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Emissions trading programs have been recommended by economists and im-

plemented by policy makers because they are expected to keep compliance costs

low; but, studies on actual savings are limited. This paper is the first to conduct

a comprehensive ex post analysis of the cost savings from the Acid Rain Program

(ARP), the largest emissions trading program to be implemented in the U.S.

In Chapter 2, I provide a brief overview of the Acid Rain Program. I then

discuss other policies that are relevant to evaluating the ARP including the New

Source Performance Standard and local emission standards. I conclude the chapter

by analyzing the determinants of local emission standards and arguing that it is safe

to treat these standards as exogenous.

In Chapter 3 I illustrate the cost savings from a cap-and-trade system such

as the ARP, and discuss factors affecting the potential gains from trade and the

determinants. I then estimate a discrete choice model of coal procurement and

scrubber installation to recover structural parameters of compliance cost functions

at the generating unit level. Using the model I predict compliance choices under a



uniform emission standard that yields the same aggregate emissions as the ARP.

In Chapter 4, I estimate cost savings under the ARP to be about 265-380

million (1995 USD) per year. The numbers are much smaller than in previous

literature (Carlson et al., 2000; Ellerman et al., 2000). I propose that lower transport

costs reduced cost heterogeneity across generating units, and that improvements in

scrubbing technology and state policies may have also contributed to a decrease in

cost savings.
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Chapter 1: Overview

Since the 1970s economists have argued that market-based instruments – in

particular, tradable pollution permits – are preferred over command-and-control

approaches to environmental regulation (Montgomery (1972); Tietenberg (1990)).

The gains from trade, which occur when firms with higher pollution abatement

costs buy permits from lower cost firms, have motivated policy makers to adopt

permit trading programs to control air and water pollution. However, there has been

little research that measures the cost savings from pollution permits retrospectively,

based on actual compliance behavior. If the gains from trade are modest, more

politically feasible regulations such as performance standards might be an acceptable

alternative.

This thesis fills a gap in the literature by estimating the cost savings from the

US Acid Rain Program (ARP) based on observed compliance strategies. The Acid

Rain Program, enacted under Title IV of the 1990 Clean Air Act Amendments,

is regarded as a milestone in the history of cap-and-trade programs in the United

States. The program distributed permits to emit sulfur dioxide (SO2) to electric

utilities and allowed sources to trade permits in order to achieve an annual cap of

8.95 million tons of SO2, approximately half of 1985 emissions. Before the legislation
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was passed, the program was predicted to reduce the cost of meeting the SO2 cap by

more than $3 billion per year, compared to a uniform performance standard (U.S.

General Accounting Office (GAO)). The question is whether these costs savings

were realized.

To answer this question I estimate a structural model of compliance behavior

for all coal-fired electric generating units (EGUs) covered by the ARP, and use the

model to compute the cost savings achieved by the ARP compared to a uniform

performance standard that achieved the same aggregate emissions reduction. For

each unit I model the joint decision of the type of coal to purchase and whether to

install pollution abatement equipment (i.e., a flue-gas desulfurization unit or scrub-

ber). I assume in making these decisions that plants weight various components of

costs differently, reflecting various regulatory and institutional factors (e.g., whether

the plant is subject to cost-of-service regulation). The main methods of reducing

SO2 emissions are to switch to coal with a low sulfur content and/or to install a

flue-gas desulfurization unit (scrubber). Geographical distance between plants and

coal mines determine the heterogeneity in compliance cost due to transportation

cost.

My approach essentially estimates the marginal abatement cost (MAC) ‘curves’

for every generating unit and uses those to infer compliance choices in the uniform

performance standard case. In the data I observe the equilibrium emission rates

and compliance choices in the ARP for each unit. By estimating the discrete choice

model, I estimate the slope of the functions which are primarily determined by the

transportation cost of coal. This model is used to predict compliance behavior un-
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der a performance standard, and to calculate compliance costs and emissions under

the ARP and under a performance standard.1 Estimating a discrete choice model

(instead of estimating a continuous function) allows me to take the regulatory and

institutional factors into their decision making.

Previous approaches that study the cost savings of the ARP are based on

either pre-program data or on a subset of units only. Carlson et al. (2000) project

the long-run cost savings achieved by the ARP based on MAC functions estimated

using pre-ARP (1985-1995) data. The MAC functions, based on a static cost-

minimization model, capture the cost of reducing SO2 emissions only through fuel

switching.2 Carlson et al. (2000)’s estimate of the long-run cost savings from the

ARP, compared to a uniform performance standard, is $780 million (1995 USD)

per year – a figure much lower than other estimates. No paper since Carlson et al.

(2000) has econometrically modeled the abatement decisions of Phase I and Phase

II units using actual compliance data. Keohane (2007) estimates a discrete choice

model of the scrubber uptake decision but focuses only on the generating units in

Phase I of the program. Related research by Arimura (2002) studies the decision to

switch low sulfur coal but also focuses only on Phase I units.

There are, however, reasons to believe that Carlson et al. (2000)’s estimate

may overstate cost savings: It assumes that the ARP will achieve the least-cost

solution to emissions reductions. In fact, state Public Utility Commissions (PUCs),

1By doing that I am ignoring the benefit side of the policy. My concurrent work (joint with
Andrew Chupp, Maureen Cropper and Nick Muller) addresses this by computing the net benefits
of the program.

2Carlson et al. (2000) assume that no additional scrubbers will be built after 1995, the first
year of the ARP.
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which allowed scrubbers to enter the rate base under cost-of-service regulation and

often encouraged the purchase of in-state coal, could well have prevented attainment

of the least-cost solution. I explicitly allow for this by estimating a compliance cost

function that allows different policies or incentives to enter the cost function. This

allows units in my model to deviate from the least cost solution as computed by

Carlson et al. (2000). Second, the costs of coal procurement and scrubber installa-

tion have changed since the 1985-95 period. It is difficult to calculate the impact of

these cost changes without making simplifying assumptions or using actual data.

In Chapter 2 I provide a concise introduction to the institution, performance

and status of the Acid Rain Program. I also discuss other environmental regulations,

namely New Source Performance Standards, New Source Review and Local Emission

Standards since they also affect the flexibility of how these coal-fired power plants

comply with the Acid Rain Program. I focus on the local emission standards, the

least studied policy, and evaluate the determinants of these standards. I show that

these standards depend on county level characteristic and it is not correlated with

sulfur dioxide emissions, Acid Rain Program status and non-attainment status. This

variation in local emission standard is treated as exogenous variation for identifying

the empirical model.

In Chapter 3, I model the long-run compliance behavior coal-fired EGUs in

the ARP using a mixed logit model of the choice of whether or not to scrub and

what type of coal to buy, described by geographic location. Each EGU chooses

a compliance strategy to minimize the weighted cost of compliance subject to a
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state or local emission standard.3 The compliance choice for each EGU depends

on delivered coal price, the cost of scrubbing, the cost of emissions (i.e., permit

cost), on the sulfur and ash content of coal, as well as on the cost of retrofitting the

boiler if the unit switches from high to low sulfur coal after the ARP. Coefficients

on the various cost components are interacted with state-level regulations including

electricity deregulation status and credits for using in-state coal. Given the variation

in ash and sulfur content within each coal basin, I use an iterative procedure to

estimate the county within each basin from which coal is bought.

In Chapter 4, after estimating the model, compliance choices, aggregate costs

and emissions are predicted under the ARP and under a uniform performance stan-

dard that achieves the same aggregate emissions as achieved under the ARP. Both

sets of compliance choices are predicted using conditional distributions (i.e., distri-

butions conditional on the observed choice being made) of the random coefficients

and the error term in the cost function. Specifically, I treat the conditional mean of

the error term in the cost function as a permanent difference in costs. This captures

unobserved heterogeneity in costs, which is important to capture, given that the

cost savings from emissions trading originate from abatement cost heterogeneity.

Unweighted compliance cost – the estimated cost of coal, costs of scrubbing and ad-

ditional retrofitting cost – are compared across different policy scenarios, conditional

on predicted choices.4

3The state or local emissions standard is imposed by restricting the set of choices available to
each EGU.

4My approach is similar to Fowlie (2010) who estimates a random coefficient logit model to
look at compliance choices with regard to the NOx trading program. The fundamental difference
between our approaches is that she estimates the cost indices associated with engineering cost
estimates while I am also estimating the underlying unobserved cost components.
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Based on my model, I estimate the cost savings from emissions trading to

be between 265 and 380 million (1995 USD) per year. This number is fairly small

compared to numbers in Carlson et al. (2000) and Ellerman et al. (2000). This

difference may be explained by reductions in the cost of transporting coal following

railroad deregulation and lower scrubber operating costs. Both factors lowered com-

pliance costs and reduced heterogeneity in these costs across coal-fired generating

units. State and local emissions standards also constrained the alternatives that

each generating unit could choose. I also find that, conditional on the above factors,

many generating units did not pursue the least-cost options to reducing emissions.

Weighted costs differ significantly from unweighted costs, suggesting that many units

did not pursue the compliance option that yields the lowest cost.
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Chapter 2: A First Look at the Acid Rain Program

This chapter provides an overview of the Acid Rain Program (ARP). Section

2.1 talks about the institutional details of the program, description of the emissions

and trading patterns as well as the current status of the policy. Section 2.2 intro-

duces other policies that potentially interact with the policy and the importance of

controlling them in evaluating the ARP. Of all the policies local emission standards

are the least well studied and I provide more description and analysis in Section 2.3.

This chapter presents only the basic facts about the ARP. For more details

about the program, see Joskow, Schmalensee and Bailey (1998), Ellerman et al.

(2000), Burtraw and Szambelan (2009) and Chan et al. (2012).

2.1 Background of the Acid Rain Program

The objective of the Acid Rain Program was to reduce sulfur dioxide emis-

sions from fossil-fueled power plants in the U.S. by 50% from 1985 levels. The

program was implemented in two phases: in Phase I (1995-1999) the most pollut-

ing 263 generating units were required to participate. In Phase II, beginning in

2000, the program was extended to all generating units with a capacity exceeding

25 megawatts (approximately 1100 coal-fired units). The Acid Rain Program also
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regulates gas-fired and oil-fired generating units, which brings the number of reg-

ulated generating units to over 1800. I do not study either gas- or oil-fired units,

which emit very small amounts of sulfur dioxide. Gas units emit very small quanti-

ties of sulfur dioxide. Oil-fired units emit at a higher rate, but do not account for

a high proportion of SO2 emissions. The Environmental Protection Agency (EPA)

allocated annual permits to each generating unit equal to the product of the target

emission rate (1.2 pounds of SO2 per million Btu) and the unit’s heat rate in the

1985-97 reference period. Under the ARP units are free to trade permits within

and across states. They are also allowed to ‘bank’ permits for future use but cannot

borrow permits from future years. Phase I units were allocated allowances based

on the emissions level of 2.5 pounds of SO2 per million Btu in the first five years

of the program. Some units also received bonus allowances each year depending on

their state incentive schemes or by fulfilling early emissions reduction requirements.

Figure 2.1 provides an overview of the market over time.

I focus on all coal-fired generating units that participated in the ARP and

study their compliance strategies in Phase II of the program. Units constructed

after September 1971 are excluded from my study as those units were subject to

New Source Performance Standards (NSPS), i.e. they were subject to SO2 emission

regulations at least as stringent as those under the ARP when they were constructed.

Plants built between 1971 and September 1977 were required to reduce their SO2

emissions to 1.2 pounds per MMBtu; those built after September of 1977 were, in

effect, required to install scrubbers.

Plants have reduced their SO2 emissions under the ARP either by reducing the
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sulfur content of the coal they burn or by installing scrubbers. The cheapest way to

comply with the Acid Rain Program depends primarily on the geographic location

of the power plant. For plants located close to the Powder River Basin (PRB) in

Wyoming, burning low-sulfur PRB coal may be the cheapest option. PRB coal has

the lowest minemouth cost and sulfur content of any coal in the US; however, it

has lower heat content than Eastern coal. Boilers deigned to burn high-sulfur coal

may have to be retrofitted to burn PRB coal. There is also the cost of transporting

coal to the plant. Plants in the Midwest benefit from smaller transportation costs

than plants in the Eastern US, hence low sulfur coal is a common compliance option

for these plants. Indeed, differences among plants in the cost of transporting coal

from the PRB are the primary source of heterogeneity in compliance costs under the

ARP. Another compliance option is to install and operate a flue-gas desulfurization

device, commonly known as a scrubber. A scrubber uses an alkaline agent to react

with SO2 and typically removes 85-90% of emissions. Figures 2.2 and 2.3 show the

prevalence of these two compliance choices by state.

The flexibility of the cap-and-trade program also allows units to use coal with

higher sulfur content and purchase allowances from other plants. Figure 2.4 shows

the difference between actual emissions and allocations at the state level in 2002. It

provides evidence of the geographical disparity in cost noted above – generating units

in the Mid-Atlantic region are buying permits from the West to cover their emissions,

indicating that their average emission rate is above the 1.2 pounds of SO2 per

MMBtu threshold. As Figures 2.2 and 2.3 show, most of these units did not install

scrubbers or utilize low sulfur coal from the West. My model captures compliance
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choices by allowing units to choose the type of coal and the scrubber installation

decision, which ultimately determines the emission rate that each unit wants to

achieve. Each strategy is associated with a premium on sulfur that represents the

price of allowances.

Allowance trading among compliance units is an important feature of the Acid

Rain Program. Figure 2.5 shows how disperse the emission rates in 2002 are. Since

they are all allocated roughly similar numbers of permit per MMBtu, that would

mean that boilers to the right of the red line (which indicates the intended allocation

of 1.2 pounds of SO2 per MMBtu) would have to purchase extra permits from the

boilers to the left of the red line. The first thing to notice from the figure is that

units are complying with the program by three major paths: utilizing low sulfur

coal or scrubbing, which does not require purchase of permits; purchasing medium

sulfur coal and using banked or purchased permits; and buying high sulfur coal.

Figure 2.6 breaks down the distribution in Figure 2.5 by the Phase designation of

the units.

