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SUMMARY 

Syntactic foams—composite materials consisting of hollow particles embedded in 

a host matrix—have many applications for manufactured products, including weight 

reduction, thermal insulation, and noise reduction. In this thesis, a certain variety of 

syntactic foam is investigated with regards to reducing fluid borne noise in hydraulic 

systems. Such a foam maintains stiffness at low hydrostatic pressures and becomes 

compressible as pressure increases. With this compressibility, the foam is potentially 

useful as a liner for a reactive noise control device, much like compressed gas style 

devices currently in use; but the syntactic foam additionally adds significant damping to 

the system. In order to predict device performance, a linear multimodal model is 

developed of a hydraulic suppressor, constructed as an expansion chamber lined with a 

syntactic foam insert. Material models are developed for various compositions of the 

foam liners, based on an inverse analysis matching the model to experimental results. 

Two model simplifications are considered, and it is found that a simplified bulk modulus 

model gives sufficiently accurate results to make approximate predictions of suppressor 

performance. Several optimizations are performed to predict the optimal material 

composition for hydraulic excavator work cycles. To help compare the prototype 

suppressor against commercially available bladder style suppressors, a model is 

developed for the bladder style silencer and is validated experimentally. Overall, this 

work both demonstrates the current and potential utility of syntactic foam as a device 

lining material, and contributes new models to the hydraulics noise control community. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Hydraulic systems are used in many high power applications, including many 

types of stationary and mobile machinery. However, such systems are typically noisy. 

This noise may have many sources, including mechanical impacts, diesel engines for 

many applications, hydraulic pumps and motors, and valves or other actuating devices. In 

these latter examples, much of the noise generated is transmitted directly into the 

hydraulic fluid. This fluid-borne noise is often characterized in industry as pressure ripple 

or flow ripple. Fluid-borne noise can be detrimental to a hydraulic system in several 

ways. It may couple to the mechanical structure, causing leakage, structural vibration, 

and airborne noise. The fluid and structure borne noise can increase the fatigue loading 

on components, thus increasing the probability of component failure, and the flow ripple 

at an actuator location can cause decreased actuator precision. Additionally, airborne 

noise, besides being an annoyance, can interfere with communication and even contribute 

to hearing loss if left unchecked. It is therefore beneficial to reduce fluid-borne noise in 

the system. 

In air ducting applications, both reactive and dissipative elements are commonly 

installed to reduce fluid-borne noise in the system. When a liquid such as hydraulic fluid 

is the fluid medium, however, air ducting solutions become problematic due to the much 

higher sound speed in the fluid. The effectiveness of reactive and dissipative elements are 

dependent on component size relative to a wavelength, so to keep component size small, 
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hydraulic noise suppression devices introduce compressibility or compliance to lower the 

effective sound speed. This effect is usually produced either by introducing a compressed 

nitrogen volume, separated from the hydraulic fluid by a rubber bladder, or by routing the 

fluid through a hose, the outer walls of which are somewhat more compliant than metal 

hydraulic pipes. However, the compliance of hoses is limited by the need to contain the 

working pressure; also, breakout noise increases with hose wall compliance. Bladder 

style suppressors have been successfully employed in industry, but they suffer from the 

need for maintenance of the bladder nitrogen charge, and also require a considerable 

amount of machining to produce. Thus, if a syntactic foam is developed which is simpler 

to manufacture and requires reduced maintenance compared to the bladder style 

suppressor, considerable reductions could be achieved for both production and operating 

costs. 

1.2 Objectives 

It is hypothesized that syntactic foam can be an effective liner for various 

hydraulic noise suppression technologies. To begin validating this hypothesis, a model is 

developed of an in-line suppressor, assuming known properties of the liner. Viscoelastic 

properties are determined for various liner materials, based on an inverse analysis using 

experimental transmission loss data, as well as available independent data. A sensitivity 

study is performed on the estimates found from inverse analysis, to help determine 

reliability of the results. Additionally, material parameters are optimized for transmission 

loss in a certain hydraulic application. A model is also developed for a commercially 

available bladder style suppressor, against which current and future syntactic foam lined 

devices can be compared. The validation for the prototype and commercial in-line noise 
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suppressors is supported by experimental data, and certain model simplifications are 

examined for the various models once they are validated. 

1.3 Organization 

This thesis is organized as follows. Chapter 1 briefly introduces the work to be 

presented. Chapter 2 provides a literature review to provide background information on 

the work. This includes information on device modeling as well as syntactic foams, and it 

concludes with more specific contextual information for the models presented in later 

chapters. Chapter 3 presents the experimental apparatus, as well as some information 

regarding analysis and filtering of raw experimental data. In Chapter 4, the main model 

for the prototype hydraulic noise suppressor is presented and validated for one particular 

type of liner. Chapter 5 analyzes several more prototype liners, using both the material 

property estimation method used in Chapter 4, as well as composition data and 

experimental compression tests on the liners. In Chapter 6, model simplifications are 

considered, and a theoretical optimal liner material is determined based on the noise and 

pressure profile for a hydraulic system. Chapter 7 considers the performance of 

compressed gas style commercial in-line suppressors, including the development of a 

multimodal model for these devices. Commercial device performance is also briefly 

compared to the optimized prototype device as developed in Chapter 6. Finally, Chapter 

8 presents a closing summary, along with conclusions and ideas for future work. 
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CHAPTER 2 

BACKGROUND AND LITERATURE REVIEW 

This chapter provides background information and a review of relevant literature 

concerning the current study. First, noise control is discussed with regards to hydraulic 

systems. Typical hydraulic noise control devices are described, and models of different 

types of devices are explored. Next, viscoelastic materials are introduced, with a 

discussion of their properties and current techniques for determining viscoelastic material 

properties. Syntactic foams are then introduced, with current and potential uses for 

hydraulic noise control. Finally, the present work is described in this the context of this 

literature review. 

2.1 Noise control in hydraulic systems 

2.1.1 Hydraulic noise control devices 

While a variety of passive methods are available to reduce fluid-borne noise in 

hydraulic systems, a common element is the addition of system compliance. Without 

added compliance, the high bulk modulus of hydraulic fluid allows the system to react 

very quickly to changes in inputs, resulting in high speed control and high mechanical 

efficiencies. However, a tradeoff is that any fluid-borne noise in the system, often 

characterized as either pressure ripple or flow ripple, is also communicated very 

efficiently throughout the system, possibly resulting in problems such as reduced actuator 

precision, excessive fatigue loading, leakage, and unwanted structural vibrations. To 

reduce fluid-borne noise, compliance can be added to the system circuit using a variety of 

different methods. 
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Different sources of compliance can have markedly different effects on system 

performance. Entrained air in the hydraulic fluid adds compliance but is undesirable 

because it can cause unpredictable performance, and may cause additional problems as it 

separates from the fluid. However, it can be desirable to add a compliant device such as a 

side branch accumulator or an in-line suppressor very near to the noise source of interest, 

often a hydraulic pump. Accumulators consist of a large compressed gas volume, 

contained in a side branch device and separated from the hydraulic fluid by either a 

rubber bladder or a piston. They are considered to be low-pass noise filters, and are often 

used for various roles, including as energy storage, oil storage, or shock reduction 

devices. In-line devices similarly include a compressed gas volume, separated from the 

hydraulic fluid by a rubber bladder. They are marketed specifically for broadband noise 

reduction. Little research is found regarding these compressed gas style noise reduction 

devices. Transient response of an accumulator for water hammer reduction is studied by 

Rabie[1]. Numerous patents[2-11] have been filed for in-line hydraulic silencing devices. 

Often called suppressors or attenuators, these devices utilize either compressed gas or a 

solid or foam liner, but only a particular bladder style device[8] has been found to be 

commercially available. The manufacturer of this in-line suppressor has shown some 

experimental time-domain data in a conference publication[12], but the available data are 

not very useful for the prediction of general device performance; in fact, no frequency 

domain models of any sort have been uncovered. However, geometrically similar in-line 

silencers for airflow applications are extensively studied in research literature and are 

considered more extensively in the next section. 
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Besides the aforementioned high compliance devices, hoses and tuners are also 

commonly used for noise reduction. Hoses, due to their wall compliance and 

viscoelasticity, can be used to provide reactive and dissipative noise control to a 

hydraulic system. Their flexibility also allows them to decouple structural vibrations 

between their connection points. However, hoses are generally employed as flexible 

ducts, with noise reduction being a secondary consideration. In contrast, tuners are 

constructed of an outer hose, with an inner tube of varied composition, with plastic tubing 

and coiled or segmented metal being the usual options. The device functions in principle 

roughly like a harmonic resonator, although since it usually involves many flow paths, its 

actual performance can be quite complex. Like the in-line suppressor, tuners are used 

explicitly for noise control. Some research is available regarding hoses and tuners for 

noise control, and is explored in a following section. 

2.1.2 In-line silencer/suppressor models 

As mentioned above, many in-line hydraulic noise suppression devices have been 

designed and patented, but only a certain bladder style device is currently commercially 

produced, and no analytical models are available for any such devices. Nevertheless, a 

considerable amount of literature has been produced studying cylindrical lined silencers 

for airflow applications. These silencers, rather than employing high compliance, have a 

highly dissipative liner made of a fibrous or porous material. While the models vary 

somewhat in detail, important elements may include a perforate layer between the main 

flow path and the liner, extension of the inlet and outlet pipes into the expansion area, and 

mean flow effects in both the central flow path and the porous or fibrous liner.  



7 

For the commonly studied example of a cylindrical, radially symmetric device, a 

number of models have been developed in which a radial eigenvalue problem is solved to 

find a number of radial modes, and modal amplitudes are found by applying boundary or 

continuity conditions at a number of axial boundaries. In general, the various field 

quantities Gf are of the form 

      1 2 3 4
x xik x ik x i t

f m r m rG A J k r A Y k r A e A e e 
   , (2.1) 

for axial and radial coordinates x and r (see Blackstock[13] chapter 11, p. 389). Radial 

and axial wavenumbers kr and kx, relate to k by 

 2 2 2

r xk k k  . (2.2) 

Complex amplitude coefficients A1 through A4 are determined for each region into which 

the model is divided. Jm and Ym are Bessel functions of the first and second kind of order 

m, where 0m   for pressure, normal stress, and axial displacement or velocity, and 1m   

for shear stress and radial displacement or velocity. A relatively simple model is 

demonstrated by Xu et al.[14], who study the effects of liner thickness and resistivity. 

Peat[15] demonstrates the theoretical derivation of a transfer matrix for an in-line 

silencer. In air silencers, the flow Mach number is often high enough to affect silencer 

performance, since the axial sound speed, and thus the axial wavenumbers, for the 

forward and reverse travelling waves are influenced by mean flow and are no longer 

identical. Cummings and Chang[16] examine mean flow in the liner section; Kirby and 

Denia[17] study the impact of high Mach flow numbers. Other studies focus on 

approximations for low frequencies[15, 18]. A study by Nennig et al.[19] expands this 

body of work by considering multiple wave propagation types in the poroelastic liner of a 

silencer. More complex geometry can be considered by explicitly examining the effects 
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of a perforated annulus[20]. The perforated annulus is modeled as an impedance layer in 

this type of analysis; and although theoretical models have been developed, such as in 

chapter 9 of Bies and Hansen[21], the published silencer models have instead relied on 

experimental impedance studies[22], some of which include the effects of grazing 

flow[23] or resistive backing materials[24, 25]. Several studies have examined silencers 

with both perforate layers and inlet/outlet extensions as well[26-28]. Panigrahi and 

Munjal give a brief overview of some of the varying levels of model complexity[29]. In 

addition to analytical models, some finite element and boundary element models of these 

silencers have been developed[26, 27, 30, 31], often in conjunction with analytical 

solutions. 

2.1.3 Hose and tuner acoustic models 

Hoses are found in a wide range of hydraulic devices. Because of their flexibility, 

they allow for easy connections between misaligned or moving components. They have 

the additional benefit of partially decoupling components such that propagation of 

structural vibration and fluid pressure ripple is reduced. One typical area of installation is 

at the outlet of a hydraulic pump. Hydraulic pumps are a major source of both vibration 

and pressure ripple in hydraulic systems. While both types of excitation can cause 

unwanted noise in the rest of the system, Longmore and Schlesinger have shown that for 

a typical pump and hose, the pressure ripple is a significantly more important source than 

pump vibration, and thus requires significantly more attenuation[32].  

In order to reduce the size of noise control components for fluid power systems, 

compliant boundaries are exploited to reduce the effective sound speed in the device. 

Klees used this principle in his patent for an attenuating device[33], which is now 
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commonly referred to as a tuned cable or tuning coil, and has been modeled simply as a 

concentric version of a side-branch resonator by Hastings and Chen[34]. More complex 

models take into account additional factors such as fluid leakage along the hose insert[35, 

36]. 

A number of models have been introduced for straight hoses which approximate 

the hose influence as a reduction in sound speed propagation, considering only a plane 

wave propagation mode[37-39]. Munjal and Thawani[37, 40], using isotropic hose 

models, have examined the tradeoff between fluid-borne noise reduction (axial 

transmission within the fluid) and breakout noise (transverse transmission into the 

environment), noting that overall noise control is generally limited by fluid-borne noise at 

lower frequencies, and by breakout noise at higher frequencies. Recent models have 

incorporated the anisotropy of the hose construction method, modeling two modes of 

propagation[35, 41]. A significant shortcoming of all these theoretical modeling 

techniques is that experimental testing is required to determine the properties for each 

hose. Several approaches are used to model these properties. Yu and Kojima[41, 42] 

characterize the viscoelasticity of hoses as a series of two Kelvin-Voight elements, while 

Johnston et al.[43], based on the Drew et al. model[35], determine frequency-independent 

viscoelastic properties of a wide variety of hoses, for a certain frequency band of interest. 

This latter model is also supported by experimental findings of almost constant complex 

amplitude of axial unit stiffness, which according to Longmore et al.[44] would require a 

large number of Kelvin-Voight elements to approximate theoretically. 
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2.2 Viscoelastic materials 

The syntactic foams described in this thesis are composed of viscoelastic 

materials, and thus display viscoelastic composite properties as well. Both temperature 

and pressure dependence are important in the composite material performance. A 

discussion of basic viscoelastic properties and measurement methods is followed by 

information specific to composites and syntactic foam specifically. 

2.2.1 Basic properties 

It is commonly known that, all other things being equal, viscoelastic materials 

change behavior based on their temperature. At low temperatures they are characterized 

as glassy; as temperature increases, they enter a rubbery region, followed by rubbery flow 

and liquid flow[45]. In order to account for the energy dissipated when the material is 

deformed, an elastic modulus, such as Young’s modulus E, will be described in terms of 

a storage modulus E’ and a loss modulus E” by the relations 

 ' "E E iE  , (2.3) 

 " ' tanE E  , (2.4) 

where δ is the phase angle between stress and strain, and tan δ is known as the loss 

factor[45]. A high loss factor is often desirable for noise and vibration control, and it is 

found that the loss factor has a maximum in the temperature region where the material 

changes from glassy to rubbery, known as the glass transition region; this region 

corresponds to a rapid change in the storage modulus as well[46]. This region may be 

characterized by a single glass transition temperature Tg, above which most amorphous 

materials become fluid, and above which thermoset polymers become elastomers[47]. 

Importantly, the properties including Tg are also dependent on the excitation strain rate or 
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frequency in a predictable manner. For example, consider a curve in which an elastic 

modulus is plotted versus frequency at a specified temperature. For a curve found at 

temperature T1, the frequency axis can be shifted to match the curve of reference 

temperature T0 using the equation 

 
 1 1 0

2 1 0

log T

b T T
a

b T T

 


 
, (2.5) 

where b1 and b2 are material constants and aT is the shift factor, which is the ratio of the 

shifted frequency to a reference frequency[46, 48]. Practically speaking, this means that 

temperature and excitation frequency have inverse effects on the material properties. In 

addition, pressure also influences properties including Tg[49]. 

2.2.2 Property measurement 

Polymers and polymer composites exhibit complex behavior versus variation in 

temperature, frequency, and pressure. For this reason it is both difficult and desirable to 

characterize their behavior so that they can be efficiently used in an application. Static 

Young’s modulus[50] and Poisson’s ratio[51] can be extracted from compressive and 

tensile tests, but two complex, frequency-dependent (often called dynamic) parameters 

are needed to characterize the material for acoustic or vibration purposes. In order to find 

one or two complex dynamic moduli simultaneously, a vibration excitation is applied to a 

sample, and the vibration response is measured. Simple versions of this method are 

applied by Capps[46] and Buchanan[52] to obtain only a Young’s modulus of a rod 

sample; and Buchanan also introduces frequency dependent error estimates. A similar 

method is introduced by Willis et al.[53] in which measurement of both bulk and shear 

moduli are obtained using finite element analysis to solve an inverse problem based on 
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experimental measurements. Because of their experimental nature, these measurement 

techniques are applicable to both pure polymers and syntactic foam composites on a 

macroscopic scale. 

2.2.3 Syntactic foams 

Although the properties of composites can be measured, it is much more 

beneficial to have models to predict material behavior. A simple way to estimate 

composite properties of a syntactic foam is to take the average of the matrix material and 

effective values of the embedded microballoons, weighted by volume fraction; for 

example, Sajo[54] uses this method to find effective compressibility. More complex 

analytical models are used by Marur[55] and Tagliavia et al.[56] to find two elastic 

properties; and Baird et al.[57] extend to air-filled microsphere composites several 

previous methods to determine properties based on wave scattering methods. Finite 

element methods[55, 58] have also been employed to determine the composite properties. 

All of these models assume that the “bulk” elastic properties of the microballoons is 

known; this obviously cannot be measured directly by the usual bulk material tests, so it 

is either presented as an assumed value or estimated based on experimental data. Yuan 

and Lu[59] also provide an equation to estimate the microballoon properties based on the 

microballoon wall material properties and the contained air volume. In addition to 

properties based on composition, it is noted that the matrix material, and therefore the 

composite, will have a dependence on temperature and pressure as well. Song et al.[60] 

study temperature effects on a particular syntactic foam and develop a phenomenological 

model based on their results. Gaunaurd et al.[61] perform a numerical study of pressure 

effects on a voided polymer without microballoons, and Questad et al.[49] study the 
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relations of pressure, volume, and temperature both analytically and experimentally for a 

plain elastomer. In addition, the temperature-frequency relation in Equation (2.5) may be 

employed to add a temperature dependence to the previous models. 

In addition to quantitative analyses, it is also desirable to qualitatively know how 

changing material composition affects material properties of the composite. In this 

regard, it can be said that the addition of microballoons affects the elastic modulus and 

strength of the host matrix, depending on the microballoon volume fraction and wall 

thickness[62, 63]; Sankaran et al.[64] note that for three phase syntactic foams, the 

addition of microballoons can also shift the glass transition temperature. Recent research 

regarding syntactic foams has also addressed functional gradients and the addition of 

nanoparticles. A study by Gupta and Ricci[65] indicates that changing microballoon wall 

thickness throughout the composite is preferable to changing microballoon volume 

fraction when creating a gradient. In addition, Rongong et al.[66] show that the addition 

of nanoparticles to syntactic foams can also alter the glass transition temperature. Finally, 

a study by Trivett et al.[67] concerning polymer microspheres in castor oil notes that the 

microspheres will buckle reversibly at a critical pressure Pcr; thus, above Pcr, they act 

roughly as air bubbles with relatively low stiffness; while below Pcr, they are stiffer. It is 

thus conceivable that polymer microspheres could be used to tailor the stiffness of a 

syntactic foam such that stiffness is reduced above a specified Pcr. 

