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SUMMARY

A measurement-based reduced-order heat transfeelmgdramework is developed to
optimize cooling costs of dynamic and virtualizedtadcenters. The reduced-order model
is based on a proper orthogonal decomposition-basmdel order reduction technique.
For data center heat transfer modeling, the framlevsonulates air temperatures and
CPU temperatures as a parametric response surfticaifferent cooling infrastructure
design variables as the input parameters. The pdr@nfiramework enables an efficient
design optimization tool and is used to solve savéenportant problems related to
energy-efficient thermal design of data centers.

The first of these problems is about determininginogl response time during
emergencies such as power outages in data cemtesolve this problem, transient air
temperatures are modeled with time as a paramdteis parametric prediction
framework is useful as a near-real-time thermagpostic tool.

The second problem pertains to reducing temperatar@toring cost in data centers. To
solve this problem, transient air temperaturesrmoeleled with spatial location as the
parameter. This parametric model improves spagisblution of measured temperature
data and thereby reduces sensor requisition fasigat temperature monitoring in data
centers.

The third problem is related to determining optincabling set points in response to
dynamically-evolving heat loads in a data centey.sblve this problem, transient air

temperatures are modeled with heat load and timthegarameters. This modeling

XX



framework is particularly suitable for life-cycleesign of data center cooling
infrastructure.

The last problem is related to determining optiroabling set points in response to
dynamically-evolving computing workload in a virtizead data center. To solve this
problem, transient CPU temperatures under a gieempating load profile are modeled

with cooling resource set-points as the parameters.
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CHAPTER 1
INTRODUCTION

The goal of this dissertation is to develop a measent-based parametric model for
rapid assessment of data center temperatures itmipptenergy usage during dynamic
events which are often triggered by time-varyingnpating loads, fluctuating cooling

resource allocations, and power outages.

Background and M otivation

With economic and societal shift from paper-basedligital information management,
data centers (DCs)—computing infrastructure faesitthat contain equipment used for
data processing, data storage, communication, agtvorking—have become an
indispensable cyber-physical system for e-commer@emunication, trading, and other
daily activities. Triggered by increasing demanddata processing and storage, the DC
industry has been growing rapidly over last decddes demand is driven by several
factors, including but not limited to:

» Growth of internet communication and entertainment

» Growth of e-commerce, online banking, and electrorading

» Shift from paper-based to electronic record storage

» Adoption of satellite navigation and electronicpghent tracking

* High performance scientific computing

During the past decade, increasing growth in DGatpms has led to significant growth

in DC energy usage. In fact, DCs are consuming ntioa® 2% of world electricity



production [1-3]. The increase in energy usage $&geral important implications,
including:

* Increased energy bills for business and government

* Increased greenhouse gas emission

* Increased capital cost for expansion of DC capamity construction of new DCs

* Increased strain on the existing power grid to mezeased electricity demand

To avoid these adverse consequences, there is waingrointerest in exploring

opportunities for improving DC energy efficiencyigbire 1 shows the schematic layout
of a typical raised-floor data center. Data cemtmmponents can be divided into three
categories: data-processing IT equipment such &smwo servers, network modules,
routers, storage disks; cooling hardware systerols as computer room air conditioning
(CRAC) units, read door heat exchanger (RDHXx) uritsl power conversion hardware

such as uninterrupted power supply (UPS), powerildigion unit (PDU).
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Figure 1. Schematic representation of a raised-floor datéecdayout

Except for some transmission loss, data centeggneiconsumed by its IT equipment or
by its cooling infrastructure, shown in Figure &.fact, benchmarking studies [4] reveal

that the energy required for DC cooling is 30-40%ttte overall data center energy

budget.
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Figure 2: Power flow diagram for a typical data center
Table 1 shows peak component power consumptioa fgpical server in data center. A
typical large scale internet data center (IDC) lesutousands such 1-U servers, driving
data center electricity consumption to a few MWfdat, data centers in the United
States consumed more than 80 billion kWh elecyricit2011. Because the electrical
energy consumed in a data center is released ifiotimeof heat, cooling contributes a

major fraction (30%-55%) of the total data centegrgy consumption.

Table 1. Component peak power consumption for a typical detyer [5]

Components Peak Power (W)
CPU 80
Memory 36
Disk 12
Peripherals 50
Motherboard 25
Fan 10
PSU losses 38
Total 251




Typical DC cooling hardware systems are coolingetiga), building chiller(s), chilled
water pumps, computer room air conditioning (CRA®)t blowers, rear door heat
exchangers (RDHXx), and server fans. Figure 3 slibevgascade refrigeration cycle used
in a data center. Data center cooling takes pladaree levels: first at the CRAC level
and the RDHXx level, then at the refrigeration @rilevel, and finally at the cooling tower
level. A CRAC is basically an air-to-water crosswl heat exchanger. The liquid side of
the heat exchanger is coupled with the evapordtanvapor compression cycle inside the
building chiller. The condenser of the chiller uistcoupled with the liquid side of the
cooling tower. The cooling tower is basically a whac water-to-liquid heat exchanger
which removes heat from warm water, taking heamfrine chiller condenser to the
environment. Figure 4 shows a typical chip-to-emwinent heat flow diagram for a
typical air-cooled DC. The energy-absorbing commbsieof this cooling scheme are
server fans, CRAC blowers, building chiller pumphiller compressor, cooling tower
pumps, and cooling tower blowers. Figure 5 showspercentage break-up of the overall
cooling energy to various cooling hardware. It shdat top energy-intensive cooling
hardware units are the refrigeration chiller (46803 the CRAC blower (28%). On the

other hand, server fans consume 8% of overall Ddlirap energy.
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Figure 5: Percentages of cooling energy spent on variousrgpbhrdware [6]

The CRAC unit is basically a cross-flow air-to-liguneat exchanger. CRAC cooling is
controlled by the proportional-integral-derivatigldD) controller. Often, CRAC supply
air temperature or return air temperature is usethe control variable. Figure 6 shows

CRAC heat transfer model. The heat transfer frotrair@o chilled water is given by:

Ocrac = Ecrac X Crin X Tair,hot_ TCW,coIr)’

(1.1)
C

min air *

The formulation in Eq. (1.1) can be fully specifiegt



Ecrnc =(1/C, ) x(1- "),
A= (1_ e_NTUCRAC) ’

Cr = Cmin / Cmax’
NTUCRAC = UA:RAC/ Cmin'

(1.2)

The work done by chilled water pump can be deriwethe thermodynamic analyses:

rhair Cp (-I;ir,hot - -I;ir,cold) = h&W (A -EW

. n lair Cp ( Iair,hot - I;ir,cold)
=M., = 1.3
W CATCW ( )

:>Tair,cold Te m:w L.

It means as the supply temperature set-point isesgdhe building chilled water flow
rate decreases. Physically, it makes sense bebaiss supply temperature means less

thermodynamic work by the cascade refrigeratiorecyc

man-‘

Tair

return *

air + air
];upp]}" m l

Figure 6: CRAC heat transfer model



The pressure drop across the liquid side of the CRAit changes quadratically with

flowrate:

L2
AP = L Mow

D 2pA?’ (1.4)
the friction factorf can be determinfedm the Moody's chai

The pump work is given by:

- _ AP L 3
E=—W=f -GT,
/7,0 2A2/7 Dpz (C‘.L CZ alr,cold)

= E O (1_ C:S-I;:lir,cold)3 .

(1.5)

RDHXx units are shell-and-tube heat exchangersdfittiethe rear end of the computing
racks. They precool hot exhaust air from the seraek before it returns back to the
CRAC unit. The cooling provided by RDHx units isntwlled by the pressure

differential in the liquid side. Figure 7 shows RBHXx heat transfer model.

Y Y Y

=

i

s CW
AP, Al ...t

Figure 7: RDHx heat transfer model
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The system-level energy balance for an RDHx umiegji

T

= maircp (T air,out)' (16)

Mew = m airin

On the other hand, the flowrate is proportionahi® pressure differentiafi.,, O AP.

Therefore, the pump work:

. _ AP 2DA’ 7 o
E= ”r;cvv =(pfm2j (AP)™*
= EO(AP)™.

(1.7)

The RDHx pump work increases with (3/2) power & pinessure difference set-point.

The refrigeration chiller is the most important beg hardware in terms of energy
consumption. It acts as a hub integrating cooliagitvare systems in the data processing
room (coupled with the evaporator side) and theliegotower (coupled with the
condenser side). Figure 8 shows a schematic ofdkeade refrigeration cycle used for
DC cooling. The purpose of this cycle is to extraetste heat from the DC room and
dump it to the cooling tower. The associated cosun this cycle is compressor power
input. The compressor power can be expressed astibeof chiller heat load to COP

(coefficient of performance of chiller):

chhiller = (Qchiller / COP) ' (18)

The chiller heat load is basically the sum of th@ @om heat load, the CRAC blower

power consumption, and the building chiller powensumption:

Qchiller = QDC + QBCW + QCRAC (19)

11
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Figure 8: Schematic of cascade refrigeration cycle

The cooling tower is the environment-facing compurad a DC cooling infrastructure.
Figure 9 shows the thermodynamic model of a codlinger. Heat removed by a cooling

tower is given by:

Qcr = (hao_ hai)x( ﬂOWCTAxpair)’} (1.10)

hao :|:£CTx(hswi - h:li):'+ }li'

The details of the cooling tower heat transfer nhada be found in [7].
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Figure 9: Thermodynamic model of cooling tower

The efficiency of the overall cooling system isosigly related to the efficiency of the
data center room cooling which in turn dependshendata center air temperature [8].
Therefore, one potential strategy for improving rggeefficiency of a data center is to
monitor its temperature closely and to modulate hesating, ventilation, and air-

conditioning (HVAC) set points (e.g. CRAC thermadstet point) accordingly. To

13



implement that strategy, this dissertation aims develop a measurement-based

parametric modeling framework that can efficiemtignitor data center temperatures.

Thermal Management of Data Center Room

A data center is a multi-scale thermal system, siparfrom chip-level (18 m, 0.01 s),
followed by server-level (Idm, 0.1 s), rack-level (1 m, 1 s), and finally tsle/ room-
level (10 m, 10 s). Figure 10 shows the diffefamitding blocks of a data center along

with its spatial and temporal scales.

Server

101s 1072s

DAY D> > > 4

Figure 10: Multi-scale nature of data center temperatures

Due to inherent differences in transport processiéfgrent scales pose different thermal
challenges for a data center designer; theref@eh ef them demands unique cooling
hardware or strategies. Although liquid coolingdzhstrategies are gaining significant

attention in recent years, most data centers emfuoyed-convective horizontal air
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cooling. In this context, Table 2 shows variousltg hardware used in a multi-scale
data center.

Table 2: Cooling hardware in a multi-scale data center

L evel Dominant Transport Processes Cooling Hardware
Chip Conduction Heat Sink, TIM, Spreader
Server Turbulent Convection, Conduction Server Faat Pipe,
Cold Plate
Rack Turbulent Convection Fan, Rear Door Heat
Exchangers, CRAC,
In Row Cooler
Aisle Turbulent Convection CRAC

Most DC rooms are air-cooled—they use an arrayamhputer room air conditioning
(CRAC) units which operate air-liquid heat exchasgand air handlers, rack rear door
heat exchangers (RDHx) which operate a shell abeé tueat exchanger, and in row
cooler for room/ aisle level cooling. The guidebrfer air-cooled data centers specifying
dry-bulb air temperature and relative humidity levat the inlets of IT equipment have
been the focus of the American Society of HeatRefrigeration and Air Conditioning
Engineers (ASHARE) TC 9.9 committee. The TC 9.9 gottee suggested classification
of data centers based on allowable server inletig#bulb temperature and humidity.
Inlet air temperature control is important becawgehigh inlet air temperature increases
chip leakage power and server failure rate. On ditieer hand, lowering inlet air

temperature below the dew point leads to condemsati air moisture. As far as
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humidity is concerned, too high humidity leads tmaensation of air moisture. On the
other hand, too low humidity leads to electrostatischarge of server. Therefore,
temperature and humidity control of a data cergea critical problem. Based on 2011
ASHARE Guidelines, the allowable inlet air temparatfor an A1l data center is between
15 and 32°C while the relative humidity is between 20 and 8Q%igher elevations
demand a de-rating of the maximum dry bulb tempeeaby 1°C for every 300 m above

an elevation of 900 m up to a maximum elevatioB@50 m.

A CRAC unit is an air-water heat exchanger instaldth centrifugal blowers and air
filter pads. The liquid side of the heat exchangest CRAC includes the evaporator of a
vapor compression refrigeration cycle, integratath whe building chiller, the chilled
water distribution pump, and the compressor. ThACRupply/ return air temperature
and humidity are controlled by a PID controller mted installed inside the CRAC
controller section. For controlling air temperatarel humidity, a CRAC is installed with
an electric heater (s), a cooling coil (s), anduenidifier (s). The CRAC PID controller
can increase or decrease cooling coil chiller wltsv rate to modulate air temperature.
On the other hand, the PID controller can increarseecrease heater current flow to
modulate air temperature. For humidity control, BiB controller can change the chiller
water flow rate through the humidifier. Rear doagrah exchangers (RDHXx) [9] are
typically installed at the rear end of the compgtmacks. These are shell and tube heat
exchangers. They include copper tubing with cirtagachilled water which cools hot

exhaust air. The cooling effect produced by an R¢dgontrolled by the chilled water
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flow which is controlled by the PID controller iggeted with the building management

system.

Data centers typically employ an alternating cotded hot aisle-based forced-convective
cooling strategy. Figure 11 shows different conwechirflow schemes for an air-cooled
data center. Figure 11(a) depicts the underfloenyin supply and room return scheme.
In this scheme, pressurized cooling air from theACRunit travels through the
underfloor plenum before entering the cold aisleulgh perforated tiles. Thereatfter,
cooling air is driven into servers via server fanghile moving though servers, cooling
air extracts heat from high-temperature server @wapts such as heat sinks, power
modules, and memory modules. For the server rat#tslied with an RDHXx, the hot
exhaust air from the servers cools down in two-etadrst, by the RDHx and then, by
the CRAC heat exchanger. In the room return sch@sehown in Figure 11(a)), rack
exhaust air returns to the CRAC through the roosopposed to that in the underfloor
plenum supply and ceiling return scheme (shownigurieé 11(b)), hot rack exhaust air
returns to the CRAC unit through overhead ceilingtd. On the other hand in the ceiling
supply room return scheme (as shown in Figure 1, 1¢opling air from the CRAC enters
into the room via overhead vents. The cooling giraets heat from the servers, and the
resulting hot returns to the CRAC unit via room tgem detailed study of different

airflow schemes is documented in [10].
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Figure 11: Different airflow schemes in an air-cooled datateen(a) Plenum supply
room return scheme. (b) Plenum supply ceiling reaaheme. (c) Ceiling supply room
return scheme.

There are several problems associated with thenatiag cold aisle/ hot aisle-based air-
cooling strategy.Figure 12 shows a typical alternating cold/hot ealshsed airflow
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scheme in which the IT equipment inlets face thd essles and the outlets or exhausts
face the hot aisles. Computer room air conditionimits (CRACSs) drive pressurized
cooling air into a raised-floor plenum. Unlike rasles, cold aisles have perforated tiles
that allow cooling air to come up and get entraimgd the servers via server fans. The
hot exhaust air returns to CRAC units driven byrbgative pressure gradient created by
the CRAC blowers. Cold and hot air mixing can folmecal hotspots. Unnecessarily
conservative CRAC set-points, established to ntitighese hotspots, and inappropriate
server fan operation often lead to coolant bypassyhich cooling air directly returns
back to the CRAC unit. The problem of cooling a@wl management is further
compounded by the introduction of hypervisor-basé@tualization technologies that

facilitate dynamic server load migration.

Bypass air
. CRAC
Hot Aisle \

\ A
Hotar  Cold Aisle 2
recirculation

@ @ 7‘?»

!
Perforated /
Tile

Plenum

Figure 12: Problems in alternating cold aisle/ hot aisle-bdseckd convective cooling
in data center
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Thermal Modeling of Data Centers

The solution to hot air recirculation and by-pass demands optimal design of
convective air temperatures inside a DC. Differemoideling strategies exist for thermal

design of data centers. Figure 13 shows differeatmhal modeling techniques for a

transient data center.

o Computational fluid dynamics/ Heat
g Transfer (CFD/ HT) Modeling
[&]
< Involves iterative
5 solution of non-
3 linear
= Involves conservation
posing zero Reduced-order Modeling equations
Ioc:'ﬂ Optimal and

gradient controllable

condition Trade-off

Thermodynamic Modeling

Second Minute Hour >

Computational Time

Figure 13: Different techniques for modeling transient tempaes in data centers

The most prevalent of these strategies is comjpumiatifluid mechanics/ heat transfer
(CFD/HT)-based modeling. Several researchers, dmfuKang et al. [11], VanGilder et

al. [12], Karki et al. [13], Schmidt et al. [14].atel et al. [15], use CFD/HT-based
modeling for thermal design of data centers. Funtoee, CFD/HT models are employed
to data center design optimization in terms of peaters such as plenum depth, facility

ceiling height, cold aisle spacing, CRAC flow ratack flow rate, and power dissipation
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[16-19]. The literature is inundated with CFD-bas#ata center modeling. Table 3
compiles some of the important CFD-based data ceetagn studies in the literature.

Table 3: CFD-based studies for data center heat transfeehmgdand their scopes

Author Y ear Ref. Scope
Kang et al. 2000 [11] Plenum Design
Schmidt et al. 2001 [20] Plenum Design, Tile Design
Experimental benchmarking
Patel et al. 2001 [21] Optimization, Experimental
benchmarking, Alternative cooling
strategies
Sharma et al. 2002 [15] Design decision-making tool
Schmidt et al. 2002 [22] Layout design
Rambo et al. 2003 [23] Airflow management
Wang 2004 [24] Minimization of hot air recirculatio
Shrivastava et al. 2005 [25] Comparative analysB® design
schemes
Herrlin et al. 2006 [26] Free convection effectld@ cooling
Bhopte et al. 2006 [27] Modeling of underfloor toty
Schmidt et al. 2007 [28] Design decision-making
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Although CFD/HT simulation produces highly accurgeedations, there are several
issues regarding its suitability as a dynamic desigtimization tool. CFD/HT modeling
invokes a cubic-time algorithm: first, it discret& transient, non-linear (convection
terms), three-dimensional (three spatial dimengj@econd-order (diffusion term) partial
differential equations (three momentum equationd anergy equation) and three-
dimensional continuity equations. Then, it solMas discretized algebraic equations via
iterative techniques. The iteration-based algor#tfare cubic times because it scales with
cubic power of the number of spatial grid pointsltiplied with the number of time
steps. For most data centers, the number of sgaithpoints is often in the order of few
millions while the number of time steps is typigalh the order of a few thousands
depending on the type of transient problems studksda result of this polynomial time
nature of the iterative solution procedure, CFD/Mb8sed modeling is time-intensive for

dynamic design optimization of a data center.

An alternative modeling strategy involves thermaayic-based modeling of data
centers [29]. The exergy-based estimation toolsiaeéul for rapid thermal assessment of
data centers. However, due to the intrinsic assiommuf quasi-equilibrium processes, a
data center thermodynamic model tends to lose niggyees of freedom (DOF) of a
convective heat transfer process. Although thembeiynamic model predicts reasonably
well for a low-density facility, it fails for a higdensity facility with a complex air flow
pattern. Therefore, thermodynamic models are netulisor data center thermal design

optimization.
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Another approach that is gaining popularity is théuced-order model. A reduced-order
model of a process is a lower-dimensional modeltha& high-dimensional process.
Mathematically, it amounts to mapping correlatetadato an uncorrelated data space.
Since it is impossible to design complex geometnsegle a data center, it is convenient
to use physics-based assumptions to reduce thelimpadsgfort. An example of such
abstraction pertains to modeling a computing se@®ra box with uniform heat
generation. Besides such geometric simplificatiangduced-order model can be used to
improve the parametric granularity of a data septared either by experiments or by
simulations. These reduced-order models essentatiploy a two-step data fusion
approach: first, they identify the linearly-uncdated directions of a data set. Then, they
identify the weighing functions for these direcsdior a new parametric point. Overall, a
reduced-order model analyzes experimental or stonladata statistically and
synthesizes new data points to enhance the patiargetnularity of the primitive (input)

data set.

The transformation of a correlated data set intdéinaarly-uncorrelated data set is
performed via several statistical modeling techegjusuch as proper orthogonal
decomposition (POD), fast fourier transform (FFHpn-linear Volterra theory, and
harmonic balance approximation. These techniquese haetter computational
efficiencies compared to CFD/HT-based techniques.eikample, POD is a logarithmic-
time algorithm while FFT is a quasilinear algorithincorporation of these statistical
modeling techniques improves the efficiency of teeulting reduced-order model in
comparison to the corresponding full-scale CFD/nhd8liece the weighting functions for

the uncorrelated data set for the primitives comstia low-rank matrix, it is possible to

23



use statistical techniques such as kriging [30Jinberpolation [31] to determine the
weighting factor for a new data point. Overalleduced-order model demonstrates better
predictive accuracy than a thermodynamics modelalme it uses CFD/HT or
experimental data as primitives. In addition to RG@ire are three prevalent reduced-
order modeling techniques: neural networks [32kzfurule-based systems [33], and

genetic algorithms [34].