The second thing to note, which has implications for my estimation strategy,

is that there exists a continuum of chosen emission rates; therefore, it will be mis-

leading to model compliance choices by the use of low or high sulfur coal or use

of scrubber. Instead of modeling a binary choice of scrubber (over low sulfur coal,

as in Keohane (2004)) or a limited number of coal choices, it is important to build

a model that allows for a range of emission rates. In the Appendix, I provide an

overview of the coal procurement data that are available and define choices using

the geographical location from which the coal originated.
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Table 2.1 lists (for net buyers of permits) the share of emissions that were

covered by trading. This share captures the importance of trading to units that

purchased permits to cover emissions. It is calculated as the excess of emissions over

current allowances, minus the stock of permits held at the beginning of the period,

divided by total emissions. As we can see from Table 2.1, permits purchased by

net buyers of permits cover about 40% of the emissions in Phase II (2000 onwards).

This indicates that trading did, indeed, occur under the program.

Figure 2.7 presents further evidence of trading activity by showing the transfers

of allowances in each year. Even though trades between related entities (under the

same utility) sometimes make up more than half of the trades in a given year,

they could result in efficiency gains to both entities if their compliance costs differ.

Trading activity by itself does not, however, indicate that the program lowered

compliance costs – nor does it provide evidence of their magnitude.

Banking of permits is often viewed as an instrument for ‘consumption smooth-

ing’ for Phase I units, as Phase I units were allocated more permits (per MMBtu)

in the first five years (Schennach (2000)). This conjecture is confirmed in the data,

as shown in Figure 2.8. The figure shows the stock of banked permits from the end

of 1995 to the end of 2005 for Phase I and Phase II units. The average Phase I

unit banked permits for the first 5 years. When Phase II had started, Phase I units

started to draw down their allowance bank. The bank was gradually drawn down

to about 1 million permits by the end of 2005. The number of banked permits for

Phase II units is roughly constant from 2002 onward.
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2.1.1 Current Status of the Policy: The Clean Air Interstate Rule,

Transport Rule and Beyond

In 2003, the Bush administration proposed a bill known the Clear Skies Ini-

tiative that would modify the existing Clean Air Act to reduce air pollution by

expanding existing cap-and-trade programs. The initial proposal aimed at reduc-

ing SO2 and NOx emissions by 73% and 67%, respectively from their 2003 levels.

More importantly, it recognized the the importance of pollutant transport as they

proposed ‘nationwide Cap and Trade Programs (that) take into account the impact

of upwind sources on downwind areas.’ However, a consensus could not be reached

between the Senate and the House versions of the bill. A decision was made to

implement the trading provisions of the bill administratively through EPA.

As a result, the EPA proposed the Clean Air Interstate Rule (CAIR) to achieve

the proposed reduction in emissions. EPA calculated the required emissions reduc-

tion for each state accounting for the interstate transport of pollutant where upwind

states (a majority of eastern states) had to account for damages in downwind states

(New York and New England). States were allowed to either submit a state imple-

mentation plan or require their power plants to participate in the new cap-and-trade

program administered by the EPA.

More importantly, complying units were offered an opportunity to trade Title

IV permits at some unknown trading ratios under CAIR (Fraas and Richardson

(2010)). This led to a huge spike in the permit price in 2004, as we can see from

Figure 2.9. Given the timely installation of pollution control equipment as well as
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negotiation of new coal contracts, this served as a buffer to transit into the new

regulation where the cap is much lower than the ARP. Unfortunately later in 2008,

the Court vacated CAIR, primarily due to the inability of states to control the

pollution within their own state. Even though CAIR accounted for the inter-state

transport of emissions, if power plants in upwind states purchase permits that grant

them right to increase their pollution that is eventually transported to downwind

states. Therefore, the D.C. Circuit deemed the law “fundamental flawed” and ruled

unconstitutional (531 F.3d). The Court kept CAIR in place temporarily before EPA

would eventually replace the rule.

After the Court’s decision, EPA announced the Cross-State Air Pollution Rule

(CSAPR) in 2011. To address the concern, instead of asking states to submit their

proposals, CSAPR adopts federal implementation plans (FIPs) where all states will

be covered by this rule (states can still develop a SIP to meet the required emission

reductions). Phase I of CSAPR would begin in 2012 while Phase II of reductions

begins in 2014. Still, the Court vacated CSAPR on August 21, 2012 due to the

same problem of inter-state transport of pollutant. The Court’s argument this

time was, the Clean Air Act only authorizes EPA to remove a state’s ‘significant

contribution’ of emissions to a downwind state, and methodology employed by EPA

cannot effectively address the concern raised by the Court. As of now, EPA has been

holding stakeholding outreach meetings as well as opening the emissions modeling

platform trying to address the methodology issues. However, the Supreme Court

reinstated CSAPR in May 2014.

To estimate the magnitude of trading gains under the ARP I estimate a model
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of coal choice and the decision whether or not to install a scrubber using observed

compliance choices from the first three years of Phase II (2000 to 2002). I argue

in the next Chapter that generating units had adjusted to the ARP by this time.

As explained above it is also the case the regulatory regime changed sharply after

this time as CAIR was announced in 2003. The increase in the demand for permits,

as evident in Figure 2.9, suggests that power plants were strongly reacting to the

introduction of CAIR and, therefore, that their compliance choices were not be

targeted towards the ARP alone. I therefore do not use compliance choices beyond

2003 in my analysis.1

2.2 Interaction with Other Policies

2.2.1 New Source Performance Standard

Before the Clean Air Act Amendments 1990 and the corresponding Acid Rain

Program, the federal government regulated sulfur dioxide emissions under the Clean

Air Act Amendments of 1970 (CAAA 1970). One of these efforts is the regula-

tion of new stationary sources of emissions, known as the New Source Performance

Standards (NSPS). Section 111 of the Clean Air Act requires the U.S. Environmen-

tal Protection Agency (EPA) to establish nationwide uniform standards for power

plants as well as other industrial generators. Currently NSPS regulations apply to

on particulate matter (PM), nitrogen oxides (NOx) and carbon monoxide (CO), as

well as SO2.

1I test my robustness by using average compliance from 2000 to 2003. The fit of the model is
a bit worse but the main results hold.

14



The NSPS regulate all fossil fuel fired steam generators that began construction

after August 17, 1971 (known as the subpart D). The NSPS require the best available

control technology (BACT) (‘technology standard) be in place as well as set an

emission cap for these units. The emission cap is set based on air benefits, costs

and other secondary benefits. Normally EPA would conduct a technology review

and power plants are still free to choose the option that they believe is the most

feasible. The NSPS also mandates the installation of flue-gas desulfurization devices

(scrubbers, or FGDs) for all new coal-fired power plants that are constructed after

September 18, 1978 (known as the subpart Da). It is very important to consider

NSPS when analyzing the Acid Rain Program, given that NSPS is imposing an

emission cap or a technology mandate on the plants constructed after 1971. Because

these plants are restricted in their pollution abatement options by the NSPS, I am

going to exclude these units in my estimation and simulations.

Studies of the effect of NSPS were among the first analyses of how environmen-

tal regulation affects firm performance and productivity. Gollop and Roberts (1983)

study the productivity growth of electric utilities following NSPS caps by estimating

a firm-specific measure of regulatory intensity. They found that the NSPS on av-

erage reduced the productivity growth by 0.59 percentage points per year. Berman

and Bui (2001) carry out a similar analysis on oil refineries that are also subject

to the NSPS regulation. Surprisingly they found the opposite result of Gollop and

Roberts (1983) as they showed that abatement has increased productivity. Other

researchers have looked at the impact of the NSPS on investment choices. Nelson,

Tietenberg and Donihue (1993) found that the age of the capital increased following
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the regulation. Bellas (1998) studies the cost of adopting scrubber and he finds that

NSPS-D units spent significantly more on FGDs than non-NSPS units.

2.2.2 New Source Review

One drawback of the NSPS is that they regulate new sources without imposing

any standards on existing sources. For coal-fired power plants, the majority of

electric power is generated from very old power plants which the NSPS do not

affect. As a result, the Clean Air Act was once again amended in 1977. As notes

above, it requires the installation of scrubbers as part of the NSPS (subpart Da).

New Source Review (NSR) was formally established.

The motivation for establishing the NSR is to make sure existing power plants

do not undergo investments that prolong the life of the boilers to avoid being regu-

lated under NSPS. NSR requires all existing generating units who underwent major

modifications to be reviewed by the EPA. If it is determined that the investment

violates the NSR, then either the boiler must be regulated under NSPS or it has

to be shut down. Utilities have expressed concerns that it may be difficult to dis-

tinguish “major modifications” from “routine maintenance. Thus NSR discourages

the energy efficiency investments that might have increased the reliability of the

system (U.S. Environmental Protection Agency (EPA)). There was very limited

enforcement of NSR for the first 20 years until a case arose in November 1999 that

involved a number of large utilities such as the American Electric Power, Dynegy

and the federal Tennessee Valley Authority (TVA).
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Keohane, Mansur and Voynov (2009) have documented the first lawsuit and

settlement cases under the NSR between utility companies and the EPA. They

predicted that plants which had large emissions and investments would be more

likely to be subject to New Source Review. Bushnell and Wolfram (2012) found

that the NSR had reduced capital investments for plants that had not installed

FGDs while they found no impact on fuel efficiency and emissions. Heutel (2011)

estimated a structural model and concluded that NSR decreased investment in new

boilers. Lange and Linn (2008) used the changes in stock prices after the 2000

presidential election to look at the value of coal-fired boilers. They found that the

value of coal-fired power plants rose under Bush administration, when NSR was less

strictly enforced.

2.2.3 Local Emissions Standards

The Clean Air Act Amendments of 1970 also granted EPA authority to estab-

lish the National Ambient Air Quality Standards (NAAQS) for six criteria pollutants

that are considered harmful to public health and the environment (EPA). These in-

clude CO, lead, SO2, NOx, Ozone and PM10, The CAAA allowed two kinds of

standards to be established by the EPA. Primary standards are designed to pro-

tect the health of human beings, and they are also designed to protect vulnerable

populations such as the elderly, children and patients with asthma; while secondary

standards are used to account for economic losses and protect public welfare.

The EPA requires states to submit proposals called “State implementation
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plans” (SIPs) to outline how the state authorities are going to meet the NAAQS. In

Section 107a, it says “(e)ach state shall have the primary responsibility for assuring

air quality within the entire geographic area comprising such State by submitting an

implementation plan.” Following the 1970 CAAA, states submitted their SIPs and

subsequently approved or requested revision by the EPA (37 FR 10842). Typically

SIPs include a regulatory portion as well as a non-regulatory portion. Depending on

the state, the regulatory portion may include the imposition of standards, construc-

tion requirements for the smokestacks, and technology mandates. Non-regulatory

portions of the SIP include the means of monitoring or progress targets.

The SIP that the State of New York submitted declares“no person shall sell,

offer for sale, purchase or use any fuel which contains sulfur in a quantity exceeding

the following limitations ... specified in Table 1”. The SIP of New York, like other

states, set standards at the local level: it has different standards in New York City

(0.2 percent, by weight), Suffolk County (0.6 percent) and parts of Niagara Counties

(1.7 percent). For the State of Ohio, the SIP has county level rules while it is also

assigned specifically to an emitting source: “Ohio Edison Company, Toronto Plant

... shall not ... exceed a maximum of 2.0 pounds of sulfur dioxide per MM Btu

actual heat input from each boiler provided that an emission limit of 2.0 pounds of

sulfur dioxide per MM Btu actual heat input is approved by U.S. EPA.” (61 FR

52883)

When the NAAQS are violated, EPA assigns nonattainment status to areas,

and states are required to submit proposals to lower the emissions. Nonattainment

statuses are assigned for areas that potentially cover part of a county or more than
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one county, and for each criteria pollutant. As an example, Ingham County in

Michigan was classified as nonattainment in 1978 due to ”utiliz(ation) a supplemen-

tary control system (SCS) to demonstrate attainment of the (SO2 NAAQS)” (40

CFR Part 52). The State of Michigan required “complete good engineering practice

designed stacks ... to eliminate the downwash problem in addition to meeting the

emission limitations in the SIP.” This was approved by EPA and the SIP did not

have to be revised. The county has been in attainment (for SO2) since 1984.

To the best of my knowledge, there are no comprehensive analyses of these

local emission standards (though they are widely recognized in the literature, e.g.

Keohane (2007)). In the following section, I will provide descriptive statistics and

some reduced form estimates to explain variation in the standards.

2.3 Analysis of the Local Emission Standards

2.3.1 Descriptive Statistics

The local emission standards normally take several forms. The most common

is to limit emissions to pounds of sulfur dioxide per MMBtu of coal (referred as

DP). Table 2.2 lists the five major forms that these standards. More than 80% of the

standards follow one of the five forms, while an additional 7.5% (sulfur content of fuel

and pounds of sulfur per MMBtu) are related to the most preferred standards. Other

formats for emission standards are more difficult to link to compliance choice: hourly

emission rate depends on the efficiency and utilization of the boiler and ambient air

quality may depend on the surrounding plants and the transport of pollutants. For
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the remaining analyses in this section, I focus only on the DP standard.

Most emission standards are enforced at the state level (77.5 percent, as pre-

sented in Table 2.3) while a small number of standards are enforced at the federal

level. Most of the latter are stringent standards that are imposed on new sources.

Figure 2.11 shows the distribution of the standards for year 2002. There is a spike

at about 1.2 pounds of SO2 which suggests those are being regulated under NSPS.

Otherwise, there is quite a bit of variation of the emission standards: the existence

of such variation in standard leads to different emission rates observed in Figure 2.5.

With the help of such variation in emission rates (and in purchases of coal), this

helps identify the structural parameters in the cost functions.

Before explaining determinants of the standards, It is important to notice that

local emission standards are very stable over time. Figure 2.12 depicts the average

of the local emission standards from 1995 to 2005 for the units that are present in

the sample in for all years. There is only a slight downward trend from 2.65 to 2.5

lbs per MMBtu. In fact, a closer look at the data shows that most of these units

have not changed their emission standards over the 11-year periods. Table 2.4 shows

that 88.4% of the units have the same emission standards throughout; only about

35 units (about 3.5%) experience a permanent shift. In the next section, I focus

on the cross-section in 2002 and attempt to understand the determinants of local

emission standards in that year.
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2.3.2 Determinants of the Local Emission Standards

Before proceeding to the empirical analysis, I discuss some of the potential

determinants of the standards to guide the empirical analysis. One of the objec-

tives in the NAAQS is to limit the emissions and protect the well-being of people

surrounded by emission sources. We should then expect the standard to be more

stringent in more densely populated areas and in counties where there are more

persons who are susceptible to pollution (infants, elderly and patients with chronic

respiratory illness). Areas with high incomes or highly educated groups may also

see stringent regulations.

