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Abstract 

The concept of function is one of the essential topics in the teaching and learning of 

secondary mathematics because of the central and unifying role it plays within secondary and 

college level mathematics. Organizations, such as the National Council of Teachers of 

Mathematics, suggest students should be able to make connections across multiple 

representations of mathematical functions by the time they complete high school.  Despite the 

prominent role functions play in secondary mathematics curriculum, students continue to 

struggle with the complex notion of functions and especially have difficulty using the different 

representations that are inherent to functions (algebraic, graphical and tabular). 

Technology is often considered an effective tool in raising student achievement, 

especially in learning functions where the different representations of a graphing calculator are 

analogous to the different representations of a function.  Opportunity to learn is another 

important consideration when examining achievement and is generally considered one of, if not 

the most important, factor in student achievement.  Opportunity to learn, or the measure of to 

what extent students have had an opportunity to learn or review a concept, is often measured 

with self-reports of content coverage. 

This study examined the relationship between opportunity to learn, students’ use of 

graphing calculators, and achievement within a curriculum that supports integrated use of 

technology and focuses on conceptual understanding of mathematical concepts.  The research 

questions focused on what opportunities students had to learn functions from the enacted 

curriculum, what calculator strategies students used when solving function problems, how both 

opportunity to learn and calculator strategies influenced student achievement, and what 



 
 

xi 

relationships exist between opportunity to learn, use of calculator strategies, and student 

achievement. 

This study is an in-depth secondary analysis of a portion of data collected as part of the 

evaluation study of Precalculus and Discrete Mathematics (Third Edition, Field-Trial Version) 

developed by the University of Chicago School Mathematics Project. Participants in this study (n 

= 271) came from six schools, seven teachers, and 14 classes.  Instruments in this study include 

two pretests (one with technology and one without) and three posttests (two with technology and 

one without) and a calculator usage survey for one posttest.  In addition to five student 

assessments, teachers completed opportunity-to-learn surveys for the posttests and chapter 

evaluations forms on which they indicated the lessons taught and the homework problems 

assigned from the textbook.  Some students (n = 151) had access to graphing calculators 

equipped with computer algebra systems (CAS) while others (n = 120) had access to graphing 

calculators. 

Students had multiple opportunities to learn functions as measured by lessons taught, 

homework assigned, and posttest items teachers reported as having taught or reviewed the 

content necessary for students to correctly answer the items.  Overall, students showed a positive 

increase in achievement between the pretests and posttests. In general, achievement was 

positively correlated to OTL Lessons, negatively correlated to OTL Homework, and had no 

correlation to OTL Posttests when controlling for prior knowledge.  Results indicate students 

appear to be, for the most part, making wise choices about when and how to use graphing 

calculators to solve function items.  Students prefer the graphical representation and are rarely 

using CAS features or tables, even when they are the best choices for solving a problem.   

Results from hierarchical linear models (HLM) show use of strategies (β = 0.96), access 

to CAS (β = 5.12), and OTL lessons (β = 0.75) all had significant and positive impacts on 
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student achievement for one of the posttests, when controlling for prior knowledge.  Results from 

path analyses also indicated use of strategies had a direct and positive effect (β =0 .14) on 

student achievement but showed access to CAS had a negative indirect effect (β = -0.64) on 

student achievement for the same posttest mitigated through OTL Lessons (β = 0.30). 

The results of this study have implications for both researchers and mathematics 

educators who seek to understand ways in which teachers can increase students’ understanding 

of functions and student achievement.  The relationship between the use of technology and 

student achievement in relation to opportunity to learn is complex, but use of calculator 

strategies appears to have a positive effect on students’ opportunity to learn functions and student 

achievement when used in a curriculum that focuses on conceptual understanding and integrates 

technology.   
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Chapter 1: Introduction 

The concept of function is one of the most important topics in secondary school 

mathematics curriculum in the United States.  Just as developing a sense of numbers is the goal 

of elementary mathematics curriculum, developing a sense of functions should be the goal of 

secondary curriculum (Eisenberg, 1992).  In addition, the function concept is essential to the 

teaching and learning of mathematics because of the central and unifying role it plays within 

secondary mathematics (Dubinsky & Harel, 1992), and is one of the key differentiations between 

classical and modern mathematics (Kleiner, 1989).  Kashefi, Ismail, and Yusof (2010) posit 

understanding functions is a prerequisite for learning many other mathematical concepts; without 

understanding functions, the learning of other concepts in secondary or undergraduate 

mathematics may become difficult, if not impossible.   

Researchers are not the only ones who have advocated for the importance of functions in 

mathematics curriculum.  The National Council of Teachers of Mathematics [NCTM] (1989, 

2000) suggests students should be able to make connections across multiple representations of 

mathematical functions by the time they complete high school.  In the more recent Common 

Core State Standards for Mathematics [CCSSM] (National Governors Association [NGA] Center 

for Best Practices and Council of Chief State School Officers [CCSSO], 2010), functions are one 

of seven topics students should master as part of the secondary mathematics curriculum. 

Students struggle with the complex notion of functions (Akkoc & Tall, 2002; Akkoc & 

Tall, 2003; Akkoc & Tall, 2005; Duval, 2006; Sajka, 2003; Schoenfeld, Smith, & Arcavi, 1993; 

Schwarzenberger, 1980; Sfard, 1991; Sierpinska, 1992; Siti Aishah Sh, 2010; Tall, 1992; Tall, 

1993; Thompson, 1994; Vergnaud, 1998), a trend that mathematicians, researchers, and policy 

makers perceive as concerning, given the importance they collectively place on understanding 
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and applying functions in the secondary mathematics curriculum.  In particular, students have 

difficulty with different representations that are intrinsic to the different facets of functions. Each 

representation (equations, graphs, tables, and words) offers information about particular aspects 

of the concept but does not describe it completely (Duval, 2006; Gagatsis & Shiakalli, 2004; 

Kaldrimidou & Ikonomou, 1998).  Students often have a hard time working with functions due 

to the need to coordinate and translate among these multiple representations (Abdullah, 2010; 

Schoenfeld, Smith & Arcavi, 1993; Schwarz, Dreyfus, & Bruckheimer, 1990).  

There are many factors that influence student achievement.  Porter (2002) contends 

knowing the content of instruction is essential to researching factors that affect student 

achievement.  Indeed, the National Research Council considered opportunity to learn (OTL), one 

aspect of content instruction, to be “the single most important predictor of student achievement” 

(National Research Council, 2001, p. 334).  

Although the concept of OTL sounds simple, there are many interpretations of it (Flodin, 

2002).  For instance, one can measure OTL by examining how much emphasis a topic receives in 

written materials such as a textbook.  One can alternatively measure OTL by the instructional 

time devoted to a particular topic, either in terms of teaching or the amount of time students are 

engaged in learning it. Herman and colleagues (Herman, Klein, & Abedi, 2000) operationalized 

four overlapping categories to measure OTL: curriculum content, instructional strategies, 

instructional resources, and general assessment preparation.   

Whereas there is considerable research on the difficulties students face when learning 

functions, there is little research examining students’ opportunity to learn functions by 

examining criteria from the categories developed by Herman and colleagues (Herman, Klein, & 

Abedi, 2000).  Thus, there is a need to investigate the relationship between achievement in 

solving function problems, and factors that affect students’ opportunity to learn functions. 
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Rationale 

Data from large-scale assessments show U.S. students struggle when solving function 

problems (Center, 2004; Livingstone, 1986; Martin, Mullis, & Chrostowski, 2004).  In recent 

years, efforts to raise student achievement on assessments have focused on legislation such as No 

Child Left Behind (NCLB, 2001), high-stakes testing, and distribution of educational resources 

(Schmidt & Burroughs, 2013).  According to a recent study, “students [in mathematics classes] 

are exposed to widely varying content not only across states and school districts but within 

schools. Such inequities in content coverage deny students equal learning opportunities” 

(Schmidt & Burroughs, 2013, p. 1).  This disparity in opportunity to learn was among the 

impetus behind the creation of the CCSSM (CCSSO, 2010).  The development of these rigorous 

standards, which all states could choose to adopt, was one effort to close the achievement gap by 

giving all students the same opportunity to learn mathematics. 

Although high-stakes testing, equity of resources, and common curriculum standards are 

important considerations in reducing the achievement gap, what happens in the classroom is 

equally as important.  Many experts advocate the best way to raise student achievement is 

through a standards-based curriculum such as the CCSSM, which is a curriculum that 

emphasizes conceptual understanding, problem solving, thinking, reasoning, use of multiple 

representations, integrates use of technology and real-world applications, and deemphasizes 

memorization of rules and procedures (CCSSO, 2010; Marzano & Kendall, 1996; McLaughlin & 

Shepard, 1995; Senk & Thompson, 2003).   

Researchers recognize the important role the curriculum plays in students’ opportunity to 

learn, and therefore, in their achievement (McDonnell, 1995; Tarr, Chávez, Reys, & Reys, 2006).   

The most central tool to any curricula is the textbook. In practice, the textbook is considered by 

some to have more impact on student learning than state or local standards (Tarr, Chávez, Reys, 
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& Reys, 2006).  Perhaps this is why many educational professionals consider the textbook to be 

the most influential part of the curricula.  Begle (1973) expressed it best: 

The textbook has a powerful influence on what students learn. If a mathematical topic is 

in the text, then students do learn it. If the topic is not in the text, then, on the average, 

students do not learn it….The evidence indicates that most student learning is directed by 

the text rather than the teacher. (p. 209) 

Curricula that support conceptual understanding over procedural fluency frequently use 

multiple representations as recommended by NCTM (1989).  Many espouse that complete 

understanding of function concepts only occurs when students are able to move seamlessly 

among the representations (i.e., students should be able to use each representation, translate 

between them, and know when to use each representation) (Gagatsis & Shiakalli, 2004; Herman, 

2007; Hitt, 1998; Janvier, 1987; Kaput, 1985, 1987; National Council of Teachers of 

Mathematics [NCTM], 2000; Owens & Clements, 1998).  In particular, Huntley and Davis 

(2008) refer to this ability as representational fluency, namely: “the ability to translate across 

different representations, to draw meaning about a mathematical entity from different 

representations, and to generalize across different representations” (p. 381).  The four 

representations (i.e., symbolic, graphical, numerical [tabular], and verbal) form the well-known 

Rule of Four as shown in Figure 1.  Huntley and colleagues (Huntley, Marcus, Kahan, & Miller, 

2007) used the Rule of Four to define the strategies students use when solving function problems 

with technology by connecting the strategies (algebraic, graphical, tabular, arithmetic) to their 

different representations.  In this document, I use the term strategies to refer to the use of a 

variety of multiple representations to solve function problems. 
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Figure 1.  Rule of Four Representations of Functions. 

 

Despite the large body of research, it is not clear whether mathematics educators have yet 

accomplished NCTM’s goal of having all students "translate among tabular, symbolic, and 

graphical representations of functions" (NCTM, 1989, p 154).  Research has shown students 

often prefer a symbolic strategy even when a different one would be more helpful; although 

students may attempt to use more than one strategy, they often regress to using the symbolic 

representation (Huntley & Davis, 2008; Senk & Thompson, 2006).  Moreover, when students are 

taught to use all four representations, they rarely use a tabular strategy (Huntley & Davis, 2008; 

Huntley, Marcus, Kahan, & Miller, 2007). 

One way to help students master different representations is through the use of graphing 

technology.  Most graphical technologies provide a graphical representation of a function and 

can display at least two representations at the same time, such as an equation and a graph, or an 

ordered pair of numbers and a point on a graph. They can also display a table of values and help 

show the relationship among the ordered pairs, the graph, and the algebra (Leinhardt, Zaslavsky, 

Symbolic 

Graphical 

Arithmetic 

Numeric 
(Tabular) 
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& Stein, 1990).  Ruthven (1990) reported students who used graphing calculators had more 

strategies available to them and therefore attained higher achievement on tests than those who 

did not use graphing calculators.  Harskamp, Suhre, and van Streun (1998, 2000) examined the 

effect graphing calculators had on the strategies students used when solving function problems.  

They reported students who used graphing calculators were three times more likely to use 

graphical strategies when solving problems than students who did not use a calculator.  

Additionally, Herman (2007) reported a positive correlation between achievement and the 

number of strategies students used.   

Although the studies cited appear to suggest the use of graphing calculators can have a 

positive effect on student achievement, they provide no information about how students use the 

various strategies when they have access to a graphing calculator (henceforth referred to as 

calculator strategies) and, therefore, provide no explanation as to why students benefit from 

using the graphing calculator.  For instance, Burrill et al. (2002) revealed weaknesses and gaps in 

the extant body of research on the use of graphing calculators. She and her colleagues called for 

more research into the kinds of mathematical problems for which students choose to use 

handheld graphing technology and how students use the calculator to solve these problems.  

Harskamp and associates (Harskamp, Suhre, & Van Streun, 2000) also advocated for more 

research focusing on how students’ choice of strategies changes when they use a calculator, and 

how students move from using one strategy to using multiple strategies.   

A few studies have investigated students’ use of graphing calculator strategies when 

problem solving (Herman, 2007; Huntley & Davis, 2008; Huntley, Marcus, Kahan, & Miller, 

2007; Senk & Thompson, 2006).  Nevertheless, Herman (2007), Huntley and Davis (2008) as 

well as Leng (2010) have supported calls for additional research to examine solving strategies 

when students have a choice of using a calculator, particularly because research shows students 
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often do not use calculators when that option is provided (Huntley and Davis, 2008; Huntley, 

Marcus, Kahan, & Miller, 2007).  Others have also noted a scarcity of research on the use of 

calculators in advanced mathematics (i.e., Algebra II, trigonometry, precalculus, calculus, 

probability and statistics, and discrete mathematics) where there are more opportunities for 

productive graphing calculators (Crowe & Ma, 2010) and use of computer algebra systems.  

Because students’ use of problem solving strategies and students’ opportunity to learn 

have been shown to play an important role in what mathematics students learn, it is a useful 

endeavor to investigate the relationship among achievement, strategies used when solving 

function problems, calculator usage, and students’ opportunity to learn.  It would also be useful 

to frame any investigation of function problem solving within the context of the CCSSM because 

these new standards are the impetus for the development of new curriculum materials.  Results 

from this study could advance the current body of knowledge documenting students’ difficulties 

solving function problems.  The findings could also impact how function problems and strategies 

are presented in curricula materials and the classroom. 

Research Questions 

The purpose of this study is to examine students’ use of strategies (i.e., function 

representations) when they solve function problems and the relationship, if any, among: 

strategies, opportunity to learn, use of technology, and student achievement.  The following 

research questions guided this investigation: 

 
1. What are students’ opportunities to learn about functions in a precalculus course? 

2. What calculator strategies do Precalculus students use when solving function problems? 

In particular, in what ways do students use these strategies when using a graphing 

calculator to solve function problems from both  teachers’ and students’ perspectives? 



 
 

8 

3. How is Precalculus students’ achievement in solving function problems related to their 

use of calculator strategies?  In particular, what relationship, if any, exists among 

opportunity to learn, achievement and calculator strategies students use when solving 

function problems? 

4. What effect does the use of technology, including calculator strategies, and opportunity to 

learn have on achievement when technology usage is reported from the students’ 

perspective on a multiple choice assessment and from the teachers’ perspective on a free 

response assessment? 

Significance of the Study 

There has been little research on problem solving strategies students use when solving 

function problems with or without calculators.  Few studies have examined the relationship 

between OTL and achievement in relation to the strategies used in solving problems.  Even fewer 

studies have examined these variables within the context of a curriculum based on NCTM (1989) 

recommendations, which includes standards-based instruction with multiple representations and 

technology integrated into the curriculum.  Hence, this study addresses this gap in the literature. 

The results of this study have the potential to inform teachers, researchers, and 

professional development facilitators on how students’ use of strategies can influence 

achievement when solving function problems, and the degree to which students’ opportunity to 

learn functions influences the relationship among problem solving strategies, technology, and 

achievement.  In sum, results from studies such as this can help fill the documented gap in the 

extant body of research to investigate in what contexts technology influences, either positively or 

negatively, student achievement, and what relationships exist between achievement when using 

technology and opportunity to learn.   
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Definition of Terms 

The following terms will be used frequently throughout this study. Whenever possible I 

use the commonly accepted mathematical definitions based on applicable mathematics education 

research.  However, when there is disagreement among the research community for a particular 

term, I will provide an operational definition based on the needs of this study. 

Function. In general terms, a function is defined as a correspondence between two 

variables, so that to any value of the independent variable (domain) it associates one and only 

one value of the dependent (range) variable (da Ponte, 1992).  For purposes of this study I will 

use the characterization provided by the CCSSM 9-12 (NGA Center for Best Practices and 

CCSSO, 2010) which states: 

Functions describe situations where one quantity determines another. For example, the 

return on $10,000 invested at an annualized percentage rate of 4.25% is a function of the 

length of time the money is invested. (p. 67) 

Function Standards. The CCSSM (CCSSO, 2010) specify four domains (learning 

outcomes) related to the teaching and learning of functions at the high school level.  Those 

domains are: a) interpreting functions; b) building functions; c) linear, quadratic, and exponential 

models; and d) trigonometric functions.  

Multiple representations. This is used to describe or symbolize mathematical concepts 

based on the Rule of Four.  Multiple representations are used to understand, to explain, and to 

communicate different mathematical aspects of the same object as well as connections among 

different aspects. Multiple representations can include graphs and diagrams, tables and grids, 

formulas, symbols, words, physical and virtual manipulatives, pictures, and sounds.  The four 

representations used in this study are algebraic, graphical, tabular, and verbal. 
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Algebraic representation. The representation of the relationship between an 

independent variable and a dependent variable using letters as variables, numbers, and 

mathematical operations (such as + or -).  Examples of functions in algebraic representation 

would include f(x) = 2x-4, 𝑦 = 2𝑥3, and y = [x] (a step function with a domain of all real 

numbers). 

Graphical representation. A representation of a function that uses points and/or curves 

in a Cartesian coordinate plane (or other appropriate visual coordinate systems for higher or 

other dimensions) to display some or all of the elements of the independent variable of the 

function with its corresponding dependent element.  Some examples are shown in Figure 2. 

 

 

Figure 2. Graphical Representations of Functions. 

Tabular representation. A representation of a function where some or all of the 

independent elements are listed in pairs with their corresponding dependent elements and 

displayed in a table.  An example is shown in Table 1. 

 

Table 1 

Example of Tabular Representation of Function 
 

x f(x) 
-1 1 
0 0 
2 4 
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Verbal representation. A representation of a function using words, and possibly 

numbers, to describe the relationship between the independent and dependent variables.  An 

example of a verbal representation of a function would be “Mary earns $3.50 for every hour she 

works”.   

Strategies. For the purposes of this study I will use the strategy definitions Huntley and 

Davis (2008) proposed for solving problems both with and without calculators as shown in Table 

2. 

Table 2  

Strategies Used to Solve Function Problems 
 

With Calculator Without Calculator 
Algebraic: Use of CAS features to solve a 
problem. 

Algebraic: Use of symbol manipulation 

Graphical: Use of a graph to solve a problem. Graphical: Use of a graph to solve a problem. 

Tabular: Use of a table to solve a problem. Tabular: Use of a table to solve a problem. 

Arithmetic: Substituting in values (includes 
trial and error) and checking answers 

Arithmetic: Substituting in values (includes 
trial and error) and checking answers 

Unknown:  Cannot determine how the 
calculator was used, if at all, to solve a 
problem. 

Other:  None of the above strategies were used 

Note: CAS refers to graphing calculators equipped with computer algebra systems. Based on strategies developed by Huntley et al. (2007), 
Huntley and Davis (2008). 

 

Calculator active.  Calculator-active problems are those that would be difficult, if not 

impossible, to solve without the use of a calculator (Greenes & Rigol, 1992; Harvey, 1992). 

Calculator inactive.  Calculator-inactive problems are those for which there is no 

advantage (perhaps even a disadvantage) to using a calculator (Greenes & Rigol, 1992; Harvey, 

1992).  



 
 

12 

Calculator neutral.  Calculator-neutral problems are those that can be solved without a 

calculator, although a calculator might be useful (Greenes & Rigol, 1992; Harvey, 1992). 

Opportunity to Learn (OTL). Opportunity to learn has been defined as “whether or not 

students have had an opportunity to study a particular topic or learn how to solve a particular 

type of problem” (Husen, 1967, p. 162).  In this study, I am viewing opportunity to learn as the 

extent to which teachers have taught lessons and assigned homework, and the extent to which 

teachers taught or reviewed content on assessments.   

Curriculum. The term is used to describe mathematical topics that comprise a specific 

course of study – the what of mathematics teaching and learning (Stein, Remillard, & Smith, 

2007).  Researchers have identified different types of curricula.  This study examined the effects 

of the intended, implemented, assessed and achieved curricula.  

Intended curriculum.  What is articulated in local, state or national frameworks 

generally for a particular subject at a specified grade level is referred to as the intended 

curriculum (Tarr, Chávez, Reys, & Reys, 2006).  

Implemented curriculum. The mathematics presented to students by the teacher is 

known as the implemented curriculum (Robitaille et al., 1993). 

Assessed curriculum. The content that is assessed to determine achievement is described 

as the assessed curriculum (Porter, 2006). 

Achieved curriculum.  Students’ observed performance (what they actually know) about 

a particular topic is referred to as the achieved curriculum.  

Summary 

In this chapter, I provided a background to the study and a brief account on the important 

role the concept of function plays in the teaching and learning of secondary mathematics. I also 

discussed the role opportunity to learn plays in achievement and the importance of understanding 



 
 

13 

how curriculum content, instructional strategies, instructional resources, and general assessment 

preparation factor into the measurement of opportunity to learn and achievement.  This was 

followed by the rationale for the study, the research questions, and the definition of key terms. 

Chapter 2 presents a review of literature that grounds this study. Chapter 3 contains the methods 

used to collect and analyze the data.  Chapter 4 presents the results of the analyses.  Chapter 5 

provides a discussion of the results. 
  



 
 

14 

Chapter 2: Review of the Literature 

This chapter consists of two main sections.  The first section examines the difficulties 

students face when learning functions and the role multiple representations play in the learning 

of functions.  The second section begins with a brief discussion of opportunity to learn and some 

of the different models used to explain and measure OTL, and continues with an examination of 

the research associated with curriculum content, instructional strategies, instructional resources 

and general assessment preparation in terms of how they impact students’ OTL and achievement. 

Functions in the Curriculum 

For over two centuries mathematicians grappled with the concept of function and how it 

should be defined.  It is, therefore, not surprising that students have difficulty identifying 

functions and making sense of their representations.  In this section, I review the research on 

difficulties students encounter when learning about functions.  Then, I examine the large body of 

research regarding multiple representations and the struggles students face when using different 

representations of functions. 

Identifying functions.  When students are introduced to a formal definition of a concept, 

they do not always use that concept definition when deciding whether a given mathematical 

object is an example or a non-example of the concept (Tall and Vinner, 1981; Vinner & Dreyfus, 

1989).  Students often fail to recognize what is and what is not a function.  This can be true when 

students view functions as algebraic quantities, graphs, or are given a verbal description.   

Students often mistakenly think functions can always be represented by a single formula.  

In their research on the concept or definition of function, Vinner and Dreyfus (1989) had 271 

college students review the graph in Figure 3; some of those who identified the graph as a non-
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function justified their decision on their inability to represent the graph with a single equation or 

formula.   

 

 
Figure 3.  A Function Identification Problem.  Adapted from “Images and Definitions for the 
Concept of Function,” by S. Vinner, and T. Dreyfus, 1989, Journal for Research in Mathematics 
Education, 20(4), p. 359. Copyright 1989 by National Council of Teachers of Mathematics.  
Adapted with permission. 

 

Cansiz, Küçük, & Isleyen (2011) obtained similar results in their study of functions with 61 9th, 

10th and 11th grade students.  They reported over 96% of the students failed to correctly identify a 

function when the description or graph could not be represented by a single formula.   

Thompson (1994) concluded many students define functions as “two written expressions 

separated by an equal sign” (p. 25).  For example Thompson (1994) noted a student who, when 

asked to prove 𝑆𝑛 = 12 + 22 + ⋯𝑛2, provided the following as part of his proof: 𝑓(𝑥) =
𝑛(𝑛+1)(2𝑛+1)

(𝑛+6)
.  Thompson concluded the student found the explanation correct and sufficient 

because the latter was a general representation of the former.  Students mistakenly believe the 

equality sign implies continuity in a function, which is not a requirement.   

Students also struggle with continuity of functions.  Many students believe all functions 

should be nice and should be one-to-one (Breidenbach, Dubinsky, Hawks, & Nichols, 1992; 

Selden & Selden, 1992).  Carlson (1998) reported students were likely to misclassify 
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example, 
0,  is irrational
1,  is rational,

x
x





 as not a function because it is not well-behaved.  Misconceptions 

that arise from students’ ill-conceived notion of one-to-one include difficulties with constant 

functions because they are not one-to-one (Dubinsky & Harel, 1992; Even, 1990; Markovits, 

Eylon, & Bruckheimer, 1986), and over reliance on the vertical line test (Wilson, 1994). 

Sfard (1991) argued mathematical concepts, in general, and functions, in specific, are 

dual in nature.  She posited the concept of function consists of both the object of the function, a 

set of ordered pairs, and a process or “a method of getting from one system to another” (Skemp, 

1971, p. 246).  Students often look at the object and the process as distinct, mutually exclusive 

entities instead of different lenses or representations by which to view the same whole.  The 

propensity to look upon the object and the process separately has been a source of difficulties for 

students attempting to develop conceptual understanding of functions. 

Multiple representations of functions.  Although Sfard (1991) viewed the different 

aspects of a function as different sides of the same coin, it may be more appropriate to view the 

function as a multi-dimensional entity.  A function has different representations and “each 

representation is of a different nature, has limited representation capabilities and describes 

different aspects of the object it represents” (Elia, Panaoura, Eracleous, & Gagatsis, 2007, p. 

538).  Each of the different representations of a function – graphical, tabular and algebraic – 

highlights a different aspect of the concept and no one representation can adequately describe the 

concept (Gagatsis & Shiakalli, 2004; Kaldrimidou & Ikonomou, 1998).  For example, graphs 

display qualitative data including information regarding the shape and direction of the 

relationship between the variables (Ainsworth, Bibby, & Wood, 2002).  Formulas, however, 

focus more on the procedural aspects of the concept (Kollöffel & de Jong, 2005), and tables 

highlight patterns and regularities (Ainsworth et al., 2002). 
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A function can have different representations: verbal, graphical, algebraic, and tabular 

(See Figure 4).  Moving from one representation to another provides students opportunities to 

visualize the relationships and helps them obtain a better conceptual understanding, which 

strengthens their ability to solve problems (National Council of Teachers of Mathematics, 2000).  

Because different information can be obtained by viewing the function in different 

representations, it is critical students are able to move seamlessly between representations. 

 
Verbal: Mary is standing on the roof of a building.  She is 5 foot tall and throws a 
penny off the building.  At one second the penny is 2 feet above the roof and at two 
seconds the penny is three feet below the roof. 

   
Graph Equation Table 

 

2( ) 2 5f x x x= − − +  

 

Figure 4.  Different Representations of the Same Function Problem. 

 

Yet, students at many levels face difficulties when attempting to move from one 

representation of a function to another (Abdullah, 2010; Artique, 1992; Gagatsis, 2004; Hitt, 

1998).  In one study of 195 college students, Gagastis and Shiakalli (2004) reported a significant 

correlation between translation ability and problem solving ability, and noted translation ability 

accounted for 53% of the regression equation (p < .05).  They noted no significant relationship 

between the verbal and algebraic representations of the problem. Students did not recognize that 

the verbal and algebraic forms were two different views of the same concept; instead, they saw 

them as separate concepts.  The researchers concluded success with the function concept requires 
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students to master at least two different representations.  In another study, Abdullah (2010) 

interviewed students who were working with function concepts.  He noted students encountered 

difficulties going from the algebraic representation of a function to a graphical representation 

and did not make the connection that points on the graph corresponded to (x, f(x)) pairs in the 

equation.  The results from these studies were consistent with earlier research (Eisenberg, 1992; 

Hitt, 1998). 

Also, consistent with the work of Eisenberg (1992), more recent research has shown 

students who understand how to use the function concept in one representation often experience 

difficulties applying the same concept when using a different representation (Abdullah, 2010; 

Gagastis, 2004).  In fact, students may not make the connection that an equation, table, and graph 

all communicate the same information in different forms, but instead view the different 

representations as separate entities.  Student difficulties in using multiple representations go 

beyond their inability to switch representations.  Research has also noted students tend to prefer 

some representations over others. 

In a recent study of 44 pairs of high achieving high school students, Huntley and Davis 

(2008) reported students were most likely to use algebraic methods when solving function 

problems, even when a different representation would be more helpful. They also reported 

students preferred graphical solutions over using tables and rarely used tables.  In another study 

of 38 students, Herman (2007) noted students were more likely to utilize symbolic manipulation 

when solving function problems.  In solving six function problems, students, while they 

preferred algebraic solutions, did use graphical methods.  However, none of the students used a 

table on any of the problems.  Abdullah (2010), Herman (2007), and Huntley and Davis (2008) 

reported similar findings. 
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Multiple representations using calculators. Some educators believe that when students 

are able to move more frequently between representations as they solve problems, they become 

more aware of the connections between these representations and begin to see how information 

about functions is presented in different ways in different representations (Kaput, 1989).  

However, research and international assessments have shown students have not been successful 

in using multiple representations with functions (Kaput, 1987, 1989).  Kaput argued dynamic 

technologies, such as graphing calculators, can be instrumental in helping students understand 

linked representations (1989).  Others have argued it is difficult for students to move between 

different representations of functions without technology because using pencil and paper 

techniques to perform the necessary computations can be very tedious and prone to error 

(Harvey, Waits, and Demana, 1995).  Graphing calculators can carry out computations quickly 

and accurately, allowing students to see multiple representations with ease. Harvey, Waits, and 

Demana (1995) used the example of a fifth-degree polynomial.  Drawing this graph by hand 

would be a difficult process of finding roots and maxima and minima.  But, by using a calculator, 

students can easily move between symbolic and graphical representations to describe the 

polynomial.  

There is extensive research in mathematics education showing a correlation between 

translation ability and mathematical problem solving (Elia, Panaoura, Gagatsis, Gravvani, & 

Spyrou, 2006; Gagatsis & Shiakalli, 2004; Herman, 2007; Hitt, 1998; Kaput, 1987; NCTM, 

2000).  In one study of 197 university students studying functions, Gagatsis and Shiakalli (2004) 

found a significant, positive correlation between students’ ability to translate between multiple 

representations and their problem solving ability when using graphing calculators.  Although 

researchers agree modeling student success is complicated and not well understood, Gagatsis and 

Shiakalli (2004) suggested translation ability is clearly one important factor that cannot be 
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overlooked.  In another study of 193 high school students, Elia and colleagues (Elia, Panaoura, 

Gagatsis, Gravvani, & Spyrou, 2006) reported similar results linking problem solving success 

with functions to translation among different representations. 

In a survey of 27 students, Hennessy, Fung, and Scanlon (2001) found when students had 

experience using the graphing calculator they were able to translate between representations 

frequently and coordinated information from different representations (usually the table and 

graph) to solve problems. Later research conducted by Herman (2007) found students were more 

likely to solve problems using more than one representation when they used graphing 

calculators.  In her study of 38 students who had been taught to use the TI-83 graphing 

calculator, Herman found students were better at solving function problems using multiple 

representations after the end of her class. She also reported most students continued to prefer 

working with algebraic symbols rather than graphs or tables.   

In their study of 44 pairs of high school students, Huntley and Davis (2008) reported use 

of graphing calculators and multiple representations helped students be more successful at 

problem solving.  Students still overwhelmingly preferred symbolic manipulation, but use of 

multiple representations helped some students solve problems that were difficult to solve using 

algebra; in some cases, the calculator helped students recognize symbolic errors.  They 

concluded, “students who learn about and become facile with multiple representations and 

strategies may become more reliant on themselves and less reliant on teachers for detecting and 

correcting their errors” (pp. 386-387). 

Kastberg and Leatham (2005) reviewed the body of research on using graphing 

calculators in the teaching and learning of mathematics.  They concluded that when the use of 

graphing calculators was embedded in the curriculum, students were able to integrate 

information obtained from multiple representations and were better problem solvers than their 
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peers at interpreting mathematics problems in context. Dunham (2000), who has done extensive 

work compiling literature on graphing calculators, had reported similar results.  She found that, 

in general, “students who use graphing calculators display better understanding of function and 

graph concepts, improved problem solving, and higher scores on achievement tests for algebra 

… skills” (p. 40). 

Not all the research on multiple representations has been positive.  Some studies 

(Gagatsis & Shiakalli, 2004; Moreno & Duran, 2004; Moreno & Mayer, 1999; Seufert, 2003; 

Yerushalmy, 1991) have provided evidence to suggest that, instead of supporting conceptual 

learning and problem solving, multiple representations can sometimes have the opposite effect, 

impeding the learning process or decreasing students’ ability to solve problems.  For example, 

Ainsworth et al. (2002) explain that students need to devote a significant amount of perceptual 

and attention resources to fully grasp the meaning behind the different representations.  Some 

students become overwhelmed with such demands, which can hinder learning.  In another 

example, Gagatsis and Shiakalli (2004) found students’ ability to translate between different 

translations had a direct impact on problem solving success, especially when using the graphical 

representation of the function.  Some studies have shown integrating multiple representations can 

be extremely demanding for the learner (Moreno & Duran, 2004; Moreno & Mayer, 1999; 

Seufert, 2003); others (Elia et al. 2006; Sierpinska 1992; Yerushalmy 1991) have suggested 

when students struggle with multiple representations their learning, problem solving abilities, 

and achievement are negatively impacted. 

Strategies and multiple representations of functions.  Most of the research on the use 

of graphing calculators in the teaching and learning of mathematics has focused on the areas of 

student achievement, attitude, or the teaching and learning of a particular mathematics topic such 

as functions (Burrill et al., 2002; Ellington, 2003).  However, there has also been research 
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examining how students use graphing calculators as a strategy to solve problems (Berry & 

Graham, 2005; Harskamp, Suhre, & van Streun, 2000; Ruthven, 1990). 

