
University of Massachusetts Amherst
ScholarWorks@UMass Amherst

Masters Theses Dissertations and Theses

2018

Applications Of Physical Unclonable Functions on
ASICS and FPGAs
Mohammad Usmani
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/masters_theses_2

Part of the VLSI and Circuits, Embedded and Hardware Systems Commons

This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been
accepted for inclusion in Masters Theses by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact
scholarworks@library.umass.edu.

Recommended Citation
Usmani, Mohammad, "Applications Of Physical Unclonable Functions on ASICS and FPGAs" (2018). Masters Theses. 619.
https://scholarworks.umass.edu/masters_theses_2/619

https://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F619&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F619&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/etds?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F619&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F619&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/277?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F619&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.umass.edu/masters_theses_2/619?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F619&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu

APPLICATIONS OF PHYSICAL UNCLONABLE
FUNCTIONS ON ASICS AND FPGAS

A Thesis Presented

by

MOHAMMAD A USMANI

Submitted to the Graduate School of the
University of Massachusetts Amherst in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL AND COMPUTER ENGINEERING

February 2018

Electrical and Computer Engineering

c© Copyright by Mohammad A Usmani 2018

All Rights Reserved

APPLICATIONS OF PHYSICAL UNCLONABLE
FUNCTIONS ON ASICS AND FPGAS

A Thesis Presented

by

MOHAMMAD A USMANI

Approved as to style and content by:

Daniel Holcomb, Chair

Russell Tessier, Member

Jay Taneja, Member

Christopher V. Hollot, Department Head
Electrical and Computer Engineering

ACKNOWLEDGMENTS

Thanks to Professor Daniel Holcomb for his guidance on this thesis and all the

support from the beginning of time in this new country. Also thanks to Professor

Russell Tessier for his guidance on many sections of this thesis.

iv

ABSTRACT

APPLICATIONS OF PHYSICAL UNCLONABLE
FUNCTIONS ON ASICS AND FPGAS

FEBRUARY 2018

MOHAMMAD A USMANI

B.Tech., ALIGARH MUSLIM UNIVERSITY

M.S.E.C.E., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Daniel Holcomb

With the ever-increasing demand of security in embedded systems and wireless

sensor networks, we require integrating security primitives for authentication in these

devices. One such primitive is known as a Physically Unclonable Function. This

entity can be used to provide security at a low cost, as the key or digital signature

can be generated by dedicating a small part of the silicon die to these primitives

which produces a fingerprint unique to each device. This fingerprint produced by a

PUF is called its response. The response of PUFs depends upon the process variation

that occurs during the manufacturing process. In embedded systems and especially

wireless sensor networks, there is a need to secure the data the collected from the

sensors.

To tackle this problem, we propose the use of SRAM-based PUFs to detect the

temperature of the system. This is done by taking the PUF response to generate

temperature based keys. The key would act as proofs of temperature of the system.

v

In SRAM PUFs, it is experimentally determined that at varying temperatures there

is a shift in the response of the cells from zero to one and vice-versa. This variation

can be exploited to generate random but repeatable keys at different temperatures.

To evaluate our approach, we first analyze the key metrics of a PUF, namely, re-

liability and uniqueness. In order to test the idea of using the PUF as a temperature

based key generator, we collect data from a total of ten SRAM chips at fixed tem-

peratures steps. We first calculate the reliability, which is related to bit error rate,

an important parameter with respect to error correction, at various temperatures to

verify the stability of the responses. We then identify the temperature of the system

by using a temperature sensor and then encode the key offset by PUF response at

that temperature using BCH codes. This key-temperature pair can then be used

to establish secure communication between the nodes. Thus, this scheme helps in

establishing secure keys as the generation has an extra variable to produce confusion.

We developed a novel PUF for Xilinx FPGAs and evaluated its quality metrics. It

is very compact and has high uniqueness and reliability. We also implement 2 different

PUF configurations to allow per-device selection of best PUFs to reduce the area and

power required for key-generation. We also evaluate the temperature response of this

PUF and show improvement in the response by using per-device selection.

vi

TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . iv

ABSTRACT . v

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

1. INTRODUCTION . 1

1.1 Trends . 1
1.2 Thesis overview . 2
1.3 Thesis outline . 4

2. BACKGROUND . 5

2.1 Arbiter PUF . 6
2.2 Ring Oscillator PUF . 6
2.3 Butterfly PUF . 7
2.4 Sensor based PUF . 8
2.5 Bistable Ring PUF . 9
2.6 Anderson PUF . 10
2.7 Challenges associated with PUFs . 12

3. STATIC RANDOM ACCESS MEMORY BASED PHYSICAL
UNCLONABLE FUNCTION . 13

3.1 SRAM design . 13
3.2 SRAM PUF operation . 14
3.3 SRAM chip architecture . 16
3.4 Experimental validation . 17

3.4.1 Uniqueness . 18

vii

3.4.2 Reliability . 19

3.5 Results and analysis . 19

4. PUF BASED KEYS AS PROOFS OF TEMPERATURE 22

4.1 Main objective . 22
4.2 Data Collection . 23

4.2.1 Data remanence . 23
4.2.2 Data-collection setup . 25
4.2.3 Temperature response of SRAM . 26
4.2.4 Testing on advanced technology SRAM . 27
4.2.5 Sensitivity analysis . 29

4.3 Per temperature key enrollment and generation system 33

4.3.1 Key enrollment . 33
4.3.2 Key generation . 34
4.3.3 Complete system . 35

4.4 Conclusion . 36

5. ALTERNATE IMPLEMENTATION OF ANDERSON’S PUF
ON XILINX FPGA . 37

5.1 Motivation . 37

5.1.1 Discrete stages for tune-ability . 38
5.1.2 Design resource requirement . 38

5.2 The SLICEL PUF implementation and characterization 40

5.2.1 PUF Hamming weight tuning . 41
5.2.2 PUF reliability & uniqueness . 45
5.2.3 Spatial Autocorrelation of PUF Location BERs 46

5.3 Per-Device selection of PUFs . 48

5.3.1 Correlation of between-configuration PUF responses 52
5.3.2 Design flow for per-device PUF configuration 54
5.3.3 Temperature dependence of PUF response . 55

6. PUF BASED KEY GENERATION ON FPGAS 58

6.1 Cost of Error correction . 60
6.2 A statistical model for PUF error correction . 60

viii

6.2.1 Two parameter model . 61
6.2.2 PUF model generation . 62

6.3 Results . 64

7. CONCLUSION . 67

BIBLIOGRAPHY . 68

ix

LIST OF TABLES

Table Page

3.1 SRAM chips under evaluation . 17

3.2 PUF reliability and uniqueness for 3 different SRAM chips evaluated
using 128-bit PUF blocks . 20

4.1 Between temperature average Hamming distances observed on 1
chip . 28

4.2 Between temperature average Hamming distances observed on 1 chip
after Majority voting . 29

4.3 Between temperature average Hamming distances observed on an
160nm 23LC1024 chip . 31

4.4 Between temperature average Hamming distances observed on 160nm
23LC1024 chip after Majority voting . 31

4.5 Between temperature average Hamming distances observed on a
90nm CY7C185 chip . 32

4.6 Between temperature average Hamming distances observed on a
90nm CY7C185 chip after Majority voting . 32

5.1 Mean Hamming distance comparisons from 10 chips 49

5.2 Within class Hamming distance of PUFs (4250-bit) under different
configurations at different temperatures . 57

6.1 Resource requirements for 128-bit key generation . 66

x

LIST OF FIGURES

Figure Page

1.1 Proposed system . 3

1.2 Figure showing the restriction of resources on an FPGA chip for
reconfigurable PUF selection and making the rest of the design
independent . 3

2.1 Arbiter PUF [11] . 5

2.2 Basic Ring Oscillator PUF . 7

2.3 Ring Oscillator PUF using multiple ring oscillators and a counter
[41] . 7

2.4 Butterfly PUF [24] . 8

2.5 Sensor based PUF [33] . 8

2.6 Basic bistable ring . 9

2.7 Bistable Ring PUF[5] . 9

2.8 Anderson’s PUF on Xilinx FPGA[3] . 11

3.1 SRAM chip circuitry [38] . 15

3.2 SRAM cell [15] . 16

3.3 Figure showing effect of process variations and noise on SRAM cell 16

3.4 AS6C6264 SRAM chip details[2] . 17

3.5 Between and within class Hamming distances for 128 bit PUFs from
AS6C6264 chips . 20

3.6 Between and within class Hamming distances for 128 bit PUFs from
23LC1024 chips . 21

xi

3.7 Between and within class Hamming distances for 128 bit PUFs from
CY7C185 chips . 21

4.1 Data remanence duration after power down at different
temperatures . 24

4.2 System for data collection at different temperatures 25

4.3 BER of PUF instances placed on AS6C6264 chip 1 across different
temperatures . 27

4.4 BER of PUF instances placed on AS6C6264 chip 2 across different
temperatures . 28

4.5 BER of PUF instances placed on chip 23LC1024 across different
temperatures . 30

4.6 BER of PUF instances placed on chip CY7C185 across different
temperatures . 30

4.7 Figure showing the sensitivity of Within class Hamming distance
with respect to temperatures for different technology SRAMs. 33

4.8 Per-temperature one time key enrollment . 34

4.9 Per-temperature key generation . 35

4.10 Complete system . 36

5.1 Figure showing the effect of elongating the carry chain on SLICEM
based PUF’s response. 38

5.2 Figure showing the effect of adding Multiplexer stages in the chain.
The glitch get filtered out, thereby narrowing it down and
reducing the probability of setting the Flip-Flop. 39

5.3 Figure showing variation of Hamming weight with change in delay
difference between two paths for a carry chain of length 2. 39

5.4 The alternate implementation of Anderson’s PUF [3] implemented on
a Virtex 7 architecture. The two LUTs are separated vertically by
three Multiplexer stages and feed their corresponding flip-flops to
generate a toggle signal for the select lines of their corresponding
Muxes. 42

xii

5.5 The timing waveforms shown govern the operation of glitch
generation and glitch filtering in SLICEL PUF. 43

5.6 Histograms of between-class and within-class Hamming distances of
128-bit PUFs. Within-class distances compare two measurements
from the same 128-bit PUF instance. Between-class distances
compare (in b) two different 128-bit PUFs on the same chip, or
(in c) compare 128-bit PUFs that occupy the same locations on
different chips. All measurements were made at room temperature
of approximately 24o and at the nominal supply voltage. 47

5.7 Two possible PUF configurations within the cell . 50

5.8 Figure shows the BER of PUF instances placed at different locations
on a chip. Unreliable instances are scattered and not concentrated
in a particular area of the chip and uncorrelated across
configurations. 51

5.9 Figure showing the distribution of a 1 response of the PUF across 10
chips. A high probability closer to 0 or 100 percent implies that
PUFs are highly reliable. Broken line indicates points where the
value is zero. 52

5.10 When the same logic slices are configured in two different ways
(see Fig. 5.7) on the same chips: (a) their BERs are uncorrelated;
and (b) the fractional Hamming distance between responses from
each configuration is 38.02-bits (29.71%). 53

5.11 Effect of temperature on reliability of PUF(4250-bit) before best PUF
configurations selection . 55

5.12 Effect of temperature on reliability of PUF(4250-bit) after best PUF
configuration selection . 56

6.1 Block diagram showing the one time enrollment process for key
generation . 59

6.2 Block diagram showing the one time enrollment process for key
generation . 59

6.3 Fitted model vs actual data obtained at λ1 = 0.0711 and λ2 = 0.1834
for configuration 1 . 63

6.4 Key failure distribution with different number of error correcting
BCH code for Configuration 1 . 64

xiii

6.5 Key failure distribution with different number of error correcting
BCH code for Configuration 2 . 65

6.6 Key failure distribution with different number of error correcting
BCH code for best configurations . 65

xiv

CHAPTER 1

INTRODUCTION

1.1 Trends

Today the Internet of Things (IoT) and wireless sensor networks(WSNs) are used

for an increasingly large number of applications which require security. Security

measures are needed to prevent malicious access to the system or the network to

prevent tampering of data and functionality. One such security measure can be

implemented by using an encryption scheme. To implement an encryption scheme,

each sensor node or device needs to have its own key. PUF can be used to generate

secure cryptographic keys [30]. PUF-based keys are unique to each device as they stem

from the process variations inherent in the silicon at the time of fabrication. The work

proposed in this thesis develops a PUF based secure temperature sensor using the

power-up state of SRAM cells. The idea for a secondary temperature sensor builds on

the idea of a temperature-based virtual proof [34]. This temperature sensor can then

be used in a key exchange scenario between two nodes since the power-up response of

the SRAMs varies with temperature. The first node will report its temperature and

send over a message with the key generated from the SRAM PUF at that temperature.