Since the linkage between sulfur dioxide emission and health effects occurs

through local ambient concentrations (Pope III et al. (2002)), the concentration of

power plants in the area could be an important factor in setting the standard. Places

that are very polluted already, especially those that are under non-attainment, may

be targeted by state or local authorities to improve their air quality. The stan-

dards may be less stringent for units located near borders whose emissions may be

transported to other jurisdictions.

Political economy motives should also be taken into account. One of these

can be measured by the number of power plants in the area or whether the power

plants belong to a large utility company that may have more power in lobbying

the government for relaxing the standard. In setting the individual standards, state

governments may have overlooked at some of the design parameters at the unit level

(when it was built, whether it is operated often). More details of the data sources

21



are in Appendix B. County level data are downloaded from the County and City

Data Book.

To test the effect of pollution concentration on correction on state emission

standards requires estimating a model with the emission standard as the dependent

variable and pollution as one of the explanatory variable. This, however, raises

concerns of endogeneity, as stricter standard lead to lower emissions, which will

bias the coefficient upwards. I address the endogeneity using standard instrument

variable methods. I employ variables that affect pollution but are unlikely to be

correlated with the sulfur standard. I use anomalies in weather pattern and carbon

monoxide emissions as instruments. Weather anomalies measure the deviation of

monthly mean temperature in summer months (April to August) in 2002 against

climate normals 1981-2010. The idea is that on hotter days, there will be more

electricity generation and more pollution. I use carbon monoxide emissions as an

instrument as most of these emissions come from mobile sources and therefore should

be less correlated with the electricity generation.

Table 2.5 presents the regression results. The first two columns show the OLS

results with the emission standard as the dependent variable. It shows a positive

and statistically significant correlation between emissions and the standard. As

argued earlier, this could be due to simultaneity bias. Coal capacity percentage, and

whether the county is located in the nonattainment area (for sulfur dioxide) or next

to a state border seem to have no explanatory power. The standard is negatively

correlated with income and it shows that richer counties will enact tighter standards.

The emission standard also shows a perplexing positive correlation with population
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which seems to suggest that the standard is lax in crowded areas. Compared to

Phase II units, Phase I units are more loosely regulated. This can be partly due to

the fact that they are older. When the Phase I dummy is dropped, the in service

year variable shows a statistically negative coefficient.

Since most regulation occurs at the state level, there are likely to be many

factors that affect the state’s decision in setting standards that are unobserved by

the econometrician. Therefore, in column (2), I added state dummies to control for

state characteristics that may explain some of the variations observed in the data.

Unsurprisingly, the adjusted R2 is higher for (2) but the difference is not large.

Other variables show similar signs as (1) and emissions remain positively correlated

with emission standard. Columns (3) and (4) employ the IV strategy described

above to (1) and (2). In the IV specifications, SO2 and the standard are negatively,

but statistically insignificantly, correlated in (4). The IV strategy removes some of

the positive bias in OLS. Other coefficients remain of similar signs compared to the

previous specifications. NSPS units have much stricter standards and I therefore

exclude them in the last two specifications. The results are very similar.

The results here show that emission standards (i) depend on county charac-

teristics such as income and (ii) are not correlated with endogenous plant and unit

characteristics. In the next Chapter, I will treat local emission standards as exoge-

nous to the Acid Rain Program. They provide exogenous variation in the choice set

that helps identify the parameters of the cost functions.
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Figure 2.1: Allowance Bank

Source: U.S. Environmental Protection Agency (EPA)

Figure 2.2: Percentage of Scrubbed Units in 2002
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Figure 2.3: Percentage of Units Utilizing Low Sulfur Coal in 2002

N.B. Based on units where coal procurement data are available.

Figure 2.4: Emissions Net of Allocations in 2002
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Figure 2.5: Emission Rates
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Figure 2.6: Emission Rates, by Phase I/II Designation
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Figure 2.7: Allowance Transferred

Source: U.S. Environmental Protection Agency (EPA)

Figure 2.8: Banked Permits, by Phase I/II Designation
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Figure 2.9: Permit Price

Figure 2.10: Stable Compliance Strategy
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Figure 2.11: Distribution of the Emission Standard (DP)
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Figure 2.12: Trend of the Emission Standard (DP)

Table 2.1: Share of Emissions Covered by Trading
Share (in %) Emissions (in 1000’s tons)

Year All Excl. NSPS All Excl. NSPS

1995 19.88 19.88 5246.7 4957.6
1996 35.54 33.85 5370.3 5231.5
1997 31.15 30.62 5429.9 5302.5
1998 26.56 24.95 5217.5 5115.1
1999 23.71 23.71 4903.2 4816.2
2000 39.74 43.36 10587.3 8159.4
2001 35.46 37.67 9951.8 7597.1
2002 39.59 42.14 9749.1 7431.1
2003 42.18 44.27 10004.0 7667.0
2004 39.09 40.88 9729.8 7462.7
2005 39.98 40.73 9727.1 7448.1

“Share of Emissions Covered by Trading” is defined
as the ratio of the net purchase (positive only) of al-
lowances over the emissions, deducting the permits car-
ried over the next period (in the case where total permit
holding exceeds emissions).
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Table 2.2: Major Types of Emission Standards

Unit of Measurement Count

Pounds of SO2 per MMBtu in fuel (DP) 943 (80.05%)
Pounds of SO2 emitted per hour 93 (7.89%)
Percent sulfur content of fuel (by weight) 45 (3.82%)
Pounds of sulfur per MMBtu in fuel 43 (3.65%)
Parts per million of SO2 in stack gas 20 (1.70%)

Note: All standards are at the boiler/EGU level. Un-
listed categories include ambient air quality concentra-
tion, percent sulfur removal efficiency and other uncat-
egorized ones.

Table 2.3: Statute of Emission Standards

Type Count Average (DP)

Federal 230 (19.52%) 1.42
State 913 (77.50%) 2.50
Local 35 (2.97%) 2.65

Table 2.4: Stability of Emission Standards, 1995–2005

Stable Number of Years Count

11 794 (88.42%)
10 26 (2.90%)
9 10 (1.11%)
8 32 (3.56%)

Note: The sample is 898 units that have continuous presence in
my data from 1995 to 2005 and have used only DP as the unit of
the standard. ‘Stable number of years’ calculated the number of
years where the standard is unchanged, compared to the baseline
which is the standard that is observed most often.
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Table 2.5: Analysis of Emission Standards

(1) (2) (3) (4) (5) (6)
OLS OLS IV IV IV IV

Log(SO2) 0.250∗∗∗ 0.159∗ -0.029 -0.054 -0.090 -0.120
(0.092) (0.092) (0.180) (0.212) (0.269) (0.337)

Coal Capacity 0.221∗ 0.327∗ 0.519∗

(0.127) (0.169) (0.294)

Nonattainment -0.343 0.209 -0.281 0.281 -0.053 0.468
(0.440) (0.567) (0.493) (0.586) (0.654) (0.701)

Border 0.101 0.059 0.091 0.049 0.101 0.019
(0.181) (0.201) (0.183) (0.198) (0.243) (0.263)

Log(Heat Input) -0.156∗ -0.097 -0.051 -0.014 -0.032 -0.010
(0.091) (0.087) (0.103) (0.108) (0.123) (0.141)

Log(Income) -1.574∗∗ -2.148∗∗∗ -1.313∗ -1.907∗∗ -2.148∗∗ -2.495∗∗∗

(0.697) (0.800) (0.695) (0.769) (0.975) (0.952)

Log(Population) 1.400∗ 1.884∗∗ 1.193∗ 1.659∗∗ 1.917∗ 2.092∗∗

(0.716) (0.824) (0.718) (0.790) (1.009) (0.997)

Phase I 1.150∗∗∗ 0.838∗∗∗ 1.234∗∗∗ 0.859∗∗∗ 1.331∗∗∗ 0.826∗∗∗

(0.252) (0.250) (0.241) (0.238) (0.286) (0.287)

ARP -0.381 -0.207 -0.333 -0.186 -0.541 -0.279
(0.381) (0.362) (0.407) (0.371) (0.509) (0.472)

In Service Year -0.019 -0.017 -0.018 -0.016 -0.021 -0.014
(0.012) (0.011) (0.012) (0.011) (0.014) (0.012)

NSPS -1.165∗∗∗ -1.247∗∗∗ -1.193∗∗∗ -1.318∗∗∗

(0.255) (0.234) (0.257) (0.222)

Number of Obs. 803 803 803 803 570 570
State FE No Yes No Yes No Yes
Sample All All All All No NSPS No NSPS
Over-id p-value 0.063 0.647 0.011 0.870
Adj. R2 0.401 0.458 0.377 0.447 0.319 0.294

Note: Standard errors are in parentheses, clustered at the plant level. *, **, and *** indicate
statistical significance at the 10, 5, and 1 percent levels. In all specifications, the dependent variable
is the standard, measured in lbs of SO2 per MMBtu in fuel. All samples are coal-fired generating
units that are regulated under the most preferred method (DP). The sample is a cross-section of
observed emission rates in 2002. Other controls, not shown here for exposition purposes, include
county area, percentage of individuals with high school or higher, percentage of individuals with
age below 5 and above 65. In IV specifications Log(SO2) is instrumented with weather anomalies
in the summer and Log(CO).
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Chapter 3: Modeling Compliance Choice: Illustration and Empirical

Model

After discussing the institutional background in the Chapter 3, this chapter

introduces the empirical model to be used in simulating the counterfactual exercise

in Chapter 4. The chapter starts with a simple illustration in which two power

plants optimally choose their emission levels that makes clear how the gains from

trade arise. Then, I introduce the empirical model that I will estimate. After

presenting summary data statistics, I review methods used to estimate the model

and discuss the estimation results.

3.1 Estimating the Gains from Trade: An Illustration

Consider a simple model where there are two profit-maximizing polluting firms

(power plants) competing in a static, perfectly-competitive electricity market. They

choose an emission rate z and heat input x. The emission rate is also the pollution

intensity that can be chosen and the total pollution will be equal to z times x. The

objective function can be written as

max
z,x

(p− c(z, x))q(z, x)− pz(zx− A) (3.1)
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where p is the selling price of the power generated, which is assumed to be fixed.

q(z, x) denotes the production function. Often times a production function is writ-

ten in terms of the heat input necessary to generate electricity, hence the heat

rate HR(z, x) = x/q(z, x). Joskow and Schmalensee (1987) estimates the determi-

nants of the gross heat rate using data before the Acid Rain Program. The sulfur

content of the coal is not a statistically significant determinant of the heat rate.

Linn, Mastrangelo and Burtraw (2014) argues that low sulfur coal and scrubbers

can potentially affect the operating heat rate. However, they also show that the

distribution of heat rate across different categories of plants overlap, hence there is

no clear-cut evidence that bigger plants or cleaner units have a smaller heat rate.

c(z, x) denotes the marginal cost of producing a unit of electricity. It is clear

that dirtier coal is cheaper therefore c(z, x) should depend on z. Whether or not

c(z, x) depends on x is not a very clear. On one hand, there might be some quantity

discount in purchasing coal (Chan et al. (2013)) but it will be difficult to predict the

coal purchase price for every generating unit since all coal purchases occur at the

plant or utility level. Therefore, at the unit level, the correlation should not be too

strong. I therefore assume that c(z, x) is a function only of the quality of coal and

the distance between the mine and the plant, but not of the other characteristics.

The polluting firms participate in the permit market. They are allocated a

fixed number of permits A that are determined before they compete in the market.

(zx− A) denotes the excess demand for permits. This can be negative if the plant

chooses emission rates that are less than 1.2 pounds of SO2 per MMBtu. As long as

the units are small and they cannot change the market price of permits, the actual
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allocation would be independent of the permit demand decision. Early work by

Joskow, Schmalensee and Bailey (1998) showed that strategic bidding behavior has

limited effect on the market price of permits. What matter remaining in determining

emission rates are how marginal cost depends on emissions and on the market price

of permits, denoted by pz, which is also assumed fixed.

Therefore, I impose the following assumptions throughout the paper. In future

work, I will test and relax them.

Assumption 1 In the illustration and the empirical model, the following assump-

tions hold:

• Utilization rate is fixed throughout.

• HR(z, x) is independent of z, x.

• c(z, x) is independent of x.

• Each generating unit has no market power in the permit market and takes pz

as given.

Using Assumption 1, the objective function in 3.1 can be collapsed and rewrit-

ten as the following, in which an emission rate is chosen to minimize the cost of

pollution:

min
z
C(z) + pzz (3.2)

where C(z) is the average cost per MMBtu. The slope of the C(z) function denotes

the sulfur premium that the unit has to pay. When a unit is closer to the source of
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low sulfur coal, the increase in marginal cost is smaller, due to the smaller distance

between the coal basin and the power plant. C(z) is assumed convex, otherwise

plants can blend coal with two different sulfur coal contents and achieve a lower

cost. This implies C ′(z) < 0, C ′′(z) > 0. I will use C ′(z) and “sulfur premium”

interchangeably.

The first order condition is straightforward and the chosen emission level z∗

will satisfy C ′(z)+pz = 0. If the two plants face the same sulfur premium, we should

expect the two firms to choose the same emission rate. Now consider a realistic case

where there are two power plants, ‘Northeast’ (H) and ‘Midwest’ (L). Since the coal

basins for low sulfur coal are all situated to the West of the Mississippi River, the

Midwest plant is geographically closer to the low-sulfur coal basins and therefore it

pays a lower sulfur premium than its Northeast counterpart. Hence, C ′H(z) < C ′L(z)

for all levels of z.

Their marginal cost curves are illustrated in Figure 3.1. Points A∗ and B∗

denote the equilibria that the two plants choose under the ARP. From the first order

conditions, those points are tangent to the line with slope −pz. Denote these points

by z∗L and z∗H , the optimal emission rates chosen by plants L and H respectively.

From the assumption that C ′H(z) < C ′L(z), the Northeast plant optimally selects a

higher emission rate since it has to pay a higher sulfur premium – at the equilibrium

the Northeast plant (plant H) chooses to demand more permits as permit prices are

flat across plants H and L while sulfur premia (the slopes) are different for the two.

