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Formation of bright solitary
matter-waves

Anna Louise Marchant

Abstract

This thesis presents the development of an experimental apparatus to pro-
duce Bose-Einstein condensates (BECs) with tunable interparticle interac-
tions. The ability to precisely control the strength of these interactions, and
even to switch them from repulsive to attractive, allows one to probe novel
regimes of condensate physics, from the collapse of attractively interacting
BECs and the formation of solitary matter-waves to the observation of be-
yond mean-field effects in strongly repulsive condensates.

The construction and characterisation of both a single and crossed beam op-
tical dipole trap is presented. In the single beam case we develop a technique
allowing the guided transport of atoms along the beam and up to a room-
temperature surface; a technique which can be used to evaporatively cool the
trapped atomic cloud. We produce Bose-Einstein condensates of 87Rb in the
F = 1,mF = −1 state in this trap, comparing the effect of beam waist on the
evaporation trajectory. In the crossed beam trap Bose-Einstein condensation
of 87Rb is realised in three distinct trapping configurations, along with a 1D
optical lattice formed by changing the polarisation of the beams.

A method of direct cooling of 85Rb atoms in the crossed trap is developed
using a magnetic Feshbach resonance to precisely tune both the elastic and
inelastic scattering properties of the atoms. The resonance used for this
work occurs at 155 G in collisions between atoms in the F = 2,mF = −2
state of 85Rb. Bose-Einstein condensates of up to 4 × 104 85Rb atoms are
formed in this trap and we demonstrate the presence of tunable interatomic
interactions, exploring the collapse phenomenon associated with attractive
condensates.

By loading the 85Rb condensate into a quasi-1D waveguide we show that sta-
ble attractive condensates can be created, taking the form of bright solitary
matter-waves. We observe a solitary wave of ∼2,000 atoms which propagates,
without dispersion, along the waveguide over a distance of ∼1.1 mm. The
particle-like nature of the solitary wave is demonstrated by classical reflection
of the wavepacket from a repulsive Gaussian barrier.
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Chapter 1

Introduction

First observed in the shallow water of the Union canal [1], solitons appear in a

diverse range of systems from nonlinear optics and ultracold quantum gases

to plasma and particle physics [2]. Arising as solutions to nonlinear wave

equations, these wavepackets are unique in that they maintain their shape

for all time, are very well localized and emerge from collisions with other

solitons having retained both their shape and size. The self-trapped and

hence non-dispersive nature of solitons makes them excellent candidates for

the study of short-range atom-surface potentials [3], for use in interferometry

schemes [4] and for enhancing the understanding of quantum systems. The

3D analogue to the soliton, the bright solitary matter-wave, has previously

been observed in Bose-Einstein condensates (BECs) of alkali metal atoms

[5, 6, 7]. Early work raised many divisive questions about the formation

of such wavepackets [8, 9, 10] but without any further experimental data

available to verify theoretical claims many open question still remain.

1.1 Solitons and solitary matter-waves

The term ‘soliton’ is used to describe any solution of a nonlinear equation

or system which (i) represents a wave of permanent form; (ii) is localised,

decaying or becoming constant at infinity; and (iii) may interact strongly with

other solitons so that after the interaction it retains its form, almost as if the

principle of superposition were valid [11].

1
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Importantly, true solitons only arise as the solution to 1D nonlinear equa-

tions. In reality quantum gas experiments can never reach this regime, in-

stead only ever obtaining quasi-1D confinement. As such we must instead

consider the 3D counterpart of the soliton, the solitary wave, although it is

often the case that the terms soliton and solitary wave are used interchange-

ably to describe the wavepackets created in experiments.

Solitons can take several forms, being described as bright, dark (or grey) or

gap. Here we briefly discuss these categories and relate them to the specific

case of solitons or solitary waves in Bose-Einstein condensates.

Bright solitons

Bright solitons occur in the presence of an attractive, or focussing, nonlin-

earity. These are self-contained wavepackets which propagate without dis-

persion. Studied most extensively in the field of nonlinear optics [12], bright

solitons have also been realised in Bose-Einstein condensates of both lithium

[5, 6] and rubidium [7].

The collapse instability of attractive Bose-Einstein condensates [13] means

bright solitons must be created by precise tuning of the atomic interactions.

A repulsive condensate is first created then, typically by means of a magnetic

Feshbach resonance [14], the atomic interactions are switched from positive

to negative. Stable solitons can then be formed provided the condensate

number does not exceed some critical value Nc.

Dark solitons

Dark solitons take the form of a density dip with a phase jump across the

density minimum. As this type of soliton effectively creates a ‘notch’ in

the density profile they are not self-contained objects like bright soliton but

instead occur on top of a stable or continuous background. Dark solitons

arise in systems which exhibit a defocussing nonlinearity and hence have been

studied in many contexts, e.g. optical fibres [15], mechanical systems [16],

thin magnetic films [17]. For a review of both the theory and experimental

investigations of dark solitons see Ref. [18].
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Dark solitons have also been realised in Bose-Einstein condensates with re-

pulsive interactions. Here, the soliton is created via phase engineering of the

condensate. This can be done in a number of ways: phase-imprinting [19, 20],

density-engineering [21, 22], quantum-state engineering [23, 24] (which is a

combination of phase imprinting and density engineering) or the matter-wave

interference method [25, 26]. Alternatively, dark solitons can be created by

dragging an obstacle sufficiently fast through a condensate [27].

The phase imprinting technique used to create dark solitons is also impor-

tant in the context of bright solitons as it allows one to investigate the role

of relative phase in binary soliton collisions (as discussed in section 2.5.2).

Phase imprinting allows the manipulation of the condensate phase but leaves

the density unaltered. Experimentally this is done by illuminating part of

the condensate with a short pulse of off-resonant light. In this process the

wavefunction of the condensate acquires a phase factor e−iφ [23] where the

phase φ can be spatially varying and is proportional to the product of the

local AC Stark shift and the pulse length.

Gap solitons

The use of attractive condensates to form bright solitons has the unfortunate

limitations that the atom number achievable in the condensate is restricted

and that only species with suitable tunable interactions can be used.

However, gap bright soliton-like structures can be created for both repulsive

and attractive [28] condensates formed in optical lattices. Here the pres-

ence of the periodic potential leads to a modification of the linear dispersion

relation which can in turn, influence the effective mass.

Gap solitons have been realised in condensates with repulsive interactions

[29] where it is possible to create an object with negative effective mass

(m∗ = ~2[d2E/dp2]−1), effectively rendering the interaction term of the GPE

attractive and thus permitting the formation of bright solitons.
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1.2 Previous work

In this section we give a very brief overview of work previously carried out

in other groups on the production of 85Rb Bose-Einstein condensates and

the formation of bright matter-wave solitons. Further details of these exper-

iments, and others, are included in the subsequent chapters.

1.2.1 Production of 85Rb Bose-Einstein condensates

Despite the broad Feshbach resonance present in the F = 2,mF = −2 state

of 85Rb making it highly suited to experiments requiring tunable BECs, pre-

vious work using this particular isotope of rubidium to produce a condensate

has been somewhat limited. At the time of writing only 3 other machines

capable of producing a 85Rb Bose-Einstein condensate have been built, two

of which were by the same group at JILA, Colorado [30] and the third at

Australia National University, Canberra [31].

The first realisation of 85Rb Bose-Einstein condensation was carried out by

the Wieman group at JILA in 2000. Here atoms were cooled directly in a

Ioffe-Pritchard magnetic trap [32], exploiting the variation of the elastic and

inelastic scattering rates close to the 155 G Feshbach resonance to maximise

the efficiency of the evaporation. To reduce detrimental three-body loss

rates, trap frequencies were kept low (νradial = 17.5 Hz, νaxial = 6.8 Hz) with

the result that evaporation proceeded slowly, taking 120 s to cool atoms from

45 µK to 2 µK. This method produced condensates of ∼ 104 atoms at 162.3 G

with smaller condensates also formed within the surrounding 3 G window.

In an attempt to improve on this condensate number the next generation

of the experiment tackled the problems associated with cooling 85Rb by em-

ploying a second species to act as a refrigerant, sympathetically cooling the

atoms [33]. The refrigerant chosen was the more commonly used 87Rb iso-

tope. An additional change to the apparatus was to transfer atoms into an

optical dipole trap allowing independent control over the magnetic bias field

and the trap frequencies. Using this system condensates of around 8 × 104

atoms could be formed.

At the Australian National University the Close group realised 85Rb BEC
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in 2010, also using sympathetic cooling with 87Rb. A large volume optical

dipole trap in combination with a pair of Feshbach coils allowed BECs of

4× 104 to be attained.

1.2.2 Experiments with 85Rb Bose-Einstein

condensates

The first experiments carried out with the JILA condensate explored the

effect on the condensate dynamics of tuning the interactions from repulsive

to attractive. As predicted by theory, beyond some critical value of the

scattering length a collapse was initiated causing massive atom loss from the

condensate [34, 35]. As we shall see in chapter 7 the remnant of this collapse

was later found to contain bright solitary matter-waves [7].

Again exploiting the 155 G resonance, the condensate was also used to in-

vestigate quantum superpositions of atoms and diatomic molecules created

using a time varying magnetic field to tune the interparticle interactions [36].

In doing so, the binding energy of molecular states could be measured [37]

leading to a more accurate characterisation of the Feshbach resonance. In

the next generation experiment dual species condensates of 85Rb and 87Rb

[33] were created using the method of sympathetic cooling, thus allowing the

miscibility of the condensates to be probed.

Work in the ANU group also focussed on the collapse dynamics, attempting

to develop a better understanding of the system. Models of the collapse

using the Gross-Pitaevski equation (GPE) with the inclusion of a three body

loss term were found to be in good agreement with new experimental data,

predicting the collapse time for the process and setting new bounds on the

three body loss coefficient, K3 [38]. In addition, studies of inelastic loss in

all five Zeeman sublevels of the F = 2 manifold were carried out [39].

1.2.3 Observation of bright solitary matter-waves

The formation of bright matter-wave solitons was first observed in Bose-

Einstein condensates of lithium. In two inherently similar experiments, very

different results were obtained. Experiments carried out at ENS (Paris) re-
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sulted in a single soliton, seen to propagate 1.1 mm along an optical waveg-

uide with a weakly expulsive potential [40]. In contrast to this, results from

Rice University (Texas) showed trains of multiple solitons being formed, also

propagating in a waveguide and interacting repulsively with each other [5].

Four years after these initial observations it was found that the same ex-

periment at JILA first used to demonstrate tunable interactions in a Bose-

Einstein condensate was also capable of producing multiple solitons. The

collapse of the attractive condensate studied previously produced a stable

remnant which, in a similar fashion to the Rice experiment, took the form of

multiple bright matter-wave solitons [7].

1.3 Motivation: Open questions

Previous observations of bright matter-wave solitons sparked a great deal of

theoretical interest in the dynamics of these wavepackets. Although a huge

body of work already existed, the interactions between the trapped solitons

raised many fascinating questions. Simulations of the system using the GPE

formalism could explain the observed behaviour, however only with the in-

clusion of a relative phase between neighbouring solitons [41, 9]. If this was

indeed the correct description, the origin of this phase would be an obvious

conundrum to be considered. However, alternative work postulated that the

addition of quantum fluctuations could be sufficient to explain the observed

repulsive interaction between colliding soliton pairs [10]. The development

of many-body theories has also added an extra dimension to the debate, sug-

gesting the emergence of ‘fragmentons’ [42], distinctly different objects to the

solitons predicted by mean-field theories.

With the theoretical community divided over the true description of both soli-

ton formation and collisional dynamics there is an obvious desire to generate

more experimental data in order to test theoretical models. This provides

one of the key motivations for the work discussed in this thesis. By creat-

ing a reproducible, tunable 85Rb BEC from which to form bright solitary

matter-waves, collisional dynamics can be investigated in a controlled fash-

ion. Using phase imprinting techniques to manipulate collisions, it should
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then be possible to extract information which could lead to a more complete

understanding of soliton-soliton interactions.

In future work the self-trapped and stable nature of solitons could see the

wavepackets used as probes of short-range forces such as that between an

atom and a surface. In this context, solitons make ideal candidates for the

observation of quantum effects such as quantum reflection from a surface [3].

1.4 Context of this thesis

This thesis describes the development of an optical trap suitable for the pro-

duction of Bose-Einstein condensates of 85Rb. The characterisation of the

trap using 87Rb is presented, along with the optimisation of the 85Rb con-

densation routine. The loading of a quasi-1D optical waveguide is discussed,

along with the method of bright solitary matter-wave formation.

Throughout this work we focus solely on the optical trapping stages of the

experiment. The preliminary stages of the experimental routine (namely the

MOT, magnetic trap loading, magnetic transport and RF evaporation in a

quadrupole trap) and their optimisation are discussed in the thesis of Sylvi

Händel (SH) [43] and, to avoid repetition, are not presented again here.

The building of the laser cooling system was carried out by SH, along with

the construction of the magnetic coils and transport apparatus. The assem-

bly of the MOT optical setup and the optical dipole traps was carried out by

ALM and SH. The optimisation of the apparatus, to the point of 87Rb con-

densation, was performed by ALM and SH. (Note, details of the experimental

control system also developed during this time can be found in the thesis of

Timothy Wiles (TW).) Further characterisation of the crossed dipole trap

was completed by ALM and TW. The subsequent cooling of 85Rb and the

formation of bright solitary matter-waves was carried out by ALM.
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1.5 Thesis outline

The work presented in this thesis aims to give a chronological review of the

steps taken to successfully achieve Bose-Einstein condensation of 85Rb along

with the formation of bright solitary matter-waves from the condensate.

• Following the overview of previous experimental work on 85Rb Bose-

Einstein condensates and bright solitary-matter-waves presented in this

chapter we begin by considering some of the theoretical background

relevant to the results discussed in this thesis. These are presented in

chapter 2.

• In chapter 3 we introduce the experimental apparatus used throughout

this work. In addition to the technical details of the experimental

sequence, some basic theory of the optical trap is included.

• Chapter 4 contains details of a single beam optical dipole trap suitable

for producing Bose-Einstein condensates of 87Rb. We demonstrate that

atoms in this trap can be controllably transported along the beam. By

guiding atoms up to a room temperature test surface positioned within

our glass science cell we show that this process can be used as a method

of evaporative cooling.

• In chapter 5 we present the implementation and characterisation of a

crossed dipole trap better suited to the formation of 85Rb condensates.

We discuss three distinct trap configurations and the evaporation in

each case. We go on to produce Bose-Einstein condensates of 87Rb in

each of the traps before using the crossed trap geometry to produce a

1D optical lattice. We demonstrate condensation in the lattice, again

using 87Rb, and observe Kaptiza-Dirac scattering from a deep lattice

potential.

• In chapter 6 we discuss the scattering properties of 85Rb and the diffi-

culty associated with evaporative cooling. We then go on to present our

method of direct cooling in the crossed dipole trap to efficiently reach

degeneracy in 85Rb. We demonstrate the tunable atomic interactions

of the condensate close to the 155 G Feshbach resonance and show that
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the condensate undergoes collapse if the interactions are tuned to be

strongly attractive.

• In chapter 7 we load the 85Rb condensate into a quasi-1D waveguide.

By again tuning the atomic interactions we are able to realise bright

solitary matter-waves which we observe to propagate along the waveg-

uide beam. Using a broad, repulsive Gaussian barrier we demonstrate

classical reflection of the solitary wave and contrast this to the case of

a repulsive condensate.

• Finally in chapter 8 we give an outlook to future work and some of the

open questions to be explored using this system.

1.6 Publications

Work related to this thesis

[44] S. Händel, A. L. Marchant, T. P. Wiles, S. A. Hopkins, and S. L.Cornish,

Magnetic transport apparatus for the production of ultracold atomic gases in

the vicinity of a dielectric surface, Rev. Sci. Instrum. 83, 013105 (2012),

gives further details of the experimental apparatus presented in chapter 3.

[45] A. L. Marchant, S. Händel, T. P. Wiles, S. A. Hopkins and S. L. Cornish,

Guided transport of ultracold gases of rubidium up to a room-temperature

dielectric surface, New J. Phys. 13 125003 (2011), provides the basis for

chapter 4.

[46] A. L. Marchant, S. Händel, S. A. Hopkins, T. P. Wiles, and S. L. Cor-

nish, Bose-Einstein condensation of 85Rb by direct evaporation in an optical

dipole trap, Phys. Rev. A 85, 053647 (2012), forms the basis of chapter 6.

[47] A. L. Marchant, T. P. Billam, T. P. Wiles, M. M. H. Yu, S.A. Gardiner

and S. L. Cornish, Controlled formation and reflection of a bright solitary

matter-wave, Nat. Commun. 4, 1865 (2013), contains details of the work
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presented in chapter 7.

Other work

[48] A. L. Marchant, S. Händel, T. P. Wiles, S. A. Hopkins, C. S. Adams

and S. L. Cornish, Off-resonance laser frequency stabilization using the Fara-

day effect, Opt. Lett. 36, 64 (2011), describes work to develop a locking

scheme suitable for use in degenerate Raman sideband cooling, potentially

as an alternative route towards quantum degeneracy. This is included as an

appendix.

[49] S. Händel, T. P. Wiles, A. L. Marchant, S. A. Hopkins, C. S. Adams,

and S. L. Cornish Magnetic merging of ultracold atomic gases of 85Rb and
87Rb, Phys. Rev. A 83, 053633 (2011), describes experiments carried out

using the same apparatus used for this work to controllably merge magnetic

traps thus allowing multiple loading of one or more atomic species.

[50] T. P. Billam, A. L. Marchant, S. L. Cornish, S. A. Gardiner, N.G.

Parker, Bright solitary matter waves: formation, stability and interactions,

in Progress in optical science and photonics, Vol. 1, Spontaneous symmetry

breaking, self-trapping, and Josephson oscillations, Springer (2013), contains

a review of the current theoretical work in the field, along with experimental

results to date as covered in sections 6.7.1 and 7.1.1.



Chapter 2

Theoretical background

2.1 Introduction

In this chapter we present a brief overview of the physics governing Bose-

Einstein condensates and bright solitons. We discuss the effect of interparti-

cle interactions in a condensate and how, in reduced dimensions, attractive

interactions can lead to the formation of bright solitons. We conclude by

looking at some of the potential explanations for the formation of bright soli-

tary waves in experiments and the role of relative phase in binary solitary

wave collisions.

2.2 Bose-Einstein condensation

The phenomena of Bose-Einstein condensation corresponds to the macro-

scopic occupation of a single quantum state due to the quantum statistics

governing indistinguishable bosons. This occurs at low temperatures where

there is a significant overlap of the thermal deBroglie wavelength of the atoms

in the gas,

λdB =

√
2π~2

mkBT
, (2.1)

or equivalently when the phase space density (PSD),

PSD = n0λ
3
dB, (2.2)

11
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exceeds 2.61. Here n0 is the condensate density. In a trap, this leads to the

idea of a critical temperature Tc, dependent on the atom number N and the

trapping frequency ω. In a harmonic, isotropic trap this is given by [51]

kBTc = 0.94N1/3~ω. (2.3)

Bose-Einstein condensation was first predicted in 1924 following the collab-

orative efforts of Bose and Einstein. Bose’s work considered the statistics of

photons [52] which Einstein then developed in the context of a gas containing

a fixed number of non-interacting, massive bosons. It was shown that below

some critical temperature a non-zero fraction of the bosons would fall into

the lowest-energy single-particle state [53]. In reaching this conclusion an

entirely new field of atomic physics was born.

Despite the advent of laser cooling in the mid 1970s, it wasn’t until 1995 that

this new state of matter was experimentally realised in gases of rubidium

[54], sodium [55] and lithium [56]. Although laser cooling techniques could

produce samples at tens of µK [57] the temperature of the trapped clouds was

neither cold enough nor the density high enough for condensation to occur.

Only the addition of evaporative cooling [58, 59] stages, taking the lead from

work on spin polarized hydrogen, allowed access to this new temperature

regime.

The low temperatures of Bose-Einstein condensates allow the exploration

of quantum phenomena. Despite being dilute1, atomic interactions play a

huge role in the dynamics of the system. However, the diluteness makes the

treatment of interactions theoretically tractable in terms of simple two-body

physics. Indeed, the dilute gases used to produce Bose-Einstein condensates

are well described by the mean-field Gross-Pitaevskii formalism. The fact

that these interactions can be controlled or tuned, either by the choice of

atom or by means of Feshbach resonances [14] where present, makes atomic

Bose-Einstein condensates extremely attractive systems to work with.

Condensates which exhibit some sort of Feshbach structure allow the ex-

perimenter full control over the s-wave scattering properties of the atoms.

The scattering length of the atoms, as, which characterises elastic collisions

1Typical condensate densities are of the order 1013− 1015 cm−3 whereas the molecules

in air at room temperature and atmospheric pressure have densities of ∼ 1019 cm−3 [60].
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may then be tuned over many orders of magnitude and, most interestingly,

even changed in sign. Control of the atomic interactions in this way, coupled

with the ability to produce condensates in almost entirely arbitrary geome-

tries makes Bose-Einstein condensates ideal systems in which to study the

formation of bright solitary matter-waves.

2.3 The Gross-Pitaevskii equation

The Gross-Pitaevskii equation (GPE) is a wave equation which describes

a many body wavefunction. It accurately describes gaseous Bose-Einstein

condensates in the limit that [50]:

• The number of particles in the condensate is large, N � 1, i.e. the

condensate is macroscopically populated.

• The temperature of the gas is lower than Tc, the critical temperature

i.e. T < Tc. As such, the thermal fraction of atoms is small.

• Short-range two-body interactions, characterised by the s-wave scat-

tering length as, dominate.

• The interactions are weak n|as|3 � 1 and small fluctuations have no

effect. In this limit the shape of the interatomic potential becomes

unimportant and can be approximated as a contact potential of the

form

U(r− r′) =
4π~2as
m

δ(r− r′). (2.4)

The success of this treatment relies upon the fact that, in the ultracold limit,

collisions can be parameterised by a single quantity, the scattering length. In

this ultracold limit atoms scatter like hard spheres. In low energy collisions

(where only the l = 0 partial wave is important) the deBroglie wavelength of

the atoms is much larger than the short-range molecular potential associated

with the two-atom bound state. As such, the atoms do not ‘see’ the shape

of the potential and only a phase shift of the scattered wavefunction can be

observed as shown in Fig. 2.1. This phase shift can be translated into the
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Figure 2.1: Effect of scattering from a molecular potential in the ultracold

limit: At long range the scattered wave is phase shifted relative to the case

of scattering from a point like object at r = 0. Scattering from the potential

V (r) is indistinguishable from that of a hard sphere.

scattering length, as,

as = − lim
k→0

tan δ0(k)

k
(2.5)

which can be thought of as the radius of the hard sphere. Here δ0 is the

phase shift of the l = 0 partial wave and k is the wavevector [61].

2.3.1 Mean-field theory and the order parameter

If we consider N spinless bosons, characterised by spatial coordinates r, the

many-body Hamiltonian is given in second quantisation by [62]

Ĥ =

∫
dr Ψ̂†(r)

[
− ~2

2m
∇2 + Vext(r)

]
Ψ̂(r)

+
1

2

∫ ∫
drdr′Ψ̂†(r)Ψ̂†(r′)V (r− r′)Ψ̂(r′)Ψ̂(r). (2.6)

Ψ̂(r) and Ψ̂†(r) are bosonic field operators that annihilate and create particles

at the position r. V (r− r′) is the two-body interaction potential.

In the mean field description, one can separate out the contributions to the

bosonic field operator, expressing it as a sum of single particle wave functions

Ψα(r), multiplied by the corresponding annihilation operators aα such that,

Ψ̂(r) =
∑
α

Ψα(r)aα. (2.7)
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To generalise this to the nonuniform, time-dependent case, we have

Ψ̂(r, t) = Φ(r, t) + Ψ̂′(r, t), (2.8)

where Φ(r, t) is a classical field or order parameter and Ψ̂′(r, t) is a small

fluctuation. This ‘wave function of the condensate’ is a complex function and

is defined as Φ(r, t) = 〈Ψ̂(r, t)〉. The order parameter can also be expressed

in terms of the condensate density, n0(r, t) = |Φ(r, t)|2.

Writing the time evolution of the field operator Φ(r, t) using the Heisenberg

equation with the many-body Hamiltonian given in Eq. (2.6), it is possible

to derive an equation for the condensate wave function,

i~
∂

∂t
Ψ̂(r, t) = [Ψ̂, Ĥ]

=

[
−~2∇2

2m
+ Vext(r)

]
Ψ̂(r, t)

+

[∫
dr′Ψ̂†(r′, t)× V (r− r′)Ψ̂(r′, t)

]
Ψ̂(r, t), (2.9)

where the field operator must then be replaced with the classical field Φ.

Next we consider the two-body potential V (r− r′) at very low temperature.