The other node will already know the key at that specific temperature and will be

able to decrypt the message. We will also explore the implementation of this scheme

on FPGAs. We will develop a new type of PUF specific to the FPGAs. The following

are the main areas of work:

1

• We have tested the SRAM PUF on an 8Kx8 SRAM chip AS6C6264 fabricated in

0.35µm technology and generate results for a temperature range of 0-55 degree

celsius with a fixed step size.

• We then generate the plots for within temperature and between temperature

Hamming distances to test how finely we can distinguish the temperatures.

• We have tested the scheme using advanced technology SRAM cells fabricated

in 160 nm and 90 nm.

• We implemented a new type of PUF on a FPGA platform using design derived

from [3]. The new design is implemented on SLICE-L cells. This will help us

in restricting a block on FPGA dedicated to encryption and key generation.

• We propose and evaluate a per-device PUF configuration selection scheme on

FPGA to save the cost of error correction and key generation and also improve

temperature response.

1.2 Thesis overview

PUFs are primitives used in applications that demand high security. These are

efficient to implement and require a small area overhead. In this thesis, we propose

two different works done on PUFs.

First is a secure temperature based key generation scheme using the SRAM Phys-

ically Unclonable Function. Applications requiring highly secure key generation can

leverage the change in response of the SRAM PUF with temperature to develop a

tamper-proof communication system. In this thesis, we will focus on the development

of a system for a secure key generation scheme based on temperature.

Fig. 1.1 shows the basic system. It consists of master and slave nodes commu-

nicating over an insecure link. The ambient temperature on the slave node can be

verified based on the key generated for the encryption of its message. The reported

2

Figure 1.1: Proposed system

Figure 1.2: Figure showing the restriction of resources on an FPGA chip for
reconfigurable PUF selection and making the rest of the design independent

temperature from the slave will be used to decrypt the message. If the decrypted

message is invalid, we will know there is something wrong with the node, and it is

trying to fake its temperature.

We will study the sensitivity of the SRAM PUF response to temperature to deter-

mine the minimum distinguishable change in temperature. The effects of temperature

on the behavior of SRAM cells will be taken into account during the development of

the system.

The second work proposed in this thesis is a novel implementation of Anderson’s

PUF implemented on Xilinx FPGAs. This implementation can be instantiated any-

where on the chip, unlike the original design which had specific design requirements.

One advantage of this implementation is that we can restrict the block for encryption

anywhere on the chip as shown in Fig. 1.2. This PUF can be instantiated in two

different configurations at each location. We explore the advantage of selecting, on a

3

per-device basis, the best of the two PUF configuration for a reduction in overall bit

error rate. We discuss the CAD flow for the per-device configuration and also present

the area savings achieved using this approach. Lastly, we present the temperature

response of the PUF showing its robustness across a wide range of temperatures and

improvement in BER across temperatures gained by using the proposed approach of

per-device configuration of PUFs.

1.3 Thesis outline

Chapter 2 reviews different types of PUFs that have been developed and imple-

mented in ASICs and FPGAs. Chapter 3 covers the design of the SRAM PUF used in

this work including detailed analysis about the uniqueness and reliability of SRAM

PUFs is covered. Chapter 4 focuses on the core idea behind the use of PUF as a

temperature sensor and generating temperature based keys. The advantages of using

SRAM along with a temperature sensor for key establishment are discussed.

A novel PUF implementation on Xilinx FPGAs is discussed in chapter 5. We also

discuss a per-device PUF selection scheme to improve the reliability of the PUFs and

gain savings in the area.

4

CHAPTER 2

BACKGROUND

Physical Unclonable Functions (PUF) are primitives that produce unique chip

specific signatures dynamically by exploiting the process variations inherent in the

silicon during fabrication. PUFs can be classified into two types, namely strong PUF,

and weak PUFs [35]. The strong PUFs can generate multiple random but repeatable

responses by accepting challenges as input and mapping each challenge to a corre-

sponding response in a way that is unique to each challenge. Weak PUFs, on the other

hand, generate a single response. Both the types of PUFs have been implemented

in ASICs and FPGAs. In this chapter, background of the various different types of

PUFs is presented, more specifically the Arbiter PUF [11], the Ring Oscillator PUF

[7], the Butterfly PUF [24], and the sensor based PUF [33, 43]. A comparison of

various PUFs have been discussed in [21].

Figure 2.1: Arbiter PUF [11]

5

2.1 Arbiter PUF

The arbiter PUF[11, 26, 39, 4] is based on the delay of a parallel chain of multiple

stages of multiplexers which feed a Flip-Flop. This PUF exploits the difference in

the delay of the multiplexer paths. Figure 2.1 shows an arbiter PUF, with two

parallel N-stage multiplexer chains feeding a flip-flop. A step signal is applied to

the input and the step propagates through the paths of the multiplexer stages. The

N-bit (S[0],...,S[N-1]) challenge is fed to the select line input of the multiplexers.

Depending on the value of S[i] the signal will propagate through the upper path or

the lower through stage i of the multiplexer chain. One path goes to the clock input

and other to data input. If the step signal to data input reaches first, then a 1 is

latched in the Flip-Flop otherwise, if the step signal reaches the clock input first, a

0 is latched. The arbiter-based PUF brings low resource overhead, but its structure

makes it hard to map the multiplexer on matched paths on FPGA. This PUF is an

example of strong PUF as there are various possible challenges that can be fed by

the user to get different responses.

2.2 Ring Oscillator PUF

The Ring Oscillator PUF (ROPUF) PUF uses multiple oscillators which feed the

counters. Figure 2.2 depicts the basic PUF circuit having two oscillators. For this

circuit to work as a PUF it is required that the two oscillators have the identical

implementation on silicon so that the delay difference is only due to the process

variations. Each ring oscillator oscillates with a frequency that deviates slightly from

the design value based on process variations. The output of the two oscillators is fed

to two separate counters and after a certain period of counting the output of the two

counters is compared to produce a 0 or a 1 PUF response bit. A RO-based PUF can

have multiple ring oscillators before the counter, as shown in figure 2.3 which may

be preselected or a multiplexer may be used before the counter allowing the user to

6

Figure 2.2: Basic Ring Oscillator PUF

Figure 2.3: Ring Oscillator PUF using multiple ring oscillators and a counter [41]

form challenge-response pairs. In this way, this weak PUF is converted into a strong

PUF by allowing the user to select the multiplexer select line bits.

2.3 Butterfly PUF

The Butterfly PUF [24] is a type of PUF targeted toward FPGAs. It consists

of a pair of cross-coupled latches which tries to mimic the startup behavior of cross-

coupled inverters in a SRAM cell. The Butterfly PUF (BPUF) circuit is shown in

Figure 2.4. These latches contain both preset and clear signals, both of which are

asynchronous. The response of the PUF is generated by sending an excitation signal

that triggers the preset signal of one latch and the clear signal of the other, which

makes the BPUF circuit enter an unstable state. The circuit is then allowed to

settle to one of the two stable states that are possible. When the excitation signal

is made low after a few clock cycles, the BPUF starts to attain a stable state. This

state depends on the delay differential of the interconnects which are designed using

7

Figure 2.4: Butterfly PUF [24]

Figure 2.5: Sensor based PUF [33]

symmetrical paths on the FPGA matrix [24]. This PUF is an example of weak PUF

as no challenge-response pairs are available.

2.4 Sensor based PUF

The sensor-based PUFs are a more recent type of PUFs. These PUFs use pre-

existing sensors in the device to generate a random key. Figure 2.5 shows the basic

structure of a sensor based PUF. The sensor can be any transducer that can sense

ambient physical quantity. The PUF can be either weak or strong depending on

whether it can accept a challenge or not. Depending on the physical quantity, which

8

Figure 2.6: Basic bistable ring

Figure 2.7: Bistable Ring PUF[5]

can be temperature, pressure, light intensity or any other quantity, the PUF response

varies. In one prior work [43], a MEMs based PUF using a Gyroscope sensor is

developed. The PUF is for key generation using helper data [9] stored within the

ASIC chip.

2.5 Bistable Ring PUF

This is another type of PUF which is very similar in structure to ring oscillator

PUF, but instead of having odd elements in the chain this PUF has an even number

of inverting elements, making it bistable. Fig. 2.6 shows a logical view of Bistable

ring PUF [5, 46, 6].

To make the PUF a strong PUF and to make it resettable, the structure shown in

Fig. 2.7 is used. The PUF consists of n blocks. Each block contains 2 NOR gates, one

9

multiplexer, and one demultiplexer. The NOR gates act like inverters when reset is

low, otherwise when reset is high the output of each gate is set to zero. The challenge

bits C[0] to C[n-1] are applied to the select lines of multiplexers and demultiplexers

as shown in the figure. The elements of the chain are thus selected according to

the applied challenge C. Based on the strength variations of the NORs, a 0 or 1 is

produced at the output.

2.6 Anderson PUF

The above-discussed PUF designs are not targeted specifically for FPGA imple-

mentation and are rather targeted towards custom IC implementation. These designs

pose problems when implemented on FPGA. One problem that comes in for the PUFs

discussed above is that they require the logic and routing to be identical along the

delay paths, which guarantees that the delay arising in the output is solely due to the

process variations and not due to logic or routing bias. Implementing identical delay

paths is rather complicated in FPGA and requires the use of hard macros, which in-

corporate fixed placement and routing. The use of hard macros complicate the design

and requires manual labor from the designer. The designer has to manually balance

the path delays to make these instances work as PUFs. Manual routing is tedious and

is subject to errors. Furthermore, hard-coded macros may result in routing that may

obstruct other design signals in the routing stage of the flow, potentially increasing

design congestion and reducing circuit performance. Finally, the prior PUF designs

consume considerable silicon area per PUF bit. Anderson PUF[3] deals with these

issues elegantly and requires the designer to only work at the behavioral level.

The basic circuit of the Anderson PUF is shown in 2.8. This is a novel PUF that

doesn’t require the use of hard macros. The design is done purely at the behavioral

level. This PUF uses SLICEM cells in Xilinx FPGA in which there are components

10

Figure 2.8: Anderson’s PUF on Xilinx FPGA[3]

that can be used as LUT for combinational logic or as shift registers for memory. The

length of the shift register in one instance is 16-bit.

In this PUF, the shift registers (shown in grey) are initially loaded with comple-

mented alternating 0-1 values and then the outputs of these shift registers are fed to

the select lines of the multiplexers (shown in green) in the carry chain. The transitions

at the input of the select line of the multiplexer can cause a glitch to be produced at

the end of the carry chain. The width of the glitch is proportional to the delay of the

carry chain. If the glitch is small it is filtered out in the routing wire, otherwise, it

reaches the asynchronous preset of the flip-flop (shown in blue) and sets the output

11

of the flip-flop to logic 1. The output of this flip-flop is taken as the output response

of the PUF. This implementation of Anderson PUF requires shift registers and can

only be implemented in SLICEM cells of the FPGA chip.

2.7 Challenges associated with PUFs

While both strong and weak PUFs can be used for authentication purposes,

both come with their disadvantages. The strong PUFs are susceptible to model-

ing attacks using machine learning algorithms. This is because of a large pool of

challenge-response pairs available to perform training. Attacks against strong have

been performed and shown to predict the response of the PUF with very high accu-

racy [36, 18, 37]. Weak PUFs, on the other hand, have very limited set of challenge-

response pairs or in extreme cases just one. They are not susceptible to modeling

attacks because the response of the weak PUF is kept secret throughout its lifetime.

Thus to use these PUFs we need to store helper data in the system to generate keys

to perform error correction and key generation. This is discussed in detail in chapter

6. The risks of using PUFs have been discussed further in [22].

12

CHAPTER 3

STATIC RANDOM ACCESS MEMORY BASED
PHYSICAL UNCLONABLE FUNCTION

This chapter explains the use SRAM cells as PUFs. The SRAM PUF [14] [12]

utilises the conventional SRAM cell to generate its response. The SRAM PUF is a

weak PUF when it’s power-up response is used as a fingerprint. We can modify this

PUF to function act as a strong PUF as discussed in [16]. We present our analysis

of the PUF in terms of reliability and uniqueness using the 8Kx8 bit SRAM chip

AS6C6264.