Neural networks are computational models, inspbrgdhe way human brain functions.
Neural network models recognize the optimal outfata by identifying the interrelation
between inputs and outputs. They identify the imguuput mapping using a set of
interconnected nodes or neurons. Each neuron ggesets inputs either from external

sources or from other neurons, using followingtreteship:

A = f( W A+ pj. (1.11)

r

Here A is the input from the™ neuron. A is the input from the™j neuron. W,

represents the connecting weight between two neurbris the bias on thé"jneuron.n

is the number of input neurons. The activation fiam; f provides a non-linear gain to

the output. The neural network models can be usea pattern regeneration tool for a
data center design optimization. It has been widsbd to identify optimal facility layout
to maximize the cooling air ingestion by a clustdr computing racks under the
constraints of rack heat load, tile airflow, servetualization, and rack airflow [35, 36].

In the data center neural network model, CFD-bas®edlation data are used as the input
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engine. In that context, Superposition-based mo[83$ , thermal zonal models [38],

and PDA-CFD techniques [39] are widely used to gateerapid CFD simulation data.

Fuzzy rule-based systems use many-valued fuzzy ltayi inference. Fuzzy logic is
based on fuzzy set theory for which binary set menstip has been extended to include
partial membership ranging between 0 and 1. Inyfuzte-based systems, each model
variable is defined with a series of overlappingziyi sets. The mapping from inputs to
outputs can be expressed as a set of IF-THEN miesh can be derived from expert
knowledge or from data. Fuzzy rule-based contrdtesys have found wide-spread

applications in virtualized data center resourcaagament [40, 41].

Genetic algorithms are non-linear search and opétdn techniques inspired by the
biological processes of natural selection and sahof the fittest. In a genetic algorithm-
based optimization procedure, a population of a#atei solutions is evolved toward the
better solution space. Each candidate solutionahsest of mutable properties which can
be altered in the process of dynamic optimizatibme thermal design of a data center
often poses a constrained multi-objective optinidzratproblem which can be solved

using multi-objective genetic algorithms [42].

Based on the source of primitive input data, redum&ler models can be classified into
two groups: CFD/HT-based reduced-order models apasorement-based reduced-order
models. In the context of design optimization, CHD/based reduced-order models have
been widely investigated in the literature [43,.48amadiani et al. [45] developed a
reduced-order DC model from distributed sensor .d&ach a measurement-based

framework leverages the availability of measurenta&, which is replaced by the CFD-
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based input data. There are several advantagesiraimwventing CFD modeling
altogether. First, the efficiency of the modelingrmework improves significantly by
avoiding CFD-based modeling altogether. Also, asueament-based data set is a better
representative of the stochastic physical processede a DC. In addition, a reduced-
order model is a suitable tool for designing a meawent-based model. In a
measurement-based system, there are trade-offedetdensity of sensors (how many
sensors), location of sensors (where to place sgnsmeasurement frequency of the
sensors (how often to read the sensors), and gidum@meters involving DC business
needs and reliability requirements. Therefore, aasuement-based DC modeling
framework can simulate a high-fidelity, high-redaua, and near-real-time optimization
tool. Nevertheless, there is paucity in the literaton measurement-based modeling for
design optimization of data centers. Most of theéuoed-order models for data center

design use POD as the model order reduction tool.

Scope of this Dissertation

Samadiani [44], Rambo [43], and Rolander [46] hased POD for data center design
optimization. Likewise, this dissertation uses Pfobdata center design. However, this
dissertation is unique in several ways:
* It uses experimental data as the model primiti&ermther DC design study in
the literature.
» The developed modeling framework is dynamic indéiese that it uses time as a
model parameter.

* It uses spatial location as a modeling parameter.

26



CHAPTER 2 of this dissertation discusses the metlogy for POD-based modeling of
experimental data. CHAPTER 3 develops a temperamuognostic model for data
centers. Then,

CHAPTER 4 develops a framework to improve spatial resolutioh measured
temperature data. CHAPTER 3 and

CHAPTER 4 are similar in the sense that they use the indigrg@nvariables of the
energy equation (time and space) as the model paeasn CHAPTER 5 and CHAPTER
6 are pertaining to data center design optimizapiablems. While CHAPTER 5 studies
two-parameter predictive framework of data centeteanperatures with time and rack
heat loads as parameters, CHAPTER 6 deals with ©mperature predictions under a

given IT workload with cooling resource set-poifGRAC supply temperature and
RDHXx pressure) as parameter. Finally, CHAPTER draws conclusions to this

dissertation.
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CHAPTER 2
POD-BASED REDUCED-ORDER MODELING

This chapter pertains to proper orthogonal decoitipns(POD) and its use as a data-
driven modeling tool. The efficiency and error betframework are assessed. Proper
orthogonal decomposition (POD), also widely knovwnpaincipal component analysis
(PCA), is a data compression algorithm that trams$oa data matrix into a product of a
low-rank matrix (POD modes) and a coefficient ma{POD coefficients)POD-based
data compression algorithms are widely used inosglaveillance [47], face recognition
[48], and bio-informatics [49]. For characterizitigrbulent flow, a POD model was
introduced by Lumley [50] and extended by Sirovathal. [51]. Kosambi (1943) [52],
Loeve (1945), Karhunen (1946), Pougachev (196®ukhov (1954) utilized similar
mathematical procedures independently but withedkifit names, such as principal
component analysis (PCA), Karhunen-Loeve decomipaosii{KL), singular value
decomposition (SVD), empirical eigenfunction decasipon. POD has been used as a
parametric optimization tool for the DC infrastwet design problem. Typical

parameters include rack heat load [53], CRAC Flo&v[a0], and time [54].

Data-driven Meta-modeling

A model is an abstraction of the physical phenomenaneta-model is yet another
abstraction on the model. Data-driven meta-modetiregans modeling of experimental
data. A data-driven meta-modeling philosophy isvaih@n Figure 14. The output data is
modeled as a function of input variable space, Wwitian be classified into independent

variable space and input parametric space. Keapdgpendent variable space fixed and
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varying parametric input variable(s), several sgftsoutput data were generated via
physical experiments. While the blue regions inuFégl4 represent those output data
sets, the red regions represent predicted respsudaces. The motivation of the

response surface generation is to improve the paremgranularity of the measurement

data. A response surface offers several attragauges:

* It reduces experimental operating cost. Firsteduces the required number of
experimental runs. Second, it allows operators aokwvith low quality sensors.
For example, if a reduced-order model of air terapee is developed with time
as a parameter, then an experimentalist can mamigyénferior (higher response

time) temperature sensors.

» It facilitates near-real-time decision-making. Welia method-driven approach
such as CFD, this data-driven meta-modeling apjprogerates online with lower

systemic latency.
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Figure 14: A data-driven meta-modeling philosophy
It can be readily observed that this data-driveedmtion strategy is a best-fit subspace
problem of finding a set of data pointsiH" (wherem is the size of independent variable
space) in an-dimensional parametric space. A simple-mindedtegsafor determining
new data sets is direct regression analysis oinggt data. However, the computational
time for such analyses is in the ordgd(nn). Therefore, it is not a suitable method to
handle a dataset with largeandn. Another approach is to model the problem inte a

means clustering problem. This approach involveslifig prediction points that
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minimize the sum of distances from the nearest paitats. A natural relaxation to tlke
means problem is to find thedimensional subspace that minimizes the sum of the
distances of the data points to the subspace.idnctintext, POD is an effective tool to

determine thatk-dimensional subspace. A decomposition of any @yt matrix,

A:Zi” o U V' is called the proper orthogonal decomposition & #equence of is

i i

non-increasing, and the sets{bfi} {V,} are orthonormal.

POD-based Modeling

As an input, POD needs a data ensemfléln; D) OR™" generated from physical
experiments or from numerical simulatior(ﬁn; Di) is the input to the data ensemble.

While In is the independent variable field for the dataeemse, D is the dependent
variable field. The subscript, indicates parametric data ensemble. The ensemble is

compiled over n-dimensional parametric space sgamyeD.. The row dimensionm

indicates the dimensionality of the independenialde or predictor space.

The first step of a POD model is to compute theupeatric-average of the data ensembile:

n

> T(Im;D)
TO(In):%,D R™. (2.1)

The parameter-dependent part of the data ensembledeled as:
T (D) =[T (I D) -T,(IN]; T O R™ (2.2)

By using POD-based modal decompositi®nis expressed as the product of a low-rank
matrix with corresponding weighting scalars. The-l@ank matrix is the compilation of

optimal basis functions, called POD modes. The hteigcalars are called POD
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coefficients. While POD modes are independent ohipaters, POD coefficients are
parameter dependent.

The attractive feature of POD modes lies in th@tiroality in the sense that N POD
modes convey more information about the data respaunirface than any other basis
functions generated by comparable decompositiodls as fast Fourier transform (FFT).

The mathematical statement of the optimality ist ttee optimal basis functions,

 should maximize<‘T*,(//‘2>with a constrainl|| =1. The corresponding functional

for this constrained variational problem is:

IW) = <\T ,¢\2> Al -). 2.3)

The necessary condition for the optimization sutgyést the functional derivative of

J(@)tends to zero with all variations i+ 00 L*(0,1]),00R:

d
%_J[(//+56’]5=0 =0. (2.4)

The simplification of the previous equation foriaalete data ensemble leads to the
governing equation for POD modes:

Ru=Au (2.5)
. . . 1/_\Tr .
This is an eigenvalue equation \MRh:E(T )T T ; the superscripfTr’ denotes the

transpose of the matrix. The eigenvalues indida#arportance of corresponding POD

modes in the data response surface. Ladgehave larger relative information contents
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of the data response surface. The solution ofitlengalue equation is performed via a
power method-based numerical iterative procedure:

1. Assign a random unit vectou,

2. Iterate until it reaches convergence=s —

IR 4|

3. Compute the POD mode as the dyadic produdt eihdu:

@=T,0u ¢OR™. (2.6)

The power algorithm ensures rapid convergence tlree.{ui} be the eigenvectors of
Rand Iet{/l} be the corresponding eigenvalues. bétpe the unit vector obtained after

the k" iteration. Since[ui} are orthonormal:

/]2k+2
HleH = DY (2.7)

/12k )

Now, by the Holder’s inequality:

Z/]Zk (Zi/liZ(k+l))kk+j_ nk%l, 2.8)

where n is the rank of the eigensp

Rearrangement of the resulting inequality yields:

A2k+2 o k /]2
e DR

k

(2.9)
N
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On the other hand, sin({eli} are orthonormal:

A <|ru<a (2.10)

This bound shows th#Ru"Hzasymptotically converges ty .

The left inequality suggests the minimum numbecarhputational steps required for

reaching a converged solution. At tk iteration the ratio of the iterative solution teet

converged solution is equal]tbn%ﬁ A convergence criterion is chosenassuch that:

1/n ~zp.:@ ~p= k ~0% () (2.12)

Since p is a machine dependence parameter, the time coityptéxhe Power method is
on the order oflog(n). This is an important property for any reducedeorchodeling
algorithm; it indicates that the computation timmemarginally affected even if the rank of
the data matrix is quite high. Such scalabilityaislesirable feature for a model order
reduction problem.

The computational time for each POD mode is in ahger of log(n). Therefore, the
number of POD modes to describe a response susfifitia certain accuracy tolerance is

a critical parameter for the efficiency of the mbd&nce an eigenvaluel, indicates the

energy content of the corresponding POD maoge, the minimum number of POD

34



modes required to capture a certain percentageerfjg or information content of a data
set is given byk:
K

>4

= >C.E.P|()( mink) (2.12)

A

i=1

where, C.E.P. is defined as the captured energgeptage byk POD modes. The
previous equation indicates thetPOD modes can predict a response surface within

certain accuracy tolerance defined by the captanedgy percentage (C.E.P.).

The parametric component of the response surfagevisrned by the POD coefficients.
The numerical algorithm for computing POD coeffitie at the interrogation parametric

point is described as follows:

1. Compute the complete coefficient matrix:
B(D,,)=¢" O(T (In D,,)), BOO"".

The subscript “en” indicates the parameter relébettie ensemble space.

2. Determine the POD coefficiertt( D, ) JO™ by applying multi-

dimensional interpolation & . The subscript “int” indicates the parameter
related to the interrogation space. The computatisteps for this multi-

parameter interpolation are in the order~aD(kx n), which is

35



considerably lower than direct interpolation of tteta ensemble

~O(mx n). Itis becaus&k <n< m

Another approach to compute POD coefficient is ikgg[55]. Kriging is an optimal
interpolation scheme based on the regression o gaints according to spatial

covariance values.

Finally, the parametric response surface is geeérably adding the parameter-

independent component and the product of POD mawé$OD coefficients:
T. (I D, ) =T,(In)+¢(In)Ob(D,). (2.13)

The high-level numerical procedure for POD-based-daiven modeling is shown in

following flowchart:
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Compilation of Data Ensemble
T

v "
Computation of Parameter-Independent part

I

h 4
Computation of Parameter-dependent part

*

W r
Computation of POD Modes

7
W

Computation of POD Coefficients
b

W
Temperature at New Parametric Point

Figure 15: POD-based data-driven algorithm for modeling experital data

Error Estimation of POD Models

As a meta-modeling technique, the accuracy of @®Pased framework is a critical
design consideration. The modeling accuracy cadebermined in two ways: a priori or
a posteriori. While posterior error estimation g&eful for assessing modeling fidelity, a
priori error estimation—often analytical in naturés—a useful design capability for near-
real-time POD-based controllers. The a priori ewan be integrated into the control
logic of the POD controller to yield high-precisiogliable output. POD modeling error

can be defined as the deviation of POD predictfoors experimental data:
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EPrediction = (TData_ TPOQ . (214)
A POD framework is reliable if it satisfies follomg fidelity condition:

Measurement
Prediction < fATScale !

where

f is an operater dependent scalar, nucadlyi varies between 0 and

Measurement;
ATScaIe I

E
(2.15)

s the representative temperature scélie problem.

The factorf quantified the degree of relaxation on the modgtocuracy. If is equal to

1, the model is highly relaxed because the modelllmved to incur error equal to

ATeaswremen - Conversely, atends to 0, the accuracy demand from the modetasers

proportionally.

The analytical error can be defined as the dewiatibPOD predictions from the exact

solution:

EAnaIyticaI = (TExact_ TPOD) ' (216)

A comprehensive a priori error estimation schenwukhconsider both interpolation and
extrapolation-based POD/regression model. The potation is required when the
interrogation point lies within the input parametismain, otherwise extrapolation is
required. While POD/interpolation error can be deieed statistically;
POD/extrapolation error estimation requires funudio analysis of the governing
differential equation. Since this dissertation per$ to convective heat transfer modeling
of data centers, POD/extrapolation error of datdereair temperature is determined. The

governing differential equation used in the funetibanalysis is the energy equation.
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Analytical Error for the POD/ Inter polation Framewor k

For determining the analytical error of the PODterpolation schemeEZ?alljy/tlirc]:rpo'aﬁc"ia

linear algebra-based analysis, as documented itiose2.3 of [56], is utilized. The

important features of the analysis are outlinethia section.
Let T, T2,...,T' be snapshots and Iét:=spad T, T,..., T}0 T with m:=dim(7).

Assume{¢} ", is an orthonormal basis §f:

Ti :Zm:(Ti,z//i)(//i, forj=1,..J. (2.17)

The fundamental principle of reduced-order modgigfinding d(< m) orthonormal

basis vectorgy} ., OT such that the mean square error between the elsrmttite

ensemble set and correspondiiypartial sum is minimized on average:

d 2

I . .
min23[T’ (M) @l (2.18)
WLl = i=1 Yol
subject to(y,,¢;) = ¢, forl<i<d, I< <.
POD error can be reformulated:
1d od 2 1, o _ 2
min=>" T —Z(T' ,l//i)l/Ji =min=> >’ (T' ,z//i) => A. (2.19)
Wi, | = i=1 v Wi | o5 ! idd+1
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In addition, a constantg,,is multiplied to the sum of the eigenvalues coroesiing to

D/Interpolatior

the discarded POD modes to fully spe&ty, . . The arbitrary constantg,,

guantifies the interpolation error.

For the POD/interpolation schemgl /"™, is given by:

EPOD/InterpoIation: . z Ai . (220)

Analytical
i=k+1

Analytical Error Bound for POD-based Extrapolation

For determining the analytical error of the PODvapblation schemeEZ%?y/tiﬁlrapo'aﬁon,a

weak formulation-based functional analysis, as doented in [56], is used. Instead of a
weak formulation-based functional analysis for Wevier-Stokes equations as conducted
in [56], the analytical error for the POD/extrapgada framework requires a functional
analysis of the energy equation. The governing #&guafor the convective air

temperature fieldT(x y, z § inside a data center is:

%—I—(a+EH)DZT+ﬁDT: q (2.21)

For the sake of simplicity, the initial conditioa chosen to be independent of spatial
locations:T (t=0) =To,. The boundary conditions for air temperatures gata center are
often complicated: following [56], the boundary teenatures are chosen to be equal to
zero. Both the Navier-Stokes equations and the ggnelquations are conservation
equations; therefore, they have similar forms ekt energy equation does not have

the pressure gradient term like the Navier-Stokg@gagons. Nevertheless, the same
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analytical methodology [56] is used considering tih@ pressure gradient term does not

feature in the weak formulation in [56].

(TV+a(TYy+HuTy=(a}. (2.22)
a(T,v)::ajDT:Dvdx hguT,\):j(UJ)Tvd. (2.23)
Q Q
The determination of the analytical errd, a1 in [56] is essentially a two-step

procedure: first, the estimation of the deviatiogtween the exact solution and the
numerical solution [57, 58], and second, the egionaof the deviation between the
numerical solution and the reduced-order solutiime second part of the procedure is
exhaustively derived in [56]. Finally, the errorstefmined from previous two steps are

added to obtain the bound for the deviation betwbenexact solution and the reduced-

order model solutionEmpre +o -

The deviation between the exact solution and thBB&sed prediction is:

1
EPOD/Extrapolatlon Cl(a_— ](tm) K+ ho) [l elxp(g) + g @Zn ™ ”:l G kk@<1. (2 24)

Analytical

where, ¢, c,, C,, c,are arbitrary constantsr *(t ) = min(Lt). k := Time step siz¢
hP := Finite element siz| := Number of snapshol
A, = Eigenvalues corresponding to POD mo

With k andhP featuring in Eq.(2.24), it is evident that the detzation of the numerical
OD/Extrapolation

scheme is an integral part for determinifg nalytical . By definition, a numerical

solution framework involves discretization, whichdssentially transforming continuous
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equations into its discrete counterparts. Similakperimental data can be modeled as a
discrete sample set of the solution space of theeming equation. For an

experimentally-derived discrete dataset, the titep,sk,can be modeled as the time

difference between two consecutive observationd,tha finite element sizk?, can be

modeled as the normalized distance between twohbeighg sensors. After the

functional form of the analytical errorE,pia™ "*1is determined, its complete

specification involves a multi-dimensional optintioa analysis.

Optimization Procedure Complete Specification of A Priori Error

It is apparent from Eqgs.(2.20) and (2.24) that cletepdeterminations oE,i’ng?y’[';;ﬁfm'a“m

POD/Extrapolatior
and E P

Analytical require optimal numerical values for the empiricabnstants

C, and(q, G, (‘3). It is obvious that the numerical values of thesestants depend on the

specific initial data. Therefore, the numericalued of these constants are determined via
a statistical optimization procedure. The centtalgsophy of this procedure is that the

fractional difference betweerk, . and E is optimally minimized for the

Prediction

different values of optimization parameter(s): for the POD/ interpolation framework,
and (cl,g, g)for the POD/ extrapolation framework. The fractibddference between

E

‘Analytical

,andE is defined as the error functiorfe) :

Prediction

e= abq grediction_ EAnaIytica)

2.25
abS( grediction) ( )

For the POD/ interpolation framework, the optimiaatproblem is:
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min[e(g)], ¢OR. (2.26)

For the POD/ interpolation framework, the optimiaatproblem is:

min[e(q, ¢, ¢), (¢ ¢ . 9OR (2.27)

E E payice @Nde are multi-dimensional vectors. The minimization efs

Prediction’

conducted statistically: for a givery or(cl,g, (‘3), e is calculated. Thereafter, average

(#) and standard deviatiow) across the various dimensionseofire calculated:

P

= diim(e). (2.28)

J=(;Z(q —,u)zf. (2.29)

A low value of usuggests that average valugs, o, aNdE , ,.are proximal to
each other. On the other hand, a low value a$uggests the difference between

E andE , ... does not deviate much froqy. A low u together with a low

Prediction

osuggests E, .ica t€nds to approximateE, ,..Within a confidence interval

determined by Such an approximation will obviate the necessityaoposteriori
experimental measurements for estimating the vglidf the POD-based framework.

TeopCan be directly added t&, ., to obtain a temperature value whose accuracy
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depends upon the quality of the optimization proced For difference valueg,

and(q, G, g), different 4 and o can be obtained. The relative importanceudnd o
in the optimization framework can be mathematicalhantified by a weighting factor,
@ To choose optimal values @ and(c,,c,,c,), a unified decision-making index)
can be modeled:
| =au+(1-w)o. (2.30)

For various choices of ¢, (for POD/interpolation) or (c,c,c,) (for
POD/extrapolation), the choice that makesmallest is the chosen parameter(s).

