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Summary

This master’s thesis discusses the finite deformation response of viscoelastic par-

allel plane layered composites. An understanding of their response can aid in the

creation of multifunctional materials that optimize stiffness and damping. Such ma-

terials could be used in structural applications to dampen vibrations as well as in

acoustic applications to absorb sound.

Chapter 1 discusses some fundamental concepts dealing with viscoelasticity. Chap-

ters 2 and 3 provide a literature review on past research that inspired this work as

well as the objectives of this research. Chapter 4 provides a detailed overview on the

finite element simulations that were done in this research. In Chapter 5 an overview

of buckling in elastic composites is provided. This facilitates the understanding of the

finite deformation response of viscoelastic composites. Chapter 6 begins the discus-

sion on the finite deformation response by considering constant strain rate loading of

both viscoelastic and elastic parallel plane layered composites. Attention is given to

the postbuckling response as well as the evolution of buckling due to viscoelasticity.

Chapter 7 furthers the discussion to show how the stiffness and damping properties

of viscoelastic composites under periodic loading can be tuned. In the final chapter,

an outline of possible extensions to this research are provided.

xi



Chapter 1

Introduction

Creating multifunctional materials has been a focus of research for many years [9].

Techniques can been used to create materials that optimize various parameters. Two

such parameters that will be the focus of this thesis are stiffness and damping. Gener-

ally, a stiff material like steel does not possess very favorable damping characteristics.

On the other hand, a viscoelastic polymer does have very high damping, however is

not very stiff [2, 20]. To compare materials and get a better understanding of what is

attainable, a stiffness loss map, which simultaneously graphs the stiffness and damp-

ing of various materials, can be created. An example is shown in Fig. 1.1 [20]. Stiffer

materials like steel and other structural metals are shown to the upper left which is

characteristic of materials with high stiffness and low damping. Lossy materials like

rubber and other polymers are shown to the bottom right which is characteristic of

materials with low stiffness and high damping. Ideal materials would possess both

high stiffness and high damping and would be situated towards the upper right in

this graph. One common way to compare materials is to look at a figure of merit.

A figure of merit is a tool often used in engineering design to convey how ’good’ a

material is. It can be especially useful when looking at two competing properties, like

stiffness and damping. A single number that characterizes both values for a particular

material is useful. Chen and Lakes [5] proposed a figure of merit for this case as the

product of a materials stiffness and damping. The line for a figure of merit of 0.6

GPa is shown on Fig. 1.1. A material with good simultaneous properties would be

situated above this line.

Creating a composite consisting of such materials that optimizes both parameters

is of great interest. For example, it could be used in structural applications to dampen

vibrations. They would provide the rigidity required while simultaneously attenuating
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Figure 1.1: Stiffness loss map for various materials [20].

any vibration caused by the surrounding environment (e.g. in a vehicle or machinery).

Additionally, such materials could be used to absorb sound as well. Before addressing

an in depth literature review on previous research done pertaining to this topic, an

overview of pertinent concepts will be covered.

1.1 What is viscoelasticity?

Hooke’s law is a common principle that correlates a force with a displacement for

linear elastic materials. In the small strain regime Eq. 1.1 shows Hooke’s law in terms

of stress and strain, which is more applicable in this case, for the one-dimensional

case.

σ = Eϵ (1.1)

σ is the stress, ϵ is the strain and E is the Young’s modulus. Elastic materials are often

represented as springs as shown in Fig. 1.2A. Viscous materials behave differently in

that they are time and rate dependent. The stress-strain relationship for a viscous

2



material is shown by the following formula:

σ = η
dϵ

dt
(1.2)

η, the viscosity, is used to characterize viscous materials. Viscous materials are often

represented as dashpots as shown in Fig. 1.2B.

A B

E ηε

σ

ε

σ

Figure 1.2: A. Elastic spring with stiffness E. B. Dashpot with viscosity η.

A viscoelastic material exhibits characteristics of both elastic and viscous materials

and can be described well by two phenomena: creep and stress relaxation. If a

viscoelastic material is held under force control it will experience creep. In other

words, if a step stress is applied and then held to a viscoelastic material, the strain

will continue to gradually increase and eventually converge as shown in Fig. 1.3A.

On the other hand, if a step strain is applied and held to a viscoelastic material, it

will experience stress relaxation. The stress will gradually decrease and converge as

shown in Fig. 1.3B. Both creep and stress relaxation are dependent on the viscosity

of the material. Using the latter experiment, the relaxation modulus, E(t), can be

obtained.

Viscoelastic materials are generally represented by using springs and dashpots.

One common way is to represent them as a standard linear solid, which combines

springs and a dashpot in both series and parallel (Fig. 1.4).

3



A B

σ

ε σ

ε

Time

TimeTime

Time

Figure 1.3: A. Creep as a result of a step stress. B. Stress relaxation as a function of
step strain.

E
2

η

E
1

Figure 1.4: Standard linear solid represented using springs and dashpots

Another defining feature of a viscoelastic material is that unlike an elastic material,

it dissipates mechanical energy. Under periodic loading, the stress vs. strain response

for an elastic material follows the same path while loading and unloading as seen in

Fig. 1.5A. The stress vs strain response for a viscoelastic material under dynamic

loading is more complex. It is time dependent and does not follow the same path

during loading and unloading as seen in Fig. 1.5B. This is because during loading

the strain lags the stress (shown in Fig. 1.6). As a result we see damping, or energy

dissipation.
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A B

Figure 1.5: A. Elastic stress strain relationship. B. Viscoelastic stress strain relation-
ship.
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Figure 1.6: Normalized stress and strain response for a linear viscoelastic material,
where stress lags the strain

1.2 Stiffness and Damping of Viscoelastic Materials

1.2.1 Stiffness

The stiffness, or Young’s modulus, for a linear elastic material is the slope of the

stress-strain response (Fig. 1.5A). In the case of a viscoelastic material the stiffness

can be defined in multiple ways. For example, consider a situation when it is subject

5



to a sinusoidal displacement shown by the following equation:

ϵ(t) = ∆ϵ sin(ωt) = Im(∆ϵ eiωt) (1.3)

where ∆ϵ is the amplitude of loading, and ω is the frequency in radians. The stress

response is also sinusoidal as shown in the following equation:

σ(t) = ∆σ sin(ωt+ δ) = Im(∆ϵ ei(ωt+δ)) (1.4)

where ∆σ is the amplitude of the response, δ is the phase lag between the stress

and strain, and ω is the frequency in radians. Because the strain lags the stress

the dynamic Young’s modulus, E∗, can be written in terms of real and imaginary

components shown below:

ϵ∗ = ∆ϵ eiωt (1.5)

σ∗ = ∆σ ei(ωt+δ) (1.6)

E∗ =
σ∗

ϵ∗
(1.7)

E∗ = E ′ + iE ′′ (1.8)

where E ′ is the storage modulus and E ′′ is the loss modulus. One way to define

the stiffness is the absolute value of the dynamic Young’s modulus, E∗, also written

as |E∗|. The stiffness of a viscoelastic material may also be defined by its storage

modulus, E ′. Fig. 1.7 depicts both |E∗| and E ′ graphically. |E∗| and E ′ are typically

dependent on ω.
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1
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Figure 1.7: Measures of stiffness, |E∗| and E ′, depicted for a linear viscoelastic ma-
terial.

1.2.2 Damping

There are several ways to measure damping for a viscoelastic material. One common

way to describe the damping of a linear viscoelastic material is by the tangent of the

phase lag, or tan(δ). The phase lag, δ, can be found graphically as shown in Fig. 1.6.

tan(δ) can also be found from the loss and storage moduli:

tan(δ) =
E ′′

E ′ (1.9)

Another common way to describe the damping of a linear viscoelastic material is by

considering the energy stored, Ws, and energy dissipated, Wd, per unit volume. To

be specific:

tan(δ) =
2

π

Wd

Ws

(1.10)
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where Ws and Wd are defined as:

Ws =
1

2
E ′ϵ20 (1.11)

Wd =
π

4
E ′′ϵ20 (1.12)

It is helpful to note that the energy dissipated per cycle corresponds to the area

within the stress-strain response. This definition is useful because it can be used in

the case where the stress-strain loop is not an ellipse. This is often seen in the case

of nonlinear response, which is covered in more detail in Appendix B.