If the interactions only occur on length scales much shorter than the typical

interparticle separations we can approximate the interaction by a Dirac delta-

function

V (r− r′) = gδ(r− r′), (2.10)

where we introduce the effective interaction constant

g = 4π~2as/m, (2.11)

which relates the interaction to the scattering length as. Using this effective

potential in Eq. (2.9) allows the replacement of Ψ̂ with Φ, thus we arrive at,

i~
∂

∂t
Φ(r, t) =

(
−~2∇2

2m
+ Vext(r) + g|Φ(r, t)|2

)
Φ(r, t). (2.12)

This is the Gross-Pitaevskii equation.

The contributions to Eq. (2.12) can be written in terms of their respective

energies,

E = Ekin + Eho + Eint. (2.13)
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Here, the kinetic energy, or quantum kinetic energy, Ekin, arises as a result

of the uncertainty principle (and vanishes for the case of a uniform system),

the harmonic oscillator energy, Eho, is due to the trapping potential and the

mean-field interaction energy, Eint, is a result of the interparticle interactions.

2.3.2 The healing length

The balance between the kinetic energy and the interaction energy of the

condensate can be used to describe a typical length scale, the healing length

ξ. This is the distance over which the BEC wavefunction ‘heals’ over defects.

If the BEC density grows from 0 to n over a distance ξ, the kinetic energy ∼
~2/(2mξ2) and interaction energy ∼ 4π~2asn/m become equal at the healing

length,

ξ = (8πnas)
−1/2. (2.14)

We shall see in section 2.4 that this length becomes important in the context

of lower dimensional systems.

2.3.3 Interparticle interactions

The strength of interparticle interactions, relative to the kinetic energy of

the condensate, plays an important role in the structure and dynamics of

the trapped gas. The interaction energy is given by gNn where the average

density n ∼ N/a3
ho and aho = (~/mω)1/2. This means that the interaction

energy scales as Eint ∝ N2|as|/a3
ho. The kinetic energy of the condensate is

given by N~ωho. Here ωho = ~/(ma2
ho) thus Ekin ∝ Na−2

ho . This gives us the

relation,
Eint

Ekin

∝ N |as|
aho

, (2.15)

allowing us to determine the importance of the interaction energy, relative

to the kinetic energy. Even if n|as|3 � 1 (the condition for the validity of

the GPE) Eq. (2.15) can still be much greater than 1, hence a dilute gas can

still be strongly interacting, exhibiting nonlinear behaviour.

A system of noninteracting bosons confined in a harmonic trap will take the

form of a Gaussian with average width aho,i = (~/mωi)1/2 and a peak density
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proportional to N . However, in the presence of interactions, the shape of

the condensate is modified. This change in shape can be dramatic if the

interactions energy is much greater than the kinetic energy, that is [62],

Nas
aho

� 1. (2.16)

For repulsive as > 0 (attractive as < 0) interactions the peak density de-

creases (increases) and the condensate spreads (contracts).

In systems exhibiting some sort of Feshbach structure it is possible to tune

the atomic scattering properties, i.e. the interactions, using magnetic or

optical fields [14]. Further discussion of magnetic Feshbach resonances can

be found in section 6.3.2.

Noninteracting solution: The ground state

The ground state of the GPE can easily be found by substituting an ex-

pression for the condensate wavefunction, Φ(r) = φ(r) exp(−iµt/~), into

Eq. (2.12). φ is real and normalised to the number of atoms such that∫
dr|φ|2 = N . This gives us(

− ~2

2m
∇2 + Vtrap(r) +

4πas~2

m
|φ(r)|2

)
φ(r) = µφ(r). (2.17)

Here the nonlinear aspect of this nonlinear Schrödinger equation is provided

by the mean field term, proportional to the particle density, n(r) = |φ|2(r).

µ is the chemical potential. In the absence of interactions, as = 0, Eq. (2.17)

reduces to a the single particle Schrödinger equation, the solution to which

is a simple Gaussian function,

φ(r) =
√
N
(mωho

π~

)3/4

exp
[
−m

2~
(ω2

xx
2 + ω2

yy
2 + ω2

zz
2)
]
, (2.18)

where ωho = (ωxωyωz)
1/3.

Repulsive interactions: The Thomas-Fermi approximation

Most experiments operate in the regime Nas/aho � 1 where interactions

are repulsive. As Nas/aho increases atoms are pushed further from the trap

centre as the condensate spreads creating a slow spatial variation of the
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density. As a result, the kinetic energy of the condensate, which scales as
√
n, becomes small when compared to the interaction energy, only becoming

significant again close to the boundary. One can then entirely neglect the

kinetic term of the Hamiltonian. This is referred to as the Thomas-Fermi

approximation. The density profile of the trapped condensate is thus given

by

n(r) =
µ− Vtrap(r)

g
, (2.19)

for the region µ > Vtrap(r) [62]. Outside this region the density is zero.

In the Thomas-Fermi limit the chemical potential takes the form

µ =
~ωho

2

(
15Nas
aho

)2/5

. (2.20)

From Eq. (2.19) we can see that the density profile of the condensate reflects

the form of the trapping potential. For a harmonic trap this produces an

inverted parabola, vanishing at position R, defined by µ = Vtrap(R). If

we take the case of a spherically symmetric trap we have µ = mω2
hoR

2/2.

Substituting in the value for the chemical potential given by Eq. (2.20) we

arrive at an expression for the radius of the condensate,

R = aho

(
15Nas
aho

)1/5

. (2.21)

Attractive interactions: Collapse instability

A trapped attractively interacting condensate tends to increase its density at

the trap centre, thus minimising its interaction energy. This contraction can

be balanced by the kinetic energy of the gas if the interactions are sufficiently

weak or the atom number is sufficiently low. Beyond this, the kinetic energy

can no longer stabilise the condensate and collapse occurs. Incidentally, in

a uniform, untrapped gas the absence of this kinetic energy (or quantum

pressure) means all attractive condensates are unstable, irrespective of atom

number or interaction strength.

The stability of the trapped condensate can be parameterised by k, given by

[13]

k =
Nc|as|
aho

. (2.22)
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The value of k can be calculated numerically and is determined by both the

trapping strength and geometry. For a spherical trap, numerical integration

of the GPE gives k ≈ 0.57 [13] whereas for a waveguide, typically used to

produce solitary waves, the same GPE treatment yields a value of k ≈ 0.675

[63].

If the number of atoms in the condensate exceeds the critical value Nc, set

by k, the system will undergo collapse in both 2D and 3D [64, 60]. In a true

1D geometry, collapse is prohibited. However, in quasi-1D systems the finite

radial trapping means it is possible to produce stable attractive condensates

provided the number of atoms remains below some threshold, this time set

by a slightly modified version of Eq. (2.22),

k1D =
Nc|as|
aho,r

. (2.23)

Here aho,r is the radial harmonic oscillator length [65, 66, 67, 68]. This ex-

pression for the stability parameters using only the radial harmonic oscillator

length means one can readily consider the case of ωaxial = 0 in calculations.

Insight into the behaviour of an attractively interacting gas can be gained

from a variational approach based on Gaussian functions. The results of such

an analysis are presented in section 2.3.4.

2.3.4 Variational analysis of the GPE

If we consider the case of no interparticle interactions the lowest single-

particle state can be described by the wavefunction [60]

φ0 =
1

π3/4(axayaz)1/2
e−x

2/2a2xe−y
2/2a2ye−z

2/2a2z . (2.24)

Here a2
i = ~/mωi are the oscillator lengths in three directions (i = x, y, z).

However, in the presence of interactions the cloud begins to change shape

and this wavefunction no longer provides an accurate description. Instead

we introduce a trial wavefunction, chosen to be a Gaussian of the same form

[68],

ψ(r) =
1

π3/4(axayazbxbybz)1/2
e−x

2/2a2xb
2
xe−y

2/2a2yb
2
ye−z

2/2a2zb
2
z , (2.25)
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Figure 2.2: Dependence on effective width of the kinetic, potential and in-

teraction (k=0.6) energy contributions of a harmonically trapped BEC: The

energy per particle is given in units of ~ω.

which contains the variational parameters, bi. Such an ansatz has been con-

sidered previously for bright solitary matter-waves [69, 63, 68] and is most

appropriate when the trapping strength dominates the interactions. Substi-

tuting Eq. (2.25) into the energy functional

E(ψ) =

∫
dr

[
~2

2m
|∇ψ(r)|2 + V (r)|ψ(r)|2 − 2πN |as|~2

m
|ψ(r)|4

]
, (2.26)

where V (r) = mω2(x2 + y2 + z2)/2, one can show that the energy of the

system is given by

E(bx, by, bz) =
∑
i

~ωi
(

1

4b2
i

+
b2
i

4

)
− N |as|√

2πahobxbybz
. (2.27)

From this analysis we can see the dependence on the effective width, b, of

the various energy contributions for an isotropic trap (b = bx = by = bz):

kinetic ∼ 1/b2, trapping potential ∼ b2, interaction ∼ −1/b3, also illustrated

in Fig. 2.2. The energy per particle, in units of ~ω is shown in Fig. 2.3 as

a function of the effective width for various values of k = N |as|/aho. We

can see that for negative scattering lengths being considered here, a local

energy minimum exists provided that N remains below some critical value

Nc. Beyond this, the condensate collapses.
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Figure 2.3: Variational expression for the energy per particle in a isotropic,

harmonic trap: Energy per particle (in units of ~ω) is given as a function

of the variational parameter, the effective width b, for various values of k =

N |as|/aho

.

This variational analysis returns a value of k ≈ 0.671 for a spherical trap.

Here the local minimum in the energy disappears and the condensate col-

lapses. This is in reasonable agreement with the full GPE calculation, con-

firming that the method can indeed provide valuable insight into the be-

haviour of attractive gases without the need for intensive calculations.

2.4 Quasi-1D models

Experiments focussed on soliton formation usually employ elongated, prolate

traps with ωx = ωy = ωr � ωz. If the harmonic oscillator length associated

with this radial direction aho,r =
√
~/mωr < ξ the confinement becomes

sufficiently tight such that the higher energy radial modes are effectively

‘frozen out’ and the system can be considered quasi-1D. The full 3D GPE

description of this cigar-shaped condensate can then be reduced to the much

simpler 1D case provided ωz/ωr is sufficiently small.
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In this 1D limit the coupling constant g, describing the interparticle interac-

tions, is modified such that [70],

g̃ =
g

2πa2
r

= 2~ωras. (2.28)

The trapping potential is also simplified to Vtrap(z) = (1/2)mω2
zz

2.

2.5 Soliton solutions to the 1D GPE

In 1D the GPE for a BEC with scattering length as in a trapping potential

V (z, t), is given by

i~
∂ψ

∂t
+

~2

2m

∂2ψ

∂z2
− V (z, t)ψ − g̃(z, t)|ψ|2ψ = 0, (2.29)

where the interaction term g̃(z, t) = 2~ωras.

In the absence of trapping (V (z, t) = 0) and when the atomic interactions

are attractive, as < 0 Eq. (2.29) admits bright soliton solutions of the form

[70]

ψ(z, t) =
ar√

2|as|κ
sech

(
z − vt
κ

)
exp

[
i
mv

~
z − i

~

(
mv2

2
− ~2κ2

2m

)
t

]
.

(2.30)

Here aho,r =
√

~/(mωr), v is the soliton velocity and

κ =
a2
r

|as|N
(2.31)

is the soliton width. (Here it is assumed that the soliton width in the radial

direction is set by the harmonic oscillator ground state.) Eq. (2.29) is only

valid when |as|N/ar � 1 which implies that ar � κ.

In real experiments, this quasi-1D geometry is usually accompanied by the

presence of weak axial harmonic trapping, V (z, t) = (1/2)mω2
zz

2. This re-

moves the integrability of the system and prevents the appearance of true

solitons. However, bright solitary wave solutions may still be supported. Al-

though these do not comply with the strict mathematical definition of a true

soliton, they can be considered soliton like in that they are non-dispersive

due to their attractive interactions, are robust to collisions with other soli-

tary waves and their dynamics can be described using particle-likes models

[71, 72].
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It is still the case that one expects only to observe solitary matter-waves

in quasi-1D geometries. However, the observation of bright solitary matter-

waves in an almost fully 3D system [7] raises the interesting question of how

1D a system must be in order to admit these solitary wave objects.

2.5.1 Bright solitary wave formation: Modulational

instability

The mechanism for the formation of bright solitary matter-waves and the

creation of a relative phase ∆φ between neighbouring wavepackets is still

not completely understood. However, the process of modulational instabil-

ity has been proposed as a possible mechanism to explain these phenomena.

Here a constant-wave background becomes unstable to sinusoidal modula-

tions because of the presence of a focusing nonlinearity (i.e. the mean-field

interaction as < 0). Amplitude and phase modulations of the wave grow as

a result of an interplay between this nonlinearity and anomalous dispersion

[73, 9].

Although there is some general agreement that modulational instability may

be responsible for the formation of solitary waves [74, 9], it is still unclear

as to whether this can also explain the emergence of a relative phase. In

Ref. [9] Carr et al. postulate that an initial nonuniform state undergoing

modulational instability will produce wavepackets with arbitrary ∆φ, even

in a mean-field treatment. Subsequent secondary collapse processes then

lead to a relative phase of π/2 < ∆φ < 3π/2 between neighbouring solitons,

stabilising them in later collisions. In contrast, Al Khawaja et al. attribute

the origin of ∆φ to phase fluctuations in the condensate. These phases are

restricted to values close to φ = π in order to stabilise the wavepackets during

collisions as we shall see in section 2.5.2.

2.5.2 Bright solitary wave collisions

It is interesting to consider the effect of collisions on the stability of bright

solitary matter-waves oscillating in a trap. Previous experimental results

[5, 7] provide a clear motivation for this. In the 1D limit it has been shown
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that the force between two colliding solitons depends sinusoidally on their

relative phase [12]. If this phase ∆φ = 0 the solitons interact ‘attractively’,

overlapping freely, whilst for ∆φ = π the interactions between solitons are

‘repulsive’ [75]. The collisions are elastic and the relative phase is unaltered

by the collision.

In 3D, the potential overlap of two solitary waves can be sufficient to render

the system unstable as the critical number for an attractive condensate Nc

can be exceeded. In this case, attractive collisions, ∆φ = 0, can result in a

collapse due to the localised increase in density during the collision. Collision

dynamics are predicted to depend not only on this relative phase ∆φ but also

on the velocity of the collision [76]. (Simulations of collisions of two solitons

in a time-modulated optical lattice even predict the potential merging of the

two into a single soliton for the case of in-phase collisions [77].)

Extensive numerical simulations of the 3D GPE can be used to investigate

how collisions depend on key parameters, namely the relative phase, inter-

action strength and timescale of the collision [41]. In Ref. [41] Parker et

al. show that collisions of bright solitary waves exhibit rich and non-trivial

behaviour, not present for 1D solitons.

The relative phase difference between solitary waves can lead to population

transfer between two colliding wavepackets [41, 78], this depending strongly

on the incoming velocity and therefore the collision time. Slow, high density

collisions can lead to the collapse of the condensate if the collision time,

tcollision, exceeds the collapse time, tcollapse, for the condensate (see section 6.7).

The presence of a π relative phase can, however, suppress this instability. In

contrast, if tcollision < tcollapse the collision is elastic and independent of ∆φ.

Just as the stability parameter k determines the stability of an isolated at-

tractively interacting condensate, it is a crucial factor in the stability of

collisions of bright solitary matter-waves formed from the condensate. Col-

lisions remain stable for low values of k but become increasingly unstable as

k → kc. Again, a π relative phase can stabilise collisions of this nature as

the solitary waves are prevented from overlapping.
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2.6 Summary

In this chapter we have briefly reviewed some of the underlying physics of

Bose-Einstein condensation and bright solitary matter-waves. We have dis-

cussed how, in 3D, an attractive condensate is unstable to collapse however,

in the presence of trapping, the kinetic energy of the wavepacket can result

in a meta-stable, non-collapsing state. If the trapping geometry is made

sufficiently quasi-1D, these attractive condensates can form bright solitary

matter-waves, the 3D analogue to the true bright soliton solutions of the 1D

GPE.



Chapter 3

Experimental overview

3.1 Introduction

Common to all ultracold gas experiments are a number of key pieces of ex-

perimental apparatus. In this chapter we briefly discuss these in the context

of our experimental setup and highlight the features designed to allow the

production of ultracold gases close to a room temperature surface. A more

comprehensive description of the experimental setup and its characterisation

can be found in Refs. [44, 43]. Here we focus on the physics governing the op-

tical traps along with typical experimental parameters associated with their

implementation.

3.2 Delivery of cold atoms to the science cell

In order to successfully deliver a sample of cold atoms to the science cell we

must first trap and cool atoms from a background vapour before loading them

into a magnetic trap. These stages of the experimental procedure will not

be the focus of this thesis, however a full discussion of the optimisation can

be found in [43]. This section provides a brief overview of the key elements

associated with the loading of the magnetic transport trap and the delivery

of atoms to the science cell.

26
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3.2.1 Vacuum system

The ultimate function of the vacuum system, shown in Fig. 3.1(a), is to enable

the study of atom-surface interactions between 85Rb atoms and a super-

polished glass Dove prism in an ultra-high vacuum (UHV) environment. As

such the system must be capable of maintaining these UHV conditions and

designed to minimise the surface ‘contamination’ of the Dove prism. Optical

access close to the prism must also be maximised to allow for a variety of

trapping geometries to be explored.

The vacuum chamber can be divided into two parts, the magneto-optical trap

(MOT) chamber and the glass science cell housing the super-polished prism

(Fig. 3.1(b)), these two being connected via a differential pumping stage.

This pumping not only provides the UHV environment at the science cell but

also allows the rapid loading of the MOT whilst maintaining long lifetimes

for trapped atoms in the science cell. An obstacle, shown in Fig. 3.1(c),

(a right angled glass prism) placed along the axis of the system blocks the

line of sight between the two ends of the vacuum system. Atoms can be

transfered from the MOT chamber to the science cell via magnetic transport

(see section 3.2.3) whereby atoms are shifted over this obstacle. By adopting

this setup, rather than for example a double MOT system, the surface of the

Dove prism is protected from atomic beams of rubidium travelling along the

vacuum chamber and we maintain good optical axis at the science cell.

Figure 3.1(a) shows the vacuum chamber prior to the construction of the full

apparatus. Visible above the MOT chamber (left of image) is a glass cell

housing the rubidium dispensers. This glass surround is designed to poten-

tially allow the implementation of light induced atomic desorption (LIAD) as

a means of controlling the rubidium pressure in the MOT chamber [79]. The

overall height of the MOT chamber has been minimised to aid the generation

of large magnetic fields and gradients. By creating a low profile system the

coils used for magnetic transport or to produce bias fields to access Feshbach

resonances can be positioned much closer together, hence requiring lower

currents to realise the necessary fields.

It should be noted that the vacuum system is housed on a separate optical

table to the laser cooling system. This isolates the lasers from any vibrations
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Figure 3.1: Vacuum chamber, obstacle and super polished prisms: (a) To the

left of the image is the MOT chamber with viewports for six MOT beams,

an optical pumping beam to be retro reflected and a further viewport for

fluorescence monitoring of the MOT. To the right is the glass science cell

which houses the super-polished Dove prism. The viewport visible part way

along the axis of the system allows optical access to the obstacle prism. (b)

Super polished Dove prism in the glass science cell. (c) View along the

transport axis from the science cell end. In the foreground is the super

polished Dove prism in a macor mount and in the background the obstacle

prism. The obstacle is centered on a 5 mm aperture out of the MOT chamber,

blocking the line of sight between the MOT and the Dove prism.
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Figure 3.2: MOT optics: Vacuum chamber with MOT optics. The transport

coil mount, along with the water and power connectors, can be seen towards

the centre of the image.

that may arise as a result of the magnetic transport system (see section 3.2.3)

constructed around the vacuum chamber, visible in Fig. 3.2. It also reduces

the possibility of stray resonant light being scattered close to the glass cell

which would otherwise limit the lifetime of the trapped atoms.

3.2.2 Laser cooling

Generation of laser cooling light

Light for laser cooling is derived from two Toptica DL100 (150 mW) extended

cavity diode lasers. In addition, a Toptica BoosTA tapered amplifier is used

to increase the power (of the cooling light) available for use in the MOT

beams. This allows us to increase the size of the MOT beams (to a 1/e2

diameter of 30 mm), and hence the capture volume, whilst still maintaining

a reasonable beam intensity.
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The frequency of the cooling laser is stabilised using modulation transfer

spectroscopy [80]. Locked -230 MHz from the D2 52S1/2 F = 3 → 52P3/2

F ′ = 4 transition in 85Rb, the laser frequency is stable to better than 100 kHz.

This detuning allows maximum flexibility in the frequencies we can then

obtain using acousto-optic modulators (AOMs) (in both single and double

pass configuration) to shift the frequency of the light. To repump atoms from

the F = 2 ground state we stabilise the repump laser to drive transitions

from 52S1/2 F = 2→ 52P3/2 F
′ = 3. However, the potential for atoms in the

52P3/2 F
′ = 3 excited state to decay back to both F = 3 and F = 2 means

the repump laser must be locked with an alternative method. This time

frequency modulation spectroscopy [81] is chosen, again providing stability

on the order of 100 kHz with the laser locked -230 MHz from resonance.

For the work in chapters 4 and 5 involving 87Rb the relevant transitions are

the D2 52S1/2 F = 2 → 52P3/2 F
′ = 3 for the cycling (cooling) transition

and 52S1/2 F = 1→ 52P3/2 F
′ = 2 for the repump light. Again, modulation

transfer and frequency modulation spectroscopy are used to stabilise the laser

frequencies.

To control the frequency and intensity of the cooling and repump light AOMs

are used throughout the optical setup providing fast switching times and

precise control of the laser cooling light. In addition, high speed shutters

block any stray light from reaching the optical fibres used to deliver light to

the experimental setup on the vacuum table.

Cooling in the MOT chamber

The very first step on the road to BEC begins with the trapping of atoms,

from a background vapour, in a magneto-optical trap (MOT). Here we will

not discuss the details of laser cooling but refer the reader to textbooks

such as Refs.[61] and [82]. The MOT uses a standard six beam configu-

ration, shown in Fig. 3.3, allowing up to 1 × 109 atoms to be collected in a

∼ 20−30 s. Once sufficient atoms have accumulated in the trap, a 20 ms com-

pressed MOT stage (CMOT) is carried out. This CMOT stage is achieved

by reducing the intensity repump light whilst simultaneously increasing the

detuning of the cooling light from -15 MHz to -35 MHz and relaxing the
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quadrupole gradient (from 10 Gcm−1 to 5 Gcm−1). This allows atoms to fall

into the dark F = 2 state, decreasing the photon scattering rate and thus

reducing heating effects to create a denser atomic sample.

Next we apply a 15 ms optical molasses phase. Here the quadrupole gradient

is removed entirely leaving the atoms experiencing only the frictional force

as a result of the scattering force of the MOT beams. The detuning of the

cooling light is increased again, this time to 90 MHz. Following the molasses

we optically pump the atoms, using a 2 ms pulse, to the low field seeking

F = 2,mF = −2 state in preparation for magnetic trapping and transport.

3.2.3 Magnetic transport

Central to the experimental setup is a magnetic transport apparatus. The

ability to transfer atoms away from the high pressure MOT chamber to a

much ‘emptier’ ultra high vacuum glass cell is key to the production of Bose-

Einstein condensates. A full discussion of the transport procedure and hard-

ware, along with details of its optimisation can be found in Ref. [44]. Here we

only briefly discuss the key points associated with the final implementation.

Experimental implementation

Magnetic transport of cold atoms can be carried out in one of two ways.

The first involves the sequential loading of multiple magnetic traps, each

one slightly overlapped with the last [83]. In this way, the atoms, along

with the magnetic potential can be translated over large distances. However

the physical implementation requires the winding of many coil pairs and

careful control of the currents flowing in each. An alternative scheme is to

physically displace the trap itself rather than merely the potential by means

of a motorized translation stage [84]. It is this latter approach that we

adopt in our transport scheme. The magnetic potential used to create the

‘transport’ trap is formed from a pair of coils connected in an anti-Helmholtz

configuration, producing a quadrupole potential.

To realise the motion of the trap the transport coils are mounted on a mo-

torized translation stage (Parker XR404). The motion of the trap is then
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Figure 3.3: Vacuum chamber and MOT setup: Optical fibres deliver cooling

and repump light from the laser table to the experimental table (shown).

Light from one cooling fibre is split into four and expanded using telescopes

to form the horizontal MOT beams. Light from a second cooling fibre is

split into two paths and expanded to produce light for the vertical direction

where a periscope (grey ellipses) is used to direct the light into the chamber.

Repump light is only added into the horizontal beams. Also shown is the

optical pumping beam used to transfer atoms into the F = 2,mF = −2

(F = 1,mF = −1) state in 85Rb (87Rb).
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Figure 3.4: Magnetic transport apparatus: Atoms can be transfered between

the MOT chamber and glass science via a magnetic transport apparatus.