It is recognized that the computation qfand (Cl,g, g)by comparing the analytical

error to the prediction error reduces the effectess of the a priori framework. However,
these constants depend on a particular experimeetigh and POD prediction resolution.
Therefore, once these constants are determined lbgnehmarking experiment for a
particular experimental facility, they can be reeutly used for subsequent predictions.

This method is extensively developed in [54].

An alternative approach can be developed by mogl€liror as:
€= ( EDrediction_ EAnaIylicaI) ' (231)
In this approach, the computation qfis conducted via the minimization of the inner

product ofe:

L=€-e (2.32)
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The candidate space fagis determined by the bisection method [59]. Thecifficy of

a numerical procedure can be defined by the numbierations,n needed to achieve a

given error,£ . For the bisection method, it is given by:

n=log )
Le) (2.33)
whereg, is the size of parametric dom

On the other hand, the analytical error for POD/&pblation is dependent on three
arbitrary constants. One method to determine thesstants is via iteration-based
minimization of the decision-making inddx An alternative method is the conjugate
gradient method-based optimization procedure. Timate purpose of analytical error
is to match with prediction error:

E

Analytical

- EPredictiorr (2 : 34)

Epnayica CaN be decomposed into two parts: one of these gapends upon arbitrary

constants and other part depends on time:

E, =F(®) U g(q). (2.35)

nalytical ~—

The determination o€ can be modeled as a least-square problem:

FT EPrediction = FT Fg (236)

In Eq.(2.36),F " Ep cugieioniS @ COlumnN vectorF'F is a square symmetric matrix, and

gis the vector with the constants as elements. The constants can be determineceby th

conjugate gradient method [59].
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Closure

This chapter developed a data-driven modeling exisatbased on POD-based model
order reduction. POD modes have several featuedsiiuer developing low dimensional
models. First, POD modes can be computed by a itbgac-time Power method.
Therefore, the model can act as a highly efficieatnputing platform for design
optimization. Then, the number of POD modes carof@nally chosen to control the
prediction fidelity of the model. On the other haadoriori error estimation is particularly

useful for robust controller design.
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CHAPTER 3
REAL-TIME DATA CENTER PROGNOSTIC MODEL

This chapter pertains to a measurement-based pairamedel of data center rack inlet
temperature with time as a parameter. This modplores the temporal granularity of
measured temperature data in a DC. A measurenasetdbparametric reduced-order
transient DC model can be used as a high-fiddiiggh-dimensional, and near-real-time
prediction tool. When time is used as a parametech reduced-order models can be
used a real-time prognostic model. A prognostic ehad rack inlet temperatures enables
a real-time decision-making tool useful particufaduring emergencies such as power
outages. This chapter begins with the pertinenblpro statement, followed by the
hypothesis. The following sections are methodolagge study, results and discussions,

and conclusions.

Problem Statement

Sever inlet temperature is a critical design patami®r data centers. ASHRAE TC 9.9
2011 guidelines recommend a 15%2 range as an allowable server inlet temperature
band for a class-1 data center. Too high operatmgperature leads to the risks of
thermal failure of servers and compromised comprtat integrity. On the other hand,
too low operating temperature leads to the riskafdensation on the electronic circuit
board. Transient prediction of server inlet temperais particularly important during
various dynamic events such as power outages aadaiters. During power outages, IT
equipment is run on a cooling improvised environm®&ifferent classes of data centers
employ different dynamic cooling resource managenpeotocols, as shown in Figure
16. It is evident that all classes of data cenfeltow a similar strategic pattern in
response to a power outage: first, engagement @nsrgency generator)tand then,
initiation of a cooling hardware response protoftg). During these dynamic events,
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server rack inlet temperature prognostic is impurtar dynamic energy auditing. A
desirable feature of this temperature prognostidehds the ability to predict in near-
real-time. A real-time prognostic model is suitatalecritical decision-making pertaining
to thermal reliability such as whether server inhperature has reached an allowable
threshold and advanced power management protocgl &hutdown) needs to be

initiated.

A CLASS-A

E Restart
O On UPS: Servers, CRACs, CW Pumps> mergency esta

O On Generators: Chiller Generator Sequence:

Comes Online Chiller

I
CLASS-B .

Emergency Restart Sequence:
Generator Chiller, CW Pumps
Comes Online

QO On UPS: Servers, CRACs
O On Generators: CW Pumps, Chiller

CLASS-C

O On UPS: Servers Emergency Restart Sequence:

O On Generators: CRACs, CW Generator Chiller, CW Pumps, CRACs

Pumps, Chiller Comes Online :
I I I ! Lo
I I l ! o

o I I I ! o >
to tic tis tia tc ts taa tsa tis fac
AN

Power Failure Sequential chain of Events (time)

Figure 16: Response protocol following a power outage in dataers (adapted from
[60])

It is hypothesized that a near-real-time high-fiygbrognostic model can be developed
via POD-based model order reduction and suitalgeession operations. The input to the

model is measured air temperature data at theindek The effectiveness of the POD-
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model in terms of accurate and efficient predictodriemperature data is demonstrated.

The hypothesis is proved using the following case\s

Case Study

This case study focuses on an impulse responsatafcgnter air temperatures to a step-
change in the capacity of a computer room air dorng (CRAC) unit. This is an
experimental case study. A CRAC unit is suddenlytcwed off att =-120 s After
remaining inactive for 2 min, the CRAC unit is poee back att =0 s.The subsequent

temperature evolution is observed experimentally.

Experimental Setup
The experiment was conducted in the CEETHERM Daat€ Laboratory (located in

Atlanta, GA at an elevation ~1,027’ (313 m)). A®win in Figure 17, the experimental
setup is a data center that employs a raised fi@mrum supply and overhead plenum
return air flow scheme. The servers and other Idiggent are mounted in cabinets, or
racks, on a raised floor. An alternating “coldlai’ and “hot aisle” configuration is
employed, where the inlet side of the server facesld aisle, and the outlet side faces a
hot aisle. The computer room air conditioning (CRAInit supplies pressurized cold air
into the underfloor plenum. The cold air flows through perforated tiles, and is
entrained into the servers by server fans. Thealidtom the server outlets is cooled by
chilled water circulating in air-to-water and redoer heat-exchangers mounted on the
rear cabinet doors prior to discharge into the diste. It then returns to the CRAC
though an overhead plenum for further cooling ® shipply temperature. Fig. 3 shows

the plan view of the experimental setup, whichapydated with 16 standard size server

49



cabinets or racks of height: 2,134 mm, depth: 1087, and width: 584 mm. The racks
are arranged in an 8x2 architecture with alterigatiold and hot aisles. The facility has
three CRAC units. However, in the present caseystGRAC-1 is the only active unit
which supplies cooling air at 4.6 kg/s at its 10@%pacity. Additional pertinent
specifications, including the hardware housed witlthe racks and their power

dissipations are listed in Table-1. Racks are nustbas R-I, wheré =1-16.
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Figure 17: Experimental setup. (a) Underfloor plenum supfignt-to-rear rack flow,

and drop ceiling return airflow scheme. (b) Plaewiof the experimental setup. The
facility has 16 racks, labeled Rack-1-Rack-16, tiwde CRAC units, labeled CRAC-1-
CRAC-3. Racks are arranged in 8x2 alternating boldaisle architecture. CRACs are

51



arranged in 2R configuration. The region with griiidicates perforated floor tiles in the
cold aisle. Transient temperatures were measureheircold aisle between Rack-5 and
Rack-6, shown by black dotted box. Rack-5 is tis¢ teck whose inlet temperature field
is scrutinized.
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Table 4: Specification of the experimental setup

Components Specifications Comments
Rack-1 5.2 kW Network Rack
Rack-2 5.2 kW Storage Rack
Rack-3 8.48 kW IBM Blade Center
Rack-4 6.4 kW IBM Blade Center
Rack-5 10.08 kW IBM Blade Center
Rack-6 10.08 kW IBM Blade Center
Rack-7 8.8 kW IBM Blade Center
Rack-8 10.72 kW IBM Blade Center
Rack-9 9.6 kW IBM Blade Center
Rack-10 6.4 kW IBM Blade Center
Rack-11 9.6 kW IBM Blade Center
Rack-12 0 Empty
Rack-13 10.48 kW IBM Blade Center
Rack-14 0 Empty
Rack-15 0 Empty
Rack-16 0 Empty

Perforated Tiles 610 mm x 610 mm; 56% Passive Tile

Porosity

Floor Plenum

914 mm Height

Cooling Air Supply

Room

3,048 mm Height

Drop Ceiling Plenum

1,524 mm Height

Hot Air Exhaust
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The thermometry, as shown in Figure 18, uses ceppestantan (T-type)
thermocouples (TCs), made from 28 gauge (AWG) toeouple wire (0.32 mm.
diameter). A lumped capacitance analysis [61] irag¥driven convective environment
(h~10 W/nf.K) indicates a response time of the order of Assshown in Figure 18(d),
each measurement domain has six grid-based theupleconits; each comprising 21 T-
type exposed junction thermocouples. Six thermoleoupits are located at six different
heights from the floor: 220 mm, 576 mm, 932 mm, &8 8&n, 1644 mm, and 2000 mm.
As shown in Figure 18(c), 21 thermocouples arenged symmetrically in a 2 ft. x 2 ft.
(150 mm x 150 mm) square plane resulting in a degabetween two neighboring
thermocouples of 150 mm. Overall, there are 126nibeouples in a measurement
system. The thermometry uncertainty sources [6@ude gain and offset, differential
and integral non-linearity, quantization, noiseldgoinction compensation, networking,
acoustic noise and vibration. The measurement isysecalibrated using an Omega®
CL122 thermocouple calibrator (http://www.omega.goptst/CL120_134.html) and
NIST traceable calibrated thermometer. The measeméchain calibration is conducted

in the 10°C-35 °C temperature range. With a 95% confidence intertr@ average

calibration error is estimated (635490 C+ 0.1¢ (}

54



(a)

Thermocouple Thermocouple Metwork ] Router - LabVIEW™
Measurement Module Module Cutput Terminal

A

Z )

25 mm
%‘r 25 mm
(<)
X (d) Test

Figure 18: Details of air temperature data acquisition systé.Measurement chain
consists of generating thermocouple-based temperateasurement data, processing at
thermocouple module, processing at network modudgsmitting processed data via a
network router to the LabVIEW™-based output terrhingp) Side view of the
thermocouple measurement unit which is of 25 mrmoktiess. (c) Plan view of grid-
based thermocouple measurement unit. Each unitagenof 600 mm x 600 mm steel
frame and consists of 21 T-type copper-constartamtocouples arranged in a square
symmetry. The thermocouples form a grid-like stoetwith the distance between the
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nearest neighbors being 150 mm. A, B, C,...,S, T,ré& the spatial indexing of the
thermocouples. (d) The six thermocouple grids aglayed at heights: 220, 576, 932,
1288, 1644, 2000 mm at the test rack exhaust.

Results and Discussion

Figure 19shows the transient temperature response after CRp@vered back at=0.
The temperature responses are measured at the oétite perforated tile at the foot of
the test rack. Assuming the bottom right cornertlod test rack is the origin, the
measurement points are: (300,300,220) mm, (306360, mm, (300,300,932) mm,
(300,300,1288) mm, (300,300,1644) mm, (300,300,p0@AmM. After CRAC-1
resumption, cooling air enters the room throughfquated tiles in the cold aisle.
Although cooling airflow reduces the average amperature in the cold aisle, the
temperature reduction pattern is spatially disprbpoate. As evident from Figure 19,
temperature decreases gradually (~1 OC variati@®@® mm height) near the top of the
rack. This trend is attributed to hot-air recirt¢ida near the top of the rack because of
the favorable pressure gradient condition resultingy the mismatch of rack fan setting
and CRAC supply set point. On the other hand,earperature drops precipitously near
the perforated tile surface—at (300,300,220) mmtémeperature drop is in the order of
~10°C, which is 10 times higher than that near the abphe test rack. This trend is
consistent with the fact that the air temperatiglkel near the perforated tile is dominated
by the strong advection effect of highly-pressutiz=noling air coming through the

perforated tiles.
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Figure 19: Transient air temperature evolutions at differeaights (1,960 mm, 1,644
mm, 1,288 mm, 932 mm, 576 mm, 220 mm) at the t&sk inlet. Near the top, the
transient temperature variation is approximatelyaégo 1.5°C and that near the bottom
is about 10C.

Following the transient data acquisition, a tempemensemble is constructed by taking

snapshots of data at=10,20,...,190,200 Each snapshot compiles temperatures

collected by 126 sensors in the cold aisle. Theeefan ensemble of size 126x20 is
developed. In this particular problem, the indemamndvariable is spatial location, the
dependent variable is time, and the output variablair temperature. The functional

problem statement for the response surface geoerati

T=f(xyz?. (3.1)

The semi-colon in Eq.(3.1) indicates the problepasmeterized in time Withx, Y, z) as

the independent variables.
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Once the ensemble for this particular problem immited, the numerical procedure
outlined in CHAPTER 2 is used to compute POD mo&esh POD mode is essentially
an m-dimensional vector, witimequal to 126. There are 20 POD modes. The bar chart
in Figure 20 shows the energy contents of diffeR@D modes. It suggests the energy
content for the first POD mode is more than 50%hefentire energy spectrum, and that

of the second is about 10%.

10(} T T T T T T T T T T T T T T T T T T T

90 -

70 —

Energy Fraction Captured by POD Mode (%)

1 2 34 5 6 7 8 9 1011 12 13 14 15 16 17 18 19 20
Index of POD Mode

Figure 20: Relative energy contents of different POD modes

The positive skewness of the bar chart stems fioenstrictly non-increasing order of
singular values of the ensemble. This pattern oDP®odal space is leveraged to
compute optimal POD basis space, as defined by2H@). The factor C.E.P. in
Eqg.(2.12) depends on the accuracy requirement.ghlyhaccurate prediction scheme

demands large€.E.P.On the other hand, larger C.E.P. means higlmrretained POD
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modes. This trend is captured in Figure 21. Whilerade model withC.E.P.=75%
requiresk =5, a high-fidelity model withC.E.P.=99.5% requirek =18. Between these
two extremesk varies non-linearly witlC.E.P—while k varies gradually between 75% -
95% C.E.P.,the variation becomes rather steep after the @5BP. limit. Since the
focus of this chapter is to develop a high-fideptrgdiction platform, a hig.E.P.=99%

is chosen for the results reported in this chapibe corresponding number of retained

POD modes is equal to 17.

20

99.5, 18

Principal Component Number (k)

- 75,5

D 2 L L L ] L L L L ] L L L L I L L L L I L L " L
75 80 85 90 95 100

Captured Energy Percentage (C.E.P.)

Figure 21: The variation of captured energy percentage (C) &< the number of
retained POD modeg)(

Following the computation of the POD basis spalte,ROD coefficient vector needs to

be computed. The POD coefficient vector is deteethimia parametric interpolation or
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extrapolation, depending upon the position of mugation point in the parametric
domain. If the parametric interrogation point liegthin the range spanned by the
parametric upper and lower bounds of the ensendikgjstical interpolation-based

computation is required. Otherwise, statisticatagxblation is required.

For this case-study, the parametric space can\béedi into two parametric zones: the
first one is subspace spanned hyD(lO, 20() < In this zone, an arbitrary parametric

point is chosen as 92 s. For this interrogatiompétigure 2Zlemonstrates the fidelity of
POD-based temperature predictions in the spatiaiailo located at the test rack inlet
plane. Figure 22(a) shows air temperature mapgirge test rack inlet. The black filled
circles are the locations of temperature sensdrs.t€émperature contour is produced by
the Delaunay triangulation-based statistical int&pon of the measured temperature
data. The POD-based algorithm is applied on tha dasemble, which is basically a

compilation of transient temperature data collecsdt,, =[10,20,30,...,190,200]

Figure22(b) shows POD-predicted temperature mappingeatetst rack inlet at=92 s.
The POD-based temperature predictions resemblelgldee measurement data. The
locations of the hotspots and stratified tempeeatayers are correctly captured by the
POD model. In fact, the deviations between expantaledata and POD predictions are
in the order of the calibration error, as shownFigure 22(c). Since the error varies
within a range of [-0.5, 0.4]JC and the maximum predictive uncertainty is 2.2be t

predictive framework can be considered high-figehith 98% confidence. Since
t=92 s is an arbitrary point fot,, (10,200 s similar accuracy is expected for any

interrogation point. The POD/interpolation-basedediction for the rack-inlet
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temperature at =92 s(intermediate to snapshots &t 90 s and t =100 <) requires 4 s
with an Intel Core 2 Duo CPU at 2.54 GHz. This édimitely faster than an independent
experiment. Therefore, it minimizes experimentailadacquisition cost. On other hand,
with 98% prediction accuracy, the model enablesegrpental data acquisition with
lower grade temperature sensors. While a measuteimeguency of 1 Hz demands 28
mil thermocouple sensors, a measurement frequeric).b Hz requires 40 mil
thermocouple wire. According to Omega®© website (wamega.com), the former costs
$2 (~8%) more than the latter.

(a) Expereimental (b) PCD (c) Deviation
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Figure 22: The contour plots for temperature distributionghatinlet of Rack-5 at

t =92 s.The horizontal direction of 600 mm length indicattes width of the test
rack,and the vertical direction of 2000 mm lengtticates the height of the rack. (a)
shows experimentally-acquired temperature fieljisfiows POD-predicted temperature
field. The predictions closely resemble the datsshAown (c), the absolute deviations
between experimental data and POD predictions @hénva scale of [-0.5C, 0.4°C].
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The black filled markers are the locations of temapige sensors. The contours are
generated by Dalaunay triangulation.

As discussed in CHAPTER 2, an optimized analytestimate of error bounds for the
POD/ interpolation framework obviates the necessftyinding prediction error (2.14)
which requires a posteriori independent experiméltiss is useful for high-fidelity near-
real-time controller design. As discussed in CHARTE, the analytical error for the

POD/interpolation framework is given by:

n
POD!/Interpolation
EAnalytical =G z Ai . (32)

kel
The sum of the eigenvalues corresponding to theadied POD modes is equal to
0.7933. The constant, is determined by two methods: the first approachased on
iterative computation of as a function ot,. It involves plugging in different values of
c,and estimating values of, that minimizes unified decision-making indek, as
defined by Eq. (2.30). Table 5 documents diffenaaities ofl for different values ot,.

It showsl reaches its minima af, = -0.01.
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Table 5: Iterative Method for Determination af,

Co Average | Std. Dev. w I

1.0 580.6 2683.6 0.5 1632.1
-1.0 0.728 0.057 0.5 0.392%
0.1 58.2 268.3 0.5 163.3
-0.1 0.05 0.031 0.5 0.0704
-0.75 0.529 0.057 0.5 0.293
-0.5 0.331 0.057 0.5 0.194
-0.25 0.134 0.054 0.5 0.094
-0.05 29.3 134.2 0.5 81.7

-0.01 0.06 0.055 0.5 0.057%

An alternative approach is based on the minimipatb the inner product of the error

vector, as defined by Eqgs (2.31)-(2.32). The choice,is governed by the minimization

of the inner product of the error vector. The ckoaf c, is driven by the bisection

method. The chosen parametric domain-i51]] because the sum of the eigenvalues

corresponding to the discarded POD modes is equalF®33, which is in the same order

as the prediction error. Figure 23 shows the bisectnethod-based computational

procedure. The convergence criterion for this caajpon is set to 0.1. As predicted by

Eq. (2.33), the number of iterations needed tordetes the optimal value dfis equal to

7. Based on this criterion, the optimal valuecpfs found to be equal to -0.01.
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Figure 23: Minimization of Decision-making Index,with respect tcc,.

For both methods, the values @fare found to be identical. However, the bisectiasdul

method is more systematic with predictable companat time.

Figure 24 shows prediction errors for the POD/mbdation scheme and corresponding
analytical error estimate. As expected, the arayterror estimate remains flat in the

interpolation time domain. The optimized constagtscales the magnitude of analytical

error such that the absolute fractional deviatietwieen analytical error and prediction
error is minimized. Indeed, Figure 24 shows tha thaximum deviation between
prediction errors and analytical errors is equadb°C. Therefore, the analytical error
estimate, as shown by (3.2), can replace the gredierror within +/- 0.1°C fidelity

limit.
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Figure 24: Analytical error bound for POD-based interpolatidime solid line with the
triangular markers shows the transient deviatiomsprediction error between the
experimentally-acquired temperature data and thB-Pf@dicted temperature data. The
solid line with the circular markers shows the gheally-determined transient deviation
or error between the exact solution data and the-p@dicted temperature data.

The complementary parametric zone is spanned b, tif [10, 20(} s The POD
coefficient computation in this zone requires pagtria extrapolation in time. While the
zone defined by timet,: (t <10 s) is of theoretical interest, the temporal zone spdrby
time, t:(t >200 Q is of practical interest, particularly for the @éspment of a near-real-

time temperature prognostic model. It amounts tdjgting new temperature data in

future from the present temperature measurementinie, tD[lO,ZO(] s Such a

capability is useful during thermal emergencieshsag power outages. An arbitrary point
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in this parametric zone is chosentat 207 sFigure 25 shows experimentally-measured
temperature field (Figure 25(a)) at the test radktiatt =207 <; corresponding POD
predictions (Figure 25(b)); and the deviation (Feg25(c)) between experimental data
and POD predictions. A careful comparison betwe&peemental data and POD
predictions reveals moderate differences, whichraftected in the deviation of the scale
of [-2.5°C, 1.5°C]. Indeed in some points such as (150, 1960) rhmdeviation is as
high as 12.5% of the original data. Therefore, @oltal error analyses and suitable
conditioning of POD/ Extrapolation prediction igtimal for using it as a high-fidelity

prediction platform.