2.2.4 Syntactic foam in hydraulic silencing 

Very little is found in the literature regarding syntactic foam for hydraulic noise 

control. Wheeler and Frentzos[68] have been awarded a patent for an in-line silencing 

device, and DiRe[69] has patented a pump outlet insert, both of which use syntactic 
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foams. However, like for the suppressors and attenuators mentioned in a previous section, 

no studies were found regarding performance of these devices. Also, these devices did 

not employ polymer microspheres like those which have been found to reversibly buckle. 

Thus, syntactic foams utilizing polymer microspheres are found to be a promising 

material to develop as a liner for silencing applications. Such liners are developed and 

analyzed for prototype in-line suppressors in this work. 

2.3 This work in context 

While the previous sections have described the background against which this 

work is performed, this section explains how the present work differs from and adds to 

previous knowledge and methods. Below, the syntactic foam lined suppressor is placed 

into context, as well as the models for the prototype suppressors, syntactic foam liners, 

and commercial suppressors. 

2.3.1 Compliant-liner devices 

The potential benefits of a compliant-liner noise suppression device over other 

technologies are many; this is suggested by the large number of patents for these devices. 

However, the absence of all but one of these devices from the marketplace suggests that 

practical implementation may be difficult, such that further development is needed, 

including this present work. Commentary on the difficulties in designing and modeling 

the devices is left to the later chapters, but some of the benefits over noise reduction 

methods such as hoses and tuners are discussed here. 

There are several general advantages to compliant-liner devices. First, since the 

liner is not structural, it can be much more compliant than the hoses or hose sections of 

tuning coils which must also effectively contain the working pressure. Second, unlike 
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hoses, the liner does not have direct contact with the air in the external environment; a 

device with an approximately rigid outer shell and compliant lined interior is thus much 

less susceptible to breakout noise. Thus, the compliant-liner device is expected to result 

in significantly less breakout noise than a hose, especially at higher frequencies[37]. 

Finally, if it is assumed that some length of hose is still present in the system, it is 

probable that structural vibrations are not significantly transmitted[32], so that the fluid-

borne noise which is addressed by the device is the primary noise of interest. 

The arguments in the paragraph above are applicable to both the prototype and 

commercial noise suppression devices; here, some of the potential advantages of the 

prototype over the commercial device are discussed. The main anticipated advantages of 

the syntactic foam lined device are maintenance and manufacturing. The commercial 

compressed gas device requires periodic maintenance to ensure that the gas precharge 

pressure is maintained. Additionally, it has a number of complex manufactured parts, 

which increases the cost of building the device. The prototype device, in contrast, 

requires no complex metal parts; it consists solely of the external shell and the foam liner. 

Additionally, the liner requires no regular maintenance. Thus, the prototype device’s 

reduced complexity and maintenance requirements may make it more economically 

advantageous. Other potential advantages are the ability to manufacture different liners 

using the same outer shell, with the different liners being engineered to have a wide range 

of performance characteristics. As discussed in later chapters, potential transmission loss 

performance of the syntactic foam devices appears to be favorable compared to the 

compressed gas devices as well. One potential drawback of the new device is the lifetime 

and degradation of the liners, which has not yet been studied. 
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2.3.2 Suppressor models 

The models for the prototype and commercial suppressors, while sharing many 

basic elements with each other and with air silencer models, each present their own 

challenges and unique features. Both models presented here are simplified somewhat 

compared to the air models. First, the liners in both cases are impenetrable by the 

hydraulic fluid, so any flow in the liners can be ignored. Second, the mean hydraulic fluid 

flow can be ignored, since the flow Mach number is negligibly small due to the high 

speed of sound in hydraulic fluid versus air. However, several additional complications 

must be addressed. 

In the prototype model, the nonlinear liner compression must be addressed, along 

with the propagation of shear as well as longitudinal waves in the liner. The liner 

compression not only needs to be determined in some manner, but it also changes the 

liner density and creates small flow gaps which must be modeled. As none of the 

previous models have addressed such problems, this constitutes a new development in 

device modeling. Additionally, the liner supports shear waves; of the presented models, 

only Nennig et al.[19] consider shear, and the Biot model they use is not appropriate to 

the prototype liner material. Specifically, the Nennig et al. model couples the liner motion 

to the motion of fluid within the liner, which is not applicable to the present case, as the 

liner is non-porous; additionally, the weakening of boundary conditions and the use of an 

iterative mode-matching method as in their work has been shown to be inappropriate for 

the devices considered in the present work[70]. In addition to these considerations, 

temperature of the working fluid and liner is also an important consideration in device 
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performance. For the prototype model, temperature considerations are moved to the 

syntactic foam model, discussed in Section 2.3.3. 

The model for the compressed gas style commercial suppressor addresses a 

different set of problems, including the rubber bladder layer, a perforate impedance layer, 

and the effects of temperature and precharge pressure on device effectiveness. With the 

exception of the perforate layer, none of these aspects have been addressed in the models 

cited previously. However, all studies of perforate impedance have relied on 

experimental values where air was the acoustic fluid, and are thus still inapplicable to the 

device using hydraulic fluid. 

2.3.3 Syntactic foam liner model 

While some models have been developed for syntactic foam properties, they tend 

to be limited to a very specific foam composition, and none addresses the possibility of 

buckling microspheres. The models developed for liners in this work are largely 

empirical, with some attention to easily measurable attributes or known data about the 

constituent parts.  
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CHAPTER 3 

EXPERIMENTAL METHODS AND APPARATUS 

Transmission loss data are experimentally obtained for both commercial and 

experimental deices in the following chapters. As the experimental method and apparatus 

are common to these various devices, they are presented here in their own chapter. The 

approach for determining and mitigating experimental error is also discussed. 

3.1 Experimental setup and test method 

Experimental measurements are taken on a test rig constructed according to ISO 

15086-2[71]. Figure 1 shows a diagram of the test rig. Flow is supplied by a Sauer 

Danfoss H1 bidirectional 9-piston axial piston pump driven by a Siemens Simovert 

Masterdrive variable frequency drive (VFD) via a Siemens 60 HP variable-speed ac 

motor. The test section consists of a test device with a long section of pipe on its 

upstream and downstream sides. These pipes are instrumented with piezoelectric pressure 

transducers PCB model 101A06, at positions labeled x1 to x6. The signals are passed 

through signal conditioners PCB model 480B21 and 482A16 and digitized by a 24-bit, 8-

channel National Instruments model 4472 data acquisition board. Samples are taken at 

10800 samples/second for 5120 samples per sample record by a data acquisition system 

(DAQ) mounted in a PC. Transfer functions between the transducers are obtained by 

using 100 vector averaged sample records. A1U,0 and B1U,0 are the forward and reverse 

travelling plane wave amplitudes at the test suppressor’s upstream port (xU), and A1D,0 

and B1D,0 are the forward and reverse wave amplitudes of the plane waves at the 

downstream port (xD). The wave amplitude subscripts are consistent with, and more fully 
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explained in, subsequent chapters. A termination suppressor is mounted at the end of the 

downstream pipe to reduce noise contamination in the downstream section. Pressure is 

developed using a Parker F1220S flow control valve downstream of the test section. An 

open Parker N820S flow control needle valve is placed upstream of the test section to 

generate broadband noise excitation. Hydraulic fluid temperatures at the entrance of the 

rig and at the inner radius of the component under test are measured with K type 

thermocouples, calibrated with an Omega CL3512A thermocouple calibrator and read by 

a National Instruments 9211A thermocouple reader. The upstream and downstream pipes 

have inner diameters of 0.0191 m (0.75 in), and the pressure transducers are mounted 

flush to the internal pipe walls, at positions relative to xU and xD as indicated in Table 1. 

Static pressure transducers are mounted immediately upstream and downstream of the 

test device; pressure drop for the test devices is generally found to be within the 70 kPa 

(10 psi) resolution of these sensors, which is a minor fraction of the overall system 

pressure. 

 

Figure 1: Schematic of test setup for measurement of fluid acoustic properties of a 

suppressor under test. 
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Table 1: Dynamic pressure transducer positions 

Measurement Value (m) 

xU-x1 0.37 

xU-x2 0.70 

xU-x3 1.17 

x4-xD 0.37 

x5-xD 0.70 

x6-xD 1.17 

3.2 Data analysis 

In order to determine a transfer matrix for the device under test, the complex 

wave amplitudes A1U,0, B1U,0, A1D,0, and B1D,0, shown in Figure 1, must be determined. 

Based on the given pipe radius and a sound speed in hydraulic fluid of around 1400 m s
-1

, 

the first cutoff frequency (see chapter 10 of Blackstock [13]) in the instrumented pipes is 

about 43 kHz, far above the frequencies of interest for this work (below 5000 Hz). 

Additionally, the pressure transducers are far from any discontinuities, so evanescent 

waves at the transducer locations are negligible, and theoretically only the plane wave 

amplitudes will be measured. Wave amplitudes on each side of the test device are found 

using a multi-point method with three sensors[72], which avoids a half-wavelength 

indeterminacy that is present with only two sensors. Transfer functions are used to 

compare the pressure between each sensors, eliminating the need for absolute calibration. 

The plane wave propagation assumption for experimental data is represented by 

the mathematical model 
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Here y1 through y6 represent the complex pressure amplitude measurements taken at 

locations x1 through x6, and normalized by y1. Wave amplitudes are found using the 

pseudoinverse function, 
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which gives a least-squares approximation of the wave amplitudes. This is also discussed 

by Earnhart et al.[73] 

Acoustic pressure p1 and volume velocity Q1 at the upstream port, and likewise p2 

and Q2 at the downstream port, can be calculated from the wave amplitudes using the 

equations 
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where 
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is the acoustic impedance, ρf is the density of the fluid, cf is the speed of sound in the 

fluid, and r0 is the inner radius of the pipe. 

Acoustic pressures and volume velocities at the suppressor ports are related by a 

transfer matrix with elements tij, 
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It is assumed that the test suppressor is geometrically symmetric end to end, and that the 

system is assumed to be reciprocal, resulting in 
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Thus, once acoustic pressures and volume velocities are calculated, the transfer matrix 

elements can thus be solved by combining Equations (3.7) and (3.8). Specifically, 
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While the transfer matrix model is useful for system modeling, it is desirable to 

have a single value metric to compare devices at various frequencies or noise spectra. 

The anechoic transmission loss (TL) is used in this work, and can be found 

experimentally using the equation 

 12
10 11 0 21 22

0

1
TL 20log

2

t
t Z t t

Z
    . (3.12) 

Substituting the port wave amplitudes using Equations (3.5) through (3.8) yields the new 

TL equation 

 

2 2

1 ,0 1 ,0
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. (3.13) 

In the case of an anechoic experiment B1D,0 = 0, the TL equation reduces to the ratio of 

incident to transmitted pressure amplitude: 
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 1 ,0

anechoic 10

1 ,0

TL =20log
U

D

A

A
. (3.14) 

Regardless of experimental conditions, Equations (3.13) and (3.14) theoretically produce 

the same TL results for a device with a given transfer matrix. 

3.3 Artifacts and data filtering 

Several filters are applied to ensure the integrity of experimentally obtained data. 

The ISO standard[71] calls for the removal of very low frequencies, and any data with 

coherence below 0.95. While this gives a significant improvement, very distinct artifacts 

still remain after this processing. An example set of data is shown in Figure 2, where 

severe spikes in the TL data can be seen around 550 and 950 Hz, and some less drastic 

roughness is observed at other frequencies, especially above about 1700 Hz. The source 

of such artifacts is still being investigated, but they are presently correlated with strong 

standing waves in the system; coherent noise (that is, alternate transmission modes) 

especially in the downstream test section; and a low signal-to-noise ratio, again especially 

downstream. To further improve the quality, it is found that additional data filtering can 

be applied by means of an experimental model error estimate (ee). 
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Figure 2: Transmission loss example for first prototype suppressor, 400 psi, ~35C, after 

frequency and coherence filtering. 

To find this error estimate, the complex wave amplitudes must be found from 

Equation (3.4) and the corresponding experimental measurements yi. A new set of 

“theoretical measurements” 
UY   and 

DY   with elements iy  are introduced as 

 
1 ,0 1 ,0

1 ,0 1 ,0

,
U D

U U D D

U D

A A
Y Y

B B

   
     

   
E E , (3.15) 

where iy  would be equal to yi if experimental measurements corresponded exactly to the 

plane wave model presented in Equation (3.1). However, due to various sources of error, 

 ,U U D DY Y Y Y    (3.16) 

in general. The extent to which the model measurements match the actual experimental 

measurements is thus an indicator of how much of the measured pressure is due to plane 

wave propagation. To get a single error value, the maximum is used to define ee: 
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It is interesting to note that this error analysis is only possible because more 

measurements are taken than the number of unknown amplitude coefficients. Thus, a 

method which was introduced to reduce half-wavelength spacing errors proves to have 

additional utility in analyzing experimental error. The error estimate is illustrated in 

Figure 3, where it can be seen that the aforementioned TL spikes correspond to 

frequencies with a very high value of ee; conversely, smooth portions of the graph have 

relatively lower error. Various ee filters are applied in the following chapters for model 

validation and material property estimation purposes. 

 

Figure 3: Transmission loss example from Figure 2 with calculated model error ee 

plotted:  Experimental TL; ▬ Model error. Smooth TL regions tend to correspond to 

lower error. 
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In addition to the error estimate criterion shown above, TL artifacts have also 

been correlated[74] with the relation 

 1 ,0 1 ,01

1 ,0 1 ,0

tan 0
U D

U D

B B

A A

  . (3.18) 

This condition correlates to resonance behavior in the pipe sections, and flags artifacts 

with similar effectiveness to the ee calculation. However, while the resonance correlation 

is informative, Equation (3.18) does not show a causal relationship to the artifacts, and is 

one step further removed from the raw data than Equation (3.17). Additionally, it flags 

some frequencies without apparent artifacts, thus serving as an insufficient criterion[74]. 

For these reasons, the ee value is used exclusively for artifact filtering. 

3.4 Compression tests 

In addition to transmission loss testing, some tests were performed to 

experimentally determine the compression of various liners versus system pressure. For 

this test, the liner is placed in a close-fitting steel chamber with a viewport on one end 

which is large enough to determine the liner internal radius; the chamber is shown in 

Figure 4. Digital photographs at a series of increasing system pressures are then analyzed 

to determine the change in inner radius. Some error may be introduced when determining 

the size for each photograph, since the inner boundary may not appear perfectly circular 

in the photograph, and its exact boundaries may not be clear. Boundary uncertainty error 

appears to be limited to about 0.15 mm, or about 1% of initial radius, based on 

measurement scatter of relatively incompressible solid polymer samples. Size distortion 

due to liner motion after compression begins may also contribute to the total 

measurement error, as there are no measures to determine distance of the liner from the 
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viewing port. Model-based best-fit curves are used to reduce error in the analysis 

discussed in Chapter 5. 

 

Figure 4: Pressure chamber with viewport, used for compression tests. 
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CHAPTER 4 

ANALYSIS OF PROTOTYPE SYNTACTIC FOAM LINED SUPPRESSOR 

In order to demonstrate the efficacy of syntactic foam liners in a hydraulic 

silencing device, the device itself must first be modeled. The model developed in this 

chapter is based on a multimodal expansion technique commonly used to model airflow 

silencers. The experimental validation of the model is made difficult by the lack of a 

priori knowledge of the liner material properties. Thus, estimated material properties and 

the device model are validated simultaneously using data from two different length 

devices. Additionally, a finite element model provides theoretical model validation, given 

assumed material properties. 

4.1 Modeling 

4.1.1 Suppressor Geometry 

The pertinent geometry of the suppressor to be modeled is shown in Figure 5. It 

has an inlet port at x = 0 and an outlet port at x = L0. The inlet and outlet pipes are of 

radius r0. The expansion section may contain a liner material which, when the system is 

unpressurized, extends from radius a0 to b0 and has axial length L0. When static pressure 

is applied, the liner compresses to radii a and b, and the length compresses to length L, 

forming axial gaps of width L1 and L2, and introducing new discontinuities at the planes x 

= L1 and x = L0 – L2 as shown in the figure. This compressed geometry is then used for 

analysis at that pressure. For purposes of the present simulation, it is assumed that the 

liner stays axially centered. The liner material’s elasticity is characterized by Lamé 

parameters λ and μ. In general the material properties of the liner will vary with static 
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pressure, so it would be inaccurate to calculate deformation based only on the pressurized 

values of λ and μ. For the theoretical development it will therefore be assumed that the 

compressed dimensions at a given operating pressure are known. 

 

 

Figure 5: Geometry of silencer model. (a) The upstream and downstream pipes have 

radius r0, and the expansion section has outer radius b0 and length L0, and is separated 

from the pipes by port planes x = 0 and x = L0. The liner (red) extends from radius a0 to 

b0 along the whole expansion length. (b) When the system is pressurized, the liner 

compresses to radii a and b and length L. This leaves axial gaps of length L1 and L2 on the 

upstream and downstream ends of the silencer. The upstream and downstream end planes 

of the liner then become x = L1 and x = L0 – L2. 

4.1.2 Multimodal Model 

The model developed in the following is based on a multimodal radial expansion 

of the waves in the fluid in all regions, as well as in the liner within region 2. In the fluid 

domain, the wave equation as a function of displacement potential φf is 
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   . (4.1) 
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In the liner domain, scalar and vector displacement potentials φ and  conform to: 

 2
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Lc
   , (4.2) 
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   . (4.3) 

Sound speed cf in the fluid, and longitudinal and shear wave sound speeds cL and cT in the 

liner are defined by: 
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where λf is the fluid bulk modulus, and f and s are fluid and liner densities. 

Wavenumbers k are defined in terms of acoustic frequency ω and sound speeds by 

 , ,f L T

f L T

k k k
c c c

  
   . (4.7) 

As seen in Figure 6(a), the system is divided into five regions or sub-regions. Region 1 

contains the inlet and outlet pipes; region 2 has the axial section of the silencer with the 

compressed liner; and region 3 contains the axial silencer gap sections where the 

compressed liner is not present. Regions 1 and 3 are further subdivided when needed to 

differentiate the upstream and downstream sections, and are marked with a U and D in 

this case. The planes at x = 0, x = L1, x = L + L1, and x = L0 (see Figure 5(a)) separate the 

different regions. As partially illustrated in Figure 6(b), AR,n and BR,n represent the 
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complex amplitudes of the forward and reverse travelling waves of mode n in region R. 

These amplitudes are taken at the upstream (left) port defining each region, with the 

exception of A1U,n and B1U,n, which are found at x = 0. The subscript n is an integer index 

for the radial modes of the forward and reverse travelling waves, and n = 0 corresponds 

to the lowest or plane wave mode.  

 

 

Figure 6: Silencer divided into five regions corresponding to different areas of radial 

geometry. Region 1 includes the inlet and outlet pipes, region 2 includes the lined section 

of the silencer, and region 3 contains the axial gaps. Regions 1 and 3 are further separated 

into upstream and downstream sections 1U, 1D, 3U, and 3D. For a given radial mode n, 

each region R contains upstream and downstream travelling waves of complex amplitude 

AR,n and BR,n; these are labeled explicitly for region 1. 

The acoustic pressure and displacement fields in each region are a function of 

modal amplitudes AR,n and BR,n, each n of which corresponds to a different radial mode. 

