result in STEP 8 

Table 18 Pixel values of the box region indicated in Figure 96 

 

 
Pixel number in the horizontal direction 
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7 0 0 32 71.4 110.8 173 

8 0 32 71.4 110.9 173 220.4 

9 0 32 110.9 173 220 225 

10 32 110.9 173 220 255 255 

11 110.9 173 220 255 255 255 

12 141.9 220.4 255 255 255 255 
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Figure 97 The resulting image of the zoom-out operation (the first slice only) 

6.3.2 Golden-ratio grid 

In this subsection, the scheme of golden-ratio grid is demonstrated with an 

example of ellipsoidal surfacelet. Still, material composition is modeled in this example. 

The image size is chosen as 20×20×9 pixels. The origin of the image space is at the 

middle of the 3D image. The size of the image domain is , , [ 1,1]x y z   for all visual 

scales.  

The equation of an ellipsoidal surfacelet is shown in Eqn. (2.3) in Section 2.1.2. 

In order to simplify the description and emphasize on the collocation, the steps before 

Step 5 are neglected. In this example, only the boundary portion or the interphase region 

is modeled. Similar to the example in Section 6.3.1, the radius parameter is interpolated. 

The shape parameters of the ellipsoidal surfacelet are 1 1.7r  , 3 9r  , and 3 3r  . The 

identified position and orientation of the particle are α=0.5712, β=0.0873, and b=-0.4724.  
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Four isosurfaces with golden-ratio radius distribution are specified. They are 255, 

193, 100 and 32 respectively. The user-specified isosurfaces for an ellipsoidal particle are 

shown in Figure 98. After the surfacelet transform, the surfacelets for the isosurfaces are 

obtained, as shown in Figure 99. After interpolation, the intermediate isosurfaces with 

interpolated surface integrals are obtained. The result is shown as the hollow circles in 

Figure 100. With the inverse surfacelet transform, the resulting images of the 

interpolation can be obtained, as shown in Figure 101. As seen in the result, there are 

only 5 additional points required to specify the distribution in the domain. However, in 

the bi-sectional example in Section 6.3.1, 15 additional are needed to interpolate the 

boundary region. Therefore, the golden-ratio grid scheme requires few evaluation points 

from the interpolated distribution model to specify the distribution in the domain.  
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Figure 98 The user-specified isosurfaces for an ellipsoidal particle 
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Figure 99 The user-specified isosurfaces in the surfacelet space with golden-ratio grids 

 
 

Figure 100 The interpolation of surface integrals with golden-ratio grids 
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Figure 101 The resulting image of the specification process 

6.4 A Property-Oriented Materials Design Process based on the Proposed 

Specification Scheme 

The ultimate goal of the multi-scale material specification method proposed in the 

previous sections of this chapter is to provide a geometry-material composition 

distribution design specification tool. This design specification tool is supposed to be 

integrated with prediction methods or tools for physical properties of material so that 

engineers are able to design materials based on the desired material properties. In this 
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section, a concept of property-oriented materials design and reverse engineering 

processes is proposed based on the developed specification scheme. 

6.4.1 The general process of property-oriented materials design 

The general process of property-oriented materials design should be a closed-loop 

process so that the design result can be evaluated in terms of the physical properties and 

direct the modification of the material microstructures and compositions. The flow chart 

of the process is shown in Figure 102, and the detailed steps are explained as follows. 

First of all, based on the desired material properties and prior knowledge of the 

general microstructure-property relationship, the multi-scale material design is conducted 

such that the material microstructures and compositions can be created. It has been 

demonstrated that this step can be done with the proposed method in the previous 

sections of this chapter. The outputs of this step are 3D material images showing the 

material microstructures and compositions.  

In the second step, based on these 3D images, the effective physical properties are 

predicted. The corresponding methods of prediction will be discussed in Section 6.4.2.  

In the third step, the difference between the desired properties and the effective 

properties of the designed materials are evaluated. If the difference is satisfied, the design 

process is complete, and the resulting surfacelet model is the output of the process. 

Otherwise, if the difference is unsatisfied, the microstructures and compositions are 

modified, and the prediction of properties and evaluation are conducted again. This 

process is iterated until the result is satisfied. 
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Figure 102 A property-oriented materials design process 

The reverse engineering process is aimed at the modification of existing materials. 