So what are the gains from trade? Consider a new policy where the two plants

cannot purchase (or sell) permits to cover their emissions. Instead, each profit-
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maximizing power plant is now subject to a uniform emission standard z̄ such that

aggregate emissions are the same as before, i.e.

z∗HxH + z∗LxL = z̄X ⇒ z̄ =
1

X
× (z∗HxH + z∗LxL) (3.3)

where X = xH + xL. The objective function becomes:

max
z,x

(p− c(z, x))q(z, x) s.t. z ≤ z̄ (3.4)

So what are the gains from trade? Since C(z) is assumed to be strictly de-

creasing1, the objective function leads to the equilibrium that z∗ = z̄. Consider a

simple scenario where the two firms are of identical size, and z̄ is the average between

points A∗ and B∗. By looking at Figure 3.1, we can observe that the increase in the

cost for the Northeast plant is going to be higher than the decrease in the cost for

the Midwest plant. In other words, the total compliance cost will be higher under a

uniform emission standard – that is where the cost effectiveness of the cap-and-trade

program or the gains from trade are. The following theorem proves the general case

where there are N firms of different sizes.

Cap-and-trade systems are superior to other policy instruments because they

do not require knowledge of plant- or unit-specific parameters to determine optimal

emissions. They let the emission market determine what they should do best. Also,

by knowing how many allocations or ‘caps’ that are given out (or auctioned off),

1In some cases, for plants located near the sources of low sulfur coal, the cheapest coal may be
the cleanest coal and therefore C ′(z) may be positive for some range of z. It is not going to change
the central message of this chapter so I focus on the general case where C(z) is strictly decreasing.
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the agency also knows exactly what reductions are achieved. A uniform emission

standard is often times considered as an alternative because it does not require

prior knowledge about plants (because it is uniform) and also determines the size of

emissions reductions.2 Technology policies, such as mandating scrubber installation,

were also discussed as alternatives. But they might lead to different aggregate

emission reductions and will therefore be hard to compare with the cap-and-trade.

Theorem 3.1 As long as C ′′(z) ≥ 0, there are non-negative gains from trade under

emissions trading. Gains are zero if and only if C ′′(z) = 0.

Proof See Appendix A.

As shown in Theorem 3.1, gains from trade depend on the convexity of the

marginal cost function. In other words, if the change in the sulfur premium is

less rapid, we should expect a smaller cost savings. The intuition is that if sulfur

premium does not vary much across z space, there will not be large gains from

trading, as the change in the compliance cost will be minimal. One of the major

determinants of the sulfur premium is cost of transporting coal – the lower the rate

the lower the sulfur premium. Other determinants of the convexity include national

variation in coal quality and abatement technology.

The above example serves as a simple illustration of the theory of gains from

trade; however it does not represent reality. First, it is not necessary that the

marginal cost function C(z) is continuous. State-level regulations often favor certain

2In the case where there is over-compliance incentive (when C(z) is not always decreasing
or there are other incentives that will be discussed below), the government may not be able to
match the exact emissions. However, it can re-adjust the uniform standard, in the case of perfect
monitoring, such that the aggregate emissions will be the same.
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compliance strategies over the others; for instance, they provide tax credits for the

use of in-state coal. Therefore, we expect some discrete jumps in the compliance

cost function C(z). Second, scrubber installations, and even the adoption of low

sulfur coal from the West, incur some upfront costs that lead to shifts in the cost

functions. Accordingly in the following section, I provide an overview to the general

discrete choice model where I allow for discrete jumps and estimate the costs and

the effects of these policies on compliance choices.

3.2 Empirical Model of Compliance Choice

In this section I describe the structural model of compliance choice. I begin

the section by describing the general framework. Then, I discuss the assumptions,

the structure and identification of my random coefficients model in which each gen-

erating unit picks what types of coal to burn and whether to install a scrubber.

3.2.1 General Framework

The objective of the estimation procedure is to estimate a model that allows

me to predict both (1) the aggregate cost of compliance and (2) aggregate emissions

under the ARP and the uniform emission standard. In the data, I observe the

emission rates and also the compliance choices that the generating units (EGUs)

make. To estimate the magnitude of the cost savings, one has to know (1) the cost

of compliance associated with observed choices, as well as (2) the emission rates

and the compliance costs for other compliance choices. I estimate the cost functions
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associated with difference choices, allowing for both observed variation in costs (e.g.

coal prices and transportation costs), the shadow value that firms place on sulfur

emissions and unobserved factors such as the cost of retrofitting (modifying boiler

to burn a different kind of coal), and the operating cost associated with low sulfur

coal.

Many decisions made by power plants are discrete in nature. When power

plants select their choice of coal, they decide which coal region they want to buy

their coal from: located from East to West, different regions offer coal of different

quality (sulfur and ash content), and are associated with different transportation

costs. Investment in pollution control equipment, i.e., scrubbers, is also a discrete

choice. Therefore, it is reasonable to estimate a discrete choice model to understand

the tradeoffs between these different compliance choices. A discrete choice model,

which allows discrete jumps in the compliance cost function, also helps control for

institutional factors such as electricity market deregulation and credits from using

in-state coal (more details in Section 3.2), which are otherwise hard to handle in a

continuous or discrete-continuous framework.

My model explains observed choices of what type of coal to burn in an EGU

and whether the unit was attached to a scrubber during the period 2000–2002. I

assume that these cboices were made to minimize weighted fuel plus abatement costs,

plus the cost of allowances to cover emissions. The period 2000–2002 represents a

window between the beginning of the ARP and the change in regulatory regime

facing coal-fired power plants. As noted above, plans to increase the stringency
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of the SO2 cap under CAIR were announced at the end of 2003.3 This caused a

huge spike in allowance prices in 2004 and, beginning in 2005, led many units to

install scrubbers in anticipation of the new regulatory regime. My goal is to model

compliance behavior under the ARP once power plants had adjusted to it Figure

2.10, which shows survey data on compliance strategies by Phase I and II units,

suggests that this had occured by the period 2000–2002. I do, however, vary this

window for sensitivity analysis.

The ARP is seen as a cost-effective way of achieving emissions reduction as it

gives power plants the flexibility to pick their emissions, taking into account a permit

cost that increases with its desired emission rate. With the estimated model, I can

also simulate a uniform emission standard, which is an emission constraint imposed

on all generating units, such that the aggregate emissions reduction is identical

to the ARP. The displacement between the ARP equilibrium and the constrained

equilibrium (under the standard) indicates the difference in compliance costs, which

can be aggregated to estimate the cost savings achieved from emissions trading. By

estimating a discrete-choice model, I can predict what the compliance choices are

going to be under the constrained standard case, and can also predict the observed

and unobserved compliance cost.

I choose to estimate a static rather than a dynamic model for two reasons.

Despite the dynamic nature of the permit market, I did not pursue a dynamic model

that explicitly models permit banking decisions (Zhang (2007)). In this paper, I am

3Although the CAIR was eventually vacated by the courts, it was followed by a series of rules
designed to reduce the SO2 cap by more than 50%.
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not interested in studying permit banking and trading in equilibrium. Instead,

each generating unit chooses a compliance strategy, which is associated with its

desired SO2 emission rate, that would implicitly take permit banking into account.

My model estimates the shadow price of emissions and compare that to allowance

prices. Permit prices are stable during the period of my analysis (see Figure 2.9)

which suggests that the banking motive should not change over this period.4

In addition to the stability of permit prices, price trends for different kinds of

coal did not fluctuate much over my study period. If this were not true, the snapshot

in 2000–2002 might reflect a temporary change in coal prices in those years, and not

necessarily the compliance choices that firms would otherwise make. Even if prices

do change, it requires some effort by the generating units to change the type of coal

they are using, given the fixed cost in altering the specification of the boiler as well

as changing any contractual arrangements. Figure 4.1 plots the minemouth prices

for three regions – Appalachians, Interior (including Illinois Basin) and the West

(sources of low sulfur coal) using data in U.S. Energy Information Administration

(EIA). Though prices are trending down from 1990 to 2000, the trends for these

three regions follow each other very closely and there is no evidence of a huge

discount in any of the regions. Therefore, current prices should act as a good proxy

for the future prices and a static compliance cost function can represent long-run

4Since each compliance strategy would lead to its desired emission rate, the sulfur content of
the coal (as well as the presence of scrubber if the unit chooses to install one) should be sufficient
in determining the unit’s actions in the allowance market. In other words, each unit still has to
choose the type of coal that they use besides engaging in permit banking. Both Schennach (2000)
and Zhang (2007) suggest that banking serves as a ‘pollution smoothing’ instrument for Phase I
units – most of the allowance bank is owned by Phase I units and the bank of allowances is slowly
drawn down for Phase I units but not for Phase II units.
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compliance costs under the ARP.5

3.2.2 A Model of Compliance Choice

In my model each generating unit i chooses a compliance strategy to minimize

weighted compliance cost. There are in total 2N compliance strategies that each

unit can choose – a binary choice of installing a scrubber as well as choosing one of

N types of coal. Each type of coal is associated with a mean sulfur and ash content.

I assume that each generating unit i has no market power in either the electricity or

permit markets and produces a constant output. It therefore treats heat input (in

MMBtu, and hence electricity output) as fixed.6 This is a reasonable assumption

as coal-fired power plants are often located at the lower portion of a electricity load

curve and are base-load plants, because they are the least-cost producers. Fewer

than 10 generating units indicate that they decreased utilization to comply with

the ARP (as indicated by the EIA survey data in Figure 2.10). An emissions rate,

as a function of the sulfur content of coal and the scrubber installation status, and

compliance costs, can then be generated from the estimated model.

Plant location is the primary source of the observed heterogeneity in com-

pliance cost. Plants in Michigan, which are closer to low sulfur coal in Wyoming

and Colorado, will have a lower cost compared to plants in Pennsylvania due to

transportation costs. The delivered price of coal, which is a sum of the minemouth

5Right now the prices that I am using are the ones that coincide with the 2000–2002 period.
In future work, I am going to incorporate other models of price expectations.

6I have tested the production / thermal efficiency of different types of coal and they are not
statistically different from each other. Heat content is the only factor that matters in electricity
production and therefore I will base everything on the heat input in MMBtu.
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coal price and the transportation component, is included in the compliance cost

functions. Each generating unit is also subject to state or local regulations that

prohibit them from polluting more than a certain emission rate due to the National

Ambient Air Quality Standard (NAAQS). This standard is effectively a constraint

that affects the choice set for each decision maker. I term this standard the ‘state

emission standard’ as this standard is enforced at the local or state level. The state

emission standard is modeled such that generating units cannot choose the kinds of

coal that will violate the emission constraint. Therefore, each boiler minimizes the

per MMBtu compliance cost subject to current emission standard:

min
j
Ci(j, β) s.t. (1− θ(j))SULFUR(j) ≤ SULFURi (3.5)

where Ci(j, β) is the weighted compliance cost per MMBtu for generating unit i

choosing compliance strategy j. These weights control for different institutional

and economic factors (such as utilizing in-state coal, more details to follow) that

affect power plants. SULFURi represents the local or state emission standard (in

pounds of SO2 per MMBtu) facing unit i and it is taken as exogenously imposed. To

take the emission standard constraint into account, I drop alternatives that violate

the constraints based on the 10% percentile of observed sulfur and ash content. The

weighted compliance cost per MMBtu takes the following parametric functional
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form:

Ci(j, β) = βFCOALPRICEi(j) + βAASH(j) + βSSULFUR(j)

+βtSULFUR(j)× (1− θ(j)) + 1(j = PRB)(βl
0 + βl

1AGEi)

+βzSCRUBCOSTi(j) + βMMODIFYi(j) + εi(j)

(3.6)

β serves two purposes in the above equation. First, it represents the weights that

each manager places on each category of costs (Fowlie (2010)) and reflects the possi-

ble non-cost minimizing motives that he may have with respect to each component.

Second, it captures the capital and operating cos, as I discuss below. Unlike Fowlie

(2010), I do not observe the associated capital cost regarding each compliance strat-

egy. I attempt to measure the operating cost by controlling for ash content of coal

(per MMBtu) (βA).

The compliance cost functions in equation (3.6) consist of [1] coal prices

(βFCOALPRICEi(j)), [2] costs of scrubbing (βzSCRUBCOSTi(j)), [3] operating

cost (βSSULFUR(j) + βAASH(j)), [4] emissions ((1 − θ(j))SULFUR(j), where

θ(j) = θ if a scrubber is installed, zero otherwise; and θ is the exogenous re-

moval rate of the scrubber), [5] operating cost associated with use of low sulfur

coal (βl
0 + βl

1AGEi), and [6] cost of retrofitting (βMMODIFYi(j)). The last com-

ponent, εi(j), represents the component of cost that is specific to each alternative

j but not observed by the econometrician. I assume that εi(j) follows a type-I gen-

eralized extreme value distributes and is identically and independently distributed

across generating units i and alternatives j. I will discuss components [4], [5] and
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[6] below.

The shadow price of permits will be estimated from the model based on the

coefficient βt. (1−θ(j))SULFUR(j) represents the emission rate and βt in equation

(3.6) is the shadow price of permits (as perceived by firms). To estimate βS and

βt, I include the sulfur content of coal as well as an interaction term between sulfur

and scrubber status. Theoretically these coefficients should differ by θ. I did not

however impose this restriction in the estimation due to possible operating costs

associated with the sulfur content of coal (represented by βS) or different weighting

of the two by the decision maker. In the counterfactual both βS and βt will be set

equal to zero to indicate that there is no shadow price of permits in the emission

standard case.7

Components [5] and [6] in the above equations are the two types of unobserved

retrofitting costs that I model. Using coal from the Powder River Basin often incurs

an additional operating cost due to the fact that it has a lower heat content (hence

the need to pump coal more quickly to achieve the same thermal efficiency). Second,

there is a potential cost to modifying the source of the coal. This represents two

types of costs – retrofitting costs that power plants incur when they modify the types

of coal they use (as a boiler is often designed to burn only a subset of coal types)

and the cost of building the required railroad network to access the mine. I control

for these by including the respective dummies in the cost function, interacted with

the age of the boiler. I use data on average compliance choice in 1981–1983 and set

7As a robustness check, I have allowed a possible operating cost component from βS in the
counterfactual. While the magnitude of the cost savings is similar, the implied abatement cost is
significantly lower.
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the retrofitting dummy equal to one if the coal type used in 2000–2002 differs from

1981–1983.