A quadrupole trap, mounted on a motorized translation stage physically

moves the trapping potential along the length of the vacuum system before

transferring the atoms contained within to a second, static trap.

programmed using commercial software, allowing full control of the trans-

port profile, i.e. the acceleration, deceleration and velocity, and the position

of the stage along its mounting rails. Dependent on the deceleration of the

stage, its final position can be controlled to ±10− 50 µm.

For atoms to remain in the trap during the transport process we require

that the translational acceleration of the trap itself does not exceed the ac-

celeration experienced by atoms due to the magnetic potential. We can

approximate a value for this trapping acceleration by calculating the force

on an atom due to the horizontal quadrupole gradient,

F = ma = mFgFµB
dB

dρ
. (3.1)

For an atom in the F = 2,mF = −2 state of 85Rb , transported in a

180 Gcm−1 trap (90 Gcm−1 horizontally), this is equivalent to ∼40 ms−2.

Of course, the acceleration of the trap on its translation stage falls far short

of this figure.
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Loading and transporting

To load the trap the quadrupole gradient of the transport coils is switched

on abruptly to 45 Gcm−1. This is then ramped in 500 ms to the full trans-

portation gradient of 180 Gcm−1. The lifetime of atoms in the magnetic

trap whilst still in the MOT chamber is severely limited (to around 10 s)

due to collisions with background gas atoms. It is therefore advantageous

to transport out of this region reasonably quickly. The rails accelerate ini-

tially at 1 ms−2 to reach their maximum velocity, 0.26 ms−1. This velocity is

maintained for the remaining duration of the transport before a deceleration

stage, again at 1 ms−2, brings the trap to rest at the location of a second,

static quadrupole trap (the quadrupole trap referred to in all subsequent dis-

cussions), constructed around the glass science cell. The transport process

takes around 2 s in total, physically moving the atoms a distance of 51 cm.

Once here the atoms must be transfered between the two traps. We do this by

ramping the coil currents simultaneously, the transport current to zero and

the quadrupole current to produce a gradient of 180 Gcm−1, over an interval

of 500 ms. The transport coils can then be moved away from the science cell

and back to the MOT chamber, restoring important optical access.

Transport over an obstacle

A key advantage of using a quadrupole potential to produce the magnetic

trap is the ease with which the field zero, and hence the trap centre, can be

manipulated in space. By applying a bias field we are able to displace the

trap vertically hence allowing atoms to be transported over an obstacle in

the path of the moving trap.

The motivation for the inclusion of an obstacle is two-fold. Firstly this blocks

the line of sight along the transport axis between the MOT chamber and

the UHV glass science cell as can been seen in Fig. 3.1(c). As a result stray

rubidium atoms meandering through the vacuum system are prohibited from

reaching the super polished glass surface positioned in the cell, Fig. 3.1(b).

The second reason relates more specifically to the choice of obstacle. By

placing a right angled glass prism part-way along the transport axis and in
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MOT coils

Shim coils

Shift coils

Shim coils

Quadrupole coils

Bias I coils

Bias II coils
Levitation

Figure 3.5: Magnetic coils in the experimental setup: The magnetic trapping

and bias coils are constructed from Kapton-insulated square cross-section

hollow copper tubing to allow water cooling. Shim coils are wound from

1 mm insulated copper wire. Figure from Ref. [43].

line with a view-port it is possible to safely couple high power laser beams

(used for dipole trapping) out of the vacuum system. As we shall see in

chapters 4 and 7, it is necessary to deliver beams into the science cell through

the back surface of the super-polished Dove prism. As a consequence the

beams would otherwise be directed into the MOT chamber and onto our

fluorescence detector. Instead, total internal reflection of the beam incident

on the right angled prism means the direction of propagation is modified such

that the light can be safely blocked outside of the vacuum system.

A pair of ‘shift’ coils positioned around the obstacle produce a bias field

of 216 G, enough to displace the cloud 1.2 cm vertically as the atoms are

transported over. The position of these coils, along with the others in the

experiment, is shown in Fig. 3.5 (figure from [43]). Importantly the shift field

and its effect on the transport trap, particularly along the transport axis, is

an important consideration in finding an optimum transport velocity. A full

analysis of this interplay between the magnetic gradient and bias field can

be found in [43].
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3.3 Preparation of an ultracold atomic

sample

With a cold cloud of atoms trapped at the science cell end of the apparatus

we can begin the process of evaporative cooling to increase the phase space

density of the sample. Initially this is carried out in the magnetic trap by

inducing RF transitions to untrapped magnetic sublevels to forcibly remove

the hottest atoms. Once the temperature becomes sufficiently low that losses

from Majorana spin flips become appreciable, we switch on an optical trap-

ping beam and reduce the magnetic confinement thus producing a hybrid

trap. From here we continue to evaporatively cool the atoms by reducing the

laser intensity until we reach degeneracy.

3.3.1 Evaporative cooling I: RF evaporation in a mag-

netic trap

Evaporative cooling is based on a simple principle; selectively removing the

hottest atoms from a trapped gas and allowing the cloud to rethermalise

through ‘good’ elastic collisions causes the overall temperature of the sample

to decrease. Repeatedly removing the high energy tail of the velocity dis-

tribution results in a colder, denser atomic sample, albeit containing fewer

atoms. In this way the phase space density can be increased by many orders

of magnitude. (For a thorough review of evaporative cooling, see [85] and

references therein.)

Although in the idealised case evaporation should be carried out infinitely

slowly, removing as few atoms as possible at each stage, in reality the effect

of ‘bad collisions’ with background atoms and inelastic loss mechanisms (see

section 6.3.3) means that lifetime effects become an important consideration.

The ultimate goal for any evaporator is the attainment of ‘runaway evapora-

tion’ [86, 87]. Here as the sample cools, the rate of elastic collisions increases

causing the process to accelerate.

In a magnetic trap, atoms can be removed using a radio-frequency (RF)

driving field to selectively address the hottest atoms. These high energy
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(high velocity) atoms sample a larger area of the magnetic trap, hence by

applying an RF frequency resonant with only the highest Zeeman energy

levels these hot atoms can be removed. The RF ‘knife’ flips the spins of the

atoms such that they eventually couple into untrapped states at which point

they are simply lost from the trap. The energy required for each spin flip is

given by

Ecut = hν = ∆mFgFµBB, (3.2)

where ν is the frequency of the applied RF and ∆mF = 1.

Evaporation in magnetic traps in this way has the key advantage that the

trapping strength remains unaltered during the process. This generally

means that elastic collision rates remain high. The evaporation can be con-

trolled by altering the cut depth of the knife by varying the truncation pa-

rameter, η, which determines how far into the velocity distribution atoms are

removed.

In order to produce the most efficient evaporation scheme it is useful to

know at what frequency the RF knife begins to cut atoms away from the

cloud. This frequency can be determined by applying the knife for some

time (typically we use 5 s) at a fixed frequency and measuring the number

of atoms remaining. Figure 3.6(a) shows the results of such an experiment.

Although it can be difficult to determine a precise value for the exact fre-

quency where the cutting occurs this measurement is sufficient to determine

a suitable starting point for the evaporation ramps. Using the cut point it is

possible to determine η by comparison with the cloud temperature prior to

the application of the RF.

Measuring the cloud temperature

Information about the trapped atomic cloud is obtained from absorption

images (see section 3.5.2). By measuring the cloud width σ after multiple

times of flight τ (Fig. 3.6(b)) one can extract the temperature (Tfit) in both

the horizontal and vertical directions by fitting a line of the form

σ2(τ) = σ2
0 +

(
kBTfit

m

)
τ 2. (3.3)
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The typical treatment of cloud expansion described in section 3.5.2 and in

[88] assumes a Gaussian profile of the atomic density, however, this is not the

case in the quadrupole trap. Fortunately, when released from the trapping

potential, the cloud begins to expand with an isotropic Gaussian velocity

distribution which, with sufficient time of flight, eventually overwhelms the

initial density distribution. This occurs after a shorter expansion time in the

vertical direction due to the smaller initial cloud size (as a result of the tighter

confinement in this direction), hence we typically use the vertical cloud size

(σx) to determine the cloud temperature. This is of particular importance

for the quadrupole trap as it gives a more reliable result, as discussed in [89].

In the limit of a long time of flight an approximation to this temperature can

be made by neglecting the initial cloud width. This allows the temperature

to be obtained from a single image. Experimentally, we find τ ≥ 18 ms is

sufficient to obtain a reasonable estimate.

Determining η

By comparing the energy of the atom in the trap,

Eatom = mFgFµBB = kBT, (3.4)

with the energy of the cut we can determine the cutting temperature,

Tcut =
mFhν

kB

. (3.5)

η is then the ratio of this temperature and that calculated from the expansion

data,

η =
Tcut

Tfit

. (3.6)

In our quadrupole trap η ≈ 8. After 3 stages of RF evaporation we are

typically left with 3 × 107 atoms at T = 42 µK and a PSD= 5 × 10−5 for
85Rb and 2.7× 107 atoms at T = 32 µK and a PSD= 7× 10−5 for 87Rb.

Majorana spin flips

Although further evaporation could be carried out in the quadrupole trap,

the effect of Majorana spin [90] flips begins to limit the lifetime of the trapped
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gas. Loss due to spin flips can be problematic in quadrupole traps, however

this only become significant as the temperature of the cloud decreases and

atoms spend more time close to the magnetic field zero. As shown in Ref. [91],

the Majorana loss rate is given by

ΓM = 1.85
~
m

(
µB′

kBT

)2

, (3.7)

where B′ = dB/dx is the magnetic quadrupole gradient. Fortunately, during

the transport stage the relatively high temperature of the atoms, ∼ 300 µK,

means this is not a significant consideration as the lifetime in a 180 Gcm−1

trap of atoms in the 85Rb F = 2,mF = −2 state is of order 100 s considering

Majorana losses alone. However, for a 40 µK cloud, this reduces to around

2 s hence at this point it is better to instead transfer atoms into an optical

dipole trap.
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Figure 3.6: RF evaporation in the quadrupole trap: (a) The edge of the

cloud can be found by the application of the RF knife at a fixed frequency

and measuring the number of atoms remaining after some time. The dotted

line gives a rough value of the frequency at which the knife starts to take

effect. (b) Cloud width as a function of time of flight (TOF) expansion.

Fitting Eq. (3.3) gives temperatures of Tv = 148(4) µK and Th = 136(3) µK.

3.3.2 Optical trapping

A comprehensive review of optical trapping can be found in Ref.[92]. Here

we will discuss only the basic theory of dipole trapping and the origin of the
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dipole force as a background to the technique central to the apparatus.

The fundamental principle of an optical dipole trap relies on the interaction

between an electric dipole and far detuned light. As a result of this detuning,

optical excitations are minimal in this class of trap and light-induced loss

mechanisms low, however, depths are limited to typically < 1 mK. In these

traps the size of the radiation force from photon scattering is overwhelmed by

the dominant dipole force. We begin by considering an atom as a mechanical

oscillator, subject to a classical radiation field in order to first derive the

equations governing the dipole interaction.

A simplified model

An induced electric dipole moment can be created by subjecting an atom to

laser light. The electric field of this light, E, induces a dipole moment p in

the atom, oscillating at the driving frequency ω. As is convention, E and p

are defined as,

E(r, t) = êẼ(r) exp(−iωt) + c.c., (3.8)

p(r, t) = êp̃(r) exp(−iωt) + c.c., (3.9)

where ê is the unit polarization vector. The amplitude of the dipole moment,

p̃, is related to the the amplitude of the field, Ẽ, via the complex polarizability

of the atom, α, itself dependent on the driving frequency, such that

p̃ = αẼ. (3.10)

The interaction potential of the induced dipole moment in the driving field

is then given by

Udip = −1

2
〈pE〉 = − 1

2ε0c
Re(α)I . (3.11)

Angular brackets denote a time average over rapidly oscillating terms and

the factor of 1
2

accounts for the induced rather than permanent nature of

the dipole moment. The intensity of the laser field is related to the field

amplitude as

I = 2ε0c|Ẽ|2. (3.12)

The dipole force can then be found by taking the gradient of this potential

Fdip(r) = −∇Udip(r) = − 1

2ε0c
Re(α)∇I (r). (3.13)
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This is a conservative force, proportional to the position dependent field

intensity.

A second important quantity is the scattering rate. Whereas the real part of

the polarizability, responsible for the dispersive properties of the interaction,

gives rise to the dipole force, the imaginary part partially describes the power

absorbed by the oscillator,

Pabs = 〈ṗE〉 = 2ωIm(p̃Ẽ∗) =
ω

ε0c
Im(α)I . (3.14)

If one considers the laser light to be a stream of photons with energy ~ω
the absorption can be thought of as a series of absorption and spontaneous

re-emission processes amounting to scattering with a rate

Γsc(r) =
Pabs

~ω
=

1

~ε0c
Im(α)I (r). (3.15)

Atomic polarizability

Keeping with a classical picture of simple oscillators, the atomic polarizability

can be derived from a model of an electron, elastically bound to a core [92].

The polarizability is then given by,

α =
e2

me

1

ω2
0 − ω2 − iωΓω

, (3.16)

where

Γω =
e2ω2

6πε0mec3
, (3.17)

is the damping rate due to radiative energy loss. Defining an on-resonance

damping term Γ ≡ Γω0 = (ω0/ω)2Γω, Eq. (3.16) then becomes

α = 6πε0c
3 Γ/ω2

0

ω2
0 − ω2 − i(ω3/ω2

0)Γ
. (3.18)

For reference, frequency-dependent polarizabilities for the alkalis can be

found in Ref. [93].

In the case of dipole trapping the far-detuned nature of the light means

saturation effects are of little consequence. As a result, this classical model

returns an almost identical result to the semi-classical approach, considering

an atom as a two-level system interacting with a classical radiation field,

with only a slight modification to the calculation of the damping rate, Γ, to

differentiate between the two.
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The dipole potential

In this limit of large detuning and negligible saturation we have,

Udip(r) = −3πc2

2ω3
0

(
Γ

ω0 − ω
+

Γ

ω0 + ω

)
I (r), (3.19)

Γsc(r) =
3πc2

2~ω3
0

(
ω

ω0

)3(
Γ

ω0 − ω
+

Γ

ω0 + ω

)2

I (r). (3.20)

It is generally the case that the trapping laser used is close enough to reso-

nance such that the detuning ∆ ≡ ω−ω0 fulfills |∆| � ω0. As a consequence,

the counter-rotating term (resonant at ω = −ω0) can be neglected in the ro-

tating wave approximation and it is reasonable to set ω/ω0 ≈ 1. We then

arrive at the somewhat simplified yet familiar results

Udip(r) =
3πc2

2ω3
0

Γ

∆
I (r), (3.21)

Γsc(r) =
3πc2

2~ω3
0

(
Γ

∆

)2

I (r). (3.22)

Importantly the scaling of these two quantities, in terms of intensity and de-

tuning, gives clear indications about how to best achieve an effective dipole

trap experimentally. Equating Eqs. (3.21) and (3.22) we find the two quan-

tities are related as,

~Γsc =
Γ

∆
Udip. (3.23)

In the ideal case intensities should be high to obtain large trap depth. How-

ever, for a given trap depth we see that it is advantageous to increase the

laser detuning to reduce the scattering rate of the trapped atoms.

The sign of the laser detuning also has a crucial impact on the resulting dipole

potential. For a red detuned beam, ∆ < 0, the resulting dipole potential is

negative hence atoms are attracted into regions of high intensity. In contrast,

when the light field is above resonance, or blue detuned, ∆ > 0, atoms are

repelled from the field. In this case the minimum of the potential corresponds

to the minimum of the beam intensity.

Gaussian beams

Knowing the beam intensity is of paramount importance in understanding the

dipole potential. Fortunately, most laser beam profiles can be approximated
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by Gaussian functions thus obeying Gaussian optics. A Gaussian laser beam

propagating along the z-direction can be described by

U = U0e
i(kz−ωt) e

ikr2/2q

q
, (3.24)

where r2 = x2 + y2, q = z − zwaist − izR, U is the electric field amplitude,

zwaist is the position of the beam waist and zR the Rayleigh range. As it

propagates, the beam width, or 1/e2 radius, evolves as

wi(z) = w0i

√
1 + (z/zR)2, (3.25)

with the Rayleigh range given by

zR =
πw2

0

λ
, (3.26)

where w0 is the beam waist and λ the wavelength of the light. Over this

distance, zR, the width of the beam increases to
√

2w0.

Again considering propagation in z, the beam intensity can be expressed as,

I(x, y) = I0e
−2x2/w2

xe−2y2/w2
y , (3.27)

allowing for different waists in x and y, with the peak intensity I0 given by

I0 =
2P0

πwx(z)wy(z)
. (3.28)

Optical trapping lasers

Two high power lasers have been used to create optical dipole traps used

in this work. In the experiments described in chapter 4 a multimode ELS

Versadisk laser capable of producing 50 W of power at λ = 1030 nm was

used to produce the single beam dipole trap. Unfortunately, this disk laser

was subject to severe fluctuations in both the beam profile and power hence

the only workable solution was to fibre couple the light used for dipole trap-

ping. High power, shielded fibres (shown in Fig. 3.7) fixed the beam size and

allowed intensity fluctuations to be servo controlled however, this limited the

power delivered to the trap to only 2.5 W. Subsequently this disk laser was

replaced by a single frequency IPG fibre laser (IPG: YLR-15-1064-LP-SF)

producing 15 W at λ = 1064 nm.
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Figure 3.7: Single beam optical dipole trap layout: Light from an ELS Ver-

sadisk laser is coupled into a high power optical fibre. The light is then

delivered close to the glass science cell where it is focussed to produce a

57 µm waist, ∼3.5 mm in front of the super polished Dove prism. Intensity

control of the beam is provided by a servo controlled AOM.

As with the laser cooling light, the intensity of the dipole beams is controlled

using an AOM. For the ELS laser we use a NEOS 23080-2-1.06 and for the

IPG an Isomet M1080-T80L. Intensity fluctuations are corrected for via a

servo feedback loop using a monitor photodiode.

Although not producing a trap in the strictest sense, the waveguide beam

used in chapter 7 can be considered as an additional dipole trapping beam.

The light for this beam is derived from a 2 W Innolight laser, operating at

1064 nm.

Optical trap layout

Figure 3.7 shows the optical layout of the single beam dipole trap used to

carry out the work described in chapter 4. Light from the Versadisk laser

passes through an AOM before it is coupled into a high power optical fibre.

The output of the fibre is positioned close to the glass cell. An adjustable

collimator on the output (and input) means the beam size of the light out of

the fibre can be adjusted easily.

To produce a narrow beam waist to form the dipole trap a f = 200 mm

lens focusses the light to 57 µm approximately 3.5 mm from the front face



Chapter 3. Experimental overview 45

of the super-polished prism. The small amount of light which leaks through

the final delivery mirror is focussed onto a photodiode used in the servo loop

control of the AOM. A half-waveplate is also used in the beam path to change

the polarisation of the dipole trapping light to controlling the amount of light

transmitted through the final delivery mirror and to the servo photodiode.

3.3.3 A hybrid magnetic and optical trap

Throughout this work a hybrid trap produced from both magnetic and optical

confinement is used to trap and manipulate a sample of ultracold atoms. In

chapter 4 we employ the simplest case, a single dipole laser beam positioned

a small distance below the field zero of a magnetic quadrupole trap as shown

in Fig. 3.8(a). In this system tight radial confinement is provided by the

dipole laser beam and weaker axial confinement along the beam arises as a

result of the magnetic trap. The full potential is given by [91],

U(r) = µB′
√
x2 +

y2

4
+
z2

4
−U0 exp

(
−2[y2 + (x− xoffset)

2]/w2
0

)
+mgx+E0.

(3.29)

Here µ is the magnetic moment of the atoms and B′ the quadrupole gradient

in the x direction (along the axis of the coils). The dipole laser is described by

its trap depth, U0, waist, w0 and offset, xoffset, from the quadrupole field zero

which is positioned at x = y = z = 0. E0 accounts for the small difference in

the trap minimum when the dipole trap is present and is such that U(rmin) =

0. Finally m and g are the mass of the atom and the acceleration due

to gravity. We assume a geometry whereby the beam propagates along z-

direction and is displaced vertically in the x-direction. As the Rayleigh range

of laser beams used is typically large compared to the offsets in the trap we

neglect the effect of beam focussing.

Radial trap frequency

In the radial directions of the trap the oscillation frequency is dominated by

the dipole laser beam. If we take the part of the potential associated with
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Figure 3.8: Single beam hybrid dipole trap axial potential: (a) Schematic of

the experimental setup. The dipole trap (DT) beam is positioned a distance

xoffset below the field zero of a magnetic quadrupole trap (QT). (b) Axial

potential. For small displacements along the axis of the beam z � xoffset

the trapping potential remains harmonic. Beyond this the linear quadrupole

potential begins to dominate.

the laser beam,

Ulaser = −U0 exp
(
−2[y2 + (x− xoffset)

2]/w2
0

)
, (3.30)

and set x = xoffset (i.e. looking at the position of the beam), we have,

Ulaser = −U0 exp

(
−2

y2

w2
0

)
' −U0 +

2U0y
2

w2
0

. (3.31)

By comparison to the harmonic oscillator solution, U = 1
2
mω2y2 we then

arrive at

ωradial = 2

√
U0

mw2
0

. (3.32)

Axial trap frequency

In a single beam trap the laser beam contributes only very weakly to the

trapping in the axial direction. If the thermal energy of the atoms, kBT ,

is small compared to the trap depth the spatial extent of the atoms in the

radial direction is small compared to the beam waist. The cloud is also small

in the axial direction compared to the relevant length scale, zR [92]. In this

limit the trap potential can be approximated by a harmonic oscillator with
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cylindrically symmetric geometry,

Ulaser ' −U0

[
1− 2

(
r

w0

)2

−
(
z

zR

)2
]
, (3.33)

where r2 = x2 + y2. Setting x = y = 0 the oscillation frequency is given

simply by

ωdip axial =

√
2U0

mzR

. (3.34)

This gives an axial trapping along the beam due to the laser light of <1 Hz.

Instead, trapping in the axial direction is set by the magnetic potential.

Considering the magnetic contribution to the total trapping potential,

Umag = µB′
√
x2 +

y2

4
+
z2

4
(3.35)

it is possible to derive an expression for the trapping frequency. We begin by

positioning ourselves at y = 0 and x = xoffset thus simplifying the potential

to

Umag = µB′
√
z2

4
+ x2

offset

= µB′xoffset

√
z2

4x2
offset

+ 1. (3.36)

Assuming that |z2/4x2
offset| ≤ 1 we can then Taylor expand Eq. (3.36) to give

Umag = µB′xoffset +
µB′z2

8xoffset

. (3.37)

Again we compare the form of the potential to the harmonic oscillator solu-

tion and hence we obtain an expression for the axial trapping,

ωmag axial =
1

2

√
µB′

mxoffset

. (3.38)

The validity of this expansion is obviously somewhat limited. The constraint

of the Taylor expansion, |z2/4x2
offset| ≤ 1, or equivalently that z � xoffset,

means that this harmonic description of the trapping only remains true for

axial displacements much less than the offset between the field zero and the

laser beam position. Beyond this the linear nature of the quadrupole trap

begins to dominate, U ≈ µB′z/2, and this simple model breaks down as

shown in Fig. 3.8(b).
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If the trap is perfectly levitated, B′ = mg/mFgFµB, Eq. (3.38) reduces to

ωmag axial =
1

2

√
g

xoffset

. (3.39)

Typically, the beam is displaced by xoffset '150 µm resulting in an axial

frequency of ∼20 Hz.

Effect of additional bias fields

The fact that the axial trapping in the hybrid setup is determined by the

position of the laser beam relative to the field zero presents an immediate

problem should one wish to apply a magnetic bias field in vertical direction

(along x). The addition of the bias field produces a shift in the position of

magnetic field zero proportional to both the field, B0 and the gradient,

xshift =
B0

B′
. (3.40)

Substituting this into Eq. (3.38) we recover an expression for the trap fre-

quency more familiar in the context of the Ioffe-Pritchard trap [32],

ωmag axial =
1

2

√
µB′2

mB0

. (3.41)

As an example, to access the 155 G Feshbach resonance in 85Rb using a

22 Gcm−1 gradient to close off the trap would shift the field zero by ∼7 cm.

Neglecting the initial beam displacement, this reduces the axial trapping to

∼0.9 Hz. As such the beam acts less like a trap and more like a waveguide.

To circumvent this problem in chapters 5 and 6 this hybrid trap is extended to

a crossed trap geometry. In this case the trap frequency is no longer set by the

magnetic confinement, however the levitation provided by the gradient is still

important in maximising the trap depth and providing a weak confinement

along the arms of the laser beams. The hybrid trap therefore has a larger

volume than a pure crossed dipole trap without a magnetic gradient. This

can be advantageous when initially loading the dipole trap following the RF

evaporation in the quadrupole trap.
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3.3.4 Evaporative cooling II: Evaporation in an optical

trap

Evaporative cooling in an optical trap is mostly commonly carried out by re-

ducing the intensity of the trapping beam(s). This has the effect of lowering

the trap depth U0, allowing the hottest atoms to escape. However, an unfor-

tunate side effect of reducing the beam power is a corresponding reduction in

the trap frequencies as shown in Fig. 3.9(a) and Eq. (3.32). This lowers the

elastic collision rate, slowing down rethermalisation. Despite this, it is still

possible to create Bose-Einstein condensates in optical traps using exactly

this method. Alternatively, using a magnetic field gradient to effectively tilt

the optical potential it is possible to maintain the trap frequencies whilst still

allowing hot atoms to escape from the trap [87] as shown in Fig. 3.9(b) .