These radial modes are characterized by axial wavenumbers kRx,n. Additionally, each 

axial wavenumber is related to radial wavenumbers kRrf,n for fluid-borne waves, with 
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subscript f replaced by L or T for longitudinal or shear waves in the liner. The relations 

are: 

 
2 2 2

, ,f Rx n Rrf nk k k  , (4.8) 
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, ,L Rx n RrL nk k k  , (4.9) 

 
2 2 2

, ,T Rx n RrT nk k k  , (4.10) 

with Equations (4.9) and (4.10) being applicable only in region 2. 

The solutions to equations (4.1) through (4.3), given the radial symmetry of the 

system, are: 
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where Jm and Ym are the m
th

 order Bessel functions of the first and second kind. Complex 

coefficients y1,n through y7,n are found by applying radial boundary conditions as 

described below. Relations between the displacement potentials in Equations (4.11) 

through (4.13) and the acoustic stresses, pressures, and displacements in the system can 
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be derived using Chapter 2 of Achenbach’s textbook[75]. In the fluid medium, for 

regions 1 and 3, 

   , ,i i i
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where R substitutes for the region number. For the fluid medium in region 2, where 
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and where 0b r b  , 
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In region 2 in the solid liner, a r b  , 
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, , , , 0r n r n x n x n          . (4.36) 

Acoustic displacements are ur,n, ux,n, and uθ,n in the radial, axial, and circumferential 

directions, respectively, for each mode n. Normal stresses in the same order are τr,n, τx,n, 

and τθ,n; they are all equal in the fluid. The nonzero shear stress in the liner is τrx,n = τxr,n. 

Wavenumbers kRx,n are found by solving an eigenequation in each region. In 

regions 1 and 3, the equation is formed by setting radial displacement to zero at the outer 

wall, 

 
0

, 0, region 1r n r r
u


 , (4.37) 

 
0

, 0, region 3r n r b
u


 . (4.38) 

If no liner is present, the device is a simple expansion chamber, and region 2 is identical 

to region 3; however, in general a complex eigenequation must be solved for region 2, 

taking into account seven simultaneous boundary conditions. They are: continuity of 

radial displacement at a, 

 , ,r n r nr a r a
u u

  
 , (4.39) 

continuity of normal stress at a, 

 , ,r n r nr a r a
 

  
 , (4.40) 

zero shear stress at a, 

 , 0rx n r a



 , (4.41) 

zero shear stress at b, 

 , 0rx n r b



 , (4.42) 

continuity of radial displacement at b, 
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 , ,r n r nr b r b
u u

  
 , (4.43) 

continuity of normal stress at b, 

 , ,r n r nr b r b
 

  
 , (4.44) 

and zero radial displacement at b0 

 
0

, 0r n r b
u


 . (4.45) 

Combining the radial components into a matrix X, discarding the axial and time 

components, and collecting the coefficients y1 to y7 into a vector Y , Equations (4.39) 

through (4.45) can be represented by a multiplication of a matrix X by a coefficient 

vector Y , 

 XY 0 , (4.46) 

where 0  is the zero vector. The eigenequation for region 2 is thus 

 0X , (4.47) 

and is solved for eigenvalues k2x,n. For each solution, the eigenvector Y , determines the 

radial mode shapes of the displacement potentials and therefore of the derived acoustic 

stresses and displacements in region 2.  

Equations (4.37), (4.38) and (4.47) must be solved over the frequencies of interest 

for the eigenvalues kRx,n. Equations (4.37) and (4.38) may be solved numerically, or the 

first several roots can be found in tables. For the more complicated Equation (4.47), 

various methods[14, 19, 76] can be employed to find the eigenvalue solutions. In this 

work, distributed roots are used as initial guesses; a Newton-Raphson method is used to 

find roots; duplicate roots and divergent solutions are discarded; and checks are made for 

missed roots using the argument principle. Since axial wavenumbers for reverse 



37 

travelling modes are the negative of positive travelling mode wavenumbers, all kRx,n 

solutions here will refer to the positive travelling values, which lie on the positive real 

axis or below the real axis on the complex plane, and negative signs will be added for the 

reverse travelling modes. 

To determine the relative modal amplitudes AR,n and BR,n for each region R and 

each modal index n, a mode matching technique is implemented. This is accomplished by 

applying several boundary conditions at the discontinuity planes x = {0, L1, L1+L, L0}. At 

the port planes, the conditions are continuity of axial displacement and normal stress, 

with stress unspecified at r > r0: 
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Axial displacement and normal stress continuity are joined by a zero shear stress 

condition at the liner boundaries: 
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Finally, assuming an anechoic termination of the downstream pipe results in all B1D,n = 0. 

Because the inlet pipe has a small diameter relative to the wavelength of frequencies of 

concern, all non-plane modes A1U,n are evanescent; and over the inlet and outlet pipe 

lengths, such modes are sufficiently attenuated that for n > 0, A1U,n = 0. The plane wave 

excitation is arbitrarily assigned as unity: A1U,0 = 1. 

For the eigenfunctions in each region, a finite number of roots is found at each 

frequency, corresponding to a maximum number of modal amplitudes each of AR,n and 

BR,n that can be found in each region. Thus the boundary conditions listed in Equations 

(4.48) to (4.57) must be converted to approximate equations. This is commonly 

accomplished by converting them into discrete integral equations, which may be 

unweighted, or weighted by area or a radial eigenfunction. For air silencers with inlet and 

outlet extensions[26, 28], the weighting by eigenfunctions has been generally preferred, 

as it retains orthogonality and has been shown to have better convergence properties for 

that kind of device[27]. These weighted[17] as well as unweighted methods[14, 20] have 

been used for silencers without extensions, and for this case good convergence behavior 
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has been demonstrated using both methods[27]. For the present study, eigenfunction 

weighted integrals are used as shown below. The matching equations are: 
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  *
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where the asterisk (*) indicates the complex conjugate, p are the integers 0 to N - 1, and q 

are 0 to M - N - 1. Equations (4.58) to (4.67) represent 6N + 2M equations, to be solved 

for the same number of unknown modal amplitudes. If N modes are found in each region, 

then Equations (4.48) to (4.57) overconstrain the system, and it must be solved by 

weakening the boundary conditions or using an error minimization technique on the total 

set of equations. Nennig et al.[19] use both of these techniques with a similar problem; 

for the present problem, the extra constraints are handled by solving for M = 2N modes in 

region 2. In this way, each constraint is solved for a set of equations weighted by the first 

N modes. The benefits of orthogonality are achieved with those equations weighted by 

1, p  and 
3, p , while the shear stress matching with 

2,q  weighting does not have an 

orthogonality relationship. Also note that the dual conditions in Equations (4.48) and 

(4.49) are not explicitly satisfied, but are implicit in the weaker weighted forms of 

Equations (4.58) and (4.59). 

In matrix form, Equations (4.58) to (4.67) are represented as 

 SV W , (4.71) 

where V  is the vector of unknown modal amplitudes, 
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S is the matrix of coefficients to the unknown amplitudes, and W  is the vector of 

coefficients to the known modal amplitude A1U,0. Equation (4.71) is solved for V  

numerically. To improve the condition number of S, each row along with the 

corresponding row in W  is scaled so that the maximum coefficient value is unity. 

Transmission loss (TL) is found from the complex wave amplitudes which may 

be extracted from V . In this simulation, the downstream termination is modeled as 

anechoic, so only the ratio of transmitted plane wave amplitude A1D,0, extracted from V , 

to excitation A1U,0 = 1, is needed, resulting in the calculation 
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, (4.73) 

where TL represents the reduction in acoustic energy between the upstream and 

downstream pipe sections. 

4.1.3 Finite Element Model Validation 

To test the validity of the multimodal model, a 2D axisymmetric finite element 

(FE) model was generated and evaluated in ANSYS for a frequency range of 50 to 2000 

Hz. The device is modeled as a continuous steel outer structure, a centered lossy insert, 

and the remainder hydraulic fluid. The dimensions of the device are L = 0.0919 m, L0 = 

0.0984 m, L1 = 0.0032 m, L2 = 0.0032 m, r0 = 0.0107 m, a0 = 0.0132 m, a = 0.0123 m, b0 

= 0.0315 m, and b = 0.0294 m. The fluid has sound speed cf = 1400 m s
-1

 and density ρf = 

866 kg m
-3

. The steel casing is assigned a Young’s modulus of 200 GPa, Poisson’s ratio 

0.29, and density 8000 kg m
-3

. The liner properties are inherently frequency dependent, 

and also include damping. ANSYS allows for a complex Young’s modulus but only a 
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real Poisson’s ratio, which therefore requires λ and μ to have the same loss factor. The 

Lamé parameters are approximated as 
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 (4.74) 
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where f is frequency in Hz, and the results are in MPa. Additionally, s  = 780.2 kg m
-3

. 

This approximation of linear storage moduli and loss factors is identical in form to that 

used for material property estimation in Section 4, and similar in complexity to some 

models for viscoelastic hoses[37, 43]. The values used are similar to the values estimated 

from experimental data, though not identical due to the requirement of identical loss 

factors for λ and μ; the material model is discussed further in the Section 4. 

The device is meshed entirely with tetrahedral elements FLUID89 and 

PLANE182, with a maximum element edge length specified for meshing; the meshed 

geometry is illustrated in Figure 7. In addition to the axisymmetry condition, one outer 

corner of the steel structure is constrained to zero displacement. Acoustic excitation is 

added by constraining the inlet and outlet fluid planes to a specified complex pressure 

amplitude. As the method of determining TL is independent of end conditions for linear 

systems, the choice of pressures is arbitrary. For this test the inlet is set to 0.34 MPa, and 

the outlet is set to zero. The length between the end planes and the expansion planes is 

sufficient that any evanescent waves are attenuated by several orders of magnitude, so the 

plane wave conditions should be acceptable to analyze transmission loss. 
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Figure 7: Finite element mesh with boundary and loading conditions. The bottom 

horizontal line is the axis of symmetry. 

To find TL, average normal acoustic velocities q1 and q2 are extracted from the 

simulation results at the upstream and downstream boundary planes, respectively. 

Combined with applied pressures p1 and p2, these quantities are used to determine plane 

wave amplitudes 
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at the simulation boundary planes. These relate to the wave amplitudes as shown in 

Figure 6(b) by the modeled inlet and outlet length x0 = 0.06m, which is the length 

between the end planes of the FE model and the expansion planes. The relations are 
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A generic TL equation can be derived from Equations (1-4) from Johnston et al.[72] 

where the end-to-end symmetry simplifications are used. In terms of wave amplitudes as 

described in this text, the result is 
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This calculation is independent of termination impedance, and reduces to Equation (4.73) 

in case of an anechoic termination. 
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The results of the FE model are compared to those of the multimodal model with 

the same geometric dimensions and material properties, with the exception that the 

multimodal model assumes a rigid outer boundary rather than a steel casing. The 

multimodal model also uses unity amplitude plane wave excitation as discussed 

previously, but the TL calculations are theoretically equivalent so the discrepancy is 

inconsequential. Results for the FE and multimodal models are shown in Figure 7. 

Convergence is shown by using maximum element lengths of 0.002 and 0.001 for the FE 

model, and using N = 5, M = 10 and N = 10, M = 20 modes for the multimodal model. 

Results are generally close even for the lower number of modes and larger mesh sizes, 

and the additional refinements show that both models have converged upon a solution. In 

order to quantify the difference between the models, the root mean squared error (RMSE) 

in TL is calculated by the formula 
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 , (4.79) 

where TLe,i is the TL for each reference data point i, in this case of the 0.001 m element 

length FE model; TLm,i is the TL of each other model corresponding to the same 

frequency; and Np is the number of data points. Thus RMSE between the two FE models 

is 0.06 dB, while for the N = 5, M = 10 and N = 10, M = 20 multimodal models versus the 

reference FE model it is 0.33 and 0.14 dB, respectively. As both versions of the 

multimodal model give very similar results, N = 5 and M = 10 are chosen as the default 

number of solution modes for the remaining results in this chapter and following. 
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Figure 8: Predicted transmission loss from FE and multimodal models: ▬ Multimodal 

model, N = 5, M = 10; ▬ ▬ Multimodal model, N = 10, M = 20;  FE model, max 

element length 0.002 m;  FE model, max element length 0.001 m. 

4.2 Experiment 

In order to validate the analytical model for devices with non-rigid liners, a 

prototype silencer was built and tested. The suppressor dimensions are r0 = 0.0107 m, a0 

= 0.0132 m, b0 = 0.0315 m, and L0 = 0.0984 m. For this experiment, the main frequency 

range of interest was 0 to 2000 Hz. For additional validation, a half-length prototype 

device was constructed using the same shell, where the liner had length L0 = 0.0492, and 

the remainder of the expansion area was filled with a steel plug with an outer radius of b0 

and inner radius of r0. These data were filtered by removing data with ee > 0.03. 

4.3 Experimental validation 

The multimodal model is validated against experimental data for a lined prototype 

suppressor. To determine a0, consideration must be made for the compression of the liner 

under static pressure Ps = 2.1 MPa. To determine the compressed liner dimensions, the 

liner was pressurized in a chamber with a viewport, and the change in inner radius was 
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determined using digital photographs. The outer radius and length changes were assumed 

to be proportional to the inner radius change. The dimensions used in the FE model are 

based on this estimate, and thus the dimensions are the same as in Section 4.1.3. 

Likewise, it was assumed initially that the liner was centered axially, that is, L1 = L2 = 

0.0032 m. After testing, the liner was cut in half axially, and tests were repeated for this 

half-length liner, with the resulting empty space filled by an annular steel plug. For the 

half-length test, new lengths are L0 = 0.0492 m, L = 0.0460 m, and L1 = L2 = 0.0016 m. 

All other dimensions are equal. The fluid temperature for the tests was approximately 35 

C. 

The liner is composed of a urethane matrix with an engineered microstructure, 

and its properties depend on temperature, pressure, and frequency. Since the 

manufacturer could not provide data useful for the operating conditions of interest, 

material properties have been estimated based on a match to experimental data. Ideally, 

the liner properties would be characterized by a set of Maxwell or Kelvin-Voigt elements, 

but for practical considerations and with limited data, considerable simplifications are 

often made. For example, in characterizing viscoelastic hoses, viscoelastic properties are 

sometimes approximated as constant[43] or varying linearly with frequency[37]. Thus for 

a frequency range of 0 to 4000 Hz, it is assumed that the storage modulus and loss factor 

of the suppressor liner’s viscoelastic moduli can be approximated as a linear function of 

frequency. A material property estimation procedure was performed to estimate λ and μ 

where the resulting values are of the form 

 6 82 4
1 3 5 71 i , 1 i

1000 1000 1000 1000

f ff f   
     

         
                
          

, (4.80) 
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with frequency f in Hz and λ and μ in MPa. This was accomplished by finding parameters 

α1 to α8 that minimize RMSE versus experimental data. Parameter limits are shown in 

Table 2, along with the best solution. Additional constraint equations ensured damping 

would not become negative below 4000 Hz, 

 7 84 0    , (4.81) 

 3 44 0     (4.82) 

A multi-dimensional simulated annealing optimization method was used for the material 

property estimation, utilizing a freely available implementation designed for the free 

software package GNU Octave. Maximum and minimum temperature settings were 

handled automatically by the algorithm; two iterations were used between step size 

reductions; three size reductions were used between temperature reductions; and a 

temperature reduction factor of 0.2 was employed. The objective function to be 

minimized was RMSE for the range 0-2000 Hz, since most hydraulic noise is found in 

this range, and higher frequency experimental data were likely more prone to error. In 

this case TLe,i from Equation (4.79) is the experimental value. This material property 

estimation was performed for both the full and half-length suppressors. The resulting 

parameters are summarized in Table 2, while the corresponding objective function results 

are in Table 3. Each set of solution parameters is compared to both the full-length and the 

half-length suppressor experimental results. As expected, the property estimation results 

give the lowest RMSE for their respective lengths; they also produce the highest RMSE 

for the other length. A “compromise” solution provides a middle value of RMSE for each 

length. The compromise solution is an educated guess based on the full-length and half-
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length solution values, but also gives lower error for both test conditions than the simple 

arithmetic average of α1 through α8. 

Table 2: Material property estimation limits and solutions 

Parameter Min 

value 

Max 

value 

Solution (full-

length) 

Solution (half-

length) 

Compromise 

solution 

α1 20.00 62.00 24.59 32.97 33.00 

α2 0.00 15.00 4.39 0.00 0.00 

α3 0.050 0.600 0.053 0.570 0.05 

α4 -0.080 0.200 0.070 -0.075 0.07 

α5 4.00 8.00 4.11 4.00 4.10 

α6 0.00 2.00 0.34 0.56 0.34 

α7 0.050 0.600 0.581 0.582 0.600 

α8 -0.080 0.200 0.195 0.200 0.200 

Table 3: Root mean squared error for various conditions 

Experimental data 

set (0-2000 Hz) 

RMSE, full-length 

estimated properties 

RMSE, half-length 

estimated properties 

RMSE, compromise 

solution 

Full-length 

suppressor 

0.40 dB 3.26 dB 1.33 dB 

Half-length 

suppressor 

2.42 dB 1.49 dB 1.69 dB 

 

In comparing the property estimation solutions, it can be seen from Table 2 and 

Equation (4.80) that both the full-length and half-length liner solutions find 

approximately identical values for μ near the imposed bounds, as well as the same storage 

modulus for λ around 2000 Hz. The solution for the half-length liner has a slightly higher 

λ storage modulus at low frequencies, and higher λ damping than the solution for the full-

length liner. While this discrepancy again emphasizes the approximate nature of the 

property estimation scheme, a sensitivity analysis for the analysis parameters may 

provide some additional insight. Since the objective function is not smooth, a gradient 

analysis at a solution parameter vector is not meaningful. Instead, eight additional 
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simulations are run; in these, all αi are set equal to the full-length solution values except 

one, αj, which is set to the arithmetic mean of the full-length and half-length for j = 1 to 8. 

Sensitivity measures fj,full and fj,half are defined as 

       0 0

,full ,half

0 0

0 0

RMSE full RMSE full RMSE half RMSE half
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j j

j j
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. (4.83) 

Here RMSE0(full) is the RMSE of the full-length solution parameter vector, on the full-

length model and experiment; RMSE0(half) is the RMSE still of the full-length solution 

vector, but on the half-length model and experimental values; RMSEj(full) and 

RMSEj(half) are the RMSE of the modified parameter vector for the full and half-length 

cases. Similarly, α0 is the nominal full-length parameter of index j, while αj is the 

modified value. Thus, fj,full and fj,half define the change in RMSE of the full and half-

length tests for the modified parameter vector versus the full-length solution vector, 

divided by the fractional change in the single parameter αj versus the nominal full-length 

solution parameter. These results are summarized in Table 4, and illustrated graphically 

in Figure 9. It is seen that sensitivity is generally much higher with respect to the full-

length test than the half-length test. This is an expected result, given the noisiness of the 

half-length experimental data, as shown further below. However, in the cases of α1 and 

α7, both sensitivity values are high, indicating high certainty of those two results. In the 

case of α7, the solution values are nearly identical for the full and half-length tests. 

However, for α1, the results are somewhat different, even though solution certainty is 

high for both tests. This suggests that an unknown difference in test conditions may have 

occurred, or that a flaw or approximation in the model has caused this difference. In 
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either case, the real part of λ converges in both results around 2000 Hz, so it remains only 

to select the best α1, and adjust α2 to give the common 2000 Hz value. For the 

compromise solution, it is found that the half-length results for α1 and α2 give reasonably 

good results for both length cases; the other values are chosen based on the full-length 

results. As a further argument, the sensitivity study was repeated using the half-length 

solution parameter vector as the nominal values; results shown graphically in Figure 10 

confirm the sensitivity trends just discussed. 