3.1 SRAM design

The SRAM cell usually consists of six transistors, four of which are used in making

a cross-coupled inverter for regenerative feedback. The two transistors M1 and M3,

shown in fig. 3.1, are called the access transistors and connect the inverters to the bit-

lines for writing or reading to the cell. The access transistors are controlled through

the word line. The word line selects the word which has to read or written according

to the operation needed. Before the read or write operation, the bit-lines BL and BL

are precharged. In the case of a read operation, the following steps are performed:

1. The precharge and equalization circuit is activated by raising the precharge clock

high. This causes the BL and BL to rise to to a certain precharge voltage.

2. The word to be read out is selected by turning on its word line WL. The data

stored in the cell causes a differential in the voltage levels of the two-bit lines

according to the value stored on it.

13

3. Once an adequate difference is generated, the sense amplifier is turned on by

turning on the transistors M1 and M2. The small difference in the input on

the two inverters is amplified due to regenerative feedback and the bit lines are

pulled to VDD or ground respectively.

The write operation is done similarly by performing the following steps:

1. The inputs are applied to the bit lines through a strong driver. To write a 1 in

the cell, a 1 is applied to BL and 0 to BL.

2. The word to be written selected by turning on its word line WL. The input of

the cell inverters gets pulled up or down by the bit lines.

3. Due to the regenerative feedback of the cross-coupled inverters, the value is

quickly settled to the values at the bit lines.

3.2 SRAM PUF operation

The basic six transistor SRAM cell is shown in figure 3.2. It consists of two cross

coupled CMOS inverters along with two NMOS access transisitor. Each cell can

store 1 bit of information. The initial state of the SRAM cell after powerup can be

used as PUF to generate random and unique signatures. The response of the SRAM

cell depends upon the relative strengths of the two cross coupled CMOS inverters.

Initially, when no power is applied, the output of both the inverters Q and Q̄ is a 0.

When power is applied, the transistors turn on and try to pull up their outputs to a

high value. This creates metastability in the cell as the inverters are cross coupled.

The regenerative feedback of the inverters accelerates the settling of the response of

the cell. The stronger pull-up in the cell settles to a output of 1 while a stronger pull

down settles to a 0. The affinity of the cell to settle to 1 or a zero response is termed

as its skew.

14

Figure 3.1: SRAM chip circuitry [38]

The skew of a cell is subject to both the process variations and the noise at

start-up. The power-up state of the cell is directly dependent on the skew of the

cell. Skew at a given power-up is influenced by noise, so the skew of each cell across

many power-ups is described by a probability distribution function (Fig. 3.3). A

skewed cell (Fig. 3.3b) always powers up to a 0 or 1 depending upon the direction of

the skew and is the effect of noise is not enough to flip the response. On the other

hand, a non-skewed or neutral-skewed cell (Fig. 3.3a) can power up to either 0 or

1, depending on the noise conditions. Although a non-skewed cell would seem to be

composed of matched devices, this may not be always the case, but rather different

15

Figure 3.2: SRAM cell [15]

(a) Unskewed SRAM cell (b) 0-skewed SRAM cell

Figure 3.3: Figure showing effect of process variations and noise on SRAM cell

process variations canceling out each other to create a non-skewed behavior. This

behavior, therefore, might vary as the operating conditions are varied [15, 17].

3.3 SRAM chip architecture

Three different chips are used in our experiments. The specifications of these chips

are tabulated in table 3.1. The architecture of one of the chip (AS6C6264) is shown

in figure 3.4. The chip has a capacity of 8Kbytes, each word being 8-bit wide. The

Chip has a parallel interface for addressing the words. The decoder selects one of the

word lines based on the address provided to be read or written in the chip array. The

16

Table 3.1: SRAM chips under evaluation

IC Manufacturer Capacity Fabrication technology Interface
AS6C6264 Alliance memory 8 KB 350 nm Parallel
23LC1024 Microchip 128 KB 160 nm Serial SPI
CY7C185 Cypress Semiconductor 8 KB 90 nm Parallel

control circuitry block controls the operation to be performed on the chip. The I/O

data circuit is a bidirectional bus which can output the data from the cell as well as

take the data from the outside driver for writing inside the chip.

Figure 3.4: AS6C6264 SRAM chip details[2]

The other chips also have similar architectures. Readers are referred to [31] and

[8] for details.

3.4 Experimental validation

A primary research goal is to determine if the SRAM PUF can be used to generate

temperature specific keys. The PUF performance has to be measured at different

temperatures to quantify the change in response. The PUF performance is defined

17

by two primary factors, uniqueness (Within class Hamming distance) and reliability

(Between class Hamming distance).

For our analysis, we evaluated the power-up response of the three SRAM chips.

Chips AS6C6264 and CY7C185 have 8K locations each having a word size of 8-bit.

Hence, a total of 65536-bits can be generated. For chip 23LC1024, we have 1Mbit

of PUFs. We evaluated the three different chips. In this section, we describe the

experiments used to analyze these parameters. We quantify the two properties of the

PUFs by dividing all the PUF instances into blocks of 128 PUFs bits across the chip

for all the three chips and their instances. In total, we have 512 disjoint 128-bit PUFs

on chips AS6C6264 and CY7C185 and 8192 disjoint 128-bit PUFs on chip 23LC1024.

3.4.1 Uniqueness

PUFs are used generate device-specific fingerprints. To identify each device uniquely,

each instance of the PUF must produce a response that is independent and differ-

ent from the response of the other PUF instances. To measure the randomness of

responses across instance we calculate the uniqueness parameter for the PUF. The

uniqueness is calculated by computing the Hamming distance between the response

of the two PUF instances [10]. The Hamming distance for any two n-bit output

responses Oa and Ob is calculated using equation 3.1.

HD(Oa, Ob) =
n−1∑
i=0

(Oa[i]
⊕

Ob[i]) (3.1)

To calculate the uniqueness or Between class Hamming distance we use eq. 3.2.

The ideal uniqueness for any PUF is 50%, meaning that half the bits of the response

are always different.

BHD(i, j) =
1

k∗(k−1)
2

k−1∑
a=0

k−1∑
b=0

HD(Oi,a, Oj,b) (3.2)

18

Here i and j are the n-bit PUFs under comparison and k is the number of trials.

Oi,a represents the output response of PUF instance i in ath trial. Since we consider

128-bit outputs, the ideal between class Hamming distance in our case is 64 bits.

3.4.2 Reliability

For PUFs to act as device authentication entities or to generate keys, their re-

sponses must be repeatable over evaluations. To measure the repeatability of the re-

sponses of a PUF instance, we calculate its Within class Hamming distance. Within

class hamming distance measures the Hamming distance between two trials of the

same PUF. The ideal value of within class Hamming distance is 0, meaning that the

responses are perfectly repeatable. Due to noise and variation in operating conditions,

this ideal value is not achievable. The equation for calculating the average Within

class Hamming distance given by eq. 3.3.

WHD =
1

(k−1)∗(k−2)
2

k−1∑
i=0

k−1∑
j=i+1

HD(Oi, Oj) (3.3)

Here n is the length of the response, k is the trial number and Oi represents the

response of the PUF in the ith trial. This equation calculates the Hamming distance

of all possible combinations of the trials of the PUF.

3.5 Results and analysis

The between class Hamming distance obtained by comparing two 128 bit PUFs

in the same locations from random chips and randomly selected output trials. Over

1000,000 comparisons the between class Hamming distance is shown in red in Figures

3.5, 3.6 and 3.7 for the 3 chips under evaluation. The within class Hamming distance

measuring the reliability of the 128-bit PUF instances is shown in blue in figures 3.5,

3.6 and 3.7. The results of these experiments are tabulated in table 3.2. From these

19

Table 3.2: PUF reliability and uniqueness for 3 different SRAM chips evaluated using
128-bit PUF blocks

IC Within class Hamming distance Between class Hamming distance
AS6C6264 4.24 bits (3.38%) 63.02 bits (49.22%)
23LC1024 9.33 bits (7.28%) 53.05 bits (41.44%)
CY7C185 11.44 bit (8.90%) 57.72 bits (45.10%)

results, we can conclude that the PUFs produces a unique outputs. Also, the PUFs

have low within class Hamming distance showing that the PUFs are reliable.

Figure 3.5: Between and within class Hamming distances for 128 bit PUFs from
AS6C6264 chips

20

20 40 60 80 100 120
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Hamming distance

P
r
o

b
a

b
il

it
y

Within class

Between class

Figure 3.6: Between and within class Hamming distances for 128 bit PUFs from
23LC1024 chips

0 20 40 60 80 100 120

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Hamming Distance

P
r
o

b
a

b
il

it
y

Between class

Within class

Figure 3.7: Between and within class Hamming distances for 128 bit PUFs from
CY7C185 chips

21

CHAPTER 4

PUF BASED KEYS AS PROOFS OF TEMPERATURE

In this Chapter, we first give a detailed description of the methodology for data

collection and the data collection system. We then propose the idea of using SRAM

PUFs along with the temperature of the environment as a means to establish key

between two communicating nodes. We provide evidence to support our approach by

calculating the uniqueness of the PUFs on all the locations of a chip and observing

the shift in between temperature Hamming distance of the PUFs with respect to a

minimum temperature of 0◦C. Also, we discuss the error correcting codes that will be

used in our work along with a full system design to generate and establish temperature

based key by utilising temperature sensor along with temperature dependent bits

generated by the PUF corrected by the error correcting codes.

4.1 Main objective

The objective of this research is to use PUFs to generate keys which change with

temperature with fixed step size. The response of the PUFs changes with tempera-

tures. If the distance between the responses at two different consecutive temperatures

is higher than the within class (temperature) hamming distances at those tempera-

tures, then we can exploit this variation to generate temperature dependent keys. We

will have to explore the minimum temperature difference between responses that gen-

erates a Hamming distance greater than the within temperature Hamming distance.

This is important because if the Hamming distance of the PUF responses between two

temperatures is not big enough, a noisy trial from one temperature can be considered

22

as the PUF output from a different temperature. Once we find a temperature step

size that produces sufficiently large between temperature Hamming distances, we can

use it to generate keys unique to those temperature steps.

Since the key for a particular temperature step is unique and can only be generated

when the ambient temperature of the system in the range of that temperature step,

these unique keys can be used as an indicator of temperature. Thus a temperature

sensor is created that cannot be forged.

4.2 Data Collection

4.2.1 Data remanence

To collect multiple powerup responses from the SRAMs, we need to evaluate

the maximum retention time at lowest temperature (0◦C) under evaluation. This is

needed to make sure that the old values from the SRAMs are erased before evaluating

a new trial. Memories are devices that store the state in the form of charges. These

charges are lost due to leakages in the devices causing the data to be lost when power is

turned off. At low temperatures, the leakages are reduced exponentially. The leakage

current in an MOS device is directly proportional to the temperature as shown in the

equation 4.1. Due to the reduced leakage current, the time required for the discharge

of state increases exponentially. Due to this phenomenon, the memories are subject

to cold boot attacks[13]. Some other attacks and prevention methods are discussed

in [48] and [32].

The subthreshold leakages are given by equation

Isubthreshold = As
W

L
v2T (1 − e

−VDS
vT)e

VGS−Vth
nvT (4.1)

• where As is a technology-dependent constant,

• Vth is the threshold voltage,

23

0 500 1000 1500 2000 2500 3000
Time(ms)

0

200

400

600

800

1000

Ha
m
m
in
g
W
ei
gh

t

Data remenance duration test

25◦C
0◦C

Figure 4.1: Data remanence duration after power down at different temperatures

• L and W are the device effective channel length and width,

• VGS is the gate-to-source voltage,

• n is the subthreshold swing coefficient for the transistor,

• VDS is the drain-to-source voltage, and

• vT is the thermal voltage.

According to equation 4.1, the leakage and temperature have quadratic relationship.

To test the data retention of our SRAM chip, the following steps were performed:

1. The SRAM chip is soaked at the desired temperature in the heat chamber for

7 minutes.

2. A microcontroller writes in zeroes in all the cells of the SRAM chip.

3. The power line of the chip is grounded and then the data is read out after a

specified delay.

4. Delay is incremented by 20ms and experiment is repeated from step 2 until the

Hamming weight stops increasing further.

24

Figure 4.2: System for data collection at different temperatures

Following the approach discussed above, we generated the retention times for two

temperatures as shown in figure 4.2.1. It can be observed that at 0 degrees the

retention time is much higher that at 25 degrees. To collect the response at different

temperatures from the SRAM chip, we have to abide by the minimum power off

duration found from the curve, so that the previous power-up state is completely

erased from the chip.

