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SUMMARY 

 

Some of the outflowing ions in the tokamak plasma edge have sufficient energy to 

access orbits which allow them to free-stream out of the confined plasma region and be 

lost to the wall or divertor. The effects of this ion-orbit-loss (IOL) on the poloidal 

distribution of ion, energy and momentum fluxes from the plasma edge into the 

surrounding tokamak scrape-off layer (SOL) are analyzed for a representative DIII-D H-

mode discharge. IOL yields large fluxes of particle, energy and momentum, distributed 

poloidally over the SOL, but predominantly into the outboard SOL. The net fluxes into the 

SOL resulting from IOL and transport within the plasma have a significantly different 

poloidal distribution than the fluxes resulting from transport processes with the plasma 

alone. An intrinsic co-current rotation in the edge of the plasma is produced by the 

preferential IOL loss of counter-current ions.  
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CHAPTER 1 

INTRODUCTION 

 

 Ions which execute orbits that cross the last closed flux surface (or separatrix) and 

leave the plasma are an important loss mechanism in the edge plasma region of tokamaks. 

Such loss affects the radial electric field, energy and particle confinement, poloidal and 

toroidal rotation, the interpretation of conductive/diffusive transport coefficients, as well 

as other variables for confined plasmas [eg. References 1–9]. This ion-orbit-loss (IOL) will 

also affect the poloidal distribution of particle, energy and momentum sources from the 

edge plasma into the scrape-off layer (SOL) and thus the physical properties (temperature 

and density distributions, etc) in the SOL and into the divertor. The poloidal distribution 

of these fluxes out of the plasma is important for heat removal design of future tokamaks. 

In this thesis we investigate the effects of IOL on the poloidal distribution of ion, energy 

and parallel momentum into the SOL from the edge region of the plasma, for a 

representative DIII-D [13] H-mode plasma. We will focus on the method for calculating 

these IOL effects in fully differential form, which is a major new development of this 

thesis. 

 The thesis will be organized as follows. The basic ion orbit loss calculation of the 

minimum energy that an ion located on an internal flux surface, with a given directional 

cosine relative to the toroidal magnetic field, must have in order to execute a drift orbit that 

crosses the separatrix is described in chapter 2. The computational methodology is that 

introduced by Miyamoto [6] and extended for numerical computation by Stacey [10-14]. 

We will also introduce the four variables with respect to which we will characterize the 

ion-orbit-loss: directional cosine with respect to toroidal field ζ0, poloidal exit location on 

the separatrix 𝜃𝑆, poloidal launch location from an internal flux surface 𝜃0 and internal 

‘radial’ flux surface position 𝜌0. 
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 We first describe a sample calculation for a set of ions to illustrate the use of this 

basic IOL calculation and its impacts on the overall energy distribution in chapter 3. Once 

the basic ion orbit loss calculation has been completed for an example set of ions, at a flux 

surface near the edge of the plasma, we calculate a differential (with respect to direction-

cosine, poloidal position and radius) loss zone within the thermal plasma ion distribution 

at each flux surface, poloidal position and directional cosine.  

 For the purposes of the calculation the ions are assumed to be lost from the main 

confined plasma body if at any location they cross the separatrix, due to either interaction 

with ions and neutrals in the SOL, an impact with the 1st wall, or being swept into the 

divertor. The ions in the loss zone for our example set are used to construct ion, particle 

and parallel momentum loss fractions in chapter 4. The sample calculation also 

demonstrates the allocation of the loss fractions over the poloidal loss locations, which is 

a major new development of this thesis, necessary for the calculation of the full differential 

loss fraction.  

 The effects of IOL on the poloidal distribution of ion and energy sources from the 

edge plasma into the SOL are discussed in chapter 5. The parallel momentum source into 

the SOL, as well as the intrinsic rotation in the edge of the main plasma resulting from the 

preferential IOL of counter-current ions, as shown by deGrassie et al. [15,16] , Stacey et 

al. [17,18] and Pan et al. [19,20], are calculated with the new model and discussed in 

chapter 6. 
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CHAPTER 2 

BASIC ION ORBIT CALCULATION 

 

 The basic ion orbit calculation [10,13] is set up to determine the minimum required 

energy for an ion located at a particular poloidal position (𝜃0) on an internal flux surface 

(𝜓0) with a direction cosine (ζ0) (ζ0 < 0  co-current and ζ0 > 0 counter-current) in order 

to be able to execute an orbit which will cross the separatrix at a given poloidal location 

(𝜃𝑆), see Figures 1 & 2. For an outward flowing plasma and a decreasing ion temperature, 

this minimum escape energy decreases with radius and the lost ions are replenished by 

outward flowing ions from an inward surface with a higher escape energy. 

 We define the directional cosine, relative to the toroidal magnetic B𝜑, as ζ0 > 0 for 

the counter-current direction. 

 

 
Figure 1. Poloidal and toroidal coordinates with toroidal magnetic field (𝐵𝜑), current (𝐼) 

and the resultant magnetic field with poloidal field (𝐵𝜃) directions in the tokamak 

plasma. 
 

𝐼 
𝐵𝜑 

Resultant Helical 

Magnetic Field 

Poloidal 

Direction

and 𝐵𝜃  

Toroidal

Direction 
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Figure 2. From the perspective of a poloidal cross section of the plasma at a fixed toroidal 

angle, 𝜑, the poloidal launch and exit locations along with directions used for calculating 

minimum required energies for IOL to occur  

are shown. 

 

Starting similarly as Miyamoto [6] and others we can use the conservation of 

energy, Equation (1), and magnetic moment, Equation (2) for an ion at a location (𝜓0, 𝜃0) 

with a parallel velocity component of 𝑉||0  

1

2
𝑚(𝑉||

2 + 𝑉⊥
2) + 𝑒𝜙 = 𝑐𝑜𝑛𝑠𝑡 =

1

2
𝑚(𝑉||0

2 + 𝑉⊥0
2 ) + 𝑒𝜙0 =

1

2
𝑚𝑉0

2 + 𝑒𝜙0          (1) 

𝑚𝑉⊥
2

2𝐵
= 𝑐𝑜𝑛𝑠𝑡 =

𝑚𝑉⊥0
2

2𝐵0
                                                             (2) 

to solve for the parallel velocity 𝑉|| given by 

 𝑉|| = ±𝑉0 [1 − |
𝐵

𝐵0
| (1 − ζ0

2) +
2𝑒

𝑚𝑉0
2 (𝜙0 − 𝜙)]

1 2⁄

                (3) 

Poloidal 

Launch 

Locations (𝜃0) 

Internal Flux 

Surfaces (𝜌0) 

Toroidal 

Magnetic 

Field (𝐵𝜑) 

 

Separatrix Exit 

Locations (𝜃𝑆) 

Directional 

Sampling (𝜁0) 
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Making use of Equation (3) with the conservation of canonical toroidal angular 

momentum equation in the absence of scattering  

𝑅𝑚𝑉||𝑓𝜑 + 𝑒𝜙 = 𝑐𝑜𝑛𝑠𝑡 = 𝑅0𝑚𝑉||𝑓𝜑0 + 𝑒𝜓0    (4) 

and squaring leads to a quadratic equation for the initial ion speed (at 𝜓0, 𝜃0), 𝑉0 =

√𝑉||0
2 + 𝑉⊥0

2 , required for  the ion to execute an orbit which passes through a location 𝜃𝑆 

on the separatrix, 𝜓𝑠. 

𝑉0
2 [(|

𝑅0

𝑅
|

𝑓𝜑0

𝑓𝜑
𝜁0)

2

− 1 + (1 − 𝜁0
2) |

𝐵

𝐵0
|] 

+𝑉0 [
2𝑒(𝜓0 − 𝜓)

𝑅𝑚𝑓𝜑
(|

𝑅0

𝑅
|

𝑓𝜑0

𝑓𝜑
𝜁0)] 

+ [(
𝑒(𝜓0−𝜓)

𝑅𝑚𝑓𝜑
)

2

−
𝑒(𝜙0−𝜙)

𝑚
] = 0   (5a) 

 Now for an ion with an initial poloidal location 𝜃0 on an internal flux surface 𝜓 

with a directional cosine relative to the toroidal magnetic field B𝜑 given by ζ0, we can 

investigate whether this ion is capable of reaching an exit location 𝜃𝑆, on the separatrix  𝜓𝑆, 

by determining the minimum required speed for which Equation (5a) has a physically 

reasonable solution. For computational simplicity we now assume that 𝑅𝐵𝜑 is constant 

within the plasma. Thus a simplified equation may be written 

 

𝑉0
2 [(|

𝐵

𝐵0
|

𝑓𝜑0

𝑓𝜑
𝜁0)

2

− 1 + (1 − 𝜁0
2) |

𝐵

𝐵0
|] 

+𝑉0 [
2𝑒(𝜓0 − 𝜓)

𝑅𝑚𝑓𝜑
(|

𝐵

𝐵0
|

𝑓𝜑0

𝑓𝜑
𝜁0)] 
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+ [(
𝑒(𝜓0−𝜓)

𝑅𝑚𝑓𝜑
)

2

−
𝑒(𝜙0−𝜙)

𝑚
] = 0. (5b) 

Using the circular toroidal approximate representation of the magnetic flux surface 

geometry described by  

[𝑅(𝑟, 𝜃) = �̅�ℎ(𝑟, 𝜃), 𝐵𝜃,𝜑(𝑟, 𝜃) =
�̅�𝜃,𝜑

ℎ(𝑟,𝜃)
, ℎ(𝑟, 𝜃) = (1 + (𝑟/�̅�) cos(𝜃))],  (6) 

making a uniform current density approximation in Ampere’s law, using 𝐵𝜃 = ∇ × 𝐴𝜑 we 

can write the flux surface corresponding to a given effective circular normalized radius, 𝜓, 

as 

𝜓(𝜌) = 𝑅𝐴𝜑 =  
1

2
(

𝜇0𝐼

2𝜋𝑎2) �̅��̅�2𝜌2. (7) 

These approximations are only valid when the inverse aspect ratio is much smaller than 

unity. 