Table 4: Values for material property estimation sensitivity study 

Parameter αj fj,full fj,half 

α1 28.78 4.25 2.81 

α2 2.19 1.15 0.18 

α3 0.312 0.44 0.06 

α4 -0.003 1.01 0.02 

α5 4.05 0.22 0.04 

α6 0.45 0.02 0.00 

α7 0.581 2.57 1.32 

α8 0.197 0.20 0.12 

 

 

Figure 9: Sensitivity results for full and half-length tests over parameters αj. Results are 

relative to the full-length solution parameter vector. 
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Figure 10: Sensitivity results for full and half-length tests over parameters αj. Results are 

relative to the half-length solution parameter vector. 

While independent property measurements are currently not available, 

approximate material property estimation bounds on properties are determined based on 

available manufacturer data and from the tests used to estimate static compression of the 

liners. Additionally, CES EduPack[77] is a software package which provides property 

ranges for many types of materials; comparing estimated properties to CES estimates of 

shear and bulk modulus for polyurethane rubbers and closed cell foams gives some 

additional confidence in the estimated material property values. For the foams, CES gives 

the minimum λ and μ as about 0.26 and 0.10 MPa, respectively, while for the neat 

polyurethanes the maximum values are about 2000 and 10 MPa. The analysis limits fall 

within these bounds for the static case; in general it is assumed that the values may be 

somewhat larger for dynamic properties. The compromise solution values of λ and μ are 
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The real and imaginary parts (storage and loss modulus) of the compromise solution are 

plotted over the analysis frequency range in Figure 11. At all modeled frequencies, the λ 

and μ storage moduli are well within the aforementioned ranges. While the accuracy of 

the estimated properties cannot be quantitatively determined, it can be concluded that the 

estimates fall in quite realistic ranges. It should also be stressed that the primary purpose 

of this study is model development, and that the material property estimation is a 

necessary supporting task. Reference values are not available for the loss moduli of λ and 

μ, but the estimated values are plotted in Figure 11. 

 

Figure 11: Material storage moduli from compromise solution. ▬ real(λ);  

▬ ▬ real(μ); ▬ ▪ imag(λ), ▬ ▪ ▪ imag(μ). 
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In Figure 12, the modeled TL predictions are compared to experimental data of 

the suppressor with the full-length liner at 2.8 MPa (400 psi) mean pressure. Because the 

material property estimation procedure is very sensitive to experimental error, the data 

used for objective function calculation has been filtered by removing data points where 

ee > 0.03. While this removes many experimental artifacts, it may also remove more 

legitimate features of the data, and consequently some error is expected in the estimated 

material properties. For clarity in this and other figures, a further reduced set of 

experimental data is shown, which keeps only one out of ten experimental points; 

however, this reduced data set is not used for the material property estimation or other 

data analysis purposes. The full-length liner solution matches generally well over the 

analysis frequency range, including the small resonance peak around 135 Hz. The half-

length liner solution under-predicts TL slightly in the lower frequencies, and over-

predicts above about 800 Hz. The compromise solution under-predicts slightly at the 

lower frequencies as well, but matches closely to the measured TL above about 1000 Hz. 
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Figure 12: Full-length liner experimental suppressor TL compared to model predicted TL 

with estimated material properties.  Reduced experimental data; ▬ Model, full-length 

estimated properties; ▪ ▪ Model, half-length estimated properties; ▬ ▬ Model, 

compromise properties. 

In Figure 13, the TL predictions are compared to the half-length suppressor data. 

As with the full-length data, TL filtering has been applied for analysis purposes. Given 

the relative smoothness of the full-length liner data, it is not immediately evident why 

this test has a much less smooth TL curve than the full-length suppressor test, though the 

unmodeled dynamics of the steel plug may be a contributing factor. All three solutions 

follow a roughly average value of the experimental TL above about 1000 Hz, and display 

a slight resonance peak around 170 Hz which is present in the data. However, the full-

length liner solution somewhat over-predicts TL at the lower frequencies, as does the 

compromise solution to a lesser extent. None of the solutions replicates the sharper TL 

features in the higher frequencies. 
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Figure 13: Half-length experimental suppressor TL compared to model predicted TL with 

estimated material properties.  Reduced experimental data; ▬ Model, full-length 

estimated properties; ▪ ▪ Model, half-length estimated properties; ▬ ▬ Model, 

compromise properties. 

Due to the imprecise estimate of material properties, the ability to experimentally 

validate the model is somewhat limited. The compromise solution models the full-length 

and half-length TL well in an average sense, but misses what appear to be resonance 

peaks in the half-length device as low as about 400 Hz. The validation against the FE 

model shows that for the given assumptions about the boundary conditions, the 

multimodal model is quite accurate. However, with the estimated material properties, and 

particularly the high loss factor for μ, the model does not predict resonance peaks such as 

are seen in the half-length TL data. It is therefore unclear whether the difference between 

model and experiment is due to experimental error or artifacts; over-simplified boundary 

conditions such as ignoring any shear effects in the hydraulic fluid; inaccurate material 

property estimates; inaccurate assumptions about the arrangement of the internal device 

geometry; or another unknown cause. 
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Geometric positioning sensitivity can be examined to some extent. To test the 

dependence of the results on the distribution of the axial gap between L1 and L2, two 

additional sets of simulations are run for the full-length device using the compromise 

solution parameters. In the first, the gap lengths are set to a L1 = 0.0049 m, L2 = 0.0016 m 

and L2 = 0.0049 m, L1 = 0.0016 m; the RMSE between these and the version presented 

above is less than 0.14 dB, with a maximum difference of less than 0.28 dB. In the 

second set of simulations, L1 = 0.0065 m, L2 = 0, and L2 = 0.0065 m, L1 = 0. To perform 

these simulations the boundary conditions must be modified by combining those sets of 

equations from (4.58) to (4.65) which refer to the same interface, effectively removing 

the region 3 interface. The results for these cases are still similar, with a maximum 

deviation of 2.06 dB and RMSE of less than 0.90 over the range of 50 to 2000 Hz. These 

close matches indicate that the distribution of the axial gaps between L1 and L2 is not 

significant to the results of this study. Since the modeling method depends on 

axisymmetry, the validity of the assumption that the liner stays radially centered cannot 

be tested using the current multimodal method. 3D finite element models may be used in 

the future to test sensitivity to radial misalignment, but it is expected that the flow of 

hydraulic fluid through the liner annulus will keep the liner somewhat centered about the 

silencer ports. Alternatively, the liner could be mechanically constrained to remain 

axially centered. 
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CHAPTER 5 

SYNTACTIC FOAM MODELING 

The goal of this chapter is to investigate the material properties of various liners 

based on their physical composition, and to correlate these properties to TL performance. 

Several additional prototype liners have been produced for the suppressor discussed in 

Chapter 4; while more information is available on the composition of the new liners, it is 

still incomplete, as is the set of material property data. A model to estimate certain 

material properties is developed, and estimates are further refined using available 

experimental data. 

5.1 Material composition 

To begin, the various liner composites are introduced, along with some known or 

directly measured properties. The liners consist of three different host polymers, to which 

there are two different varieties of microspheres which may be added. The host polymers 

shall be labeled MA, MB, and MC, and the added microspheres are labeled 1 and 2. A 

composite consisting of polymer MA mixed with sphere variety 1 shall be labeled MA1, 

and so forth. The microsphere nominal radius and density, as well as the polymer and 

composite material densities, are listed in Table 5 and Table 6. The material used for 

validation in Chapter 4 was initially produced for model and concept validation purposes, 

and the manufacturer did not provide specific composition information. It is not analyzed 

in this chapter, as the newer materials with more complete information are more suitable 

for the further analysis. Additionally, the composite corresponding to MA2 was not 

created and is thus not included in the results. 
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Table 5: Microsphere nominal properties 

Sphere type Product name Nominal density (kg m
-3

) Nominal radius (μm) 

1 091 DE 80 d30 30 40 

2 461 DET 20 d70 70 10 

 

Table 6: Neat polymer and composite densities 

Material Measured density (kg m
-3

) 

MA 1051.7 

MA1 626.2 

MB 1105.0 

MB1 643.7 

MB2 693.5 

MC 1135.8 

MC1 543.7 

MC2 556.1 

 

The three polymers are designed by the manufacturer to have significantly 

different shear characteristics. The complex shear modulus μ has been found by the 

manufacturer at a variety of frequencies and temperatures for composites MA1, MB1, 

and MC1. However, no such measurements have been performed at elevated pressures, 

nor at all for materials MB2 or MC2. Table 7 displays some characteristic properties of 

the sphere 1 composites at temperatures and frequencies representing the range of interest 

for TL testing. For the frequency values, 1 Hz is taken as representative of low frequency 

performance, and 1000 Hz is used as a representative high frequency value. The peak loss 

factor frequency is the approximate frequency at which the loss factor, Im(μ)/Re(μ), is 

greatest, and is also indicative of the frequency range at which Re(μ) transitions from low 

to high values.   
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Table 7: Selected shear modulus properties of composites materials 

Material Temperature 

(C) 

Re(μ) 1 Hz 

(MPa) 

Re(μ) 1000 Hz 

(MPa) 

Peak loss factor 

frequency (Hz) 

MA1 20 3.7 4.8 10
5 

MA1 45 3.6 4.0 10
6 

MB1 20 3.2 16 400 

MB1 45 2.8 3.8 70000 

MC1 20 10 80 1.5 

MC1 45 2.7 7.8 3000 

 

Notably, the loss factor peak moves from very high frequencies with MA1 to very 

low with MC1, and MC1 at 20C exhibits a shear modulus much higher than any of the 

other materials or conditions. Liner TL performance predictions in Section 5.3 directly 

utilize the available μ values; estimating μ for MB2 and MC2 is discussed further below. 

5.2 Static material properties 

5.2.1 Theory 

In compressible syntactic foams, it is expected that the buckling of microspheres 

will be the dominant factor in determining the bulk modulus of the composite material, 

over the range of pressures at which buckling occurs. A model is developed which seeks 

to describe and predict liner compressibility under static pressure. The model in this 

section is derived with respect to the material bulk modulus K, but will later be applied to 

λ, under the assumption that K  for 1  . 

As with the liner in Chapter 4, the various liners were subjected to a range of 

hydrostatic pressures, and the internal hole radius a was estimated based on digital 

photographs. Assuming equal strain in all directions, the change in liner volume V from 

its unpressurized value V0 can be determined based on the cube of the change of any 

linear dimension. In this case the change of a versus unpressurized a0 is used, 
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Theoretically, the axial versus radial compression for a thick cylinder depends on 

Poisson’s ratio; but without knowing Poisson’s ratio a priori, and expecting it to 

potentially change with hydrostatic pressure, this is a usable first estimate. Using the 

relation of Equation (5.1), the radial compression of the liner can be determined from the 

change in overall volume; this volume change in turn can be predicted based on the static 

bulk modulus. 

A first approximation gives the composite bulk modulus in relation to the bulk 

moduli and volume fractions of the constituent parts, 
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iT i
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K K
 ; (5.2) 

and total volume is found as 
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for total volume VT, composite bulk modulus KT, volumes and bulk moduli Vi and Ki for 

each of the constituent elements, unpressurized volumes VT0 and Vi0, and unpressurized 

volume fraction Fi0. The four constituent elements considered in this model are the 

matrix polymer, unbuckled spheres, buckled spheres, and gas bubbles. Trivett et al.[67] 

note that the microspheres have a high bulk modulus below the critical buckling pressure 

Pcr, but above the pressure 
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they act approximately as gas bubbles (here E, ν, t and r are the sphere Young’s modulus, 

Poisson’s ratio, thickness, and radius). Thus the buckled spheres as well as the actual gas 

bubbles are assumed to behave like ideal gases for syntactic foam compliance. Equation 

(5.3) then becomes 
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 s tot atmP P P  , (5.9) 

where subscripts P0,U0, and G0 indicate polymer, unbuckled spheres, and gas bubbles, 

respectively, for the unpressurized state; KP and KU are likewise the bulk moduli of the 

polymer and unbuckled spheres. GU and GB represent the fraction of the original volume 

of microspheres that remain unbuckled or are buckled at a given pressure, such that their 

sum is always unity, per Equation (5.8). FH represents the volume fraction of the 

microspheres that composes the outer shell, and which is characterized by a bulk modulus 

KH once a microsphere has bucked. Ptot and Patm are the total system pressure and 

atmospheric pressure; and Ps is system gauge pressure, defined in Equation (5.9). 

Equations (5.1) and (5.6) may be combined to find inner radius a in terms of pressure, 
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once GU and GB are known. 

To determine GU and GB, the properties of the microspheres must be further 

examined. Although each type has a nominal radius as listed in Table 5, the microspheres 

actually exhibit a great deal of variation. Size variation data are not available for the 

microsphere types used in this study, but a technical bulletin for a similar product is 

provided in Appendix A; the size distribution covers approximately an order of 

magnitude. For the product in Appendix A, the logarithm of the microsphere radii is 

approximated as a Gaussian distribution with a standard deviation of 0.1639; in this 

model, a similar distribution is assumed, with the log-mean value given in Table 5, and 

with a standard deviation σs to be determined. Once σs is known, this approximation can 

provide values for r in Equation (5.5), but values for E and ν are not precisely known, and 

t of the microspheres could vary considerably over the size distribution. To generalize the 

microsphere properties, let it be assumed that Pcr0 is the buckling pressure corresponding 

to the nominal radius r0 of the spheres. If each sphere begins with the same amount of 

material but is expanded to a different final size, it is then approximately true that 

 2t r . (5.11) 

Substituting this result into Equation (5.5), it follows that 

 6

crP r , (5.12) 
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Thus, the smallest sphere radius r that will buckle for a given pressure Ps is 
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Using a Gaussian distribution described above, the (unpressurized) volume fraction of 

microspheres with a smaller radius—and which are therefore unbuckled—is 
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, (5.15) 

and GB is found simply through Equation (5.8). Equation (5.15) is convenient because it 

allows the creation of a model which is dependent explicitly on the buckling properties of 

the microspheres, which can be deduced from pressurization tests, rather than on their 

detailed composition and geometry. 

Some important assumptions are made in this model. First, it is assumed that the 

host matrix polymer does not significantly affect the buckling behavior of the 

microspheres. Since the liners are loaded hydrostatically, this may be a reasonable 

assumption, especially if the liner stiffness is relatively low. Additionally, no effect of 

temperature on the microsphere shell properties is considered. It is also assumed that 

log10(Pcr) has a Gaussian distribution. These assumptions are made largely due to the 

limitations of available data, and further testing to verify or refine these modeling 

assumptions could be beneficial. However, at present the model as presented is still 

useful, as it allows for some initial predictions of the composite material properties to be 

made. These assumptions are also reassessed based on the results of the following 

sections. 

5.2.2 Experiment and analysis 

The model developed in Section 5.2.1 is used to interpret the results of 

experimental compression tests for all the composites considered in this chapter. 
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Experimental values of inner radius a of the liners are collected at various static pressures 

by measuring the size of a on digital photographs, as discussed in Section 3.4. By 

performing an inverse analysis and fitting a curve to these experimental data sets, the 

various parameters of the model can be estimated. The measurements can also be directly 

employed to estimate K of the liners, but as the experimental data are noticeably not 

smooth, the model and its resultant smooth curve will allow for better K estimation as 

well. This curve can be provided using Equation (5.10), along with Equations (5.8) and 

(5.15). The model fit requires values for FP0, FG0, and FU0 for each composite, KP for 

each polymer base, and Pcr0, KU, KH, and FH for each type of microsphere. While some of 

these parameters can be estimated using an error minimization technique, trying to find 

all the parameters in such a manner results in a very poorly conditioned problem. To 

simplify, several assumptions are made. First, it is assumed that FG0 is 0 for all syntactic 

foams except MC1, which contains some noticeable macro-bubbles. This simplification 

means that FP0 and FU0 can be found using the polymer, composite, and microsphere 

densities found in Table 5 and Table 6. The second assumption is that KU = KP = KH for 

each base polymer. This simplification is justified if the majority of the compression is 

due to gas compression in the collapsing microspheres, and thus the intact spheres, shells 

of the collapsed spheres, and the host polymer appear rigid in comparison. Specifically, if 

these “harder” elements are contributing significantly to liner compression, it means that 

the liner is too stiff to provide much noise reduction to the system at that pressure, 

making the breakdown of this assumption rather unimportant. 

Using these assumptions, a simulated annealing optimization was performed to 

produce a curve fit to all the composite pressure tests. The curve fit objective was 
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minimization of RMSE between the experimental and model inner radius a of the liner, 

calculated in the same manner as Equation (4.79); and the results provided input 

parameters for the theoretical model. In an ideal scenario, a single coupled analysis could 

be performed, in which parameters are coupled between all liners that share a common 

base polymer or variety of microspheres. However, a problem with this approach is 

illustrated in Table 8. The table presents two methods for calculating FU0. The first 

(density) method uses the polymer, microsphere, and composite densities (ρP, ρU, ρC) 

presented in Table 5 and Table 6, using the equation 

  0 0 0

1
U C P P G G

U

F F F  


   , (5.16) 

where ρG is air density, and it is naively assumed that FG0 = 0. The second (experimental) 

method assumes that the entirety of the liner compression is due to collapsing 

microspheres, naively assuming FH = 0, 
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where af is the final compressed radius. If the ratio between these two values were 

constant for a given type of microsphere, the difference could be accounted for with a 

non-zero FH. However, this is not the case; in actuality, the values vary considerably. 

Since the ratios for MA1 and MB1 are close to unity while that for MC1 is not, it is 

theorized that for the former two, the host polymer did not significantly affect 

microsphere buckling. This would also suggest that MB likewise does not significantly 

affect buckling for MB2, and that the ratio for MB2 may be addressed by a non-zero FH. 

For MC1, the presence of macrobubbles in the liner contradicts the assumption of FG0 = 0 

in Equation (5.16), so it is more difficult to quantify whether or how much MC affects 
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microsphere performance. Consequently, MA1, MB1, and MB2 are combined into a 

single curve-fitting analysis, while MC1 and MC2 are treated separately. 

Table 8: Microsphere volume (FU0) calculations 

Calculation 

method 

MA1 MB1 MC1 MB2 MC2 

Density 0.42 0.43 0.54 0.40 0.54 

Experimental
 

0.41 0.40 0.41 0.27 0.42 

Ratio 0.97 0.92 0.76 0.68 0.77 

 

The parameter bounds and results for the MA1, MB1, and MB2 curve fit are 

shown in Table 9; for this analysis, FU0 was set by the density method as displayed in 

Table 8, all FG0 = 0, and all KU = KH = KP. The resulting radial compression curves are 

shown with experimental data in Figure 14 through Figure 16. These results correspond 

well with expectations: the type 1 microspheres have a lower critical pressure than type 2, 

resulting in more compression at lower pressure, as seen in the figures; for MB2 in Figure 

16, the relatively flat slope at zero pressure is indicative of the type 2 microspheres 

beginning to buckle at an elevated pressure, as expected. In addition, type 1 spheres have 

a larger standard deviation than type 2, which results in a more gradual compression 

curve, as seen in the experimental data; they have a lower FH according to the Table 9 

results, which corresponds to their lower density given in Table 5. 
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Table 9: MA1, MB1, MB2 curve fit parameters and results 

Parameter Lower bound Upper bound Result 

MA KP (MPa) 1 1000000 216 

MB KP (MPa) 1 1000000 1037 

Sphere 1 Pcr0 (MPa) 0.001 100 0.28 

Sphere 2 Pcr0 (MPa) 0.001 100 1.26 

Sphere 1 σs 0.01 0.3 0.152 

Sphere 2 σs 0.01 0.3 0.043 

Sphere 1 FH 0 0.5 0.070 

Sphere 2 FH 0 0.5 0.322 

 

 

Figure 14: MA1 compression test.  Experimental data; ▬ Model. See Table 9 for 

model parameters. 
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Figure 15: MB1 compression test.  Experimental data; ▬ Model. See Table 9 for 

model parameters. 

