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SUMMARY 

 

 

 

An experimental investigation is presented on a novel High Temperature Falling Particle 

Receiver for Concentrated Solar Power (CSP) to quantify the extent of erosion of the receiver 

structural materials by the flowing particulate matter. The current receiver design uses a series of 

metal wire mesh screens to slow down the particulate flow through the receiver in order to 

increase their residence time thereby achieving the desired temperature rise within the receiver 

without the need for particulate recirculation. The solid particulates are gravity fed through the 

receiver where they absorb the incident thermal energy before flowing to a high temperature 

storage bin upstream of a heat exchanger where the heat stored in the particulate material is 

transferred to the working fluid for the power cycle. To assess the effective life of the receiver, 

this experimental investigation is undertaken. This thesis includes the development of an 

apparatus to test wire meshes under high temperature and particle abrasion conditions, and the 

presentation and analysis of these results. 

The metals considered for a Particle Heating Receiver (PHR) include stainless steel 316, 

nickel-chromium (Chromel C), and non-sag tungsten. Each metal shows a trend of increasing 

mass as the number of cycles increases. This is believed to be due to oxidation. The temperature 

of the experiment is sufficiently high to encourage the rapid formation of oxidized materials 

within each sample. The combination of impact by the particulate and oxidation are acting on the 

surface of the metals. However, the oxidation appears to be a greater contributing factor to the 

mass change of the samples. When tested, the stainless steel 316, non-sag tungsten, and nickel-

chromium alloys showed an increase in mass. This is consistent with oxidation. As the number 

of cycles increases, the surface area becomes more fully oxidized. Future work to be done for 



xi 

PHR materials should include determining the length of meshes to be used in the PHR 

determined by the thickness of the falling particle curtain, the overall efficiency and convective 

losses in such a PHR, and methods to mix the particles in the PHR from front to back and vice 

versa to ensure a uniform particle temperature. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

 

Concentrated Solar Power (CSP) is a method of concentrating solar radiation for useful 

work or processes, illustrated in Figure 1.1. The solar radiation is focused to the desired area in a 

receiver and the heat is absorbed by a medium being circulated through the focused light called a 

Heat Transfer Fluid (HTF). The HTF is passed through the receiver and then through a heat 

exchanger. After the heat is exchanged to a working fluid such as CO2, the working fluid is then 

used to drive a power generation cycle. Then the HTF is either stored in a large reservoir or 

recirculated through the receiver as necessary. These fluids are most typically steam or molten 

salts. Both media require extensive recirculation systems which add cost to the overall system. 

Additionally, typical molten salts are corrosive to steel pipes, and solidify if the temperature 

drops below the salts’ melting point. Heat must be applied to the pipes to liquefy the salts and 

restart the power plant. Solid particulates such as silica sand or alumina grains are materials 

being investigated for use in a CSP plant to replace steam and molten salts as an HTF. These 

solid particulates are cost effective, commercially available, and provide inherent Thermal 

Energy Storage (TES) advantages. Current investigations into solid particulates as an HTF have 

identified several challenges including recirculation from heat exchanger back to the receiver, 

selection of a type of particulate to use, and increasing the heat transfer efficiency of the 

particulate in the focused light.  To increase the efficiency, a receiver is designed to increase the 

residence time of particulate in the focused light thus reducing the need for recirculation to 

achieve a desired temperature rise. This thesis is concerned with the receiver designed for use 

with solid particulates.  
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Figure 1.1 CSP System with Solid Particulate as HTF 

 

Several receiver designs have been explored including porous silicon carbide blocks, free 

falling curtains, and discrete porous structures such as wire meshes. The discrete porous 

structures have the most promise since they can be constructed in many different ways to control 

the mass flow through the receiver. Current designs of the structures are in the shape of 

chevrons, as shown in Figure 1.2. 
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Figure 1.2 Discrete Porous Structure Wire Mesh Chevron Configuration 

 

 

 

 

 

Figure 1.3 Diagram of Discrete Porous Structure Chevron Pattern 

 

Each chevron side has a length of 38.1 mm and an angle of 120° between the two sides. 

A diagram of the chevron design is shown in Figure 1.3. The necessary chevron depth into the 
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receiver is currently being investigated. Wire mesh chevrons at different elevations in the 

receiver may experience different particulate mass fluxes as the particulate flow area expands. 

Additionally, the wires which make up the chevron will have a specified spacing and thickness 

which are dependent upon the size of the particles and the desired mass flow.   

When combined with many other wire mesh chevrons, the particles which are being fed 

by gravity through the receiver must impact the wire meshes thus decreasing their velocities. 

Over a large area and with changes to the open areas of the meshes themselves, the mass flow of 

the particulate can be controlled and the residence time in the concentrated sunlight increased. 

This increase in the residence time will increase the particles’ temperature. A higher temperature 

leads to a higher cycle efficiency. A fully built receiver is shown in Figure 1.4. 