(a) Expereimental
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Figure 25: The contour plots for temperature distributionst at207 <at the inlet of

Rack-5. The horizontal direction of 600 mm lengtticates the width of the rack, and
the vertical direction of 2000 mm length indicatbe height of the rack, (a) shows the
experimentally-acquired temperature field and,sfiyws the POD-predicted temperature
field. The POD-based algorithm uses extrapolatmrcampute the temperatures. The
temperature scales are almost identical {C4 22 °C]. Indeed, as shown in (c), the
deviations between experimental data and POD-pgestiidata are within a scale of [-2.5
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°C, 1.5°C). The black filled markers are the locationsefperature sensors. Remaining
data points are produced by Delaunay triangulation.

To define a reliable extrapolation window, the ecaf the temperature difference is

Measurement.
cale

chosen aA =(20-12) C= 8T. This scale represents the difference between
the minimum initial temperature and the temperatireupplied cooling air. Indeed, it is
a characteristic of the thermal system involvethia case study. The scale factdr, in

Eq. (2.15) is arbitrary chosen to be 0.25. Basedhese arbitrarily chosen parameters,
the extrapolation horizon is calculated to be edqua24 s i.e. the present scheme can

extrapolate till t =224 swithin the specified error limit. Once E.H. is dexi, the

determination of Eio o0 requires identifying the case-specific constants

(k,h",1,8) and conducting the optimization procedure for tidgimg the arbitrary
constantgc,, c,, ¢,). The case-specific constants depend upon the iexgatal setup and
case-specific conditions. The time-step for the RQDapolation framework is
k =1,since the extrapolation is carried out at a fregyesf 1 Hz beyond =200 s The
normalized length scalgh®)is defined as the ratio of the distance between two

neighboring sensors (=150 mm in this case), and cim&racteristic length of the

measurements system (=600 mm is the length ofgbare grid). Hence, it is calculated:
hP =0.25. The number of snapshots included in the temperansemble is equal to 20:

| =20. The non-dimensional timeq, defined as the time normalized against end of the

transient measurement window (=300 s in this cad$#gnce, it is calculated

601[0.67,0.74] for the derived E.| The optimization procedure for determining arhitra

constants(c,, c,, G) is outlined in Table 6. The ‘Average’ column ligte average oé,
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and the ‘Std. Dev.’ column lists the standard démaof e The fractional differences,

between EFOP/Etardatiorg g EPODEXtapoationis calcylated based on EQ.(2.25). The unified

-Analytical Prediction
decision-making indexl) is calculated based on an optimization weightage; 0.5,
which is arbitrarily assigned. As listed in TaBlethe minimum value of is equal to 1
which corresponds tdc,c,, c,) = (-15,1.7,2) Based on these constants, the analytical

errors are estimated by Eq. (2.24). Figure 26 shawalytical errors along with

prediction errors.

Table 6: The optimization procedure for the determinaticir@cpg,g). For different
combinations ofc,, c,, ;) ,the unified decision-making indice$) (are calculated. The

combination(c, =-15,c, =1.7,c,= 2 is the best choice because it optimally minimizes

C1 C2 C3 Average Std. Dev. w I

-10.0 1.8 2.0 17.5 13.8 0.5 15/6
-5.0 1.8 2.0 33.7 27.9 0.5 3048
-15.0 1.8 2.0 15 0.7 0.5 1.1
-15.0 2.0 2.0 3.1 1.2 0.5 2.1
-15.0 15 1.5 4.0 4.9 0.5 4.5
-15.0 1.8 1.8 1.3 1.6 0.5 1.4
-15.0 1.8 2.0 1.7 0.8 0.5 1.2
-15.0 1.7 2.0 1.3 0.6 0.5 1.0
-16.0 1.7 2.0 2.3 3.6 0.5 2.9
-14.0 1.7 2.0 4.3 2.2 0.5 3.3
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Figure 26: Analytical Error Bound for POD-based extrapolatd@iermined by iterative
procedure. The triangular markers show the trahsieviations between the
experimentally-acquired temperature data and the-P@dicted temperature data or
prediction error. The circular markers show thelyaally-determined transient
deviation between the exact solution data and @B-Predicted temperature data or
analytical error.

The accuracy of the analytical error estimate igrowed by the conjugate gradient
method-based optimization procedure. The constaertdetermined as:

(c.,¢c,,C)=(3.1-0.02- 0.02 Figure 27 shows analytical errors along with predn

errors.
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Figure 27: Analytical Error Bound for POD-based extrapolataetermined by the
conjugate gradient method. The triangular markieosvsthe transient deviations between
the experimentally-acquired temperature data aadPtbD-predicted temperature data or
prediction error. The circular markers show thelyaally-determined transient
deviation between the exact solution data and @B-Predicted temperature data or
analytical error.
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Closure

Using POD-based model order reduction, a measurtebased framework is developed
that improves the temporal resolution of the meaguemperature data. The framework
is useful as a real-time thermal prognostic todle Effectiveness of the framework is
analyzed in two time windows: one is within the m@@ment domain
(POD/Interpolation), and another is outside of timeeasurement upper limit

(POD/Extrapolation).

It has been shown that the POD/ Interpolation fraork predicts air temperatures with
2% uncertainty. An a priori error estimate for #@D/Interpolation scheme is computed
by a semi-analytical approach based on the bigectiethod. Determining the a priori
error estimate is particularly important for robusbntroller design. The POD/
Interpolation framework effectively reduces the géng frequency by 90% (from 1 Hz.
to 0.1 Hz.). Such down-sampling allows low-gradengerature sensors to be used for
experimental measurements. On the other hand, @B/ EExtrapolation framework
predicts air temperatures with 10% uncertainty. Anpriori error estimate for
POD/Interpolation scheme is computed by a semiyéinal approach based on the
conjugate gradient method. The POD/ Extrapolatraméwork is particularly useful for

thermal prognostic during power outages.
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CHAPTER 4
POD-BASED FRAMEWORK FOR IMPROVING SPATIAL
RESOLUTION OF MEASURED TEMPERATURE DATA

This chapter pertains to a measurement-based P@mbeWwork for improving spatial

resolution of measured temperature data.

Problem Statement

In order to avoid resource over- or under-provisigna real-time demand-aware cooling
control system based on online temperature mongors required. A measurement-
based monitoring framework needs to be supportedsdiye modeling technology
because temperature gradients in DCs can be gquge.|For example, one might find air
temperature at the corner of a server inlet diffler0°C compared to the center of the
server inlet. Therefore, it is imperative to measi@mperature data by sensors deployed
at multiple strategic locations to compute relialdenperature distributions to gain
meaningful insight from the real-time measuremeiiise design of a measurement
system involves resolution of trade-offs betweensitg of sensors, location of sensors,
and their measurement frequency. This chapter &cos developing a measurement-
based technique to improve spatial resolution odsueed temperature data; thereby, to
utilize a given number of sensors optimally. Ihigothesized that such a measurement-
based framework can be developed by using a PO®8&dbasodel order reduction
technique with spatial locations as the parameféns. hypothesis is explored using an

experimental case-study as described in the subsegsections. Tackling spatial
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locations as model parameters requires adjustnfaheapproach shown in CHAPTER

2.

M ethodology

A measurement-based reduced-order model of trarsiletemperature is developed with
time as the independent variable and spatial loca#is the parametric variable. The

functional form of the temperature response surigice

T=1f(txy 2. (3.3)

The measurement-based reduced-order air tempenaindel is developed via a POD-

based statistical algorithm. Figure 28 shows tloppsed POD-based algorithm.

Data Matrix, 7o (1,X,),2)

\

Computing POD modes, sy,

2

Computing Optimal POD modes, ik

.

Computing POD coetficients at the interrogation point, bix;(Xins,Vint, Zint)

.

Temperature Prediction

k
Tt X005 Viggs Zin) = ZW;' (l‘) b;‘(xintayintazint)

=1

Figure 28: POD-based reduced-order modeling algorithm withiagp@cation as the
parameters. For a given time interval, the algarith applied on an ensemble of transient
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temperaturesT (t; X",y ;e”). The temperature predictions are computed for the

interrogation point(x"“, ym, 2" ) .

As shown in the flowchart in Figure 28, the datewin algorithm consists of five major
mathematical steps:
1) Compilation of data matrixThe data matrix compiles the temperature data. Fo
the data-driven algorithm, the data matrix formes ¢brresponding problem instance:
each column of a data matrix includes a transiemperature signal collected at a
particular sensor location. The sampling intenfahe temperature signal &t over
a domain [0f. The infinite domain problem of live streamingncpotentially be
reduced to a finite dimensional problem by estinmatihe signal settling time,

when the temperature signal reaches its steady. Saveral sensors are deployed to

yield a men(t; X Y, z)data matrix. The row rankm, of the data matrix informs the

length of the transient temperature signal. Onativer hand, the column rank, of

the data matrix informs the number of sensors deplo

2) Computation of POD mode®OD modes are computed by the power method-
based numerical algorithm as discussed in CHAPTER 2

3) Formation of optimal basis space from POD moddge optimal number of POD
modes is computed by Eq. (2.12). The pertinentudsion is documented in
CHAPTER 2.

4) Computation of POD coefficient®OD coefficients capture location-dependent

parametric components of the response surfaceniiimerical procedure to compute
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POD coefficients involves computation of the caaéint matrix. The rows of the
coefficient matrix compile weighting factors foreticorresponding POD modes. The
coefficient matrix is computed by taking the dyagioduct of the pseudo-inverse of

the POD modes and the data matrix:
B=¢ 0OT. (3.4)
¢ is the pseudo-inverse of the POD mode matgix, Bis an n-by-n matrix. The

rows of B indicate the weighting factors for the correspogdPOD modes. The
columns ofB are the characteristics of the spatial locatiohghe sensors. It is

assumed that the coefficient vector at a new dp&ieation, termed the POD

coefficient(b) , lies in the column space @&. The literature reports various methods

for the mappingB

«n — D.q- The most widely used method is the Galerkin ptaec
[63]. In this method, the conservation equationg.(energy equation) are projected
into the POD modal space and eventually discretintala system of simultaneous
linear algebraic equations. The Galerkin projectiased method is further
simplified by using the flux matching approach [6#evertheless, the Galerkin
projection is suitable for a simulation-generatéghly resolved data matrix. On the
other hand, the scarcity of experimental data thetahe application of statistical
methods such as spline-based interpolation [31girig [46]. However, the present
study deals with experimentally-acquired tempegmtiata in a measurement domain,
susceptible to hot spots (abrupt change in temperagradient). Therefore, a
conditional procedure is proposed: at first, PORfttaents are generated using

temperature sensors located at the boundary andgéloenetric center of the

interrogation domain. If the resulting POD prediatiuncertainty is more than a pre-
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assigned tolerance criterion (arbitrarily assunede equal to 5% in this study), a
new sensor arrangement is needed. The choice okaesor locations is guided by a
physics-based reduced-order model of forced comeedobcal airflow field. The

mathematical model for POD coefficients is:
l1(><l = kan |:| Crxl' (35)

Each elementc (OC

hx1

) indicates weighting factors for POD coefficients

corresponding to different sensor locations. Treeesal idea of determining,,is

based on determining isothermal zones in the epé&zature field and ascribing the
influence of the neighboring sensors on an intextiog location. Therefore, the

determination ofC

nx1

is domain-dependent and is discussed in detaliarrésults and

discussion section. Afteb

nx1

is determined, an optimal POD coefficiet,,, is

extracted (ref. to EqQ. (2.12)).
5) Temperature predictionThe temperature prediction at a new spatial lonaits
given by:

Tt (6 X0 Yo F) =i 90 Ba (% Yo ) (3.6)
For a fidelity check, temperature data, acquiredependently at the interrogation
points, are compared with predictions. In this eahtthe prediction uncertainty is

defined as the uncertainty in predicted local amperatures. The comparison is

quantified by rank correlation coefficien{p) and relative root mean square errors
(rmse):
Z (T data _Tdata)(T prediction__ T predictio)

Rl ] -
| -|-I ata_-l- ata i -|I- prediction_ T Pre ictiol
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T data __ T prediction 2
Zi ( : l %dataj

n

rmse=

(3.8)

Based on the mathematical procedure outlined, etifural algorithm can be developed
on optimal utilization of available temperature sans. For the sake of simplicity, the
algorithm is applied on planar temperature datas &lgorithm has two stages: the first
one involves a geometry-based approach, and tlendemne involves a physics-based
approach. The physics-based approach is invokeg wtlen the geometry-based
approach fails to satisfy a pre-assigned toleraniterion (5% relative deviation).
The steps for the geometry-based algorithm are:

1) Data Acquisition:lt is assumed that the number of available serisagqual td\.

At first, one sensor is deployed at the geometeicter. The remaining sensors are

distributed equally on four edges of the interramaplane. Therefore, each edge has

(—Nilj sensors. Of thesé—Nilj sensors, one sensor is placed at the center of the

edge. Remaining sensors are placed symmetricatly mspect to the center. Given
that a corner point is shared by the two edgessewsor is placed there. The
measured temperature distribution is computed viastatistical interpolation
technique such as Delaunay triangulation [65].

2) POD Mode ComputationOptimal POD basis space is computed using the

method discussed GHAPTER 2

3) POD Coefficient Computation for an Interrogation dation: The relative
location of an interrogation point is determinedhaiespect to the sensor points in the

measured temperature distribution. The POD coefiicfor an interrogation point is
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determined by taking the average of the POD caeffts corresponding to the sensor
points lying in the same isothermal zone.

4) POD-based Temperature Computation The interrogation temperature is
computed by EQ.(3.6). The temperature predictiome eompared with the

corresponding experimentally-measured data. lijpgreentage deviation (defined by
Eq.(3.8)) is more than a pre-assigned toleranceerimm, the framework can be

considered to be unreliable.

In case the geometry-based algorithm fails to fyatiee tolerance criterion, it is
recommended to follow a physics-based algorithme Bteps for the physics-based

algorithm are:

1. Data Acquisition:At first, the forced-convective flow field is estated either by
an approximation model or by a coarse-grained CFeh Depending on the
directions of the temperature gradients, the teatpez field is segmented into
different zones. In each temperature segment, tinectbn of the steepest
temperature gradient is estimated. Based on thiatagfon, the temperature sensors
are optimally distributed.

The remaining steps for the physics-based algori#inenidentical to steps 2-4 in the

geometry-based algorithm.

Experimental Data Acquisition

The experimental data for this case-study are aedun the CEETHERM Data Center
Laboratory (located in Atlanta, GA at an elevaticd027’ (313 m)). As shown in Figure

29(a), the experimental setup employs an underfidenum supply and an overhead
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drop ceiling return air flow scheme. The heightteg DC room is 9 ft. (~2.75 m) with an
under-floor plenum of height 3 ft. (~0.9 m), anaplrceiling height of 5 ft. (~1.52 m).
Figure 29(b) shows the plan view of the experimiesg¢dup which is populated with 10
standard size server cabinets or racks of heigh842mm, depth: 1,067 mm, and width:
584 mm. The racks are arranged in a 5x2 alternabid)aisle/hot aisle architecture. The
facility has three CRAC units. However, for thissesstudy, only CRAC-1 remains
active. Operating at 100% capacity, CRAC-1 supptiesling air of 75°F (23.9°C)
temperature at 6.7 #s (~14,200 CFM) volumetric flow rate. The tengiare
measurement is conducted in the measurement zdwweesby the white squares in
Figure 29(b). These zones correspond to the auddhat aisles of the test rack. Figure
29(c) shows a photograph of the test rack, whiaftains four vertically-stacked 10-U
(17.5 inches~444.5 mm) server simulators. The lozat and the fan speed of a server
simulator are controlled from the control unit [68]own in Figure 29(c). The heat load
switches included are: 250 W, 500 W, 1,000 W, 1,800and 2,000W. The fan airflow
rate can be modulated to ten different levels wilahknob. At the full capacity, a server
simulator fan supplies 650 CFM (~0.3068/s) airflow [66].As discussed in CHAPTER
3, a thermocouple grid deployed in a three-dimaraitelescopic mechanism is used for

the thermometry.
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Figure 29: Experimental setup. (a) Underfloor plenum suppignt-to-rear rack flow,
and drop ceiling return airflow scheme. (b) Plaewiof the experimental setup. The
facility has 10 racks and three CRAC units, labe@RAC-1-CRAC-3. Racks are
arranged in 5x2 alternating cold/hot aisle architez CRACs are arranged in 2R
configuration. The region with grids indicates jpeated floor tiles in the cold aisle. (c)
Photograph of the test rack, which is a server Eitourack, showing fan speed setting
dial and heat load control switches.
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Case Study
In the present study, the test rack is suddenlyched to 20 kW power by setting each

server simulator to 5000 W (this is accomplishedtumping the 1000 W, 2000 W, and
2000 W switches to on). Each server simulator $akept at a setting which corresponds
to 650 CFM (~0.3068 f¥s) airflow [66]. The remaining racks in the familiwere
switched off during the experiment. The air tempee response is measured by 126

thermocouples deployed in the cold and hot aisieshown in Figure 30.

Results and Discussion
It is imperative that a sensor fusion algorithmviadidated in measurement planes that

offer sufficiently large temperature gradients. iidiere, the remaining study focuses on
the hot aisle. Table 7 shows the standard deviaifameasured temperature data at six
different heights in the hot aisle. In Table 1 gi@ne at height 2,000 mm has the highest
standard deviation of 3°C. For prognostic-based thermal reliability modglithis high-
temperature plane is critically important becausésoproximity to the fire suppression
system. In addition, another measurement planatddcat 150 mm distance from the
exhaust of the test rack, is chosen. The standewéhtibn of temperature data in this
plane is equal to &C. Due to its proximity to the server outlets, teenperature in this
plane is very sensitive to the server IT workloadiation. Therefore, rapid temperature
assessment of this plane facilitates optimal dynaoamoling resource provisioning in

DCs.
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Table 7: Standard deviation of hot aisle air temperatatasifferent heights

h Standard Deviation

mm °c
2000 3.1

1644 3.1

1288 1.6

932 1.7

576 0.9

220 1.8

Figure 30 shows the three dimensional arrangemel@® TCs in the hot aisle. The rack
exhaust is located at x=0 mm. Two temperature glame chosen at z=2,000 mm (which
includes 21 TCs) and at x=150 mm (includes 30 T@djer identifying these two

measurement planes, two independent POD-basedsasabre conducted, and their

respective modeling fidelities are estimated.
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Figure 30: Sensor arrangement in the hot aisle. The filledesrindicate thermocouples.
The effectiveness of the proposed functional atgorias discussed in the Methodology
section is verified at planes: z=2,000 mm and x=b&f). Figure 31 shows optimal
sensor utilization strategies for z=2,000 mm (FegBd.(a)) and the x=150 mm (Figure
31(b)) planes. The sensor arrangement in the z82rth plane is obtained in the
geometry-based algorithm. On the other hand, tloeng&y-based technique fails in the
x=150 mm plane due to a complex airflow patterthis plane. In this plane, the physics-
based algorithm is employed.

The filled circles in Figure 31 are the locatiodsI€s. The data matrix compiled by the
temperature signals acquired by these TCs is sufficfor the POD-based data
compression algorithm to predict temperature datde locations marked by the open
circles. For the fidelity verification of the algtthm, the POD-based local air temperature

predictions are subsequently compared with theesponding experimental data. This

83



choice of the sensor arrangement is driven by #tienation of isothermal zones in the
temperature field and the minimization of sensquigtion in those zones. The choice of
sensor topography has a significant impact on tbhbseuent POD coefficient

computation (as discussed later).
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Figure 31. Two planes are identified for validation purposéa) z=2000 mm, a
horizontal plane in the hot aisle located at nbartop of the test rack. (b) x=150 mm, a
vertical plane in the hot aisle located parallekiie exhaust of the test rack. The data
matrix is comprised of temperature data acquiredhieysensors located at the positions
marked by filled black circles. The open black lgscrepresent locations where model
predictions are validated with actual sensor.data

Before fidelity verification of the data compressialgorithm in different measurement
planes in the hot aisle, a representative trans@mperature characteristic is estimated

by analyzing the transient temperature evolutioaragrbitrarily chosen point located at
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(150,150, 2,000) mm. Figure 32 shows the transikatacteristic curve. The normalized

transient temperature is defined 8y

()= TO-T(t=05)
T(t=500s)y-T ¢t= 0s)

(3.9)

The various time instants at whiehreaches the numerical value of 0.1 (11 s), 0.%§24
0.3(379),... 0.9 (208 s), 0.95 (280 s), 0.99 (47&s noted. These time instants will be

used as signposts in the ensuing discrete trarsmahysis.
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1124 37 51 66 85 111 147 208 280 475
Time (s)

Figure 32: Normalized air temperature acquired at (150, 19002 mm in the hot aisle
following sudden introduction of 20 kW test rackahéoad. Different time instants are
identified when the response reaches (10%, 20%,, 3@, 50%, 60%, 70%, 80%,
90%, 95%, 99%) of steady state.