1.3 Nonlinear Viscoelasticity

Nonlinear behavior can result from either material or geometric nonlinearities. Ma-

terial nonlinearities refer to a nonlinear stress-strain relationship intrinsic to the ma-

terial. It is important to realize that while material nonlinearities do become more

obvious at high strains, only a very small strain is needed to see the effects. Geometric

nonlinearities arise in situations of high displacement or strain. They refer to nonlin-

earities in the kinematics, like strain-displacement relations. An example of a linear

viscoelastic stress-strain response is shown in Fig. 1.8A while a nonlinear response is

shown in Fig. 1.8B. The nonlinearities present in the results of this research are due

to geometric nonlinearities, and will be dicussed in further detail.
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A B

Figure 1.8: A. Linear viscoelastic response. B. Nonlinear viscoelastic response. Differs
greatly in tension and compression
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Chapter 2

Literature Review

Layered composites are a topic of research in a wide range of fields, and exam-

ples are commonly found naturally throughout nature. For example, the imbricated

(layered) nature of fish scales are a point of research as they serve several purposes

from protection and regeneration to camouflage. Browning et al. [4] experimentally

showed that the mechanical response of these layers can be tuned by altering variables

such as aspect ratio of the scales, overlap length and angle of the scales. Rudykh and

Boyce [31] developed an analytical solution for the same material structure but also

focused on the presence of instabilities at high angles. Angles were considered with

respect to the horizontal axis while loaded vertically. At lower angles, there is more

shearing in the response which decreases the compression in the plates. At higher

angles there is less shearing, so buckling is evident at a critical strain . Rudykh and

Boyce [32] further developed this idea to utilize localized loading to transform it to

large rotational motion. Experiments showed that this can be tuned for given an-

gles and material properties. This literature review will first describe how composite

materials with both high stiffness and high damping are attainable, then cover ex-

tremal composites and finally provide a review on buckling in layered structures and

composites.

2.1 Composites with high stiffness and high damping

Previous research done on the effective stiffness and loss of viscoelastic composites has

shown that various variables can be tuned to achieve different characteristics. One

such variable is geometry. For layered composites, the geometry is characterized by

the angle, θ, between the layer and loading directions. Two simple examples, studied

by Chen and Lakes [5], are the Reuss (θ = 90 degree) and Voigt (θ = 0 degree)

10



geometries, which represent limiting cases. Examples are shown in Fig. 2.1.

A B

Figure 2.1: A. Two phase Reuss composite. B. Two phase Voigt composite.

Chen and Lakes [5] derived formulae and showed that the Reuss geometry better

optimizes stiffness and damping. For small increases in volume fraction of the soft

material, there is a significant increase in damping with an insignificant decrease in

stiffness. They also proposed that taking advantage of non-affine deformation is one

way to create high-loss composites. This will happen as long as the lossy material

experiences higher strain than the actual composite does.

Liu et al. [24] investigated the upper and lower bounds on the effective stiffness of

a material when the Poisson’s ratio was taken into account. They derived formulae to

show that for a two phase elastic composite taking into account Poisson effects greatly

influences the effective stiffness. Meaud and Hulbert [26] expanded this concept to

viscoelastic materials. They found the effective dynamic modulus and loss factors

for the Reuss and Voigt topologies when Poisson effects are taken into account by

applying the viscoelastic correspondence principle to the equations derived by Liu

et al. They also derived equations to relate the tensile and bulk loss factors for a

linear viscoelastic material. Their results showed that Poisson effects do not have

much of an effect on the stiffness and damping of the Voigt composite. However, the

Poisson’s ratio and bulk loss factor of the lossy material greatly influence the stiffness

11



and damping of the Reuss composite.

Layered composites can also be manufactured such that the layers are angled

(shown in Fig. 2.2). Meaud et al. [27] derived the effective dynamic properties

of layered composites when loaded in an arbitrary direction. This showed that the

effective stiffness and damping of the composite depends on the volume fraction of

the stiff material and the angle at which the load is applied with respect to the layer

direction. Both factors also greatly influence the strains that are experienced by the

lossy polymer. They found that simultaneous high damping and high stiffness are

achieved when the equivalent strain in the lossy material is large. Additionally, they

showed that the 10 degree composite actually displayed better damping and stiffness

properties than even the Reuss composite.

T
A

T
B

X
x

Z

z

0
θ

σ
xx
(t)

N

M
^

^

0
θ

Figure 2.2: Layered composite with materials A and B. TA and TB denote the layer
thicknesses. The volume fraction of material A is ϕA = TA/(TA+TB) . The x axis and
the unit vector M̂ are in the layer direction while the z axis and the unit vector N̂ are
perpendicular to the layer direction. The composite is loaded in the X direction. θ0 is
the angle between the X axis and the layer direction in the undeformed configuration
[27].
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2.2 Extremal composites

An extremal composite is one which has properties which exceed those of either

one of its constituent materials. Research has shown that both extreme stiffness as

well as extreme damping are possible as long as the geometries or properties of the

constituent materials are chosen or are tuned accordingly.

2.2.1 Negative stiffness for extreme stiffness

When a displacement is applied to a system, there is a resulting reaction force that

increases in the opposing direction. Negative stiffness is characterized by a decreasing

reaction force, which in essence allows the system to deform even more. Generally a

negative stiffness element represents elastic instability. However, it can be made stable

if its boundaries are constrained (i.e. in a boundary value problem, only displacement

boundary conditions are employed) [21]. Studies have shown that composite materials

including a negative stiffness element can have a stiffness greater than either one of

the constituent materials.

Lakes and Drugan [21] showed theoretically that elastic composites can be much

stiffer if a negative stiffness element is included. This is because the local strain in

the composite around the negative stiffness element is much larger than the macro-

scopic applied strain. This results in a large amount of stored energy due to small

deformation, which is characteristic of high stiffness.

Jaglinski et. al [16] were able to experimentally test composites made of Barium

Titanate in a Tin matrix. They chose their materials such that the inclusions could

have a negative bulk modulus when exposed to a certain temperature. The composites

underwent cyclic loading resulting in a material with stiffness higher than that of

diamond at this temperature.
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2.2.2 Extreme damping

Plenty of previous research has been done to design materials that exhibit extreme

damping. Both theoretical and experimental results show that extreme damping is

indeed possible when negative stiffness elements are introduced into a system. Lakes

et al. [22] showed experimentally that extreme damping is possible in composite

materials when one of the materials exhibited a negative bulk modulus. They also

described a method for creating such a material. Wang and Lakes [34] showed theo-

retically how a material with a negative bulk modulus is possible and how it can lead

to extreme mechanical damping. Wang and Lakes [35] also demonstrated through

the use of a discrete lumped parameter model that stable extreme damping is indeed

viable by introducing negative stiffness as a geometric nonlinearity.

A bistable buckled beam, like the one shown in Fig. 2.3, is one example of a

system that exhibits a geometric nonlinearity. Dong and Lakes [7] created a damper

system using PMMA (polymethyl methacrylate) rod, a structural polymer with in-

trinsic damping properties that can also support large strains. PMMA rods of differ-

ent lengths (aspect ratio was varied) were placed under sinusoidal loading, and the

resultant force and displacement data was gathered. They observed that when the

displacement was high, this caused negative stiffness in the response, consequently

increasing the damping capacity. Kalathur and Lakes [17] performed similar experi-

ments in which they showed that similar results can be obtained in the small ampli-

tude regime. Additionally, they displayed the time dependent relaxation properties

of PMMA. Being viscoelastic, PMMA experiences stress relaxation, so once strained

the stiffness decreases as a function of time (Fig. 1.3B). Kashdan et al. [18] also

fabricated and experimentally tested a bistable system. They found that in addition

to providing an increase in damping, the bistable system allowed for tuning of the

dynamic behavior.

Kochmann [19] further enhanced this concept by deriving formulae that model the
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Figure 2.3: Buckled bistable beam. Original configuration shown in gray.

linear viscoelastic response of various linear viscoelastic composite systems near the

loss of stability, varying from a one-dimensional spring-dashpot system to a two-phase

particle-matrix composite. The formulae considered both the subresonant and reso-

nant regimes and showed that extreme damping is indeed achievable in the presence

of nearly unstable constituents.

Fulcher et al. [8] investigated the concept of using bistable buckled beams for

shock isolation systems. They conducted experiments observing the various stable

buckling modes of the beams. The study of buckling has also been expanded to

layered structures and composites as well.

2.3 Buckling in layered structures and composites

Buckling is considered to be an elastic instability, and is commonly considered as a

mode of failure for load bearing materials. There has been extensive research done

on the viscoelastic response and buckling of fiber-reinforced materials dating all the

way back to the 1960’s [10, 11, 30]. Rosen’s work [30] showed that there are two

buckling modes that can occur: the shear and transverse buckling modes shown in

Fig. 2.4 [28]. Parnes and Chiskis [28] looked at this concept by studying stiff elastic

fiber reinforced composites and drew two conclusions. First, the shear buckling mode

will always dominate as a greater stress is needed to observe the transverse buckling

mode. Second, for the case of a non-dilute fiber reinforced composites (i.e. when the

volume fraction of the stiffer constituent is high) the buckling wavelength is infinite,

however for a dilute composite (i.e. when the volume fraction of the stiffer constituent

is small) the buckling wavelength can indeed be a finite value, contrary to what was
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proposed by Rosen. Additionally, they also derived formulae to calculate the critical

buckling strain, ϵcr, as well as the critical buckling wavelength, Lcr.