Since the metal meshes are being impacted by solid particles and the temperature of the 

particles is expected to be in excess of 800°C, concerns arose over what materials would be most 

ideal for the wire meshes. The experiment conducted and discussed in this thesis addresses those 

concerns.  

 

Figure 1.4 Complete Receiver with Metal Wire Mesh Chevrons 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

 

Concentrated Solar Power with Solid Particulates 

 Using solid particulates as a heat transfer and thermal energy storage medium in CSP 

systems is a concept which has been explored since the early 1980s. A feasibility study by 

Babcock and Wilcox for Sandia National Laboratories recommended in 1981 a moving bed 

thermal energy storage system with a refractory material as the HTM for an eventual full scale 

tower system [1]. Further studies analyzed the economics and technical challenges for CSP 

systems using solid particulates. Martín and Vitko [2] considered design concepts and also listed 

some of the future research which had to be done, including the design of the receiver, the design 

of the lift system to recirculate particles, and qualities for an ideal particulate candidate. 

However, this was preliminary research, and a technical feasibility paper was published by 

Hruby [3]. Hruby compiled technical evaluations about the various components of CSP with 

solid particulates such as a free-falling curtain receiver, the material of the solid particulates, how 

to evaluate the performance and cost of the material, and particle lift systems and heat 

exchangers [4-8]. The free-falling curtain receiver has received the most attention, but several 

other types of receivers have been suggested, including those which can increase the maximum 

cycle temperature of the particles. This increase in temperature is a means to increase the overall 

efficiency of CSP.  
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Particle Heating Receivers 

In her recommendations, Hruby suggested that a technique of maintaining “a high 

volume fraction particle flow” was to reduce the amount of spread that particles experienced as a 

result of acceleration when falling. She suggests that “one way of achieving less particle spread 

may be to insert ceramic objects supported on the back cavity wall into the flow. The particles 

would decelerate when making contact with these inserts and therefore less spread between the 

particles in the vertical direction would occur.” [3] However, due to limited computational 

power, the design was only recommended as a way to increase the efficiency and not analyzed. 

Figure 2.1 shows Hruby’s concept. 

 

Figure 2.1 Particle Heating Receiver Design to Prevent  

Thinning Falling Curtain, Proposed by Hruby [3] 
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Although solid particles as an HTM for CSP were explored in the 1980s, the design for 

CSP moved in favor of using nitrate salts and steam. Ho and Iverson [9] reviewed the work 

which has been done on high-temperature central receivers for CSP and noted that “Although a 

number of analytical and laboratory studies have been performed since its inception in the 

1980s… those preliminary tests, which did not optimize the configuration of the receiver 

aperture, only achieved 50% thermal efficiency, and the increase in particle temperature was 

~250°C from ambient conditions.” One of the methods they recommended for increasing the 

thermal efficiency is from Hruby’s [3] technical summary, which is to “increase the residence 

time of the particles within the concentrated beam.” Roesle et al. [10] explored the radiative 

properties of particle suspensions for CSP applications, which held the particles fixed in an 

epoxy resin. In this thesis, the PHR is designed with falling particles. Two types of receivers 

have been explored to increase the residence time of the particles: a porous structure and a 

discrete structure. 

 Golob et al. [11] have examined the porous structure style receiver. The receiver itself is 

a silicon carbide foam formed when a sponge-like foam made of plastics is dipped in a SiC 

solution. The plastic is eliminated from the inside structure and the SiC is left.  Figure 2.2 shows 

an example of the porous SiC foam. The SiC receiver retains pores through which the solid 

particulates are allowed to flow and their residence time is increased due to the restrictive size of 

those pores. This type of receiver has shown promise, but there are difficulties in achieving the 

desired mass flow of solid particulate through the receiver. In the same paper the discrete 

structure PHR is also discussed. Instead of being one unit, the filaments and branches that make 

up the SiC foam consist of meshes which can be laid in any configuration and with any mesh 

size, which is to say the spacing between wire filaments. This method is especially useful when 
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the design needs to be changed quickly. It is also less expensive than the SiC foam, and can be 

made of many different materials. Figure 2.3 shows a discrete structure wire mesh. 

 

 
 

Figure 2.2 Porous SiC Structure (25.4 mm Diam., 25.4 mm Height) for a PHR 

 

 

Figure 2.3 Discrete Structure Wire Mesh (U.S. 10 Mesh) 

 

 

25.4 mm 

25.4 mm 
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Durability of Discrete Structures in a Particle Heating Receiver 

 

A concern which existed about discrete structures was their durability. A receiver which 

fails can release bits of the discrete structures into the particulate. Fouling of the particulate can 

cause a decline in the heat exchanger effectiveness, especially if fins that are installed in the heat 

exchanger catch the discrete structure filaments. The decrease in effectiveness decreases the 

thermal efficiency of the system. Another issue which could arise would be overheating of the 

back wall if the receiver is tall enough for particles to begin separating in a free-falling curtain 

receiver. If the discrete structures failed, the particles would no longer be densely packed 

vertically. The back of the receiver would experience a large amount of solar radiation, possibly 

more than was intended. The receiver cavity would fail as well. To measure the durability of 

metals under conditions expected in the PHR, the materials are weighed before and after the 

expected PHR conditions. 

