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SUMMARY 

 

             Current technology of polymer nanocomposites (PNC) emphasizes the need for 

fundamental understanding of the links between manufacturing method and macro-scale 

properties in order to engineer processing and performance of PNCs. The manufacturing 

method is one key variable that dramatically defines interfacial interactions on the nano-

scale and thus the properties of polymer near the interface of nanomaterial/polymer or 

interphase, level of dispersion and the crystallization behavior of semi-crystalline PNCs. 

These factors in particular govern reinforcing mechanisms at the interface and 

consequently impart important properties to PNCs. The current approach to 

manufacturing PNCs involves trial and error with elaborate, costly and time consuming 

experimental characterization of PNCs. Therefore, a deep insight into the links among 

manufacturing method, interfacial interactions and bulk properties is essential in order to 

design and fabricate PNCs with engineered performance.  

The main goal of this study was to provide a better understanding of the effect of 

manufacturing methods on the macro-scale properties of PNCs, with a focus on the role 

of interfacial interactions, that can lead to fabrication of PNCs with multifunctional 

performance. The objectives of this research were to: i) determine the detail correlations 

among manufacturing method, nano- and microstructure and macro-scale properties of 

multifunctional exfoliated graphite nanoplatelets/polyamide 12 polymer nanocomposites 

with enhanced mechanical and electrical performance through systematic manufacturing 

and experimental methodologies, ii) understand correlations among nano-scale interfacial 

interactions, physical and structural properties of the polymer at the interface and macro-

scale behavior of PNCs, and iii) evaluate effect of manufacturing method on electrical 

behavior of PNCs with directionally dependent performance.  
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          This study demonstrated key correlations among manufacturing techniques, 

interfacial interactions and macro-scale properties of PNCs. A methodology was 

introduced to understand and determine the characteristics of a complex constrained 

region produced at the interface of nanomaterials and polymer in semi-crystalline PNCs. 

Finally, the study illustrated superior electrical and morphological properties of selective 

laser sintering (SLS) processed parts over injection molded PNCs and thus confirmed the 

capability of SLS in the development of electrically conductive PNCs that exhibit 

multifunctional performance. In conclusion, the study provided an insight into the links 

among process, nano-scale interfacial interactions and microstructure to better understand 

effects of manufacturing technique on macro-scale properties of PNCs, which enables 

fabrication of conductive PNCs with multifunctional performance. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 Polymer Nanocomposites: Current Status and Challenges 

            Recent advances in technology of nano-structured materials have stimulated 

research into the design and fabrication of polymer nanocomposites (PNC) for regular or 

specific applications [1]. PNCs contain a polymer matrix filled with at least one 

reinforcement that has at least one dimension less than 100 nm [2]. The small sizee and 

unique morphological characteristics of nanomaterials, and the resulting large specific 

surface area (surface area per unit volume), give rise to nanomaterial-polymer interfacial 

interactions that dictate the load transfer quality at the interface, the distribution and 

dispersion of nanomaterials and the overall performance of nanocomposites [1, 3-5].  

            A PNC’s structure can be tailored in order to enhance multiple properties at the 

same time, leading to multi-functional engineering materials. Applications of PNCs range 

from aerospace materials and defense applications, health and medicine, energy, sporting 

materials and automotive parts to consumer electronics, and environment [1].  However, 

the design and manufacturing of PNCs have posed additional challenges to the 

technology of composites due to the nano-scale size of the materials used and the 

resulting uncontrollable nanomaterial-polymer interfacial interactions [6, 7].   

            It has been shown that in addition to the intrinsic properties of the constituents, 

the properties of PNCs are highly influenced by other main variables such as 

nanomaterial-polymer interfacial interactions which dictate the dispersion and alignment 

of nanomaterials [8, 9] and are governed by the manufacturing methods used [1, 4, 10, 

11]. Characterization of PNCs has, however, largely relied on extensive empirical 

approaches due to lack of a general understating of correlations among process-structure-
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property and considerable uncertainty in theoretical modeling of PNCs [12-14]. These 

issues have immensely limited the ability to design and manufacture PNCs with 

engineered properties for specific applications. Unlike their successful application in 

cases of conventional composites, micromechanics models usually fail in valid property 

prediction of PNCs due to the presence of phenomena on the nano-scale that in turn 

dominate macro-scale properties. For instance, factors such as poor interfacial bonding at 

the interface, anisotropic properties and poor dispersion of nanomaterials are not taken 

into account by the theories [15]. Understanding interfacial phenomena and their 

correlation to fabrication method is therefore a key requirement in understanding 

governing process-structure-property relationship and thus revealing mechanisms 

responsible for the property enhancement. Figure 1.1 compares relative Young’s modulus 

values predicated by different micromechanical theories with experimental values for 

nylon 6 reinforced with montmorillonite (MMT) nanoclay as function of volume fraction. 

It is clearly shown that the models overestimate the properties compared to the 

experimental results at a given concentration and that the continuum view of classical 

micromechanics is no longer valid in the case of PNCs.  

            It is concluded that is essential to precisely determine effects of a range of 

variables on the macro-scale properties of PNCs in order to design and manufacture 

PNCs with engineered properties [15-17]. Determination of correlations among all these 

variables is however a multi-directional task, as can be envisioned in numerous previous 

studies. Since the focus of this study is investigating the influence of manufacturing 

method on the macro-scale properties of PNCs, with an emphasis on the role of 

interfacial interactions, the following briefly describes common manufacturing methods 

of PNCs and how the interfacial interactions form and dictate the macro-scale properties 

of PNCs.  
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Figure 1.1 Relative Young’s modulus of fully exfoliated, randomly orientated Nylon 

6/MMT nanocomposites: micromechanical predictions v.s. experimental data [18] 

 

1.2 Polymer Nanocomposites: Fabrication 

            Interfacial interactions are born during PNC fabrication regardless of the 

composite’s constituents [19]. Conventional techniques have been employed to disperse 

nanomaterials within the polymer. The most common methods include solution blending, 

in-situ polymerization, and melt blending techniques. Other methods such as solid-state 

shear pulverization, spin casting, melt fiber  and coagulation spinning have been used  

more commonly recently [20, 21]. Solution blending is performed using three main steps 

including dispersion of nanomaterials in a compatible solvent that may be enhanced in 

presence of surfactants, mixing the solution with a polymer, and recovering PNCs by 

precipitating, molding or casting process [22, 23]. The method is limited to polymers that 

are effectively dissolved in common solvents [24]. In-situ polymerization, used mainly in 

cases of low viscosity thermoset matrices and a limited number of thermoplastic 

monomers, involves dispersion of in a monomer followed by polymerization (initiated by 
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heating or radiation or by diffusion) of the reinforced monomer. The methods mentioned 

above have two major limitations: i) the use of hazardous chemicals and ii) low yield 

fabrication and thus high production cost [25]. In the melt blending processes 

nanomaterials are dispersed within a polymer matrix as the blend is subjected to high 

shear forces and temperatures; these steps are followed by injection molding (IM) [23, 

26, 27]. An advantage of melt blending is its simplicity, large scale production with no or 

minimum use of hazardous chemicals. Melt blending may however induce polymer 

degradation and separation of nanomaterials from the matrix phase and unintentional 

alignment of nanomaterials [22, 28]. Moreover, the large shear forces often break down 

the network of fillers within the polymer, which in the case of conductive fillers results in 

an increase of the electrical percolation threshold and thus unnecessary costs in 

fabrication of polymer composites when products with enhanced electrical properties are 

desired [29-31].  

            The main challenge that needs to be overcome in all of the methods discussed 

above is the high tendency of nanomaterials to form agglomerates within polymers 

during processing. Functionalization has shown promise in terms of improving the initial 

dispersion of nanomaterials in the solvent or monomer and enhancing the interfacial 

adhesion [32-34].  Techniques such as sonication have been used to enhance dispersion 

of nanomaterials, but the method is effective only for polymers of low viscosity and 

small volume quantities.  

            Selective laser sintering (SLS), developed in the late 1980s, has been recently 

considered as an alternative polymer processing technique to the conventional processes. 

SLS is a powder-based additive manufacturing process in which three-dimensional solid 

parts are fabricated by successive sintering of a pre-heated raw powder according to the 

cross-sectional information of a CAD model [35-37].  
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Figure  1.2 Schematic of the SLS process representing the main components of the 

system [35] 

 

            SLS enables fabrication of parts with enhanced complexity and precision while 

expensive specific tooling is no longer required. The method enables fabrication of 

functionally graded materials i.e., composition and properties of the composites vary 

along the part thickness [38]. These provide greater design flexibility and implementation 

of the SLS-processed parts than of those parts processed by conventional techniques; this 

make SLS a competitive technology for processing of polymers and composites [37, 39, 

40].  However, SLS polymers normally do not exhibit the full performance of real 

products required in high-end use due to the intrinsic properties of polymers and the 

porous structure of the sintered parts. These issues have motivated increasing research 

into development of novel SLS starting polymers reinforced with nanomaterials [38, 41-

43]. Moreover, similar to other processing techniques used for reinforcing polymers, a 

prime factor in SLS is uniformity of the starting SLS powder and dispersion quality of 
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nanomaterials. A schematic diagram of the SLS process and the main elements of the 

system are given in Figure 1.2. 

            Preparation of the composite powder required in SLS however is not easily 

realized due to density difference between fillers and polymer powder, as is seen in direct 

mixing processes. A number of preparation methods have been reported elsewhere [36, 

44, 45]. Composites of graphite nanoplatelets (GNP) and polyamide12 (PA12) have been 

made using SLS, and it has been shown that the sintered functionalized GNP/PA12 parts 

demonstrated the greatest property improvement due to the reinforced interfacial 

adhesion [45]. In another work, preparation of the SLS powder using melt mixing and 

cryogenic milling for SLS fabrication of carbon nanofibre-PA12 composite has been 

reported and, it was revealed that the effective reinforcement of the polymer was highly 

affected by the size and morphology of the prepared powder [36]. Previous research also 

reports the use of solid state mixing for preparation of the SLS powder for SLS 

processing of carbon black (CB)/PA12 composites. It has been demonstrated that the 

composites prepared by SLS  had an electrical conductivity several orders of magnitude 

greater than the conductivity of the corresponding composites made by melt-mixing and 

injection molding [29, 35]. However, the observations have revealed that the SLS parts 

had a lower modulus and strength compared to the melt-mixed parts, due to the presence 

of CB aggregates and to porosity in the CB/PA12 parts [46]. Studies that elaborate on the 

correlation between the interfacial interactions induced during the sintering process and 

the macro-scale properties of sintered PNCs are lacking. This brief review reveals that the 

potential of SLS to manufacture PNCs for commercial applications still needs to be 

determined.  

1.3 Interfacial Interactions in PNCs 

           The macro-scale properties and even the processability of PNCs not only depend 

on the properties of material constituents but they are also remarkably influenced by the 
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nanomaterial-polymer and nanomaterial-nanomaterial interfacial interactions [10]. The 

latter induce the interfacial coupling (adhesion) of polymer to nanomaterial surface and 

nanomaterial agglomeration and hence influence the quality of interfacial load transfer 

[10, 15, 47, 48].  

1.3.1 Formation of interphase 

           The high aspect ratio and small size of nanomaterials result in significant 

nanomaterial/polymer interface and thus significant interfacial interactions [49]. These 

interactions can lead to local adsorption of polymer chains at the interface, mechanical 

interlocking, and interdiffusion of polymer chains, and can be altered by the chemical and 

physical characteristics of the interface and polymers [49, 50]. The strength of the 

interactions can vary from strong covalent bonds to very weak interfacial interactions due 

to van der Waals forces that favor the interactions among nanomaterials or repulsive 

forces between the PNC constituents [51-53]. One main result of nanomaterial/polymer 

interactions is the reduction of the mobilization of polymer chains and thus the decrease 

of the entropy of the polymer chains [46, 54, 55] and rarely the increase of the entropy of 

polymer chains [56, 57]. The interfacial interactions modify the polymer properties at or 

near the interface and lead to creation of an interfacial zone or what is identified in the 

literature as an “interphase”.  

           The interphase is responsible for communication between fillers and bulk polymer 

and may have distinct chemical, physical, microstructural, and mechanical properties 

different from those of the composite components [58-61]. Interphase properties depend 

on factors such as the thermodynamic compatibility and morphological nature of the 

reinforcement and polymer, the dispersion of fillers, the size and number of polymer 

crystallites, in the case of semi-crystalline polymers, and the manufacturing method and 

processing conditions used to fabricate the composites [60, 62-64]. For example, 

formation of a soft or hard interphase, with respect to the stiffness/modulus of the host 
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polymer, has been observed [65-68] ranging from 10 A° to several microns [10, 69]. 

Since the interphase characteristics depend on the nature of interfacial forces and the 

characterization methods, contradictory results or non-conclusive results have been 

reported [70, 71]. 

           The interfacial interactions dictate the quality of dispersion of nanomaterials 

within the host polymer and thus the macro-scale properties of PNCs [15, 72, 73]. Good 

dispersion provides more reinforcing sites and thus more effectively restricts the shearing 

or deformation of the polymer chains around nanomaterials [74]. However, 

agglomeration of nanomaterials cannot really be avoided due to reasons including their 

incompatibility with polymers, large surface-to-volume ratio and natural agglomeration 

tendency due to van der Waals forces [10, 17, 75]. Furthermore, the nanomaterial-

polymer repulsive interactions are responsible for the agglomeration of nanomaterials and 

changes in physical properties of polymer due to the entropy decrease of polymer chains 

near the nanomaterial surface [76]. Surface modification has been used to enhance the 

adhesion between nanomaterials and polymer and thus to reduce the agglomeration level. 

Major challenges, however, include maintaining the original properties after surface 

treatment and thermomechanical stability among all components [10, 75]. 

1.3.2  Characterization of the Interphase  

             Polymer behavior at or in the vicinity of interfaces has been studied for more 

than 30 years [49]. The interphase is usually formed as a result of processes such as 

interdiffusion of atoms or molecules, cross-linking, immobilization, and crystallization of 

thermoplastic polymers. Herein, the methods used for the interphase characterization 

including the mechanical and thermomechanical techniques are briefly reviewed.  

Spectroscopic and Mechanical Approaches 

             Several spectroscopic techniques such as solid-state nuclear magnetic resonance, 

Raman spectroscopy (shifting of the G band peaks) and FTIR spectroscopy have been 
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successfully utilized to analyze chemical reactions at the interface [60, 77-79].  X-ray 

photoelectron spectroscopy (XPS) has been used to evaluate the interphase in terms of 

composition (atomic concentration) [80, 81]. However, the techniques mentioned above 

normally do not provide information about the size/geometry of the interfacial zone. The 

interfacial adhesion has been assessed using scanning electron microscopy (SEM) or 

transmission electron microscopy (TEM). However, these techniques similarly fail to 

provide quantitative information [82, 83].  

      In contrast, nanoindentation and nanoscratch techniques have been used for 

characterization of mechanical properties and thickness of the interfacial zone [60, 84, 

85]. As reported, the nanoindentation method was first utilized to estimate the interphase 

in carbon fiber-epoxy composites [86]. Today, it is feasible to perform a nanoindentation 

experiment using atomic force microscopy (AFM) with enhanced spatial and 

displacement resolution [87, 88]. Nanoindentation has been, however, challenging due to 

issues such as “reinforcement stiffening” at the filler-matrix edge and unavoidable large 

indenting steps to avoid overlapping [60]. Nanoscratch tests rely on the interactions 

between the tip and components, which provide information about changes in the friction 

coefficient of the compositions under the tip in order to determine boundaries between 

phases. Few studies have successfully demonstrated direct application of AFM pull-out 

tests for the study of the interfacial strength [60, 89]. The quantification of the interphase, 

however, is still unresolved using such techniques [53, 89].  

           Scanning probe microscopy (SPM) techniques have been used to overcome the 

limitations associated with quantification, size of the interphase and required resolution. 

Furthermore, the AFM contact mode and the force modulation mode have been used to 

characterize interphase properties [88, 90-92]. The AFM force volume imaging can be 

used to extract quantitative mechanical information, but the technique is very slow for 

detailed modulus mapping purposes [93, 94]. AFM phase imaging has been used to 

identify the interphase through the stiffness contrast between two adjacent materials [63, 
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70, 95]. Although the technique has acceptable accuracy and reproducibility, the data can 

be hardly interpreted because of the interaction forces induced on the tapping tip [70, 96]. 

Other AFM tapping mode methods such as the HarmoniX require complicated operation 

and particular geometry of probes and are limited to modulus mapping of PNC surfaces 

with moduli <10 GPa [94, 97].  

           Table 1.1 shows the interphase characteristics as determined using various 

techniques. One can conclude that the measured interphase characteristics may 

remarkably vary depending on the characterization method and are specific to the 

material system studied [93]. In particular, composites of thermoset polymers reinforced 

with silane-treated glass fibers have been reported to have a relatively large interphase 

with thickness of 1 μm or several times thicker upon aging in water due to interdiffusion 

of silane agent promoted by hydrolysis [60]. Contribution of sizing agents to increased 

size of interphase in carbon fiber reinforced epoxy systems has been reported elsewhere 

too [98]. Presence of an interphase with a thickness as small as 3 nm has been also 

reported for an unsized carbon fiber/epoxy system [98].  

