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Abstract
In the first part of the report, Doppler-broadened absorption spectroscopy was per-
formed on a natural abundance K+Cs mixture species cell to determine whether
interspecies molecular transitions are observable at sufficiently high vapour pres-
sures. It was found that the cell behaves independently of the presence of the other
alkali metal for spectroscopy on both the Cs D2 and K D2 lines for a tempera-
ture range between 27.8 ◦C - 45.4 ◦C, and 34.8 ◦C - 150 ◦C, respectively. Above
the temperature of 155 ◦C, the spectroscopic signal on the K D2 line exhibits ab-
sorption features which is potentially the result of rotational transitions in the K2
molecule, however, this is not definitive and further investigations are needed to
confirm this.
In the second part, we developed and tested several codes on a MATLAB program
to simulate time-averaged potentials using an acousto-optic modulator (AOM).
We demonstrated three different coding methods to generate smooth trapping
potentials and characterised different parameters required to accomplish such a
potential. We also investigated the depth of the trapping potential of a harmonic
potential and the requirements to accurately approximate the trap frequencies.



Declaration

I confirm that no part of the material offered has previously been submitted by
myself for a degree in this or any other University. Where material has been gen-
erated through joint work, the work of others has been indicated.

Ayumi Kato
Durham, December 16, 2015

The copyright of this thesis rests with the author. No quotation from it should
be published without their prior written consent and information derived from it
should be acknowledged.

ii



Acknowledgements

I would like to thank my supervisor, Prof. Simon Cornish and Dr. Ana Rakonjac
for their guidance and supervision throughout the past year.

iii



Contents

Page

Abstract i

Declaration ii

Acknowledgements iii

Contents iv

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Report Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

I Absorption Spectroscopy 3

2 Absorption Spectroscopy of a K+Cs Mixture Cell 4
2.1 Theory of a Two Level Atom . . . . . . . . . . . . . . . . . . . . . 4
2.2 Doppler Broadening . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Electric Susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4 Fitting Routine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5 K D2 and Cs D2 Lines . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Experimental Setup 15
3.1 General Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 ECDLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 K+Cs Mixture Cell . . . . . . . . . . . . . . . . . . . . . . . 16

3.2 Cesium D2 line Absorption Spectroscopy . . . . . . . . . . . . . . . 20
3.3 Potassium D2 line Absorption Spectroscopy . . . . . . . . . . . . . 22
3.4 Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

iv



Contents v

3.5 Single Species Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Results 28
4.1 Cs D2 Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 K D2 Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

II Generating Time-Averaged Optical Potentials 38

5 Introduction 39
5.1 Acousto-Optic Modulators . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Optical Dipole Traps . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.3 Spatial Light Modulators: An Alternative to AOMs . . . . . . . . . 43

6 Simulation of Time-Averaged Potentials 44
6.1 Fixed Dither Range . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Fixed Dither Range in Dimensionless Units . . . . . . . . . . . . . . 51
6.3 Free Dither Range . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Results 59
7.1 Trap Depth and Trapping Frequency . . . . . . . . . . . . . . . . . 59

8 Conclusion 69

Bibliography 70

III Appendices 72

A Properties of Cs D2 and K D2 Transitions 73

B FWHM as a function of temperature for the 39K D2 line 75

C Values 76

D Code characterising the RMS error with the dither range set as
a fixed parameter 77



Chapter 1

Introduction

1.1 Motivation

This report is divided into two parts: absorption spectroscopy and the simulation of time-

averaged potentials. Absorption spectroscopy is performed on a mixed species vapour cell

containing potassium and cesium to determine whether the absorption spectra for the

individual elements are affected by the presence of a different species within the same

cell. The motivation for using a mixed species cell is to establish whether interspecies

molecular transitions are observable in such a cell at sufficiently high vapour pressures.

Spectroscopy of single alkali species has been subject to extensive studies, especially for

rubidium and cesium [1], however mixed alkali species have not been extensively studied.

Part 2 of the report discusses a MATLAB simulation of time-averaged optical dipole force

potentials created using acousto-optic modulators (AOMs). AOMs provide a way of con-

fining Bose-Einstein condensates (BECs) in arbitrary trapping potentials and have been

demonstrated to realise various trapping geometries such as toroids, ring lattices [2], and

optical box trapping geometries [3] which has led to a wide range of fundamental research

in areas such as superfluidity [4] and matter-wave interferometry [4, 5]. These trapping

potentials are achieved by exploiting the optical dipole interaction which relies on the

atomic dipole moment and an appropriate laser field intensity. Experimentally, the opti-

cal potentials are linearly proportional to the laser intensity. One of the key requirements

for successfully trapping BECs in an arbitrary trapping potential is a smooth trapping

potential to minimise heating of the trapped particles [5]. The aim of the simulation is to

extract useful parameters for use in experiments invovlving trapping BECs, such as the

rate of modulation required for the creation of smooth trapping potentials and accurate

approximation of frequencies of harmonic trapping potentials.

1



Chapter 1. Introduction 2

1.2 Report Layout

Part 1 of the report begins by introducing the background concepts behind Doppler-

broadened and absorption spectroscopy. In chapter 3, the experimental setup and the

workings of the extended cavity diode lasers is detailed. This chapter also includes the

signal resulting from the Doppler-broadened spectroscopy of a single species cell of potas-

sium and cesium for comparison to the Doppler-broadened signal from a mixed species

cell. The results from the Doppler-broadened spectroscopy of the mixed species cell for

cesium and potassium are included in chapter 4.

Part 2 of the report concerns the simulation of time-averaged potentials. A brief in-

troduction on the construct of an AOM and a theoretical background of optical dipole

traps are given in chapter 5. The codes that were developed on MATLAB to simulate

time-averaged potentials are presented and the parameters required to simulate a suffi-

ciently smooth potential with a low RMS error are determined in chapter 6. The results

characterising the trap depth variation and trapping frequencies are presented in chapter

7.



Part I

Absorption Spectroscopy
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Chapter 2

Absorption Spectroscopy of a K+Cs

Mixture Cell

2.1 Theory of a Two Level Atom

One of the techniques of laser spectroscopy of atomic vapours involves sending monochro-

matic laser light of known intensity through a sample of atomic or molecular gas and then

measuring the intensity of light exiting the cell, with the ratio of the two intensities giving

the transmission. The laser frequency is then swept across a desired range producing a

spectrum of transmission as a function of frequency. The frequencies at which the laser

light becomes resonant with a particular transition manifest as dips in the transmission

spectrum [6].

The advantages of laser spectroscopy can broadly be characterized by comparing it to

older spectrophotometric methods. Conventional spectroscopy typically involves a broad-

spectrum light source (atomic vapour lamps, fluorescent light bulbs) that is then spectrally

filtered using a monochromator (usually diffraction grating with supporting optics) so that

the sample is illuminated by a narrow range of frequencies [6]. The resolution, however, is

limited by two factors: Doppler broadening of the atomic transitions due to the velocity

distribution of atoms in the vapour and due to the resolving power of the monochromator.

The resolving power, or resolvance is simply the ratio of the wavelength to the smallest

resolvable wavelength interval. Most modern commercial spectrophotometers have a re-

solvance between 104 -105, whereas with Fabry-Perot cavities of free spectral range (FSR)

on the order of 100 MHz, the resolvance improves to between 105-106. As detailed later,

laser spectroscopy can also be set up in such a way as to eliminate Doppler broadening.

Altogether, laser spectroscopy paves the way for the most precise measurements of atomic

spectral features.

4
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The spectroscopic method used in this experiment operates in the weak probe regime. The

idea behind this technique is that the most accurate transmission spectra are obtained

when the laser power is low enough such that the ground state population of the atoms is

not changed significantly. When an electron is excited to a higher energy state, it remains

there for roughly the lifetime of that particular state, before decaying back down. While

the atom is thus excited, it appears effectively invisible to the incoming photons since

they are no longer in resonance with any transition. If the rate of photons incident on the

atom is larger than the lifetime, there will be a fraction of photons that will pass through

unimpeded. The effect of this on experimental results is to effectively decrease the signal

to noise ratio of the spectrum.

In order to put this on a more quantitative basis, the optical Bloch equations for a two

level atom interacting with an external laser field are solved. The derivations in this

chapter follow the treatment in Refs. [7–9].

The Hamiltonian of the system is:

H = HA +HI(t), (2.1)

where HA corresponds to the atomic part of the Hamiltonian and HI(t) to the time

dependent interaction with the laser field. The solution in the absence of the interaction

term is simple and is given in terms of the atomic eigenvectors and an explicit time

dependence factored out:

ψ(r, t) = c1(t)|1〉e−iω1t + c2(t)|2〉e−iω2t, (2.2)

where ωn = En/~ and En are the energy eigenvalues for the atomic Hamiltonian: HA|n〉 =

En|n〉 . Since this is a closed two level system, the coefficients also obey |c1(t)|2+|c2(t)|2 =

1 where c1 and c2 are the complex amplitudes of the wavefunction. The light field can

now be included in the calculation. In the dipole approximation, the Hamiltonian is given

as:

HI = −D · E cos(ωLt). (2.3)

Here, E cos(ωLt) corresponds to the classical electric field of a monochromatic light field

with frequency ωL and D = er is the electric dipole term for a single electron of charge e at

a position r from the atoms centre of mass. The dipole approximation can be assumed to

hold for the consideration of alkali atoms since they only have a single valence electron and

the wavelength of the incident light is much larger than the atomic radius. Substituting
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equation (2.2) into the time dependent Schrödinger equation yields a coupled set of time

dependent equations for the coefficients:

iċ1(t) = Ω cos(ωLt)e
−iω0tc2(t) (2.4)

iċ2(t) = Ω cos(ωLt)e
iω0tc1(t), (2.5)

with ω0 = ω2 − ω1 and also having defined the Rabi frequency, representing the rate of

population fluctuation between the two levels, as:

Ω = −〈1|er · E|2〉
~

. (2.6)

Now equations (2.4) and (2.5) can be expanded to:

iċ1(t) =
Ω

2
[ei(ωL−ω0)t + e−i(ω0+ωL)t]c2(t) (2.7)

iċ2(t) =
Ω

2
[ei(ω0+ωL)t + ei(ω0−ωL)t]c1(t). (2.8)

Next, the rotating wave approximation is made, which eliminates the fast oscillating terms

containing ω0 + ωL since they are much faster than the other two terms and over the

interaction time, average out to a null contribution. This gives us the following coupled

equations:

iċ1(t) = Ωei(ωL−ω0)tc2(t) (2.9)

iċ2(t) = Ωei(ω0−ωL)tc1(t). (2.10)

Using these equations, a density matrix for the system can be defined:

ρ =

(
ρ11 ρ12

ρ21 ρ22

)
=

(
|c1|2 c1c

∗
2

c∗1c2 |c2|2

)
, (2.11)

where the time dependence in front of the coefficients has been dropped for brevity. The

use of this matrix is that it gives us useful information in a compact notation; the diagonal

terms correspond to the occupation probability of the two states, whereas the off-diagonal

terms account for any coherences that exist between the two states. The matrix must

have a trace equal to one and must also be Hermitian, giving ρ21 = ρ∗12. The final thing

left to consider is the inclusion of spontaneous emission, which is impossible to derive

from semi-classical theory. Instead a factor Γ0 modeling spontaneous emission as a loss

of coherence in the off diagonal elements is included:
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ρ̇spon
21 = −Γ0