4.2.2 Data-collection setup

Figure 4.2 shows the basic setup used to extract data off the SRAM at different

temperatures. We collect the data over a range of 0◦C to 55◦C. The following steps

are performed to generate 100 trials from a single chip at a single temperature:

25

1. The PC runs a python script which communicates with the heat chamber over

ethernet to control the temperature. The script sets the initial temperature to

0oC.

2. The system waits for 7 minutes of soak time to make sure that the chip is at

the same temperature as the ambience.

3. After completion of soak time, a command is sent to the TI MSP430 microcon-

troller to begin reading the data from the SRAM chip.

4. The Microcontroller collects 100 trials by powering the chip on and off using

BJTs. The power off time is dictated by remanence time as discussed in section

4.2.1. It then sends the data read over through serial RS-232 link to the PC

which gets logged in a file.

5. The temperature is increased by a step of 5◦C process is repeated until 55◦C is

reached.

4.2.3 Temperature response of SRAM

In this section, we present our temperature results generated from the AS6C6264

SRAM chip. Figures 4.3 show the variation in the response of the SRAM PUF at

different temperatures. The Hamming distances are calculated by setting the 0oC

response as the base response. This figure clearly shows a positive drift in the Ham-

ming distances as the temperature is increased. To allow for easy distinction of

temperatures, majority voting is performed on the data and Hamming distances are

recalculated. We can clearly see distinct histograms for different temperatures.Tables

4.1 and 4.2 tabulates the between Hamming distances for chip 1 between all tem-

perature pairs. We see the same pattern of increasing distance from temperature

increases. Also, in table 4.2 we see an increase in within temperature distance, which

makes it easier to distinguish between two temperatures. We only include one more

26

0 1000 2000 3000 4000 5000 6000 7000
0

0.05

0.1

0.15

0.2

Hamming Distance

P
ro

b
a

b
il

it
y

0−0

0−5

0−10

0−15

0−20

0−25

0−30

0−35

0−40

0−45

0−50

0−55

0 1000 2000 3000 4000 5000 6000 7000
0

0.1

0.2

0.3

0.4

Hamming Distance

P
ro

b
a

b
il

it
y

0−0

0−5

0−10

0−15

0−20

0−25

0−30

0−35

0−40

0−45

0−50

0−55

Without majority voting

With majority voting

Figure 4.3: BER of PUF instances placed on AS6C6264 chip 1 across different
temperatures

chips data (Figure 4.4) to show that this phenomenon is general and is applicable for

all chips, though it occurs for all the 10 chips under evaluation.

4.2.4 Testing on advanced technology SRAM

In this section we present the results taken from two advanced technology SRAM

chips. The first one is a Microchip 23LC1024 [31] which is a 128KB SRAM chip

with SPI interface fabricated in 160nm technology.The second is a Cypress CY7C185

[8] which is an 8KB SRAM chip with parallel I/O and is fabricated in 90nm tech-

nology. We performed the temperature data collection and analysis experiments to

test whether this technique is feasible with newer technology SRAM cells. All the

results are generated from 8KB responses (65536-bits responses). Figures 4.5 and 4.6

show the temperature responses of 2 chips respectively. It is clear that the response

follows a similar trend as the results from the 350nm SRAM chip described in sec

4.2.3. Tables 4.3 and 4.5 show the change in Hamming distance with temperatures

27

0 1000 2000 3000 4000 5000 6000 7000
0

0.05

0.1

0.15

0.2

0.25

Hamming Distance

P
ro

b
a

b
il

it
y

0−0

0−5

0−10

0−15

0−20

0−25

0−30

0−35

0−40

0−45

0−50

0−55

0 1000 2000 3000 4000 5000 6000 7000
0

0.1

0.2

0.3

0.4

Hamming Distance

P
ro

b
a

b
il

it
y

0−0

0−5

0−10

0−15

0−20

0−25

0−30

0−35

0−40

0−45

0−50

0−55

Without majority voting

With majority voting

Figure 4.4: BER of PUF instances placed on AS6C6264 chip 2 across different
temperatures

Table 4.1: Between temperature average Hamming distances observed on 1 chip

Temp(C) 0 5 10 15 20 25 30 35 40 45 50 55
0 4.13 - - - - - - - - - - -
5 4.37 4.20 - - - - - - - - - -
10 4.86 4.44 4.27 - - - - - - - - -
15 5.33 4.80 4.45 4.34 - - - - - - - -
20 5.78 5.21 4.79 4.53 4.42 - - - - - - -
25 6.23 5.66 5.20 4.87 4.62 4.51 - - - - - -
30 6.72 6.16 5.69 5.31 4.97 4.70 4.59 - - - - -
35 7.22 6.70 6.24 5.83 5.45 5.09 4.79 4.66 - - - -
40 7.77 7.29 6.86 6.43 6.02 5.60 5.20 4.87 4.75 - - -
45 8.38 7.96 7.56 7.13 6.70 6.23 5.75 5.30 4.99 4.83 - -
50 9.10 8.74 8.38 7.97 7.52 7.02 6.48 5.93 5.48 5.08 4.89 -
55 9.70 9.39 9.07 8.66 8.22 7.70 7.12 6.52 5.99 5.46 5.06 4.90

28

Table 4.2: Between temperature average Hamming distances observed on 1 chip after
Majority voting

Temp(C) 0 5 10 15 20 25 30 35 40 45 50 55
0 1.72 - - - - - - - - - - -
5 2.15 1.76 - - - - - - - - - -
10 2.90 2.14 1.74 - - - - - - - - -
15 3.57 2.73 2.07 1.85 - - - - - - - -
20 4.13 3.26 2.55 2.12 1.82 - - - - - - -
25 4.69 3.85 3.13 2.61 2.12 1.82 - - - - - -
30 5.26 4.49 3.81 3.25 2.68 2.15 1.88 - - - - -
35 5.85 5.16 4.53 3.97 3.37 2.75 2.21 1.89 - - - -
40 6.44 5.84 5.28 4.74 4.15 3.48 2.84 2.24 1.98 - - -
45 7.17 6.67 6.18 5.67 5.10 4.42 3.71 2.99 2.44 2.10 - -
50 7.95 7.56 7.15 6.68 6.14 5.46 4.73 3.92 3.22 2.50 2.05 -
55 8.63 8.30 7.94 7.51 6.99 6.33 5.59 4.77 4.00 3.13 2.35 2.01

for both the chips respectively. Tables 4.4 and 4.6 shows the values after 9-majority

voting for the 2 chips.

4.2.5 Sensitivity analysis

The sensitivity is a measure of the percentage change in the Within class Hamming

distance per degree Celsius. The sensitivity is calculated using the equation 4.2.

Here, Tn and Tn+1 represents the responses of the PUF at temperature step n and

n+1 respectively. In our case, the step size in 5◦C. The sensitivity of the Within class

Hamming distance with respect to temperature for 3 different technology SRAM cells

is shown in figure 4.7. We can see that for all the SRAMs the sensitivity is pretty

consistent across temperatures and stay in the range of 0.6% and 2.0%.

Sensitivity(Tn+1, Tn) =
BHD(Tn+1, Tn) −WHD(Tn)

WHD(Tn) ∗ step
(4.2)

29

4500 5000 5500 6000 6500 7000 7500 8000 8500
0

0.02

0.04

0.06

0.08

Hamming Distance

P
ro

b
a

b
il

it
y

2000 3000 4000 5000 6000 7000 8000
0

0.05

0.1

0.15

0.2

Hamming Distance

P
ro

b
a

b
il

it
y

0−0

0−5

0−10

0−15

0−20

0−25

0−30

0−35

0−40

0−45

0−50

0−55

0−0

0−5

0−10

0−15

0−20

0−25

0−30

0−35

0−40

0−45

0−50

0−55

Without majority voting

With majority voting

Figure 4.5: BER of PUF instances placed on chip 23LC1024 across different
temperatures

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
0

0.05

0.1

0.15

0.2

Hamming Distance

P
ro

b
a
b

il
it

y

2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
0

0.05

0.1

0.15

0.2

0.25

Hamming Distance

P
ro

b
a
b

il
it

y

5−5

5−10

5−15

5−20

5−25

5−30

5−35

5−40

5−45

5−50

5−55

5−5

5−10

5−15

5−20

5−25

5−30

5−35

5−40

5−45

5−50

5−55

Without majority voting

With majority voting

Figure 4.6: BER of PUF instances placed on chip CY7C185 across different
temperatures

30

Table 4.3: Between temperature average Hamming distances observed on an 160nm
23LC1024 chip

Temp(C) 0 5 10 15 20 25 30 35 40 45 50 55
0 6.807 - - - - - - - - - - -
5 7.268 6.901 - - - - - - - - - -
10 7.564 7.270 7.080 - - - - - - - - -
15 8.015 7.736 7.582 7.196 - - - - - - - -
20 8.472 8.110 7.855 7.517 7.330 - - - - - - -
25 9.069 8.652 8.322 7.964 7.773 7.282 - - - - - -
30 9.649 9.198 8.813 8.420 8.159 7.851 7.602 - - - - -
35 10.436 9.961 9.524 9.086 8.752 8.402 8.140 7.554 - - - -
40 10.998 10.495 10.028 9.542 9.154 8.728 8.400 7.909 7.609 - - -
45 11.807 11.295 10.795 10.284 9.860 9.373 8.998 8.509 8.255 7.588 - -
50 12.556 12.026 11.527 11.002 10.542 10.027 9.610 9.094 8.787 8.335 7.537 -
55 13.102 12.558 12.033 11.496 11.005 10.454 9.987 9.412 9.043 8.508 7.826 7.563

Table 4.4: Between temperature average Hamming distances observed on 160nm
23LC1024 chip after Majority voting

Temp(C) 0 5 10 15 20 25 30 35 40 45 50 55
0 3.08 - - - - - - - - - - -
5 3.78 3.16 - - - - - - - - - -
10 4.26 3.66 3.29 - - - - - - - - -
15 4.96 4.40 4.00 3.30 - - - - - - - -
20 5.63 4.98 4.45 3.76 3.40 - - - - - - -
25 6.53 5.85 5.23 4.53 4.10 3.17 - - - - - -
30 7.33 6.63 5.98 5.27 4.74 4.12 3.62 - - - - -
35 8.34 7.69 7.02 6.30 5.71 5.07 4.50 3.50 - - - -
40 9.06 8.39 7.72 6.98 6.35 5.61 4.97 4.07 3.54 - - -
45 10.08 9.42 8.76 8.03 7.39 6.63 5.97 5.13 4.64 3.55 - -
50 10.98 10.33 9.69 8.99 8.34 7.56 6.91 6.09 5.56 4.84 3.48 -
55 11.68 11.02 10.36 9.65 8.99 8.20 7.51 6.61 6.00 5.15 3.98 3.51

31

Table 4.5: Between temperature average Hamming distances observed on a 90nm
CY7C185 chip

Temp 5 10 15 20 25 30 35 40 45 50 55
5 8.99 - - - - - - - - - -
10 9.56 8.85 - - - - - - - - -
15 9.89 9.20 8.79 - - - - - - - -
20 10.24 9.60 9.13 8.68 - - - - - - -
25 10.72 10.12 9.70 9.20 8.94 - - - - - -
30 11.74 11.13 10.66 10.16 9.61 7.97 - - - - -
35 12.15 11.56 11.09 10.60 10.05 8.35 7.82 - - - -
40 12.56 12.01 11.54 11.05 10.51 8.88 8.31 7.96 - - -
45 13.11 12.62 12.17 11.69 11.17 9.62 9.11 8.56 8.02 - -
50 13.71 13.24 12.79 12.33 11.82 10.30 9.80 9.26 8.58 8.11 -
55 14.73 14.30 13.89 13.45 12.99 11.58 11.10 10.57 9.95 9.35 8.44

Table 4.6: Between temperature average Hamming distances observed on a 90nm
CY7C185 chip after Majority voting

Temp(C) 5 10 15 20 25 30 35 40 45 50 55
5 4.06 - - - - - - - - - -
10 5.20 3.96 - - - - - - - - -
15 5.84 4.68 4.04 - - - - - - - -
20 6.44 5.45 4.69 3.93 - - - - - - -
25 7.21 6.28 5.65 4.85 4.37 - - - - - -
30 8.92 8.04 7.40 6.68 5.81 3.78 - - - - -
35 9.52 8.74 8.08 7.42 6.59 4.49 3.68 - - - -
40 10.10 9.36 8.74 8.05 7.29 5.34 4.48 3.91 - - -
45 10.71 10.09 9.49 8.84 8.13 6.30 5.65 4.78 3.83 - -
50 11.43 10.83 10.25 9.65 8.96 7.24 6.63 5.86 4.76 3.93 -
55 12.68 12.16 11.65 11.10 10.49 8.96 8.37 7.63 6.76 5.81 4.21

32

0 5 10 15 20 25 30 35 40 45 50
0

0.005

0.01

0.015

0.02

0.025

0.03

Temperature (C)

S
en

si
ti

v
it

y

160nm

350nm

90nm

Figure 4.7: Figure showing the sensitivity of Within class Hamming distance with
respect to temperatures for different technology SRAMs.

