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Ultrasonic Guided Waves can propagate over long distances, and are thus suitable

for the interrogation of long structural members such as rails. A recently developed

Ultrasonic Broken Rail Detection (UBRD) system for monitoring continuously welded

train rail tracks, primarily detects complete breaks. This system uses a guided wave

mode with energy concentrated in the head of the rail, which propagates large distances

and which is suitable for detecting defects in the rail head. Exploiting a second mode,

with energy concentrated in the web section, would allow us to effectively detect defects

in the web of the rail.

The objective of this study is to develop an ultrasonic piezoelectric transducer that can

excite a guided wave mode with energy concentrated in the web of the rail. It is required
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that the transducer must strongly excite such a mode at the operational frequency of the

UBRD system. The objective is thus to obtain a design with optimal performance.

A recently developed numerical modelling technique is used to model the interaction

of the transducer with the rail structure. The technique employs a 2D Semi-Analytical

Finite Element (SAFE) mesh of the rail cross-section and a 3D finite element mesh of the

transducer; and is thus referred to as SAFE-3D. The accuracy of the SAFE-3D method

was validated though experimental measurements performed on a previously developed

transducer.

A design objective function representative of the energy transmitted by the transducer

to the web mode was selected. The identified design variables were the dimensions of

the transducer components. The performance of the transducer was optimized using a

response surface-based optimization approach with a Latin Hypercube sampled design of

experiments (DoE) that required SAFE-3D analyses at the sampled points. A Nelder-

Mead optimization algorithm was then used to find an optimal transducer design on the

response surface.

The performance of the optimal transducer predicted by the response surface was

found to be in good agreement with that computed from SAFE-3D. The optimum trans-

ducer was manufactured and experimental measurements verified that the transducer

model was exceptionally good. The design method adopted in this study could be used

to automate the design of transducers for other sections of the rail or other frequencies

of operation.

KEYWORDS: Ultrasonic guided wave; Piezoelectric transducer; SAFE-3D; Optimiza-

tion
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CHAPTER 1

Introduction

1.1 Background

Rail Infrastructure in the world is ageing, giving rise to increased development and growth

of imperfections like cracks and flaws, which can result in broken rails and ultimately train

derailments. To prevent train derailments, there is thus a crucial need for effective rail

monitoring systems. Such systems will allow for the continual inspection of the rail, and

ultimately help to keep track of defect development and growth, so that action can be

taken before the critical stage is reached.

Recently, the Council for Scientific and Industrial Research (CSIR) together with

the Institute for Maritime Technology (IMT) have developed an Ultrasonic Broken Rail

Detection (UBRD) system for the inspection of rail tracks [6]. The system, currently

installed in the Sishen-Saldanha Ore line, uses ultrasonic guided waves transmitted be-

tween transmit and receive transducers. If the transmitted signals are not detected by

the receive station, an alarm is triggered indicating a broken rail. The UBRD system

primarily detects complete rail breaks by using a propagating guided wave mode with

energy concentrated in the head of the rail.

Currently, there are plans to upgrade the system to include defect detection and loca-

tion before the occurrence of a complete break. To successfully implement the concept,

a thorough understanding of how the various propagating modes interact with welds and

different types of damage is required. A numerical study by Long and Loveday [19] has

been conducted to investigate the types of damage that can be detected by using differ-

ent propagating modes. Four candidate modes suitable for long range propagation were

considered in their study. Long and Loveday found out that a symmetric mode with
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1.1. BACKGROUND 2

energy concentrated in the head of the rail (shown in Figure 1.1, and denoted the ’head

mode’) can be employed to distinguish between various cracks in the head of the rail and

thermite welds; whereas a mode with energy concentrated in the web of the rail (shown

in Figure 1.1, and denoted ’the web mode’ in this study) is suitable for detecting welds

and damage in the web of the rail. A piezoelectric ultrasonic transducer that effectively

excites the head mode was developed and investigations were conducted experimentally

on a new rail track by using a pulse-echo transducer array set-up [22]. The transducer

array was found to allow for long range propagation of the head mode and was thus

working effectively. A thermite weld was detected at a distance of 790m from the array

[22], on a new rail track.

Figure 1.1: The propagation of the head and web modes in a rail track.

Since a transducer suitable for exciting the head mode has been developed, there is

now a requirement to develop a transducer to effectively excite the web mode.

The study of guided waves is complicated as there are many different modes of prop-

agation in a wave guide. A thorough understanding of how multiple modes propagate

independently, and interact with defects and geometrical features is therefore essential.

An introduction to the theory and application of guided waves is presented in the text-

book of Rose [29]. Theoretical models of simple wave guides like rods, beams and plates

has been explained, but no attention has been given to complex wave guides such as
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1.1. BACKGROUND 3

rail tracks. Theoretical modelling has some limitations and may thus fail to predict all

aspects of the solution, especially when the analysis geometry gets complex. To avoid

such limitations, it is therefore necessary to follow a numerical modelling approach.

To date, various numerical modelling techniques for guided waves have been presented

in the literature. Examples of such techniques includes the finite element method, the

finite difference method, the boundary element method and the Semi-Analytical Finite

Element (SAFE) method [8, 12, 13, 32]. Many of the numerical modelling techniques are

inefficient due to their computational demand. For example, to model wave propagation

using the traditional finite element method, a complete three-dimensional geometry of

the waveguide structure has to be modelled for a significant portion of the length of the

waveguide. The required cost of computation is thus very high, and increases propor-

tionally with the size or length of the waveguide and the frequency of operation. More

over, the complexity of the problem increases as care has to be taken for the wave reflec-

tions from the boundaries of the wave guide. One way to do this is to include absorbing

boundary conditions at the ends of the model. However, the computational inefficiencies

still remain. These computational inefficiencies are amplified when multiple analyses are

to be conducted as is required during the optimal design of transducers. The SAFE

method has recently become widely adopted for studying wave propagation due to its

reliability [9, 23] and efficiency [1]. In the SAFE method, only a 2D cross-sectional mesh

of a waveguide is employed, while the length terms are treated analytically. The method

is therefore attractive due to its improved computational efficiency in particular when

optimal transducer design is considered, as we will explore in this study.

Numerous work on ultrasonic guided waves in rail structures using the SAFE method

has been presented by a number of authors. Gavric [12] and Hayashi [14] studied the

dispersion characteristics of a rail waveguide while work on the vibration of a supported

rail was conducted by Li et al. [18]. A method for modelling the excitation of guided

waves by a piezoelectric transducer was proposed by Loveday [20, 21]. The method

employs a 3D traditional finite element mesh of the transducer and attaches it to a 2D

SAFE mesh of the waveguide through coincident finite element nodes. An improved

version of the method, (referred to as SAFE-3D in this study) which allows for the

attachment of the transducer to the waveguide model through non-coincident nodes was

later proposed by Loveday and colleagues at the CSIR. In this study, the advantages of

using the SAFE-3D method are explained. The method is thus employed to design a

piezoelectric transducer to strongly excite the web mode. The transducers used in the

UBRD system are resonant transducers designed to transfer significant energy to the

rail to achieve long range operation. It is therefore important to correctly capture the

dynamics of the transducer in the analysis. The SAFE-3D method allows for this.
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1.2. MOTIVATION 4

To ensure that the maximum energy is transferred into the web mode, the transducer

design needs to be optimized. A formal design optimization procedure is outlined by

Arora [2]. In design optimization, an objective function quantifying the performance

of a design as a function of input variables is required. For the design problem in this

paper, the objective function is known, however it is not practical to compute directly

as it is implicit. Taking note that multiple analyses will be required, the computation

of objective function and sensitivities will be very expensive. Furthermore, difficulty

may be experienced when dealing with noisy numerical functions. The use of gradient-

based optimization methods is therefore not feasible and appropriate methods need to

be employed to successfully model the objective. By employing the response surface

based method, a meta-model of the objective function can be constructed through a

Latin Hypercube Design of Experiments (DoE), which requires SAFE-3D analyses at the

sampled points. The capability of using SAFE-3D in DoE with many sampling points

makes the SAFE-3D method highly attractive due to its computational efficiency.

1.2 Motivation

The UBRD system primarily detects complete breaks by using the head mode. For

the system to prevent rail breaks, cracks need to be detected (before the occurrence of

complete breaks) and distinguished from reflections from other discontinuities like welds

in the rail. Previous studies have demonstrated that the head mode can help to detect

weld reflections at long distances. Based on numerical work, it is believed that exploiting

the web mode would allow us to effectively detect defects in the web of the rail and could

also help to distinguish between reflections from welds and cracks.

1.3 Problem Statement

It is required to design a piezoelectric transducer that can strongly excite the rail web

mode at the operational frequency of the UBRD system.

1.4 Objectives

The main objectives of this study are:

� To determine the strengths and weaknesses of the selected numerical modelling

approach in predicting the response of waveguides to excitation. The response to

an applied point load and to the excitation by piezoelectric transducers will be

studied.
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1.5. SCOPE OF WORK 5

� To use the SAFE-3D numerical modelling method and optimization techniques to

design a piezoelectric transducer to excite a mode with energy concentrated in the

web of the rail.

� To manufacture the transducer and experimentally validate the modelling approach.

1.5 Scope of Work

To complete this study, the following tasks were carried out:

� The SAFE method was implemented in MATLAB. The code was used to study

a forced response problem where guided waves in the rail were excited by a point

load.

� The forced response problem was also modelled in ABAQUS, for comparison to the

SAFE results and to verify the correct implementation of the method.

� The SAFE-3D method which had already been implemented in MATLAB by the

CSIR was adopted to model the excitation of guided waves using a transducer, and

the results obtained were validated by experimental measurements.

� A response surface-based optimization process that employed a Latin hypercube

sampled design of experiments was implemented in MATLAB. A total of 500 SAFE-

3D analyses in the design space were required to develop the response surface.

Gradient based optimization on the response surface was used to find the optimal

transducer design.

� The optimum transducer design for the web mode was manufactured, and experi-

mental measurement was performed to validate the design.

1.6 Overview of Dissertation

Chapter 2: Guided wave modelling using the SAFE method

A brief introduction to the SAFE method is presented, followed by a thorough explanation

of the formulation of the method. Thereafter, the SAFE method is adopted to study the

free vibration characteristics of a rail and the rail web mode forced response problem,

which is also studied using ABAQUS to verify the SAFE results. The chapter also

presents the limitations of the SAFE method and possible strategies to help counteract

such limitations.
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1.6. OVERVIEW OF DISSERTATION 6

Chapter 3: Modelling of a Piezoelectric Transducer Attached to a Wave Guide

Using the SAFE-3D Method

The modelling of a piezoelectric transducer using the traditional finite element method is

first presented. By employing the 3D finite element transducer model and the 2D SAFE

model of the rail from Chapter 2, the SAFE-3D method is then thoroughly explained.

Finally, the method is applied to predict the excitation of the web mode using an available

transducer, and experimental measurements are used to validate the SAFE-3D results.

This chapter is based on the work presented at the 42nd Annual Review of Progress in

Quantitative Nondestructive Evaluation.

Chapter 4: Design Optimization of a Piezoelectric Transducer to Excite

Guided Waves in a Rail Web

A brief introduction to design optimization is first presented. A formal optimization

formulation for the design of a rail web transducer is then presented in detail. Thereafter,

a response surface method with a Latin Hypercube sampled DoE (that required SAFE3D

analyses at the sampled points) is employed to construct a meta-model of the objective

function of the transducer design. A Nelder-Mead optimization algorithm is then used

to find an optimal transducer design on the response surface. This chapter is based on

the work to be presented at the 10th South African Conference on Computational and

Applied Mechanics, which will be published in the conference proceedings.

Chapter 5: Manufacturing and Validation of the Optimal transducer design

The optimal transducer design from Chapter 4 was manufactured. Experimental mea-

surements were performed on a rail segment to validate the predicted performance of the

optimal transducer design.

Chapter 6: Conclusions and Recommendations

The conclusions and recommendation are presented in Chapter 6. The suggestions for

future work are also stated.
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CHAPTER 2

Guided Wave Modelling using the

Semi-Analytical Finite Element Method

Modelling the propagation of stress waves in long structural members can be per-

formed efficiently by using the SAFE method. The method can be used to provide

a thorough understanding of the various modes of propagation in a waveguide.

In this Chapter, the concept of guided wave modelling using the SAFE method is

introduced and implemented to compute the propagation in a rail.