Therefore, the initial surfacelet model of the design process is not created by the users. 

Instead, it is constructed from the 3D images of existing materials. The flow chart of the 

process is shown in Figure 103, and the detailed steps are explained as follows. 

First of all, 3D material imaging is conducted so that 3D material images can be 

obtained. This step is also called material characterization. 

In the second step, the 3D images are preprocessed. This may include the 

decomposition of the original 3D images to component images so that the relative 

compositions of multiple material components can be obtained. 

In the third step, the surfacelet transform is conducted so that the surfacelet model 

of the existing materials is constructed as the initial model of the design process.  
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In the last step, the property-oriented material design process, as described at the 

beginning of this section is conducted.  

 

Figure 103 The reverse engineering of the design process  

6.4.2 Prediction of effective physical properties of heterogeneous materials 

In the proposed general process of property-oriented materials design, once the 

3D material images are obtained from the multi-scale material design, theoretical 

prediction of effective properties is conducted. The effective physical properties of 

heterogeneous materials can be conducted either by analytical models or Finite Element 

Analysis (FEA).  

6.4.2.1 Analytical method 

In material physical properties, some are structure-sensitive, such as yield 

strength, while others are structure-insensitive such as elastic constants. Some properties 

of composites are linearly dependent on the mass or volume fraction, such as elastic 

modulus and conductivity, while others are nonlinearly dependent, such as strength. For 
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the structure-insensitive properties, some existing analytical models for effective 

properties of two-component materials are shown in Table 19 [111]. In this table, 1  is 

the property of the continuous phase, 2  the property of the dispersed phase, e  the 

corresponding effective property,   the volume fraction of the dispersed phase,   the 

property ratio ( 2 1/   ), n  the shape factor of the dispersed phase. 

6.4.2.2 Numerical method 

Besides analytical models, numerical methods, such as FEA, can also be done to 

compute the physical properties of materials based on 3D images.  Lewis et al. [112] 

generated an FEA mesh that consists of eight-node brick elements, with each element 

corresponding to one voxel in the sampled microstructure. This method will be utilized in 

the FEA of 3D material images designed with the proposed method in the previous 

sections of this chapter.  
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Table 19 Existing analytical models for effective properties of two-component materials 

Model Microstructure Schemes Expression 
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6.5 Discussions and Future Work 

In this chapter, a multi-scale materials modeling and specification scheme is 

proposed for design and visualization of material microstructures at multiple levels of 

details. The combination of the visual and model zooming mechanism is able to support 

seamless zoom-in and zoom-out operations. The two-scale zoom-in method is developed 

based on collocation in the surfacelet space. A golden-ratio grid mechanism is proposed 

to reduce the percentage of additional new grid points. Two collocation schemes of bi-

sectional and golden-ratio grids are demonstrated with an example of the design of fiber-

based composite microstructure, and an example of the interphase region of an ellipsoidal 

particle. The proposed method is general enough for all zoom-in operations during the 

design process. This method allows for seamless zooming operations without the 

artificial separation of scales. 

The surfacelets created for the main microstructural features at the beginning of 

the design process can not only be specified by users, but also be obtained from the 

forward surfacelet transform of existing material images. Therefore, this proposed multi-

scale material modeling method also supports the reverse engineering process.  

For a complete materials design based on the proposed specification scheme, a 

concept of property-oriented materials design and reverse engineering processes is also 

proposed. As a key step in the two processes, the methods for the prediction of effective 

physical properties of heterogeneous materials, including analytical models and the FEA 

method, are introduced. 

The future extension of this work will include: 1) The design process with the 

collocation in 2D and other higher dimensions in the surfacelet domain will be 
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implemented and tested. 2) The deformation of microstructures will also be modeled. 3) 

The entire design process will be implemented, especially for the FEA portion. The 

planned scheme of the mesh is shown in Figure 104. 4) With the consideration of process 

uncertainty, stochasticity or randomness can be introduced into the location and 

orientation parameters of surfacelets. The sensitivity and robustness of materials 

properties with respect to the variations need to be assessed.  
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Figure 104 The FEA mesh of an example 3D material image designed with the proposed 

method in this chatper 
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(b) An eight-node brick element (a) A slice of an example 3D material 

image designed with the proposed 

method in this chapter 
  

(c) The FEA mesh with each eight-node brick element corresponding to 

one voxel in the designed 3D material image (shown in 2D) 
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CHAPTER 7  