4.3 Per temperature key enrollment and generation system

This section explains the process of key establishment using a temperature sensor

and temperature sensitive PUF. We then explain the importance of error correction

codes and their use with temperature-based PUF keys. The process of key enrollment

and generation with the help of error correction codes is described along with a

detailed description of the system.

4.3.1 Key enrollment

Enrollment is done to generate Helper data from the key and the PUFs that can

be used later by the system to generate the same key. Figure 4.8 shows the system

for performing key enrollment. Enrollment of keys will be done for each temperature

step in our case to generate a per temperature (T) key denoted by KT . We use a

BCH encoder having a block size of n-bit, message input of k-bit and t number of

correctable errors. To generate a K-bit key, we have to divide it into blocks of k bits.

33

Figure 4.8: Per-temperature one time key enrollment

For each block i of k-bit input, a n-bit output codeword CT,i is generated by the BCH

encoder. This codeword is then offset by the response of the PUF RT,i at the same

temperature T which generates n-bit helper data HT,i. This helper data will be used

later by the system to generate the key for that temperature. The enrollment process

will be performed for the whole operating temperature range of the system.

4.3.2 Key generation

Figure 4.9 shows the system used to generate the key on a per-temperature basis.

To generate the key, the temperature is read from the temperature sensor and is used

to read out the correct helper data HT,i from the memory. This helper data gets offset

by the n-bit PUF response R′T,i. The response of the PUF is noisy and tends to change

over evaluations. The response used to offset the helper data may be different than

the response RT,i used during enrollment. This will produce a corrupted codeword

C ′T,i. The k-bits of the key can be recovered from the invalid codeword as long as

the number of errors in the response is under the correctable errors t of the BCH

34

Figure 4.9: Per-temperature key generation

code used. At the output of the BCH decoder, we will get the enrolled key for that

temperature if the previous condition is satisfied.

4.3.3 Complete system

The complete system example is shown in figure 4.10. When the master node

requests communication with slave node, the slave node generates the key based

on its ambient temperature. The key is generated using the scheme proposed in

the previous section. The slave node sends its first message, containing information

already known to the master, encrypted with the key generated at temperature T

along with its ambient temperature to establish a secure communication line. The

master node knows the keys for the slave node at each enrolled temperatures. Using

the temperature reported by the slave node, the master node can use the key for that

temperature to decrypt the message packet. In the case of failure in decryption of

the message, the master node will be able to detect that the reported temperature

was fake and the node has been tampered with. Thus, the key will serve as a proof

of temperature.

35

Figure 4.10: Complete system

4.4 Conclusion

We have shown the feasibility of using the SRAM PUFs for temperature based

key establishment. We have shown the results across various technologies of SRAMs.

We have also proposed a system for error correction and key generation based on

temperature. Future work will include investigating schemes to narrow down the bits

of SRAM that can be used to distinguish temperature and reduce the response size

needed for the SRAM.

36

CHAPTER 5

ALTERNATE IMPLEMENTATION OF ANDERSON’S
PUF ON XILINX FPGA

FPGAs are used for an increasingly large number of applications which require

security. Due to their volatile nature, SRAM-based FPGAs require security at multi-

ple levels. Bitstream encryption is often used to protect the configuration bits which

define application implementation. Additionally, secure encrypt/decrypt cores are

often implemented as part of a user’s design to allow for the confidential processing

of application data. These cores require secret keys that are often customized on a

per-device basis.

In this section, we discuss the implementation of Anderson’s PUF on SLICEL cells

on FPGAs. The goal of this implementation is to allow the placement of encryption

and key generation block on a fixed footprint on the FPGA. Also, for this PUF we

will utilise per-device selection of PUFs on the block to reduce the size of the error

correction circuitry on the FPGA. This work is a continuation of work done in [42].

5.1 Motivation

In this section we discuss the motivation behind this work. There were two primary

reasons for the development of an alternate architecture. The first reason being the

tuning of Hamming weight of PUF response and second being the resource constraint.

We will discuss them in detail in the following sections.

37

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Chain length

F
ra

ct
io

n
a
l

H
a
m

m
in

g
 w

ei
g
h

t

Figure 5.1: Figure showing the effect of elongating the carry chain on SLICEM
based PUF’s response.

5.1.1 Discrete stages for tune-ability

As discussed in section , the width of the glitch used to trigger the asynchronous

set of the flip-flop depends on the number of stages in the carry chain. We can

only change the number of stages in discrete steps. A problem arises when a device

produce a balanced number of 0 and 1 responses for any length of carry chain. For

Virtex-7 FPGAs we performed experiments to see the variation of Hamming weight

with different number of stages. As is clear from fig. 5.1 there is no number of stages

that balances the Hamming weight of the PUF response for the device.

With the absence of a point that balances the PUF response, the uniqueness of

the PUF would be reduced thereby rendering it ineffective for key generation.

5.1.2 Design resource requirement

The design as originally proposed by Anderson can only be implemented on

SLICEMs which are rare and fewer in number. The shift registers are used from

SLICEM cells to ensure synchronous triggering of the Multiplexer select lines. This

limits the placement of the PUFs on the device and also use up these limited resources

38

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Number of filter stages

F
ra

ct
io

n
a
l

H
a
m

m
in

g
 w

ei
g
h

t

Figure 5.2: Figure showing the effect of adding Multiplexer stages in the chain. The
glitch get filtered out, thereby narrowing it down and reducing the probability of

setting the Flip-Flop.

Figure 5.3: Figure showing variation of Hamming weight with change in delay
difference between two paths for a carry chain of length 2.

39

which may be required for design purposes. The chip Xilinx Zynq-7020 contains

53,200 SLICEL cells and 17,400 SLICEM cells. We can clearly see that SLICEL cells

are about 3 times the number of SLICEM cells in the chip. The original Anderson’s

PUF require the SLICEM cells. On the chip Xilinx Zynq-7020, there are 53,200 SLI-

CEL cells and 17,400 SLICEM cells. We can clearly see that SLICEL cells are about

3 times the number of SLICEM cells in the chip. Therefore the block selected may

not have adequate SLICEM cells to implement the PUF based key generation block.

5.2 The SLICEL PUF implementation and characterization

The novel implementation of Anderson’s PUF that is proposed this study is shown

in Fig. 5.4. It consists of two Xilinx SLICEs which can be either SLICEMs or

SLICELs. We focus on SLICELs because previous works cannot make use of these.

Relative to Anderson’s PUF, our design replaces the shift register in each SLICEM

with synchronous toggling signals created in each SLICEL from a flip-flop and a LUT

configured as an inverter.

The timing operation of the design is shown in Fig. 5.5 and described here. Flip-

flop FF1 in SLICE2 is initialized to a logic-1 and the corresponding flip-flop FF1

in SLICE1 is initialized to a logic-0. These flip flops will toggle their value in each

cycle. A race condition that occurs after every second rising clock edge determines

the width of the pulse that gets generated. The racing signals are as follows:

• On the clock edge, a rising transition propagates in SLICE2 from signal Q2 at

the output of FF1 to signal S2 at the select input of multiplexer M1. The

rising transition arrives when the 1-selected input of the multiplexer holds a

logic-1 value, and causes the output of M1 to rise.

• On the same clock edge that triggered the above described sequence, in SLICE1

a falling transition propagates from signal Q1 at the output of FF1 to signal S1

40

at the select input of multiplexer M1 and then propagates upward through the

delay chain. When this falling transition reaches the 1-selected input of M1 in

SLICE2 it causes the output of the multiplexer to fall, terminating the pulse.

According to the race condition described above, the duration of the pulse as seen

on signal Pulse0 can therefore be described by Eq. 5.1. Here, Wglitch is the duration

of the pulse, Dchain is the delay through the length of the carry chain, DQ1−S1 is the

delay from Q1 to signal S1 in SLICE1, and DQ2−S2 is the delay from Q2 to signal

S2 in SLICE2.

Wglitch = Dchain +DQ1−S1 −DQ2−S2 (5.1)

As shown in Fig. 5.4, the pulse on signal pulse0 can be propagated through three

additional multiplexers in SLICE2, and this gives designers a choice about which

pulse signal should be attached to the asynchronous preset signal of the flip-flop that

will capture the PUF response. In the figure we have shown that pulse0 is the one

attached to the flip-flop, but we will show in the next subsection how the choice among

these pulses can be exploited to tune the Hamming weight of the PUF responses.

To optimize the PUF quality, we can use extra stages of multiplexer at the top of

the selected carry chain to control the width of the glitch. Figure 5.2 shows the effect

of adding extra multiplexer stages at the top of the carry chain. From the result we

can see that adding 1 filter stage gives a Hamming weight close to the ideal value of

50%.

5.2.1 PUF Hamming weight tuning

To maximize the uniqueness of PUF responses, it is desirable to have the average

Hamming weight of PUFs be close to 50%. In the Anderson PUF and our varia-

tion thereof, the average Hamming weight of the PUF response bits depends on the

expected width of the glitch that arrives at the asynchronous preset input of the

41

Figure 5.4: The alternate implementation of Anderson’s PUF [3] implemented on a
Virtex 7 architecture. The two LUTs are separated vertically by three Multiplexer

stages and feed their corresponding flip-flops to generate a toggle signal for the
select lines of their corresponding Muxes.

42

clk

S1

S2

N1

L2

Pulse0

Pulse1

Pulse2

Pulse3

DQ1-S1

DQ2-S2

DChain

Wglitch

Figure 5.5: The timing waveforms shown govern the operation of glitch generation
and glitch filtering in SLICEL PUF.

capturing flip-flop. A short glitch is less prone to setting the flip-flop value high,

while a long glitch enhances the chance that the flip-flop will be triggered to store a

response value of 1. Ideally, the average pulse pulse width will be on the cusp of the

two response values, such that the response of each PUF instance will be caused by

its process variations and their effect on the pulses of that PUF instance. We explore

three different knobs that can be used to control the average Hamming weight of the

PUF response bits.

Tuning by varying the chain length: Changing the number of delay stages

in the design can be used adjust the term Dchain in Eq. 5.1, which describes the

propagation time for a signal to propagate through the delay chain. As described by

Eq. 5.1, changing this term has a direct impact on the glitch width, and therefore can

be used to tune the Hamming weight of a design. The effect of changing the length

is shown in figure 5.1. A longer delay chain increases the response Hamming weight.

Tuning by addition of filter stages: The second tuning parameter is the

number of filtering stages used between the pulse generation and the preset input

43

of the flip-flop that generates the PUF response. To optimize the PUF response

Hamming weight, we can use extra stages of the multiplexer at the top of the selected

carry chain to control the width of the pulse. The addition of these filter stages

attenuates the pulse before it reaches the preset of the Flip-Flop. Figure 5.2 shows

the effect of adding extra multiplexer stages as filters. From the result, we can see

that adding 1 filter stage gives a Hamming weight close to the ideal value of 50%

when the delay chain comprises three multiplexers. Regardless of the delay chain

length, adding more filter stages is found to reduce the Hamming weight.

Tuning by adjusting path delays: The third parameter to tune the Hamming

weight of the PUF response can be done by varying the delay difference of the two

paths that connect the output of the Flip-Flop to the input of the LUT. These delays

are marked as DQ1−S1 and DQ2−S2 in figure 5.5. We can see that the these 2 delays

affect how wide the glitch (shown as Wglitch) produced would be. Any increase in

delay DQ2−S2 will delay the start of the pulse and thereby cause a corresponding

reduction in glitch width. This effect of varying the delay difference is shown in

figure 5.3. There is variation in Hamming weight of the response with the delay

difference between these two paths.