2.1 Introduction

SAFE is a 3D analysis technique that only requires a 2D cross-sectional mesh of the wave

guide. The method is based on the assumption that the displacements of a point in a

waveguide are functions of position and time. The displacement, strain and stress fields

are interpolated over the waveguide cross-section, while the variation along the length is

treated analytically. The highly reduced computational cost and the absence of boundary

reflections makes the SAFE method very attractive. Displacements at various distances

can be computed without additional effort being required. One limitation of the SAFE

method is that it requires the cross-section of the waveguide to be constant through out

its length, and thus extend with only straight edges.

2.2 SAFE formulation

The SAFE formulation presented in this section follows that of Hayashi [14].
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2.2. SAFE FORMULATION 8

2.2.1 Governing relations

An infinite elastic wave guide with an arbitrary cross-section in the xy − plane is con-

sidered, as shown in figure 2.1. The cross-section is constant and thus extends along the

z − direction with straight edges.

Figure 2.1: Infinite wave guide with arbitrary cross-section, [21].

The displacement, strain and stress vectors for a point on the cross-section of the

wave guide are respectively defined as:

u = {u, v, w}T (2.1)

ε = {εxx, εyy, εzz, γxy, γyz, γxz}T (2.2)

σ = {σxx, σyy, σzz, τxy, τyz, τxz}T (2.3)

For a wave propagating along the z − direction, the displacement fields in the x, y and

z directions are expressed in complex exponential form [14], respectively as:

u(x, y, z, t) = u(x, y)e−j(kz−wt) (2.4)

v(x, y, z, t) = v(x, y)e−j(kz−wt) (2.5)

w(x, y, z, t) = w(x, y)e−j(kz−wt) (2.6)

where κ is the wave number in rad/m, w is the circular natural frequency in rad/s

and the parameter t denotes the time.

From the definition of strain, equation 2.2 is expanded as:
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2.2. SAFE FORMULATION 9

ε =



∂u
∂x
∂v
∂y
∂w
∂z

∂u
∂y

+ ∂v
∂x

∂v
∂z

+ ∂w
∂y

∂u
∂z

+ ∂w
∂x


(2.7)

After substituting equations 2.4 to 2.6 into 2.7, the strain can be decomposed into terms

that are respectively independent and dependent on the wave number κ:

ε =





∂u
∂x
∂v
∂y

0
∂u
∂y

+ ∂v
∂x

∂w
∂y
∂w
∂x


− jk



0

0

w

0

v

u




e−j(kz−wt) (2.8)

The stress field on the element is computed from the constitutive relation as:

σ = cε (2.9)

where c is the 6× 6 elasticity tensor given by:

c =
E

(1 + ν)(1− 2ν)



1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1−2ν
2

0 0

0 0 0 0 1−2ν
2

0

0 0 0 0 0 1−2ν
2


(2.10)

The property E is the Young’s Modulus and ν is the Poison’s ratio of the material.

2.2.2 Variational form

Neglecting external and body forces, it can be shown that using Hamilton’s principle and

assuming a time harmonic dependence, the variational form is given by [32, 31]:

ˆ
V

δεT · σdV − ω2

ˆ
V

ρδu · udV = 0 (2.11)

where ρ is the mass density, and δε and δu are variations of the strain and displacement

respectively. Damljanovic and Weaver [9] showed that with the assumptions of equations
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2.2. SAFE FORMULATION 10

2.4 to 2.6, the variation of the displacement is:

δuT = δu(x, y)T ej(kz−ωt) (2.12)

2.2.3 Finite element interpolation

For each element e on the wave guide cross-section, the displacement at any point is

evaluated by interpolating the nodal displacement vector {U e} with the displacement

shape function matrix N.

u(x, y, z, t) = N(x, y) {U e} e−j(κz−ωt) (2.13)

The interpolation is performed over the cross-section, and the length term is treated

analytically.

Following the notation of Hayashi [14], equation 2.8 can also be expressed as:

ε =

[
Lx

∂

∂x
+ Ly

∂

∂y
+ Lz

∂

∂z

]
u (2.14)

where

Lx =



1 0 0

0 0 0

0 1 0

0 0 0

0 0 0

0 0 1


,Ly =



0 0 0

0 1 0

0 0 0

1 0 0

0 0 1

0 0 0


and Lz =



0 0 0

0 0 0

0 0 1

0 0 0

0 1 0

1 0 0


(2.15)

Now substituting equation 2.13 into the strain-displacement relation in 2.14 leads to:

ε = [LxN,x + LyN,y − jkLzN] {U e} e−j(kz−wt)

= [B1 − jkB2] {U e} e−j(kz−wt) (2.16)

where

B1 = LxN,x + LyN,y (2.17)

B2 = LzN (2.18)

N,x and N,y are the derivatives of the shape function matrix with respect to x and y

respectively. The shape function matrix and its derivatives are presented in Appendix A.
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2.2. SAFE FORMULATION 11

2.2.4 Displacement and strain variations

The variation of the displacement field in the x, y and z directions can be derived from

equation 2.12 as:

δu = δu(x, y)ej(κz−ωt) (2.19)

δv = δv(x, y)ej(κz−ωt) (2.20)

δw = δw(x, y)ej(κz−ωt) (2.21)

Now using the definition of the strain-displacement relation in equations 2.7 and 2.8,

the variation of strain is expressed as:

δε =





∂δu
∂x
∂δv
∂y

0
∂δu
∂y

+ ∂δv
∂x

∂δw
∂y
∂δw
∂x


+ jk



0

0

δw

0

δv

δu




ej(kz−wt) (2.22)

Expressed in terms of the coefficient matrices Lx, Ly and Lz as defined in 2.15, the

strain variation becomes:

δε =

[
Lx

∂

∂x
+ Ly

∂

∂y
+ Lz

∂

∂z

]
δu (2.23)

Using displacement shape functions, the nodal displacement variation is interpolated

through the relation:

δu(x, y, z, t) = N {δU e} ej(κz−ωt) (2.24)

Now substituting equation 2.24 into 2.23 leads to:

δε = [LxN,x + LyN,y + jkLzN] {δU e} ej(kz−wt)

= [B1 + jkB2] {δU e} ej(kz−wt) (2.25)

The transpose of the strain variation is given by:

δεT = {δU e}T [B1 + jkB2]
T ej(kz−wt) (2.26)
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2.2. SAFE FORMULATION 12

2.2.5 Equation of Motion

Using equations 2.9, 2.24 and 2.26, the first term of the variational statement in equation

2.11 is expanded as:

ˆ
V

δεT · σdV = {δU e}T
ˆ
V

[B1 + jκB2]
T c [B1 − jκB2] dV {U e}

= {δU e}T
ˆ
V

[
BT

1 cB1

]
− jκ

[
BT

1 cB2

]
+ jκ

[
BT

2 cB1

]
+ κ2

[
BT

2 cB2

]
dV {U e}

= {δU e}T
ˆ
V

[
BT

1 cB1

]
− jκ

[
BT

1 cB2 −BT
2 cB1

]
+ κ2

[
BT

2 cB2

]
dV {U e}

= {δU e}T
[
K11 − jκ (K12 −K21) + κ2K22

]
(2.27)

where

K11 =

ˆ
V

BT
1 cB1dV (2.28)

K12 =

ˆ
V

BT
1 cB2dV (2.29)

K21 =

ˆ
V

BT
2 cB1dV (2.30)

K22 =

ˆ
V

BT
2 cB2 (2.31)

Using equations 2.13 and 2.12, the second term of equation 2.11 is expanded as:

−ω2

ˆ
V

ρδuT · udV = −ω2 {δU e}T
ˆ
V

ρNTNdV {U e}

= −ω2 {δU e}T M {U e} (2.32)

where

M =

ˆ
V

ρNTNdV (2.33)

The variational statement now becomes:

{δU e}
[(

K11 − jκ (K12 −K21) + κ2K22

)
− ω2M

]
{U e} = 0 (2.34)

Since {δU e} is arbitrary, the equation of motion is:

[(
K11 − jκ (K12 −K21) + κ2K22

)
− ω2M

]
{U e} = 0 (2.35)
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2.2. SAFE FORMULATION 13

The matrices K11, K22 and M are all symmetric, while the K12 and K21matrices are

non-symmetric, making the entire system in 2.35 non-symmetric.

2.2.6 Solution of Free Vibration Problem

The guided wave solution to the free vibration problem is obtained by solving equation

2.35. The eigen-solution of the system may be solved for selected values of the wave

number κ or the natural frequency ω, where either ω2 or κ is computed as the eigen-

value. Once the eigen-solution is available, the waves supported by the waveguide can be

determined.

Eigenvalue problem in ω2

When ω2 is the eigenvalue of the problem, it is possible to solve the problem for selected

values of κ that may be real, purely imaginary or complex. However, the former is

commonly used since it recovers propagative waves that transport energy. The following

text explains this.

If real values of κ are selected, equation 2.35 will be a real valued eigenvalue problem.

The eigenvalues (ω2) and corresponding mode shapes (ψ) will thus be real in nature, and

the supported waves will be propagative. Propagative waves transport energy through the

length of the waveguide. If κ is positive, the direction of propagation is forward, and for a

negative κ the direction of wave propagation is backward. For a zero wave number, some

eigen-values will be zero, corresponding to rigid body modes, while non-zero eigen-values

correspond to cut-on frequencies.

For purely imaginary values of κ, the corresponding eigen-values and eigenvectors

will be purely imaginary, [12]. The resulting wave forms are exponentially decaying near

fields, and do not transport any appreciable mechanical energy, [12].

For complex values of κ, the eigen problem will be complex. The elastic wave will

exponentially decay during propagation if the real and imaginary components have the

same sign, otherwise, the wave will exponentially increase in magnitude while propagating

[23].

Eigenvalue problem in κ

If the frequency is set and the wave number κ is now selected as the eigenvalue, equation

2.35 is rearranged as:
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2.2. SAFE FORMULATION 14

[A− κB]

{
U

κU

}
=

{
0

0

}
(2.36)

where

A =

[
K11 − ω2M 0

0 −K22

]
and B =

[
j(K12 −K21) −K22

−K22 0

]
(2.37)

The eigen problem in equation 2.36 is a non-symmetric complex valued problem. A

complete set of modes (forward and backward propagating; exponentially decaying and

exponentially increasing; and exponentially decaying and increasing while propagating)

supported by the wave guide is now recovered.

2.2.7 Solution of Forced Vibration Problem

For a waveguide subjected to an external force F , the equation of motion in 2.36 now

becomes:

[A− κB]

{
U

κU

}
=

{
F

0

}
(2.38)

The solution to the forced response problem can be obtained by first taking the spatial

Fourier transform of equation 2.38, [8, 20]. Thereafter, the solution to the resulting

governing equation which is in the κ domain is written as an expansion in terms of

eigenvectors, and finally the solution in the z domain is obtained by taking the inverse

Fourier transform, [8].

The response of a waveguide at a distance z from the excitation point is therefore

given by :

U(z) =
3N∑
r=1

αrψr (2.39)

where ψr is the eigenvector of mode r, and the term αr is the modal amplitude

evaluated as:

αr(z) = −j ψTr F

ψTr Bψr
e−jκrz (2.40)

For a waveguide model with N degrees of freedoms, the eigen-solution in 2.36 results in

6N eigenvalue-eigenvector conjugate pairs. The solution in 2.39 is then computed from

the 3N eigen values which are forward propagating, consisting of real and imaginary

modes.
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2.3. FREE VIBRATION CHARACTERISTICS OF A RAIL 15

2.3 Free Vibration Characteristics of a Rail

The method described in Section 2.2 was implemented in MATLAB. The implementation

followed that of Hayashi [14] and was performed as part of an independent study.

To compute the eigenvalues and associated vibrational mode shapes (eigen vectors) for

a selected frequency range, equation 2.36 is adopted. The waveguide under consideration

is a UIC60 rail modelled as an isotropic material with properties listed in Appendix B.

The cross-section of the rail has a complex geometry which is symmetrical about the

vertical axis. The 2D SAFE mesh of the rail cross-section is depicted in Figure 2.2. The

model is discretized using fully integrated 4 noded quadrilateral elements. To achieve

accurate results, the mesh was generated by following the rule of thumb of using at-least

10 elements per wavelength at maximum frequency of interest.

Figure 2.2: SAFE mesh of the rail

In guided waves, the expression in equation 2.36 is known as a dispersion relation.

Dispersion is a phenomenon that describes how the speed of wave propagation in a

medium varies with the natural frequency and the wave number. A wave form is said to

be dispersive if the speed of wave propagation is dependent on the frequency, and thereby

also dependent on the wave number. If the speed is independent of the frequency and

the wave number, the wave form is said to be non-dispersive. Three types of dispersion

curves used are the wave number plotted against frequency, the phase-velocity and group-

velocity also plotted against the frequency axis.