The weights, represented by the β’s, capture some of the differences in eco-

nomic incentives that may make generating units non-cost-minimizing. Units that

are regulated under rate-based regulation may favor the scrubber option because

the scrubber is viewed as a capital investment included in the rate base. Therefore,

estimating these parameters can capture non-cost minimizing behavior. This may

cause cost savings to differ from estimates that assume a least-cost solution.

The coefficients on scrubber cost and coal prices are allowed to vary with some

observed plant attributes:

βz = βz
0 + βz

1KBIASi + βz
2DEREGi (3.7a)

βF = βF
0 + βF

1 MINEMOUTHi(j) + βF
2 MATCHi(j) + βF

3 DEREGi (3.7b)

Several factors may influence the scrubber installation and fuel choice decisions.

Minemouth plants, which are plants located next to a mine, will have higher incen-

tives to use coal from neighboring mines as they may not wish to change contractual

arrangements with the adjacent mine. Lile and Burtraw (1998) identified plants in

three states (Pennsylvania, Ohio and Illinois) as being biased towards capital in-

vestments due to state regulations. Plants that located in deregulated electricity

markets may act more like cost minimizers (placing more weight on the cost of scrub-

ber). Chan et al. (2013) and Cicala (2013) show that units in deregulated states

(or divested units) purchase coal at a lower price, implying that they certainly put
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more weight on purchase cost. MATCHi(j) is a dummy that takes on the value of

1 if the mine and the plant are located in the same state, to control for state-level

incentive programs that promote the use of in-state coal.

The coefficients in equation (3.6) are identified using cross-sectional variation

in the data. Observable components of cost include the price of coal and scrubbing

cost, obtained from the survey forms gathered from the Energy Information Admin-

istration (more details in Section 4). The coefficients of observable cost components

are identified using cross-sectional variation in coal prices and scrubbing costs. Un-

observed components, like the cost of retrofitting mentioned above, are identified by

using the trade-offs between different compliance options observed in the data and

maximizing the likelihood that the observed compliance choice is chosen.

The discrete nature of the cost function makes it difficult to estimate a discrete-

continuous model, treating SO2 emissions as a continuous decision variable (Dubin

and McFadden (1984)). In such a framework, I would have to estimate a coal price

equation as a function of sulfur emissions, which would require correcting for the

PRB premium. For instance, I would need to include heat content as one of the

explanatory variable in this pricing equation and restrict how the price depends

on the heat content – in my model it is handled by including a PRB dummy that

represents the retrofitting cost. It is more flexible and less reliant on the assumption

that the additional cost depends on the difference in heat content. Furthermore, it is

very difficult to correct for the effects of minemouth and in-state coal in a continuous

model as these represent discrete jumps in the pricing equation.
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3.3 First Look at the Data

Appendix B describes the sources of the data in more detail. Table 3.5 summa-

rizes the generating units in my sample and the ones that I excluded. The majority of

the excluded units are regulated under New Source Performance Standards (NSPS).

These units were constructed after 1971 and were required to use low sulfur coal

or to install scrubbers. Their compliance decisions were therefore not affected by

the Acid Rain Program.8 For the rest of the units, I either have no data on coal

procurement or they buy coal from other than the six major basins on which I focus.

This brings the total number of units in my sample to 777. By excluding the NSPS

units from both the estimation and simulation, I am implicitly assuming that NSPS

units are not changing their compliance strategies in the case of a uniform emission

standard. This is a fair assumption given that they face more stringent regulations.

The otherwise excluded units account for less than 1% of total emissions.

Before moving to the empirical section of the paper, it is important to un-

derstand how generating units pick their sources of coal. Table 3.1 summarizes the

actual coal prices observed in the data for the three major coal basins – Powder

River (low sulfur), Central Appalachian (medium sulfur) and North Appalachian

(high sulfur). Table 3.2 presents similar results based on imputed prices. Powder

River Basin coal is often the cheapest coal available to coal plants. This might sug-

8There are different classes of NSPS units, depending on whether they were constructed after
September 1971 (designated as “D” units) or August 1978 (designated as “Da” units). Although
“D” units have more flexibility in choosing how to meet the NSPS, the required emission standard
is still far below the target set by the Acid Rain Program, therefore I also excluded these units
from my analysis.
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gest that most coal-fired power plants would purchase coal from the Powder River

Basin (PRB); however in practice, only a portion of them do. Units often incur ad-

ditional costs to burn PRB coal, this includes operating costs to increase the speed

of pumping coal into the boiler due to the lower heat content of PRB coal, plus

additional retrofitting costs. Therefore it is empirically important to estimate the

hidden cost (or premium) of using PRB coal.

The identification of compliance strategies relies on the geographical variation

in (imputed) coal prices, variation in the sulfur and ash content of coal as well as

the exogenous variation in local emission standards. The geographical distances

between coal mines and plants determine the type of coal chosen, as we can see

from the imputed prices in Table 3.2. Further evidence can be seen by looking at

the biggest buyers for different coal basins. For each coal basin, I check which states

the buyers are from and summarize the results in Table 3.3. The bigger buyers are all

very close by – Pennsylvania units buying buying from North Appalachian, Midwest

(Michigan, Illinois, Missouri) units are getting PRB coal, while South Appalachian

coal is bought only by the Alabama coal plants. Table 3.4 provides similar summary

statistics looking at the coal procurement practice in each state.

Another important dimension of the compliance strategies is the decision to

scrub. Out of my sample units, 88 (11.34%) scrubbed and 688 other units did not

install a scrubber as of 2002. This is summarized in Table 3.6 together with the coal

blending status of the boiler. However, out of these 88 units, 44 were installed before

1988 – indicating that they installed scrubbers for a reason other than the Acid Rain

Program. Therefore, I exclude these 44 units in my estimation. In the simulations,
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I restrict these units to choose a compliance option with scrubber installed. For the

other 44 units, the average unit installed a scrubber in 1995 while half of these units

installed a scrubber between 1993 and 1997. Table 3.7 provides summary statistics

for other variables including the cost of scrubbing. For my sample – the cost of

scrubbing is of similar magnitude as the low sulfur premium observed in the data.

3.4 Empirical Framework

In this section I discuss the methods used to estimate the model outlined in

Section 3. I begin with the standard conditional logit model. Then, I discuss esti-

mation using a mixed logit model and its benefits compared to using the conditional

logit model. To conclude, I discuss an iterative procedure to more accurately predict

coal choice and emissions, developed based on the random coefficient logit model.

3.4.1 Estimating a Discrete Choice Model

The most simple and straightforward way to estimate the model in Section 3

is to use a conditional logit model. Given that εi(j) follows a type-I extreme value

distribution, the probability that alternative j is chosen is given by

Pr(j|Xi, β) =
exp(−C(j, β;Xi))∑J

j′=1 exp(−C(j′, β;Xi))
(3.8)

where Xi are the observable characteristics of i used to estimate C(·). Here the

key assumption is that εi(j), enters the unobserved cost component, is i.i.d. across
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generating units and alternatives. The corresponding likelihood function is given by

L(β|Y,X) =
∑
i

∑
j

1(Yi = j) ln Pr(j|Xi, β) (3.9)

As mentioned in Section 3, local emission standards are taken into account

by eliminating alternatives that lead to a violation of the constraint. In predict-

ing scrubber installation decisions, Keohane (2004) had the state emission standard

entered as a of covariate to control for its indirect effects. The state emission stan-

dards impact the scrubber installation decision in my model directly by restricting

the feasible choice set.

However the conditional logit model restricts the coefficients to be homoge-

neous across generating units. Even after controlling for observed attributes that

influence scrubber installation, allowing the coefficients to vary can capture unob-

served heterogeneity that impact generating units, given that some of these coeffi-

cients represent unobserved cost components. More importantly, underestimating

unobserved heterogeneity will likely lead to an underestimation of the cost savings

in my simulation. Therefore, a random coefficient logit model is used instead of the

conditional logit model. Its log-likelihood function takes the following form:

l(b,Σ) =

∑
i

∑
j

1(Yi = j) ln

∫ ∞

−∞

exp(−C(j; b,Xi))∑J
j′ exp(−Ci(j′; b,Xi))

f(β|b,Σ)dβ (3.10)

where Yi is the actual choice made by i, f(β|b,Σ) is the probability distribution for

the random coefficients and b,Σ are the parameters associated with the probability
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distribution. The integral has no closed-form solution and it will be approximated

by simulation using 200 Halton draws. I will therefore use maximum simulated

likelihood to estimate the parameters associated with equation (3.6).

I allow the coefficients on scrubbing cost, operating cost for using Powder

River Basin coal and the implicit cost of retrofitting to depend on an idiosyncratic

unobserved component ϕ where ϕ is assumed to be normally distributed with zero

mean and a diagonal variance-covariance matrix Σ. I use the coefficient of coal

price to scale all parameters to a dollar value. In the results below, I assume ϕ to be

identically and independently distributed for each generating unit, although these

coefficients may be correlated within a plant. 9

3.4.2 Extension to allow within-region coal choices

As seen in Table B.1, each coal basin is associated with a range of sulfur

contents. The mean sulfur content of coal will therfore be a poor measure of the

sulfur content of coal actually purchased to comply with the Acid Rain Program.

In this subsection I introduce an algorithm to take the within-basin variance into

account without the need to extend the choice set further. A plant may find coal in

the West of region 1 better while another plant may find coal in the East of region

1 attractive.

Therefore I extend the random coefficient logit model above to capture a nested

decision making using the algorithm below:

9In future work, l will also check the robustness of my results by allowing a plant or a utility
to draw one ϕ for all associated generating units (Fowlie (2010)). The otherwise ‘panel’ setting
assumes a plant is the decision maker – I will keep the unit as a decision maker by restricting the
random coefficients to be identical across units within a plant.
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1. Start with a guess of β(0).

2. For each choice j, I assume that each generating unit i picks a coal type k

within j, associated with attributes FUELCOST (k; j), SULFUR(k; j) and

ASH(k; j), that minimizes the same compliance cost function as in equation

(3.6)

min
k
Ci(k; j) for all i and j (3.11)

3. After determining the optimal k∗(i, j) for each i and j, unit i will choose k∗(i, j)

if it chooses alternative j. Substitute the attributes of coal type k∗(i, j) to the

matrix Xi in the logit model

4. Re-run the maximum simulated likelihood procedure on the mixed logit model

based on these new attributes from region j to obtain β∗.

5. Update β(t) = 0.8β(t−1) + 0.2β∗ and repeat Steps 2 to 4 until β(t) is sufficiently

close to β(t−1), i.e. |β(t) − β(t−1)| < 1× 10−6.

This algorithm is reliable as long as the units weigh cost and quality for coal

within a region the same way when they select different regions. Each coal type

k is represented as coal from a mine-producing county (within a coal basin) in my

data. I infer the average cost based on the same regression equation (B.1) using

the rail distance between the plant and mine counties and the average sulfur and

ash content for produced coal in that mine. Similar to the non-nested model, I

allow a unit to buy coal from at most two counties – they can be within the same

region or in different regions (which would end up as two different alternatives). I
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excluded mines with fewer than 300 observed coal transactions in 20 years because

the observed average may not coincide with actual quality.

3.5 Cost Function Estimation Results

Table 3.8 displays the estimated coefficients of the cost functions. These coef-

ficients will be scaled by the coefficient on coal price to give values in dollars. I will

discuss the mean effects of the estimated coefficients, and move to their standard

deviation and heterogeneity. First, as expected, all the signs are positive, as we

expect ash content (which lowers reliability) and other retrofitting and operating

expenditures to increase compliance costs. Powder River Basin coal shows a large

positive coefficient indicating that even though its coal may be the cheapest (as

demonstrated in Table 3.1), it bears additional costs that deter units from using it.

More importantly, older generating units incur a higher cost in switching to Powder

River Basin coal. Based on the average age of 44, this is equivalent to a premium in

the price of coal of around 50 cents. After adding the 50 cent premium to the cost

of coal, PRB coal is roughly the same price as Uinta Basin coal (which does not

have a statistically significant premium). Often times they are the most expensive

coal sources for Northeast units.

A second point to notice is that deregulated units are more sensitive to coal

prices and scrubbing costs and tend to buy cheap coal. This result is also found in the

literature on the effect of electricity market deregulation (Chan et al. (2013); Cicala

(2013)) which finds that deregulated plants incur a lower cost of coal procurement.
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This follows the theoretical predictions that competitiveness in electricity markets

provides incentives to power plants to minimize costs. Cicala (2013) in particular

finds that this is done by selecting more efficient coal mines instead of a pure transfer

of rent from mine to plant. Other interaction terms with state policies also have the

expected signs: there is an effective ‘discount’ to using in-state coal, and units in

states with capital intensive investment bias also attach a lower weight to the cost

of scrubbing. I also find a large discount for minemouth units to use minemouth

coal, which may reflect the value of long-term contracts.

The implied shadow price of a permit, based on the coefficient on the inter-

action of the sulfur content of coal and scrubber status, is about $180 (per ton of

emissions, constant 1995 dollars).10 Actual prices were around $150 - $200 in nomi-

nal US dollars in 2000–2002, so the shadow price is not too far from the actual price.

This implies that the permit market operated efficiently.

Third, there is considerable heterogeneity in the impacts of the observables.

Table 3.8 shows a statistically significant variation in the random coefficients. This

again shows the importance of estimating my model using the more flexible mixed

logit approach. These random coefficients lead to unit-specific parameters, condi-

tional on the observed choices (Train (2009)). Taking into account this unit-specific

variation, 77% of my sample units chose the compliance strategies which have the

highest predicted probability (and 71% of the scrubbing choices). The aggregate

10I recover the shadow price in a few steps. First, I divide the coefficient by the average removal
rate of 85% and by the coefficient on coal prices to scale the parameter to a value in cents. Second,
I multiply the coefficient by 2000 to convert it from pounds to tons and divide that by 2 since 1
unit of sulfur content leads to 2 units of SO2. Finally, I divide that number by 100 to convert the
price from cents to dollars terms.
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predicted emissions are 8.70 million tons of SO2, which is slightly larger than actual

emissions.