Ruthven (1990) investigated the strategies students used as they answered six function 

questions by writing down the equation to a given graph.  The sample consisted of 87 high 

school students of which 47 had access to graphing calculators and 40 did not.  Ruthven 

identified three strategies the students used to obtain their solutions which he was able to link 

back to the graphing calculator usage: analytic construction, graphic trial, and numeric trial. 

Students who used analytic construction utilized their existing knowledge of parent 

functions to build up the function.  Those in the calculator group were able to quickly and 

effectively check their solutions.  The second group used graphic trial.  Students used their 

calculators to modify the equation of the graph until they found the correct answer.  The third 

approach was numeric trial in which students made a symbolic guess, usually by examining the 

numeric pattern of a few points, and adjusted their conjecture by plotting points to see if the 

graphs matched.   

Other researchers have also explored how students use graphing calculators as tools to 

solve problems.  For instance, Harskamp and colleagues (2000) investigated the effect a 

graphing calculator had on students’ solution strategies and their knowledge of functions.  They 

examined written student solutions and coded the strategies the students used to solve function 

problems.  They used the following strategy categories: heuristic; graphic; algorithmic, or 

analytic; and none.  When students used their own strategies, including trial and error, the 

solution was coded as heuristic.  Graphic was used to indicate students created a graph to solve a 

problem.  When students relied on algebraic techniques, the strategy was coded as algorithmic. 

No solution was used when the problem was left blank.   
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Other researchers suggest relying on student solutions provides an incomplete picture of 

how students use calculators because students may not write everything down or may write down 

one solution but use another.  In their research on the use of graphing calculators, Berry and 

colleagues (Berry and Graham, 2005; Berry, Graham, & Smith, 2006; Berry, Graham, & Smith, 

2005) used key stroke capturing software to record every key students pressed while using the 

calculator.  They found three main strategies. 

One strategy students used was to enter the function into the calculator and then copy the 

graph on their paper.  Students who used this approach did not make any changes to the display 

or use any additional strategies to verify the correctness of their graphs.  In another group, 

students entered the function in a calculator but also made changes to the display, such as the 

size of the window, to get a better picture.  Again, the graph may not have been correct and 

students did not verify their solution.  The third strategy students utilized involved using the 

graphing calculator as a tool to check their work.  These students already knew what the function 

looked like and merely used the calculator to verify their solution.   

Still others have categorized students’ solution strategies by the features students used on 

the graphing calculator.  Huntley and Davis (2008) identified these strategies – algebraic (using 

the equation solver), graphical, and tabular – to show how students solved linear function 

problems.  Graham and colleagues (2008) compared how students use calculators to how 

teachers expect them to be used and reported the most common strategies students used were 

algebraic (checking answers) and graphical.  Other researchers (Herman, 2007; Huntley, Marcus, 

Kahan, & Miller, 2007; Senk & Thompson, 2006) have also used the algebraic, graphical and 

tabular categories in their research.  All of these studies based their categories on the Rule of 

Four, which was adapted from the Rule of Three (see Hughes-Hallett, 1991) that began during 

the calculus reform movement.  These strategies reflect the NCTM recommendation (2000) that 
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students should be skilled in using each representation, and should be able to move seamlessly 

between the different representations, including knowing when to use a particular tool and when 

to utilize a different tool. 

Multiple representations and the strategies to use them are crucial in the teaching and 

learning of the function concept.  However, for students to learn they must be provided with 

opportunities to learn the concepts.  Consequently, in the next section I review the extant body of 

research on opportunity to learn and how it affects student achievement. 

Opportunity to Learn  

The term opportunity to learn was first used in the early 1960s as a way to capture 

differences in achievement in international mathematics studies based on the extent to which the 

assessed content was taught (Boscardin, et al., 2005; Gau 1997; Husen, 1967; McDonnell, 1995).  

In the First International Mathematics Study (FIMS), OTL was defined as a measure of “whether 

or not students have had an opportunity to study a particular topic or learn how to solve a 

particular type of problem presented by the test” (Husen, 1967, p. 162).  Although this definition 

is simple and clear, Floden (2002) noted OTL has been interpreted in many ways since the term 

was first introduced.  In one interpretation, Porter (2002) used three broad categories to describe 

OTL: educational inputs, processes, and outputs.  Inputs refers to monetary resources, teacher 

quality (e.g., training), and student socio-economic status (SES).  Processes include school and 

community characteristics such as quality of standards, type and quality of curriculum, and 

teacher quality.  Finally, outputs refer to factors such as student achievement, participation and 

attitudes. 

In another interpretation, Herman and colleagues (Herman, Klein, & Abedi, 2000) 

interviewed teachers and conducted student surveys to examine various aspects of OTL.  They 

defined four overlapping categories that conceptualize OTL: curriculum content, instructional 
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strategies, instructional resources, and general assessment preparation.  These categories, 

discussed in the following section, are used to summarize the current literature on the impact of 

OTL on student achievement.  

Curriculum content.  One of the key factors affecting student achievement is the content 

of instruction (Porter, 2002), which focuses on how much students are exposed to specific 

subjects and topics.  Different manifestations of curriculum content in relation to OTL have 

included content coverage, content exposure, and content emphasis (McDonnell, 1995; Porter, 

2002; Wang, 1999). Content coverage, generally viewed as the most frequently studied aspect, 

has been measured in different ways, such as by teachers’ self-reports, direct observations, and 

analysis of the lessons or content taught. Content exposure is generally measured using direct 

observation to document the amount of time a teacher spends covering specific content. Content 

emphasis considers how a content area is treated: as a major topic, a minor review, or not taught 

at all (Wang, 1999). 

One of the most important influences on content curriculum, especially in the United 

States, is the textbook.  In fact, many consider the textbook to be the most influential part of the 

curricula (Begle, 1973).  Others have also documented the critical role the textbook plays in 

student learning; Yerushalmy and colleagues (1993) reported students generally explore 

problems as they are written and do no more than asked by the instructions.  They found students 

were unwilling to alter or expand a problem unless they had been specifically instructed to do so, 

and concluded that the textbook greatly determines student activities.  Schmalz (1990) observed 

that the mathematics textbook almost totally determined the day-to-day instruction in the 

classroom. He reported teachers often started on page 1 and continued through the text without 

skipping, or adding, anything.  In their analysis of French, English and German classrooms, 

Haggarty and Pepin (2002) also found there were clear differences in students’ OTL, not only 
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between countries but within countries as well.  They concluded students have different and 

varying OTL depending on the textbook used and how a teacher chose to use the given textbook.  

In a study of 39 middle grades teachers, Tarr  and colleagues  (Tarr, Chávez, Reys, & Reys, 

2006) reported 34% of the teachers used the textbook on 90% of instructional days and 70% 

relied on the text at least 3 out of every 4 instructional days.   

Instructional strategies.  OTL factors associated with instructional strategies include 

whether or not students have been exposed to the kinds of teaching and instructional experiences 

that would prepare them for success (Herman, Klein, & Abedi, 2000).  Research at the high 

school level shows achievement is higher when the instructional strategies are in agreement with 

the philosophy of the curriculum.  For example, achievement using Core-Plus Mathematics 

curriculum is lower when taught using traditional instructional strategies and higher when taught 

using the instructional strategies outlined by NCTM to stress conceptual understanding and that 

are aligned with the philosophy of the curriculum developers (Schoen, Ziebarth, & Hirsch, 

2010).  

Instructional resources.  OTL factors associated with instructional resources focus on 

whether there are appropriate resources to prepare students for success on assessments and 

standards. Criteria in this category include teacher preparation, level of education, amount of 

experience, type of experience, participation in in-service professional development, and 

attitudes (Herman, Klein, & Abedi, 2000). Both the textbook and use of technology are examples 

of this category because the resources to which teachers have access can facilitate or hinder a 

school’s ability to provide a high-quality instructional program (Oakes, 1989).  Technology, in 

general, and the calculator especially, is one instructional resource which can help students 

master the concept of function in all its dimensions.  Both textbooks and use of technology, 

especially the calculator, have a direct impact on students’ opportunity to learn mathematics. 
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Textbooks and their use in teaching mathematics. Textbooks are among the most 

widely used and trusted resources in most parts of the world (Beaton, et al., 1996), often defining 

the mathematics students have an opportunity to learn (Haggarty, & Pepin, 2002; Tornroos, 

2005).  In most cases students are not given the opportunity to learn material not present in the 

textbook (Porter, 1995; Reys, Reys, Lapan, Holliday, & Wasman, 2003; Schmidt, 2002) and 

teachers are unlikely to present material that is not in the textbook (Reys et. al, 2003).  Some 

have noted the textbook is such a critical resource for learning that the textbook often directs 

instruction instead of the teacher (Begle, 1973).  For example, a national survey of 364 

mathematics and science researchers reported the textbook assigned for a class is a major factor 

in the teacher’s selection of content for a lesson (Weiss, Pasley, Smith, Banilower, & Heck, 

2003). 

Classroom uses of calculators.  Textbooks are not the only classroom resource shown to 

have a positive impact on opportunity to learn.  In their seminal research on how calculators are 

used in the classroom, Doerr and Zangor (2000) identified five categories of classroom usage of 

the graphing calculator. The graphing calculator was used as (a) a computational tool, (b) a 

transformational tool, (c) a data collection tool, (d) a visualization tool, and (e) a checking tool 

(Doerr & Zanger, 2000). 

Computational tool. The first category of calculator usage is as a computational tool. 

Doerr and Zangor (2000) defined computation tool usage as “evaluating numerical expressions 

and estimating and rounding” (p. 151).  A study conducted by Hollar and Norwood (1999) 

examined 46 students who used the graphing calculator in their study of functions.  They found 

the students who used the graphing calculator had higher levels of procedural skill and 

conceptual understanding than those students who did not use graphing calculators.  Equally as 

important, they reported there was no significant difference between the treatment and control 
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groups in computational skills.  In other words, students who used the calculator as a 

computational tool did not suffer from a decrease in computational skills.  Similarly, in a 2003 

meta-analysis of the effect sizes of 15 studies, Ellington found no significant difference in 

computational skills between students who used calculators and those who did not.   

Transformational tool. The second category of calculator usage is as a transformational 

tool. Using the calculator as a transformational tool was defined by Doerr and Zangor (2000) as 

using a graphing calculator to transform tedious computational tasks into interpretative tasks. 

One example given by Doerr and Zangor (2000) was a problem in which students examined the 

rate of change for a given function. Doerr and Zangor (2000) reported the students were able to 

find a rate function and generate a table of values for a rotating Ferris wheel. Then the students 

were able to determine the rate of change (Doerr & Zangor, 2000).  In another study of 179 grade 

11 students, Elia and colleagues (Elia, Panaoura, Eracleous, & Gagatsis, 2007) found, even when 

students were unable to solve function problems, they were more likely to understand the 

function concepts when they used the graphing calculator as a transformation tool to switch 

between the algebraic and graphical representations.   

Data collection and analysis tool. The third category of calculator usage is as a data 

collection and analysis tool. Doerr and Zangor (2000) defined the third category as “gathering 

data, controlling phenomena, and finding patterns” (p. 154).  Elia and colleagues (2006) assert 

graphing calculators are critical to helping students see and create patterns and functions from 

data.  Several researchers have espoused the use of graphing calculators with CAS as a tool to 

generate patterns from data, assisting students in obtaining conceptual understanding (Drijvers, 

2004; Lagrange, 2005a; Lagrange, 2005b; Stacey, Kendal, & Pierce, 2002). 

Visualizing tool. The fourth category of calculator usage is as a visualizing tool. Doerr 

and Zangor (2000) defined the fourth category as “finding symbolic functions, displaying data, 
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interpreting data, and solving equations” (p. 151).  There is ample evidence from research to 

support the use of graphing calculators as a visualization tool.  Burrill and colleagues (Burrill et 

al., 2002) reported students who used the graphing calculator had a better understanding of 

functions, solving equations, and interpreting graphs than those students who did not use the 

graphing calculator.  They concluded that students who use graphing calculators to produce 

quick and accurate graphs become better problem solvers.  Results from Burrill and colleagues 

(2002) mirror earlier findings by Slavit (1994) who posited  “the graphing calculator provided 

the instructor a means of quickly changing symbolic function parameters in order to better 

discuss global functional properties of a given function class” (p. 11-12).  In his seminal work, 

Ruthven (1990) hypothesized regular use of graphing calculators exposed students to the 

relationships between symbols and graphs, making it easier for students to recognize salient 

features of graphs and connect them to their symbolization. 

Checking tool. The fifth category of calculator usage is as a checking tool. Doerr and 

Zangor (2000) defined the fifth category as “confirming conjectures and understanding multiple 

symbolic forms” (p. 151).  Research has shown graphing calculators are commonly used as tools 

for checking or verifying work done by hand (Doerr & Zangor, 2000; Harskamp, Suhre, & Van 

Streun, 2000; Hennessy, Fung, & Scanlon, 2001; McCulloch, 2005; McCulloch, Kenney, & 

Keene, 2012). Many researchers believe students use a graphing calculator to check answers 

more often than any other use.  Ruthven (1990) reported one third of the students used a 

graphing calculator to determine if an equation matched a given function.   

General assessment preparation and OTL. The final category of variables used by 

Herman et al. (Herman, Klein, & Abedi, 2000) focused on general measures of preparation for 

the assessment. These variables sought to capture indicators of general preparation for the 

assessment by teachers and students. For example, teachers were asked how many class periods 
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they spent directly preparing their students for the assessment. Although many use curriculum 

content OTL to include assessment items, others measure OTL on assessment items directly, 

generally using interviews or questionnaires to ascertain if teachers had taught the material 

necessary for students to answer specific assessment questions.   

Herman and colleagues (2000) reported a positive correlation between OTL and 

achievement when considering how much time teachers spent in preparing students for 

assessments.  Other methods for measuring the achieved curriculum include work by Cooley and 

Leinhardt (1980) who asked teachers to estimate the percentage of their students who had been 

taught the minimum material necessary to pass each item on a standardized achievement.  In a 

related study, Leinhardt, Zigmond, and Cooley (1981) asked teachers to indicate whether each 

student or sample of students had been taught the information required to answer specific test 

items.  Extending the concept of measuring OTL by examining assessment questions, Thompson 

and Senk (2001) adjusted achievement scores to account for students’ OTL on assessment 

questions.  They found the average scores rose when OTL was controlled, which suggests a 

positive correlation between OTL and achievement at the assessment level.   

Summary 

Researchers have illustrated the important role curricula materials; instructional 

strategies; instructional resources, including technology; and assessment preparation play in 

understanding how the research reviewed in this chapter provides the foundation for this study. 

Opportunity to learn impacts student achievement.  Researchers have documented the important 

role technology can play in students’ understanding of functions and the importance of learning 

the different representations of functions, as well as helping students obtain representational 

fluency and ease when shifting between representations.  It is also clear from looking at the 

research that the ways in which teachers use the textbook play a critical role in students’ 
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opportunity to learn mathematics in K-12 education, and ultimately on their achievement on 

mathematics assessments.  Each of these areas of research has influenced not only my 

understanding of the phenomenon under study in this investigation, but also the methods and 

interpretations used to conduct this investigation.   
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Chapter 3: Methods 

This study analyzed students’ opportunities to learn and their use of calculator strategies 

when solving function problems.  The description of the study is divided into six sections.  In the 

first section I provide an overview of the overall research design.  In the second section I provide 

the research questions.  The third section contains a description of the University of Chicago 

School Mathematics Project (UCSMP) and the sample to provide context for the current study.  

In the fourth section I discuss the data collection procedures.  The fifth section contains a 

discussion of the analyses, and in the final section I discuss the reliability of the statistical 

methods.   

Research Design 

This study utilized quantitative methods in a correlational study that used secondary data 

analysis to determine to what extent opportunity to learn and the use of technology affect student 

achievement when learning functions.  Opportunity to learn was analyzed by investigating the 

actual lessons and homework teachers assigned and teachers’ reported coverage of content 

assessed by the items on the three posttests.  Use of technology was examined using students’ 

reported use of technology and strategies on one posttest and the codes teachers used to describe 

student solutions on the problem solving test.  Specifically the study addressed the following 

research questions: 
 

1. What are students’ opportunities to learn about functions in a precalculus course? 

2. What calculator strategies do Precalculus students use when solving function problems? 

In particular, in what ways do students use these strategies when using a graphing 

calculator to solve function problems from both  teachers’ and students’ perspectives? 
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3. How is Precalculus students’ achievement in solving function problems related to their 

use of calculator strategies?  In particular, what relationship, if any, exists among 

opportunity to learn, achievement and calculator strategies students use when solving 

function problems? 

4. What effect does the use of technology, including calculator strategies, and opportunity to 

learn have on achievement when technology usage is reported from the students’ 

perspective on a multiple choice assessment and from the teachers’ perspective on a free 

response assessment? 

Context of the study 

This study represented an in-depth secondary analysis of student achievement data 

collected as part of the field trial evaluation of Precalculus and Discrete Mathematics ([PDM] 

Field-Trial Version, Third Edition) developed by UCSMP (See Thompson and Senk in 

preparation).  The following sections provide background on the UCSMP study which provides 

context for the current study.  Following the overview is a brief description of the sample used 

for the field study.    

Overview of The University of Chicago School Mathematics Project.  UCSMP was 

established in 1983 in an effort to improve K-12 mathematics education and reflected 

collaboration between two departments at the University of Chicago (mathematics and 

education).  Zalman Usiskin and Sharon Senk co-directed the secondary component, which 

designed a mathematics curriculum for students in grades 7-12.  These materials were developed 

as one implementation of the recommendations in many documents throughout the 1980s that 

culminated in the content and process standards in the National Council of Teachers of 

Mathematics’ (NCTM) Curriculum and Evaluation Standards (1989).  Three editions of the 

curriculum were developed between 1983 and 2010. The main goals in the development of the 
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First and Second Editions of the UCSMP Secondary materials were: “(a) to upgrade students’ 

achievement in mathematics; (b) to update the mathematics curriculum in terms of content; and 

(c) to increase the number of students who take mathematics beyond algebra and geometry” 

(Thompson, Senk, & Yu, 2012, p. 5).  The Second Edition materials were developed and tested 

between 1992 and 1998 and the materials for the Third Edition were developed between 2005 

and 2010.  The development of the Third Edition materials built upon the goals implemented in 

the First and Second Editions but included, among other things, more use of technology and the 

use of graphing calculators with computer algebraic systems (CAS) capability. 

This study focuses on the curriculum for Precalculus and Discrete Mathematics (PDM), 

which is: 

designed to prepare students for rigorous mathematical study in college. Precalculus 

topics include polynomial and rational functions, a study of advanced properties of 

functions, including limits, and the underpinnings of the derivative and integral. Polar 

coordinates and complex numbers are also topics of study. Discrete mathematics topics 

include work with recursion, permutations and combinations, and logic.  Mathematical 

thinking, with particular attention to proof, is a unifying theme of the course.  Computer 

algebra systems are assumed throughout the course (Thompson et al., p. 7). 

The curriculum in PDM is comprised of seven major concept areas: proof, functions and their 

properties, discrete mathematics, trigonometry, foundations of calculus, polar and complex 

numbers, and polynomials and their operations.  

The research questions for the field-study had two main areas of focus:  how the teachers 

used the materials and what students learned when taught using the materials.  The main research 

questions for the evaluation study (D. R., Thompson, personal communication, October 29, 

2013) were: 
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1) How do teachers implement their respective curriculum materials? 

2) What support, if any, do teachers need when using the UCSMP Precalculus 

and Discrete Mathematics (Third Edition, Field-Trial Version) curriculum 

materials?  

3) How does the achievement of students in classes using UCSMP Precalculus 

and Discrete Mathematics (Third Edition, Field-Trial Version) compare to 

that of students using the Second Edition curriculum already in place at the 

school, when applicable?  

4) How do students’ achievement and understanding of key content topics 

change over the course of the school year?  

5) How do students use technology relevant to their curriculum? 

Sample for the field evaluation study.  Schools were recruited using UCSMP and 

NCTM publications.  The director of evaluation, in consultation with other UCSMP personnel, 

selected participating schools based on a broad range of educational conditions in the United 

States in terms of curriculum and demographics such as location, size, type of community, and 

socioeconomic status.  This led to six schools being selected to participate in the field study.  

Among the six schools, seven teachers taught 14 classes of PDM.  It was not feasible to use 

random selection of schools or teachers for participation in the field study.   

As part of the Third Edition field study, for comparison purposes, two teachers at two 

schools used the Second Edition of the textbook.  There are minor differences in the textbooks 

between the two editions but the major difference between the implementation of the two 

editions was the use of technology.  Teachers using Third Edition materials were provided with 

enough CAS capable graphing calculators to assign one to each student for home and classroom 
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use.  Students using the Second Edition used graphing calculators, potentially without CAS, and 

may or may not have had access to graphing calculators at home.   

Data Collection 

My study utilized existing data collected as part of the larger evaluation study conducted 

during the 2007-2008 school year that examined student achievement and opportunity to learn 

from the enacted curriculum using the Third Edition (n ≈253) of UCSMP Precalculus and 

Discrete Mathematics (PDM) compared to students using the Second Edition (n≈47).  Data were 

collected from the following sources: Teacher Initial Questionnaire, Teacher End-of-Year 

Questionnaire, Teacher Interviews, Classroom Visits, Chapter Evaluation Forms (Third Edition) 

or Textbook Chapter Coverage Forms (Second Edition), Teacher Opportunity-to-Learn (OTL) 

Form, 2 pretests, 3 posttests, end of year student survey, and student posttest calculator usage.  

Only some of the data were used in my study as delineated in the following sections. 

Student Instruments.  Students completed two pretests, three posttests, a calculator 

usage form, and a student survey.  Although the student instruments contained items that 

assessed a variety of skills and knowledge, only items that assessed students’ knowledge of 

functions are utilized in this study.  This section details each of the relevant student assessments. 

Pretests. Students completed two pretests designed to assess prerequisite knowledge of 

concepts taught in PDM.  The pretests were also used to determine if classes were comparable 

(i.e., Third Edition and Second Edition in the same school) when appropriate, in terms of 

prerequisite knowledge, and to provide a baseline score to measure growth over the course of the 

year. 

Pretest Form One (see Appendix A) consisted of 35 multiple-choice questions.  Items 

were developed to provide information about seven major sub-topic areas: proof (3 items); 

functions and their properties (16 items); discrete mathematics (3 items); trigonometry (6 items); 
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foundations of calculus (2 items); polynomials (1 item); and basic algebra (4 items).  Pretest 

Form Two (see Appendix B) contained 25 questions. Students were permitted to use a calculator 

only Pretest 2.  Items on pretest 2 were developed to provide information about eight major sub-

topic areas: proof (1 item); functions and their properties (10 items); discrete mathematics (1 

item); trigonometry (4 items); foundations of calculus (4 items); polar and complex numbers (1 

item); polynomials (2 item); and basic algebra (2 items). 

All assessments were designed to be completed in no more than 40 minutes.  Data 

include responses to each question in raw form (the actual multiple-choice letter selected), 

gender, grade level, and name.  UCSMP project staff scored the items indicating correct (1) or 

incorrect (0) for each question and assigned unique IDs to all students.   
Posttests. The items on the posttests assessed knowledge in the areas of basic algebra, 

functions, trigonometric functions, discrete mathematics, and exponential and logarithmic 

functions.  Posttest Form One (see Appendix C) consisted of 30 multiple-choice questions.  

Items were developed to provide information about eight major sub-topic areas: proof (7 items); 

functions and their properties (15 items); discrete mathematics (1 item); trigonometry (1 item); 

foundations of calculus (2 items); polar and complex numbers (1 item); polynomials (1 item); 

and basic algebra (2 items).  There were 16 items repeated from pretest 1.  Of these sixteen 

items, three assessed basic algebraic knowledge; eight assessed knowledge of functions; three 

tested knowledge of discrete mathematics; and one assessed knowledge on trigonometric 

functions.   

Posttest Form Two (see Appendix D) contained 22 multiple-choice questions on which 

students were permitted to use a calculator.  Items were developed to provide information about 

six major sub-topic areas: functions and their properties (7 items); discrete mathematics (1 item); 

trigonometry (4 items); foundations of calculus (6 items); polar and complex numbers (2 items); 
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and polynomials (2 items). There were 13 items repeated from the pretest.  Two of the repeated 

items tested basic algebraic knowledge; seven assessed function knowledge; three tested 

knowledge of trigonometric functions; and one assessed knowledge of exponential functions. 

Posttest calculator usage. After students completed posttest two, they were asked to 

complete a survey regarding their usage of a calculator on that posttest.  The students were asked 

to identify the type of calculator (i.e., it can graph or it can simplify equations using CAS) and 

for each question to identify how they used the calculator in solving the problem.  Options 

included a) did not use the calculator, b) used only for arithmetic, c) used graphing features, d) 

used CAS features, and 5) other.  Data were entered into EXCEL spreadsheets for each student, 

including the type of calculator used, and the manner in which the calculator was used for each 

question.  

Problem solving posttest. In addition to the multiple-choice tests, students also took an 

open-ended problem solving test (see Appendix E).  This posttest contained five items designed 

to measure students’ abilities to solve multi-step problems, do proofs, and explain their thinking 

of the core concepts in precalculus and discrete mathematics.  The items were chosen because 

each was solvable using several strategies, including numeric, symbolic, and graphical methods, 

and each required students to explain their reasoning.  As part of this exam, students indicated if 

they used a calculator, and if so, what type they used: a) it cannot graph equations, b) it can 

graph equations, or c) it can simplify algebraic equations (CAS).  Students were directed to show 

all of their work, including how the calculator was used to solve the problem.  Problems were 

scored using a 0-4 rubric; if the scoring team was able to ascertain the type of solution (e.g., 

numeric, graphic or symbolic) it was also recorded. 

Student survey. At the end of the school year the students were asked to complete a 

survey with 18 questions (see Appendix F).  Ten of the questions inquired about how technology 
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was used in the teaching and learning of mathematics, including: a) the type of calculator used in 

class and at home, b) how often the calculator was used in class and at home, c) for what purpose 

the calculator was used in class and at home, d) how often students used CAS in class and at 

home, and e) how helpful the calculator was.  There was a desire to collect student names on this 

survey to enable the researchers to connect the data with individual student achievement results.  

Due to privacy concerns and issues related to parental permission, student names or IDs were not 

collected.  Instead, the researchers included two questions to help identify responses from 

students who were likely to have been in class during the entire year. Students were asked if they 

were in the class at the beginning of the year and at the time of the first report card.  Students who 

answered yes to both questions were included in the final data set because it is likely they 

completed all the pretests and posttests.  Results from this survey are reported only at the class 

level. 

Teacher Instruments.  Teachers were asked to complete beginning and end of year 

questionnaires.  In addition they completed chapter evaluation forms for each chapter they 

taught, which included information about students’ opportunity to learn lessons and homework 

assigned from each lesson.  Teachers also completed opportunity to learn questionnaires for each 

posttest.  Each of the instruments is described in this section. 

Beginning of the year teacher questionnaire. This questionnaire was administered to all 

teachers participating in the study at the beginning of the school year.  The initial questionnaire 

was used to collect teacher demographics and baseline data about the classroom (i.e., block or 

traditional scheduling) and anticipated instructional approaches.  The survey included 34 items 

that addressed the following factors: teachers’ beliefs about what is important in the teaching and 

learning of mathematics, the importance of specific pedagogical practices, and their experience 

with technology and calculator features.  Two open ended questions enabled teachers to provide 
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additional information and describe what they expected to be their greatest challenge for the 

upcoming school year. For the present study, only the demographic information (Questions 1-4), 

questions pertaining to the importance of using calculators (6n, 6o), and the intent to use 

technology (7l and 8) will be used as shown in Table 3. 

  

Table 3 

Items Used from Beginning of the Year Teacher Questionnaire 
 

Number  Item 
1 [List your] Education/Degrees 
2 List your teaching Certifications 

3 

[List your] teaching experience  
       Number of years teaching prior to this year    
      Number of years teaching mathematics prior to this year  
 Number of years teaching at present school prior to this year 

4 
Please check one of the following: 
               ____ UCSMP Third Edition Teacher    

____ UCSMP Second Edition Teacher   

6n 
Help students learn to use a graphing calculator as a tool for learning mathematics 
 
Of little importance Somewhat important Quite important  Of highest importance 

6o 

[How important is it to]  Help students learn to use a symbolic manipulator as a tool for learning 
mathematics 
 
Of little importance Somewhat important Quite important  Of highest importance 

7l 

[How often do you plan to] Ask students to use multiple representations (e.g., numerical, graphical, 
geometric, etc.) 
_____almost every day 
_____ 2-3 times per week 
_____ 2-3 times a month 
_____ less than once a month 
_____ almost never 

8 

[Describe your experience using] 

a. graphing features   Never used  Seldom used  Use frequently 

 b. table features         Never used  Seldom used  Use frequently 

 c. statistics features   Never used  Seldom used  Use frequently 

 d. equation modeling features 

                                               Never used  Seldom used  Use frequently 

 e. symbolic algebra features (e.g., computer  algebra systems).      

                                               Never used  Seldom used  Use frequently 
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Table 4 

Items Used From End of the Year Teacher Survey 
 
Number Item 
1 What book did your students use in the classes in this study? 

  ___  UCSMP Third Edition Precalculus and Discrete Mathematics 
  ___ UCSMP Second Edition Precalculus and Discrete Mathematics   

6 What calculator technology was available for use by the majority of students during this mathematics class?  
 _____ calculators not available  
 _____ a class set of scientific calculators 
 _____ student-owned scientific calculators 
 _____ class set of graphing calculators without computer algebra system capability 
 _____ student-owned graphing calculators without computer algebra system capability 
 _____ class set of graphing calculators with computer algebra system capability 
 _____ student-owned graphing calculators with computer algebra system capability 
 _____ the loaner calculators provided by UCSMP  
 _____ other (Please specify. _________________________________________) 

7 About how often did students use calculator technology during this mathematics class? 
 _____almost every day 
 _____ 2-3 times per week 
 _____ 2-3 times a month 
 _____ less than once a month 
 _____ almost never 

8 For what did your students use calculator technology in this mathematics class?  (Check all that apply.) 
 _____checking answers 
 _____doing computations 
 _____solving problems 
 _____graphing equations   
 _____ working with a spreadsheet 

          _____making tables 
 _____analyzing data 
 _____finding equations to model data   
 _____ simplifying algebraic equations 

          _____other features of CAS 
         _____ other (Please specify.___________________________________________) 

9 If you had students use the computer algebra system capability on this calculator, if applicable, about how often did 
your students use the calculator for this purpose in your mathematics class? 
 _____almost every day 
 _____ 2-3 times per week 
 _____ 2-3 times a month 
 _____ less than once a month 
 _____ almost never 

10 How helpful was this calculator for students learning mathematics in this mathematics class? 
 _____very helpful 
 _____somewhat helpful 
 _____not very helpful 

17n [[How important is it to] Help students learn to use a graphing calculator as a tool for learning mathematics 
 
Of little importance  Somewhat important Quite important  Of highest importance 

17o [[How important is it to] Help students learn to use a symbolic manipulator as a tool for learning mathematics 
 
Of little importance  Somewhat important Quite important  Of highest importance 

18 [About how often did you] Ask students to use multiple representations (e.g., numerical, graphical, geometric, etc.) 
 
Almost never  Sometimes  Often   Almost all   
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End of the year teacher questionnaire. This questionnaire was administered to all 

teachers participating in the study at the end of the school year.  This questionnaire was used to 

collect teacher data about pedagogical and instructional approaches used during the year.  The 

questionnaire included 23 items that addressed the following factors: the time spent on different 

aspects of mathematics instruction, the nature of instructional activities, particular instructional 

practices, and the use of calculators.  Two open ended questions enabled teachers to provide 

additional information and describe the greatest challenge they faced during the school year.  For 

this study only the edition of textbook used (Question 1), questions pertaining to the use of 

calculators (Questions 6-10), and importance of specific calculator features (Questions 17n, 17o 

and 18) were used as shown in Table 4. 

Chapter evaluation/ chapter coverage form. At the end of each chapter of Precalculus 

and Discrete Mathematics, teachers who used the Third Edition completed a chapter evaluation 

form (see Appendix G) on which they indicated the lessons taught, the questions assigned, and 

provided ratings for each lesson and question set on a scale from 1 to 5 (1= Disastrous; scrap 

entirely, 5= Excellent; leave as is).  Teachers who used the Second Edition completed a modified 

chapter coverage form on which they indicated lessons taught and questions assigned, but did not 

provide ratings for lessons or questions. 

For each chapter, teachers who used the Third Edition also were queried regarding their 

use of Teacher Notes, Chapter Test, supplementary materials, and calculator or computer 

technology. Most questions were consistent from chapter to chapter. However, some questions 

were specific to a given chapter to determine views on a given approach or technique or to 

request comments regarding changes made from the Second Edition to the Third Edition.   The 

curriculum developers used the information from these forms to make any necessary changes to 

the materials before they were released for commercial publication.  
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The chapter evaluation form regularly included 12 free response questions, addressing the 

following areas: sections covered and homework problems assigned, evaluation of materials 

(e.g., What comments do you have on the sequence, level of difficulty, or other specific aspects 

of the content of this chapter?), How technology was used in teaching (e.g., What comments or 

suggestions do you have about the way calculator technology is incorporated into this chapter?).  

One open-ended question was also included to provide teachers the opportunity to provide any 

additional information they deemed relevant.   The lesson coverage data were used to calculate 

students’ opportunity to learn functions.  The data from the free response questions pertaining to 

the use of technology may be used as context when reporting the results of the analyses.   

Teacher Opportunity-to-Learn (OTL) Posttest Form. Teachers completed an OTL form 

for each of the three posttests.  The intent was to determine if the teacher taught or reviewed the 

material necessary for students to answer each assessment question.  This is important and 

different from simply asking teachers if they taught the section.  For example, a teacher might 

acknowledge teaching the quadratic equation but might indicate she did not teach students 

enough to answer a word problem involving projectile motion.   

The OTL form is based on forms used in international studies (Schmidt, Wolfe, & Kifer, 

1992).  For each item on the posttests, teachers were asked to answer the following: During this 

school year, did you teach or review the mathematics needed for your students to answer this 

item correctly?  The inclusion of this question allows achievement to be analyzed by holding 

OTL constant or by using it as a covariate. 