           It should be noted that the 3 nm interphase is too small to be measured using AFM 

nanoindentation experiments. The trouble lies in limitations in physical size of the 

indentation probe and the lateral resolution of the AFM indentor. As reported, finite 

element models have shown promise in determining such narrow interphase zones on the 

basis of the response of material near the reinforcement and experimental interphase 

thicknesses obtained for the case of measurable (large) interphases [98, 99]. The small 

size of 3 nm appears to be close to the typical interphase thickness obtained by 

thermomechancial theories based on the relaxation of polymer chains around the glass 

transition [100]. It is noted that the typical diameter of glass fiber ranges from 3 to 25 μm. 

The size may vary upon sizing and coating processes and define the interphase thickness 

[99, 101]. 
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      To overcome these limitations, very recently researchers have utilized quantitative 

nanomechanical approaches such as the AFM peak force tapping mode to better 

discriminate between the nanomaterial-polymer interaction forces. The method benefits 

the usual imaging speed in a way similar to that of the conventional tapping mode while 

providing a map of several mechanical properties. Moreover, the peak force method 

provides very low intermittent contact of the tip and polymer surface. It also controls the 

peak force with absence of the lateral forces on the tip that results in i) small deformation 

on the surface (<3 nm) that leads to an enhanced imaging resolution, and ii) decrease in 

the tip damage. Modeling techniques such as fracture mechanical analysis or shear lag 

analysis have also been developed to study the interphase. Such techniques are well 

conducted for study of the interfaces in brittle materials but are insufficient to describe 

the interphase as a volumetric region [90, 102, 103].  On the basis of the background 

review, just very few studies have been reported using the peak force tapping mode for 

nanomechanical characterization of PNCs [97]. 

 

 Table 1.1 Summary of experimental characterization of interphase 

 

Thermomechanical Methods 

            It has been shown that the configurational rearrangement and relaxation processes 

of long segments of polymer chains are significantly sensitive to the local environment 

restrictions surrounding the chains [104-106]. The links between the amount of the 

Composite system Measuring method Thickness Modulus/hardness 

relative to matrix 
Carbon fiber-epoxy AFM nanoindentation 3nm Softer                            [70] 

Glass fiber-polyester Nano-scratch 4-5 µm Harder                           [70] 

Silane treated Glass 

fiber-epoxy 

Nanoindentation/interfa

cial force microscopy 
8 µm Softer and harder          [92] 

Sized SiO2- epoxy 
Phase imaging AFM  

and nanoindentation 
2.4-2.9 µm Softer                            [60] 

Carbon black–rubber 
Analytical/non-linear  

data regression 
14-27 nm 30-58 MPa                    [60] 
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immobilized chains at the interface and thermomechanical/thermal properties such as the 

glass transition (Tg) have been widely illustrated using dynamic mechanical analysis 

(DMA) and differential scanning calorimetry (DSC) [107-109]. Previous research has 

shown strong dependence of polymer chain immobilization within the interphase upon 

the size of the interface area, the presence of secondary hard phases such as crystallites 

and the dispersion state of nanomaterials [10, 110, 111]. The existence of immobilized 

amorphous phase in poly(butylene terephthalate) (PBT) nanocomposites reinforced with 

single-wall and multi-wall nanotubes has been reported using DMA. The study relates the 

decreased normalized Tg peak and the corresponding narrower shape of the curve to the 

enhancement of the immobilized chains [112]. The changes in Tg values originating from 

the restriction of polymer chains is not always sufficient by itself to evaluate altered 

dynamics of polymer chains. Certain impediments exist regarding the error range and the 

lack of necessary resolution of the DMA measurements, as well as the mechanism and 

the details of the modification near the particle surface. For instance, Tg has been reported 

to increase [113-115], decrease [116] or be invariant when competing factors such as 

agglomeration are present [113, 115, 117].  

           Studies of calorimetric relaxation strength (ΔCp) in bulk PNCs have been used to 

complete the DMA studies [115, 118, 119]. A method, first introduced by Wunderlich et 

al. [120, 121], has made advances to determine the polymer amorphous domain with 

limited mobilization via study of the transition from the solid like to liquid like behavior 

of the amorphous phase based on changes in the specific heat capacity, Cp, [111, 122]. 

Although the method was originally used to quantify the amount of amorphous phase 

immobilized by polymer crystals in semi-crystalline polymers, the technique can be 

similarly applied for semi-crystalline and amorphous PNCs where hard fillers restrict 

mobilization of polymer chains. The effect has been indicated by a dramatic reduction in 

ΔCp due to the immobilization of polymer chains at the interface since the immobilized 

chains do not contribute to the relaxation strength at Tg and remain still active before 
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melting [100, 123]. The review of previous published work, however, shows little or no 

research that comprehensively investigates the character, amount and properties of the 

interphase in correlation with macro-scale properties of PNCs [62, 72, 124].  

1.4 Effect of Interfacial Interactions on Macro-scale Properties of PNCs 

            Understanding how interfacial interactions influence macro-scale properties is key 

in manufacturing PNCs with engineered properties [7, 9]. Many researchers have linked 

the altered performance as well as structural integrity of PNCs to the dominant effect of 

interfacial interactions on the macro-scale properties [1, 125, 126].  In particular, an 

increase in tensile modulus has been frequently reported due to extensive polymer chain 

immobilization within the interphase [74]. The tensile strength and toughness of PNCs 

have been shown to be also sensitive to soft-type interphases [60, 127].  

           The study of changes in thermomechanical properties such as the Tg has been 

widely utilized to assess the interphase due to the high sensitivity of these properties to 

mobility of polymer chains at or near the nanomaterials surface [128]. It has been 

demonstrated that the strength of interfacial adhesion affects bulk properties of TiO2/ 

poly (methyl methacrylate) (PMMA) nanocomposites prepared by solution mixing and it 

has been shown that TiO2 particles with surface modification induced greater increase in 

the Tg and elastic modulus of PNCs than unmodified particles [15]. In other studies, the 

counteracting effects of nanomaterial agglomeration and unmodified or desirably 

enhanced adhesion between nanomaterial and polymer have been considered as 

challenges in fabrication of PNCs. For example, effect of grafting polymerization onto 

the surface of nano-silica particles on the tensile behavior of reinforced polypropylene 

(PP) has been reported. It has been revealed that stronger interfacial interactions existed 

at low loadings, beyond which this effect was suppressed by agglomeration [129]. In a 

recent work, previous findings on negative effects of nanomaterial clustering on the 

interfacial interactions between nanomaterial and matrix have been confirmed using a 
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simulation method. It has been demonstrated that clustering resulted in the loss of 

interphase volume fraction [64]. The interplay among particle size, nanomaterial-matrix 

adhesion, filler content and mechanical properties has been illustrated elsewhere, with an 

emphasis on leading role of nanomaterial-matrix adhesion on the composite strength and 

the toughness of PNCs [62]. In other studies, the importance of interfacial interactions in 

the degradation of PNCs has been highlighted and ascribed to the retarded scission of 

polymer chains due to the restriction effects that nanomaterials impose against the 

mobility of polymer molecules [74].  

             It should be noted that together with the factors mentioned earlier, the picture of 

interfacial interactions in the case of semi-crystalline polymers is more complicated than 

that of fully amorphous polymers due to the effect of the nanomaterial on the degree of 

arrangement and packing perfection of polymer chains and hence on the nucleation and 

growth of crystallites [130, 131]. Since the nanomaterial surface has a restriction effect 

on the mobility of polymer chains, interfacial interactions dictate polymer crystallization, 

including nucleation and growth [10, 49, 50, 132, 133]. It has been shown how repulsive 

and/or attractive interactions at the interface define the type of crystalline phases, the size 

and perfection of crystallites and degree of crystallinity in semi-crystalline PNCs [130, 

134]. For instance, the crystalline phase change in melt mixed PP/graphite PNCs has 

been reported and correlated to the polymer chain immobilization and conductive nature 

of GNPs [135].  

            From the above review, it can be clearly understood that there might be a few well 

established and uniform trends for macro-scale properties as a function of PNC 

components and level of mixing of them. These trends however cannot be universally 

applicable to predict the behavior of PNCs that exhibit unexpected performance, since 

phenomena at the nano-size dominate properties. Therefore, understanding correlations 

among the manufacturing method and the macro-scale performance with a focus on the 

key role of interfacial interactions is critical for the design and fabrication of PNCs that 
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take advantage of “nano” effects and that exhibit expected enhancement in multiple 

properties.    

1.5 Motivation, Research Goal and Objectives 

           The design and fabrication of light weight, high performance PNCs with 

multifunctional behavior for targeted applications has attracted huge interest in recent 

years. However, PNCs generally do not exhibit expected trends and properties upon 

addition of nanomaterials, which results in contradictory or inconclusive results. The 

manufacturing method is a prime factor that strongly defines the quality of interfacial 

interactions and thus the macro-scale properties of PNCs. However, fundamental 

knowledge that demonstrates possible links between the manufacturing method and 

macro-scale behavior of PNCs has not been sufficiently established in PNC research. 

Therefore, the current approaches for manufacturing PNCs mainly rely on time-

consuming, elaborate and costly trial-and-error based attempts due to lack of sufficient 

understanding of process-structure-property relationships of PNCs. Particularly, these 

limitations are of critical importance as manufacturing trends shift from basic research 

activity at lab-scale to large-scale manufacturing of PNCs. 

           Moreover, in processing PNCs, a central question in regards to the governing links 

between manufacturing method and macro-scale properties of PNCs is how the 

manufacturing technique used defines nano-scale interfacial interactions in PNCs. The 

answer to the question requires considering detailed knowledge of these interactions. 

Interfacial interactions, which are expected to be significant due to large specific area of 

nanomaterials, dominate the properties of PNCs and should be taken into consideration. 

However, the effect of the unique length scale of nanomaterials on interfacial 

interactions, and thus the macro-scale performance of PNCs, cannot be easily performed 

by scaling arguments that are valid at micro-size down to nano-size.  The interphase is 

also affected by the dispersion and distribution quality of the nanomaterials when scaling 
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down from micro to nano-size reinforcements. A schematic that demonstrates possible 

situations, which are mainly reported in cases of polymers reinforced with nanomaterials, 

is shown in Figure 1.3. Therefore, a scientific knowledge that describes details among 

process-structure-property relations with emphasis on the role of interfacial interactions is 

a key tool to effectively fabricate PNCs and motivated the study.  

 

 

Figure 1.3 Schematic representation of various states of dispersion and distribution 

combined with presence of the interphase in polymer nanocomposites compared to 

an ideally reinforced micro-composite 

 

           The main goal of this study is to provide a comprehensive methodology to 

understand effects of manufacturing method on macro-scale properties of PNCs with a 

focus on the role of interfacial interactions in the fabrication of electrically conductive 

PNCs with engineered multifunctional performance. The specific objectives of this 

research were to:  

 determine the detailed correlations among manufacturing method, nano- 

and microstructure and macro-scale properties of multifunctional exfoliated 
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graphite nanoplatelets/polyamide 12 polymer nanocomposites with 

enhanced mechanical and electrical performance through systematic 

processing and experimental methodologies. 

 understand the correlations among nano-scale interfacial interactions 

between nanomaterials and polymer, the physical and structural properties 

of the polymer at the interface and the macro-scale behavior of PNCs.  

 evaluate the effect of manufacturing method on the electrical behavior of 

PNCs with directionally dependent functionalities. 
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CHAPTER 2   

MATERIALS, PROCESSING AND CHARACTERIZATION 

 

2.1 Materials 

           PA12 powder (VESTOSINT
®
 X 1553 white, Evonik Industries, Essen, Germany), 

with an average granule diameter of 50-100 μm  and melting temperature (Tm) in the 

range of 176-184 ˚C, was used as the matrix in this study [136]. The powder is a white, 

odorless, semi-crystalline thermoplastic polymer. PA12 has a lower concentration of 

amide groups (nitrogen-containing organic compounds) than other commercially 

available types of polyamide and this gives PA12 several main characteristics. PA12 

absorbs very little moisture which leads to its high dimensional stability; it has excellent 

fatigue and impact resistance, great resistance to chemicals, high damping ability and 

features high processability. Thus PA12 has found many commercial applications such as 

in electronics industries, transportation, food technology and many others. Moreover, in 

spite of advances in powder choice for additive manufacturing techniques in recent years, 

PA12 has remained a major polymer material due to extensive established research 

concerning advanced and conventional processing of PA12, and its better processability 

and low cost compared to other sintering polymers [44].  

           Exfoliated graphite nanoplatelets (GNP) from XG Sciences were used as the 

reinforcement phase. In general, GNP can be dispersed in water, solvent, thermoset and 

thermoplastic polymers and can enhance the properties of polymers due to its excellent 

in-plane mechanical, structural, thermal, and electrical properties [137-139]. GNP is 

commercially available and its superior properties have made it an ideal alternative 

choice of reinforcement that can lead to low cost PNCs with enhanced multifunctional 

performance. A range of properties of GNP used in this study is represented in Table 2.1. 
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Figure 2.1 illustrates a representative AFM phase image of a single GNP on a mica 

substrate giving information about typical dimensions and shape of GNP agglomerate.  

 

Table 2.1 Properties of GNP used in the study [140-142] 

Physical structure Platelet              

Chemical structure Graphene                       

Diameter ( μm) ~1                                    

Thickness (nm) 10-20                              

Tensile modulus (in-plane) (GPa) ~1000                                  

Tensile Strength (GPa) 10-20                                  

Electrical resistivity (Ω.cm) ~ 50  10
-6        

(in-plane)     

~ 1                  (normal) 

Thermal conductivity (W/m.K) 3000               (in-plane)     

6                     (normal) 

specific surface area 300-750 m
2
/g                       

Density (g/cm
3
) 2                                        

 

 

Figure 2.1 (a) AFM height image of pure GNP on a mica substrate and (b) the 

height information along the profile line across the GNP as a function of distance 

 

            The exfoliated graphite consists of stacks of graphene sheets held together by van 

der Waals forces and is the product of an exfoliation process of acid intercalated graphite 
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layers (e.g. graphite treated by an oxidizing acid) followed by rapid heating in a 

microwave, shear pulverization using a vibratory mill and sonication to increase the 

characteristic properties of graphite such as the aspect ratio and surface area [25, 140, 

143]. Figure 2.2 schematically shows typical steps used to produce high aspect ratio 

exfoliated graphite nanoplatelets with small diameters (right) from intercalation of natural 

graphite (left). It is noted that GNP consists of multilayer graphene sheets with an inter-

planar spacing of 0.335 nm [144]. Based on the overall thickness of GNP used in this 

study (Table 2.1), it is estimated that around sixty graphene sheets stack to form a GNP 

layer of 20 nm thick. 

 

 

Figure 2.2 One synthesis route for fabrication of exfoliated graphite nanoplatelets 

from natural graphite flake [25, 140] 

 

2.2 Processing of PNCs 

            In this study, the composites were made in a two-step process: i) compounding 

and ii) forming/shaping using either injection molding (IM) or selective laser sintering 

(SLS). For a given material system, compounding is the key factor that defines the 

orientation, alignment and agglomeration of the nanomaterials within the polymer, 

which, in turn, dictate the performance of the resulting nanocomposites.  
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2.2.1 Compounding 

           The compounding method used is the coating method reported in [27] for 

compounding GNP with PP powder. In more detail, the PA12 powder was coated with 

GNP up to 15 (wt%). As-received GNP was mixed in isopropyl alcohol (IPA) using 

ultrasonic energy (UIP500hd, Hielscher USA) for 45 min with amplitudes of 80% and 

manual mixing of the neat PA12 powder in the solution [27]. The solution of the 

nanocomposite powder was filtered, and the residual coated powder was then thoroughly 

dried in a vacuum oven at 100 °C for 10 hrs to minimize the hydrolytic degradation. The 

GNP/PA12 compound was kept in sealed containers to avoid degradation of the material 

upon contact with the air moisture.  

           The coating method used for compounding was found to be more effective 

compared to the direct melt mixing, based on the mechanical and rheological properties 

of the PNCs as is shown in Figures 2.3 and 2.4, respectively.  The hypothesis is that the 

coating method results in more homogeneous dispersion of GNP within the PA12 matrix. 

The strength of composites is dictated by the load transfer ability at the GNP-PA12 

interface so it is more sensitive, compared to the modulus to the presence of 

agglomerates. Thus as a first attempt to assess the effect of the compounding method on 

the dispersion of GNP within the PA12 matrix, the flexural strength of composites made 

by the coating method followed by injection molding was compared to that of those made 

by direct melt mixing followed by injection molding. It is noted that the optimized 

processing parameters (presented below) of the extruder and injection molding unit were 

used in the assessment of the compounding method. According to Figure 2.3, the coating 

method significantly enhances the flexural strength of GNP/PA12 composites, especially 

at low GNP contents, indicating more homogeneous dispersion and distribution of GNP 

within the polymer. 