2
ρ21, (2.12)

with Γ0 calculated from Fermis Golden Rule requiring quantisation of the field modes of

the incident light:

Γ0 =
ω3|〈1|r|2〉|2

3πε30
. (2.13)

The lifetime of the excited state can be defined as τ = 1/Γ0. In this treatment, any

effects of collisions are excluded, which would serve to reduce the lifetime. The optical

Bloch equations can now be written, where the laser detuning from the transition is

introduced ∆ = ωL − ω0 and taking the exponential time dependence into ρ̃21 = ρ21e
iωLt,

ρ̃12 = ρ12e
−iωLt:

ρ̇22 = −Γ0ρ22 + i
Ω

2
(ρ̃21 − ρ̃12), (2.14)

ρ̇11 = Γ0ρ22 + i
Ω

2
(ρ̃12 − ρ̃21), (2.15)

˙̃ρ12 = −
(

Γ0

2
+ i∆

)
ρ12 + i

Ω

2
(ρ11 − ρ22). (2.16)

In the steady state, all the above equations are equal to zero. To obtain the excited state

probability we substitute ρ12 and ρ21 = ρ∗12 from equation (2.16) into equation (2.14). We

also make the substitution ρ11 = 1− ρ22, yielding:

ρ22 =
Ω2

Γ2
0 + 4∆2 + 2Ω2

. (2.17)

To obtain the final scattering rate, equation (2.17) is multiplied by Γ0 to obtain:

Rscatt =
Γ0

2

Ω2/2

Γ2
0/4 + ∆2 + Ω2/2

. (2.18)

From this equation, it is evident that no matter how high the Rabi frequency and hence

electric field strength become, the scattering rate will tend to Γ0/2, meaning that the

atom is scattering at half its decay rate. This is easy to understand because in the same

limit, ρ11/ρ22 = 1, and the atom spends equal amounts of time in the ground and excited

state. It is therefore useful to define a saturation parameter in terms of the laser intensity

I and saturation intensity Isat, which is a more directly tangible physical quantity in the

laboratory:
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I

Isat

= 2
Ω2

Γ2
0

, (2.19)

giving a redefined scattering rate:

Rscatt =
Γ0

2

I/Isat

1 + I/Isat + 4∆2/Γ2
0

, (2.20)

and occupation ratio:

ρ11

ρ22

=
I/Isat

2 + I/Isat + 8∆2/Γ2
0

. (2.21)

Thus to be in the weak probe regime, the condition I � Isat is required. The saturation

intensity can be calculated as the ratio of the incident photon energy to the cross-section

3λ2/π times the state lifetime to give:

Isat =
~πω0

3λ2τ
=

2~π2c

3λ2τ
. (2.22)

From this, the saturation intensity for the species used in this experiment can be calcu-

lated, giving Isat = 2.71 mW/cm2 for cesium and Isat = 1.75 mW/cm2 for potassium,

using the values from Appendix A.

2.2 Doppler Broadening

The simplest possible spectroscopy method involves optically exciting an atomic sample

with only a single weak probe beam at resonance (Fig. 2.1). The main contribution to

the finite linewidth in probe-only spectroscopy is the Doppler-broadening from the beam

exciting atoms of different velocity groups, resulting in a Gaussian line shape. A simple

derivation can be used to demonstrate this. The atoms see the laser photons at a new

frequency νdop given by:

νdop = νL

(
1 +

v

c

)
, (2.23)

where v is the component of the atom’s velocity in the direction of the probe beam. The

probability of an atom in the ensemble having a velocity between v and v + dv is given

by the Maxwell distribution:

P (v)dv =

(
M

2πkBT

)1/2

exp

(
−Mv2

2kBT

)
dv, (2.24)

where M is the atomic mass, kB is the Boltzmann constant, T is the absolute temper-

ature. From equation (2.23) we see that dv = c
νdop

dνL and we can thus substitute into
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equation (2.24) to obtain the probability of the a laser-atom resonance:

P (νL)dνL =
2

δπ1/2
exp
−4(νL − ν0)2

δ2
dνL, (2.25)

where we defined a parameter related to the linewidth δ = 2(ν0/c)(2kBT/M)1/2. The

FWHM gives the linewidth of the Gaussian lineshape, and is shown in 2.2:

FWHM = δ(ln 2)1/2 = 2
ν0

c

(
2kBT ln 2

M

)1/2

. (2.26)

2.3 Electric Susceptibility

In describing the atom-light interaction of a two level atom using the optical Bloch equa-

tions, the treatment so far has been for individual atoms. The susceptibility is used to

characterise the collective absorptive and dispersive properties of an ensemble of atoms

illuminated with a light field.

The response of a dielectric material to an applied external field (as in equation (2.3))

along one dimension is given by:

P = ε0χ0(∆)E0 cos(ωt) =
1

2
ε0E0[χ∗(∆)eiωt + χ(∆)e−iωt], (2.27)

where ε0 is the electric permittivity and χ0(∆) is the electric susceptibility that is a

function of the detuning frequency.

To connect this macroscopic response to the two level atom, we use another definition

that treats the polarisibility as the product of N atoms and the expectation of their dipole

moments 〈µ̂〉. Since an atom cannot absorb or emit a photon and remain in the same

state, the dipole matrix takes a simple form:

µ̂ =

(
0 µ12

µ21 0

)
, (2.28)

where the dipole is µ = µ12 = µ21 = −~Ω/E0. We make use of the properties of the

density matrix to write:

P = NTr(ρ̂µ̂) = Nµ(ρ12 + ρ21). (2.29)

We can once again re-express these variables with the explicit time dependence taken out

to obtain:

P = Nµ(ρ̃12e
iωt + ρ̃21e

−iωt). (2.30)

Now we can simply compare the coefficient in front of e−iωt of this equation to that of

equation (2.27) and read off the form of the susceptibility:

χ(∆) =
2Nµ

E0ε0
ρ̃21. (2.31)
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We can obtain an expression for the coherence term ρ̃21 in the steady state from equa-

tion (2.16). Once again, the time derivative ˙̃ρ21 must equal zero and furthermore, we can

make the assumption that in the limit of weak (infrequent) excitation the majority of

the population will be in the ground state, hence ρ11 = 1 and ρ22 = 0. Substituting into

equation (2.31), whilst also substituting for the Rabi frequency, we obtain:

χ(∆) = −Nµ
2

~ε0
1

∆ + iΓ0/2
= −Nµ

2

~ε0
fΓ0(∆). (2.32)

Here, a lineshape factor fΓ0 (∆) is introduced. The real and imaginary components of this

complex equation are:

χR(∆) = −Nµ
2

~ε0
∆

∆2 + Γ2
0/4

(2.33)

χIm(∆) =
Nµ2

~ε0
Γ0/2

∆2 + Γ2
0/4

. (2.34)

The imaginary part of equation gives a Lorentzian lineshape whereas the real part gives

a dispersion curve. The FWHM of the Lorentzian is simply the natural linewidth Γ0

described earlier with an associated lifetime Γ0 = 1/τ . For cesium and potassium, this is

Γ0 = 2π × 5.23 MHz [10] and Γ0 = 2π × 6.04 MHz [11], respectively.

We can gain further insight into the behaviour of equations (2.33) and (2.34), by first not-

ing the defintion of µ2 = 3π~ε0Γ−3
0 and then defining a dimensionless parameter a=∆/Γ0.

Taking all the constants in front of the fraction into χ0, equations (2.33) and (2.34) are

now re-expressed and plotted in figure 2.1:

χR(s) = −χ0
a

2a2 + 1/2
(2.35)

χI(s) = χ0
1

4a2 + 1
. (2.36)

It is clear from this plot that at frequencies far from the central detuning i.e., a � 1,

the contribution from the Lorentzian linewidth is much smaller such that χRe ∝ 1/∆

and χIm ∝ 1/∆2. Hence far from resonance, the dispersion effects dominate over the

absorption.

The analysis of electric susceptibility up to now neglected the Doppler broadening ef-

fects of atomic motion in a vapour as described in section 2.2. So far, the lineshape

used in equation (2.32) was Lorentzian corresponding only to homogenous broadening.

The inhomogenous Doppler broadening can be incorporated by taking a convolution of
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Figure 2.1: Plot of the real and imaginary components of susceptibility for a two-level system

for an ensemble of atoms. The blue line indicates the real part and the orange line indicates the

imaginary part.

the Lorentzian lineshape shifted by kv in frequency and the Gaussian distribution from

equation (2.24) to give the Voigt lineshape s:

s(∆) =

∫ +∞

−∞
fΓ0(∆− kv)× P (v)dv. (2.37)

This lineshape can be used in a model for calculating the line-strength of a particular

atomic transition.

2.4 Fitting Routine

Experimentally, the spectra for different temperatures are fitted using Elecsus, a Python

program developed by the Atomic and Molecular physics group at Durham University [12].

The program simulates a single weak probe beam described in section 2.2 by calculating

the electric susceptibility of a number of alkali vapours which is used for predicting its

absorptive and dispersive properties. This is used for calculating the lineshapes of transi-

tions in the Doppler-broadened transmission spectrum of alkali metals, including cesium

and potassium. The frequencies and strengths of the spectral features are obtained by

numerically solving the full atomic Hamiltonian.

The program can calculate the theoretical transmission lines of the alkali metal set by
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the user in the Elecsus program. It can also perform fits to the experimental data that

is inputted into the code in the form of a two column .csv file, with the first column

giving the linear detuning and the second column containing the transmission data of

the spectrum. There are three options for the fitting routine which can be performed

on the raw inputted data, and the type of fitting should be selected depending on the

number of user-defined parameters. The type of fitting used throughout the report is the

Marquardt-Levenberg (ML) method which is the simplest of the available fitting options

and works by finding the minimum of the sum of the square deviations [13].

User specified parameters used for the fitting routine include the cell length and the

temperature of the cell determined in the method described in the following chapter.

Elecsus accepts a cell temperature range between 25 ◦C and 277 ◦C.

2.5 K D2 and Cs D2 Lines

The D2 transitions of potassium and cesium are considered in this report since these are

used commonly for laser-cooling experiments [1]. The D lines for alkali metals have the

highest emission/absorption probability of the optical transitions due to them having the

highest oscillator strength.

The transition wavelengths of the D2 lines for cesium and potassium are 852.347 nm

(2S3/2→2P3/2) and 766.701 nm (2S1/2→2P3/2) , respectively. Figures 2.2 and 2.3 show the

standard energy level diagrams for the D2 lines of potassium and cesium and the relevant

properties of the K and Cs D2 lines are found in Appendix A.

133Cs is the only stable, naturally occurring isotope of cesium. The ground state of cesium

is split into F = 3 and F = 4 from the hyperfine interaction between the nuclear magnetic

moment and the magnetic field generated by the electron. The transitions from the ground

state to the upper excited states is determined by the selection rule ∆F = ±1, 0.

There are three naturally occurring isotopes for potassium: 39K,40K and 41K. 39K is most

abundant at 93.26%, and 40K is the least abundant isotope accounting for 0.0001% [11].
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Figure 2.2: D2 energy level diagram of cesium. Note that the figure is not drawn to scale.