 

Figure 16: MB2 compression test.  Experimental data; ▬ Model. See Table 9 for 

model parameters. 

Using these results, additional curve fitting analyses were performed to 

characterize MC1 and MC2. The results are shown in Table 10 and Table 11, 

respectively; FG0_max indicates the maximum value of FG0 which still satisfies Equation 

(5.16), and the resulting FG0 value is 0.268. Gray cells in both tables indicate tighter 
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restraints based on the values found in Table 9. Compression curves are shown in Figure 

17 and Figure 18. The results from the MC1 analysis are not thought to necessarily 

represent the real material composition: FG0 and FH for MC1 both seem unreasonably 

high. The MC2 results all appear reasonable, though it characterizes the type 2 spheres 

much differently from the optimization with MB1. However, the results clearly match the 

experimental trends in both cases, so it appears that the discrepancy lies in the model not 

accurately representing some aspect of the actual material. The error possibilities include 

incorrect composition records, significant effects of the matrix polymer on microsphere 

buckling pressure, and temperature effects on the matrix polymer or composite (i.e., 

because the liner is heating during testing, and the MC composites are the most 

temperature sensitive around the testing temperatures). Some error could possibly be 

reduced by taking an average of multiple measurements. Additionally, multiple tests 

might give some insight into potential sample degradation with use; however, this has not 

yet been studied. 

Table 10: MC1 curve fit parameters and results. Highlighted cells indicate constraints 

based on results shown in Table 9. 

Parameter Lower bound Upper bound Result 

MC KP (MPa) 1 1000000 5109 

Sphere 1 Pcr0 (MPa) 0.280 0.281 0.280 

FG0/FG0_max 0 1 0.514 

Sphere 1 σs 0.150 0.160 0.150 

Sphere 1 FH 0 0.5 0.5 
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Table 11: MC2 curve fit parameters and results. Highlighted cells indicate constraints 

based on results shown in Table 9. 

Parameter Lower bound Upper bound Result 

MC KP (MPa) 1 1000000 419 

Sphere 2 Pcr0 (MPa) 0.001 100 0.67 

Sphere 2 σs 0.01 0.3 0.011 

Sphere 2 FH 0.25 0.35 0.25 

 

 

Figure 17: MC1 compression test.  Experimental data; ▬ Model. 

 

Figure 18: MC2 compression test.  Experimental data; ▬ Model. 
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5.3 Dynamic properties and transmission loss 

While static properties are needed to determine liner compression, dynamic 

material properties must still be determined in order to predict device TL. To this end, 

simulated annealing optimization procedures are performed for each material, similar to 

the process of Chapter 4. However, in this case, the material manufacturer produced 

master curves for μ of several of the materials at atmospheric pressure, so only λ is found 

with the property estimation analysis. Values for μ are available for all the neat polymers 

and composites except MB2 and MC2; additionally, no data are available for the 

pressurized materials. Values for μ are therefore assumed not to change with pressure, 

and two attempts are made to estimate μ for MB2 and MC2. In the first case (v1), it is 

assumed that μ is equal to that for the sphere 1 composites, MB1 and MC1. In the second 

case (v2), it is assumed that μ falls between the sphere 1 composite and the neat polymer 

values. In this case, μ is estimated as a weighted average of 2/3 μ of MB1 or MC1, and 

1/3 μ of MB or MC. The validity of each of these assumptions is discussed hereafter. To 

estimate λ, parameters α1 through α4 are found, similar to Equation (4.80), defining λ as 

 2 4
1 31 i

1000 1000

f f 
  

    
       
    

. (5.18) 

Analyses are performed for each composite at system pressures of 2.8 MPa and 6.9 MPa, 

and at least two temperatures. This number is doubled for MB2 and MC2, since they 

have two estimates of μ. Initial parameter limits for α1, the static value of λ, were 

estimated using finite difference approximations for bulk modulus based on the 

compression test models in Section 5.2.2, in the form of 
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limits on α2 were chosen arbitrarily as a fraction of the estimated α1 value. For both α1 

and α2, limits were manually expanded, using several property estimation runs if 

necessary, to ensure that results were comfortably far from the parameter bounds, 

especially for α1. Limits on α3 were set at 0.001 to 0.6, and α4 limits were -0.3 to 0.3. 

Notably, these limits are independent of test temperature, since temperature was not 

recorded for the compression tests. The 2.8 MPa analysis was performed from 0 to 2000 

Hz, while for the 4.8 MPa data, the upper range was extended to 3000 Hz, and at 6.9 

MPa, 4000 Hz is the upper limit. 

The material property estimation results are shown in Table 12, along with static 

K as calculated from the compression tests, and the ratio of K to α1, which is the static 

value of λ in this analysis. The ratio column has darkened cells where the values are 

greater than 1.15 or less than 0.85; that is, when error is above 15%. Analysis results are 

shown for two or three test temperatures. Temperatures vary between test conditions due 

to the lack of a precise temperature control mechanism on the test rig, but enough data 

sets are available at similar temperatures that useful comparisons can be made. 

Table 12: Dynamic material property estimation results. Highlighted cells indicate that 

K/α1 deviates from unity by more than 0.15. 

Material Pressure 

(MPa) 

Measured 

temp (C) 

α1 α2 α3 α4 K estimate 

(MPa) 

K/α1 

MA1 2.8 26 20.2 8.0 0.53 -0.11 37.3 1.85 

MA1 2.8 53 32.5 0.0 0.13 -0.02 37.3 1.15 

MA1 6.9 32 201 23.6 0.50 -0.07 101 0.50 

MA1 6.9 53 274 19 0.14 -0.02 101 0.37 

MB1 2.8 26 43.1 12.0 0.60 0.30 41.4 0.96 

MB1 2.8 48 48.9 12.0 0.15 0.06 41.4 0.85 

MB1 4.8 49 249 30.0 0.29 -0.07 92.2 0.37 

MB1 6.9 32 380 50.0 0.21 0.29 155 0.41 

MB1 6.9 49 756 47.6 0.31 0.30 155 0.21 

MB2 v1 2.8 45 30.4 12.0 0.18 0.15 26.4 0.87 
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Table 12 Continued 

Material Pressure 

(MPa) 

Measured 

temp (C) 

α1 α2 α3 α4 K estimate 

(MPa) 

K/α1 

MB2 v1 2.8 51 27.0 9.6 0.23 0.03 26.4 0.98 

MB2 v1 2.8 60 28.2 5.6 0.22 -0.06 26.4 0.94 

MB2 v1 4.8 50 138 19.6 0.14 0.01 194 1.41 

MB2 v1 6.9 45 448 120 0.12 0.30 617 1.38 

MB2 v1 6.9 51 438 61.6 0.26 -0.06 617 1.41 

MB2 v1 6.9 62 486 2.6 0.23 -0.06 617 1.27 

MB2 v2 2.8 45 29.9 12.0 0.40 -0.01 26.4 0.88 

MB2 v2 2.8 51 28.1 9.44 0.06 0.14 26.4 0.94 

MB2 v2 2.8 60 28.5 5.3 0.01 0.08 26.4 0.93 

MB2 v2 4.8 50 135 26.7 0.22 -0.04 194 1.44 

MB2 v2 6.9 45 449 120 0.12 0.30 617 1.37 

MB2 v2 6.9 51 393 106 0.27 -0.07 617 1.57 

MB2 v2 6.9 62 450 13.3 0.12 -0.00 617 1.37 

MC1 2.8 26 165 50.0 0.19 -0.04 122 0.74 

MC1 2.8 41 75.9 80.0 0.60 0.30 122 1.61 

MC1 2.8 49 53.6 12.0 0.22 0.01 122 2.28 

MC1 4.8 29 418 179 0.44 0.17 286 0.68 

MC1 4.8 42 193 174 0.43 0.14 286 1.48 

MC1 4.8 49 138 100 0.40 -0.10 286 2.07 

MC1 6.9 32 702 97.6 0.55 0.29 500 0.71 

MC1 6.9 44 463 99.3 0.57 0.29 500 1.08 

MC1 6.9 50 408 100 0.32 0.30 500 1.23 

MC2 v1 2.8 26 124 25.0 0.60 0.30 418 3.37 

MC2 v1 2.8 44 36.9 62.4 0.60 -0.03 418 11.33 

MC2 v1 2.8 52 33.5 12.0 0.13 0.16 418 12.48 

MC2 v1 4.8 30 398 138 0.59 0.02 419 1.05 

MC2 v1 4.8 45 162 99 0.53 0.28 419 2.59 

MC2 v1 4.8 52 167 29.9 0.20 -0.05 419 2.51 

MC2 v1 6.9 33 750 1.6 0.60 0.26 419 0.56 

MC2 v1 6.9 46 490 62.4 0.58 0.01 419 0.86 

MC2 v1 6.9 53 454 90.7 0.27 0.05 419 0.92 

MC2 v2 2.8 26 117 23.1 0.60 0.30 418 3.57 

MC2 v2 2.8 44 36.7 67.4 0.60 -0.13 418 11.39 

MC2 v2 2.8 52 34.3 12.0 0.06 0.20 418 12.90 

MC2 v2 4.8 30 418 87.6 0.60 0.14 419 1.00 

MC2 v2 4.8 45 165 124 0.34 0.22 419 2.54 

MC2 v2 4.8 52 124 85.1 0.19 -0.00 419 3.38 

MC2 v2 6.9 33 754 0.2 0.60 0.25 419 0.56 

MC2 v2 6.9 46 465 108 0.60 0.19 419 0.90 

MC2 v2 6.9 53 441 99.8 0.31 0.28 419 0.95 

 



74 

At first glance, it appears that the bulk modulus estimates are not very accurate; 

out of 50 analysis conditions, only 16 have errors less than 15%. However, given the 

rough nature of the approximation, and the fact that K estimates do not account for 

temperature variations, this is not necessarily a bad start. If only the 20 combinations of 

material and pressure are considered, 11 have a K prediction with less than 15% error at 

one or more temperatures, or have a K prediction that falls between the α1 values for 

different temperatures. The remaining poor predictions fall into two categories. First are 

the values for MA1, MB1, and MB2 at the higher pressure values of 4.8 and 6.9 MPa. In 

these cases, the slope of the compression curve is small. Since the K estimate is related to 

the inverse of the slope, any small deviation in the slope will be compounded in the K 

calculation; and given the noisy nature of the experimental data, errors in the “true” slope 

estimate are expected. The second category includes the 2.8 MPa tests for MC2, with 

both versions v1 and v2. These errors are perhaps reflective of the general difficulty in 

fitting the compression curve parameters for that material, as well as the significant 

variation in α1 that is seen with varying temperatures. Altogether, the K estimates from 

the compression curves provide a suitable starting place for estimating material 

properties, but for very accurate results, the compression curves will need to be given 

with temperature dependence as well as pressure, and a measurement technique which 

produces less noisy data might be required as well. 

One addition piece of commentary is warranted for Table 12. For MB2 and MC2, 

the differences in α1 and α2 are minimal between v1 and v2, thus indicating that λ 

estimation is relatively insensitive to variations in μ in those cases. For MB2, however, 

there are some notable differences at the lower pressure value (2.8 MPa) in α3 and α4, 
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which relate to material damping; further investigation of material property sensitivity is 

warranted. 

The figures below correlate some of the results of the material property estimation 

process with TL performance of the lined suppressors at different temperatures and 

pressures. As in Chapter 4, experimental data only show one out of every ten points, even 

though all points are used for analysis. For each material, the general trend is an 

increasing modulus with increasing pressure. This result is seen in the TL performance as 

a lower TL peak, shifted to a higher frequency, as pressure increases, as demonstrated in 

Figure 19 to Figure 21 for MA1, MB1, and MC1. This result also agrees with the 

collapsing sphere model, where at higher pressures a higher fraction of the microspheres 

have buckled, resulting in a higher bulk modulus. Some temperature variation is present 

in these data sets, but its effects here are minor compared to the pressure difference. 

 

Figure 19: MA1 model and experimental TL at varying pressure and similar 

temperatures.  Reduced experimental data and ▬ Best fit model, 2.8 MPa, 26C;  

 Reduced experimental data and ▬ ▬ Best fit model, 6.9 MPa, 32C. 
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Figure 20: MB1 model and experimental TL at varying pressure and similar 

temperatures.  Reduced experimental data and ▬ Best fit model, 2.8 MPa, 26C;  

 Reduced experimental data and ▬ ▬ Best fit model, 6.9 MPa, 32C. 

 

Figure 21: MC1 model and esperimental TL at varying pressure and similar temperatures. 

 Reduced experimental data and ▬ Best fit model, 2.8 MPa, 26C;  Reduced 

experimental data and ▬ ▬ Best fit model, 4.8 MPa, 29C;  Reduced experimental data 

and ▪ ▪ Best fit model, 6.9 MPa, 32C. 
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may soften. If the host polymer does not significantly affect microsphere buckling, then 

the net result is increased buckling at lower pressures. This will cause a slightly lower 

bulk modulus at low pressures (generally below the pressures of interest for this study) 

and a correspondingly higher bulk modulus at higher pressures. This is shown in Figure 

22 to Figure 25 for MA and MB. Conversely, it is theorized that the high stiffness of MC 

serves to impede microsphere buckling at low temperatures, resulting in an overall higher 

material bulk modulus. However, as temperature increases and MC becomes 

considerably softer, more microspheres are able to buckle, and the overall bulk modulus 

decreases. This is shown in Figure 26 and Figure 27. In the figures below, the initial 

slope of the TL curve is indicative of the static bulk modulus at that test condition. It can 

be seen that these values are very similar between temperatures for MA1, and for MB1 at 

2.8 MPa. However, even if the storage modulus is relatively unchanged, the temperature 

difference may still significantly affect damping. This effect can be observed by noting 

the significant change in the higher frequency TL dips; the more pronounced dips at 

higher frequencies are indicative of lower damping at higher temperatures for MA1, 

which is corroborated by the material property estimates in Table 12. 
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Figure 22: MA1 model and experimental TL at 2.8 MPa and varying temperature.  

 Reduced experimental data and ▬ Best fit model, 26C;  Reduced experimental data 

and ▬ ▬ Best fit model, 53C. 

 

Figure 23: MA1 model and experimental TL at 6.9 MPa and varying temperature.  

 Reduced experimental data and ▬ Best fit model, 32C;  Reduced experimental data 

and ▬ ▬ Best fit model, 53C. 
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Figure 24: MB1 model and experimental TL at 2.8 MPa and varying temperature.  

 Reduced experimental data and ▬ Best fit model, 26C;  Reduced experimental data 

and ▬ ▬ Best fit model, 48C. 

 

Figure 25: MB1 model and experimental TL at 6.9 MPa and varying temperature.  

 Reduced experimental data and ▬ Best fit model, 32C;  Reduced experimental data 

and ▬ ▬ Best fit model, 49C. 
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Figure 26: MC1 model and experimental TL at 2.8 MPa and varying temperature.  

 Reduced experimental data and ▬ Best fit model, 26C;  Reduced experimental data 

and ▬ ▬ Best fit model, 41C;  Reduced experimental data and ▪ ▪ Best fit model, 49C. 

 

Figure 27: MC1 model and experimental TL at 6.9 MPa and varying temperature.  

 Reduced experimental data and ▬ Best fit model, 32C;  Reduced experimental data 

and ▬ ▬ Best fit model, 44C;  Reduced experimental data and ▪ ▪ Best fit model, 50C. 
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interest, 2.8 and 6.9 MPa, as shown in Figure 28 and Figure 29. In both cases, the test 

pressures are above Pcr0, and the smaller spheres of type 2 produce a lower bulk modulus, 

resulting in higher TL at low frequencies as shown. These results also provide an 

opportunity to revisit the two estimates for μ that were earlier attempted. In both cases, 

the difference in TL between the two μ estimates is noticeable but not large. At 2.8 MPa, 

both MB2 models also show a low frequency resonance around 130 Hz which is offset 

from the experimental resonance at about 170 Hz; however, not enough information is 

available to fully determine whether this is due to a poor μ estimation or some other 

cause. 

 

Figure 28: MB model and experimental TL data to compare microsphere types at 2.8 

MPa pressure and similar temperatures.  MB1 reduced experimental data and ▬ Best 

fit model, 48C;  MB2 reduced experimental data, ▬ ▬ Best fit model v1, and ▪ ▪ Best 

fit model v2, 51C. 
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Figure 29: MB model and experimental TL data to compare microsphere types at 6.9 

MPa pressure and similar temperatures. MB1 reduced experimental data and ▬ Best 

fit model, 49C;  MB2 reduced experimental data, ▬ ▬ Best fit model v1, and ▪ ▪ Best 

fit model v2, 51C. 

Similar to the comparison for MB, MC can also be examined with the two 

different types of microspheres. In this case, shown in Figure 30 through Figure 33, the 

results are very similar for both high and low temperatures and pressures. The reason for 

this is uncertain at this time; it appears that the host polymer dominates the TL response 

of this liner, to the detriment of any particular microspheres contained therein. In this 

case, like MB, the two μ estimates provide similar but not identical results. 
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Figure 30: MC model and experimental TL data to compare microsphere types at 2.8 

MPa pressure and similar low temperatures.  MC1 reduced experimental data and  

▬ Best fit model, 26C;  MC2 reduced experimental data, ▬ ▬ Best fit model v1, and 

▪ ▪ Best fit model v2, 26C. 

 

Figure 31: MC model and experimental TL data to compare microsphere types at 6.9 

MPa pressure and similar low temperatures.  MC1 reduced experimental data and  

▬ Best fit model, 32C;  MC2 reduced experimental data, ▬ ▬ Best fit model v1, and  

▪ ▪ Best fit model v2, 33C. 
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Figure 32: MC model and experimental TL data to compare microsphere types at 2.8 

MPa pressure and similar high temperatures.  MC1 reduced experimental data and  

▬ Best fit model, 49C;  MC2 reduced experimental data, ▬ ▬ Best fit model v1, and 

▪ ▪ Best fit model v2, 52C. 

 

Figure 33: MC model and experimental TL data to compare microsphere types at 6.9 

MPa pressure and similar high temperatures.  MC1 reduced experimental data and  

▬ Best fit model, 50C;  MC2 reduced experimental data, ▬ ▬ Best fit model v1, and 

▪ ▪ Best fit model v2, 53C. 

To further illustrate the effect of the matrix polymer, a comparison at a few 

different test conditions is shown for MA1, MB1, and MC1 in Figure 34 though Figure 

0

5

10

15

20

25

30

35

0 500 1000 1500 2000

T
L

 (
d

B
)

Frequency (Hz)

0

2

4

6

8

10

12

14

16

0 1000 2000 3000 4000

T
L

 (
d

B
)

Frequency (Hz)



85 

37 below. Notably, MA1 gives the best TL performance at lower frequencies for all 

cases. MC1 has the worst performance at lower temperatures, but is comparable to MB1 

at the higher test temperatures. 