To tune the path delays and change the 0-1 balance we begin with a PUF config-

uration having mux chain of length 2 with no filter stages. Random unconstrained

routing is then performed on the feedback paths of the PUF by the Xilinx Vivado

routing tool. Statistics are generated from the data acquired by evaluating the PUFs

responses generated from the unconstrained routing to find what delay difference be-

tween the feedback routes produces the best balance in Hamming weight. The value

of the delay difference that has the probability closest to 50 % for producing a one

and a zero as the response is chosen as the desired value. In case of length 2 PUFs

with no filter stages, we can see that a delay difference between -25ps and -75ps gives

44

the best balance (close to 50%). Once this value is known, we perform the following

steps:

• For one PUF in placed in a block, we try different values on minimum delay

constraints, in steps of 10ps, on each of the two feedback routes from the output

of Flip-Flop to the input of LUT. This forces the routing tool to a find paths

from the flip-flop to the LUT with a variety of different propagation delays.

• For each value of minimum delay, we record the obtained value after routing

to generate a list of attainable delays and the specific routes that have these

delays.

• From the two lists of delay values, one for each feedback path, we pick the values

that produce the desired delay difference value which balances the response of

the PUF.

This process is repeated one time for each PUF that resides in a different block

because it has a different set of resources in the SLICE. The values generated are

then used to generate proper delay and balance the response Hamming weight.

Our design uses a carry chain of length 3 with 1 filter stage and matched feedback

paths. All the results presented hereafter in the paper will be with respect to this

tuning.

5.2.2 PUF reliability & uniqueness

Reliability and uniqueness are the most important properties of a weak PUF.

Reliability refers to the repeatability of PUF outputs over time, which lessens the

burden of error correction. Uniqueness is a measure of how different the output

values are across PUF instances. We quantify these two properties for the Virtex 7

architecture by analyzing the Hamming distances between pairings of 128-bit PUFs

45

across ten chip instances. In total, we implement the 33 disjoint 128-bit PUFs on

each chip and record 1000 output trials from each.

For reliability, we consider the distribution of within-class Hamming distances.

Within-class Hamming distances are between outputs of two different trials from the

same 128-bit PUF on the same chip. The histogram of Fig. 5.6a shows the distribution

of Hamming distances for 63 million comparisons, representing all combinations of

the 1000 trials that collected for each of the 33 different 128-bit PUFs on each of the

10 chips. The mean within-class distance is 4.0264 bits (3.14%).

To study uniqueness we consider two different variants of between-class Hamming

distance in our analysis. The first is the Hamming distance between outputs from

two different randomly selected 128-bit PUFs that are on different chips or different

locations on the same chip. Over 2.3 billion comparisons the mean distance is found

to be 63.25 bits (49.41%) (Fig. 5.6b). The second set of between-class distances are

similar to the first but confined to only compare PUF pairings that occupy the same

locations on different chips; this case is interesting because it could show a reduced

Hamming distance if PUF output values were significantly influenced by deterministic

bias instead of device-specific process variations. Fig. 5.6c shows that, based on 660

million comparisons, the mean distance is found to be 63.12 bits (49.31%). The

between-class results indicate that the PUFs produce highly unique outputs, and that

the outputs are not being caused by deterministic bias associated with the location

of the PUF on the chip.

5.2.3 Spatial Autocorrelation of PUF Location BERs

It is important to consider whether the PUF BERs are correlated spatially within

each chip, as spatial correlation could imply a common cause for unreliability, instead

of random per-device variations. The heatmap of Fig. 5.8 shows, for a single chip, the

reliability of 4250 PUF instances according to their locations on the chip. Informally,

46

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

Hamming distance

P
ro

b
a

b
il

it
y

(a) Within class Hamming Distance

0 20 40 60 80 100 120
0

0.01

0.02

0.03

0.04

0.05

0.06

Hamming distance

P
ro

b
a

b
il

it
y

(b) Between class, all locations

0 20 40 60 80 100 120
0

0.01

0.02

0.03

0.04

0.05

0.06

Hamming distance

P
ro

b
a

b
il

it
y

(c) Between class, same location

Figure 5.6: Histograms of between-class and within-class Hamming distances of 128-
bit PUFs. Within-class distances compare two measurements from the same 128-bit
PUF instance. Between-class distances compare (in b) two different 128-bit PUFs on
the same chip, or (in c) compare 128-bit PUFs that occupy the same locations on
different chips. All measurements were made at room temperature of approximately
24o and at the nominal supply voltage.

47

the lack of a clear pattern in this figure gives some visual indication that the unreliable

PUFs are likely to be random and not highly clustered. To formalize the apparent

lack of spatial correlation in Fig. 5.8a, we use Moran’s I as a metric to quantify the

spatial autocorrelation in the BER of PUF instances. For any single chip instance,

Moran’s I is computed using Eq. 5.3, where Bi and B̄ are the BER of PUF instance i

and the mean BER of the chip respectively. Computing Moran’s I requires a spatial

weight wij to indicate which PUF locations should be considered local to each other.

For PUF locations i and j, we compute the weight wij as shown in Eq. 5.2, where

ri and ci are row and column indices of the ith PUF location. Restating this, the

weight is set to 1 if the Euclidean distance between the row and column indices of

two PUF locations is less than 10. Moran’s I can take values between -1 and 1, where

1 indicates high spatial autocorrelation, and 0 indicates no spatial autocorrelation.

The values of I obtained for all of the 10 chips are between 0.013 and 0.017, indicating

that the unreliable PUFs do not tend to be highly clustered. An implication of the

random position of unreliable PUFs is that it is not possible to simply choose certain

positions for PUF placement that will be reliable across all chips.

wij =

1 if

√
(ri − rj)

2 + (ci − cj)
2 < 10

0 otherwise

(5.2)

I =
N∑

i

∑
j wij

∑
i

∑
j wij(Bi − B̄)(Bj − B̄)∑

i(Bi − B̄)2
(5.3)

5.3 Per-Device selection of PUFs

Given that our chosen design uses a delay path with 3 multiplexers and 1 stage of

glitch filters to achieve a Hamming weight close to 50% (see Fig. 5.2), there are two

options for placing the design in a pair of SLICEs. Fig. 5.7 shows the two possible

configurations. The first two lines of Tab. 5.1 shows the between-class and within-class

48

Table 5.1: Mean Hamming distance comparisons from 10 chips

Configuration Within class Between class
1 3.14% 49.31%
2 3.07% 46.09%

Hamming distances for each of these configurations. The low within-class Hamming

distance shows good reliability in both configurations, and the close-to-ideal between-

class Hamming distances show good uniqueness. This implies that two SLICEs can

be configured in two different ways as a PUF, and in either configuration will have

similarly desirable PUF statistics.

The average reliabilities of 3.14 and 3.07 are aggregated over many different PUFs

with heterogeneous BERs. In reality, there are many PUF instances that are ex-

tremely reliable, and some that are very unreliable. At a single location of two slices,

we will show it is often the case that one PUF configuration will be unreliable and the

other will be reliable. Because of this, it is possible to create a highly reliable PUF

by choosing the more reliable configuration in each of the PUF locations, but the

choice must be made uniquely for each chip. The only scenario in which per-device

configuration will not be beneficial is if both configurations for a given PUF bit are

equally unreliable.

The benefit of performing best configuration selection is shown in table 5.1. The

data is generated by taking the average of responses from 10 different chips. We can

clearly see that the BER (within class Hamming distance) has gone down significantly

without effecting the uniqueness of the PUF (between-class Hamming distance). This

is also shown in figure 5.9. We can see that the fraction of reliable PUFs has increased.

Reducing the BER of the PUFs has a great impact on the overall system cost in temrs

area and power once error correction is considered.

49

(a) configuration 1 (b) configuration 2

Figure 5.7: Two possible PUF configurations within the cell

50

0 20 40 60 80 100 120
X coordinate

0

20

40

60

80

100

120

140
Y
co
or
di
na

te

0.00

0.02

0.04

0.06

0.08

0.10

(a) Heatmap of BERs of PUFs in configuration 1

0 20 40 60 80 100 120
X coordinate

0

20

40

60

80

100

120

140

Y
co
or
di
na

te

0.00

0.02

0.04

0.06

0.08

0.10

(b) Heatmap of BERs of PUFs in configuration 2

Figure 5.8: Figure shows the BER of PUF instances placed at different locations on
a chip. Unreliable instances are scattered and not concentrated in a particular area
of the chip and uncorrelated across configurations.

51

0 10 20 30 40 50 60 70 80 90 100
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Percentage of one response

F
ra

ct
io

n
 o

f
P

U
F

s

Config 1

Config 2

Best

Figure 5.9: Figure showing the distribution of a 1 response of the PUF across 10
chips. A high probability closer to 0 or 100 percent implies that PUFs are highly
reliable. Broken line indicates points where the value is zero.

5.3.1 Correlation of between-configuration PUF responses

Either of the PUF configurations shown in Fig. 5.7 can be used in any two

SLICELs, and as discussed in Sec. 5.3 we exploit this choice in order to choose the

specific configuration that is found to be most reliable for each PUF location on a

given chip. Noting that the two configurations share in common much of the delay

chain, it is reasonable to wonder whether the two configurations would tend have

similar reliabilities, which would eliminate the benefits of per-device configuration.

Our findings in Fig. 5.10a show the BERs of the two different configurations do not

tend to be correlated; if one configuration happens to have a high-BER PUF, it is

not the case that the other configuration would also have a high-BER PUF.

In fact, despite the two configurations sharing a number of delay stages, the re-

sponses of the two configurations are relatively unique to each other, as shown in

Fig. 5.10b. The fractional Hamming distance in this case is 38.02-bits (29.71%),

52

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

BERs in configuration 1

B
E

R
s

in
 c

o
n

fi
g

u
ra

ti
o

n
 2

(a) BER in two different configurations

0 10 20 30 40 50 60 70 80 90 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Hamming distance

P
ro

b
a
b

il
it

y

(b) HD between the configurations

Figure 5.10: When the same logic slices are configured in two different ways
(see Fig. 5.7) on the same chips: (a) their BERs are uncorrelated; and (b) the frac-
tional Hamming distance between responses from each configuration is 38.02-bits
(29.71%).

53

which is less than ideal, but roughly ten times higher than the within-class distances.

The uniqueness of the responses implies a large variation in the pulse widths gener-

ated in each configuration. Given that the width of each pulse is described by Eq

5.1, the finding implies that most the variability in the pulse width is coming from

the random delay differences between the logically identical feedback paths that are

unique to each configuration, and not due to the variations in the delay chain that

are common to both configurations.

5.3.2 Design flow for per-device PUF configuration

Although selection of PUF configurations will require some amount of work to be

done for each chip, it is infeasible for the entire design to be modified for each chip.

We propose a CAD flow in which a global design is created that contains PUFs, and

this design is then customized with a chip-specific partial bitstream that customizes

its PUF configurations without going through the full place-and-route. The procedure

uses the steps as described below:

• When performing place and route of the overall design, represent each PUF

with a placeholder that uses the union of configuration 1 and configuration 2

resources. Later, for each instance, the placeholder will be replaced by a PUF

in one configuration or the other.

• Create a bitstream that instantiates configuration-1 PUFs at each PUF location,

along with testbench logic to collect many responses from each PUF instance

and communicate back the results. Create a similar bitstream for configuration-

2 PUFs.

• To deploy the PUF-containing design on a chip instance, do the following:

– Apply the configuration-1 bitstream and collect results

– Apply the configuration-2 bitstream and collect results

54

– For each PUF location, decide whether configuration 1 or configuration 2

has a lower BER.

– Customize the design bitstream by replacing the PUF placeholders with

the specific choice of which PUFs to implement on that chip.

5.3.3 Temperature dependence of PUF response

0 50 100 150 200 250 300 350
0

0.02

0.04

0.06

0.08

0.1

0.12

Hamming Distance

P
ro

b
a
b

il
it

y

10−10

10−20

10−30

10−40

10−50

Figure 5.11: Effect of temperature on reliability of PUF(4250-bit) before best PUF
configurations selection

In this section, we study the reliability of the proposed design with respect to

temperature. The data was collected by putting the whole board in a TestEquity

115A Temperature Chamber. The soak time for each temperature was 10 minutes.

After the soak, 1000 trials were collected from the chip and process was repeated

for each temperature. Lastly, the on chip temperature sensor was used to verify the

temperature after the soak time. The 10 degree Celsius trials were considered as the

enrolled responses and comparisons were made with other temperature responses to

55

0 50 100 150 200 250 300 350
0

0.02

0.04

0.06

0.08

0.1

0.12

Hamming Distance

P
ro

b
a
b

il
it

y

10−10

10−20

10−30

10−40

10−50

Figure 5.12: Effect of temperature on reliability of PUF(4250-bit) after best PUF
configuration selection

see the variation in within class hamming distance with temperature. Fig. 5.11 shows

the plot for five temperatures from 10◦C to 50◦C in steps of 10◦C. Table 5.2 shows

the average of BER for each of the five temperatures. The change in temperature

causes an increase in the between-temperature Hamming distance, especially at higher

temperatures.