Values are taken from [10].
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Figure 2.3: D2 energy level diagram of natural abundance potassium. All units for the hyper-

fine transitions are in MHz. Note that the figure is not drawn to scale. Values are taken from

[11].



Chapter 3

Experimental Setup

3.1 General Overview

This section details the experimental setup for Doppler broadened spectroscopy of the D2

lines for the K+Cs mixed species vapour cell. External cavity diode lasers (ECDLs) in

the Littrow configuration are used to access the D2 lines of potassium and cesium for the

mixture cell. A Fabry-Perot interferometer (FPI) with a free-spectral range (FSR) of 300

MHz is used to calibrate the frequency scale.

3.1.1 ECDLs

Tunable diode lasers are used widely in atomic physics experiments. Some of the main

features of ECDLs are briefly covered here since they are extensively used for the experi-

ment. An ECDL uses an adjustable external diffraction grating to form a resonant cavity

between itself and the rear facet of a laser diode. A lens which is anti-reflection (AR)

coated collimates the light onto an adjustable grating for precise wavelength tuning to

the desired atomic transition.

The external cavity in the Littrow confguration is used in this project. In this configura-

tion, the laser diode emits the light onto a grating, which selects the zero order light to be

outcoupled to the experiment and the first order light to be reflected back into the diode

for feedback. Because the first order beam is reflected, greater optical power can be fed

into to the experiment, providing an advantage over the Littman-Metcalf configuration

which is the other common external cavity configuration.

Although the extended cavity provides a certain degree of frequency stabilisation with its

internal feedback, it does not completely eliminate undesirable effects such as frequency

15
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drifting which can only be accomplished through stabilising the laser frequency with an

external feedback mechanism.

3.1.2 K+Cs Mixture Cell

The custom-made K+Cs mixture cell has an optical path length of 1 cm and contains

natural abundance potassium and cesium filled at a 1:1 ratio (see Appendix A for their

properties). The reason for the short optical path length of the cell is to induce a large

number of interatomic collisions at high temperatures to observe any features as a result of

the cesium species. The cell is made from pyrex, which is commonly used in spectroscopic

experiments and is enclosed in a brass casing and mounted on an aluminium stand as

shown in Fig. 3.1. The brass enclosure has an aperture with a radius of .25 cm for optical

access.

Figure 3.1: Cross-sectional image of mixture cell enclosed in a brass casing and placed on a

TEC for temperature adjustment and mounted on an aluminium stand.

For temperatures up to 138 ◦C, the cell is heated using a thermoelectric cooler (TEC)

with the hot side in contact with the base of the brass casing. The temperature of the

cell is measured using an AD590 transducer placed in a drilled hole with thermal paste
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for contact on the side of the casing. The transducer has a linear current response to

temperature. The transducer is powered using a 12 V DC supply and the temperature is

inferred by measuring the voltage across a 1.00 ±0.05kΩ resistor. The schematic of the

circuit used is shown in Fig. 3.2. The transducer has an absolute temperature response

of 1 mV/K, giving very accurate temperature readings up to 150 ◦C.

Figure 3.2: Schematic of cell temperature measurement setup using the AD590 transducer.

The circuit is powered by a 12 V DC supply, giving an absolute temperature reading of 1 mV/K,

measured using a multimeter across the 1.00 ±0.05kΩ resistor. (Edited and adapted from the

AD590 specification sheet)

To observe the K D2 line, the cell is heated to a higher temperature compared to the cell

temperature when observing the Cs D2 line. The room temperature vapour pressure of

potassium is much lower than cesium as shown in Fig. 3.3, and significant absorption is

observed only when the cell is heated for the short cell length. Due to its room temperature

vapour pressure, cesium is one of the commonly used alkali metals used for spectroscopy

experiments, since significant absorption between 10%-50% can be observed for 5 -7 cm

cell lengths at room temperature [1].

The equation for calculating the vapour pressure of potassium and cesium is taken from

Ref.[14], and has the following form:

logPv = A−BT−1. (3.1)

Here, Pv is the vapour pressure in units of atm and T is the temperature of the atomic

specimen in Kelvin. For the solid phase of cesium, the constants A and B are 4.711

log(atm) and -3999 log(atm)·K, respectively and for the liquid phase constants A and B

are 4.165 log(atm) and -3830 log(atm)·K, respectively. The corresponding constants for

solid potassium are 4.961 log(atm) and -4646 log(atm)·log(atm), and for the liquid phase,

4.402 log(atm) and -4453log(atm)·K. This equation is valid for temperatures between

24.85 ◦C and 276.85 ◦C for cesium and 24.85 ◦C and 326.85 ◦C for potassium. Additional
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polynomial terms may be included for the vapour pressure equation, however, two terms

used for this calculation suffices for a realistic vapour pressure calculation with an associ-

ated error of ±5% [14]. Figure 3.4 shows a plot of the calculated number densities for the

same temperature range in Fig. 3.3 for cesium and potassium using the vapour pressure

values from equation (3.1):

N =
101325× 10logPvNA

RT × 106
, (3.2)

where N is the number density in units of cm−3, NA is the Avogadro constant, R is the

ideal gas constant, and T is the absolute temperature.

Figure 3.3: Vapour pressure of cesium and potassium as a function of temperature, plotted

on a log-lin scale. The vapour pressure of cesium and potassium are indicated in red and black,

respectively. The dashed line in red indicate the melting point of cesium and potassium at

28.44 ◦C [10] and 63.65 ◦C [11], respectively

To achieve higher cell temperatures, a nichrome wire is wound around the brass casing and

insulated using layers of foil and insulation wool to prevent as much heat loss as possible.

An air gap was created between the casing and the aluminium mount to minimise heat

transfer to the optical table. Above the operating temperature limit of the transducer,

the cell temperature is measured using a thermocouple.
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Figure 3.4: Number density of cesium and potassium as a function of temperature, plotted

on a log-lin scale. The number density of cesium and potassium are indicated in red and black,

respectively. The dashed lines in red indicate the melting point of cesium and potassium at

28.44 ◦C [10] and 63.65 ◦C [11], respectively.
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3.2 Cesium D2 line Absorption Spectroscopy

We use a commercial diode laser supplied by Sacher Lasertechnik tuned to the Cs D2

optical transition at 852 nm. The schematic of the experimental set-up is shown in

Figs. 3.5 and 3.6. The external cavity of the laser head (TEC 100) has been slightly

reconfigured in the department after being repaired in the past. Output current, laser

temperature and piezo voltage are controlled using the supplied laser driver (MLD 1000).

Figure 3.5: 852 nm ECDL in the Littrow configuration. The red line shows the beam path

from the diode. The zeroth order beam is selected from the grating and outcoupled to the

experiment using a steering mirror, and the first order beam is reflected back into the diode.

To initially set the diode current to the atomic transition, an infrared (IR) viewer is used

to observe fluorescence in the cell as the optical frequency of the laser is adjusted via the

current driver.

Due to changes in the operating conditions (e.g. ambient temperature), the laser was

not initially scanning mode hop-free over the required range of about 9 GHz. The laser

temperature was carefully adjusted in an attempt to increase its scanning range, however

this resulted in the laser multi-moding. The laser was realigned using a wavemeter to

the Cs D2 transition wavelength at the laser current where the transition was initially
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observed, and the cavity grating realigned for a mode hop-free scan across the entire D2

spectrum. The small FSR of the laser cavity limits the mode hop free scanning range of

the laser.

Figure 3.6: Experimental schematic for Doppler-broadened spectroscopy of Cs and K+Cs

mixture cell for the Cs D2-line. The black line leaving the external cavity diode laser (ECDL)

shows the light path for Doppler-broadened spectroscopy. The reflected light from the beam

splitter (BS1) is passed through the Cs cell and is detected by the photodiode indicated by PD1

with a 5.50 ±0.01MΩ resistor. The stronger light is reflected by the mirrors (M1-M4) and passes

through to a Fabry-Perot interferometer (FPI) with a free spectral range of 300 MHz to calibrate

the frequency axis. Light diffracted by the second beam-splitter (BS2) passes through a variable

neutral density (ND) filter to ensure the light entering the mixture cell is in the weak-probe

regime.
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3.3 Potassium D2 line Absorption Spectroscopy

For potassium spectroscopy, a 767 nm home made ECDL is used to access the K D2 tran-

sition. A laser diode controller (Thorlabs LDC 202 C) is used to adjust the laser current

and adjustment of the piezo controller (Thorlabs MDT693A) is used for small changes

in the length of the external cavity in the diode laser. To scan across the transition in

frequency space, a triangular waveform is fed into the piezo controller, with the amplitude

of the signal leading to a proportional shift in cavity length and hence frequency. The

schematic of the experimental set-up is shown in Figs. 3.7 and 3.8.

Figure 3.7: Home built 767 nm ECDL in Littrow configuration. The zeroth order beam is

selected from the grating and outcoupled to the experiment.

To ensure the light entering the cell is in the weak probe regime, the probe intensity must

be sufficiently weak such that I � Isat, as it was detailed in section 2.1. The intensity is

calculated using:

I =
2P

πw2
, (3.3)

where P is the measured power and w is the beam width. A variable ND filter is used

to attenuate the power of the beam entering the cell. Figure 3.9 shows the transmission

measured at the zero detuning of the K D2 line for the mixed cell species as a function of

I/Isat. The absorption quickly decreases and deviates from the predicted transmission of

the weak probe regime as the probe intensity is increased, showing the importance of a

weak probe intensity. The light exiting the cell is detected by photodiodes in series with

a 4.40 ±0.04MΩ resistance. A separate beam split off from a glass blank is used for the

subtraction of the background laser power variation (laser intensity noise). A 10 cm pure
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Figure 3.8: Experimental schematic for Doppler-broadened spectroscopy of K D2-line. The

ND1 filter is used to ensure an even optical power into the two photodiodes (PD1 and PD2) for

laser background subtraction. The ND2 filter is used to ensure the light entering the K+Cs cell

is in the weak-probe regime.

potassium cell is used as a reference for finding the D2 transition as the laser is scanned

across the transition, as the absorption signal is difficult to observe for up to 50 ◦C.

Figure 3.9: Transmission of the K D2 line measured at zero detuning as a function of I/Isat

for a 1 cm long K+Cs mixed species cell. The dashed line indicates the predicted transmission

in the weak-probe regime, determined from measurements at the lowest probe intensities.



Chapter 3. Experimental Setup 24

With the 767 nm home built ECDL, it was found that a fine scale tuning of the piezo

was not sufficient to compensate for the frequency drifting of the diode laser and hence,

frequent coarse adjustment of the grating angle in the cavity was necessary to tune the

cavity back to resonance.

3.4 Signal Processing

To determine the transmission of the spectrum, the signal is divided by background power

measued from a separate beam that does not enter the cell. An example of a raw signal

is shown in Fig. 3.10. Following the division by the background power variation of the

laser, the maximum transmission at a point away from the absorption features is taken

to be a reference for the 100% transmission. The minimum transmission is defined as the

minimum of the Dopppler-broadened absorption dip.

To calibrate the frequency axis, the signal from the FPI is used, indicated with the blue

line in Fig. 3.10. The separation between the peaks of the FPI is given by the length of

the cavity, and this is used to calibrate the frequency axis. The spectrum is then centered

and the resulting frequency and transmission data is exported as a .csv file to upload to

the Elecsus program for fitting. The processed signal is shown in Fig. 3.11.
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Figure 3.10: Sample of a raw signal of a Doppler broadened K D2 transmission spectrum

(black) and the signal from the FPI used to calibrate the frequency scale (blue). The background

laser power variation (red) is divided by the transmission spectrum, for a more accurate fitting

to the experimental data.