In order to prevent failures of the PHR from happening, the discrete wire mesh structures 

must be able to withstand high-temperature particle impacts. There have been previous studies 

on the effects of high-temperature silica sand particles abrading against metal samples. Liu et al. 

[12] designed a rotating abrasion tester. A rotating arm is inserted into a sand bed at 923 K and 

the arm rotates at 200 rpm, which translates to a speed of 1.36 m/s. The metal test specimens 

face the direction of the rotating arm but are fixed at 45° from the tangent of the circular motion 

of the rotating arm. Each sample is a solid block 100 mm x 100 mm x 25 mm of hypereutectic 

high Cr cast iron which was cast in a sand mold. To measure the wear rate, Lieu et al. used 

Equation 1: 

 
                     (1) 
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where    is the mass loss,    is the density,   is the surface area,   is the wear or oxidation 

speed,    is the test time, and   is the weight gain per oxidized volume coefficient. A “w” or “o” 

represents wear and oxidation, respectively. Rearranged, Equation 1 becomes a wear rate as 

shown in Equation 2: 

 
   

           

     
  

(2) 

 

Liu et al. require that the oxidation rate be known or tested experimentally. This 

experiment has harsher conditions on the metal samples than will be experienced in a PHR. The 

speed experienced by the metal sample was 1.36m/s through a packed bed of quartz sand. At this 

speed and temperature, Liu et al. report that their samples experienced greater weight loss than 

weight gain due to oxidation. According to studies performed by Nguyen et al. [12] the 

maximum speed that the particles should experience in a discrete porous structure at the current 

design considerations is on the order of 0.35 m/s. The PHR will experience only 7% of the 

kinetic energy with which Liu et al. tested. Additionally, the particles used by Liu et al. have a 

mean diameter of 1 mm, which is three times the diameter expected in a CSP system with a 

PHR. Misra et al. [13] notes that a metal such as Tungsten was found to have “higher wear 

resistance from smaller abrasive particles… whereas for larger particles it has lower than the 

expected value of wear resistance.” The experimental results from Liu et al. are not suitable for 

predicting wear for a discrete porous PHR, but the wear rates presented in Equation 2 are useful 

in conditions of oxidation and wear. Instead, an apparatus which can accurately simulate 

prototypical PHR conditions is devised in Chapter 3.  
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CHAPTER 3 

 

EXPERIMENTAL APPARATUS 

 

 

 

 To determine the change in mass of a wire mesh due to both abrasion by particles and 

elevated temperatures, an apparatus was designed to pass particles through mesh samples while 

operating at high temperatures. A 316 stainless steel (SS316) pipe 18 inches long (0.45 m) and 1 

inch in inner diameter (25.4 mm) is selected. A fixed inventory of particles is poured into the 

pipe with an endcap screwed on to the pipe to catch the particles at the bottom of the pipe. Fixed 

to the endcap is a 500W cartridge heater with an internal K-type thermocouple embedded inside 

the cartridge. The mesh samples to be tested are installed between two expansion rings which are 

fixed in place with set screws tightened in two tapped holes in the SS316 pipe. Then another 

endcap with a cartridge heater is installed on the free end of the pipe. The pipe rests in the center 

of four 1 inch (25.4 mm) Fibrafrax Duraboard insulation sheets and the endcaps are covered by 

insulation as well with the electrical leads and thermocouples of the heaters extending out of the 

insulation. The described apparatus is shown in Figure 3.1 and Figure 3.2. 

 The ends of the pipe are threaded. Two through-holes are tapped in the steel pipe, each 

1.25 inches (31.75 mm) from the center of the pipe such that the two holes are symmetric about 

the center. Two expansion rings are machined from SS316 and a groove is cut in them such that 

the rings are no longer continuous in a radial direction, but are now flexible. The expansion rings 

prevent the particulate from experiencing plug flow, which is particulate that moves as a single 

mass downward rather than flowing. 
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SWAGED FITTING ON HEATER 

PIPE ENDCAP 

CARTRIDGE HEATER 

1” PIPE, 18” LONG 

SMALL GEARED PULLEY 

TIMING BELT 

LARGE GEARED PULLEY 

QUARTER TURN 

PNEUMATIC OPERATOR 

INSULATION 

TEST SPECIMENS 

HEAVY FRAME 

ROTATING SUPPORT FRAME 

SHAFT COLLAR 

PILLOW BLOCKS 

Figure 3.1 Schematic of Hourglass Apparatus 

Front View (Top) and Side View (Bottom) 
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Figure 3.2 Diagram of the Hourglass Apparatus 

 