A B

Figure 2.4: A. Shear buckling mode. B. Transverse buckling mode [28].

Recent work has been focused on exploiting buckling to add functionality. Lopez-

Pamies and Casteneda [25] studied hyperelastic laminates with the idea that the

results can be expanded to more general microstructures. They characterized the re-

sponse under finite shear deformation and showed that the layer direction can change

(as a result of rotation) depending on the initial orientation angle of the composite,

potentially leading to a softening mechanism. Rudykh and Boyce [32] investigated

using localized loading to induce rotation on hyperelastic materials. They compared

experimental and numerical results to show that the initial orientation angle has a

great effect on the induced rotation. Li et. al [23] studied the wrinkling of layers in

stratified composites. They found that for thin elastic layers, the wrinkling mecha-

nism could be tuned based on various parameters, such as material properties and

geometry. Changing either the material stiffness ratio or material thickness ratio

(i.e. changing from dilute to non-dilute cases) can alter whether the resultant is a

long-wave mode (infinite/large wavelength), or wrinkling (small wavelength).

Until now this discussion has been limited to elastic composites. However, there
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has been some relevant research done taking into account viscoelasticity in layered

structures. Huang and Suo [13, 14] studied the instability and wrinkling of a com-

pressed elastic film on a viscous layer. They derived formulae using nonlinear thin

plate theory for the elastic material and the theory of lubrication for the viscous ma-

terial, to relate the stresses and strains. They formulated an equation to calculate

the critical wavenumber for a given strain, as well as the respective growth rate for a

given wavenumber. They found that if the initial configuration was perturbed by a

wavenumber that was less than the critical wavenumber, the growth rate is positive.

If the wavenumber was greater than the critical wavenumber, the wrinkle decays.

Growth rate is dependent on the wavenumber because the wavenumber governs the

amount of elastic energy that is stored due to bending and the resulting kinetic con-

straint produced by the viscous layer varies accordingly. The viscous layer controls

the amount of time the film may spend in any number of unstable modes before

reaching equilibrium [13].

Huang [12] also studied the effect of an elastic thin film on a viscoelastic sub-

strate. Equations were derived to discern the displacements of both layers. With

the addition of viscoelasticity the wavelength changed with time, similar to the case

of a viscous substrate. The growth rate for a given wavelength was calculated, pro-

viding insight into what would be the fastest growing wavelength. Results showed

that when perturbed with an initial wavenumber and when the stresses in the layers

were not very high, the wrinkle growth was similar to the case of a viscous substrate:

the wrinkle grows exponentially, with the fastest growing mode dominating, until the

amplitude of the wrinkle eventually reaches an equilibrium value. When the compres-

sive stress is high, the film wrinkles immediately and grows over time. Im and Huang

[15] expanded this research to consider a more realistic situation. An initial random

perturbation was considered as this is more representative of what might be seen in

an experiment. Similar results were examined: the fastest growing mode initially
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dominated until an equilibrium state was reached.
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Chapter 3

Objectives

As seen in the literature there is a wide range in the buckling response of layered

structures. Research has been done to study the response of elastic laminates as well

as layered structures with viscoelasticity. However, the objective of this work is to

study the finite deformation response of viscoelastic layered composites with parallel

plane layers, using the plane strain assumption. To be specific the objective has three

parts.

1. Buckling of elastic layered composites. Understanding the buckling modes and

critical strains for elastic layered composites aids to get a better understanding

on the dynamic response of viscoelastic layered composites. Numerical simu-

lations will be compared with the theoretical formulae that was discussed and

derived in Alur and Meaud [1].

2. Finite deformation analysis of viscoelastic layered composites under constant

strain rate. This discussion will consider the stress-strain responses and the

evolution of buckling due to viscoelastic softening.

3. Finite deformation analysis of viscoelastic layered composites under periodic

loading. Using finite element simulations and the formulae derived in [1], there

will be a discussion on the nonlinear mechanics of non-dilute composites to show

that the stiffness and damping can be tuned.
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Chapter 4

Finite Element Modeling

In this thesis viscoelastic layered composite materials consisting of two parallel

plane layered constituents are considered. The two layers will be referred to as ma-

terials A and B, and ΦA and ΦB will correspond to their respective volume fractions.

θ is the initial angle with respect to the vertical axis (Fig. 4.1).

This section will include a discussion on the finite element model that was used

and a detailed description on all the parameters chosen. Next, the material model

and parameters that were chosen will be introduced. Finally, post-processing and

analysis techniques will be discussed.

4.1 Finite element model

To conduct the research ABAQUS/CAE Standard, version 6.13 was employed in

conjunction with Python scripts to automate the process. Using Python scripts,

all model and material parameters could be adjusted with ease. When creating a

finite element model there are a few common basic steps: creating the geometry,

meshing, applying constraints and applying boundary and loading conditions. Two

types of analyses were conducted: buckling and finite deformation. For both analyses,

two types of models are considered: models of infinite size, and models of finite

height. Before providing details on the analyses a brief overview on the constraints

and conditions unique to these infinite size and finite height models will be given.

4.1.1 Models of infinite size

When considering a model of infinite size in finite element analysis, a unit cell can be

modeled with height, H, and width, W, pictured in Fig 4.1. Material A is the stiff,

elastic constituent, and material B is the soft, viscoelastic constituent. θ is the angle
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with respect to the vertical axis.

A B

θ
0

W

H

X

Y

x

y

Figure 4.1: Finite element example of a layered composite, zoomed in to show a unit
cell.

Periodic boundary conditions were used to model a composite of infinite size. To

do this, a Python script was used to create node sets and the appropriate constraints.

Node sets were created to group together all the nodes on the outer edges of the

model (bottom, top, left and right excluding the corners), as well as separate sets

for all of the corners (Fig. 4.2A). Once the groups were created, the script was used

to renumber the nodes to facilitate the application of the appropriate constraints, or

periodic boundary conditions. They are shown in the equations below.
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UY |top − UY |bottom = Uapplied(t) (4.1)

UX |top − UX |bottom − UX |TL = 0 (4.2)

UY |left − UY |right = 0 (4.3)

UX |left − UX |right − UX |BR = 0 (4.4)

UY |BR − UY |BL = 0 (4.5)

UX |TR − UX |BR − UX |TL = 0 (4.6)

UY |TR − UY |BL = 0 (4.7)

Ui is the displacement of the nodes in the i direction, the second set of subscripts

refer to the edge or corner (i.e. BR = bottom right, BL = bottom left) that the node

in question lies on. After application of all the constraints, the appropriate boundary

conditions were set. A vertical displacement, Uapplied(t), was applied to the top left

node, the bottom right node was fixed vertically and the displacement of the bottom

left node was 0 for all degrees of freedom to prevent rigid body motion as shown

in Fig. 4.2A. A possible mode of deformation for these constraints and boundary

conditions is shown in Fig. 4.2B.
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Figure 4.2: A. Boundary conditions shown for a unit cell. B. Corresponding mode of
deformation for the unit cell.

4.1.2 Models of finite height

Studying models of infinite size is useful to understand the underlying concepts. How-

ever, any manufactured composite would have a finite height. When considering the

case for a model with a finite height, the number of layers is assumed to be infinite.

A finite width model does not need to be considered because the response of the

composite is dependent on the volume fraction of each material and not necessarily

on how thick each phase is. For this case, a unit cell was modeled with an appropriate

height to width ratio. Periodic boundary conditions were applied only to the left and

right edges. In other words only equations 4.3 and 4.4 from before were used. The

boundary conditions for this case are also different and are shown below:

UX |top = UX |bottom = 0 (4.8)

UY |top = U(t) (4.9)

UY |bottom = 0 (4.10)

The entire bottom edge is fixed in the vertical and horizontal directions and the
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top edge is fixed in the horizontal direction and displaced vertically as shown in Fig.

4.3A. The buckled shape is shown in Fig. 4.3B.

A B

Figure 4.3: A. Example of a finite element model unit cell in ABAQUS with a finite
height, shown with boundary conditions. B. Mode of deformation for a model of finite
height.