Figure 3.11: Processed signal of the spectrum in Fig. 3.10, where the maximum transmission

is scaled to 1 and the frequency axis calibrated using the signal from the FPI.
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3.5 Single Species Cell

The Doppler-broadened transmission spectrum of the Cs D2 line has two transmission

dips corresponding to the F = 3 → F ′ = 2, 3, 4 and F = 4 → F ′ = 3, 4, 5 transitions of

the 62S1/2 → 62P3/2 energy levels. Figure 3.12 shows the transmission spectrum of a pure

5 cm cesium cell. All measurements are taken within the weak probe regime, with the

probe beam having intensities between I=0.03-0.05Isat. For potassium, I=0.004-0.007Isat

for all measurements.

Figure 3.12: Doppler broadened transmission spectrum of the Cs D2 line for a 5 cm long, pure

cesium cell, at a calculated temperature of 25◦C. The black line shows the raw spectrum that

has been adjacent averaged, and the red line is the temperature fit to the raw data performed

by the algorithm. (a) shows the Doppler broadened spectrum for the F = 4 → F ′ transitions

and (b) for the F = 3→ F ′ transitions of the 62S1/2 → 62P3/2 energy levels

As seen in Fig. 3.12, only two transmission dips are visible. The hyperfine features are

obscured due to the effect of Doppler broadening which is approximately 377 MHz at

25 ◦C, which is calculated using equation (2.26) using the values in Appendix A and C.

This is larger than the all of the splittings in the hyperfine excited state manifold.

For the Doppler broadened spectroscopy of potassium of the mixture species cell, a 10

cm single species potassium cell is used as reference to initially find the K D2 transition.

Figure 3.13 shows the transmission spectrum of this reference cell, with some hyperfine

features visible due to back reflection of light entering the cell from supporting optics.
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Figure 3.13: Transmission plotted against linear detuning of a pure, 10 cm potassium cell used

as a reference for getting the ECDL on the K D2 transition. The approximate temperature of

the cell as measured with a thermocouple is 35◦C. The black dashed lines indicate the F = 1

and F = 2 hyperfine splitting and the red dashed line shows the crossover dip occuring halfway

between the F = 1 and F = 2 levels.
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Results

4.1 Cs D2 Line

The Doppler broadened transmission spectrum of the cesium D2 lines, with the calculated

transmission spectrum as a function of linear detuning are shown in Fig. 4.1. Since cesium

has a sufficiently large number density at room temperature, significant absorption is

observed at 24.6 ◦C (49% on the F = 4 line), and at a slightly higher temperature of

45.4 ◦C, there is almost complete absorption (99% absorption on the F = 4 line). Looking

at the transmission spectrum, the centres of the transmission minima are separated by

approximately 8900 MHz, which is close to the frequency difference between the F = 3→
F ′ = 4 and F = 4→ F ′ = 5 transitions of 8939 MHz.

The transmission for the mixed species cell for F = 3→ F ′ and F = 4→ F ′ transitions

of the the 2S1/2 →2 P3/2 states are plotted in Fig. 4.2. The solid lines show the calculated

transmission for the two transitions for a pure cesium cell that is 1 cm in length. The

experimental data agrees with theory, showing that the mixed species cell, using a 852 nm

laser, behaves as a pure cesium cell [15].

28
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Figure 4.1: Doppler broadened transmission spectrum of the Cs D2 line for a mixed species at

different temperatures. The black line shows the raw spectrum that has been smoothed, and the

red line is the temperature fit to the raw data performed by the algorithm. The temperatures

of the fitted curves are 24.6◦C and 45.4◦C for the shallower and deeper transmission spectrum,

respectively. (a) and (b) show the transmission spectrum for the F = 4 line and F = 3 line,

respectively.

Figure 4.2: Transmission of the Doppler broadened Cs D2 line for different cell temperatures

for the mixed species cell. All measurements were taken at zero detuning where maximum

absorption is observed. The solid line shows the predicted transmission for a 1 cm pure cesium

cell of the Doppler broadened F = 3 → F = 2, 3, 4 (black) and F = 4 → F = 3, 4, 5 (red)

transitions.
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4.2 K D2 Line

The transmission for different cell temperatures as the cell is heated is shown in Fig. 4.3.

The solid line shows the predicted transmission for a pure, 1 cm potassium cell. Since

cesium has a larger number density compared to potassium, the cell must be heated

considerably to observe appreciable absorption on the potassium D2 line, hence the tem-

perature range (34.8 ◦C - 148.2 ◦C) is much larger compared to the cesium plots. The

transmission of the mixed species cell shows a excellent fit to the theory line, showing

that the mixture cell, within this temperature range, behaves as a 1 cm pure potassium

cell.

Figure 4.3: Transmission of the Doppler-broadened K D2 line at different temperatures. All

measurements were taken at zero detuning where maximum absorption is observed. The solid

line shows the predicted transmission for a 1 cm pure potassium cell. The temperature of the

cell was measured using an AD590 transducer.

The individual transmission plots for different temperatures are shown in Fig. 4.4. Trans-

mission is plotted against linear detuning. The red lines indicate the fit to the raw data

and the theory plots at slightly different temperatures from the fit temperature are in-
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cluded for comparison. The residuals indicate the degree of deviation of the experimental

data from theory. In most of the transmission spectra, the agreement between experiment

and theory is good, with the residuals lying within a percent deviation. In Fig. 4.4(d)

where the cell temperature is 96.1 ◦C, the effect of off-resonant light on the maximum

absorption is seen by looking at the residual plot with a 4% deviation from theory where

this effect is present.

Even with the laser tuned to the transition frequency, there will be a fraction of atoms

that will not be resonant with the laser due to the Doppler effect. This effectively means

that the transmission dip gets bigger or smaller as a function of temperature.

Subtraction of the background laser power variation is more difficult at high temperatures.

Although the background subtraction was performed to eliminate the laser intensity varia-

tion from the laser, it is clear from the asymmetrical baseline for a few of the transmission

spectra in Fig. 4.4 that the laser intensity variations were not completely eliminated. This

is due a combination of different factors, and includes the vapour cell windows and pho-

todetector, or the reflecting surfaces from surrounding optics resulting in an etalon effect

from amplitude modulation.

Fig. 4.5 shows a comparison of the predicted cell temperature using Elecsus and the

temperature reading from the AD590 transducer. The temperature measured using the

transducer consistently read a temperature higher than the calculated temperature. This

can be explained by the fact that the cell was in poor thermal contact with the brass

casing, resulting in a lower temperature within the cell compared to the temperature that

was measured by the transducer. As seen in Fig. 3.1, the cell was loosely enclosed in

the brass casing with air gaps present between the cell and the casing to prevent damage

to the cell windows. This resulted in an offset temperature between the measured and

actual temperature of 9 ◦C. Fig. 4.6 shows the relative transmissions for different cell

temperatures from the fit to experimental data.

Up to a temperature of approximately 175 ◦C, the natural broadening is larger than the

self-broadening, and for a temperature range between 175 ◦C and 250 ◦C, the contribution

from the self broadened linewidth becomes greater than from the natural linewidth. For

temperatures exceeding 250 ◦C, the Doppler width is the dominant contributor compared

to the total Lorentzian linewidth. The total Lorentzian linewdth, Γtot, is defined as [1]:

Γtot = Γ0 + Γself = Γ0 + βN, (4.1)

Here, Γtot is the total Lorentzian linewidth which results from the contribution of the nat-

ural linewidth Γ0 and the self-broadened linewidth, Γself . The self broadening coefficient
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Figure 4.4: Doppler broadened transmission spectrum of the K D2 line at different tempera-

tures. All measurements were taken at zero detuning where maximum absorption is observed.

The black line shows the raw spectrum that has been smoothed, and the red line is the tem-

perature fit to the raw data performed by the algorithm. The temperatures from the fit are (a)

34.8 ◦C+0.2 ◦C, (b) 55.1 ◦C+0.3/-0.8◦C, (c) 69.4 ◦C±0.3 ◦C, and (d) 96.1 ◦C+1.0/-1.1 ◦C. The

errors associated with the fitted temperatures are determined from the theory curves at slightly

different temperatures from the fitted temperatures to illustrate the accuracy of the temperature

of the fitting routine.
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β for the D2 lines is defined as [1]:

β = 2π ×
√

2Γ0

(
λ

2π

)3

. (4.2)

For a temperature range between 34.8◦ C to 150◦ C considered in this report, the dominant

broadening mechanism is Doppler broadening, which is two orders of magnitude greater

than the natural broadening and between two to ten orders of magnitude greater than

the self-broadening. A plot showing the different broadening mechanisms contributing to

the total linewidth for the K D2 line is included in Appendix B.

From Fig. 4.6, it is clear that measurements at high cell temperatures require a larger

mode hop free tuning range of the laser to resolve the full spectral range as the linewidth

of the spectrum increases. The maximum mode-hop free scanning range of the ECDL

after coarse adjustment of the piezo is roughly 6 GHz. This scanning range is sufficient

thus far, however a larger scanning range is required to resolve the full spectral range for

higher temperatures, as it is seen later. By applying a feed-forward current modulation,

the scanning range is increased to 14 GHz. Hence the scanning range of the laser limits

our ability to resolve the full range of the transmission spectrum.

To determine whether the presence of cesium in the cell affects the transmission spectrum

of potassium, the cell temperature was further increased to induce a higher inter-atomic

collision rate between the two alkali metals. At around 155 ◦C , we begin to observe

some features on the wings of the Doppler-broadened spectrum which does not corre-

spond to any of the hyperfine transitions of potassium, possibly indicating absorption

resulting from molecular transitions. Since the transducer is not built for temperature

measurements exceeding 150 ◦C as mentioned in section 3.1.2, a thermocouple was used

for rough measurement of the cell temperature. The calculated spectrum at the measured

temperatures are indicated in light green are shown in Figs. 4.7 and 4.8.

After two days of heating the cell at temperatures between 190 ◦C and 200 ◦C, the atomic

mixture oxidized and acquired a yellowish tint with visible residue on the cell walls.

Oxidation is a common occurrence when heating a cell to high temperatures, as observed

in rubidium at high temperatures. Pyrex becomes more porous as the cell is heated to

high temperatures, and as a result, the alkali metals oxidized, resulting in a weakened

signal detected for both alkali metals. The accumulated residue on the sides of the cell

wall is also potentially the reason for a decreased absorption signal. Possible solutions

to prevent oxidation above 190 ◦C is to increase the glass thickness of the cell wall and

to limit the measurements made to short intervals to minimize the time that the cell is

exposed to high temperatures.

Figs. 4.7 and 4.8 show the transmission spectrum before the cell oxidized. A temperature
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Figure 4.5: Comparison of the cell temperature measured using the AD590 transducer and

the predicted cell temperature from Elecsus. The red line shows the linear fit to the raw data,

where the slope from the fit is 1.0±0.1 and the intercept is 9±1.