 We solve Equation (5b) for the parameters of the DIII-D [21] H-mode plasma 

discharge shot #123302: (major plasma radius: �̅� = 1.75 m, minor plasma radius: �̅� = 0.885 

m, elongation factor: 𝜅 = 1.836, toroidal plasma current: 𝐼 = 1.50 MA, toroidal magnetic 

field: 𝐵𝜑 = -1.98 T, safety factor: 𝑞95 = 3.86, neutral beam power: 𝑃𝑛𝑏 = 8.66 MW, carbon 

to deuterium number density fraction: 𝑛𝐶 𝑛𝐷⁄  = 0.03) The curvature and grad- 𝐵 drifts are 

vertically downward in this plasma towards a lower diverter.  

 In this plasma, the potential difference between some internal flux surface and the 

outermost last closed flux surface was obtained by solving for the local radial electric field 

via a radial carbon momentum balance using other measured carbon density, velocities and 

temperature. Then by integrating the radial electric field, we obtain the electrostatic 

potential. Some experimental data used in this calculation are shown in Figure 3. 
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Figure 3. Electron density, ion temperature and electrostatic potential in the edge of DIII-

D H-mode shot 123302. 
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CHAPTER 3 

ION-ORBIT-LOSS MINIMUM ENERGY REQUIREMENTS 

Minimum Energy 

 

 The minimum reduced ion energy physically required for a particle with a 

directional cosine ζ0, at poloidal location 𝜃0 on the internal flux surface 𝜌0 ≡ �̅� �̅�⁄  to escape 

across the separatrix, 𝜌𝑠 = 1.0, at poloidal location 𝜃𝑆 is given by  

 𝜀𝑚𝑖𝑛(ζ0, 𝜃𝑆, 𝜃0, 𝜌0) =
𝐸𝑚𝑖𝑛(ζ0,𝜃𝑆,𝜃0,𝜌0)

𝑘𝑇𝑖𝑜𝑛(𝜌0)
=

1 2∗𝑚∗𝑉
0 𝑚𝑖𝑛
2 (ζ0,𝜃𝑆,𝜃0,𝜌0)⁄

𝑘𝑇𝑖𝑜𝑛(𝜌0)
,   (8) 

where 𝑉0 𝑚𝑖𝑛 is the minimum 𝑉0 for which Equation (5b) has a physically reasonable 

solution and 𝐸𝑚𝑖𝑛 = 1/2𝑚𝑉0𝑚𝑖𝑛
2 . 

 The minimum reduced energies so obtained describe the minimum required 

reduced energies for an ion launched from an internal flux surface 𝜌𝑘 ≡ 𝜌0 < 1.0, at a 

poloidal launch location 𝜃0 (0 ≤ 𝜃0 ≤ 2𝜋) with directional cosine 𝜁0 to cross the separatrix 

(𝜌𝑆 = 1.0) at a poloidal exit location 𝜃𝑆 (0 ≤ 𝜃𝑆 ≤ 2𝜋). See Figure 4 for an illustration of 

these locations. Eight different poloidal launch and exit locations are chosen (Figure 4) for 

the purpose of numerically evaluating the loss from all points on an inner surface through 

all points on the separatrix. The twenty two directional cosine ζ0 values (-1 ≤ 𝜁0 ≤ 1), 

shown as the blue arrows in Figure 4 and Figure 2, were chosen to numerically divide the 

directional cosine into equally sized solid angle bins defined by their center values as 

discussed in Appendix A. The addition of more points to the numerical model for 

representing the lauch and exit locations or direction cosines did not significantly impact 

the resulting distributions. These directional bins define the differential angle. In the 
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absence of scattering, which we assume, ions do not exchange among bins as they flow 

outward.                                                              

 

 
Figure 4. Location illustration for poloidal locations (𝜃0 internal) on the first flux surface 

(𝜌1), poloidal locations on the separatrix (and 𝜃𝑆 external), and a sample of the 

directional cosines (𝜁0) with respect to 𝐵𝜑. 

 

 

 

 The minimum energies calculated from Equation (8) are plotted in Figures 5-9 for 

the first flux surface, (𝜌0 = 𝜌1 = 0.864, for all launch angle locations. Only the strongly 

counter-current ions (𝜁0 ≫ 0) were lost from most launch locations (𝜃0), and these were 

lost at the lowest 𝐸𝑚𝑖𝑛 through the outboard midplane escape location (𝜃𝑆 = 0). The co-

current (𝜁0 < 0) ions were lost significantly only from the inboard midplane launch location 

through the outboard midplane escape location (Figure 9). Also, shown for Figures 5-9 is, 
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the surface minimum loss energies for all escape locations. Five similar results were 

calculated for other radial flux surface locations.  

  

 
Figure 5. Minimum energy required for ion orbits from the first flux surface (𝜌1 = 0.864) 

at the outboard midplane launch location (𝜃0 = 0) to reach exit locations (𝜃𝑆) on the 

separatrix (𝜌𝑆 = 1.0). Also shown is the minimum lost energy for any launch location on 

the flux surface (dotted line with open squares). 

 

 

Overall lowest  

minimum energy points 

are from outboard 

midplane (𝜃0 = 0) launch 

locations 

Surface Min 
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Figure 6. Minimum energy required for ion orbits from the first flux surface (𝜌1 = 0.864) 

at the outer upper and lower launch location (𝜃0 = ±π/4) to reach exit locations (𝜃𝑆) on 

the separatrix (𝜌𝑆 = 1.0). Also shown is the minimum lost energy for any launch location 

on the flux surface (dotted line with open squares). 

 

 

 

 
Figure 7. Minimum energy required for ion orbits from the first flux surface (𝜌1 = 0.864) 

at the top or bottom launch location (𝜃0 = ±π/2) to reach exit locations (𝜃𝑆) on the 

separatrix (𝜌𝑆 = 1.0). Also shown is the minimum lost energy for any launch location on 

the flux surface (dotted line with open squares). 

Top and bottom 

(𝜃0 = ±π/2) 

Outer upper and lower  

(𝜃0 = ±π/4) 

Surface Min 

Surface Min 
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Figure 8. Minimum energy required for ion orbits from the first flux surface (𝜌1 = 0.864) 

at the inner upper and lower launch location (𝜃0 = ±3π/4) to reach exit locations (𝜃𝑆) on 

the separatrix (𝜌𝑆 = 1.0). Also shown is the minimum lost energy for any launch location 

on the flux surface (dotted line with open squares).  

 

 

 

 
Figure 9. Minimum energy required for ion orbits from the first flux surface (𝜌1 = 0.864) 

at the inboard midplane launch location (𝜃0 = π) to reach exit locations (𝜃𝑆) on the 

separatrix (𝜌𝑆 = 1.0). Also shown is the minimum lost energy for any launch location on 

the flux surface (dotted line with open squares).  

Remaining overall  

lowest minimum energy points 

are from inboard midplane (𝜃0 = π) 

Inner upper and lower  

(𝜃0 = ±3π/4) 

Surface Min 

Surface Min 
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 The flux surface minimum energies (the dotted lines in Figures 5-9) for a few 

internal flux surfaces (at radial locations given by: 𝜌1 = 0.864, 𝜌5 = 0.887, 𝜌10 = 0.915, 𝜌15 

= 0.944, 𝜌20 = 0.972 and 𝜌24 = 0.994) are plotted in Figure 10. The minimum required 

energy for the ions to execute an orbit taking them across the separatrix decreases as they 

flow radially outwards. The counter-current directed ions consistently require the lowest 

surface minimum energy for loss from all the flux surfaces, which is consistent with what 

was found for the first flux surface.  

 

 
Figure 10. Lowest value of 𝐸𝑙𝑜𝑤𝑒𝑠𝑡 𝑚𝑖𝑛(ζ0, 𝜌𝑘) for any launch location (𝜃0) on surface 

(𝜌𝑘), at the radial positions: 𝜌1 = 0.864, 𝜌5 = 0.887, 𝜌10 = 0.915, 𝜌15 = 0.944, 𝜌20 = 

0.972, 𝜌24 = 0.994. 
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The results shown in Figures 5-10 can be used to calculate a loss region in velocity 

space that increases with flux surface radius. The velocity loss region may be combined 

with an approximation of the particle distribution function in velocity space to allow us to 

calculate a particle loss rate. We assume that the ion velocity distribution function is a 

Maxwellian at the local ion temperature, chopped off above the local 𝐸𝑚𝑖𝑛(ζ0, 𝜌). By using 

the directional cosine, ζ0 = cos(𝛼) as derived in Appendix A, given by the azimuthal angle, 

𝛼, between the initial ion velocity, 𝜗(𝑉0, 𝛼), and the toroidal magnetic field, 𝐵𝜑, then the 

differential volume element in spherical velocity space is (𝑉0𝑑𝛼)(2𝜋𝑉0 sin(𝛼))𝑑𝑉0 =

2𝜋𝑉0
2𝑑𝑉0𝑑ζ0. The number of ions lost within a given 𝑑𝛼 about a given 𝛼 is the number 

within 𝑑𝛼 with a magnitude of velocity 𝑉0 ≥ 𝑉0 𝑚𝑖𝑛(ζ0). For ions in a velocity distribution 

given by 𝑓(𝑉0), then the number of ions within 𝑑𝛼 about a given 𝛼 which are lost is 

𝑑𝑁𝑙𝑜𝑠𝑠(𝛼) = 2𝜋 sin(𝛼) ∫ 𝑉0
2𝑓(𝑉0)𝑑𝑉0𝑑𝛼

∞

𝑉0 𝑚𝑖𝑛(𝛼)
 and the numbers of ions within 𝑑ζ0 lost 

is 𝑑𝑁𝑙𝑜𝑠𝑠(ζ0) = 𝑑ζ0 ∫ 𝑉0
2𝑓(𝑉0)𝑑𝑉0

∞

𝑉0 𝑚𝑖𝑛(ζ0)
.  