Even though a prediction rate of 77% indicates good model fit, it is impor-

tant to understand why the other 23% are not choosing the predicted compliance

strategies. Traditionally, unobserved cost differences are dealt with using plant fixed

effects. Since my model is static, I focus on the unobserved cost term εi(j) and argue

that there must be some unobserved cost components that are orthogonal to the

observables that lead to the result: if my model predicted i to use option j but it

used j′ instead, it must be more costly for i to use j (or less costly for i to use j′).

These potentially permanent differences in costs may be important because they

may be ‘carried over’ to the uniform emission standard scenario, and that will also

lead to more or less heterogeneity across different generating units.

Therefore, I estimate the conditional mean of these unobserved cost terms (ε’s)

and incorporate them in the simulation. I first draw 40,000 shuffled Halton draws

(Bhat (2001)) for each unit and each alternative, select those draws that lead to the

highest predicted probability for the choices made, and average them to estimate the

conditional mean. After taking the conditional means into account, I can perfectly

predict compliance choices. Using the predicted choices, I compute emissions as

the product of emission rates (as a function of sulfur content of coal and scrubber

installation status) and heat input. I plot the predicted and actual emission rates in

Panel A of Figure 3.2. Due to the nature of the discrete choice model, the predicted

emission rates take on discrete values. They do not perfectly align with the actual

ones, though the trends closely match one another. After taking the unobserved
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cost components into account, aggregate emissions are predicted to be 7.97 million

tons. From Panel B of Figure 3.2, the prediction errors seem to be centered around

zero and the predicted emission rates appear not to be systematically different from

the observed emission rates.

3.5.1 Comparison to other models

Table 3.9 compares my baseline model in Table 3.8 with two alternative speci-

fications – a conditional logit model with no random coefficients which restricts the

effect of observables to be fixed, and a random coefficient logit model which approx-

imates the coal attributes in each coal basin by their mean values (without using

the iterative algorithm presented in Section 5.3). The estimates all have the same

signs but differ in magnitude. The conditional logit and the standard mixed logit

would have predicted a lower shadow price since the coefficient on the interaction

term of sulfur and scrubbing status is much smaller. These two models also predict

a higher operating and retrofitting cost for PRB coal.

To further compare the models, I look at how well they predict the compliance

choices made by the units. Not surprisingly, the conditional logit model predicts less

than 67% of the compliance choices. Although the mixed logit model without the

iterative algorithm performs slightly better than the baseline model (79% over 77%),

the prediction error in emissions is considerably larger: the baseline model (without

accounting for the conditional distribution of ε’s) predicts emissions to be 8.7 million

tons while themixed logit model predicts 10.6 million tons; actual emissions are 7.16
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million tons, as documented in Table 3.5. Therefore, this alternative mixed logit

model may not be able to predict well the cost savings for an emission standard that

achieves the same emissions reduction, even though it can predict the compliance

choices more accurately.
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Figure 3.1: Equilibrium in the Permit Trading Market
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Figure 3.2: Predicted Emission Rate
Panel A: Scatter Plot

Panel B: Difference between Actual and Predicted Emission Rate
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Table 3.1: Observed Delivered Coal Prices, in 1995 cents

Northeast Midwest South
Period PRB CA NA PRB CA NA PRB CA NA

1998-2001 157.0 122.8 92.1 122.7 112.9 108.5 133.4 111.3
2002-2005 168.7 189.5 138.6 86.6 145.1 116.3 103.7 157.2 126.1
2006-2010 202.8 256.9 191.3 116.1 204.8 177.6 136.1 237.1 177.8

Table 3.2: Imputed Delivered Coal Prices, in 1995 cents

Coal Basin West Northeast Midwest South

North Appalachian 215.6 126.0 145.4 148.6
Central Appalachian 242.1 160.0 163.4 155.6
South Appalachian 177.5 159.0 154.3 148.3
Illinois Basin 226.0 164.9 136.1 151.2
Uinta Basin 122.2 180.3 149.3 170.3
Powder River Basin 82.6 135.6 95.2 128.4

Table 3.3: Major Buyers from the Coal Basins

Coal Basin Three Major States Other Buyers

North Appalachian PA (29.41%) DE, IA, IN, MD, MI, NC,
OH (17.65%) NH, NJ, WI, WV
NY (13.53%)

Central Appalachian NC (16.19%) AL, CT, DE, FL, IN, KY,
OH (15.11%) MA, MD, MI, MO, NJ, NY,
GA (9.71%) PA, SC, TN, VA, WI, WV

South Appalachian AL (100%) –

Illinois Basin IN (34.43%) AL, FL, IA, KY, MN, MO,
IL (17.21%) MS, WI
TN (12.30%)

Uinta Basin CO (17.54%) AZ, IL, KS, MA, MI, MO,
IA (12.28%) NM, NV, UT, WI
KY (12.28%)

Powder River Basin MI (17.94%) AZ, CO, IA, IN, KS, KY,
IL (15.25%) MN, MT, ND, NE, OH, SD,
MO (12.56%) WA, WI, WY
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Table 3.4: Coal Procurement by Non-NSPS Units

(All in %)
State Total NA CA SA IL UB PRB Others

AL 33 0 36.36 60.60 33.33 0 0 0
AZ 5 0 0 0 0 80.00 20.00 0
CO 15 0 0 0 0 66.67 33.33 0
CT 1 0 100.00 0 0 0 0 0
DE 5 60.00 40.00 0 0 0 0 0
FL 17 0 58.82 0 35.29 0 0 5.88
GA 29 0 93.10 0 0 0 0 6.90
IA 30 3.33 0 0 16.67 23.33 60.00 10.00
IL 55 0 0 0 38.18 3.64 61.82 0
IN 56 10.71 19.64 0 75.00 0 16.07 0
KS 11 0 0 0 0 45.45 90.91 9.09
KY 39 0 35.90 0 35.90 17.95 5.13 5.13
MA 5 0 80.00 0 0 20.00 0 0
MD 13 100.00 30.77 0 0 0 0 0
MI 46 15.22 41.30 0 0 2.17 86.96 0
MN 20 0 0 0 5.00 0 85.00 10.00
MO 30 0 6.67 0 10.00 10.00 93.33 0
MS 2 0 0 0 100.00 0 0 0
MT 2 0 0 0 0 0 100.00 0
NC 49 4.08 91.84 0 0 0 0 8.16
ND 3 0 0 0 0 0 100.00 0
NE 8 0 0 0 0 0 100.00 0
NH 5 100.00 0 0 0 0 0 0
NJ 6 66.67 66.67 0 0 0 0 0
NM 6 0 0 0 0 100.00 0 0
NV 4 0 0 0 0 100.00 0 0
NY 37 62.16 27.03 0 0 0 0 21.62
OH 68 44.12 61.76 0 0 0 17.65 0
PA 53 94.34 1.89 0 0 0 0 5.66
SC 21 0 80.95 0 0 0 0 19.05
SD 1 0 0 0 0 0 100.00 0
TN 29 0 48.28 0 51.72 0 0 0
TX 1 0 0 0 0 0 0 100.00
UT 3 0 0 0 0 100.00 0 0
VA 31 0 80.65 0 0 0 0 19.35
WA 2 0 0 0 0 0 100.00 0
WI 33 18.18 6.06 0 6.06 12.12 60.61 6.06
WV 30 66.67 40.00 0 0 0 0 0
WY 11 0 0 0 0 0 100.00 0

Note: This table is compiled using all non-NSPS coal-fired generating units available. Pro-
portions are calculated as the percentage of units in the respective state that procure coal
from the region specified during my sample period. ‘NA’, ‘CA’, ‘SA’, ‘IL’, ‘UB’ and ‘PRB’
are abbreviations for North, Central, South Appalachians, Illinois Basin, Uinta Basin and
Powder River Basin respectively. ‘Others’ represent the proportion of units that did NOT
make any significant purchase to the six major coal basins. Proportions may not sum up to
100 due to the fact that they may blend coal from more than one region.
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Table 3.5: Sample in Estimation and Simulation

Class Count Emissions Heat Input

Sample 777 7160.6 11174.7
NSPS D / Da 246 2341.6 8443.4
Excluded 69 357.3 593.3

Note: Emissions are in 1000’s tons and heat input
are in million of MMBtu.

Table 3.6: Coal Blending and Scrubbing Status for Sample Units
Scrub?

Blend? No Yes Total

No 600 83 683
Yes 89 5 94

Total 689 88 777

Table 3.7: Other Summary Statistics

Variable Mean Std.Dev.

Scrub Cost (in cents per MMBtu) 38.64 23.96
Boiler Age 43.43 10.08
Deregulated 0.3376 0.473
Phase 1 0.3840 0.487
Heat Input (in 1000s MMBtu) 14392.1 14365.5
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Table 3.8: Estimates for the Cost Function

Sulfur 6.3711*** Scrub Cost 0.2752**
(0.9223) (0.1313)

Sulfur × Scrub -2.4772** Scrub Cost × Bias -0.0456
(1.1053) (0.0844)

Ash 0.9870*** Scrub Cost × Restr. 0.1198
(0.3533) (0.1000)

Coal Price 0.1607*** PRB 4.7562***
(0.0139) (1.1498)

Coal Price × In-state -0.0107** PRB × Age 0.0599***
(0.0041) (0.0166)

Coal Price × Restr. 0.0149 Part. PRB 3.7166***
(0.0115) (0.7330)

Coal Price × Minemouth -0.0652*** Part. PRB × Age 0.0263*
(0.0161) (0.0138)

Modification 2.6756*** Part. Modif. 1.7527***
(0.3175) (0.1472)

Standard Deviation
Scrub Cost 0.1256* Modif. Cost 1.8300***

(0.0758) (0.4627)

PRB 1.0323*
(0.5977)

Note: All standard errors are resulted from a bootstrap process that estimates coal
price equation, scrubbing cost equations and the mixed logit model. *, **, and ***
indicate statistical significance at the 10, 5, and 1 percent levels. A positive coefficient
implies that the cost is increasing in that component. In all specifications NSPS units
are dropped. All columns are estimated based on observed choices for generating
units that have not installed a scrubber or they have installed a scrubber after 1988.
The 51st to 200th Halton draws are used to simulate the integral. “Part.” indicates
separate dummies for choices that blend PRB with other kinds of coal (Part. PRB)
or modify 50% of their compliance choices from the choices in 1983.
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Table 3.9: Comparison Across Models

Baseline Cond. Logit Mixed Logit

Estimates

Sulfur 6.3711*** 2.9876*** 3.9460***
(0.9223) (0.2265) (0.3158)

Sulfur × Scrub -2.4772** -0.6765*** -1.3212***
(1.1053) (0.2503) (0.3616)

Coal Price 0.1607*** 0.1479*** 0.1951***
(0.0139) (0.0116) (0.0162)

Modification 2.6756*** 2.3069*** 3.3048***
(0.3175) (0.2052) (0.3884)

Scrub Cost 0.2752** 0.0969*** 0.1808***
(0.1313) (0.0121) (0.0336)

PRB 4.7562*** 8.9360*** 12.7364***
(1.1498) (0.9350) (1.3909)

Log Likelihood -867.94 -880.71 -850.15
Prediction (%) 77.48 66.75 79.25
Pred. Emissions 8.7008 11.1745 10.6296

Note: All models are based on the same covariates presented in
Table 3.8, except for omitting the standard deviations for the ran-
dom coefficients for conditional logit. ‘Baseline’ model uses the
same specification as in Table 3.8 while ‘Mixed Logit’ is otherwise
the same except that it is not run on an iterative algorithm cor-
recting for variation within each coal basin, i.e. only mean values
in each coal basin are used. All models are based on the same
set of sample units (777). All standard errors are robust standard
errors except for the ‘Baseline’ model which is bootstrapped stan-
dard errors. *, **, and *** indicate statistical significance at the
10, 5, and 1 percent levels.

67



Chapter 4: How Large are the Cost Savings from Emissions Trading?

In this chapter, I use the parameters in Chapter 3 to estimate the cost savings

from the Acid Rain Program. To begin this chapter, I present the methodology.

I use the estimates to predict the choices under the ARP and compute aggregate

emissions and compliance costs. Then, by removing the allowance price component

from the compliance cost function and limiting the choice set for each unit i, I pre-

dict what their compliance choice would be under a uniform performance standard.

After presenting the methodology, I present the simulation results and discuss the

difference between my results and those in the literature.

4.1 Methodology

Before running the counterfactual, I estimate the conditional distributions of

the unobserved terms in my model (conditional on the observed choices made by

generating units), namely the coefficients on scrubber, PRB and retrofitting costs,

as well as the unobserved cost terms. I control for unobserved cost terms using

their conditional means, estimated using shuffled Halton draws. The motivation be-

hind using the conditional distributions is that they capture permanent unobserved

effects. In a dynamic setting one can use fixed effects for each decision maker to
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control for the unobserved time-invariant differences, while in my static model I have

to rely on a distributional assumption to compute the conditional distribution. The

unobserved cost terms can lead to a smaller or larger estimates of the cost savings.

Cost savings are smaller if they suggest that units are ‘stuck’ at an alternative that

looks attractive to them but not to the econometrician based on mean values, or

the savings can be larger because more cross-sectional heterogeneity leads to higher

cost savings from theoretical predictions.

Based on the conditional distribution of random coefficients and unobserved

costs, I predict the compliance choice to be the option with the highest probability

and compute the implied aggregate emissions and unweighted compliance costs: I

omit the coefficients and compute the inferred costs from the coal price equation,

scrubbing cost equations, estimated operating costs, retrofitting costs, as well as the

premium for PRB coal, scaled by the coefficient on coal price to give dollar values.