Figure 4.6: Overlay of the fitted transmission spectrum of the K D2 line for the mixture cell

from Fig. 4.4. The black lines are the raw data and the temperatures resulting from the fitting

routine are 32.8◦C (purple), 55.1◦C (red), 69.4◦C (blue), and 96.1◦C (green).
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Figure 4.7: Transmission spectrum of the K D2 transition plotted against detuning at a

cell temperature measured at 223 ◦C with a thermometer. The light green curve shows the

calculated transmission profile at this temperature using a thermocouple. The cell temperature

are approximated by overlaying prediction curves at 155 ◦C (blue), 165 ◦C (red), and 160 ◦C

(dark green). The dashed lines indicate the absorption features observed at -2.3 GHz, 2.94 GHz,

4.52 GHz and 5.14 GHz.
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Figure 4.8: Transmission spectrum of the K D2 transition plotted against detuning at a cell

temperature of approximately 199 ◦C, plotted with the theory curves at different temperatures.

The dashed lines indicate the positions of the absorption features observed at 5.16 GHz and

7.22 GHz. The raw data measured at 190 ◦C is indicated in black, and the calculated spectrum

at 190 ◦C is indicated in light green. The blue, dark green, and red curves are the theoretical

spectrum at 199 ◦C, 197 ◦C, and 200 ◦C, respectively.
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fit could not be performed on Elecsus since the background laser power variation must

be subtracted, and this could not be performed since doing so results in an asymmetric

baseline, as it was seen in previous results in Fig. 4.4. Predicted transmission curves are

overlayed on the raw spectrum which indicate the cell temperature to be approximately

199 ◦C in Fig. 4.8 and 155 ◦C in Fig. 4.7. Since the temperature readings were made with

a thermocouple, the measurements are not nearly as reliable as the transducer and as a

result there is a greater discrepancy between the measured and predicted temperatures,

especially in Fig. 4.7.

Fig. 4.7 was reconstructed from the bitmap image file from the oscilloscope using a pro-

gram called Engauge Digitizer. We can clearly see significant absorption at 2.94 GHz

from the central detuning which was not present up to 150 ◦C. Additional absorption

features are observed at -2.3 GHz, 4.52 GHz and 5.14 GHz. This absorption observed at

5.14 GHz is also visible in Fig. 4.10 for 199 ◦C. Here, the larger mode-hop free scanning

range shows clearly another absorption feature at 7.22 GHz from central detuning. Since

these absorption features at the Doppler-broadened spectrum do not correspond to any

of the K D2 transitions they are not of purely atomic nature. A potential explanation

arises when the presence of 39K2 molecules is considered. The X1Σg+ ground state ro-

tational constant of this molecule is 1.7 GHz [16]. Any electronic molecular transitions

near the atomic threshold that also change rotational levels from J ′ = 1 → J = 0 or

J ′ = 2 → J = 1 would be shifted by 3.4 or 6.8 GHz, respectively. While these values do

not exactly match up with the observed dips, they indicate a possible direction for further

investigation. Vibrational transitions are ruled out as they are orders of magnitude larger

[17]. Further experimental work is necessary to characterise these features.

The number densities of cesium and potassium at the measured temperature of 190 ◦C

are 1.25 ×1015 cm−3, and 9.75 ×1013 cm−3, respectively. Assuming the average inter-

atomic distance is given by ∼ N−1/3 , values of 9.28 µm for cesium and 21.7 µm for

potassium are calculated. At the calculated temperature of 199 ◦C, the number densities

for cesium and potassium are 1.76 ×1015 cm−3 and 1.46 ×1014 cm−3, respectively, and

the corresponding average interatomic distances are 8.28 µm and 19 µm. This shows that

the number density of cesium is roughly ten times higher than that of potassium at the

highest temperature that the mixture species cell was heated to.
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Introduction

5.1 Acousto-Optic Modulators

An AOM is an essential part of this trapping method as it allows for precise control of the

optical dipole force generated potentials. A schematic of an AOM is shown in Fig. 5.1.

The AOM is used to achieve deflection of a laser beam by a known angle with precise

control. To see how this is achieved, a brief description of the AOM is given.

Figure 5.1: Schematic of an acousto-optic modulator. The signal from an RF driver is con-

verted into acoustic waves which is passed into the interaction medium. The acoustic wavefronts

act as gratings from which the incident laser beam with an angle θi is deflected into the 1st (m=1)

order with an angle θd from the normal. m=0 corresponds to the undeflected light.

The AOM is essentially a diffraction grating created by an acoustic standing wave in

an optical medium. A high frequency signal is generated from a radio frequency (RF)
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driver and passes through a transducer, which converts the electrical signal to acoustic

waves. The acoustic waves pass through the interaction medium, which may either be

glass or crystal, creating a sinusoidal pattern from which the laser beam can diffract. If

the entrance angle of the light is chosen carefully, then the AOM can deflect around 90%

of the incident light into a first order beam with an angular shift given by [18]:

sin(2θd) =
λ

Λa

, (5.1)

where λ is the wavelength of the incident light and Λa is its wavelength. This first order

diffracted beam is also shifted by the acoustic wave frequency due to the Doppler shift

from the light reflecting off a moving wave front. A further benefit of the AOM is that the

fraction of the initial light intensity diffracted into the first order beam is proportional

to the amplitude of the driving RF wave. These characteristics essentially allow the

AOM to perform the role of a beam deflector, frequency shifter and intensity modulator

all in one, making it highly attractive for cold atom experiments requiring precise laser

manipulation. To create a time averaged optical potential requires the rapid shifting of

the position of the first order beam. This can be done very rapidly, by changing the RF

frequency of the AOM driver. Typical AOMs are limited by the rise time of the acoustic

wave, which is usually on the order of 10 ns [19],[20]. The rate of modulation of the laser

beam also depends on the material of the interaction medium and on the beam size.

5.2 Optical Dipole Traps

Optical dipole trapping is one of the techniques of trapping neutral atoms, which relies

on a weaker trapping mechanism compared to other techniques such as magnetic and

radiation trapping. Trap depths of less than 1 mK are typically achieved using this

method of trapping cold atoms. The main advantage of using this form of trapping lies

in the diversity of geometries of the trapping potential which can be realised, such as

multi-well potentials.

There are two quantities of interest when describing optical dipole potentials: the optical-

dipole interaction and the scattering rate of the spontaneous emission of photons. A

derivation of these quantities is outlined below, where the full derivation can be found in

Refs. [21].

The goal is to describe the behavior of a free atom interacting with a laser. The laser can

be considered as a classical light field E and the atom as a simple oscillator:
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E = E0 cos(ωt). (5.2)

Here, ω is the frequency of the driving field E, and E0 is the amplitude of the electric field

of the light. This laser will typically be far-detuned from a particular atomic resonance

of the atom. The atom can be modeled classically as an electron harmonically bound to

the core. This treatment remains valid, without needing a semi-classical picture, as long

as saturation and consequently scattering rates remain low, which will be true for most

practical dipole traps due to the large detuning. The relation between the dipole moment

induced in the atom, p, in a classical electric field of the laser is:

p = α(ω)E. (5.3)

The complex polarizability, α is a function of the driving frequency ω, at which the atom

oscillates. The interaction potential of the induced Udip is obtained from the time averaged

product of the dipole and the electric field vector:

Udip = −1

2
〈p · E〉 = −1

4
Re(α)E0

2, (5.4)

where the real, in-phase component of the complex polarizability, α, describing the dis-

persive properties of the atom is taken and the factor of 1/2 comes from the averaging

of the oscillating term. The optical dipole potential can be rewritten in terms of the

intensity of the laser field as a function of position. The general expression of the laser

intensity, I = (1/2)ε0cE
2
0 , can be substituted into equation (5.4):

Udip = − 1

2ε0c
IRe(α). (5.5)

The optical dipole force is obtained simply by taking the negative gradient of equa-

tion (5.5):

Fdip(r) = 5 1

2ε0c
Re(α)I(r). (5.6)

The power that the atom absorbs from the light field is found from the imaginary com-

ponent of the polarizability corresponding to dipole oscillation component that is out of

phase, while substituting for intensity to get:

Pabs = 〈ṗ · E〉 =
ω

ε0c
Im(α). (5.7)

Dividing the power by the quantised photon energy E = ~ω gives the scattering rate:
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Γscatter(r) =
Pabs
~ω

=
1

~ε0c
Im(α)I(r) (5.8)

The simplest of the types of red-detuned dipole traps is the focused-beam trap, which is a

single focused Gaussian beam. This can be used to confine atoms in a three-dimensional

trap. The focused beam can be characterised by its intensity distribution and beam waist

[21]:

I(r, z) =
2P

πw2(z)
exp

(
−2

r2

w2(z)

)
, (5.9)

w(z) = w0

√
1 +

(
z

zR

)2

(5.10)

where the Gaussian beam propagates along the z axis with power P, r is the radial

coordinate, w(z) is the 1/e2 radius of the beam waist w0 and the Rayleigh length zR is

defined as zR =
πw2

0

λ
.

To get the full expressions for the scattering rate and potential we also need the expression

for the polarizability α. The derivation will be omitted but can be found in Ref. [21].

The general principle behind a classical derivation involves solving the equation of motion

for a driven, harmonically trapped electron damped by dipole radiation. α can thus be

expressed as:

α(ω) =
6πε0c

3Γ/ω2
0

ω2
0 − ω2 − i(ω3/ω2

0)Γ
, (5.11)

where ω0 is the angular frequency of the transition between the ground and excited state

of a two level atom (or alternatively the natural frequency of the classical oscillator) and Γ

is the decay (damping) rate. Equation (5.11) can now be substituted into equations (5.5)

and (5.8), while taking the rotating wave approximation, which ignores all terms of the

form ω+ω0 since the expressions will be dominated by ω−ω0 terms when ω/ω0 ≈ 1 holds,

which is true of most experimental conditions. The resulting potential and scattering rate

for intensity given by equations (5.12) and (5.13) are:

Γscatter(r) =
3c2

~ω3
0

(
Γ

ω0 − ω

)2
P

w2
0

exp

(
−2r2

w0
2

)
(5.12)

Udip(r) =
3c2

~ω3
0

Γ

ω0 − ω
P

w2
0

exp

(
−2r2

w0
2

)
. (5.13)
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5.3 Spatial Light Modulators: An Alternative to

AOMs

An alternative method of generating arbitrary trapping potentials is to use a spatial light

modulator (SLM) to implement phase patterns which are calculated using an iterative

Fourier Transform algorithm (IFTA). The calculated phase is implemented with the SLM,

and the intensity measured in the image plane. SLMs consist of a liquid crystal (LC) array,

which are addressed individually by a computer, and are categorized into two types:

nematic and ferroelectric SLMs. The main disadvantages of using an SLM lies in the

slow update frequency (switching rate). Ferroelectric SLMs have switching frequencies

a 1 kHz, whereas the nematic type SLM have switching frequencies on the order of a

100 Hz [22]. This faster update rate comes at a cost of a limitation in the range of

arbitrary potentials it can generate, since ferroelectric SLMs can only take binary values.

In comparison, AOMs have a switching rate on the order of 10 MHz, allowing smooth

arbitrary potentials to be generated.

Another advantage of using an AOM for providing potential traps for ultracold atoms is

that the trapping region is not restricted to the image plane, unlike the SLM. Another

limitation is the noise which is present in the trapping plane, which can perturb the

trapped atoms in the system.