           The GNP-PA12 interfacial interactions were assessed using the rheological 

behavior of the polymer nanocomposites at melt state. A detailed comparison of the 



22 
 

dynamic viscosity of the nanocomposites at low frequency as a function of the 

compounding method employed and the GNP content is presented in Figure 2.4. Low-

frequency dynamic viscosity is used because it is sensitive to the presence of 

nanomaterials and to the strength of the interfacial interactions [145, 146]. The results 

clearly indicate that stronger interfacial interactions are present when the coating method 

is used due to more available GNP surface. The findings are in good agreement with the 

flexural strength results reported in Figure 2.3 and with experimental results, reported 

elsewhere [147], that demonstrated direct correlation between degree of dispersion of 

nanomaterials and viscosity. Therefore, the coating method is utilized in the rest of the 

study.  

 

 

Figure 2.3 Effect of compounding method and GNP content on the flexural strength 

of GNP/PA12 nanocomposites 

 

In order to eliminate any effect of the coating method (extensive immersion in 

isopropyl alcohol) on PA12 a control PA12 specimen using the coating method was made 
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and tested. Furthermore, to eliminate any effect of possible cross-contamination that may 

be interpreted wrongly as property enhancement, every time a composite was made using 

the injection molding unit, a control PA12 was made as well.  

 

 

Figure 2.4 Effect of compounding method and GNP content on the dynamic 

viscosity of GNP/PA12 nanocomposites measured at ω=0.1 rad/s and T=190 
o
C 

 

2.2.2  Injection Molding 

           This traditional polymer processing method was chosen as a more economical and 

simple technique compared to other common methods; it and has shown promise in 

scaled up fabrication of most thermoplastic PNCs [26, 27].  In this work, GNP-coated 

PA12 powder prepared by the coating method described above was fed into a DSM 

Micro 15cc Compounder (vertical, co-rotating twin-screw micro extruder) followed by 

injection molding. The processing parameters, optimized with respect to the flexural and 

impact properties for the resulting PNCs, were Tbarrel = 190 °C, screw speed of 60 and 

100 rpm for 1 and 2 min, respectively, Tmold=80°C and a pressure of ~750 KPa. These 
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processing conditions are a result of an optimization process. As reported [26], the 

processing conditions in melt mixing and injection molding, such as the screw RPM, 

extrusion temperature, shear intensity, melt residence time and mold temperature, are 

critical factors that determine the dispersion and distribution state of nanomaterials and 

thus the final properties of the parts.  

          In this study, several sets of parameters were examined to optimize the IM process. 

The GNP concentration of 3wt% was chosen as an intermediate loading considered in 

this work. The optimal processing parameters were chosen as those that maximized the 

flexural properties and the impact resistance of the 3 wt% GNP/PA 12 PNC, since the 

latter are remarkably sensitive to the level of agglomeration. Table 2.2 shows the 

processing parameters optimized and their corresponding range.  

 

Table 2.2 Process parameters investigated for melt mixing injection molding 

processing of GNP/PA12 composites and process optimization 

Run ID RPM Tbarrel (°C) Residence time 

(min) 

Tmold (°C) 

IM1 200 180 3 70 

IM2 100 190 3 70 

IM3 100 190 3 80 

IM4 100 

200 

190 1 

2 

80 

IM5 60 

100 

190 1 

2 

80 

IM6 60 190 4 80 
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Figure 2.5 Dependence of the flexural properties (top) and impact strength (bottom) 

on process parameters in IM processing of 3wt% GNP composites 

 

           Figure 2.5 (top) illustrates variations in flexural modulus and strength of melt 

mixed and injection molded composites as a function of the processing parameters. It is 

clearly demonstrated that the composites fabricated using parameters corresponding to 

IM4 exhibit maximum flexural strength while maintaining a flexural modulus that was 

similar to that found in other runs. Figure 2.5 (bottom) depicts the impact resistance of 
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the PNCs as a function of the processing parameters. It is shown that the IM4 and IM5 

runs result in maximum impact performance of PNCs. Thus according to Figure 2.5, the 

processing conditions that correspond to the IM4 run were determined as the optimum 

ones and employed in the rest of this study.  

 2.2.3  Selective Laser Sintering 

          Selective laser sintering was also employed to make GNP/PA12 nanocomposites. 

SLS, an additive manufacturing technique, has the following advantages compared to 

traditional polymer/composite processing methods as mentioned earlier in section 2.1: i) 

controlled placement/orientation of nanomaterials, ii) absence of large shear forces that 

are present in conventional melt mixing processes, iii) no need for expensive tooling such 

as molds, iv) ability to fabricate functionally graded parts where composition and 

properties vary through the thickness, and enhanced design flexibility and detailed 

features on the sintered parts. Furthermore, very recent studies have shown SLS makes it 

feasible to fabricate PNCs of PA12 matrix reinforced with carbon based nanomaterials. 

The studies have demonstrated multiple-property enhancement for the sintered PNCs that 

also exhibited lower electrical percolation threshold than the parts made by IM process 

[35, 148]. 

           Preparation of the composite powder with an appropriate particle size and 

morphology is of a key stage since the compounding not only affects the final 

characteristics, such as dimensional accuracy and of porosity level, but it also dictates the 

processing ability of the composite, particularly in additive processes [44]. A 

Sinterstation® 2000 commercial SLS machine (3D Systems Inc., Valencia, CA) was used 

to process the GNP/PA12 composite powder. A sieve shaker was used before the SLS 

process to eliminate the agglomerates and to provide the coated PA12 with more uniform 

grain size. The processing parameters were optimized with respect to the tensile strength. 

In this study, a range of laser powers from 5.5 to 10.5W and of scan speeds from 635 to 
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1524 mm/s were investigated for parameter optimization, because previous research 

showed that these were the most important of other controllable SLS variables that affect 

the quality and properties of the parts [35, 149]. The parameters used, which maximized 

the tensile strength of 5wt% GNP/PA12 composites and yielded SLS parts with good 

geometric accuracy and density are: laser power of 8.5 W, laser scan speed and spacing 

of 762 mm/s and 152.4 μm respectively, part-side temperature set-point of 171
 o
C (PA12) 

and 170
 o

C (PNCs) and powder feed temperature set-point of 100 
o
C. The process was 

operated at a roller speed of 76.2 mm/s, powder layer thickness of 101.6 μm and piston 

temperature of 135 
o
C. 

2.3 Characterization Techniques 

           The tensile properties of the specimens were determined according to ASTM 

D638 using an Instron 33R 4466 apparatus with a 500 N load cell and an extensometer 

(Instron 2630-101) with a gage length of 10 mm. A displacement control with a velocity 

of 2.54 mm/s was applied. The flexural properties were measured based on a three-point 

bending test according to ASTM D790 on an MTS 810 Material Test System (MTS 

Systems Corp., Eden Prairie, MN) at a crosshead speed of 1.27 mm/min and a span of 

50.80 mm. The impact resistance of the specimens was determined according to ASTM 

D256 using an Izod pendulum test. Each data point reported is an average of five 

repetitions. 

           The thermomechanical behavior was studied by dynamic mechanical analysis 

(DMA, Q800, TA Instruments) using the single cantilever mode at oscillation amplitude 

of 0.015 mm and a fixed frequency of 1 Hz. The composites were heated from ambient 

temperature to 150 
o
C at a heating rate of 5

o
C/min.  

           The X-ray diffraction (XRD) patterns, from 8
o
 to 50

o
 (2θ) at a scanning rate of 

~3
o
/min with divergence and scatter slit of 1/4 

o
 and 1/2

o
 respectively, of the neat PA12 

and the composites were obtained using a X’Pert Pro Alpha 1 (PANalytical, Almelo, 
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Netherlands) diffractometer in the Bragg–Brentano geometry using a monochromatic, 

filtered Cu Kα1 radiation. The X-Ray equipment was operated at 45 kV and 40 mA.  

           Standard differential scanning calorimetry (DSC) and modulated DSC (MDSC) 

work were performed on a DSC Q2000 (TA Instruments, New Castle, Delaware, USA) 

using specimens of about 7-10 mg. Nitrogen was used for purging. Measurements were 

performed from the equilibrate temperature of -30
 o

C to 200 
o
C at a heating rate of 3 

o
C/min and a heating-cooling rate of 5 

o
C/min on the MDSC and standard DSC modes, 

respectively. The MDSC makes it possible to decompose the total heat flow signal into 

reversing and non-reversing heat flow signals. The reversing signal demonstrates heat 

capacity events including the glass transition and melting, whereas the non-reversing 

signal most often contains kinetic events such as crystallization and crystal perfection 

[150]. The reversing heat flow curves upon the heating scan were used to study the 

melting behavior of the specimens. No annealing or additional scans or thermal history 

removal was used in order to compare the effects of manufacturing process on the 

properties of interest.  

           Electrical conductivity measurements were taken with a Solartron 1260 coupled 

with a 1296 Dielectric Interface using 0.1 Vac for frequencies ranging from 10 MHz 

down to 10
-2

 Hz. The measurements were performed through cross-sectional planes of 

bulk PNCs through the length, width and thickness (mutually perpendicular directions) of 

the composites. 

          To estimate the interphase characteristics such as thickness and stiffness, AFM 

experiments were performed. A Veeco AFM with Nanoscope V controller, operated in 

tapping mode using an aluminum coated cantilever (length of 225 μm, spring constant of 

45 N/m, resonance frequency of 190 KHz), with silicon tip of 2 nm nominal radius 

provided by Nanoscience Instruments Inc. Phoenix, AZ was used. To avoid detrimental 

effects of the soft polymer substrate under the tip and occurrence of artifacts due to 

contaminations, tapping mode (v.s. contact mode) was used for measurements. 
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Composites with 0.1 wt% filler content were studied in order to avoid interactions among 

fillers.  

         The morphology of the composites and the GNP coated PA12 powder were studied 

with a Zeiss DSM 940A scanning electron microscope (SEM) operating at 5 kV 

accelerating voltage. Prior to the SEM study the fracture surface was gold-coated to 

minimize the charging effects during the SEM observations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



30 
 

CHAPTER 3  

EFFECT OF MANUFACTURING METHOD ON THE 

STRUCTURAL AND MACRO-SCALE PROPERTIES OF GNP/PA12 

NANOCOMPOSITES 

 

           Two primary reasons for fabrication of PNCs are their enhanced macro-scale 

properties and their multifunctional performance compared to polymers, which make 

them potential candidates for various applications. Properties exhibited by PNCs are 

directly correlated to their hierarchical microstructure, which is mainly affected by the 

properties of the constituents, the nanomaterial-polymer interfacial interactions and 

processing methods/conditions employed to make the composites.  Although some 

established trends are exhibited by polymer properties modified with addition of 

nanomaterials, in general PNCs present unexpected macro-scale properties, as a variety 

of phenomena at the nano-scale dominates the macro-scale properties. Therefore, further 

understanding of the complex process-structure-property relationships is a critical factor 

in manufacturing PNCs with tailored macro-scale performance and multi-functionality. In 

particular, the manufacturing method/conditions dictate the structural and morphological 

characteristics and thus the property enhancement or deterioration of reinforced polymers 

[207,208]. It has been well demonstrated that proper dispersion and specific controlled 

orientation of nanomaterials, as well as enhanced quality of adhesion between the 

nanomaterials and the polymer, are dramatically dependent on the manufacturing 

method/conditions and are required in development of PNCs with desired properties. On 

the other hand, understanding the correlations that bridge the gap between the 

manufacturing method/conditions and the micro-scale behavior of the composites 

remains a major technical and scientific challenge.  
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          The goal of this chapter is to provide a better understanding of how the 

manufacturing method affects the macro-scale performance of GNP/PA12 composites 

including tensile, flexural and impact properties, thermo-mechanical properties and 

electrical conductivity. This work will focus on the role of structure, morphology and 

interfacial interactions. To achieve this, two classes of manufacturing methods are 

employed: i) SLS and ii) IM. In order to eliminate the effect of compounding on the 

properties of composites, the same compounding method, which is coating of the PA12 

powder with GNP as discussed in chapter 2, was employed in both cases. GNP/PA12 

composites containing 0, 3 and 5 wt% of GNP were made. The following notation is used 

throughout the chapter: i) PA12-IM (injection molded neat PA12), ii) 3 and 5GNP/PA12-

IM (injection molded 3 and 5wt% GNP/PA12 specimens, respectively), iii) PA12- SLS 

(SLS sintered neat PA12), iv) 3GNP/PA12-SLS and 5GNP/PA-SLS (SLS-processed 3 

and 5wt% GNP/PA12 specimens, respectively). 

3.1  Mechanical Performance 

The tensile modulus and strength of GNP/PA12 composites made by SLS and IM 

with 0, 3 and 5 wt% GNP are shown in Figure 3.1 The following observations are made: 

i) SLS processing of neat PA12 dramatically increases both the strength and the modulus 

compared to the corresponding properties of PA12 processed by IM, ii) addition of GNP 

to PA12 processed with IM enhances the strength and modulus of neat PA12.  However, 

when SLS is used addition of GNP improves the modulus but not the strength. 

Specifically, addition of 3 wt% GNP leads to the greatest modulus enhancement both in 

SLS and IM-processed composites with 48% and 22% enhancement in modulus 

respectively compare to that of the neat PA12 processed similarly. 
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Figure 3.1 Effect of manufacturing on the tensile modulus and strength of 

GNP/PA12 composites 

 

The reduction in tensile modulus of SLS composites at 5wt% GNP and the lack of 

strength enhancement are correlated to unavoidable GNP aggregation that acts against the 

reinforcing ability of GNP. As the GNP content increases, GNP interferes with the 

sintering process, masking the polymer powder, leading to variations in the melting of 

PA12. The tensile strength is sensitive to the dispersion state of nanomaterials [142, 151], 

so it is speculated that IM composites exhibit better dispersion/distribution of GNP. The 

different densities of the SLS and IM composites (1.037 and 1.05 gm/cm
3
 respectively 

for 5wt% GNP) do not justify the observed differences in mechanical properties.    

           The flexural properties of SLS and IM-processed GNP/PA12 composites are 

presented in Figure 3.2. Once again, both the modulus and the strength of neat PA12 

increase significantly when processed by SLS. Composites processed with SLS exhibit 

lower strength and modulus than the SLS-processed neat PA12 but similar if not better 

strength and modulus than the corresponding composites processed by IM. It is also 
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noted that regardless of the manufacturing method used, the 5wt% GNP composites have 

lower strength than those with 3wt% GNP, an observation that agrees with the tensile 

results indicating the presence of agglomerates at higher GNP content.  

 

 

Figure 3.2 Effect of manufacturing on the flexural properties of GNP/PA12 

composites 

 

The impact strength of GNP/PA12 composites, presented in Figure 3.3, is 

significantly affected by the manufacturing method and GNP content. The impact 

strength of composites made by IM increases with GNP content, whereas the strength of 

the composites made by SLS decreases. It is noted that the manufacturing method had no 

significant effect on the impact strength of the neat PA12.  The decrease in the impact 

strength of SLS composites may be due to GNP absorbing part of the laser energy; this 

would reduce the energy available to locally melt the PA12 particles and inter-diffuse 
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their boundaries resulting thus in structures that can absorb less energy before fracture is 

reached. The results are in agreement with those reported elsewhere [142, 148, 152]. 

 

 

Figure 3.3 Effect of manufacturing on the impact strength of GNP/PA12 composites 

 

 To better understand how the manufacturing method used to make the 

composites affects their mechanical properties one needs to investigate the processing-

structure relationship first that is understanding how the processing affects the polymer 

characteristics such as the glass transition temperature, thermo-mechanical properties, 

degree of crystallinity, and morphology including the dispersion and distribution of the 

GNP within the polymer. As reported the mechanical properties of polymers filled with 

nanomaterials are remarkably influenced by the structural characteristics at the micro and 

nano-scale including polymer crystalline structure and nanomaterial-polymer interactions 

[153].  
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As reported elsewhere [154], addition of CNT to PA12 resulted in more 

pronounced enhancement of the mechanical and thermal properties of PA12 compared to 

the corresponding property enhancement caused by addition of GNP to PA12. Both 

GNP/PA12 and CNT/PA12 composites were made by melt mixing followed by 

compression molding and surfactant was used to improve the distribution/dispersion of 

the nanofillers. A direct comparison of the GNP/PA12 composite films made by 

compression molding and the GNP/PA12 bulk specimens made by injection molding or 

SLS that are investigated in our study is not possible because the compounding method 

and the GNP size used in [154] and the present study are totally different. The smaller 

GNP used in our study (diameter of less than 1 micron) is expected to yield larger 

enhancement of the mechanical properties of PA12 compared to the larger GNP 

(diameter of ~5 microns) used in [154]. 

3.2  Melting and crystallization behavior of GNP/PA12 composites 

The heat flow thermograms obtained by DSC during the melting transition of the 

GNP/PA12 composites made by SLS or IM are presented in Figure 3.4. The heat of 

fusion and the corresponding degree of crystallinity, calculated using equation (3.1), are 

shown in Table 3.1.  

   
  

   
    

   
    

                                                   

 

∆H
 
m =209.3 J/g was used as the theoretical heat of melting for a 100% crystalline PA12 

[155, 156]. 

 The main observation is that when IM is used, both the neat PA12 and the 

composites exhibit a single melting point at ~ 178 °C, whereas in case of SLS processing 

the neat PA12 and the composites exhibit an additional melting transition at ~185 °C. 