 

Figure 34: TL comparison between three host polymers containing type 1 microspheres at 

2.8 MPa and low temperature.  MA1 reduced experimental data and ▬ Best fit model, 

26C;  MB1 reduced experimental data and ▬ ▬ Best fit model, 26C;  MC1 reduced 

experimental data and ▪ ▪ Best fit model, 2.8 MPa, 26C. 
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Figure 35: TL comparison between three host polymers containing type 1 microspheres at 

2.8 MPa and high temperature.  MA1 reduced experimental data and ▬ Best fit model, 

53C;  MB1 reduced experimental data and ▬ ▬ Best fit model, 48C;  MC1 reduced 

experimental data and ▪ ▪ Best fit model, 49C. 

 

Figure 36: TL comparison between three host polymers containing type 1 microspheres at 

6.9 MPa and low temperature. MA1 reduced experimental data and ▬ Best fit model, 

32C;  MB1 reduced experimental data and ▬ ▬ Best fit model, 32C;  MC1 reduced 

experimental data and ▪ ▪ Best fit model, 32C. 
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Figure 37: TL comparison between three host polymers containing type 1 microspheres at 

6.9 MPa and high temperature.  MA1 reduced experimental data and ▬ Best fit model, 

53C;  MB1 reduced experimental data and ▬ ▬ Best fit model, 49C;  MC1 reduced 

experimental data and ▪ ▪ Best fit model, 50C. 

In addition to the specific comparisons made above, some mention is warranted of 

the general TL fit between best-fit models and the experimental data. The models reflect 

the overall TL trend found experimentally, and in some cases indicate low frequency 

resonances close to what is experimentally found (for example, MA1 in Figure 22). 

Above about 500 Hz, discrepancies generally appear, in which the models are much 

smoother than experimental local TL variations, or indicate local resonances which do 

not align well with experimental data. These discrepancies may be attributed, at least in 

part, to two obvious causes. First, confidence in the experimental results is lower at these 

higher frequencies (see Figure 3), so the results may be partly due to artifacts which are 

not completely removed from the data. Additionally, cumulative errors from the λ linear 

material property model will be more evident at higher frequencies; and as pressure 

increases, the μ estimates also likely diverge further from their true values. 
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5.4 Model sensitivity studies 

In order to better understand the accuracy of the material property estimates in 

Section 5.3, a sensitivity study was performed on the obtained estimates. Because RMSE 

is not a very smooth function of the viscoelastic moduli, and because the modulus values 

are only analyzed with respect to λ, a small differential approach to sensitivity testing is 

not reliable. Instead, sensitivity is tested by effecting a large relative changes in one 

modulus, while keeping another modulus constant. By changing which modulus is kept 

constant, the relative sensitivity to changes in each modulus can be estimated. For these 

tests, λ and μ are modified, with either the other Lamé parameter or K held constant. The 

results are shown in Table 13 for multiplication factors of 0.5 and 2 for μ, and in Table 14 

for a multiplication factor of 0.5 for λ. 2λ is not used since for invariant K, it would 

generally cause μ to assume negative values, which is non-physical. In these tables, only 

values for the lowest and highest temperatures at 2.8 and 6.9 MPa pressure are used. 

Additionally, in Table 13 one entry is omitted, since in the invariant K case, the λ loss 

modulus would fall below zero, which is again non-physical. 
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Table 13: Sensitivity study results, varying μ. Shaded cells show where RMSE change is 

higher with invariant K than invariant λ. 

Material Pressure 

(MPa) 

Measured 

temp (C) 

Nominal 

RMSE 

(dB) 

μ 

multiplier 

Change (dB) 

in RMSE, 

invariant λ 

Change (dB) 

in RMSE, 

invariant K 

MA1 2.8 26 1.36 
0.5 -0.07 -0.17 

2 1.39 1.30 

MA1 2.8 53 1.72 
0.5 0.05 -0.23 

2 1.81 1.39 

MA1 6.9 32 0.42 
0.5 0.02 0.01 

2 0.11 0.11 

MA1 6.9 53 0.58 
0.5 0.05 0.05 

2 0.25 0.24 

MB1 2.8 26 0.83 
0.5 0.22 0.05 

2 0.37 0.23 

MB1 2.8 48 0.77 
0.5 0.03 -0.03 

2 0.21 0.23 

MB1 6.9 32 0.33 
0.5 0.01 0.00 

2 0.06 0.02 

MB1 6.9 49 0.35 
0.5 -0.01 -0.01 

2 0.00 0.00 

MB2 v1 2.8 45 1.17 
0.5 -0.18 -0.24 

2 0.50 0.46 

MB2 v1 2.8 60 1.67 0.5 -0.13 -0.21 

MB2 v1 6.9 45 0.38 
0.5 -0.01 -0.01 

2 0.01 0.01 

MB2 v1 6.9 62 1.05 
0.5 -0.08 -0.08 

2 0.02 0.02 

MC1 2.8 26 0.82 
0.5 0.35 0.15 

2 0.04 0.06 

MC1 2.8 49 1.14 
0.5 0.08 0.07 

2 -0.13 -0.15 

MC1 6.9 32 0.43 
0.5 0.00 -0.00 

2 0.05 0.04 

MC1 6.9 50 0.35 
0.5 -0.00 -0.00 

2 0.00 0.00 

MC2 v1 2.8 26 0.82 
0.5 0.48 0.29 

2 0.94 0.76 

MC2 v1 2.8 52 0.73 
0.5 0.11 0.06 

2 0.32 0.32 

MC2 v1 6.9 33 0.62 
0.5 0.01 0.00 

2 0.02 0.01 

MC2 v1 6.9 53 0.73 
0.5 0.03 0.02 

2 -0.05 -0.03 
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Table 14: Sensitivity study results, varying λ. Shaded cells show where RMSE change is 

higher with invariant K than invariant μ. 

Material Pressure 

(MPa) 

Measured 

temp (C) 

Nominal 

RMSE 

(dB) 

λ 

multiplier 

Change (dB) 

in RMSE, 

invariant μ 

Change (dB) 

in RMSE, 

invariant K 

MA1 2.8 26 1.36 0.5 3.54 1.41 

MA1 2.8 53 1.72 0.5 6.95 2.52 

MA1 6.9 32 0.42 0.5 3.92 1.24 

MA1 6.9 53 0.58 0.5 4.23 3.38 

MB1 2.8 26 0.83 0.5 2.93 0.73 

MB1 2.8 48 0.77 0.5 3.80 2.09 

MB1 6.9 32 0.33 0.5 3.12 1.15 

MB1 6.9 49 0.35 0.5 2.90 0.49 

MB2 v1 2.8 45 1.17 0.5 3.07 3.10 

MB2 v1 2.8 60 1.67 0.5 5.74 4.07 

MB2 v1 6.9 45 0.38 0.5 3.42 1.69 

MB2 v1 6.9 62 1.05 0.5 2.81 2.43 

MC1 2.8 26 0.82 0.5 2.64 2.68 

MC1 2.8 49 1.14 0.5 2.74 1.36 

MC1 6.9 32 0.43 0.5 2.44 0.38 

MC1 6.9 50 0.35 0.5 3.26 0.61 

MC2 v1 2.8 26 0.82 0.5 2.32 0.73 

MC2 v1 2.8 52 0.73 0.5 3.04 1.73 

MC2 v1 6.9 33 0.62 0.5 2.35 0.39 

MC2 v1 6.9 53 0.73 0.5 2.96 1.00 

 

Several interesting conclusions can be reached from these two tables. First 

considering Table 13, it may be noted that in several cases, changing μ actually decreases 

the root mean squared error. Since μ is estimated from manufacturer’s data at different 

conditions, this is to be expected. Looking at the difference between invariant λ and K, it 

is seen that except in three of 39 cases (shaded), RMSE increases more with constant λ 

than with constant K. Moreover, in each of those three cases, the difference is only in 

hundredths of decibels. Due to the small values of μ relative to λ, λ is approximately 

equal to K, and this relation has been employed previously in this chapter. In spite of this 
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near equality, however, the overall result of Table 13 is to show that RMSE stays more 

constant with invariant K, and that the transmission loss is therefore more sensitive in 

general to K than to λ. In Table 14, the situation is much the same, but even more 

dramatically so. In only two of 20 cases (again shaded) are RMSE increases greater with 

invariant K than with invariant μ, and again in these cases the difference is only in 

hundredths of decibels. However, in the majority of the remaining cases, the RMSE 

change of invariant K is more than one decibel lower than that of invariant μ; thus, RMSE 

is more sensitive to K than to μ.  

In Sections 5.2 and 5.3, many aspects of the material model were developed using 

K. Since K is now shown to be more influential in simulation results than either λ or μ, 

some simplifications may be possible for the acoustic model presented in Chapter 4. 

These implications are further explored in Chapter 6. 

5.5 Summary 

While many improvements can be made, the material model developed in this 

chapter provides many insights into syntactic foam behavior. The microsphere buckling 

model helps to quantify liner compression and λ or K variation with pressure, and gives a 

rough indication of how compression is related to material composition. Best-fit model 

predictions are correlated with the buckling model for four materials at the lowest 

pressure considered (2.9 MPa), and are able to match the major TL trends in most 

experimental data sets. Results from the different matrix polymers show how the polymer 

choice can significantly affect the composite performance. Pressure and temperature 

studies show how both the storage and loss moduli can show significant variation under 
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different conditions; and a sensitivity study indicates the dominance of the material bulk 

modulus for prediction of transmission loss performance.   
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CHAPTER 6 

MODEL SIMPLIFICATION AND LINER OPTIMIZATION 

6.1 Overview 

In this chapter, the merits of two model simplifications are considered, and one 

such simplified model is used in an optimization procedure to design a syntactic foam 

lined suppressor suitable for use in a mobile hydraulic excavator. The simplified models 

allow for much faster device simulations, and in one case require the use of only a single 

viscoelastic modulus, further simplifying the design parameters. The optimization gives a 

practical application of the model (simplified or otherwise) for use in common 

mechanical machinery, in such a way as to make comparisons to competing technologies 

easier. The first set of optimization results are also validated against the original model, 

to ensure that that the employed simplified model does not significantly alter the device 

predictions. 

6.2 Model simplifications 

In section 5.4, it is argued that bulk modulus K is more relevant to transmission 

loss predictions of the prototype noise suppressor than either of the Lamé parameters λ or 

μ. If this is true, then it is possible that some simplifications can be made to the model 

without significantly changing the simulation results. Two simplifications are discussed 

below, followed by a critical evaluation. 

6.2.1 Bulk modulus model 

This first simplification attempts to make the suppressor model dependent only on 

a single viscoelastic parameter. All reference to μ is removed, and λ is replaced by K in 
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the model in Chapter 4. For comparisons to estimated parameters found in Chapter 5, the 

moduli are converted by setting 

 
2

3
K    , (6.1) 

 new new0, K   . (6.2) 

This simplification sets vector potential   to zero automatically. This means that the 

model does not calculate shear stress or shear wave propagation in the liner, so in 

Equations (4.28) through (4.35), all terms containing μ, kT, or k2rT,n are identically zero. 

Additionally, the shear stress boundary conditions expressed in Equations (4.41), (4.42), 

(4.66), and (4.67) are inapplicable to the simplified model. Consequently, the number of 

modes found in region 2 can now be equal to the number found in regions 1 and 3; that is,  

 M N , (6.3) 

thus avoiding the problem of having more unknown modal amplitudes than constraint 

equations. 

6.2.2 Non-shear model 

In this second simplification, again only longitudinal waves are considered, but 

this is accomplished without removing the shear modulus entirely. The motivation behind 

this model is that the inclusion of two moduli might better represent more of the 

experimental TL resonances than just a single modulus. Physically, this gives a more 

accurate accounting of longitudinal waves than the bulk modulus model, since μ does 

affect the radial longitudinal wave stress in Equation (4.31). However, by ignoring 

interactions with shear waves, this model may still produce some inaccuracies. To 

implement this model,   is directly set to zero, but λ and μ are unchanged, so the model 
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results are still a function of two elastic moduli. Thus, in the normal stress Equations 

(4.31) through (4.33), the terms containing μ but not shear wavenumbers kT, or k2rT,n are 

kept. As in the previous simplification, all terms containing shear wavenumbers are 

removed, as is the same list of equations involving shear boundary conditions; and 

Equation (6.3) is employed for this simplification as well. 

6.2.3 Evaluation of model simplifications 

In this section, the two simplified models just described are evaluated to 

determine their accuracy compared to the nominal simulation results. The bulk modulus 

model in Section 6.2.1 and the non-shear model in Section 6.2.2 will be compared to the 

non-simplified model, which will be referred to as the original model. Table 15 shows the 

RMSE versus experiment for each of the three models. In the case of the original model, 

the results for selected test cases are simply repeated from Chapter 5; the other models 

are run for the same test cases, and where RMSE improves over the original model, the 

cell is shaded gray. 
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Table 15: Evaluation of simplified models. Shaded cells indicate lower RMSE than the 

original model. 

Material Pressure (MPa) Measured temp (C) RMSE (dB) for model: 

Original Bulk modulus Non-shear 

MA1 2.8 26 1.36 1.19 2.09 

MA1 2.8 53 1.72 1.54 2.93 

MA1 6.9 32 0.42 0.44 0.46 

MA1 6.9 53 0.58 0.58 0.59 

MB1 2.8 26 0.83 1.22 0.81 

MB1 2.8 48 0.77 0.76 0.86 

MB1 6.9 32 0.33 0.33 0.32 

MB1 6.9 49 0.35 0.34 0.35 

MB2 v1 2.8 45 1.17 0.99 1.56 

MB2 v1 2.8 60 1.67 1.25 2.29 

MB2 v1 6.9 45 0.38 0.37 0.38 

MB2 v1 6.9 62 1.05 0.96 0.95 

MC1 2.8 26 0.82 1.04 0.86 

MC1 2.8 49 1.14 1.25 1.18 

MC1 6.9 32 0.43 0.44 0.54 

MC1 6.9 50 0.35 0.35 0.35 

MC2 v1 2.8 26 0.82 1.38 1.01 

MC2 v1 2.8 52 0.73 0.89 0.90 

MC2 v1 6.9 33 0.62 0.63 0.69 

MC2 v1 6.9 53 0.73 0.74 0.74 

 

In these comparisons, the bulk modulus model performs very well. In eight of 20 

tests, it has a lower RMSE than the original model, and in only five of 20 does its RMSE 

exceed the original model by more than 0.1 dB. The non-shear model gives similar error 

to the original model in a large fraction of the cases, but higher error in others; its RSME 

exceeds the original model by more than 0.1 dB in seven cases. Notably, the RMSE 

values are very similar for all the 6.9 MPa tests, while for the lower pressure 2.8 MPa, the 

non-shear model varies in its performance versus both the original and the bulk modulus 

models, depending on the material being tested. For MA1 and MB2 v1, the non-shear 

model performs worse than both the original and the bulk modulus models; while for 

MB1 and MC1, the non-shear model has similar error to the original model, and lower 
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error than the bulk modulus model. For MC2 v1, the non-shear model has higher error 

than the original model, but lower error than the bulk modulus model only for the low 

temperature (26 C) case. Some of these results are discussed in the following paragraphs. 

Figure 38 and Figure 39 illustrate some of the 6.9 MPa cases, in which the three 

models give essentially identical RMSE results. It can be seen that there is little variation 

in TL predictions over the whole range of frequencies shown. 

 

Figure 38: Experimental and model TL for MB1 at 6.9 MPa, 32 C.  Reduced 

experimental data; ▬ Original model; ▬ ▬ Bulk modulus model; ▪ ▪ Non-shear model. 
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Figure 39: Experimental and model TL for MC2 v1 at 6.9 MPa, 53 C.  Reduced 

experimental data; ▬ Original model; ▬ ▬ Bulk modulus model; ▪ ▪ Non-shear model. 

Figure 40 through Figure 43 show several examples at a system pressure of 2.8 

MPa in which the bulk modulus model gives better RMSE than the non-shear model. The 

non-shear model tends to model the first narrow band resonance peak shown by the 

original model below about 200 Hz, but it also exhibits strong resonances at higher 

frequencies that do not match with the experimental data or original model. The bulk 

modulus model, on the other hand, does not exhibit any narrow band resonance behavior, 

but smoothly represents the experimental data and original model data without any major 

deviations. 
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Figure 40: Experimental and model TL for MA1 at 2.8 MPa, 26 C.  Reduced 

experimental data; ▬ Original model; ▬ ▬ Bulk modulus model; ▪ ▪ Non-shear model. 

 

Figure 41: Experimental and model TL for MA1 at 2.8 MPa, 53 C.  Reduced 

experimental data; ▬ Original model; ▬ ▬ Bulk modulus model; ▪ ▪ Non-shear model. 
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Figure 42: Experimental and model TL for MB2 v1 at 2.8 MPa, 45 C.  Reduced 

experimental data; ▬ Original model; ▬ ▬ Bulk modulus model; ▪ ▪ Non-shear model. 

 

Figure 43: Experimental and model TL for MB2 v1 at 2.8 MPa, 60 C.  Reduced 

experimental data; ▬ Original model; ▬ ▬ Bulk modulus model; ▪ ▪ Non-shear model. 
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prediction dips slightly around 1500 Hz; this dip is not observed in the original model, 

but it still provides a better fit to the experimental data than the bulk modulus model. 

 

Figure 44: Experimental and model TL for MB1 at 2.8 MPa, 26 C.  Reduced 

experimental data; ▬ Original model; ▬ ▬ Bulk modulus model; ▪ ▪ Non-shear model. 

 

Figure 45: Experimental and model TL for MC1 at 2.8 MPa, 26 C.  Reduced 

experimental data; ▬ Original model; ▬ ▬ Bulk modulus model; ▪ ▪ Non-shear model. 
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Figure 46: Experimental and model TL for MC2 v1 at 2.8 MPa, 26 C.  Reduced 

experimental data; ▬ Original model; ▬ ▬ Bulk modulus model; ▪ ▪ Non-shear model. 

Overall, both model simplifications approximately match or improve on the 

original model predictions for certain cases. The non-shear model captures some of the 

low frequency resonances that the bulk modulus model does not, but in these cases it also 

tends to generate significant higher frequency resonances which match neither the 

original model nor the experimental data. The bulk modulus model does not capture all of 

the finer details of the original model, but it has the simplicity of relying on only a single 

modulus, and performs sufficiently well for the vast majority of the cases that it should 

have significant utility for preliminary predictive purposes. 

6.3 Optimization 

While the current set of syntactic foam samples has been shown to effectively 

reduce noise in the frequency ranges of interest for many hydraulic systems, the nominal 

critical pressures for both sets of microspheres are less than 2.5 MPa, while typical 
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in Equation (5.5), critical pressures can be increased by changing the microsphere 

material properties, decreasing their radius, or increasing their wall thickness. These 

higher pressure microspheres are not currently available off the shelf; the optimizations in 

this section are meant to show whether there is utility in developing such microspheres 

for noise control use. 