We assume no scattering between directional bins, so each direction has a 

Maxwellian distribution at the local ion temperature with an upper cut-off energy 

corresponding to 𝑉0𝑚𝑖𝑛(ζ0), which determines the loss fraction in that direction ζ0, 

𝑑𝑁𝑙𝑜𝑠𝑠(ζ0) = 𝑑ζ0 ∫ 𝑉2𝑓(𝑉)𝑑𝑉
∞

𝑉𝑚𝑖𝑛(ζ0)
. The total loss rate from a flux surface for ions 

which escape across the separatrix is found by integrating 𝑑𝑁𝑙𝑜𝑠𝑠(ζ0) over 1 ≥ 𝜁0 ≥ −1, 

𝑁𝑙𝑜𝑠𝑠 = 2𝜋 ∫ [∫ 𝑉0
2𝑓(𝑉0)𝑑𝑉0

∞

𝑉0 𝑚𝑖𝑛(𝜁0)
] 𝑑𝜁0

1

−1
= 2𝜋 ∫ [∫ 𝜀1/2𝑒−(𝜀)𝑑𝜀

∞

𝜀𝑚𝑖𝑛(ζ0)
] 𝑑𝜁0

1

−1
, where 

𝜀 =
1 2⁄ 𝑚𝑉0

2

𝑘𝑇𝑖𝑜𝑛
. The total number of ions on a flux surface in the absence of loss would be 

𝑁𝑡𝑜𝑡 = 2𝜋 ∫ 𝑑𝜁0
1

−1
∫ 𝑉0

2𝑓(𝑉0)𝑑𝑉0
∞

0
= 2𝜋 ∫ 𝑑𝜁0

1

−1
∫ 𝜀1/2𝑒−(𝜀)𝑑𝜀

∞

𝜀𝑚𝑖𝑛(𝜁0)
.   
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Energy Distribution Function 

 

 Based on these calculations we make a few generalizations about the energy 

distribution as a function of direction and flux surface for the radially outward flowing ion 

flux as a result of IOL. Out to a certain radius (we assume this is at 𝜌𝑚𝑖𝑛 = 𝜌1 = 0.864) the 

minimum required energies 𝐸𝑚𝑖𝑛(ζ0, 𝜃𝑆, 𝜃0, 𝜌0) for IOL to occur are so large that few ions 

can meet the energetic requirements regardless of their direction. Based on the relative 

difference between the ion poloidal motion and radial transport speeds we assume the ions 

pass through all poloidal loss locations (𝜃0 = 0, ±π/4, ±π/2, ±3π/4 and π) many times in the 

time required to be transported radially across flux surfaces. So all ions in the radial range 

𝜌min ≤ 𝜌 ≤ 𝜌min + ∆𝜌1 with energy in the range 𝐸𝑚𝑖𝑛(ζ0, 𝜃𝑆, 𝜃0, 𝜌min) ≥ 𝐸 ≥

𝐸𝑚𝑖𝑛(ζ0, 𝜃𝑆, 𝜃0, 𝜌min + ∆𝜌1) dependent upon their directional bin ζ0 are lost (the fraction 

of such loss ions is different for the different directional bins ζ0). For the next radial range 

𝜌min + ∆𝜌1 ≤ 𝜌 ≤ 𝜌min + ∆𝜌1 + ∆𝜌2 those ions in the directional bin ζ0 with energy in 

the range 𝐸𝑚𝑖𝑛(ζ0, 𝜃𝑆, 𝜃0, 𝜌min + ∆𝜌1) ≥ 𝐸 ≥ 𝐸𝑚𝑖𝑛(ζ0, 𝜃𝑆, 𝜃0, 𝜌min + ∆𝜌1 + ∆𝜌2) are lost. 

We continue this process for each directional bin ζ0 from (-1 ≤ 𝜁0 ≤ 1) and for each radius 

from 𝜌1 = 0.864 out to 𝜌 = 1.0.  

 The energy distribution for the outward flowing ion flux, for ions of a given 

directional cosine ζ0, is a continuously decreasing upper energy limit as the radius increases 

due to the effects of IOL. The ions with energy above the surface minimums 

𝐸𝑙𝑜𝑤𝑒𝑠𝑡 𝑚𝑖𝑛(ζ0, ρ1 = 0.864) at the first flux surface we investigate (𝜌1 = 0.864) would all 

be lost. For the next flux surface (ρ2 = 0.870) the energy distribution function would start 

already chopped off above the energy 𝐸𝑙𝑜𝑤𝑒𝑠𝑡 𝑚𝑖𝑛(ζ0, ρ1 = 0.864) and the ions between 
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this cut-off energy and 𝐸𝑙𝑜𝑤𝑒𝑠𝑡 𝑚𝑖𝑛(ζ0, ρ2 = 0.870) would then be lost. This procedure is 

followed for all the remaining flux surfaces for each of the directional cosine bins so that 

the energy distribution function, in each direction, would be chopped off at the energy 

𝐸𝑙𝑜𝑤𝑒𝑠𝑡 𝑚𝑖𝑛(ζ0, ρ𝑘−1) all the way out to 𝜌 = 1.0. The ions not lost before reaching 𝜌 = 1.0 

are determined by integrating over the energy distribution function chopped off at 

𝐸𝑙𝑜𝑤𝑒𝑠𝑡 𝑚𝑖𝑛(ζ0, ρ24) from the last flux surface.  

 The minimum energy for IOL of ions with direction cosine (ζ0) as a function of 

flux suface position after these chopping steps are performed on the energy distribution 

function for each directional cosine on each flux surface is shown as a histogram in Figure 

11. The counter-current ions have dramatically lower minimum energy requirements even 

at the first flux surface resulting in few non-lost ions, while the the non-lost co-current ions 

have almost the same amount left on their seventeenth surface. 

 Following a derivation similar to that for the ion loss leads to an expression for the 

energy and momentum losses and totals [10], where 𝜀 =
1 2⁄ 𝑚𝑉0

2

𝑘𝑇𝑖𝑜𝑛
. 𝑀𝑙𝑜𝑠𝑠 =

2𝜋 ∫ [∫ (𝑚𝑉0𝜁0)𝑉0
2𝑓(𝑉0)𝑑𝑉0

∞

𝑉0 𝑚𝑖𝑛(𝜁0)
] 𝑑𝜁0

1

−1
  

= 2𝜋 ∫ [𝜁0 ∫ 𝜀𝑒−(𝜀)𝑑𝜀
∞

𝜀𝑚𝑖𝑛(ζ0)
] 𝑑𝜁0

1

−1
 (9) 

𝑀𝑡𝑜𝑡 = 2𝜋 ∫ 𝑑𝜁0
1

−1
∫ (𝑚𝑉0)𝑉0

2
𝑓(𝑉0)𝑑𝑉0

∞

0
= 2𝜋 ∫ 𝑑𝜁0

1

−1
∫ 𝜀𝑒−(𝜀)𝑑𝜀

∞

𝜀𝑚𝑖𝑛(𝜁0)
 (10) 

𝐸𝑙𝑜𝑠𝑠 = 2𝜋 ∫ [∫ (
1

2
𝑚𝑉0

2) 𝑉0
2𝑓(𝑉0)𝑑𝑉0

∞

𝑉0 𝑚𝑖𝑛(𝜁0)
] 𝑑𝜁0

1

−1
  

= 2𝜋 ∫ [∫ 𝜀3/2𝑒(−𝜀)𝑑𝜀
∞

𝜀𝑚𝑖𝑛(ζ0)
] 𝑑𝜁0

1

−1
  (11) 

𝐸𝑡𝑜𝑡 = 2𝜋 ∫ 𝑑𝜁0
1

−1
∫ (

1

2
𝑚𝑉0

2) 𝑉0
2𝑓(𝑉0)𝑑𝑉0

∞

0
= 2𝜋 ∫ 𝑑𝜁0

1

−1
∫ 𝜀3/2𝑒(−𝜀)𝑑𝜀

∞

𝜀𝑚𝑖𝑛(𝜁0)
 (12) 
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CHAPTER 4 

ION-ORBIT-LOSS ESCAPE FRACTIONS AND ALLOCATIONS 

Escape Fractions 

 

 We can evaluate the integrals of the previous chapter total and ion-orbit-lost 

particles, momentum and energy, in terms of the complete and incomplete gamma 

functions [10] 

𝛤(𝑎) =  ∫ 𝜀𝑎−1𝑒−𝜀𝑑𝜀
∞

0
,  (13a) 

𝛤(𝑎, 𝑥) =  ∫ 𝜀𝑎−1𝑒−𝜀𝑑𝜀
∞

𝑥
,  (13b) 

𝛾(𝑎, 𝑥) = ∫ 𝜀𝑎−1𝑒−𝜀𝑑𝜀
𝑥

0
,  (14) 

when a Maxwellian distribution is used, where now 𝑎 =
3

2
,

4

2
,

5

2
 for ion, momentum, and 

energy integrals, respectively.   

 At the innermost radius (𝜌1= 0.864) at which ion orbit loss is important, we treat 

the ion distribution as isotropic in direction and Maxwellian in energy. As discussed in 

Appendix A, a solid angle sampling factor 𝑓(ζ𝑖) may be used to represent the fraction of 

the total solid angle contained within each directional cosine bin ζ0 (this removes the need 

for the factor of 2 in the total loss for ion, momentum and energy). Due to our uniform 

sampling of the directional cosine, the factor 𝑓(ζ𝑖) is a constant 1/22 for each directional 

cosine bin. Using the ion fraction and total with Equations (13) and (14) , the solid angle 

sampling factor 𝑓(ζ𝑖), and the minimum reduced energy from Equation (8) we find the 

definition for the differential loss fractions for all launch and exit locations and directional 

cosine bins on the first flux surface (𝜌1 = 0.864) for ions, where 𝜀 =
1 2⁄ 𝑚𝑉0

2

𝑘𝑇𝑖𝑜𝑛
. 
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𝑁𝑙𝑜𝑠𝑠

𝑁𝑡𝑜𝑡
=

[∫ 𝜀1 2⁄ 𝐸𝑋𝑃(−𝜀)𝑑𝜀
∞

0 −∫ 𝜀1 2⁄ 𝐸𝑋𝑃(−𝜀)𝑑𝜀
𝜀𝑚𝑖𝑛(ζ0,𝜃𝑆,𝜃0,𝜌1)

0 ]∗𝑓(ζ0)

∫ 𝜀1 2⁄ 𝐸𝑋𝑃(−𝜀)𝑑𝜀
∞

0

=

∫ 𝜀1 2⁄ 𝐸𝑋𝑃(−𝜀)𝑑𝜀
∞

𝜀𝑚𝑖𝑛(ζ0,𝜃𝑆,𝜃0,𝜌1)
∗𝑓(ζ0)

∫ 𝜀1 2⁄ 𝐸𝑋𝑃(−𝜀)𝑑𝜀
∞

0

  

We designate these as “un-allocated” (UA) differential ion loss fractions from the given 

flux surface 

UA_∆𝐹𝑙𝑜𝑠𝑠(ζ0, 𝜃𝑆, 𝜃0, 𝜌1) =  
𝑁𝑙𝑜𝑠𝑠

𝑁𝑡𝑜𝑡
=  

Γ(3/2,𝜀𝑚𝑖𝑛(ζ0,𝜃𝑆,𝜃0,𝜌1))∗
1

22

Γ(3/2)
  (15a) 