Weights in my model are used to predict actions by generating units, but these

weights should be set to one when I predict compliance costs. I scale all parameters

that represent cost using the coefficient on coal price. Two of the three random

coefficients – PRB and retrofitting costs – enter the compliance cost function as

conditional means. The compliance cost function that will used in the counterfactual

scenario takes the following form:
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COMPCi(j) = SCRUBCOSTi(j) + COALPRICEi(j)

+ 1(j = PRB)(Eiβ
l
0 + βl

1AGEi)/β
F︸ ︷︷ ︸

Premium for PRB Coal

+ βAASH(j)/βF︸ ︷︷ ︸
Operating Cost

+ Eiβ
M(j)/βF︸ ︷︷ ︸

Retrofitting Cost

+ εi(j)/β
F︸ ︷︷ ︸

Unobs. Cost

(4.1)

In the counterfactual scenario in which the uniform emission standard is in

place, the objective function (3.6) is the same except that the emissions components

(both βS and βt) are removed. This implies that, under a uniform emission standard,

generating units should have picked the type of coal with the lowest cost, taking into

account all operating cost components. This is a different methodology compared to

the one used in Keohane (2007) – while Keohane (2007) assumes the cheapest coal

is selected under a uniform emission standard, he did not estimate the unobserved

cost components.

I begin by setting a starting value for a uniform emission standard. The

goal is to find a standard such that aggregate emissions match predicted aggregate

emissions in the ARP. I assume that only the ARP is changed in the counterfactual

and that the current local emission standards are still in place. In other words, the

uniform emission standards is relevant for i only if it is tighter than the state emission

standard imposed on i. This holds the benefit of the policy almost constant (ignoring

that the social damage may be different across regions (Muller and Mendelsohn

(2009))) and the difference in the compliance costs for the two scenarios can be
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regarded as the cost savings from the Acid Rain Program.

Using the algorithm developed in the last chapter, I allow discrete jumps in

aggregate emissions to help match the aggregate emissions under the two scenarios.

Instead of using the observed choice k within j, I run the algorithm above to predict

k within each j since I observe the coal procurement data with noise. I am more

confident in saying that i uses coal from region j rather than i uses coal from mine

k in region j given that they can blend coal from multiple mines. By allowing for

additional variation within each coal basin, I can more accurately predict the sulfur

content of coal and hence emissions.

The following list summarizes the above steps in detail:

1. Estimate unit-specific scrubbing cost conditional distribution (Revelt and Train

(2000))

µi(β|Di = Y,Xi, b,Σ) =
P (Di = Y |Xi, β)f(β|b,Σ)

P (Di = Y |Xi, b,Σ)
(4.2)

where Y is the observed choice made by i. This will be used to predict the

choice made by each generating unit i

2. Estimate the conditional mean of the logit error term, which represents unob-

served costs, using shuffled Halton Draws. Treat them as separate unit-specific

and alternative-specific constant terms.

3. Compute the total compliance cost, as well as predicted emissions, based on
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the predicted choice ĵi for each unit

AGGCOMPC =
I∑

i=1

COMPCi(ĵi)qi (4.3)

where qi is the observed heat input in MMBtu.

4. Set βs = βt = 0 and start with a uniform emission standard s̄(0). Repeat

the iterative procedure described in Section 3.4.2 with coal types that violate

a uniform emission standard s̄(0) ruled out. Predict the optimal compliance

strategy j that minimizes the new weighted compliance cost function, or max-

imizes the following probability

P̂ri(j|Xi, b,Σ) =

∫ ∞

−∞

exp(−C̃(j; b,Xi))∑J
j′ exp(−C̃(j′; b,Xi))

µi(β|Xi, b,Σ)dβ (4.4)

5. Compute the aggregate compliance cost and emissions as in Step 3, using

the same observed heat input in MMBtu. If aggregate emissions exceed the

predicted emissions in the emissions trading case, repeat Step 4 with s̄(t) =

s̄(t−1)−0.01 until the emissions are close to or lower than those in the previous

iteration.

4.2 Simulation Results

Table 4.1 reports the simulation results. The implied abatement costs are all

expressed in millions of 1995 USD to facilitate comparisons with the literature. The

compliance costs for the uniform standard are weighted averages of two compliance
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costs under two standards (by assuming that the abatement cost curve is locally

linear) that achieve the same emissions. The implied abatement costs can be viewed

as the average aggregate costs per year.

Table 4.1: Simulation Results
Cost ARP Standard Cost Savings

Mean Zero 843.43 1108.51 265.07 (23.91%)
Conditional 688.39 1067.10 378.71 (35.49%)

Prior Literature
Carlson et al. (2000) 1040 1820 780 (42.87%)

Ellerman et al. (2000) 1923 4037 2115 (52.39%)

Note: The numerical figures are all Annual Costs
in constant 1995 Million USD.

Table 4.1 presents two sets of results – numbers in the first row assume that

the unobserved cost components are random (or white noise) and can be treated as

having mean zero (implying that the unobserved effects are not permanent) while

numbers in the second row assume that the unobserved costs are permanent and use

the conditional means estimated in Step 2. After controlling for unobserved costs,

the cost savings increase from 265.07 million to 378.71 million. The unobserved cost

components are estimated to rationalize the choices made by generating units. If

the unobserved factors that affect choices are carried over to the uniform emission

standard case, my model could have predicted a smaller cost savings as it implies less

flexibility and less cost heterogeneity. On the other hand, from what we have seen

in Table 4.1, after taking into account the unobserved cost differences, we achieve a

larger estimate of cost savings due to a larger degree of heterogeneity.

In the simulation exercise I predict each unit’s compliance choice under the
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uniform emission standard. Table 4.2 provides an overview of the number of units

choosing each compliance strategy in the ARP and under the uniform emission

standard. Generating units, under the uniform emission standard, cannot use coal

from the Illinois Basin without installing a scrubber. Therefore, there is a huge shift

in compliance choices from burning high sulfur coal (and obtaining more permits)

to either blending high and medium sulfur coal or installing a scrubber. Out of

the 171 units that switched their compliance choices, 125 of them were burning

high sulfur coal under the ARP. Since these units are still using high sulfur coal as

their main (or secondary) source of coal, any general equilibrium effects that lead

to adjustments in coal prices should be of second order.

4.3 Why Are the Cost Savings Low?

The estimated cost savings are much smaller than those in the existing liter-

ature. Carlson et al. (2000) predicted a cost savings of around $780 million i the

long run (they estimated a $250 million actual savings in the first two years); Eller-

man et al. (2000) predicted a $2 billion cost savings in Phase II of the program,

while Keohane (2007) estimated a $150 million cost savings among Phase I Table

A (mandatorily complied) units.1 It is worth noting some features of the method-

ology used in these studies. Carlson et al. (2000) estimate a long-run cost function,

and assume that plants are cost minimizers and that the Acid Rain Program would

achieve the least cost solution. There are several reasons why that may not be

1Normally we expect much higher cost savings in Phase II as it involves more units and hence
potentially more cost heterogeneity, so, results in Keohane (2007) are not directly comparable to
the numbers presented in this dissertation.
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the case. First, plants under cost-of-service regulation may not have incentives to

minimize their costs. Second, state-level policies may magnify the value of certain

options. State emission standards, although not as stringent as the ARP target,

limits the compliance strategies that different generating units can use. It may not

be viable for units to buy permits even if it is the cheapest option under the ARP.

In my model I capture some of these differences by allowing the weights in the cost

function to depend on state level policies.

Using estimated operating costs, I study whether a least-cost solution is achieved

and I find that most generating units are not using the cheapest way to comply with

the program. I compute the (unweighted) compliance costs for two most common

compliance strategies: (1) switching to low sulfur coal (PRB) or (2) installing a

scrubber (with high sulfur coal). For more than half of the 44 scrubbers installed

after 1988, I find that it is 10 to 100 cents cheaper for them to fuel switch.2 I also

compute a per ton cost of SO2 removal for units that use PRB coal. I find that more

than 60% of these units are spending more than the price of a permit to reduce their

SO2 by buying PRB coal: the median unit spends more than $350 to remove one

ton while the shadow price of a permit is only $180.

Two other reasons why we may see a lower cost savings are a decrease in the

transportation cost for Powder River Basin coal and a decrease in the operating cost

of scrubbers. I re-estimated the transportation cost indices using equation (B.1) by

dividing my sample into two periods: 1991-93 and 2001-03. The estimated coal

transportation rates (in constant 1995 dollars) are shown in Table 4.3. The most

2I obtain similar numbers by looking only at scrubbers installed after 1995.
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striking observation is that the transportation cost for Powder River Basin coal

has been cut almost in half in 10 years time, while the minemouth prices follow

almost the same trends for these coal basins (as shown in Figure 4.1). Since railroad

deregulation under the Staggers Act of 1980, the transportation cost for coal has

been drastically decreased (Christensen Associates (2008); Schmalensee and Stavins

(2013)) – it implies that coal plants in Ohio do not have to pay as much if they intend

to switch to Powder River Basin coal.3 This also implies that the heterogeneity in

compliance cost is smaller compared to the earlier literature which is based on the

pre-1990 or early 90s levels.

Cost heterogeneity is also reduced through improvements in scrubber tech-

nology. Using the estimates in the scrubber operating cost equation, I plot the

average operating cost over time in Figure 4.2. Year 1991 is the excluded category

therefore all coefficients are relative to 1991. Clearly the operating cost for scrub-

bers is decreasing. The operating cost in 2000 is around 40% lower than the 1991

level. Bellas (1998) also found similar evidence of the technological advancement in

scrubber technology using the same data source. It also suggests that the marginal

abatement cost is lower than earlier estimates. This will lead to a decrease in both

the compliance cost and predicted cost savings.

3Transportation to and from Powder River Basin is traditionally operated by two major rail
lines (Busse and Keohane (2007)) and therefore the effect of increasing competition may have
significantly decreased transportation costs for PRB coal compared to other kinds of coal (Pittman
(2010)).

76



4.4 Summary, Implication and Unanswered Questions

In this project, I quantify the cost savings from a market-based instrument

compared to a command-and-control instrument by using ex-post data from the

first three years of Phase II of the Acid Rain Program (ARP). This enable me

to model the optimal choice of coal as well as the scrubber installation decision.

Cost heterogeneity arises primarily because of geographic variation in costs: some

generating units are closer to sources of low sulfur coal yet some other states may

enact incentive programs that favor scrubbing. Compared to the existing literature,

the approach allows me to (1) estimate the unobserved components in the compli-

ance cost function, (2) use ex-post data that covers almost all participants and (3)

consider a wider range of strategies that they can implement.

I proceed by first estimating a static random coefficient logit model to identify

optimal compliance strategy for regulated generating units and recover parameters

of the compliance cost function. I find economically and statistically significant

unobserved components for retrofitting costs as well as additional costs for using

Powder River Basin coal. This explains the puzzling fact that PRB coal is often

the cheapest source of coal. By estimating a mixed logit model I can control for

statistically significant variation in the impacts of covariates on the compliance

cost function. Observed components include electricity market restructuring status,

whether the generating unit is located next to a mine, and other state policies that

might favor scrubbing. As in the literature on electricity market restructuring, I

find that deregulated units attach a greater weight to coal price and scrubbing cost,
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that leads them to act like cost minimizers.

I include only non-NSPS units in my analysis and my model can predict 77%

of their compliance strategies. I estimate a conditional mean for the unobserved cost

components and treat them as permanent effects. Based on my estimated model,

I simulate what would happen to the aggregate compliance cost under a uniform

emission standard that achieves the same emissions reduction as the ARP. I find

that the cost savings is around 265–380 million dollars (in 1995 US dollars) per

year, depending on how the unobserved cost components are treated. This num-

ber is considerably smaller than estimates from earlier literature. I postulate that

three effects may lead to the difference in my estimates: (1) lower transportation

cost induces less cost heterogeneity across generating units, (2) technological im-

provement in scrubbing technology also lowers marginal abatement cost curves, (3)

state policies, in particular state emission standards, might have limited choices and

prevented coal-fired units from achieving the least cost solution.

This analysis helps us design environmental policies. It suggests that emissions

trading program may not be always superior than other less flexible regimes. Often

times political consideration in designing these programs impede the program from

operating efficiently. One example is the failure of the Clean Air Interstate Rule

(CAIR) in 2005, as discussed in Chapter 2. After the EPA learned that the inter-

state transport of pollutant affected upwind and downwind states differently (Fraas

and Richardson (2010)), EPA proposed the CAIR to replace the ARP. The Courts

ruled that the EPA had to re-design a new policy. It was struck down by the courts

in 2008 because the rule allowed unconstitutional trades between states. Afterwards,
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the EPA proposed the Transport Rule which was also deemed unconstitutional in

2012 but was later reinstated by the Supreme Court. These rules generated uncer-

tainty in the permit market. Uniform standards would have avoided this aspect of

regulatory uncertainty.

While my results apply to the largest trading program in the U.S., the claim

that emissions trading may not yield a large cost savings may not hold for other

trading programs. My estimation is based on coal-fired electricity generators, and

it is for this particular trading program. Other markets might be less influenced by

other state or federal regulations; also, there may be larger cost heterogeneity across

complying firms. In those cases, the cost savings from cap and trade may be larger.

Further research is required in the ex post evaluations of policies. In general ex ante

studies may over-estimate the gains from trade. Studying the effects of state-level

policies on the efficiency on federal policies remain an important direction for future

research.
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Figure 4.1: Minemouth Price for Coal

Source: U.S. Energy Information Administration (EIA)

Figure 4.2: Predicted Operating Cost for Scrubbers
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Table 4.2: Compliance Choice in ARP and Emission Standard
Number of Units

Choice ARP Standard

No Scrubber 689 665
High 201 76
Med 215 214
Low 196 177
High+Med 41 155
High+Low 11 33
Med+Low 22 10

Scrubber 88 112
High 48 74
Med 3 1
Low 35 35

Note: Total number of units = 777.
‘High’ includes (a mix of) Illinois Basin
and North Appalachian, ‘Med’ includes
(a mix of) South and Central Ap-
palachian, and ‘Low’ includes (a mix of)
Uinta Basin and Powder River Basin.
Categories for coal blending for scrub-
bers are omitted for exposition pur-
poses.

Table 4.3: Est. Coal Transportation Rate (in cents)
1991-93 2001-03

Powder River Basin 1.11 0.66
Central Appalachian 1.15 1.78
North Appalachian 1.38 1.30

Illinois Basin 1.80 1.39
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Chapter A: Proof of Theorem 3.1

What we want to prove is the following expression for the general case where

there are nonidentical plants i = 1, 2, ..., N each with heat input xi:

∑
i

Ci(z
∗
i )xi ≤

∑
i

Ci(z̄)xi (A.1)

Left hand side of equation A.1 represents the total compliance cost under the Acid

Rain Program while the right hand side denotes the total cost under a uniform

emission standard.