We can increase the reliability of the design by selecting the best of PUFs on a chip

from the two configurations. We select the best PUFs configuration for each PUF by

generating a response at 20◦C. The selection is made on the basis of BER of that PUF.

The selected configuration for each PUF is implemented and then evaluated at all the

temperatures from 10◦C to 50◦C. The data for reliability for the two configurations

and after selection of best configuration is tabulated in Table 5.2 and plotted in

Fig. 5.12. Even though the choice of which configuration to use is made based on

56

Table 5.2: Within class Hamming distance of PUFs (4250-bit) under different config-
urations at different temperatures

Temp(◦C) 10 20 30 40 50
1 3.00% 3.26% 3.96% 5.04% 6.45%
2 2.86% 3.16% 3.94% 5.08% 6.60%

Best 0.39% 0.40% 0.53% 0.90% 1.80%

room temperature measurements, these PUFs are found to be more reliable across a

range of temperatures.

57

CHAPTER 6

PUF BASED KEY GENERATION ON FPGAS

Keys used for cryptographic purposes must be repeatable to provide encryption

and decryption of messages without error and to establish authenticity. To generate

keys that are unique to each device we use PUFs. PUFs responses are noisy and tend

to change over evaluations. This is not desireable as it can cause errors in key. To cope

with this problem, fuzzy extractor [1][20][47] are used which uses a key along with the

PUF data to generate a helper data. The helper data can be used later by the system

during runtime to generate the key even with noisy PUF response. The key can be

recovered as long as the PUF response error is within the correctable range of errors

of the fuzzy extractor. We use a code-offset fuzzy extractor [1] construction with BCH

codes for error correction in this work. In BCH codes, each code is described by a

tuple (n,k,t); parameter n is the block size, parameter k is the number of information

bits, and parameter t is the number of correctable errors.

Figure 6.1 shows the enrollment process of the key generated from the PUF. To

generate a K-bit key using a BCH(n,k,t) with n-bits of output, k-bits of input data

and t correctable errors, we have to split the K-bits of key into blocks of k-bits. For

each block of the key, a n-bit codeword Ci is produced by the BCH encoder which

gets offset by a n-bit PUF block Ri. This generates the n-bit helper data Hi for each

k-bit blocks of the key. This helper data is then stored in the system to generate the

key at a later time.

Figure 6.2 shows the key generation process. The Helper data Hi is prestored in

the system and is used to generate the key. The PUF blocks are evaluated, which

58

Figure 6.1: Block diagram showing the one time enrollment process for key generation

Figure 6.2: Block diagram showing the one time enrollment process for key generation

produce a response R′i and offsets the corresponding helper data block Hi. The PUF

output generated may slightly differ from the response Ri used during enrollment.

The result is an invalid codeword Ci which is offset by the error bits in the PUF

response. This invalid codeword can still be used to produce the original k-bit block

of key as long as the number of errors in the PUF response were under t-bits. Thus

the whole key can be generated as long as the PUF error doesn’t exceed the maximum

correctable errors of the BCH decoder.

59

6.1 Cost of Error correction

The cost of correcting the errors increases with the number of correctable errors.

For the BCH decoder of block size n-bit, as the number of correctable errors t in-

creases, the number of data bits k decreases. This results in an increase in the number

of PUFs needed to offset the BCH encoded codewords. The complexity of the BCH

decoder itself also increases. This results in a penalty in both area and power on the

chip. For example, for a 255-bit block size, there can be two different codes used.

One could correct 7 errors and carry 199 information bits while another could carry

only 123 information bits but correct up to 18 errors. So, a 256-bit key generated

from the above two codes would require 2 and 3 blocks respectively.

In traditional analysis, the bit error rate pbit is calculated by averaging the error

rates of all the PUFs and using it to generate the block failure rate. The probability

of incorrectly decoding a block as pblock. This is computed using Equation 6.1 which

shows the probability of finding more than t erroneous bits among n codeword bits

when the bit error rate is pbit. The probability of generating an invalid 128-bit key is

denoted by pkey and denoted by Equation 6.2.

pblock =
n∑

i=t+1

 n

i

 pibit(1 − pbit)
n−i (6.1)

pkey = 1 − (1 − pblock)[128/k] (6.2)

This analysis ignores that not all the PUFs are homogenous and using an average

bit error can result in an incorrect approximation of error. This would lead to a

wastage in the area resulting from the increased size of error correcting circuitry.

6.2 A statistical model for PUF error correction

As discussed in previous section, the traditional model uses an average value of the

BER to decide the size of error correcting code. This can be an under approximation

60

is there are some highly reliable PUFs or an over approximation if there are some

highly unreliable PUFs. Both the cases are undesirable as the former will cause key

failures and the latter will waste area and power on the chip. To cope with this

problem, an accurate model that closely fits the statistics of a PUF is required to

better predict the number of errors to be corrected [27].

6.2.1 Two parameter model

The response of the PUF is dependent upon two factors. The first one is the pro-

cess variation in the silicon during manufacturing and the second one being the noise

present at the time of response evaluation. A probabilistic PUF model is developed in

[27] which takes into consideration the behavior of each individual PUF. It considers

the probability of error for each individual PUF.

For the PUF i, the following variables are the observable variables:

• The One-probability(pi) of a PUF instance i is the probability that the response

of the PUF is a ’1’upon an evaluation.

• The Error-probability(pe,i) of a cell producing a response different from the one

generated at enrollment (golden response).

The PUF response characteristics are modelled using the following hdden vari-

ables:

1. Manufacturing process variation(mi): This variable quantifies the amount of

variation from the ideal design value and is determined once after the fabrication

of the PUF and can be assumed to be constant throughout the lifetime of the

PUF.

2. Noise variable(nn
i): This variable quantifies the amount of noise that effects the

response of the PUF at a every evaluation. The noise variable re-sampled at

every evaluation of the PUF instance.

61

6.2.2 PUF model generation

To begin the modelling of the PUF behavior we first calculate the cumulative

distribution function for one probability of the PUF response. Equation 6.3 [27] a is

used to represent the one probability cumulative distribution function.

cdfp(x) = φ(λ1φ
−1(x) + λ2) (6.3)

Here, λ1 = σN/σM and λ2 = (t − µM)/σM . σN and σM are standard deviations

in process variation and noise variables respectively and µM and µN are means of

the process variation and noise variables respectively. t is the threshold parameter

which determines the response of the PUF. If the combined effect of noise and process

variable is greater than t, the response will be a 1, otherwise the response will be a 0.

We use curve fitting tool in MATLAB to perform non-linear fit over variables

(λ1, λ2) to minimize the mean square error of Equation 6.3 and the actual PUF data

generated from the chip. A fit for configuration 1 PUFs is obtained at λ1 = 0.0711

and λ2 = 0.1834. Figure 6.3 shows that the model yields a close fit to the PUF

statistics. We do the fitting for both the configurations and after performing best

PUF selection.

By using the values of λ1 and λ2 in Equation 6.3, a one probability distribution

can be obtained. This distribution can be used to generate generate PUF bit errors

that actually resemble the values acquired from the chip.

pdfpe(x) = λ1(1 − x)
ϕ(λ1φ

−1 + λ2) + ϕ(λ1φ
−1(x) − λ2

ϕ(φ−1(x))
(6.4)

Equation 6.4 [27] gives the probability distribution function of the error proba-

bilities where ϕ(x) and φ−1(x) refer to the probability density function of a normal

distribution and the inverse of the cumulative distribution function of a normal dis-

tribution. To analyze the failure rates, we take 1000 samples of this distribution for

values of x starting from 0 to 0.999 in steps of 0.001.

62

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Probability of producing a 1

Normal density

Fitted function

Figure 6.3: Fitted model vs actual data obtained at λ1 = 0.0711 and λ2 = 0.1834 for
configuration 1

The key failure rate distribution is calculated for different error correcting codes.

To calculate the block failure rate, we use the error probability model developed

above. We use equation 6.5 to calculate the key failure rate. Here, n is the number

of blocks of puf used to generate the key.

pfail = 1 − (1 − pblockfail)
n (6.5)

Probability of block failure is calculated using equation 6.6 [27]. In this equation, n is

the number of pufs and t is the number of correctable errors. FPB(t; pne) is a Poisson

binomial distribution for the error rates of PUF and is given by 6.7. Instead of using

fixed error rate, this distribution is used to generate more realistic block failure rates.

Figures 6.4, 6.5 and 6.6 show the failure rate distribution for both the configurations

63

10−10 10−8 10−6 10−4 10−2
Block Failure Rate

0.0

0.1

0.3

0.5

0.7

0.9

1-
cd

f(p
_f
ai
l)

Failure Distribution with t = 31, t = 27 and t = 23 | Configuration 1
t = 31
t = 27
t = 23

Figure 6.4: Key failure distribution with different number of error correcting BCH
code for Configuration 1

and after selection of best configuration.

pblockfail(p
n
e) = 1 − FPB(t; pne) (6.6)

FPB(t; pne) =
t+ 1

n+ 1
+

1

n+ 1

n∑
i=1

1 − C−i(t+1)

1 − C−i

n∏
k=1

(pe,kC
i + (1 − pe,k)) (6.7)

C = e
j2π
n+1 (6.8)

6.3 Results

We evaluate the error correcting needed to generate a key having maximum block

failure rate of 10−6 for 99% of the chips using the PUF model created in section 6.2.1.

In case of PUFs taken from the two configurations independently, from the data

taken from 10 chips, the code needed to ensure the security metric described above is

BCH(127,8,31). After performing the per-device selection of best PUFs from the two

configurations we can go down to BCH(127,50,13) after evaluating PUF data from

64

10−10 10−8 10−6 10−4 10−2
Block Failure Rate

0.0

0.1

0.3

0.5

0.7

0.9
1-
cd

f(p
_f
ai
l)

Failure Distribution with t = 31, t = 27 and t = 23 | Configuration 2
t = 31
t = 27
t = 23

Figure 6.5: Key failure distribution with different number of error correcting BCH
code for Configuration 2

10−11 10−10 10−9 10−8 10−7 10−6 10−5 10−4

Block Failure Rate

0.0

0.1

0.3

0.5

0.7

0.9

1-
cd

f(p
_f

ai
l)

Failure Distribution with t = 15, t = 13 and t = 10 | Best PUFs
t = 15
t = 13
t = 10

Figure 6.6: Key failure distribution with different number of error correcting BCH
code for best configurations

65

Table 6.1: Resource requirements for 128-bit key generation

Mode
BCH code

(n,k,t)
BCH Decoder PUF Total Savings%
LUTs FFs LUTs FFs LUTs FFs LUTs FFs

Best 127,50,13 1381 1088 762 1143 2143 2231
69% 72%

Normal 127,8,31 2904 1888 4064 6096 6968 7984

10 chips. This clearly indicates that after performing best configuration selection the

size of error correcting code circuitry has gone down significantly. Table 6.1 lists the

different BCH codes and their resource requirements for implementation on a Xilinx

Zynq-7020 chip. The area saving can be computed by comparing the requirements for

the two cases. The total area savings are about 69% for LUTs and 72% for flip-flops.

66

CHAPTER 7

CONCLUSION

In this thesis, a scheme for temperature based keys using SRAM PUF is evaluated.

SRAMs fabricated in different technologies have been evaluated and it is seen that this

scheme is valid for all of them. We have shown that we can distinguish temperatures

using PUFs. The resolution of temperature is dependent on the number of bits.

The more the number of PUFs we have, the finer temperature difference we can

distinguish.

A novel implementation of Anderson’s PUF is developed for Xilinx FPGAs that

can be instantiated anywhere on the chip. A scheme for increasing the PUF reliability

using selection between PUF configurations is also shown. The effectiveness of the

scheme is shown by calculating the error correcting code needed for a specified key

failure rate using a statistical PUF model. It is evident from the results that there is

a significant reduction in the area required by the error correcting code after doing

per device selection of best PUFs.

67

BIBLIOGRAPHY

[1] Fuzzy extractors: How to generate strong keys from biometrics and other noisy
data. vol. 38, pp. 97–139.