Data Analysis 

Various approaches were used during the analysis of the data to identify which, if any, of 

the data variables discussed have a significant effect on student achievement when learning 

functions. Although identification of major relationships between variables is important, the 
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main goal of the analysis was to develop a model which uses technology and OTL measures 

along with other significant data relationships to predict achievement on function problems.  

Because achievement on all three posttests is a continuous dependent variable linear regression, 

multiple regression, path analysis and hierarchal linear modeling (HLM) were used to identify 

relationships.  The following sections contain a description of the sample used in analysis, the 

creation of opportunity to learn variables, and the methods I used to answer each of the research 

questions.   

Data sample for analysis. Prior to being provided to me, the raw data from the field 

trial, provided in the form of EXCEL workbooks, were cleaned and blinded by the UCSMP 

director of evaluation to remove any teacher or student names.  The student data had two 

components: assessments and survey data.  For the assessments, only the data from students who 

completed all pretests and posttests were used.  For the student surveys only data from students 

who were present at the beginning of the year and at the end of the first marking period were 

used.   Student IDs were used to link pretest and posttest data and student demographic 

information such as gender and grade level. 

OTL variables. Three operational variables relating to opportunity to learn were created 

and used in this study: OTL function lesson coverage, OTL function homework coverage, and 

OTL function posttest coverage.  The focus of this study was students’ OTL functions.  To 

properly connect with the UCSMP data it was necessary to remove the data from textbook 

sections, homework problems and assessment questions that did not relate to functions.  Each of 

these three variables is described below. 

OTL function lesson coverage.  This is based on the percentage of sections in the 

textbook whose main focus is functions.  I examined the textbook’s table of contents to 

determine which lessons pertained to functions, verified my results with the UCSMP Director of 
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Evaluation, and resolved any discrepancies by consensus.  For each teacher, OTL function lesson 

coverage was calculated using the number of function lessons taught by the teacher as the 

numerator and the total number of function lessons in the textbook (either Second or Third 

Edition) as the denominator.   

OTL function homework coverage. Most of the teachers in the field study used the Third 

Edition of the textbook.  The questions for each section come under one of four categories: 

Covering the ideas, Applying the mathematics, Review, and Exploration.  The Second Edition 

has four categories as well with the only difference being the first category is entitled Covering 

the reading.  In general, the expected homework assignment is all of the problems with the 

exception of the exploration, so all textbook problems within the first three types were included 

in the analysis. 

The OTL for homework is based on the percentage of function homework assigned by 

each teacher, but based only on the function lessons they taught.  The numerator is the number of 

function homework problems assigned from the textbook by the teacher, and the denominator is 

the total number of homework problems in the function lessons taught, as defined in the function 

lesson coverage variable. 

As stated previously, only homework problems addressing the function concept were 

used to determine the OTL function homework coverage variable, using homework problems 

from the function lessons previously identified in the OTL lesson coverage variable.  I worked 

together with the UCSMP Director of Evaluation to identify the homework problems that pertain 

to one of the four function domains as outlined by the Common Core State Standards for 

Mathematics [CCSSM] (CCSSO, 2010): interpreting functions; building functions; linear, 

quadratic and exponential models; and trigonometric functions as summarized in Table 5.  Any 

discrepancies between the two reviewers were resolved by consensus.   
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Table 5 

CCSSM Domains for High School Functions 
 
Code  Identifier Learning Outcome 

1   F-IF Interpreting functions 

 1a  Understand the concept of a function and use function notation 

 1b  Interpret functions that arise in applications in terms of the context 

 1c  Analyze functions using different representations 

2  F-BF Building Functions 

 2a  Build a function that models a relationship between two quantities 

 2b  Build new functions from existing functions 

3  F-LE Linear, Quadratic, and Exponential Models 

 3a  Construct and compare linear and exponential models and solve problems 

 3b  Interpret expressions for functions in terms of the situation they model 

4  F-TF Trigonometric Functions 

 4a  Extend the domain of trigonometric functions using the unit circle 

 4b  Model periodic phenomena with trigonometric functions 

 4c  Prove and apply trigonometric identities 

Note: Information from CCSSM content standards (National Governors Association Center for Best Practices & Council of Chief State 
School Officers, 2010, pp. 69-71) 

The original intent was to not only identify problems in the textbook as function or non-

function items, but also to classify each item by its corresponding function domain within the 

CCSSM (2010).  Too many function items did not fall within the definition of the four domains.  

For example, functions relating to calculus, many exponential functions, polynomial functions 

and many trigonometric functions are contained in other domains within the CCSSM (2010), 

such as algebra or geometry, or not included in the CCSSM at all, such as in the case of calculus 

functions.  My choices were to either remove items that did not fall within the four domains, 

include the other domains, or not classify them by domain.  The first option resulted in a small 

sample of items that was not representative of the items contained in the textbook.  There was 

too much overlap between the different domains to meaningfully include the other domains in 
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the analysis.  Therefore I made the decision to only classify items as being function items using 

the definition of function contained in the CCSSM (2010). 

OTL function posttest coverage.  This variable represented the percentage of function 

problems on the posttests for which each teacher reported having taught or reviewed the material 

necessary for their students to successfully answer the question.  The numerator is the number of 

function problems on the posttest for which each teacher reported teaching or reviewing the 

material and the denominator is the total number of problems relating to functions on the 

posttests.  The contents of the posttests are identical for students using the Second and Third 

Editions of the textbooks.  I used the same procedures to identify the posttest function problems 

that I used to identify the homework function problems, and again verified my results with the 

UCSMP Director of Evaluation. 

Methods to answer question one.  To answer question one, what are students’ 

opportunities to learn about functions in a precalculus course, I used descriptive statistics using 

the OTL variables.  I report the OTL function lesson coverage, the OTL function homework 

coverage, and the OTL posttest coverage.  Frequencies, means and standard deviations were 

calculated and are reported for each OTL variable measured. 

Methods to answer question two. To answer question two, what strategies do 

Precalculus students use when solving function problems?,  I first used descriptive statistics to 

report how many students used each strategy and to show the distribution of strategies by use of 

technology for technology neutral and technology inactive items.  Next I examined students’ use 

of technology and strategies for the function items on the two posttests in which students were 

permitted to use technology.  Then I examined strategies at the class level and across curricula 

levels.  Finally I examined how students used technology to solve function problems on the 

posttests.  
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Methods to answer question three. Question three is, how is Precalculus students’ 

achievement in solving function problems related to their use of strategies?  First descriptive 

statistics were used to examine students’ prior knowledge as measured on the pretests.  Then 

descriptive statistics were used to examine student achievement on the posttests.  Next chi-

squared goodness of fit tests were performed on each function item to determine if there was a 

difference in student achievement between students who used no strategy compared to those who 

used any strategy, grouped by students’ access to CAS capable calculators.  Technology neutral 

items, items that can be solved without a calculator (although a calculator might be useful), were 

compared to technology inactive items, items for which there is no advantage (perhaps even a 

disadvantage) to using a calculator.  On problems in which the overall achievement was 

significant, additional chi-squared goodness of fit tests were performed to determine which 

strategies, if any, resulted in a difference of achievement when compared to students who did not 

use a strategy.  For achievement on the problem solving test, the strategies teachers coded the 

students as possibly using to solve the items were analyzed using chi-squared goodness of fit 

tests to determine if there was a difference in achievement between students who appeared to 

have used a strategy as compared to those students who did not appear to have used a strategy.  

The next step was to examine the achievement on each of the three posttests by performing 

multiple linear regressions and using pretest achievement scores to control for prior knowledge.  

The independent variables that were compared to achievement include calculator type, number 

of strategies used, and OTL measures.  All of the independent variables are categorical with the 

exception of the OTL variables which are continuous.  For each posttest three sets of multiple 

regression analyses were conducted using technology measures only, OTL measures only, and 

both technology and OTL measures. 
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Methods to answer question four.  Path analysis was used to answer question four, 

what effect does the use of technology, including strategies, and opportunity to learn have on 

achievement when technology usage is reported from the students’ perspective on a multiple 

choice assessment and from the teachers’ perspective on a free response assessment.  Multiple 

regression analysis was conducted comparing achievement to technology and OTL measures.  

However, regression has one critical weakness compared to path analysis: we are not be able to 

see the interrelationships of achievement, technology and OTL variables concurrently. Path 

analysis offers a way to examine the interrelated relationship within the variables, and allows one 

to see the path, and the path coefficients, while holding other variables constant. According to 

Hair and colleagues (2006), path analysis has three distinguishing characteristics:  

(1) an estimation of multiple and interrelated dependence relationships, (2) an ability to 

represent unobserved concepts in these relationships and correct for measurement error in 

the estimation process, and (3) defining a model to explain the entire set of relationships. 

(p. 706) 

 Path analysis can also provide insight into the strength and types of relationships (e.g., 

mediating and moderating) and can identify relationships in which a variable may be 

independent in one situation and dependent in another.  Path analysis uses exogenous variables 

(Ex) to indicate variables that have both indirect and direct effects on the endogenous (EN) 

variables (dependent).  This study did not use unobserved, or latent, variables for analysis. 

However, based on the observed variables, this study attempted to test the fit of the hypothesized 

path analysis of manifest variables. The variables used in the three-tiered model are illustrated in 

Figure 5.  
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Figure 5. A Framework of Graphing Calculators in Studying Functions for Modeling. 

 

The framework includes three categories of variables: use of technology, opportunity to 

learn, and school/class.  Some of the variables relating to technology, such as strategy chosen 

and type of calculator used on the posttests, can be assigned to a student level because there is 

data linking posttest data to individual students through the use of a student ID.  Other variables, 

such as how often technology was used at home and other data obtained from the student survey, 

were used at the class level because there is no way to link that data back to an individual 

student.  Percent averages were calculated for class variables used in calculations. 

The model in Figure 6 was the initial model created and tested using Path Analysis.  

Results from the multiple regression tests and prediction models were used to refine the path 

analysis model, and results from the path analysis were used to refine the prediction models.  To 

determine the parameter estimates for the variable coefficients, I used the following procedures: 

model specification, model identification, evaluating the model fit, making modifications to the 

model, and presenting the final model (Hoyle, 1995; Schumacker & Lomax, 2010).  Model 

specification is the creation of a baseline model based on the relationships between the variables.  

For this study, information from the literature review and existing theories was used to create an 

initial model for analysis.  The purpose of the initial, or hypothesized, model is to study the 
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underlying relationship that might exist among the variables (Hoyle, 1995; Schumacker & 

Lomax, 2010).  

After the hypothesized model is created, the next step is to examine the model 

identification.  According to Hoyle (1995), "identification concerns the correspondence between 

the information to be estimated-the free parameters-and the information from which it is to be 

estimated-the observed variance and covariance" (p. 4).  There are three levels of identification: 

1) A model is under-identified (or not identified) when there is not enough data in 

the covariance matrix to uniquely identify one or more of the parameters. 

2) A model is just-identified when there is just enough data in the covariance matrix 

to uniquely identify all the parameters. 

3) A model is over-identified when there is more than enough information in the 

covariance matrix resulting in multiple solutions for at least one of the parameters 

(Schumacker & Lomax, 2010). 

If a model is under-identified the results cannot be considered reliable.  For this study, 

degrees of freedom were used to establish model identification: a model is considered identified 

if the degree of freedom is 1 and over-identified if the degree of freedom is greater than 1 (0 or 

negative implies under-identified) (Schumacker & Lomax, 2010).  

After analysis was performed on the hypothesized model, I examined the fit of the model.  

Hatcher (2007) noted a model with ideal fit has the following characteristics:  

• The p value associated with the model chi-square test should exceed .05; the closer to 

1.00, the better. 

• The comparative fit indices should exceed 0.9; the closer to 1.00, the better. 

• The multiple squared correlation value for each endogenous variable should be relatively 

large compared to what typically is obtained in research with these variables.  
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• The absolute value of the t statistic for each path coefficient should exceed 1.96, and the 

standardized path coefficients should be nontrivial in magnitude (i.e., absolute values 

should exceed .05) (p. 197). 

 

 

 

Figure 6. Hypothesized Path Analysis for Achievement with Technology and OTL Measures. 

 

Revisions were made to the model following Hatcher’s (2007) recommendations to 

remove any non-significant paths, and add any new paths as recommended by the modification 

indices in SPSS, but only if the new path had practical or theoretical value based on the literature 

review. This procedure was followed until the final model met the ideal characteristics of model 

fit.  All of the final models provided in this study meet the characteristics of an ideal model fit. 
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Reliability of Statistical Methods 

Table 6 shows the number of items on each test, the number of function items, and the 

Cronbach’s Alpha for each. Although the assessments were designed to have overlap of coverage 

between the three posttests, there was little overlap of coverage within each test.  In 

measurement, an assessment designed to intentionally have little overlap in coverage is viewed 

as a formative measurement model in which there is no assumption that items correlate to each 

other by design (Edwards, 2011), thus resulting in a somewhat low alpha level. 

 

Table 6 

Internal Consistency Reliability for Achievement on Posttests 1, 2 and Problem Solving Test 
 

 Number of Items  Cronbach’s Alpha 
Entire 
Test 

Function Items 
only 

Entire 
Test 

Function Items 
only 

Posttest 1 30 16 .72 .66 
Posttest 2 22 16 .57 .56 
Problem Solving 
Test 5 3 .43 .26 

Strategies to increase reliability include thoroughly documenting the research process, 

including listing all statistical tests, showing the variables used and including copies of all code.  

In this study all statistical calculations, including path analyses, were performed using SPSS 

version 21 and HLM for Windows version 7.01, which are available through the university.   

For each test all assumptions that need to be satisfied were documented.  Descriptive 

statistics such as skew and kurtosis were used to verify the assumptions have been met before 

conducting the analysis.  See  Table 7 for the independent and dependent variables for each 

research question and the list of tests that were conducted.   
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Table 7  

Methodologies Used to Answer Research Questions 
 
Research Question Type of test Independent Variable(s) Dependent Variable 

Opportunity to learn 

(1) 

Descriptive 
statistics 

  

Strategies (2) 
Descriptive 
statistics 

  

Achievement (3) 
Chi-squared 
GOF 

• Strategy 
• Class 
• Access to technology 
• Calculator type 

Accuracy 

Multiple 
Regression 

• Access to technology  
• Class 
• OTL Lessons 
• OTL posttest 
• OTL Homework 
• Achievement on pretest 2 

Score on posttest 

Achievement (4) 
Path Analysis • Access to technology  

• Class 
• OTL Lessons 
• OTL posttest 
• OTL Homework 
• Achievement on pretests 

 

 

Summary 

Several different analysis tools were employed to analyze the relationships between 

technology strategies and student achievement on function items against multiple teacher and 

student variables.  Data obtained from the field study of the Third Edition of the PDM 

curriculum, as well as data variables obtained from the textbooks, pretests, and posttests, were 

used to derive models that can be used to answer the research questions.  The procedures used to 

answer each research question were described in detail and included the initial indication of the 

assignment of independent and dependent variables.  Table 7 summarizes the methodologies 

employed in this study.   
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Chapter 4: Results 

In this chapter I present the results of the analyses that were conducted on data obtained 

from the evaluation of the UCSMP Precalculus and Discrete Mathematics (Third Edition, Field-

Trial Version) curriculum on students’ opportunities to learn and their use of technology when 

solving function problems.  I analyzed three data sets using SPSS and HLM statistical software.  

The data sets pertained to: a) results of pretests, posttests and the use of technology, from the 

students’ perspective, on posttest 2; b) results and use of technology, as inferred from solution 

approaches and coded by teachers on the Problem Solving test; and c) opportunity to learn data, 

specifically lesson coverage and percent of questions assigned from function lessons.  The 

analyses of the three data sets are presented separately and then combined together for a final 

analysis.  As part of this study I employed descriptive analyses, inferential statistics, correlation 

analyses, and path analysis.  First, basic descriptive statistics for students’ opportunity to learn 

functions are presented.  After that, the descriptive statistics regarding what technology was used 

and how it was used when students solve function problems are discussed.  Following that, the 

results of both descriptive and inferential statistics, performed on achievement data, are 

presented to examine the impact OTL and technology have on student achievement for posttests 

1, 2 and the problem solving test.   Finally, the correlation and path analysis are presented to 

examine the relationships among student achievement and OTL, student achievement and use of 

technology, and student achievement with both OTL and use of technology.  

Students’ Opportunity to Learn when Solving Function Problems 

In this study teachers reported the lessons they covered, the homework they assigned, and 

whether they taught or reviewed the content needed to answer the questions on the posttests.   

The following section details students’ opportunities to learn functions. 
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Lesson coverage.  Figures 7 and 8 report the number of lessons teachers taught from 

which the percentage of function lessons taught was calculated.  Only function lessons are shown 

in the table and the lessons each teacher taught are indicated by shading. Sections that did not 

contain function material in the lessons were excluded from the analysis.   

 

 
Figure 7. Pattern of Lesson Coverage and Percent of Function Lessons Taught in the UCSMP 
Precalculus and Discrete Mathematics (Third Edition).  Shading indicates the lesson was taught. 

 

 
 Figure 8. Pattern of Lesson Coverage and Percent of Function Lessons Taught in the UCSMP 
Precalculus and Discrete Mathematics (Second Edition). Shading indicates the lesson was 
taught. 

Because teachers could have covered vastly different sections resulting in similar 

percentages, the actual patterns of lesson coverage are illustrated in Figure 7 (3rd Edition) and 

Figure 8 (2nd Edition) using a display similar to those by Tarr, Chávez, Reys, and Reys (2006) in 

their curriculum study.  In the Third Edition there were 55 lessons related to the topic of 

functions.  No teacher taught all of the lessons but they all taught at least 60% of the function 

lessons as shown in Figure 7.  Teachers using the Third Edition taught generally between sixty 

and eighty percent of the total function lessons in the textbook.  In the Second Edition, there 

were also 55 function lessons and teachers taught at least 84% of function lessons in the text as 

indicated in Figure 8. 

 
 
  

Lesson % 6
Teacher Taught 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 10 1 2 3 4 8 9 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 1 2 3 4 5 6 6 7 8 1 2 3 7 8 1 2 3 4 5 6 7 8 9
T8139U1 80
T8149U1 95
T8152U1 60
T8151U1 62
T8150U1 67
T8147U1 62

Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 14Chapter 7 Chapter 8 9 Chapter 10

Lesson % 7
Teacher Taught 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 2 3 4 5 7 8 1 2 3 4 5 6 7 8 1 4 5 8 9 10 1 2 3 4 5 6 1 2 3 4 5 6 7

T8239C1 84
T8249C1 98

Chapter 13Chapter 8 Chapter 9Chapter 2 Chapter 3 4 Chapter 5 Chapter 6
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Table 8 
 
Percent of Function Homework Problems Assigned From Function Lessons Taught in 
Precalculus and Discrete Mathematics (Second and Third Editions) 
 

Teacher Maximum Number of Possible Function 
Problems in Function Lessons Taught  

Percentage of Homework Problems 
Assigned From Function Lessons  

Taught 
Third Edition 

T8139U1 777 52 

T8147U1 957 94 

T8149U1 689 61 

T8150U1 718 94 

T8151U1 742 87 

T8152U1 712 79 

Total M = 765.83 
SD = 98.31 

M = 77.83 
SD = 17.66 

Second Edition 

T8239C1 705 59 

T8249C1 835 55 

Total M = 770 
SD = 91.92 

M = 57.0 
SD = 2.83 

Note:  There were 55 function lessons available in both the 2nd and 3rd Editions. 
In the 3rd Edition, there were a total of 1042 function problems available in those lessons for teachers to assign. 
In the 2rd Edition, there were a total of 926 function problems available in those lessons for teachers to assign. 

 

Questions assigned for homework.   Teachers also reported which homework problems 

they assigned for students to complete.  Table 8 shows the percentage of function homework 

problems teachers assigned to students from the function lessons they taught.  Percentages 

ranged from 52% to 94% with a high degree of variability; in general, Third Edition teachers 

reported assigning more problems from the text than did Second Edition teachers.  A low number 

of problems assigned for practice could impact students’ opportunity to learn, therefore, their 

achievement.  In some cases, teachers assigned practice problems from other sources, therefore 
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there was no way to determine if students completed the assigned problems, regardless of the 

source. 
 

 
Table 9 
 
Percent Opportunity-to-Learn on Function Post Assessment Items as Reported by UCSMP 
Precalculus and Discrete Mathematics Teachers 
 

Teacher OTL Posttest1 OTL Posttest 2 OTL Problem Solving Test 
Third Edition 

T8139U1 100 81 67 

T8147U1 100 94 100 

T8149U1 100 100 100 

T8150U1 100 100 100 

T8151U1 100 100 100 

T8152U1 100 88 100 

Total 
M = 100.0 
SD = 0.0 

M = 93.83 
SD = 7.91 

M = 94.50 
SD = 13.47 

Second Edition 

T8239C1 100 94 67 

T8249C1 100 100 100 

Total 
M = 100.0 
SD = 0.0 

M = 97.0 
SD = 4.24 

M = 83.5 
SD = 23.33 

Note: Posttests 1 and 2 each contained 16 function items.  The problem solving test contained three function items. n = 6 for 3rd Edition teachers; 
n = 2 for 2nd Edition teachers. 

 

Preparation for assessments. Students for both Second and Third Editions completed 

two multiple-choice and one free response post assessments to measure achievement.  Teachers 

were asked if they taught or reviewed the material necessary to answer each question on each 
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posttest.  Table 9 reports the percentage of function assessment problems for which students had 

the opportunity to learn or review the content.   

 

 
Figure 9. Opportunity-to-Learn on Multiple Choice Posttest 2 as Reported by Second and Third 
Edition Teachers of Precalculus and Discrete Mathematics. Shading indicates function whose 
content was reported as taught or reviewed. 

 

 
Figure 10. Opportunity-to-Learn on the Problem Solving Test as Reported by Second and Third 
Edition Teachers of Precalculus and Discrete Mathematics. Shading indicates function whose 
content was reported as taught or reviewed. 

 

Every teacher reported covering or reviewing the content for all items on posttest 1.  

Again, because percentages can be similar while coverage is vastly different, Figures 9 and 10 

show the patterns of coverage for function problems for posttest 2 and the problem solving test.  

Coverages for posttest 2 range from 81% to 100% with an average of over 90%.  The Second 

Edition teachers, on average, covered more of the problems.  Coverage of function items on the 

Question 1 2 3
Teacher
T8139U1
T8149U1
T8152U1
T8151U1
T8150U1
T8147U1
T8239C1
T8249C1
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problem solving test was generally higher than on posttest 2, with only three teachers covering 

less than 100% of the assessed function items.  

 
Table 10 
 
Correlation of OTL variables  
 

OTL Variable Lessons Homework Posttest 2 PSU 
Lessons — -.53** .79** .025 
Homework  — .00 .67** 
Posttest 2   — .32** 
Problem Solving Test    — 
Note. OTL = Opportunity to learn; PSU = problem solving test.  All OTL variables are measured as percentages and ranges from 0 to 100%.  
These variables are collected at the class level from n = 8 teachers.  
** p < .01. 

Correlation of OTL variables. The correlation for each pair of OTL variables is shown 

in Table 10.  There was a significant and positive relationship between OTL Lessons and OTL 

posttest 2 (r = .79), but no relationship between OTL Lessons and the PSU (r = .025).  This 

means that generally the teachers who taught more lessons also covered more of the assessed 

function items.  OTL Homework was significant and positively related to the PSU (r = .67), 

indicating teachers who assigned more homework generally covered more of the items assessed 

on the PSU.  The relationship between OTL posttest 2 and PSU was significant and moderately 

positive (r = .32), meaning in general teachers who covered more of the assessed items on 

posttest 2 covered more of the assigned items on the PSU.  There was also a negative correlation 

between OTL Lessons and OTL Homework (r = -.53), meaning, on average, the more lessons 

teachers taught the fewer homework problems they assigned from the text. 

Students’ Use of Technology When Solving Function Problems 

This section presents the results regarding what technology students used to solve 

function items and how students used the technology for both posttest 2 and the problem solving 

test.  Recall students were not permitted to use calculators on posttest 1.  Descriptive statistics 
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are used to analyze the results of the supplemental questions students answered about their use of 

technology on posttest 2 and the data received from teachers’ coding of student responses for the 

problem solving test. 

What technology students had access to for solving function problems.  All classes 

using the Third Edition curricula materials were provided access to CAS (computer algebra 

system) capable calculators as part of the field trial, although teachers may not have loaned them 

out for continual access.  Second Edition classes generally had access to non-CAS graphing 

calculators.  It is unknown how many students used an assigned calculator and how many used 

their own calculator either in class or at home. Table 11 shows the number of students who 

reported having access to a CAS calculator grouped by both class and curriculum.  Table 12 

reports the number of students who reported using each type of calculator by class and 

curriculum.  Of the 271 students who completed posttest 2 and the problem solving test, 54% 

indicated taking the exams using a calculator equipped with CAS.  In the remaining eight 

classes, students reported using either graphing calculators or CAS calculators.  
 

Table 11 
 
Number of Students Who Had Access to CAS Capable Graphing Calculators by Class 
 

 3rd Edition    2nd Edition   
 
Class 
No. 

410 411 414 415 416 418 419 420 421 422 423 Total 412 413 417 
Total 

No 
CAS 3 3 5 19 12 0 0 4 4 6 4 60 22 19 19 60 

Had 
CAS 13 17 12 0 1 18 11 15 20 19 23 149 1 1 0 2 

Note. CAS refers to graphing calculators equipped with computer algebra systems. Number of students using CAS 
capable calculators is n = 151 .   
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Table 12 
 
Number of Students Reporting Type of Calculators Used on PDM Assessments by Class and 
Curriculum 
 
Type of 
Calculator 

3rd Edition Classes  2nd Edition   Total 
410 411 414 415 416 418 419 420 421 422 423  Total  412 413 417 Total  

 TI Non 
CAS a 

1 0 5 19 12 0 0 4 4 6 4 
 

55 
 
22 19 19 60 

 
115 

TI-
Nspire 

2 3 0 0 0 0 0 0 0 0 0 
 

5 
 

0 0 0 0 
 

5 

TI-
Nspire 
CAS 

13 17 0 0 0 0 0 0 0 0 0 
 

30 
 

0 1 0 1 
 

31 

 Casio 
CAS 

0 0 0 0 0 0 0 15 20 0 0 
 

35 
 

0 0 0 0 
 

35 

 TI-89 0 0 12 0 1 18 11 0 0 19 23  84  1 0 0 1  85 

Total 16 20 17 19 13 18 11 19 24 25 27  209  23 20 19 62  271 
Note. CAS refers to graphing calculators equipped with computer algebra systems.   Number of students using CAS n = 151.  Number of 
students using graphing calculators without CAS is n = 120.  
aTI Non CAS graphing calculators include TI-NSpire,TI-84/TI-82/83/85/86.  CAS capable graphing calculators include Casio, 
TI-NSpire CAS and TI-89 family. 

 

How students used technology to solve function problems on posttest 2.  Table 13 

reports the strategies students reported using when solving the 16 function problems (out of 22 

problems) on posttest 2. When taking posttest 2, almost all of the students (n = 255) reported 

using no calculator for at least one question.  When students did use a calculator, the most 

utilized strategy reported was the graphing feature.  The distribution of strategy use between 

students who had access to CAS and those who did not was similar.  On the seven calculator 

neutral items, students, on average, used a calculator strategy 3.6 times.  On the nine calculator 

inactive items, students, on average, did not use a calculator on eight of the items.  Students who 

had access to CAS reported using CAS, on average, 0.60 times on the seven neutral items.   
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Table 13 

Students’ Use of Technology When Solving Function Items on Posttest Two 
 

Strategy 

Students who reported using strategy 
on at least one problem 

 Mean  

 CAS  No CAS 

CAS No CAS 
 Neutral 

Items 
(7) 

Inactive 
Items 

(9) 

 Neutral 
Items 

(7) 

Inactive 
Items 

(9) 

Did not use 
142 113 

 
3.56 7.77  3.58 8.1 

Used only to do 
 arithmetic 96 82 

 
.93 .41  1.23 0.2 

Used graphing 
 features 131 107 

 
1.51 .26  1.55 0.09 

Used CAS features 61 N/A 
 

.60 .18  N/A N/A 
Used some other 
 feature 26 18 

 
.11 .03  0.13 0.04 

Note: CAS refers to calculators equipped with computer algebra systems   Number of students who reported using CAS n = 151. Number of 
students who reported using non CAS graphing calculators n = 120.  One student (using CAS) did not record the use of any strategies.  That 
record was removed for all analyses involving strategies.  Seven students (4 with CAS and 3 without) reported not using a calculator on any 
item.  Four students (CAS) reported using a strategy on every item. The mean (average number of times each strategy was reported used) is 
the total number of times a strategy was reported being used divided by the total number of students who reported using that strategy. 

Table 14 displays the number of students who reported using calculator strategies per 

class as well as the mean and standard deviation.  Almost all students used at least one calculator 

strategy on posttest 2.  The mean number of strategies ranged from a low of 3.6 (the mean 

number of strategies used per student in class 412) to 7.5 (the mean number of strategies used per 

student in class 419). 
 

Table 14 
 
Use of Strategies on Function Items for Posttest 2 Per Class 

 

3rd Edition Classes  2nd Edition   
410 

n=16 
411 

n=20 
414 

n=17 
415 

n=19 
416 

n=13 
418 

n=18 
419 

n=11 
420 

n=19 
421 

n=24 
422 

n=25 
423 

n=27 
 412 

n=23 
413 

n=20 
417 

n=19 
 Number of Students using 
 strategies 16 20 17 19 13 17 11 19 23 25 27  23 19 19 

M 4.1 4.2 5.4 5.0 4.8 6.6 7.5 4.8 3.6 4.6 5.5  4.2 4.5 4.5 
SD 2.0 2.0 2.3 2.3 1.6 4.4 5.2 2.0 2.5 4.3 3.7  3.2 1.9 1.9 

Note. Mean is the total number of times students reported using a strategy to solve a problem divided by the number of  students who reported 
using any strategy. 
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Table 15 
 
Number of Students Who Reported Using a Calculator Strategy on Calculator Neutral Posttest 2 
Function Items. 
 

 
Access to 

CAS   
% students who reported Calculator Strategy 

None Arithmetic Graph CAS Other Anya 
31*.  Given the function h defined 

by   (2 4)( 1)( )
( 2)

x xh x
x
+ −

=
+

.  What is 

the behavior of the function 
near x = -2? 

Yes 
(n = 146) 45* 3 40 5 4 52* 

No 
(n = 113) 58* 0 35 N/A 2 37* 

37.  Suppose f (x) = x1/2. What is 
the set of all values of x for 
which f (x) is a real number? 

Yes 
(n = 146) 46 30 19 3 2 54 

No 
(n = 112) 43 35 20 N/A 1 56 

38.  
2

210

100Evaluate  lim .
2 23 30x

x
x x→

−
− +

. 
Yes 

(n = 145) 28 16 23 32 1 72 
No 

(n = 112) 38 26 29 N/A 5 60 
45*.  Which of the following 

is (are) true for all values of θ 
for  which the functions are 
defined? 

   I. sin(-θ) = -sin θ 
  II. cos(-θ) = -cos θ 
  III.     tan(-θ) = -tan θ 

Yes 
(n = 147) 55 27 8 6 3 44 

No 
(n = 112) 46* 43 8 N/A 3 53* 

46**. Which of the following 
could be an equation for the 
graph at the right? [graph of 
polar function shown] 

Yes 
(n = 147) 29** 3 63** 6 0 72** 

No 
(n = 114) 25** 7 68** N/A 0 75** 

48.  The line in the figure at right 
is the graph of y = f (x). What 
is the value of  3

2
( )f x dx

−∫ ?

       

Yes 
(n = 143) 77 8 5 10 0 23 

No 
(n = 111) 78 19 1 N/A 0 20 

52**. Which equation is graphed at 
the right? [graph of sine 
function shown] 

 

Yes 
(n = 142) 29 5 59** 6 1 71** 

No 
(n = 110) 20 6 71** N/A 3 80** 

Note: CAS refers to graphing calculators equipped with computer algebra systems.  Posttest 2 contained 16 function items, 9 of which are 
considered technology inactive and 7 of which are considered technology neutral. The n varies by problem because not all students reported using 
a strategy on all items. 
aAny refers to the use of Arithmetic, Graph, CAS, or other strategies and is compared to the use of no strategy (none).  N represents the number of 
students who reported using a strategy for each item.  Rows add up to more than 100% due to rounding and the fact that some students reported 
using more than one strategy. 
* p < .05. ** p < .01. 



 
 

65 

 

Table 15 shows the strategies students used on the seven calculator neutral items on  

posttest 2.  Calculator neutral refers to items on which students could have used a calculator to 

solve the item, but could have also solved it without the calculator.  In four of the seven 

calculator neutral items (37, 38, 46, and 52), students used a calculator strategy more often than 

not and the difference in use, when tested with a chi-square test, showed significantly more 

students chose to use a strategy than not.  In three of the items (37, 45, and 48), students reported 

using arithmetic most often.  It is unknown if students substituted values in an attempt to prove 

the equations true or used some other strategy involving arithmetic.  In three other items (38, 46, 

and 52), students reported using a graph to solve the items most often. In two of the items (38 

and 45) students could have solved the items using CAS features.  Thirty-two percent of students 

used CAS to solve the item using limits (38) but only six percent of students who had access to 

CAS attempted to prove the trigonometric identities (45) using CAS features.  More students 

tried to prove the trigonometric identities (45) using arithmetic, but only one of the equations 

could be disproved with a counterexample.  Few students attempted to use a graph on item 45, 

which would have been a feasible strategy.  It is unknown how or why students chose or used the 

strategies they did.   

Table 16 shows the strategies students used on the nine calculator inactive problems for 

posttest 2.  Calculator inactive refers to items for which there is no advantage (perhaps even a 

disadvantage) to using a calculator.  For all the calculator inactive items, the majority of students 

did not use a calculator. In eight of the nine items (all but 33), at least 10% of students attempted 

to use a calculator strategy to solve the item.  In two of the items arithmetic was the most 

commonly used strategy.  Students rarely chose to use other strategies when they were solving 

the calculator inactive items.   
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Table 16 
 
Number of Students Who Reported Using a Calculator Strategy on Calculator Inactive Posttest 2 
Function Items. 
 

Item 
 % Students Who Reported Using Strategy 

Access to  
CAS None Arithmetic Graph CAS Other Anya 

33. For a function g, the derivative at 
2 equals -1, that is g'(2) = -1. 
Which of the following 
describes the meaning of g'(2)? 