( a ) ( b )
U ( t )U 0

Figure 3.9: Evaporation in an optical dipole trap: (a) By lowering the beam

intensity it is possible to reduce the trap depth, allowing the hottest atoms to

leave the trap. In lowering the beam intensity, the trap frequencies are also

reduced. (b) Alternatively, applying a magnetic field gradient to tilt the trap

lowers the trap depth (from U0 to some reduced value U(t)) but maintains

the trapping frequencies.
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3.4 Experimental control

During any experimental cycle a series of precisely timed operations must

be carried out, controlling the laser light and magnetic fields seen by the

atoms. This control is realised in the experiment using a National Instru-

ments LabVIEW FPGA system. Field-programmable gate arrays (FPGAs)

are reprogrammable silicon chips which physically rewire in order to carry

out the user’s desired operation. This has the advantage of faster response

times yet has the same flexibility of software running on a processor-based

system, but it is not limited by the number of processing cores available [94].

A combination of both analog and digital output channels provide complete

control over the experimental hardware. Digital TTL signal are used to trig-

ger the majority of operations, switching between levels on µs timescales.

Although the board can be configured to give 25 ns resolution this is un-

necessary for our current work. The analog channels provide linear ramping

(with 2 µs resolution), and are used to control the magnetic coil currents

along with the servo controlled high power AOMs used for optical trapping.

Alongside the FPGA control of the experiment a small number of devices are

controlled using GPIB. These include the Agilent power supplies controlling

the magnetic coil currents and the function generators used to produce signals

for RF evaporation. The GPIB system is run independently from the FPGA

software, instead communication is achieved through ‘start’ and ‘finish’ TTLs

sent between the two control computers. This avoids disruption to the precise

timing established with the FPGA system.

3.5 Diagnostics

We adopt two commonly used imaging diagnostic techniques to obtain infor-

mation about our trapped atomic cloud. In the MOT chamber fluorescence

from the atoms in the MOT beams is collected allowing a real time assess-

ment of the MOT loading rate. Once we transfer to the science cell absorption

imaging is used to measure both the optical depth and the cloud size after a

short time of flight allowing the number and temperature of the cloud to be
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calculated, along with a range of other properties.

3.5.1 Fluorescence detection

In the MOT chamber fluorescence from the atoms in the MOT is monitored

using a photodiode (Thorlabs DET36M). This signal from this monitor can

then be converted to an atom number according to [95]1

N =
Vsig

R(λ)RPD

16x2

d2

(
~ωLΓ

2

C2
1I/ISAT

1 + C2
2I/ISAT + 4(∆/Γ)2

)−1

. (3.42)

The conversion factors necessary to obtain an atom number depend on prop-

erties of the atoms, properties of the MOT light and on experimental param-

eters. Here ISAT is the saturation intensity, ∆ the detuning of cooling light

from the F = 3 to F ′ = 4 transition, Γ the linewidth of the cooling transi-

tion, Vsig the photodiode signal (including factors such as filter efficiency and

losses due to a 50:50 beam splitting cube), x is the distance from the MOT

to the lens collecting the fluorescence, d diameter of the limiting aperture,

Rλ photodiode responsivity at 780 nm and RPD (= 0.5 A/W) the load of the

photodiode (=1 MΩ due to the oscilloscope used to monitor the signal).

This fluorescence detection can be used to optimise many parameters asso-

ciated with the laser cooling stage of the experiment. Using recapture mea-

surements, whereby the MOT light and coils are pulsed on again after some

experimental sequence, it is possible to measure the fraction of atoms trans-

fered from the MOT into the magnetic trap. However, after the transport

process it is more practical to adopt absorption imaging as our diagnostic.

This allows more information about the trapped atoms to be obtained, albeit

at the cost of destroying the cloud.

1Here the coefficient C1 and C2 [96] account for the unknown distribution of mF

states present in the MOT. Using an ISAT−closed based on only closed transitions or an

ISAT−isotropic assuming a random distribution of mF states affects the atom numbers calcu-

lated by a factor of two. Using these coefficients gives an atom number which lies between

these two conventions.
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3.5.2 Absorption imaging

At the science cell end of the apparatus we use both horizontal and vertical

absorption imaging to align and characterise the optical and magnetic traps.

The optical setup used for the two directions is shown in Fig. 3.10. Absorp-

tion imaging allows properties of an atomic cloud to be calculated from the

shadow cast by the atoms when subjected to a short pulse of resonant light.

As the light passes through the cloud atoms absorb and scatter photons. By

imaging the remaining light on a CCD camera it is then possible to extract

the column density of the cloud along with its spatial profile by fitting a

Gaussian lineshape to the shadow. We will not reproduce the full calcula-

tions used to determine the cloud parameters here, rather they can be found

in [88].

In the very briefest of overviews we consider how the measured optical depth

and cloud size leads to a number and temperature measurement. The optical

depth OD, defined as

I = I0 exp(−OD(x, z)), (3.43)

gives a measure of the drop in intensity I of the probe beam (with initial

intensity I0) as it passes through the cloud. Along with the cloud widths

σi (defined here as 1/e2 radii) the number of atoms in the cloud can be

calculated from the peak optical depth at the cloud centre according to

Nfit =
2πODpeakσxσz

σ0

, (3.44)

where σ0 = 3λ2/2π for a 2-level atom.

In free expansion the width of the cloud depends on the time of flight and

the frequency of the trap from which the atoms were released. After a time

τ the cloud width is given by

σx,z(τ) =
√
σ2
x,z(0) + ω2

x,zτ
2σ2

x,z(0) = σx,z(0)
√

1 + ω2
x,zτ

2. (3.45)

Here σ(0) is the width of the cloud in-trap. From the time of flight width we

can then calculate the in-trap size and hence determine the temperature of

the cloud,

Tx,z =
mω2

x,zσ
2
x,z

kB

. (3.46)
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Figure 3.10: Absorption imaging optical layout: (a) Horizontal imaging lay-

out. Atoms are illuminated with both probe and repump light in the horizon-

tal plane. The probe light is then focussed down onto a CCD camera using a

pair of lenses. The ratio f2/f1 gives the magnification of the imaging system.

(b) Vertical imaging layout. The probe light used for the vertical imaging is

split off using a PBS cube in the horizontal plane. The same repump light

used for the horizontal imaging is used in the vertical setup. (c) Propagation

through the optical setup of the light scattered by the atoms.
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Levitated time of flight

Due to the high densities present in Bose-Einstein condensates it is often

desirable to increase the time of flight before an absorption image is taken.

This increased expansion time causes the optical depth to fall. However, the

drop time is limited by the field of view of the camera as the atoms fall under

gravity during the time of flight.

This problem can be circumvented using a levitated time of flight. Here a

magnetic gradient remains on during the expansion, cancelling the effect of

gravity and levitating the cloud. In addition, a bias field is applied to shift

the magnetic field zero far away vertically so the atoms are not forced into

the ‘2g’ potential (twice the effect of gravity) created above the field zero.

The cloud is then able to expand freely in the vertical direction, however,

the effect of the magnetic gradient and bias field creates a weak harmonic

trap in the horizontal direction (see Eq. (3.41)). As such, calculations of

temperature from a levitated time of flight use only the vertical cloud width.

Imaging resolution

For a perfect system the diffraction limit, setting a bound on the resolution

of the imaging, is given by

d = 1.22λNA = 1.22
fλ

D
. (3.47)

The smallest resolvable distance d is therefore determined by the wavelength

λ of the light being used and the numerical aperture NA of the imaging lens

(NA = focal length, f / diameter, D). In the current absorption imaging

setup this gives a diffraction limited resolution of ∼ 4 µm. If we also consider

our typical magnification, ×1 or ×1.5, this results in an effective pixel size of

8 µm or 5.2 µm. Although these calculations ignore aberrations and assume

full illumination of the imaging lens, they give an order of magnitude estimate

of the best resolution we can expect to achieve.
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Figure 3.11: Multiple spin states of 87Rb : Application of an RF field to

atoms in a magnetic field drives ∆mF = 1 transitions between magnetic

sublevels. In a levitated time of flight these spin states spatially separate.

Driving transitions in this way can be used to precisely calibrate the magnetic

field seen by the trapped atoms.

3.5.3 Magnetic field calibration

As we shall see in chapter 6 in order to tune the scattering properties of the

atomic cloud we will employ a magnetic Feshbach resonance. This allows the

scattering length to be varied as a function of the applied bias field, hence,

to precisely know the scattering length of the atoms we must first precisely

know the magnetic field seen by them.

To calibrate the magnetic field we use Stern Gerlach spectroscopy. The

application of an oscillating RF field, perpendicular to the magnetic field,

drives ∆mF = 1 transitions between the magnetic sub levels of the atoms. If

the resonant frequency which causes these spin flips can be determined a bias

field can be extracted using a Breit-Rabi diagram [97]. Typically a 10 ms

pulse of fixed frequency RF is applied and the number of atoms remaining

measured after a short hold time. This allows atoms flipped to untrapped

states to fall away.

Alternatively, if this hold time is reduced and a levitated time of flight used

(where the quadrupole trap and small bias field remain on during the time of

flight to cancel the effect of gravity) it is possible to observe the occupation

of multiple spin states caused by the spin flips. Figure 3.11 shows 87Rb atoms
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in the F = 1 state, originally trapped in F = 1,mF = −1. In the time of

flight the mF = −1 atoms are levitated, the mF = 0 atoms feel no magnetic

levitation and fall under gravity and the mF = +1 atoms are accelerated

downwards, feeling the effect of gravity plus an additional magnetic force

comparable to gravity (opposite to the levitation experience by the -1 atoms).

3.6 Summary

In this chapter we have introduced the experimental apparatus used to pro-

duce ultracold atomic gases, highlighting key features of the setup. In subse-

quent chapters we will explore the performance of the apparatus, in particu-

lar the optical dipole traps, working towards our goal of producing quantum

degenerate gases of rubidium close to a room temperature dielectric surface.



Chapter 4

A single beam optical dipole

trap: Guided transport of

atoms and Bose-Einstein

condensation of 87Rb

4.1 Introduction

This chapter details the loading of a single beam optical dipole trap. With

atoms trapped we then demonstrate the guided transport of an atomic sam-

ple along the beam, up to a room-temperature dielectric surface. The tech-

nique exploits a simple hybrid trap consisting of a single beam dipole trap

positioned ∼ 125µm below the field zero of a magnetic quadrupole poten-

tial. Transportation is realised by applying a moderate bias field (< 12 G)

to displace the magnetic field zero of the quadrupole potential along the axis

of the dipole trap. We use the technique to demonstrate that atomic gases

may be controllably transported over 8 mm with negligible heating or loss.

The transport path is completely defined by the optical waveguide and we

demonstrate that, by aligning the waveguide through a super polished prism,

ultracold atoms may be controllably delivered up to a predetermined region

of a surface.

We go on to produce a 87Rb condensate using the surface to selectively re-

57
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move atoms as a final evaporation stage in addition to the more conventional

method of direct evaporation in the optical trap. We compare the efficiency

of evaporation to BEC in three different single beam optical traps using the

direct cooling method. Finally we propose a potential scheme for the use of

the transport method in future work.

4.2 Motivation: Moving atoms close to a

surface

Understanding the fundamental forces which govern the world around us has

long been a challenge for the scientific community. Of particular interest is

the search for a comprehensive explanation of gravity. Newton published his

theory of gravitation in 1687 [98] and since then attempts to experimentally

verify its proposal have covered length scales from the astronomical [99] to

the sub millimetre [100]. The results of such experiments have not only

fundamental significance, but also important technological implications.

Although these experiments seek to, and have imposed, increasingly strict

bounds on fundamental forces there are still many open questions regarding

the possibility of short-range corrections to gravity which extend beyond the

Standard Model. Despite the electromagnetic, strong and weak forces all

being well described by quantum field theories, the current description of

gravity set out by Einstein’s theory of general relativity, which reduces to

Newtonian gravity on everyday length scales, breaks down in the quantum

limit and as such, is currently excluded from the Standard Model. As a start-

ing point, many experiments look for deviations from the expected inverse

square law, with new forces instead being characterised by a Yukawa type

potential of the form

U(r) =
−GNm1m2

r
(1 + αe−r/λ), (4.1)

where α is the strength of the force and λ its range. At the 1µm level

current experimental constraints permit these forces to be as large as 1010

times Newtonian gravity [101].

Attempts to measure the gravitational attraction between two masses have
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improved dramatically from the first experiments by Cavendish in 1798 [102]

and now vary widely in approach from superconducting gravity gradiome-

ters [103] and microcantilevers [104] to planar oscillators [105] and torsion

balance experiments [106]. However in scaling down experiments to probe

ever decreasing length scales a new, fundamental problem arises. Quantum

electrodynamics predicts a macroscopic force between conductors, known as

the Casimir force [107]. This force vastly overwhelms the much weaker gravi-

tational attraction between the test masses, such that experiments are forced

to search for deviations between the theoretical and experimental Casimir

forces. However, precisely calculating such Casimir forces for a specific

macroscopic test mass near a surface is generally difficult [108]. In contrast

the interaction between a single neutral atom and a plane surface is well

understood [109, 110] being characterised by the attractive Casimir-Polder

potential,

UCP =


UvdW = −C3

z3
for z < λopt/2π, (4.2)

Uret = −C4

z4
for λopt/2π < z < λT, (4.3)

where for longer length scales the 1/z3 form of the van der Waals poten-

tial, characterised by C3, becomes 1/z4 due to retardation effects. This

new regime is characterised by C4 with the transition point between the

two regimes determined by the wavelength corresponding to the dominant

excitation energy of the interacting atoms, λopt [111]. Further from the

surface (larger than the thermal wavelength of photons, λT = ~c/kBT ) the

interaction becomes dominated by the thermal fluctuation of the electromag-

netic field [112]. In our case these length scales are λopt/2π ≈ 0.12µm and

λT ≈ 7.6µm.

The inherent advantage of directly probing the atom-surface interaction has

prompted the recent proposal of a new generation of experiments which aim

to exploit the precision and control offered by atomic physics and ultracold

quantum gases to push the measurement of short-range forces into a new

regime [113, 114, 115, 116]. Indeed a number of proof-of-principle experi-

ments have already utilised ultracold atomic gases to explore the short range

van der Waals and Casimir-Polder potentials [117, 118, 119, 120]. Never-

theless such experiments are in their infancy and considerable refinement is
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Figure 4.1: Experimental setup: (a) Trapping geometry near the surface. A

single laser beam is delivered through the back surface of the glass prism,

focussing 3.5 mm from its front surface. Axial confinement along the beam is

provided by a magnetic quadrupole field. A single coil positioned behind the

prism is used to produce a bias field to shift the location of the quadrupole

field zero along the beam direction. (b) Schematic of the glass cell, the Dove

prism, the macor prism mount and the dipole laser beam from above. (c)

Photograph of the prism within the glass cell. (d) False colour absorption

image of atoms trapped 7 mm from the prism surface. (e) False colour ab-

sorption image of atoms in the waveguide without magnetic confinement.

required before they become competitive with the classical ‘Cavendish style’

experiments as a test of short-range gravitational forces. Common to all

these new atomic physics experiments is the need to controllably manipulate

ultracold atoms near a room-temperature surface.

4.3 Experimental setup

Our approach uses a hybrid optical and magnetic trap formed from a sin-

gle beam optical dipole trap positioned ∼ 125µm below the field zero of a

magnetic quadrupole potential (see Fig. 4.1(a)-(c)). For this first series of

experiments the dipole trapping beam is derived from a λ = 1030 nm Yb

disk laser (ELS Versadisk). The light is delivered close to the experimental

chamber via a high power optical fibre before being focussed to a waist of
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57µm with an M2 = 1.06 and Rayleigh range zR = 9.9 mm. By positioning

the beam below the field zero of the quadrupole trap (see section 4.5.1) we

obtain the trapping potential shown in Fig. 4.2(a). The quadrupole gradient

is usually set to approximately cancel gravity (30.6 G cm−1 for 87Rb in the

F = 1,mF = −1 state) hence the full trap depth is determined by the dipole

beam alone. However, if the dipole trap is positioned above the field zero,

the trapping potential and the gravitational acceleration add to produce a

tilted trap which lowers the potential barrier and hence trap depth as shown

in Fig. 4.2(b).

4.4 Modelling the trap potential

It is important to fully understand the hybrid potential formed by the com-

bined magnetic and optical trap if atoms are to be translated up to and away

from the surface in a controlled way. The total potential seen by the atoms

has four contributions,

Utotal = Udipole + Umag + Ug + UCP, (4.4)

where Udipole is the optical dipole potential, Umag is the magnetic potential

(consisting of both the quadrupole and bias fields), Ug is the earth’s grav-

itational potential and UCP is the potential produced by the atom-surface

interaction. This net potential is depicted in Fig. 4.2(a) for a trap positioned

far from the surface.

The optical contribution to the trap potential is modelled as a sum over any

significant transitions from the ground state according to,

Udipole = 3c2

(∑
i

Γi
∆iω3

0i

)
P

w2(z)
exp

(
− 2r2

w2(z)

)
. (4.5)

Here ∆i is the laser detuning from the transition of frequency ω0i and nat-

ural linewidth Γi. P is the power of the dipole beam propagating in the z

direction, w(z) is the beam size, given by w(z) = w0M[1 + (zλM2/πw2
0M)2]1/2

(where w0M is the 1/e2 radius at the beam waist), and r is the radial distance

from the beam centre.
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Figure 4.2: Potential produced by the single beam hybrid trap: (a) Equipo-

tential of the hybrid trap in the plane y = 0 (see co-ordinate system in

Fig. 4.1(a)). (b) The potential obtained in the x direction for a magnetically

levitated trap with the dipole beam positioned 125µm below (solid, black

line) and 125µm above (red, dashed line) the magnetic field zero. (c) Axial

trap frequency as a function of vertical beam displacement from the magnetic

field zero.

4.4.1 Case I: Idealised transport in the hybrid trap

In this hybrid trap configuration tight radial confinement is created by the

dipole laser beam. Axial confinement along the beam is provided by the

quadrupole field. (Without any magnetic confinement the cloud extends

along the waveguide, centered around the beam waist, due to the low (∼
2 Hz) axial trap frequency produced by the dipole beam alone as shown in

Fig. 4.1(e).) The axial potential produced by the quadrupole field is harmonic

for z � xoffset (where xoffset is the vertical separation between the beam and

field zero) and linear otherwise. The harmonic trap frequency is determined

by the quadrupole gradient and the vertical displacement of the beam from

the field zero [91] as shown in Fig. 4.2(c). Here the quadrupole gradient is

sufficient to support atoms against gravity. In this hybrid trap the position

of the atoms along the dipole beam is determined not by the beam waist but

instead by the location of the quadrupole trap centre. The application of a

horizontal bias field parallel to the dipole beam produces a shift of the field

zero along the direction of the beam. In this way atoms can be transported

along the length of the dipole beam and delivered up to a region of the prism

surface determined solely by the path of the dipole trapping beam.
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4.4.2 Case II: Transport with an offset bias field

In the idealised case the application of the bias field moves the field zero

purely along the z-axis thus keeping the distance between the dipole beam

and the field zero, and hence the axial trap frequency, constant. However,

due to physical constraints of the apparatus it is unfeasible to position a pair

of bias coils symmetrically about the beam. Instead we must use a single

coil, displaced 17 cm in the z-direction from the field zero. Additionally the

symmetry axis of the coil is offset 1.5 cm vertically. Theoretically accounting

for the offset of the bias coil produces small deviations from the trapping

expected for displacement along a Gaussian beam. This is the result of the

trajectory taken by the field zero as the bias field is increased due to a non-

axial magnetic field component produced by the offset of the bias coil. As

shown in Fig. 4.2(c) any vertical displacement translates into a change in axial

trap frequency. The theoretical model of this axial frequency change is shown,

along with experimentally determined values, in section 4.6.2. However, we

stress that even in this non-ideal case the atoms are still transported along

the dipole beam regardless of the exact path of the magnetic field zero.

4.5 Production of ultracold gases near a

dielectric surface

4.5.1 Loading the hybrid trap

As described in chapter 3, to prepare the atomic sample 87Rb atoms are

loaded from a magneto-optical trap (MOT) into a quadrupole trap mounted

on a motorised translation stage. Once loaded, this quadrupole trap is moved

horizontally, transporting the atoms towards a second, static quadrupole trap

(shown in Fig. 4.1(a)) into which the atoms are transferred. The atoms are

then further cooled by forced RF evaporation resulting in a sample of 2.7×107

atoms at a temperature of 32µK.

To load the hybrid dipole trap the quadrupole gradient is relaxed from

192 G cm−1 down to 29.3 G cm−1 in 1 s. The combined potential produced
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by the laser beam and quadrupole field results in trap frequencies of ωr =

2π×480 Hz and ωz = 2π×24 Hz at the beam waist. To optimise the loading

of the trap, the positioning of the beam relative to the quadrupole field zero

is of great importance. We demonstrate this by scanning the beam using

the final steering mirror in the optical setup and measuring the atom num-

ber after a 500 ms hold in the trap. From Fig. 4.3 it is possible to roughly

determine the position of the field zero in the beam scan. Here atoms are

lost from the trap as a result of Majorana spin flips and hence a dip in atom

number is observed.
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Figure 4.3: Aligning the single beam trap: Atom number in the trap is

maximised by scanning the dipole beam horizontally (a) and vertically (b)

using the final steering mirror. In both scans the position of the magnetic

field zero presents itself as a drop in atom number between two peaks. Lines

shown are as a guide only.

As a brief aside, it is interesting to note how the position of the dipole

beam affects other important parameters. Fig. 4.4 shows the dependence of

the number, phase space density and axial trap frequency on relative beam

displacement from the field zero. (Note this data is for a different beam

waist than that described in the rest of this chapter, hence the offset in the

maximum number position compared to Fig. 4.3(b).) Although it can be

advantageous in terms of the number of atoms loaded into the trap to be far

below the field zero there is a significant gain in axial trapping frequency as

this separation is decreased. The knock-on effect is an improvement in phase

space density, often sufficient to merit a trade off - reduce the number of

atoms transfered by moving the beam closer to the field zero but ultimately
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Figure 4.4: Effect of dipole beam position relative to the magnetic field zero

in a hybrid single beam trap: Although the peak in the atom number (black)

may appear the optimum position for loading the dipole trap it is important

to account for the change in axial trap frequency (blue) as the beam is moved

further from the quadrupole zero. The change in frequency impacts on the

PSD (red) of the trapped cloud, hence it may be advantageous to load the

trap with the beam closer to the field zero in order to maximise the PSD

and elastic collision rate (which follows the same position dependence). The

dotted lines give an indication of the vertical position of the peaks in both

number and PSD.

gain in phase space density. The elastic collision rate also follows a very

similar position dependence to the phase space density. Experimentally we

find that the evaporation performance can be improved by again moving the

beam closer to the field zero.

4.5.2 Trap frequency measurement: Parametric

heating

In this hybrid optical and magnetic trap the radial trap frequencies are dom-

inated by the dipole laser beam. The frequencies associated with the optical
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Figure 4.5: Parametric heating: Modulating the dipole trapping light causes

heating of the atoms at the resonant frequency (and harmonics) of the trap,

also leading to atom loss. Fitting the temperature curve using a Gaussian

profile allows these resonant frequencies to be extracted.

trap can of course be predicted from the known beam parameters (i.e. beam

waist, power) and are approximately given by [91],

ωr ≈ 2

√
U

mw2
0M

. (4.6)

However, measuring this in situ using the atoms themselves is useful to en-

sure the beam is correctly aligned and performing as expected. We measure

the radial trap frequency using parametric heating. By adding a sinusoidal

modulation to the optical trapping light it is possible to create a driven oscil-

lator system. This then exhibits resonant behaviour at ν and 2ν causing the

atoms in the trap to be heated and, in some cases, lost from the trap. More

specifically, position noise (resonant at ν) leads to a constant heating rate

whilst intensity fluctuations, resonant at 2ν, lead to an exponential growth

of energy [121].

The results of the trap modulation are shown in Fig. 4.5 for a trap using one

quarter of the full beam power. Here atoms are first evaporatively cooled to
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increase the optical depth of the cloud. Following a short hold the modulation

is applied for 3 s (by summing the normal optical trapping light control

signal with a sinusoidally varying term, a 0.1 V modulation on a 2 V signal).

Fitting the temperature data, as this produces a cleaner signal, it is possible

to extract the frequency of the fundamental and first harmonic, 227(3) Hz

and 454(4) Hz, respectively. These frequencies are not only in excellent

agreement with each other but also with those predicted from the known

beam parameters, confirming the measured beam waist of 57 µm.