Similar “un-allocated” momentum and energy loss fractions are likewise defined 

UA_∆𝑀𝑙𝑜𝑠𝑠(ζ0, 𝜃𝑆, 𝜃0, 𝜌1) =
𝑀𝑙𝑜𝑠𝑠

𝑀𝑡𝑜𝑡
=

ζ0 ∫ 𝜀𝐸𝑋𝑃(−𝜀)𝑑𝜀
∞

𝜀𝑚𝑖𝑛(ζ0,𝜃𝑆,𝜃0,𝜌1)
∗𝑓(ζ0)

∫ 𝜀𝐸𝑋𝑃(−𝜀)𝑑𝜀
∞

0

=

ζ0Γ(4/2,𝜀𝑚𝑖𝑛(ζ0,𝜃𝑆,𝜃0,𝜌1))∗
1

22

Γ(4/2)
, (15b) 

and 

UA_∆𝐸𝑙𝑜𝑠𝑠(ζ0, 𝜃𝑆, 𝜃0, 𝜌1) =
𝐸𝑙𝑜𝑠𝑠

𝐸𝑡𝑜𝑡
=

∫ 𝜀3 2⁄ 𝐸𝑋𝑃(−𝜀)𝑑𝜀
∞

𝜀𝑚𝑖𝑛(ζ0,𝜃𝑆,𝜃0,𝜌1)
∗𝑓(ζ0)

∫ 𝜀3 2⁄ 𝐸𝑋𝑃(−𝜀)𝑑𝜀
∞

0

=

Γ(5/2,𝜀𝑚𝑖𝑛(ζ0,𝜃𝑆,𝜃0,𝜌1))∗
1

22

Γ(5/2)
. (15c) 

These fractions are designated “un-allocated” because we have not yet specified how ion, 

momentum or energy from a given location on an inner flux surface that could energetically  

(i.e. while satisfying Equations 1, 2 and 4) exit at multiple locations on the separatrix are 

to be allocated among these multiple locations. We next address this issue.  
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Poloidal Allocation Methodology 

Poloidal Exit Location Allocation 

 

 To calculate the full differential loss fractions for ions, energy and momentum we 

need to understand where these various fluxes are permitted to go poloidally. We assume 

that the outward ion flux, from the first flux surface for which ion orbit loss is important 

(𝜌1 = 0.864), is isotropically distributed in direction and uniform in poloidal distribution 

over the flux surface. The outward radial ion flux reaching each flux surface is evenly 

distributed among the eight octants centered on the eight poloidal launch locations (𝜃0 = π, 

±3π/4, ±π/2, ±π/4 and 0) so an eighth of the ions go to each of the poloidal launch locations 

within each direction for each flux surface. For example, in Figure 12 we took the ions in 

the Maxwellian energy distribution with the flux surface (𝜌1 = 0.864) local ion temperature 

in the directional bin centered on ζ0 = 0.955 and placed a distribution of the same shape 

but at 1/8th of the total flux magnitude at each of the eight poloidal launch locations 𝜃0 = 

π, ±3π/4, ±π/2, ±π/4 and 0.  

Our method does not involve particle tracking so we only know whether or not an 

ion has enough energy to reach a given exit location, not that it will go there without having 

first passed through another energetically allowed exit location. However, knowledge of 

the minimum required energy to reach each exit location from each launch location, along 

with the assumed Maxwellian ion energy distribution function, may be used to develop an 

approximation in place of the calculationally intensive particle following method. From 

Figure 12 we can use Equation (8) to calculate the minimum energy an ion with directional 

cosine 𝜁0 = 0.955 must possess at each of the eight poloidal launch locations (𝜃0) in order 
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to exit the separatrix at each of the eight poloidal exit locations (𝜃𝑆) on the separatrix, see 

Figure 13.                                          

 

 
Figure 12. Initial even distribution of ions from the ζ0 = 0.955 directional cosine bin on 

the first internal flux surface to the eight poloidal launch locations.  

 

 

 

 With the known minimum required energies 𝐸𝑚𝑖𝑛(ζ0, 𝜃𝑆, 𝜃0, 𝜌0) we can devise an 

algorithm for making the allocation over the poloidal exit locations (𝜃𝑆) on the separatrix 

(𝜌𝑆). For the ions located at the poloidal launch position on the first flux surface (𝜌1 = 

0.864) at the inner midplane (𝜃0 = 𝜋) the corresponding minimum required energies to 

stream along an orbit out to various poloidal exit points on the separatrix can be found in 

the dashed green oval on Figure 13.  For the selected points the poloidal exit location at the 

outer midplane (𝜃𝑆 = 0 = 2𝜋), black square in Figure 13, has the lowest minimum energy 

requirement while the inner midplane (𝜃𝑆 = 𝜋), left facing magenta triangle in Figure 13, 

has the highest. 
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Figure 13. Minimum energy in the ζ0 = 0.955 (counter-current) directional cosine bin for 

each of the eight launch positions (𝜃0) on the first flux surface (𝜌1 = 0.864) required to 

reach each poloidal exit location (𝜃𝑆) on the separatrix (𝜌𝑆). 

 

 

 

The relative number of ions which meet the energetic requirements demanded by 

Equation (15) for the selected points are shown in Figure 14. The poloidal exit position on 

the outer midplane (𝜃𝑆 = 0 = 2𝜋) has the lowest required minimum energy, resulting in the 

largest number of available ions which can meet this energetic requirement. The poloidal 

exit position on the inner midplane (𝜃𝑆 = 𝜋) results in the smallest number of availible ions 

which meet this energtic requirement. 
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Figure 14. Allowable energy ranges (not to scale) for the example poloidal exit positions 

(𝜃𝑆) as selected from the green oval in Figure 13.  

 

   

 All of the ions contained in the energy range corresponding to an orbit exiting at 

the inner midplane 𝜃𝑆 = π (magenta colored region in Figure 14) on the separatrix 𝜌𝑆 also 

have enough energy to execute an orbit taking them to any of the other poloidal exit 

locations 𝜃𝑆 = ±3π/4, ±π/2, ±π/4 and 0, eight in total. The ions in the energy range from 𝜃𝑆 

= ±3π/4 to 𝜃𝑆 = π (cyan colored region in Figure 14) have enough energy to execute orbits 

exiting at 𝜃𝑆 = ±3π/4, ±π/2, ±π/4 and 0, seven in total. We count the number of energetically 

allowable exit locations for each energy range until the last energy range between 𝜃𝑆 = 0 

and 𝜃𝑆 = ±π/4 (grey colored region in Figure 14) which contains ions only having enough 

energy to make it to one location on the outer midplane, 𝜃𝑆 = 0. 

 We assume that the ions from each launch location are distributed evenly among 

all the energetically allowed exit locations. The ion loss fraction, from Equation (15), for 

the ions which have enough energy to exit at the poloidal location 𝜃𝑆 = π (magenta energy 

region in Figure 14) is divided by the number of energetically allowable exit locations 

UA_∆𝐹𝑙𝑜𝑠𝑠(ζ0=0.955,𝜃𝑆=𝜋,𝜃0=𝜋,𝜌1=0.864)

8
 and allocated evenly over all eight exit locations.   
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 Similarly, the ion loss fraction representing the ions within the energy range from 

𝜃𝑆 = ±3π/4 to 𝜃𝑆 = π (cyan energy range in Figure 14) is divided by seven 

UA_∆𝐹𝑙𝑜𝑠𝑠(ζ0=0.955,𝜃𝑆=±3π/4,𝜃0=𝜋,𝜌1=0.864)

7
 and allocated equally to all the 𝜃𝑆 locations which 

are energetically allowed. We continue applying this allocation process until the energy 

range between 𝜃𝑆 = 0 and 𝜃𝑆 = ±π/4 (grey colored region in Figure 14). These ions are only 

lost to the poloidal exit location 𝜃𝑆 = 0 as it is the only exit location on the separatrix they 

have enough energy to execute an orbit to. The fractional values of the energy ranges from 

Figure 14 as well as the ion loss fractional values at each poloidal exit location after 

application of this allocation method are provided in Table 1. 

 The other seven poloidal launch locations 𝜃0 = ±3π/4, ±π/2, ±π/4 and 0, are 

allocated over their poloidal exit locations with the same method as in the example. The 

general allocation method for exit locations is performed as follows. We calculate the un-

allocated loss fraction for each poloidal exit location by using the minimum required 

energy 𝐸𝑚𝑖𝑛(ζ0, 𝜃𝑆, 𝜃0, 𝜌0) for each poloidal exit location in Equation (15). Then we sort 

the minimum required energy 𝐸𝑚𝑖𝑛(ζ0, 𝜃𝑆, 𝜃0, 𝜌0) for each poloidal exit location to 

establish energy range bins. Next, we divide the un-allocated loss fraction by the number 

of energetically allowed exit locations and allocate them to the proper poloidal exit location 

𝜃𝑆. These allocations are summed for the total fraction of ions which we estimate at each 

poloidal exit location 𝜃𝑆 on the separatrix 𝜌𝑆 from a given poloidal launch location 𝜃0 in 

some inner flux surface 𝜌0.  
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Table 1. Fractional values of the various colored energy ranges in Figure 14 as well as the 

resulting fractional values at each poloidal exit location 𝜃𝑆.  