Yes (n = 145) 90 3 3 1 0 7 

No (n = 112) 93 1 0 N/A 0 1 

34. Refer to the graph of function f at 
right. On which of the following 
intervals is f increasing? 

Yes (n = 146) 93 2 2 3 0 7 

No (n = 113) 97 1 1 N/A 1 3 
36. A function h is graphed at right. 

As  x → + ∞, what is true about 
h(x)? 

Yes (n = 142) 88 3 2 2 0 7 

No (n = 113) 88 1 5 N/A 1 7 
40. Charlie got a car loan for 

$30,000. Each month, interest of 
1/2% is added and then he 
makes a $600 car payment. If An 
describes the amount he owes 
for the car at the beginning of 
month n and A1 = 30,000, which 
equation is true? 

Yes (n = 146) 81 15 1 1 1 18 

No (n = 113) 90 10 0 N/A 0 10 

42. Use the graph of the function  
f(x) = ax3 + bx2 + cx + d shown 
at right. How many real 
solutions are there to the 
equation f(x) = ax3 + bx2 + cx + d 
= -2? 

Yes (n = 145) 90 4 3 3 1 11 

No (n = 113) 96 3 0 N/A 1 4 

43. What is the value of g(1)? [using 
the graph] 

Yes (n = 146) 91 1 5 2 0 8 

No (n = 113) 96 0 3 N/A 1 4 

44. What is the value of f (g(1))? 
[using the graph] 

Yes (n = 145) 89 4 4 2 1 11 

No (n = 111) 98 1 0 N/A 1 2 
47. A woman is standing on a cliff  

200 feet above the water. 
Through a set of high-powered 
binoculars, she sees a boat on the 
water off in the distance. If θ 
represents the angle of 
depression, which of the 
following gives a formula for 
determining the angle of 
depression in terms of the 
distance d of the boat from the 
bottom of the cliff? 

Yes (n = 144) 90 8 2 1 0 11 

No (n = 112) 96 3 1 N/A 0 4 

51. Which of the following is the 
derivative of function f at x? 

Yes (n = 145) 89 3 4 4 0 11 

No (n = 112) 96 3 1 N/A 0 4 
Note: CAS refers to graphing calculators equipped with computer algebra systems.  The n varies by problem because not all students reported 
using a strategy on all items.  Any refers to the use of Arithmetic, Graph, CAS, or other strategies and is compared to the use of no strategy 
(none).  N represents the number of students who reported using a strategy for each item.  Rows add up to more than 100% due to rounding and 
the fact that some students reported using more than one strategy. 
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How students used technology to solve function problems on the problem solving 

test.  For the problem solving test, teachers scoring the responses recorded the strategy they 

believed the student used when solving the problem, based on reading the student’s solution, but 

had no information about whether a student actually used a calculator to solve the item.  Table 17 

reports the strategies teachers coded students as using on the three function problems (out of 5 

problems with 11 subparts) on the problem solving test.  Teachers reported most students (n = 

178) used arithmetic as a problem solving strategy at least once, and 238 students reported using 

a graph to solve at least one item. 

 
Table 17 
 
Number of Times Teachers Code Indicated Use of Technology in Solutions to Function Items on 
Problem Solving Test 
 

Strategy Students who used strategy on at 
least one problem 

Number of times 
used Mean  

CAS 48 50 1.04 
Graph 191 390 2.04 
Arithmetic 108 120 1.11 
Substitution 239 523 2.19 
Table 24 25 1.04 
Other 216 519 2.04 
Note. N=271.  CAS refers to graphing calculators equipped with computer algebra systems. Substitution includes the use 
of algebra. Other includes none and not reported.  Mean is a weighted mean with the summation of number of times a 
strategy is reported in numerator and number of students coded as using the strategy in denominator. 

 

All of the items on the problem solving test are calculator active or neutral.  A CAS 

capable calculator could have been used to solve items 1, 2c, 2d and 3, but students only 

appeared to use CAS to solve item 1.  Table 18 reports the strategies teachers coded for students’ 

solutions to the six function items which were all classified as calculator active or neutral items.  

Unlike posttest 2 where students were more likely not to use a calculator, on the problem solving 

test students used a calculator strategy far more often than not.  Arithmetic was the most often 
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utilized strategy followed by graphing and then other.  It is impossible to know, however, if 

students used a calculator to perform the strategy.   

Table 18 

Students’ Strategies on Problem Solving Function Items as Coded by Teachers 
 

Item 

  % coded as using 
Access to  

CAS 
Symbolic 
(Algebra) Arithmetic Graph Table CAS Other 

1**. Solve the following 
system.  

2 3 3
2x

y x x
y

 = − +


=
 

Yes (n = 145) 0 28 24 1 25 19 

No (n = 112) 0 29 38 1 N/A 18 

2a**. A ball is thrown so that 
its height (in meters) 
after t seconds is given 
by h(t) = -4.9t2 + 18t + 
15. 

 After how many seconds   
does the ball reach its 
maximum height? 

Yes (n = 145) 0 5 53 9 0 29 

No (n = 119) 0 31 56 6 N/A 31 

2b**.  A ball is thrown so that 
its height (in meters) 
after t seconds is given 
by h(t) = -4.9t2 + 18t + 
15. 

  What is the maximum 
height reached by the 
ball? 

Yes  17 0 53 8 0 38 

No  29 0 39 3 N/A 27 

 
2c**. A ball is thrown so that 

its height (in meters) 
after t seconds is given 
by h(t) = -4.9t2 + 18t + 
15. 

Find the instantaneous 
velocity of the ball 3.4 
seconds after it is 
thrown. Include units 

Yes  51 28 0 0 0 13 

No 58 23 0 0 N/A 14 

2d**. A ball is thrown so that 
its height (in meters) 
after t seconds is given 
by h(t) = -4.9t2 + 18t + 
15. 

Find the acceleration of 
the ball 3.4 seconds 
after it is thrown. 
Include units. 

Yes  38 7 1 0 0 36 

No  41 8 0 0 N/A 43 

3**. Are the functions f and g 
with f(x) = 3x + 2 and 

2( )
3

xg x +
=  inverses of 

each other? 

Yes  19 34 19 9 1 12 

No  17 47 18 1 N/A 18 

Note: CAS refers to graphing calculators equipped with computer algebra systems. Unless otherwise stated n =  151 students reported using 
CAS and n = 120 students reported not using CAS.  The n varies by problem because not all students reported using a strategy on all items. 
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Student Achievement on Function Items 

This section presents the results of the analysis of student achievement for posttests 1 and 

2 and the problem solving test.  Descriptive statistics were used to examine students’ prior 

knowledge before taking Precalculus and Discrete Mathematics.  Next I analyzed student 

achievement on assessment items based on the use of technology and students’ access to CAS 

capable calculators.  

 

Table 19 

Mean Percentage and Standard Deviation for Student Achievement on Pretests by Class 
 

Class n Pretest 1 Pretest 2 
M SD M SD 

Third Edition 
410 16 58.79 12.60 42.19 17.00 
411 20 54.13 15.48 44.06 11.91 
414 17 63.43 16.91 46.69 20.15 
415 19 57.44 18.02 49.01 14.77 
416 13 62.54 10.13 49.52 11.26 
418 18 43.96 15.27 33.33 12.13 
419 11 33.60 14.43 23.86 14.74 
420 19 52.17 14.35 37.50 12.33 
421 24 52.72 18.01 38.54 15.05 
422 25 56.17 15.47 38.25 15.13 
423 27 51.69 16.42 41.44 14.41 

Total 209 53.69 16.75 40.67 15.54 

Second Edition 
412 23 55.39 12.03 47.28 12.90 
413 20 56.52 15.45 41.88 15.85 
417 19 60.64 16.62 48.68 11.71 

Total 62 57.36 16.33 45.97 13.68 
Note: Pretest 1 mean is the percentage score each student received on pretest 1 for only the 23 function items and ranges from 0 to 100.  Pretest 2 
mean is the percentage score each student received on pretest 2 for only the 16 function items and ranges from 0 to 100.  
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Students’ prior knowledge of functions.  To compare student achievement, it is 

important to first determine a baseline of students’ knowledge of functions.  At the beginning of 

the school year, students completed two pretests.  Table 19 shows the means and standard 

deviations for pretest 1 and pretest 2 by class. For more details on comparisons between class, 

curriculum and achievement on pretests see Appendix H for pretest 1 and Appendix I for pretest 

2.  Figure 11 shows the achievement scores for students by class on the function items for pretest 

1 (23 items) taken without the use of any technology and pretest 2 (16 items) on which students 

were permitted to use technology.   
 

 
Figure 11. Box plots of Percent of Function Items Correct by Class for Students Using 
PDM (2nd and 3rd Ed). Classes 412, 413 and 417, located on the far right, all used 2nd 
Edition curriculum materials.   
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Prior to conducting an ANOVA to compare the achievement scores on the pretests by 

classes, I found no evidence of lack of normality in the skewness (pretest 1 = -.01, pretest 2 = 

 -.06) and kurtosis (pretest 1 = -.24 , pretest 2 = -.37) values, and no violation of the homogeneity 

of variation from the Levene’s test (pretest 1 Levene’s statistic = .84, p = .62; pretest 2 Levine’s 

statistic = 1.7, p = .06).  Results of the ANOVA for pretest 1 indicated a significant difference in 

achievement between the different classes (pretest 1 F(13, 257) = 3.46,  p < .001).  Results of the 

ANOVA for pretest 2 also indicated a significant difference, F(13, 257) = 3.56, p < .001, in 

achievement scores between classes.  I conducted Scheffe’s post-hoc tests to determine which 

achievement scores at the class level were significantly different from the average.  The 

achievement on pretest 1 for the students in class 419 (n = 11) was lower when compared to all 

other classes in general, but the difference in achievement scores was most significant between 

students in class 419 (ΔM = -25.66, p < .001) and students in class 416 (n = 13).  There was, 

however, no interaction when examining achievement scores controlling for class and curricula.  

I also used Scheffe’s test to perform post-hoc comparisons on the achievement scores from 

pretest 2.  Scheffe’s test showed no significant difference for the achievement in any class when 

compared to the achievement in other classes.  However, a Tukey test indicated a significant 

difference between the achievement scores in class 419 and several other classes as shown in 

Table 20.  The significant difference in student achievement on the pretest scores indicates a 

need to control for prior knowledge when examining achievement on posttests. 
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Table 20 

 
Difference in Achievement Scores for Pretest 2 Function Items for Classes Significantly Higher 
Than Class 419. 

 
Class ΔM  Class ΔM 
Third Edition  Second Edition 
411 -20.20*  412 -23.42*** 
414 -22.83***  417 -24.82*** 
415 -25.15***    
416 -25.66***    
423 -17.57*    

Note: ΔM is difference in mean scores.   
* p < .05. *** p < .001. 

 

Pretests and the use of technology.  Figure 12 reports achievement scores on the 

function items on pretest 2 grouped by whether students had access to a CAS capable calculator 

(See Appendix I).  On pretest 2, there is a significant percentage difference, F(1, 269) = 17.37, p 

< 0.01, overall in achievement between students with and without CAS, with students who 

reported having access to CAS (n = 151,  M = 38.53, SD = 14.90) scoring lower than students 

who reported not having access to CAS (N = 120, M = 46.09, SD = 14.74), even when 

controlling for prior knowledge by using achievement scores on pretest 2 as a covariate.  There 

was, however, no difference, t(115) =  -0.12, p = 0.91, when comparing percent achievement for 

students who reported having access to CAS and who used the 2nd Edition (n = 60, M = 37.50, 

SD = 17.68) to the achievement of students who reported having access to CAS and used the 

Third Edition (n = 60, M = 38.55, SD = 14.93);  or when comparing achievement of students who 

reported not having access to CAS (t(1) = 0.09, p = 0.94) and who used the Second Edition (n 

=149, M = 38.59, SD = 14.93) or the 3rd Edition (n = 2, M  = 37.50, SD = 17.68) .  There was also 

no interaction between class, curricula, and reported access to CAS. 
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Figure 12. Percent Achievement on Pretest 2 Function Items by Class and Grouped by Access to 
CAS.  Classes 412, 413 and 417, located on the far right, all used 2nd Edition curriculum 
materials.   

 

Student achievement on posttests.  At the end of the year, students completed three 

assessments which included items to assess their knowledge of functions.  Achievement scores 

for students taking posttest 1 and posttest 2 are shown in Figure 13.  In six of the classes the 

median score on the posttest 1 was higher than posttest 2.  There was also substantially more 

variation on the scores for the problem solving test than for posttest 2.  I performed an ANOVA 

test to look for differences in achievement scores on the posttest by class.   Prior to conducting 

the ANOVA, I found no deviations from normality in skewness (posttest 1 =0.11, posttest 2 = 
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0.02, and PSU = -0.34) and kurtosis (posttest 1 = -0.40, posttest 2 = -0.48, and PSU = -0.57) 

values and no evidence of violation of homogeneity of variance from the Levene’s test (posttest 

1 Levene’s statistic =1.10, p = 0.37; posttest 2 Levene’s statistic = 0.81, p = 0.66; PSU Levene’s 

statistic = 1.2, p = 0.26 ).   Results of the one-way ANOVA indicate significant differences in 

posttest 1, F(13, 257) = 12.35, p < 0.001, between classes.  Conducting Scheffe’s post-hoc tests 

showed the achievement differences for posttest 1 in all classes were significantly different when 

compared to at least one other class.  However, there was also a significant difference on posttest 

1 achievement scores between the different curricula (t(269)= -2.08, p  < 0.05) with achievement 

of students using Second Edition materials being higher.  Results of the one-way ANOVA 

indicate significant differences in posttest 2, F(13, 257) = 7.64,  p < 0.01, between classes.  

Conducting a Scheffe’s post-hoc test showed the achievement differences for posttest 2, in all 

classes except 410, 412, and 420, were significantly different when compared to at least one 

other class.  However, there was no significant difference on posttest 2 achievement scores 

between the different curricula, t(269) =  -1.22, p = 0.15. 

Students’ use of technology on posttests.  There was a significant difference, F(1, 269) 

= 33.69, p < 0.001, in the percent achievement scores of function items for posttest 1 between 

students who reported not having access to CAS (M = 63.54, SD = 19.11) and students who 

reported having access to CAS (M = 51.32, SD = 15.54), with students who did not have access 

to CAS during instruction scoring higher even though students were not permitted to use 

technology on posttest 1.  There was also a significant difference, F(1, 269) = 16.09, p < 0.001, 

in the percent achievement scores of function items for posttest 2 between students who reported 

not having access to CAS (M = 62.86, SD = 17.31) and students who reported having access to 

CAS (M = 54.84, SD = 14.79), with students who did not have access to CAS scoring higher.  

However, because there was a significant difference in the achievement of the groups on pretest  
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Figure 13.  Box Plots of Percent of Function Items Correct on posttest 1 and 2 by Class for Students Using PDM (2nd and 3rd Ed). 
Classes 412, 413 and 417, located on far right, all used 2nd Edition curriculum materials.  Outliers are indicated by record number in 
SPSS. 
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scores, it was important to statistically control for those differences by including pretest scores as 

a covariate in subsequent analyses of achievement.   

Achievement and the Use of Technology on Posttest Function Items 

In this section, I examine achievement on a per item basis for posttests on which students 

were permitted to use technology, namely posttest 2 and the PSU, delineated by technology 

strategy and access to CAS calculators.  First I examine achievement from the perspective of 

how having access to technology influenced students’ answers to function items.  Then I 

examine achievement from the perspective of how having access to CAS influenced students’ 

answers to function items.  

Achievement and the use of technology on posttest 2.  In order to compare the different 

strategies students reported using on posttest 2 to their achievement in terms of accuracy, I 

performed chi-square tests on the frequency counts for strategies used to solve the function items 

on a per item basis.  Prior to conducting the chi-square tests, I had already checked the data for 

normality and homogeneity of variance. I also confirmed each strategy was independent of each 

other, meaning there was no overlap in strategies.  When conducting the chi-squared tests on 

achievement, I used an experiment wise α = .05 and then adjusted it to account for the five 

comparison tests resulting in a test-wise alpha of .01.  Therefore, tests in which achievement 

differences were significant at α/5 = .01 or lower are reported as significant.  Post-hoc chi-square 

tests were performed comparing individual strategies to no strategy and then comparing the use 

of any strategy to the use of no strategy. 

Of the seven items which were calculator neutral, achievement on only two items (31 and 

48) showed no significant achievement differences between students who reported using a 

calculator and those who did not (see Table 21).  In all other cases, students who reported using a 



 
 

77 

calculator answered the item correctly more often than students who did not report using a 

calculator.  Frequency counts from Table 22 show most students did not report using a calculator  

 
Table 21 
 
Number of Students Indicating Use of Calculator Features on Technology Neutral Items on 
Posttest 2 and Percent of Those Obtaining Correct Solution 

 

Item 
Access to 

CAS 

Number of Students Reporting Strategies and Percentage of Students 

Obtaining Correct Solution 

None Arith Graph CAS Other Anya 

n % n % n % n % n % n % 
31.  Given the function h defined by   

(2 4)( 1)( )
( 2)

x xh x
x
+ −

=
+

.  

 What is the behavior of the function near x = 
-2? 

Yes 68 51 5 40 60 30 7 29 6 67 78 33 

No  69 2 0 0 42 48 N/A N/A 2 48 44 50 

37.  Suppose f (x) = x1/2. What is the set of all 
values of x for which f (x) is a real number? 

Yes** 67 30 44 34 28 82 4 50 3 67 79 53 

No* 49 39 40 43 23 74 N/A N/A 1 100 64 55 

38.  
2

210

100Evaluate lim .
2 23 30x

x
x x→

−
− +

. Yes ** 40 5 23 17 34 24 49 76** 1 0 107 46** 

No  43 19 29 24 32 19 N/A N/A 6 33 67 22 
45.  Which of the following is (are) true for all 

values of θ for which the functions are 
defined? 

   I. sin(-θ) = -sin θ 
  II. cos(-θ) = -cos θ 
  III.     tan(-θ) = -tan θ 

Yes ** 81 33 40 80 12 58 10 60 5 60 67 72** 

No** 51 49 48 83 9 78 N/A N/A 3 67 60 82** 

46.  Which of the following could be an equation 
for the graph at the right? [graph of polar 
function shown] 

Yes ** 42 48 4 75 92 85** 10 80 0 0 106 84 

No** 28 57 8 88 77 86** N/A N/A 1 0 86 86 
48.  The line in the figure at right is the graph of 

  y = f (x). What is the value of 
 3

2
( )f x dx

−∫ ? 
Yes 111 32 11 36 7 14 15 27 0 0 33 27 

No  87 68 21 82 1 0 N/A N/A 0 0 22 50 
52.  Which equation is graphed at the right? 

[graph of sine function shown] 

 

Yes ** 41 34 7 29 84 70** 9 67 1 100 101 67** 

No** 22 27 7 100 78 78** N/A N/A 3 67 88 80** 

Note: aAny refers to the use of Arithmetic, Graph, CAS, or other strategies and  is compared to the use of no strategy (none).  Rows add up to 
more than 100% due to rounding or if students reported using more than one strategy. For each item 5 post-hoc tests were conducted comparing 
use of no strategy to arithmetic, graph, CAS, other or any for students who had access to CAS then repeated for those who did not have access to 
CAS capable calculators. 
* p < .05. ** p < .01 
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Table 22 
 
Number of Students Indicating Use of Calculator Features on Technology Inactive Items on 
Posttest 2 and Percent of Those Obtaining Correct Solution 

 

Item 
Access 

to CAS 

Number of Students Reporting Strategies and Percentage of Students Obtaining Correct 

Solution 

None Arith Graph CAS Other Anya 

N % N % N % N % N % N % 
33. For a function g, the derivative at 
2 equals -1, that is g'(2) = -1. Which 
of the following describes the 
meaning of g'(2)? 

Yes 136 58 4 25 4 0 1 0 0 0 9 11 

No 111 56 1 100 0 -- N/A N/A 0 0 1 100 

34. Refer to the graph of function f at 
right. On which of the following 
intervals is f increasing? 

Yes 136 82 3 83 3 100 4 100 0 100 10 100 

No  110 94 1 100 1 0 N/A N/A 1 100 3 67 

36. A function h is graphed at right. 
As  
x → + ∞, what is true about h(x)? 

Yes 133 74 4 75 3 67 4 75 0 0 11 73 

No  105 79 1 100 5 80 N/A N/A 1 100 7 67 
40. Charlie got a car loan for 
$30,000. Each month, interest of 
1/2% is added and then he makes a 
$600 car payment. If An describes 
the amount he owes for the car at the 
beginning of month n and A1 = 
30,000, which equation is true? 
 

Yes 220 20 33 23 2 50 2 50 2 0 39 26 

No  102 36 11 27 0 0 N/A N/A 0 0 11 27 

42. Use the graph of the function  
f(x) = ax3 + bx2 + cx + d shown at 
right. How many real solutions are 
there to the equation f(x) = ax3 + bx2 
+ cx + d = -2? 

Yes 130 74 6 67 4 25 4 75 1 0 15 53 

No  109 78 3 0 0 0 N/A N/A 1 100 4 25 

43. What is the value of g(1)? [using 
the graph] 

Yes 133 93 2 50 8 88 3 100 0 0 13 85 

No  109 96 0 0 3 100 N/A N/A 1 100 4 100 

44. What is the value of f (g(1))? 
[using the graph] 

Yes 129 69 6 67 6 67 3 67 1 100 16 69 

No  109 83 1 100 0 0 N/A N/A 1 100 1 100 
47. A woman is standing on a cliff  
200 feet above the water. If θ 
represents the angle of depression, 
which of the following gives a 
formula for determining the angle of 
depression in terms of the distance d 
of the boat from the bottom of the 
cliff? 

Yes 129 39 11 18 3 33 1 0 0 0 15 20 

No  108 32 3 67 1 0 N/A N/A 0 0 4 50 

51. Which of the following is the 
derivative of function f at x? 

Yes 129 50 4 50 6 17 6 17 0 0 16 25 

No  108 52 3 33 1 100 N/A N/A 0 0 4 50 

Note:  a Any refers to the use of Arithmetic, Graph, CAS, or other strategies and  is compared to the use of no strategy (none).  Rows may add up 
to more than 100% due to rounding or if students reported using more than one strategy.  For each item 5 post-hoc tests were conducted 
comparing use of no strategy to arithmetic, graph, CAS, other or any for students who had access to CAS then repeated for those who did not 
have access to CAS capable calculators. 
* p < .05. ** p < .01 
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on calculator inactive function items.  Post-hoc chi-square or Fisher’s exact tests conducted on 

the calculator inactive items failed to demonstrate any significant differences in achievement 

between students who did and did not report using the calculator.   

Tables 21 and 22 indicate there are some significant differences in achievement based on 

students’ reported use of calculators.  I wanted to further explore any role the use of CAS may 

have had on achievement.  Therefore, I reanalyzed the problems on posttest 2 comparing 

achievement on the technology neutral items and students’ access to CAS capable graphing 

calculators.  Table 23 reports the results for the CAS neutral items. Differences in achievement 

on two of the CAS neutral items were significant in favor of students who did not have access to 

CAS capable calculators (item 45 at p < .05 and item 48 at p < .01).  

 
 
Table 23 
 
Percentage of Students Obtaining Correct Solution on CAS Neutral Items on Posttest 2 by 
Access to CAS Calculator 
 

Item Access to CAS calculator 

No  
% correct 

Yes 
% correct 

31. Given the function h defined by   
(2 4)( 1)( )

( 2)
x xh x

x
+ −

=
+ .  

 What is the behavior of the function near x = -2? 
48 43 

38. Evaluate 

2

210

100lim
2 23 30x

x
x x→

−
− +  23 33 

45*. Which of the following is (are) true for all values of θ for which the functions are 
 defined? 
   I. sin(-θ) = -sin θ 
  II. cos(-θ) = -cos θ 
               III.     tan(-θ) = -tan θ 

66 51 

48**. The line in the figure at right is the graph of y = f (x).  

 What is the value of  
 3

2
( )f x dx

−∫  ? 
63 30 

Note:  CAS refers to graphing calculators equipped with computer algebra systems. Students who had access to CAS n = 150.  Students who did 
not have access to CAS n = 120. 
* p < .0,. ** p < .01. 
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Achievement and the use of technology on problem solving test.  In order to compare 

the different strategies teachers coded students as appearing to use on the problem solving test to 

their achievement in terms of accuracy, I performed chi-square tests on the frequency counts for 

the strategies students reported using on the function items on a per item basis.  Prior to 

conducting the chi-square tests, I had already checked the data for normality and homogeneity of 

variance.  When conducting the chi-squared tests on achievement, I used an experiment wise α = 

.05 and then adjusted it to account for the five comparison tests, resulting in a test-wise alpha of 

.01.  Therefore, tests in which achievement differences were significant at α/5 = .01 or lower are 

reported as significant using **. 

Post-hoc chi-square tests were performed comparing individual strategies to no strategy 

and comparing the use of any strategy to the use of no strategy.  When examining achievement 

on the problem solving test, (max score for function items = 11), there was not a significant 

difference (t(269) = 0.85, p = .40) in the achievement scores between students who had access to 

CAS (M = 6.92, SD = 2.88) and those who did not (M = 6.61, SD = 3.04).  

All six items on the problem solving test were calculator active or neutral and CAS 

neutral.  Differences in achievement were significant for all six items as reported in Table 24.  

Item number 1 is calculator active and indicates more students used CAS to solve this item than 

any other item.  Students who reported using CAS strategies to solve the item were also more 

likely to obtain a correct solution than students who did not use CAS.  Students who did not have 

access to CAS calculators reported using a graph most often to solve the item with 80% of those 

students obtaining the correct solution. 
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Table 24 
 
Number of Students Teachers Reported Using Specific Strategies and Percent of Students 
Obtaining Correct Solution for Technology Neutral and Active Items on Problem Solving Test 
 

 Strategy  

Arithmetic Algebra Graph Table CAS Other  

Item Access to CAS n % n % n % n % n % n %  

1**. Solve the following  system.  
2 3 3

2x

y x x
y

 = − +


=
 

Yes 
 % Partially Correctb 0 0 0 0 13 28 0 0 15 32 19 40   

Yes  
% Correctb 0 0 0 0 19 48 0 0 19 58 2 5   

No  
% Partially Correctb 1 5 0 0 4 18 0 0 N/A N/A 17 77   

No  
% Correctb 2 5 0 0 31 80 0 0 N/A N/A 6 15   

2a**. A ball is thrown so that its 
height (in meters) after t seconds 
is given by  
h(t) = -4.9t2 + 18t + 15.After how 
many seconds does the ball reach 
its maximum height? 

Yes 6 5 0 0 78 61 12 9 0 0 33 26   

No 5 4 0 0 66 58 6 5 N/A N/A 36 32 
  

2b**. What is the maximum height 
reached by the ball? 

Yes 0 0 25 18 63 46 0 0 0 0 50 36   

No 0 0 33 29 47 41 0 0 N/A N/A 34 30   

2c**  Find the instantaneous velocity 
of the ball 3.4 seconds after it is 
thrown. Include units. 

Yes  
% Partially Correcta 33 79 5 12 0 0 0 0 0 0 3 7   

Yes  
% Correct 47 96 1 2 0 0 0 0 0 0 1 2   

No 
 % Partially Correct 29 94 1 3 0 0 0 0 N/A N/A 1 3   

No  
% Correct 46 94 0 0 0 0 0 0 N/A N/A 2 4   

2d**  Find the acceleration of the ball 
3.4 seconds after it is thrown. 
Include units. 

Yes  
% Partially Correct 24 65 0 0 0 0 0 0 0 0 10 27   

Yes  
% Correct 32 63 0 0 0 0 0 0 0 0 19 37   

No  
% Partially Correct 20 57 0 0 0 0 0 0 N/A N/A 15 43   

No 
 % Correct 32 63 0 0 0 0 0 0 N/A N/A 19 37   

3**. Are the functions f and g with  
 f(x) = 3x + 2 and 

2( )
3

xg x +
=  inverses? 

Yes  
% Partially Correct 32 78 0 0 8 20 2 5 1 2 0 0   

Yes  
% Correct 47 80 0 0 11 19 1 2 0 0 1 2   

No  
% Partially Correct 37 82 0 0 8 18 0 0 N/A N/A 0 0   

No 
 % Correct 37 82 0 0 7 16 0 0 N/A N/A 1 2   

Note: CAS refers to graphing calculators equipped with computer algebra systems. Otherwise noted partially correct items are 
scored 0 for incorrect, 1 for partially correct and 2 for correct. 
 aIndicates scoring rubric for this problem was scored on 0-4 instead of a 0-2 scale. A score of 0 is considered incorrect, 1-2 is 
partially correct and 3-4 is essentially correct. Rows may add up to more than 100% due to rounding or if teachers coded a 
student as using more than one strategy. 
* p < .05. ** p < .01. 
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Table 25 reports student achievement on function items from the problem solving test 

grouped by students’ access to CAS calculators.  Differences in achievement on only one 

problem were significant (Problem 2a) in favor of students who used CAS.  In general, even if 

the results are not significantly different, those who had access to CAS scored at least as well as 

those who did not.   
 
 
Table 25 
 
Percent of Students Indicating Use of CAS on Problem Solving Test and Obtaining Correct 
Solution on CAS Neutral Items 
 
 Had access to CAS 

calculator 
No 

n = 120 
Yes 

n = 150 
1. Solve the following system.   
 2 3 3

2x

y x x
y

 = − +


=

 
% Partially 

Correcta 19 31 

% Correct 32 27 
2a*. A ball is thrown so that its height (in meters) after t seconds is given 
 by h(t) = -4.9t2 + 18t + 15. 
 After how many seconds does the ball reach its maximum height? % Correct 94 86 

2b.  What is the maximum height reached by the ball? 
% Correct 95 92 

2c.  Find the instantaneous velocity of the ball 3.4 seconds after it is  thrown. 
Include units. 

% Partially 
Correct 26 27 

% Correct 41 33 
2d.  Find the acceleration of the ball 3.4 seconds after it is thrown. Include 
 units. 

% Partially 
Correct 29 25 

% Correct 43 34 
 

3. Are the functions f and g with f(x) = 3x + 2 and 2( )
3

xg x +
=  inverses of 

 each other? 

% Partially 
Correcta 53 44 

% Correct 23 29 

Note: CAS refers to graphing calculators equipped with computer algebra systems. 
a Indicates scoring rubric for this problem was scored on 0-4 instead of correct/incorrect. A score of 0 is considered incorrect, 1-2 is partially 
correct and 3-4 is essentially correct. 
* p < .05, ** p < .01. 

The Relationships Between Achievement, OTL Measures, and the Use of Technology 

In this section I examine what relationships exist between achievement, OTL measures, 

and the use of technology.  Because independent variables can have confounding effects when 
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examined together, I first examine the effects of only the OTL variables on achievement for each 

of the three posttests.  Then I consider the effects of only technology variables on achievement 

for the three posttests.  Finally I examine achievement in relation to both OTL and the use of 

technology.  

Achievement on posttest 1 and OTL.  A regression analysis was conducted to evaluate 

how well OTL measures predicted achievement on posttest 1.  Before conducting the regression, 

an analysis of standard residuals was conducted, which showed that the data contained no 

outliers (Std. Residual Min = -2.79, Std. Residual Max = 2.9).  Tests to determine if the data met 

the assumption of collinearity indicated that multicollinearity was not a concern (pretest 1, 

Tolerance = 0.95, VIF = 1.05; OTL Homework, Tolerance = 0.64 VIF = 1.57; OTL Lessons, 

Tolerance = 0.55, VIF = 1.84).  The data met the assumption of independent errors (Durbin-

Watson value = 1.80).  The histogram of standardized residuals indicated that the data contained 

approximately normally distributed errors, as did the normal P-P plot of standardized residuals, 

which showed points that were not completely on the line, but close.  Finally, to test the 

assumption of independence, I calculated an intra-class correlation coefficient.  For posttest 1, 

(ICC = 0.35), the high ICC value indicates a severe violation of the independence assumption 

suggesting data should be analyzed at the class level, which was more in line with the overall 

design of the initial study, instead of the student level.  When I examined the data at the class 

level, I found all of the above assumptions violated due to the small sample size (n = 14).  

Therefore, I used both linear regression and HLM to create the prediction models.  Because the 

results were comparable only the regression results are presented for this model.    

A regression analysis was performed with pretest 1, used to control for differences in 

prior knowledge, OTL Homework and OTL Lessons used as predictors, and percent achievement 

on posttest 1 as the criterion variable.  Analysis of achievement for posttest 1 (N = 270; M = 



 
 

84 

56.73; SD = 18.22) showed the linear combination of OTL measures was significantly related to 

achievement, F(3, 267) = 81.05, p < .0001, R2 =.48,  R2
adjusted

 = 0.47, indicating approximately 

48% of the variance of achievement for posttest 1 in the sample can be accounted for by the 

linear combination of OTL measures when controlling for prior knowledge.  Achievement on 

pretest 1 scores had the most impact on the regression model, meaning for every one percent 

higher students scored on pretest 1, on average, they scored 0.56 percentage points higher on 

posttest 1 after controlling for prior knowledge and OTL variables.  OTL Lessons also had a 

significant impact on achievement (β = 0.42, p < .01), meaning for every additional lesson a 

teacher taught, student achievement increased, on average, 0.42 percentage points.  Table 26 

shows the descriptive statistics, the standardized (β) coefficients, the standard errors and the 

correlations for each variable.   
 

Table 26 

OTL Measures as a Set of Predictors for Achievement on Posttest 1 Function Items 
 

Variable 
Correlations 

β 
Std 

Error OTL  
Lessons 

OTL 
Homework 

Pretest 1 Posttest1 

Pretest 1    .56** .52** .05 
OTL 
Homework   -.22** -.31** .02 .07 

OTL  
Lessons  -.53** .11* .47** .42** .09 

       
    Intercept = 32.01 
Mean 78.10 72.07 54.53 56.73   
SD 10.78 14.70 16.33 16.33 R2=.48  
Note:  N = 271. Pretest 1 is the percentage score each student received on the 23 function items and ranges from 0 to 100.  Posttest 1 
is the percentage score each student received on the 16 function items and ranges from 0 to 100.  OTLLessons is the percentage of 
function lessons taught by an individual teacher and ranges from 0 to 100. OTL HW is the percentage of function problems an 
individual teacher assigned and is based only on the function lessons he/she taught and ranges from 0 to 100.   
* p < .05, ** p < .01. 