The performance of the trapping potentials are characterised by its smoothness and ef-

ficiency. A smooth potential is essential to prevent heating of BECs, and a high optical

efficiency is necessary for minimal loss of light to different diffraction orders. With the

SLM, there is an additional need to accurately reproduce the original target pattern by

empirically optimising the phase. Even with a good starting phase, the imaged trap

usually requires further feedback process before implementation to the experiment [23].

A combination of both the AOM and SLM have been demonstrated to manipulate cold

atoms in multiple red-detuned traps and addressing individual lattice sites [5].
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Simulation of Time-Averaged

Potentials

There are various methods to generate potentials for trapping cold atoms using an AOM.

One of the methods involve the superposition of static frequencies to create a flat box

potential for atomic condensates and can be also be extended to create other continuous

trapping geometries [22]. Further feedback processes can be used for optimising the

trapping potential.

An alternate method involves a rapid deflection of a single Gaussian beam to create a

time-averaged potential. Atoms have successfully been confined in such potentials in a

red-detuned potential with minimal heating of the trapped atoms [22]. By dithering a

single beam, it is possible to achieve a trapping potential with a flat region where atomic

condensates can ultimately be trapped. Flat potentials are of interest in trapping BECs

in optical lattices. Superimposing these flat potentials with an optical lattice of BECs,

this provides a way of simulating electrons in solid-state systems in a closer way than is

done in current optical lattice experiments.

Rapid deflection of a single Gaussian beam creates a time-averaged potential which can

be modeled as the superposition of multiple Gaussian beams. This effect is simulated for

a one dimensional trap using a MATLAB program, and is illustrated in Fig. 6.1. For a

one dimensional trap, the intensity distribution given in equation (5.9) reduces to:

I(r, z = 0) =
2P

πw0
2
exp

(
−2

r2

w0
2

)
(6.1)

for a single Gaussian beam. The intensity of the summed trapping potential Itot can be

expressed as:

44
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Itot =
2P

πw0
2

1

N

N∑
i=1

exp

(
−2

(r − ri)2

w0
2

)
. (6.2)

The full expression for the summed optical dipole potential is then given by:

Udip(r) =
3c2

~ω3
0

Γ

ω0 − ω
P

w2
0

N∑
i=1

exp

(
−2 (r − ri)2

w0
2

)
, (6.3)

where r is the variable position coordinate and ri is the position of the ith Gaussian.

The total intensity and hence the trapping potential is given by summing over all of the

Gaussians.

As the number of superimposed Gaussians is increased, the resulting potential is smoother.

For trapping atomic condensates, a smooth potential is desirable for minimising heating

of the trapped particles [2]. The overall trapping potentials, shown in red in Fig. 6.1

consists of different numbers of Gaussians, shown in blue, with s denoting the step size

which is the distance between two consecutive Gaussians. The dither range, denoted with

an “A” is defined as the distance between the constituent Gaussians at the minimum and

maximum positions.

The code has various adjustable constants and those used throughout this report are listed

in Appendices C.1 and C.2. The trapping potentials are calculated for the D2 transition

of rubidium 85, but the resulting difference in the calculated potential for rubidium 87,

which is the other commonly used isotope in BEC experiments, is very small, and the

constants can be adjusted for the specific needs of the experiment.

The aim is to achieve a trapping potential with the highest resolution possible. In theory,

the highest possible resolution of a trapping potential consists of an inifinite number of

Gaussians. To simulate this best case potential without compromising the run time, we

look at the percent change in the trap depth by increasing the number of the constituent

Gaussians. When the percent difference becomes negligible on the order of a thousandth of

a percent, the number of Gaussians used to generate this potential is considered the “best

case” potential. Using this best case potential, the Root-Mean-Square (RMS) deviation

of the dither beam potential of linearly spaced Gaussians is calculated for different step

sizes in order to determine the step size needed to simulate a potential that is effectively

the same as this best case potential. The RMS error will henceforth be just referred to

as RMS.

There are two free parameters in generating a dithered potential: the number of Gaussians

and the dithering range. We can consider two separate cases where we vary one of the

parameters and keep the other fixed. The first involves calculating the RMS of a fixed
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(a) (b)

(c)

Figure 6.1: (a)-(c) shows the process of simulating a dithered Gaussian beam by superimposing

multiple Gaussians, where adding a larger number of Gaussians result in a smoother summed

potential. The summed potential is shown in red and the constituent Gaussians are shown

in blue for (a) 7 constituent Gaussians, (b) 13 Gaussians and (c) 61 Gaussians. In the code,

the summed potentials are normalised by dividing the calculated intensity by the number of

Gaussians.
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dither potential with a variable number of Gaussians compared to a best case potential.

We present a similar case where the dither range is set as a fixed parameter while the

number of Gaussians is a free parameter using dimensionless units. This is accomplished

by making the units of the beam waist of the moving beam dimensionless and setting the

dither range to be a power sequence of base 2 so that the total number of Gaussians is

chosen such that they are evenly distributed about a central point. By using dimensionless

units, the relationship between the two parameters can be easily seen.

In the second case, the dither range is set as a free parameter while the number of

Gaussians used to generate the dithered potentials remain constant. An example of the

code for characterising the RMS using the first method is listed in Appendix D.

6.1 Fixed Dither Range

For n number of Gaussians, the step size gets smaller by a factor of 1/n. Since we

proceed by adding one Gaussian at a time, the curve resembles a harmonic sequence in

step size. The code works for any dither range by always centering the Gaussian intensity

pattern, while ensuring that it remains symmetric. This is achieved by small shifts in the

minimum or maximum dither point. This will introduce a small difference between the

input dither range and the effective dither range used in the code. By programming it in

this way, there are no restrictions on the step sizes of the dithered potential. The best

case trapping potential consists of 1001 Gaussians, since the difference in RMS between

using 1001 Gaussians and the next order of magnitude is on the order of a thousandth

of a percent. The specific number was chosen to be within the highest possible precision,

while maintaining a manageable run time.

The trapping potentials for select number of Gaussians are shown in Fig. 6.2. The RMS

is calculated over the entire trap depth and the truncated region, which corresponds to a

tenth of the total trap depth where BECs are confined. From the RMS calculation over

the truncated region in Fig. 6.3, s/w0 should be at least 0.83 for a trapping potential

which has an RMS deviation of less than a percent from the best case potential having a

s/w0 value of 0.005. The corresponding plots of residuals are shown in Fig. 6.4.
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(a) (b)

Figure 6.2: (a) Plot of dithered trapping potentials (black), best case potential containing 1001

Gaussians (red), and a tenth of the total trap depth of the dithered trapping potentials over

which the RMS is calculated (green). (b) shows the same plot as (a) but over a smaller distance

to distinguish the trapping potentials for different dither ranges. Labels (A)-(C) corresponds to

dithered potentials with a s/w0 value of (A) 1.25, (B) 0.625, and (C) 0.1.
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Figure 6.3: RMS across the entire pattern (black) and the truncated region corresponding

to a tenth of the total trap depth (blue) of a dithered potential with the Gaussian number set

as a free parameter between four Gaussians and 50 Gaussians in steps of two Gaussians, on a

semi-logarithmic scale. Labels (A)-(C) corresponds to dithered potentials with a s/w0 of (A)

1.25, (B) 0.625, and (C) 0.1, and also corresponds to the potential plots labeled in Fig. 6.2 (b)
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(a) (b)

(c)

Figure 6.4: The top subplots (a)-(c) show the trapping potential of the truncated region

(blue) and the best case potential having 1001 Gaussians (red). The bottom subplots show the

residuals for each corresponding dither ranges having a s/w0 value of (a) 1.25, (b) 0.63, and (c)

0.10. Note: (a)-(c) correspond to labels (A)-(C) in Figs. 6.2 and 6.3.
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6.2 Fixed Dither Range in Dimensionless Units

An alternative method of calculating the RMS for a fixed dither range is to set the

dither range to be 2nmax , and increment the dither range in steps of 2n where n can take

integer values of n = 1, 2, 3, ...nmax. This method allows the position coordinate to be

dimensionless. A single Gaussian is added at each point 2n from the origin, giving a total

of 2nmax

2n
+ 1 Gaussians for a dithered trapping potential. In this method, the case for

which n = nmax is excluded since this trapping potential will consist of two Gaussians

placed at the origin and 2nmax and does not represent a realistic dithered potential in an

experimental setting. The trapping potential plots for select Gaussian numbers are shown

in Fig. 6.5. Although the all of the trapping potentials in Fig. 6.5 have the same dither

range, the trapping potential consisting of three Gaussians shown in Fig. 6.5 (A) appears

wider than (B) or (C) because there is minimal overlap between the Gaussians. Adding

more Gaussians results in a greater overlap of Gaussians and the resulting appearance of

the trapping potential is narrower, as seen in Fig. 6.5 (B) and (C).

The code requires the Gaussian beam waist to be set to approximately 25% of the max-

imum dither range for a realistic beam waist compared to the dither range. The best

case trapping potential is set to have unit step size, and the dithered potentials for a

particular value of nmax have 21,2,...nmax step sizes. For a dither range with nmax = 12,

the RMS across the entire pattern and over the truncated region of a tenth of the total

trap depth drops below a percent deviation from the best case potential if there are 129

and 65 Gaussians in a dithered potential, respectively. This threshold occurs at a s/w0

value of 0.0059 and 0.0049, respectively. The RMS plots are shown in Fig. 6.6, and the

corresponding residuals are shown in Fig. 6.7.
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Figure 6.5: Dithered trapping potentials for a dither range of 2nmax where nmax = 12. The

best case potential is shown in red and has a total of 2nmax steps, or 4096, corresponding to (A)

in Fig. 6.7 . The trapping potentials with different Gaussian numbers are shown in black and the

green indicates the truncated region corresponding to a tenth of the total trap depth over which

the RMS deviation from the best case is calculated. The dithered potentials have 2n step sizes

where n = 1...nmax. For a dithered potential with 2n step size, the number of Gaussians is equal

to 2nmax

2n + 1. There are 2049, 65, and 3 constituent Gaussians for plots (A)-(C), respectively.

The beam waist is set to be 25% of the total dither length, or 1024.
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Figure 6.6: RMS calculation across the entire trapping potential (blue) and over the truncated

region (black). The RMS lies within a percent deviation from the best case potential across the

entire pattern and over a tenth of the total trap depth for a s/w0 value of at least 0.0059 and

0.0049, respectively. The inset shows the plot on a smaller scale to highlight the smaller RMS

deviation between points (A) and (B).
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(a) (b)

(c)

Figure 6.7: The top subplot of (a)-(c) show the trapping potential of the truncated region (blue)

and the best case potential having 1001 Gaussians (red). The bottom subplot show the residuals

for each corresponding to labels (A)-(C) in Fig. 6.5. The s/w0 value of (a)-(c) are 9.77 × 10−4

(2049 Gaussians), 59.00× 10−4 (65 Gaussians), 107.00× 10−4 (3 Gaussians), respectively. The

RMS values over the truncated region for (a)-(c) are 0.02%, 1.31%, and 47.55%, respectively.
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6.3 Free Dither Range

For the case where the dither range is set as a free parameter, it is possible to calculate the

RMS of as many step sizes as desired since for a specified number of Gaussians, the code

ensures a symmetric distribution of Gaussians for a particular dither range. The trapping

potential plots for select dither ranges are shown in Fig. 6.8 and the RMS calculations

are shown in Fig. 6.9. In the previous case, the dither range is set as a fixed parameter

and the dithered potentials with different Gaussian numbers are compared against the

same best case trapping potential. However, for the case where the dither range is varied,

each dithered potential has the same Gaussian number but different dither ranges. To

calculate the RMS error associated with each dithered potential, the dithered potentials

with a particular dither range are compared against a best case potential with the same

dither range but with the number of Gaussians set to be 100 times greater than than

that used to generate the dithered potentials. This potential with a larger number of

Gaussians is considered the “best case” potential, which is used to calculate the RMS

error across the entire pattern and across the truncated region.