 
 

   

  

Energy Region 

Magenta 

θS = π      

to ∞

Cyan       

θS = ±3π/4 

to π

Blue        

θS = ±π/2 

to ±3π/4

Red          

θS = ±π/4 

to ±π/2 

Grey         

θS = ±π/2 

to 0 

Un-Allocated Loss 

Fraction of Ions (10
-4

) 2.133E-11 9.268E-08 2.060E-03 1.462E-01 2.767E-01
# of Energetically 

Allowed Exit Locations 
8 7 5 3 1

Poloidal Exit Locations 

on the Separatrix  
 θS = π  θS = ±3π/4  θS = ±π/2  θS = ±π/4  θS = 0

From Magenta Energy 

Region  (10
-4

) 2.666E-12 2.666E-12 2.666E-12 2.666E-12 2.666E-12

From Cyan Energy 

Region  (10
-4

) 0 1.324E-08 1.324E-08 1.324E-08 1.324E-08

From Blue Energy 

Region  (10
-4

) 0 0 4.120E-04 4.120E-04 4.120E-04

From Red Energy 

Region  (10
-4

) 0 0 0 4.875E-02 4.875E-02

From Grey Energy 

Region  (10
-4

) 0 0 0 0 2.767E-01

Allocated Totals  (10
-4

) 2.666E-12 1.324E-08 4.120E-04 4.916E-02 3.259E-01
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Poloidal Launch Location Allocation 

 

 All of the ions which are physically capable of being lost to the poloidal exit 

locations on the separatrix from each poloidal launch location on an inner flux surface are 

assumed to be lost immediately. However, each poloidal launch location has different 

minimum energies required to reach the various poloidal exit locations on the separatrix, 

see Figure 13. Due to this differenece the energy range, and number, of the non-lost ions 

will be different for each poloidal launch position (𝜃0) in a given directional cosine (𝜁0 = 

0.955 for our example). The 𝜃𝑆 = 0 poloidal exit location has the lowest minimum required 

energy for each poloidal launch location (𝜃0) so we may use this minimum curve to set the 

upper limit of the expected energy of the non-lost ions at each poloidal launch position 

(this corresponds to the black squares curve in Figure 13).  

 Ions exist at these different poloidal launch locations which could be lost from other 

poloidal launch locations. The ions spiral about the flux surface many times before they 

move radially to the next flux surface, so they are able to reach the other poloidal launch 

locations where they can then be lost. These ions also have a preferential poloidal spiral 

direction about the flux surface which is determined by the orientation of the ion guiding 

center velocity relative to the toroidal current 𝐼 and magnetic field 𝐵𝜑, recall Figure 1. Ions, 

for this tokamak shot, moving in the co-current direction (𝜁0 < 0) spiral poloidally about 

their flux surface counter clock-wise while ions moving in the counter-current direction 

(𝜁0 > 0) spiral poloidally about the flux surface in the clock-wise direction, see Figure 15. 
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Figure 15. Toroidal ion directions shown with the resultant helical magnetic field also 

describing intra-flux surface poloidal motion directions. 

 

 

 

 To account for this intra-flux surface poloidal ion motion we perform a secondary 

allocation over the poloidal launch positions (𝜃0). Using the energy curve from our 

example in Figure 15 with Equation (17) we can find the loss fraction from each poloidal 

launch position (𝜃0 = ±3π/4, ±π/2, ±π/4 and 0), see Figure 17. The ions at the inner 

midplane (𝜃0 = π) are assumed to be immediately lost in the magenta energy region of 

Figure 17. These ions are solely lost from the poloidal launch position 𝜃0 = π to the various 

poloidal exit positions 𝜃𝑆 on the separatrix and the loss fractions are allocated according to 

the method described in the previous section.  
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Figure 16. Allowable energy ranges (not to scale) for the example poloidal launch 

positions (𝜃0), from the black squares curve Figure 13. 

 

 

 

 Our example case deals with ions in a directional cosine bin pointing in the counter-

current direction ζ0 > 0 so the remaining non-lost ions will move clock-wise poloidally. 

The non-lost ions at 𝜃0 = π (the grey through cyan energy ranges in Figure 17) will spiral 

clock-wise poloidally to the next position, see Figure 18. At the next position 𝜃0 = +3π/4 

the ions which meet the physical requirements for loss at 𝜃0 = +3π/4 (the cyan energy range 

in Figure 17) will be immediately lost and the corresponding loss fraction for the cyan 

region will be allocated in the manner described in the previous section, see Figure 18. The 

non-lost ions from 𝜃0 = π will continue to move clock-wise poloidally to the 𝜃0 = +π/2 

poloidal launch position at the top of the flux surface, where the ions in the blue energy 

range in Figure 17 will be lost and fractions allocated accordingly. We continue this process 

until the reamaining non-lost ions reach the outer midplane at 𝜃0 = 0 where the grey energy 

region of ions from Figure 17 will be lost, and the corresponding remaining loss fraction 

is allocated accordingly.  
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Figure 17. Poloidal launch location (𝜃0) allocation method for a positive directional 

cosine case (𝜁0 > 0) starting at 𝜃0 = π. The rotating distribution is taken directly from 

Figure 16. 

 

 

 The ions at the other poloidal launch positions 𝜃0 = ±3π/4, ±π/2, ±π/4, 0 on the flux 

surface 𝜌1 = 0.864 within the directional cosine bin ζ0 = 0.955 will be allocated in the same 

manner as the example. The ions will be allocated over the poloidal exit locations 𝜃𝑠 for 

which they meet the energetic requirements as described in the previous section. Any 

remaining ions will spiral poloidally in the clock-wise direction to the poloidal locations 

𝜃0,𝜀𝑚𝑖𝑛 𝑙𝑜𝑤𝑒𝑟 with lower minimum energy requirements 𝐸𝑚𝑖𝑛(ζ0 =

0.955, 𝜃𝑆, 𝜃0,𝐸𝑚𝑖𝑛 𝑙𝑜𝑤𝑒𝑟, 𝜌1 = 0.864) < 𝐸𝑚𝑖𝑛(ζ0 = 0.955, 𝜃𝑆, 𝜃0, 𝜌1 = 0.864) to execute 

orbits which reach the separatrix where they are lost. At the end of the allocation process 

for the example case all of the non-lost ions have energies below the surface minimum 
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energy 𝐸𝑙𝑜𝑤𝑒𝑠𝑡 𝑚𝑖𝑛(ζ0 = 0.955, 𝜌1). The ions in the other directional cosine bins in the 

counter-current direction 0.955 > ζ0 > 0 will also be allocated by this same method.  

 For the ions in co-current directional bins 0 > ζ0 > −1 both allocation processes 

will be identical with only one exception. The ions will spiral in the poloidal counter clock-

wise direction when moving from a poloidal launch location with high overall minimum 

energy with respect to one with lower overall minimum energy 𝐸𝑚𝑖𝑛(ζ0 <

0, 𝜃𝑆, 𝜃0,𝐸𝑚𝑖𝑛 𝑙𝑜𝑤𝑒𝑟, 𝜌0 = 0.864) < 𝐸𝑚𝑖𝑛(ζ0 < 0, 𝜃𝑆, 𝜃0, 𝜌1 = 0.864). The ion, energy and 

momentum loss fractions for the first flux surface will be calculated using Equation (15) 

and allocated over poloidal exit and launch positions as described in these allocation 

sections. 
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Loss Fractions Beyond the First Flux Surface 

 

 Once the allocation over poloidal exit 𝜃S and poloidal launch 𝜃0 locations is 

completed for each directional cosine ζ0 on the first flux surface 𝜌1 = 0.864 we generate 

the loss fractions for the next flux surface and allocate them accordingly. However, each 

flux surface, beyond the first one we evaluate, has a truncated or ‘chopped’ energy 

distribution due to the ions lost on the previous flux surface(s). All directional cosine bins 

within each flux surface beyond the first, ρ𝑘 where 𝑘 > 1, will contain energy distributions 

which only include those ions with energies below the surface minimum from the previous 

flux surface 𝐸𝑐𝑢𝑡(ζ0, 𝜌k−1) for that directional cosine bin. This ‘cutting energy’ is 

synonymons the with 𝐸𝑙𝑜𝑤𝑒𝑠𝑡 𝑚𝑖𝑛(ζ0, 𝜌𝑘−1) we introdued in chapter 3. We can use these 

overall minimums to cut or truncate the energy distributions used in Equation (15) for ions, 

where  𝜀 =
1 2⁄ 𝑚𝑉0

2

𝑘𝑇𝑖𝑜𝑛
 

𝑁𝑙𝑜𝑠𝑠 = [∫ (
2𝑘𝑇

𝑚
)

1 2⁄

𝐸𝑋𝑃 (− (𝜀
2𝑘𝑇

𝑚
)) 𝑑𝜀

∞

𝜀𝑚𝑖𝑛(ζ0,𝜃𝑆,𝜃0,𝜌𝑘)
−

     ∫ (𝜀
2𝑘𝑇

𝑚
)

1 2⁄

𝐸𝑋𝑃 (− (𝜀
2𝑘𝑇

𝑚
)) 𝑑𝜀

∞

𝜀𝑐𝑢𝑡(ζ0,𝜌k−1)
],  (16) 

in Equation (11) for momentum, 

𝑀𝑙𝑜𝑠𝑠 = [∫ (𝜀
2𝑘𝑇

𝑚
)

2 2⁄

𝐸𝑋𝑃 (− (𝜀
2𝑘𝑇

𝑚
)) 𝑑𝜀

∞

𝜀𝑚𝑖𝑛(ζ0,𝜃𝑆,𝜃0,𝜌𝑘)
−

     ∫ (𝜀
2𝑘𝑇

𝑚
)

2 2⁄

𝐸𝑋𝑃 (− (𝜀
2𝑘𝑇

𝑚
)) 𝑑𝜀

∞

𝜀𝑐𝑢𝑡(ζ0,𝜌k−1)
], (17) 

and in Equation (13) for energy, 
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𝐸𝑙𝑜𝑠𝑠 =   [∫ (𝜀
2𝑘𝑇

𝑚
)

3 2⁄

𝐸𝑋𝑃 (− (𝜀
2𝑘𝑇

𝑚
)) 𝑑𝜀

∞

𝜀𝑚𝑖𝑛(ζ0,𝜃𝑆,𝜃0,𝜌𝑘)
−

     ∫ (𝜀
2𝑘𝑇

𝑚
)

3 2⁄

𝐸𝑋𝑃 (− (𝜀
2𝑘𝑇

𝑚
)) 𝑑𝜀

∞

𝜀𝑐𝑢𝑡(ζ0,𝜌k−1)
], (18) 

where k >1. These loss number equations are used to derive the un-allocated loss fractions 

for all flux surfaces beyond the first by replacing the loss number equations in the 

derivation for Equation (15) with Equations (16-18) for ions 

UA_∆𝐹𝑙𝑜𝑠𝑠(ζ0, 𝜃𝑆, 𝜃0, 𝜌𝑘) =  
𝑁𝑙𝑜𝑠𝑠

𝑁𝑡𝑜𝑡
=

[∫ 𝜀1 2⁄ 𝐸𝑋𝑃(−𝜀)𝑑𝜀
∞

𝜀𝑚𝑖𝑛(ζ0,𝜃𝑆,𝜃0,𝜌𝑘)
−∫ 𝜀1 2⁄ 𝐸𝑋𝑃(−𝜀)𝑑𝜀

∞
𝜀𝑐𝑢𝑡(ζ0,𝜌k−1)