These melting temperatures are also reported in Table 3.1. It is noted that the second 
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high-temperature melting peak gradually disappears with addition of GNP content. This 

complex melting transition is either the result of  crystal polymorphism and/or 

recrystallization of unstable incomplete crystals during slow heating [134].  

           In the case of SLS, the second melting peak is associated with the presence of 

PA12 powder that has not melted during the sintering process and still exists in the 

composite parts as reported in our previous work [148]. This is confirmed by considering 

the melting behavior of as-received PA12 powder shown also in Figure 3.4. The pristine 

PA12 powder has higher melting point and significantly higher degree of crystallinity, as 

shown in Figure 3.4 and Table 3.1 respectively, than the PA12 processed by either SLS 

or IM. The double melting peak is characteristic either of alpha-phase or mix of alpha and 

gamma phase PA12 crystals as pure gamma phase crystals exhibit only one melting peak 

[157]. 

 

Figure  3.4 Effect of manufacturing on the melting behavior of GNP/PA12 SLS (Tm1 

and Tm2 main and secondary melting temperatures respectively) 
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          The degree of crystallinity of neat PA12 increases by 18% when SLS is used, 

which may explain the observed difference in mechanical properties of the SLS and IM 

neat PA12. However, upon addition of GNP the degree of crystallinity decreases 

regardless of the manufacturing method used. It is noted that the degree of crystallinity 

does not affect all the mechanical properties the same way. Tensile strength and modulus 

are expected to increase with crystallinity. This is not the case for the impact strength and 

ductility which tend to decrease with the degree of crystallinity and depend also on the 

size and type of crystallites. These results indicate the presence of a secondary 

mechanism, the reduction in the degree of crystallinity; which is acting against the main 

reinforcing mechanism responsible for the enhancement of tensile modulus which is the 

stiffening effect of GNP. 

           The crystallization characteristics of GNP/PA12 composites were further studied 

using XRD. As shown in Figure 3.5, the pristine PA12 powder exhibits two peaks very 

close to each other at  equal to 21
o 
and 22

o
 respectively which are characteristics of the 

less common alpha phase crystals [158]. A hump on the right of the first peak at  equal 

to 21.3
o
, characteristic of the gamma phase [158], can be also seen. The XRD pattern of 

the as-received pristine PA12 powder is in agreement with the melting behavior of the 

PA12 powder presented in Figure 3.4 confirming the presence of a mix of alpha and 

gamma crystalline forms. In the case of IM processed PA12 and GNP/PA12 composites, 

there is only one peak at about  equal to 21.3
o
indicating the presence of gamma-phase 

crystal. The melting during the processing results in alpha-phase to gamma-phase 

transition as reported also elsewhere [157]. The SLS processed PA12 and GNP/PA12 

composites also exhibit only one peak which, however, is at slightly higher  values and 

is broader than the peak of the IM processed specimens indicating the presence of some 

residual alpha-phase crystals in the SLS processed specimens which is expected 

considering that the PA12 is not fully melted during SLS processing. The characteristic 
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graphite peak at 2=26.2
°
 is more evident on patterns of IM composites with high GNP 

content [159, 160]. 

 

Table 3.1 Effect of manufacturing and GNP on melting temperature and 

crystallization characteristics of GNP/PA12 composites 

Sample Tmelt (°C) ΔHf (J/g) χ% 

PA12 powder 184.2±0.1 104.2±3.3 49.8±1.6 

PA-IM 178.6±0.1 61.2±0.2 29.3±0.1 

PA-SLS 178.7±0.6 76.2±3.1 36.4±1.4 

185.9±0.3 

3GNP/PA-IM 178.7±0.5 49.6±0.4 24.4±0.2 

3GNP/PA-SLS 178.4±0.1 56.6±0.7 27.9±0.4 

184.9±0.3 

5GNP/PA-IM 178.5±0.1 48.6±0.1 24.5±0.1 

5GNP/PA-SLS 178.9±0.1 47.9±1.4 24.1±0.7 

185.1±0.1 

 

 

 

Figure 3.5 Effect of manufacturing on the XRD patterns of GNP/PA12 composites 

(the curves are shifted vertically for clarity) 
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The lamella thicknesses of the crystals were estimated using the Debye-Scherrer 

equation and the full width at half maximum (FWHM) of predominant reflections yielded 

by the XRD patterns: 

   
  

     
                                                              

where LT is the lamella thickness, K is the crystal shape factor, which was taken as 0.9, λ 

is the wavelength of the x-ray radiation (0.154 nm), β is the full width at half maximum 

and θ is the peak position of the XRD reflections [161]. It is noted that no deconvolution 

of the XRD peaks was performed and so, using equation 3.2, one can only obtain a rough 

estimate of the lamella thickness. In order to obtain more accurate quantitative values and 

exact information about the crystalline reflection peaks, it is essential to employ a 

deconvolution method and exclude the broad amorphous components [154, 162, 163]. It 

is observed that the lamella thickness remains invariant with respect to the GNP content 

and manufacturing process and it is in the range of ~ 10-12 nm. In particular, 

deconvoluting the observed original peaks is also of importance in evaluating presence of 

unmelted PA12 α-form crystals after sintering process as suggested earlier.  

The effect of manufacturing on the crystallization of PA12 was further 

investigated by DSC. As shown in Figure 3.6, the crystallization onset temperature, 

TC/onset, and the peak temperature, TC/peak, of the GNP/PA12 composites increase 

monotonically upon addition of GNP in case of IM. When SLS is used addition of 3wt% 

GNP leads to an initial shift in TC/onset and TC/peak of neat PA12 with no further increase 

upon addition of more GNP. The increase in TC/onset indicates that graphite acts as a 

nucleating agent for PA12, and this nucleating action is more dominant in case of IM-

processed composites. It is noted that in SLS composites there are GNP agglomerates and 

thus a reduced number of effective nucleation sites at 5wt% GNP. Even the coating 

compounding method used cannot eliminate these agglomerates because there is not 

enough polymer to keep the platelets apart; however, the agglomerates may break by the 
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high shear forces present in the melting stage of IM. That is why there is a saturation 

effect on the nucleation action of GNP in SLS composites, TC/onset  does not increase for 

GNP content higher than 3 wt%. The neat effect of manufacturing on the initiation of 

crystallization (not accounting for the nucleating action of GNP) can be determined by 

comparing the TC/onset and TC/peak of the neat PA12 processed by the two methods. As 

shown in Figure 3.6, crystallization initiates earlier (at higher temperature) in the case of 

IM and takes less time to complete. 

 

 

Figure 3.6 Non-isothermal DSC cooling curves of SLS and IM GNP/PA12 

composites v.s. temperature and GNP content 

       

3.3  GNP-PA12 Interfacial Interactions 

Interfacial interactions dictate the load transfer mechanisms at the GNP-PA12 

interface and thus the bulk properties of polymer composites and can lead to 
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immobilization of the polymer chain at the GNP surface. In case of SLS processing this 

pinning of the polymer segments may interfere with consolidation [164]. The interfacial 

interactions and their correlation to the bulk properties of the composites were assessed 

using DMA. The tanδ (the ratio of dissipated to stored energy) and the Tg of the 

GNP/PA12 composites made by either SLS or IM are shown in Figure 3.7 and Table 3.2 

respectively. SLS processing results in both neat PA12 and GNP/PA12 composites with 

higher Tg than the corresponding counterparts made by IM (e.g. a difference of 10 and 5 

% in case of neat and 5wt% GNP parts, respectively) . The increase in Tg of SLS 

processed PA12 indicates greater restriction against segmental motion of amorphous 

chains. The addition of GNP had no effect on the Tg of SLS-processed composites (~55.8 

to 55.3 °C for neat and 3wt% GNP parts, respectively) whereas Tg was increased with 

GNP in the case of IM processing (~50.9 to 53.6 °C for neat and 3wt% GNP parts, 

respectively).  

 

 

Figure 3.7 Effect of manufacturing method on the tanδ (damping) of GNP/PA12 

composites 
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The observed changes in Tg are related to the competing effects of i) GNP and 

hard PA12 crystallites that enhance chain immobilization and thus Tg, ii) GNP 

agglomeration that increases the free volume among polymer chains, as compared to well 

dispersed GNP, and decreases available interface, decreasing Tg. and iii) porous structure 

and residues of unmelted PA12 powder, specific to the SLS process, that has negative 

effect on Tg [122, 165].  

 

Table 3.2 Tg, tanδ and storage modulus of GNP/PA12 composites processed by 

either SLS or IM (standard deviation is less than 10%) 

Sample Tg (°C) tanδ @ Tg Storage modulus 

above Tg (MPa) 

Storage modulus 

below Tg (MPa) 

PA-IM 50.9±0.8 0.119 391.2 1194.4 

PA-SLS 55.8±0.5 0.114 431.7 1146.2 

3GNP/PA-IM 53.6±0.7 0.105 465.3 1301.9 

3GNP/PA-SLS 55.3±0.2 0.093 464.7 1184.1 

5GNP/PA-IM 53.6±0.5 0.076 523.8 1096.5 

5GNP/PA-SLS 56.3±0.3 0.072 623.3 1321.2 

 

As shown in Figure 3.7, tanδ of both the neat PA12 and the GNP/PA12 

composites significantly decreases across the temperature regime investigated when SLS 

is used and when GNP is added. The observed results indicate that the energy damping 

ability is compromised, which is in agreement with the observed decrease in impact 

strength, and the elastic behavior is enhanced. In addition to the compromise of the 

damping ability upon addition of GNP, the degree of crystallinity also decreases, 

significantly more in case of SLS-processed composites, although it still remains higher 

than the degree of crystallinity of their IM counterparts. Consequently, it is concluded 

that a rigid interface is formed that consists mainly of immobilized amorphous polymer 

chains.  
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The storage modulus of the GNP/PA12 composites as a function of the 

manufacturing method used and the GNP content at temperatures below and above Tg are 

also presented in Table 3.2. At temperatures below Tg, where the modulus is dictated by 

the stiffening effect of GNP there is no effect of the manufacturing method used. 

However, at temperatures above Tg neat PA12 and composites processed by SLS exhibit 

higher storage modulus than their corresponding counterparts made by IM. This indicates 

the presence of a secondary reinforcement mechanism that is more effective in SLS 

systems than IM ones, and is related to the immobilization of amorphous polymer chains 

at the GNP or PA12 crystal surface. 

3.4  Electrical Behavior of GNP/PA12 Composites 

The electrical conductivity of GNP/PA12 composites made by either SLS or IM is 

shown in Figure 3.8. The schematic in the insert of Figure 3.8 shows the direction along 

which the conductivity was measured. It is noted that sintering is occurring along the x-y 

plane, whereas injection molding along the x-direction. The 5wt% GNP/PA12 

composites made by SLS exhibited the highest electrical conductivity, which is four 

orders of magnitude higher than the conductivity of the corresponding composite made 

by IM. The results demonstrate that the percolation threshold is lower than 5wt% GNP 

and that a GNP conductive network exists when composites are made using SLS. It is 

suggested that the shear forces during melt mixing/injection molding lead to breakage of 

the GNP conductive network that is formed as a result of the coating method used during 

compounding, resulting thus in an increase in the electrical percolation threshold. In 

addition, IM induces alignment of GNP along the injection molding direction and as 

reported in [22, 143, 166] the percolation threshold is higher in aligned than in randomly 

distributed filled systems. It is noted that the more insulating samples (neat polymer and 

composites with graphite content lower than the percolation threshold) tend to be a lot 
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noisier and therefore the error bars tend to be larger. It is possible that these samples are 

picking up some moisture that could potentially lower their resistance. 

 

 

Figure 3.8 Electrical conductivity of GNP/PA12 composites made by either SLS or 

IM 

 

3.5  Morphology of GNP/PA12 Composites 

Representative SEM images of as received and coated with GNP PA12 powder 

are shown in Figures 3.9 a-d. At high GNP content, i.e., 5 wt%, there are so many 

platelets that there is not enough polymer to keep the platelets apart and thus 

agglomerates are forming no matter whether IM or SLS processing was used to make the 

composites. The agglomerates form during the coating/compounding process. The PA12 

powder, shown in Figures 3.9a and 3.9b, is coated with GNP. The GNP coated PA12 

powder is shown in Figures 3.9c and 3.9. According to theoretical calculations based on 

the PA12 particle/powder diameter (50-100 microns) and the dimensions of the GNP, a 

monolayer coverage of PA12 particle with GNP is achieved at 0.8-1.6 wt% of GNP.  
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Further addition of GNP forms multilayer coating of GNP and thus agglomerates. The 

high shear and elongation stresses during melt mixing and injection molding respectively 

and the flow of the PA12 viscous melt are able to break down some of these 

agglomerates when IM is used. However, in case of SLS processing where the PA12 

particles are only locally melted and sintered the GNP agglomerates still exist. 

A special feature on SLS-processed specimens is that the top surface is less dense, 

containing micro-size porosity and voids as shown in Figure 3.10a. This is because each 

layer beneath the top surface has been subjected to doses of thermal energy from the laser 

sintering of the layer above it. The energy dose for each layer is tuned to sinter that layer 

and to propagate through the thickness of that layer so as to remelt a shallow portion of 

the layer underneath to ensure good layer-to-layer bonding. The remelting seals off any 

residual surface porosity in the underlying layer. The last (top surface) layer does not 

experience such a dose and is thus left with a porous top surface. This micro-porosity is 

not present in the interior of the SLS-processed specimens as indicated in the fracture 

surface of 5GNP/PA12 SLS composite shown in Figure 3.10b. Finally, comparison of the 

fracture surface of SLS and IM composites at 5wt% GNP, shown in Figures 3.10b and c 

respectively, confirms the mechanical property results, especially those of impact 

strength. IM composites have a rougher surface, indicating more energy dissipation 

mechanisms.  Finally, based on comparison of the fracture surfaces of SLS and IM 

composites at 5 wt% GNP, shown in Figures 3.10b and 3.10c respectively, it seems as 

there are more GNP in case of SLS. Considering that both composites contain the same 

amount of GNP, it can be concluded that the GNP is better dispersed in the case of IM 

composites so the agglomerates, if any, are smaller and cannot be seen at the 

magnification used. There are fewer GNP agglomerates in IM composites (Figure 3.10c) 

compared to those present in SLS composites (Figure 3.10b). 
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Figure 3.9 SEM images of PA12 powder at a) low and b) high magnification and 3 

wt% GNP-coated PA12 powder at c) low and d) high magnification 

 

 



47 
 

 

 

 

Figure 3.10 SEM images of a) top surface of PA SLS b) fracture surface of 

5GNP/PA12 SLS and c) fracture surface of 5 GNP/PA12 IM 
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3.6  Conclusions 

Multifunctional polymer composites were made and characterized in terms of 

their mechanical, thermomechanical and electrical properties. The study examined the 

processing-structure-property relationship in graphite reinforced polyamide 12 

composites made by selective laser sintering or by injection molding. SLS led to 

comparable or higher tensile properties with respect to the IM process. In general it was 

demonstrated that SLS-made parts yielded comparable or better tensile and flexural 

performance, which was invariant or decreased upon addition of GNP, compared to IM-

processed parts. In contrast to IM, SLS negatively affected the impact resistance of the 

composites that exhibited toughness decrease upon addition of GNP.   

The effect of the sintering method on the physical properties and interfacial 

interactions of the specimens was evaluated and linked to the observed mechanical 

properties. It was observed that the degree of crystallinity of PA12 decreased with 

increasing GNP regardless of the technique used and that GNP acted as nucleating agent.  

SEM revealed the presence of a finer GNP dispersion in the IM composites. The 

decreased damping response and increased storage modulus of the specimens above Tg 

suggested the presence of a secondary reinforcing mechanism, a stiffening effect due 

maybe to the presence of smaller but numerous polymer crystallites, that is more 

effective in case of SLS. The latter effect, combined with improved crystallinity of 

sintered 0 and 3wt% parts compared with the corresponding IM ones, supported the 

observed variations in tensile behavior. 5wt% GNP composites processed by SLS 

exhibited the highest electrical conductivity in the longitudinal direction indicating that 

formation of conductive paths in IM composites may be destroyed by the high shear 

forces. SEM investigations confirmed a developed porous structure on the top surface of 

the SLS specimens and GNP aggregated phase that explained the suppressed impact and 

flexural performance exhibited by SLS parts with addition of GNP. The observations 

revealed how the manufacturing method influences the degree of crystallinity, level of 
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agglomeration and interfacial interactions and thus the macro-scale properties of the 

composites. This work provides an experimental methodology for understanding the role 

of nano- and micro structure and interfacial interactions in evaluating and engineering the 

macro-scale properties of semi-crystalline based composites. 

In conclusion this study is the first to report on fabrication of multifunctional 

graphite nanoplatelets reinforced polymer composites made by selective laser sintering 

with properties equal to if not better than those of the corresponding composites made by 

more traditional methods such us injection molding, demonstrating thus the ability to 

create functionally graded multifunctional composites. The effect of the manufacturing 

methods used on the electrical properties of PNCs will be elaborated in chapter 6. 