4.5.3 Trap frequency measurement: Axial oscillation

The axial trapping along the length of the laser beam is given by [91]

ωz =
1

2

√
µB′

mxoffset

, (4.7)

where xoffset is the position of the trap minimum, effectively describing the

distance between the beam and the field zero. As the trapping in this di-

rection is largely dominated by the contribution of the magnetic quadrupole

trap parametric heating is an unsuitable method to measure the trap fre-

quency in this direction. Instead we measure the oscillation of the cloud in

the trap by applying a small bias field to first offset its position and then

abruptly switching off the field, setting the atoms in motion. By measuring

the position of the atoms at various hold times after the field switch off the

motion of the atoms can be tracked. The oscillation is then fitted using a

damped sine wave to extract the period as shown in Fig. 4.6(a). From this

we obtain an axial trap frequency of 18(1) Hz.

Importantly the oscillation amplitude must be small compared to the cloud

size (210 µm) and ideally the excursion of the atoms should be sufficiently

small that they remain in the harmonic region of the trapping potential,

see Fig. 4.6(b). Beyond this, atoms start to sample the linear regions of

the trap, dominated by the quadrupole potential, and the assumption of

harmonic motion used in the fit to extract the trap frequency breaks down.
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Figure 4.6: Axial trap frequency: (a) Atoms offset in the trap using a small

bias field begin to oscillate under the influence of the axial magnetic trapping.

Fitting a damped sine wave allows the period of the oscillation and hence

the trap frequency to be extracted. (b) The axial trapping remains harmonic

(red) over a small region close to the trap centre. Further away, the potential

becomes dominated by the linear quadrupole potential (black).

4.6 Displacement of the cloud along the

dipole trap laser beam

After loading, the cloud rapidly equilibrates to around U0/10, where U0 is

the depth of the trap (this fraction we experimentally verify in section 4.6.2).

For the parameters of our trap this equates roughly 7 µK. Further evapora-

tion can then be performed by reducing the beam intensity. Throughout all

experiments the laser beam propagates through the rear anti-reflection (AR)

coated face of the Dove prism, along the axis of the glass cell (see Fig. 4.1).

The waist is positioned 3.5 mm from the front super-polished surface. Ini-

tially the quadrupole trap centre is located 6.8 mm from the prism surface,

as shown in Fig. 4.1(d). This geometry is chosen such that in moving up to

the surface the cloud is always confined less than half a Rayleigh range from

the beam waist, leading to minimal variation in the radial trapping potential.

The cloud can be moved closer to and further from the prism by application

of the bias field (where a positive displacement moves the cloud from the

initial quadrupole trap centre, closer to the surface) as shown in Fig. 4.7.
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Figure 4.7: False colour absorption images of atoms approaching the surface:

Bias fields applied range from 0 G to 9.5 G. To the right of each image the

glass prism can be seen sharply defined on top of its macor mount (unfocussed

edges).

The magnitude of this shift is given by,

z =
B0,z

B′x/2
, (4.8)

where B0,z is the applied bias field and B′x is the quadrupole field gradient

along the axis of the coils. For the (approximately) levitated potential the use

of −12 G ≤ B0,z ≤ 12 G produces displacements of −8.2 mm ≤ z ≤ 8.2 mm,

on the order of a Rayleigh range (zR = 9.9 mm).

4.6.1 Speed of transport

The maximum speed of the cloud transport without setting up sloshing in the

trap is governed by the magnetic field gradient used to close off the trap along

the axis of the dipole beam. Ideally the bias field ramp should be adiabatic

to reduce any heating effects. This can be experimentally investigated by

measuring the amplitude of the oscillation induced by the transportation. In

order to map out the oscillation, absorption images of the cloud are taken

after quarter trap period time steps for atoms at temperatures of 1.5µK

and 7µK. Figure 4.8(a) shows that to complete a shift of 4.2 mm without

setting up an oscillation requires a ramp time of ∼ 2.5 s. As expected, this

is independent of cloud temperature. In principle this time can be reduced

with the use of a tighter field gradient at the expense of requiring a higher

bias field.
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4.6.2 Characterisation of the hybrid trapping

potential: A ‘single-shot’ diagnostic

With the flexibility to displace the trap centre anywhere along the beam, it

is possible to use the trapped atoms to characterise the profile of the dipole

beam. We use a ‘single-shot’ diagnostic routine to measure important trap

properties quickly and reliably. This approach is suitable when high radial

trap frequencies are used, for example in single beam dipole traps. After a

time of flight, τTOF, the width of the cloud, σi, is given by

σ2
i =

(
kBT

mω2
i

)
(1 + ω2

i τ
2
TOF). (4.9)

In the limit that ωiτTOF � 1, i.e. in the case of the radial trap frequency, the

cloud width after time of flight is governed only by the cloud temperature and

not the frequency of the trap at release. Hence, it is possible to determine

the cloud temperature without prior knowledge of the trapping potential in a

single shot. The axial trap frequency can then simply be calculated from the

axial cloud size and the temperature (assuming thermal equlibrium) as de-

termined from the radial size. If the cloud is held in the trap sufficiently long

before release such that the gas reaches full thermal equilibrium with the po-

tential, the radial trap frequency can also be derived from this measurement;

knowledge of the dipole trap beam power together with the assumption that

the cloud equilibrates to some fraction of the trap depth, 1/η, (which we

establish later in this section) allows the 1/e2 beam radius and hence the

radial trap frequency to be determined from the temperature measurement.

Such measurements are found to be in good agreement with the values ob-

tained from parametric heating (see section 4.5.2). This method allows the

position of the beam waist to be located precisely and the distance between

the magnetic field zero and the dipole beam to be determined over the full

range of transport distances.

Figure 4.8(b) shows the effect of transport along the beam on atom number

for a cloud initially allowed to come into thermal equilibrium with the trap-

ping potential through evaporation. For shifts sufficiently far from the prism

such that the atoms do not interact with the surface, there is no detectable

atom loss. Closer to the prism there is a sharp drop in the atom number,
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the red (open) circles, as the atoms hit the surface (see section 4.7). The

effect of the same transport on the cloud temperature is shown Fig. 4.8(c).

The observed temperature change is due simply to the adiabatic compres-

sion and relaxation of the cloud as the radial trapping potential varies along

the optical waveguide and not as a result of a heating mechanism associ-

ated with the motion of the cloud. Knowing the beam power at the trap

and the beam waist (determined from parametric heating measurements)

it is possible to model the trap depth along the waveguide. The solid line

in Fig. 4.8(c) demonstrates that the temperature data are consistent with

a cloud in thermal equilibrium with the trapping potential for η ≈ 9. Note

again the two red (open) circles correspond to a shift sufficient for the surface

potential to open up the trap, hence reducing the trap depth and leading to

atom loss. As such, we do not expect agreement with the model potential

for these points. To test explicitly for heating due to the transport, mea-

surements were performed shifting a cloud cooled to 1/20 of the trap depth

to suppress evaporation. Under such conditions some moderate heating was

observed. For example, for a 1µK cloud transported a round trip distance

of 8 mm, heating rates of ∼ 0.1µKs−1 were observed for speeds that do not

excite axial oscillations (see Fig. 4.8(a)). However, the fact that the cloud

remains in thermal equilibrium with the trapping potential (Fig. 4.8(c)) and

the absence of any atom loss (Fig. 4.8(b)) demonstrates that this does not

prohibit efficient transport of the atoms.

Analysis of the measured axial trap frequency moving along the beam con-

firms the theoretical prediction (solid line Fig. 4.8(d)) that the vertical dis-

tance between the beam and the magnetic field zero does not remain constant

when applying a bias field as a result of the bias coil’s spatial offset from the

beam axis. This leads to the small but measurable variation in trap fre-

quency evident in Fig. 4.8(d). However, this would be eliminated with a coil

arrangement producing a field in the axial direction only.

4.7 Loss due to the surface

Far away from the surface, the atomic cloud is unperturbed by displacement
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Figure 4.8: Characterisation of the transport along the waveguide: (a) Oscil-

lation set up by shifting the cloud 4.2 mm by displacement of the magnetic

field zero in different lengths of time. Filled squares are for a cloud at 1.5µK.

Open circles are for a cloud at 7µK. (b) Atom number as a function of hor-

izontal trap shift caused by movement of the quadrupole field zero along

the dipole beam. Red circles are for clouds sufficiently close to the surface

that atoms are lost due to the atom-surface interaction opening up the trap-

ping potential. (c) Vertical cloud temperature as a function of horizontal

trap shift. Red circles are for clouds sufficiently close to the surface that

atom loss from the cloud becomes a factor in the temperature. Solid line:

Theoretical trap depth calculated from known dipole and quadrupole trap

properties, accounting for an off axis bias field. Note the scale is ×9 that of

the experimental data indicating η = 9 (see text). (d) Experimentally deter-

mined axial trap frequency derived from the radial temperature and axial size

of the cloud after time of flight. Solid line: Theoretical axial trap frequency

calculated from known dipole and quadrupole trap properties, accounting for

off axis bias field. Displacements are with reference to the initial quadrupole

trap centre location with no applied bias field.
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Figure 4.9: Atoms near the surface: (a) Atom loss as a function of distance

from the prism surface for cloud temperatures of 7.0µK (black squares),

1.4µK (red circles) and 0.3µK (blue triangles). Fitted lines are of the form

N = N0erf((z−z0)/(
√

2σ)) for z > z0. (b) Total trapping potential resulting

from the hybrid trap and Casimir-Polder (CP) atom-surface potential when

the trap is positioned 100µm from the prism. Inset: The same resultant

potential for a much tighter trap (4.5 kHz) located only 1µm from the surface.

along the beam. However, once the distance of the trap centre from the

surface becomes comparable to the axial cloud size, atom loss is observed.

This is a direct consequence of the strong attractive Casimir-Polder potential

leading to a finite trap depth along the optical waveguide (see Fig. 4.9(b)).

Atoms whose energies are sufficient to escape over the finite barrier collide

with the surface and are either adsorbed or re-emitted at room temperature

speeds. In this way the surface may be used as a knife for evaporative cool-

ing [122]. We demonstrate how the atom loss caused by a controlled contact

with the surface can be used to infer properties of the cloud such as size and

temperature. We then proceed to produce a Bose-Einstein condensate by

exploiting the evaporation of hot atoms at the surface.

To probe the atom loss as the cloud approaches the surface, we begin by

loading atoms into the hybrid trap with no initial bias field and allowing the

cloud to equilibrate to 7µK . The bias field is then ramped to the necessary

level in 5 s. Following this, the cloud is held at the shifted location for 50 ms

(on the order of one axial trap period) before being shifted away from the

surface a short distance and imaged. In the case of the colder cloud (1.4µK)

an evaporation ramp in the dipole trap is first applied before the cloud is
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displaced along the beam. To produce the coldest cloud near the surface

(0.3µK) an initial dipole evaporation stage is carried out and the cloud is

shifted 0.8 mm from the prism before a further evaporation stage is employed

to reach the final temperature.

The results of the measurement of loss due to the surface are shown in

Fig. 4.9(a) as a function of the distance from the trap centre to the sur-

face. Assuming harmonic axial confinement, it is possible to fit the observed

atom loss as function of distance using an error function of the form

N = N0erf

(
z − z0√

2σ

)
, (4.10)

for z > z0 where N is the number of atoms remaining at a given distance

z from the surface, N0 is the initial atom number far from the surface and

σ is the cloud width. The offset z0 accounts for the observation that, for

the hotter clouds, complete atom loss occurs well before the trap centre

reaches the prism. From the fit of Eq. (4.10) to the loss data we find the

cloud widths to be 400(20)µm (for the 7.0µK cloud), 140(20)µm (1.4µK

cloud) and 65(6)µm (0.3µK cloud). Converting these widths to temperatures

using σ = (kBT/mω
2
z)

1/2 we find reasonable agreement with time of flight

measurements for the colder clouds. For the hotter clouds the anharmonic

nature of the axial confining potential leads to deviations from the simple

theoretical lineshape given by equation (4.10).

The atom loss shown in Fig. 4.9(a) can be understood by consideration of

the competing potentials as the hybrid trap is brought close to the surface.

Figure 4.9(b) shows the result when the hybrid trap (ωz = 2π × 18 Hz) is

positioned 100µm from the surface. At these length scales the strong atom-

surface potential causes a truncation of the harmonic trap resulting in a

reduced trap depth. This leads to loss of hot atoms from the trap. The

offset parameter z0 can be understood by assuming that, due to finite signal

to noise, all the atoms appear to be lost when the trap depth is reduced to

5 – 10 % of the initial cloud temperature. For example, for the cloud temper-

atures used in the experiment this reduction to 5 % occurs for trap-surface

distances of 72µm (for the 7.0µK cloud), 32µm (1.4µK cloud) and 15µm

(0.3µK cloud). These distances are broadly in agreement with the observed

offsets in Fig. 4.9(a).
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Figure 4.10: Cooling through the BEC transition using the surface: Phase

space density as a function of magnetic field gradient for a fixed dipole beam

intensity for a cloud initially positioned to be just in contact with the surface.

Inset: Cross section through a cloud, initially at 1.5µK and a phase space

density of 2× 10−2, following evaporation to degeneracy using the surface.

4.8 Evaporation to 87Rb BEC

4.8.1 Controlled evaporation using a surface

This truncation of the trapping potential by the surface, if controlled, can

also be used to cool the trapped atoms. Relaxation of the field gradient

reduces the trapping along the dipole beam thus allowing atoms to extend

outwards from the trap centre, towards the prism, coming into contact with

the 300 K surface. The resulting atom loss due to the surface is very similar

to the application of an RF knife to selectively remove the most energetic

atoms. Carrying out evaporation in this way allows the BEC transition to

be reached (see Fig. 4.10) without the need to reduce the dipole intensity

which would otherwise reduce the radial trapping.

Due to the limited and hence inefficient evaporation surface produced by the

trapping geometry we are unable to evaporate to degeneracy solely using this

surface technique. (The elongated geometry created by the hybrid trap and
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its orientation relative to the surface means atoms are cut away only from

a single narrow end of the cigar shaped trap). Instead some initial cooling

must be carried out by lowering the dipole trap depth. In this first stage we

prepare a cloud at 1.5 µK with a PSD of 2× 10−2. We then shift the atoms

close to the surface (a transport of ∼6 mm) and relax the quadrupole trap

gradient over 5 s. After a 5 ms hold the atoms are then shifted back a short

way from the surface before imaging. The condensates created in this way

are generally small, containing only a few 104 atoms.

4.8.2 Direct evaporation in the optical trap

Although the demonstration that a room temperature surface can be used

to selectively evaporate atoms from a trapped cloud is in itself novel, the

efficiency with which the evaporation occurs is not so remarkable. Instead

it is therefore more sensible to continue with direct evaporation to BEC;

selectively removing the hottest atoms by reducing the trap depth.

To reach degeneracy a series of 10 s linear ramps, each time quartering the

dipole beam power are carried out, followed by a 5 s hold step after each to

allow the cloud to rethermalise. The evaporation trajectory for the 57 µm

trap (initial U0=63 µK) is shown in Fig. 4.11. Also shown is the trajectory

in an alternative trap with more power but a much larger waist, 9.4 W of

λ = 1064 nm light focussed to 160 µm (initial U0=37 µK). This larger trap

has radial frequencies around a factor of 4 less than that of the 57 µm beam.

For comparison the trajectory of one further single beam trap with a waist

of 136 µm and 11.1 W of power (initial U0=56 µK) is also shown (this forms

the first of our crossed dipole trap beams as described in chapter 5).

From Fig. 4.11 we note an obvious characteristic of 87Rb sadly not mirrored

by the other isotope. The condensation of 87Rb benefits greatly from a trap

with a narrow waist and high trapping frequencies. This increases the elastic

collision rate and hence evaporation and rethermalisation proceed rapidly.

This is illustrated by the slopes of the data in Fig. 4.11. For the 57 µm trap

the efficiency (gradient of the trajectory) is ∼2.8(2) whereas in the weaker

160 µm trap this drops to only 2.0(1). Therefore the most efficient way to

produce 87Rb BECs is to keep traps tight and collision rates high. As we will
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Figure 4.11: 87Rb BEC in a single beam dipole trap: Evaporation trajectory

for 87Rb cooled in three, single beam optical dipole traps with differing waists,

57 µm, 136 µm and 160 µm. The dotted line shows the BEC transition point,

PSD= 2.61.

see in section 6.3, a combination of inelastic losses and reductions in elastic

scattering rates will make the route to 85Rb BEC far less trivial.

4.9 Outlook: Future applications of the

guided transport method

Although the main thrust of our current investigation is to study the for-

mation of bright matter-wave solitons using a 85Rb BEC, in the long term

the technique described in this chapter could be used to load an optical

trap in the vicinity of the surface which is suitable for studying atom-

surface interactions. Typically such a trap needs to be tightly confin-

ing [119, 123, 124, 125, 126] so that the spatial extent of the atomic cloud

becomes comparable to the range of the Casimir-Polder potential. This al-

lows the atomic gas to be positioned much closer (< 10µm) to the surface.

For example, the inset to Fig. 4.9(b) shows the resulting trapping potential

for a 4.5 kHz harmonic trap positioned at a distance of 1µm from the sur-
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face. At such length scales the Casimir-Polder potential leads not only to a

reduction in the trap depth but also to a change in the trapping frequency,

an observable which can itself be useful [127].

The use of a Dove prism in our experiment permits the addition of evanescent

wave potentials at the surface through the total internal reflection of light

within the prism. In particular, the use of a blue-detuned laser will create

a repulsive barrier close to the surface (an evanescent wave atomic mirror

[128, 129, 130, 117, 131, 132, 133]) that will prevent the observed loss as the

atoms are transported up to the surface.

Unlike previous magnetic transportation schemes [134], the work presented

here benefits hugely from the optical waveguide used to confine the atoms

radially. This leaves the transport path insensitive to stray magnetic fields

as the atoms are guided along the beam towards the target point on the sur-

face. The technique also has the advantage of simplicity over other transport

schemes involving optical lattices [135, 123].

Following the transport the atoms will then be loaded into a tight surface trap

created either by the addition of a second red-detuned evanescent field [136,

137, 138, 139] or by the reflection of a red-detuned laser incident at a shallow

angle on the surface from the vacuum side. The latter approach can be used

to generate a 1D optical lattice close to the surface [126] which can potentially

be tailored in order to test a number of novel schemes to measure the atom-

surface potential, including interferometry in a double-well potential [140]

and the study of Bloch oscillations [141].

Ultimately, to probe short range corrections to gravity will require a de-

tailed comparison of the measured and theoretical Casimir-Polder potentials.

Pushing ultracold atom experiments to the precision to be competitive with

traditional approaches will be challenging and will undoubtedly require the

development of further techniques to transport and manipulate atomic gases

close to surfaces.



Chapter 4. 87Rb BEC in an optical dipole trap 79

4.10 Summary

In this chapter we have demonstrated the successful transport of an atomic

sample along an optical waveguide up to a room-temperature dielectric sur-

face. The technique exploits a simple hybrid trap consisting of a single

beam dipole trap positioned ∼ 125µm below the field zero of a magnetic

quadrupole potential. Transportation is realised by applying a moderate

bias field (< 12 G) to displace the magnetic field zero of the quadrupole po-

tential along the axis of the dipole trap. We use the technique to demonstrate

that atomic gases may be controllably transported over 8 mm with negligible

heating or loss.

The transport path is completely defined by the optical waveguide and we

demonstrate that, by aligning the waveguide through the super polished Dove

prism, ultracold atoms may be controllably delivered up to a predetermined

region of the surface. Upon approaching the surface we observe strong atom

loss once the distance of the trap centre from the surface becomes comparable

to the axial cloud size. This is simply a direct consequence of the presence

of the surface leading to a reduced trap depth along the optical waveguide.

Such loss is akin to evaporative cooling and, indeed, we demonstrate how

the effect can be utilized to cool an atomic gas through the transition to a

Bose-Einstein condensate.

Using the more conventional approach of lowering the dipole trap depth we

also reach BEC in this narrow single beam trap and compare this evaporation

trajectory using three different beam waists. In doing so we highlight the

advantage of tight traps for the cooling of 87Rb but ultimately must move

away from this geometry if we are to produce a 85Rb condensate. In the next

chapter we develop a new, larger volume crossed beam trap better suited

to the creation of 85Rb condensates. However, we will return to this single

beam geometry in chapter 7 where we show a similar transport scheme can be

used to manipulate the velocity of a solitary wave propagating in an optical

waveguide.



Chapter 5

87Rb Bose-Einstein

condensation in a crossed

dipole trap

5.1 Introduction

It has been shown previously [30] that to achieve Bose-Einstein condensation

of 85Rb requires the use of a magnetic Feshbach resonance, allowing one to

tune the elastic and inelastic scattering properties of the atoms. To access the

broad resonance in the F = 2,mF = −2 state, this means the application of

a 155 G bias field. Unfortunately, this field pushes the quadrupole field zero

far away from the dipole trap, dramatically reducing any confinement along

the length of the beam. Although the drop in density is favourable in terms

of 3-body loss, rates of which are high in 85Rb, the low trapping frequency is

detrimental to the rethermalisation process required for evaporative cooling.

As such, the single beam trap described in chapter 4 is unsuitable for the

cooling of 85Rb to degeneracy.

In this chapter we address this problem, describing the development of a

crossed beam dipole trap. Here horizontal confinement is created by the

intersecting beams. To take full advantage of the beam power available, we

use a single dipole beam in a ‘bow-tie’ layout. It is possible to produce a

crossed trap with or without the addition of the quadrupole potential and

80
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we discuss the differences between these cases. Initial characterisation of

the crossed trap is carried out using 87Rb for simplicity and we demonstrate

Bose-Einstein condensation in 3 distinct crossed trap configurations. Finally

we explore the effect of polarisation on the crossed trap, creating a 87Rb BEC

in an optical lattice, and observe the effect of Kapitza-Dirac scattering.

5.2 Setup and alignment

5.2.1 Experimental setup

For our crossed beam trap we require an entirely new optical trapping layout.

The ELS disk laser used for the work described in chapter 4 is no longer used

but instead a single frequency IPG 15 W fibre laser (IPG: YLR-15-1064-LP-

SF) takes its place. Whilst working with the ELS laser it became apparent

that thermal lensing effects played an important role in determining the

waist size and position of the output beam. As a result, changes in the

laser current or even the temperature of the external cooling circuit were

sufficient to entirely change the laser output and hence the geometry of the

optical trap. For example, the beam waist was found to change by as much as

15 %, with its location also shifting by around 15 mm. Although the problem

of the beam profile could be partially circumvented with the implementation

of high power optical fibres, the fibre input was still limited to ∼5 W and

therefore the power available at the trap to ∼3 W, only a fraction of the

laser’s 50 W maximum output. The fibre laser employed as a replacement

not only solves this problem of a changing beam profile but allows us access

to much higher trapping powers, on the order of 11 W at the trap itself.

With this increased power it then becomes possible to create a larger volume

trap (by increasing the beam sizes). Brief, preliminary investigations loading
85Rb into the 57 µm trap showed that the small beam waist and high trap

frequencies resulted in an inefficient transfer of atoms into the optical trap

and poor efficiency of the subsequent evaporation. This is to be expected

from consideration of the elastic and inelastic scattering properties of 85Rb

(discussed in greater detail in chapter 6). The greater power available there-

fore means a larger volume trap can be produced yet still with sufficient trap
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Figure 5.1: Optical trapping layout for the crossed beam trap: Light for

the optical trap is derived from an IPG fibre laser. From the fibre output

collimator the light passes through an AOM, used for intensity control, be-

fore being focussed down into the glass cell. Initially the light is vertically

polarized to maximise the diffraction efficiency of the AOM however a λ/2

plate after the AOM rotates the light to be horizontally polarized to reduce

reflection losses at the glass cell. A motorised flipper mirror safely directs the

first order beam from the AOM into a beam dump when it is not needed but

allows the RF power in the AOM to be kept high to avoid thermal effects.
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depth to ensure a reasonable transfer of atoms from the magnetic trap.

The experimental setup used to create the optical trap is shown in Fig. 5.1.

The dipole beam first enters the cell at 45◦ to the glass, focussing down

to 136(1) µm. The polarisation here is set to be horizontal to minimise

reflections. To form the crossed trap the beam which exits the cell must

be reshaped before being refocussed back into the trap. A telescope is used

to increase the beam size before a final lens focusses the beam down to

125(5) µm. Although the setup contains only one laser beam, for clarity,

we refer to the beam entering the cell from the IPG laser as ‘beam 1’ and

the second, reshaped beam, as ‘beam 2’. Intensity control of the beam is

achieved using a single AOM with servo feedback control.