 The cartridge heaters have an Incoloy sheath with magnesium oxide insulation and a K-

type thermocouple embedded inside. To hold the heaters in place, a Swagelok fitting is used per 

heater. The fitting is slid onto the heater and fixed in place by tightening the nut on the Swagelok 

fitting. The nut is tightened 0.5 inches (12.7 mm) from the wired end of the cartridge heater with 

the threaded end facing the non-wired end of the cartridge heater. Each heater is fixed to a 

Swagelok fitting. The threaded end of the fittings are screwed into a pipe endcaps which are bell-

shaped. Figure 3.3 shows the cartridge heater assembly. 
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Figure 3.3 Cartridge Heater Assembly 

 

The narrow end of the endcaps is screwed into the Swagelok fittings while the large end of the 

endcaps is threaded to match the ends of the SS316 pipe. These endcaps keep the particles inside 

the apparatus. To ensure that the embedded thermocouples are reading properly, three K-type 

thermocouples are attached using metal pipe hoops which are crimped into place, holding the 

thermocouples against the pipe at uniform intervals. Between each endcap and the insulation, a 

metal shaft collar with a threaded hole is fixed to the pipe by slipping the collar on the pipe and 

tightening a threaded rod to press the pipe against the collar. The rods face the same direction 

and will be used as structural support for the apparatus. To provide electricity for the heating 

cartridges, a variable AC (variac) power supply is used with a 10 A fuse. The heating cartridges 

are connected in parallel to each other, as shown in the block diagram in Figure 3.4. 

 

 

 

Swagelok Fitting Pipe Endcap 

Pipe Endcap Threading to SS316 Pipe 

500 W Cartridge Heater 
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 Fiberfrax Duraboard is used as insulation around the SS316 pipe. This insulation is sold 

in 1 inch (38.1 mm) thick sheets. Four of these sheets stacked together form the insulation for the 

apparatus. The inside of the innermost two sheets is shaved until the SS316 pipe can rest inside 

the insulation. The same is done for the cartridge heaters and endcaps. Figure 3.5 shows the pipe 

resting in the Duraboard insulation. 

 

Heating Cartridge 

Heating Cartridge 

Variac 

Wall 

Outlet 

(120 V) 

 

Figure 3.4 Electrical Diagram of Heating Cartridges as Installed in Experiment: in Parallel Figure 3.4 Electrical Diagram of Heating Cartridges as Installed in Experiment: in Parallel 
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Figure 3.5 SS316 Pipe Sitting in Duraboard Insulation Fitted to Pipe with External K-Type 

Thermocouples Fixed in Place 

 
 

 

 Four holes are drilled at the corners of the Duraboard to allow bolts to pass through the 

entire insulation assembly. When the insulation is pressed together and the bolts fit through the 

insulation, the assembly resembles Figure 6 shown below. 

 

 

Figure 3.6 Insulation Bolted and Tightened Together Around SS316 Pipe 

 

 

As shown in Figure 6 there is a hole in the center with a Duraboard plug fixed in place 

using a staple. The staple and plug can be removed and the surface temperature of the SS316 

pipe can be checked using an infrared thermometer. 

The assembly is fixed to a rotating metal frame using the threaded rods of the collars 

between the endcaps and the insulation. The threaded rods are fixed to the metal frame using hex 
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nuts on either side of the metal frame where the rods pass through. Additionally, on either side of 

the endcap insulation blocks are two u-shaped brackets. These brackets keep the apparatus rigid 

relative to the metal frame. The frame is attached to a rotating rod which is passed through two 

pillow blocks. On the rotating rod is a small-geared pulley. The small-geared pulley is acted on 

by a timing belt which in turn is acted on by a large-geared pulley. A quarter turn pneumatic 

actuator periodically rotates the large-geared pulley in specified intervals.  

In summary, the apparatus consists of a SS316 pipe with a fixed inventory of particles 

inside and two mesh samples equally spaced at the midplane of the pipe each between an 

expansion ring. The ends of the pipe are capped with endcaps screwed onto pipe fittings which 

secure 500 W cartridge heaters. The assembly is encased in Duraboard insulation and attached to 

a rotating frame via shaft collars and threaded rods. The threaded rods are bolted to a rotating 

frame, and the frame is connected to a rod which is allowed to rotate in pillow blocks. The frame 

and the apparatus rotate as a single piece while the pneumatic actuator is fixed in place turning 

the gears with the timing belt. The heating cartridges heat the SS316 pipe assembly and the 

rotations cause the particulate to fall, abrading against the metal mesh samples. With this 

apparatus the conditions of the discrete structure particle heating receiver can be replicated and 

the durability of the metal wire mesh structures analyzed. 
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CHAPTER 4 

 

EXPERIMENTAL PROCEDURE 

 

 

 

To measure the change in mass of the metal mesh samples, the apparatus described in 