]∗𝑓(ζ0) 

∫ 𝜀1 2⁄ 𝐸𝑋𝑃(−𝜀)𝑑𝜀
∞

0

=

[Γ(3/2,𝜀𝑚𝑖𝑛(ζ0,𝜃𝑆,𝜃0,𝜌k))−Γ(3/2,𝜀𝑐𝑢𝑡(ζ0,𝜌k−1))]∗
1

22

Γ(3/2)
,  (19a) 

with Equation (19) for momentum 

UA_∆M𝑙𝑜𝑠𝑠(ζ0, 𝜃𝑆, 𝜃0, 𝜌𝑘) =  
𝑀𝑙𝑜𝑠𝑠

𝑀𝑡𝑜𝑡
=

ζ0[∫ 𝜀𝐸𝑋𝑃(−𝜀)𝑑𝜀
∞

𝜀𝑚𝑖𝑛(ζ0,𝜃𝑆,𝜃0,𝜌𝑘)
−∫ 𝜀𝐸𝑋𝑃(−𝜀)𝑑𝜀

∞
𝜀𝑐𝑢𝑡(ζ0,𝜌k−1)

]∗𝑓(ζ0)

∫ 𝜀𝐸𝑋𝑃(−𝜀)𝑑𝜀
∞

0

=

ζ0[Γ(2,𝜀𝑚𝑖𝑛(ζ0,𝜃𝑆,𝜃0,𝜌k))−Γ(2,𝜀𝑐𝑢𝑡(ζ0,𝜌k−1))]∗
1

22

Γ(2)
,  (19b) 

and with Equation (20) for energy 

UA_∆𝐸𝑙𝑜𝑠𝑠(ζ0, 𝜃𝑆, 𝜃0, 𝜌𝑘) =  
𝐸𝑙𝑜𝑠𝑠

𝐸𝑡𝑜𝑡
=

[∫ 𝜀
3

2⁄ 𝐸𝑋𝑃(−𝜀)𝑑𝜀
∞

𝜀𝑚𝑖𝑛(ζ0,𝜃𝑆,𝜃0,𝜌𝑘)
−     ∫ 𝜀

3
2⁄ 𝐸𝑋𝑃(−𝜀)𝑑𝜀

∞
𝜀𝑐𝑢𝑡(ζ0,𝜌k−1)

]∗𝑓(ζ0)

∫ 𝜀3 2⁄ 𝐸𝑋𝑃(−𝜀)𝑑𝜀
∞

0

=

[Γ(5/2,𝜀𝑚𝑖𝑛(ζ0,𝜃𝑆,𝜃0,𝜌k))−Γ(5/2,𝜀𝑐𝑢𝑡(ζ0,𝜌k−1))]∗
1

22

Γ(5/2)
,  (19c) 

where, where  𝜀 =
1 2⁄ 𝑚𝑉0

2

𝑘𝑇𝑖𝑜𝑛
 and k >1.  
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 Using Equations (15) and (19) we calculate the un-allocated loss fractions for all 

flux surfaces 𝜌𝑘 for 1 ≤ 𝑘 ≤ 24 over all directional cosine bins (−1 ≤ ζ0 ≤ 1). We 

allocate these loss fractions from all of the poloidal launch locations (𝜃0 = π, ±3π/4, ±π/2, 

±π/4 and 0) over all the energetically allowable poloidal exit locations (𝜃𝑆 = π, ±3π/4, ±π/2, 

±π/4 and 0). Any remaining ions which do not meet the energetic requirements at their 

initial poloidal launch location 𝜃0 are taken to nearby poloidal launch locations 

𝜃0,𝜀𝑚𝑖𝑛 𝑙𝑜𝑤𝑒𝑟 with lower overall minimum reduced energy requirements 

𝜀𝑚𝑖𝑛(ζ0, 𝜃𝑆, 𝜃0,𝜀𝑚𝑖𝑛 𝑙𝑜𝑤𝑒𝑟 , 𝜌0) < 𝜀𝑚𝑖𝑛(ζ0, 𝜃𝑆, 𝜃0, 𝜌0). The choice of nearby poloidal launch 

locations is determined solely by the particular directional cosine bin of the ions. For co-

current directed ions (−1 ≤ ζ0 < 0)  the poloidal spiral motion is counter clock-wise while 

the counter-current directed ions (0 < ζ0 ≤ 1) the poloidal motion is clock-wise. This 

allocation is continued until all the non-lost ions in a given directional cosine bin are below 

the surface minimum energy 𝐸𝑙𝑜𝑤𝑒𝑠𝑡 𝑚𝑖𝑛(ζ0, 𝜌0).    

 All of the fully allocated loss fractions are stored in differential form over the 

directional cosine (ζ0) bin to which they belong, the poloidal exit locations (𝜃𝑆) on the 

separatrix (𝜌𝑆) they exit at, the poloidal launch locations (𝜃0) they are launched from and 

the inner flux surface radius (𝜌0) they were at when their orbit took them out to the 

separatrix to be lost. These allocated full differential loss fractions for ions, momentum and 

energy are given by ∆𝐹𝑙𝑜𝑠𝑠(ζ0, 𝜃𝑆, 𝜃0, 𝜌0), ∆𝑀𝑙𝑜𝑠𝑠(ζ0, 𝜃𝑆, 𝜃0, 𝜌0) and ∆E𝑙𝑜𝑠𝑠(ζ0, 𝜃𝑆, 𝜃0, 𝜌0). 

We can now sum the full differential loss fractions over any of their four dimensions 

∑ ∑ ∑ ∑ [ζ0, 𝜃𝑆, 𝜃0, 𝜌𝑘]24
𝑘=1

8
𝜃0=1

8
𝜃𝑆=1

22
ζ0=1  to generate a corresponding IOL distribution over 

the remaining dimensions. Summing the full differential ion loss fraction over the 

directional cosines ζ0, poloidal exit locations 𝜃𝑆, and internal flux surface positions 𝜌0 will 
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give the ion loss fraction as a distribution over poloidal launch positions (this also applies 

to the momentum and energy full differential loss fractions) 

 ∆𝐹𝑙𝑜𝑠𝑠(𝜃0) = ∑ ∑ ∑ [∆𝐹𝑙𝑜𝑠𝑠(ζ0, 𝜃𝑆, 𝜃0, 𝜌𝑘)]24
𝑘=1

8
𝜃𝑆=1

22
ζ0=1 .  (20) 

The full differential loss fractions could also be summed over just a few of the dimensions 

such as the poloidal exit locations 𝜃𝑆 and internal flux surface positions 𝜌0 which will yield 

a distribution of the ion loss fractions over directional cosine and poloidal launch locations 

∆𝐹𝑙𝑜𝑠𝑠(ζ0, 𝜃0) = ∑ ∑ [∆𝐹𝑙𝑜𝑠𝑠(ζ0, 𝜃𝑆, 𝜃0, 𝜌𝑘)]24
𝑘=1

8
𝜃𝑆=1 .  (21) 

Or the full differential loss fractions could be summed over all of their dimensions to find 

an overall loss fraction for the whole plasma given by 

𝐹𝑜𝑟𝑏 = ∑ ∑ ∑ ∑ [∆𝐹𝑙𝑜𝑠𝑠(ζ0, 𝜃𝑆, 𝜃0, 𝜌𝑘)]24
𝑘=1

8
𝜃0=1

8
𝜃𝑆=1

22
ζ0=1 , (22) 

𝑀𝑜𝑟𝑏 = ∑ ∑ ∑ ∑ [∆𝑀𝑙𝑜𝑠𝑠(ζ0, 𝜃𝑆, 𝜃0, 𝜌𝑘)]24
𝑘=1

8
𝜃0=1

8
𝜃𝑆=1

22
ζ0=1 , (23) 

𝐸𝑜𝑟𝑏 = ∑ ∑ ∑ ∑ [∆𝐸𝑙𝑜𝑠𝑠(ζ0, 𝜃𝑆, 𝜃0, 𝜌𝑘)]24
𝑘=1

8
𝜃0=1

8
𝜃𝑆=1

22
ζ0=1 . (24) 

 Any summation of the momentum loss fractions over the directional cosine ζ0 will 

obviously have to be treated as positive or negative. We use the convention of ζ0 > 0 as 

being a positive momentum loss fraction. Additionally, we may construct cumulative 

distributions by integrating the summed distributions over successive flux surfaces 

𝐹𝑐𝑚𝑙(𝜌0) = ∫ ∑ ∑ ∑ ∑ [∆𝐹𝑙𝑜𝑠𝑠(ζ0, 𝜃𝑆, 𝜃0, 𝜌𝑘)]24
𝑘=𝑧

8
𝜃0=1

8
𝜃𝑆=1

22
ζ0=1

24

𝑧=1
. (25) 

 We will make use of these summation methods to investigate the distribution of 

ions, energy, and momentum in the next two chapters.  
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CHAPTER 5 

DISTRIBUTION OF ION-ORBIT-LOSS IONS AND ENERGY OVER 

THE SCRAPE-OFF LAYER 

 

 Using the full ion and energy differential loss fractions ∆𝐹𝑙𝑜𝑠𝑠(𝜁0, 𝜃𝑆, 𝜃0, 𝜌𝑘) and 

∆𝐸𝑙𝑜𝑠𝑠(𝜁0, 𝜃𝑆, 𝜃0, 𝜌𝑘), as determined in the previous chapter, we can generate their 

distributions over various dimensions (IOL momentum results will be presented in the next 

chapter). The ion and energy distributions are shown at each poloidal launch location (𝜃0) 

compared against calculations using a simpler allocation [10,13] in Figure 18. In the 

original method [10,13], for which the poloidal distribution of the lost ions was not a 

concern, the smallest minimum energy for loss through any exit location was assigned to a 

given launch 𝜃0 on a given flux surface 𝜌𝑘, and the lowest of these minimum energies over 

the different launch 𝜃0’s was taken as the minimum loss energy for the flux surface at 𝜌𝑘. 

 A generalized contour plot for ion and energy over poloidal launch locations (𝜃0) 

and directional cosines (𝜁0) is provided in Figure 19. The difference in poloidal particle 

motion for ion and energy fluxes traveling along the helical magnetic field, as seen in 

Figure 15, is the source of the poloidal asymmetry seen in Figures 18 and 19 as well as the 

secondary peak at the outer midplane in Figure 18. The rapid poloidal ion motion on each 

flux surface (negative or positive depending on the directional cosine 𝜁0) shifted the loss 

out from the inner midplane (𝜃0 = π), the allocation over the poloidal launch locations used 

in the new method was designed to take this motion into account. 
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Figure 18. Ion and energy loss fractions at each poloidal launch location (𝜃0), compared 

with the original method [10,13]. 