Achievement on posttest 2 and OTL.  A regression analysis was conducted to evaluate 

how well OTL measures predicted achievement on posttest 2.  Before conducting the regression, 
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an analysis of standard residuals was carried out, which showed that the data contained no 

outliers (Std. Residual Min = -2.38, Std. Residual Max = 2.7).  Tests to determine if the data met 

the assumption of collinearity indicated that multicollinearity was a concern (pretest 2, Tolerance 

= .90, VIF = 1.10; OTL Homework, Tolerance = 0.26 VIF = 3.78; OTL Lessons, Tolerance = 

0.10, VIF = 10.22; OTL posttest 2, Tolerance = 1.36, VIF = 7.36) for only the variable OTL 

(Function) Lessons which was found to be highly and significantly correlated to OTL posttest 2 

(r = 0.79), and was therefore removed from the predictors.  The data met the assumption of 

independent errors (Durbin-Watson value = 1.72).  The histogram of standardized residuals 

indicated that the data contained approximately normally distributed errors, as did the normal P-

P plot of standardized residuals, which showed points that were not completely on the line, but 

close.  Finally, to test the assumption of independence I calculated an intra-class correlation 

coefficient.  For posttest 2, (ICC = 0.26), the high ICC value indicates a severe violation of the 

independence assumption, suggesting data should be analyzed at the class level instead of the 

student level.  Therefore, I used both linear regression and HLM to create the prediction models.  

Because the results were comparable, only the regression results are presented for this model.   

A regression analysis was performed with pretest 2, used to control for differences in 

prior knowledge, OTL Homework and OTL posttest 2 used as predictors, and percent 

achievement on posttest 2 as the criterion variable.  Analysis of achievement for posttest 2 (N = 

270; M = 58.39; SD = 16.42) showed the linear combination of OTL measures was significantly 

related to achievement, F(3, 267) = 30.63, p < .01, R2 =.26,  R2
adjusted

 = .25, indicating 

approximately 26% of the variance of achievement for posttest 2 in the sample can be accounted 

for by the linear combination of OTL measures when controlling for prior knowledge as shown 

in Table 27.  OTL Homework had the most impact on the regression model, meaning for every 

one percent more homework assigned a student scored, on average, 0.58 percentage points 
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higher on posttest 2 after controlling for prior knowledge and OTL variables.  OTL Posttest 2 

had a significant but negative impact on student achievement (β = -0.184, p < .01). The 

descriptive statistics, the standardized (β) coefficients, the standard errors and the correlations for 

each variable are also reported in Table 27.   
 

Table 27 

OTL Measures as a Set of Predictors for Achievement on Posttest 2 Function Items 
 

Variable 
Correlations 

β 
Std 

Error OTL  
Posttest 2 

OTL 
Homework 

Pretest 2 Posttest 2 

Pretest 2    .415** .363** .059 
OTL 
Homework   -.280** -.287** .583** .136 

OTL  
Posttest 2  .001 .023 .237** -.184** .219 

       
    Intercept = 58.39 
Mean 91.35 72.07 41.88 58.38   
SD 6.55 14.70 15.28 16.42 R2=.26  
Note: N = 271. Pretest 2 is the percentage score each student received on the 16 function items and ranges from 0 to 100.  Posttest 2 
is the percentage score each student received on the 16 function items and ranges from 0 to 100.  OTLLessons is the percentage of 
function lessons taught by an individual teacher and ranges from 0 to 100. OTL HW is the percentage of function problems an 
individual teacher assigned and is based only on the function lessons he/she taught and ranges from 0 to 100. 
* p < .05. ** p < .01. 

 

Achievement on problem solving test and OTL measures.  A multiple regression 

analysis was conducted to evaluate how well OTL measures predicted achievement on the 

problem solving test.  Pretest 2 was chosen to control for prior knowledge because students were 

permitted to use technology on both pretest 2 and the problem solving test.  Before conducting 

the regression, an analysis of standard residuals was carried out, which showed that the data 

contained no outliers (Std. Residual Min = -2.80, Std. Residual Max = 2.2).  Tests to determine 

if the data met the assumption of collinearity indicated that multicollinearity was not a concern 

(pretest 2, Tolerance = 0.91, VIF = 1.11; OTL Homework, Tolerance = 0.24 VIF = 4.1; OTL 
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Lessons, Tolerance = 0.46, VIF = 2.16; OTL PSU, Tolerance = 0.35, VIF = 2.87). The data met 

the assumption of independent errors (Durbin-Watson value = 1.42).  The histogram of 

standardized residuals indicated that the data contained approximately normally distributed 

errors, as did the normal P-P plot of standardized residuals, which showed points that were not 

completely on the line but close.  Finally, to test the assumption of independence I calculated an 

intra-class correlation coefficient.  For the problem solving test (ICC = 0.4) the high ICC value 

indicates a severe violation of the independence assumption suggesting data should be analyzed 

at the class level instead of the student level.  Therefore I used both linear regression and HLM 

to create the prediction models.  Because the results were comparable, only the regression results 

are presented for this model.    

A regression analysis was performed with pretest 2 used to control for differences in prior 

knowledge, OTL Homework, OTL Lessons, and OTL PSU used as predictors, and achievement 

on the problem solving test as the criterion variable.  Analysis of achievement for the problem 

solving test (N = 270; M = 61.69; SD = 24.55) showed that while the linear model was 

significant overall, F(4, 266) = 6.54, p < .01, R2 =.09,  R2
adjusted

 = 0.08,  none of the OTL 

variables were significant after controlling for prior knowledge. Only prior achievement as 

measured by pretest 2 had any impact on the achievement scores for the PSU.   The low value of 

R2 also indicates less than 10% of the variance of achievement for the problem solving test in the 

sample can be accounted for by the linear combination of OTL measures.  Table 28 shows the 

descriptive statistics, the standardized (β) coefficients, the standard errors and the correlations for 

each variable.   
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Table 28 

OTL as a Set of Predictors for Achievement on Problem Solving Test Function Items 
 

Variable 
Correlations  

β Std 
Error OTL 

Lessons 
OTL PSU OTL HW Pretest 2 PSU  

Pretest 2   .283** . 289** .454** .099 
OTL 
Homework   .067 -.280** -.121* .113 .197 

OTL PSU   -.102 -.092 -.081 -.165 .160 
OTL Lessons  .025 .078 .206** .098 .177 .196 
       
      Intercept = 61.69 
Mean 78.09 90.28 72.07 41.88 61.69   
SD 10.78 15.18 14.70 15.28 24.55 R2=.09  
Note: N = 271. PSU is the score each student received on the problem solving test for only the 3 function items and ranges from 0 to 100.   
OTLLessons is the percentage of function lessons taught by an individual teacher and ranges from 0 to 100. OTL HW is the percentage of 
function problems an individual teacher assigned and is based only on the function lessons he/she taught and ranges from 0 to 100.  OTLPSU is 
the percentage of function problems on the problem solving test for which the teacher reported having taught or reviewed the material necessary 
to answer the item and ranges from 0 to 100.  Pretest 2 is the percentage score each student received on pretest 2 for only the 16 function items 
and ranges from 0 to 100.   
* p < .05; ** p < .01. 
 

Achievement on posttest 1 and access to technology.  I also conducted a regression 

analysis to evaluate how well reported use of technology predicted achievement on posttest 1 

even when students were not permitted to use technology on the assessment.  Before conducting 

the regression, an analysis of standard residuals was carried out, which showed that the data 

contained no outliers (Std. Residual Min = -2.54, Std. Residual Max = 2.62).  Tests to determine 

if the data met the assumption of collinearity indicated that multicollinearity was not a concern 

(pretest 1, Tolerance = 0.98, VIF = 1.2 HadCas, Tolerance = 0.98 VIF = 1.02).  The data met the 

assumption of independent errors (Durbin-Watson value = 1.55).  Finally, the histogram of 

standardized residuals indicated that the data contained approximately normally distributed 

errors, as did the normal P-P plot of standardized residuals, which showed points that were not 

completely on the line, but close.  Therefore, I used both linear regression and HLM to create the 

prediction models.  Because the results were comparable, only the regression results are 

presented for this model.   
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A regression analysis was performed using pretest 1 to control for differences in prior 

knowledge (when students did not have access to technology), and HadCas (when students did 

have access to technology during instruction) as predictors, with achievement on posttest 1 as the 

criterion variable as shown in Table 29.   Analysis of achievement for posttest 1 (N = 270; M = 

56.73; SD = 18.22) showed the linear combination of the use of technology was significantly 

related to achievement, F(3, 264) = 81.51, p < 0.001, R2 =0.38, R2
adjusted

 = 0.38, indicating 

approximately 38% of the variance of achievement for posttest 1 in the sample can be accounted 

for by the technology measure when controlling for prior knowledge.  Achievement on pretest 1 

scores had the most impact on the regression model, meaning for every one percent higher 

students scored on pretest 1, on average, they scored 0.52 percentage points higher on posttest 

1after controlling for prior knowledge.  Access to CAS was also significant  (β = -0.266, p < .01) 

and students who had access to CAS, on average, scored 0.27 percent points lower.  Table 29 

reports the descriptive statistics, the standardized (β ) coefficients, the standard errors and the 

correlations for each variable.   

 

Table 29 

Access to Technology as a Predictor For Achievement on Posttest 1 Function Items 
 

Variable Correlations β Std  
Error 

HadCas Pretest 1 Posttest 1   
Pretest 1    .558** .524** .054 
HadCas  -.129* -.334** -.266** 1.78 
      
    Intercept = 30.29 
Mean .56 54.53 56.73   
SD .50 16.33 16.33 R2=.38  
Note: N = 271. Pretest 1 is the percentage score each student received on the 23 function items and ranges from 0 to 
100.  Posttest 1 is the percentage score each student received on the 16 function items and ranges from 0 to 100.  
HadCAS indicates an individual student had access to a CAS capable calculator while taking assessments where 0 
indicates no and 1 indicates yes. 
* p < .05, ** p < .01 
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Achievement on posttest 2 and the use of technology.  Analysis on posttest 1 was an 

indication of how students performed without technology; posttest 2 offers insight in how 

student achievement relates directly to the use of technology.  Before conducting a regression 

analysis on posttest 2 achievement with technology variables, an analysis of standard residuals 

was carried out, which showed that the data contained no outliers (Std. Residual Min = -2.40, 

Std. Residual Max = 2.35).  Tests to determine if the data met the assumption of collinearity 

indicated that multicollinearity was not a concern (pretest 2, Tolerance = 0.92, VIF = 1.09; 

HadCas, Tolerance = 0.93 VIF = 1.07; UseofStrategies, Tolerance = 0. 96, VIF = 1.04).  The data 

met the assumption of independent errors (Durbin-Watson value = 1.89).  Finally, the histogram 

of standardized residuals indicated that the data contained approximately normally distributed 

errors, as did the normal P-P plot of standardized residuals, which showed points that were not 

completely on the line but close.  I used both linear regression and HLM to create the prediction 

models.  Because the results were comparable, only the regression results are presented for this 

model.   

A regression analysis was performed using pretest 2 used to control for differences in 

prior knowledge, HadCas and DidUseStrategies used as predictors, and achievement on posttest 

2 as the criterion variable.  Analysis of achievement for posttest 2 with two levels of nesting  

(N1 = 267; N2 = 3; M = 58.39; SD = 16.42) showed the linear combination of technology 

measures was significantly related to achievement, F(3, 264) = 7.66, p < 0.01, R2 =0.23,  R2
adjusted

 

= 0.22, indicating approximately 23% of the variance of achievement for posttest 2 in the sample 

can be accounted for by the linear combination of technology measures when controlling for 

prior knowledge.  This model shows that each time a student used a calculator strategy to solve a 

problem, the student’s score on posttest 2 went up 1.06 percentage points, on average. However, 
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the use of CAS was not significant in this model.  Table 30 shows the descriptive statistics, the 

standardized (β ) coefficients, the standard errors and the correlations for each variable.   

 

Table 30 

Use of Technology as a Set of Predictors for Achievement on Posttest 2 Function Items 
 

Variable Correlations 
β Std  

Error DidUseStategy HadCas Pretest 2 Posttest 2 
Pretest 2     .415** .380** .057 
HadCas   -.246** -.243** 3.15 2.37 
DidUseStategy  .032 -.012 .148* 1.06* .48 
       
     Intercept = 58.94 
Mean 3.70 .56 41.88 58.38   
SD 1.79 .50 15.28 16.42 R2=.23  
Note:  N = 270. Pretest 2 is the percentage score each student received on the 16 function items and ranges from 0 to 100.  Posttest 2 is the 
percentage score each student received on the 16 function items and ranges from 0 to 100.  HadCAS indicates an individual student had access 
to a CAS capable calculator while taking assessments where 0 indicates no and 1 indicates yes.  DidUseStrategy is the number of times a 
student reported using a calculator strategy to solve the seven calculator neutral items on posttest 2 function items and ranges from 0 to 7 
* p < .05; ** p < .01 

Achievement on problem solving test and the use of technology.  A multiple 

regression analysis was conducted to evaluate how well use of technology measures predicted 

achievement on the problem solving test.  Pretest 2 was used to control for prior knowledge 

because technology was permitted on both pretest 2 and the problem solving test.  Before 

conducting the regression, an analysis of standard residuals was carried out, which showed that 

the data contained no outliers (Std. Residual Min = -2.80, Std. Residual Max = 2.1).  Tests to 

determine if the data met the assumption of collinearity indicated that multicollinearity was not a 

concern (pretest 2, Tolerance = 0.92, VIF = 1.09; HadCas, Tolerance = 0.93 VIF = 1.07; 

UseofStrategies, Tolerance = 0.96, VIF = 1.04). The data met the assumption of independent 

errors (Durbin-Watson value = 1.44).  Finally, the histogram of standardized residuals indicated 

that the data contained approximately normally distributed errors, as did the normal P-P plot of 

standardized residuals, which showed points that were not completely on the line, but close.  I 



 
 

92 

used both linear regression and HLM to create the prediction models.  The results of the HLM 

model are reported here because there was a difference in the results of the regression and HLM 

models, and the HLM model is more appropriate given the intra-class correlation. The results of 

the regression analyses performed using SPSS are found in Appendix J.  A regression analysis 

was performed using HLM with pretest 2 used to control for differences in prior knowledge, and 

HadCas used as predictors, with achievement on the problem solving test as the criterion 

variable.  Analysis of achievement for the problem solving test with two levels of nesting (N1 = 

267; N2 = 3; M = 61.69; SD = 24.55) showed the model was significant overall but only 

achievement on the pretest was a significant predictor of achievement on the problem solving 

test (β = 0.44, p < 0.01).  Table 31 reports the descriptive statistics, the standardized (β) 

coefficients, the standard errors and the correlations for each variable.   

 

Table 31 

Access to Technology as a Predictor For Achievement on Problem Solving Test Function Items 
 

Variable Correlations 
β Std 

Error HadCas Pretest 2 PSU 
Pretest 2  . .289** .44** .09 
HadCas  -.246** -.085 5.74 3.73 
      
    Intercept = 61.86 
      
Mean .56 41.88 61.69   
SD .50 15.28 24.55 R2=.12  
Note: PSU is the score each student received on the problem solving test for only the 3 function items and 
ranges from 0 to 100.  Pre2FcnScore is the percentage score each student received on pretest 2 for only the 
16 function items and ranges from 0 to 100.  HadCAS indicates an individual student had access to a CAS 
capable calculator while taking assessments where 0 indicates no and 1 indicates yes. 
** p < .01 

Achievement on posttest 1 with OTL measures and the use of technology.   A final 

regression analysis was performed to evaluate how well both OTL measures and access to 

technology during instruction predicted achievement on posttest 1.  I used both linear regression 
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and HLM to create the prediction models.  HLM was used for this model because there was a 

difference in the results from linear regression and the HLM model is more appropriate given the 

intra-class correlation. The results of the regression analyses performed using SPSS are found in 

Appendix J. As the assumptions had been previously verified, I used HLM to conduct a 

regression analysis with pretest 1 used to control for differences in prior knowledge, HadCas, 

OTL Lesson, and OTL Homework used as predictors, and achievement on posttest 1 as the 

criterion variable.  Analysis of achievement for posttest 1 (N1 = 253; N 2 = 13; M = 56.73; SD = 

18.22) showed the linear model was significant overall but only achievement on pretest 1 and 

OTL Lessons had significant effect on achievement for posttest 1 (β = 0.71, p < 0.001) meaning, 

on average, student achievement increased 0.71 percentage points for every additional lesson a 

teacher taught. Table 32 shows the descriptive statistics, the standardized (β) coefficients, the 

standard errors and the t-ratios for each variable. 

 
Table 32  
 
Use of Technology and OTL Measures as a Set of Predictors for Achievement on Posttest 1 
Function Items 
 

Fixed Effect Coefficient Standard 
error t-ratio Approx. 

d.f. p-value 

INTRCPT β0 56.70 1.71 33.07 13 <0.001 
Pre1FcnScore 0.54 0.05 11.13 253 <0.001 
HadCAS -1.22 2.32 -.527 253 0.599 
OTLHW 0.03 0.13 .221 253 0.825 
OTL Lessons 0.71 0.19 3.77 253 <0.001 
The final model is given by POST1FCNSCOREij  = γ00  + γ10*PRE1FCNSCOREij  
 + γ20*HADCASij  + γ30*OTLLESSONij  + γ40*OTLHWij  + u0j+ rij 

Note: N = 271.  All variables are grand mean centered. Post1FcnScore is the percentage score each student received on posttest 1 for only 
the 23 function items and ranges from 0 to 100.  Pre1FcnScore is the percentage score each student received on pretest 1 for only the 16 
function items and ranges from 0 to 100.  HadCAS indicates an individual student had access to a CAS capable calculator while taking 
assessments where 0 indicates no and 1 indicates yes.  OTLLessons is the percentage of function lessons taught by an individual teacher 
and ranges from 0 to 100. OTLHW is the percentage of function problems an individual teacher assigned only for the function lessons 
he/she taught and ranges from 0 to 100.   

Achievement on posttest 2 with OTL measures and the use of technology.   A final 

regression analysis was performed to evaluate how well both OTL measures and the use of 
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technology measures predicted achievement on posttest 2.  I used both linear regression and 

HLM to create the prediction models.  HLM was used for this model because there was a 

difference in the results from linear regression and the HLM model is more appropriate given the 

intra-class correlation. The results of the regression analyses performed using SPSS are found in 

Appendix J. As the assumptions had been previously verified, I used HLM to conduct a 

regression analysis with pretest 2 used to control for differences in prior knowledge, HadCas, 

DidUseStrategies, OTL Lesson, and OTL posttest 2 used as predictors, and achievement on 

posttest 2 as the criterion variable.  Analysis of achievement for posttest 2 (N1 = 270; N2 = 14; 

M = 58.39; SD = 16.42) showed the linear model was significant overall with all variables except 

OTL posttest 2 having a significant effect on achievement as reported in Table 33.  In this model, 

students who had access to CAS scored, on average, 5.1 percentage points higher (β = 5.12, p < 

.05) and student achievement went up 1 percentage point every time a student used a strategy on 

function problems (β = .96, p < .05).  OTL Lessons (β = .75, p < .01) also had a positive impact 

 
Table 33  
 
Use of Technology and OTL Measures as a Set of Predictors for Achievement on Posttest 2 
Function Items 
 

Fixed Effect Coefficient Standard 
error t-ratio Approx. 

d.f. p-value 

INTRCPT β0 58.45 1.55 37.78 13 <0.001 
Pre2FcnScore 0.37 0.058 6.42 252 <0.001 
DidUseStrategy 0.96 0.480 2.00 252 0.047 
HadCAS 5.12 2.47 2.08 252 0.039 
OTLPosttest 2 -0.29 0.37 -0.78 252 0.439 
OTL Lesson 0.75 0.25 3.02 252 0.003 
The final model is given by POST2FCNSCORE = β0 + γ10*PRE2FCNSCOREij   + γ20*DIDUSESTRATEGY + 
γ30*HADCASij + γ40*OTLPOST2ij  + γ50*OTLLESSONij  + u0j+ rij 
Note: N = 270. All variables are grand mean centered.  Pre2FcnScore is the percentage score each student received on pretest 2 for only the 16 
function items and ranges from 0 to 100.  Post2FcnScore is the percentage score each student received on posttest 2 for only the 16 function 
items and ranges from 0 to 100.   HadCAS indicates an individual student had access to a CAS capable calculator while taking assessments 
where 0 indicates no and 1 indicates yes.  OTL Post2 is the percentage of the 16 function problems on posttest 2 for which the teacher 
reported having taught or reviewed the material necessary to answer the item and ranges from 0 to 100.  OTLLessons is the percentage of 
function lessons taught by an individual teacher and ranges from 0 to 100. DidUseStrategy is the number of times a student reported using a 
calculator strategy to solve the 7 calculator neutral items on posttest 2 function items and ranges from 0 to 7. 
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on student achievement.  Table 33 also reports the descriptive statistics, the standardized (β) 

coefficients, the standard errors and the t-ratios for each variable. 

Achievement on PSU with OTL measures and the use of technology.   A final 

regression analysis was performed to evaluate how well both OTL measures and the use of 

technology measures predicted achievement on the problem solving test.  As the assumptions 

had been previously verified, I used both linear regression and HLM to create a prediction model 

with pretest 2 used to control for differences in prior knowledge, HadCas, DidUseStrategies, 

OTL Lesson, and OTL PSU used as predictors, and achievement on PSU as the criterion 

variable.  Because the results were comparable, only the regression results are presented in Table 

34.  Analysis of achievement on the problem solving test (N1 = 270; N2 = 14; M = 61.69; SD =  
 

 
Table 34 
 
Use of Technology and OTL Measures as a Set of Predictors for Achievement on Problem 
Solving Test Function Items 
 

Fixed Effect  Coefficient  Standard 
error  t-ratio  Approx. 

d.f.  p-value 

    INTRCPT β0 61.62 3.02 20.39 13 <0.001 
    Pre2FcnScore 0.43 0.09 4.61 253 <0.001 
    HadCAS  7.73 4.14 1.86 253 0.063 
    OTLPSU -0.13 0.20 -0.67 253 0.507 
    OTL Lessons 0.33 0.30 1.07 253 0.286 
The final model is given by ACHIEVEMENTij = β0 + γ10*Pre2FcnScore   + γ30*HADCASij + γ40*OTLPSUij  + 
γ50*OTLLESSONij  + u0j+ rij 
Note: N = 271. All variables are grand mean centered.  Achievement (PSU) is the score each student received on the problem solving test for 
only the 3 function items and ranges from 0 to 100.  HadCAS indicates an individual student had access to a CAS capable calculator while 
taking assessments where 0 indicates no and 1 indicates yes.  Pre2FcnScore is the percentage score each student received on pretest 2 for only 
the 16 function items and ranges from 0 to 100.  OTLPSU is the percentage of function problems on the problem solving test for which the 
teacher reported having taught or reviewed the material necessary to answer the item and ranges from 0 to 100. OTLLessons is the percentage 
of function lessons taught by an individual teacher and ranges from 0 to 100. 

24.55) showed that while the model was significant overall, F(3, 267) = 22.18 , p < 0.01, R2 

=0.09, R2
adjusted

 = 0.08, none of the OTL or technology measures was a significant predictor of 

achievement on the PSU.  The low value for R2 indicates less than 10% of the variation in 
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achievement is explained by the model.  Table 34 also shows the descriptive statistics, the 

standardized (β) coefficients, the standard errors and the t-ratios for each variable. 

Effects of OTL and Technology on Achievement 

This section contains the results of the path analyses performed on the achievement data 

for function items on posttest 2 and the problem solving test.  I created different models for 

posttest 2 and the problem solving test because posttest 2 analyzed technology from the 

perspective of the student in the form of self-reported data on technology features used to solve 

each item while the problem solving test analyzed the use of technology from the perspective of 

a teacher who scored student responses and provided a code for approach used, including the use 

of technology after the fact.  Models for achievement on both posttest 2 and the problem solving 

test were created using the same OTL measures and technology measures used in the regression 

analyses. 

Path and correlational analysis for use of CAS with OTL.  First, the variables were 

analyzed for normality.  The descriptive statistics for the variables used in the path analysis of 

posttest 2 and the problem solving test are shown in Table 35.  None of the variables needed 

transformation for normality.  Next the correlation between the variables was computed and the 

results for posttest 2 are shown in Table 36.  Having access to CAS calculators was significantly 

correlated (p < 0.01) to all other model variables on posttest 2.  The correlation between CAS 

and posttest 2 score, OTL posttest 2 and OTL lessons was negative, meaning the students who 

had CAS had fewer opportunities to learn the material and, in general, scored lower on posttest 

2.  However, these results should be interpreted with caution.  The results from the HLM models 

showed the relationship between HadCAS and achievement on posttest 2 was positive.  The 

negative results here are likely due to suppression, meaning HadCAS has direct and indirect 

effects on posttest 2 
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Table 35 
 
Mean, Min, Max, Standard Deviation, Skewness and Kurtosis for Variables Used in Achievement 
Path Analyses 
 

Table 36 

Correlations Between Variables Used in Path Analysis for Posttest 2  
 

Subscale Post2Fcn 
Score 

OTL 
Post2 

OTL 
Lessons 

OTL 
HW HadCAS Pre2Fcn 

Score 
DidUse 
Strategy 

Post2FcnScore — .24** .39** -.29 -.24** .42** .15* 
OTLPost2  — .79** 0.00 -.43** .02 .11 
OTLLessons   — -.53 -.64** .21** .14 
OTL HW    — .25** -.28** .00 
HadCAS     — -.25** .032 
Pre2FcnScore       -.10 
DidUseStrategy       — 
Note: N = 270. Post2FcnScore is the percentage score each student received on posttest 2 for only the 16 function items and ranges from 0 to 
100.  OTLLessons is the percentage of function lessons taught by an individual teacher and ranges from 0 to 100.  OTLHW is the percentage of 
function problems an individual teacher assigned and is based only on the function lessons he/she taught and ranges from 0 to 100. HadCAS 
indicates an individual student had access to a CAS capable calculator while taking assessments, where 0 indicates no and 1 indicates yes. 
OTLPost2 is the percentage of the 16 function problems on posttest 2 for which the teacher reported having taught or reviewed the material 
necessary to answer the item and ranges from 0 to 100. Pre2FcnScore is the percentage score each student received on pretest 2 for only the 16 
function items and ranges from 0 to 100.  DidUseStrategy is the number of times a student reported using a calculator strategy to solve the 7 
calculator neutral items on posttest 2 function items and ranges from 0 to 7. 
* p < .05, ** p < .01. 

 Min Max M SD 
Skewness  Kurtosis 

Statistic SE  Statistic SE 

Pre2FcnScore 0.0 81.25 41.89 15.28 -.06 .19  -.37 .30 

Post2FcnScore 18.75 93.75 58.39 16.42 .02 .15  -.48 .30 

PSUFcnPcnt 0.0 100.00 61.69 24.55 -.34 .15  -.57 .30 

HadCAS 0.0 1.0 .56 .50 -.23 .15  -2.0 .30 
OTLPost2 66.67 100.0 91.35 6.55 .12 .15  -1.28 .30 
OTLPSU 66.67 100.0 90.28 15.18 -.92 .15  -1.16 .30 
OTLLessons 67.27 98.18 78.09 10.78 .96 .15  -.45 .30 
OTLHW 44.48 73.29 58.53 8.53 -.03 .15  -.81 .30 
DidUseStrategy 0.0 7.00 3.70 1.79 -.29 .15  -.54 .30 

Note: N = 270. Pre2FcnScore is the percentage score each student received on pretest 2 for only the 16 function items and ranges from 0 to 100.  
Post2FcnScore is the percentage score each student received on posttest 2 for only the 16 function items and ranges from 0 to 100.   PSUFcnPcnt 
is the score each student received on the problem solving test for only the 3 function items and ranges from 0 to 100.  HadCAS indicates an 
individual student had access to a CAS capable calculator while taking assessments where 0 indicates no and 1 indicates yes.  OTL Post2 is the 
percentage of the 16 function problems on posttest 2 for which the teacher reported having taught or reviewed the material necessary to answer 
the item and ranges from 0 to 100. OTLPSU is the percentage of function problems on the problem solving test for which the teacher reported 
having taught or reviewed the material necessary to answer the item and ranges from 0 to 100. OTLLessons is the percentage of function lessons 
taught by an individual teacher and ranges from 0 to 100. OTLHW is the percentage of function problems an individual teacher assigned and is 
based only on the function lessons he/she taught and ranges from 0 to 100.  DidUseStrategy is the number of times a student reported using a 
calculator strategy to solve the 7 calculator neutral items on posttest 2 function items and ranges from 0 to 7. 
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and one of those paths is negative even though the entire relationship is overall a positive one.  

Negative results could also occur when variables are analyzed separately, but the relationship can 

change in models in which statistical controls have been applied.  The correlation between CAS 

and homework was low but positive, meaning students with CAS were assigned more function 

problems than were students who did not have access to CAS.  The scores for the pretest were 

also significantly correlated to all model variables with the exception of OTL on posttest 2.  

Correlation between pretest scores and posttest 2 scores was positive and moderately strong, 

indicating students who did well on the pretest generally did well on posttest 2.  The pretest 

scores were also positively correlated, but not as strongly, with OTL Lessons and OTL 

Homework and negatively correlated with the use of CAS.   

The correlations for the variables used in the problem solving test model are displayed in 

Table 37.  On the problem solving test, CAS was not significant compared to achievement. 

 

Table 37 

Correlations Between Variables Used in Path Analysis for Problem Solving Test  
 

Subscale PSUScore OTLPSU OTLLessons OTL HW Had CAS Pre2Score 
 

PSUscore_fcn 
 — -.08 .10 -.12* -.09 .29** 

OTLPSU  — .03 .67** .20** -.09 
OTLLessons   — -.53** -.64** .21** 
OTLHW    — .53** -.28** 
HadCAS     — -.25** 
Pre2FcnScore      — 
Note:  N = 271. PSUScore_fcn  is the score each student received on the problem solving test for only the 3 function items and ranges from 0 
to 100. OTLPSU is the percentage of function problems on the problem solving test for which the teacher reported having taught or reviewed 
the material necessary to answer the item and ranges from 0 to 100.  OTLLessons is the percentage of function lessons taught by an individual 
teacher and ranges from 0 to 100.  OTLHW is the percentage of function problems an individual teacher assigned and is based only on the 
function lessons he/she taught and ranges from 0 to 100. HadCAS indicates an individual student had access to a CAS capable calculator 
while taking assessments where 0 indicates no and 1 indicates yes.  Pre2FcnScore is the percentage score each student received on pretest 2 
for only the 16 function items and ranges from 0 to 100. 
* p < .0, ** p < .01. 

  However, homework was negatively correlated and significant when compared to achievement.  

Pretest 2 was used to control for prior achievement because it was correlated to achievement on 
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the PSU.  Pretest scores were significantly correlated in a positive direction for lesson OTL but 

negatively correlated to use of CAS and OTL HW.   The negative correlations are likely due to 

suppression or no use of statistical control.  The path analysis provides another picture of the 

direct and indirect effects. 

Use of CAS with achievement and OTL posttest 2: Path analysis. The initial path 

model run to test the theoretical model revealed a significant model chi-square value, χ2 (8) = 

33.60, p < .001 and acceptable values for Normed Fit Index (NFI), Non Normed Fit Index 

(NNFI) and Comparative Fit Index (CFI).  The chi-square results indicate the null hypothesis, 

that the model is a good fit, should be rejected.  A low p-value associated with the chi-square test 

suggests the model provides a poor fit to the data and model modifications are necessary, 

implying that certain paths should be added or some paths might need to be dropped to increase 

the model fit.  The chi-square test can be influenced by factors other than the validity of the 

theoretical model, such as sample size, departures from multivariate normality, and the 

complexity of the model.  Because external factors can have an adverse effect on the chi-square 

test, some researchers suggest the ratio of the chi-square value to its degrees of freedom should 

be less than 2.00 (Hatcher, 1996).  For the path model of Figure 14, the ratio of the chi-square 

value to the degrees of freedom is: 33.60 / 8 = 4.1.  Because this ratio is greater than 2.00, it 

provides further evidence that the model has a poor fit to the data. 

Other fit indices have been proposed as alternatives or supplements to the chi-square test.  

The normed fit index (NFI; Bentler & Bonett, 1980) and the comparative fit index (CFI; Bentler, 

1989) can also be used to determine the fitness of a proposed model.  Both indices NFI and CFI 

generally range in size from 0 to 1 (although the NFI may assume values less than 0 or greater 

than 1 in some rare instances). With both the NFI and CFI, values over 0.90 are said to be 

indicative of an acceptable fit.  RMSEA is also a common fit index.  The RMSEA value should 
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be close to zero for a good fit.  Even though the other fit indices are acceptable, the chi-square 

test suggests that the theoretical model inadequately accounts for the input covariance matrix 

reflecting relationships among the variables in the model. Therefore my next step was to identify 

modifications that would improve the model's fit. 

 

 

 
Figure 14. Technology and OTL Measures with posttest 2: Initial Model.  HadCAS indicates an 
individual student had access to a CAS capable calculator while taking assessments where 0 
indicates no and 1 indicates yes. DidUseStrategy is the number of times a student reported using 
a calculator strategy to solve the seven calculator neutral function items on posttest 2  and ranges 
from 0 to 7.  Post2FcnPcnt is the percentage score each student received on posttest 2 for only 
the 16 function items and ranges from 0 to 100.  OTLLessons is the percentage of function 
lessons taught by an individual teacher and ranges from 0 to 100.  Pre2FcnPcnt is the percentage 
score each student received on pretest 2 for only the 16 function items and ranges from 0 to 100.  
OTLHW is the percentage of function problems an individual teacher assigned and is based only 
on the function lessons he/she taught and ranges from 0 to 100. 
 