Chapter 3 is used. First, a known mass of particles is selected to abrade against the meshes. It 

should consist of a material that is expected to be used in a PHR in the future. A foundry material 

called ID50-K is selected. Appendix A shows the material properties of ID50-K. The material is 

spherical and uniform in composition, size, and shape. To ensure that the particles used in the 

experiment are indeed uniform in size, a mechanical vibrating sifter is used. A sifter is a series of 

mesh sieves stacked one upon the other, with the bottommost sieve being completely solid. As 

the particles are vibrated, they are allowed to rotate and position themselves across the mesh 

face. Particles which are smaller than the openings of the meshes fall through the mesh and land 

on the next sieve. Particles which are too big remain trapped on the mesh. This pattern is 

repeated from a large mesh opening to a small mesh opening for the desired ranges of particle 

sizes. Appendix B includes more details about the sifter and the process for sifting particles. In 

this experiment, ID50-K particles which pass through a U.S. 50 mesh sieve (opening size of 

0.300 mm) but are stopped on a U.S. 70 mesh sieve (opening size of 0.212 mm). This is to 

exclude particles which may be too big to pass through the mesh samples in the experiment and 

also prevent fine particles which may not achieve similar falling velocities as will be experienced 

in a typical discrete structure PHR. Once the particles are sifted, 150 g of particulate are weighed 

and ready for use in the experiment.  

Next the mesh samples are prepared. A 12 inch by 12 inch sheet (304.8 mm by 304.8 

mm) of metal mesh is selected. The wire filaments which make up the mesh are 0.025 inches 
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(0.635 mm) in diameter and consist of the material to be tested. Two 1 inch (25.4 mm) circles are 

cut from the sheet using shears. Previously a die cutter had been used but it was found to crush 

and alter the shape of the wires. Each wire should be cut individually to prevent shape distortion. 

Once the two circles are cut from the wire mesh sheet, the circles are trimmed to make sure that 

they will fit properly in the pipe without scraping the inside of the pipe. Figure 4.1shows a 

sample. Each sample is weighed on an Ohaus Pioneer PA64 Analytical Balance ten times to 

establish an average mass. The Ohaus balance measures to 0.0001 g. 

 

 
 

Figure 4.1 SS316 Wire Mesh Sample 

 

Two 1/16 inch (1.59 mm) diameter SS316 rods are cut to a length of 2.5 inches (63.5 

mm). These rods are passed through the mesh samples and fixed to the samples using side-mount 

external retaining rings. The rings fit on either side of the mesh sample and hold the sample at a 

fixed location on the rods. The spacing of the meshes is 1.25 inches (31.75 mm) and the meshes 

are symmetric about the center of the rods. Figure 4.2 shows the mesh-rod assembly. 

 

 

 

25.4 mm 
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One expansion ring is then moved into place and fixed with a set screw tightened through 

the SS316 pipe. Then the wire mesh samples which are now fixed in place relative to each other 

via SS316 rods are inserted into the pipe. The rods rest on the expansion ring. Then the other 

expansion ring is installed in the same manner as the first. The expansion rings serve two 

purposes which are allowing the particulate room to decrease in bulk density before reaching the 

meshes and holding the wire mesh samples in place. 

After the wire mesh samples are installed and held in place using the expansion rings, the 

sifted particulate is poured into the pipe. Then the second and last endcap is screwed onto the 

pipe and the insulation is slipped on and bolted around the pipe. The insulated pipe is brought to 

the rotating frame and installed, inserting threaded rods into bolt holes where hex nuts are 

tightened to make the pipe assembly and the rotating frame fixed relative to each other. The 

heating cartridges are connected to a variac and the timing on the pneumatic pulley system is set 

to rotate once every 15 seconds. The rotation is begun and the variac is switched on to 85 V.  

31.75 mm 

Wire Meshes 

1/16 inch  (1.59 mm)  

SS316 Rods  

50.8 mm 

Figure 4.2 Wire Mesh Samples with SS316 Rods 
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Once the heating begins, the temperature is monitored every 30 minutes via the internal 

K-type thermocouples embedded in the heating cartridges and the external thermocouples 

installed on the outside surface of the pipe. Adjustments in the voltage applied to the cartridges 

are made until the desired temperature is achieved. The voltage is noted and the experiment runs 

for the desired amount of time. Below in Figure 4.3 the hourglass apparatus is installed in the 

rotating frame and its temperature is 800°C, as evidenced by the glowing red pipe. 

 

 
 

Figure 4.3 Hourglass Experiment at 800°C 

 

Once the desired time has been reached, the final temperature is noted and the variac is 

switched off. The experiment is left to cool. Now cool, the pipe assembly is removed from the 

rotating frame, the insulation is taken off the pipe, an endcap is unscrewed, and an expansion 

ring is taken out of the pipe assembly. The mesh samples are taken out of the pipe, the metal rods 

disconnected from the samples, the mesh samples are dusted using air at a low velocity, and the 
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meshes are weighed ten times on the same balance used previously. The new mass is recorded. 