Phase velocity is the velocity at which the phase of a wave mode with a particu-

lar frequency component travels. For the nth propagating mode, the phase velocity at

frequency ω and wave number κ is expressed as:
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2.3. FREE VIBRATION CHARACTERISTICS OF A RAIL 16

vp,n =
ω

κn
. (2.41)

Group velocity is the velocity at which the overall wave packet travels along the

waveguide. By definition, group velocity is expressed as:

vg,n =
dω

dκn
(2.42)

Equation 2.42 can be evaluated by following the conventional approach or employing

the theoretical formulae derived by Hayashi [14]. The conventional approach would re-

quire the solution of the eigen value problem to be sorted according to different modes

of propagation as adjacent frequency points will be required to compute 4ω/4κn. The

tracking of modes can be performed by following the sorting algorithm explained in [20],

however the process becomes complicated when the modes cross each other or change

from one form to another. The theoretical expression does not require the modes to be

sorted. It is obtained by differentiating equation 2.35 with respect to frequency [5], and

is given by:

vg,n =
1

2ω

ψTn (K12 −K21 + 2κnK22)ψn
ψTnMψn

(2.43)

The dispersion curves of the rail model are plotted in Figure 2.3. The curves show

all the modes that are real and forward propagative below 50kHz, with the web mode

highlighted in red.
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2.3. FREE VIBRATION CHARACTERISTICS OF A RAIL 17

(a) Wave number

(b) Phase velocity (c) Group velocity

Figure 2.3: Dispersion curves of the rail with the web mode highlighted in red (a) Wave
number, (b) Phase velocity and (c) Group velocity

The phase velocity plot clearly shows that the web mode and three other modes are

propagative for all excitation frequencies. These waves are said to have a zero cut-on

frequency. The cut-on frequency is the frequency corresponding to a zero wave number.

As the excitation frequency is increased, more wave modes start to propagate at their

respective cut-on frequencies. Below their cut-on frequencies, the modes are non-real and

are called evanescent modes [12].

The dispersion curves show that at low frequencies of propagation, the modes are

highly dispersive as their phase and group velocities are constantly changing with fre-

quency. However as the frequency becomes higher the modes become stable and thereby
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2.3. FREE VIBRATION CHARACTERISTICS OF A RAIL 18

less dispersive. It is seen from the curves that at 30kHz the web mode has a small dis-

persion. This characteristic makes the web mode a good candidate for defect detection

since around this frequency and also at higher frequencies the velocity is almost con-

stant indicating that the nature of the wave is subjected to almost a constant change

with frequency. The mode shape plots showing the evolution of the web mode at several

frequency points support this, Figure 2.4.

(a) f = 10kHz, κ = 34.5rad/m (b) f = 15kHz, κ = 52.88rad/m(c) f = 20kHz, κ = 66.55rad/m

(d) f = 25kHz, κ = 80.0rad/m(e) f = 30kHz, κ = 91.28rad/m (f) f = 35kHz, κ = 102.35rad/m

Figure 2.4: Web mode at different frequencies

Figure 2.4 shows that at 10kHz the web mode is not yet fully developed as an unac-

ceptable fraction of energy is distributed to the foot and head of the rail. From 10kHz

to 20kHz, a sudden change in the distribution of energy is noticed. The foot and head

sections start to undergo very small displacements while the web section continue to ex-

perience high displacements. At 25kHz, the foot and head contain only a very small

fraction of the wave energy which decreases gradually with an increase in frequency. At

35kHz the web mode is fully developed and the energy in the foot and head is hardly

observed.
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2.4. FORCED RESPONSE OF A RAIL WEB MODE 19

This section has demonstrated that the web mode is a good candidate for long range

propagation and defect detection in the web at f & 30kHz. In Section 2.4 it will be

demonstrated that although performing the analysis at higher frequencies helps to avoid

dispersion, it comes with a disadvantage of many modes of propagation being excited.

This means that there is a possibility that an excitation of the web mode at higher

frequencies might lead to a large portion of energy being transmitted to other modes of

propagation.

2.4 Forced Response of a rail Web mode

The web mode was identified in the previous section. The plots illustrated that the mode

is characterised by a horizontal movement of the web section, with the head and the foot

subjected to almost no displacement. To excite the web mode, a horizontal point load is

applied to a node at the centre of the web as shown in Figure 2.5.

Figure 2.5: SAFE model of the rail subjected to a point load

The SAFE method is sensitive to the unrealistic modelling of the waveguide as un-

damped. The method can yield unstable results when the cut-on frequencies of propa-

gating modes are excited. The effect of cut-on frequencies can sometimes be eliminated

or reduced by adding damping to the waveguide model [5, 20], by filtering out the cut-on

frequency points where the phase velocity curve become pseudo-vertical or alternatively

by simply avoiding resonance frequencies and performing analyses at resonance-free fre-

quency regions. In the implementation of the method, it was assumed that the waveguide

is undamped. In this study, the third option is selected. It is thus critical to first deter-

mine resonance-free frequencies of analysis so that realistic results can be obtained. To

achieve this, the rail web is excited with a uniform point load for all frequencies below
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2.4. FORCED RESPONSE OF A RAIL WEB MODE 20

45kHz. Plotted in Figure 2.6 is the response of the rail (at the excited degree of free-

dom) per unit load as a function of frequency. The cut-on frequencies of all the modes

propagating in this range are shown in the figure. The cut-on frequencies were solved

from equation 2.35 for κ = 0.

Figure 2.6: Frequency spectrum of the rail

Figure 2.6 shows that the frequency spectrum has peaks at certain frequencies. The

figure shows that many of these resonance peaks correspond to cut-on frequencies of

the anti-symmetric modes which we believe were excited by the point load. At higher

frequencies, above 35kHz, too many peaks are noticed. Some of the peaks (for instance,

the first peak after 35kHz) do not correspond to any cut-on frequency point. This

now raises a question like “If it is not a cut-on frequency resulting in this resonance

behaviour then what is it?”, and calls for more research work on this topic. A number of

frequency ranges suitable for the excitation of guided-waves can be identified from Figure

2.6. Some of these frequencies have a wide bandwidth (i.e at approximately 15-27kHz),

whereas others have a narrow bandwidth (i.e at approximately 33-36kHz).

To now illustrate the significance of first determining resonance free-frequencies for

the undamped case, the forced response problem of the rail web is studied at frequencies

around 24kHz and 30kHz respectively. The rail is forced with a 10.5 cycle Hanning

windowed tone burst centred respectively at 24kHz and 30kHz. The two excitation

signals are plotted in the time and frequency domains in Figure 2.7.

To evaluate the accuracy of the SAFE results, the forced response problem was also

solved in ABAQUS explicit. The ABAQUS model is as depicted in Figure 2.8. The force

and receiver points are located in the middle of the model away from the free-ends to

avoid reflections from the boundaries.
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2.4. FORCED RESPONSE OF A RAIL WEB MODE 21

(a) Time domain (b) Time domain

(c) Frequency domain (d) Frequency domain

Figure 2.7: Excitation signals at (a) & (c) 24kHz and (b) & (d) 30kHz centre frequencies

Figure 2.8: ABAQUS model of the forced response problem

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



2.4. FORCED RESPONSE OF A RAIL WEB MODE 22

The results obtained from SAFE and ABAQUS are compared in Figure 2.9. The

responses were computed at a distance of z = 1m away from the excitation point.

(a)

(b)

Figure 2.9: Response of the rail under a point load excitation at (a)24kHz and (b)30kHz

The results for 24kHz excitation show that within a period of 1.2ms, only one wave

packet was detected at the receiver point. This suggests that when excited at this fre-

quency, the web mode is excited and propagates along the rail while other modes are not

excited. The correlation between SAFE and ABAQUS in Figure 2.9a is good. Only a

slight difference in the response amplitude is encountered.

When the rail is excited at 30kHz, the results from ABAQUS and SAFE are differ-

ent. The SAFE results predict that immediately after excitation, the rail web is already

experiencing wave motion 1m away from the source. This prediction is obviously not

realistic since a wave form must travel for some time before reaching the receiver point.

The prediction from ABAQUS that the web mode takes approximately 0.4ms to arrive

at the source location is acceptable. SAFE was able to predict the web mode, however

the response amplitude is now over estimated since the unrealistic component is added
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2.5. CONCLUSION 23

to the response. The existence of the unrealistic component is due to the excited reso-

nance frequencies just after 30kHz in Figure 2.6. The response of the rail plotted in the

frequency domain in Figure 2.10 explains this clearly. The frequency response is smooth

for 24kHz excitation while it contains some resonance peaks for 30kHz excitation.

(a) (b)

Figure 2.10: Response signals in the frequency domain at (a)24kHz and (b)30kHz

An illustration of the web mode propagating through the rail at 24kHz is shown in

Figure 2.11.

Figure 2.11: Web mode propagation at 24kHz excitation - ABAQUS

2.5 Conclusion

The purpose of this chapter was to introduce the SAFE method and use it to study a

forced response problem of the web mode while highlighting one of its drawbacks. The
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2.5. CONCLUSION 24

web mode was identified as a propagative mode with energy concentrated in the web of

the rail. The mode is highly dispersive at lower frequencies and become less dispersive

as the frequency increases. The forced response problem revealed that under the as-

sumption that the waveguide model is undamped, the resonance frequencies (associated

with cut-ons) yield unrealistic results when excited. Good frequencies of analysis were

therefore identified, one in the vicinity of 24kHz and the other around 35kHz. It was

demonstrated that when an undamped analysis is performed within the good frequency

regions, the SAFE method and ABAQUS yield similar results indicating that the method

was correctly implemented and is accurate.

The main goal of this study is to design a piezoelectric transducer that operates at

the operational frequency of the UBRD system, which is 35kHz. Since this operational

frequency falls within a good frequency region of analysis, it can be deduced that the

cut-on effects can be avoided without having to implement the other methods mentioned

in Section 2.4 to counteract the resonance problem.
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CHAPTER 3

Modelling of a Piezoelectric Transducer

Attached to a Wave Guide Using the

SAFE-3D Method

It was demonstrated in the previous chapter that the SAFE method can be trusted

if correctly implemented and when the analysis is carried out in the resonant-free

frequency regions for no damping assumption. In this chapter, the SAFE method

together with the traditional finite element method are employed in a recently

developed method called SAFE-3D. In the SAFE-3D method, the wave guide,

which is a rail track in this study, is modelled using a 2D SAFE mesh and the

piezoelectric transducer is modelled using 3D finite elements. The objective of

this chapter is to introduce the SAFE-3D method to the reader and verify that

the method accurately predicts the excitation of guided waves by a transducer.

An available transducer is used to study the excitation of guided waves in the rail

web at the operational frequency (35kHz) of the UBRD system.

3.1 Modelling of a Piezoelectric Transducer

3.1.1 Piezoelectricity

Piezoelectricity refers to a phenomenon whereby a material generates an electric potential

when subjected to mechanical stress, or conversely, the material undergoes mechanical

deformation due to an applied electric field [16]. These two reversible effects are re-

spectively referred to as the direct and indirect piezoelectric effects [25]. A piezoelectric

material have both mechanical and electrical properties.
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3.1. MODELLING OF A PIEZOELECTRIC TRANSDUCER 26

The piezoelectric effect is assumed to be linear, and occurs only in anisotropic mate-

rials. The constitutive equations governing the direct and indirect piezoelectric effect are

respectively given by [27]:

D = eS + εSE

T = cES− etE (3.1)

where the mechanical variables are the stress vector T and the strain vector S, and the

electrical variables are the dielectric displacement vector D and the electric field vector

E. The matrix cE is the stiffness of the material under constant electric field, e is the

piezoelectric constant matrix and εS is the electrical permittivity under constant strain.

The superscript t denotes a transposed matrix.

Piezoelectric ceramic materials are orthotropic. Polling the material will result in

the piezoelectric becoming transversely isotropic, with a rotational symmetry around the

direction of polarization [33]. When the polling is in the z− direction (33 direction), the

equations in 3.1 are expanded as:

 D1

D2

D3

 =

 0 0 0 0 e15 0

0 0 0 e24 0 0

e31 e32 e33 0 0 0





S1

S2

S3

S4

S5

S6


+

 εS11 0 0

0 εS22 0

0 0 εS33


 E1

E2

E3

 (3.2)



T1

T2

T3

T4

T5

T6


=



cE11 cE12 cE13 0 0 0

cE21 cE22 cE23 0 0 0

cE31 cE32 cE33 0 0 0

0 0 0 cE44 0 0

0 0 0 0 cE55 0

0 0 0 0 0 cE66





S1

S2

S3

S4

S5

S6


−



0 0 e31

0 0 e32

0 0 e33

0 e24 0

e15 0 0

0 0 0



 E1

E2

E3

 (3.3)

where cE66 = 1
2

(
cE11 − cE12

)
.