The Gaussian number used to generate the best case potential is chosen so that the RMS

saturates for a particular number of Gaussians used to generate the trapping potentials

with varying dither ranges. For the case where 12 Gaussians are used to generate the

trapping potentials, the best case potential consists of 1101 Gaussians since increasing

this number to the next order of magnitude results in an RMS change on the order of a

thousandth of a percent. The potential plots for select dither ranges are shown in Fig. 6.8

and the corresponding residuals are shown in Fig. 6.10.

To determine an appropriate dither range for a fixed number of Gaussians for a smooth

potential with low RMS, it can be seen in Fig. 6.9 that a s/w0 value of at least 0.11

and 0.05 over the entire pattern and the truncated region, respectively, should be used to

simulate a smooth trapping potential with an RMS lying within a percent deviation from

the best case trapping potential.
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Figure 6.8: Trapping potential of the dithered beam (black) and the truncated region corre-

sponding to a tenth of the total trap depth (green), and the best case trapping potential having

1200 Gaussians for each trapping potentials with different dither ranges (red). The best case

potential plot for each dither range changes since unlike the previous case, the dither range was

set a free parameter. Label (A)-(C) correspond to a s/w0 value of 0.0083, 0.2500, and 0.5000,

respectively.



Chapter 6. Simulation of Time-Averaged Potentials 57

Figure 6.9: RMS across the entire pattern (black) and a tenth of the total trap depth (blue)

of a dithered potential with the dither range set as a free parameter. Note: labels (A)-(C)

correspond to plots (A)-(C) in Fig. 6.8.
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(a) (b)

(c)

Figure 6.10: The top subplot of (a)-(c) show the trapping potential of the truncated region

(blue) and the best case potential having 1101 Gaussians (red). The bottom subplot show the

residuals corresponding to plots (A)-(C) in Fig. 6.8.
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Results

7.1 Trap Depth and Trapping Frequency

In this chapter, we characterise a simple harmonic potential, and determine a fitting dis-

tance over which accurate trapping frequency calculations can be made. This provides

information in the experimental setting involving harmonic trap potentials where an ac-

curate knowledge of the trap frequency is desired. Here, we characterise two quantities of

interest: the depth of the trapping potential and the trap frequency.

We investigate the dependence of the trap depth on the dither range that is chosen. The

dither range chosen for this purpose ranges from 0.1 times the beam waist to approxi-

mately 10 times the beam waist, which is set to 100 µm throughout part 2 of this report.

The potential plots with these dither ranges are shown in Fig. 7.1, and the trap depth

variation as a function of the dither range is seen in Fig. 7.2. In this case, since the free

parameter is set to be the dither range, all trapping potentials have the same number of

Gaussians. As expected, the trap depth decreases as the dither range is increased. Since

the constituent Gaussians are summed over a bigger distance, the step size is larger for

a bigger dither range and this results in a shallower potential, as it can be seen from

(A)-(C) in Figs. 7.1 and 7.2.

All plots are made dimensionless by dividing the minimum of the dithered trap poten-

tial, U, by the minimum of the undithered Gaussian potential, U0, or by dividing the

undithered trap frequency calculated from a specific trap depth ω0 by the trap frequency

for different dither ranges over the same trap depth, ω. The x-axis is made dimensionless

by dividing the dither range, A, by the beam waist, w0, which is set to 100 µm for con-

venience. By making the plots dimensionless in such a way, the results may be applied

across different experimental systems if the ratio A/w0 is known. In Figs. 7.1 and 7.4,
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the position coordinate (µm) is made dimensionless by dividing by w0 and the potential

Udip (µK) normalised to U0 to easily observe the effect of dithering on the potential trap

depth.

Figure 7.1: Trapping potential plots showing the dithered potentials with different dither

ranges (black), the truncated region corresponding to a tenth of the total trap depth (blue) and

the undithered beam (red) which closely overlaps with the smallest dither range with almost no

dither. The plots are normalised by dividing the potential (Udip)by the minimum trap depth of

the undithered potential, U0. The beam waist is set to 100 µm. (A)-(C) correspond to an A/w0

value of 0.1, 4.9, and 9.9, respectively.

The trapping frequencies of the dithered trap are found by performing a second order

polynomial fit to the truncated region, corresponding to a tenth of the total trap depth

defined in the previous chapter. The calculated frequency resulting from the fits to the

trapping potentials and the residuals for select dither ranges are shown in Figs. 7.3 and

7.4, respectively. It is clear from the residual plots in Fig. 7.4 that an appropriate fitting

region must be chosen to ensure an accurate frequency calculation from the harmonic

fits for a particular dither range. To accurately calculate the frequency of the trapping

potential, the region of the potential where the fitting is performed is redefined in terms

of distance rather than range, since an accurate fit can only be performed for a fraction



Chapter 7. Results 61

Figure 7.2: U/U0 vs. A/w0 where A is the dither range, w0 is the beam waist, U is the

minimum trap depth of the dithered trapping potential and U0 is the minimum trap depth of

the undithered potential. (A)-(C) correspond to an A/w0 value of 0.1, 4.9, and 9.9, respectively.

Note: labels (A)-(C) correspond to potentials (A)-(C) in Fig. 7.1.
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of the beam waist and this is much smaller than the range that can be defined. This is

illustrated in Fig. 7.5, which shows how the fitting distance corresponding to the range of

the truncated region varies as a function of the dither range. The crossing point indicates

the fitting distance when the dither range is equal to w0. We take the trapping potential

with the smallest dither range (0.1w0) corresponding to (A) in Figs. 7.1 to 7.4 to determine

the appropriate fitting distance δ for an accurate frequency calculation.

Figure 7.3: ω/ω0 vs. A/w0 where A is the dither range w0 is the beam waist, ω is the frequency

calculation from a second order polynomial fit for the dithered Gaussian, and ω0 is the frequency

resulting from a second order polynomial fit to the undithered Gaussian for a tenth of the total

trap depth. (A)-(C) correspond to an A/w0 value of 0.1,4.9, and 9.9, respectively. Note: labels

(A)-(C) correspond to labels (A)-(C) in Figs. 7.1 and 7.2.

For a dither range of 0.1w0, we plot the calculated frequency using a second order poly-

nomial fit across a range of fitting distances on a semilog plot (Fig. 7.6). The fit distance

used in the code ranges from 0.4% of the beam waist to 70% of the beam waist. The

value of the constant frequency, ω0 can be found found analytically by expansion of the

exponential term of a Gaussian, giving 2514.6. The frequency obtained from the calcu-
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(a) (b)

(c)

Figure 7.4: The top subplot shows the truncated distance corresponding to a tenth of the total

trap depth (blue) and the second order polynomial fit to the dither range (red). A/w0 values

for (A)-(C) are 0.1, 4.9, and 9.9, respectively.
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Figure 7.5: δ/w0 vs. A/w0 where A is the dither range, w0 is the beam waist, and δ is the

fitting distance over a tenth of the total trap depth. The value of δ as a fraction of the beam

waist is 0.458.
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lated fit is compared to the analytical expansion and found to be within 1% difference,

attributable to numeric error. A fit distance which gives a frequency calculation that lies

within a percent deviation from the analytic trap frequency is seen to be less than 30%

of the beam waist.

To show the degree of deviation from ω0 as the fitting distance is increased, the percent

deviation from this analytical value is plotted in Fig. 7.7. For the maximal fit distance, a

single Gaussian suffices for an RMS deviation of 0.17% from a best case trapping potential

consisting of 1001 Gaussians, as seen in Fig. 7.8. The residuals for the select fitting

distances in Figs. 7.6 and 7.7 are seen in Fig. 7.9.

Figure 7.6: ω0 vs. δ/w0 where δ is the distance over which the fit is performed, w0 is the beam

waist, ω is the frequency over the corresponding distance of fitting δ. The red line indicates the

analytical value of ω0 and the blue line is the calculated value of ω0. The fit range for which the

variation from the calculated value of the maximum frequency lies within a percent is between

0.006 and 0.3.
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Figure 7.7: Percent deviation from the calculated value of ω0 vs. δ/ω0 where δ is the fitting

distance which is proportional to the trap depth over which the fitting routine is performed and

w0 is the beam waist. The fit range for which the variation from the calculated value of the

maximum frequency lies within a percent is between 0.006 and 0.3.
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Figure 7.8: RMS deviation vs. number of Gaussians in percentage from a best case trapping

potential consisting of 1001 Gaussians. For a small dither range which is 10% of the beam waist,

a single Gaussian suffices for a small RMS deviation of 0.17% from the best case potential.
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(a) (b)

(c)

Figure 7.9: The top subplots (a)-(c) show the trapping potentials for different fit distances

(blue) and the second order polynomial fits to the fit distances. Plots (a)-(c) correspond to

(A)-(C) in Figs. 7.6 and 7.7. The fit distance as a fraction of the beam waist (δ/w0) and the

frequency calculation from the fits are (a) 0.004, 2.51 kHz (b) 0.36, 2.47 kHz and (c) 0.7,

2.38 kHz



Chapter 8

Conclusion

In part 1 of the report, we have investigated the D2 lines of a mixture cell containing

natural abundance cesium and potassium. It was found that the mixture species cell

behaves independently of each other for temperatures up to approximately 150 ◦C for the

K D2 line. Above the temperature of 155 ◦C, the spectroscopic signal from the K D2 line

was found to exhibit absorption features on the wings of the Doppler broadened trans-

mission spectrum. These absorption features are not the product of any transitions of

the K D2 line and the vibrational transitions are orders of magnitude bigger compared

to the frequency, while the rotational transition is comparable in terms of the order of

magnitude suggested in literature, suggesting that these features may potentially be the

result of rotational transitions in the K2 molecule. Futher experimental work to better

characterise these features was prevented due to the alkaline metals reacting with the

pyrex glass at these high temperatures, however, these features from the spectroscopic

signals provide an interesting starting point for future investigations. In part 2 of the

report, we developed codes on MATLAB simulating time-averaged potentials. We pre-

sented three different coding methods to simulate time-averaged optical potentials and

determined the step sizes necessary to reproduce a smooth trapping potential with low

RMS errors of less than one percent. We also presented the results from characterising

the depth of a harmonic trapping potential and determined the distance over which the

frequency of a trapping potential can be fitted accurately. Such information may be desir-

able for experiments involving trapping BECs in a harmonic potentials where an accurate

chracterisation of the trap frequency is required.
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Appendix A

Properties of Cs D2 and K D2

Transitions

Quantity Symbol Value

Atomic mass m 2.206 946 50(17)×10−25 kg

Melting point Tm.p 28.44◦C (301.59 K)