The process is repeated as needed for different materials and different temperatures. This 

experimental procedure was carried out with the experimental apparatus outlined in Chapter 3, 

and the results are presented in the next chapter. 
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CHAPTER 5 

 

RESULTS 

 

 

 

The results of the experiments are shown in the tables below for the test specimens. Each 

cycle is 15 seconds long.  

 

Table 5.1 Stainless Steel 316 Results at 800°C 

SS316  

Test Run 

Duration of Test 

(Cycles) 

Beginning Mass of  

Mesh (g) 

Ending Mass of 

Mesh (g) 

Percent 

Mass 

Change 

1* 11520 

Mesh 1: 0.693 Mesh 1: 0.694 +0.1444% 

Mesh 2: 0.800 Mesh 2: 0.800 0% 

2 11520 

Mesh 1: 0.6367 Mesh 1: 0.6375 +0.1256% 

Mesh 2: 0.6526 Mesh 2: 0.6533 +0.1073% 

3 40320 

Mesh 1: 0.6375 Mesh 1: 0.6377 +0.0315% 

Mesh 2: 0.6533 Mesh 2: 0.6534 +0.0153% 

*Test run was with another balance which had less precision. 
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Table 5.2 Nickel-Chromium Results at 800°C 

Nickel-

Chromium 
Test Run 

Duration 
of Test 

(Cycles) 
Beginning Mass of 

Mesh (g) 
Ending Mass of 

Mesh (g) 
Percent 

Mass 

Change 

1 5760 
Mesh 1: 0.9768 Mesh 1: 0.9778 +0.1024% 

Mesh 2: 0.8540 Mesh 2: 0.8548 +0.0937% 

2 11520 
Mesh 1: 0.9778 Mesh 1: 0.9781 +0.0307% 

Mesh 2: 0.8548 Mesh 2: 0.8552 +0.0468% 

3 17280 
Mesh 1: 0.9781 Mesh 1: 0.9782 +0.0102% 

Mesh 2: 0.8552 Mesh 2: 0.8552 0% 

4 23040 
Mesh 1: 0.9782 Mesh 1: 0.9783 +0.0102% 

Mesh 2: 0.8552 Mesh 2: 0.8552 0% 
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Table 5.3 Non-Sag Tungsten Results at 800°C 

Non-Sag 

Tungsten 
Test Run 

Duration 
of Test 

(Cycles) 
Beginning Mass of 

Mesh (g) 
Ending Mass of 

Mesh (g) 
Percent 

Mass 

Change 

1  5760  

Mesh 1: 1.487  Mesh 1: 1.489  +0.1345%  

Mesh 2: 1.398  Mesh 2: 1.401  +0.2146%  

2  11520  

Mesh 1: 1.489  Mesh 1: 1.490  +0.0672%  

Mesh 2: 1.401  Mesh 2: 1.402  +0.0714%  

3  17280  

Mesh 1: 1.490  Mesh 1: 1.491  +0.0671%  

Mesh 2: 1.402  Mesh 2: 1.402  0%  

4  23040  

Mesh 1: 1.491  Mesh 1: 1.491  0%  

Mesh 2: 1.402  Mesh 2: 1.403  +0.0713%  

*Non-sag tungsten is tungsten which has been doped with potassium-aluminum silicate. 

 

 

 

 

 

 

 

  



26 

CHAPTER 6 

 

DISCUSSION 

 

 

 

Hourglass Apparatus 

 

Each metal shows a trend of increasing mass as the number of cycles increases. This is 

believed to be due to oxidation. The temperature of the experiment is sufficiently high to 

encourage the rapid formation of oxidized materials within each sample. Figure 6.1 shows a 

microphotograph of a typical stainless steel 316 sample after oxidation. The combination of 

impact by the particulate and oxidation are acting on the surface of the stainless steel. The same 

process occurred on the other metals. However, the oxidation appears to be a greater contributing 

factor to the mass change of the samples. When tested, the SS316, non-sag tungsten, and nickel-

chromium alloys showed an increase in mass. The tungsten alloy sample shows some oxidation 

as the number of cycles increases. This rate of increase is 1.22 ± 0.30E-7 grams per cycle over 

the period of testing. However, as evident in Figure 6.4 and Table 5.3, the tungsten alloy’s rate of 

increase is decreasing as the number of cycles passes 15000. This is consistent with oxidation. 

As the number of cycles increases, the surface area becomes more fully oxidized until saturated. 

The same is seen for the stainless steel samples. 

The experiments have also shown that a nickel-chromium alloy (Chromel C) does not 

show observable wear as well, similar to the tungsten alloy. Its rate of increase is slower than 

that of the tungsten. This could be a slower oxidation process or increased rate of wear 

counteracting the mass increase of the nickel-chromium alloy. The materials of interest for 

building a discrete porous mesh structure at operational speeds and cycles are durable for use in a 
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particle heating receiver. To confirm that this experiment does indeed destroy mesh samples 

made of soft materials, copper was also tested. 