 

 

 

  
Figure 19. Contour plot for generalized ion and energy loss fractions at each directional 

cosine (𝜁0) and poloidal launch location (𝜃0). 
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 The ion and energy loss fractions for different poloidal exit locations (𝜃𝑆) are shown 

in Figure 20. The peaking of the loss fluxes to the outboard midplane going into the SOL 

at 𝜃𝑆 = 0 is consistent with a previous estimate [13] and with experimental data [22-24]. 

This peaking at the outer midplane (𝜃𝑆 = 0) on the separatrix for the new model is based 

upon the difference in minimum required energy at the outer midplane compared to the 

other poloidal exit locations (𝜃𝑆), see Figures 5-10.  

 

 
Figure 20. Loss fractions across separatrix for ions and energy at each poloidal exit 

location (𝜃𝑆). 

 

 

 By taking the ratio of the local to the average energy at each poloidal exit location 

(𝜃𝑆) from Figure 20 given by ∆𝐸𝑙𝑜𝑠𝑠(𝜃𝑆)/([∑ ∆𝐸𝑙𝑜𝑠𝑠(𝜃𝑆)8
𝜃𝑆=1 ]/8) we compare against the 

normalized radial conductive heat flux 𝑞𝑟(𝑟, 𝜃𝑆)/〈𝑞𝑟(𝑟)〉 going into the SOL [25] 

calculated with miller model geometry, see Figure 21. The poloidal distribution of particle 

or energy fluxes across the separatrix due to IOL is quite different than the distribution 
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from conductive or diffusive transport in the plasma, as seen in Figure 21. Given that Figure 

20 indicates that more than 95% of the energy flowing across the separatrix is due to IOL, 

this would seem to explain experimental observations of more energy going to the outer 

than inner divertor leg.  

 It should be noted that we have not included the X-loss of ions by grad-B and 

curvature drifting radially outward in the weak poloidal magnetic field region in the 

vicinity of the X-point [8], which would be expected to cause a secondary peaking in the 

IOL distribution in Figure 20 in the vicinity of the X-point at 𝜃𝑆 = ±3π/4. 

 

 
Figure 21. Predicted poloidal exit location (𝜃𝑆) distribution of the conductive and IOL 

energy flux just inside the separatrix going into the SOL. 

 

 

 

 Cumulative ion and energy loss fractions at each radial flux surface position (𝜌0) 

are compared with the original methodology [10,13] in Figure 22. The new method allows 
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more ions to be lost at each flux surface as ions at each poloidal launch position have access 

to other locations with lower minimum energy requirements. The higher loss rates seen in 

the last few flux surfaces for the new model are attributed to this. 

 

 
Figure 22. Cumulative loss fractions for ions and energy at each radial flux surface 

position (𝜌0). 

 

 

 

 We find the total cumulative loss fractions at the separatrix for the whole plasma to 

be 𝐹𝑜𝑟𝑏 = 0.9683 and 𝐸𝑜𝑟𝑏 = 0.9982. Thus, it seems that IOL plays a major role in creating 

the sources of particles, momentum and energy into the SOL, in this shot. If only half of 

the ions which undergo IOL to the separatrix are actually lost to (do not re-enter) the plasma 

then IOL still contributes the majority of these fluxes, much more so than from conduction 

or convection transport within the plasma. 
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Estimating the Effect of Scattering 

 

 Scattering has been neglected to this point in the development of the ion-orbit-loss 

computational methodology. The 90-degree ion-ion scattering time in a typical DIII-D 

edge plasma is on the order of 𝜏90
𝑖𝑖 ≅ 10−4𝑠, which is comparable to typical radial transport 

times, so scattering may have an effect.  

 Inclusion of scattering in the conservation equations would be impractical. 

However, we can estimate the effect of scattering by assuming that scattering isotropizes 

the velocity distribution.  

 Allowing ions to move from directional cosines with high minimum energy into 

other directional cosines ultimately moves the lowest energy ions (which can be lost on a 

given flux surface) to the directional cosine with the lowest overall minimum energy, 

𝜁0′ → 𝜁 → 𝜁0,𝐸𝑚𝑖𝑛, where ions can be lost. We apply this scattering estimation method to 

the calculation of the differential loss fractions determined in the previous chapter. The 

following distributions will correspond to Figures 18, 20 and 22 in the previous section.  

 The ion and energy loss fractions at each poloidal launch location (𝜃0) are 

compared against the non-scattering data (without estimated scattering) in Figure 23. We 

omitted the contour plot at each poloidal launch location 𝜃0 and directional cosine 𝜁0 for 

the estimated scattering data because it had only one peak at the outboard midplane in the 

extreme counter-current position. The ion and energy loss fractions at each poloidal exit 

location 𝜃𝑆 are compared against non-scattering data in Figure 24. 

 The predominant loss of ions from, and to, the outer midplane at 𝜃0 = 0 and 𝜃𝑆 =

0 with the scattering method (Figures 23 and 24) is due to ions scattering into the lowest 
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minimum energy requirement region of the counter-current directional bins at the outer 

midplane, see Figures 5-9. Due to this scattering fewer non-lost ions remain which can 

meet the physical requirements to be lost from the co-current directional cosines which 

have higher energetic requirements. The severe lack of co-current ion loss, which occurs 

predominately at the inner midplane, is also the reason the magnitude of the poloidal 

asymmetry is different for the scattering method. The outer midplane peaking peaking for 

the new and scattering methods is consistent with the predictions of the original method 

[10,13] and with experimental data [22-24]. 

 

 
Figure 23. Ion and energy loss fractions for each poloidal launch point (𝜃0) with and 

without scattering. 
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Figure 24. Ion and energy loss fractions at each poloidal exit location (𝜃𝑆) with and 

without scattering. 

 

 

 

 The ion and energy loss fractions at each radial flux surface position are compared 

against non-scattering data in Figure 25. The change in curvature for the scattering method 

is due to additional ions being lost on each flux surface as ions were able to access 

directional cosines with lower minimum energy requirements.   

 The total overall loss fractions with estimated scattering for ion and energy are 𝐹𝑜𝑟𝑏 

= 0.9955 and 𝐸𝑜𝑟𝑏 = 0.9999. These total loss fractions are higher than the non-scattering 

case due to more ions being lost from counter-current directional cosines with lower overall 

minimum energy requirements. It is clear that scattering increases the large fractions of 

ions and energy which are ion-orbit-lost, and Figure 25 provides an upper limit.  
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Figure 25. Cumulative ion and energy loss fractions at each radial position (𝜌0) with and 

without scattering. 
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CHAPTER 6 

DISTRIBUTION OF MOMENTUM INTO THE SCRAPE-OFF 

LAYER AND INTRINSIC ROTATION 

 

 Using the allocated full differential momentum loss fraction ∆𝑀𝑙𝑜𝑠𝑠(𝜁0, 𝜃𝑆, 𝜃0, 𝜌𝑘) 

we can sum over selected dimensions to calculate momentum loss fraction distributions. 

The momentum loss fraction sign convention is based upon counter-current, ζ0 > 0, 

momentum loss resulting in a co-current spin up in the plasma edge. We define any 

summation of the differential momentum loss fraction over the directional cosine 

dimension as a net momentum loss fraction.  

The cumulative distribution of net momentum loss fractions at each radial flux 

surface position (𝜌0) with the estimated scattering and original methods are shown in 

Figure 26. The final net momentum loss for the new model (last red filled in circle on 

Figure 26) is 𝑀𝑜𝑟𝑏 = 0.0027, while the final net momentum loss with the scattering model 

(last hollow red circle in Figure 26) is 𝑀𝑜𝑟𝑏,𝑠𝑐𝑎𝑡𝑡𝑒𝑟𝑖𝑛𝑔 = 0.9245 (the original method was 

calculated to 𝑀𝑜𝑟𝑏,𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 = 0.0989). The intrinsic velocity, calculated from the net 

momentum loss fraction distribution, offers the best direct comparison with experimental 

data [15, 16, 17 and 18]. 
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Figure 26. Cumulative net momentum loss fractions at each radial position (𝜌0) with 

scattering and original methods. 

 

 

 

The intrinsic velocity may be solved for using the following equation from [12]  

∆𝑉|| =  
2𝛤(2)

√𝜋
∗ 𝑀𝑜𝑟𝑏 ∗ 𝑉𝑡ℎ =

2

√𝜋
∗ 𝑀𝑜𝑟𝑏 ∗ √

2𝑘𝑇𝑖𝑜𝑛

𝑚
,  (26) 

where 𝑀𝑜𝑟𝑏 or ∆𝑀𝑙𝑜𝑠𝑠(ζ0, 𝜃𝑆, 𝜃0, 𝜌0) are from Equation (23). Using Equation (26) we 

generate a plot similar to Figure 26 for the intrinsic plasma velocity, see Figure 27. The 

final intrinsic velocity (last red filled in circle on Figure 27) is 0.6 km/s, while the final 

intrinsic velocity with estimated scattering (last hollow red circle in Figure 27) is 200 km/s 

(the original method velocity came to 20 km/s).  

A peaking of the toroidal rotation velocity inside the separatrix has been observed 

in a number of DIII-D shots [17-19] (to avoid further confusion we noted that the authors 

of Reference 19 used a different definition for the direction cosine which is opposite the 

convention used in the DIII-D papers they referenced).  
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Figure 27. Net co-current velocity distributed over radial position (𝜌0) with scattering and 

original data. 

 

 

 

The new model predicts broader peaking further away from the plasma edge 

(peaking at about 𝜌0 ≅ 0.95) than the original model (peaking at about 𝜌0 ≅ 0.99) while 

the experimental results estimate peaking in the vicinity of 𝜌0 ≅ 0.98 [17-19]. The peaking 

in both cases is due to the change in the major ion loss direction cosine starting with mostly 

counter-current directional cosine ion loss and then switching to mainly co-current 

directional cosine ion loss. For the new model more ions are lost at each flux surface so the 

major directional contributor to this loss (e.g. the counter-current direction cosine ions) are 

lost much faster than in the original model. The new model shifts from mainly loosing 

counter-current ions to co-current ions at an earlier flux surface than in the original as fewer 

non-lost counter-current ions are available in the last few flux surfaces. The broadness of 
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the peaking in the new model is a side effect of having this shift sooner. The energy range 

of the ions in the new model when it shifts from mainly counter-current loss to co-current 

loss occurs just outside the energy range where the Maxwellian distribution peaks. This 

causes the peak to broaden as fewer co-current ions are available in the Maxwellian 

distribution at that energy range in comparison to where the original model peaks.  