This choice of beam waists was an informed one, based on previous mea-

surement of the evaporation of 85Rb in smaller traps (formed from the ELS

and IPG lasers each producing one beam of a crossed trap) which proved

unsuccessful1. In creating a trap with larger waists (and hence lower trap

frequencies) the devastating density dependent losses prevalent in 85Rb can

be reduced, however, there is a limit to how much we may increase our beam

sizes. As the optical trap is loaded from the magnetic quadrupole an impor-

tant consideration is the depth of the optical potential. Due to the constraints

of the laser power available, to obtain a reasonable trap depth, ∼ 100 µK,

the beam waists cannot be increased much further than those chosen hence

we arrive at our current experimental parameters. A coincidental advantage

of such large beam waists is the size of corresponding Rayleigh range, 5.5 cm

(4.6 cm) for the 136 µm (125 µm) beam, which makes aligning the focus of

the trap considerably easier.

5.2.2 Alignment

The alignment of beam 1 is carried out in much the same way as the single

beam hybrid trap described in section 4.5.1. However, as the crossed trap is

1In addition to this work the condensation of 85Rb was also attempted using a second

cold atom experiment in Durham [142]. In this setup beam waists of 68 µm were used

in the optical trap. Despite initial evaporation proceeding well, this experiment failed to

reach degeneracy in 85Rb owing to the experimental geometry.



Chapter 5. 87Rb BEC in a crossed dipole trap 84

formed of a single beam it is not possible to use the same technique to align

beam 2. Without the ability to switch off the first beam, creating a single

beam trap with beam 2 and locating the field zero becomes impossible. In

fact, care must be taken to avoid the creation of two separate single beam

traps which, in expansion, may look like an increased number of atoms in a

single crossed trap.

To circumvent this potential problem the optimum loading position of the

crossed trap is found using a pure trap (see section 5.3) where the quadrupole

potential is removed. To load the trap the dipole beams are switched on dur-

ing the RF evaporation stage in the quadrupole trap. Following the evapo-

ration the quadrupole gradient is ramped to 29.3 Gcm−1 in 5 s. The atoms

are then held for 500 ms before the quadrupole gradient is ramped to zero

in 200 ms. After a further 500 ms hold, the atoms are imaged following a

18 ms time of flight expansion.
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Figure 5.2: Aligning the crossed trap: Atom number in the trap is maximised

by scanning the second dipole beam (a) vertically and (b) horizontally using

the final delivery mirror. To ensure no atoms are trapped in a single beam

dipole trap the quadrupole gradient is switched off. Solid lines are a guide

only.

Figure 5.2 shows the trap load dependence on beam 2’s alignment in both the

horizontal and vertical directions. The second beam can be scanned over only

a small range vertically, this being set by the beam waists. The alignment

is less sensitive in the horizontal direction due to the experimental geometry

and the relative ease of intersection with beam 1.

The alignment of the two beams and the angle between them can be also
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Figure 5.3: Crossed trap from above: False colour images of the crossed trap,

viewed from above, after various hold times. With the magnetic confinement

of the quadrupole trap removed, atoms escape horizontally along the arms

of the beams. After ∼200 ms a small dense cloud of atoms remains, trapped

in the intersection of the beams.

be assessed using the vertical imaging. Figure 5.3 shows atoms in the pure

crossed trap, viewed from above. Here the quadrupole ramp to zero has been

shortened to 10 ms. The atoms are held in the pure trap for some variable

length of time (shown) before being imaged after 2 ms time of flight. Imaging

in this direction also has the benefit that it allows the evaporation from the

trap to be observed (see section 5.3.2).

5.2.3 Trap frequencies

As for the single beam case we obtain the trapping frequencies of this new

trap using the parametric heating technique (see section 4.5.2). Blocking the

light used for beam 2 it is possible to easily obtain the radial trap frequency

associated with beam 1, Fig. 5.4(a). The fundamental and first harmonic

observed are in good agreement and, along with other measurements at dif-

ferent trap depths, give a measured trap waist of 136(1) µm.

Measuring the trap frequencies associated with beam 2 alone is obviously

not as trivial. Instead we take the same heating measurement, extracting

the resonant frequencies shown in Fig. 5.4(b), and use this in conjunction
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with the parameters already ascertained from the first measurement of beam

1. This leads to a beam waist of 125(5) µm for beam 2. At full power,

10.9 W, the crossed trap has frequencies of ωx,y,z ≈ 2π × (195, 167, 254) Hz
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Figure 5.4: Parametric heating to obtain crossed dipole trap frequencies:

(a) Fundamental and first harmonic for beam 1 only at full power. (b)

Trap frequencies for the crossed trap at a reduced power. Using this and

information from (a) the waist of beam 2 can be determined. Solid lines are

Lorentzian fits to the data to extract the peak centre but have no physical

significance.

5.3 Trap configurations

Considering the contribution of the optical dipole beams, the quadrupole

trap and a magnetic bias field it is possible to devise three distinct crossed

trap configurations:

(i) The hybrid trap

(ii) The levitated trap

(iii) The pure trap.

The potentials produced in the horizontal and vertical directions for each of

these configurations are shown in Fig. 5.5.
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Figure 5.5: Crossed dipole trap configurations: Example horizontal (black)

and vertical (red) trapping potentials in each of the three crossed trap config-

urations. Away from the tightly confining dimple potential produced by the

intersection of the two beams is a much weaker trap (dotted lines) produced

as a result of the magnetic (hybrid, levitated) or optical confinement (pure)

along the horizontal direction of the laser beams.

(i) The hybrid trap: In the hybrid trap, the crossed trap beams are ac-

companied by the magnetic quadrupole potential. The magnetic gradient

provides levitation of the trapped atoms meaning the full trap depth of the

beams can be obtained (see section 5.3.2). The quadrupole potential also

has the effect of significantly increasing the trapping volume as atoms are

confined not only in the crossed region but also some way along the dipole

beams. The quadrupole produces an effective magnetic bowl around the

crossed trap, confining the atoms and significantly restricting atom loss hori-

zontally and hence the evaporation in this direction. As a result, evaporation

in the hybrid trap primarily occurs in the vertical direction.

(ii) The levitated trap: A levitated trap is obtained by the application of

a bias field to the hybrid configuration. This has the effect of shifting the

quadrupole field zero far away from the crossed beams (a distance propor-

tional to the applied field and dependent on the levitation gradient). The

result is a trap where the effect of gravity is still compensated, however the

magnetic confinement along the dipole beams is severely diminished (see sec-

tion 4.5.3). Atoms only remain in the crossed region of the beams. In a lev-

itated trap the addition of the dipole beams means the trap depth vertically

is approximately double that of the horizontal. Consequently, evaporation

in the levitated trap is primarily horizontally, along the length of the dipole

beams.
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(iii) The pure trap: A pure trap is created in the absence of any quadrupole

potential. Here the atoms are supported against gravity by the crossed dipole

beams alone. As a result, much higher beam powers are required to obtain

the same trap depth as in the hybrid or levitated cases. A bias field must

still be present in the pure trap to define a quantisation axis. Without this,

atoms may spin flip to other states. Although this may not necessarily result

in their loss from the trap, in order to maintain a spin polarised sample

the bias field should be applied. At high powers, the trapping force of the

dipole beams is sufficient to overwhelm the effect of gravity. However, as the

beam power is decreased the gravitational force becomes more comparable

to that of the dipole beams. As a result the trap begins to open up vertically.

Evaporation in a pure trap initially occurs horizontally (see Fig 5.3) however,

below this threshold a transition to vertical evaporation occurs.

5.3.1 Trap loading

It is interesting to consider if the loading of the crossed dipole trap saturates

in any of these three cases or if simply more power in the trap and hence

a deeper trap depth ultimately leads to more atoms being confined. We

begin by assessing the sensitivity of the loading to the quadrupole ramp

time (from 180 Gcm−1 to 29.3 Gcm−1). From this we conclude that a ramp

time ≥ 500 ms is sufficient to maximise the number of atoms transferred

into the trap however it is advantageous to use a slow ramp in terms of the

cloud temperature. We choose a 5 s ramp time as a compromise between the

temperature achieved and the duty cycle of the experiment. With this time

established we compare the number of atoms transferred into each dipole

trap as a function of the power in beam 1.

From inspection of Fig. 5.6(a) it is clear that none of the traps saturate as

the power is increased. Also apparent is the effect of the levitation provided

by the quadrupole trap as the pure trap requires almost 1 W more power

than the hybrid trap before the trapping force is sufficient to support atoms

against gravity. The temperature of the trapped atoms is shown in Fig. 5.6(b)

after a 500 ms hold in each trap, which, due to the high elastic collision

rate, is sufficient time for the cloud to rethermalise. The high trapping
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frequencies result in collision rates of several hundred per second (∼400-

600 s−1) and even at low trap powers, collision rates are still on the order of

many tens per second. As a general figure of merit, only ∼3 collisions are

required for a cloud to rethermalise [85] hence we should be well into this

equilibrium regime. As expected, the enhancement of the trap depth due to

the quadrupole gradient means both the hybrid and levitated traps support

higher temperature clouds, and in general, a larger atom number equates to

a higher temperature at the initial loading stage.
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Figure 5.6: Trap loading vs. power: (a) Atom number in the hybrid, levitated

and pure crossed dipole traps as a function of beam power. (b) Corresponding

temperature of the atoms after a 500 ms hold in the trap. Solid lines are

linear fits to the data.

5.3.2 Trap depth and evaporation

Trap depth in all directions

Unlike the single beam case where evaporation is always in the vertical direc-

tion, as described in the previous section, this is not the case for the crossed

dipole trap. Although it may not be immediately apparent from the shape

of lifetime curves, see Fig. 5.7, the evaporation in each of the three trap con-

figurations described in section 5.3 can be very different. By examining the
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Figure 5.7: Crossed dipole trap lifetime: The number (a) and temperature

(b) of atoms held in each of the three crossed dipole trap configurations. From

the shape of the decay curves there is no immediately discernible difference

between the trap configurations beyond the very early fast atom loss stage.

trap depth in x, y and z it is possible to determine in which direction atoms

will preferentially evaporate. As an illustration of this point we calculate the

trap depth of the pure trap in three directions for two beam powers. Here the

x and y axes are orientated to be along the direction of the two beams. Fig-

ure 5.8 shows the trap depths for 10 W and 2 W beam powers, highlighting

the transition from horizontal to vertical evaporation. The effect of gravity

on the lower power trap is sufficient to cause the trap to sag. This can be

seen in Fig 5.8 as a shift in the trap centre in z.

Evaporation parameter

Knowing in which direction atoms will preferentially evaporate (from consid-

eration of the trap potential) it is possible to compare experiment and theory

to establish the ‘evaporation parameter’ for the trap, η. As in section 4.6.2, η

is defined as U0 = ηkBT and relates the temperature of cloud, once it reaches

equilibrium, to the trap depth.

To determine the equilibrium temperature atoms are loaded into the dipole

trap and any bias field required is ramped on. Some evaporation is then car-

ried out to produce a colder, denser sample. This increases the optical depth

of the cloud thus improving the signal obtained from absorption imaging.

Following the evaporation the dipole trap power is ramped to the value of
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Figure 5.8: Effect of gravity on the trap depth of a pure crossed dipole trap:

Shown is the trap depth in the x (black), y (red) and z (blue) directions. (a)

At high power (10 W) the total trap depth is set by the horizontal directions.

(b) At lower power (2 W) the effect of gravity relative to the dipole force

becomes more significant and the trap becomes tilted in z, lowering the trap

depth. Atoms now evaporate preferentially in this direction. This weakening

in z also causes the trap to sag, shifting slightly in position.

interest and the cloud is held for 20 s to allow it to equilibrate with the trap.

This choice of 20 s comes from consideration of lifetime curves for the dipole

trap. When initially loaded, there is a rapid loss of atoms before equilibrium

in the temperature is reached, see Fig. 5.7. By 20 s we are safely into the re-

gion where this rapid loss has ceased and a more representative temperature

can be measured.

This measurement of temperature is carried out at several beam powers for

each of the three trap configurations. The experimental data are then scaled

by η to fit the theoretical prediction of the trap depth (from the known beam

waists and powers). The results of both theory and experiment are shown

in Fig. 5.9. It is clear from Fig. 5.9 that zero power does not correspond

to zero trap depth. This is to be expected for the pure trap, however the

discrepancy for the hybrid and levitated traps can be explained by much the

same reason. As the magnetic gradient applied is just below that needed

to support the atoms against gravity (as this improves evaporation) there is

still some small tilt in the trap hence at low power a trap is not necessarily

immediately formed.

The data for the hybrid trap is shown in blue. The vertical evaporation
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Figure 5.9: Trap depth in the crossed optical dipole trap: Trap depth as a

function of the beam power for the hybrid (blue), levitated (red) and pure

(black) crossed dipole trap calculated from known beam parameters. Data

points are the calculated cloud temperature after a 20 s hold in the trap,

scaled by η.
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gives a value of η=12.6(5). By comparison, the horizontal evaporation which

occurs in the levitated trap, shown in red, returns a much lower value of

η=9.8(5). Arguably the most interesting case is that of the pure trap. Here it

should be possible to see a transition from horizontal to vertical evaporation.

Indeed this is the case and as such we must fit to different η values in the

two regions. For the high trap power, horizontal evaporation, η=8.7(5) which

increases to η=11.0(5) for the low power, vertical evaporation. For the circled

points between the two clearly distinct regions 8.7 < η < 11.0, as one might

expect.

From the data it is clear that when evaporation is in the vertical direction a

much higher value of η is found. A potential explanation for this difference

could be the experimental geometry. η itself can be interpreted as a measure

of the heating and evaporation going on in the trap. If the heating in the

trap is low, the ratio between the trap depth and cloud temperature, i.e. η,

increases and the atoms equilibrate to a lower fraction of the trap depth. If

atoms evaporate vertically they are immediately lost from the trap, falling

away under the effect of gravity, hence vertical evaporation results in high

values for η. Conversely, atoms lost horizontally may still be weakly confined

along the dipole beams, oscillating back and forth at some low frequency,

potentially back into the crossed region of the trap. This may suggest that,

despite the multiple exit routes along the beams, the horizontal evaporation

is a somehow less ‘clean’ form of atom loss hence the lower value of η.

5.4 Bose-Einstein condensation of 87Rb in a

crossed dipole trap

With the evaporation in each trap well characterised the next logical step is

to attempt the condensation of 87Rb in each distinct configuration. Common

to all three condensation routines is the need to load the dipole trap from the

magnetic quadrupole trap. The dipole beams are initially switched on during

the RF evaporation however, the trap loading is reasonably insensitive to the

precise time of beam turn on. To complete the loading of the dipole trap,

the quadrupole gradient is ramped from 180 Gcm−1 to ∼29.3 Gcm−1 in 5 s.
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Figure 5.10: 87Rb BEC in a crossed dipole trap: The experimental evapo-

ration routines used to reach 87Rb BEC in the (a) hybrid, (b) levitated and

(c) pure crossed dipole trap. The dotted vertical line shows marks the end

point of the RF evaporation stage. (d) Evaporation trajectory showing the

the number and phase space density evolution as evaporation is carried out,

first in the quadrupole trap (purple) and subsequently in the hybrid (blue),

levitated (red) or pure (black) crossed dipole traps. The dotted line shows

the BEC transition, PSD= 2.61. Inset: False colour images of evaporation

to BEC in a hybrid trap.

A 500 ms hold step follows the ramp and allows any atoms not transfered

into the dipole trap to fall away. At the end of the RF evaporation stage the

atomic sample contains 4.2(1)×107 atoms with a PSD of 6.4(1)×10−5. (Here

the atom number has been increased by extending the MOT loading time.)

Approximately 25-35 % of these atoms are successfully transfered into the

optical trap, resulting in a ∼100-fold gain in PSD due to the increased trap

frequency and the lower trap depth. From here the route to BEC must be
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individually tailored for each trap configuration. Each experimental routine

is shown schematically in Fig. 5.10 along with the evolution of both number

and PSD as the gas is cooled.

5.4.1 Hybrid trap

The simplest evaporation routine occurs in the hybrid trap. Here a series of

3 linear ramps are employed to cool the sample, approximately quartering

the temperature with each step. In each stage the dipole ramp occurs over

10 s, taking the beam power first from 10.8 W to 2.7 W, then down to

0.9 W. The final evaporation stage sees the beam power reduced to 0.2 W,

resulting in trap frequencies of ωx,y,z = 2π × (39, 35, 45) Hz. In this trap

the characteristic double distribution is observed with N = 2.0(5) × 106.

With further evaporation, pure condensates of around 9(1)×105 atoms can

be created. (Note, the short bias field pulse shown in Fig. 5.10 (a) occurs for

the duration of the levitated time of flight before imaging.)

5.4.2 Levitated trap

In the levitated trap the application of the bias field leads to a rapid loss of

atoms as the trapping volume is dramatically reduced. Therefore, the speed

of the bias field switch on must be carefully chosen. Following the same 5 s

quadrupole ramp and 500 ms hold, the bias field is ramped to 165 G in 1 s.

At this stage, the choice of field is a nominal one and in no way impacts

on the scattering properties of the sample. (As we will see in section 6.4,

the field chosen and the point at which it is applied will be much more

crucial in the evaporation of 85Rb.) The atoms are then held for 3 s to allow

rethermalisation, causing a slight increase in PSD. Again, 3 linear ramps of

the dipole power are needed to reach BEC. The first reduces the power from

10.8 W to 2.4 W in just 1 s. The second from 2.4 W to 1.0 W happens over

5 s, as does the final ramp to 0.3 W.

The final power of the levitated trap results in trap frequencies of ωx,y,z =

2π × (31, 27, 37) Hz. The onset of BEC is observed with N = 1.2(3) × 106,

however pure condensate of only around N = 6(1)× 105 are produced.
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5.4.3 Pure trap

In the hybrid and levitated traps the reduction in power in each evapora-

tion stage was roughly comparable. However, the nature of the pure trap

means that the evaporation ramps here can be very different. Without the

quadrupole gradient to levitate the atoms, the dipole trap depth is severely

diminished. As a result, to obtain a similar trap depth, relative to the first

two traps, a much greater laser beam power is required.

Following the 500 ms hold at 29.3 Gcm−1 the gradient is ramped away com-

pletely in 200 ms. Importantly the bias field is switched on during this step

(to ∼50 G) to maintain a well defined quantisation axis for the atoms. Fol-

lowing the ramp, 500 ms of equilibration time is allowed before the first of

the dipole ramps, from 10.8 W to 4.0 W in 5s, is applied. Only one further

evaporation ramp is required to reach degeneracy, reducing the dipole power

to 1.5 W in 7.5 s. This power level leads to much higher final trap frequen-

cies of ωx,y,z = 2π × (74, 63, 87) Hz. Consequently the collision rate in the

trap is significantly higher and hence the time needed to reach BEC in the

pure trap is considerably shorter than in the hybrid trap, as can be seen in

Fig. 5.10 (c).

In the pure trap the two-component signature signalling the onset of BEC is

observed with N = 1.6(3)× 106 atoms. As with the levitated trap the size of

the pure condensate is again smaller than in the hybrid case, generally only

reaching N = 6(1)× 105.

5.5 BEC in a 1D optical lattice

It is potentially of interest to explore the possibility of using the IPG fibre

laser to produce an optical lattice. Future experiments, for example the study

of Bloch oscillations [141] close to a surface, call for the use of optical lattices

and hence a brief foray into the world of lattice physics is arguably of some

merit, particularly as the crossed trap presents just such an opportunity.

An optical lattice is formed as the result of interference between two laser

beams. Importantly, some component of the beams’ polarisation must be
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Figure 5.11: Forming an optical lattice: a) Schematic of the crossed dipole

trap with the addition of a half waveplate to control the beam polarisation.

The two dipole beams can be resolved into orthogonal components (dotted

lines) revealing both co- and counterpropagating beams. b) A lattice created

by two counterpropagating beams. c) The effect of the relative beam angle

on the lattice spacing.

parallel for the lattice to form. In general, our crossed beam trap does

not meet this criteria. In order to minimise reflections from the glass cell,

the beam polarisation is set to be horizontal. This, coupled with the 90◦

intersection of the beams means that the polarisations of beam 1 and beam

2 are entirely perpendicular. To circumvent this problem a half waveplate,

shown in Fig 5.11, is used to add a small component of vertical polarisation

into the dipole beams, at the cost of a minor drop in power at the trap.

In this way we are able to create a lattice and explore its effect on a Bose-

Einstein condensate. In the next section we will address some of the basic

theory underlying optical lattices, however, for a comprehensive review of

lattice physics see [143].

5.5.1 1D optical lattices

In the simplest case, the two beams forming the lattice are identical and

counterpropagating, overlapping fully as shown in Fig. 5.11(b). In this simple

case the interference pattern created has a lattice spacing of d = λ/2. In this

instance the potential seen by the atoms is given by

V (x) = V0 cos2(πx/d), (5.1)
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where V0 is the lattice depth. This depth is defined as the difference in

potential from peak to trough and is typically expressed in units of the recoil

energy

ER =
~2k2

2m
=

~2π2

2md2
. (5.2)

Using a power series expansion around the minimum of the potential, i.e.

x = d/2, it is possible to derive the harmonic oscillation frequency of an atom

trapped in a lattice. Starting from Eq. (5.1) we expand around x = d/2+∆x.

This yields,

V (x) ≈ V0π
2∆x2

d2
. (5.3)

This can be equated to the potential of an atom in a harmonic trap,

V0π
2∆x2

d2
=

1

2
mω2∆x2, (5.4)

thus we obtain,

ωlattice =
π

d

√
2V0

m
. (5.5)

Considering the typical lattice spacings achievable, it becomes immediately

apparent that even with modest laser powers, it is possible to generate trap

frequencies of a few kHz with relative ease when using optical lattices.

The lattice potential can be manipulated in a number of ways, for example

by the wavelength of the light used or the power of the laser beam. The

angle of intersection of the beams also plays a key role in the lattice formed,

changing the resultant lattice spacing. Choosing an angle θ < 180◦, as shown

in Fig. 5.11(c), increases the spacing between neighbouring lattice sites. As

a result, the usual spacing, d = λ/2, becomes,

d(θ) =
d

cos(θ/2)
. (5.6)

Of course adding more beams opens up the possibility to create higher di-

mensional lattices. However, we will not consider this here. Our primary aim

is to determine whether the IPG fibre laser is suitable for the production of

optical lattices and if it is possible to observe qualitative features associated

with the formation of a Bose-Einstein condensate in a lattice.
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5.5.2 Creating a BEC in a lattice

Producing a BEC in a lattice rather than mere ultracold atoms has a num-

ber of advantages [143]; the lower temperatures and higher densities offered

by the condensate means the lowest lying energy levels of the lattice will be

populated without the need for further cooling. The increased filling factor

of the lattice, again due to the high density, creates an approximately fully

occupied ‘crystal’, ideal for condensed matter simulations. In addition, in-

teratomic interactions are generally more appreciable for BECs in lattices

compared to ultracold atoms in the same lattice. As a result more diverse

physics applies in this system. The lattice’s effect on the condensate is also

important. Its presence introduces a new length scale, much smaller than the

condensate size, along with a periodicity previously absent from the trap.

Bose-Einstein condensates in optical lattices can be prepared in one of two

ways. Either the BEC is first created in some conventional magnetic or

optical trap and then adiabatically transfered into the optical lattice or the

condensation process occurs in the lattice itself. As we have no means of

creating a separate, independent lattice potential, we must use the latter

method.

We begin by loading the hybrid crossed dipole trap as described in section 5.4.

After a 500 ms hold, we apply a series of 3 ramps of the dipole laser power:

ramp 1: 10.6 W to 3.8 W in 10 s, ramp 2: 3.8 W to 0.8 W in 15s, ramp 3:

0.8 W to 0.15 W in 10s. Following this, the atoms are held for a further 2 s

before BEC is achieved.

5.5.3 Signature of condensation

To confirm the creation of a Bose-Einstein condensate in the lattice we must

image the atoms vertically after their release from the trap2. In doing so one

is able to observe the momentum distribution of the atoms. In a harmonic

trap, a condensate has a Gaussian momentum distribution in the limit of

weak interactions and a Thomas-Fermi distribution when the interactions

dominate over the kinetic energy. In contrast, a condensate in a lattice has

2In general we choose ∼100 ms levitated time of flight.
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Figure 5.12: Emergence of an optical lattice: Vertical images of an 87Rb

BEC formed in an optical lattice as a function of polarisation angle from the

horizontal.

additional momentum components in multiples of 2~kL (where kL = 2π/λ)

[143], the weighting of these components depending on the lattice depth.

If the lattice is deep, in the ‘tightly binding’ limit, the condensate can be

thought of as many wavefunctions, each occupying their own lattice site.

These then expand independently once the lattice is switched off, overlapping

and interfering. This interference pattern then corresponds to the Fourier

transform of the initial condensate.

Figure 5.12 shows the emergence of a lattice as the polarization of the dipole

beams is rotated. The angle stated is the direction of polarisation of the

beam, relative to horizontal. As more vertically polarized light is added, the

lattice becomes deeper and the secondary momentum peaks become more

visible.