 

 

 
Figure 6.1 Microphotograph of Stainless Steel 316 Untested (Left) and After 5760 Cycles at 

800°C with Impacting Alumina (Right) 

 

 

When a copper mesh was tested as a method to check if a weaker material would fail, 

the mesh was found to be broken into pieces after the first round of cycles. Copper as a material 

fails and is not a candidate for a receiver. The resulting mass is not shown, because if a mesh 

fails, then the material that constituted that mesh is not suitable for a PHR. Figure 6.2 shows the 

copper mesh before and after testing. The copper mesh shows signs of oxidation and scaling, 

which is being eroded away. As time progresses, the copper becomes more brittle and material is 

abraded off by the falling alumina particulate. The copper mesh then fails. Figure 6.3 shows a 

failed filament. 
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Figure 6.2 Microphotograph of Copper Untested (Left) and After 5760 Cycles at 800°C with 

Impacting Alumina (Right) 

 

 

 

 
Figure 6.3 Microphotograph of Filament of Tested Copper (Broken) 

 

 

 

Summarizing pertinent error analysis, the average uncertainty due to random error 

(obtained from regression analysis with the tungsten alloy) is 0.00056 grams, and the estimated 

uncertainty due to possible measurement bias is only 0.0001 grams, due to uncertainty in the 

precision balance. Consequently the average combined uncertainty is 0.00058 grams. The 
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average uncertainty is lower for the nickel-chromium alloy because its uncertainty due to data 

variability is less than that of the tungsten, and the uncertainty due to the measuring instrument 

i.e. the balance is the same. 

The metals that have the most promise for PHR applications are the ones which survive 

the test and also show no appreciable mass decrease, which is a sign that the material is wearing 

away. Stainless steel 316, “no-sag” tungsten, and the Chromel C nickel-chromium alloy are 

metals suitable for a PHR, according to this experiment.   

Testing will continue in order to determine the durability of other metals and ceramics 

considered for future receiver designs. Although the metals described in this experiment have 

been shown to withstand impacts of alumina particles 800°C for extended periods, further 

experiments will determine the extended life of other materials, including ceramics which can 

withstand even higher temperatures. 
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Figure 6.4 Graph of Chromel C Nickel-Chromium Alloy Mass vs. Cycles 

 

 

 

 

Figure 6.5 Graph of Non-Sag Tungsten Mass vs. Cycles 

  



31 

Oxidation Testing 

 

 After the testing in the hourglass apparatus, it became apparent that oxidation was an 

important factor in the mass of the samples, perhaps more than abrasion. To determine how 

much of the change in mass is due to oxidation, heating untested metal samples in a NETZSCH 

TGA/DSC was undertaken. Each sample is weighed before and after the heating process to 

determine the mass change due to oxidation. Appendix C describes the process in more detail. 

 The changes in mass for stainless steel 316, nickel chromium (Chromel C), and non-sag 

tungsten in the TGA/DSC were very similar to the change in mass in the hourglass apparatus. 

Stainless steel 316 increased 2.60% by mass in the hourglass, and 2.53% in the TGA/DSC. The 

nickel-chromium sample increased by 0.14% by mass in the hourglass, and 0.15% in the 

TGA/DSC. The non-sag tungsten was similar to the stainless steel and nickel-chromium samples. 

The increase in mass during the hourglass experiment for a non-sag tungsten sample was 0.27%, 

and increased by 0.28% in the TGA/DSC. These percentages demonstrate that the mass increase 

is due to oxidation, and that abrasion is negligible for these materials. However, it should be 

noted that the changes in mass for these samples are for similar sized wire strands used in the 

meshes. The size of the wire strands, the opening size of the meshes, the size of the particles, all 

of these are factors which must be taken into account. 
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CHAPTER 7 

 

CONCLUSION 

 

 

 

 CSP is a viable and economical approach to commercializing solar power. However, 

common heat transfer mediums such as nitrate salts and steam impose limits on the commercial 

viability and efficiency of CSP systems. Nitrate salts corrode metals easily, are expensive, and 

are limited in their temperature range. The efficiency and cost effectiveness of steam are limited 

by the operating pressures. Replacing conventional heat transfer mediums with solid particulates 

is a method to reduce cost, increase the maximum temperature of the system, and have inherent 

thermal energy storage. All of these are advantages for CSP systems. When using particulates, 

several concerns arise, including the development of a receiver on the central tower. The receiver 

is a component that allows heat from solar radiation to be absorbed by a solid surface and 

transferred to the heat transfer medium. For nitrate salts and steam this surface is typically the 

pipes which carry the medium through the receiver. For solid particulates, a design which is 

being explored is a discrete structure particle heating receiver. The particulate is directly heated 

by the solar radiation by falling through the receiver. To slow down the particulate, discrete 

structure metal meshes are installed in the receiver. The particulate must flow through the 

meshes to pass through the receiver. The main challenge addressed in this thesis was whether or 

not various metals in the discrete structure PHR can withstand the repeated impact by high 

temperature particles and not undergo significant wear. 