Since the original model demonstrated peaking closer to what the experimental 

results have predicted (peaking at about 𝜌0 ≅ 0.98 [17-19]) it is worth considering what 

assumptions in the new model may have shifted the peak further from the edge. Assuming 

our physical reasoning for the new model’s behavior is correct then dampening the ion loss 

would shift the peak in the new model further out. To do this we consider the added major 

contributor to the ion loss in the new model, the second allocation method over poloidal 

launch locations. We previously assumed that ions at a given launch location (𝜃0) could 

travel poloidally (depending on their direction cosine 𝜁0) to other launch locations to be 

lost without restriction on the number of travels. However, if we restrict the number of 

times non-lost ions are allowed to travel poloidally we can lower the number of ions lost 

and shift the peaking out radially, see empty blue squares curve in Figure 28. We found 

restricting the poloidal travel distance to one rotation during the allocation over poloidal 

launch locations moved the new model into the closest agreement with the experimental 

results. It may be possible to add a feature into the new model later allowing greater 

resolution on this peak shifting. 
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Figure 28. Net co-current velocity at each radial position (𝜌0) with a proposed one 

allocation step method and the original method. 

 

 

 

The scattering model does not demonstrate any peaking whatsoever for the net 

momentum, see Figure 26, and far broader peaking at an order of magnitude higher in 

intrinsic velocity, see Figure 27. This is likely due to the majority of ions being lost within 

the lowest energy 𝐸min 𝑙𝑜𝑤𝑒𝑠𝑡(𝜌0, 𝜁0) direction cosine (𝜁0 = 0.955). There is an extreme 

peaking of the scattering model net momentum when viewed at each poloidal exit location 

(𝜃𝑆) in comparison to the new model, see Figure 29. Most of the loss for both models goes 

to the vicinity of the outboard midplane (𝜃𝑆 = 0 and ±π/4). The new model begins to lose 

co-current ions at the lowest energy location first (𝜃𝑆 = 0) while the scattering model 

continues to lose ions in the counter current direction (which has the lowest energy 

requirement at 𝜃𝑆 = 0) thus creating the large peak. Additionally, the scattering model 
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isotropization washes out the co-current and counter-current distinction that causes the 

peaking in the other models. This evidence argues against including the scattering as a 

major contributor for our calculation of IOL. 

 

 
Figure 29. Net momentum loss fractions at each poloidal exit location (𝜃𝑆) with the 

scattering method. 
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CHAPTER 7 

SUMMARY AND CONCLUSIONS 

 

 In this thesis we introduced a new method for determining ion, momentum and 

energy fully differential loss fractions by new allocation schemes over the poloidal exit and 

launch locations. The ions at each internal flux surface location with energy below the 

minimum required energy to execute and orbit out to a position on the separatrix are lost 

on these orbits or rotated poloidally to another location where they could be lost from the 

main plasma. This new allocation method enabled us to develop a more accurate method 

of representing the loss of particles, energy and momentum by internal ions which access 

orbits that leave the plasma.  

 The total ion-orbit-loss of ion and energy fluxes into the SOL generally matched 

the original model [10,13], though new asymmetries were found across the poloidal launch 

positions. The poloidal distribution of the energy flux into the SOL was very different for 

IOL than the conductive/diffusive energy flux distribution [25]. Additionally, IOL 

contributed the majority of the loss into the SOL far higher than any other single loss 

mechanism (e.g. conduction or convection).  This has substantial implications for modeling 

and interpreting divertor physics in tokamaks (e.g. higher energy load to outboard divertor 

leg).  

We found that estimating scattering did not significantly aid the new model in 

predicting co-current velocity experimental results, and we are generally inclined to neglect 

it, but the issue is not resolved. Our new model showed general agreement with the original 

in predicting intrinsic velocity peaking, though the new model predicted peaking deeper in 
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the plasma edge and more broadly. We also confirmed previous predictions of [15] that 

IOL in an H-mode plasma with oppositely directed toroidal field and current produces an 

intrinsic co-current rotation in the edge plasma. 

 The results presented in this thesis are noted to be for an H-mode discharge in the 

DIII-D tokamak and would be expected to vary for other plasma and machine physical and 

geometric characteristics.  
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APPENDIX A 

DERIVATION FOR THE SOLID ANGLE BINNING USED IN THIS 

RESEARCH 

 

  The directional cosine ζ0 values used in this research were chosen to be at the 

center of a evenly distributed set of 22 directional bins from -1 to 1, see Figure 30. 

 

 
Figure 30. The 22 directional cosine bins used for this research. 

 

 

 

 
Figure 31. Azimuthal 𝛼 and polar 𝜑 angles of velocity 𝜗 relative to the toroidal magnetic 

field 𝐵𝜑. 

 

 

 -1                    -0.5      0                     0.5                     1  
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 As a justification for this consider the equation for the solid angle over a sphere, 

𝛺 = ∬ sin 𝛼 𝑑𝛼𝑑𝜑
𝑆

.  (27) 

The azimuthal angle 𝛼 and polar angle 𝜑 are shown in Figure 31 relative to the toroidal 

magnetic field, 𝐵𝜑, and a sample velocity, 𝜗. For our calculation, the polar angle (𝜑) can 

be arbitray for a given ion, so we can generalize the solid angle formula for each directional 

bin to that of a spherical cap or cone with a given azimuthal angle (α). This results in the 

solid angle equation for a cone with its vertex at the center of a sphere. 

𝛺 = 2𝜋(1 − cos(𝛼))  (28) 

 

 
Figure 32. Nested cones with their enclosed solid angles projected onto a sphere. 

 

 The solid angle between two nested cones with their vertices at the center of a 

sphere, see Figure 32, is given by, 
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𝛺 = 2𝜋[(1 − cos(𝛼𝑛)) − (1 − cos(𝛼𝑛−1))].  (29) 

In order to generate the 22 evenly sized differential areas of the solid angle we make use 

of Equation (29), which we can further simplify by substituting 𝜁 = cos(𝛼) in for the 

directional cosine. 

2𝜋 ∑ [(1 − cos(𝛼𝑛)) − (1 − cos(𝛼𝑛−1))]22
𝑛=1 = 4𝜋   (30) 

∑ [(1 − 𝜁𝑛) − (1 − 𝜁𝑛−1)]22
𝑛=1 =

4𝜋

2𝜋
  (31) 

 Since we want each of the 22 solid angle bins to be the same size we set up the 

following relationship for the size of any given solid angle bin. 

[(1 − 𝜁𝑛) − (1 − 𝜁𝑛−1)] = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =
1

11
,  where 1 ≤ 𝑛 ≤ 22  (32) 

Using Equation (32) we can solve for the left edges of the 22 solid angle bins in terms of 

the directional cosine, 𝜁. For example consider the following application of Equation (32) 

to the calculation of the left edges for the first two directional bins. 

[(1 − 𝜁1) − (0)] =
1

11
  

(1 − 𝜁1) =
1

11
→ 𝜁1 = (1 −

1

11
) =

10

11
= Left edge for bin 1. 

[(1 − 𝜁2) − (1 − 𝜁1)] =
1

11
  

[(1 − 𝜁2) −
1

11
] =

1

11
  

(1 − 𝜁2) =
2

11
→ 𝜁2 = (1 −

2

11
) =

9

11
= Left edge for bin 2. 

 We pick a center point for each bin to use as a representative point for each bin 

such that half of each bin’s solid angle can be found to either side of the center point. 

(1 − 𝜁𝑐𝑒𝑛𝑡𝑒𝑟) − (1 − 𝜁𝑟𝑖𝑔ℎ𝑡 𝑒𝑑𝑔𝑒) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡   

𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 =   (1 − 𝜁𝑙𝑒𝑓𝑡 𝑒𝑑𝑔𝑒) − (1 − 𝜁𝑐𝑒𝑛𝑡𝑒𝑟) =
1

22
  (33) 
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Using Equation (33) in conjunction with Equation (32) we can now calculate the center 

point values for each solid angle bin in terms of the directional cosine. Using the left bin 

edges we calculated in the previous example we calculate the center points for the first two 

bins. 

(1 −
10

11
) − (1 − 𝜁𝑐𝑒𝑛𝑡𝑒𝑟) =

1

22
  

𝜁𝑐𝑒𝑛𝑡𝑒𝑟 − 1 =
1

22
− 1 +

10

11
  

𝜁𝑐𝑒𝑛𝑡𝑒𝑟 =
1

22
+

10

11
=

21

22
= Center for bin 1. 

(1 −
9

11
) − (1 − 𝜁𝑐𝑒𝑛𝑡𝑒𝑟) =

1

22
  

𝜁𝑐𝑒𝑛𝑡𝑒𝑟 − 1 =
1

22
− 1 +

9

11
  

𝜁𝑐𝑒𝑛𝑡𝑒𝑟 =
1

22
+

9

11
=

19

22
= Center for bin 2. 

 By choosing equal sized solid angle bins we ensure that an equal number of ions 

are contained inside each directional bin and thus represented by each of the directional 

cosines that we sample over, since we assume that at least initially the ions are isotropic. 

Applying this directional binning to the energy distribution curve we effectively split it into 

22 curves, which are all roughly a fraction 1/22 or 4.455% of the full curve, see Figure 33. 

Summing over a single one of these curves from zero to infinity will yield 1/22 and 

summing over all of them from 0 to infinity will yield 1 like the full Maxwellian.  
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Figure 33. Maxwellian PDF for a uniformly sampled loss cone. 

 

 If we ever wanted to use a non-uniform distribution of directional cosine sampling, 

something similar to Figure 30 but with blue boxes of different sizes, then we could use 

the following factor, 𝑓(ζ𝑖), in place of the 1/22 that was mentioned previously. 

𝑓(ζ𝑖) =
𝑎𝑏𝑠(𝑎𝑏𝑠(

ζ𝑖−1+ζ𝑖
2

)−𝑎𝑏𝑠(
ζ𝑖+ζ𝑖+1

2
))

2
     (34) 
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