Moreover, the ability of the SLS process to fabricate PNCs with anisotropic performance 

is demonstrated and compared with the melt mixing process. 
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CHAPTER 4  

EFFECT OF INTERFACIAL INTERACTIONS ON MACRO-SCALE 

PROPERTIES OF GNP/PA12 NANOCOMPOSITES 

 

           Understanding how interfacial interactions at the nano-scale influence macro-scale 

properties is key in manufacturing of PNCs with properties engineered for specific 

applications. The high surface to volume ratio, small size and unique intrinsic properties 

of nanomaterials are expected to significantly enhance bulk performance of PNCs [1, 17, 

167, 168]. However, the expected property improvement has not yet been achieved 

experimentally due mainly to poor nanomaterial-polymer interactions [124, 169, 170]. 

Although the interface effects can be ignored in the case of micro-sized reinforced 

polymer composites, they need to be accounted for in the case of PNCs because the 

interfacial interactions dictate the dispersion and agglomeration of the nanomaterials 

within the polymer. Moreover, the interfacial interactions significantly define the stress 

transfer mechanism and alter the physical properties of the polymer matrix dominating 

thus the macro-scale properties of PNCs in multiple ways [59, 169, 171-173]. The 

manufacturing process in particular dramatically defines the interfacial interactions and 

results in enhancing or limiting the overall properties at a given PNC system. 

          The goal of this chapter is to provide better understanding of how the presence of 

GNP alters the physical properties of PA12, including glass transition and crystallization 

behavior, and how a polymer constrained region at the GNP surface, which influences the 

bulk properties of the GNP/PA12 PNCs, can be assessed. To achieve these, a 

comprehensive methodology is introduced to determine the links between the interfacial 

interactions, physical properties of the polymer and macro-scale properties of the PNCs. 

The correlation between the tensile modulus and the glass transition temperature and the 
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amount of constrained phase, assessed through the mechanical, thermal, thermo-

mechanical, crystallization behavior of the composites, is determined. The presence of a 

complex constrained phase, consisting of an immobilized amorphous region and a 

crystalline interphase region, of PA12 at the GNP surface is observed and correlated to a 

secondary reinforcing mechanism at the interface.  

4.1  Tensile Modulus and Glass Transition Temperature of the Nanocomposites 

The Young’s modulus and the glass transition temperature, determined as the 

temperature value of the tanδ peak of GNP/PA12 composites as a function of the GNP 

content, are presented in Figure 4.1. Both properties follow exactly the same trend; they 

increase with GNP content up to 5wt%, reach a plateau value at intermediate GNP 

loadings in the range of 5-10 wt%, and finally continue to increase with GNP content. It 

is noted that changes in Tg are related to the primary relaxation of polymer chains and the 

extent of the immobilized chains [64, 112, 122, 123]. 

The non-monotonical increase of the modulus and Tg with GNP content indicates 

the presence of two competing effects: i) the reinforcing effect of the high modulus 

graphite (E=500-600 GPa) [174] and ii) formation of GNP agglomerates due to poor 

GNP dispersion within the polymer  [122, 133]. Other effects such as the effect of the 

polymer’s crystallinity and the polymer chain mobility, which are altered upon addition 

of GNP, on the modulus of the composites, are also considered below. The results in 

Figure 4.1 indicate the presence of a secondary reinforcement mechanism which 

contributes to the enhancement of both the tensile modulus and Tg and is notably 

influenced by the GNP content and the microstructure of the composites. These 

observations motivated detailed investigations into the altered dynamics of polymer 

chains as a result of the extensive GNP-PA12 interfacial interactions.   
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Figure 4.1 Tensile modulus and Tg of GNP/PA12 PNCs as a function of the GNP 

content 

           It has been demonstrated that mechanical and viscoelastic properties are slightly 

affected by the presence of moisture in PA12 polymer. This effect is more pronounced in 

other polymers in the family of polyamides such as polyamide 6. It has been, however, 

shown that water absorption influences molecular motions of PA12 chains and causes the 

glass transition to shift to lower temperatures compared to the Tg of dried PA12 [175, 

176]. It is noted that in this study the moisture content in the fabricated specimens was 

not measured before experiments. However, the specimens once made were dried in a 

vacuum oven at 100 °C for 10 hrs and kept in sealed plastic bags until they were used in 

various tests to minimize hydrolysis. 

4.2  Assessment of the Interfacial Interactions 

4.2.1 Immobilized Amorphous Phase 

The increase of Tg with GNP content indicates an increase of the immobilized 

polymer chains at the GNP surface. The question is what this immobilized phase consists 

of, amorphous or crystalline polymer segments? The fraction of polymer chains anchored 
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at the GNP surface, dictated by the interfacial interactions between the GNP and PA12, 

was assessed by determining the variations in the thermo-mechanical behavior of the 

GNP/PA12 composites as a function of GNP content and temperature. The theoretical 

model reported in [177] is employed here to estimate the fraction of the constrained 

region, C. The model [177] was used for neat semi-crystalline polymer, considering  the 

constrained region as the crystalline phase and part of the amorphous phase that was 

immobilized at the crystal surface. The rest of the amorphous phase was considered as 

the mobile phase. In this study, the model is adopted in the case of polymer composites 

making the following modification. The amorphous phase can be immobilized not only 

on the crystal surface but also on the GNP surface. In other words, the constrained phase 

C consists of polymer crystalline phase and amorphous phase immobilized at the crystal 

and GNP surface. The mobile phase consists only of amorphous polymer chains. The 

constrained region does not contribute to loss or dissipated energy and can be expressed 

in terms of Wc and W0 the energy loss ratio of the composite and neat polymer at Tg, and 

C0 the degree of crystallinity for the pure PA12 as shown below: 

              
  

   

                                                             

where 

  
     

         
                                                           

By rearranging equation 4.1, it can be seen that the ratio of energy loss Wc is 

directly proportional to the mobile amorphous phase (1-C). So the fraction of amorphous 

immobilized phase can be found by subtracting the degree of crystallinity from the 

overall constrained region, C. The results are presented in Table 4.1. The tanδ and degree 

of crystallinity used in equations 4.1 and 4.2 were determined using DMA and MDSC, 

respectively. The degree of crystallinity was calculated according to the following 

equation 
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where ∆H
 
m  is the melting enthalpy of 100% crystalline PA12 equal to 209.3 J/g [155, 

156]. 

 

Table 4.1 Thermo-mechanical and crystallization parameters used for the 

estimation of the immobilized amorphous phase 

GNP 

wt% 

χ% 

based on 

MDSC 

tan δ @ Tg 

based on 

DMA 

WC 

according to 

equation 4.2 

C, % 

according to 

equation 4.1 

immobilized 

amorphous % 

(C- χ) 

0 32.9±0.8 0.119 0.271 32.6 0 

0.5 27.6±0.3 0.110 0.257 35.7 8.1±0.3 

1 28.7±0.9 0.107 0.250 37.3 8.6±0.9 

3 26.2±0.5 0.114 0.263 35.0 8.7±0.3 

5 26.2±0.5 0.105 0.248 39.0 12.8±0.5 

10 24.9±0.8 0.099 0.237 41.0 16.1±0.8 

12 24.1±0.2 0.098 0.235 41.4 17.3±0.2 

15 22.6±0.7 0.095 0.228 43.0 20.3±0.7 

 

The increase of immobilized amorphous phase with GNP content is expected and 

is in agreement with the observed increase in Tg. What needs to be explained is why GNP 

decreases the degree of crystallinity from ~32% for neat PA12 to ~22.5% for 15wt% of 

GNP and how that relates to the increase of the fraction of the amorphous immobilized 

phase. During cooling from melt, the highly mobile polymer chains move freely, in 

absence of GNP, in the polymer melt towards the homogeneous nucleation crystallization 

sites. When GNP is present, the polymer chains are either totally immobilized at the GNP 

surface (pinning effect) which results in increase of Tg, or they are slowed down, since 

GNP is an obstacle in their way, resulting in a decrease of degree of crystallinity.  

The presence of this constrained amorphous phase is also confirmed by the 

viscoelastic behavior of the GNP/PA12 composites, which was determined as a function 
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of the GNP content and temperature at constant frequency of 1 Hz using DMA. The 

observed results in the linear viscoelastic behavior of PNCs are presented in Figure 4.2. 

As shown the tan peak value (value at Tg) decreases and shifts to higher temperatures 

(Tg increases as also shown by DSC), indicating that the relaxation transition, which 

originates from the long segmental motions of the main polymer chain, requires more 

energy input, that is higher temperatures. This is because GNP decreases the viscous and 

enhances the elastic behavior of PA12 by pinning the polymer chains leading to 

formation of the immobilized constrained region [111, 126, 178]. This effect is more 

pronounced at low and intermediate GNP content. At higher loadings of GNP, 

unavoidable agglomeration compromises the GNP surface responsible for the pinning of 

the polymer chains [64, 174].  

 

 

Figure 4.2 tan δ spectra of the PNCs as a function of temperature and GNP wt% 

 

The results are in agreement with those of other studies reporting that the free 

volume available to the polymer segments decreases upon addition of 

nanoreinforcements, restricting thus the polymer chains and resulting in a more compact 
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structure that requires more energy to activate the segmental motion of polymer chains 

[122, 128, 179].  It is noted that although the degree of crystallinity decreases with GNP 

content, as shown by DSC, the composites become more elastic because the increased 

amorphous phase is immobilized at the GNP surface, so it cannot contribute to viscous 

effects. 

Changes in the thermo-mechanical properties of polymers upon addition of 

nanomaterials can be used to correlate the interfacial interactions at the nano-scale and 

macro-scale properties of PNCs. The storage modulus of the GNP/PA12 composites 

above and below Tg, normalized with respect to the corresponding modulus of neat PA12 

as a function of the GNP content, is presented in Figure 4.3. As shown the normalized 

storage modulus at temperatures above Tg is higher for all GNP content values studied 

than the corresponding normalized storage at temperatures below Tg.  

It is known that the storage modulus is related to the elastic (v.s. inelastic or 

viscose) response of the composites [128, 180, 181]. So as the amorphous phase increases 

with GNP content (degree of crystallinity decreases as shown in Table 4.1), it is expected 

that the storage modulus above Tg, where the viscous effects of the amorphous phase 

dominate, will not increase more than the storage modulus below Tg. Therefore, the 

observed not expected trend further supports the presence of immobilized amorphous 

phase. Specifically, the below Tg elastic behavior is predominantly a result of the 

stiffening effect of the hard GNP phase. The enhanced elastic behavior at temperatures 

above Tg indicates suppressed chains mobility due to extensive segmental immobilization 

of polymer chains as reported elsewhere [128, 181]. A final observation is that the 

normalized storage modulus above Tg increases dramatically upon addition of low GNP 

content, reaches a plateau and finally keeps increasing at higher GNP content, a trend 

very similar to the trend observed for the Young’s modulus and Tg presented in Figure 

4.1.   
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Figure 4.3 Normalized storage at below and above glass transition temperatures as a 

function of GNP content 

 

The observed results are further confirmed by determining, using MDSC, the 

changes in the specific heat capacity of the GNP/PA12 composites near Tg as a function 

of GNP content, shown in Figure 4.4. The inset depicts the method utilized to measure 

the relaxation strength, ΔCp, at the midpoints of the corresponding glass-liquid transition 

on the heat capacity spectra. Table 4.2 gives the values of ΔCp for each composite 

system. It is clear that the ΔCp monotonously decreases with GNP content due to 

decreased entropy of the system induced by the enhanced immobilization of the polymer 

chains at and near the interface [123, 182-184]. As reported, the interfacial interactions 

limit mobilization of amorphous polymer chains, which is needed for liquid like behavior 

of polymer above Tg, and thus the entire cooperatively rearranging regions (CRR) near 

the interface [100, 111]. The result of this polymer chain immobilization is a reduction in 

liquid like motions of chains and thus the reduction in the increment of heat capacity at 

Tg. The immobilization then gradually reduces away from the surface of 
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nanoreinforcement to the bulk polymer where the bulk CRRs contribute to the liquid like 

behavior of the polymer. 

 

 

Figure 4.4 MDSC specific heat capacity of GNP/PA12 nanocomposites as a function 

of GNP content obtained during heating scans. The inset is a zoomed-in plot of these 

traces near Tg demonstrating the decrease in the discontinuity of ΔCp with GNP 

 

Table 4.2 ΔCp of the GNP/PA12 nanocomposites as a function of GNP content at Tg 

GNP wt% ΔCp (J/gr °C) 

0 0.43±0.04 

0.5 0.32±0.01 

1 0.26±0.03 

5 0.23±0.01 

10 0.21±0.01 

12 0.14±0.01 
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4.2.2 Transcrystalline Phase  

The crystallization of PA12 as a function of GNP content and temperature 

is shown in the non-isothermal cooling curves obtained by DSC presented in 

Figure 4.5. As shown the crystallization onset temperature (TC/onset) increases 

with GNP content, indicating that GNP is acting as a nucleating agent. The 

dramatic increase at low GNP content followed by a slight increase at GNP 

content higher than 0.5 wt% is due to the saturation effect reported also 

elsewhere [131, 133]. Specifically as the GNP surface available for nucleation 

increases dramatically at high GNP content, there is not enough polymer to 

nucleate at every available GNP surface or/and the mobility of the polymer 

chains becomes limited due to confinement effects of GNP. In addition, another 

competing factor, the presence of agglomerates at higher GNP content, 

contributes to the observed saturation effect [134, 185, 186].  

Thecrystallization induction time,ΔTi, defined as the time from onset to 

endset of crystallization during non-isothermal crystallization of the GNP/PA12 

composites as a function of GNP content calculated using the DSC curves of 

Figure 4.5, is presented in Figure 4.6.  As the GNP content increases, ΔTi 

increases, that is, it takes longer for crystallization to complete. This indicates 

that the polymer chains have more time to rearrange and to organize, forming 

more perfect and/or thicker crystals [187]. This combined with the nucleating 

action of GNP leads to the conclusion that there is a transcrystalline phase 

formed at the GNP surface. The transcrystalline phase formed due to the 

nucleating ability of carbon nanomaterials has been confirmed in case of GNP in 

PP using in-situ hot stage optical microscopy [133] and in the case of carbon 

nanotubes (CNT) in PA12 using transmitted polarized optical microscopy [131]. 

Thus, the immobilized constrained phase, C, (shown in Table 4.1) consists of the 
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amorphous immobilized phase (also shown in Table 4.1) and the transcrystalline 

phase which is immobilized but crystalline.  

 

Figure 4.5 Non-isothermal DSC cooling curves of GNP/PA12 PNCs v.s. GNP content 
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Figure 4.6 Crystallization induction time and degree of super-cooling with respect to 

the equilibrium melting temperature obtained from the non-isothermal DSC cooling 

curves of GNP/PA12 composites are a function of  the GNP content 

 

4.2.3 Crystal Characteristics  

The melting temperature of the crystalline regime is dictated by the 

lamellar thickness of crystals, based on the classical theory of polymer 

crystallization. The lamellar thickness is inversely proportional to the degree of 

super-cooling from the equilibrium melting temperature provided by  

     
                                                                  

where   
  is the equilibrium melting temperature and TC/onset the onset crystallization 

temperature. The   
  was estimated based on the linear Hoffman-Weeks method [188] to 

be ~190 °C. The   
  value estimated here is in agreement with values reported in 

literature for PA12 [189, 190]. As demonstrated in Figure 4.6, the degree of super-

cooling (ΔT) decreases with GNP content. Therefore, according to equation 4.4 the 

lamella thickness increases with GNP.  

The effect of GNP content on the lamella thickness and the PA12 polymorphism 

was investigated by XRD. As reported, PA12 is a semi-crystalline polymer that 

undergoes crystalline transitions showing four structural polymorphs: α, α', γ, and γ' 

[191]. In our case however, there is only one strong predominant reflection that 

corresponds to the characteristic γ-crystal phase peak of PA12 with no indication of other 

crystalline forms [191-193] as shown in Figure 4.7. It is also shown that the characteristic 

graphite peak at 2=26.2° becomes more dominant with GNP content [159, 160]. 

The lamella thicknesses of the crystals were estimated using the Debye-Scherrer 

equation and the full width at half maximum of predominant reflections yielded by the 
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XRD patterns. The patterns are presented in Figure 4.7 and the lamella thickness is 

calculated by equation 

   
  

     
                                                               

where Lt is the lamella thickness, K is the crystal shape factor which was be taken as 0.9, 

λ is the wavelength of the x-ray radiation (0.154 nm), β is the full width at half maximum 

and θ is the peak position of the XRD reflections [161]. It was estimated that the lamella 

thickness of crystals increases by addition of GNP and vary in the range of 10-12 nm. It 

is noted that no deconvolution of the XRD peaks was performed and so, using equation 

3.2, one can only obtain a rough estimate of the lamella thickness. The results are in 

agreement with the increase of induction time with GNP content as shown in Figure 4.6. 

The observations also indicated possible recrystallization upon addition of GNP, a 

hypothesis that is investigated further in the following.  