4.1.3 Buckling analysis

To run buckling simulations, the BUCKLE procedure was used in ABAQUS/Standard

[6]. The choice of model height is driven by the volume fraction of material A, ϕA,

since we know that dilute and non-dilute composites buckle with different wave-

lengths. If the composite buckles with a finite wavelength, Lcr
1, the buckling shape

is a periodic shape of period Lcr in the Y direction. However, a unit cell of height H

with periodic boundary conditions can only deform with a periodic shape of period

H/i, where i is any positive integer (Fig. 4.4). Therefore, in order to compute the true

value for the critical strain, ϵcr, and Lcr using finite element anlaysis, the theoretical

values for the buckling wavelength, Lcr|th, were first calculated using theory derived

1The symbol ’L’ is used here for the wavelength because λ is used to denote the stretch
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in [1]. Buckling simulations were modeled with a unit cell of height H >> Lcr|th (typ-

ically H ≥ 20× Lcr|th). This allows the buckling wavelength predicted by ABAQUS,

Lcr|FEM , to be a discrete value very similar to that of Lcr|th.

In the case of an infinite buckling wavelength, the height H of the unit cell has

no influence on the results, so a height to width ratio, H
W
, of one was chosen. For all

simulations, the width of the unit cell included only one layer of phase A and one

layer of phase B since the theory predicts that the shearing mode has a lower critical

strain than the transverse mode [28].

Possible 

wavelength

H

H/2

H/16

H/8

H/4

x

x

H/32

True value

H/64

Figure 4.4: Schematic of possible buckling wavelengths for a model with periodic
boundary conditions. A taller model ensures that it can more closely capture the
true wavelength.

4.1.4 Finite deformation analysis

To run finite deformation analyses, a Dynamic, Implicit step type with nonlinear

geometry was used. The same height as the buckling simulations for a given geometry

(given volume fraction ϕA) was chosen. Imperfections were introduced in order to

simulate more realistic situations and can be introduced in several ways. The first

method uses results from the buckling simulations by applying the imperfection as a

scaled sum of different buckling modes. For most simulations only the first mode is

considered because it corresponds to the lowest buckling strain. Imperfections may

also be introduced directly to the model by providing coordinate perturbations at

both vertical edges of the model as well as at the interface between the two materials.
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This method allows for a randomization of the perturbation, which is most realistic

and most closely resembles an experimental setup.

This research considers two loading cases: constant strain rate and periodic load-

ing. In the first, a compressive displacement is applied at a constant strain rate,

ε̇, to the desired strain amplitude, ∆ϵ, and then unloaded (Fig. 4.5A). The periodic

loading case was administered as a sine curve, loaded in compression first (Fig. 4.5B),

given by the following equation:

ϵ(t) = −∆ϵ sin(ωt) (4.11)

Where ∆ϵ is the strain amplitude, and ω is the frequency in radians per second.
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Figure 4.5: A. Constant strain rate loading where ∆ϵ is the strain amplitude, ϵ̇ is the
strain rate and T is the duration of loading. B. Sinusoidal loading where ∆ϵ is the
strain amplitude, and Tp is the period.

4.1.5 Meshing

All models are meshed using 4-node bilinear plane strain quadrilateral elements

(CPE4RH). Hybrid formulation was used for the mesh elements as is required when

modeling nearly incompressible materials [6, 29]. Reduced integration was also em-

ployed as this is often advisable when considering problems involving non-linearities

26



[29]. In the case of linear elements, as was the case here, there is a single integration

point at the center of the element as shown in Fig. 4.6A [6]. Reduced integration

however is susceptible to numerical errors called hourglassing which is displayed in

Fig. 4.6B [6].

Hourglassing is a result of zero-energy modes of deformation. To clarify, Fig.

4.6B, shows that while the element does deform, the point at which the integration

occurs (the center) does not experience any strain, thus there is no strain energy. If

the mesh is coarse, this hourglassing deformation can propagate through the mesh

giving a trivial solution. This numerical error can be corrected through the use of

hourglass control and an appropriate mesh density [6].

A B

Figure 4.6: A. Linear element with reduced integration B. Hourglassing of reduced
integration element [6].

Hourglassing can be controlled in ABAQUS using 2 methods: hourglass stiffness

and enhanced control. To understand which had the least effect on the results, several

options were compared. After running numerical experiments considering various

values for the hourglass stiffness, an hourglass stiffness value of 0.75 was found to

give the best results, especially at low strain amplitudes.

When considering how dense the mesh needs to be there are two main factors

that must be considered: volume fraction of the stiff material as well as the buckling

wavelength. When considering a dilute case (when the volume fraction of the stiff

material is small) the composite is subject to buckling in a wavy form. This means

that the model is subject to bending. To properly capture this, at least 5 elements
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were required across the thickness of a material when the volume fraction was small,

with a maximum aspect ratio of 3. Similar results have been found in the literature

and previous research for modeling thin structures [3, 6]. Mesh convergence studies

were used to verify that a dense enough mesh was used. To aid in deciding an

appropriate mesh density, distortion control was also employed. This feature is by

default turned on when using hyperelastic materials. Its purpose is to provide a

method to stop elements from excessively distorting when the mesh is not very dense

and is under compressive loads [6].

4.2 Material models and parameters

Material A was modeled with a neo-Hookean strain energy potential, with a Young’s

modulus similar to that of steel. Material B was modeled as a standard linear solid.

The elastic part was modeled with a neo-Hookean strain energy potential, while the

viscoelastic part was modeled using the finite deformation model in ABAQUS based

on a Prony series representation. The Prony series data was based on a high loss

polyurethane characterized by Sain et. al [33]. The mechanical properties of this

material are shown in Fig. 4.7. Table 4.1 details these material parameters and refers

to variables commonly used to describe materials. Appendix A provides an overview

on the respective parameters that must be inputted into ABAQUS.

Because the theoretical formulae derived in [1] assumes incompressible materials,

two values for the Young’s modulus and Poisson’s ratio for material A were considered:

164.8 GPa (incompressible case used for the theory), 200 GPa (compressible case used

for numerical simulations). For the incompressible case, the value of the Young’s

modulus of material A, EA, was chosen such that the plane strain modulus, EA =

EA/(1−ν2
A), was equal to its value in the compressible case. Simulations showed that

as long as the correct respective Poisson’s ratio was used, there is minimal influence

on the numerical results (see Fig. 6.3). Material B was modeled to be incompressible
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for the numerical simulations.

Table 4.1: Model parameters for material A and material B
Symbol Description Value

EA Young’s modulus (compressible) 200, 000 MPa
Young’s modulus (incompressible) 164,800 MPa

νA Poisson’s ratio (compressible) 0.3
Poisson’s ratio (incompressible) 0.5

E
(∞)
B Long-term Young’s modulus 3.345 MPa

ν
(∞)
B Long-term Poisson’s ratio 0.5

E
(α)
B Viscoelastic branch Young’s modulus 450MPa

ν
(α)
B Viscoelastic branch poisson ratio 0.5

τ
(α)
B Relaxation time constant 0.15 s
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Figure 4.7: Mechanical properties of material B. A. Relaxation shear modulus vs
time. B. Shear stress vs shear strain for loading/unloading at a constant shear strain
rate of 0.1, 1 and 10%/s. C. Dynamic shear modulus, |G∗|, vs frequency. D. Shear
loss factor, ηG, vs frequency
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4.3 Post processing

To post process the simulations, data must be extracted from the completed ODB

(output database) file. This can be done both manually and through the use of Python

scripts. After extracting the data, MATLAB was used to plot the appropriate figures.

Extracting stress and strain data and analyzing the stress vs strain response provides

the information needed to find the strain at which buckling occurs. To analyze the

evolution of buckling in the composite the wavenumber spectrum was computed by

extracting the X-displacement data of nodes along the left edge of the composite,

UX(0, y).

4.3.1 Computation of the wavenumber spectrum

When periodic boundary conditions are used, the top edge is free to move in the X-

direction. Therefore, the composite may deform/buckle with an angle with respect to

the Y -axis. Consequently, the derivative of the displacement, denoted here as θ(y),

is periodic with a period H.

θ(y) =
∂uX(0, y)

∂Y
(4.12)

To compute the wavenumber spectrum the Fourier Transform of θ(y) was calculated:

Θ(k) =

∫ ∞

−∞
θ(y)e−ıkydy

=

∫ H

0

θ(y)e−ıkydy

= F(θ(y))

where Θ is a complex number and k is the wavenumber. This was done using MAT-

LAB’s FFT algorithm. The absolute value of Θ(k), |Θ(k)|, was taken to find the

wavenumber spectrum.
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Chapter 5

Buckling of Elastic Layered Composites

5.1 Critical wavenumber and buckling strain

Parnes and Chiskis [28] derived formulae for the critical buckling strain, ϵcr, and

critical buckling wavelength, Lcr for elastic layered composites by modeling the stiff

fibres as Euler Bernoulli beams for the plane stress case. The theory assumed that

EA≫EB and that the buckling mode is a sinusoid. Alur and Meaud [1] altered

the equations for the plane strain case (strain in the out of plane direction is 0).