6.3.1 Optimization objective 

For this optimization exercise, it is desired to reduce hydraulic noise for a 

particular task using a mobile hydraulically actuated excavator. Gruber[78] has done 

some work optimizing sets of pressurized hydraulic noise suppressors, such as those 

discussed in Chapter 7, for excavator work cycles, and has published some experimental 

noise measurements from Eaton Corporation to use as reference values. Some of his data 

are utilized for the present optimization, in which it is desired to reduce the noise in the 

boom actuation subsystem during a particular operation. 

The typical noise profiles of the pumping system in question are available at four 

pressures: 3.4, 6.9, 13.8, and 20.7 MPa (500, 1000, 2000, and 3000 psi); and are shown in 

Figure 47, normalized to a maximum pressure value of unity for the entire measured 

range of 10 to 5100 Hz. A subset of these data are examined in dB scale (normalized so 

unity pressure equals 0 dB) in Figure 48. Here the data are viewed in 200 Hz bands 

centered from 100 to 1500 Hz, and looking only at the values above -50 dB. It is clearly 

seen in the figure that the majority of the excitation occurs below 500 Hz. To further 

clarify the excitation, the combined levels for several frequency bands are shown in Table 

16, using the same normalized levels. Here it is seen that the highest overall levels are 
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clearly experienced at the highest two system pressures, and any noise contributions in 

the frequencies above 2000 Hz are negligible. 

 

Figure 47: Linear excitation pressure values, normalized to unity. System pressures:  

 3.4 MPa;  6.9 MPa;  13.8 MPa;  20.7 MPa. 

 

Figure 48: Excitation levels at each frequency, limited to highest amplitude values. 

System pressures:  3.4 MPa;  6.9 MPa;  13.8 MPa;  20.7 MPa. 
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Table 16: Frequency band levels of noise excitation. 

Pressure (MPa) 
Levels (normalized dB) 

10-500 Hz 500-2000 Hz 2000-5100 Hz 10-5100 Hz (Total) 

3.4 5.29 -30.23 -68.45 5.43 

6.9 11.02 -12.63 -55.45 11.58 

13.8 16.45 -3.41 -44.31 17.30 

20.7 16.67 -4.06 -42.00 17.44 

 

The working pressures of the actual excavator versus time are continuous. The 

average data for a run are discretized into pressure bins with a resolution of 0.7 MPa (100 

psi), as shown in Figure 49 for a back-filling task, where the sum of all the time fraction 

values is unity. 

 

Figure 49: Time fraction of boom subsystem at each pressure, back-filling task (bins of 

0.7 MPa) 

Comparing Figure 49 to Table 16, it is obvious that representative noise profiles 

are not provided for the entire set of system pressures. To correlate the entire range of 

pressures and frequencies, several approximations are made. First, noise profiles are 

created for 10.3 and 17.2 MPa (1500 and 2500 psi) by interpolating the linear pressure 

values. The pressure values for the time fractions are also consolidated into bins centered 
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at 3.4, 6.9, 10.3, 13.8, and 17.2 MPa. Each of the original values is aggregated into the 

nearest consolidated bin, except for values below 1.7 MPa, which are considered “idle 

time” with negligible contribution to the noise profile. Notably, there is no 20.7 MPa 

pressure bin, as the maximum pressures measured for this work profile are below that 

value. The time weights are re-normalized such that their sum is again unity, and the 

resulting time-pressure correlation is shown in Figure 50. 

 

Figure 50: Time fraction of boom subsystem at each condensed pressure, back-filling 

task (bins of 3.4 MPa). 

Since this profile is weighted largely toward low pressures, two other time 

profiles are considered. The condensed profile for a trenching task is shown in Figure 51, 
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Figure 51: Time fraction of boom subsystem at each condensed pressure, trenching task 

(bins of 3.4 MPa). 

With the excitations defined, an objective function for the optimization can now 

be discussed. In the several optimizations to follow, the objective function F to be 

minimized is 

    2, 1,
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M
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    , (6.4) 

where   is the vector of optimization input parameters, to be defined later; M = 5 is the 

number of pressures being considered; Tm is the time fraction of each pressure as shown, 

for example, in Figure 50; LP1,m is the overall excitation level at each system pressure; 

and  2,P mL   is the reduced level at each pressure after transmission loss is considered. 

Letting Pmn be the (normalized) pressure amplitude of the excitation at system pressure 

number m and frequency number n out of N, and likewise  TLmn   the transmission loss 

in dB at the same pressure and frequency, the levels may be defined as 
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  1, 1020logP mn mnL P , (6.7) 

    2, 1, TLP mn mn mnL L   . (6.8) 

In this way, the negative of the objective function represents the time-weighted 

overall transmission loss of the system, so the optimization maximizes a time-weighted 

transmission loss over the grouped operating pressure conditions. For the analyses to 

follow, the upper frequency limit of interest will be 2000 Hz, since the excitation sound 

power above this limit is negligible. 

6.3.2 Material model and constraints 

To simplify the optimization to a tractable level, it is necessary to make some 

assumptions and simplifications with regards to the material model used. The theoretical 

material used in this optimization will follow the procedure outlined in Section 5.2.1 for 

the determination of bulk modulus, and the bulk modulus model in Section 6.2.1 to 

estimate transmission loss. 

Static bulk modulus K0 depends on the host polymer, as well as the Pcr 

distribution of the microspheres. The manufacturer of the prototype liners indicated that a 

microsphere volume fraction of 0.4 was approximately the highest value that could be 

cast without difficulty in degassing, so this is assumed to be the volume fraction for all 

optimized liners. Two different Pcr distributions are considered. 

In Optimization 1, the distribution of log10(Pcr) is considered to be normal, as in 

Section 5.2. The optimization parameter vector   consists of α1 = Pcr0 and α 2 = σs. Pcr0 is 

allowed to vary between 3.4 and 20.7 MPa, and σs between 0.01 and 0.3 
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Optimization 2 is like Optimization 1, except that two distributions of 

microspheres are used. The parameter vector   now consists of four values, which are in 

order: Pcr0,1, Pcr0,2, σ1, and σ2. Equation (5.10) is modified to be 
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 , (6.9) 

and Equations (5.8) and (5.15) are calculated for each set of GU,i, GB,i, and σs,i. The two 

populations of microspheres are both assumed to have the same initial volume fraction 

FU0,1 = FU0,2 = 0.2, and equal FH, as discussed below. 

For these optimizations, KP = KU = KH = 400 MPa is taken as an arbitrary value 

representative of MA and MB, and FG0 = 0. Three different values of FH are considered 

in these optimizations. As a best-case scenario, FH = 0 is used. Since these spheres are 

expected to buckle at much higher pressures than those used in the current generation of 

liners, FH = 0.32 is used as calculated for MB2, as well as FH = 0.5, to illustrate the 

effects of thicker shells. Of course, different microsphere shell materials will also affect 

the needed shell thickness; the range of values used here is meant to be illustrative. 

In all optimizations, K0 is found as K in Equation (5.19) by applying a small P  

to the model and numerically calculating the differential a value. Since no exact models 

are known, dynamic K is estimated based on observed trends in Chapter 5. For a given 

static K0 and f in Hz, they are 
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6.3.3 Optimization results 

As with the optimizations in Chapter 4 and Chapter 5, a simulated annealing 

solution method is used. The resulting optimization parameters and objective function 

values are summarized in Table 17 for the back fill task, in Table 18 for the trenching 

task, and in Table 19 for the equal time weight case. In each case, it can be seen that the 

optimization with two sets of microspheres generates a lower objective function by about 

1 dB (highlighted cells), and the minimum objective function increases as FH increases; 

these results are as expected. It may also be noted that within a single task and 

optimization type, the optimization parameters do not generally change much based on 

the FH value. A significant reason for performing these optimizations is to compare the 

current type of suppressor to competing technologies. This is done in Chapter 7, and 

discussion of this comparison is saved for Section 7.5 

Table 17: Optimization results for back fill task. Type 2 optimization results with lower 

objective functions for each FH are highlighted. 

Optimization 

type 

FH Pcr0,1 

(MPa) 

Pcr0,2 

(MPa) 

σs,1 σs,2 Objective function 

value (dB) 

1 0 6.70 - 0.039 - -19.57 

2 0 4.18 10.50 0.023 0.019 -20.47 

1 0.32 6.70 - 0.038 - -17.12 

2 0.32 3.55 9.62 0.010 0.020 -19.84 

1 0.5 6.66 - 0.038 - -15.31 

2 0.5 3.90 9.74 0.020 0.019 -16.30 
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Table 18: Optimization results for trenching task. Type 2 optimization results with lower 

objective functions for each FH are highlighted. 

Optimization 

type 

FH Pcr0,1 

(MPa) 

Pcr0,2 

(MPa) 

σs,1 σs,2 Objective function 

value (dB) 

1 0 8.80 - 0.038 - -18.74 

2 0 5.33 12.72 0.033 0.013 -20.00 

1 0.32 11.19 - 0.020 - -16.34 

2 0.32 5.31 12.51 0.032 0.013 -17.67 

1 0.5 9.15 - 0.036 - -14.72 

2 0.5 5.68 12.40 0.035 0.012 -15.86 

 

Table 19: Optimization results for equal time weight case. Type 2 optimization results 

with lower objective functions for each FH are highlighted. 

Optimization 

type 

FH Pcr0,1 

(MPa) 

Pcr0,2 

(MPa) 

σs,1 σs,2 Objective function 

value (dB) 

1 0 9.04 - 0.040 - -18.20 

2 0 7.07 14.14 0.036 0.013 -19.02 

1 0.32 9.20 - 0.038 - -15.95 

2 0.32 5.90 13.85 0.033 0.014 -16.79 

1 0.5 9.20 - 0.038 - -14.27 

2 0.5 6.08 13.92 0.033 0.014 -15.01 

 

Figure 52 shows the simulated radial compression of both optimization solutions 

for the back fill task, FH = 0, in a similar style to Figure 14 through Figure 18. Figure 53 

shows the corresponding K0. Comparing Optimization 1 to Optimization 2, the 

compression curves and K0 estimates are very similar, but Optimization 2 achieves about 

a 1 dB marginal improvement by having a slightly lower K0 at the center values of the 

3.4, 10.3, and 13.8 MPa pressure bins. If the optimization were performed over many 

more discrete pressures to better simulate a continuous operating range, it might be the 

case that having two sets of microspheres would have even less of an advantage; but if 

the operating pressure range were wider or more concentrated into specific pressure 

ranges, the two-population method might prove more beneficial. Compositions with two 
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sets of microspheres might be especially useful in a system with high and low pressure 

modes where the pressures are significantly different. In this case, a material could be 

designed, using a small buckling pressure standard deviation, to be compressible mainly 

at those two pressures, while staying relatively stiff at the intermediate pressures. This 

concept could theoretically be extended to a system with any discrete number of working 

pressures, using an equal number of microsphere populations. 

 

Figure 52: Simulated radial compression of optimized liner inserts, back fill task, FH = 0. 

▬ Optimization 1; ▬ ▬ Optimization 2. 
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Figure 53: Static bulk modulus K0 of optimized liner inserts, back fill task, FH = 0.  

▬ Optimization 1; ▬ ▬ Optimization 2. 

6.3.4 Comparison to two modulus model 

While it has been shown that the bulk modulus model gives similar or improved 

matches to experimental data compared to the original model, it is helpful to also make a 

check with regards to the optimized models as well. This analysis is performed for 

Optimizations 1 and 2 of the back fill task, FH = 0. For this analysis, the optimized bulk 

moduli are separated into λ and μ values using the μ value for MA1 at 53 C, as was used 

in Chapter 5, and then finding λ with Equation (6.1). The objective function is calculated 

for the original model, and the resulting values are compared to the bulk modulus model 

values in Table 20. The results show that the original model indicates a slightly worse 

objective function, but values differ by about 1.5 dB or less 
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Table 20: Comparison of optimization results (back fill task, FH = 0) using original and 

bulk modulus models. 

 Bulk modulus model 

objective function (dB) 

Original model objective 

function (dB) 

Optimization 1 -19.57 -18.04 

Optimization 2 -20.47 -19.47 

 

To further illuminate the comparison, TL predictions for both the bulk modulus 

and the full two modulus models are shown for three pressures with the material 

properties determined for Optimization 2. At the lowest simulated pressure, 3.4 MPa, 

there is significant deviation in the TL predictions over the frequency range of interest, as 

seen in Figure 54; however, they are very similar at the lowest frequencies, where much 

of the excitation lies. At the next highest pressure of 6.9 MPa, the two TL curves are 

largely converged in an average sense, with variations due to low-bandwidth resonances. 

This is shown in Figure 55. As the pressure increases, the two curves generally continue 

to converge; this is illustrated for 13.8 MPa in Figure 56. The static bulk modulus values, 

along with the 10 Hz values for λ’ and μ’, are shown in Table 21. Qualitatively, it is 

expected that higher λ with respect to μ will result in greater agreement between the two 

models, so it is unsurprising that at the lowest system pressure, where λ’ is lowest, the 

discrepancy is greatest. Damping is also a factor in this comparison. Higher damping 

reduces the amplitude of resonances and anti-resonances, such that the difference 

between the two models will be expected to be smaller. In these models, both the values 

of μ’ and of damping in general are only roughly estimated, so it is possible that the 

results from a physical system would be somewhat better or worse than what is predicted 

here. Additionally, the effects of temperature variations are not considered in these 

optimizations. However, these optimizations do clearly show that significant noise 
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reduction would be possible with microspheres utilizing an appropriate range of critical 

buckling pressures. 

 

Figure 54: Model comparison for back fill task, FH = 0, Optimization 2 results at 3.4 MPa 

system pressure. ▬ Original model; ▬ ▬ Bulk modulus model. 

 

Figure 55: Model comparison for back fill task, FH = 0,Optimization 2 results at 6.9 MPa 

system pressure. ▬ Original model; ▬ ▬ Bulk modulus model. 
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Figure 56: Model comparison for back fill task, FH = 0, Optimization 2 results at 13.8 

MPa system pressure. ▬ Original model; ▬ ▬ Bulk modulus model. 

Table 21: Modulus values for back fill task, FH = 0, Optimization 2. 

System pressure (MPa) K0 (MPa) Re(λ(10 Hz)) (MPa) Re(μ(10 Hz)) (MPa) 

3.4 15.0 12.6 3.6 

6.9 31.8 29.4 3.6 

10.3 22.8 20.5 3.6 

13.8 44.9 42.6 3.6 

17.2 133.8 131.8 3.6 

6.4 Summary 

In this chapter, it is shown that the model presented in Chapter 4 can be simplified 

considerably by using only the bulk modulus rather than considering the separate effects 

of λ and μ. While this simplified model does not capture all the resonance behavior of the 

system, it provides TL predictions sufficiently close to experimental data to be used to 

preliminary design analyses. In the second part of this chapter, the bulk modulus model is 

used to optimize the design of a future syntactic foam insert, based on the buckling 

pressure distribution of the microspheres, as introduced in Chapter 5. An optimization 

method is developed, and implemented for two specific excavator work cycles and an 
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arbitrary cycle with uniform system pressure distribution. The best optimization results 

give an estimated time-weighted reduction of about 20 dB for the fluid-borne noise in the 

boom actuation subsystem, and this value is validated using the full two modulus model. 

While more development is needed in the physical production of microspheres, the 

optimization shows that significant noise reduction can be achieved if such materials are 

made available.  
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CHAPTER 7 

ANALYSIS OF BLADDER STYLE SUPPRESSOR 

While the syntactic foam lined suppressors are the main focus of this thesis, an 

understanding of currently available devices is desirable as well. One reason for this is 

that the available bladder style devices are, like the prototype devices already discussed, 

not well modeled in the literature; thus, modeling work will be useful for a designer 

wishing to use these devices in the present. Additionally, the modeling and experimental 

work contained in this chapter are needed to compare the effectiveness of the new 

devices to what is already available, thereby allowing judgments to be made of the 

current and any future prototype devices. 

7.1 Model geometry 

The various components of the suppressor under consideration are shown in 

Figure 57. There is an inner cylindrical flow path; the hydraulic fluid reaches an outer 

chamber through a coarse perforation layer, a spacer in the form of a compression spring, 

and a thin, finely perforated layer. Outside the perforated section, a rubber bladder 

separates the hydraulic fluid from the pressurized nitrogen gas in the outermost section of 

the chamber. The thin perforate layer and rubber bladder are shown removed from the 

main assembly in part (a) of the figure; the spring separator is omitted in part (b). 

Dimension labels are shown in Figure 58. The inlet and outlet pipe radius is r0. The 

length of the suppressor is L plus inlet and outlet extension lengths L1 and L2. When the 

bladder is precharged to pressure Pc but the hydraulic system is unpressurized, the gas 

expands so that the bladder reaches the thin perforate layer at r1; when the hydraulic 
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system is pressurized to Ps, the gas compresses further and is constrained between the 

rigid outer shell at r2 and the rubber bladder at r3. 

 

 

Figure 57: Suppressor features. (a) Photograph of device cross section with thin perforate 

layer and rubber bladder removed from main body; (b) Modeling diagram, showing thin 

perforate layer and bladder in place 
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Figure 58: Suppressor geometry with dimensions for (a) unpressurized system, (b) 

pressurized system. When the system is not pressurized, the bladder is pushed against the 

thin perforate layer at r1; when system pressure is applied, the bladder moves to 

equilibrium at r3. 

Bladder radius r3 is determined by the suppressor geometry, as well as charge and 

system pressures Pc and Ps. When the bladder is precharged with nitrogen, the gas 

volume is known to be 

  2 2

0 2 1TV L r r  , (7.1) 

 1 2TL L L L   . (7.2) 

The mass of the nitrogen is found using the ideal gas law 

 0

0

cMPV
m

RT
 , (7.3) 

for molar mass M, temperature T0 in Kelvins, and universal gas constant R. At full system 

pressure Ps and working temperature T, the nitrogen mass remains constant, and the 

bladder radius is found by solving 
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  2 2
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s

mRT
V L r r

MP
   , (7.4) 

from which r3, the bladder radius, may be found. For this analysis to be valid, Ps must be 

greater than Pc. 

The density f and sound speed cf in the hydraulic fluid are assumed to be known 

and not to change with varying pressure or temperature. Additionally, the bladder at r3 is 

treated as a limp mass sheet with sheet density σb calculated from the bladder mass, 

length, and diameter at Ps. For bladder mass mb distributed evenly over length LT, 
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7.2 Acoustic propagation model 

For modeling purposes, the suppressor is divided into three axial regions, as 

shown in Figure 59. Region 1 includes the upstream (1U) and downstream (1D) pipes; 

region 2 represents the main body of the suppressor section, including the main hydraulic 

fluid flow path as well as the thin perforate layer, rubber bladder, and compressed 

nitrogen gas; and region 3 contains the upstream (3U) and downstream (3D) extension 

sections, including hydraulic fluid, rubber bladder, and compressed nitrogen layers. In 

general, the regions are referred to by number, with the U or D added only if the quantity 

differs between  the upstream and downstream portions. The axial references 0x   and 

x L  are also shown, with the positive x direction facing right. As illustrated in Figure 

60, each region R has forward and reverse travelling modes with unique modal 

amplitudes AR,n and BR,n for N modes, where n = 0 to N-1. For waves in regions 1U, 2, 

and 3U, modal amplitudes represent their values at 0x  ; for regions 1D and 3D, they 

are found at x L . 



122 

 

Figure 59: Model geometry with region labels 

 

Figure 60: Model geometry with wave pressure amplitude labels 

The elasticity of the hydraulic fluid and nitrogen gas (liner) are represented by 

Lamé parameters λf and λL, respectively. Shear moduli μf and μL are both zero for these 

materials, thus making λf and λL equivalent to the bulk moduli of the propagation media. 