            It is noted that one may estimate the thickness of GNP and variations in 

interplanar spacing of graphene sheets after processing the PNCs using the information 

corresponding to the characteristic reflection angle (θ=26.2°) and peak intensity of 

graphite [159, 194]. However, it is expected that the distance between the graphene 

sheets remains invariant due to high viscosity of PA12 polymer, which impedes 

intercalation of polymer chains between the graphene galleries. The latter is further 

validated by the position of the observed reflection peaks corresponding to GNP on the 

XRD spectra of the nanocomposites. Figure 4.7 indicates that there is no change in 

position of the GNP reflection peaks in all systems with respect to the characteristic 

position of GNP. It can be understood, using Bragg’s law (λ=2d0 sinθ) [194], that the d-

spacing (d0) between two graphene sheets does not change during processing of the 

PNCs.  

            The melting behavior of the GNP/PA12 composites as a function of the GNP 

content was studied by MDSC. As shown in Figure 4.8a, where the reversing heat flow 
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signal is presented, there are two melting peaks, a major one at high temperatures (Tm2) 

and a significantly smaller one at the left of the main peak (Tm1). Both peaks correspond 

to the same PA12 crystal form since according to XRD patterns there is only one present. 

The small peak disappears because of recrystallization, which is suppressed with addition 

of GNP. Note that the reversing signal is one of the components of the total heat flow 

signal that excludes the recrystallization phenomena during the heating scans. In order to 

understand more about the recrystallization phenomenon the corresponding non-reversing 

heat flow signal, which along with the reversing signal make up the total heat flow signal, 

presented in Figure 4.8b, is used. The recrystallization effect is more pronounced for the 

neat PA12 and 0.5 wt% GNP composites. The results indicate that the exothermic peaks 

are progressively suppressed by increasing the GNP content. The recrystallization 

enthalpy was estimated according to Figure 4.8b as the area under the exothermic 

transition, and it was found that it decreases with GNP content which confirms the 

hypothesis that the PA12 crystals recrystallize resulting in more stable thickened lamella 

with only one melting peak, the major peak shown in Figure 4.8a [134, 195]. 
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Figure 4.7 XRD patterns of GNP/PA12 PNCs (the curves are shifted vertically for 

clarity) 
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Figure 4.8 a) MDSC reversing thermograms of the melting behavior of GNP/PA12 

as a function of GNP content. The arrows indicate the first (Tm1) and second (Tm2) 

melting peaks, and b) MDSC non-reversing heat flow thermograms of the PA12 and 

nano-composites representing the recrystallization (exothermic) peaks over the 

melting transition 

In summary, addition of GNP leads to formation of a transcrystalline region, 

which, combined with the increase in the induction time and decrease in recrystallization, 

indicated the presence of more perfect/complete PA12 crystals upon addition of GNP. 

The hypothesis is that the imperfect/incomplete crystals that undergo recrystallization 

recrystallize at the transcrystalline region. No recrystallization of the transcrystalline 

region is supported by our results, which is in agreement with the fact that the presence of 

factors such as strong transcrystallinity/GNP interactions and geometry confinement does 

not facilitate recrystallization as reported in [134, 196]. The crystallization induction time 

based on DSC, the maximum temperature of the two melting peaks and the 

recrystallization enthalpy according to MSDC are presented in Table 4.3. 
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Table 4.3 The effect of GNP content on transcrystalline region is indicated by 

variations in melting peaks, crystallization induction time, and recrystallization 

enthalpy of PA12 crystals 

GNP % 
Tmelt/1 

(°C) 

Tmelt/2 

(°C) 
ΔTi  (min) 

recrystallization 

enthalpy heat (J/g) 

0 164.4 178.1 1.7±0.1 30.1±1.3 

0.5 168.0 178.4 2.6±0.1 27.8±0.6 

1  179.1  27.4±1.5 

3  178.3  28.4±0.6 

5  177.9 3.5±0.1 25.9±0.9 

10  178.1 4.3±0.4 21.9±1.3 

12  177.6  19.7±0.6 

15  177.6 4.6±0.1 22.2±1.0 

 

4.2.4 Constrained Phase at the GNP Surface 

The results so far indicate the formation of a complex constrained phase at the 

GNP surface consisting of the amorphous immobilized phase, presented in Table 4.1, and 

the transcrystalline phase, presented in Table 4.3; both phases increase with GNP content. 

A simple schematic that summarizes the results and shows the formation of the 

constrained phase around the GNP is shown in Figure 4.9. Neat PA12 (depicted in the 

left square) consists of a bulk crystalline region (~32% according to MDSC) and an 

amorphous phase. Once GNP is added to PA12 (the right square depicts composites) the 

bulk crystalline region reduces significantly, and part of it shows up as a transcrystalline 

phase at the GNP surface (nucleating effect of GNP as indicated by DSC/MDSC). Also a 

significant portion of the amorphous phase becomes immobilized at the GNP surface.  

As the constrained phase-both the transcrystalline and amorphous regions- 

increases with GNP, so do the elastic modulus and Tg of the GNP/PA12 composites. 

When due to competing effects of GNP, increased surface area versus agglomeration, the 

amount of constrained phase reaches a plateau, the same exact trend is exhibited by the 

bulk properties including modulus and Tg, revealing thus the presence of direct 
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correlation between phenomena at nano- or micro-scale and macro-scale properties of the 

composites. The formation of GNP agglomerates, which compromise the available GNP 

surface area at high GNP contents, has been confirmed by SEM and is presented in 

Figure 4.10.  

 

 

Figure 4.9 Proposed model representing formation of a complex constrained phase 

in PA12 upon addition of GNP 
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Figure 4.10 Representative fracture surface of a) neat PA12 and GNP/PA12 

composites containing b) 5wt% and c) 15wt% GNP, showing GNP agglomeration 

only at higher GNP contents 

The fracture surface of neat PA12 is shown in Figure 4.10a. Severe GNP 

agglomeration is not apparent in composites with GNP content ~ 5wt% (Figures 4.10b 

and c). The PNCs with high GNP wt%, however, contain GNP aggregation (circled and 

clearly seen in Figure 4.10c). The SEM images confirm that poorly dispersed GNP can 

compromise the constraining effect of nanomaterials by reducing the available interface 

between GNP and polymer and thus. The observations are in good agreement with the 

observed variations in the amount of the constrained region as well as bulk prosperities of 

the PNCs obtained over the range of the GNP content.  
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4.2.5 Assessment of GNP-PA12 Interphase 

           An important consideration in the design and fabrication of PNCs is the 

nanomaterial-matrix interface or interphase [60, 70, 171]. Although the interphase 

properties are distinct from those of the pure polymer matrix, this does not necessarily 

mean that the interphase is structurally homogenous all the way from the surface of 

nanomaterials to the polymer. The latter has been demonstrated in previous studies that 

illustrate the interphase as a transition region with varying properties [70]. Therefore, 

determination of the interphase characteristic has increasingly become a topic of interest 

in order to better understand detailed process-structure-property interplays. Moreover, the 

use of existing structure-property micromechanics models in the design of PNCs is no 

longer valid due to the presence of a remarkable amount of polymer chains with altered 

dynamics and thus the presence of secondary mechanisms that define macro-scale 

properties of PNCs [197].  

           The role of the interfacial constrained region in property enhancement and the 

methods to quantify its volume fraction within semi-crystalline PNCs were discussed in 

previous sections of this dissertation. Moreover, the results elucidated that the interfacial 

region contained polymer chains with an enhanced degree of immobilization and order 

due to the confinement and nucleation effect of GNP. According to the observations, the 

hypothesis is that this immobilized phase has an improved stiffness with respect to the 

rest of the PA12 polymer phase that is further away from the GNPs. The goal is to 

demonstrate other important aspects of the interphase to better explain the macro-scale 

behavior of PNCs in correlation with nano-scale interfacial interactions. This section 

serves to provide methodologies to determine interphase characteristics such as thickness 

and stiffness gradient within the nanomaterial-polymer transition zone for a given 

nanocomposite system. As the emphasis of the study is to understand the effect of the 

manufacturing technique on the macro-scale performance of PNCs, knowledge of the 
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interphase can also help enlighten the links between fabrication method and nano-

structure of polymer within the interfacial zone too.  

Thickness Analysis of the GNP-PA12 Interphase 

Information about the topography and qualitative properties of the surface of 

composites and the interfacial GNP-PA12 region was obtained by employing AFM 

(tapping mode) height and phase imaging. Phase imaging measures the phase lag 

information in the oscillation frequency when the AFM tip interacts with areas/materials 

of different mechanical properties under the tip [70]. Figure 4.11a is a representative 

phase image of the top surface of 0.1 wt% GNP/PA12 composite. Individual GNPs with 

an average diameter of 800 nm, which is within the diameter range provided by the 

supplier, as well as GNP aggregates are shown in Figure 4.11a. Figure 4.11b is a zoomed 

in phase image scanned over an arbitrary GNP-PA12 interfacial boundary shown in 

Figure 4.11a. It is clearly observed that there is a transition area, the interfacial region, 

between the PA12 matrix and the GNP.  
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Figure 4.11 Representative AFM phase image of 0.1 wt% GNP/PA12 PNCs: a) 

presence of GNP on the surface of PA12 matrix, b) a magnification of (a) showing 

the profile lines along the interfacial interaction zone, and c) phase lag v.s. distance 

for the profile lines shown in (b) indicating thickness of the interfacial region 

 

The thickness of this zone is determined using the AFM software by measuring 

the phase lag across lines (profiles) that are drawn over the interfacial boundary. Five 

such lines that are initiated from the polymer pass through the transition zone and 

terminate at the GNP are shown in Figure 4.11b. The phase lag variations across each 

line (profile) are shown in Figure 4.11c. Two distinct plateau values at ~ +4 degrees and -

2 degrees that correspond to GNP (left) and PA12 (right) respectively are shown. Note 

that the phase lag data is linked with the stiffness of the compositions under the tip [198]. 

Therefore, it can be implied that the segment of the transition zone with phase lag values 

lower than that of pure PA12 indicates the existence of voids and weak GNP/PA12 

interactions. It is noted that mechanical properties of the interphase reflect the type of 

nanomaterial-polymer interactions (attractive v.s. repulsive), nanomaterial-polymer 

adhesion and thus effectiveness of the load transfer. As shown in the current chapter, Tg 
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and crystallization temperature increase with the GNP content, indicating the 

confinement effect of GNP on PA12 chains. This polymer immobilization supports the 

high average stiffness of the GNP/PA12 interphase presented in Figure 4.11c. 

AFM phase image measurements were performed on the individual GNP onto a 

mica substrate to evaluate the occurrence of any instrumental artifact regarding the 

transition zone data in AFM tests of the PNCs. Figure 4.12a shows an AFM phase image 

of GNP onto a mica substrate. GNP was first sonicated into IPA, and a dilute solution 

was sprayed on the mica surface. As is clearly seen in Figure 4.12b, very sharp transition 

zones appear on the curves of phase lag data over the boundary of GNP- mica. It is noted 

that the same AFM scanning parameters were set as those adjusted for AFM imaging of 

the PNC surface. 

 

 

 4.12 a) representative AFM image of sonicated GNP onto a mica substrate (5x5 

μm
2
), and b) phase lag v.s. distance for the profile lines shown in a revealing a sharp 

transition in phase lag data from the surface of GNP to the mica substrate 
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           Topography information about the scanned area illustrated by the phase image is 

useful to ensure that the property gradient detected over the interphase region is induced 

by neither multiple superposed GNP layers nor stepped-height structure of an individual 

GNP. An uneven surface created by factors mentioned above may result in a difference in 

the overall stiffness of the composition under the tip. Figure 4.13a elucidates the AFM 

height image of the composite surface corresponding to the phase image represented in 

Figure 4.11a. To obtain detailed information about the variation in topography of the 

composite surface over the interphase zone and beyond, data analysis was performed by 

drawing lines over the boundary as shown in Figure 4.13b, which is a zoomed in image 

of Figure 4.13a. 

 

Figure 4.13 Representative AFM height image corresponding to the phase image 

illustrated in Figure 4.11a: a) topography of a 10× 10 μm2 scan size, b) a 
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magnification of (a) showing the profile lines along the interfacial interaction zone 

between GNP and PA12, and c) height v.s. distance for the profile lines shown in (b)  

 

          As shown in Figure 4.13c, the curves represent a somewhat flat topography along 

the profile lines. It is clearly observed that the change in height data points is less than 10 

nm over the length of each segment (~650 nm). In particular, it is shown that the slight 

slope of the blue curve (corresponding to one profile line used in phase analysis) gained 

on the GNP surface occurs over a distance of ~ 250 nm while the property gradient was 

displayed within 40 nm. It can be implied that the slight slope change is induced by the 

local topography change around the GNP-PA12 boarder.   

           Changes in the calorimetric heat capacity of reinforced polymers near Tg have been 

shown to provide information about the immobilized polymer chains at the interface. To 

evaluate the dependence of the interphase thickness on the GNP content, the calorimetric 

relaxation of immobilized polymer chains was linked to the CRR length. CRRs are the 

cooperative dynamics that reflect the length of the immobilized layer and are needed for 

liquid-like behavior of polymers above Tg as discussed earlier. A model first introduced 

by Donth et al. was utilized to determine the CRRs length using the variations in the heat 

capacity from solid to liquid behavior of PNCs around Tg of the PNCs [100]: 

   
  

 
  

 

      
   

                                                         

      
                                                                           

where Vα is the volume of the cooperative region,  Cv is the specific heat capacity,   is 

density of the specimen, KB is the Boltzman constant, δT is temperature fluctuation, and δ 

is the characteristic length of the glass transition. In this study, the heat capacity of the 

PNCs was determined using the MDSC heat capacity signal as is shown in Figure. 4.4. 

Table 4.4 summarizes the observed results as a function of the GNP content. It can be 
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clearly understood that the theoretical characteristic length, which is a measure of the 

immobilized polymer chains, somewhat is independent of GNP content and that the 

average of this length is about 5 nm. In addition, it is shown that the theoretical length is 

one order of magnitude less than that of the experimentally detected interphase in this 

study using AFM. The thicker interphase found means a larger interaction area which 

although it is not favored thermodynamically, it is the result of forces present due to 

processing [10]. The 5 nm interphase thickness is expected considering the surface 

energies of GNP and PA12 [199]. Although PA12 has a lower moisture absorbance than 

many of the other commercially available polyamides, PA12 is sensitive to hydrolysis 

and has been considered partially hydrophilic. The contact angle of nylons has been 

shown much less than 90° (i.e. ~40°-60°) [200]. On the other hand, the contact angle of 

water with the graphite surface as reported in literature is in the range of 80°-107° 

indicating that graphite is hydrophobic [201, 202]. Thus, it is concluded that there 

repulsive forces between GNP and PA12 leading to spontaneous dewetting at the 

interface of GNP and PA12. However, the poor wetability of GNP by PA12 is overcome 

by the forces present during processing as mentioned above and GNP and polymer are 

eventually brought in contact with thermodynamic stability [10].  

 

Table 4.4 Characteristic length of the glass transition estimating the thickness of the 

immobilized amorphous chains 

GNP, wt% CRR length scale (nm) 

0  4.5±0.4 

0.5  4.8±0.2 

1  5.4±0.2 

5  5.5±0.2 

10  5.9±0.4 

12  5.8±0.1 

15  5.5±0.3 
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4.3  Conclusions 

            This chapter focused on evaluating the formation of a complex constrained region 

of PA12 at the GNP surface that consists of immobilized amorphous and crystalline 

regions and strongly affects the physical properties of the polymer including glass 

transition, the viscoelastic properties and the tensile modulus. The results indicated a 

strong correlation among Young’s modulus and Tg of the GNP/PA12 composites and the 

amount of the complex constrained phase which follow the same exact trend upon 

addition of GNP. The more pronounced effect of GNP on both the physical properties of 

the polymer and the macro-scale properties of PNCs at low GNP content is related to 

better dispersion. The results suggested that the complex constrained phase at the GNP 

surface enables a secondary reinforcing mechanism, which, in addition to the primary 

stiffening effect of the high modulus GNP, dramatically contributes to the macro-scale 

properties of semi-crystalline PNCs.  Moreover, this chapter provided a methodology to 

qualitatively assess properties of the GNP-PA12 interphase region such as thickness and 

stiffness gradient to enable better understanding of the links between nanomaterial-

polymer interfacial interactions and macro-scale properties of PNCs. The interphase with 

an average thickness of several tens of nanometers and a gradual stiffness gradient was 

visualized according to the AFM phase imaging.  