Equation 3.2 is the basis for the formulation governing a piezoelectric sensor while

equation 3.3 is that for an actuator [25].
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3.1. MODELLING OF A PIEZOELECTRIC TRANSDUCER 27

3.1.2 Finite Element Modelling

In this study, the 3D traditional finite element method is used for modelling the piezo-

electric transducer. The formulation of the method will only be briefly explained in this

section since the method is well known. A detailed explanation can be found in the

textbooks of [7, 35] and also in references [26] and [10].

The finite element dynamic equations governing the piezoelectric behaviour can be

derived from Hamilton’s principle by employing the strain energy, kinetic energy, electro-

static energy and the virtual work relations; such that the electrical as well as mechanical

contributions are included in the formulation. The transducer model is discretized by

using fully integrated 8-noded brick elements referred to as hexahedral elements. Each

node has three mechanical degrees of freedom (displacement) and one electrical degree

of freedom (electric potential/voltage). The element displacement field and electrical po-

tential are related to the corresponding nodal values by using shape functions, while the

strain and electric fields are respectively related to the nodal displacements and potential

by the shape function derivatives [26].

The dynamic equations for a piezoelectric medium are given by:[
Kuu − ω2M Kuφ

KT
uφ Kφφ

]{
u

φ

}
=

{
f

q

}
(3.4)

where Kuu is the mechanical stiffness, Kuφ is the electromechanical matrix and Kφφ

is the electric capacitance matrix. The variables u and φ are respectively the mechanical

displacement and electric potential, while f and q are the applied mechanical force and

electrical charge, respectively.

A finite element model of a typical piezoelectric transducer considered in this Chapter

is shown in Figure 3.1.

Figure 3.1: A typical piezoelectric transducer
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3.2. THE SAFE-3D METHOD 28

The transducer consist of two steel masses sandwiched between a piezoelectric stack.

To use the transducer for guided wave excitation, actuation is achieved by imposing a

voltage across the electrodes of the piezoelectric stack. The nodes on the transducer

referred to as the interface nodes, are highlighted in the Figure. Interface nodes are the

nodes on the front face of the transducer, used to attach the transducer to a waveguide

model in the SAFE-3D method.

3.2 The SAFE-3D Method

The SAFE-3D method employs a 2D cross-sectional mesh of the waveguide and a 3D mesh

of the transducer. The transducer is attached to the desired location on the waveguide

model through the interface nodes, with the aim to excite specific modes of propagation.

The modelling of guided wave excitation in the SAFE-3D method encompasses five

key procedure steps. With the two sets of system matrices computed from SAFE and 3D

FEM available, it is first convenient to compute the finite element nodal interaction matrix

between the SAFE model and the 3D model, where the transducer is in contact with the

waveguide. This is significant particularly in the case of non-coincident nodes, where the

interaction matrix is required to effectively interpolate and map model data between the

waveguide and transducer models. Secondly, the receptance matrix, and therefore the

dynamic stiffness of the waveguide section in contact with the transducer are constructed.

This procedure step entails computing the response of the rail contact degrees of freedom

to unit excitation forces. Modal amplitudes of waves propagating though the waveguide

due to the unit excitation forces are also computed at this stage. Thereafter, the dynamic

stiffness of the waveguide is added to the stiffness of the transducer in order to impose

the boundary condition constraint experienced by the transducer due to the waveguide

structure. The transducer harmonic response problem can then be solved to determine

the displacements of the interface nodes and the actual forces applied to the waveguide.

In the fourth key procedure step, the computed modal amplitudes due to unit forces are

scaled with the actual forces. Finally, the waveguide time response at the desired output

distance from the point of excitation can be constructed. A process flow chart of the

SAFE-3D method analysis procedure is presented in Figure 3.2. The details of the key

procedure steps are presented next.
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3.2. THE SAFE-3D METHOD 29

Figure 3.2: Process flow chart of the SAFE-3D method

The SAFE model has nodes only at the plane z = 0, whereas the transducer has nodes

at different z−planes since the model is in 3D. The unique z−planes of the 3D interface

nodes (in contact with the SAFE mesh) are identified. Treating the length terms in the

SAFE model analytically, the corresponding SAFE interface nodes interacting with each

of the 3D interface nodes are identified. A nodal interaction matrix of dimension [hÖl]

(where h and l are respectively the number of 3D and SAFE interface nodes), consisting

of components ranging between zero and one is calculated. The number one signifies a

complete interaction between a 3D node and the SAFE node, meaning that the nodes are

coincident. The interaction matrix is computed using the isoparametric shape functions.

The response of the waveguide to applied loads is computed using equation 2.39. The

applied forces and displacement response are related to the waveguide receptance matrix

Rw through:

Uin = RwFin (3.5)

where Uin and Fin respectively denotes the displacement and input forces at the

SAFE interface DOFs. The dynamic stiffness matrix Dw of the waveguide is defined as

the inverse of the receptance matrix, and is given by:

DwUin = Fin (3.6)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



3.3. WEBMODE EXCITATIONWITH A TRANSDUCER USING THE SAFE-3DMETHOD30

For a sandwich transducer, the contact face contain only mechanical properties. The

mechanical dynamic stiffness of the transducer is thus extracted from equation 3.4 as:

[DT ] {u} =
[
Kuu − ω2M

]
{u} = {f} (3.7)

The dynamic stiffness of the transducer can be partitioned into DOFs in contact with

the rail (in) and DOFs not in contact (n). The dynamic stiffness of the rail experienced

by the transducer is interpolated to 3D values using the interaction matrix, and then

added to the dynamic stiffness of the transducer interface nodes:[
DT,nn DT,nin

DT,inn DT,inin + D̃w

]{
un

uin

}
=

{
fn

fin

}
(3.8)

where D̃w indicates that the waveguide dynamic stiffness is now mapped to the 3D

space.

Now to take into account the full electro-mechanical coupling in the transducer model,

the effective dynamic stiffness from equation 3.8 is substituted back in equation 3.4 for

[Kuu − ω2M ] and the unknown transducer displacements and actual interface forces are

computed for an applied electrical potential. The actual interface forces computed from

the 3D model are mapped to the SAFE model by employing the interact matrix, and

then used to scale the modal amplitudes of the waveguide. Finally, with the waveguide

model now subjected to the actual transducer forces, the response of the waveguide at

the desired location from the excitation point can be computed.

3.3 Web Mode Excitation with a Transducer using

the SAFE-3D Method

In this chapter, an available transducer (depicted in Figure 3.1) is attached to the web

section of the UIC60 profile rail through non-coincident nodes. The piezoelectric disk is

subjected to a linear voltage field varying from 0V at the face in contact with the back

mass to 1V at the other face. The interface nodes, through which the transducer model

will be attached to the rail model, are highlighted in Figure 3.1. With the interface nodes

constrained, the static deformation of the transducer is as depicted in Figures 3.3.
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3.3. WEBMODE EXCITATIONWITH A TRANSDUCER USING THE SAFE-3DMETHOD31

(a) Undeformed and de-
formed bodies

(b) Displacement field

Figure 3.3: Displacement deformation of the transducer.

The application of the SAFE-3D method to excite the web mode using a transducer

is illustrated in Figure 3.4.

Figure 3.4: Excitation of the web mode using a piezoelectric transducer in the SAFE-3D
method.
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3.4. VALIDATION OF THE SAFE-3D METHOD 32

The piezoelectric transducer is attached to the web of the rail. The identified unique

z-planes corresponding to the 3D interface nodes are shown in a hypothetical SAFE-3D

model in the Figure.

For the analyses in this Chapter, the frequency ranges at 24kHz and 35kHz in Figure

2.6 were selected. To avoid the effect of cut-on frequencies by performing the analysis

within the narrow bandwidth at 35kHz, a tone burst signal with a high number of cycles

was used for this frequency. The transducer was respectively driven with a 24kHz and

35kHz centre frequency Hanning windowed tone burst signals with 10.5 and 17.5 cycles,

respectively.

3.4 Validation of the SAFE-3D method

The validate the accuracy of the SAFE-3D method, experimental measurements were car-

ried out in the lab. The transducer was bonded to the web of an available 5m long UIC60

rail segment, located at a distance of 1.5m from one end. The experimental measurement

was carried out using a 17.5 cycle hanning-windowed tone-burst at 35kHz excitation.

The unit amplitude voltage signals across the 4 piezoelectric disks were amplified to a

peak amplitude of 20V olts. The horizontal displacement response at the centre of the

rail web was measured at a 1.5m distance from the transducer location. A Polytec PSV-

400 laser vibrometer was used to perform this experimental measurement. The output

displacement was then scaled by a factor of 1/80 to compare with modelling results from

SAFE3D, where a 1V peak amplitude excitation signal was used.

The results obtained respectively at 24kHz and 35kHz excitations are compared to

SAFE-3D results in Figure 3.5.
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3.5. CONCLUSION 33

(a)

(b)

Figure 3.5: Response of the rail excited by a piezoelectric transducer driven at (a) 24kHz and
(b) 35kHz.

The results for the two analyses demonstrate an exceptional agreement between

SAFE-3D and the experimental measurements. The selected frequency ranges are there-

fore good for guided wave modelling of the undamped rail.

3.5 Conclusion

This chapter has demonstrated the analysis of a piezoelectric transducer attached to a rail

waveguide using the recently developed SAFE-3D method. In the SAFE-3D method, a

2D SAFE mesh of the waveguide as well as a 3D FEM mesh of a piezoelectric transducer

were employed. The interaction between the two models was computed, and used to map

and interpolate model information between SAFE and 3D FEM models. The analysis

was performed at good frequencies to avoid the effect of cut-on frequencies as damping

was not added to the waveguide model. The results obtained from the SAFE-3D method

were found to be in good agreement with experimental measurements. The validity of

results reveals that for an undamped model, the method yield good results when the cut-

on frequency points are avoided in the analysis. The method can therefore be employed

in the design process of a piezoelectric transducer for exciting the web mode. The optimal
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design of the transducer using mathematical optimization is described in Chapter 4.
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CHAPTER 4

Design Optimization of a Piezoelectric

Transducer to Excite Guided Waves in a Rail

Web

As it was verified in the previous chapter, the SAFE-3D method is accurate and

therefore suitable for use in designing the piezoelectric transducer required for

the UBRD system. As already stated, the transducer will be integrated into the

system so as to upgrade its functionality to detect cracks in the web section of

the rail. The major requirement of the design is for the transducer to strongly

excite the web mode at a frequency of 35kHz. This implies that the performance

of the transducer needs to be optimized at this frequency. This chapter aims to

find the optimized design of the transducer by using numerical modelling, Design

of Experiments (DoE) and optimization methods.

4.1 Introduction

Design optimization is the process of searching for an alternative design with the highest

achievable performance by maximizing desired factors and minimizing cost and other

undesired factors. The optimization of a design is an iterative process and primarily

requires the evaluation of many alternatives subjected to different input parameters until

an acceptable design is obtained within a defined domain. The three possible methods

that can be adopted to evaluate multiple designs and optimize performance are the:

1. trial and error field or laboratory optimization,

2. trial and error numerical optimization, and

35
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4.1. INTRODUCTION 36

3. rigorous numerical optimization.

Trial and error optimization methods are traditional approaches that involve conducting

a series of experiments by changing the input parameters one at a time, until there is no

further improvement of a design performance measure. In a case where the design space is

multidimensional, these approaches can be ineffective, especially when the experimenter

lacks experience, as the manner in which the input parameters are varied is not formally

controlled. Changing one parameter at a time can make it difficult to identify the real

optimum, in particular when the problem is multi-modal as different starting points may

result in different solutions. A serious drawback with trial and error methods is that they

can be costly and time consuming to carry out. The field and laboratory experiments

may accumulate manufacturing costs as every trial design needs to be manufactured.

Another point worth noting is that conducting field and laboratory experiments can be

time consuming as the process is carried out by man and cannot be automated.

On the other hand, the trial and error numerical optimization method replaces phys-

ical experiments by simulated experiments. Hence the evaluation of a trial design is

automated but the decision of which trial design to consider next is still carried out by

the designer. The process is still driven manually although each iteration is more effi-

cient. Trial and error methods if not carefully conducted may not provide conclusive

information about the design and its influential factors. Trial and error approaches are

intuitively driven, and that may severely influence the direction based on the design

engineers experience.