Validation for Measurement Plane at z=2,000 mm

As shown in Figure 31(a), there are 13 TCs in tleasarement plane located at z=2,000

mm. These TCs are arranged according to the gepiinased algorithm: a TC is placed
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at the center of the measurement plane. The rentaiiCs are equally distributed on
four edges. Each edge gets three TCs. The dataeddpy these 13 TCs constitute a data
matrix of size 501 x 13. The row rank, 501 corregfsoto a transient domain [0-500] s at
the sampling interval of 1s. Subsequent POD-basalysis yields the eigenvalue
spectrum (Figure 33(a)), two optimal POD modes Rg33(b)) and Figure 33(c)), and
corresponding POD coefficients (Figure 33(d) anduFe 33(e)). The optimality is
characterized by the fact that first two POD modapture 97% of the information/
energy of the temperature data. With the first P@Dbde capturing 94.96 % of the

energy, this offers 84.6% data compression.

86



(a) Eigenvalue Distribution

1“ T L L Li L] L] L] L L] L] L] L]

_ Q\q—ar% Cut-off
o M -
o S ¢—o—o o o

T
1 2 3 4 5 6 7 8 9 10 11 12 13

Time Series of POD Modes:1 (94.96 % Energy)

10" bt ~ma—
(b)
-0.03

0.04 \_____\

50 100 150 200 250 300 350 400 450 500
Time Series of POD Modes:2 (2.92 % Energy)

-0.05
0
(©)

Figure 33: POD-based modelrder reduction for z=2000 mm. (a) shows degresatd
compression provided by POD. Two out of 19 POD nsazpture the coherent structure
(~97%) of the data sequence. (b) shows time stndhbe first POD mode, which
captures 94.96% of energy. (c) shows time seriethtosecond POD mode with 2.92%
of energy. (d) POD coefficient for thé' POD mode. (e) POD coefficient for th& 2

POD mode.
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As proposed by Eq.(3.5) , the POD coefficient atititerrogation location is mapped by
the linear combination of two optimal POD coeffitige. Hence, the parametric variation
of temperature prediction is governed by the weénghtscalars of two optimal POD

coefficients. The convective transport processethathorizontal plane, z=2,000 mm is
characterized by upward airflow. Therefore, it dan concluded that the temperature
variation in the z=2,000 mm plane is governed lpalceffects that can be analyzed by
the geometry-based model alone. Figure 34 showsD#launay triangulation-based
interpolation [65] of the temperature data capturgdL3 sensors (shown by black filled
circles). The interpolation creates different issthal zones. It is proposed that the
weighting vector,C, of a spatial location is governed by its positiarthe interpolated

temperature mapping. All spatial locations in thahe have equal numerical impacts

from the included sensors. Therefore, the proposaitiematical model is:

1
zone _
CnXl _(E Jzone,sensdr

m is the number of sensors lying in theean zone. (3.10)
Oonesenso— 1 If the sensor lies in the zone.
0, =0, otherwise.

zone,sensor

For example, the prediction at (450 mm, 450 mm)=a475 s depends on sensors at (300
mm, 300 mm), (600 mm, 300 mm), and (600 mm, 450 m8y in this casan will be

equal to 3.
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Figure 34: Transient air temperature contours at z=2000 mne. t€mperature contours
are generated via the Delaunay triangulation tegleiusing the temperature data
acquired by the sensors located at the points rddrieblack filled points. The contours

identify the influence of a sensor on various spatications.

With the proposed model, temperature signals anepated at the interrogation points

and subsequently compared with the experimentah. diigure 35 compares the

experimental temperature data at eight differenteringation

locations to the

corresponding POD-based predictions. The compagaggests close similarity between

data and predictions. The similarity is further gified by the corresponding correlation

coefficients and relative estimated errors showhabhle 8.
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Figure 35: Data vs. POD-based predictions at different intgatimn locations in the
z=2000 mm plane

Table8: Error table quantifying the deviations betweemsrant data and predictions in
z=2000 mm plane

x,y) Correlation Temperature
Coefficient Difference

mm (%)
(300, 150) 0.9928 1.8
(150, 150) 0.9975 19
(150, 300) 0.9970 1.0
(150, 450) 0.9970 0.8
(300, 450) 0.9974 1.0
(450, 450) 0.9941 2.2
(300, 150) 0.9935 1.6
(150, 150) 0.9950 11

90



Table 8 indicates correlation on the order of 99.&84d relative estimated error on the
order of 1% (maximum=2.2%). The proposed POD masdetapable of predicting
temperature data with 99% relative accuracy, addai@g the sensor number from 21 to

13. That amounts to 38% sensor reduction.

Validation for Measurement Plane at x=150 mm

As shown in Figure 31(b), for the temperature plloated at x=150 mm, data acquired
by 21 TCs constitutes the data matrix of size 5@ xThe POD-based analysis yields
the eigenvalue spectrum (Figure 36(a)), two optifd@D modes (Figure 36(b) and
Figure 36(c)), and corresponding POD coefficiekigire 36(d) and Figure 36(e)). The
optimality is characterized by the fact that firsto POD modes capture 97% of the
energy of the temperature data. In fact, the f#&D mode captures 94.4 % of the
energy. This offers 90.4% data compression. Figdrehows the Delaunay triangulation-
based interpolation of the temperature data cagtioye21 sensors (shown by black filled
circles). The interpolation creates different tenapere zones. However unlike the plane
at z=2,000 mm, the geometry-based algorithm falssdtisfy the tolerance criterion.
Alternatively, a physics-based algorithm is progbselight of the fact that x=150 mm is
a vertical plane parallel to the rack exhaust &.X&n estimation model is developed by
identifying that it has two distinct convective @mwments: one near the top, which is
dominated by pressure gradient-driven upward awfland another near the bottom
which is dominated by inertia-driven shear flow.gliie 38 shows a schematic
representation of such a flow pattern. Followinig tieneral notion, it is assumed that the

predictions above 1,288 mm are governed by theosemear the top (Zone-1) and those
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below 932 mm are governed by the sensors at thesites (y=0 and 600 mm) of Zone-
2. This estimation of flow field directly influensethe POD coefficient computation

which is modeled as:

coe = [ij O sonsrl =1,2.
m

m is the number of sensors lying in thegen zone. (3.12)
Oonesenso— 1 If the sensor lies in the zone.
o, =0, otherwise.

zone,sensor

For Zone-1 (i=1), the number of data sensors iskipul2, and that for Zone-2 it is equal
to 9. While three prediction points lie in Zonedt peight 1,288 mm; marked by open
circles), six prediction points lie in Zone-2 (3retight 932 mm and 3 at height 576 mm).
The choice of two heights at 1,288 mm and 932 mivased on the standard deviation
trend noted in Table 7. It can be noted that tieeesudden drop in temperature gradient

from 1,288 mm to 932 mm.
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Figure 36: POD-based modeairder reduction for x=150 mm plane. (a) shows thgrele
of data compression provided by POD. Two out oPT¥D modes capture the coherent
structure (>97%) of the data sequence. (b) shoevsirtie series for the first POD mode,
which captures 94.96% of energy. (c) shows timesdor the second POD mode with
2.92% of energy. (d) POD coefficient for th# ROD mode. (e) POD coefficient for the
2" POD mode.
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Figure 37: Transient evolution of air temperature in the plaarallel to the rack exhaust
at x=150 mm. The temperature contours are genevaddelaunay triangulation
technique from the temperature data acquired bgeéhsors located at points marked by
black filled points.
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Figure 38: Zonalabstraction of forced convective temperature fielthe exhaust plane
(parallel to the rack exhaust at x=150 mm). Zong-dominated by free shear flow
directed upward to the ceiling. Zone-2 is domindigdlow entrainment from the two
sides.

With the proposed model of optimal POD modes andesponding POD coefficients,
temperature signals are computed at the interrmgatoints and subsequently compared

with the experimental data. Figure 39 compareei)perimental temperature data at nine

different interrogation locations to the correspiogd POD-based predictions. The
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comparison suggests close similarity between dath medictions. The similarity is

guantified by the corresponding correlation coéfiits and relative estimated

errors, as reported in Table 9.
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Table9: Error table quantifying the deviations between ¢rant data and predictions in
x=150 mm plane.

(v, 2) Correlation Coefficient Temperature
Difference

mm (%)
(450, 1288) 0.9968 2.1
(300, 1288) 0.9983 1.2
(150, 1288) 0.9979 2.5
(450, 932) 0.9974 2.7
(300, 932) 0.9969 3.2
(150, 932) 0.9975 2.1
(450, 576) 0.9983 1.8
(300, 576) 0.9982 1.3
(150, 576) 0.9978 2.2

Table 9 indicates that the correlation coefficisnin the order of 99.5% and the relative
estimated error of the order 1% (maximum=3.2%). ptaposed POD model is capable
of predicting temperature data with 99% relativeusacy, and of reducing the required
sensor number from 30 to 21. That amounts to aBoUi sensor reduction. On a related
note, Figure 39 shows few glitches in POD-basediptiens between 115-130 s. These
glitches are the property of the particular POD al@pace, as apparent from Figure 36.

Since POD modes are parameter-independent, angnyopf POD modes is indicative
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of the intrinsic nature of the measured temperatiata. Therefore, the presence of those

glitches certainty does not undermine the fidedityhe proposed framework.

In summary, a POD-based modeling framework is dgpesl to solve an optimization
problem with the number of temperature sensorshas decision variable and the
minimization of the sensor number as the objecfiwection. The obvious main
constraint is maintaining the temperature predict@ror below certain pre-assigned
error limit, such as the calibration error of theeasurement system. The formal
description of the optimization problem is:

min (sensor number)
such that, deviation < error linr

(3.12)

The proposed strategy is a measurement-based appribeerefore, the sensor pattern
derived depends upon the temperature gradientpwigattern, rack power, and several
other thermal variables. As shown in Figure 38 flois case study, the number of
convective environments needed for an arbitrarg danter is contingent upon its airflow
pattern. For the given case study, the airflow swhés underfloor plenum supply and
overhead ceiling return. Alternative airflow schesmeould, for example, be underfloor
plenum supply and room return, overhead ceilingpBugnd room return, overhead
ceiling supply and overhead ceiling return. Thedmton of convective environments
demands detailed CFD simulations or reduced oraetets. While CFD simulations are
accurate, albeit computationally resource-intensieduced-order models are efficient,
but usually have a larger prediction uncertaintile humber of zones to be employed
could be estimated based on exploratory experimentsoarse grid CFD simulations.
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Indeed, an effective application of the propose@raach needs additional statistical
analyses (as shown in Table 7), approximation nso@es shown in Figure 38), and CFD-

based analyses.

Closure

Using POD-based model order reduction, a measurebased framework is developed
that improves the spatial resolution of measuretperature data. The framework can
predict temperature data with 3% uncertainty. & haen shown that the framework

reduces sensor requisition by 30%.
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CHAPTER S
RAPID TEMPERATURE PREDICTIONSIN DATA CENTERS
USING MULTI-PARAMETER POD

A proper orthogonal decomposition (POD)-based npdtameter, reduced-order
modeling framework that rapidly predicts air tengiares in an air-cooled data center is

developed. The modeling parameters are heat lodtirae.

Problem Statement

The important design variables for thermal desifjaroair-cool data center are the heat
load and time. Therefore, data center design opétian requires a dynamic framework
for rapid prediction of the transient convective mperature in response to various
dynamic events resulting from time-varying IT war&tls. A full-factorial design of data
center temperature is useful for holistic thermmadlgses of a DC facility and life cycle
design of data center cooling. Theoretically, a-tadable parametric space can be

divided into 2=4 parametric subspace, as shown by Figure 40.
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Figure 40: Parametric space for data center cooling design

For a measurement-based framewdp, , , specifies the upper bound of parametric heat

load. On the other hand specifies the upper bound of parametric time. D&atH

Bound
load is the primary cooling design variable. Adalitally, time is an important design
variable because of the dynamic nature of the datéer environment. In fact, heat load
and time are closely coupled. DC heat load vangsunhically because of the stochastic
computing demand of a DC. The parametric spacedsiby (Q, ..« tround SPECIfies the

normal operational mode, which can be characteripedome bounded dynamic heat
loads. A predictive framework in this domain is ionfant as an analysis tool for the DC

cooling environment. On the other hand, the doma(®,t)spanned by
QO(Quoungs Quit JU(t< toung) represents the critical operational mode for whiahnsient

heat load shoots up beyoQg, ... This is particularly relevant during the flasiowd

und *

phenomenon when the DC login rate and associatatl dissipation increase rapidly.

Q. IS the maximum possible heat load that the framkwan handle. In contrast, the
domain (Q,t) spanned byQ < Q..U tO (tume time] represents the failure operational

mode in which there is some failure in DC such b#lers pump failure etc. In this
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domain, a rapid thermal diagnostic is needgg.is the maximum time beyong_ ., that
the framework can handle. Finally, the domair(Q,t) spanned by

QD(Qmund< Q< QuitJU(touna< t< t.] represents the retrofit operation domain. This

domain is characterized by expansion in heat loapacity or changes in cooling

environment. Overall, the air temperature predicitatform, with heat load and time as
parameters, simulates a holistic design tool. Tlgmproblem to enable such a design
optimization tool is to develop an efficient ancca@te framework that rapidly predicts
air temperature data at new parametric points froeasured temperature data. This

chapter uses POD-based model order reduction ¢o twathat need.

M ethodology

A measurement-based reduced-order model of trarsiletemperature is developed with
spatial location as the independent variable, wiritee and heat load are the parametric

variables. The functional form of temperature resmosurface is:
T=f(xyztQ. (3.13)
To model this response surface, a data-driven ighgoiis developed as shown in Figure

41. Experimental temperature data at a few selebtst loads and time instants

constitute the model input space as a two-dimeasidata matrix. The independent
variable is the spatial Iocati(m, Y, z), which represents the row index of the data

matrix. The row dimension of the data matrix is @&qto the number of deployed

sensors. Temperature data are collected at seleztedack heat load<Q,, and time

instants,t_: the data are stored in different columns of themdnatrix, with time as the

en’
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inner variable and heat load as the outer variddeentially, the time index and the heat
load index are condensed into the column index,
] =i, +(ih —1)Nt,

where,i, : temporal indek, : heat load index. (3.14)
N, : number of time-varying inputs for avgn heat loac

The number of columns represents the overall sizihe parametric input space. The

intrinsic assumption for the algorithm is that tesrgiure predictions at the interrogation

point (Q,,t, )lay in the column space for the data matrix; andcke the predictions

can be expressed as a linear combination of saitiaésis functions. Using the POD-
based numerical procedure described in CHAPTER&pptimal basis functions (POD
modes) for a given data matrix are determined. dpgmality of the POD modes is
guantified by the number of eigenvalues, which gaptdominant components of the
temperature field. The corresponding weighting asal(POD coefficients) for basis

functions are parameter-dependent and are detedmibne a suitable regression

operation. The location of an interrogation poirithwespect to(Q,,, t.,) determines the

type of regression operation (interpolation or aptlation) required. Figure 42
identifies different prediction zones in the parémcespace. Tablelo specifies the
regression operations needed to determine the P&ffigents at the interrogation
point. POD is a model order reduction techniquee Tprediction vector at an
interrogation point(Q,,.t,.) is expressed as the product of POD mogesand POD

coefficients,b [54]:

k

T(xYZQuh)=D¢(xy 1 Q.1). (3.15)

i=1



where, k is the number of principal components that captiieedominant characteristics

of the interrogation vector.

Details of the numerical procedure to compute PO@les and POD coefficients are
discussed in CHAPTER 2. POD decomposes the dataxmiato a low-rank matrix

multiplied with a suitable coefficient matrix. Bak®n the optimality criterion in Eq.
(2.12), the model order is reduced, and the cooredipg truncated POD-coefficient
vector is determined. These two components are iptieatt together to predict

temperature at an interrogation point defined (g,,.t,).However, due to the data

driven nature of the algorithm, the accuracy ofrtiedel needs to be controlled by a pre-
defined error limit. As shown in Figure 41, if theediction error is higher than the error
limit, a secondary procedure is executed, whichtstaith a data matrix comprised of
transient temperature snapshots for various irgetron heat loads. POD-based
temperature modeling with time as the parametevdd documented in the literature
[54]. The number of times the secondary procedsii@voked is quantified by a scalar
named as Count. Count has significant ramificationsthe data compression of the
proposed reduced-order model. Together with prapageor limit, Count damps out

error incurred in the primary procedure.
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T emperature Prediction: T = Z W (x.y.2)b,(0,,.1.)
fuml

v

Figure 41. The POD-based temperature prediction algorithncamprised of two
numerical procedures, both based on computing @ptbasis functions by POD. The
primary procedure involves regression analyses botieat load and time, whereas the
secondary procedure involves regression analysisiénsubject to the satisfaction of the
condition block.
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Figure 42: The interrogation space is comprised of all possibtat loads and time
instants. Different zones identify whether integimn/ extrapolation needs to be
performed in heat load dimension and time dimensiable-1 defines all the zones.
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Table 10: Specification of different parametric zones inntsrof different regression

operations
Zone | Heat Load Time
A Interpolation | Interpolatior
B Interpolation| Extrapolation
C Extrapolation| Interpolation
D Extrapolation| Extrapolation
E Extrapolation| Interpolation
F Extrapolation| Extrapolation
G Extrapolation| Extrapolation
H Interpolation| Extrapolation
I Extrapolation| Extrapolation

Experimental Data Acquisition

The experimental setup and measurement systerdearcal to that used in the study

discussed in

CHAPTERA4.

Case Study

To illustrate the present approach, the heat |datieotest rack is varied parametrically
to 11 different levels:Q=[4,6,8,10,12,14,16,18,20,22]23 k For each heat load, the

ensuing transient is observed by temperature mesnts in the vicinity of the test

rack at a sampling frequency of 1 Hz. It is chaazed by two parameters:
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AT, andAT, AT, is defined as the air temperature difference betwtbe rack exhaust

and the spatially-averaged incoming cooling ainfrthe perforated tile located at the

foot of the test rack:

AT, (% ¥, zQ9=T(%x ¥z QX Tn( QX (3.16)

For a given heat load)T,is a function of sensor height and time. In theamst plane,
18 sensors are deployed; therefahd,is an 18-dimensional vector. Figure 43 (a) shows
the variation ofAT, as a function of time and height from the floos @increases, the
variation in AT, increases: fa@ =4 kW, the variation ofAT,is within a range of
[2-5] °Cithat for Q=20 kW is [5-15 °CAlso, AT,increases with time and

gradually achieves steady-state at 200 s. Theretbee transient measurements are

stopped at 250 s. On the other haxm, is defined as the transient difference of the

spatially-averaged temperatures in the hot and &@iglds:

AT, (Q1)=(To(x %2 QN Tul xy z Q). (3.17)

Figure 43 (b) shows time series AT, for different values oQ :[4, 8, 12, 16, Zp kW
As expected, the rise IT, increases with Q: forQ =4 kW, the rise is 2.7°C; for
Q=20 kW, it is 9.6°C. Also for all values dp, AT, reaches a steady state before the

arbitrarily determined transient measurement windd®50 s.
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Figure 43: Impulse response of air temperature after turnimghe server simulator heat
loads. Five different values of rack heat loadwsed:Q =[4,8,12,16,20] kW (a) For a

given value of the heat logll, the corresponding surface plot shows the vanatb
AT as a function of height from the floor and time eTdata sampling set corresponds to
six different heights from the flooh =[220, 576, 932, 1,288, 1,644, 2,000] n and 26
different time instants:t =0-250 s ai\ t=10: AT, is defined as the difference of

transient rack exhaust temperatures to the spatiabtraged transient temperature of the
cooling air coming out the perforated tile locabedhe cold aisle in front of the test rack.
(b) For a given value of the heat |d@d the plot shows the time series/df, . The data

sampling set includes 26 different time instarits:0— 250 s af\ t=10 AT, is defined
as the transient difference of average temperatnrébe hot and cold aisles.
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Figure 44 shows frequency responses for air teryes collected at three different
heights, h =[1960,1280,600] mrfor the maximum rack heat load of 23 kW. The Y-axis
shows the gain (in dB) of rack exhaust temperatgaled by the CRAC return air
temperature set point (22°2~75°F). The gain is computed by the discretized Fourier
transform (DFT) using a MATLAB-based fast Fourieantsform (FFT) algorithm [67,
68]. As shown in Figure 44, the scaled amplitudmisicantly flattens out after 0.5 Hz,
implying that the minimum sampling rate to chardetethe transient temperature must

be at least 1 Hz, via the Nyquist-Shannon samghegrem.

h=1960mm

1
ol 1

10"$ F Cutoff Frequency
! 1

h=1280mm

Gain (dB)

h=600mm

Frequency (Hz.)