Because of the necessity to image vertically (due to the horizontal lattice

formed in the same direction as the horizontal imaging beam) a levitated

time of flight is required to keep the atoms in focus with the imaging op-

tics. The quadrupole trap, along with a bias field, is used to provide this

levitation. However, an unfortunate side effect is a weak horizontal trapping

produced by the combination of magnetic fields. We can observe this effect

by imaging the condensate, released from the same trap, and varying the

time of flight. A collection of such images are shown in Fig. 5.13. Fitting the

evolution of the side peak position with time does however allow this trap-

ping frequency (∼2 Hz) to be determined which we find to be in agreement
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Figure 5.13: Momentum peak evolution with time: In order to levitate the

atoms in time of flight both the quadrupole trap and a bias field are left on

during the expansion from the lattice. This results in a weak axial trapping

causing the observed position of the 2~k momentum peaks to oscillate in

time.

with the calculated value.

5.5.4 Kapitza-Dirac scattering

Calibration of the lattice depth can be done in a number of ways. Although

it is possible to calculate the lattice depth (V0) from knowledge of the atomic

polarizability and the lattice beam parameters, it can be difficult to measure

the latter accurately. Instead one can use the response of the atoms to various

perturbations of the lattice to recover information about V0.

For a static lattice, calibration examples include:

• Parametric heating leading to atom loss: By modulating the

lattice light at a frequency twice that of the harmonic trapping of the

wells, the atoms contained within can be parametrically heated [144].

This leads to atom loss from the trap and a net heating of the remaining

cloud. The trap depth can then be calculated according to Eq. (5.5).

• Expansion from the lattice: After loading the lattice adiabatically
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Figure 5.14: Kapitza-Dirac scattering: Pulsing the lattice on at an increased

power for a time ∆t transfers atoms into different momentum states, the

population of which oscillates with time. Images shown are for ∆t = 3 µs to

∆t = 25 µs, increasing (from left to right) in 1 µs steps.

the light is abruptly turned off. As the atoms expand and interfere

the diffraction pattern observed is the product of a series of momen-

tum peaks and a Gaussian envelope, the width of which reflects the

distribution of local wavepackets in the lattice. For deep lattices the

lattice depth is calculated from the relative population P±1 of the 0

and ±2~kL momentum peaks according to

s =
V0

ER
=

16

[ln(P±1)]2
P

1/4
±1 . (5.7)

• Kapitza-Dirac scattering: (Also known as Raman-Nath diffraction)

By pulsing on the lattice for a short time ∆t � 1/ω the resulting

diffraction pattern can be used to determine V0 using the relative pop-

ulation of the 0 and ±2~kL bands [145].

The most visually spectacular result arises from the Kapitza-Dirac scattering

method. By rapidly pulsing on the lattice, atoms populate a number of

different Bloch states. Whilst the lattice remains switched on the population

of these states evolves in time until the lattice is switched off again and

the atoms are released. As a consequence, the observed population of the

different momentum peaks oscillates as a function of the pulse duration ∆t.

If only bands 0 and 2~kL are populated (odd bands remain unpopulated as

a result of symmetry arguments) the variation in time is sinusoidal. Fitting

the period of this population cycle allows V0 to be then be extracted.
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Examples of typical population transfer are shown in Fig. 5.14. Here a BEC

is created in the lattice (as described earlier) by reducing the power in the

lattice beams to evaporatively cool the atoms. Once BEC is reached the

lattice light is then pulsed on at a much higher power for some variable time

∆t before the atoms are released from the trap. After 60 ms of expansion

the atoms are destructively imaged.

5.6 Summary

In this chapter we have characterised the evaporation of 87Rb in a crossed

optical dipole trap. Using three distinct trap configurations we are able

to control the evaporation surface and from here, go on to produce 87Rb

condensates in all cases. By changing the polarization of the trapping light

we then show that it is possible to create a 1D optical lattice using the

IPG fibre laser in this crossed trap setup. We demonstrate the formation

of a Bose-Einstein condensate in the lattice and observe the experimental

signatures in time of flight.

From this point, the next step is to load 85Rb into the crossed trap and explore

the evaporation trajectory in both the hybrid and levitated cases. Here the

bias field applied will have a significant impact on the scattering properties

of the atoms and hence will determine the efficiency of the evaporation.



Chapter 6

Bose-Einstein condensation of
85Rb

6.1 Introduction

In this chapter we explore the nature of the elastic and inelastic scatter-

ing properties of 85Rb. We then go on to describe a simple method for

the creation of Bose-Einstein condensates of 85Rb by direct evaporation in a

crossed optical dipole trap. The independent control of the trap frequencies

and magnetic bias field afforded by the trapping scheme permits full control

of the trapped atomic sample, enabling the collision parameters to be easily

manipulated to achieve efficient evaporation in the vicinity of the 155 G Fes-

hbach resonance. We produce nearly pure condensates of up to 4×104 atoms

and demonstrate the tunable nature of the atomic interactions. Finally, we

review previous work on the collapse phenomenon of attractive condensates

and demonstrate the same effect using the 85Rb BEC produced in the crossed

dipole trap.

6.2 Why use 85Rb?

The use of magnetically tunable Feshbach resonances [146] to control the in-

teraction between atoms is now commonplace in many ultracold atomic gas

experiments. The ability to precisely tune the s-wave scattering length, as,

104
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near a broad resonance has resulted in many exciting breakthroughs in the

study of atomic Bose-Einstein condensates (BECs) and degenerate Fermi

gases [14, 147]. At the same time, Feshbach resonances have found appli-

cations in the coherent association of ultracold molecules [14, 148], bring-

ing quantum degenerate samples of ground state molecules within reach

[149, 150]. Although essentially all single-species alkali-metal atoms exhibit

some sort of Feshbach spectrum, broad resonances suitable for tuning the

scattering length are generally less accessible. For example, the broadest

resonance in 87Rb, the workhorse of many quantum gas experiments, is at

a field of 1007 G and just 0.2 G wide [151]. In contrast, a resonance exists

for 85Rb atoms in the F = 2, mF = −2 state at 155 G which is 10.7 G wide

[152, 37] yielding a variation of the scattering length with magnetic field of

∼ 40 a0 G−1 in the vicinity of as = 0. This has already been used successfully

to precisely tune the atomic interactions in a BEC [30, 35, 34, 7, 153, 38].

Despite this, 85Rb has been notably underused in quantum gas experiments

owing to its perceived reputation as a difficult species to cool to degeneracy.

The difficulties associated with attempting to evaporatively cool 85Rb are

well documented [30, 154, 155]. The elastic collision rate in samples trapped

directly from a magneto-optical trap (MOT) is severely suppressed due to an

unfortunately placed zero in the s-wave scattering cross section [154]. Addi-

tionally, the two- and three-body inelastic collision rates in ultracold samples

are unusually high and vary strongly in the vicinity of the Feshbach resonance

[155]. Nevertheless, carefully optimized evaporation in a weak Ioffe-Pritchard

magnetic trap produced stable condensates of ∼ 104 atoms [30]. However,

with the development of optical trapping, the modern evaporator is equipped

with a broader array of tools than her predecessor, allowing her to navigate

the potential pitfalls associated with 85Rb with greater ease. For exam-

ple, recent experiments [33, 31] have almost circumvented these problems

entirely by employing 87Rb to sympathetically cool low density samples of
85Rb, yielding condensates of up to 8 × 104 atoms [33], at the expense of

added experimental complexity.
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6.3 Scattering properties

In this section we consider the specifics of both elastic and inelastic scattering

in an ultracold gas of 85Rb atoms. It is important to strike a fine balance

between the two mechanisms if efficient evaporation is to be achieved. We

discuss the nature of the mechanisms and importantly how they vary in the

vicinity of the 155 G Feshbach resonance present in collisions between atoms

in the F = 2,mF = −2 state of 85Rb.

6.3.1 Elastic scattering

The success of evaporative cooling is largely dependent on the elastic colli-

sions responsible for rethermalisation of the cloud. The elastic collision rate

is given by

Γel = 〈n〉σel〈vrel〉, (6.1)

where 〈n〉 is the mean density, σel the scattering cross section and 〈vrel〉
the mean relative velocity. For a harmonically trapped gas the density and

velocity are then defined as,

〈n〉 =
1

N

∫
n(r)2d3r =

Nω2
ρωz

8

(
m

πkBT

)3/2

, (6.2)

and

〈v〉 =

(
16kBT

mπ

)1/2

. (6.3)

However, the exact form of the σel depends very much on the collision energy

(and therefore the temperature) of the atoms and, as this decreases, on the

scattering length of the atomic sample. For this reason Eq. (6.1) is sometimes

expressed as Γel = 〈n〉〈σelvrel〉.

High temperature collisions

In the limit of ‘high’ temperature, i.e. 100s of µK, the scattering cross-

section of 85Rb varies rapidly as can be seen in Fig. 6.1 [156]. The minimum1

1This is a Ramsauer-Townsend [157, 158] type minimum associated with low energy

collisions.
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Figure 6.1: Total elastic cross-section for rubidium collisions as a function of

collision energy: Figure taken from [156]

in the s-wave collisions at 375 µK causes the slow rethermalisation of atoms

in the magnetic trap (these collisions happen at around 6-8 kBT ) during

the RF evaporation stages and makes conventional techniques of adiabatic

compression [159] ineffective.

One of the most striking features of Fig. 6.1 is the contrast between 85Rb

and 87Rb. Not only is the cross-section for 87Rb almost flat over the entire

temperature range shown but is around two orders of magnitude larger than

that of 85Rb.

Low temperature collisions

In its most general form, the elastic scattering cross-section is given by

σel =
8πa2

s

(1− rek2as/2)2 + k2a2
s

. (6.4)

Here as is the scattering length, re the effective range and the wavevector, k,

is defined as

k =

(
16m∗kBT

π~2

)1/2

, (6.5)

taking into account the temperature, T and reduced mass, m∗. This full ex-

pression describes scattering with no inelastic processes but with an effective

range correction [160, 161], accounting for the non-zero temperature effect

on the scattering length. This is given by

re = Ca

(
1− 2

a

as
+ 2

(
a

as

)2
)
, (6.6)
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Figure 6.2: Elastic scattering cross-section: Dependence of Eq. (6.4) on scat-

tering length as a function of temperature. Also shown is the simplification

σel = 8πa2
s.

where C = 1
3
Γ(1

4
)2Γ(3

4
)−2 and a = 23/4Γ(3

4
)/Γ(1

4
)(µC6)1/4.

If the deBroglie wavelength of the atom is much larger than the geometric

mean of the scattering length and the effective range, then the elastic cross

section reduces to

σel =
8πa2

s

1 + k2a2
s

, (6.7)

a more widely used form owing to its relative simplicity. In this case the

scattering is determined by a2
s and hence is independent of the sign of the

scattering length. In the unitarity limit, where kas � 1 (or equivalently

as � λ), σel = 8π/k2 whereas in the ultracold limit, kas � 1, the scattering

rate reduces down to σel = 8πa2
s. In this ultracold case the atoms scatter like

hard spheres.

It is interesting to contrast these cases and to examine at what sort of tem-

peratures the additional terms become non-negligible. Figure 6.2 shows the

breakdown on the simple σel = 8πa2
s approximation when contrasted to the

more complex Eq. (6.4) at various temperatures. As we expect, the simpli-

fication is most valid in the limit of low temperature and small scattering

length. For low T and small as we find that there is little deviation be-

tween the full effective range corrected form of the scattering, Eq. (6.4) and

σel = 8πa2
s. However, once we increase the temperature into the µK range,
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the discrepancy between Eq. (6.4), Eq. (6.7) and the simple σel = 8πa2
s be-

comes more dramatic as can be seen in Fig. 6.3.

Figure 6.3 shows the three cases at both 10 µK and 100 µK. Not only is

there a rapid departure from the full effective range calculation with tem-

perature but also with scattering length. Thus we conclude, that at large

scattering lengths, the effective range contribution is significant and cannot

be neglected.
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Figure 6.3: Effective range contribution: The deviation of approximations

to the elastic scattering cross-section at temperatures of (a) 10 µK and (b)

100 µK.

6.3.2 Tuning atomic interactions: Feshbach resonances

The use of magnetically tunable Feshbach resonances [14] to control the inter-

action between atoms is now commonplace in many ultracold atomic gas ex-

periments. These resonances allow the value of the s-wave scattering length,

as, to be changed over many orders of magnitude in both the positive and

negative domain by simply changing the magnetic field. In the case of broad

resonances where ∆ & 1 G, the change of scattering length with field around

the zero crossing makes precise control over the atomic scattering proper-

ties possible. For Bose-Einstein condensation of some species (e.g. 85Rb,
7Li) this is of particular importance as it allows the creation of stable con-

densates with repulsive interactions (as > 0) despite a negative background

scattering length away from the resonance.
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Figure 6.4: Feshbach resonances: A two channel model of a Feshbach res-

onance. A resonance occurs when two atoms colliding with energy E reso-

nantly couple to a bound state of the closed channel.

Feshbach resonances arise when a resonant coupling occurs between the col-

lisional open and closed channels of an atomic system. For large internuclear

distances, the interaction between two atoms can be described by the back-

ground potential, Vbg. If two free atoms approach, colliding with low energy,

E, this potential represents the open or entrance channel for the collision.

In contrast, closed channels (described by Vc) are able to support molecular

bound states. A Feshbach resonance occurs when the energy of a bound

molecular state in the closed channel, Ec, approaches that of the open chan-

nel. In this instance a strong mixing between the two channels can occur

even in the presence of only weak coupling. By changing the magnetic field

applied this energy difference can be tuned if the magnetic moments of the

two channels differ thus the scattering properties of the atomic sample can

be modified.

The ability to precisely tune the atomic scattering properties of a trapped

sample using a Feshbach resonance is of huge importance and makes many

BEC experiments possible. Their application has led not only to the realisa-

tion of bright solitary matter-waves [5, 6, 7] but also the formation of molec-

ular BECs [162, 163, 164] and the exploration of the BEC-BCS crossover

[165, 166]. Using a resonance to increase the scattering length to large pos-

itive values in condensates with high N also allows one to probe beyond
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Figure 6.5: 85Rb F = 2,mF = −2 Feshbach resonance: Positioned at

Bpeak=155.041(18) G the broad, ∆ = 10.71(2) G, resonance of the F =

2,mF = −2 state of 85Rb gives tuning of the scattering length on the order

of ∼ 40 a0G−1 close to the zero crossing at Bzero=165.85(5) G. Away from the

resonance the background scattering length is abg = −443(3) a0. Resonance

data taken from [37].

mean-field effects where the validity condition of the GPE, n|as|3 � 1 begins

to break down [167, 153]. Alternatively, tuning the scattering length close

to zero reduces the decoherence usually observed in Bloch oscillations, ex-

tending observation times from a few to more than 20,000 Bloch oscillation

periods [168].

85Rb F = 2,mF = −2 state Feshbach resonance at 155 G

Following work using two-color photoassociation to measure the last 20 GHz

of bound levels in the lowest molecular singlet and triplet states of 85Rb,

(thus allowing a complete set of Rb2 interaction parameters to be precisely

determined [169]) three magnetic Feshbach resonances in collisions between
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atoms in the F = 2,mF = −2 state of 85Rb were predicted by Heinzen and

co-workers [170]. Of these three, two were predicted to be broad, lying at at

142 G and 524 G with the third, a much narrower feature, at 198 G. The same

group later went on to observe one of the broad resonances [171] pinpoint-

ing its position as 164(7) G. Subsequent work by Roberts et al. improved

this measurement, initially measuring the position as 155.2(4) G [152], later

revised to 154.9(4) G [172].

Although many more resonance have now been theoretically predicted in the

|2,−2〉 state [173], most work still focuses on the 155 G resonance. The mag-

netic field dependence of the scattering length close to a Feshbach resonance

is given by

as = abg

(
1− ∆

B −Bpeak

)
. (6.8)

Most recently the use of very high precision bound-state spectroscopy [37]

to measure the 155 G feature returned values of abg = −443(3) a0, ∆ =

10.71(2) G and Bpeak =155.041(18) G. Here magnetic field pulses were used

to induce coherent atom-molecule oscillations, which could in turn be used to

calculate the molecular binding energy, Eb = −~2/(ma2
s). The frequency of

these oscillations (Eb = hν) was mapped out as a function of magnetic field

and compared to coupled channel calculations. Using Eq. (6.8) to describe

the variation of the scattering length close to the resonance, the oscillation

frequency can be expressed as [174],

ν =
~

2πma2
bg

(B −Bpeak)2

(B −Bzero)2
. (6.9)

This, when used along with measurements of as = 0 from collapse studies

[35], meant that the scattering length and binding energy could be completely

characterised close to the Feshbach resonance with far greater precision than

had been seen previously.

This resonance is shown in Fig. 6.5 and is central to the work carried out

in this thesis. By working close to the feature one is able to manipulate the

value of as over many orders of magnitude, allowing direct control over the

scattering properties of the atomic sample. Far from the resonance the large

negative background scattering length of atoms in the |2,−2〉 state makes

it impossible to form stable condensates. Close to the zero crossing of the
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resonance, the variation of the scattering length can be approximated by

differentiation of Eq. (6.8),

das
dB

=
abg∆

(Bpeak −B)2
. (6.10)

At B = Bzero = Bpeak + ∆, Eq. (6.10) becomes

das
dB
≈ abg

∆
. (6.11)

For the 155 G resonance the scattering length therefore varies at a rate of ∼
40 a0G−1 near to the zero crossing in the scattering length. (For comparison,

the broad resonance at ∼20 G in the F = 3,mF = 3 state of Cs has a

magnetic field dependence of ∼ 66 a0G−1 and has also been used to reach

BEC [175].)

Elastic scattering close to the Feshbach resonance

Using the variation in scattering length as a function of magnetic field de-

scribed by Eq. (6.8) along with Eq. (6.4) one can calculate how the elastic

scattering cross-section varies close to the Feshbach resonance. The full cal-

culation including the effective range correction is shown in Fig 6.6 for three

different temperatures. From Fig. 6.6 it is clear that as the temperature falls

the elastic scattering cross-section is enhanced and can be varied precisely

using the magnetic field.

However, it is also important to consider inelastic collisions which also vary

over many orders of magnitude close to the resonance [155]. A delicate

balance must be struck between ‘good’ and ‘bad’ collisions if evaporation is

to proceed efficiently.

6.3.3 Inelastic scattering

Inelastic loss mechanisms result in not only a decrease in the number of

trapped atoms but can also cause heating of the sample. In the case of density

dependent processes, atoms are preferentially lost from the cold, dense centre

of the cloud leading to ‘anti-evaporation’.
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Figure 6.6: Elastic scattering cross-section close to the 155 G Feshbach res-

onance: Full effective range calculation of σel for cloud temperatures T =

10 nK, 100 nK, 1 µK and 10 µK along with the simplified σ = 8πa2
s calcu-

lation. Shown in light grey is the 155 G resonance. Dotted lines show the

position of the zero crossing in the s-wave scattering length.

Background loss

Background loss results from collisions of trapped atoms with surrounding

room temperature atoms and molecules present due to the imperfect nature

of the vacuum. However, atoms lost in this way take with them the average

energy per atom associated with the cloud, 3 kBT and hence do not cause any

heating. Losses happen at a rate α = 1/τb where τb is a characteristic lifetime

associated with losses of this kind. Although not density dependent, back-

ground collisions are sensitive to the vapour pressure providing the source of

background atoms. Typically in the science cell, lifetimes in excess of 100 s

are possible considering this type of loss alone.

Two-body collisions

Two-body loss, as the name suggests, occurs as the result of collisions of two

atoms with a number of specific mechanisms being grouped under this same

title.
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When the atomic separation is small enough such that the electron wave func-

tions of the two atoms are able to overlap, an exchange interaction arises due

to the anti-symmetry of the electronic wave function. The exchange inter-

action can couple singlet and triplet states [161] yet, due to its spherical

symmetry, conserves internucleus angular momentum L and mL thus imply-

ing only transitions with ∆mF = 0 are allowed. By pumping atoms to the

stretched state (e.g. F = 2,mF = −2) this exchange interaction can be

eliminated. However, the lifetime of such a sample is still limited by other

loss processes such as dipolar interactions.

Dipolar interactions originate from the spin-spin interaction between atoms.

These can be direct (magnetic dipole-dipole) or indirect (2nd order spin-

orbit). In the case of 87Rb these contributions almost exactly cancel, leading

to a significantly reduced two-body loss coefficient. Unfortunately, this is

not the case in 85Rb. Dipolar relaxation occurs when two atoms collide, ex-

changing angular momentum between their orbital motion and their intrinsic

spin thus scattering into an untrapped spin state. The rate for such losses

goes as K2〈n〉 and so losses of this nature are more prominent in regions of

higher density. As a consequence, atoms lost in this way take with them

E = 9/4 kBT ; less than the average energy of the cloud (where the average

applies to a sample in a harmonic trap) and thus contribute to its heating.

Three-body collisions

In the cold, dense centre of the trap there is an increased probability of finding

multiple atoms close together, the result of this being three-body collisions

(three-body recombination)2. Such collisions can lead to molecule formation

between two of the atoms with the third remaining unbound, carrying away

2Three-body recombination rates differ between noncondensate and condensate sam-

ples as confirmed experimentally in [176]. Theoretical models [177] predict a factor of

3! difference should be apparent between the two cases with thermal samples displaying

the greater losses. This is the result of statistical correlations between atoms, leading to

density fluctuations which are more prominent in the thermal cloud compared to the con-

densate, i.e. condensate atoms are less bunched than noncondensate atoms. As a result

there is a higher probability of finding three atoms close together in the thermal cloud,

hence three-body loss increases.



Chapter 6. 85Rb BEC in a crossed dipole trap 116

Background 2-body 3-body 

Figure 6.7: Inelastic loss mechanisms: Atoms can be lost from the trap as

a result of simple collisions with other background gas atoms or as a result

of more complicated two and three-body processes. Here atoms are lost as a

result of spin flips or increases in energy, sufficient to liberate them from the

trapping potential.

excess energy and momentum from the collision. In the recombination pro-

cess the molecular binding energy ε is released as kinetic energy with the

molecule receiving ε/3 and the atom 2ε/3 [178]. If ε is large compared to

the trapping potential both the atom and the molecule will be expelled from

the trap. Alternatively either just the atom or just the molecule will escape

the trap. If the molecule remains trapped there is potential for further col-

lisions (to quench its high vibrational level) thus expelling more atoms from

the trap. Recombination heating can then arise as excess kinetic energy is

distributed within the ensemble.

Three-body losses have a stronger density dependence than two-body with

the associated rate scaling as K3〈n2〉. Atoms lost via a three-body process

contribute more significantly to the heating of the sample, on average only

taking away 2 kBT . Atoms being lost in this way, preferentially from the

trap centre, causes ‘anti-evaporation’ as the coldest atoms are removed.

In the case of large positive as theoretical studies [179, 180, 181, 182] predict

three-body loss should scale as a4
s, with different mechanisms responsible

for the loss when as < 0 and as > 0 [181]. This has been experimentally

verified using a magnetic Feshbach resonance to precisely tune the scattering

length of cesium atoms [183]. The importance of avoiding the hydrodynamic

collision regime during evaporative cooling is also highlighted in Ref. [183] as

recombination heating (caused by collisions of the atoms or molecules) can
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limit the efficiency of evaporative cooling such that it becomes impossible to

reach degeneracy.

Two and three-body loss close to the 155 G Feshbach resonance

Both two and three-body losses have previously been studied close to the

155 G Feshbach resonance [155]. At 250 G these were measured to be K2 =

(1.87±0.95±0.19)×10−14 cm3s−1 and K3 = (4.24+0.70
−0.29±0.85)×10−25 cm6s−1,

decreasing to a minimum as the magnetic field is reduced before peaking at

the Feshbach resonance. Fortunately, the minimum of the inelastic scattering

rate does not coincide with that of the elastic scattering. Instead the inelastic

minimum is located at ∼175 G. Here K3 falls to around 10−26 cm6s−1 and

K2 remains at 10−14 cm3s−1. Using these values we can calculate a rough

estimate of the lifetimes associated with these losses in 85Rb, assuming an

atomic density of 1× 1012 cm−3,

τ2body ∼
1

K2〈n〉
≈ 50 s, (6.12)

τ3body ∼
1

K3〈n2〉
=

1
8√
27
K3〈n〉2

≈ 1.5 s. (6.13)

Predicted [184] and experimentally verified [176] to be low, the loss rates

for 87Rb atoms are in stark contrast to those of 85Rb. It is interesting to

contrast the values for K2 and K3 in 85Rb to typical values measured for
87Rb. Work by Burt et al. investigated the loss in both condensate (c)

and non-condensate (nc) 87Rb atoms [176], bounding the two-body rate,

Knc
2 ≤ 1.6 × 10−16 cm3s−1, and measuring Knc

3 = 4.3(1.8) × 10−29 cm6s−1

and Kc
3 = 5.8(1.9) × 10−30 cm6s−1 (confirming the 3! difference predicted

theoretically [177] for condensate and non condensate atoms). The two orders

of magnitude difference in K2 and five orders of magnitude difference in K3

between 85Rb and 87Rb highlights one of the key obstacles in the cooling

of 85Rb to degeneracy. It is therefore imperative to devise an evaporation

strategy which exploits the field dependence of both elastic and inelastic

scattering.
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6.3.4 Heating rate in the dipole trap

Although, strictly speaking, heating due to the scattering of photons from

the optical trap does not constitute an inelastic loss mechanism, it falls into

a similar category of processes which work against the evaporation. The

heating rate for a red detuned dipole trap is given by [92],

Ṫred =
2/3

1 + κ
Trec

Γ

~|∆|
|U0|. (6.14)

The parameter κ = Ēpot/Ēkin is the ratio of potential to kinetic energy and

for a 3D harmonic trap, κ = 1. The recoil temperature, Trec = ~2k2/(2mkB),

is the temperature associated with the kinetic energy gain by emission of a

single photon.