Rather than using laborious trial and error methods, the best alternative is to adopt

a carefully conducted numerical optimization approach that is properly and consistently

formulated. By formalizing the design approach we are not only better enabled to pro-

vide a desired answer, but our understanding of the problem may be enhanced. In the

formal numerical optimization method, the input design parameters are not only varied

simultaneously but also systematically over the design domain. An advantage of this

method is that the process can be automated to free the design engineer’s time. If the

method is well implemented in a computing system, it is not subject to any human bias,

and better results can be achieved due to a high level of control of input parameters and

the strictly imposed conditions.

Proper formulation of a design optimization problem is critical as it determines the

set of designs to choose from as well as quantifies the differences between designs. The

optimization formulation procedure can be divided into five main steps [4]:

Step 1: Problem description. The statement describes the objectives of the design

problem and the requirements to be met.
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4.1. INTRODUCTION 37

Step 2: Data and information collection. Information on factors such as material

properties, performance requirements and resource limits need to be gathered.

Analysis procedures and tools must also be identified.

Step 3: Definition of design variables. A set of variables describing the design

system.

Step 4: Optimization criterion. A design performance measure used to quantita-

tively compare different designs and designate one as better than another.

Such a criterion is referred to as an objective function.

Step 5: Formulation of constraints. The restrictions placed on the design that

determines the set of designs available as candidate solutions. If we forget

to include a critical constraint in the formulation, the optimum solution will

most likely violate it. Also if we have too many constraints, or if they are

inconsistent, there may be no solution.

The optimization formulation for designing a rail web transducer is presented next.

4.1.1 Optimization formulation for the design of a rail web

transducer

Step 1: Problem description The goal is to design a piezoelectric transducer to

excite ultrasonic guided waves in the web section of a rail. The transducer should be

of a sandwich type and have a structural configuration as illustrated in Figure 4.1. The

resonator of the transducer should consist of four piezoelectric ceramic disks and two

sets of brass electrodes connecting surfaces of the same potential. The system will be

assembled together using a pre-stressed bolt.

(a) Side view (b) Isometric view

Figure 4.1: The structural configuration of a typical piezoelectric transducer
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4.1. INTRODUCTION 38

It is required that the transducer must strongly excite a rail web mode when driven

by a 35kHz centre frequency hanning-windowed tone burst signal. Thus, the objective

is to maximize the amount of energy that the transducer can transmit to the web mode

under the proposed operational frequency conditions.

Step 2: Data and information collection

Material properties The front and back sections of the transducer each comprise

a steel mass. The material properties are tabulated in 4.1.

Table 4.1: Material properties of the transducer

Property Value

Steel
Youngs’ Modulus, [GPa] 210

Density, [kg/m3] 7800
Poison’s Ratio 0.3

Properties for Type IV PZT are listed in Appendix B.

Geometrical properties For this study, the main interest in the design problem

is to evaluate the effect of the sizes of the steel masses on transducer performance. It

is for this reason that the piezoelectric stack (as highlighted in Figure 4.1) will be kept

constant as none of these components are regarded as design variables. The dimensions

of the piezoelectric stack are not disclosed due to intellectual property considerations at

the CSIR.

Resource limits To minimise the cost of resources required for the transducer, the

choice of materials used was based on what was available at the CSIR. A Type IV PZT

was selected amongst the available types of piezoelectric ceramics at the CSIR. Table B.2

in Appendix B list the material properties of PZT IV. A Type IV PZT was selected due

to its good piezoelectric properties. It has the highest charge constant d, and the lowest

voltage constant g, making its relative dielectric constant high. The dielectric constant

is a measure of the ability of the material to store electrical energy in an electric field.

The relative dielectric constant is defined as:

K =
e

ε0
=

d

gε0
, (4.1)

where e is the permittivity of the material and ε0 is the permittivity of free space.
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Analysis procedure and analysis tools To analyse the performance of trial trans-

ducer designs, the SAFE3D method will be employed. The 3D FEM transducer design

model will be attached to the web of the 2D SAFE rail model. A hanning-windowed

tone burst voltage signal centred at 35kHz will be used to drive the transducer model.

The web mode response of a horizontal degree of freedom at the web centre will then be

evaluated and used to estimate the amount of energy that the transducer transmitted

to the web mode. The analysis of the combined 3D FEM transducer and 2D SAFE rail

models was discussed in detail in Chapter 3.

Step 3: Definition of design variables To allow for the use of an available transducer

housing, a decision was made to keep the diameter of the front mass constant, at a size

compatible with the housing. The diameter of the front mass shall thus be fixed at 17mm.

The design problem therefore contains only three design variables; the thickness of the

front mass (FM), the thickness of the back mass (BM) and the diameter of the back

mass. Although fixing the diameter of the front mass poses a limitation on the design

problem, it provides notable advantages which include: reduced problem complexity and

improved computational cost and time.

Step 4: Optimization criterion When a piezoelectric transducer is attached to a rail

to excite the rail’s guided waves, all the modes of propagation supported by the rail can

be excited. The magnitude with which each mode is excited is dependant on the location

of the transducer on the rail and described by a factor referred to as the modal amplitude

(discussed in Chapters 2 and 3). The modal amplitude captures the dynamics of the

transducer very well when the actual energy put into the rail is not scaled, which is our

situation. The modal amplitudes of the web mode for three typical transducer designs

are plotted in Figure 4.2a. It is seen from the figure that the function is not well behaved

as it has abrupt bends at certain frequencies due to the effect of resonance as explained

in Section 2.4. Although the function captures the dynamics of the transducer well, it is

not advised to be used as an optimization criterion as it is not smoothly continuous.

From the modal amplitudes, the frequency response function of the rail can be com-

puted by summing all the propagating modes of interest based on their modal participa-

tion factors. Since the interest of the design problem is on the web mode, the frequency

response function must be based on only the web mode for performance characterisation

purposes. The frequency response function for the three typical transducer designs are

plotted in Figure 4.2b. The function is scaled by a tone burst signal used to drive the

transducer model. The time history of the web mode can be computed by taking the

inverse Fast Fourier transform of the frequency response function.
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(a) Modal Amplitude of the web mode

(b) Frequency response

(c) Time history

Figure 4.2: The (a) modal amplitude, (b) frequency and (c) time response of the horizontal
degree of freedom at the rail centre when excited by different transducer models

The objective of the design is to transfer the maximum energy possible into the web

mode. If the web mode is strongly excited by a transducer, the peak amplitudes of the

time history and the frequency response function will be large. An optimization criterion

must be represented by a single value that will indicate whether a design is good or not

depending on the objective statement. For a particular design, the optimization criterion

can be taken as the area under the frequency response function. The frequency response
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function is the best to be used for evaluating the optimization criterion as it is nicely

smooth and continuous. Furthermore the area below the curve is well defined and can

be easily used to clarify that the transducer operational frequency requirement has been

satisfied.

The resultant of the area under the frequency response function is velocity. Velocity

is an appropriate quantity to use as an optimization criterion an it is representative of

the structure’s kinetic energy. From the finite element method energy relations, kinetic

energy is defined by:

Ek =
1

2
u̇TMu̇ (4.2)

where u̇ is the velocity of the structure and M is the mass matrix. Equation 4.2 shows

that the square of velocity is directly proportional to energy. A high velocity measure of

the web mode will therefore practically mean that a large amount of energy was put into

the web mode.

The main interest for the design is to maximize the energy of the web mode only.

Therefore, the area under the frequency response function of the web mode is repre-

sentative of the energy in the web mode at the required operational frequency of the

transducer. This makes the area under the windowed frequency response function a

suitable optimization criterion for our transducer design.

Step 5: Formulation of constraints The bound constraints of the three design

variables were determined in order to define the design space. The design space was

defined based on the following factors which are controlled by the cost of materials and

the transducer housing to be used:

� The diameter of the back mass should not be smaller than the diameter of the

piezoelectric stack.

� The diameter of the back mass should allow room for electrical connectors within

the housing.

� The overall length of the transducer should not be longer than the length of the

housing.

The bound constraints are therefore as follows:

4mm ≥ FM thickness ≥ 10mm,

4mm ≥ BM thickness ≥ 10mm and
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12.05mm ≥ BM diameter ≥ 15.5mm.

The transducer design problem is now well and completely formulated. In the next

section we start off by analysing the nature of the problem, and then select an optimization

method suitable for the problem.

4.1.2 Selection of the optimization method

From the transducer design optimization problem formulation discussed in section 4.1.1,

the following points can be made about the nature of the problem:

� The dimensionality of the problem is low. There are only three design variables.

� The problem is of a practical nature. The SAFE3D method can be used to ac-

curately predict the system response to various design variables. However, the

SAFE3D model is computationally costly, therefore conducting a large number of

evaluations can be costly.

� Depending on the optimization approach used, gradients may be required. The

objective function depends implicitly on the design variables and the gradient of

the objective function is not readily available. In addition, it needs to be repeated

should the optimization criterion change. Alternatively, the gradients can be com-

puted numerically using finite differences, which may increase the number of eval-

uations significantly.

At this point, no information is known about the nature of the optimization criterion

(response surface) with regard to its continuity and smoothness on the design domain.

To effectively use gradient based optimization methods, the objective function needs to

be continuous and smooth. Should we conduct re-meshing of the transducer at any point

of the optimization run, we run the risk of introducing numerical discontinuities due to

abrupt changes in the discretization error. Considering the factors discussed thus far,

it is clear that gradient based optimization methods on the actual function may not

be suitable and practical for this problem. Non-smoothness and discontinuities can be

handled by evolutionary approaches such as particle swarm optimization but that will

drastically increase the computational cost of the problem in addition to running the risk

of not having properly converged solutions.

Arora [3] suggest that to solve practical optimization problems, it is useful to develop

a simplified function for the system that is explicitly related to the design variables. Such

an explicit function is referred to as a meta-model. That is, it is a computationally
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efficient model that approximates the computationally expensive original model. Meta-

models can be generated using a method known as the response surface method. The

first step in the response surface method involves conducting experimental observations

by evaluating the original model at a number of selected sample points. This is referred

to as Design of Experiments (DoE).

DoE involves evaluating the behaviour of a system by constructing a carefully selected

set of experiments distributed over the design space, with all the input design parameters

varied simultaneously. DoE has a number of advantages making the response surface

method reliable:

� High level of Control of variables. The experimental sampling points are

carefully selected.

� Compatible with problems below 100 dimensions. The method is useful and

efficient in multidimensional parameter spaces.

� Effortless collection of data. Data can be collected via independent computer

runs at a number of selected input settings (model’s internal parameters, initial

conditions and boundary conditions).

� Controllable computational cost. Once the experiment is set up, the evaluation

process can be automated. Multiple computing resources can be used in parallel

to conduct the experiment, thus making it computationally feasible to sample the

design space densely.

� Informative output data. The output experimental data may help to clearly

understand the model behaviour, provide clarity on what is a good design, and also

help to make thorough decisions. Available methodologies can be used to analyse

the collected experimental data in an effective way.

After experimental design, the final step in the response surface method is the approx-

imation of the meta-model explaining the design problem. The response surface of the

meta-model is constructed by interpolating a special function through experimental data.

According to Fasshauer [11], a convenient and common approach to solving a scattered

data interpolation problem is to assume that the interpolant is a linear combination of

certain radially symmetric non-linear basis functions that are centred around each of the

experimental data sites. This is referred to as Radial Basis Function (RBF) interpolation.

Once the response surface of the meta-model has been constructed, it is used in place

of the original model in the optimization process. The process steps that will be adopted

in this study to optimize a transducer design are summarised in Figure 4.3.
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Figure 4.3: Process steps to optimize a transducer design using the Response Surface Method

4.2 Response Surface Method

4.2.1 Design of Experiments

The first step in DoE is to specify the factors (variables) influencing the experiment in

which we simulate the performance of transducers within specified ranges. Thereafter,

a set of transducer designs to be simulated within the specified ranges of the design

variables need to be carefully selected. When conducting investigations, it is not viable

to collect data for the entire sampling frame. As a general rule, it is known that the larger

the sample size of simulated transducers the better we can approximate the transducer

responses of transducers not in the samples that were simulated. However, each simulated

response is time consuming and the fewer samples we use the faster we can start the

optimization. As a result, a subset of data from the sampling frame that is representative

of the entire design domain need to be carefully and systematically collected. The better

the sampling the less points are required to accurately capture the characteristics of the

system.

One way to select a set of random transducer designs that are appropriately dis-

tributed is to use the Latin Hypercube sampling (LHS) method over the defined ranges

of the design variables. In their respective studies, Yin et.al [34], Janssen [15] and Saliby

and Pacheco [30] recommended the use of the LHS method by demonstrating the supe-

riority of the method over the widely used Monte Carlo sampling method. According to

these sources, the Monte Carlo sampling method has a low sampling efficiency and needs

a large number of sampling points. On the other hand, the LHS method has a better

sampling efficiency and can render the same accuracy with less sampling points.