Figure 44: Frequency response of hot aisle temperature fielarae different heights in
the rack exhaust plane
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As the first step of the POD-based framework, thgeenble set of the parameters needs
to be identified. Without losing generality, it ghosen as a subset of the experimental

heat load values:

Q,=[4,812,16,2p kw (3.18)

This heat load input space defines a representséingle space of commonly-occurring
dynamic heat load patterns [69] in a typical dagater rack. Also, the ensemble heat
load dimension reduces the input size from 11 (68% input data compression with

respect to the measurement set).On the other tlamdampling frequency for the time

ensemble is reduced to 0.1 Hz:

t, =10-200 s aft= 10 (3.19)

Such a down-sampling reduces the ensemble siz®%ywdith respect to the measured
transient data. Overall, the data for the primarycpdure is organized in a 124 x 95
matrix, where 124 is the number of thermocouplggajed in the hot aisle. The column

index of the data matrix is defined by (3.14). Fdne given problem,
N, =19,i={1-19 i, ={ £ b The size of the input space is equal to 95 (=19x5)

whereas that of the primitive observations is eqa&,101 (=191x11). That amounts to
95.5% data compression. However, if the secondaogeglure is invoked, the data
compression in the heat load dimension is completellified for the sake of improving
prediction fidelity. In the secondary procedures firoblem becomes single-parameter

with time as the parameter. The secondary procemiumints to 90% data compression.
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Results and Discussion
The temperature ensemble is generated by applhieg ROD-based algorithm on

distributed temperature data collected E®,t.). As shown in Figure 42, an

interrogation poin([Qm,ﬁm)can lie in nine possible regions in tkE-t parametric plane.
This classification is based on the position of iarerrogation point with respect to
(Qen,ten) and the associated regression operation. For deathe point (10 kW, 120 s)

lies in the region A, which requires interpolatibath in heat load and time to compute
POD-based temperature predictions. Detailed spatifins of the different regions are
documented in Table 10.

For the sake of scalable parametric modeling, loaak is normalized as follows:
5_- Q
Q= ,
Qbase (320)
Qpase = 4 kW.

Based on this normalized definition of heat lo&d, $et of normalized heat load

snapshots isQ_, =[1, 2,3, 4,5] This suggests that any interrogation heat loadvfuch

Q. 0(1,5) is within the heat load ensemble sgt,. Similarly, time is normalized as:

t= [ PN
Linar ~ tiniia (3.21)
tiia =10 St = 200 ¢
Based on this normalized definition of time,

ten =[O, (10/190),(20/190),...,(170/190), (18090),1].This normalization suggests that
interrogation time, for whichti 0(0,1), is within the time ensemble set. The

normalization scheme is chosen for the sake of emtmgss and scalability of the

parametric analysis. Based on the required regnessperations, there are four @2
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possible combinations: interpolation both in heaid and time (zone-A), interpolation in
heat load and extrapolation in time (zones-B and éxfrapolation in heat load and

interpolation in time (zones-C and E), and extrapoh both in heat load and time

(zones- D, F, G, and I). The zone correspondingjt‘t@to or6<]) is ignored for its

least practical significance in DC characterizatiblence, this study focuses on model

prediction in zones: A, B, C, and D.

Model Prediction in Zone-A
For this case-study, Zone-A is the parametric sabsp spanned by

(le,i;m)E{(1< Q, < 5)U(O<Tnt < ])} .In this zone, an arbitrary parametric point is s#0

as (14 kw, 124 s); the corresponding normalizeeringation point is (3.5, 0.6). For this
interrogation point, Figure 45 demonstrates theeliig of POD-based temperature
predictions in the spatial domain located at thek raxhaust plane. Figure 45(a) shows
AT,computed from the temperature measurement datatsmlapping at the test rack
exhaust. The POD-based algorithm is applied onntleasurement data. The absolute
deviations between experimental data and POD predg are also computed. From
these discrete measurements/predictions, the costwfaces are generated by Delaunay

triangulation [70]. Figure 45(b) showsT, computed from th®OD-based predictions.

The computational time for the POD-based predici®mn the order of 10 s (on an
Intel®Core™2.Duo CPU of specification EB200 @ 2@z supported by 4 GB RAM).

Figure 45(c) shows the absolute deviation betwienekperimentally acquiredT, and

the corresponding POD-predic®d. For Zone-A, the error limit for the conditional
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block is set equal to the calibration error fa3. The value of Count, which is defined as
the number of times the secondary procedure isutgdcis observed to be 4. The
sensors for which the absolute error exceeds thar éimit are C, F, O, and R.

Interestingly, all these sensors lie along the, lipe 150 mm, and Figure 45(a) suggests
that these locations are hotspots. The overall mean square (RMS) deviation is

observed to be equal to 0.45.
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Figure 45: The temperature prediction capability of the POBdshframework in zone-
A. The interrogation point is:[6=3.5,f= 0.6] (A) Mapping of experimentally-
acquired\T,. Circular markers represent the location of terapge sensors. (B)

Mapping of POD-predictediT,. Square markers represent the prediction poir@$. (

Mapping of the deviations between experimental @demdh POD predictions. Triangular
markers show absolute deviation data. The cont@pping from the discrete data points
is performed via the Delaunay triangulation. Foe ttonditional step, the error limit
assigned is 0.5C. The number of times the second level computaisomvoked or
Count is equal to 4.
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Due to the semi-empirical nature of the algorittmodeling fidelity needs to be verified
for various interrogation points. Table 11 showe tbrediction errors for various

interrogation points defined by the first two colusrQ andt

Table 11: Error table for POD-based predictions in Zone-A dfferent interrogation
points

Normalized Normalized M ax. RMS Relative

Heat Load (Q) | Time (i) Error(°C) Error
1.5 0.2 0.49 4%

0.4 0.40 2%

0.6 0.39 1%

0.8 0.20 1%

2.5 0.2 0.48 6%

0.4 0.48 4%

0.6 0.45 4%

0.8 0.44 4%

35 0.2 0.12 1%

0.4 0.49 2%

0.6 0.46 3%

0.8 0.45 2%

4.5 0.2 0.08 1%

0.4 0.09 1%

0.6 0.12 1%

0.8 0.1 0%

For every combination of(@,f), the third column of the error table presents the

maximum error, defined as the maximum of the ahlieoldeviations between

measurement data and POD predictions. The fourimyuo tabulates the RMS of the
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relative errors. It is clear from Table 11 that RIS errors vary within a range of [0%-
6%], with an average of 2.31% and standard deviaifdl.66%.
Table 12: Sensitivity of model fidelity to ensemble samplingerval. The interrogation

heat loads for these predictions are kept constald kW. A candidate space of
At={5s, 10 s, 15}sis examined.

Normalized Time Scaled Time Step RMS Relative

Size Error

0.2 5 6%
10 1%

15 5%

0.4 5 2%
10 2%

15 2%

0.6 5 3%
10 3%

15 2%

0.8 5 3%
10 2%

15 2%

The sampling time interval for constructing the pammature ensemble is arbitrarily
assumed to be equal to 10 s, which is ten timesehithan the measurement sampling
interval. Since this choice is arbitrary, the sevity of the sampling time interval on
POD predictions is analyzed in Table 12. In genemahigher sampling time interval
means improved effectiveness of data compressieueftheless, such data compression

often comes at the cost of modeling accuracy [Dlie to the semi-empirical nature of
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the proposed model, three different sampling irglsrof 5 s, 10 s, and 15 s (or 5, 10, 15
when they are scaled by the measurement sampliegvah of 1 s) are tested for

prediction fidelity at four time instant§: = [0.2,0.4,0.6,0.]3 The third column tabulates

the RMS values of the relative errors. A samplimigival choice of 10 s yields the most

accurate prediction.

Model Prediction in Zone-B
For this case study, zone-B is the parametric <desp spanned by

(Qm,qm)t{(k Q, <5)U(ﬁ“ > J)} . This predictor space demands a temperature pre&ynos

in time. Therefore, it is particularly pertinentttee analysis of various thermal runaway
phenomena during commonly-occurring emergenciesh s grid power outages and
cooling equipment (e.g. chiller pump) failures.this zone, an arbitrary parametric point
is chosen as (14 kW, 209 s); the corresponding alized interrogation point is (3.5,
199/190). Figure 46 demonstrates the fidelity ofDPi@ased temperature predictions in
the spatial domain located at the rack exhaustepl&igure 46(a) showAT, computed
from the temperature measurement data and its mguapithe test rack exhaust. Figure
46(b) showsAT, computed from th®OD-based predictions. The computational time for
the POD-based prediction is on the order of 10rs go Intel®Core™2.Duo CPU of
specification E8200 @ 2.66 GHz supported by 4 GBVRRAFigure 46(c) shows the
absolute deviation between the experimentally aequAT, and the corresponding POD-
predicted\T,. For Zone-B, the error limit for the conditionalobk is set equal to the

calibration error (0.5C). The value of Count is equal to 15. The RMSiatéan is equal

to 0.6°C.
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Figure 46: The capability of the POD-based framework in predg new temperature
data in zone-B. The interrogation point is arbityaassigned: [6= 3.5, t= 199/19(}

Experimental data are collected by 18 sensors shmwisiack circular markers arranged
in the form of a 3 x 6 grid. Located at the exhafghe test rack, the interrogation region
is 300 mm (150 mm-450 mm) in width and 2000 mm (@-2000 mm) in height. POD-
based algorithm is applied on the measurement dale deviations between
experimental data and POD predictions are noted. Nipping of experimentally-
acquired temperature data. (B) Mapping of POD-mtezhs. (C) Mapping of the
deviations between experimental data and POD gred&c The mapping from the data
points is done via the Delaunay triangulation. iritermediate error limit assigned is 0.5
°C. The number of times the second level computasiamvoked or Count is equal to 15.

The secondary procedure in the proposed algorighdesigned for improving prediction
accuracy. However, for extrapolation, after somtcat time window even the proposed
secondary procedure fails to damp out the erroerdfore, it is imperative to estimate an

acceptable extrapolation window. The fault-toleeadepends on the design redundancy
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or the tier-status [72] of a DC. A Tier-4 DC is $¢dault-tolerant. On the other hand, a
Tier-1 DC is most fault-tolerant. For this casedstuthe design redundancies are
qguantified as the error factor, which is definedhesratio of acceptable root mean square
error to the calibration error (0%). A Tier-4 facility has an error factor numerigal

equal to 1, and that for a Tier-1 facility is 4.rHoer-2 and Tier-3, the error factors are 3
and 2, respectively. Therefore, an error factoraé¢p 3 means the tolerable RMS error

limit is equal to 1.5°C. The reliable extrapolation time window is definaes the

. , . , _ .t
normalized extrapolation time mtervaEtexp:%t“”a': t.. =200 SAt = 10} for

which the proposed fidelity criterion is satisfidgelgure 47 shows reliable extrapolation
time bounds as a function of heat load for foufedént DC Tiers. For different error

factors, the reliable extrapolation window is cortgaufor various values of interrogation
heat Ioad:{6:1.5,2.5,3.5,4.§. Figure 47 indicates that with increase in heatl)ahe

reliable prediction window decreases. This fadiisaprognostic-based thermal reliability

modeling of a DC.
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calibration error (0.5C).
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Model Prediction in Zone-C
For this case study, zone-C is the parametric <sdesp spanned by

(th,l;m)E{(Qm>5)U(O<Tm<])}. This predictor space demands a temperature

prognosis in heat load and is particularly usef the analysis of thermal spikes
resulting from rapidly escalating DC IT loads indddy the flash-crowd effect [73]. To

verify the prediction fidelity, an arbitrary paratrie point is chosen as (22 kW, 124 s);
the corresponding normalized interrogation poir(6i$, 0.6). Figure 48 demonstrates the
fidelity of POD-based temperature predictions ia #patial domain located at the rack

exhaust plane. Figure 48(a) shows, computed from the temperature measurement data
and its mapping at the test rack exhaust. Figui®)4ghows AT, computed from the

POD-based predictions. The computational time lier POD-based prediction is on the
order of 10 s (on an Intel®Core™2.Duo CPU of speation E8200 @ 2.66 GHz
supported by 4 GB RAM). Figure 48(c) shows the A&liso deviation between

experimentally acquired values aff, and the corresponding POD-predicted values of
AT,. For Zone-C, the error limit for the conditiondbtk is set equal to four times the

calibration error (0.5C). Often during thermal spikes, rapid thermalraebterization is
desirable even at the cost of some prediction acgurThe value of Count, which is
defined as the period of time over which the seaopdrocedure is executed, was

observed to be equal to 14. The RMS deviation ik 0.7°C.
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Figure 48: The capability of the POD-based framework in preédg new temperature
data in zone-C. The interrogation point is arbilyaassigned: [6 =5.5,t= 0.6] ‘
Experimental data are collected by 18 sensors shmwisiack circular markers arranged
in the form of a 3 x 6 grid. Located at the exhafghe test rack, the interrogation region
is 300 mm (150 mm-450 mm) in width and 2000 mm (@-2000 mm) in height. POD-
based algorithm is applied on the measurement date deviations between
experimental data and POD predictions are noted. Nlapping of experimentally-
acquired temperature data. (B) Mapping of POD-mtemhs. (C) Mapping of the
deviations between experimental data and POD gredsc The mapping from the data
points is done via the Delaunay triangulation. Titermediate error limit assigned is 2
°C. The number of times the second level computasiamvoked or Count is equal to 14.

Table 13 shows the prediction errors for variousrmogation points defined by the first
two columnsQ andt For every combination ({f@f) , the third column of the error table

tabulates the maximum error, defined as the maximtithe absolute deviations between
measurement data and POD predictions. The fourthnuoo tabulates the root mean

square value of the relative errors. It is cleanfrTable 13 that the relative RMS error
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varies within a range of [5%-12%], with an averade.1% and a standard deviation of
2.4%.

Table 13: The prediction performance of the POD-based franmkwozone-C

Normalized Normalized Max. Relative
Heat Load (Q) | Time(:) | Error(C) | RMSError

55 0.2 1.86 12%

0.4 1.98 9%

0.6 1.75 7%

0.8 1.97 6%

5.75 0.2 1.62 8%

0.4 1.91 11%

0.6 1.99 7%

0.8 1.74 5%

Model Prediction in Zone-D

For this case study, zone-D is the parametric <sdesp spanned by
(Q.m,l;m)E{(Qm >5)U(Tnt >])} Such a parametric space is particularly pertirtenthe

worst case analysis useful for the preliminary gief a data center. In this zone, an
arbitrary interrogation point is chosen as (22 K9 s); the corresponding normalized
interrogation point is (5.5, 199/190). Figure 49nmdmstrates the fidelity of POD-based
temperature predictions in the spatial domain ledatt the rack exhaust plane. Figure 49
(a) showsAT, computed from the temperature measurement dat&santhpping at the
test rack exhaust. Figure 49(b) shows, computed from thé>OD-based predictions.
The computational time for the POD-based predici®mn the order of 10 s (on an

Intel®Core™2.Duo CPU of specification EB200 @ 2@z supported by 4 GB RAM).
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Figure 49(c) shows the absolute deviations betwieerexperimentally acquiredT, and
the corresponding POD-predict&T. For Zone-D, the error limit for the conditional

block is set to be equal to four times the calibraerror (0.8 C). The value of Count is

observed to be equal to 14. The RMS deviation iskw 1.02C.
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Figure 49: The capability of the POD-based framework in prédic new temperature
data in zone-D. The interrogation point is arbityaassigned: [6: 5.5, t= 199/19(}

Experimental data are collected by 18 sensors shmwiack circular markers arranged
in the form of a 3 x 6 grid. Located at the exhafghe test rack, the interrogation region
is 300 mm (150 mm-450 mm) in width and 2000 mm (@-2000 mm) in height. POD-
based algorithm is applied on the measurement dalte deviations between
experimental data and POD predictions are noted. Nlapping of experimentally-
acquired temperature data. (B) Mapping of POD-mtemhs. (C) Mapping of the
deviations between experimental data and POD gredsc The mapping from the data
points is done via the Delaunay triangulation. Titermediate error limit assigned is 2
°C. The number of times the second level computasiamvoked or Count is equal to 14.
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POD coefficient computation in Zone-D requires apblation-based regression
operations. Therefore, it is imperative that thedeididelity criterion be identified. The
cut-off criterion is postulated as: the RMS valdeedative errors is equal to 25%. Figure

50 shows the root mean variation of square redatleviations and Count with

. o L . ot -t
normalized extrapolation time, which is defined E’;@p =20 __nal.

S g = 200 SAL = 1%.

It can be observed that fiex, < 6, the root mean square of relative error is sulbistiin

damped by the secondary procedure. fqr> 7, the deviations increase rapidly to the
extent that the secondary procedure fails to damphis is reflected in an exponential
increase in root mean square values of relativ@®and Count. Finally, the fidelity limit

(25%) is reached at 15 s.

0.35 T T T T T T /;': —=—H/16
—&— RMS of Relative Errors v

—=— Count

03f /’—‘dl
Fidelity Limit
E—a idelity Limi

7 |
S 025f-----=mm=mmmmmoamae i SCEEEESEEE A A 12
: 1 _..'"
A o
2 o2} L A 10 o
= L/ =
3] Error Reduction by ?] -
E 0.15h Secondary Procedure f I 8
o
(=]
2 o1t 1
(14
005F 44
e :
0 'l A Il L L L A 2
0 2 4 6 8 10 12 14 16

Normalized Extrapolation Time

Figure 50: Root mean square of relative errors versus nopedlextrapolation time for
Q =5.5. All data points lie in zone-D. The second Y-axiews the variation of Count
with extrapolation time.
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Coherent Structure of the Experimental Data

While the prediction fidelity of the proposed apach is established, it is worthwhile to
inspect the efficiency of the algorithm. For eféiot compact modeling, POD-based
algorithms rely on model order reduction. For tmespnt case study, a tolerance limit
(for optimal number of POD modes) is set at 5%. therpresent two-tier algorithm, two
separate POD-based spectral analyses have beeacteshdFor an arbitrarily-assigned
5% tolerance limit, the principal component numbar the primary procedure is 11
(which means (1-11/95) =88.5% order reduction), #uad for the secondary procedure is
2 (which means (1-2/19) =89.5% order reductionufé 51 shows the POD-based mode
decomposition spectrum. Figure 51(a) shows 11 @t{slominant) POD modes for the
primary procedure in the proposed algorithm. Expdlgt the first eigenvalue is the
spectral radius or the maximum eigenvalue of mageit74. It captures as much as 75.9
% of the energy of the parametric temperature fi€ldure 51(b) shows 2 optimal
(dominant) POD modes for the secondary procedurthefproposed algorithm. In this
case, the first eigenvalue captures 88.3% of therggnof the parametric temperature
field. The POD modes essentially recognize theepatbf the dynamic temperature.
Following this basic pattern, actual temperaturgspomses are modulated by the

parametric position on the interrogation pointhe predictor space.
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Figure 51: POD-based mode decomposition for the given dataixnathe tolerance
level is set to be equal to 95%. For the primancpdure (Figure 51(a)), it takes 11 out
of 95 POD modes to reach the 5% tolerance limit. ke other hand, the secondary
procedure (Figure 51(b)) takes 2 out of 19 POD raddeeach the 5% tolerance limit.
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Closure

A measurement-based air temperature predictionewaork is developed with heat load
and time as the parameters. The framework is capHlgredicting air temperature in full
factorial parametric space. Given that the datéeterooling expenditure is directly
proportional to its air temperatures, the propdsahework is suitable for life-cycle

design of data center cooling systems.
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CHAPTER G
POD-BASED OPTIMIZATION FRAMEWORK FOR DYNAMIC
COOLING ENERGY CONSUMPTION WITH TIME-VARYING CPU
WORKLOAD

This chapter pertains to a measurement-based PQgInmoptimize dynamic cooling

energy consumption with time-varying CPU workload.

Problem Statement

With the advent of cloud data centers (CDC), themaitch between computing load-
induced cooling demand and actual cooling supplyeducing data center energy
efficiency significantly. The major cooling desigmoblem for a CDC is its virtualized

computing resources. Virtualization is creationvotual machines that act like a real
computing platform within an operating system. Tapplication is virtual in the sense
that it can be migrated rapidly to different compgtnodes co-located within the same
facility or even located outside the facility. Thigtual machines are administered by a
software application called hypervisor. The mostely used hypervisor in the industry
is vSphere developed by VMware. Figure 52 showsstlisvare stack present in a large-
scale CDC. Due the stochastic nature of the agplitdoad, the computational load on a
cloud data center and the associated heat load reaadomly. However, the lack of a

demand-aware cooling allocation framework causesfalcility to operate at the most
conservative set point. That amounts to significadling over-provisioning, as shown
in Figure 53. To avoid this wasteful cooling opemat the cooling supply curve needs to

be dynamic and elastic. That is equivalent to imrg cooling response time, which is a

129



combination of controller feedback response timé emoling hardware latency. Most
DC cooling hardware systems are controlled by pribgaeal-integral-derivative

controllers (PID controller). Improving their feeattk response time requires efficient
characterization of controller state-space. It desisaan algorithm that can rapidly predict
CPU temperatures for different cooling set-poirftee CPU temperature is a critical
decision parameter because all thermal managemaentidnalities inside a server are

based on CPU temperatures.
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Figure52: Functional view of a virtualized cloud data center
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Figure 53: Mismatch in cooling demand and supply

In this chapter, a POD-based framework is develofmed can rapidly predict CPU
temperatures with cooling set points as the pamrseThe framework is used to design
an optimal cooling resource allocation system focl@ud data center. The potential

cooling energy saving from the optimal controlletian is also estimated.