Finite element buckling simulations were used to validate this theory. Buckling is a

linear perturbation analysis that requires linear elastic material models. Nonlinear

properties as well as properties that are affected by strain rate and time are ignored.

Since material B is a viscoelastic material, it is time-dependent. Therefore, two

different values for the Young’s modulus of materialB were considered for the buckling

analysis:

1. The long-term Young’s modulus, E
(∞)
B

2. The instantaneous Young’s modulus, E
(0)
B = E

(∞)
B + E

(α)
B

E
(∞)
B and E

(0)
B correspond to the lower and upper bounds, respectively, for the

time-dependent Young’s modulus of material B.

Figs. 5.1A through C show ϵcr while Figs. 5.1D through F show the nondimen-

sional wavenumber (k̄cr = Wkcr = (2πW )/Lcr, where W is the width of the unit

cell) as functions of the volume fraction of material A, ϕA. Each column of Fig. 5.1

corresponds to a different stiffness for EA, decreasing in value from left to right: 200

GPa, 20 GPa and 2 GPa respectively. The simulations and theory match very well

for EA = 200 GPa, however discrepancies between the two are noticeable when EA

= 20 GPa and EB = E
(0)
B (EA

EB
≈ 44.1). In this case the ratio between EA and EB is
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not big enough for the theory to be a good approximation. For each set of graphs,

three different cases can be identified and are examined more closely in Figs. 5.1G

through I. These cases were identified as the dilute, transition and non-dilute cases:

1. When k̄cr ̸= 0 both in the case EB = E
(∞)
B and EB = E

(0)
B (dilute case)

2. When k̄cr ̸= 0 if EB = E
(0)
B and kcr = 0 if EB = E

(∞)
B (transition case)

3. When k̄cr = 0 both in the case EB = E
(∞)
B and EB = E

(0)
B (non-dilute case).

The transition case is interesting, as the value for the wavelength actually changes

from a finite value to an infinite value, when EB varies between E
(0)
B and E

(∞)
B . Fig.

5.2A illustrates the buckling shape in the case k̄cr = 0 (which corresponds to Lcr = ∞,

the non-dilute case) while Fig. 5.2B is an example of the buckling shape in the case

k̄cr ̸= 0 (which corresponds to 0 < Lcr < ∞, the dilute case.).

When EA is fixed, the value of ϵcr decreases as ϕA is increased (Fig. 5.1A through

C). For any given value of ϕA, ϵcr is higher in the case EB = E
(0)
B than in the case

EB = E
(∞)
B , which indicates that increasing EB tends to increase the buckling strain

of the composite. However, when ϕA is fixed, the value of ϵcr increases as EA is

decreased. This shows that ϵcr is a function of the ratio, EA

EB
, of the two materials.

Using the theory from [1], ranges for each case, which depend on both EA and

ϕA, can be found and are shown in Fig. 5.3. This was done by finding the volume

fraction at which the composite transitions from the dilute to transition and transition

to non-dilute cases for various values of EA.
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Figure 5.1: Dependence of the buckling wavenumber and critical strain on the volume
fraction and Young’s modulus of material A and the Young’s modulus of material B.
Critical strain vs ϕA for long and short term EB for A. EA=200GPa B. EA=20GPa
C. EA=2GPa. Non-dimensional wavenumber, k̄cr, vs ϕA for long and short term EB

for D. EA=200GPa E. EA=20GPa F. EA=2GPa. Zoomed in view for k̄cr, vs ϕA

for showing various cases for G. EA=200GPa H. EA=20GPa I. EA=2GPa.
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Figure 5.2: A. Buckling shape with infinite wavelength (k̄cr=0) for non-dilute com-
posites. The layers deform but remain straight. The amplitude of the buckling shape
is parameterized by the angle θ. B. Buckling shape with finite wavelength, Lcr, for
dilute composites.
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Figure 5.3: Ranges for each case (dilute, transition and non-dilute) based on EA and
ϕA

5.2 Finite height consideration

Buckling analysis, conducted for models of finite height, but with an infinite number

of layers, showed that the height of the composite can have an effect on the response.

Fig. 5.4 shows the critical buckling strain as a function of the height for the upper

and lower bounds of EB. Fig. 5.4A shows this for EA = 200 GPa and Fig. 5.4B
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for EA = 2 GPa. Both are shown for the non-dilute case (ϕA = 25%) because the

buckling mode (k̄cr = 0) does not depend on H for a non-dilute model with periodic

boundary conditions (H
W

= 1). For all cases, as long as the ratio EA

EB
is high enough

(EA

EB
& 50), as the height of the model increases, the critical buckling strain converges

to the theoretical value for a model of infinite size. The infinite size model can identify

the critical buckling strain as long as H
W

≥ 50.
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Figure 5.4: Critical buckling strain vs height for EB = E
(∞)
B and EB = E

(0)
B for A. EA

= 200 GPa B. EA = 2 GPa. . Horizontal lines correspond to infinite height FEM
simulated results. C. Buckling shape for finite height boundary conditions.

5.3 Conclusions

These numerical results give important qualitative information regarding the finite

deformation response of viscoelastic layered composites. The relaxation modulus of a

viscoelastic material decreases as a function of time (see Fig. 4.7A). If the viscoelas-

tic composite is loaded in compression at a constant strain rate, the composite is

expected to buckle with an infinite wavelength provided that ϕA is in the non-dilute

region. If ϕA is in the transition region, the mode of deformation might progressively

change from a small finite wavelength to a larger finite or possibly infinite wavelength

(depending on the strain rate). If ϕA is in the dilute region, the composite is expected

to deform with a finite buckling wavelength (that might increase over time). Since
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the buckling strain is higher in the case EB = E
(0)
B than in the case EB = E

(∞)
B (Fig.

5.1A through C), the buckling strain is expected to be higher at high strain rates

than at low strain rates in the case of a viscoelastic composite.
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Chapter 6

Constant Strain Rate Finite Deformation Analysis

To understand the mechanics of parallel plane layered viscoelastic composites, fi-

nite deformation analysis was performed. Studying the response to a constant loading

rate provides the necessary information to characterize the evolution of buckling.

6.1 Viscoelastic constituents

Expanding upon equations derived by Rudykh and Boyce [31] for elastic layered com-

posites in the non-dilute case, Alur and Meaud [1] extended the equations to char-

acterize the finite deformation response of non-dilute (infinite buckling wavelength)

viscoelastic layered composites with the following assumptions:

1. Incompressible materials

2. Infinite buckling wavelength

After validation using finite element simulations, the theory was used to under-

stand the response for the non-dilute case. On the other hand, both the transition

and dilute cases were examined using finite element simulations. The model param-

eters chosen for analysis for each case are shown in Table 6.1. These values are also

represented in Fig. 6.1.

Table 6.1: Parameters for each case
Case Volume fraction ϕA EA

Dilute 2% 2 GPa
Transition 15% 2 GPa
Non-Dilute 25% 200 GPa
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Figure 6.1: Ranges for each case (dilute, transition and non-dilute) based on EA and
ϕA shown with points used for simulations.

6.1.1 Validation of theory for non-dilute composites

The finite deformation theory for viscoelastic layered composites [1] was validated by

comparison to finite element simulations. The stress vs. strain response was plotted

for small and large initial angles (1 and 45 degrees) for a broad range of strain rates

(0.1 to 10%/s). As shown in Fig. 6.2, the theory (shown in solid lines) and the

simulated response (dotted lines) match exactly. Thus, the finite deformation theory

was used with confidence for all the results for infinite size non-dilute composites with

incompressible constituents.

6.1.2 Effect of compressibility

The finite deformation theory derived in [1] assumes that the two constituents are

incompressible. While this assumption is a good approximation for polymers and

rubber-like materials, it does not hold for materials like steel. Fig. 6.3 compares the

stress vs. strain response for two different values for the Poisson’s ratio of material

A (νA = 0.3 and νA = 0.5). The Young’s modulus in each instance is such that the

plane strain modulus is the same (i.e EA

1−ν2
is a constant). Barely any difference can be

38



0 0.5 1
−100

−50

0

50

100

150

Engineering strain (%)

N
o
m
in
a
l s
tr
e
ss
 (
M
P
a
)

θ
i
 = 1 degrees

0 0.5 1
−3

−2

−1

0

1

2

3

4

5

6

Engineering strain (%)

N
o
m
in
a
l s
tr
e
ss
 (
M
P
a
)

θ
i
 = 45 degrees

 

 

Strain rate = 0.1%/s theory

1%/s theory

10%/s theory

0.1%/s FEM

1%/s FEM

10%/s FEM

Figure 6.2: Comparison between the finite deformation theory and finite deformation
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lines; simulations, shown in dashed lines, are indistinguishable from the theory for
different values of the initial angle, θ0, and a wide range of strain rates.

discerned between the two responses which indicates that assuming incompressibility

does not affect the numerical results as long as the change in the effective plane strain

stiffness is accounted for accordingly.
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Figure 6.3: Stress vs. strain response for the incompressible (νA = 0.5) and com-
pressible cases (νA = 0.3). For the compressive case, the results were obtained using
finite element simulations.