The LHS method involves a full stratification of the sampled distribution, with a

random selection inside each stratum [30]. To sample an s− dimensional space with N

data points, the sampling space is divided into a series of strata by dividing the range of

each variable into N equally sized intervals. The N sampling points are then randomly

distributed over the sampling frame such that each stratum contains only one data point.
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An example of a 2-dimensional LHS space sampled with 5 data points is illustrated in

Figure 4.4. The variables are treated independently and each row/column is randomly

sampled with one point only. The Matlab built-in function, lhsdesign.m, was used in

this study to generate an LHS space.

Figure 4.4: LHS sampled space with N=5

After identifying which transducer designs to simulate, each one needed to be simu-

lated using SAFE3D to obtain their respective performances. This completes the com-

puting of the simulated data. The data can now be used to construct a response surface

that allows us to approximate the performance of transducers of which the performance

is not known.

4.2.2 Construction of the Response Surface using Radial Basis

Functions

Given a finite set of randomly scattered transducer designs and corresponding transducer

performances (objective function values), we want to find a function f̃ (meta-model) that

is an accurate representation of the simulated performances (original model). This will

allow us to predict the response of designs other than the sampled designs. For this study,

we consider interpolation meta-models. This is the meta-model that exactly matches the

simulated performances for the transducer designs from the DoE. Mathematically, as

stated in [11], the formulation for the response surface method is defined as :

Given a sample of data (xj, f(xj)), j = 1, ..., N , with xj ∈ Rs, find a (continuous)

function f̃(x) such that f̃(xj) = f(xi) for j = 1, ..., N .

x is the design vector that defines each transducer and f is a function representing

the original model i.e. the simulated transducer performance. In this case s = 3 since
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we have 3 design variables and N denotes the number of data points in the DoE sample.

We choose the RBF response surface for our meta-model f̃ using a LHS sampled DoE.

The RBF method is a numerical analysis technique widely used for multivariate func-

tion interpolation. RBFs are used in a number of applications such as in the numerical

solution of partial differential equations, data mining, machine learning and Kriging meth-

ods in statistics [24]. They have a capability to handle randomly distributed data points

with improved consistency as compared to previous methods [24].

The RBF response surface f̃ is approximated by a linear combination of non-linear

basis functions that are chosen. The basis functions are radially symmetric about their re-

spective centre points hence appropriate scaling of the data is important. The interpolant

function for the meta-model is constructed as:

f̃(x) =
N∑
j=1

cjϕ (‖ x− xj ‖) , (4.3)

where cj are the coefficients of interpolation, ϕ is the basis function and the points

xj are the DoE transducer design points that are also chosen as the centre for each basis

function.. The coefficients of interpolation are computed by requiring interpolation at

the DoE sample points f̃(xj) = f(xj), and given by:

c = A−1f , (4.4)

with A defined as:

Aij = ϕ (‖ xi − xj ‖) . (4.5)

Some common radial basis functions used includes the Gaussian, multi-quadric, in-

verse multi-quadric and the Matern RBFs. In this study we choose the Gaussian RBF

for it’s smoothness. Smooth basis functions are ideal for the constructing of smooth

functions to be used in optimization, as it makes more optimization strategies available

to choose from. The Gaussian basis function is given by:

ϕ (x) = e−(ε‖x‖)
2

. (4.6)

Radial basis functions are characterized by a scalar parameter ε, known as the shape

parameter. The shape parameter greatly influences the shape of the basis function. A

higher shape parameter results in a spatially compact RBF, where the influence of ε is

localized [11]. As ε→ 0, the basis function spatial support becomes wider. The influence

of the shape parameter on the basis function is demonstrated in Figure 4.5.
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(a) ε = 5 (b) ε = 1 (c) ε = 0.5

Figure 4.5: The influence of the shape parameter on the basis function

The shape parameter plays a significant role in RBF interpolation as it controls the

accuracy and numerical stability of the interpolant function. It is therefore important

to carefully choose an appropriate shape parameter. A strategy known as leave-one-out

cross validation (LOOCV) is often used to compute the RBF shape parameter [28]. In the

LOOCV method, the given N data points are split into two sets. The first set consisting

of N − 1 data points is used to construct the interpolant while predicting the point in

the second set (the remaining data point) used to compute an error for the interpolation.

This procedure is repeated for all combinations of leaving out a point i.e. N times. The

LOOCV error is then computed as the sum of errors squared:

LOOCV (ε) =
N∑
k=1

| f̃k (xk)− f (xk) |2 . (4.7)

xk is the validation point left out when computing the interpolant f̃k. The compu-

tation of the LOOCV error using equation 4.7 is very expensive as the computational

complexity is of order O(N4). To improve the computational cost, Rippa demonstrated

in [28] that equation 4.7 can be simplified to:

LOOCV (ε) =
N∑
k=1

| ck

A−1kk
|2 . (4.8)

The coefficients of interpolation ck and the diagonal of the interpolation matrix Akk

are computed using the full data set. Once A is computed the complexity becomes N as

the inverse of a diagonal matrix is O(N).
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4.2.3 The Response Surface for the Rail Web Transducer

4.2.3.1 DoE for Transducer Design

In RBF interpolation, the interpolant is usually associated with larger errors at and closer

to the edges of the design space. This is because the density of points along an edge is

lower than in the interior. To improve the accuracy of the response surface of the meta-

model at the bounds of the design space, it was decided to perform the interpolation by

also including transducer design points that lie outside the design space. A second larger

domain, which we refer to as the sampling space, was selected. The sampling space is an

enlarged design space that is used to improve the accuracy of the objective function at

the bounds of the actual space. The sampling space was chosen as follows:

1.5 ≥ x1 ≥ 12.5,

1.5 ≥ x2 ≥ 12.5 and

12 ≥ x3 ≥ 20.

Figure 4.6 is an illustration of the design space and the sampling space. The design

space fits inside the sampling space. The BM diameter could not be reduced to less

than 12mm because that would be less than the diameter of the stack, which would be

undesirable.

Figure 4.6: The design space and the sampling space

A good value of the shape parameter depends on the number and distribution of data

points used for RBF interpolation [28]. To demonstrate the effect of the number of data
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points N , three sets of data are considered. The sets respectively consist of 125, 250 and

500 Latin Hypercube sampled data points. The sampling procedure was carried out using

a built-in function in Matlab called lhsdesign.m. Figure 4.7 shows the three sets of DoE

data and their optimization criterion values computed using the SAFE3D method.

(a) N = 125

(b) N = 250 (c) N = 500

Figure 4.7: DoE transducer design points in the larger sampling space.

4.2.3.2 Minimization of the RBF shape parameter

The LOOCV error was computed by solving a 1D minimization problem of equation 4.8.

The procedure was implemented in Matlab using a built-in function fminbnd.m.

The predicted shape parameter values and their corresponding LOOCV errors nor-

malised with respect to the sample size N are reported in Table 4.2. It is evident that

an increase in the number of data points lead to an increase in optimal shape parameter

as expected, as the spatial support for a higher number of points can be more localized.

The LOOCV error shows that using a large sample size will lead to the accuracy of the

basis function improving.
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Table 4.2: Shape parameters and associated error values for N number of data points in RBF
interpolation

N ε LOOCV/N

125 3.4226 0.0133
250 7.0037 0.0086
500 9.8863 0.0024

Plotted in Figure 4.8 is the LOOCV/N error as a function of the shape parameter.

The results from Table 4.2 are also plotted on the figure using square markers. At

lower values of epsilon the error is high due to numerical instability associated with an

ill-conditioned A matrix. At higher values of epsilon the error increases as the basis

function support is too local resulting in a response that reduces to zero away from the

centre of the basis function. We chose the smallest epsilon that effectively minimised the

LOOCV error. The minimum epsilon implies that we prefer the basis function with the

widest spatial support, as it reduces the possibility of induced local minima in the meta

model. The optimal shape parameters in Table 4.2 are clearly in agreement with Figure

4.8.

Figure 4.8: The LOOCV error as a function of the RBF shape parameter

4.2.3.3 The Transducer Design Response Surface

The response surface predicted by RBF interpolation using 500 data points is plotted

in Figure 4.9. Within the design space, it was found that there are three categories of

transducer designs; those with the modal amplitude peak of the web mode at a frequency

of less than 35kHz, greater than 35kHz and at or approximately at 35kHz. As expected,

designs with the web modal amplitude peak closer to 35kHz are associated with high

function values, thereby indicating good performance at 35kHz.
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Figure 4.9: The predicted objective function

To get a clear visualization of the response surface, we look at the slice plots of the

function at different FM thicknesses in Figure 4.10. It is clearly illustrated from the slice

plots that the response surface contain more than one local maximum. The response

surface has high values at the boundary where tFM = 4mm. Moving from this boundary,

we see that the function values decreases until a front mass thickness of approximately

8mm is reached, and then start to increase as we move towards 10mm.

4.2.3.4 Validation of the predicted response surface

To evaluate the accuracy of the response surface values predicted by RBF interpolation,

27 design points arranged in the form of a grid over the sampling space were selected for

error analysis. The RBF predicted function values were compared to the function values

computed from the SAFE3D method. The error percentage associated with the selected

points are plotted in Figure 4.11 for the three data sets.
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(a) N = 125 (b) N = 250

(c) N = 500

Figure 4.11: The errors associated with the approximated response surface for different values
of N in the sampling space

It is seen from Figure 4.11 that the errors are high at the boundary of the sampling

space as compared to the interior. As expected the approximation errors decreases as

more data points are used in the response surface, thus improving the quality of the RBF

response surface.

Now to demonstrate the significance of using a sampling space to approximate the

response surface, we evaluate the accuracy of a number of points that are within the

design space. Figure 4.12 shows the errors associated with the design space. The errors

within the design space are significantly smaller as compared to those within the sampling

space.
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(a) N = 125

(b) N = 250 (c) N = 500

Figure 4.12: The errors associated with the approximated response surface for different values
of N in the design space

The response surface predicting the performance of transducer designs has been suc-

cessfully constructed. We are now ready to proceed with the optimization of the design.

In design optimization, we refer to the approximated response surface of the meta model

as the objective function for the design problem.

4.3 The Mathematical Design Optimization Model

Following the optimization formulation for the design of the rail web transducer in Section

4.1.1, the standard mathematical design optimization model is stated as follows:

Find a vector x = {x1, x2, x3}T of design variables to

Maximize the response of the rail web mode to piezoelectric transducer excitation

given by the objective function:

f(x) = A(x), (4.9)

subject to three inequality constraints:
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4 ≤ x1 ≤ 10,

4 ≤ x2 ≤ 10 and

12.05 ≤ x3 ≤ 15.5

with the design variables defined as:

x1 − FM thickness

x2 −BM thickness

x3 −BM diameter

The function f is the design objective function approximated using the response

surface. It denotes the energy transferred into the rail web mode by the piezoelectric

transducer.

The derivative-free Nelder-Mead minimizer was used. This optimizer is implemented

in fminsearch and is designed for multidimensional unconstrained non-linear minimiza-

tion problems. The constrained optimization problem presented is transformed to an

unconstrained problem by using the exterior penalty method to handle the constraints.

In the exterior penalty method, the unconstrained optimization problem is formed by

adding a penalty function to the objective function for each violated constraint. The

penalty function with appropriate penalty parameter enforces the searching algorithm to

remain feasible.

The unconstrained minimization problem for the Nelder-Mead minimizer is stated as:

Find a vector x = {x1, x2, x3}T of design variables to

Minimize the function:

Φ(x) = −f(x) + p1
∑
xi<LB

(xi − LBi)
2 + p2

∑
xi>UB

(xi − UBi)
2 (4.10)

where p1 and p2 are the penalty parameters for a design variable xi violating its lower

bound constraint LBi and its upper bound constraint UBi, respectively. Note that the

objective function is now multiplied by a negative sign since we are now dealing with a

minimization problem. We will refer to the problem as a maximization problem although

the minimization formulated problem is solved due to available optimization algorithms.
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4.4 Optimization of the Transducer Design Objec-

tive Function

4.4.1 The local optimum designs and the global optimum trans-

ducer design

In this section we discuss the designs associated with an optimum performance as pre-

dicted by the optimization algorithm. In optimum design, it is not always the case that

the design will converge to the global maximum when there exist more than one local

maxima. Convergence is usually driven towards one of the local maxima, depending on

the starting point of the algorithm. To capture all the local maxima in the objective

function, the optimization procedure was carried out 100 times with the starting points

randomly selected within the design space. Plotted in Figure 4.13 is a histogram of the

local optimum designs predicted from the 100 runs. Each bin in the histogram represents

the cost function value of a local optimal transducer, with the height of the bin indicating

the number of times that the optimizer converged to a local optimum with that function

value out of the 100 runs. The three sets of data points in RBF interpolation were all

considered for comparison.