As Hatcher (2007) recommended, the path coefficients were reviewed to identify the 

non-significant paths. The direct path coefficients that were not significant are shown in 

Appendix J.  Next, I examined the normalized residual matrix to determine if any paths 

contained an absolute value of 2.58 or greater in the intersection of the following paths, which 
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would indicate a specification problem with the theoretical model.  None of the residuals were 

greater than 2.58 (Hatcher, 2007).  After reviewing all model modification suggestions from the 

initial analysis, the non-significant paths were removed one at a time.  Table 38 shows the non-

significant paths that were removed from the model.  After making the above modifications, I 

ran a new analysis on the revised model. The final model is shown in Figure 15.  The model and 

fit paramaters for both the original and final models are reported in Table 39.  A chi-squared 

difference test between the original and the final models (33.60 - 1.92 = 31.68) was significant: 

χ2 (6) = 18.55, p < 0.05 which indicates the final model is significantly better than the initial 

model.  See Table 40 for the standardized parameter estimates and the R2 values for the 

endogenous variables.   

 

Table 38 

Non Significant Path Coefficients for Posttest 2 Achievement 
 

Path Estimate S.E. C.R. p 

HadCAS  Post2FcnScore 2.15 2.3 .95 .34 

OTLPost2  Post2FcnScore -.19 .21 -.90 .37 

HadCAS  DidUseStrategy .12 .22 .53 .60 

OTLHW  Post2FcnScore -.04 .07 -.63 .53 
Note: N = 270. Post2FcnScore is the percentage score each student received on posttest 2 for only the 16 function items and ranges from 0 to 100. 
HadCAS indicates an individual student had access to a CAS capable calculator while taking assessments where 0 indicates no and 1 indicates 
yes.  OTL Post2 is the percentage of the 16 function problems on posttest 2 for which the teacher reported having taught or reviewed the material 
necessary to answer the item and ranges from 0 to 10. DidUseStrategy is the number of times a student reported using a calculator strategy to 
solve the seven calculator neutral function items on posttest 2 and ranges from 0 to 7. OTL HW is the percentage of function problems an 
individual teacher assigned and is based only for the function lessons he/she taught and ranges from 0 to 100. 
a C.R. is the critical ratio which is obtained by dividing the covariance estimate by its standard error.   
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Figure 15. Final Model for OTL Posttest 2.  Technology and OTL Measures with posttest 2: 
Initial Model.  HadCAS indicates an individual student had access to a CAS capable calculator 
while taking assessments where 0 indicates no and 1 indicates yes. DidUseStrategy is the number 
of times a student reported using a calculator strategy to solve the 7 calculator neutral items on 
posttest 2 function items and ranges from 0 to 7.  Post2FcnPcnt is the percentage score each 
student received on posttest 2 for only the 16 function items and ranges from 0 to 100.  
OTLLessons is the percentage of function lessons taught by an individual teacher and ranges 
from 0 to 100.  Pre2FcnPcnt is the percentage score each student received on pretest 2 for only 
the 16 function items and ranges from 0 to 100. 

 
 
Table 39 
 
Use of Technology and Opportunity to Learn on Achievement for Posttest 2: Comparison of 
Initial and Final models 
 

Model χ2 d.f. p NFI CFI RMSEA 
Initial  model 33.60 8 0.00 0.96 0.97 0.11 
Final model 1.92 2 0.38 0.99 1.00 0.00 
Note: N = 270. NFI is normed fit index (NFI; Bentler & Bonett, 1980). CFI is comparative fit index (CFI; Bentler, 1989).  
RMSEA is the root mean square error of approximation.  

 

 
  



 
 

103 

Table 40  
 
Standardized Regression Weights: Standardized Coefficients and R2 for Final Model of OTL 
With Technology on Posttest 2 Achievement 
 

Path Estimate R2 
HadCAS  OTLLessons -.64 .41 
OTLLessons  OTLPost2 .30 .28 
DidUseStrategy  OTLPost2 .14  
Pre2FcnScore  OTLPost2 .37  
Note:  N = 270. Pre2FcnScore is the percentage score each student received on pretest 2 for only the function items. 
Post2FcnScore is the percentage score each student received on posttest 2 for only the 16 function items and ranges from 0 to 100.  HadCAS 
indicates an individual student had access to a CAS capable calculator while taking assessments, where 0 indicates no and 1 indicates yes.  OTL 
Post2 is the percentage of the 16 function problems on posttest 2 for which the teacher reported having taught or reviewed the material necessary 
to answer the item and ranges from 0 to 100. OTLLessons is the percentage of function lessons taught by an individual teacher and ranges from 0 
to 100.  DidUseStrategy is the number of times a student reported using a calculator strategy to solve the seven calculator neutral function items 
on posttest 2 and ranges from 0 to 7. 

 

In the final model, the use of CAS had a moderate negative indirect relationship to 

achievement, meaning students who did not have CAS scored, on average 0.64 standard 

deviations higher on posttest 2 function items than students who did have access to CAS.  This 

relationship was mediated through OTL Lessons.  There was also a strong positive correlation 

between OTL Lessons (material covered) and OTL posttest 2, suggesting teachers who reported 

covering more lessons also reported covering more of the material necessary for students to 

answer the assessment questions.  OTL Lessons had a moderate positive effect on achievement. 

The effect sizes for the paths are shown in Table 41.  CAS had a strong negative effect on 

the material covered, meaning teachers reported covering less material in classes where students 

had CAS.  OTL Lessons and achievement on the pretest had a positive but moderate effect on 

posttest 2 achievement.  The use of strategies had a small direct effect on achievement. OTL 

Lessons accounts for 41% of the variation in the model.   
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Table 41 

Standardized Effects of OTL for Achievement on Posttest 2  
 

 
HadCAS  OTLLessons  DidUseStrategy  Pre2FcnScore 

Direct Indirect  Direct Indirect  Direct Indirect  Direct Indirect 
OTLLessons -.64 0.00  0.00 0.00  0.00 0.00  0.00 0.00 
Post2FcnScore .000 -1.91  .30 -.07  .14 -.04  .37 0.00 

Note: N = 270. Post2FcnScore is the percentage score each student received on posttest 2 for only the 16 function items and ranges 
from 0 to 100.  HadCAS indicates an individual student had access to a CAS capable calculator while taking assessments where 0 
indicates no and 1 indicates yes.  OTLLessons is the percentage of function lessons taught by an individual teacher and ranges from 
0 to 100.  DidUseStrategy is the number of times a student reported using a calculator strategy to solve the seven calculator neutral 
function items on posttest 2 and ranges from 0 to 7. 

 
Figure 16. Use of Technology and OTL Measures With Achievement on the Problem Solving 
Test: Initial Model.  HadCAS indicates an individual student had access to a CAS capable 
calculator while taking assessments, where 0 indicates no and 1 indicates yes.  OTLLessons is 
the percentage of function lessons taught by an individual teacher and ranges from 0 to 100.  
Pre2FcnPcnt is the percentage score each student received on pretest 2 for only the 16 function 
items and ranges from 0 to 100.  PSUFcnPcnt is the score each student received on the problem 
solving test for only the 3 function items and ranges from 0 to 100. OTLPSU is the percentage of 
function problems on the problem solving test for which the teacher reported having taught or 
reviewed the material necessary to answer the item and ranges from 0 to 100.  OTLHW is the 
percentage of function problems an individual teacher assigned and is based only on the function 
lessons he/she taught and ranges from 0 to 100. 

Use of technology and OTL measures with achievement on the problem solving test: 

Path analysis.  I used the same procedures to create a similar theoretical model using the 

achievement data for the problem solving test (See Figure 16).  The analysis of the initial path 
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model as shown in Appendix J revealed a significant model chi-square value, χ2 (6) = 310.21, 

and non-acceptable values for Normed Fit Index (NFI) and Comparative Fit Index (CFI).  The 

chi-square value and the indices indicated the model was not a good fit.  The model summaries 

are shown in Table 42. 
 
Table 42 
 
Use of Technology and Opportunity to Learn on Achievement for Problem Solving Test: 
Comparison of Initial and Final Models 
 

Model χ2 d.f. p NFI CFI RMSEA 
Initial  model 310.21 6 0.00 .48 .47 .43 
Final model .06 1 .81 1.0 1.0 .00 
Note: N = 271. NFI is normed fit index (NFI; Bentler & Bonett, 1980). CFI is comparative fit index (CFI; Bentler, 1989).  
RMSEA is the root mean square error of approximation. 

First, as Hatcher (2007) recommended, the path coefficients were reviewed to identify the 

non-significant paths. The direct path coefficients that were not significant are shown in Table 43 

and were removed from the final model.  Next I examined the normalized residual matrix to 

determine if any paths contained an absolute value of 2.58 or greater in the intersection of the 

following paths, which would indicate a specification problem with the theoretical model.  None 

of the residuals were greater than 2.58 (Hatcher, 2007). 

 

Table 43 

Regression Weights of Non-Significant Path Coefficients for Problem Solving Test Achievement 
 

 Estimate S.E. C.R. P 
HadCAS  OTLPSU 1.53 1.50 1.03 .31 
OTLPSU  PSUFcnPcnt -.17 .10 -1.78 .08 
OTLLessons  PSUFcnPcnt .22 .19 1.16 .25 
OTLHW  PSUFcnPcnt .10 .11 .90 .37 
HadCAS  PSUFcnPcnt 1.76 3.83 .46 .65 
Note:  N = 271. PSUFcnPcnt  is the score each student received on the problem solving test for only the 3 function items and ranges from 0 to 100.  
HadCAS indicates an individual student had access to a CAS capable calculator while taking assessments, where 0 indicates no and 1 indicates yes.  
OTLPSU is the percentage of function problems on the problem solving test for which the teacher reported having taught or reviewed the material 
needed to answer the item and ranges from 0 to 100. OTLLessons is the percentage of function lessons taught by an individual teacher and ranges 
from 0 to 100. OTL HW is the percentage of function problems an individual teacher assigned and is based only on the function lessons he/she 
taught and ranges from 0 to 100. 
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After reviewing all model modification suggestions from the initial analysis, I removed 

the non-significant paths one at a time.  After making modifications, I ran a new analysis on the 

revised model. The final model is shown in Figure 17.  A chi-squared difference test between the 

original and the final models (310.21 - 0.06 = 310.15) was significant: χ2 (5) = 16.75, p < 0.05 

indicating the final model was significantly better than the original model. The standardized 

coefficients are shown in Table 44. 

 

Figure 17. Final Path Analysis Model for Achievement on Problem Solving Test With OTL and 
Technology Measures.  HadCAS indicates an individual student had access to a CAS capable 
calculator while taking assessments, where 0 indicates no and 1 indicates yes.  Pre2FcnPcnt is 
the percentage score each student received on pretest 2 for only the 16 function items and ranges 
from 0 to 100.  PSUFcnPcnt is the score each student received on the problem solving test for 
only the 3 function items and ranges from 0 to 100.  

 
Table 44 
 
Standardized Regression Weights: Standardized Coefficients and R2 for Final Model of OTL 
With Technology on Problem Solving Test 
 

Path Estimate R2 
HadCAS  PreScoreFcn2 -.25 .06 
Pre2FcnScore  PSUFcnPcnt .29 .08 
Note:  N = 271. PSUFcnPcnt is the score each student received on the problem solving test for 
only the 3 function items and ranges from 0 to 100. Pre2FcnScore is the percentage score each 
student received on pretest 2 for only the 16 function items and ranges from 0 to 100.  OTLPSU is 
the percentage of function problems on the problem solving test for which the teacher reported 
having taught or reviewed the material necessary to answer the item and ranges from 0 to 100. 
HadCAS indicates an individual student had access to a CAS capable calculator while taking 
assessments, where 0 indicates no and 1 indicates yes.   

 

The effect sizes for the problem solving model as reported in Table 45 indicate CAS had 

no direct effect on achievement but had a strong negative indirect effect on achievement when 
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mitigated by pretest 2, meaning students who had access to CAS scored lower on the pretest , but 

overall saw a small positive effect on achievement.  Pretest 2 scores had the only significant 

direct effect on achievement for the problem solving test.  The low values for R2, however, 

suggest the model does not explain much of the achievement on the problem solving test. 

Table 45 

Standardized Effects OTL and Technology for Problem Solving Test  
 

 
HadCAS  Pre2FcnScore 

Direct Indirect  Direct Indirect 
 PSUScore 0.00 -.071  .29 0.00 
Pre2FcnScore -.25 0.00  0.00 0.00 

Note: N = 271. PSUScore is the percentage score each student received on the problem solving test for only the 3 function items and ranges 
from 0 to 100.  HadCAS indicates an individual student had access to a CAS capable calculator while taking assessments, where 0 indicates 
no and 1 indicates yes.   
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Chapter 5: Discussion 

In this chapter I discuss the interpretations and implications of the results presented in 

Chapter 4 as well as suggestions for future research.  I organized the discussion into four 

sections. First, I revisit the research questions from Chapter 1 and discuss the extent to which the 

results answered these questions and how these results compare with, or are in contrast to, results 

from other studies.  Second, I provide implications for future research. Third, I discuss the 

implications from the study as they apply to teachers.  Finally, I offer concluding remarks. 

Precalculus Students’ Achievement and the Learning of Function Items  

There were four research questions that guided the design of this study. These research 

questions were: 

 
1. What are students’ opportunities to learn about functions in a precalculus course? 

2. What calculator strategies do Precalculus students use when solving function problems? 

In particular, in what ways do students use these strategies when using a graphing 

calculator to solve function problems from both  teachers’ and students’ perspectives? 

3. How is Precalculus students’ achievement in solving function problems related to their 

use of calculator strategies?  In particular, what relationship, if any, exists among 

opportunity to learn, achievement and calculator strategies students use when solving 

function problems? 

4. What effect does the use of technology, including calculator strategies, and opportunity to 

learn have on achievement when technology usage is reported from the students’ 
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perspective on a multiple choice assessment and from the teachers’ perspective on a free 

response assessment? 

I address each research question and discuss the findings in relationship to how they answer the 

research questions and how they relate to literature. 

Students’ opportunities to learn function items.  There were two sources of data 

designed to measure students’ opportunities to learn functions from the Precalculus and Discrete 

Mathematics textbook: the chapter evaluation/chapter coverage forms, and Teacher Opportunity-

to-Learn (OTL) posttest forms.  

Opportunity to learn lessons.  Many studies report content coverage is the most 

frequently studied indicator and one of the most prominent indicators of opportunity to learn 

(Porter, 2002).  The textbook provided ample opportunities for students to learn functions.  Fifty-

five out of the 111 lessons (50%) in the Third Edition of the Precalculus and Discrete 

Mathematics textbook provided students with opportunities to learn and use functions; in the 

Second Edition 55 out of 116 lessons (47%) provided students with comparable opportunities to 

learn.  Teachers who taught using the Third Edition reported teaching at least 71% of all function 

lessons and one teacher reported having taught 98% of the included function lessons. The two 

teachers who taught using the Second Edition materials reported teaching at least 82% of the 

function lessons.   

OTL homework.  Although teachers taught a majority of function lessons provided in the 

textbook, they were less likely to assign all of the function homework problems in the lessons 

they taught.  The curriculum was designed with a small set of targeted homework problems with 

the intention that teachers would assign most, if not all of the problems.  In this field study one 

teacher using Third Edition materials only assigned 52% of the available problems in the 

functions lessons he/she taught, while other teachers assigned 94% of the available lessons.  The 
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Second Edition teachers assigned far fewer of the textbook homework problems (57%), on 

average, than Third Edition teachers (78%).   

The relationship between OTL Lessons and OTL Homework was negative or non-

significant for all three posttests.  These results suggest students had fewer opportunities to learn 

the content of function through homework.  However, there were no data in my study regarding 

the extent to which students actually completed homework (the percent completed), or the extent 

to which they were correct when completing homework.  Although homework problems from 

standards-based curriculum are generally viewed as cognitively more difficult than homework 

problems from other curricula (Senk & Thompson, 2006), there were no data in this study from 

which to gauge the cognitive level or complexity of the homework sets as recommended by 

some researchers (Dettmers, Trautwein, Lüdtke, Kunter, & Baumert, 2010). 

In the OTL literature, one hypothesis posits learning occurs when the time spent on 

learning (influenced by time constraints and effort) intersects with the time needed to learn 

(influenced by academic aptitude, ability to follow instructions, and the quality of instruction) 

(Carroll, 1963, 1984; Paschal, Weinstein, & Walberg, 1984). This suggests time spent on 

homework should yield positive learning rewards, but only up to the amount of time needed to 

learn the material, which is shorter for students with well-developed cognitive abilities (Daw, 

2012).  This could imply students who started the school year with more understanding of the 

function concept may have needed less homework to master the material (Daw, 2012). 

OTL posttests.  Another factor in assessing content OTL is the use of questionnaires to 

determine if students had an opportunity to learn the material necessary to answer assessment 

questions.  There was less variability in OTL posttest variables than OTL Lessons or OTL 

Homework variables.  All teachers reported 100% coverage of posttest 1 function items; the 

average coverage of posttest 2 items was similar for teachers using Second Edition materials 
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(97%) compared to those using Third Edition materials (94%).  Only two teachers, one using 

Second Edition materials and one using Third Edition materials, reported not teaching or 

reviewing 100% of the material needed to answer the function items on the problem solving test.   

OTL posttests should be positively correlated to OTL Lessons, because one would expect 

students to be successful on content they have had the change to study or review.  In this study 

the variable entitled OTL Lessons was positively correlated to OTL posttest 2 coverage.  

However, there was no significant correlation for OTL PSU coverage; because OTL posttest 1 

was 100%, there was no variance to correlate to achievement for posttest 1.  As data from this 

study suggest, OTL posttest and achievement are not always positively correlated.  A teacher 

might indicate teaching a particular lesson, but may not have covered the material necessary to 

answer a particular question.  For example, a teacher might cover quadratics and the quadratic 

equation but may not have taught students to solve word problems involving quadratics.  

Collecting data on both lessons covered and correlating with the items assessed provide a more 

complete picture of opportunity to learn. 

Succinctly stated, results from this study show the OTL variables played an important 

role in student achievement.  The OTL Lessons variable was highly correlated to OTL posttest 

variables for posttests 1 and 2.  Opportunity to learn Homework was not correlated to OTL 

Lessons or OTL posttests.  Finally, OTL posttest coverage was only positively related to 

achievement for posttest 2. 

Students’ use of technology on function items.  Data from the posttest calculator usage 

form were used to determine how students used their graphing calculator when solving function 

items on posttest 2.   

Students reported not using a calculator, on average, 8.2 times on the 9 calculator inactive 

function items (See Table 13 in Chapter 4), though some used the calculator occasionally for 
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arithmetic.  On the calculator neutral items, for which students could have used a calculator to 

obtain a correct solution, students reported using a calculator, on average, three times when 

completing the seven items.  These results do not demonstrate a pattern of low or high calculator 

usage.  Instead, these data suggest the use of calculator strategies appears to relate to the 

assessment items themselves.  Furthermore, the data suggest students are discriminating when 

they should and should not use calculators to solve function problems. This finding might 

reassure teachers. That is, students do not necessarily become dependent on calculators, which is 

one of the major objections some teachers have against implementing the NCTM (1989, 2000) 

recommendation that calculators should be used in all aspects of classroom instruction.  These 

results are promising and might indicate a move in a positive direction away from earlier reports 

(Hembree & Dessart, 1986) that suggest students who have access to a calculator misuse it, and 

therefore, lose basic computational skills.  

When solving calculator neutral items, the most frequently reported strategy was the use 

of a graph, which students stated as being used, on average, 2.2 times on the seven items.  A 

review of the neutral function items indicates three of the items (31, 46, and 59) could be 

efficiently solved using a graph.  Results regarding students’ use of graphing calculators are 

encouraging for two reasons.  One, it perhaps indicates students choose a strategy that seems 

most viable in a particular situation.  This may indicate students use graphs to solve function 

items more often than reported in past research (Huntley, Marcus, Kahan, & Miller, 2007; 

Walen, Williams, & Garner, 2003), and perhaps indicates students no longer focus on the 

procedural aspects of the function concept (Kollöffel & de Jong, 2005) as they did previously.  

The second promising result with regard to the strategies students chose to solve function 

problems is the indication that they moved more easily between algebraic and graphical 

representations of a function.  Prior research indicates this is a particularly complicated skill for 
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students to master.  In four (31, 36, 38, 42) of the seven calculator neutral items, students used 

both algebraic and graphical representations of a function to solve the item (see Table 15 in 

Chapter 4).  For example, in item 31, more students reported using a graph to solve the item, 

which was presented in algebraic form, than any other calculator strategy.   

Data presented above support many researchers who believe the use of multiple 

representations help students master the concept of functions (Abdullah, 2010; Artique, 1992; 

Gagatsis, 2004; Hitt, 1998; NCTM, 2000).  Although this study provides no direct evidence 

regarding students’ use of multiple representations, the results may indicate students are making 

positive progress in the use of multiple representations when solving function items.  On five of 

the seven calculator neutral items (31, 37, 38, 46, 52) students chose to use a different 

representation of the item than was presented, or made a direct connection between a graph and 

an algebraic representation (see Table 21 in Chapter 4).  These results are encouraging because 

past studies demonstrate a correlation between translation ability and problem solving ability 

(Gagastis & Shiakalli, 2004). Data from prior research also show students often have difficulties 

going from the algebraic representation to a graphical representation (Abdullah, 2010).   

The results of the study are not as encouraging with regards to the use of graphing 

calculators equipped with computer algebra systems (CAS).  Three items on posttest 2 (items 31, 

38, and 42) might have been solved using a CAS capable calculator, but few students reported 

using CAS to solve those items.  Students who had access to CAS calculators reported using 

CAS for 1 item, on average.  What is promising, though, is that students did not appear to have 

used CAS indiscriminately and few students indicated they attempted to use CAS on calculator 

inactive items.  One item on posttest 2 (Item 38), however, does provide some encouragement 

that students are perhaps beginning to use CAS appropriately (see Table 15 in Chapter 4); 
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students who had access to CAS, used CAS features on that item more than any other calculator 

strategy. 

Precalculus students’ achievement on function items.  Three sources of data were 

designed to measure students’ achievement on function items from the Second and Third 

Editions of Precalculus and Discrete Mathematics: pretest 1/posttest 1, pretest 2/posttest 2, and 

the problem solving test.  Achievement on posttest 1, on which students were not permitted to 

use calculators, was higher than on pretest 1, on average, for six of the ten classes using Third 

Edition materials and for both classes using Second Edition Materials. There were significant 

differences in posttest 1 achievement scores across curricula, with students who used Second 

Edition materials scoring, on average, higher than those using Third Edition materials.  For 

posttest 2, on which students were permitted to use graphing calculators, all classes scored higher 

on the posttest than on the pretest.  There were significant differences across classes but none 

between the different curricula.  

These results suggest there is some relationship between achievement and other variables, 

such as opportunity to learn and use of technology, including calculator strategies.  In the 

following sections I discuss the relationships between student achievement on function items, 

opportunity to learn, access to technology, and students’ use of calculator strategies. 

Opportunity to learn and student achievement on function items.  Teachers who 

reported teaching more of the intended curriculum in regards to functions also reported their 

students achieved higher scores on function assessments, even when controlling for preexisting 

knowledge.  The results indicate OTL had a positive effect on achievement, consistent with 

results of other studies (Boscardin, 2005; Senk & Thompson, 2006).   

OTL was positively correlated and significant when compared to achievement on two of 

the three posttests.  On the problem solving test, however, there was no relationship between 
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lesson coverage and achievement.  This result should be interpreted with caution.  The problem 

solving test contained only three function problems out of five problems.  The small sample size 

could affect the association between the variables. 

There was either a negative or non-significant correlation between OTL Homework and 

achievement on function items for two of the posttests (posttest 1 and posttest 2). This suggests 

the more homework teachers assigned students the lower students scored on the posttests.  One 

possible explanation for this result is supported by research that suggests homework associated 

with standards-based curricula may be cognitively more challenging for some students than 

homework in traditional based curricula (Senk & Thompson, 2003).  Although there are no data 

from this study that details the cognitive level of the homework problems in this curriculum, if 

students found the homework items to be difficult, the negative relationship between 

achievement and homework would be consistent with the findings from at least one study 

(Dettmers, Trautwein, Lüdtke, Kunter, & Baumert, 2010).  Another explanation might be the 

method I employed to calculate the OTL Homework variable.  Teachers using Second Edition 

materials were more likely to report using outside sources for homework and also reported being 

dissatisfied with some of the problems included in the textbook.  The teachers using the Third 

Edition of the textbook reported being more satisfied with the problems in the textbook and were 

therefore more likely to use the included problems.  I calculated the OTL Homework variables 

using only the homework problems assigned from the textbook.  In some cases, as I reported 

previously, teachers provided outside sources for homework, but there was no way to incorporate 

these into the calculated OTL variable.   

Use of technology, calculator strategies, and student achievement on function items.  A 

recent analysis of data from the National Assessment of Educational Progress (NAEP) found 

calculator usage was a significant and positive factor in student achievement (Cawthon, 
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Beretvas, Kaye, & Lockhart, 2012).  In this study, approximately 85% of students who reported 

using a graph, obtained the correct solution to the item.  This is significantly higher than the 

percentage of students who reported not using a calculator strategy (48% for students with CAS 

and 57% for students with graphing calculators) and who obtained the correct solution.  

Students’ use of strategies and the relationship between calculator strategies and 

achievement on function items is, perhaps, the most important finding of this study.  On posttest 

1, access to CAS had no impact on achievement.  When students used CAS capable graphing 

calculators in the classroom, there was no effect on achievement scores when calculators were 

not available on an assessment.  This result is consistent with findings from numerous studies on 

calculator usage that suggest students do not lose their abilities to do computational mathematics 

on assessments when taught using calculators (Zbiek & Hollebrands, 2008).  However, when 

students did use calculator features to solve function items on posttest 2, there was a direct 

correlation to achievement.  The HLM model showed students who had access to CAS scored, 

on average, 5% higher on the posttest when controlling for prior knowledge. Students who used 

calculator features/strategies to solve function items also scored one percentage point higher each 

time they used the calculator.  The data seem to suggest students are more successful when they 

use calculator strategies.  This may imply students are experiencing fewer difficulties moving 

from one representation to another and are becoming better problem solvers, which in turn can 

result in higher student achievement (Elia, Panaoura, Gagatsis, Gravvani, & Spyrou, 2006; 

Gagatsis & Shiakalli, 2004; Herman, 2007; Hitt, 1998; Kaput, 1987; NCTM, 2000). 

Students’ use of strategies, access to CAS, and their effects on achievement is a 

promising finding.  Examining the relationship between the use of technology and achievement 

on posttests alone seemed to indicate the relationships were negative, or non-significant.  

However, when examining both OTL and technology together, and their effects on achievement 
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for posttest 2, the use of strategies and access to CAS were both positive and significant. On the 

HLM model the technology variables were more significant than prior knowledge and OTL.  

This suggests the use of graphing calculators and calculator strategies, within a standards-based 

curricula has a positive effect on achievement of function items.  The findings are consistent with 

results from other studies that report a positive association between the use of graphing 

calculators and achievement (Dunham, 2000; Kastberg & Leatham, 2005). 

The results of student achievement using CAS features, however, were not as 

encouraging.  Of the three items on posttest 2 on which students could have used CAS to solve 

the problem (items 31, 38, and 42), data on only one item (item 38) indicated more students with 

access to CAS reported using CAS to solve this item and were more successful than students 

using any other strategy.  

The results from the self-reported data regarding students using CAS features should, 

however, be interpreted with some caution for several reasons.  First, there is no indication as to 

the extent teachers taught students how to use CAS features.  Student survey data in four classes 

(412, 413, 416, and 417) indicated only one student had access to CAS capable graphing 

calculators.  Of these four students, only two reported using any CAS features on posttest 

function items.  There are no data to indicate how often students or teachers used CAS in 

lessons, or homework, but the research clearly shows the mere presence of CAS is not an 

indication of its use (Pierce & Stacey, 2004).  Ertmer (1999) and others (Lim & Khine, 2006) 

documented barriers for technology integration that include difficulty using technology unless all 

students have access to the technology.  For example, when only one student in a class has a 

CAS capable calculator, it is unclear how much class instruction or time a teacher would devote 

to using CAS.   
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The steep learning curve using CAS for both teachers and students is well documented in 

the literature (Marshall, Buteau, Jarvis, & Lavicza, 2012; Pierce & Stacey, 2013).  The presence 

of a learning curve might affect instruction in multiple ways.  Some teachers may not be 

comfortable using features they have not mastered themselves and may restrict students’ use of 

CAS until they master it themselves (Ertmer, 1999; Pierce & Stacey, 2013)  In other cases, 

teachers may quit using CAS because it takes too much time to learn (Ertmer, 1999).  However, 

as teachers become more comfortable using CAS themselves, their use of CAS features in the 

classroom may increase over time.  It is reasonable to expect teachers were at differing levels on 

the technology learning curve and might be more comfortable teaching with CAS in subsequent 

years.  

The effects of OTL and technology on achievement.  Data used to examine the 

relationships between achievement, OTL, and calculator strategies include achievement scores as 

percent correct on two pretests and three posttests, teachers’ reported OTL data, and students’ 

calculator usage data.  In the following section, I discuss and interpret the results from the path 

analyses of the posttests. 

For all of the posttests, I began with initial models that included all OTL variables and 

technology variables.  I hypothesized technology variables might have both direct and indirect 

effects on achievement based on the results of HLM models.  I also hypothesized OTL 

Homework and OTL Posttests might have indirect effects though OTL Lessons.  In particular, 

the amount of homework a teacher assigns as well as the amount of material on an assessment 

the teacher taught or reviewed might be related to how many lessons the teacher taught.  I also 

controlled for prior knowledge in the models.   

There were some major differences between the results of the path analyses and the HLM 

models.  For example, on posttest 2 the overall effects of OTL Lessons and the use of strategies 
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were positive but both had  small negative indirect effects.  These relationships are easier to see 

in a path analysis and are not demonstrated in the HLM models.  It is possible for two variables 

to have a negative correlation, such as between HadCas and achievement on posttest 2, but for 

the beta coefficient to be positive.  This can occur because the correlation cannot control for the 

effect of other variables whereas the HLM models and the path analysis can control for the effect 

of other variables.  

The significant differences between the two models are to be expected.  The path analysis 

is equivalent to doing multiple linear regressions that contain multiple dependent variables, 

whereas the HLM model has only one dependent variable.  Both models, however, show access 

to graphing calculators and use of calculator strategies are significant factors in predicting 

achievement.   

Limitations 

As is often the case in quantitative research, confounding and lurking variables might be 

responsible for my findings differing from other findings from similar research.  The OTL 

Lessons variable was strongly related to achievement on both posttest 1 and posttest 2.  The 

impact of OTL Lessons may have masked or mitigated the effect of homework on achievement.  

It is also possible the complexity level of homework problems might have masked other 

relationships between homework and achievement.  Additional studies in which students’ 

opportunity to learn the content is similar might allow more insight into the role OTL Homework 

plays when compared to student achievement.  It would also be beneficial to collect more data on 

the complexity of homework problems and incorporate this data into OTL Homework variables. 

The sample size for the problem solving test is another limitation of this study.  There 

were only three function problems and five total problems.  Results of analyses using these data 

may not be as reliable as the data from the multiple-choice posttests.  HLM analysis works best 
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with at least 50 classes (Niehaus, Campbell, & Inkelas, 2014).).  There were only 14 classes in 

this study.  Additional research, which includes more classes, might strengthen the results of this 

study.  

Finally, students were not graded on any of the assessments used in this study.  They 

were not high-stake assessments, and therefore, students might not have been motivated to do 

their best work.  For instance,scholars who study motivation and achievement report there is 

wide variability in achievement when students take no-stakes assessments, assessments in which 

there are no consequences for student performance. In such cases, student achievement is often 

under estimated, (Wise & DeMars, 2005) and therefore the results from this study might be 

higher than reported.  

Implications for future research 

As in all studies, new questions are discovered or new questions arise that might be 

addressed in future research.  Toward that end in this section I discuss ways to increase the 

generalizability of the study and ways to tease out the contributions of OTL and the use of 

technology on student achievement when learning functions. 

Increasing generalizability.  I addressed many of the concerns researchers have 

documented in studies on the use of technology and CAS by collecting data about students’ use 

of technology at home, by having technology used over an entire school year, and by having 

technology embedded within the curriculum.  However, there are still opportunities to further 

increase generalizability.  This study utilized data from six schools and 14 classes.  I used HLM 

to analyze the data because students are nested in classes.  Future studies might benefit from the 

inclusion of additional classes in the HLM analysis.  Research that documents teachers’ level of 

experience and includes teachers with varying degrees of experience in teaching with CAS might 

increase the variability of the technology data, and therefore, might increase the generalizability.  
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Most curriculum studies are conducted over a short period of time, sometimes weeks (Senk & 

Thompson, 2003).  This study was conducted over an entire academic year.  However, studies on 

the use of technology indicate teachers need several years to incorporate calculators into the 

curriculum (Ertmer, 1999, Hew & Brush, 2007).  Additional research that examines how 

teachers incorporate technology in the same course they have been teaching for several years 

would add some valuable insights into the variables that affect the relationship between students’ 

use of graphing calculators and their achievement. 

Furthermore, overall generalizability might be increased by the inclusion of qualitative 

data to provide insights beyond the quantitative data.  Students self-reported if they used a 

calculator and, if so, what strategy they used to solve a problem.  Interviews with students to gain 

insight into why they chose a strategy, what their thinking process was in using the strategy, and 

how their use of a strategy connects to their understanding in multiple representations would be 

valuable.  There have been some small studies that have included qualitative data in students’ use 

of problem solving of functions and the use of multiple representations (Herman, 2007; Huntley 

& Davis, 2008; Huntley, Marcus, Kahan, & Miller, 2007), but conducting a larger study that 

included qualitative data to support the use of technology would be helpful to extending the 

extant literature. 

Greater insight into OTL and the use of technology in achievement.  Although 

studies have long stressed the importance of content coverage on OTL and its impact on 

achievement, until now there has been no consistency across classrooms with regards to OTL of 

content coverage because there has been no consistency on what content is covered in different 

classrooms.  Nationwide standards related to college and career readiness might help establish a 

minimum level of content coverage, and therefore, provide a baseline for future studies on OTL. 
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There have been few studies investigating the impact of homework on OTL, especially at 

the high school level, and the existing literature shows mixed results on the influence of 

homework and achievement (Daw, 2012 Dettmers, Trautwein, Lüdtke, Kunter, & Baumert, 

2010;).  Therefore, caution must be exercised when interpreting OTL Homework results. More 

research is necessary to draw conclusions.  A study in which teachers covered identical lessons 

but varied the amounts and cognitive levels of homework problems assigned, accounting for 

student variables, might be useful in shedding more light on the relationships between 

homework, OTL, and achievement. 