CONCLUSION AND FUTURE WORK 

7.1 Summary of the Dissertation 

This dissertation provides the conceptual and theoretical foundation for a future 

multi-scale materials design tool that design engineers, analysts, manufacturers, materials 

scientists, and others can all use. The concepts and theories in this dissertation also enable 

an integrated CAD/CAE/CAM environment where every artifact that is designed is 

physically meaningful. This integration will consequently enhance the scientific and 

technological understanding of the future CAD systems. As such, this dissertation 

contributes to the Material Genome Initiative (MGI) launched by the White House in 

June 2011 in the aspects of Computational tools and Digital data.  

Specifically, four enabling techniques for surfacelet-based multi-scale 

heterogeneous materials modeling are developed. First, a method of inverse surfacelet 

transform is developed such that the original images can be reconstructed from the 

surfacelets. The prior knowledge of material properties and distributions is applied to 

solve the under-constrained problems. The coupled forward and inverse surfacelet 

transform also provides a new method of image compression with an approximately 50% 

compression rate. Second, composite surfacelets with the combinations of different types 

of primitive surfacelets are created to increase the flexibility of the surfacelet transform 

with potentially fewer surfacelets and improved reconstruction accuracy by the capability 

of identifying complex feature geometries. Third, a general method of approximating 

material composition and local property distributions with surfacelets is proposed based 

on the feature identification result of the 3D material images, and wavelet approximation 
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of the material composition or local property distributions. Fourth, a multi-scale materials 

modeling method is proposed to support interactive design and visualization of material 

microstructures at multiple levels of details. The combination of the visual and model 

zooming mechanism is able to support seamless zoom-in and zoom-out operations. The 

two-scale zoom-in method is developed based on collocation in the surfacelet space. An 

example of the design of fiber-based composite microstructure is demonstrated. The 

proposed method is general enough for all zoom-in operations during the design process. 

In addition, the scheme of a property-oriented materials design process is also proposed.   

7.2 Contributions of the Dissertation 

The technical contributions of this work include: 

 A general method of geometric feature identification from 3D material images 

based on the largest surface integrals is proposed. With this method, the high-level 

geometric information can be extracted from material microstructural images.  

 A method of image data compression based on the forward and inverse surfacelet 

transform is developed.  

 A method of composite surfacelet for the identification of complex feature 

geometries is proposed.  

 A general method of approximating material composition and local property 

distributions with surfacelets is proposed for the reverse engineering of materials 

design.  

 A generic multi-scale materials modeling method is proposed to support interactive 

design specification and visualization of material microstructures at multiple levels 

of details with seamless zooming capability. 
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7.3 Future Work 

7.3.1 Further image compression based on the feasibility of interpolation and 

extrapolation in the surfacelet space 

It has been demonstrated in Section 6.1.1 that when the interpolation or 

extrapolation is conducted in the surfacelet space, surface integrals can be well 

approximated with small errors. It is therefore used in the multi-scale materials design 

process to generate unspecified surfacelets. In future, this technique will be utilized for 

the prediction of surface integrals in the inverse surfacelet transform process so that less 

surfacelets can be used to reconstruct 3D images. This is expected to lead to higher data 

compression rate.  

 

7.3.2 Multiscale material modeling with multiscale wavelet approximation 

It has been demonstrated in Chapter 5 that surfacelets are able to model the 

material local property distributions through wavelet approximation. It should be noted 

that, as stated in Section 1.4, one of the main reasons why wavelet is chosen to construct 

the surfacelet is that wavelet is multiscale by nature. That is, at larger scales, less 

wavelets are used for approximation with lower accuracy to show less detailed or global 

distribution; whereas, at smaller scales, more wavelets are used for approximation with 

higher accuracy to show more detailed or local distribution. It is desirable that this 

multiscale nature is utilized in multiscale material modeling. However, in Chapter 5, the 

wavelet approximation and the resulting surfacelet approximation are only at one single 

scale, instead of multiple scales. More detailed research and implementation of this idea 

is not covered in this dissertation. In future, a multiscale material modeling method based 
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on the feature identification result will be developed, and applied to the same example in 

Chapter 5. 
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