Figure 4.13: The local optimum designs
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Figure 4.14: Local maximum designs

In Figure 4.14, the locations of the local optima are shown within the design space.

After careful consideration of Figures 4.13 and 4.14, the following observations need can

be made:

� For N=125, the function values of the local maxima ranges between 4.8-5.52. For

N=250 and N=500, we notice a similar trend of the local maximum function values.

They are all located more to the right of the histogram.

� For the three sets of data, N = 125, N = 250 and N = 500; a total of 8, 9 and

8 local maxima were respectively computed. Most of the local maxima found for

N=500, were also predicted for either N=125 or N=250.

� A single bin in the histogram may contain different transducer designs, for example,

bins K1, K8 and B2 respectively contain designs K1a and K1b, K8a and K8b and

B2a and B2b. A similar characteristic between different designs of the same bin is

the value of the objective function, implying that they have a similar performance.

For bins K1 and K8, it is observed that the designs have the same FM thickness

and the same size of the BM. On the other hand, for the designs in bin B2, the

thickness of the FM is different, and the dimensions of the BM seem to be close.
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4.4. OPTIMIZATION OF THE TRANSDUCER DESIGN OBJECTIVE FUNCTION58

� As reflected by the slice plots of the objective function in Figure 4.10, Figure 4.14

also suggest that there is an area of low performance at approximately tFM = 8mm.

Most of the predicted optimum designs are clustered at the boundaries of the FM

thickness, where the transducer designs are characterised by good performance.

� There exist a threshold on the BM thickness that an optimum design can have.

� The histogram indicates that there exist a global maximum with a function value of

5.6e− 8mHz, that was predicted in bins B9 and K8. It can be seen in Figure 4.14

that the designs B9 and K8b are the same, however due to computational errors,

the two predictions are slightly different.

For the three sets of data, the results for N=500 are more trusted as it was demonstrated

earlier in this section that the associated errors are lower. In Figure 4.15, the local

optimum designs are plotted on the slice plots of the objective function, with the K

designs labelled. It is seen that the local maxima found by the optimization algorithm

are in good agreement with the local maxima of the objective function.

(a) FM=4 (b) FM=5.21

(c) FM=5.74 (d) FM=10

Figure 4.15: The location of the local optimum designs at FM thicknesses associated with the
K designs
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4.4.2 Validation of the global optimum design

It was found from section 4.4.1 that there exist two global optimum designs; the K8a

and K8b designs, shown in Figure 4.16. RBF interpolation predicted that the perfor-

mance value associated with the two designs is approximately 5.6e − 8mHz. To verify

the accuracy of this prediction, the SAFE3D method was used. The results from RBF

interpolation and the SAFE3D method are compared in Table 4.3.

(a) Design K8a (b) Design K8b

Figure 4.16: The two best transducer designs found.

Design K8a Design K8b

FM thickness 4 4
BM thickness 7.6 9.1
BM diameter 13.8 12.3

RBF predicted performance 5.6114 5.6013
SAFE3D predicted performance 5.5968 5.5712

|%Error| 0.261 0.5403

Table 4.3: The global optimum designs.

It is evident from the table that the agreement between the RBF method and the

SAFE3D method is exceptionally good. The error percentage show that the prediction

for the K8a design was more accurate than that of the K8b design. The frequency

response functions and deformation plots at 35kHz for the two designs are compared in

Figures 4.17 and 4.18.
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4.4. OPTIMIZATION OF THE TRANSDUCER DESIGN OBJECTIVE FUNCTION60

Figure 4.17: The frequency response functions of the two global optimum designs

(a) K8a (b) K8b

Figure 4.18: Displacement deformation plots of the two best transducer designs.

The results show that although the two designs are different, their performance mea-

sures are almost equal and cannot be noticed. The K8a is selected as the best design as

the correlation between the two predictions is very good.

4.4.3 Interpretation of results

From the previous discussion, it was shown that there exist two different designs with

the same performance measure. Table 4.3 showed that the two designs have the same

FM dimensions but different BM dimensions. By further evaluating the geometrical

parameters of the two designs, it is found that the mass of their back masses are very close.
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The back mass of K8a design is 8.866×10−3kg while for the K8b design it is 8.434×10−3kg.

In Figure 4.19, constant back mass designs are evaluated for different geometrical designs

in the design space. It is evident that the constant mass contours matches those associated

with the response surface of the design problem. It is therefore concluded that the mass

of the back mass greatly influences the performance of a transducer. For the problem in

this study, a transducer performs very well if the back mass is approximately 8.5×10−3kg.

Figure 4.19: Transducer designs with constant back mass contours

The response surface of the design problem (Section 4.3.2) suggested the performance

of a design improves as a front mass thickness of 4mm was approached, hence our optimum

design was found to lie on the boundary of the design space. Now an interesting finding is

that if the flexibility of the problem was not constrained by the set FM thickness bound,

a design with a better performance than K8a would be predicted by the optimization

algorithm. The slice plots of the response surface in the vicinity of the K8a design in

Figure 4.20 reveal that there exists a plenty of designs outside the design space that

performs very well. In addition to the back mass, the front mass thickness is the second

factor that greatly influences the design performance.
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Figure 4.20: Slice plots of the response surface in the vicinity of the K8a design

In Figure 4.21 we evaluate the performance of six selected designs around the global

optimum (K8a) obtained by increasing and decreasing each of the design variables in-

dependently. The geometrical parameters of the 6 perturbed transducer designs are

tabulated in Table .

Figure 4.21: The performance of 6 selected designs around the K8a design
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4.5. CONCLUSION ON TRANSDUCER DESIGN 63

Design tFM tBM dBM Parameter change

1 3.94 7.6 13.8 4tFM = 60µm
2 4.08 7.6 13.8 4tFM = 80µm
3 4.00 7.48 13.8 4tBM = 120µm
4 4.00 7.63 13.8 4tBM = 30µm
5 4.00 7.6 13.83 4dBM = 30µm
6 4.00 7.6 13.72 4dBM = 80µm

Table 4.4: Six transducer designs obtained by changing each of the design variables of the K8a
design independently

The results show that the trend between SAFE3D predictions and the response surface

method predictions is similar. The two approaches suggest that the only way to improve

the design is to decrease the thickness of the front mass. The sensitivity of the design to a

parameter change increase as the tolerance increases. It is found that when a parameter

change is within 30µm the design is not too sensitive. A conclusion can be made from

the results that manufacturing errors within 30µm are acceptable.

4.5 Conclusion on transducer design

In this Chapter, a design optimization study was carried out to design a piezoelectric

transducer capable of exciting the rail web mode strongly when driven by a 35kHz

centre frequency hanning-windowed tone-burst signal. The optimization process was

carried out on the response surface of the meta-model approximated by first conducting

a design of experiments using the SAFE3D modelling method and thereafter fitting RBF

surfaces over the collected data. The accuracy of the meta model over the design space

was validated using SAFE3D and the computational errors were found to be within an

acceptable limit.

To search for a transducer design with an optimum performance, a gradient free op-

timization approach was followed, hence the response surface method was selected. Not

only did the gradient free optimization approach simplify the computational complexity

and cost, but it also helped to avoid possible function discontinuity issues. The opti-

mization algorithm predicted that there exist two global optimum designs, K8a and K8b.

The SAFE3D method justified that the response surface method predicted the perfor-

mance of the two designs very well. The K8a design was selected as the best design as

its percentage error was found to be the smallest.
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4.5. CONCLUSION ON TRANSDUCER DESIGN 64

This Chapter has demonstrated the usefulness of the response surface method when

solving practical design optimization problems. The method was found to be efficient

and reliable. Another notable aspect of optimizing using the response surface method

is that it does not only output an optimum design but also provide concrete modelling

results that can be converted to informative plots and used to attain a clear insight into

the system being explored prior to optimization.

In the following chapter (Chapter 5), the optimum transducer design (K8a) is manu-

factured and experimental measurement is used to verify the accuracy of the transducer

numerical model solved in SAFE3D.
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CHAPTER 5

Manufacturing and Validation of the

Optimum transducer design

A piezoelectric transducer capable of exciting the rail web mode optimally at a

frequency of 35kHz has been designed in Chapter 4 using design optimization

methods. Both the response surface and the SAFE3D methods predicted the same

objective function value for the optimum design. In this Chapter, the optimum

transducer design is manufactured and tested experimentally to validate the results

presented by the response surface method and SAFE3D.

5.1 Manufacturing of the optimum transducer

The optimum transducer design was referred to as design K8a in Chapter 4 and its

geometrical dimensions are tabulated in Table 4.3. The transducer uses a piezoelectric

stack that is readily available at the CSIR, as stated in Chapter 4. The front and backing

sections of the transducer are the only parts that need to be manufactured. A computer

aided design software was used to produce detailed engineering drawings of the design in

order to ensure clear communication with the manufacturing department at the CSIR.

In Figure 5.1, a computer aided design model of the actual transducer to be manu-

factured is shown with the SAFE3D model plotted alongside.
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5.1. MANUFACTURING OF THE OPTIMUM TRANSDUCER 66

(a) Isometric view of the ac-
tual design for manufac-
turing

(b) Side view of the actual
design for manufactur-
ing

(c) SAFE3D model

Figure 5.1: The optimal transducer

Comparing the actual design for manufacturing and the SAFE3D model, it is clear

that the two models have a number of differences. The following assumptions were made

in the SAFE3D model:

� The effect of the bolt is negligible.

� The front and backing masses do not contain any holes drilled through.

� The electrical voltage can be applied to the interface nodes between piezoelectric

disks, and therefore the brass electrodes need not be modelled.

The two important points worth noting regarding the actual transducer are as follows:

� A glue material was used to keep the piezoelectric ceramic stack with electrodes

together.

� An external flange was added to the front mass. The flange serves the purpose of

supporting the transducer when put in the housing.

The detail design of the front mass was controlled more by the transducer housing. Note

that the transducer housing is not presented in this work as it is not part of the scope.

The front mass was manufactured by machining a workpiece to the required profile using

a turning process. A hole was then drilled and threaded at the centre to fit an M3 bolt.
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5.1. MANUFACTURING OF THE OPTIMUM TRANSDUCER 67

(a) Isometric view (b) Side view

Figure 5.2: The front mass of the optimum transducer design

The back mass of the transducer was also machined using a turning process. A hole

was drilled and countersunk at the centre to allow for the bolt to remain flush with the

back mass surface.

(a) Isometric view (b) Side view

Figure 5.3: The back mass of the optimum transducer design

After the manufacturing of the required components, the components were sent to

the relevant sub-unit at the CSIR to assemble the transducer. Two brass electrodes were

used in the electrical unit to allow for electrical connection when driving the transducer

system. Each of the electrodes connect surfaces (on the piezoelectric ceramic) of the

same potential. One electrode serves as the reference or ground. The connection of the

electrical unit is shown in detail in Figure 5.4.
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5.2. TRANSDUCER RESONANCE AND ANTI-RESONANCE TEST 68

Figure 5.4: The connection of the brass electrodes to the piezoelectric ceramic disks

5.2 Transducer Resonance and Anti-resonance Test

After assembling the transducer system, the procedure that followed was to evaluate the

resonance and anti-resonance frequencies of the longitudinal mode. The resonance and

anti-resonance frequencies are computed by imposing appropriate boundary conditions on

the system. The resonance frequency is obtained under short circuit conditions, where the

voltage drop between the electrodes is set to zero, and the antiresonance frequencies are

obtained under open circuit conditions where the voltage drop is non-zero. A deformation

plot of the transducer under resonance frequency conditions is plotted in Figure 5.5, and

in table 5.1 the results obtained from the experimental test and the 3D FEM MATLAB

model are compared.

Figure 5.5: Transducer under resonance frequency conditions

It is clear that the transducer is in the longitudinal deformation mode as expected.

Under anti-resonance frequency conditions, the deformation mode is also found to be

longitudinal but at a different frequency.
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5.3. VALIDATIONOF THEOPTIMUMDESIGN USING EXPERIMENTALMEASUREMENT69

Resonance frequency, [kHz] Anti-resonance frequency, [kHz]

Test measurement 51.0 60.0
3D FEM 55.953 62.429

Table 5.1: The resonance and anti-resonance frequencies of the optimum transducer

Table 5.1 shows that the two approaches predicted different results. The frequencies

predicted by 3D FEM are higher compared to those obtained from the test measurement.

This deviation is believed to be due to the differences in the manufactured transducer

and the 3D model. The computed frequencies from 3D FEM are not fully trusted.