          The main findings of this study are applicable to thermoplastic polymer PNCs that 

contain a degree of crystallinity. The methodology presented in the study can be utilized 

to understand the detailed picture of interfacial interactions and representative elements 

of polymers in order to develop three-phase structure-property models that incorporate 

presence and properties of the immobilized interfacial zone surrounding nanomaterials.  
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CHAPTER 5  

EFFECT OF MANUFACTURING METHOD ON ELECTRICAL 

BEHAVIOR OF PNCS 

 

5.1 Introduction 

           Fabrication of PNCs that demonstrate simultaneous enhancement in multiple 

properties has been widely favored for development of structural and non-structural 

materials for various applications. Conductive nanomaterials such as carbon black [203], 

carbon nanotubes [204] and graphite [27, 205] are able to convert non-conductive 

polymers into semi-conductive or conductive composites with multi-functional 

performance [206, 207]. A gradual increase in the electrical conductivity of insulating 

polymers has been observed when a conductive network of nanomaterials forms and 

creates suitable paths for an applied electrical current. The processing of PNCs with 

conductive properties, however, remains a major challenge since desired improvement in 

electrical properties of PNCs highly depends upon factors such as the level of 

nanomaterial dispersion and alignment in the matrix and the compromise of mechanical 
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properties at high nanomaterial content required to induce electrical conductivity. Two 

key characteristics identify the electrical performance of PNCs: i) electrical conductivity, 

which is mainly dictated by the loading of conductive fillers and ii) the percolation 

threshold, which is referred to as the minimum required loading of fillers  necessary to 

form a conductive interconnected network that results in a sharp increase in electrical 

conductivity [208].  Extremely low percolation thresholds have been reported and 

correlated to remarkably huge aspect ratio and homogenous spatial dispersion of highly 

conductive fillers [203].  

           As reported in literature, research in electrically conductive PNCs reinforced with 

carbon nanomaterials is dominated by CNT. However, as discussed in chapter 2, GNP 

has a remarkably large electrical conductivity with significant surface-to-volume ratio, is 

less expensive than CNT and can be readily prepared from natural graphite. These 

characteristics have currently made GNP a favored carbon based filler, since the interplay 

among processability, properties and cost criteria is key in large-scale manufacturing of 

PNCs. Therefore, fabrication of graphite-based conductive PNCs of relatively low 

percolation threshold with enhanced mechanical performance motivated this part of the 

research. Furthermore, it was of interest to this research to investigate how the 

manufacturing methods used affect electrical performance of PNCs with directionally 

preferred behavior.   

           The hypothesis is that manufacturing techniques can lead to PNCs with 

directionally dependent properties or antistrophic performance. The goal of this chapter is 

to provide a deeper knowledge that can lead to introduction of new engineered 

functionalities to polymer composites designed for targeted applications. Electrical 

property measurements have been shown to be amongst the most reliable methods, due to 

producibility and the level of certainty of the measurements. Therefore, in this study the 

electrical properties of PNCs were used as indicators of anisotropic behavior. 

Dependence of electrical conductivity of PNCs on the manufacturing methods is 
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highlighted, and underlying interplays between micro-structure and electrical 

conductivity of PNCs are illustrated. The hypothesis is that advanced manufacturing 

methods such as SLS have technical advantages and can be used to fabricate PNCs that 

exhibit multifunctional performance by providing better control of the nanomaterial 

dispersion and alignment within the polymer. 

5.2  Factors Affecting Electrical Performance of PNCs- A Literature Review 

          A range of independent factors defines the electrical conductivity and percolation 

threshold of PNCs. Understanding the effect of each of these factors is essential to 

identify the mechanisms that contribute to the electrical characteristics of PNCs. In 

summary these factors are [209-211]:  

 electrical conductivity of PNC components and loading of conductive fillers 

 geometric characteristics of the fillers such as aspect ratio, shape and morphology 

 dispersion, distribution and alignment of fillers 

 manufacturing method 

 nanomaterial-polymer interactions (formation of thin dielectric insulating polymer 

around conductive fillers [212] or hopping between neighboring nanomaterials 

that are geometrically separate [213]), and  

 crystallization characteristics such as degree of crystallization and size of crystals 

[213, 214].  

           Percolation values reported in the case of PNCs are lower than those for micro-

size reinforced composites as reported in the case of CNT [210, 213, 215] and GNP 

[205]. A percolation threshold  as low as 0.1vol% for graphene based PNCs [203] and 

0.0025wt% for CNT-based PNCs has been reported [206]. In particular, the electrical 

behavior of PNCs is largely influenced by the manufacturing technique used [213, 216]. 

During the processes, conductive paths of nanomaterials may be constructed or destroyed 

to different extents depending on the technique and the conditions used. For example, 
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excessive shear forces produced in regular conventional techniques such as in melt 

mixing and injection molding can break the conductive network [31], reduce the aspect 

ratio of nanomaterials [217] or induce unintentional alignment of nanomaterials, which 

negatively affect electrical conductivity of end-use products [215].  

         Understanding the effect of interfacial interactions on the percolation threshold has 

been a topic of interest in recent studies. For instance, the concurrent property 

enhancement for electrically conductive PNCs has been linked to the quality of the 

interfacial interactions and proper mechanical integrity of nanomaterials with polymer 

[218, 219]. In particular, fabrication techniques that incorporate surface modification 

strategies generally have been useful to improve interfacial interactions between 

nanomaterial/polymer, and thus dispersion state, leading to decrease in the percolation 

threshold [8, 220]. However, in some studies it has been demonstrated that these 

techniques might be beneficial to mechanical and thermomechanical properties but may 

negatively influence the electrical behavior of PNCs [8, 221, 222]. Moreover, it has been 

revealed that factors such as heterogeneous spatial distribution of nanomaterials and 

degree of alignment of conductive nanomaterials are defined by manufacturing 

techniques and are key requirements for the formation of nanomaterial junctions and 

complete conductive paths [223]. Table 5.1 summarizes prior results on electrical 

properties of graphite based PNCs made by various methods. It is immediately apparent 

that the electrical behavior of PNCs is remarkably reflected by the fabrication technique 

and composite system. 

A key consideration in the development of multifunctional light PNCs with 

designed macro-scale performance is understanding the interrelationship between the 

electrical conductivity threshold and the sharp transition in other macro-scale properties 

[224].  Previous studies have extensively demonstrated correlations among the enhanced 

electrical conductivity and the mechanical and thermomechancial behavior of PNCs 

reinforced with mostly CNT [208] and to a limited extent with graphite [225]. It has been 
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shown that the improvement in the stiffening effect of expanded graphite in PMMA is 

linked to the creation of networks of conductive nanomaterials and the percolation for 

transition in electrical conductivity [205]. In recent studies, SLS has been used to 

fabricate conductive PNCs of carbon black/PA12 with lower percolation while exhibiting 

better enhancement in mechanical performance with respect to the melt-mixed and 

injection molded counterpart specimens due to advantages offered by SLS [35]. 

 

Table 5.1 Dependence of percolation threshold and electrical conductivity of 

graphite based PNCs on the fabrication method and PNC system 

Composite 

system 

Manufacturing method Percolation 

threshold 

Electrical conductivity 

(S/cm) 

PMMA/GNP Melt-mixing extruded 2.5 vol% 10
-5

                              [226] 

Epoxy/EG Polymer solution 5  wt% 10
-3

                              [143] 

PMMA/EG In-situ polymerization 3 wt% 10
-2

                              [143] 

Nylon 6/GNP In-situ polymerization 1.2 wt% 10
-5

                              [143] 

HDPE/GNP Melt-mixing Injection 

molding 

2 wt% 10
-4

 at 8 wt%               [219] 

PLA/GNP Melt-mixing and quenching 3-5 wt% 10
-7

 at 7 wt%               [227] 

PP/GNP Coating-compression 

molding 

0.1 vol% 10
-4

 at 3 vol%               [25] 

Epoxy/GNP Ultrasonication mixing <0.5 vol% 10
-4

 at 4 vol%               [25] 

Nylon6/EG                 In-situ polymerization 1 vol%  10
-2

 at 3vol%              [223] 

poly (phenylene 

sulfide)/EG 

EG ultrasonication 

melt-blending and hot press 

1 wt% 10
-3

 at 1.5 wt%            [218] 

poly(vinylidene 

fluoride)/xGnP 

Solution-cast and hot-press  0.76 vol% 10
-3

 at 1.5 vol%          [212] 

PMMA/EG Solution-mixing and hot 

press 

1 wt% 10
-5

 at 2 wt%               [205] 

polystyrene 

(PS)/EG 

Solution-mixing and hot 

pressing 

1.5 vol% ~10
-8

 at 2.5 vol%        [228] 

(HDPE: high density polyethylene)  
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           The effect of interfacial interactions between nanomaterial/polymer, and thus the 

quality of adhesion on the electrical behavior of PNCs, has been emphasized in previous 

research too. For example, a difference in the electrical and rheological percolation 

thresholds for single wall carbon nanotubes (SWNT)/PPMA has been found and ascribed 

to the difference in the distance required to form a conductive network and that required 

to effectively constrain mobility of polymer chains. It has been shown that a denser 

nanomaterial network is required for electrical conductivity than for improved 

rheological behavior and for effective elastic load transfer in PNCs [210]. In another 

work, concurrent improvement in thermal, mechanical, and electrical properties of PNCs 

with increase in expanded graphite content has been confirmed and attributed to the 

enhanced mechanical interlocking between the fillers and the polystyrene matrix used 

[228]. 

            In several studies, the dependence of the electrical conductivity of PNCs on the 

aspect ratio (diameter-to-thickness) and exfoliation degree of graphite nanofillers has 

been highlighted, and it has been shown that high aspect ratio fillers result in a low 

percolation threshold [229, 230]. However, maintaining a proper dispersion state remains 

a main challenge in fabrication of conductive reinforced polymers. This limitation 

originates from large interactions among nanomaterials (0.5 eV per nanometer in the case 

of CNT) that results in a notable reduction in the number of discrete conductive sites and 

thus an increase of the percolation threshold [206].  Anisotropic electrical response of 

CNT-based PNCs induced by intentional alignment of nanomaterials has been vastly 

reported in literature. It has been illustrated that irrespective of the manufacturing 

technique used, preferential alignment of CNTs can lead to lower percolation threshold 

and can cause anisotropic electrical properties compared to PNCs filled with randomly 

oriented nanotubes [215, 231].  

           Lately, studies have been conducted for understanding correlations among 

crystallization characteristics, nanomaterial dispersion and occurrence of conductive 
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networks in semi-crystalline PNCs reinforced with conductive nanomaterials. It has been 

shown that in some systems a highly crystalline matrix more effectively promotes 

formation of the conductive networks than a less crystalline polymer, since the 

amorphous phase enhances homogeneous distribution of fillers [232]. In another work 

[133], destructive effect of crystals on the formation of the percolated network of GNP in 

PP matrix has been reported and linked to the population and size distribution of PP 

spherulites dictated by the nucleating effect of GNP.  It has been also revealed that 

weakly-crystallized low density polyethylene (LDPE) causes more homogenous 

dispersion of carbon nanofibers (CNFs) than strongly crystallized high density 

polyethylene (HDPE), while amorphous polystyrene (PS) represents the best dispersion 

and thus lowest percolation threshold [214]. Other studies have correlated the network 

construction and reconstruction of conductive fillers to the type of nanomaterials and 

level of agglomerates during melt, crystallization and annealing using in-situ thermal 

observations [216].   

          In summary, this review emphasizes that understanding of process-structure-

property relationships is key in describing the macro-scale properties of PNCs and is an 

important consideration in order to fabricate electrically conductive PNCs with 

multifunctional performance. In particular, apart from its dependence on structure and 

composite constituents, the electrical behavior of PNCs has been shown notably sensitive 

to alignment, distribution and dispersion of nanomaterials, which can remarkably define 

the degree of anisotropy exhibited by a given PNC system. 

5.3  Characterization of Electrical Properties of PNCs 

          SLS and IM-processed specimens were cut into small strips (20-25 mm long, 12-13 

mm wide and 2-3 mm thick) across the cross sections normal to the sintering plane (x-y) 

and injection flow direction (x axis). No annealing for removal of thermal history was 

used in order to compare the neat effect of manufacturing method on the properties of 
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interest and to avoid likely reconstruction or/and destruction of the existing GNP network 

[216]. Electrical conductivity measurements were made with a Solartron 1260 coupled 

with a 1296 Dielectric Interface using 0.1 Vac for frequencies ranging from 10 MHz 

down to 10
-2

 Hz at room temperature. 

 

Figure 5.1 Measurement directions used to determine electrical resistance of the 

SLS and IM-processed specimens through (a) longitudinal (in-plane) and transverse 

direction through (b) the width and (c) thickness of specimens 

 

           The measurements were performed through cross-sectional planes normal to the 

sintering plane and injection flow direction (in-plane) for “longitudinal” measurements 

(distance between contacts is 20-25 mm) along the direction schematically shown in 

Figure 5.1a.  The ‘transverse’ resistance of the samples was separately characterized 

through the width (distance between contacts is 12-13 mm), and thickness (distance 

between contacts is 2-3 mm) which are mutually orthogonal to the longitudinal 

directions. Figure 5.1b and c represent the schematic configuration of the transverse 

measurements through the width and thickness of the specimens. In order to reduce the 

contact resistance and increase the contact surface between metal probes and samples, 

each pair of parallel cross sections corresponding to measurements through the desired 

direction was silver painted and air dried for at least 24 hours before measurements. The 

conductive paint on the sides of the samples was perfectly removed before performing 

measurements through other directions. To obtain the true value of the conductivity of the 
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PNCs, the measurements were preformed on three samples and the average values were 

considered.  

5.4 Electrical Properties of GNP/PA12 PNCs: SLS v.s. IM 

           Figure 5.2 represents the electrical conductivity through the length (x direction as 

schematically shown in Figure 5.1a) of parts fabricated by SLS and IM as a function of 

frequency of the AC voltage and GNP content. Figure 5.2a displays that the electrical 

conductivity of the sintered composites reinforced with 5wt% GNP is invariant over the 

range of low and intermediate frequencies beyond which the conductivity increases with 

increasing frequencies. Electrical conductivity of 3wt% SLS parts becomes somewhat 

invariant only within the low frequency range. In contrast, the electrical conductivity of 

IM-processed parts shows a monotonous increase over the range of frequencies 

investigated. It is noted that electrical conductivity spectra corresponding to the sintered 

and injection molded neat PA12 are identical to those of IM-made PNCs and are not 

presented for the sake of clarity. Figure 5.2b compares the electrical conductivity of SLS 

and IM parts as a function of the GNP content at the low frequency of 0.01 rad/S. It is 

shown that the sintered composites filled with 5wt% GNP yield the greatest electrical 

conductivity, which is about 5 orders of magnitude higher than their IM counterpart 

systems. It is also clear that 5wt% SLS parts give the electrical conductivity 3 orders of 

magnitudes greater than 3wt% SLS parts. However, IM-made systems remain non-

conductive with addition of GNP up to 5wt%.  

           As described earlier, the onset of the percolation threshold is enough to convert the 

matrix to a semiconductor. Therefore, the observations indicate that 5wt% GNP is above 

the onset of percolation threshold when SLS is used, whereas it is apparent that this 

loading is less than the percolation onset in case of IM process. The observed difference 

between the electrical conductivity behavior of SLS and IM-made composites was 

correlated to the morphology and crystallization characteristics that are altered by the 
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manufacturing techniques. The results suggest formation of complete conductive paths 

formed by GNP in case of 5wt% SLS PNCs. However these paths are incomplete in case 

of IM due to the high level of GNP agglomeration as discussed in chapter 3 and/or are 

destroyed due to high shear forces present during IM process and thus unintentional 

alignment of GNP along the injection flow. Other factors that may affect the 

enhancement in electrical conductivity of PNCs are degree of crystallization and the size 

of the crystallites [232]. As shown in chapter 3, melt and crystallization behavior of the 

fabricated PNCs are influenced by the manufacturing method used.  
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Figure 5.2 a) dependence of longitudinal electrical conductivity on the frequency of 

the AC voltage, process and GNP concentration of SLS and IM-made specimens 

and b) electrical conductivity values at AC frequency of 0.01 rad/s of the parts 

measured 

           Figures 5.3 and 5.4 elucidate the transverse electrical behavior of the PNCs 

through the width and thickness (y and z directions as schematically shown in Figure 

5.1b and 5.1c, respectively) with respect to the manufacturing method and GNP loading. 

The observations clearly show that manufacturing methods used resulted in similar trends 

for electrical conductivity against the range of A.C. frequencies regardless of the 

measurement directions investigated. Moreover, as was observed in the case of 

longitudinal measurements (through the length of specimens), 5wt% GNP PNCs made by 

SLS display greater low frequency electrical conductivity that is ~ three orders of 

magnitude greater than that of their IM counterparts. On the other hand, SLS does not 

provide better enhancement in electrical conductivity of 3wt% GNP PNCs with respect to 

the corresponding IM PNCs. By comparing the measurements made through the length, 

width and thickness of the PNCs, one may conclude that SLS was more effective in 

1.E-12 

1.E-11 

1.E-10 

1.E-09 

1.E-08 

1.E-07 

0 3 5 

E
le

ct
ri

ca
l 

C
o
n

d
u

ct
iv

it
y
 (

S
/C

m
) 

GNP, wt% 

(b) 

SLS IM 



88 
 

introduction of electrical conductivity through the length of the parts than other directions 

(Figure 5.2 v.s. Figures 5.3 and 5.4). 
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Figure 5.3 a) dependence of electrical conductivity on the frequency of the AC 

voltage, process and GNP concentration of SLS and IM specimens and b) electrical 

conductivity values at AC frequency of 0.01 rad/s of the parts measured through the 

width (y axis) 
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Figure 5.4 a) dependence of electrical conductivity on the frequency of the AC 

voltage, process and GNP concentration of SLS and IM-made specimens and b) 

electrical conductivity values measured through the thickness (z axis) of the parts at 

AC frequency of 0.01 rad/s 

 

           In this study, GNP is coated onto the surface of PA12 powder before processing of 

PNCs as described in chapter 2. Figure 5.5 represents SEM images of neat PA12 powder 

and GNP-coated PA12 used in SLS and IM processes. According to the quality of GNP 

dispersion/distribution as observed in figure 5.5b the presence of conductive paths 

formed in between neighboring polymer grains is suggested. Figure 5.6 schematically 

shows possible configurations for distribution, dispersion and alignment of GNP before 

and after SLS and IM processing of GNP-coated PA12. When the GNP/PA12 melt 

undergoes the IM process, it is expected that GNP is aligned along the flow direction. In 

addition, as explained earlier, the high shear forces induced during melt-mixing and 

injection processes may break the existing conductive network formed during the coating 

process and thus result in non-conductive behavior in the case of IM-made PNCs. 
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Figure 5.5 SEM images of a) neat PA12 powder and b) 5wt% GNP coated PA12 

powder representing the dispersion and distribution of GNP before processing 

 

 

 

 

            A directionally preferred alignment of conductive nanomaterials is beneficial to 

electrical conductivity of the parts along the direction of the aligned fillers [231]. 