39



6.1.3 Adding the appropriate imperfection

Simulations for the non-dilute case were done by applying an imperfection as a scaling

of the first buckling mode, characterized by an infinite wavelength. Various scaling

factors were compared to find the one with the least effect on the response. Fig. 6.4

shows the scaling factor’s effect on the response, shown for a composite consisting

of elastic constituents. Lowering the scaling factor of the imperfection results in a

response more similar to one without any imperfection. Based on this analysis, a

scaling factor of 1× 10−4 was chosen.
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Figure 6.4: Stress-strain response for the non-dilute case comparing various imper-
fection scalings.

For dilute and transition case simulations, random imperfections were applied

directly to the model to simulate a realistic situation. Matlab’s random number

generator was used to apply small perturbations to both vertical edges as well as at

the interface between the two materials with a uniform distribution in the following

manner:

Xi|With Imperfection = Xi|Without Imperfection +RiW (6.1)
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Where Xi refers to the horizontal coordinate of node i, Ri is the perturbation that

is applied to node i within range R (see Fig. 6.5) and W is the width of the unit cell.
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Figure 6.5: Example of an imperfection of range R on a vertical edge

The stress vs strain responses for infinite buckling wavelength models (transition

case with a low strain rate) with various imperfections were compared with the re-

sponse for a composite which did not contain any imperfections but had a very small

angle between the layer and loading directions. This ensured comparison to an infinite

buckling wavelength model. While the angle of the model does affect the response,

the angle chosen here (1×10−8 degrees) was small enough to have a very minor affect.

Fig. 6.6 shows the stress vs strain response for various imperfections. As the imper-

fection size decreases, the critical buckling strain increases and converges towards the

value for the angled model. Closer inspection shows that imperfections 4 and 5 have

very similar responses, and is most likely due to the fact that the random number

generator chooses numbers over a range of values. This means that the difference

between two consecutive imperfections may indeed be very similar if one is on the

upper end and the other on the lower end of their respective ranges. Details for each
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imperfection are shown in Table 6.2. As long as the perturbations are on the order of

magnitude of 1× 10−10 (Imperfection 6) the imperfection will not alter the response.

Thus, this imperfection size was chosen for all subsequent results shown.
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Figure 6.6: Stress-strain response for the dilute case comparing models with various
imperfections compared to a model with a small angle but without any imperfections.

Table 6.2: Details for various imperfections considered.
Imperfection Range (R) for perturbation
Imperfection 2 ±1× 10−6

Imperfection 3 ±1× 10−7

Imperfection 4 ±1× 10−8

Imperfection 5 ±1× 10−9

Imperfection 6 ±1× 10−10

6.1.4 Effect of strain rate

The critical buckling strain for a viscoelastic composite depends on the strain rate.

This dependence is investigated in Fig. 6.7 which shows a monotonic relationship

between the the critical buckling strain and the strain rate. Fig. 6.7A considers the

non-dilute case, Fig. 6.7B the dilute case and Fig 6.7C the transition case. For all

cases, at low strain rates, the curve tends to converge to the value obtained using a

linear buckling theory analysis when EB = E
(∞)
B , the long term Young’s modulus for
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material B. For the non-dilute case, at a high strain rate, the curve tends to converge

to the value obtained using a linear buckling theory analysis when EB = E
(0)
B , the

short term Young’s modulus for material B. Note that a small difference can be

observed between the value at large strain rate and the theoretical linear buckling

critical strain for EB = E
(0)
B . This difference might be due to the fact that the

buckling analysis is a linear theory that neglects nonlinear effects. For the dilute and

transition cases, at high strain rates, these curves converge to a value that is close to

what was obtained using linear buckling finite element analysis when EB = E
(0)
B . For

the dilute and transition cases considered, the ratio of EA

EB
is not high enough for the

theory to be a good approximation (see Figs. 5.1B and C).

The dependence of the critical wavenumber, k̄cr, on the strain rate is investigated

in Figs. 6.8A and B, for the dilute and transition cases respectively. At low strain

rates the curve converges towards the value obtained using linear buckling simulations

when EB = E
(∞)
B . As the strain rate increases, the relationship is monotonic in

both cases. For the dilute case, if even higher strain rates were simulated, the curve

would likely converge towards the value obtained for linear buckling simulations when

EB = E
(0)
B . In the transition case the value for k̄cr actually exceeds the value attained

from buckling simulations when EB = E
(0)
B . This result is unexpected, and could

be a result of the height chosen. The wavenumber that was calculated is one of the

possible values for the height for this simulation.
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6.1.5 Finite height consideration

Models of finite height were also considered for the finite deformation case. Fig.

6.9 shows the stress vs strain response for non-dilute composites attained through

finite deformation simulations for composites of a finite height, compared to that of

infinite height attained from the finite deformation theory from [1]. There is a small

difference between the critical strain as well as the stress vs strain responses: the

critical strains and stresses are slightly higher in the finite height case. This is a

result of the boundary conditions. The horizontal displacement is fixed on the top

and bottom boundaries for the finite height simulations, which constrains the mode

of deformation. However, these results do demonstrate that the finite deformation

model for composites of infinite height can capture the stress vs strain response of

composites of finite height as long as H/W ≥ 50.

Finite height simulations for the dilute case were not completed and are not shown

in these results. Similar results to the non-dilute case are expected.
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6.1.6 Evolution of buckling

The mode and evolution of buckling in viscoelastic layered composites is dependent

on two main things:

1. Which case the composite falls under: dilute, transition or non-dilute. This is

dependent on EA and ϕA (Fig. 5.3).

2. The strain rate.

For all three cases, the response was studied at both low and high strain rates.

Looking at the stress vs strain response gives a clear picture on when buckling occurs,

while looking at how the wavelength changes over time gives a clear idea of how the

composite is buckling. Figs. 6.10, 6.11 and 6.12 show these figures for the non-dilute,

dilute and transition cases respectively. The left column represents the response for

low strain rate while the right for high strain rate. The first figure in each column is

the respective stress vs strain responses including the post buckling regime. The next

figure is the graph for the nondimensional wavenumber spectrum vs the normalized

time (t̄ = t
T

where T is the duration of the simulation). At each point (t̄, k̄), the

color corresponds to the normalized amplitude of the mode of wavenumber k̄ at

time t̄. The amplitude is normalized with respect to the maximum magnitude of

the wavenumber throughout the entire response. The black line corresponds to the

maximum wavenumber at each time. The final figure is the wavenumber spectrum of

the response when the composite buckles. The wavenumber spectrum when unloading

occurs is also included in the same figure when the composite buckles with a finite

wavenumber. The vertical dashed lines correspond to the wavenumber computed

from the linear buckling analysis corresponding to the two bounds for EB (low strain

rate: EB = E
(∞)
B ; high strain rate: EB = E

(0)
B ). Examining Figs. A and B between

all three figures shows that the critical buckling strain is higher for higher strain rates

regardless of which case is considered.
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The non-dilute case was defined such that the composite buckles with an infinite

wavelength (k̄ = 0). Fig. 6.10 shows that regardless of the strain rate the composite

buckles with an infinite wavelength.

For the dilute case, when the strain rate is low, the composite buckles at a finite

wavenumber that decreases as a function of time (Fig. 6.11C). The wavenumber

spectrum in Fig. 6.11E shows that the critical buckling wavenumber, k̄cr, gets closer

to the wavenumber that was found from linear buckling analysis when EB = E
(∞)
B

(Fig. 5.1I) with time. At a high strain rate, the composite buckles with a finite

wavenumber that does not change with time (Fig. 6.11D). One peak is observed near

the wavenumber found from linear buckling analysis when EB = E
(0)
B ; however, the

most dominate wavenumber is slightly lower. This shows that even with this strain

rate, stress relaxation in the polymer has influenced the response. With a higher

strain rate the most dominant wavenumber would be very close to the wavenumber

found from linear buckling analysis.