[2] Alliance Memory Inc. 8K X 8 bit low power CMOS SRAM, 2 2007. Rev. 1.

[3] Anderson, J. H. A puf design for secure fpga-based embedded systems. In 2010
15th Asia and South Pacific Design Automation Conference (ASP-DAC) (Jan
2010), pp. 1–6.

[4] Chatterjee, U., Chakraborty, R. S., Mathew, J., and Pradhan, D. K. Memristor
based arbiter puf: Cryptanalysis threat and its mitigation. In 2016 29th Inter-
national Conference on VLSI Design and 2016 15th International Conference on
Embedded Systems (VLSID) (Jan 2016), pp. 535–540.

[5] Chen, Q., Csaba, G., Lugli, P., Schlichtmann, U., and Rührmair, U. The bistable
ring puf: A new architecture for strong physical unclonable functions. In 2011
IEEE International Symposium on Hardware-Oriented Security and Trust (June
2011), pp. 134–141.

[6] Chen, Qingqing, Csaba, György, Lugli, Paolo, Schlichtmann, Ulf, and Rührmair,
Ulrich. Characterization of the bistable ring puf. In Proceedings of the Conference
on Design, Automation and Test in Europe (San Jose, CA, USA, 2012), DATE
’12, EDA Consortium, pp. 1459–1462.

[7] Cherkaoui, A., Bossuet, L., and Marchand, C. Design, evaluation, and optimiza-
tion of physical unclonable functions based on transient effect ring oscillators.
Tech. Rep. 6, June 2016.

[8] Cypress semiconductors Inc. 64-Kbit (8K X 8) Static RAM, 11 2014. Rev. G.

[9] Delvaux, J., Gu, D., Schellekens, D., and Verbauwhede, I. Helper data algorithms
for puf-based key generation: Overview and analysis. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 34, 6 (June 2015),
889–902.

[10] Feiten, Linus, Spilla, Andreas, Sauer, Matthias, Schubert, Tobias, and Becker,
Bernd. Analysis of ring oscillator pufs on 60nm fpgas. European cooperation in
science and technology .

68

[11] Gassend, Blaise, Clarke, Dwaine, van Dijk, Marten, and Devadas, Srinivas. Sil-
icon physical random functions. In Proceedings of the 9th ACM Conference on
Computer and Communications Security (New York, NY, USA, 2002), CCS ’02,
ACM, pp. 148–160.

[12] Guajardo, Jorge, Kumar, Sandeep S., Schrijen, Geert-Jan, and Tuyls, Pim.
FPGA Intrinsic PUFs and Their Use for IP Protection. CHES ’07. Springer-
Verlag, Berlin, Heidelberg, 2007, pp. 63–80.

[13] Halderman, J. Alex, Schoen, Seth D., Heninger, Nadia, Clarkson, William, Paul,
William, Calandrino, Joseph A., Feldman, Ariel J., Appelbaum, Jacob, and
Felten, Edward W. Lest we remember: Cold-boot attacks on encryption keys.
Commun. ACM 52, 5 (May 2009), 91–98.

[14] Holcomb, D. E., Burleson, W. P., and Fu, K. Initial sram state as a fingerprint
and source of true random numbers for rfid tags. Proceedings of the Conference
on RFID Security 7, 2 (01 2007).

[15] Holcomb, D. E., Burleson, W. P., and Fu, K. Power-up sram state as an iden-
tifying fingerprint and source of true random numbers. IEEE Transactions on
Computers 58, 9 (Sept 2009), 1198–1210.

[16] Holcomb, Daniel E., and Fu, Kevin. Bitline puf: Building native challenge-
response puf capability into any sram. In Proceedings of the 16th International
Workshop on Cryptographic Hardware and Embedded Systems — CHES 2014
- Volume 8731 (New York, NY, USA, 2014), Springer-Verlag New York, Inc.,
pp. 510–526.

[17] Holcomb, Daniel E., Rahmati, Amir, Salajegheh, Mastooreh, Burleson,
Wayne P., and Fu, Kevin. DRV-Fingerprinting: Using Data Retention Voltage
of SRAM Cells for Chip Identification. RFIDSec’12. Springer-Verlag, Berlin,
Heidelberg, 2013, pp. 165–179.

[18] Hospodar, G., Maes, R., and Verbauwhede, I. Machine learning attacks on 65nm
arbiter pufs: Accurate modeling poses strict bounds on usability. In 2012 IEEE
International Workshop on Information Forensics and Security (WIFS) (Dec
2012), pp. 37–42.

[19] Hwang, David D., Schaumont, Patrick, Tiri, Kris, and Verbauwhede, Ingrid.
Securing embedded systems. IEEE Security and Privacy 4, 2 (Mar. 2006), 40–
49.

[20] Juels, Ari, and Wattenberg, Martin. A fuzzy commitment scheme. In Proceedings
of the 6th ACM conference on Computer and communications security (1999),
ACM, pp. 28–36.

69

[21] Katzenbeisser, Stefan, Kocabaş, Ünal, Rožić, Vladimir, Sadeghi, Ahmad-Reza,
Verbauwhede, Ingrid, and Wachsmann, Christian. Pufs: Myth, fact or busted?
a security evaluation of physically unclonable functions (pufs) cast in silicon.
In Proceedings of the 14th International Conference on Cryptographic Hardware
and Embedded Systems (Berlin, Heidelberg, 2012), CHES’12, Springer-Verlag,
pp. 283–301.

[22] Kolberger, Andrea, Schaumüller-Bichl, Ingrid, and Deutschmann, Martin. Risk
Analysis of Physically Unclonable Functions. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2014, pp. 136–139.

[23] Kumar, A., Qin, H., Ishwar, P., Rabaey, J., and Ramchandran, K. Fundamental
data retention limits in sram standby experimental results. In 9th International
Symposium on Quality Electronic Design (isqed 2008) (March 2008), pp. 92–97.

[24] Kumar, Sandeep S, Guajardo, Jorge, Maes, Roel, Schrijen, Geert-Jan, and Tuyls,
Pim. The butterfly puf protecting ip on every fpga. In Hardware-Oriented
Security and Trust, 2008. HOST 2008. IEEE International Workshop on (2008),
IEEE, pp. 67–70.

[25] Lofstrom, K., Daasch, W. R., and Taylor, D. Ic identification circuit using device
mismatch. In 2000 IEEE International Solid-State Circuits Conference. Digest
of Technical Papers (Cat. No.00CH37056) (Feb 2000), pp. 372–373.

[26] Machida, T., Yamamoto, D., Iwamoto, M., and Sakiyama, K. A new mode
of operation for arbiter puf to improve uniqueness on fpga. In 2014 Federated
Conference on Computer Science and Information Systems (Sept 2014), pp. 871–
878.

[27] Maes, Roel. An accurate probabilistic reliability model for silicon pufs. In
Proceedings of the 15th International Conference on Cryptographic Hardware
and Embedded Systems (Berlin, Heidelberg, 2013), CHES’13, Springer-Verlag,
pp. 73–89.

[28] Maes, Roel. Physically Unclonable Functions: Concept and Constructions.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp. 11–48.

[29] Maes, Roel, Van Herrewege, Anthony, and Verbauwhede, Ingrid. Pufky: A
fully functional puf-based cryptographic key generator. In Proceedings of the
14th International Conference on Cryptographic Hardware and Embedded Sys-
tems (Berlin, Heidelberg, 2012), CHES’12, Springer-Verlag, pp. 302–319.

[30] Maes, Roel, and Verbauwhede, Ingrid. Physically Unclonable Functions: A Study
on the State of the Art and Future Research Directions. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2010.

[31] Microchip Inc. 1Mbit SPI Serial SRAM with SDI and SQI Interface, 1 2015.
Rev. C.

70

[32] Rahmati, Amir, Salajegheh, Mastooreh, Holcomb, Dan, Sorber, Jacob, Burleson,
Wayne P., and Fu, Kevin. Tardis: Time and remanence decay in sram to imple-
ment secure protocols on embedded devices without clocks. In Proceedings of the
21st USENIX Conference on Security Symposium (Berkeley, CA, USA, 2012),
Security’12, USENIX Association, pp. 36–36.

[33] Rosenfeld, K., Gavas, E., and Karri, R. Sensor physical unclonable functions. In
2010 IEEE International Symposium on Hardware-Oriented Security and Trust
(HOST) (June 2010), pp. 112–117.

[34] Rührmair, U., Martinez-Hurtado, J. L., Xu, X., Kraeh, C., Hilgers, C.,
Kononchuk, D., Finley, J. J., and Burleson, W. P. Virtual proofs of reality
and their physical implementation. In 2015 IEEE Symposium on Security and
Privacy (May 2015), pp. 70–85.

[35] Rührmair, Ulrich, and Holcomb, Daniel E. Pufs at a glance. In Proceedings
of the Conference on Design, Automation & Test in Europe (3001 Leuven, Bel-
gium, Belgium, 2014), DATE ’14, European Design and Automation Association,
pp. 347:1–347:6.

[36] Rührmair, Ulrich, Sehnke, Frank, Sölter, Jan, Dror, Gideon, Devadas, Srinivas,
and Schmidhuber, Jürgen. Modeling attacks on physical unclonable functions.
In Proceedings of the 17th ACM Conference on Computer and Communications
Security (New York, NY, USA, 2010), CCS ’10, ACM, pp. 237–249.

[37] Rührmair, Ulrich, Sölter, Jan, Sehnke, Frank, Xu, Xiaolin, Mahmoud, Ahmed,
Stoyanova, Vera, Dror, Gideon, Schmidhuber, Jürgen, Burleson, Wayne P., and
Devadas, Srinivas. Puf modeling attacks on simulated and silicon data. IEEE
Transactions on Information Forensics and Security 8 (2013), 1876–1891.

[38] Sedra, Adel S., and Smith, Kenneth C. Microelectronic circuits, 7 ed. Oxford
University Press, 2015.

[39] Spenke, Alexander, Breithaupt, Ralph, and Plaga, Rainer. An arbiter PUF
secured by remote random reconfigurations of an FPGA. CoRR abs/1610.04065
(2016).

[40] Su, Y., Holleman, J., and Otis, B. A 1.6pj/bit 96variations. In 2007 IEEE
International Solid-State Circuits Conference. Digest of Technical Papers (Feb
2007), pp. 406–611.

[41] Suh, G. Edward, and Devadas, Srinivas. Physical unclonable functions for device
authentication and secret key generation. In Proceedings of the 44th Annual
Design Automation Conference (New York, NY, USA, 2007), DAC ’07, ACM,
pp. 9–14.

71

[42] Vyas, S., Dumpala, N. K., Tessier, R., and Holcomb, D. E. Improving the effi-
ciency of puf-based key generation in fpgas using variation-aware placement. In
2016 26th International Conference on Field Programmable Logic and Applica-
tions (FPL) (Aug 2016), pp. 1–4.

[43] Willers, Oliver, Huth, Christopher, Guajardo, Jorge, and Seidel, Helmut. Mems
gyroscopes as physical unclonable functions. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security (New York,
NY, USA, 2016), CCS ’16, ACM, pp. 591–602.

[44] Xu, X., Rahmati, A., Holcomb, D. E., Fu, K., and Burleson, W. Reliable physical
unclonable functions using data retention voltage of sram cells. IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems 34, 6 (June
2015), 903–914.

[45] Xu, Xiaolin, and Holcomb, Daniel. A clockless sequential puf with autonomous
majority voting. In Proceedings of the 26th Edition on Great Lakes Symposium
on VLSI (New York, NY, USA, 2016), GLSVLSI ’16, ACM, pp. 27–32.

[46] Xu, Xiaolin, Rührmair, Ulrich, Holcomb, Daniel E., and Burleson, Wayne. Secu-
rity Evaluation and Enhancement of Bistable Ring PUFs. Springer International
Publishing, Cham, 2015, pp. 3–16.

[47] Yu, M. D., and Devadas, S. Secure and robust error correction for physical
unclonable functions. IEEE Design Test of Computers 27, 1 (Jan 2010), 48–65.

[48] Zeitouni, S., Oren, Y., Wachsmann, C., Koeberl, P., and Sadeghi, A. R. Re-
manence decay side-channel: The puf case. IEEE Transactions on Information
Forensics and Security 11, 6 (June 2016), 1106–1116.

72

	University of Massachusetts Amherst
	ScholarWorks@UMass Amherst
	2018

	Applications Of Physical Unclonable Functions on ASICS and FPGAs
	Mohammad Usmani
	Recommended Citation

	tmp.1509053857.pdf.EzZee