The experimental apparatus nicknamed the hourglass was designed and operated to test 

the durability of these materials. A fixed inventory of particles is allowed to fall through two 

samples of metal meshes fixed in place inside a SS316 pipe. The SS316 pipe and particles are 



33 

heated via two cartridge heaters attached to the pipe with endcaps to keep the particles inside the 

pipe. The pipe, cartridge heaters and endcaps, and isulation around the pipe are bolted to a 

rotating frame Attached to the rotating frame is a pulley system which is connected to a quarter 

turn pneumatic actuator. For a specified time and temperature the particulate is allowed to pass 

through the mesh samples. After the required time, the samples are cooled and are removed from 

the apparatus. The prior and post mass of the meshes are compared to show the change in mass 

in the experiment. From these mass changes the durability of the materials can be assessed. 

Stainless steel 316, “no-sag” tungsten, and Chromel C nickel-chromium alloys were 

tested and show no sign of failure. There is oxidation of the surface but the meshes themselves 

are intact. The mass change of the meshes is positive because of oxidation of the materials. To 

test the effectiveness of the experiment, copper mesh was inserted into the apparatus and tested. 

The copper mesh failed. Significant scaling and abrasion caused the copper to weaken and fail 

under the high temperature impact conditions, although at what point during the 24 hour test the 

copper failed is not known. Stainless steel 316, “no-sag” tungsten, and Chromel C nickel-

chromium are viable candidates for a PHR. 

Since oxidation is observed on the surface of the materials, further long-term testing 

should be conducted on the mesh materials. Oxidation can cause scaling, which when impacted 

by falling particulate can cause the oxidation layer to chip away and reveal a new surface to be 

worn away. Or, if the scaling is not in action, then the oxidation layer can further serve as a 

barrier to protect the mesh.  
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APPENDIX A  

 

ID50-K FOUNDRY PARTICULATE 

 

 

 

Table A.1 Chemical Composition of ID50-K Particulate 

Compound Weight % 

Al2O3 75.0  

SiO2  11.0 

TiO2  3.0 

Fe2O3 9.0 

 

Table A.2 Thermophysical Properties 

 

ASG 3.23 

GFN 40 

Loose Bed Density (lbs/ft
3
) 113 

Packed Bed Density (lbs/ft
3
) 125 

Thermal Expansion (%LC) 0.708 

Coefficient of Expansion (1E-6 in/in-°C) 6.62 

Thermal Conductivity (W/m-°C) 0.70 

Heat Capacity (cal/g-°C) 0.291 

Thermal Diffusivity (cm
2
/s) 0.0029 

Heat Diffusivity 10
6
(W

2
s)/(m

4
-°C2

) 1.708 
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Table A.3 Mineralogy (%) of ID50-K 

Mullite 52 

Corundum 48 

Beta Cristobalite 0 

Amorphous 0 

Quartz Silica 0 

 

 

Average Particle Diameter: 0.283 mm 
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APPENDIX B 

 

SIFTING 

 

 

 

The particulate in Appendix A is first sifted before being used in the experimental 

apparatus.  This is to ensure that the particles are uniform in size and will not obstruct the mesh 

openings. The sifting device used is a Laboratory Test Sieve Vibrator built by the Derrick Mfg. 

Co. It is a Model 150, 25-60 cycle, 1/10 H.P., 0-6000 rpm sifter. In this experiment, 4200 RPM 

(70 Hz) was used. It was found by experimentation. 

The sieves in the sifter are arranged top to bottom in order from widest mesh openings to 

smallest. Each sieve meets ASTM E-11 standards [15]. 

 

 

Figure B.1 Sifting Device with Stacked Sieves 
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Before each sifting, the sieves are removed and separated. Then compressed air is used to 

blow out trapped particles. Then the sieves are stacked again from largest opening area to 

smallest, top to bottom. The device is then turned on, and the rpm set to 4200. 10 minutes pass 

until the machine is turned off and the sieves are removed. The samples for the experiments are 

collected from below the U.S. 50 mesh and above the U.S. 70 mesh. This ensures that the 

particles placed into the apparatus are uniform. 
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APPENDIX C 

 

TGA/DSC OXIDATION MEASUREMENTS 

 

 

 

 In order to determine the oxidation of the materials, a thermogravimetry analyzer-

differential scanning calorimetery device (TGA/DSC) was used to heat metal samples up to 

900°C. Figure C.1 shows a diagram of the instrument from NETZSCH. 

 

Figure C.1 Diagram of NETZSCH TGA/DSC 

 

The material is weighed on a balance and then placed on the sample carrier. The sample carrier is 

placed inside the TGA/DSC and the housing is lowered. The desired gas flow rates and 

temperature profile are programmed. Then the testing starts. 
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 After the sample is held at 900°C for 24 hours, or until the mass has reached a constant 

value, the sample is removed and weighed again. The change in mass the mass which has been 

oxidized. 
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