5.3 Validation of the optimum design using experi-

mental measurement

To help make a concrete conclusion regarding the manufactured transducer, an exper-

imental measurement evaluating the response of the guided waves propagating though

the rail track when excited by the transducer was performed.

The experimental measurement for the optimal transducer was conducted in the same

manner used for the experimental measurement of the old transducer in Section 3.4.

The experimental results are compared to SAFE3D results in Figure 5.6.

Figure 5.6: Response of the web mode when excited by an optimal transducer design.

The results demonstrate an exceptional agreement between SAFE-3D and the exper-

iment.
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5.4. CONCLUSION 70

5.4 Conclusion

Although the results from the resonance and anti-resonance frequency analyses in Section

5.2 are not trusted, the guided wave excitation results in Section 5.3 reveal that the

manufactured transducer can be trusted since the correlation to SAFE-3D results is very

good. The deviation of results in Section 5.2 calls for additional investigations regarding

the factors affecting results.
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CHAPTER 6

Conclusion and Recommendations

6.1 Conclusion

To upgrade the current version of the UBRD system, a piezoelectric transducer capable

of exciting the rail web mode optimally is required. The web mode was identified as a

forward propagating mode with energy concentrated in the web section of the rail. The

mode is characterised by a flexural movement of the web section, with the head and the

foot subjected to almost no displacement. At low frequencies of propagation, the web

mode is highly dispersive. The mode becomes stable and less dispersive as the frequency

gets higher. For f & 30kHz, the dispersion of the mode is small. This characteristic

makes the web mode a good candidate for defect detection since around this frequency

and also at higher frequencies the velocity is almost constant indicating that the nature

of the wave is subjected to almost a constant change with frequency.

The three objectives of this study were stated in Chapter 1. To conclude the study,

each objective is stated again in this Section, followed by the associated outcomes.

Objective 1: To determine the strengths and weaknesses of the selected nu-

merical modelling approach in predicting the response of waveguides to exci-

tation.

Modelling of guided waves using the SAFE method is very efficient compared to other

numerical modelling approaches. When correctly implemented, the method yields good

results. However, under the assumption that the waveguide model is undamped, the

method may yield unrealistic results due to cut-on frequencies. The effect of cut-on
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6.2. RECOMMENDATIONS 72

frequencies can be avoided by adding damping to the model, filtering out frequency

points associated with resonance behaviour, or by simply avoiding resonance frequencies

by performing analyses at resonance-free frequency regions.

The main goal of this study was to design a piezoelectric transducer with an optimal

performance at the operational frequency ( 35kHz) of the UBRD system. Since this op-

erational frequency falls within a good frequency region of analysis, the cut-on frequency

effects were avoided without having to implement any of the methods to counteract the

problem.

Objective 2: To use the SAFE3D method and optimization techniques to

design a piezoelectric transducer for exciting a mode with energy concentrated

in the web of the rail.

A response surface-based optimization procedure with a Latin Hypercube sampled de-

sign of experiments was followed. A total of 500 sample designs were evaluated using the

SAFE-3D method and then employed to construct the response surface of the objective

function. The objective function values predicted by the response surface at selected

designs outside the sample was found to be in good agreement with the function val-

ues when evaluated by the SAFE-3D method. A Nelder-Mead optimization algorithm

was then used to find an optimal transducer design on the response surface, and the

performance predicted by the response surface matched that computed from SAFE3D.

The good correlation between results indicate that the optimization procedure was

successfully implemented and carried out. This outcome demonstrated the capability

to automate the design of transducers for a particular rail cross-section and frequency

range. The ability to collect 500 design samples using SAFE-3D proves that the method

is computationally efficient and effective.

Objective 3: To manufacture the transducer and experimentally validate the

modelling approach.

The web mode excitation results obtained from the SAFE-3D method were found to be

in good agreement with experimental measurements. The validity of results reveals that

for an undamped model, the method yields good results when the analysis is carried out

at good frequencies.

The design method adopted in this study could therefore be used to automate the

design of transducers for other sections of the rail or other frequencies of operation.

6.2 Recommendations

The following future work is recommended:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



6.2. RECOMMENDATIONS 73

� Methods to counteract the unrealistic effects of cut-on frequencies should be inves-

tigated so that the SAFE-3D method can be used to design transducers for any

frequency range.

� The results obtained from the transducer resonance and anti-resonance evaluations

were found to be different between 3D FEM and the test measurement. Thorough

investigations on the factors that resulted in this deviation need to be carried out.

� Field measurements of the optimal transducer need to be conducted to evaluate the

performance of the transducer on a new rail with no cracks, and also on an old rail

with cracks. It it important that the transducer allows for long range propagation

of the web mode.
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[32] F. Treyssède. Elastic Waves in Helical Waveguides. Jorurnal of Wave Motion,

45(4):457–470, March 2008.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



BIBLIOGRAPHY 77

[33] J. Yang. An Introduction to the Theory of Piezoelectricity. Advances in Mechanics

and Mathematics. Springer US, 2004.

[34] J. Yin, W. Lu, X. Xin, and L. Zhang. Application of Monte Carlo sampling and

Latin Hypercube sampling methods in pumping schedule design during establishing

surrogate model. ISWREP 2011 - Proceedings of 2011 International Symposium on

Water Resource and Environmental Protection, 1:212–215, 2011.

[35] O. Zienkiewicz, R. Taylor, and J. Zhu. The Finite Element Method: Its Basis and

Fundamentals. Elsevier Science, 2005.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

© University of Pretoria 



APPENDIX A

Element shape functions - SAFE method

The nodal displacement field is interpolated using Lagrange shape function, given by:

N1 =
1

4
(1− ξ)(1− η)

N2 =
1

4
(1 + ξ)(1− η)

N3 =
1

4
(1 + ξ)(1 + η)

N4 =
1

4
(1− ξ)(1 + η) (A.1)

The shape function interpolating matrix is constructed as:

N =

 N1 0 0 N2 0 0 N3 0 0 N4 0 0

0 N1 0 0 N2 0 0 N3 0 0 N4 0

0 0 N1 0 0 N2 0 0 N3 0 0 N4

 (A.2)

The global coordinates of the element are expressed in terms of the natural coordinates

ξ and η as:

x =

{
x

y

}
=

4∑
i=1

Ni(ξ, η)

{
Xi

Yi

}
(A.3)

In expanded form:

x = N1X1 +N2X2 +N3X3 +N4X4 (A.4)

y = N1Y1 +N2Y2 +N3Y3 +N4Y4 (A.5)
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APPENDIX A. ELEMENT SHAPE FUNCTIONS - SAFE METHOD 79

To perform coordinate transformation between the natural coordinates and the global

coordinates, the Jacobian is used:

J =

[
∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

]
=

[
J11 J12

J21 J22

]
(A.6)

The Jacobian contains information about the size of the element. The determinant of

the Jacobian, is therefore used to relate the differential area of the element in the local

coordinates to the differential area of the element in the global coordinates.

j = det(J) = J11J22 − J12J21 (A.7)

The inverse of the Jacobian is computed by:

J−1 =
1

j

[
J22 −J12
−J12 J11

]
(A.8)

The components of the Jacobian in equations A.6 to A.8 are given by:

J11 =
1

4
(− (1− η)X1 + (1− η)X2 + (1 + η)X3 − (1 + η)X4)

J12 =
1

4
(− (1− η)Y1 + (1− η)Y2 + (1 + η)Y3 − (1 + η)Y4)

J21 =
1

4
(− (1− ξ)X1 − (1 + ξ)X2 + (1 + ξ)X3 + (1− ξ)X4)

J22 =
1

4
(− (1− ξ)Y1 − (1 + ξ)Y2 + (1 + ξ)Y3 + (1− ξ)Y4) (A.9)

The shape function matrix is derived with respect to the global coordinates:

N,x =
∂N

∂ξ

∂ξ

∂x
+
∂N

∂η

∂η

∂x
=

[
∂x

∂ξ

]−1
∂N

∂ξ
+

[
∂x

∂η

]−1
∂N

∂η
(A.10)

N,y =
∂N

∂η

∂η

∂x
+
∂N

∂ξ

∂ξ

∂y
=

[
∂y

∂η

]−1
∂N

∂η
+

[
∂y

∂ξ

]−1
∂N

∂ξ
(A.11)

where
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APPENDIX A. ELEMENT SHAPE FUNCTIONS - SAFE METHOD 80

∂N

∂ξ
=

 −(1− η) 0 0 (1− η) 0 0

0 −(1− η) 0 0 (1− η) 0

0 0 −(1− η) 0 0 (1− η)

(1 + η) 0 0 −(1 + η) 0 0

0 (1 + η) 0 0 −(1 + η) 0

0 0 (1 + η) 0 0 −(1 + η)

 (A.12)

∂N

∂η
=

 −(1− ξ) 0 0 −(1 + ξ) 0 0

0 −(1− ξ) 0 0 −(1 + ξ) 0

0 0 −(1− ξ) 0 0 −(1 + ξ)

(1 + ξ) 0 0 −(1 + ξ) 0 0

0 (1 + ξ) 0 0 −(1 + ξ) 0

0 0 (1 + ξ) 0 0 −(1 + ξ)

 (A.13)

Equations A.2, A.12 and A.13 can now be used to solve for the element matrices B1 and

B2 as in equation 2.17 and 2.18 of Chapter 2.
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APPENDIX B

Material properties

Young’s Modulus, [Gpa] 210
Density, [kg/m3] 7800
Poisson’s ration 0.3

Table B.1: Material properties of UIC60 Rail

Dielectric constants, [F/m]
εS11 2.298e− 8
εS22 2.298e− 8
εS33 3.532e− 8
Piezoelectric constants, [c/m2]
e31 −2.918
e32 −2.918
e33 23.416
e24 16.194
e15 16.194

Stiffness, [Gpa]
cE11 114.2
cE12 75.74
cE13 72.36
cE33 110.8
cE44 26.29
cE55 26.29
cE66 19.23

Density, [kg/m3]
ρ 7780

Table B.2: Material properties of Type IV piezoelectric ceramic
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APPENDIX C

Computation of the transducer resonance and

anti-resonance frequencies

The dynamic equations governing the piezoelectric behaviour are given by:

[Muu] {ü}+ [Kuu] {u̇}+ [Kuφ] {φ} = [f ] (C.1)

[Kuφ]T {u}+ [Kφφ] {φ} = −{q} (C.2)

where Muu is the mass matrix, [Kuu] is the mechanical stiffness matrix, [Kuφ] is the

piezoelectric stiffness matrix and [Kφφ] is the dielectric stiffness matrix. The mechanical

force and displacement are respectively defined by {f} and {u}, while the electrical charge

and potential are respectively defined by {q} and {φ}.
The system in C.1 and C.2 can be written in H-form as [17]:

[Muu] {ü}+ [Huu] {u̇}+ {Huφ}φ = [f ] (C.3)

{Huφ}T {u}+ {Hφφ}φ = −qp (C.4)

where

(C.5)

[Huu] = [Kuu]− [Kuφi ] [Kφiφi ]
−1 [Kuφi ]

T , (C.6)
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APPENDIX C. COMPUTATIONOF THE TRANSDUCER RESONANCE ANDANTI-RESONANCE FREQUENCIES83

{Huφ} =
([
Kuφp

]
− [Kuφi ] [Kφiφi ]

−1 [Kφiφp

])
[Ip] , (C.7)

Hφφ = [Ip]
T
([
Kφpφp

]
−
[
Kφiφp

]T
[Kφiφi ]

−1 [Kφiφp

])
[Ip] . (C.8)

In equations C.6 to C.8 the degrees of freedom on the piezoelectric material are parti-

tioned into those on the non-grounded electrode (p) and those which are on the internal

(i) and not on any of the electrodes. [Ip]
T =

[
1 1 1 ... 1

]
is a vector with length

equal to the number of degrees of freedom on the electrode with varying potential, and

qp is the charge induced on that electrode.

Assuming a harmonic time dependence, the resonance frequencies are found by setting

the mechanical force as well as the electric potential on the grounded and non-grounded

electrodes to zero. The eigenvalue problem for resonance frequencies is thus defined by:

(
[Huu]− ω2

r [Muu]
)
{ψr} = 0 (C.9)

where {ψr}are the eigenvectors corresponding to the resonance frequencies ωr.

To compute the anti-resonance frequencies, the we only set the mechanical force and

the electrical potential on the grounded electrode to zero. The resulting eigenvalue prob-

lem is:

{
[Huu]− {Huφ}H−1φφ {Huφ}T − ω2

a [Muu]
}
{ψa} = 0 (C.10)

where {ψa}are the eigenvectors corresponding to the anti-resonance frequencies ωa.
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