In this study, the OTL Lessons variable was calculated using the percentage of lessons a 

teacher reported teaching during the year.  Data were collected on how many days teachers spent 

on each lesson, but there was no indication of how much emphasis teachers placed on an 

individual lesson.  Additional analysis of the data might include a weighted OTL Lessons 

variable, which includes a difficulty factor to account for the amount of emphasis placed on 

individual lessons.  Using a weighted OTL variable might provide more insight into the 

relationship between OTL Lessons, which was a significant variable in this study, and its effect 

on student achievement of functions.  

The data collected for OTL Homework consisted of the problems teachers assigned for 

students to complete from the textbook.  There was limited information regarding the use of 

outside sources of homework problems or completion rates.  OTL Homework might be weighted 

to show how much homework was assigned from outside sources or sub variables might be 

created to demonstrate student completion rates and/or accuracy rates.  OTL Homework 

variables might be weighted to account for complexity, which some researchers think is lacking 

in many current studies (Dettmers, Trautwein, Lüdtke, Kunter, & Baumert, 2010).  Including 
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additional data on the role homework plays might provide more insights into the currently sparse 

body of research on homework and its relationship to achievement and OTL. 

The path analyses and the HLM models indicate use of calculators and calculator 

strategies have a significant impact on achievement.  However, the relationship between the 

technology variables is not as clear.  There is some comingling of the effects, which are 

demonstrated by the path analysis.  When examining achievement with both technology and 

OTL variables, the effects are significant and positive for both access to CAS and the use of 

strategies.  Yet, when examining achievement and technology without including OTL variables 

the results are either negative, or non-significant.  This suggests more research is needed to 

understand the interconnected relationship between achievement, OTL variables, and technology 

variables such as access and use of calculator strategies. 

Implications for teachers, mathematics teacher educators, and mathematics coaches 

In the previous section I addressed the implications of this research as it pertains to the 

existing literature.  In this section I discuss the implications of this research from the perspective 

of teachers, mathematics teacher educators, and mathematics coaches. 

Although acceptance is increasing regarding teachers’ use of graphing calculators 

in their mathematics lessons, many teachers still do not use calculators and, if they do, many do 

not use them to their full potential as suggested by the data from this study.  In the teaching of 

functions, use of technology, when integrated with a curriculum that is consistent with college 

and career ready standards and inquiry based teaching, might offer teachers the ability to provide 

an enriched learning environment. In such an environment, students would have opportunities to 

synthesize and make connections between and among the different representations of functions.  

The positive outcomes from this study regarding the use of technology and achievement suggest 

teachers do not necessarily have to be concerned that implementing technology might result in 
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short term decreases in students’ mathematics achievement.  Although it is expected the 

relationship between use of calculator strategies and achievement is not linear and will plateau at 

some point, it is reasonable to assume achievement might increase as teachers become more 

comfortable using and teaching with CAS. 

If the use of strategies is positive with achievement, then it follows teaching different 

strategies in the form of different representations might have a positive impact on achievement.  

In stands to reason, teachers who are comfortable using different representations to teach 

functions are more effective when teaching functions.  Thus, teacher educators and mathematics 

coaches might consider providing teachers and preservice teachers opportunities to integrate 

calculators and multiple representations into the teaching and learning of functions.   

Many consider the textbook to be the most influential part of the curricula (Begle, 1973) 

and the most important factor in students’ opportunities to learn (Porter, 2002).  Teachers who 

have the responsibility to choose or make recommendations about curricula materials should 

consider materials that are congruent with college and career ready standards.  In addition, 

teachers should consider if the materials are inquiry based, and have thoroughly integrated the 

use of technology, including graphing based or CAS calculators, throughout the curricula.  

Teachers who do not have a voice in the selection of curricula materials may consider 

supplementing their materials with readymade technology lessons that meet the above criteria.  

There are currently several websites, including www.education.ti.com and 

www.casioeducation.com, that contain lessons teachers can use.   

These findings might be useful for teacher educators, mathematics coaches and policy 

makers who are considering adopting the use of CAS capable calculators on state and national 

level assessments.  Use of CAS suggests students can solve more complicated problems than 

they would otherwise have been able to do by hand, and enables them to generate and 

http://www.education.ti.com/
http://www.casioeducation.com/
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manipulate symbolic expressions and to translate between and among different representtions 

that were otherwise too time-consuming and complicated (Heid &Edwards, 2001; Heid, 2002). 

Conclusion 

The concept of function is a common thread that links upper level mathematics courses 

(Dubinsky & Harel, 1992). This concept is essential to most high school curricula. In fact, the 

NCTM (2000) states mathematical instructional programs should "enable all students to 

understand patterns, relations, and functions" (p. 296).  Results from this study suggest there is a 

positive association among the use of calculator strategies, opportunity to learn, and achievement 

when solving function items.  These results are important to educators, administrators, 

curriculum developers, textbook writers, students, parents, and anyone else involved with the 

teaching and learning of functions.  If technology and opportunity to learn can both play 

significant roles in student achievement when solving function items, it makes sense that more 

curricula materials need to be developed that integrate the important aspects of the NCTM’s 

recommendations, including emphasizing conceptual understanding, problem solving, reasoning, 

use of multiple representations; integrating the use of technology, real-world applications; and 

deemphasizing memorization of rules and procedures (Marzano & Kendall, 1996; McLaughlin & 

Shepard, 1995; NCTM, 2000; Senk & Thompson, 2003).   

The ability to use the graphing calculator to enhance learning while learning the concept 

of function is what Gagatsis and Shiakalli (2004) refer to as students' translation ability. They 

reported students showed a higher success in problem solving when they were able to translate 

among and between verbal and algebraic representations of a function.  Because a function can 

be represented in multiple ways, if students can use calculator strategies to translate between the 

verbal, graphical, and algebraic representations of a function, their problem solving skills will 

most likely improve, and in turn so will their achievement on function assessments.  In summary 
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all of these recommendations need to be included in preservice teacher programs and continue 

through graduate studies.  It is only when teachers are familiar and comfortable solving function 

problems using different representations that their high school students, in turn, have the 

potential to become more competent and accomplished problem solvers. 
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Appendix A  

PDM Pretest One 

UCSMP 
The University of Chicago School Mathematics Project 
  
 
 
 
 

 
   Test Number ________ 
 
  

 
 

Precalculus and Discrete Mathematics Pretest One 
 

Do not open this booklet until you are told to do so. 
 
This test contains 35 questions. You have 40 minutes to take the test. 
 
1. All the questions are multiple-choice. Some questions have four choices and some have 

five. There is only one correct answer to each question.  
 
2. Using the portion of the answer sheet marked TEST 2, fill in the circle  •  corresponding 

to your answer for questions 1-35. 
 
3. If you want to change an answer, completely erase the first answer on your answer sheet. 
 
4. If you do not know the answer, you may guess. 
 
5. Use the scrap paper provided to do any work. DO NOT MAKE ANY STRAY MARKS 

IN THE TEST BOOKLET OR ON THE ANSWER SHEET.  
 
6. You may NOT use a calculator on this test. 
 
 
 
 
 
DO NOT TURN THE PAGE until your teacher says that you may begin. 
©2007 University of Chicago School Mathematics Project. This test may not be reproduced without the permission 
of UCSMP. Some of the items on this test are released items from NAEP or from TIMMS 1999 and are subject to 
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the conditions in the release of these items. Other items have been used on previous studies conducted by UCSMP. 
Reprinted with permission. 
 
1.  Which point is on the graph of y = 5x? 

 
 A. (0, 0) 
 B. (0, 1) 
 C. (2, 10) 
 D. (5, 25) 
 E. (0.5, 2.5)   
 

2. Which is equivalent to 
1
3

? 

 F. 
1
9

  G. 
3

3
  H. 3   J. 

3
9

 

 
3. Which is the graph of the set of all points satisfying y = x2 – 1? 
 
 A.     B.     C. 

             
    

        
 
 
 

 D.    E.    

                                        
 
 
  



 
 

148 

4.  Suppose x is between 0 and 2π. For what values of x is sin x positive? 
 
 F.  0 x π< <  
 

 G.  
3

2 2
xπ π

< <  

 
 H.   2xπ π< <  
 

 J.  
30 , 2

2 2
x xπ π π< < < <  

 

 K. 
3, 2

2 2
x xπ ππ π< < < <  

  
5.  Consider the three arguments below: 
 
  I. Given: If John reads the comics, then John reads Peanuts. 
    John reads the comics. 
   Conclusion: John reads Peanuts. 
 
  II. Given: If Rudolph has a red nose, then he guides the sled. 
    If Rudolph guides the sled, then the night is stormy. 
   Conclusion: If Rudolph has a red nose, then the night is stormy. 
 
  III. Given: If Jennifer wears the blue dress, then she is going to a party. 
    Jennifer is going to a party. 
   Conclusion: Jennifer wears the blue dress. 
 
 Which of these arguments has a valid conclusion? 
 
 A. I and II only 
 B. I and III only 
 C. II and III only 
 D. None has a valid conclusion. 
 E. All have valid conclusions. 
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6. sin α = 
 

 

 

 F.    
7
25

       G.    
7
24

       H.    
24
25

 J.    
25
24

 K.    
24
7

 

 
 
7. If you invest $100 for 8 years at 7% annual yield, then how many dollars will you have at the end of this 

time? 
 
 A. 100(1.56) 
 B. 100(8.56) 
 C. 100(0.07)8 
 D. 100(1.08)7 
 E. 100(1.07)8 
 
8. What are the solutions to 5x2 – 11x – 3 = 0? 
 

 F. x = 
5

18111±
  

 

 G. x = 
11 181

10
− ±

 

 

 H. x = 
11 181

10
±

 

 

 J. x = 
11 61

10
±

 

 

 K. x = 
11 61

10
− ±
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9. The equivalent resistance, R, of two resistors, R1 and R2, connected in parallel, is given by the equation 

1 2

1 1 1
R R R
= +  

 
 Which of the following represents the value of R? 
  

 A.  
1 2

2
R R+

 

  

 B.  1 2

1 2

R R
R R+

 

 

 C.  1 2

1 2

R R
R R
+

 

 

 D.  2

1 2

1R
R R
+

 

  

 E. 1 2
2

1

R R
R
+

 

  

10. When a ≠ 0, in simplified form 
31a

a
 + = 
 

 

 
 F.   1    

 G.   3
3

1a
a

+    

 H.   3
3

3 13a a
a a

+ + +    

 J.   3
3

12a
a

+ +   

 K. 3
3

3a
a

+    

  
11. How are the solutions to (x + 7)2 = 65 related to the solutions to x2 = 65. 
 
 A. They are 7 larger. 
 B. They are 7 smaller.  

 C. They are 7 larger. 

 D. They are 7 smaller. 
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12. Refer to the graph at right. The average rate of 
change from P to R is 

 

 
 
 F. -4  
 

 G.  
1
4

 

 
 H.  4 
 
 J.  8 
 
 K. impossible to determine 
  
 
13. Given x = 3t and y = t + 4. Find x when y = 8. 
 
 A. 4 
 B. 12 
 C. 24 
 D. 28 
 E. 36 
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 14. In the interval 2π ≤ x ≤ 4π, the solutions to cos x = 
1
2

are 

 

 F.  
7
3
π

 and  
8
3
π

. 

 

 G.  
7
3
π

 and  
11

3
π

. 

 

 H.   
9
4
π

 and 
15

4
π

. 

 

 J.  
13

6
π

 and  
23

6
π

. 

 

 K.  
13

6
π

 and 
17

6
π

. 

 
 
 
15. Suppose the following statement is true: If Polly is a wog, then Polly is a twiddle. Which other statement must 

also be true? 
 
 A. If Polly is a twiddle, then Polly is a wog. 
 B. If Polly is not a twiddle, then Polly is a wog. 
 C. If Polly is not a wog, then Polly is a twiddle. 
 D. If Polly is not a wog, then Polly is not a twiddle. 
 E. If Polly is not a twiddle, then Polly is not a wog.  
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16. The figure at right shows the graph of  
y = f(x). Which of the following could be graph of

( )y f x= ? 

 

 
  F.    G.           H. 

                                    
 
 
 J.      K. 
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17. In the 20th century, the world record t (in seconds) for the men’s mile run in the year y can be estimated by 
the equation  

 
  t = 914.2 – 0.346y. 
 
 According to this estimate, how did the record change over time? 
 

 A. It decreased by about 
3
1

second per year. 

 B. It decreased by about 
4
1

second per year. 

 C. It increased by about 
3
1

second per year. 

 D. It increased by about 
4
1

second per year. 

 E. It neither increased nor decreased in any regular fashion.  

 
  
18. The graphs of two functions f and g are shown at 

the right. For what values of x is g(x) > f(x)? 

 

 
  
 
 F. -2 < x < 2 
 G. x < -2 or x > 2 
 H. -1 < x < 3 
 J. x < -1 or x > 3 
 K. x < 2 
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19. Given a sequence defined as follows: 
 
  a1 = 17 
  an = 2an-1 + 3, for n > 1 
 
 What is a4? 
 
 A. 26 
 B. 37 
 C. 157 
 D. 317 
 E. 909 
 
 
20.  The functions f and g are defined by f(x) = x2 – 1 and g(x) = x + 4. Then g(f(x) is equal to 
 
 F. (x2 – 1)( x + 4) 
 G. (x + 4)2 – 1 
 H. x2 + 3 
 J. x2 + 15  
 K. x2 + x + 3 
 
21. Given that k is a constant and k > 0, which of 

these equations is graphed at the right?  

 

 
  A. y = kx 
 
 B. y = kx2 
  

 C. 
ky
x

=  

 

 D. 2

ky
x

=  

 
 E. y = k + x 
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22. Which of the following equations best describes 
the graph at right? 

  
 
 F. f(x) = (x + 3)(x – 2) 
 G. f(x) = (x – 3)(x + 2) 
 H. f(x) = (x + 3)2(x – 2) 
 J. f(x) = (x – 3)2(x + 2) 
 
23. According to the Law of Cosines, in ∆XYZ at 

right 

 

 
 A. x2 = y2 + z2 – yz cos X. 
 B. x2 = y2 + z2 – 2yz cos X. 
 C. x2 = y2 + z2 + yz cos X. 
 D. x2 = y2 + z2 +2yz cos X. 
 E. none of these  

  

 

Z

 

X

 

z

 

x

 

y

 

Y
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24. At right is the graph of a function f on a window -
10 ≤ x ≤ 10 and -10 ≤  y ≤ 15, with tick marks by 
1. Which of the following is an estimate for the 
zero of the function f? 

 

   
 F. -3.6 
 G.  -0.9 
 H. 0 
 J. 4 
 K. cannot be estimated from the graph 
 
 
25. In every arithmetic sequence, an = a1 + (n – 1)d. Use this formula to find a40 for the  arithmetic sequence 75, 

71, 67, 63, …. 
 
 A. -85 
 B. -81 
 C. -77 
 D. 35 
 E. 1.875 
 
 
26. Which of the following describes how to obtain the graph of y = (x + 5)3 – 4 from the graph of y = x3? 
 
 F. Translate the graph of y = x3 by5 units to the right and 4 units down. 
 G.  Translate the graph of y = x3 by 5 units to the left and 4 units down. 
 H. Translate the graph of y = x3 by 5 units to the left and 4 units up. 
 J. Translate the graph of y = x3 by 4 units to the left and 5 units down. 
 K. Translate the graph of y = x3 by 4 units to the right and 5 units up. 
 
 

27.  
2
3
π

radians is equivalent to  

 
 A. 30° 
 B. 60° 
 C. 120° 
 D. 150° 
 E. 210° 
 
 
28. p ⇒ q is false  
 
 F. when p is false regardless of the truth value of q. 
 G. when q is false regardless of the truth value of p. 
 H. only when p is false and q is false. 
 J. only when p is true and q is false. 
 K. only when p is false and q is true. 
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29. Which of the following could be an equation for 
the function graphed at the right? 

 

 
  A. f(x) = x3 
 B. f(x) = -x4 
 C. f(x) = -x5 
 D. f(x) = x6 
 
 
30. Factor 25m3 – 4m completely. 
 
 F. m(25m2 – 4) 

 G. m(5m – 2)2 

 H. (5m2 – 2m)(5m + 2) 

 J. m(5m – 4)(5m + 4) 

 K. m(5m – 2)(5m + 2) 

 

In 31 and 32, use the 
graph of the periodic 
function f at the right. 

 

 

31. What is the range of f? 
 
 A. the set of all real numbers 
 B. {y:  -1 ≤ y ≤ 1} 
 C. {x:  -180 ≤ x ≤ 360} 
 D. {y:  y ≥ 0} 
 E. {x:  x ≥ 0} 
 
 
  



 
 

159 

32. Which is a possible equation for f? 
 
 F. f(t) = sin t 
 G. f(t) = cos t 
 H. f(t) = tan t 
 J. f(t) = log t 
 K. f(t) = et 

 

 

33. Consider the function h defined by h(x) = 
5

( 3)( 2)
x

x x+ −
. As x gets closer and closer to 2 but remains larger 

than 2, the value of the function 
 
 
 A. gets close to 0. 
 B. gets close to 2. 
 C. gets close to 10. 
 D. gets smaller and smaller without bound. 
 E. gets larger and larger without bound. 
   
 
  
 
34. From a group of 15 people, 3 are to be selected to serve on a committee. How many different committees are 

possible? 
 
 F. 45  
  
 G.   153 
 
 H.  315 
 
 J. 15 • 14 • 13 
 

 K.  
15 14 13

3 2 1
• •

• •
 

 
 
35. Which of the following is equivalent to 1.22.5 ≈ 1.58? 
 
 A. log1.2 1.58 ≈ 2.5 
 B. log2.5 1.58 ≈ 1.2 
 C. log1.58 2.5 ≈ 1.2 
 D. log2.5 1.2 ≈ 1.58 
 E. log1.2 2.5 ≈ 1.58 
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Appendix B  

 PDM Pretest Two 

UCSMP 
The University of Chicago School Mathematics Project 
  
 
 
 
 

Test Number ________ 
 
  
 

Precalculus and Discrete Mathematics Pretest Two 
 

Do not open this booklet until you are told to do so. 
 
This test contains 25 questions. You have 40 minutes to take the test. 
 
1. All the questions are multiple-choice. Some questions have four choices and some have five. There is only 

one correct answer to each question.  
 
2. Using the portion of the answer sheet marked TEST 2, fill in the circle  •  corresponding to your answer for 

questions 36-60. 
 
3. If you want to change an answer, completely erase the first answer on your answer sheet. 
 
4. If you do not know the answer, you may guess. 
 
5. Use the scrap paper provided to do any work. DO NOT MAKE ANY STRAY MARKS IN THE TEST 

BOOKLET OR ON THE ANSWER SHEET.  
 
6. You MAY use a calculator on this test, including a graphing calculator with or without computer algebra 

systems. 
 
 
 
 
 
DO NOT TURN THE PAGE until your teacher says that you may begin. 
 
 
 
 
 
 
 
©2007 University of Chicago School Mathematics Project. This test may not be reproduced without the permission 
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36. Refer to the graph of function f at right. On which 

of the following intervals is f increasing? 

 

  
 F. x ≤ -2 
 G. x ≥ 0 
 H. x ≤ -3 
 J. -2 ≤ x ≤ 0 
 K. 1 ≤ x ≤ 3  
 
 
37. Which of the following is a graph of a function that has an inverse that is also a function? 
 
 A.      B.    C. 

                                                  
 
 
 D.    E. 
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38. In ∆ABC at right, find m∠B to the nearest degree. 

 

 F. 21° 
 G. 23° 
 H. 25° 
 J. 30° 
 K.  38° 
 
39. When 2x3 + 3x2 – 32x + 27 is divided by x + 5, the result is 
 
 A. quotient: 2x2 + 7x + 3, remainder: 12 
 B. quotient: 2x2 – 7x + 3, remainder: 12 
 C. quotient: 2x2 + 13x + 33, remainder: 192 
 D. quotient: 2x2 – 7x – 67, remainder: -308 
 E. none of these 
 
 
40. Five persons whose names begin with different letters are placed in a row, side by side. What is the 

probability that they will be placed in alphabetical order from left to right? 
 

 F. 
1

720
  

 

 G.  
1

625
 

 

 H.  
1

120
 

 

 J.  
1

15
 

 

 K.  
1
5

 

 
 
41. Which of the following is closest to the value of log3 7? 
 
 A. 0.40 
 B.  0.56 
 C. 1.77 
 D. 343 
 E. The value cannot be determined. 
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42. If 3/ 42 5x = , then 
 

 F. 4 /31 1
2 5

x =  

 

 G. 4 /3 12
5

x− =  

 

 H. 3/ 41 1
2 5

x− =  

 

 J. 4 /3 12
5

x =  

 

 K. 4/3 12
5

x−− =  

 
 
43. Suppose f(x) = x1/2. What is the set of all values of x for which f(x) is a real number? 
 
 A. {x: x > 0} 
 B. {x: x ≥ 0} 
 C. {x: x > 1} 
 D. {x: x ≥ 1} 
 E. the set of all real numbers  
 
 
44. A woman is standing on a cliff 200 feet above the water. Through a set of high-powered binoculars, she sees 

a boat on the water off in the distance. If the angle of depression is 10°, about how far is the boat from the 
base of the cliff? 

 
 F. 35 feet 
 G. 203 feet 
 H. 308 feet 
 J. 1134 feet 
 K. 1151 feet 
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In questions 45 and 46, refer to the graphs of 
functions f and g at right. 

 

 
45. What is the value of g(1)? 
 
 A. 2 
 B. 4 
 C. 5 
 D. 6 
 E. 8 
 
 
46. What is the value of f(g(1))? 
 
 F. 2 
 G. 4 
 H. 5 
 J. 6 
 K. 8  
 
 
47. The distance between (-1, 2) and (4, 5) in the plane is  
 
 A.  6 
 B.  8 
 C.  9 2  

 D.  34  

 E.  58  
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48. Suppose y = f(x). If S maps each point (x, y) in the plane to (2x, 5y), what is an equation for the image of the 
graph of y = f(x)?                                              

  

 F. ( )
5 2
y xf=  

 

 G. 5 ( )
2
xy f=  

 
 H. 2 (5 )y f x=  
 
 J. 5 (2 )y f x=   
 
 
 
49. Which of the following could be the graph of y = log2 x for x > 0?  
 
 A.              B.  
 

                                                                  
    
 C.             D. 
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50. 
2

210

100lim
2 23 30x

x
x x→

−
=

− +
 

 

 F. 0   

 G.     110±    

 H.     
3
2

   

 J.     
20
17

 

 K. does not exist 

 

51.  Which of the following equals (2m + 1)3? 

 

 A. 8m3 + 1 

 B. 8m3 + 3m2 + 6m + 1 

 C. 8m3 + 4m2 + 2m + 1 

 D. 8m3 + 6m2 + 6m + 1 

 E. 8m3 + 12m2 + 6m + 1 
 
 
52. A function h is graphed at right. As x → + ∞,  
 

 

 
 F. h(x) → 0 
 G. h(x) → 3 
 H. h(x) → + ∞ 
 J. h(x) → - ∞ 
 K. the values of h(x) do not exist. 
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53. Which of the following is the negation of the statement Some animals are horses? 

 

 A.  Some animals are not horses. 

 B. All animals are horses. 

 C. No animals are horses. 

 D. If it is an animal, then it is a horse. 

 E. It is an animal and it is not a horse. 

 
54. Estimate the measure of the angle between the vectors u



 = (3, 2) and v


 = (-2, 5).  
 
 F.   164°    G.     136°  H.     78°  J.      12°   

 
 
55. Which of the following is the derivative of f at x? 
 
 A. f(x + h) – f(x)  
 
 B. 

0
[ ( ) ( )]lim

h
f x h f x

→
+ −  

  

 C.  
( ) ( )f x h f x

h
+ −

 

  

 D. 
0

( ) ( )lim
h

f x h f x
h→

+ −
  

 
 E. none of these 
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56. Use the graph of the function  
f(x) = ax3 + bx2 + cx + d shown at right. How 
many real solutions are there to the equation f(x) 
= ax3 + bx2 + cx + d = -2? 

 

 
 F. none 
 G. 1 
 H. 2 
 J. 3 
 K. infinitely many 
 
 
57. Which of the following is (are) true for all values of θ for which the functions are defined? 
 
   I. sin (-θ) = -sin θ 
  II. cos (-θ) = -cos θ 
  III. tan (-θ) = -tan θ 
 
 A. I only 
 B. II only 
 C. III only 
 D. I and III only 
 E. II and III only 
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58. Which equation corresponds to the graph at 

the right? 
 

 

 
 F. y = -1 + 2 cos 4x 

 G. y = 1 + 2sin(4x – 
2
π

) 

 H. y = 1 + 2 sin(4x + 
2
π

) 

 J. y = 1 + 4sin(2x + 
4
π

) 

 
 
 
 
59. The table and graph below 

give the gold medal times 
for the women's 500 meter 
speed skating event in the 
Winter Olympics for four 
years. If y is the number of 
years after 1900 and t is 
time (in seconds), which 
of the following is an 
equation for a line that fits 
these data well? 

 

Year Time  
(in seconds) 

1960 45.9 
1976 42.76 
1992 40.33 
2006 38.23 

 

 

 
 A. y = -0.165t + 55 
 B. y = -7.7t + 50 
 C. y = -0.165t + 370 
  D. y = 55t – 0.165 
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60. The line l in the figure at right is the graph of y = 
f(x). 

 

       
3

2
( )f x dx

−∫  

 
 is equal to 
 

 

 
 
 F.  3 
 G. 4 
 H. 4.5 
 J.  5 
 K.  5.5 
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UCSMP 
The University of Chicago School Mathematics Project 
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Precalculus and Discrete Mathematics Posttest One 
 

Do not open this booklet until you are told to do so. 
 
This test contains 30 questions. You have 40 minutes to take the test. 
 
1. All the questions are multiple-choice. Some questions have four choices and some have 

five. There is only one correct answer to each question.  
 
2. Using the portion of the answer sheet marked TEST 2, fill in the circle  •  corresponding 

to your answer for questions 1-30. 
 
3. If you want to change an answer, completely erase the first answer on your answer sheet. 
 
4. If you do not know the answer, you may guess. 
 
5. Use the scrap paper provided to do any work. DO NOT MAKE ANY STRAY MARKS 

IN THE TEST BOOKLET OR ON THE ANSWER SHEET.  
 
6. You may NOT use a calculator on this test. 
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1.  If u = 4 – i and v = 2i + 7, then uv equals  

 
 A. 11 + i. 
 B. 26 + i. 
 C. 30 – i. 
 D. 30 + i.  
 E. 29. 
 
 

2. Which is equivalent to 
1
3

? 

 F. 
1
9

  G. 
3

3
  H. 3   J. 

3
9

 

 
 

3.  If R(n) = 
( 2)( 4)( 3)

( 2)( 4)
n n n

n n
+ − +

+ −
, then R(n) is not defined for which of the following? 

 
 A. n = -3 only 
 B.  n = -2 and n = 4 only 
 C. n = 2 and n = -4 only 
 D. n = 2 and n = -4 and n = 3    
 E. n = -2 and n = 4 and n = -3   
                                          
 
4. The curve defined by y = 3x(x – 2)(2x + 1) intersects the x-axis only at which of the following points?   
 

 F. (2, 0) and (
1-
2

, 0)  

 

 G.  (-2, 0) and (
1
2

, 0) and (0, 0)   

 

 H.  (3, 0) and (-2, 0) and (
1
2

, 0)     

 

 J.  (3, 0) and (2, 0) and (
1-
2

, 0)   

 

 K.  (0, 0) and (2, 0) and (
1-
2

, 0) 
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5.  Which of the three arguments below has a valid conclusion? 
  
  I. Given: If Carlos reads English literature, then Carlos reads Shakespeare. 
    Carlos reads English literature. 
   Conclusion: Carlos reads Shakespeare. 
 
  II. Given: If David plays in the band, then he plays the clarinet. 
    If David plays the clarinet, then he marches in the parade. 
   Conclusion: If David plays in the band, then he marches in the parade. 
 
  III. Given: If Lynne wears the red swimsuit, then she is going to the beach. 
    Lynne is going to the beach. 
   Conclusion: Lynne wears the red swimsuit. 
  
 A. I and II only 
 B. I and III only 
 C. II and III only 
 D. None has a valid conclusion. 
 E. All have valid conclusions. 
   
 
6. What type of function is the derivative of a velocity function? 
 
 F.    a position function 
        G.   an acceleration function 
 H.   another velocity function 
   J.     a constant velocity function 
 K.   none of F through J  

 
 
7. How are the solutions to (x + 7)2 = 65 related to the solutions to x2 = 65? 
 
 A. They are 7 larger. 
 B. They are 7 smaller.  

 C. They are 7 larger. 

 D. They are 7 smaller. 
 
 
8. The functions f and g are defined by f(x) = x2 – 1 and g(x) = x + 4. Then g(f(x)) is equal to which of the 

following? 
 
 F. (x2 – 1)(x + 4) 
 G. (x + 4)2 – 1 
 H. x2 + 3 
 J. x2 + 15  
 K. x2 + x + 3  
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9. Which of these is a sketch of the graph of the function f where f (x) =
( 2)( 2)

x
x x− +

? 

  
A. 

 

B.  

 
 

C. 

 

D. 
  

 
 

E. 
  

 

 

 
 10. Consider the statement 
 
 1 + 3 + 5 + … + (2n – 1) =  n2, for all integers n ≥ 1.  
  
 To use mathematical induction to prove the statement is true, you should start by   
 
 F. verifying the statement is true for n = 1.   
 G. assuming the statement is true for n = 1. 
 H. proving the statement is true for n = k.    
 J. assuming the statement is true for n = k.    
 K. proving the statement is true for n = k + 1.     
 
 
 
 
 
  

-5 5

6

4

2

-2

-4

4

2

-2

-4

-5 5

4

2

-2

-4

-5 5

4

2

-2

-4

-5 5

6

4

2

-2

-4

-5 5
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11.  At what points does the graph of the curve y = 
2

2 1
2 3

x
x x

+
− −

intersect the axes? 

  A. (- 
1
2

, 0),  (3, 0), and (-1, 0) only    

 B. (- 
1
2

, 0), (0, - 
1
3

), (3, 0), and (-1, 0) only 

 C. (- 
1
2

, 0) and (0, - 
1
3

) only 

 D. (
1- 
3

, 0) and (0, - 
1
2

) only 

  E. (
1- 
2

, 0) and (0, 
1
3

) only 

 
12. The equivalent resistance, R, of two resistors, R1 and R2, connected in parallel, is given by the equation  

1 2

1 1 1
R R R
= +  

 
 Which of the following represents the value of R? 

 F.  
1 2

2
R R+

 

  

 G.  1 2

1 2

R R
R R+

 

 

 H.  1 2

1 2

R R
R R
+

 

 

 J.  2

1 2

1R
R R
+

 

  

 K. 1 2
2

1

R R
R
+

 

  
13. Which of the following describes how to obtain the graph of y = (x + 5)3 – 4 from the graph of y = x3? 
 
 A. Translate the graph of y = x3 by 5 units to the right and 4 units down. 
 B.  Translate the graph of y = x3 by 5 units to the left and 4 units down. 
 C. Translate the graph of y = x3 by 5 units to the left and 4 units up. 
 D. Translate the graph of y = x3 by 4 units to the left and 5 units down. 
 E. Translate the graph of y = x3 by 4 units to the right and 5 units up. 

  



 
 

176 

14. The graph at the right shows a function graphed 
on the window -5 ≤ x ≤ 5 and   
-5 ≤ y ≤ 5 with tick marks by 1. Estimate the 
relative maximum value(s) of the function. 

 
   F. -2.3 
 G. -1.2 
 H. 0 
 J. -1.2 and 1.2 
 K. There is no relative maximum value. 

 

 
 

 
 
15. The graphs of two functions f and g are shown at 

the right. For what values of x is g(x) > f(x)? 
 
 
 A. -2 < x < 2 
 B. x < -2 or x > 2 
 C. -1 < x < 3 
 D. x < -1 or x > 3 
 E. x < 2 

 

 
 

 
 
16. Refer to the graph of a function y = f (x) at the 

right. What is the average rate of change of the 
function from P to R? 

 
 F. -4  

 G. 
1
4

 

 H.  4 
 J.  8 
 K. impossible to determine. 

 

 
 
 
 
  

y = f (x) 
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17. What are the solutions to cos x = 
1
2

in the interval 2π ≤ x ≤ 4π? 

 

 A.  
7
3
π

 and  
8
3
π

 

 

 B.  
7
3
π

 and  
11

3
π

 

 

 C.   
9
4
π

 and 
15

4
π

 

 

 D.  
13

6
π

 and  
23

6
π

 

 

 E.  
13

6
π

 and 
17

6
π

 

 
 
  
 
18. Which of the following equations best describes 

the graph at right? 
 
 F. f (x) = (x + 3)(x – 2) 
 G. f (x) = (x – 3)(x + 2) 
 H. f (x) = (x + 3)2(x – 2) 
 J. f (x) = (x – 3)2(x + 2) 

 

 
 

 
 
19. Which would be an appropriate way to begin a proof of the statement below? 
 
 If m is any odd integer and n is any even integer, then m – n is an odd integer.  
  
 A. Let m = 2k + 1 and n = 2k, where k is an integer.  

 B. Let m = 2k and n = 2k + 1, where k is an integer.  

 C. Let m = 2k + 1 and n = 2j, where k and j are integers.  

 D. Let m = 2k and n = 2j + 1, where k and j are integers.  
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20.  Suppose the following statement is true: If Molly is a tweedle, then Molly is a dee. Which other statement 
must also be true? 

 
 F. If Molly is a dee, then Molly is a tweedle. 
 G. If Molly is not a dee, then Molly is a tweedle. 
 H. If Molly is not a tweedle, then Molly is a dee. 
 J. If Molly is not a tweedle, then Molly is not a dee. 
 K. If Molly is not a dee, then Molly is not a tweedle. 
 

21. Consider the statement: 
 
  There is no largest prime number. 
 
 To prove this statement true using proof by contradiction, with what supposition should you begin? 
 
 A. There is a largest prime number.   
 B. There is no largest prime number.  
 C. There is a smallest prime number.  
 D. There are infinitely many primes. 
 