For the transition case, at low strain rates the composite buckles with a wavenum-

ber of zero (Figs. 6.12C and E), which corresponds to the wavenumber found from

linear buckling analysis when EB = E
(∞)
B (Fig. 5.1I). At high strain rates however

the composites buckles with a finite wavenumber. The wavenumber spectrum in

Fig. 6.12F shows that the wavenumber with the highest magnitude is close to the

wavenumber found from linear buckling analysis when EB = E
(0)
B . Figs. 6.12D and F

show three distinct prominent wavenumbers all of different magnitudes. This is due

to harmonic distortion, which occurs at high strain rates (also seen in Figs. 6.11D

and F). These peaks approximately occur at integer multiples of the critical buckling

wavenumber: k̄cr, 2k̄cr, 3k̄cr. Fig. 6.13A shows the amplitude (|Θ(k)|) of each of these

wavenumbers as a function of time, while Fig. 6.13B shows how these wavenumbers

grow over time (d|Θ(k)|
dt

). They increase rapidly beginning just before t̄cr, at which

point the growth rate decreases. The magnitude begins to converge to a value and
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then decreases. It is difficult to understand the growth of these wavenumbers since

unloading occurs. Therefore, it helps to also look at a similar loading case in which

the composite is loaded to a certain strain, and then held for a period of time.
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Figure 6.10: Modes and postbuckling for the non-dilute volume fraction case. Stress
vs strain response for A. low strain rate B. high strain rate. Nondimensional
wavenumber spectrum vs normalized time for C. low strain rate D. high strain
rate. Dark black line refers to the maximum wavenumber at any given time. Nondi-
mensional wavenumber spectrum at buckling for E. low strain rate F. high strain
rate. Dashed black lines refer to buckling wavenumbers attained from linear buckling
analysis.
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Figure 6.11: Modes and postbuckling for the dilute volume fraction case. Stress vs
strain response for A. low strain rate B. high strain rate. Nondimensional wavenum-
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Figure 6.12: Modes and postbuckling for the transition volume fraction case. Stress vs
strain response for A. low strain rate B. high strain rate. Nondimensional wavenum-
ber spectrum vs normalized time for C. low strain rate D. high strain rate. Dark
black line refers to the maximum wavenumber at any given time. Nondimensional
wavenumber spectrum at buckling for E. low strain rate F. high strain rate (un-
loading shown as well). Dashed black lines refer to buckling wavenumbers attained
from linear buckling analysis.
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Figure 6.13: A. Magnitude of the wavenumbers that arise from harmonic distortion
as a function of time for the transition case. B. Growth rate of the magnitude of
these wavenumber shown in log scale.

6.1.7 Holding the strain amplitude constant

Applying a constant strain over a period of time provides some more insight into the

finite deformation mechanics. Fig. 6.14 shows this for the transition case. When the

strain is held constant, there is stress relaxation (Fig. 6.14A and B) in the polymer

and the change in the buckling mode is very apparent. The strain was applied at a

constant rate until time t̄h and then held constant. The strain at t̄h corresponds to

a strain just under ϵcr (just before buckling). A brief period of time passes as the

polymer relaxes and then buckles at time t̄cr with a finite wavenumber which decreases

towards zero (Fig. 6.14C). Fig. 6.14D shows that the dominant wavenumber at t̄h and

t̄cr are the same, but is several magnitudes larger at t̄cr. As time increases, the value of

the most dominant wavenumber converges to 0. While not as clear, there is harmonic

distortion in this response as well. Unlike before, the most dominant wavenumber

changes as a function of time, so instead of looking at discrete wavenumbers a range

of wavenumbers was considered. The range considered is from k̄ = 1.5 to k̄ = 8,

shown with vertical dashed lines in Fig. 6.14D. These values were chosen such that it

encompassed the entire width of the peak at t̄cr. The root mean square value of this

range was taken to find the average magnitude of the wavy mode of deformation. Fig.

6.15 shows the growth of this value compared with the growth of k̄ = 0. Initially both
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are increasing but the wavy mode dominates. The wavy mode eventually converges to

a value and the begins decreasing. While this happens, the 0 wavenumber continues

to increase in magnitude and eventually dominates. As the polymer relaxes, the

magnitude of the 0 wavenumber converges to a value.
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Figure 6.14: Modes and postbuckling for the transition volume fraction case when
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function of time for the transition case when strain is held constant.

6.1.8 Conclusions

Using the theory from [1] and finite element simulations showed that the finite defor-

mation response of layered composites are consistent with the conclusions gathered

from linear buckling analysis. The finite deformation mechanics of viscoelastic par-

allel plane layered composites are dependent on which case they fall under (dilute,

transition, non-dilute) and on the strain rate. If within the non-dilute region, the

composite will always buckle with an infinite wavelength. If within the dilute region,

the composite will buckle with a finite wavelength that depends on the strain rate. If

within the transition region, the composite may buckle with either a finite or infinite

wavelength depending on the strain rate. In both the dilute and transition cases the

critical buckling wavenumber is within the bounds specified by linear buckling anal-

ysis for the long and short term moduli of material B. At high strain rates, harmonic

distortion is evident in these cases at approximately integer multiples of k̄cr. With

time the amplitude of these wavenumbers slightly decreases.
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6.2 Elastic constituents

Examining the response of elastic parallel plane layered composites provides more

insight into the finite deformation mechanics of viscoelastic parallel plane layered

composites. Fig. 6.16 shows the finite deformation response and buckling modes of

an elastic composite. Shown here for the transition case with EB = E
(0)
B , it is expected

to buckle with a finite wavenumber. The peaks seen in the wavenumber spectrum

in Fig. 6.16C are very defined, and show that it does indeed buckle close to the

same wavenumber that was found from linear buckling simulations. Once the strain

exceeds ϵcr, harmonic distortion is observed at wavenumbers which are approximately

integer multiples of k̄cr. Unlike the viscoelastic case, these wavenumbers immediately

decrease once unloading occurs (Fig. 6.17).

6.2.1 Conclusions

The finite deformation response of an elastic composite results in very defined buckling

modes/wavenumbers. Comparing Figs. 6.16B and C with the wavenumber spectrums

from the response of viscoelastic composites (Figs. 6.10 through 6.12) shows that

viscoelasticity allows the composite to buckle with a range of wavenumbers. Even at

high strain rates the peaks in the wavenumber spectrums for viscoelastic composites

span a range of wavenumbers. Because of continuous stress relaxation in the polymer,

these ranges vary with time.
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Chapter 7

Tunable Characteristics Under Periodic Loading

Using the theory from [1], the finite deformation response of non-dilute composites

under periodic loading was studied. Because buckling has such a large effect on the

stress vs strain response of viscoelastic layered composites, the effect of prestrain was

also studied.

7.1 Effect on dynamic properties

Experimentally, dynamical mechanical analysis (DMA) is used to measure the me-

chanical properties that characterize the response of a material under periodic loading

[20]. When loaded periodically with a prestrain, the strain is given by the following

equation:

ε(t) = ε̇t if 0 < t < tr

= ε0 if tr < t < ts

= ε0 +∆ϵ sin(2πft) if t > ts

(7.1)

where tr is the rise time, ts is the time of the start of the periodic loading, ϵ̇ is the

strain rate (ϵ̇ = ϵ0/tr), ϵ0 is the prestrain, f is the frequency of the cyclic loading and

∆ϵ is the amplitude of the cyclic loading. ϵ(t) is represented graphically in Figs. 7.1A

and 7.1B. In all the cases considered in this section, ∆ε is 1× 10−3%, f = 1 Hz while

ε0 is varied. The numerical results at different frequencies would be qualitatively

similar. The stress response for one particular case is shown in Figs. 7.1C and 7.1D.

In this case, the nominal stress increases until the prestrain value is reached because

the prestrain is below the critical strain. Then, as the strain is held constant, the

stress gradually decreases and reaches a steady state value close to the initial value

(due to viscoelastic stress relaxation). Periodic loading results in a hysteresis loop.
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The dynamic Young’s modulus, |E∗|, (which is a measure of stiffness under cyclic

loading), and the loss factor, η (which is a measure of damping) were computed for

the last cycle (Fig. 7.1D) of periodic loading using the equations given in Appendix

B.
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Figure 7.1: Engineering strain vs time for A. The entire loading cycle. B. The periodic
loading. And the stress vs strain response for C. The entire loading cycle. D. The
final cycle.

Since the buckling shape (Fig. 5.2A) of an initially vertical (θ0 ≈ 0) and non-

dilute composite is similar to the undeformed shape of a layered composite with

θ0 ̸= 0, the finite deformation simulation of cyclic loading with a prestrain for θ0 ≈ 0

was compared to the linear viscoelastic theory (without prestrain) of composites with

θ0 ̸= 0. First, the value of the angle θs(ϵ0), that is reached after prestraining the

initially vertical composite to a prestrain of value ϵ0, was computed. This angle is
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held constant until the stress relaxes to a constant value (see Fig. 7.2A). |E∗| and

η were computed using the linear viscoelastic theory for θ0 = θs(ϵ0) (Fig. 7.2B) by

adapting the equations given in [27] to the plane strain case (see Appendix C).
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Figure 7.2: Angle, θ, vs time for A. Periodic loading after prestrain. After holding
the strain at the prestrain value, θ converges to a constant value, θs. B. Periodic
loading without prestrain with an initial angle, θ0.