M ethodology

The proposed framework is based on a POD-based maodied reduction subroutine, as
discussed in CHAPTER 2. This POD subroutine impsa¥»e parametric granularity of a
data matrix comprising experimental measurementee POD subroutine offers an
efficient, scalable, and reasonably accurate ptiedialgorithm. Figure 54 shows the
flowcharts of the POD subroutine and modeling franmk used in this paper. Details of
the linear programming-based mathematical modebhgPOD subroutine are well
documented in the literature [54]. Three functidolalcks in the framework are driven by
a rack-level algorithm, a blade center-level algpon, and a CPU- level algorithm. Each
of these levels is applied to the data matrix comapht different length scales: blade,
blade center, and rack. Each blade has two CPdB,l#ade center has 14 blades with 28
CPUs, and each rack six blade centers with 168 CHiggire 55 shows test rack

architecture.
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POD Subroutine on
Rack-level Ensemble

POD Subroutine on
Blade Center-level Ensemble

x

Prediction Error <
Tolerance

End

POD Subroutine on
CPU-level Ensemble

Figure 54. POD-based CPU temperature prediction algorithmeBas POD-based
modal reduction, the algorithm is a three tieredistical procedure: it starts from the
ensemble of all CPU temperatures of an entire fhgkediction error does not satisfy a
certain tolerance criterion the algorithm procetedthe blade center level ensembile.
Thereatter, if the prediction error does not sgtibe tolerance criterion, the algorithm
proceeds to the CPU level ensemble.
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Blade Center

ATrEd
123456789012 34

2000

Figure55: Details of a blade center rack (adapted from [GR@d filled circles indicate

the locations of the blades which are selectedhi®walidation purpose. The selection is

random: ¢, 7", and 14 blades from the left. Fo"2and ' blade, CPU-1 temperatures
are analyzed; whereas, for"llade CPU-2 blade temperature is analyzed.

The functional algorithm developed in this studwapplied to the CPU temperature data
measured from an IBM blade center rack as showkigare 55. The following symbols
are extensively used in the following discussiontgiring to the functional algorithm.

Respective numerical values for an IBM blade centéth dual core server are

mentioned.
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Number of racks(n_racks) =1; Number of Blade Centergn_BC)=6; Number of

Blades per B¢n_blade) =14; Number of CPUs per Bladg_CPU) =2; Number of

Temperature Level§n_T)=4; Number of Pressure Levels_ P)=3; Total number of

experimental data sample(sn_sample: n % n 93212. Number of time samples

(n_time) =44,

The algorithms for different length scales haveusedjal steps, described as follows:

Rack-level Algorithm

1.

ack
ta

Compile CPU temperature data matrix, = for the entire rack for all

experimental sample3,** is a matrix of size

tata

n_timex N, whereN= n_CPW n_blade n B& n racks n samfFor
the present case study, =2016.

Compute the row-wise mean f*

ata

to determineT,

ack
ta

Apply Power iteration-based POD 4.’ to compute POD modeg; POD

rack !

coefficient matrix,B

rack *
Based on 99% tolerance criteria, the principal congmt number is determined to
be equal to 42. It means 97.9% data compression.

and B

rack

Cuty based on principal component number.

rack
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6. SegmentB

rack

based on CPU locations and apply bilinear intetpmieon the

segmented matrix to determine POD coefficient veatdhe interrogation point,

B
7. The interrogation temperature is predicted B& o, = To + ¥ a0 0 Bic-

-I-rack __ Track 4
. dat: dicti
8. Determine percentage err@='——""21x100.

rack
data

9. If e>tol, then go to Blade Center-level algorithwhere tol=5%.

Blade Center-level Algorithm

1. Compile CPU temperature data mat¥, for the entire Blade Center

corresponding to the interrogation CPU acrossxdeemental sampled . S is a

"data

matrix of sizen_timex N, whereN= n_CPWx n_blade n_samplFor the

present case studyy =336.

C
ata

2. Compute the row-wise mean of,, to determineT,

3. Apply Power iteration-based POD @fi., to compute POD modeg,., POD

coefficient matrix, By..

4. Based on 99% tolerance criteria, the principal congmt number is determined to
be equal to 42. It means 87.5% data compression.

5. Cut¢,.and B,.based on principal component number.
6. SegmentB,.based on CPU locations and apply bilinear intetpmieon the

segmented matrix to determine POD coefficient veatdhe interrogation point,

B
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7. The interrogation temperature is predicted B, ion = To + ¥ 5c 0 by

BC _ TBC
data predictiol

L | x100.

data

8. Determine percentage errar=

9. If e>tol, then go to CPU-level algorithm, where=ts%o.

CPU-level Algorithm

1. Compile CPU temperature data matf; "~ for the interrogation CPU across all

experimental sampled..”is a matrix of size

tata

n_timex N, where N= n_sampleFor the present case study,=12.

PU
ata

2. Compute the row-wise mean of;,” to determineT,.

3. Apply Power iteration-based POD @y’ to compute POD modeg.,, , POD

coefficient matrix, By, .
4. Based on 99% tolerance criteria, the principal congmt number is determined to
be equal to 11. It means 8.3% data compression.

5. Cuty,,, and B, based on principal component number.

6. SegmentB,, based on CPU locations and apply bilinear intetpaizon the
segmented matrix to determine POD coefficient veatdhe interrogation point,
By

7. The interrogation temperature is predicted By ion = To + ¥ cpy 0 By

TCPU _cPU

T eociof
data predictiol
X
— 100.
data

8. Determine percentage err@=
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The capability of high-fidelity temperature gen@vatcan be leveraged to determine the
optimal cooling environment for a time-varying who&d profile. The mathematical

optimization problem of the optimal cooling desizan be formulated as:
MaximizeTs,,
Minimize AP,
(3.22)

7

Constraint: maxi,, ¥ 65 ¢

A}

The optimal cooling design offers most cost-efiitieDC operation because the
maximization of CRAC supply temperature under theeig constraint amounts to
optimizing chiller flow rate. It directly impacts466 of data center cooling cost as
discussed in CHAPTER 1. On the other hand, the mmation of rear door heat
exchanger driving pressure under the given comstigtimizes building chilled water
pump work which amounts to 9% of data center cgolost. The constraint in the

optimization problem specifies the reliability linaf most modern processors.

This optimization problem can be solved using a HfaBed temperature signal
generator with the iterative procedure, shown iguké 56. The initial starting cooling
resource set-point is determined by several factoctuding the class of a data center,
cooling hardware operational capability (such aspsets of RDHx). Then, the POD
algorithm computes the CPU temperatures. If theimaoa CPU temperature is below
the critical CPU temperature of 86, then the initial operating point is the optirpaint.
Otherwise, cooling set points are adjusted and QGPtdperatures are iteratively

recomputed until maximum CPU temperature goes b#ieveritical CPU temperature.
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Most cost-efficient
cooling resource set

point
CPU
| temperature max (Tepu) < Teritical
prediction

Optimal cooling
resource
allocation
decision

Adjust cooling resource allocation

Cooling
hardware

Figure 56:. POD-based iterative procedure to compute optimaling set points

For this particular case-study, the cooling equipmesed are the test CRAC unit and

the test RDHXx unit. While a CRAC unit provides rotewel cooling, an RDHXx provides

rack-level localized cooling. Therefore, a CRACtusimore energy-intensive compared

to an RDHx unit. In light of that fact, an optin@oling infrastructure design for a given

test rack demands the first-level of cooling frone tcorresponding RDHx unit. The

CRAC supply temperature should be modulated onlgrRDHX unit pressure has been

pushed to its maximum level. That affects the adjesit of cooling resource set-points

to identify cost-effective operation paradigm. Catgtionally, it means using RDHXx

pressure as the inner variable and CRAC supply eeatyre as the outer variable in the

iterative optimization loop.
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Experimental Setup

Figure 57 shows the experimental raised-floor DE€ilifg (located at Atlanta, GA at
elevation ~1,027’ (313 m)) with three computer roaimconditioning (CRAC) units. For
this experimental study, rack D-5 is used as tisé ick. Installed with an underfloor
plenum of depth 912 mm (3’) and drop ceiling heigyi27 mm (5'8”), the facility height
is 3048 mm (10’). For this case study, only CRA@#lich is an APC 5 kW downflow
unit (CW-140-C-KA-D) is operational. The rated dogl capacity of this CRAC unit is
140 kW (40 ton). This unit is installed with a bdtiven centrifugal fan which is rated to
supply 12,200 CFM (5.76 i) cooling air. The cooling hardware (cooling caitd
electric heater) inside CRAC unit is controlledricro-processor —based PID controller
with supply air temperature as the set point. Télative humidity of the supply air is
maintained at 40%. 10 of 14 racks in the test ifgcdre installed with RDHx-s (Vatte
Liquid Cooling) of nominal cooling capacity 18 kWhdh maximum cooling capacity 24
kW. The overall cooling capacity of these RDHx-s@trolled by centralized pressure
differential set point. Table 14 specifies the ekpental condition. The heat load
column shows average rack heat load, measured bly Baad Tester. The tile flow
column shows cooling air coming out through thefqgrated tile, measured by Balometer
(Shortbridge ADM-860C). The rack flow column shows drawn by rack fans,
measured by Rack Load Tester.

The Rack Load Tester consists of an array of 15ser&ors (45 sensors). It is placed at
the outlet of the rack attached to an aluminum &atnucture covered by a cloth skirt to
prevent air from bypassing the sensors. Each saswmists of a thermistor to measure
temperature, and a constant temperature hot wieenameter to measure air velocity.

The sensors used were standard Accusense F90@e Fhecification measurements are
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done when CRAC supply temperature is kept at 16.60 F) and RDHXx differential

pressure is kept at 8 psi.

Active CRAC

Upflow CRACIEEN Downflow CRAC-1 N

Rear Door Heat

Exchanger
\ C-7
C-6

Hot Aisle A o
Exhaust Ceiling C-4
Vent ~L c-3

C-2

Storage

Underfloor
Containment Y

Downﬂow CRAC-2 v

< 6400 >

Figure 57: Details of the Experimental Setup

It can be observed that Tile Flow is 6238 CFM amsaiRFlow 20278 CFM. Since Tile
Flow or cooling air supply is 69.2% lower compatedrack Flow or rack demand, the

facility is severely under-provisioned.
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Table 14: Specification of the Experimental Setup

Rack | Description RDHXx Heat L oad Tile Flow Rack Flow
kW CFM CFM
(+/-) 5% (+/-) 5% (+/-) 5%
C-1 Storage No 5.2 397 1015
C-2 IBM Blade Yes 11.4 490 1579
Center Rack
C-3 IBM Blade Yes 11.7 533 1651
Center Rack
C-4 IBM Blade Yes 11.9 390 1617
Center Rack
C-5 IBM Blade Yes 11.8 470 1447
Center Rack
C-6 1-U Server No 0.0 488 1200
Rack
C-7 Empty No 7.8 439 267
D-1 Network No 4.5 371 1061
D-2 IBM Blade Yes 11.8 434 1603
Center Rack
D-3 IBM Blade Yes 11.7 377 1658
Center Rack
D-4 IBM Blade Yes 11.3 415 1724
Center Rack
D-5 IBM Blade Yes 11.9 484 1716
Center Rack
(Test Rack)
D-6 IBM Blade Yes 11.9 483 1858
Center Rack
D-7 IBM Blade Yes 12.0 467 1882
Center Rack

In this study, rack D-5 is used as the test raickomsists of 6 IBM blade centers. Each
blade center contains 14 blade servers. Each biasiéwo dual-core AMD Opteron 270
processors, 4 GB of memory, and is installed wite YMware vSphere Hypervisor
(ESXi) v4.1. The blades are interconnected via ecd&-d0 E1200 switch over a flat IP

space. Each blade hosts one virtual machine iadtalith 64-bit Ubuntu 11.10. Since

141




these blades are CPU-dominant in terms of poweswuoption, we configure those
virtual machines with 4 virtual CPUs to exploit ttr@ximum power usage. The VMware
vSphere server and client software are used to geatfze cloud. For the purpose of
profiling, the workload in a given VM needs to beeqsely controlled, which is
performed by wileE benchmark [74]. It enables gatien of user-defined transient CPU
and memory utilization profiles for an arbitraryripel of time. To emulate the real-world
workload, the workload is discretized into instaa# different wileE workload. The
wileE benchmark can automatically perform thoseéaimses in time sequence via the use
of multicast. The test rack is equipped with ayRBtem developed by OSlisoft. Via this PI
system, the data streams generated from varios®igeare transmitted to SQL database
in real time. The measurement data are retrievenh fthis database, and subsequent
analyses are performed using the framework destiibéhe previous section. The CPU

temperature data for this experiment

Figure 58 shows CPU/memory usage profiles usettii;mcase study. The duration of

each profile is 3000 s. There are four types afkleads:

Type-1

The workload is a typical load profile of an ID€ hlas two fundamental components: the
first one is a regular periodic component, andatier one is a discontinuous component.
The latter represents a flash crowd in a data cefiileese flash crowd events are

characterized by very high IT demand for a shoration of time. Att =0, the profile

starts at 35% utilization. Then, it varies in ausioidal manner with 25% amplitude and
3600 s time period. The flash crowd occurs at 240&hen the utilization profile

suddenly shoots up. Within 30 s, it increases & @Milization. The resource utilization
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remains constant for 30 s between 2430-2460 s. ,Titeplummets to the original
periodic profile within next 60 s. From 2520 sgaintinues the regular periodic profile.
Type-2

This profile simulates a square waveform with 708tphtude and a half time period of
600 s. This particular waveform has two peaksfitisé one starts at 600 s and continues
till 1200 s, while second one starts at 1200 s e@mdtinues till 2400 s. The lower IT
utilization point in this profile is 10%; on thehar hand, the higher IT utilization point is
80%.

Type-3

This profile combines a square waveform with a siraveform. The square waveform
lasts from 0-1800 s. It has one peak between 600-52with 25% amplitude. It has a
lower IT utilization point of 35% and higher IT lization point of 60%. The subsequent
part of this combined waveform is a sine wave 8% amplitude with 3600 s time
period. It starts at 1800 s with 35% utilizationsibsequently reaches 10% utilization at
2700 s.

Type-4

This profile is related to an actual cloud compagtservice provider. This profile is
characterized by a sudden jump at 280 s. Whileptodile has (0.24 0.0126) % CPU

utilization before 280 s, it shoots up to (98t3B14) % CPU utilization after 280 s.
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Figure 58: Simulated Load Profiles

For studying the sensitivity of the predictive frawork with respect to the uncertainty in

the workload pattern, a distorted profile of Typavaveform is developed. Figure 59

shows a Type-2 profile along with a distorted Typprofile.
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Figure 59: Distorted Type-2 Profile. The black line is thegimial Type-2 profile. The
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While the black line is the original Type-2 profilhe red line is the distorted Type-2
profile. The original Type-2 profile has been chedign four places to obtain the
distorted profile. First, the amplitude of the fifgeak is increased by 10% to 73.5%.
Second, the half time period of the first squarésgpus decreased by 10% to 540 s.
Therefore, the first peak finishes at 1140 s ini@al200 s. Third, the amplitude of the
second peak is decreased by 10% to 66.5%. Firtakyhalf time period of the second
square pulse is increased by 10% to 660 s. Thexetioe second peak finishes at 2460 s

instead of 2400 s.

Case Study

The POD-based framework is applied on the measDRid temperature data to improve

its parametric granularity. While CPU temperatwseused as the response variable, a

combination of CRAC supply temperatur(eT )and RDHx differential pressure

sup

(APyyx ) is used as a predictor variable. The objectivection is to improve the

parametric granularity of CPU temperature data('lfggjp,APRDHx) parametric space. This

paper applies the framework on CPU temperature datiected with 12 different

combinations of(TSup,APRDHX). The output is generated for three different preoin

points. Figure 60 shows the parametric input sp&kere are four different levels &, :
17 °C, 21°C, 25°C, and 29°C. These temperature points are chosen to keep this
experimental study pertinent to American SocietyH#fating, Refrigerating and Air-

Conditioning Engineers (ASHRAE) TC9.9 recommendestrnal guideline. While 29C

and 25°C lie within the recommended range of [1827°C], 17°C and 29C lie within
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the allowable range of [1%C-32°C]. On the other hand, three different values oHRD
differential pressure are chosen: 4.0 psi (27579 P8 psi (48263.3 Pa), and 10.0 Psi
(68947.6 Pa) from possible values between [0-1PR psr the rest of the paper, psi will
be used as a pressure unit (1 psi=6894.75 Pakaledi by the red circles, three output
points are chosen at the furthest possible parametations: (19C, 8.5 psi); (23C,
6.0 psi); and (27C, 5.5 psi). These output points are arbitrarilpsgn and drawn from
different regions of the parametric space. Theegfat can be argued that if any
framework predicts accurately in these point, itl wredict accurately in the entire

parametric region.
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Figure 60: The interrogation space is comprised different ps€ombinations of
CRAC supply temperatur(aT ) and RDHXx differential pressu('APRDHX) . Black circles

sup.
indicate the parametric locations of the input emse. Red circles indicate the
parametric locations of the prediction points.
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Results and Discussions

Figure 61 shows transient CPU temperatures fordgferent blade centers for Type-1
workload operating at (19C, 4 psi). There are 28 CPUs in a blade centerrefoe,

CPU temperature data are densely packed. For waatiah purpose, three CPUs are

picked. They are CPU1 at Blade2; CPUL1 at Bladed ,GPU2 at Blade14.

CPU Temperature { °C)

Figure 61: CPU temperature data at (32, 4 psi) operating condition for Type-1 load
profile. Three visualization CPUs are chosen: CRURIade2; CPUL1 at Blade7, and

It can be readily observed from Figure 61 thatdkierage CPU temperature is highest
near the top of the rack. Figure 62 shows averdgjd ©mperature for each blade center.

While average CPU temperature is equal to 8G.4n blade center 1, that is 55@ in
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blade center 6. Higher CPU temperature near theftthe rack is caused by the warmer
rack inlet temperature near the top of the racktdueot air recirculation near the top of
the rack. The effect of hot air recirculation i®pounced in this case-study because the
cooling air supply in this experimental facility severely under-provisioned. Moving
down the rack, average CPU temperature decrease a&ffect of hot air recirculation
gradually diminishes. Nevertheless, average CPUpéeature increases unexpectedly for
blade center 1. This is because of the Venturcetiethe foot of the rack. Although there
is a distinct trend in the vertical direction, theis no such trend in the horizontal
direction. The CPU temperatures seem to undergandom spatial variation within a

blade center.

Blade Center Number

0 10 20 30 40 50 60
Average Temp. ( DC)

Figure 62: Average temperature for different blade centerdfgre-1 workload at
(17°C, 4 psi)

Each IBM blade center has two mutually-facing déugal fans. Figure 63 shows
transient evolution of server fan speeds. The speédhese fans are controlled by rack

inlet temperatures. Therefore, it is expected fduatspeeds near the top of the rack would
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be higher than near the bottom. Indeed, it is oleskthat Blade Center (BC) 6 and BC 5
fans are operating at 100% capacity which can bgased by their larger inlet
temperatures. Fans in BC4, BC3, and BC2 showmsitat pattern. Fans start to operate
from [95%, 85%, 60%] respectively; then, fan speetdeases at around 900s. Fan speeds
fall at around 2500 s. This is somewhat consistétit Type-1 load profile. Fan speed
increases during peak power and flash crowd evénfalls as the amplitude of the
workload decreases. Surprisingly, the BC-1 fanedpeemains flat which can be

explained from local cooling dominated by the Vengdfect.
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Figure 63: Fan speed variation with Type-1 workload at {C7 4 psi) cooling set-points
The CPU temperatures and server fan speed showxiected behavior. A similar
pattern is expected to continue for other coolimyimnments. The data matrix is

compiled based on experimentally-measured CPU teahpe data. The proposed
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algorithm is applied on the data matrix and the GBtdperature signals are computed.
For a fidelity check, the percentage error betwé@tJ temperature data and predictions
are computed. Table 15 shows the root mean squdune vf time-averaged (0-3000 s

with 44 time samples) error across 168 CPUs irigkerack.

Table 15: Percentage error for different workload types #edeént operating points

Workload Cooling Set-point RMSof Time- 99.7%
Type averaged Error Confidence

Interval
Type-1 (19°C,8.5 psi) 2.39% 3.28%
Type-1 (23°C,6.0 psi) 1.75% 2.41%
Type-1 (27°C,5.5 psi) 2.44% 3.39%
Type-2 (19°C,8.5 psi) 3.38% 5.34%
Type-2 (23°C,6.0 psi) 2.57% 3.1%
Type-2 (27°C,5.5 psi) 2.60% 4.49%
Type-3 (19°C,8.5 psi) 3.30% 4.01%
Type-3 (23°C,6.0 psi) 2.78% 3.33%
Type-3 (27°C,5.5 psi) 2.16% 2.42%
Type-4 (19°C,8.5 psi) 2.23% 2.46%
Type-4 (23°C,6.0 psi) 2.56% 2.8%
Type-4 (27°C,5.5 psi) 2.35% 2.81%
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Table 15 shows that the maximum value of the RM8&noé-averaged error for Type-1
workload is equal to 2.56%, that for Type-2 woddas equal to 3.38%, that for Type-3
workload is equal to 3.3%, and that for Type-4 vioakl is equal to 2.56%. On the other
hand, the maximum error bound for the numericalcedore is 10%. Hence, the
developed framework is accurate within a +/-10% eutanty interval. However, as
suggested by the RMS values, the framework is ptiedi much better than the 10%
upper bound. Hence, it can be claimed that the queg POD-based framework is

capable of generating high-fidelity temperaturedprtons for any cooling operating

points (T,,., R,) such thaff,, 0[17 °C, 29° QUR, O[ 4 psi, 10 ps

Given that the fidelity of the prediction framewaskestablished, the optimal controller
(as shown in Figure 56) for different workload pled can be designed. The initial
starting point is (28C, 4 psi). This is the most cost-efficient poinheh, if the maximum
CPU temperature is computed to be more than thieatriimit of 65°C, the cooling set-
points are adjusted by 0% increments in CRAC supply air temperature and p&i5

decrements in RDHXx.