This also means that only longitudinal waves will propagate in the suppressor. Sound 

speeds are defined as 
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and for angular frequency ω, wavenumbers k are defined as 
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  . (7.8) 
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For each propagation mode n and region R, the wavenumbers may be decomposed into 

axial and radial components, represented by subscripts x and r. These relate to the 

wavenumbers by 

 
2 2 2

, ,f Rx n Rrf nk k k  , (7.9) 

 
2 2 2

, ,L Rx n RrL nk k k  . (7.10) 

Notably, in the suppressor, the axial wavenumber is the same in the hydraulic fluid as in 

the nitrogen, while the radial wavenumber differs in general, resulting in an additional 

subscript f or L to denote the medium. The acoustic displacements uRr,n and uRx,n in the 

radial and axial directions, respectively, are for the forward travelling modes: 
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where Jm and Ym are m
th

 order Bessel functions of the first and second kind, relative 

complex amplitudes of coefficients y1,n to y5,n and y6,n to y9,n are unique for each mode n 

in regions 2 and 3, and 'x x L  . Similarly, acoustic pressures pR,n are: 
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Because the flow speed in the hydraulic line is negligible compared to the speed of sound 

in hydraulic fluid, the values for the reverse travelling modes in Equations (7.11) to 
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(7.24) can be found by replacing AR,n, with BR,n; and by replacing all instances of 
,Rx nk  

with 
,Rx nk . To differentiate, the displacement and pressures will have a superscript plus 

and minus added when needed to indicate modes travelling in the positive and negative 

axial directions. 

Each mode n in a region R is characterized by a unique axial wavenumber kRx,n. 

To find the wavenumber, an eigenequation must be solved in each region. For region 1, 

the wavenumber must satisfy a zero radial displacement condition at the outer wall; that 

is, 

 
0

1 , 0r n r r
u


    . (7.26) 

Because of the negligible mean flow speed, the eigenequation has solutions of 
,Rx nk , so 

it is sufficient to solve only for positive travelling modes. In region 2, five radial 

boundary or continuity conditions must be met, resulting in five equations that must be 

solved simultaneously to find the wavenumber k2x,n as well as the relative amplitudes of 

y1,n through y5,n. The conditions and corresponding equations are: zero displacement at 

the outer wall, 
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    , (7.27) 

continuity of displacement at the bladder, 

 
3 3
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       , (7.28) 

(r3- and r3+ representing the limits as r approaches r3 from the negative and positive 

directions), a force balance at the bladder, 

    
3 3 3
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      , (7.29) 



126 

continuity of displacement at the perforate layer, 
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       , (7.30) 

and an impedance condition at the perforate layer, 
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where Zp is the measured or calculated acoustic impedance across the perforate layer. As 

no experimental studies were found, the perforate impedance was calculated using Eqs. 

(9.21) and (9.29) of Bies and Hansen[21]. Omitting terms not used in the present 

analysis, Zp is calculated as 
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where w, ah, q, and F are the perforate layer thickness, hole radius, hole separation 

distance, and hole area fraction, respectively. As the impedance formulation was derived 

with gaseous flow through larger orifices in mind, there is some uncertainty as to its 

applicability to the present case. Of particular note is the log term of RP, which is derived 

from Eq. (9.1.23) of Morse and Ingard[79]. Morse and Ingard specify that the perforated 

plate should be much thinner than the perforate hole radius, a condition which is not met 
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in the current case. Thus, it is uncertain whether the impedance calculation used will be 

sufficiently accurate. 

Solving Equations (7.27) to (7.31) simultaneously for eigenvalues k2x,n thus gives 

the acoustic pressure and displacement for each mode in region 2. Region 3 has a similar 

formulation, but does not include the perforate layer: 
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Given a finite number of radial modes N, the modal amplitudes AR,n and BR,n can 

be found by simultaneously solving a number of equations which provide for pressure 

and axial displacement continuity at the region boundaries. The number of equations is 

reduced by letting all B1D,n=0 due to an assumption of an anechoic termination. 

Additionally, it is assumed that incoming evanescent waves A1U,n have zero amplitude at 

0x  , with the exception of excitation plane wave A1U,0, which is the reference input and 

is arbitrarily set to unity. To further simplify, the rigid region 3 wall boundaries at 

1x L   and 2x L L   allow for the immediate substitutions 
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The other axial equations are in the form of area integrals, 
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where m = 0 to M-1, and M = N. Acoustic transmission loss (TL) can then be found as 
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7.3 Experiment 

To validate the analytical model predictions, a commercially available suppressor, 

Wilkes & McLean model WM-5081, was purchased and tested. It was non-destructively 

disassembled to measure various internal dimensions. A model WM-3081 was also 

purchased and permanently deconstructed to determine the remaining internal 

dimensions; it is rated for a lower pressure than the WM-5081 and therefore has a 

different external casing, but all internal construction details are identical as far as can be 

verified. The relevant dimensions and measurements for the suppressor are found in 

Table 22, including bladder measurements for finding σb. Additional dimensions were 

measured for the thin perforated sheet, shown in Table 23, in order to estimate Zp. The 

hydraulic fluid used in these tests has density f = 866 kg m
-3

 and sound speed cf = 1400 

m s
-1

. The test setup and methodology are detailed in Chapter 3. 

Table 22: Commercial suppressor dimensions 

Inlet Pipe Radius r0 (m) 0.0103 

Uncompressed Inner Radius r1 (m) 0.0173 

Outer Radius r2 (m) 0.0262 

Length L (m) 0.0450 

Inlet extension L1 (m) 0.0185 

Outlet extension L2 (m) 0.0185 

Bladder total mass mb (kg) 0.038 

Bladder total length (m) 0.112 

Table 23: Perforate layer dimensions and features 

Perforate layer thickness w (m) 0.0006 

Perforate hole radius ah (m) 0.0005 

Perforate hole separation q (m) 0.0027 

Perforate hole area fraction F 0.227 
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The hydraulic fluid used in these tests has density f = 866 kg m
-3

 and sound 

speed cf = 1400 m s
-1

. The kinematic viscosity of the fluid is published to be 46.0 cSt at 

40°C and 6.8 cSt at 100°C; a linear fit is taken for experimentally measured temperatures. 

7.4 Results 

7.4.1 Modeling results 

Several new features have been added to existing methods to create the present 

suppressor model. There is some uncertainty in the model regarding the effects and 

reliability of some of these additions; specifically of concern are the bladder mass, the 

temperature of the compressed gas when the bladder is filled, and how the perforate 

model affects transmission loss performance. These three items are examined in further 

detail in this section. First, the mass of the rubber bladder is considered. The total mass 

contained in the expansion area is uncertain; the expansion length LT is 0.73 times the 

total bladder length, but the effective mass of the bladder will be less than this fraction 

because the bladder thickens into rings at each end, resulting in a nonuniform mass 

distribution per length. It is estimated that using 0.5 times the measured bladder mass, 

0.019 kg, in Equation (7.5) will approximately account for the bladder sheet density. To 

test the sensitivity of this estimate to errors, simulations have been run for mb equal to 

0.019, 0.027, and 0.038 kg, as shown in Figure 61. Although differences of around 4 dB 

are observed above 3000 Hz, the differences are below about 1.5 dB below 2000 Hz. The 

results are therefore relatively insensitive to changes in bladder mass, especially at low 

frequencies; and any error in the bladder estimation should not cause significant error in 

the transmission loss predictions. 
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Figure 61: Study of TL versus bladder mass, Ps = 10.3 MPa, Pc = 5.2 MPa, no perforate 

layer. ▬ mb = 0.019 kg; ▬ ▬ mb = 0.027 kg; ▬ ▪ mb = 0.038 kg 

In addition, temperature affects the compressibility of the nitrogen and may have 

important effects on transmission loss. Although the system temperature during testing is 

measured, there is some uncertainty in the temperature when the bladder is initially 

pressurized up to Pc, which affects the calculated mass of the nitrogen and bladder radius 

r3. For a system running at 36°C, precharge temperatures of 20°C and 40°C are simulated 

in Figure 62 to determine the sensitivity to precharge temperature. As can be observed, 

the differences are minimal over the whole range of 0 to 5000 Hz, and it is thus 

concluded that uncertainty or reasonable variation in bladder precharge temperature will 

not significantly affect transmission loss predictions. 
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Figure 62: TL versus temperature study, Ps = 10.3 MPa, Pc = 5.2 MPa, no perforate layer, 

system temperature = 36°C.  Nitrogen precharge temperature: ▬ 20°C; ▬ ▬ 40°C. 

Finally, sensitivity to the perforate layer is investigated. As no experimental 

studies were found, the perforate impedance was calculated using Equations (9.21) and 

(9.29) of Bies and Hansen[21]. However, part of the derivation of this model, from 

Equation (9.1.23) of Morse and Ingard[79], requires that the perforated plate be much 

thinner than the perforate hole radius, a condition which is not met in the current case. 

Thus, the validity of the current perforate impedance model is called into question. 

Nevertheless, the model may give some indication of the importance and probable effects 

of the perforate layer. Two simulations are shown in Figure 63, where the only difference 

is inclusion of the perforate layer. The difference between the models is clear, reaching 5 

dB at a frequency of about 1500 Hz, and continuing to show significant deviation at 

higher frequencies. To help determine the validity of the current perforate model, results 

are shown with and without the perforate layer in the experimental validation section.  
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Figure 63: TL versus perforate layer impedance study, Ps = 10.3 MPa, Pc = 5.2 MPa.  

▬ No perforate layer; ▬ ▬ Includes perforate layer impedance. 

7.4.2 Experimental validation 

To validate the model experimentally, tests were run on the experimental rig at 

various system and bladder precharge pressures. Figure 64 shows the validation for a 

system pressure of Ps = 10.3 MPa and a precharge pressure of Pc = 2.1 MPa. In Figure 65 

and Figure 66, Ps is maintained, but Pc is increased to 3.1 MPa and then to the 

manufacturer recommended 0.5 Ps, or 5.2 MPa. In Figure 67, Pc is maintained at 0.5 Ps, 

with Ps being increased to 20.7 MPa, and Pc at 10.3 MPa. Experimental data were filtered 

to remove points where ee > 0.05. This is higher than the 0.03 criterion used for prototype 

data, because the stricter criterion removes too much data for the results to be useful. 

RMSE of each case, for the frequency range 0-2000 Hz, is shown in Table 24. 

In all the figures below, the simulation with the perforate layer shows less 

agreement with low frequency experimental data than the simulation that omits the 

perforate layer. Also, at low frequencies (below 2000 Hz) better agreement is found with 

experimental data when the precharge pressure is lower (Figure 64 to Figure 66), or, 
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considering the same relative precharge percentage, when the total pressure is higher 

(Figure 66 and Figure 67). Notably, the predicted transmission loss dips around 2500 Hz 

are not observed in the experimental data; additionally, experimental agreement is poor 

generally above 2000 Hz, especially for frequencies of high predicted transmission loss. 

The lack of an experimental transmission loss dip around 2500 Hz could be indicative of 

insufficiently modeled system damping; the large divergence between model and 

experiment at higher frequencies may indicate flanking transmission paths or unmodeled 

phenomena that become significant at higher frequencies. The divergence may also be 

indicative of the upper limit of measurement capability for the test rig, since as TL 

increases, any minor disturbances in the downstream section may begin to overwhelm the 

ideal signal measurement. Judging from the available experimental data and models, this 

facility limit of the rig is estimated to be about 30 dB of transmission loss. In addition to 

test rig limitations, discrepancies may indicate a need for improved perforate layer 

models, or for more complex models of the rubber bladder behavior. Nevertheless, the 

model is accurate within 5 dB up to about 1300 Hz for all tests with the system pressures 

here examined, and bladder precharge pressures up to 0.5 times system pressure; and up 

to about 2300 Hz for three of the cases. This makes it useful for at least the first several 

harmonics of many axial piston pumps, which are commonly used in the hydraulics 

industry. 
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Figure 64: Experimental and model TL, Ps = 10.3 MPa, Pc = 2.1 MPa.  Reduced 

experimental data; ▬ Model, no perforate layer; ▬ ▬ Model with perforate layer 

impedance. 

 

Figure 65: Experimental and model TL, Ps = 10.3 MPa, Pc = 3.1 MPa.  Reduced 

experimental data; ▬ Model, no perforate layer; ▬ ▬ Model with perforate layer 

impedance. 
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Figure 66: Experimental and model TL, Ps = 10.3 MPa, Pc = 5.2 MPa.  Reduced 

experimental data; ▬ Model, no perforate layer; ▬ ▬ Model with perforate layer 

impedance.. 

 

Figure 67: Experimental and model TL, Ps = 20.7 MPa, Pc = 10.3 MPa.  Reduced 

experimental data; ▬ Model, no perforate layer; ▬ ▬ Model with perforate layer 

impedance. 
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Table 24: Root Mean Squared Error for various bladder style suppressor conditions 

Ps 

(MPa) 

Pc 

(MPa) 

RMSE 0-2000 Hz, no perforate 

layer (dB) 

RMSE 0-2000 Hz, with perforate 

layer (dB) 

10.3 2.1 2.3 2.8 

10.3 3.1 3.1 3.9 

10.3 5.2 4.4 6.0 

20.7 10.3 3.6 4.4 

7.5 Comparison to optimized syntactic foam 

In Chapter 6, a material optimization was performed with respect to three 

different use cases. In order to compare the potential performance of a syntactic foam 

suppressor to a commercial compressed gas style compressor, the objective function in 

Equation (6.4) is calculated for the commercial suppressor considered in this chapter, 

which is of similar external dimensions to the prototype suppressor considered in the 

previous chapters. For the compressed gas style suppressor, no optimization needs to be 

performed; since TL drops to nearly zero once precharge pressure exceeds system 

pressure[80], the maximum performance will almost necessarily be at a pressure slightly 

below the minimum system pressure; this has been verified for the current set of 

optimization cases. For this comparison, the precharge pressure is 3.1 MPa, or 90% of the 

lowest pressure bin value. The objective function values are compared to the best 

objective function values from Section 6.3.3, which is from Optimization 2; all three 

values of FH are shown. Depending on the assumption of FH, the optimized syntactic 

foam suppressor is predicted to perform as well as or better than the compressed gas 

suppressor for the trenching task and the equal time case. For the back fill task, the 

compressed gas suppressor has a better objective function than the syntactic foam device 

with FH = 0.5. Of the three tasks, the back fill task is most heavily weighted toward low 

pressures, which is why the compressed gas suppressor has relatively better performance 
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for that task. The gas suppressor necessarily performs best at system pressures just above 

the precharge pressure, and steadily worse as system pressure increases. Thus, the ability 

to create a syntactic foam liner using microspheres with an arbitrary distribution of 

buckling pressures is very advantageous for hydraulic systems where much time is spent 

at different system pressures. 

Table 25: Comparison to optimized suppressor from Chapter 6. 

Device/liner Objective function (dB) for case: 

Back fill task Trenching task Equal time case 

Compressed gas suppressor -18.21 -15.68 -15.19 

Optimization 2, FH = 0 -20.47 -19.99 -19.02 

Optimization 2, FH = 0.32 -19.84 -17.67 -16.79 

Optimization 2, FH = 0.5 -16.30 -15.86 -15.01 
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CHAPTER 8 

CONCLUSIONS 

8.1 Summary of results 

A multimodal model has been developed for the analysis of in-line hydraulic 

suppressors with solid insert liners. The model couples longitudinal waves in the working 

fluid with longitudinal and shear waves in the liner, and it takes into account the 

compression of the liner due to hydrostatic pressure. It has been successfully validated 

against a finite element model, and against experimental data at two different suppressor 

lengths. The model has been used to estimate material properties of several different 

prototype inserts. It is shown that the model is relatively insensitive to axial position of 

the compressed liner; and that a bulk modulus simplified model gives reasonably accurate 

results for analyzing syntactic foam liners.  

A material model has been developed which attempts to determine static bulk 

modulus of the syntactic foam based the constituent materials in the syntactic foam. The 

model parameters are derived using a combination of directly measured data, 

manufacturer’s data, and material compression experiments. Bulk modulus values found 

from compression data using this model are similar to the low frequency bulk modulus 

found from transmission loss data using the multimodal model in certain cases. The best 

fits are generally found for low bulk modulus values, due to the inverse dependence on 

slope of the compression curve. Additionally, the model accuracy suffers due to the lack 

of temperature dependence in data used to find model parameters. Nevertheless, based on 

estimated parameters from existing liners, the material model is used to predict material 
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properties for new liners based on composition, and several compositions are estimated to 

optimize noise reduction on a hydraulic excavator’s boom actuation system for three 

different use cases. 

The multimodal method has also been extended to a compressed gas style 

suppressor such as those that are currently commercially available. The presented 

theoretical model has been shown to correspond well to experimental data at frequencies 

of interest for many hydraulic systems, with the quality of fit depending on system and 

precharge pressure conditions. Simulations show that the transmission loss predictions 

are sensitive to impedance of the perforate layer, but existing theoretical treatments of the 

perforate layer effects are found to be inadequate for the purposes of this model. 

A comparison is made between the predicted transmission loss of an optimized 

syntactic foam lined suppressor, and a compressed gas style suppressor of similar 

dimensions. The results are found to depend on the work cycle, as well as the total 

compressible volume of the microspheres, but in general the syntactic foam is found to 

perform comparably to the compressed gas device. The compressed gas suppressor is 

able to compress more overall, which translates to higher transmission losses at the 

optimal pressures; but it must generally be configured to work best at low pressures, 

because performance at system pressures below the precharge pressure is extremely bad. 

In contrast, the syntactic foam has less available gas volume to compress, but the 

buckling pressures can theoretically be distributed in any arbitrary manner, so a single 

liner could provide acceptable transmission loss at two widely separated pressures. 

Additionally, the performance of the syntactic foam device will depend on having a high 

gas to shell volume ratio when buckling pressures are high; at present, the possible ratios 
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are unknown, and so the overall potential efficacy of the syntactic foam suppressors is 

still unknown. 

8.2 Future work and conclusions 

While many initial results in this work are promising, much work is still needed to 

make syntactic foam lined suppressors into viable commercial products. The primary 

need is a supply of microspheres which reversibly buckles at pressures in the 10 to 30 

MPa range. In the spheres used in this work, shell thickness increased with increased 

buckling pressure, reducing the total amount of compressible gas in the liner. Thus, the 

high pressure results may also depend on shell material selection for the microspheres, 

inasmuch as that determines shell thickness. More study will also be needed regarding the 

choice of polymer matrix, depending on desired damping characteristics and temperature 

response, though some of the materials used in this study may also be suitable for use in 

high pressure syntactic foams as well. 

There is also much room for improvements in the syntactic foam models. More 

complete constituent material properties, more accurate compression tests with 

temperature data, more reliable transmission loss data, and complete static and dynamic 

testing of the liners at various pressures would all be useful in producing more accurate 

models, and in better validating the models that have been presented. With additional 

information on the constituent materials, it might also be possible to create first principle 

models or micro-scale finite element models to better predict composite material 

performance as well. 

Finally, the opportunities for syntactic foams in fluid-borne noise reduction are 

much broader than just in-line suppressors. The syntactic foams may be cast in a variety 



142 

of shapes, and could potentially be incorporated as internal linings on hoses or other 

hydraulic circuit components. This might reduce the need for separate noise control 

components in systems, saving space which is often at a premium in mobile hydraulic 

equipment. 
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