However, PNCs made by IM in this study do not exhibit enhanced electrical conductivity 

with respect to pure PA12 specimens, since 5wt% GNP is still below the electrical 

percolation threshold of IM-made parts.  

           The SEM micrographs of the fracture surface of 5wt% PNCs processed by SLS 

and IM are shown in Figure 5.6a and 5.6b, respectively. It is seen that SLS resulted in 

GNP aggregates that seem to promote the formation of the conductive paths of 

nanomaterials. However, such networks are absent in case of IM-processed composites, 

which confirms the non-conductive behavior of the IM-made PNCs. The bottom left 

model in Figure 5.7a schematically illustrates the presence of incomplete conductive 
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networks in the composites after IM processing of the starting GNP-coated powder 

schematically shown in Figure 5.7. On the other hand, the powder is sintered with no 

shear or extensional forces present in SLS. This effect causes the SLS step either to 

maintain the original conductive networks with spatial random orientation of GNP 

present before sintering with no or minimum discontinuity, or to reconstruct new 

networks with slight changes in their spatial direction when PA12 powder particles are 

sintered as schematically shown in Figure 5.7b. This process-induced difference is the 

main reason or the lower percolation threshold of SLS-made PNCs than that of their 

corresponding IM specimens. 
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Figure 5.6 Fracture surface of 5wt% GNP/PA12 composites made by a) SLS and b) 

IM indicating presence of GNP aggregates promoting formation of conductive 

networks in SLS-made PNCs and absence of these paths in IM-made PNCs due to 

GNP agglomeration and increase of the interparticle distance 
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Figure 5.7 Schematic configurations representing dispersion/distribution and 

alignment of GNP in PA12 before processing steps (top), and in processed parts 

after IM (bottom left) and SLS (bottom right). Cross sections display planes normal 

to the injection flow direction and sintering plane in IM and SLS, respectively: 

incomplete v.s. complete conductive network of GNP 

 

Directional Dependence of Electrical Behavior of PNCs 

           As discussed in chapter 1, the manufacturing method is one key factor that 

remarkably affects the dispersion state and the alignment of nanomaterials within 

polymers. The latter in particular may define the anisotropic functions of PNCs for a 

range of properties [215, 233]. Depending on applications of the end-use parts, 

anisotropic performance may be of a desired target when tailoring macro-scale properties 

of PNCs. Considering the platelet (2-D) shape of GNP [140], the orientation of the fillers 

is a prime variable and can lead to PNCs that are transversely isotropic by directionally 

preferred alignment of GNP or to PNCs with isotropic properties induced by random 
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orientation of GNP. This section compares the directional dependence of electrical 

behavior to better understand effect of manufacturing on GNP dispersion and 

morphology of the PNCs fabricated by SLS and IM. 

          Figures 5.8a and 5.8b demonstrate the electrical conductivity of the PNCs with 

respect to measurement directions, the frequency of the AC voltage and the GNP 

concentration for the SLS and IM process respectively. Figure 5.8a shows that the 

conductivity of the 5wt% SLS PNCs remains invariant within a greater range of AC 

frequencies than that observed from measurements through the width and thickness. 

However, 3wt% SLS-made PNCs represent fairly identical trends irrespective of the 

directions investigated. As is seen in Figure 5.8b, IM-processed PNCs, however, exhibit 

perfectly similar trends with respect to the frequency range regardless of the GNP loading 

and measurement direction. It is clear that IM-made PNCs do not exhibit enhanced 

electrical performance through the width and thickness. This observation was expected, 

since the IM PNCs do not even exhibit improved longitudinal conductivity with the 

possibility of favorable alignment of GNP along the injection flow.   
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Figure 5.8 Electrical conductivity of the PNCs with respect to measurement 

direction for a) SLS and b) IM process as a function of the frequency of the AC 

voltage and GNP concentration  

 

              Figure 5.9 summarizes the low frequency electrical conductivity of 3 and 5wr% 

PNCs fabricated by SLS. These values are not reported for the IM-made PNCs, as they 
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exhibited very low or no conductivity at low frequencies. Two important observations 

can be made in accordance with the results represented in Figure 5.9: i) PNCs made by 

SLS show greater conductivity through the length than other directions, and ii) 5wt% 

SLS-processed PNCs demonstrate an electrical conductivity that is three orders of  

magnitude greater than that of the 3wt% PNCs through a given direction. The results so 

far cannot be however sufficient to conclude that IM-processed PNCs demonstrate 

isotropic performance.  

 

 

Figure  5.9 Comparison of electrical conductivity values in x,y and z direction of the 

SLS parts at AC frequency of 0.01 rad/s 

 

           To understand effect of manufacturing processes used on the structural uniformity 

of the fabricated parts, SLS samples were chosen from two different zones of the powder 

bed (identified by letters “L” and “S” in the experiments) and examined. The results 

represent average values obtained by measurement of three samples corresponding to 

each powder zone. Figure 5.10 elucidates the electrical conductivity of sintered and 
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injection molded 5wt% PNCs with respect to the AC frequencies. The results 

demonstrate a non-uniform behavior in electrical conductivity of PNCs. It is clearly 

understood that the electrical behavior of the SLS PNCs measured at a given direction is 

sensitive to the location of the sintered specimens on the powder bed as shown in figure 

5.10a. Figure 5.10b illustrates that the electrical behavior of the IM-made PNCs follows 

identical trends with slight variations in low frequency electrical conductivity at a given 

direction. The results show that SLS-made specimens may have altered morphology and 

structure that are dictated by the local sintering conditions and GNP 

dispersion/distribution.  

             In the IM process, all processing conditions such as the melt temperature, mold 

temperature and molding time remain invariant in the fabrication of the PNCs. In 

contrast, the process mechanics that influences the sintering of polymer powder is 

complex. Sintered PNCs in SLS might undergo different local pertinent phenomena, such 

as the spatial heat transfer behavior in the powder bed, doses of thermal energy delivered 

to the powder, cooling rate, and number of effective exposures [234, 235]. In particular, 

the latter factors may affect the physical properties of the fabricated parts such as density 

and crystallization characteristics. The response of the SLS process to the parameters 

mentioned above might be an explanation for the observed inhomogeneity of the SLS 

parts with respect to their IM-made counterparts.  
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Figure 5.10 a) inhomogeneity of SLS v.s. b) homogeneity of IM parts observed by 

electrical conductivity of the 5wt% GNP/PA12 PNCs measured through the length, 

width and thickness 
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5.5  Conclusions 

           The effect of the manufacturing method on the electrical behavior of PNCs 

fabricated by SLS and IM processes was examined and compared. The electrical 

behavior of the fabricated PNCs was of interest due to the high sensitivity of electrical 

properties to the microstructure and morphology of the PNCs. The study highlighted the 

interrelationships among process, structure and electrical behavior of PNCs by: i) 

evaluating the dependence of the electrical properties on manufacturing method, ii) 

determining effect of manufacturing technique on the anisotropic performance of PNCs, 

and iii) investigating morphological and structural uniformity of parts induced by SLS 

and IM.  

           The results convincingly indicate that the manufacturing techniques used 

influenced the electrical behavior of fabricated PNCs, which was correlated to the GNP 

dispersion state and orientation and forces present during processing. It was demonstrated 

that 5wt% SLS-made parts exhibited an electrical conductivity five orders of magnitude 

greater than their counterpart IM-processed PNCs. Moreover, the observations showed 

that the sintering process led to PNCs with lower percolation threshold than that obtained 

with the IM process. The results revealed that SLS-made PNCs had directionally 

dependent electrical properties while IM-made specimens exhibited isotropic 

performance in terms of electrical conductivity. In general, longitudinal electrical 

conductivity of the 5wt% SLS PNCs was found greater than that corresponding to the 

transverse directions at low frequencies. The observed effect was correlated to the 

numerous original GNP conductive paths maintained even after the sintering process. The 

study also examined the effect of manufacturing technique on structural and 

morphological uniformity of PNCs chosen from different zones on the powder bed. The 

observations indicated that SLS may result in inhomogeneous bulk PNCs in terms of 

structure and morphology. The variations in electrical conductivity of the samples were 

attributed to phenomena specific to the SLS process, such as non-uniform thermal 
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gradient and inconsistent cooling rates and thus local variations on physical properties of 

sintered zones. The results support the view that SLS has the potential to become a key 

industrial processing tool for fabrication of conductive multifunctional GNP/PA12 PNCs. 

However, further understanding about physics of sintering is essential for large-scale 

fabrication of electrical conductive PNCs with unvarying structure. 
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CHAPTER 6  

SUMMARY, COLCLUSIONS AND RECOMMENDATIONS 

          

             A summary of the dissertation including the main findings of the research is 

provided in section 6.1. Section 6.2 and 6.3 outline the conclusions and 

scientific/technical contributions of the study, respectively. Finally section 6.4 provides 

potential avenues of future research and recommendations for related research and 

expansion of this study. 

6.1  Summary of the Dissertation 

            One main challenge to the expected rapid growth in technology and commercial 

advancement of PNCs made for desired applications is a lack of sufficient technical and 

scientific understanding of the links between the manufacturing method and macro-scale 

properties of this class of materials.  In this research, the manufacturing method was 

suggested as a key independent variable that dramatically defines micro/nanostructure, 

morphology and thus macro-scale properties of PNCs. It was shown that knowledge of 

nanomaterial-polymer interfacial interactions is critical to correlate the manufacturing 

method and bulk behavior leading to multifunctional PNCs with engineered properties. In 

this study, exfoliated graphite nanoplatelets as a reinforcement with superior electrical 

and mechanical properties were used to introduce concurrent property enhancement in 

PA12 matrix. SLS, an additive manufacturing technique, was considered in order to 

introduce multifunctional performance to the PNCs while exhibiting superior electrical 

and mechanical properties over conventional polymer processing methods such as IM. 

The main objectives of the dissertation were pursued utilizing systematic methods of 

fabrication and experimental procedures as follows. 
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             Chapter 3 revealed the underlying correlations between manufacturing method 

and macro-scale properties of SLS and IM-made PNCs. A systematic experimental 

methodology was utilized to characterize a range of mechanical properties as well as 

thermal, thermomechanical and electrical behavior of the fabricated PNCs. The results 

indicated that SLS enabled fabrication of multifunctional PNCs with equal or better 

tensile and flexural performance than those fabricated by the IM process. It was found 

that SLS led to more pronounced GNP-PA12 interactions and thus greater reinforcing 

efficiency of GNP in PA12. Moreover, the observations revealed that the 5wt% 

GNP/PA12 PNCs processed by SLS had a longitudinal electrical conductivity several 

orders of magnitude greater than that of IM composites.  

             Chapter 4 focused on providing a methodology to understand correlations among 

nano-scale interfacial interactions, physical and structural properties of the polymer at the 

interface and macro-scale behavior of PNCs. The study demonstrated formation of a 

complex constrained region of PA12 at the GNP surface that consists of immobilized 

amorphous and transcrystalline regions. Strong correlations among the amount of the 

constrained region, Young’s modulus and Tg of GNP/PA12 parts were demonstrated. The 

results indicated that the interfacial interactions enable a secondary reinforcing 

mechanism, which in addition to the primary stiffening effect of the high modulus GNP, 

remarkably contributes to the elastic response and the Tg of semi-crystalline PNCs. The 

investigations further revealed the presence of a transition zone generated between GNP 

and PA12 with a thickness of several tens of nanometers. The results indicated that the 

interphase region was stiffer than the PA12 matrix, which confirmed the presence of 

polymer chains with enhanced degrees of immobilization near the interface. 

           Chapter 5 investigated the effect of manufacturing method on electrical behavior 

in order to better understand the links among the manufacturing method, structure and 

morphology of PNCs. It was also of interest to evaluate how the manufacturing method 

can lead to anisotropic characteristics of PNCs by altering factors such as dispersion and 
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alignment of nanomaterials. The study revealed 5wt% PNCs made with SLS exhibited 

the greatest electrical conductivity compared to IM-processed PNCs regardless of the 

measurement direction. The results indicated that SLS-processed parts exhibited 

anisotropic behavior with enhanced electrical properties while IM PNCs remained non-

conductive irrespective of the measurement directions and the GNP content. Moreover, it 

was found that SLS led to greater electrical conductivity through the length of the 

specimens than the transverse directions.  

6.2  Conclusions 

             The main conclusions of this dissertation are represented as follows:  

• The research demonstrated that processing can be tuned to improve electrical 

properties of semi-crystalline PNCs without compromising the tensile and 

flexural performance, leading to fabrication of electrically conductive 

multifunctional PNCs. 

• Macro-scale mechanical and viscoelastic properties of GNP/PA12 PNCs 

demonstrated the same trends indicating the presence of a secondary reinforcing 

mechanism that concurrently favors the observed enhancement in mechanical and 

thermomechanical behavior of the fabricated PNCs. 

•  GNP created a complex constrained region, consisting of both an amorphous and 

a crystalline region, whose amount is highly defined by the GNP content and 

dispersion and crystallization characteristic.  

• In PNCs, the enhancement in elastic response is due to not only the reinforcement 

offered by the stiffening effect of high modulus nanomaterials but also to changes 

in physical property and structure of polymers at the vicinity of interfaces.  

6.3  Research Contributions 

          The research further enlightened the scientific and technical aspects of PNCs for 

fabrication of multifunctional high performance materials with directionally tailorable 
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properties for desired application. The main contributions of the dissertation are 

described as follows. 

6.3.1 Scientific Contributions 

         The study provides an understanding about interrelationships among process, nano-

scale interfacial interactions and macro-scale properties of semi-crystalline PNCs that can 

lead to design and fabrication of reinforced polymers with multifunctional performance.  

The research gives a detailed insight into effect of nanomaterial-polymer interfacial 

interactions on formation and properties of the interfacial zone to better understand the 

links between governing reinforcing mechanisms and mechanical response of PNCs. 

More particularly, the methodologies and results provided in the study can be employed 

to determine representative constituents including the interphase, which is considered 

significant at the nano-size, in order to develop accurate structure-property models for 

semi-crystalline PNCs. The research also provides detailed process-structure-property 

relationships for a new class of multifunctional graphite based PNCs made by SLS.  

6.3.2 Technical Contributions 

         The dissertation allows for implementation of a comprehensive set of 

methodologies including experimental characterization and analysis from nano-size to a 

macro-scale level that enables advancements in large-scale manufacturing of nano-

structured polymer materials. Moreover, the knowledge of interface/interphase is 

becoming an emerging focus that finds applications in a broad and interdisciplinary set of 

technical subjects. The methodologies introduced in the research can be utilized for 

evaluation of phenomena at polymer-solid interfaces induced by interfacial interactions. 

In addition, the findings of the study can be used as provisions for 

analytical/computational tools to minimize excessive and costly trial-and-error 

experiments that are currently employed to characterize PNCs. In particular, the study 

illustrated the potential capability of SLS as a key industrial processing tool for 
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development of electrically conductive PNCs with enhanced control of overall 

performance and with minimized limitations associated with conventional processing of 

PNCs.  

6.4 Future Research and Recommendations 

           Potential paths for future research can be made by incorporation of the 

methodologies, concepts and outcomes of the research represented in this dissertation. 

First, the research points to a potential study that examines the effects of nanomaterial 

surface functionalization on the nonmaterial-nanomaterial and nanomaterial-polymer 

interfacial interactions and thus macro-scale properties of PNCs processed by traditional 

or advanced techniques. Additional research may also benefit from the concurrent use of 

different types of conductive nanomaterials such as CNT and GNP to evaluate effect of 

synergistic phenomena offered by multiple-reinforcement on bulk properties and in 

particular electrical conductivity. A framework of future research in micromechanics 

might also consider development of multi-phase structural models by implementation of 

the findings of this research that can thus lead to more accurate design tools for PNCs. 

The observations in the study suggest that SLS may result in inhomogeneous PNCs due 

to factors such as inconsistent local sintering and cooling phenomena. The observed 

challenge necessitates a thorough understanding of the SLS processing of polymer based 

composites and proper operational optimizations that favor sintering of parts with 

uniform morphology. 
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