 
22. When is the implication p ⇒ q false? 
 
 F. when p is false regardless of the truth value of q 
 G. when q is false regardless of the truth value of p 
 H. only when p is false and q is false 
 J. only when p is true and q is false 
 K. only when p is false and q is true 
 
 
23. Which of the following is equivalent to 1.53.2  ≈ 3.66? 
 
 A. log1.5 3.66 ≈ 3.2 
 B. log3.2 3.66 ≈ 1.5 
 C. log3.66 3.2 ≈ 1.5 
 D. log3.2 1.5 ≈ 3.66 
 E. log1.5 3.2 ≈ 3.66 
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24. Consider the function graphed at the 
right. Which of the graphs below could 
be the graph of its derivative?  

 

  
 

 
F. 
 

 
 
 

G. 
 

 

H. 
 

 
 

J.  
 

 
 
 

K. 
 

 

 

 
 
 
    

  

 

4

 

2

 

-2

 

-4

 

-6

 

-5

 

5

 

4

 

2

 

-2

 

-4

 

-6

 

-5

 

5

 

4

 

2

 

-2

 

-4

 

-6

 

-5

 

5

 

4

 

2

 

-2

 

-4

 

-6

 

-5

 

5

 

4

 

2

 

-2

 

-4

 

-6

 

-5

 

5

 

4

 

2

 

-2

 

-4

 

-6

 

-5

 

5
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25. Which of the following is the negation of the statement Some animals are horses? 

 A.  Some animals are not horses. 
 B. All animals are horses. 
 C. No animals are horses. 
 D. If it is an animal, then it is a horse. 
 E. It is an animal and it is not a horse. 
 
 
 
26. At right is the graph of a function on a window -

10 ≤ x ≤ 10 and -10 ≤  y ≤ 15, with tick marks by 
1. Which of the following is an estimate for the 
zero of the function? 

 
 F. 1.4 
 G.  0 
 H. -0.7 
 J. -5 
 K. cannot be estimated from the graph 

 

 
 

  
 
  
27. Factor 4m3 – 25m completely. 
 
 A. m(4m2 – 25) 

 B. m(2m – 5)2 

 C. (2m2 – 5m)(2m + 5) 

 D. m(2m – 25)(2m + 25) 

 E. m(2m – 5)(2m + 5) 

 



 
 

181 

28. Which step is not reversible? 
 

    3 15x x− = −           
 Step 1. 9 – 6x – x2 = 15 – x 
 Step 2. x2 + 5x – 6 = 0 
 Step 3. (x + 6)(x – 1) = 0 
 Step 4. x + 6 = 0   or   x – 1 = 0 
 Step 5. x = -6   or   x = 1 
 
  
 F. Step 1  
 G. Step 2 
 H. Step 3 
 J. Step 4  
 K.  Step 5 
 

29. Consider the function h defined by h(x) = 
5

( 1)( 4)
x

x x+ −
. As x gets closer and closer to 4 but remains 

greater than 4, which of the following describes the function h? 
 
 A. h gets close to 0. 
 B. h gets close to 4. 
 C. h gets close to 20. 
 D. h  decreases without bound. 
 E. h  increases without bound. 
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30. The graph at the right shows a linear function f 
and a quadratic function g.  Which of the graphs 
below could be the graph of the product function  
f  • g? 

 
 

 
F.    

 
 

 G. 

 

H. 

 
 

 J. 

 

 
  

 

20

 

15

 

10

 

5

 

-5

 

-10

 

-15

 

-20

 

-25

 

-20

 

-10

 

10

 

20

 

3

 

 

25

 

20

 

15

 

10

 

5

 

-5

 

-10

 

-15

 

-20

 

-25

 

-20

 

-10

 

10

 

20

 

20

 

15

 

10

 

5

 

-5

 

-10

 

-15

 

-20

 

-20

 

-10

 

10

 

20

 

20

 

15

 

10

 

5

 

-5

 

-10

 

-15

 

-20

 

-20

 

-10
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20

 

20

 

15

 

10

 

5

 

-5

 

-10

 

-15

 

-20

 

-25

 

-30

 

-20

 

-10

 

10

 

20
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 Precalculus and Discrete Mathematics Posttest Two 

 
Do not open this booklet until you are told to do so. 
 
This test contains 22 questions. You have 30 minutes to take the test. 
 
1. All the questions are multiple-choice. Some questions have four choices and some have 

five. There is only one correct answer to each question.  
 
2. Using the portion of the answer sheet marked TEST 2, fill in the circle  •  corresponding 

to your answer for questions 31- 52. 
 
3. If you want to change an answer, completely erase the first answer on your answer sheet. 
 
4. If you do not know the answer, you may guess. 
 
5. Use the scrap paper provided to do any work. DO NOT MAKE ANY STRAY MARKS 

IN THE TEST BOOKLET OR ON THE ANSWER SHEET.  
 
6. You MAY use a calculator on this test, including a graphing calculator with or without 

computer algebra systems. 
 
7. After you complete the test and turn in your answer sheet, ask your teacher for the survey 
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31. Given the function h defined by 
(2 4)( 1)( )

( 2)
x xh x

x
+ −

=
+

. What is the behavior of the function near x = -2? 

 
 A. There is an essential discontinuity at x = -2. 
 B. There is a removable discontinuity at x = -2. 
 C. The value of h(x) increases without bound near x = -2.  
 D. The value of h(x) decreases without bound near x = -2. 
 
 
32. A survey poll indicates that 38% of registered voters favor Candidate A, with a margin of error of 4%. Which 

of the following best describes the true percentage p of registered voters who favor Candidate A?  
 
 F.   p – 0.38 = 0.04     

 G. 0.38 0.04p − =  

 H. 0.38 0.04p − ≤     

 J. 0.38 0.04p − ≥  

 
33. For a function g, the derivative at 2 equals -1, that is g'(2) = -1. Which of the following describes the meaning 

of g'(2)? 
 
 A. The function has a value of -1 when x = 2. 
 B. The function g has a relative minimum value of -1 when x = 2.  
 C. The tangent line to the function g at x = 2 has a slope of -1. 
 D. The tangent line to the function g at x = 2 has equation y = -1.  
 E. The tangent line to the function g at x = 2 has equation x = -1. 
 
 
34. Refer to the graph of function f at right. On which 

of the following intervals is f increasing? 
 
 F. x ≤ -2 
 G. x ≥ 0 
 H. x ≤ -3 
 J. -2 ≤ x ≤ 0 
 K. 1 ≤ x ≤ 3 

 

 
 

  

  

f 
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35. What is the result when 2x3 + 3x2 – 32x + 27 is divided by x + 5? 
 
 A. quotient: 2x2 + 7x + 3, remainder: 12 
 B. quotient: 2x2 – 7x + 3, remainder: 12 
 C. quotient: 2x2 + 13x + 33, remainder: 192 
 D. quotient: 2x2 – 7x – 67, remainder: -308 
 E. none of A through D 
 
                                   
36. A function h is graphed at right. As  

x → + ∞, what is true about h(x)? 
 
 F. h(x) → 0 
 G. h(x) → 3 
 H. h(x) → + ∞ 
 J. h(x) → - ∞ 
 K. The values of h(x) do not exist. 

 
 

 
 

 
37. Suppose f (x) = x1/2. What is the set of all values of x for which f (x) is a real number? 
 
 A. {x: x > 0} 
 B. {x: x ≥ 0} 
 C. {x: x > 1} 
 D. {x: x ≥ 1} 
 E. the set of all real numbers  
 
 

38. Evaluate 
2

210

100lim
2 23 30x

x
x x→

−
− +

. 

 F. 0   

 G.     110±    

 H.     
3
2

   

 J.     
20
17

 

 K. The limit does not exist. 
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39.  Which of the following equals (m + 2)3? 

 A. m3 + 8 

 B. m3 + m2 + m + 8  

 C. m3 + 3m2 + 6m + 8 

 D. m3 + 6m2 + 6m + 8 

 E. m3 + 6m2 + 12m + 8 
 

40. Charlie got a car loan for $30,000. Each month, interest of 
1

2
% is added and then he makes a $600 car 

payment. If An describes the amount he owes for the car at the beginning of month n and A1 = 30,000, which 
equation is true? 

 
 F.   An = 600(1.005)n-1 
  
 G.   An = 30000 – 600(1.005)n-1 
  
 H.   An = 30000(1.005)n – 600 
  
 J.   An = An-1(1.005) – 600 
  
 K.   An = An-1 – 600(1.005) 
 
41. Estimate the measure of the angle between the vectors u



 = 3, 2 and v


 = 2,5− .  
 
 A.   164°    B.     136°  C.     78°  D.      12°  
 
42. Use the graph of the function  

f(x) = ax3 + bx2 + cx + d shown at right. How 
many real solutions are there to the equation f(x) 
= ax3 + bx2 + cx + d = -2? 

 
 F. none 
 G. 1 
 H. 2 
 J. 3 
 K. infinitely many 

 

 
 

 

  

f 
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 In questions 43 and 44, refer to the graphs 
of functions f and g at right. 
 
43. What is the value of g(1)? 
 
 A. 2 
 B. 4 
 C. 5 
 D. 6 
 E. 8 
 

 

 
 

 
44. What is the value of f (g(1))? 
 
 F. 2 
 G. 4 
 H. 5 
 J. 6 
 K. 8  
 
 
45. Which of the following is (are) true for all values of θ for which the functions are defined? 
 
   I. sin(-θ) = -sin θ 
  II. cos(-θ) = -cos θ 
  III. tan(-θ) = -tan θ 
 
 A. I only 
 B. II only 
 C. III only 
 D. I and III only 
 E. II and III only 
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46. Which of the following could be an equation for 
the graph at the right? 

 
 F. r = 3θ 
 G. r = 3 + sin(2θ) 
 H. r = 3sin θ 
 J. r = 3sin(2θ) 
 K. r = 3cos(2θ) 

 

 
 

 
 
 
 
47. A woman is standing on a cliff  200 feet above the water. Through a set of high-powered binoculars, she sees 

a boat on the water off in the distance. If θ represents the angle of depression, which of the following gives a 
formula for determining the angle of depression in terms of the distance d of the boat from the bottom of the 
cliff? 

 

 A.  1 200tan
d

θ −=  

 B. 1tan
200
dθ −=  

 C. 1 200sin
d

θ −=  

 D. 1 200cos
d

θ −=  

 
 
48. The line in the figure at right is the graph of y = 

f (x). What is the value of  
 

       
 3

2
( )f x dx

−∫ ? 

 
   
 
 F.  3 
 G. 4 
 H. 4.5 
 J.  5 
 K.  5.5 
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49. How many solutions does the following system have? 
 

 
2

2 2

5 4( 3)
( 3) ( 2) 16
y x
x y

 + = +


+ + − =
 

 
 A. 0 
 B. 1 
 C. 2 
 D. 3 
 E. 4 
  

50. If tanθ = sin(2θ) and 0 < θ  < 
2
π

, then what is an approximate value for θ?  

 
 F. 0 radians  
 G. 0.79 radians 
 H. 1 radian 
 J. 45 radians 
 
 
51. Which of the following is the derivative of function f at x? 
 
 A. f(x + h) – f(x)  
 
 B. 

0
 [ ( ) ( )]lim

h
f x h f x

→
+ −  

  

 C.  
( ) ( )f x h f x

h
+ −

 

  

 D. 
0

( ) ( )lim
h

f x h f x
h→

+ −
  

 
 E. none of these  

  



 
 

190 

52. Which equation is graphed at the right? 
 
 F. y = -1 + 2 cos 4x 

 G. y = 1 + 2sin(4x – 
2
π

) 

 H. y = 1 + 2 sin(4x + 
2
π

) 

 J. y = 1 + 4sin(2x + 
4
π

) 
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Appendix E  

PDM Problem Solving Test 

UCSMP 
The University of Chicago School Mathematics Project 
  
 
 
 
  Test Number ________ 
 

Precalculus and Discrete Mathematics: Problem Solving and Reasoning Test 
 

Name (Print) ______________________________________ 
 
School  ______________________________________ 
 
Teacher ______________________________________ 
 
Period  ______________________________________ 
 
Do you have a calculator available for use on this test?  _____ Yes   _____ No 
 
 If yes, what model calculator is it?  ______________________________ 
 
Which is true of your calculator? 
 
 _____  It does not graph equations. 
 
 _____  It can graph equations. 
 
 _____ It can simplify algebraic expressions. (It has a computer algebra system (CAS).) 
   
Do not open this booklet until you are told to do so. 
 
1. This test contains 5 questions.  
 
2. You MAY use a calculator on this test, including a graphing calculator either with or without computer 

algebra systems. 
 
3. There may be many ways to answer a question. We are interested in how you solve a problem, not just in 

the final answer. So, be sure to show all your work on the pages in the test booklet. If you use a 
calculator to solve a problem, be sure to explain what features or keys you used. 

 
4. Try to do your best on each problem. 
  
5. You have 30 minutes to answer the questions. 
 
©2007 University of Chicago School Mathematics Project. This test may not be reproduced without the permission 
of UCSMP. Some of the items on this test are released items from NAEP or from TIMMS 1999 and are subject to 
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the conditions in the release of these items. Other items have been used on previous studies conducted by UCSMP. 
Reprinted with permission. 
 
 
1. Solve the following system.   
 

  
2 3 3

2x

y x x
y

 = − +


=
 

 
 
 
 
 
 
 
 
 
 
 
 
 
2. A ball is thrown so that its height (in meters) after t seconds is given by  

h(t) = -4.9t2 + 18t + 15. 
 
 a. After how many seconds does the ball reach its maximum height? 
 
 
 
 
 
 
 
 
 b. What is the maximum height reached by the ball? 
 
 
 
 
 
   
 
 
 
 
 
 c. Find the instantaneous velocity of the ball 3.4 seconds after it is thrown. Include units. 
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 d. Find the acceleration of the ball 3.4 seconds after it is thrown. Include units. 
 
 
 

3. Are the functions f and g with f(x) = 3x + 2 and 
2( )

3
xg x +

=  inverses of each other?  

 a. Yes _____   No _____ 
 
 b. Justify your answer. 
 
 
 
 
 
 
 
 
 
 
 
 
4. Prove the following trigonometric identity. 
 
  For all real numbers x for which both sides are defined,  
 
   tan x + cot x = sec x • csc x. 
 
 
 
 
 
 
 
 
 
 
 
 

5. a. Evaluate 
3

1
(3 4)

i
i

−

+∑ . 

 
 
 
 
 
 b. Let S(n) be the statement 
 

1

(3 11)(3 4)
2

n

i

n ni
=

+
+ =∑ . 

 
  Use the principle of mathematical induction to prove that S(n) is true for all positive integers n. 
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Appendix F  

Student Information Form 

UCSMP 
The University of Chicago School Mathematics Project 
 

 
 

Precalculus and Discrete Mathematics: Student Information Form 
 

  During this year, your class has been part of a study of mathematics materials. You have taken some tests 
throughout the year to show what you have learned in mathematics from the materials you have been using. 
 You are invited to answer the following 18 questions. Your answers to these questions will help us understand 
how you used the materials and class activities this year. Although you are not required to answer these questions, 
your responses can help improve mathematics materials for future students. 
 After you respond to the following questions, please put this form in the envelope provided and seal the 
envelope before returning to your teacher. 
 
A. Were you in this class in this period at the beginning of the school year?   
  _____ Yes      _____ No 
 
B. Were you in this class in this period when you received your first course grade (report card) this school year?   

  _____ Yes  _____ No 
 
School ____________________________     Teacher________________________ 
 
Period ____________________________ 

 
1. About how much time did you spend, on the average, this year on your mathematics homework? 
  
 _____  0-15 minutes per day 
 _____ 16-30 minutes per day 
 _____ 31-45 minutes per day 

 
 _____ 46-60 minutes per day 
 _____ more than 60 minutes per day 

 
2. How often did your teacher expect you to read your mathematics textbook? 
  
 _____ almost every day 
 _____ 2-3 times per week 
 _____ 2-3 times a month 

 _____ less than once a month 
 _____ almost never 
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3. How often did you actually read your mathematics textbook? 
 
 _____ almost every day 
 _____ 2-3 times per week 
 _____ 2-3 times a month 

 _____ less than once a month 
 _____ almost never 

 
4. How often did these things happen? 

 
 
 
 
 
  

 
5. How important do you think it is to read your mathematics text if you want to understand mathematics? 
  

 _____ very important 

 _____ somewhat important 

 _____ not very important 

 
6. How often did you do these things when solving problems? 

 
 
 
 
 
 
 
 
 

 
7. How important do you think it is to write explanations to show what you were thinking when solving 

mathematics problems? 
 

 _____ very important 

 _____ somewhat important 

 _____ not very important 

 
  

  Daily Frequently Seldom Never 
a. Teacher read aloud in class. _____ _____ _____ _____ 
b. Students read aloud in class. _____ _____ _____ _____ 
c. Students read silently in class. _____ _____ _____ _____ 
d. Students discussed the reading in class. _____ _____ _____ _____ 

  Daily Frequently Seldom Never 
a. write answers only _____ _____ _____ _____ 
b. write a few steps in your solutions  _____ _____ _____ _____ 
c. write complete solutions _____ _____ _____ _____ 
d. explain or justify your work _____ _____ _____ _____ 
e. write proofs   _____ _____ _____ _____ 
f. write in journals _____ _____ _____ _____ 
g. do a project _____ _____ _____ _____ 
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8. Did you have a calculator available for use this year in your mathematics class (either that you brought to 
class or that was provided for you in class)?   

 
  _____ Yes  (Go to question 8a.) 
 
  _____ No (Go to question 13.) 
 
 a. If yes, what model calculator did you have for use in your mathematics class?   
 
  ________________________________________ 
  
 b. Which is true of the calculator you used during mathematics class? 
 
 _____  It does not graph equations. 

 _____  It can graph equations. 

 _____  It can simplify algebraic expressions (It has a computer algebra system (CAS)). 

  

9. About how often did you use this calculator in your mathematics class? 
 
 _____ almost every day 

 _____ 2-3 times per week 

 _____ 2-3 times a month 

 _____ less than once a month 

 _____ almost never 

 
10. For what did you use this calculator in your mathematics class?  (Check all that apply.) 
    
 _____ checking answers 

 _____ doing computations 

 _____ solving problems 

 _____ graphing equations   

 _____  working with a spreadsheet  

_____ making tables 

 _____ analyzing data 

 _____ finding equations to model data 

 _____ simplifying algebraic expressions 

 _____ other features of CAS  

 _____  other (specify) _______________________________________ 

 
11. If you used the CAS (computer algebra system) features of a calculator, about how often did you use the 

calculator for this purpose in your mathematics class? 
 

 _____ almost every day 

 _____ 2-3 times per week 

  

  

 _____ 2-3 times a month 

 _____ less than once a month 

 _____ almost never 
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12. How helpful was the use of this calculator in learning mathematics in your mathematics class? 
 
 _____ very helpful 

 _____ somewhat helpful 

 _____ not very helpful 

 
13. Did you have a calculator available for use this year for homework?  
 
  _____ Yes  (Go to question 13a.) 
 
  _____ No (Go to question 18.) 
 
 a. If yes, which type of calculator did you have for use for homework?  
 
  _____  The same calculator I had for use in my mathematics class. 
 
  _____  A different calculator than I had for use in my mathematics class. 
 
 b. If you had a different calculator for use with homework than you had in class, please list the model.  

_____________________________________   

  
 c. Which is true of this calculator that you used for homework? 
 
 _____  It does not graph equations. 

 _____  It can graph equations. 

 _____  It can simplify algebraic expressions. (It has a CAS (computer algebra system).) 

  

14. About how often did you use a calculator for homework? 

  
 _____ almost every day 
 
 _____ 2-3 times per week 
 
 _____ 2-3 times a month 

 
 _____ less than once a month 
 
 _____ never 

 
 
15. How did you use a calculator for homework?  (Check all that apply.) 
  
 _____ checking answers 

 _____ doing computations 

 _____ solving problems 

 _____ graphing equations   

 _____  working with a spreadsheet  

 _____  other features of CAS 

_____ drawing geometric figures  

 _____ making tables 

 _____ analyzing data 

 _____ finding equations to model data 

_____ simplifying algebraic expressions 

 _____  other (specify) _______________________________________ 
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16. If you used the CAS (computer algebra system) features of a calculator, about how often did you use the 
calculator for this purpose for homework? 

 

 _____ almost every day 

 _____ 2-3 times per week

 _____ 2-3 times a month 

 _____ less than once a month 

 _____ almost never 

 

 
17. How helpful was the use of a calculator in learning mathematics during homework? 
 
 _____ very helpful 

 _____ somewhat helpful 

 _____ not very helpful 

 
 
18. How helpful did you find your textbook in learning mathematics this year? 
 
 _____ very helpful 

 _____ somewhat helpful 

 _____ not very helpful 

 

Place this form in the envelope provided, seal it, and return it to your teacher.
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Appendix G  

End of Chapter Evaluation Forms 

 
University of Chicago School Mathematics Project 

Precalculus and Discrete Mathematics: Third Edition  
 

CHAPTER 4 EVALUATION FORM 
 

Teacher __________________________________      School____________________________________ 

 

Date Chapter Began _______    Date Chapter Ended ________   No. Class Days (Including Tests) ____ 

1. Please complete the table below.  In column A, circle the number of days you spent on each lesson.  In columns 
B and C, rate the text and questions of each lesson using the following scale. 

 
       1 = Disastrous; scrap entirely. (Reason?)         2 = Poor; needs major rewrite.  (Suggestions?) 
       3 = OK; some big changes needed. (Suggestions?)     4 = Good; minor changes needed.  (Suggestions?) 
       5 = Excellent; leave as is. 
 
 In columns D and E, respectively, list the specific questions you assigned in the lesson and comment on any 

parts of the lesson text or questions you think should be changed.  Use the other side or an additional sheet of 
paper if you need more space. 

 
  A B C D E 
  

Circle the number of days 
you spent on the lesson 

Rating 
Questions 
Assigned Comments Lesson 

Lesson 
Text Questions 

4-1 0   0.5   1   1.5   2   2.5         

4-2 0   0.5   1   1.5   2   2.5         

4-3 0   0.5   1   1.5   2   2.5     

4-4 0   0.5   1   1.5   2   2.5         
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4-5 0   0.5   1   1.5   2   2.5         

4-6 0   0.5   1   1.5   2   2.5         

4-7 0   0.5   1   1.5   2   2.5     

Self-Test 0   0.5   1   1.5   2   2.5     

SPUR 
Review 0   0.5   1   1.5   2   2.5     

 

2.   Overall rating of this chapter. (Use the same rating scale as at the top of the page.) __________ 

 
 
3.   What comments do you have on the sequence, level of difficulty, or other specific aspects of the content of this 

chapter? 
 

 

 

 

 

4.   As we revise the student materials for this chapter, 

 a.  What should we definitely not change? 

 

 

 

 

 

 b.  What should we definitely change?  What ideas do you have for changes that should be made? 

 

 

5. As we revise the Teacher’s Notes for this chapter, 
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 a.  What should we definitely not change? 

 

 

 

 

 

 b.  What should we definitely change?  What ideas do you have for changes that should be made? 

 

 

 

 

 

6.   Did you use any UCSMP Second Edition materials during this chapter (Lesson Masters, Technology Masters, 
etc.)?  Yes _____ No _____ 
 

If yes, how and when? 

 

 

 
 
7.   While teaching this chapter, did you supplement the text with any materials other than those mentioned in 

Question 6?  Yes _____ No _____ 
 
If yes, which materials did you use and when? 
 
 
 
 
 
 
 
 
Why did you use these materials?  (If possible, please enclose a copy of the materials you used.) 
 
 
 

 

 

 

8.    a.  Did you as the teacher demonstrate or use a calculator with this chapter?  Yes _____ No _____ 

 b. If yes, how did you use the calculator? 
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c.  What comments or suggestions do you have about the way calculator technology is incorporated into this 

chapter? 
 

 

 

 

 

9. a. Did your students use a calculator with this chapter?  Yes _____  No _____ 

 b. If yes, how did they use the calculator? 

 

 

 

 

 

 

 

 

 

10.  a.  Did you as the teacher demonstrate or use a computer with this chapter?  Yes _____ No _____ 

 b. If yes, how did you use the computer? 

 
 
 
 
 
 
c.  What comments or suggestions do you have about the way computer technology is incorporated into this 

chapter? 
 

 

 

 

 

 

 

11. a. Did your students use a computer with this chapter?  Yes _____  No _____ 

 b. If yes, how did they use the computer? 



 
 

203 

 

 

 

 

 

12. Did you use the test for this chapter that we provided in the Teacher’s Notes?  Yes ______  No ______   
 
If yes, what suggestions do you have for improvement? 

 

 

 

 If no, what specific reasons influenced your decision not to use the test? 

 

 

 

 

 

 

 

 

13.   Other comments?  Attach additional sheets as needed. 
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Appendix H  

Comparison of Achievement on Pretest 1 

 

ANOVA Results for Pretest 1 Function Items by Class and Curricula 
Curricula Class Mean SD N 
2nd Edition 412 12.74 2.77 23 

413 13.00 3.55 20 
417 13.95 3.82 19 
Total 13.19 3.36 62 

3rd Edition 410 13.50 2.90 16 
411 12.45 3.56 20 
414 14.59 3.89 17 
415 13.21 4.14 19 
416 14.38 2.33 13 
418 10.11 3.51 18 
419 7.73 3.32 11 
420 12.00 3.30 19 
421 12.13 4.14 24 
422 12.92 3.56 25 
423 11.89 3.78 27 
Total 12.35 3.85 209 

Note. Results are for the 23 function items 

 

Levene’s Test of Equality of Error Variances for Pretest 1 Achievement by Class and Curriculaa 
F df1 df2 Sig. 

.84 13 257 .62 
Tests the null hypothesis that the error variance of 
the dependent variable is equal across groups. 
a. Design: Intercept + Curricula+ Class + Curricula 
* Class 

 

Tests of Between-Subject effects for Pretest 1 by Class and Curricula 

Source 
Type III Sum 

of Squares df Mean Square F Sig. 
Partial Eta 
Squared 

Corrected Model 567.49a 13 43.65 3.46 .00 .15 
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Intercept 35288.72 1 35288.72 2799.34 .00 .92 
Curricula .00 0 . . . .00 
Class 533.40 12 44.45 3.53 .00 .14 
Curricula * Class .00 0 . . . .00 
Error 3239.78 257 12.61    
Total 46439.00 271     
Corrected Total 3807.26 270     
Note: Achievement based on only 23 function items. 
a. R Squared = .149 (Adjusted R Squared = .106) 
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Appendix I  

Comparison of Achievement on Pretest 2 

 
ANOVA Results for Pretest 2 Function Items by Curricula and Access to CAS Controlling for 
Class 
Curricula Had CAS Mean SD N 
2nd Edition No 7.4000 2.18003 60 

Yes 6.0000 2.82843 2 
Total 7.3548 2.18862 62 

3rd Edition No 7.3500 2.54335 60 
Yes 6.1678 2.38917 149 
Total 6.5072 2.48673 209 

Total No 7.3750 2.35883 120 
Yes 6.1656 2.38448 151 
Total 6.7011 2.44403 271 

Note. Results are for the 13 function items 

 
Levene’s Test of Equality of Error Variances for Pretest 2 Achievement by Class, Curricula and 
Access to CASa 

F df1 df2 Sig. 
.51 3 267 .68 

Note: Tests the null hypothesis that the error variance of the 
dependent variable is equal across groups. 
a. Design: Intercept + Class + Curric_dummy + HadCAS + 
Curric_dummy * HadCAS 
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Tests of Between-Subject Effects for Pretest 2 Function Items by Class, Curriculum and Access 
to CAS 

Source 
Type III Sum 

of Squares df Mean Square F Sig. 
Partial Eta 
Squared 

Corrected Model 117.45a 4 29.37 5.23 .00 .07 
Intercept 29.70 1 29.70 5.28 .02 .02 
Class 19.56 1 19.56 3.48 .06 .01 
Curric_dummy .88 1 .88 .16 .69 .00 
HadCAS 12.28 1 12.28 2.19 .14 .01 
Curric_dummy * 
HadCAS 

.32 1 .32 .06 .81 .00 

Error 1495.30 266 5.62    
Total 13782.00 271     
Corrected Total 1612.79 270     

a. R Squared = .073 (Adjusted R Squared = .059) 
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Appendix J  

Regression models using SPSS 
 

 
 

SPSS Model for Posttest 1, OTL and Technology Variables 
 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B Std. Error Beta 
1 (Constant) -30.670 11.455  -2.678 .008 

HadCAS -.782 2.208 -.021 -.354 .723 
Pre1FcnScore .575 .051 .515 11.339 .000 
OTLHW .034 .069 .028 .500 .618 
OTLLessons .691 .102 .409 6.810 .000 

a. Dependent Variable: Post1FcnPcnt 
Note:   Post1FcnPcnt is the percent of function items answered correctly on multiple choice posttest 1 and ranges 
from 0 to 100.  Pre1FcnScore is the percentage score each student received the 23 function items and ranges from 
0 to 100.  HadCAS indicates an individual student had access to a CAS capable calculator while taking 
assessments where 0 indicates no and 1 indicates yes.  OTLLessons is the percentage of function lessons taught 
by an individual teacher and ranges from 0 to 100. OTLHW is the percentage of function problems an individual 
teacher assigned only for the function lessons he/she taught and ranges from 0 to 100. 
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SPSS Model Posttest 2, OTL and Technology Variables 
 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B Std. Error Beta 
1 (Constant) 5.884 14.483  .406 .685 

HadCAS 2.146 2.274 .065 .944 .346 
Pre2FcnPcnt .390 .059 .363 6.599 .000 
OTLLessons .611 .157 .402 3.890 .000 
OTLPost2 -.190 .219 -.076 -.867 .387 
Strat2 1.229 .489 .134 2.515 .013 

a. Dependent Variable: Post2FcnPcnt 
Note:  Pre2FcnScore is the percentage score each student received on pretest 2 for only the 16 function items and ranges from 0 
to 100.  Post2FcnScore is the percentage score each student received on posttest 2 for only the 16 function items and ranges 
from 0 to 100.   HadCAS indicates an individual student had access to a CAS capable calculator while taking assessments, 
where 0 indicates no and 1 indicates yes.  OTL Post2 is the percentage of the 16 function problems on posttest 2 for which the 
teacher reported having taught or reviewed the material necessary to answer the item and ranges from 0 to 100.  OTLLessons is 
the percentage of function lessons taught by an individual teacher and ranges from 0 to 100.  DidUseStrategy is the number of 
times a student reported using a calculator strategy to solve the 7 calculator neutral items on posttest 2 function items and 
ranges from 0 to 7. 
 

SPSS Model PSU and Technology Variables 

 
Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B Std. Error Beta 
1 (Constant) 42.837 4.961  8.634 .000 

HadCAS -.699 2.976 -.014 -.235 .815 
Pre2FcnPcnt .459 .097 .286 4.738 .000 

a. Dependent Variable: PSUFcnPcnt 
PSUFcnPcnt is the score each student received on the problem solving test for only the 3 function items and ranges from 0 to 
100.  HadCAS indicates an individual student had access to a CAS capable calculator while taking assessments where 0 
indicates no and 1 indicates yes.   
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SPSS Model PSU, OTL and Technology Variables 
 

Coefficientsa 

Model 

Unstandardized 
Coefficients 

Standardized 
Coefficients 

t Sig. B Std. Error Beta 
1 (Constant) 39.197 16.436  2.385 .018 

HadCAS 1.987 3.930 .040 .506 .614 
Pre2FcnPcnt .449 .097 .279 4.607 .000 
OTLLessons .155 .177 .068 .874 .383 
OTLPSU -.105 .099 -.065 -1.065 .288 

a. Dependent Variable: PSUFcnPcnt 
PSUFcnPcnt is the score each student received on the problem solving test for only the 3 function items and ranges from 0 to 
100.  Pre2FcnScore is the percentage score each student received on pretest 2 for only the 16 function items and ranges from 0 
to 100.  HadCAS indicates an individual student had access to a CAS capable calculator while taking assessments where 0 
indicates no and 1 indicates yes.  OTLPSU is the percentage of function problems on the problem solving test for which the 
teacher reported having taught or reviewed the material necessary to answer the item and ranges from 0 to 100. OTLLessons is 
the percentage of function lessons taught by an individual teacher and ranges from 0 to 100.  
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Appendix K  

Copyright Permissions for Included Material 

 

From: "permissions" <permissions@nctm.org> 

Date: September 30, 2013 at 5:04:00 PM EDT 

To: "Laura Hauser" <lhauser63@yahoo.com> 

Subject: RE: permission to use figure in dissertation 

Dear Laura, 

 You’re welcome to use the figure for your dissertation. Please cite appropriately. 

 Thank you, 

NCTM Permissions 

 From: Laura Hauser [mailto:lhauser63@yahoo.com]  
Sent: Friday, September 27, 2013 5:05 PM 
To: permissions 
Subject: permission to use figure in dissertation 

 I need permission to use figure 1  (Only the image on top right)  page 359 from the following 
article: 

Vinner, S., & Dreyfus, T. (1989). Images and definitions for the concept of function. Journal for 
Research in Mathematics Education, 20(4), 356-366. 

I need this for my dissertation titled 

Precalculus Students’ Achievement When Learning Functions: Influences of Opportunity to  
 

Learn and Technology from a University of Chicago School Mathematics Project Study 
  

mailto:permissions@nctm.org
mailto:lhauser63@yahoo.com
mailto:lhauser63@yahoo.com
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April 1, 2015 

 
Ms. Laura Hauser 
16225 Enclave Village Drive 
Tampa, FL  33647 
 
Dear Ms. Hauser: 
 
Congratulations on defending your dissertation successfully.  
 
We are pleased to give you permission to include the instruments (pretests, posttests, calculator 
usage, beginning and end of year evaluations and supplemental evalution) from the third-edition 
study of the UCSMP textbook Precalculus and Discrete Mathematics in your dissertation.  Please 
indicate that these instruments are reprinted with permission.   
 
We give this permission with the proviso that we receive a copy of your dissertation and of any 
article you might write that is based on these data. 
 
Best wishes for a successful study. 
  
        Sincerely, 

         
        Zalman Usiskin 
        Professor Emeritus of Education 
        Director, UCSMP  
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