Figs. 7.3A and B show the stiffness and damping values as functions of prestrain,

ϵ0. As the prestrain is increased from 0 to 10%, the effective dynamic modulus

decreases by two orders of magnitude and the damping increases by two orders of

magnitude. These results are due to the rotation of the layers as the prestrain is

increased. On the same graphs, the value obtained using the linear viscoelastic theory

using an initial angle, θ0 = θs(ϵ0), are plotted as a function of ϵ0. There is good

agreement between the finite deformation theory and the linear viscoelastic theory

with an initial angle.

The dynamic modulus is plotted as a function of the damping in the stiffness-loss

map shown in Fig. 7.3C. Each point of each line corresponds to the values obtained

for |E∗| and η at a fixed prestrain value. As the prestrain is increased the points first

move toward the right side of the figure (indicating a large increase in the damping

and small reduction in the stiffness), before moving towards the bottom (indicating a

large decrease in the stiffness and a small increase in the damping). The same effect is
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obtained by simulating composites with increasing angle (in the small strain regime).
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7.2 Conclusions

Meaud et al. [27] previously showed that simultaneous high stiffness and damping

can be achieved in layered composites by choosing optimal values for the angle, θ,

of the composite. These results show that similar properties can be achieved by the

application of a prestrain. By applying a prestrain to the composite, the stiffness and

damping can be tuned accordingly.
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Chapter 8

Conclusions and Future Work

The main contribution of this work was to highlight the finite deformation re-

sponse of parallel plane layered viscoelastic composites. Elastic buckling simulations

guided the research to better understand the viscoelastic postbuckling response. Fi-

nite element analysis was used to validate theory that was discussed and derived in

[1] and also to simulate the postbuckling response. Several conclusions were drawn

in regards to the evolution of buckling:

1. The critical buckling strain, ϵcr, is dependent on the strain rate, ϵ̇: higher the

ϵ̇, higher the ϵcr.

2. Viscoelastic composites can buckle with either a finite of an infinite wavelength.

This is a function of the strain rate, the volume fraction, ϕA, of the stiff material

and of the stiffness ratio between materials A and B.

3. Viscoelastic composites can be categorized into three different cases which were

chosen to be called the non-dilute (infinite buckling wavelength), dilute (finite

buckling wavelength) and transition (wavelength that can grow to an infinite

length over time) cases. Classification is dependent on the stiffness and volume

fraction of the stiff material.

Previous research showed that composites that had simultaneous high stiffness

and damping were indeed possible by varying composite micro-structures. Using

the validated theory from [1], this work showed that similar stiffness and damping

characteristics of non-dilute viscoelastic composites are attainable by the application

of a prestrain. This enables one to tune composites using the same composite micro-

structure.
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All results presented in this thesis are based off theory and finite element sim-

ulations. Simulations with added imperfections were considered to provide a more

realistic result. The effect of a finite height was considered in buckling simulations

and for the non-dilute case, but not for the dilute case, which is a natural extension

to this work. While developing theory and using simulations is helpful in any field of

research and provides a solid foundation for the work, experimental results are invalu-

able. Using 3D printing, viscoelastic composites of a finite size can be printed and

test experimentally to provide more insight into their finite deformation mechanics.
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Appendix A

Abaqus material parameters

The variables displayed in Table 4.1 are those that are commonly used to describe

materials. However, in ABAQUS, the values used to model the materials are different.

These are displayed in Table A.1. The values in Table 4.1 can be transformed into

what is needed in Table A.1 using equations A.1 and A.2.

Table A.1: Model parameters inputted in ABAQUS for material A and material B
Symbol Description Value
C10|A Related to shear modulus (compressible) 38, 461.54 MPa

Related to shear modulus (incompressible) 33, 333.33 MPa
D1|A Related to bulk modulus (compressible) 1.2× 10−5

Related to bulk modulus (incompressible) 0
C10|B Related to long term shear modulus 0.5575 MPa
D1|B Related to long term bulk modulus 0
g1 Related to viscoelastic branch shear modulus 0.992622 MPa
k1 Related to viscoelastic branch bulk modulus 0

τ
(α)
B Relaxation time constant 0.15 s

C10 =
G

2
(A.1)

D1 =
2

K
(A.2)
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Appendix B

Computation of stiffness and damping for the nonlinear case

When loaded periodically after application of a prestrain, the stress corresponding

to the strain in Eq 7.1 can be written as:

σ(t) = ∆σ sin(ωt+ δ) + σ0 (B.1)

where ∆σ is the amplitude of the stress curve while δ corresponds to the phase

lag. σ0 is the static stress value which occurs when the strain is equal to ε0. Using

the technique described below, determining the effective stiffness and damping when

under this type of loading can be also be done for the case of a nonlinear response. The

values obtained match the conventional definitions for linear viscoelastic materials at

infinitesimal strains without prestrain.

B.1 Stiffness

In this research the effective stiffness of a layered viscoelastic composite is considered

to be the absolute value of its dynamic modulus, |E∗|, which can be obtained graph-

ically by analyzing the stress versus strain response of the composite. The overall

effective stiffness is obtained by dividing the difference between the maximum and

minimum values of the stress, σmax − σmin = 2∆σ, by the difference between the

maximum and minimum value of the strain, ϵmax − ϵmin = 2∆ϵ. |E∗| corresponds

to the slope of the line that connects the lower left corner to the upper right corner

of the box as shown in Fig B.1A for a linear viscoelastic material. This graphical

interpretation is extended to define the effective stiffness of a nonlinear viscoelastic

material, as shown in B.1B [1].
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B.2 Damping

In a nonlinear response, since the stress is no longer a periodic function of time, a

general definition is needed. Damping is the energy that a material dissipates per

cycle which can also be calculated using equation B.2.

Wd =

∫ T

0

σ(t)
dε

dt
dt (B.2)

Where T = 2π/ω is the period of the input. Computing the integral in Eq. B.2 gives:

Wd = π∆ε∆σ sin(δ) (B.3)

Solving Eq. B.3 for tan(δ) we get

tan(δ) = tan
[
sin−1

( Wd

π∆ε∆σ

)]
(B.4)

Following the method described in Alur and Meaud [1], π∆ε∆σ corresponds to the

maximum energy per cycle that a linear viscoelastic material can dissipate for given
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values of ∆ε and ∆σ. This value is noted as Wmax
d (∆ε,∆σ). For a linear viscoelastic

material tan(δ) can also be written as:

tan(δ) = tan
[
sin−1

( Wd

Wmax
d (∆ε,∆σ)

)]
(B.5)

This is extended to define the effective loss factor for a nonlinear viscoelastic material,

η, to be:

η = tan
[
sin−1

( Wd

Wmax
d (∆ε,∆σ)

)]
(B.6)

The energy dissipated, Wd, by a viscoelastic material can be obtained graphically

by measuring the area within the stress-strain response, while Wmax
d (∆ε,∆σ) corre-

sponds to the ellipse whose area is π∆ϵ∆σ. This is graphically shown in Figs. B.2A

and B.2B [1].
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Appendix C

Plane strain linear viscoelastic theory formulation

Meaud and Hulbert [26] derived the complex Young’s moduli for Reuss composites

(loading in the z direction, see Fig. 2.2) and Voigt composites (loading in the x

direction) in response to dynamic loading. However, they did this for the generalized

plane strain case (i.e, the out of plane dimension is assumed infinite such that the

normal strains in the two phases are identical in the out of plane direction). In

this research all simulations are in plane strain (i.e, the normal strains in the two

phases are 0 in the out of plane direction). Applying the condition ϵAy = ϵBy = 0 to

constitutive equations 10 and 13 from Liu et al. [24] in conjunction with equilibrium

equations 15 through 17 and kinematic equations 18 through 20 the Young’s modulus

for the Reuss configuration, Eeff
x , was derived.

Eeff
x =

EAEB

ϕAEB + ϕB

(
EA(1− ν2

B) + EBνA(1 + νB)
)
+

q1ϕBνB

(
νAEB−EA(1+νB)

)
q2

(C.1)

where q1 and q2 are:

q1 = EBνAϕA(νA + 1)− EAνBϕA(νB + 1) (C.2)

q2 = EBϕB(ν
2
A − 1) + EAϕA(ν

2
B − 1) (C.3)

To solve for Eeff
y , which corresponds to the Voigt configuration, the same constitutive

equations were used but with equilibrium equations 23 through 25 and kinematic

equations 26 through 28 from Liu et al. [24].

Eeff
y =

ϕAEA

1− ν2
A

+
ϕBEB

1− ν2
B

(C.4)
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The effective modulus in the Y direction is then computed using Eq. 15 given in [27].
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