Performing a second-order Taylor series approximation on Ci(z̄) around z∗i for

each i yields the following:

Ci(z̄) = Ci(z
∗
i ) + C ′i(z

∗
i )× (z̄ − z∗i ) +

C ′′i (z∗i )

2
× (z̄ − z∗i )2 (A.2)

for each i.

Insert equations (A.2) into the right hand side of equation (A.1):

∑
i

Ci(z̄)xi =
∑
i

Ci(z
∗
i ) +

∑
i

C ′i(z
∗
i )× (z̄− z∗i )xi +

∑
i

C ′′i (z∗i )

2
× (z̄ − z∗i )2xi︸ ︷︷ ︸
Ω

(A.3)
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Using the equilibrium condition C ′i(z
∗
i ) = −pz for all i and the definition of

z̄X =
∑

i z
∗
i xi where X =

∑
i xi, the second term on the right hand side of equation

(A.3) sums to zero:

∑
i

C ′i(z
∗
i )× (z̄ − z∗i ) = −pz

[
z̄
∑
i

xi −
∑
i

z∗i xi

]
= 0 (A.4)

Since we have C ′′i (z∗i ) ≥ 0, Ω in equation (A.3) is non-negative and it is zero

if and only if C ′′i (z∗i ) = 0. Therefore,

∑
i

Ci(z̄)xi =
∑
i

Ci(z
∗
i )xi + Ω (A.5)

and Ω are the gains from using a market based instrument.

Q.E.D.
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Chapter B: Data Appendix

This appendix provides an overview of the data used in this paper. First, I

discuss the data sources for coal procurement and prices as well as their shortcom-

ings. Then, I briefly talk about the source of scrubbing cost data. Regression results

for imputing coal prices are then presented.

B.1 Cost and Quality of Coal

Coal procurement data are gathered from EIA-423 and FERC-423 forms, the

“Monthly Cost and Quality of Fuels for Electric Plants Report”. In the dataset,

monthly cost and quality are reported for almost all coal transactions. Also reported

are heat, sulfur and ash content by weight, quantity of coal purchased, contract type,

the mine from which the coal was bought as well as purchase cost (which includes

the transportation cost). Since the cost of storing coal is usually very low and I do

not observe how much coal is stored, I average coal procurement over 2000–2002.

There are three challenges regarding these data. The first challenge is to define

the type of coal purchased. Figure B.2 summarizes the sulfur content of fuel (per

MMBtu) of all coal transactions observed from 1991 to 2010. There are two spikes

below a sulfur content of 1 lb/MMBtu. Those represent the low and medium sulfur
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coal respectively. I define six types of coal depending on where the coal originated:

North, Central, South Appalachian, Illinois Basin, Uinta Basin (Colorado and Utah)

and Powder River Basin (Wyoming and Montana). Figure B.1 shows the physical

location of these coal basins. The summary statistics of their sulfur content are

tabulated in Table B.1. North Appalachian and Illinois Basin are the main sources

of high sulfur coal. Coal plants often buy coal from these regions (often the cheapest

coal) and install a scrubber to remove emissions. They could also use coal from these

regions and purchase the right to pollute by obtaining permits. The Central and

South Appalachian regions are sources of medium sulfur coal.

The second challenge is that 20–30% of the plants purchase more than one

type of coal, and 5% of them purchase coal not originating from the six regions

defined above. To avoid this problem, I assume that plants could buy from at most

two regions. They may buy 100% of coal from one region or 50% from each of

two coal basins.1 I drop generating units that do not purchase any coal from the

six regions. These plants mainly buying lignite coal from the Gulf Coast region or

import bituminous coal from Colombia. I attempted to predict the price from Gulf

Coast region but the estimated coal price implied most of the plants in my sample

should have bought coal from this region. This imprecision is mainly driven by low

number of observed transactions. These transactions are initiated by plants around

thr Gulf Coast region.

Since coal transactions are observed at the plant level but not at the boiler

(generating unit) level, I use the following algorithm to allocate coal purchases at

1Less than 3% of my sample units purchase significant amounts of coal from more than 2 regions.
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the unit level: (1) for a plant with minimal difference in emission rates (gathered

from the Continuous Emissions Monitoring System (CEMS) database) across its

generating units, I assume all units burn same kind of coal. If they are buying

a significant amount (more than 20%) from two basins, I assume that they mix

the two kinds of coal (under an assumed 50-50 ratio); (2) for a plant with boilers

of significantly different emission rates, I record the two types of coal used most

intensively and assign the one with the higher observed sulfur content to the boiler

with the higher emission rate; (3) for a plant with scrubbers installed in some but

not all of their boilers, I assign the type of coal with higher sulfur content to the

boilers with scrubbers installed.

The third challenge is that I observe coal prices only for coal that a plant has

purchased. Therefore, I run the following coal price equation for each coal basin

using all transactions from 1991 to 2010 to predict the price of coal for each coal

plant and coal basin in my sample.

ln(COALPRICEijt − τDISTANCEij)

= α1 lnSULFURijt + α2 lnASHijt + α3(lnSULFURijt)
2 + α4(lnASHijt)

2

+ α5(lnSULFURijt)× (lnASHijt) + α6SPOTijt + δt + εijt (B.1)

COALPRICEijt is the observed real coal price (in cents per MMBtu) that

plant i pays if i purchases from mine j at year t.2 ‘Mine’ is defined as a specific

2All costs are expressed in 1995 dollars using the GDP deflator, downloaded from Federal
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county from which the coal is transported. Mine-level information that would allow

me to define mine-specific quality is incomplete. DISTANCEij is the county to

county rail distance between plant i and mine j, gathered from CTA Transportation

Networks. This is taken as the physical distance between the plant and the mine,

as most coal is transported by rail. SULFUR and ASH are the observed sulfur

and ash content (per millions Btu), SPOT is a dummy that indicates a spot market

purchase, and δt is a time dummy. τ represents per ton per mile transportation cost

in cents, and is estimated using nonlinear least squares, along with other coefficients.

By subtracting the transportation cost component, the left hand side of equation

(B.1) represents the predicted minemouth price.

I have also tried a different specification where sulfur and ash content (and their

interaction) have a linear relationship with delivered coal prices. The estimation

and simulation results do not change significantly. Due to concerns about the major

policy changes (CAIR and CSAPR), I have also dropped observations beyond 2005.

The predicted coal prices are very close to the ones predicted using the full sample:

the correlation between the two samples is 0.99.

Results for all of the six major coal basins are displayed in Table B.2. The

coefficients on the year dummies represent the average price for coal transactions in

that particular year. Signs for sulfur content are reasonable, as coal of higher sulfur

content is cheaper. Transportation costs are of similar magnitudes as the ones

reported and estimated by EIA. Normally plants do not prefer coal with high ash

content as it affects the reliability of generating units, but the positive correlation

Reserve Bank of St. Louis.
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between cost and ash content is also found in earlier literature (Lange and Bellas

(2007)). To estimate the average price for each plant and for each coal basin, I

use the weighted distance from the plant to each of the coal mines (using observed

transactions as weights) and the average quality at the mine level to predict the

average coal price in a region. I also predict coal prices at the mine level using the

same algorithm.

B.2 Scrubbing Cost and Other Sources of Data

Operating and installation cost for scrubbers are recorded in “Steam-Electric

Plant Operation and Design Report” (EIA-767). As for coal, I observe the scrubber

operating cost and installation cost only for the scrubbed units so I estimate models

similar to Lange and Bellas (2005) to impute scrubbing costs. I separately estimate

two equations, one for operating cost and another equation for installation cost,

using plant characteristics that include size, operating hours and physical location,

as well as technical attributes of the scrubbers including age of scrubber, removal

rate and percentage of gas entering the scrubber. Results are shown in Table B.3.

For scrubber-specific regressors, average values are used to impute the scrubbing

cost. In the simulation, I assume a scrubber removes 85% of total emissions.

To estimate equation (3.6), it is necessary to annualize the scrubber installation

cost. Assuming a 11.33% discount rate and a 25 year lifetime (Ellerman et al.

(2000)), I annualize the predicted installation cost and compute the average cost of

scrubbing as the sum of predicted operating cost (based on the size, age and location
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of the boiler) and annualized installation cost. This is expressed per MMBtu of

heat input. As with the coal prices, all scrubbing costs are imputed costs from the

regression results presented earlier.

I treat the unit’s production level as fixed and assume that it does not change

in the counterfactual scenario. The corresponding heat input is taken to be the

average heat input used in 2000–2002. Heat input used is gathered from the CEMS

database, cross-checed against data in the EIA-767 form. Technically speaking the

heat input use data in CEMS may include generation using energy sources other

than coal, while the data in EIA-767 is reported by fuel type. While EIA-767 data

may appear more superior, it suffers from some data availability and reliability

issues. Coal is usually used to generate 95% of the electricity output and therefore

the cost associated with ignoring other fuel types should be small. I find no evidence

that using different kinds of coal impacts the thermal efficiency of the boiler. When

I run a fixed-effect regression of heat input on power generated, I cannot reject the

hypothesis that the inverse heat rates (the coefficient on heat input) for low, medium

and high sulfur coal are the same. Data on plant location, age of the boiler and

NSPS regulation status come from EIA-767 and EIA-860 forms.3

3In case the age of a unit is missing, I use the age of the plant as a proxy.
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Figure B.1: Coal Basins

Source: Enviroknow

Table B.1: List of Coal Basins

Basin Mean Sulfur Range

North App. 3.700 (1.895,6.207)
Central App. 1.575 (1.066,2.228)
South App. 2.118 (1.078,3.225)

Illinois Basin 4.499 (2.063,6.462)
Uinta Basin 0.990 (0.659,1.663)

Powder River Basin 0.758 (0.462,1.059)

Unit is in pounds of SO2 per MMBtu. Range is based on
the observed 10th to 90th percentile. Summary statistics
are based on observed transaction data from 1991 to 2010.
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Table B.2: Cost Equation for Coal

NA CA SA IL UB PRB

Year = 1999 3.758*** 4.564*** 4.483*** 3.815*** 5.046*** 1.211***
(0.027) (0.023) (0.135) (0.045) (0.146) (0.353)

Year = 2000 3.668*** 4.501*** 4.405*** 3.772*** 4.969*** 1.069***
(0.028) (0.023) (0.135) (0.045) (0.146) (0.353)

Year = 2001 3.700*** 4.665*** 4.417*** 3.833*** 5.028*** 1.002***
(0.028) (0.023) (0.135) (0.045) (0.146) (0.353)

Year = 2002 3.772*** 4.662*** 4.390*** 3.855*** 5.000*** 1.076***
(0.027) (0.023) (0.136) (0.045) (0.145) (0.353)

Year = 2003 3.773*** 4.653*** 4.344*** 3.828*** 4.969*** 1.064***
(0.027) (0.023) (0.136) (0.045) (0.146) (0.353)

lnSULFUR -0.370*** -0.420*** -0.192** -0.285*** 0.242*** -0.464***
(0.015) (0.017) (0.089) (0.023) (0.070) (0.163)

(lnSULFUR)2 -0.053*** -0.076*** -0.064*** 0.002 0.063*** 0.149***
(0.004) (0.005) (0.015) (0.004) (0.016) (0.020)

lnASH 0.997*** 0.243*** 0.541*** 0.892*** -0.404*** 1.938***
(0.023) (0.020) (0.121) (0.042) (0.121) (0.298)

(lnASH)2 -0.243*** -0.094*** -0.135*** -0.235*** 0.070*** -0.362***
(0.005) (0.005) (0.028) (0.010) (0.025) (0.063)

lnSULFUR× lnASH 0.081*** 0.144*** -0.032 0.056*** -0.084*** 0.323***
(0.007) (0.008) (0.038) (0.011) (0.031) (0.072)

Spot Market -0.022*** -0.009*** -0.153*** -0.034*** -0.123*** -0.155***
(0.002) (0.001) (0.008) (0.003) (0.008) (0.007)

Transport 1.312*** 1.483*** 0.549*** 1.781*** 1.008*** 0.971***
(0.018) (0.011) (0.120) (0.016) (0.012) (0.006)

Observations 81987 165073 6166 47799 16082 70155
Adjusted R2 0.938 0.953 0.953 0.948 0.925 0.929

Note: For all regressions, the dependent variable is Log(Cost) where cost is defined as cents per million
Btu. ‘NA’, ‘CA’, ‘SA’, ‘IL’, ‘UB’ and ‘PRB’ are abbreviations for North, Central, South Appalachians,
Illinois Basin, Uinta Basin and Powder River Basin respectively. The above regressions also include
other year dummies which are omitted here for exposition purposes. ‘Transport’ variable is the per-
mileton distance. All standard errors are robust standard errors. *, **, and *** indicate significance
at the 10, 5, and 1 percent levels.
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Figure B.2: Distribution of Sulfur Content
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Table B.3: Cost Equation for Scrubbers

(1) (2) (3)
Log(OM Cost) Log(Install Cost)

Log(UnitAge) 0.374**
(0.164)

Log(ScrubAge) 0.131*** 0.098*
(0.048) (0.056)

Log(CoalUse) 0.124 0.453*** 0.929***
(0.081) (0.048) (0.102)

PRB = 1 -0.451*** -0.418***
(0.118) (0.126)

Log(Removal) 0.359*** 0.371*** 0.866***
(0.090) (0.099) (0.245)

Log(Hour) 0.589*** 0.423*** -0.527**
(0.095) (0.104) (0.239)

Federal Reg. 0.160 0.219** -0.460**
(0.106) (0.107) (0.230)

Log(Exit Rate) 0.491***
(0.109)

Log(% Entering) 0.531** 0.845*** 0.020
(0.243) (0.228) (0.629)

Northeast 0.680*** 0.796*** 0.467
(0.205) (0.268) (0.361)

South -0.008 -0.004 0.157
(0.170) (0.175) (0.245)

Midwest 0.175 0.141 0.275
(0.174) (0.178) (0.241)

Observations 4213 4218 364
Adjusted R2 0.468 0.412 0.495

Note: All standard errors are robust standard errors clustered at
the plant level. *, **, and *** indicate significance at the 10,
5, and 1 percent levels. The regressions for operating cost also
include year dummies, and are based on observed scrubbing costs
for all generating units from 1991 to 2010. The regression for
capital cost includes dummies for the installation decade.
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