Frequency η/2π 351.725 718 50(11) THz

Wavelength λ 852.118 73 nm

Natural linewidth Γ0/2π 5.2227(66) MHz

Lifetime τ 30.473(39) ns

Transition frequency ω 2π ˙351.72571850(11) THz

Saturation intensity Isat 2.71 mW/cm2

Table A.1: Properties of natural abundance cesium [10]
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Quantity Symbol Value

Atomic mass m 39K 38.963 706 68 u/6.470 080 128×10−26 kg

Atomic mass m 40K 39.963 998 48(21) u/ 6.636 182 603×10−26 kg

Atomic mass m 41K 40.961 825 76(21) u/6.801 875 834×10−21 kg

Melting point Tm.p 65.65◦C (336.8 K)

Frequency η 391.016 THz

Wavelength λ 766.70 nm

Natural linewidth Γ0/2π 6.035(11) MHz

Lifetime τ 26.37(5) ns

Transition frequency ω 391.01617003(12) THz

Saturation intensity Isat 1.75 mW/cm2

Table A.2: Properties of natural abundance K D2 line [11]



Appendix B

FWHM as a function of temperature

for the 39K D2 line

Figure B.1: FWHM of the Doppler (ΓD), natural (Γ0), and self-broadened (Γself) linewidths

for the 39K D2 line, shown in blue, dark green, and black, respectively. The dashed red lines

indicate the boundaries separating different regimes where ΓD>Γ0 >Γself between ∼25 ◦C and

∼175 ◦C, ΓD>Γself >Γ0 between ∼175 ◦C and ∼250 ◦C, and Γself>ΓD>Γ0 for temperatures

greater than ∼250 ◦C. Calculations of the linewidths are based on Refs.[1], [9].
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Appendix C

Values

Quantity Symbol Value

Beam waist for waveguide wwaveguide 102 µm

Beam waist for moving beam wmoving 100 µm

Power in guide beam Pguide 0 W

Power in moving beam Pmoving 20 W

Table C.1: Values used for the adjustable parameters

Quantity Symbol Value

Wavelength λ 1070 nm

Transition wavelength λresonance 780.2 nm

Atomic mass mRb 85×1.661× 10−27 kg

Speed of light c 3×108 ms−1

Natural linewidth Γ 6.066 MHz

Boltzmann factor kB 1.381×10−23 J·K−1

Reduced Plank’s constant ~ 1.054×10−34 J·s

Table C.2: Values of constants
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Appendix D

Code characterising the RMS error

with the dither range set as a fixed

parameter

All The Constants

wavelength = 1070e-9; % nm

mass_Rb = 85*1.661e-27; % kg

res = 780.2e-9; % Approximate Rb resonant wavelength (D2)

c = 3e8; % Speed of light

angfreq = 2*pi*c/res;

detuning = (c/wavelength - c/res);

gamma = 6.0666e6; % natural linewidth 85Rb in MHz (D2)

kB = 1.381e-23;

hbar = 1.054e-34;

Adjustable Parameters

% Beam parameters

waist_guide = 102e-6; % beam waist for waveguide

waist_moving = 100e-6; % beam waist for moving beam

rayleighLength_guide = pi*waist_guide^2/wavelength;

rayleighLength_moving = pi*waist_moving^2/wavelength;

Pguide = 0; % power in guide beam

Pmoving = 20; % power in moving beam (W)
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fixed parameter 78

acceleration = 3; % Choose!

1D Model

rangeMax = 0.0005;

stepSize = 0.000001;

rr = -rangeMax:stepSize:rangeMax;

zz = 0;

ditherLength = 0.0005;

bestcasedither_range = -ditherLength/2:0.0000005:ditherLength/2;

gaussianNoMax=50;

ditherGaussArray = 4:2:gaussianNoMax;

disp(’best case G no’)

disp(length(bestcasedither_range))

ditherStepArraynorm = zeros(size(ditherGaussArray));

rmsflat = zeros(size(ditherGaussArray));

rmswhole = zeros(size(ditherGaussArray));

Stepsize = zeros(size(ditherGaussArray));

iter=1;

intensity_summed1 = zeros(size(rr));

best case potential

for r_offsetbest = bestcasedither_range;

intensity1D1 = intensity(rr - r_offsetbest,zz,Pmoving,

rayleighLength_moving,waist_moving);

intensity_summed1 = intensity_summed1 + intensity1D1;

end

intensity_normalised1 = intensity_summed1/length(bestcasedither_range);

Udip1Dbest = (3/2)*(pi*c^2/angfreq^3)*(gamma/detuning)*intensity_normalised1/kB;
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for gaussianNum = ditherGaussArray;

ditherMin=ditherLength/2*(1/gaussianNum-1);

dither_range = ditherMin:ditherLength/gaussianNum:-ditherMin;

%Set desired dithering amount (ditherMax matched to best case)

intensity_summed = zeros(size(rr));

for r_offset = dither_range

intensity1D = intensity(rr - r_offset,zz,Pmoving,

rayleighLength_moving,waist_moving);

intensity_summed = intensity_summed + intensity1D;

end

intensity_normalised = intensity_summed/length(dither_range);

Udip1D = (3/2)*(pi*c^2/angfreq^3)*(gamma/detuning)*intensity_normalised/kB;

ditherStepArraynorm(iter)=ditherLength/gaussianNum/waist_moving;

Stepsize(iter) = ditherLength/gaussianNum;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Udip1DbestNorm=Udip1Dbest./(Udip1Dbest(round(length(rr)/2)));

ratio = 0;

trim = 0;

tolerance =0.001;

trimRatio = 9/10;

while ratio< (trimRatio-tolerance)

trim=trim+1;

ratio = Udip1DbestNorm(trim);

end

intensity_summed = zeros(size(rr));

for r_offset = dither_range
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intensity1D = intensity(rr - r_offset,zz,Pmoving,

rayleighLength_moving,waist_moving);

intensity_summed = intensity_summed + intensity1D;

end

trimArbitrary = trim;

rrTruncate = rr(trimArbitrary+1:(length(rr)-trimArbitrary));

UdipTruncateArbitrary = Udip1D(trimArbitrary+1:(length(rr)-trimArbitrary));

Udip1DbestTrunc = Udip1Dbest(trimArbitrary+1:(length(rr)-trimArbitrary));

%Truncate Udip1D bestcase to flat region only

%%RMS calculation

RMS = -sqrt((sum((Udip1D-Udip1Dbest).^2)/length(Udip1D)))/min(Udip1Dbest)*100;

%RMS across whole pattern

RMSflat = -sqrt(sum((UdipTruncateArbitrary-Udip1DbestTrunc).^2)/

length(UdipTruncateArbitrary))/min(Udip1Dbest)*100; %RMS over truncated region only

rmswhole(iter)=RMS;

rmsflat(iter)=RMSflat;

Residuals = UdipTruncateArbitrary-Udip1DbestTrunc;

if iter ==1

figure(1)

plot(rr,Udip1D,’k’)

hold on

plot(rrTruncate,UdipTruncateArbitrary,’g’)

hold on

figure(2)

subplot(2,1,1);

plot(rrTruncate,UdipTruncateArbitrary,’b’)

hold on
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plot(rrTruncate,Udip1DbestTrunc,’r’)

xlabel(’position (m)’)

ylabel(’Udip (\muK)’)

legend(’Truncated region’,’Best case’)

%set(gca,’FontSize’,14)

%title(’ plots for Truncated Region (blue) and polynomial fit (red)’)

subplot(2,1,2);

plot(rrTruncate,Residuals,’k’)

%hold on

%plot(rrTruncate,line,’b’)

xlabel(’position (m)’)

%set(gca,’FontSize’,14)

ylabel(’Udip (\muK)’)

%set(gca,’FontSize’,14)

disp(’res1iter’)

disp(iter)

disp(’Gno1’)

disp(ditherGaussArray(iter))

disp(’stepsize1’)

disp(Stepsize(iter))

disp(’stepsize/BW1’)

disp(ditherStepArraynorm(iter))

hold off

end

if iter ==3

figure(1)

plot(rr,Udip1D,’k’)

hold on

plot(rrTruncate,UdipTruncateArbitrary,’g’)

hold on

figure(3)

subplot(2,1,1);

plot(rrTruncate,UdipTruncateArbitrary,’b’)

hold on
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plot(rrTruncate,Udip1DbestTrunc,’r’)

legend(’Truncated region’,’Best case’)

xlabel(’position (m)’)

%set(gca,’FontSize’,14)

ylabel(’Udip (\muK)’)

%set(gca,’FontSize’,14)

%title(’ plots for Truncated Region (blue) and polynomial fit (red)’)

subplot(2,1,2);

plot(rrTruncate,Residuals,’k’)

%title(’Residuals’)

xlabel(’position (m)’)

ylabel(’Udip (\muK)’)

disp(’res2iter’)

disp(iter)

disp(’Gno2’)

disp(ditherGaussArray(iter))

disp(’stepsize2’)

disp(Stepsize(iter))

disp(’stepsize/BW2’)

disp(ditherStepArraynorm(iter))

hold off

end

if iter ==24

figure(1)

plot(rr,Udip1D,’k’)

hold on

plot(rr,Udip1Dbest,’r’)

hold on

plot(rrTruncate,UdipTruncateArbitrary,’g’)

xlabel(’position (m)’)

ylabel(’Udip (\muK)’)

hold on

figure(4)
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subplot(2,1,1);

plot(rrTruncate,UdipTruncateArbitrary,’b’)

hold on

plot(rrTruncate,Udip1DbestTrunc,’r’)

legend(’Truncated region’,’Best case’)

xlabel(’position (m)’)

%set(gca,’FontSize’,14)

ylabel(’Udip (\muK)’)

%set(gca,’FontSize’,14)

%title(’ plots for Truncated Region (blue) and polynomial fit (red)’)

subplot(2,1,2);

plot(rrTruncate,Residuals,’k’)

%title(’Residuals’)

xlabel(’position (m)’)

%set(gca,’FontSize’,14)

ylabel(’Udip (\muK)’)

%set(gca,’FontSize’,14)

hold off

disp(’res3iter’)

disp(iter)

disp(’Gno3’)

disp(ditherGaussArray(iter))

disp(’stepsize3’)

disp(Stepsize(iter))

disp(’stepsize/BW3’)

disp(ditherStepArraynorm(iter))

end

iter=iter+1;

end

hold off

disp(’maxiter’)
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disp(iter)

figure(5)

scatter(ditherStepArraynorm,rmswhole,’filled’,’k’)

hold on

scatter(ditherStepArraynorm,rmsflat,’filled’,’b’)

hold off

box on

xlabel(’Step Size/beam waist’)

ylabel(’RMS (%)’)

figure(6)

semilogx(ditherStepArraynorm,rmswhole,’ok’,

’MarkerEdgeColor’,’k’,’MarkerFaceColor’,’k’,’MarkerSize’,5)

hold on

semilogx(ditherStepArraynorm,rmsflat,’ob’,

’MarkerEdgeColor’,’b’,’MarkerFaceColor’,’b’,’MarkerSize’,5)

axis([0,2,0,7])

box on

xlabel(’Step Size/beam waist’)

ylabel(’RMS (%)’)

legend(’RMS across whole pattern’,’RMS over truncated region’)