Figure 64 shows optimal cooling resource allocafmmType-1 workload. Figure 64(a)
shows the load profile for Type-1 workload, whicha sine waveform with amplitude
25% and period 3600 s. The first peak is reache@Ofts. At 1800 s, the waveform
reaches its half-time period. These time instarégr@arked by dotted lines. Additionally,
the beginning (2400 s) and the end (2520 s) offlds crowd profile are also marked
with dotted lines. Figure 64(b) shows the maximumerage, and minimum CPU

temperature profiles for the optimal cooling seirpoenvelope. The optimization
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procedure determines the most cost-effective cgolget-points under the given
constraint. Figure 64(c) and Figure 64(d) showmptiCRAC supply temperature and
RDHx pressure set points, respectively. InitialBRAC supply temperature and RDHXx
pressure could satisfy the temperature constrairdderating at the most cost-effective
set point of (29C, 4 psi). With increase in CPU utilization andaxsated CPU power
dissipation, cooling set-points need to deviatenfithhe cost-efficient operational mode.
In fact, the RDHx pressure set-point jumps rapfdiyn 4 psi to 10 psi between [363 s-
436 s]. At 436 s, the CRAC supply temperature redpdy dipping down by 0.5 to
28.5°C and remains there till 581 s. Between 581 s-658iscreases to move back to
the 29°C set-point. Between 654 s-732 s, it decrease8.°2.Between 720 s-792 s, it
plummets to 23C. RDHx pressure set-point, on the other hand, iesneomewhat flat
after 436 s except for experiencing a minor dipOly psi between 581 s-732 s. Similar
dynamic adjustments of cooling set-points contiimuéhe entire time domain based on
the proposed mathematical optimization procedunews in Figure 56. The cooling
hardware response during the flash crowd betweedD 212520 s is particularly
interesting. Between 2415 s-2488 s, there is epsjiegmp in RDHX pressure set-point
from 4 psi to 8 psi. On the other hand, the CRA@pdy air temperature surprisingly
increases from 28.8C to 29°C during that time window. During the next parttbé
flash crowd between 2488 s-2560 s, the RDHx presdecreases by 0.5 psi and the
CRAC supply temperature remains flat. Between RDdthd CRAC, RDHx is more
responsive to rack CPU utilization or power vadatilt can be explained by the fact that
RDHXx is more tightly-coupled to a given rack. Wh@®AC is responsible for cooling of

several racks inside the facility, RDHXx is respbiesior a given rack.
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ZT00

The black lines in Figure 64(c) and Figure 64(d)velthe most conservative set-points

for CRAC (23°C) and RDHx (10 psi), respectively. If there is optimal control
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procedure, a conservative DC facility manager wayddrate his/her data center cooling
at these points. Therefore, the developed apprbashthe potential to save cooling
energy. Figure 65 shows the cooling energy saviogergial of the developed
optimization framework. The energy calculations @ee by the simple thermodynamic
model developed in CHAPTER Figure 65(a) shows the fraction of energy usage b
the CRAC unit operating in the optimal mode to twat similar CRAC unit operating in
the conservative mode. On the other hand, Figufb)&hows the fraction of energy
usage by the RDHXx unit operating in the optimal méal that by a similar RDHx unit
operating in the conservative mode. The root meaare value of the fraction of energy
saving in CRAC is equal to 51.4%. On the other hahdt value in RDHXx is equal to

18.5%.
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Figure 66 shows the optimal cooling resource atlooafor a Type-2 workload. Figure
66(a) shows the load profile for Type-2 workloadhieh is a square waveform with
amplitude 70% and half-time period 600 s. Figurébb&hows the maximum, average,
and minimum CPU temperature profiles for the optiowoling set-point envelope. The
optimization procedure determines the most cogtetiffe cooling set-points under the
given constraint. Figure 66(c) and Figure 66(d)vsloptimal CRAC supply temperature
and RDHXx pressure set points, respectively. ImliaCRAC supply temperature and
RDHx pressure could satisfy the temperature coinsttey operating at the most cost-
effective set point of (28C, 4 psi). With increase in CPU utilization andasated CPU
power dissipation, cooling set-points need to devieom the cost-efficient operational
mode. As expected, there are major changes in ngpofiet-points around the
discontinuities of the step profile at 600 s, 1,Z)01,800 s, and 2,400 s. In fact, the
RDHx pressure set-point jumps rapidly from 4.5 fosB psi between [512 s-584 s]. On
the other hand, the CRAC supply temperature fatlsf29°C to 25°C between [584 s-
658 s]. Similar dynamic variations of cooling seiyis are observed across the entire
time window. There are some counter-intuitive v#izgs in CRAC supply temperature
and RDHXx pressure, especially in the later parttheftwo square peaks: CRAC supply
temperature increases between [1026 s-1171 s] atwiebn [2194 s-2342 s]; RDHXx
pressure decreases between [1026 s-1099 s] anddref@121 s-2194 s]. These changes
are surprising because one would expect coolingg@ets to remain flat without any
change in the CPU utilization. However, these arlonsabehaviors can be explained by
the coordinated nature of the dynamic cooling coowliwith IT load: The cooling points

determined in the previous time samples to thesenatous time ranges must have over-
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provisioned the cooling requirements and createdestocal cooling sources such as
over-cooled server chassis body. These local cgpaliurces act as a thermal capacitance
for CPU heat loads and modify cooling load for deelicated hardware such as CRAC or
HDHx. Due to its rapid fluctuations, Type-2 loadfie is more sensitive to this thermal

capacitance effect than its Type-1 counterpart.
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The black lines in Figure 66(c) and Figure 66(d)vglthe most conservative set-points
for CRAC (19.5°C) and RDHx (10 psi), respectively. If there is aptimal control
procedure, a risk-averse DC facility manager wagdrate his/her data center cooling at
these conservative points. Therefore, the devel@ptoach has the potential to save
cooling energy. Figure 65 shows the cooling enesgying potential of the developed
optimization framework. The energy calculations @ee by the simple thermodynamic
model developed in CHAPTER 1. Figure 67(a) shdvesftaction of energy usage by
the CRAC unit operating in the optimal mode to twat similar CRAC unit operating in
the conservative mode. On the other hand, Figufe)&hows the fraction of energy
usage by the RDHXx unit operating in the optimal meal that by a similar RDHx unit
operating in the conservative mode. The root meaiare value of the fraction of energy
saving in CRAC is equal to 62.7%. On the other hahdt value in RDHx is equal to

34.4%.
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Figure 67: Cooling energy saving for Type-2 workload

Figure 68 shows optimal cooling resource allocatmnlype-3 workload.

Figure 68(a) shows the load profile for Type-3 wo&kl which is a combination of
square waveform and sinusoidal waveform. The squakeform has amplitude of 25%
and half-time period 600 s. In Type-3 workload pepfthe square waveform lasts during
[0-1800 s] with one square peak. The sine wavelasts during [1800 s-3000 s]. It has

amplitude of 25% with 3600 time period.
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Figure 68(b) shows the maximum, average, and mimr@®U temperature profiles for
the optimal cooling set-point envelope. The optetian procedure determines the most

cost-effective cooling set-points under the givenstraint.

Figure 68(c) and Figure 68(d) show optimal CRAC@ypemperature and RDHx
pressure set points, respectively. Initially, tHRAT supply temperature and RDHXx
pressure could satisfy the temperature constrgioplerating at the most cost-effective
set point of (29C, 4 psi). With increase in CPU utilization andasated CPU power
dissipation, cooling set-points need to deviatenftbe cost-efficient operational mode.
As expected, there are major changes in coolirg@ets around the discontinuities of
the step profile at 600 s, 1,200 s, and 1,800 fadt) the pattern of cooling set-point
changes between [0-1800 s] remains similar todhtite Type-2. In this profile,
however, the degree of changes is moderate betaiseplitude of the square
waveform is equal to 25% which is 64.3% lower thigpe-2 profile. On the other hand,
it is expected that the changes in cooling setipoinill be moderate during the sine
waveform in the [1800 s-3000 s] time domain. Indekdt is reflected in the CRAC
supply temperature set point, which remains fl&%C. As far as RDHx pressure is

concerned, it remains flat at 10 psi till 2129 fobe dropping to 7 psi.
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The black lines in the Figure 68(c) and Figure $&ldow the most conservative set-
points for CRAC (22.8C) and RDHXx (10 psi), respectively. If there isamiimal control
procedure, a risk-averse DC facility manager wagdrate his/her data center cooling at
these conservative points. Therefore, the devel@ptoach has the potential to save
cooling energy. Figure 69 shows the cooling enesgying potential of the developed
optimization framework. The energy calculations @ee by the simple thermodynamic
model developed in CHAPTER Figure 69(a) shows the fraction of energy usage b
the CRAC unit operating in the optimal mode to twat similar CRAC unit operating in
the conservative mode. On the other hand, Figufe)&hows the fraction of energy
usage by the RDHXx unit operating in the optimal méal that by a similar RDHx unit
operating in the conservative mode. The root megaare value of the fraction of energy
saving in CRAC is equal to 66.2%. On the other hahdt value in RDHx is equal to
19%. It can be noted that the savings potentiatfierCRAC unit is significantly (more
than 3 times) higher than that for the RDHx unhisTcan be explained by the fact that

the RDHx is closely coupled to the rack unit.
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Figure 70 shows the optimal cooling resource atlooafor Type-4 workload

3000

. Figure

70(a) shows the load profile for Type-4. This peofs characterized by its sudden jump

at 280 s. While this profile has (0.24.0126) % CPU utilization before 280 s, it shoots

up to (98.3& 1.14) % CPU utilization after 280 s. Figure 70(bpws the maximum,

average, and minimum CPU temperature profiles fer optimal cooling set-point

envelope. The optimization procedure determinesntlost cost-effective cooling set-

points under the given constraint. Figure 70(c) &glre 70(d) show optimal CRAC

supply temperature and RDHx pressure set poingpertively. Initially, the

CRAC

supply temperature and RDHx pressure could satiséy temperature constraint by

operating at the most cost-effective set pointas {C, 4 psi). With increase in CPU

utilization and associated CPU power dissipati@oling set-points need to deviate from
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the cost-efficient operational mode. As expecthdra are major changes in cooling set-
points around the discontinuities of the step peofit 280 s: while CRAC supply

temperature increases from 4® to 20.5°C, RDHx pressure increases from 4 psi to 9.5
psi. After 280 s, the cooling set-points encountgnor changes because the CPU

utilization profile remains flat.

The black lines in Figure 70(c) and Figure 70(d)vglthe most conservative set-points
for CRAC (18.5°C) and RDHx (10 psi), respectively. If there is aptimal control
procedure, a conservative DC facility manager wayddrate his/her data center cooling
at these cost-efficient points. Therefore, the e approach has the potential to save
cooling energy. Figure 71 shows the cooling enesgying potential of the developed
optimization framework. The energy calculations @ee by the simple thermodynamic
model developed in CHAPTER Figure 69(a) shows the fraction of energy usage b
the CRAC unit operating in the optimal mode to twat similar CRAC unit operating in
the conservative mode. On the other hand, Figufe)&hows the fraction of energy
usage by the RDHXx unit operating in the optimal méal that by a similar RDHx unit
operating in the conservative mode. The root meaiare value of the fraction of energy
saving in CRAC is equal to 15.7%. On the other hahdt value in RDHx is equal to
10.5%. It can be observed that the CRAC energyngafar Type-4 workload is 4 times
smaller compared to other profiles. This is duethe resource intensive nature of
workload: CPUs are utilized at (98.88.14) % load for 90.66% percentage of the time

window.
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Figure 71: Cooling energy saving potential for type-4 workload

An interesting trend can be observed if the coopogver savings for different types of
workloads are compiled, as done in Table 16. It banseen that the cooling power
savings are maximum for Type-2 workload with 62.@¥erage CRAC power savings
and 34.4% average RDHx power savings. On the dthed, the cooling power savings
are marginal for Type-4 workload with 13.9% aver&fRAC power savings and 10%
average RDHx power savings. It can be inferred ftbis trend that savings are higher
for the work-loads with higher discontinuities. kel Type-2 workload, Type-4

workload is very steady. Therefore, the controlieres not have an opportunity to
modulate CRAC supply temperature and RDHx pressetepoints. That amounts to
workload-proportional cooling resource allocatiohigh enables activity-based costing

for data center cooling.
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Table 16: Workload dependent cooling power saving

Workload CRAC Power Savings RDHx Power Savings
Type-1 51.4% 18.5%
Type-2 62.7% 34.4%
Type-3 66.2% 19%
Type-4 13.9% 10%

The proposed algorithm demonstrates high-fidelitgdpction for the static workload
profile. However, data center workload is stoclastinature. Therefore, it is worthwhile
to assess if the proposed algorithm can take dareaertainty in the workload profile. In
that endeavor, it is hypothesized that the POD+basmlyses of the CPU temperature
data generated from Type-2 workload can predict G&dperature data of generated
from the distorted Type-2 workload profile, as showm Figure 59. The prediction
fidelity is estimated for three validation poin{d9 °C, 8.5 psi), (23C, 6.0 psi), and (27
°C, 5.5 psi). Figure 72 shows the accuracy benchimgor temperature prediction for
distorted Type-2 workload profile. It can be obsslvmaximum percentage error is
14.5%. Also, it can be observed that the framewsrbarticularly error-prone at the

points of discontinuities (600 s, 1200 s, 180049 ®s).
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Figure 72: Accuracy benchmarking for distorted Type-2 workl@ad27°C, 5.5 psi)
operating point

The root mean square (RMS) value of the time-awenagrcentage error is equal to
4.49%. Similar analyses are conducted for coolioigs (23°C, 6.0 psi) and (18C, 8.5

psi).
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Table 17 compiles the prediction uncertainty fdfedent cooling set-points. It includes
maximum error, RMS error, mean error, standardat®n of error, and percentage of
predictions with more than 10% error.

Table 17: Prediction uncertainty for distorted Type-2 prefil

Cooling Set- | Maximum | RMS | Mean | Standard | Percentage of
Point Error Error Error | Deviation Predictions
of Error | with morethan
10% error
(19°C, 8.5 psi) 19.31% 5.22% 5.15% 0.61% 12.75%
(23°C, 6.0 psi) 14.28% 4.84% 4.82% 0.39% 10.98%
(27°C, 5.5 psi) 14.5% 4.49% 4.46% 0.479 6.56%

Table 18 suggests maximum prediction uncertaintyHis framework is 6.98%.

Table 18: Upper limit of 99.7%(30) confidence interval (CI)

Cooling Set- | Upper-limit of
Point 99.7% ClI
(19°C, 8.5 psi) 6.98%
(23°C, 6.0 psi) 6.01%
(27°C, 5.5 psi) 5.87%

It is conceded that the present version of the ggse@ framework can handle only
relatively smoother variations in workload profildsis noted that the percentage errors
are rapidly shooting up at the points of discoritias. Therefore, it seems the proposed
POD-based modeling framework would be of low-fitleln case the work profile varies

rapidly. To overcome that limitation, an additiomarameter representing the workload
variation intensity needs to be included in the Pia#3ed formulation. This workload

variation intensity would affect the heat dissipatfrom the computing chip and affect
the CPU temperatures. Additionally, dynamic CPU pgematures would be affected by

the computing chip thermal mass. The fluctuatingireaof a particular workload profile
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can be modeled by the average time differentalpf the workload, For a dynamic

workload, W(t), this factor can be defined as:

dw(t) ot
g=o 9t 6.1)

fa
0

Ultimately, this factor@ would affect the volumetric heat generation in¢benputing

[ S———

chip. In turn, that will affect heat dissipatiomifn the chip and CPU temperatures. The

CPU temperature can be modeled as a thermodynaouegs variable.

Qloss

Figure 73: Thermodynamic model for CPU temperature evolution
Figure 73 shows the control volume for modelingpdiieat transfer processes. The

conservation of energy for this control volume ggl

pcV . CPU thermal mass.
T: CPU temperature (6.2)
t: Time.
Qgen 0 8: The heat generation is proportioani&o

Q... =UA(T-T,): Dependent upon the cooling environt

11%
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As discussed in CHAPTER 2, CPU temperatures caxpeessed in POD modal space

as follows:

T=T,(IN+(In) O b( D6).
In: Independent Variables (6.3)
D: Dependent Parameters other tiéHr

The CPU temperatures expressed in POD modal spadeecplugged back into Eq. (6.2)

and POD coefficienb(D, &) can be determined by solving Eq. (6.2) numerically.

Closure

A measurement-based framework is developed withy G&mperature as response
variable and cooling set-points as the parametassdemonstrated that the framework is
capable of generating CPU temperature data witbénprediction uncertainty. Together
with logarithmic time computational efficiency aadcuracy, the framework is a useful
state-space generator for designing optimal coatmgfrol with respect to time-varying

IT workload profile.

171



CHAPTER 7
CONCLUSIONS

A POD-based spectral algorithm is developed that capidly process parametric

experimental data and generate new temperaturecpoes. The data-driven nature of

the algorithm is particularly suitable for consting a measurement-based framework.

The most important feature of the proposed algoriths its logarithmic-time

computational efficiency, which makes the respofmsethe framework near-real-time.

The near-real-time predictive capability of the althm is utilized to solve four

important problems related to a dynamic data center

The first problem is related to near-real-time temapure prognostic at a rack
server inlet inside an air-cool data center. Tlenwork improves the temporal
resolution of measured temperature data. In faetjows reduction of sampling

frequency by 90%. Therefore, it reduces temperatlaa acquisition cost.

Additionally, an a priori semi-analytical error iesation framework has been
developed. This error estimation framework makes flamework particularly

suitable for robust cooling resource allocation toaller based on server inlet
temperatures.

The second problem is related to minimizing temippeeadata acquisition cost in
a data center. The proposed framework uses sgatiations as parameters.
Therefore, it improves the spatial resolution ofaswed temperature data with
3% predictive uncertainty. In fact, it reduces sen®quisition at rack exhaust

(with temperature data standard deviation diG)dy 33%.
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* The third problem is pertaining to life-cycle desigf data center cooling system.
The proposed framework is a multi-parameter frantkwath time and rack heat
load as parameters. The framework improves paranregolution of measured
air temperature data at the test rack. A full-faetoair temperature design has
been carried out. It is particularly suitable fdedcycle design in the sense that
different parametric zones take care of differeperational domains such as
normal mode, failure mode, critical mode, and f@troode.

* The final problem solved is related to determinomiimal cooling set-points in
response to time-evolving IT workload in a datateenThe problem is solved
using a multi-parameter framework with cooling n@se set-points such as
CRAC supply air temperature and RDHXx pressure mhffee as set-points. The
model improves the parametric granularity of CPgeratures. Given that the
underlying algorithm to the framework is near-reale, the framework can
dynamically check whether CPU temperatures aratig the constraint of the
design optimization problem. In this case, it is erver reliability limit of 65C.
The iterative computing starts at the most costiefit cooling set-points and
continues until the constraint is satisfies. Sicoeling resource allocation set-
point is near-real-time, the optimal cooling res®uset-points can be updated
with the workload inside a cloud computing datateenThis framework has the

potential to promote workload-based cooling costata centers.

The high-level goal of this dissertation is to sdyaamic cooling energy usage in a data

center. Four different technologies have been dgesl toward that goal. Integrated with
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a data archive system such as OSISoft Pl systase tlechnologies facilitate optimal
cooling resource allocation controller in a datatee Figure 74 shows the schematic of

the control loop to determine optimal cooling seirp.

Plant data
primitive
PID controller J POD
Cost- + (Set-point
effectlye _>._>/\ adjustment if  |—> Temg@r?ture 5| Optimal set-point
set-point - the constraint is prediction
not satisfied)
P Feedback measured v
N by sensors

/\ POD

Feedback data
primitive

Figure 74: Real-time control loop for optimal cooling resoeiget-point determination
by POD-based algorithm

The controller can be based on CPU temperaturegrsialet air temperatures or server
exhaust air temperatures. If the controller is dame CPU temperatures, then the POD-

based framework with CPU temperatures as the regpaariable (as developed in

CHAPTER 6) should be used as a state-space generator. Onttiee hand, if the

controller is based on server inlet/ exhaust amperatures, POD-based framework with

server inlet/ exhaust air temperatures as the nsgpovariables (as developed in
CHAPTER 5) should be used. The feedback temperature measoteis
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facilitated by POD algorithm that uses time andtigpdocations as parameters. A
parametric framework in time improves temporal heson of measured data, thereby it
facilitates down-sampling of transient temperatmneasurements. That means data
acquisition in the feedback system can be done dwygrade inexpensive thermal
sensors. On the other hand, a data-driven framewithkspatial locations as parameters
improves spatial resolution of measured temperatiata. Thereby, it reduces sensor
requisition for feedback temperature data acqoisitFinally, CHAPTER 3 develops a
priori error estimation framework which can be greged with the POD algorithm to

increase its fidelity.
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