At the initial point of loading into the crossed dipole trap the photon scat-

tering rate of 0.04 s−1 leads to a heating rate of ∼4 nKs−1. By the final stage

of our evaporation this has reduced to less than 0.02 nKs−1.

6.4 Evaporative cooling

With this understanding of how the scattering properties of the atoms im-

pact upon the trapped cloud as a whole, we can then proceed to try and

evaporatively cool 85Rb in an attempt to reach degeneracy in the crossed

dipole trap.

To produce an ultracold cloud of 85Rb atoms in the F = 2,mF = −2 state

the same general experimental procedure used to cool and transport 87Rb

is employed (with the necessary modifications to the frequencies of the laser

light), typically producing a trapped atomic cloud containing ∼ 5×108 atoms

at a temperature of ∼ 380 µK. Forced radio frequency (RF) evaporation of

the sample in the quadrupole trap is then carried out with the optimized

evaporation trajectory taking 26 s in total due to relatively slow rethermal-

ization caused by the low s-wave scattering cross-section in this temperature

range [156]. (However, we note that the linear potential produced by the

quadrupole trap means it is possible to obtain runaway evaporation for a

lower ratio of elastic-to-inelastic collision compared to a harmonic potential

[85]). The RF evaporation results in a cloud of 3× 107 85Rb atoms at 42 µK
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Figure 6.8: 85Rb crossed trap experimental setup: (a) Experimental setup

showing the arrangement of coils around the UHV cell and the beam geom-

etry used to create the crossed dipole trap. Trapping: Potentials produced

horizontally along one of the beams (black, solid) and vertically (red, dashed)

in the hybrid (b) and levitated (c) crossed dipole traps. Insets: False color

images of atoms in the respective traps, viewed from above.
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with a phase space density (PSD) of 5 × 10−5 in the magnetic quadrupole

trap. At this temperature the quadrupole trap lifetime is limited by Majo-

rana spin flips as the coldest atoms spend increasing amounts of time close

to the magnetic field zero. To proceed, we transfer a fraction (∼ 20 %) of

the atomic sample into the crossed optical dipole trap shown in Fig. 6.8(a)

and, in doing so, gain a factor of 30 in PSD due to the drop in temperature

and increase in trap frequencies. Despite losing atoms in the transfer, in the

new trap atoms equilibrate to ∼ U0/10 (roughly 10 µK) which leads to this

dramatic increase in phase space density and puts us well into the ultracold

regime where the elastic collision cross-section can then be tuned using the

(magnetic field dependent) scattering length (see Fig. 6.6).

The same crossed dipole trap described in chapter 5 is used to trap both
85Rb and 87Rb. Again the dipole trap is switched on during the RF evap-

oration stage. To complete the loading, the quadrupole gradient is relaxed

from 180 Gcm−1 to ∼ 21.5 Gcm−1 in 500 ms. The final quadrupole gra-

dient used is just less than that sufficient to support atoms against gravity

(∼ 22.4 Gcm−1). The presence of the magnetic gradient leads to weak mag-

netic confinement along the beams (∼20 Hz) [91], enhancing the trap volume

and resulting in a trap depth set by the vertical direction (Fig. 6.8(b)). In ad-

dition, the offset from the field zero leads to a small magnetic field (∼ 0.3 G)

at the location of the crossed dipole trap which ensures a quantisation axis

is maintained. As described in section 5.3, the atoms are subject to both

optical and magnetic confinement hence we refer to this as the hybrid trap.

In order to reach the Feshbach resonance it is necessary to apply a moder-

ate bias field (∼ 155 G). The positioning of the bias coils, relative to the

quadrupole trap, is shown in Fig. 6.8(a). This leaves the trapped atoms

still levitated against gravity, however the confinement produced by the

quadrupole trap along the dipole beams is effectively removed, dropping to

∼0.9 Hz as shown in section 3.3.3. Atoms now only remain at the intersec-

tion of the trap. This is our levitated crossed optical dipole trap. Before

switching on the bias field, we first evaporate by ramping down the power of

the hybrid trap at low field (as ≈ −460 a0 [173]) where inelastic losses are

known to be low [185]. This allows us to exploit the enhanced volume of the

hybrid trap to improve the transfer into the levitated crossed dipole trap.
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Figure 6.9: 85Rb Collisional properties: Position of as = 0 is marked by the

red, dashed line: (a) Evaporation efficiency (see text) of a fixed evaporation

sequence carried out at different magnetic fields close to the Feshbach reso-

nance. (b) The effect on fitted temperature of the same evaporation ramps.

(c) Feshbach resonance in the F = 2,mF = −2 state of 85Rb. The scattering

length is given in units of the Bohr radius, a0 ≈ 0.529× 10−10 m. (d) Mag-

netic field dependence of the three-body inelastic loss rate near the Feshbach

resonance. Solid lines in (a), (b) and (d) are a guide to the eye only.
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In contrast to the hybrid case, in the levitated trap evaporation happens

preferentially along the dipole beams, as shown in Fig. 6.8(c), resulting in a

trap with roughly half the depth compared to the zero bias field case.

To achieve efficient evaporation in the levitated trap it is necessary to un-

derstand the interplay between elastic and inelastic collisions close to the

Feshbach resonance. We explore this by indirectly probing the collision ra-

tio, carrying out a fixed evaporation sequence for different magnetic fields.

The efficiency, γ, of the evaporation sequence can then be calculated from

the initial (i) and final (f ) number, N, and PSD of the gas according to:

γ = − log(PSDf/PSDi)

log(Nf/Ni)
.

The efficiency for a 50 G window spanning the zero crossing of the Fesh-

bach resonance is shown in Fig. 6.9(a). The two clear peaks at 161 G and

175 − 185 G highlight the most efficient fields at which to evaporate with

the broad as < 0 peak, 175 − 185 G, giving marginally better performance.

As as approaches zero (red dashed line) the elastic collision rate reduces and

rethermalisation ceases. As a result the efficiency tends to zero and we see a

corresponding peak in the fitted cloud temperature, Fig. 6.9(b).

6.4.1 Three-body loss: Measuring K3

The distinct structure evident in Fig. 6.9(a) follows from the magnetic field

dependence of the elastic and inelastic collision rates. The elastic collision

rate, determined by the atomic scattering length (Fig. 6.9(c)), varies by many

orders of magnitude over the region of interest as shown previously in Fig. 6.6.

Similarly, inelastic losses are known to exhibit a strong field dependence

close to the resonance [155]. This is illustrated in Fig. 6.9(d) which shows

the change in the three-body inelastic loss rate, K3, measured close to the

Feshbach resonance.

To determine the three-body loss rate at a given magnetic field an atomic

sample is first prepared at 175 G with a temperature of ∼ 0.15 µK. The

magnetic field is then ramped from 175 G to a new value in 10 ms. Following

the ramp, the trap is compressed (in 1 s) by linearly increasing the laser

power. This deepens the trap from 1.4 µK to 27.5 µK, increasing the atomic
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density. The increased trap depth also suppresses evaporation effects due to

the relative difference in cloud temperature and trap depth. (Assuming the

compression is adiabatic, the temperature of the cloud scales linearly with

the trap frequency (T ′/T ∼ ω′ho/ωho). The trap frequency depends on the

beam power as ω ∼
√
P however, the trap depth scales faster with power,

instead going as U ∼ P thus it is possible to deepen the trap, relative to the

cloud temperature.) As atoms are lost from the trap, Fig. 6.10(a), this makes

it possible to observe heating as a result of the three-body effect, Fig. 6.10(b).

The lifetime of the atomic cloud in this deep trap is measured and the three-

body loss rate, K3, determined by fitting the data with the solution to a pair

of coupled differential equations describing the atom number evolution with

time [183],
dN

dt
= −αN − γN

3

T 3
, (6.15)

and the associated change in temperature,

dT

dt
= γ

N2

T 3

(T + Th)

3
. (6.16)

Here α = 1/τb accounts for background losses and γ = K3√
27

(mω2/2πkB)3

where ω is the geometrically averaged trap frequency. Th is the recombination

heating associated with the loss. It is likely that there is a combination of

both two and three-body loss processes going on in the trapped gas, however

it is often difficult to differentiate between the two [155]. We choose to fit

the data using this model of K3 as the compression of the trap is designed

to increase the atomic density. As three-body loss scales more strongly with

density than two-body loss the compression should therefore favour the three-

body scaling.

Looking again at Fig. 6.9(c) and (d) it is apparent that for a given magnitude

of scattering length the inelastic losses are marginally lower on the as < 0

side of the zero crossing as previously predicted and observed [181, 155]. This

leads to slightly better evaporation performance for the 175 − 185 G peak

(Fig. 6.9(a)).
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Figure 6.10: Determining K3: (a) Atom loss from the ‘deep’ crossed trap

due to three-body loss processes. (b) Increase in cloud temperature observed

as a result of three-body heating. Solid lines are fits to the data based on

Eq. (6.15) and Eq. (6.16).

6.5 Bose-Einstein Condensation

With this understanding of the collisional properties of the trapped cloud, it

is then clearer how best to achieve BEC in the optical trap. Following a low

field evaporation stage in the hybrid trap, the bias field is ramped rapidly

(∼ 10 ms) to 175 − 185 G to exploit the window of efficient evaporation.

It is at this low loss region that the majority of the subsequent evaporation

is carried out. Following a 500 ms hold to allow atoms to equilibrate in

the reduced trap depth, we apply two more evaporation ramps resulting in

a sample of 2.5 × 105 atoms at 150 nK with a PSD of 0.5. Unfortunately,

stable condensates cannot be created at this magnetic field due to the large,

negative scattering length (∼ −200 a0) [13] hence we must ramp the bias

field again, this time to 161.3 G where the scattering length, calculated from

Eq. (6.8), is positive (∼ 315 a0). A further evaporation ramp is carried out

here reducing the beam power to 0.3 W and creating an almost spherically

symmetric trapping geometry, ωx,y,z = 2π×(31, 27, 25) Hz. To reach BEC

the sample is held in this final trap for up to 1.5 s to allow for further plain

evaporation. A schematic of the evaporation sequence, from the evaporation

in the magnetic quadrupole trap, is shown in Fig. 6.11. The total time for

the evaporation sequence in the dipole trap is 14.5 s. We note that, owing to

the width of the efficiency peak shown in Fig. 6.9(a), we are able to produce
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Figure 6.11: 85Rb BEC experimental timing sequence: Relative timings of

the crossed dipole trap, quadrupole gradient and bias field ramps used to

reach degeneracy.

condensates of a similar size over a range of fields from 160 G (∼ 510 a0)

to 163 G (∼ 150 a0). However, below 160 G an increase in the inelastic

loss rate makes condensation difficult and BECs of only a few thousand

atoms are formed. Similarly above 163 G the elastic cross-section is too

small for efficient rethermalisation. We also note that it is possible to create

condensate when carrying out all of the (high magnetic field) evaporation

at 161.3 G, however, this again results in smaller BECs due to the reduced

evaporation efficiency.

The complete evaporation trajectory to BEC is shown in Fig. 6.12(a). De-

spite the difficulties associated with cooling 85Rb, it is clear that it is possible

to maintain a highly efficient evaporation trajectory both in the magnetic

(circles) and optical (squares) trap. Unlike the experiment in [30], we do not

suffer the catastrophic factor of 50 loss as we approach the BEC transition.

We attribute this to a lower atomic density meaning the effect of three-body

loss is not as severe in our trap. By varying the final trap depth we are able

to see the transition from the thermal cloud to BEC as shown in Fig. 6.12(b),

with the characteristic double-distribution signature occurring with around

105 atoms in the trap. By reducing the trap depth to ∼ 360 nK we are able

to produce pure condensates with ∼ 4× 104 atoms.
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Figure 6.12: Evaporation trajectory to reach 85Rb BEC: (a) After RF evap-

oration in the quadrupole trap (©), atoms are loaded into the hybrid dipole

trap (�). Following an initial evaporation stage in the hybrid trap, a

175 − 185 G bias field is applied. This produces the levitated trap (�) in

which further evaporation is carried out. At a PSD of ∼0.5 the bias field is

ramped to 161.3 G and a final evaporation stage is performed to reach BEC.

Inset: Density profiles for (R-L) a thermal, bimodal and condensed atomic

sample. (b) Horizontal cross-sections of the condensate column density for

a thermal (top), bimodal (centre) and condensed (bottom) sample as the

dipole beam power (top right) is reduced. Solid lines are fits to Gaussian

and bimodal Gaussian distributions.
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6.6 Demonstration of tunable interactions
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Figure 6.13: BEC with tunable interactions: (a) Change in vertical size

of a pure condensate (filled squares) and thermal cloud (open circles) as a

function of magnetic field applied during time of flight. (b) Breathing mode

oscillation set up by jumping the atomic scattering length from ∼ 315 a0 to

∼ 50 a0. The hold time shown is that at the new scattering length of ∼ 50 a0.

In order to demonstrate the tunable nature of the condensate we present two

simple experiments. In the first we alter the magnetic field synchronously

with the release from the dipole trap and observe the variation of the expan-

sion of the cloud following 55 ms of levitated time of flight. As shown by the

filled squares in Fig. 6.13(a) the change in mean field interaction strength

with magnetic field manifests itself in a change in the cloud size. We see

that the BEC reaches its minimum size as the scattering length approaches

zero at 165.75 G [172], marked by the red, dashed line. Over the region of

as > 0 the condensate number remains approximately constant. As as be-

comes negative, the subsequent collapse [34] of the BEC causes an increase

in cloud size. In comparison, when the same field jump is carried out using

thermal atoms (for 25 ms time of flight) the cloud is insensitive to the atomic

interactions and hence no change in shape is observed (open circles).

The second, elegant demonstration of tunable interparticle interactions is

to set up a breathing mode oscillation of the condensate by jumping the

magnetic field, and hence scattering length, and observing the subsequent

dynamics of the cloud at the new value of as. The result for a jump from

∼ 315 a0 to ∼ 50 a0 is shown in Fig. 6.13(b). A jump of this type (to
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small as but as 6= 0) in our almost spherically symmetric trap leaves us

in the Thomas-Fermi regime and hence the resulting oscillation occurs at a

frequency of
√

5ωx,y [62]. The trap frequency extracted using this model is

in good agreement with the value measured by parametric heating.

6.7 Collapse of an attractive condensate

In 1D, attractive interactions in a condensate can compensate exactly for

the dispersion otherwise present in a wavepacket [13]. This results in highly

stable soliton solutions to the NLSE. In contrast, in 3D all solutions are un-

stable and the system will undergo collapse. However, the spatial localisation

provided by a trap can in fact stabilize the condensate if the non-linearity is

relatively weak. The stability can be parameterised [63] by the dimensionless

parameter,

k =
Ncr|as|
aho

, (6.17)

where aho =
√
~/mωho is the harmonic oscillator length. The existence

of these non-collapsing, metastable states therefore depends on the atom

number, interaction strength and the shape and strength of the trapping

potential.

The collapse process has been explored theoretically using variational [68,

186, 69], perturbative [187] and numerical [66, 67, 13, 68] methods. In the

next section we review previous experimental investigations of the collapse

which provide a valuable testing ground for these theoretical models.

6.7.1 Collapse in 7Li and 85Rb condensates

Once the number of atoms in the condensate exceeds the limiting critical

number Ncr, determined by Eq. (6.17), a collapse occurs. Experimentally this

has been dubbed the ‘Bosenova’ in analogy to the astronomical phenomena

of stellar explosion.

The first experimental insights into BECs with attractive interactions were

made using 7Li [188]. Here the negative scattering length, as = (−27.4 ±
0.8) a0, means that the condensate number, N0, grows until the condensate
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eventually collapses. During the collapse the density of the cloud rises thus

increasing both the elastic and inelastic collision rates. This causes atoms

to be ejected from the condensate with high energy in a violent explosion.

Following this, the condensate begins to reform, fed by the surrounding bath

of thermal atoms also present in the trap. If observed for an extended period

the system exhibits a saw-tooth dynamic of growth and collapse [189] until

equilibrium is eventually reached. Throughout, the maximum condensate

number is strictly limited to the critical number for an attractive BEC (for

this experiment Ncr ≈ 1, 250). It is also possible that collapse occurs even

with N0 < Ncr due to quantum tunneling effects and thermal fluctuations in

the cloud leading to instability.

Further insight into the collapse phenomena came from the group at JILA

(Boulder, US) in 2001 [34, 35], carrying out a controlled collapse using a

pure 85Rb condensate. Tuning the scattering length from positive to negative

using the same 155 G Feshbach resonance described in section 6.3.2 not only

enabled the collapse process to be precisely initiated but also allowed the

condition N0 > Ncr to be fulfilled prior to the collapse, unlike systems using

fixed negative scattering lengths. Along with control of the initial condensate

number, control over scattering length made the testing of critical number

models possible, finding the exact scattering length necessary to collapse the

cloud, acr. Early work examining the point of collapse using slow field ramps

confirmed the relationship between critical number and scattering length,

determining the stability constant, k, for the trap. Later improvements to

the calibration of the Feshbach resonance detailed in section 6.3.2, enhancing

precision, then found k to be in excellent agreement with theoretical models

[37].

Following this, the JILA experiments were then extended to study the dy-

namics of the collapse, measuring the evolution of the condensate number

following a ‘sudden’ change in the scattering length. Measurements of atom

number as a function of time showed a sudden yet delayed loss of atoms. As

the interactions are made attractive the condensate begins to shrink in size,

thus increasing its density. This contraction tends to accelerate with time

eventually leading to collapse of the condensate. The time for the collapse to

begin tcollapse was found to be shorter for larger |acollapse| as the stronger at-
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traction between atoms in the condensate results in a more rapid contraction

of the cloud. Following the collapse, a stable remnant component was formed

in the trap. Notably, the number of atoms maintained in this remnant, Nf

was found to depend strongly on N0 and acollapse and in many cases exceeded

Ncr. This remnant was observed to persist in the trap for more than 1 s,

oscillating in a highly excited state3.

In addition, a number of more qualitative features were observed about the

collapse process in the 85Rb experiment. The first of these features was bursts

of atoms with variable energies being ejected from the condensate. These

bursts would then focus at multiples of Tx/2 and Tr/2, where Tx,r = 2π/ωx,r is

the trap period in the axial (x) and radial (r) dimensions. In all experiments

only full, never partial, collapse was observed. However, if interrupted (by

jumping the scattering length away from the collapse point), jets of atoms

were also formed. Unlike the bursts, these streams of atoms were found to

have highly anisotropic velocities and were interpreted as indicating the local

pinching of the wavefunction during the collapse rather than a smooth global

collapse of the BEC.

The collapse process has since been revisited by the group at the Australian

National University (Canberra, Australia) [38]. Again using 85Rb, measure-

ments of the collapse time have been shown to be in good agreement with

theoretical models of the GPE which take into account three-body loss mech-

anisms.

6.7.2 Observation of a collapsing condensate

To observe the collapse of an attractively interacting condensate we begin by

preparing a BEC with repulsive interactions (as ≈ 400 a0). The scattering

length is then jumped to a large negative value, (in the first experiment

to as = −95(6) a0 and in the second to as = −135(7) a0), and held there

for some time, tevolve. The cloud is then imaged after 20 ms time of flight

during which time the interactions are switched back to repulsive to cause

the condensate to expand sufficiently before imaging.

3Later these highly excited remnants with Nf > Ncr were found to be associated with

the formation of bright matter-wave solitons [7] as discussed in section 7.1.1.
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Figure 6.14: Collapse of an attractive BEC: The effect of jumping the scat-

tering length of a stable Bose-Einstein condensate from positive to negative

is to induce a collapse of the condensate, assuming the number of atoms is

greater than the critical number for the field. The loss of atoms from the

condensate is dramatic but delayed from the point of the field change by a

time tcollapse. This time decreases for larger |afinal|.

Figure 6.14 shows the evolution of the atom number in the condensate as a

function of tevolve for two different experimental conditions. As seen previ-

ously [34, 38], there is a dramatic loss of atoms from the condensate which

starts only after some delay, tcollapse. As in [38] we fit the data with the form

N(t) = (N0 −Nf ) exp

[
−(t− tcollapse)

τdecay

]
+Nf , (6.18)

where N0 and Nf are the atoms numbers at t < tcollapse and t � tcollapse

respectively.

In Fig. 6.14(a) the initial cloud contains N0 = 1.4(1) × 104 at a scattering

length of as = 480(20) a0. A jump to -95(6) a0 results in a collapse time

of 6.3(5) ms, leaving a surviving fraction of Nf/N0 = 0.70(2). Comparing

this to Fig. 6.14(b) where N0 = 2.0(2)× 104 and the initial scattering length

as = 400(6) a0 is jumped to a more negative value of −135(7) a0 we can

observe a change in the collapse process. The more negative scattering length

results in an increased loss of atoms, Nf/N0 = 0.56(2), and a much shorter

collapse time of only 2.0(5) ms.

This decrease in the collapse time as the atomic interactions are made more

attractive is in agreement with [38]. As one would expect, making as more
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negative has the effect of increasing the interaction strength hence accelerat-

ing the collapse process.

Calculating the critical number for the two final configurations, assuming

ωho = 2π × 29 Hz and k = 0.575 i.e. a spherical trap, we find Ncr is only

∼ 200 atoms due to the large (negative) scattering length. However, the

number of atoms observed to survive the collapse Nremnant is many times this

critical value. This result is in agreement with previous measurements of

the collapse process [34, 7] where the formation of multiple bright solitary

matter-waves was put forward as an explanation of the Nremnant > Ncr result.

It is possible that following the collapse a similarly highly excited state (as

in [34]) may be produced in the crossed dipole trap. Unfortunately, the large

negative scattering lengths, and hence low critical numbers, used here means

that if solitary waves are formed, we may be unable to resolve them with

our current imaging system. However, jumps to smaller scattering lengths

would allow the collapse phenomena to be investigated further using this

experiment thus allowing one to test ‘how 1D’ a system needs to be in order

to observe solitary waves. As we shall see in chapter 7, the addition of an

optical waveguide to the experimental setup means that the collapse could

also be investigated as a function of trap geometry.

6.8 Summary

In this chapter we have explored some of the characteristics which make 85Rb

such a difficult yet appealing species to work with. Through a careful explo-

ration of the atomic scattering properties we have successfully demonstrated

the condensation of 85Rb by direct evaporation in an optical dipole trap.

Unlike previous experiments we require neither the aid of additional refrig-

erant species nor excessively weak traps leading to long duty cycles. With

this tunable BEC we are able to observe the effect of the changing scattering

length on the cloud size and recreate the collapse of an attractive condensate

observed by other groups.

From here, our next step requires a modification of the trapping geometry.

Although attractive condensates can be created, the almost spherical crossed
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dipole trap is poorly suited to the formation of bright solitary matter-waves.

To produce a more 1D geometry the condensate must be transfered into an

optical waveguide, providing tight radial confinement but only weak axial

trapping. In the next chapter we discuss the transfer into this new beam and

search for the experimental signature of soliton formation.



Chapter 7

Formation of bright solitary

matter-waves

7.1 Introduction

Following the successful creation of a tunable Bose-Einstein condensate we

turn our attention to the formation of a bright solitary matter-wave from the

condensate. In this chapter we begin by reviewing previous experiments and

the results which have provoked such vast theoretical interest in the creation

and dynamics of these non-dispersive wavepackets. We then introduce the

new trapping geometry, an optical waveguide, which must be implemented

to allow the formation of the solitary waves and discuss how the condensate

is loaded from the crossed dipole trap.

Once in the waveguide, the atomic interactions can be tuned, again using

the 155 G Feshbach resonance, to control the expansion of the condensate

as it propagates along the waveguide. We measure the expansion rate of the

condensate as a function of Nas and compare this to a 3D GPE simulation.

With careful tuning of the scattering length we can halt this expansion and

in doing so create a bright solitary matter-wave. Finally we demonstrate

classical reflection from a broad, repulsive, Gaussian barrier, contrasting this

to a repulsive BEC undergoing the same reflection.

134
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7.1.1 Observation of bright solitary matter-waves

The advent of optical trapping led to the realisation of experimental geome-

tries closer to the ideal 1D limit. This, in combination with control of the

atomic scattering length via Feshbach resonances, led to the first observa-

tions of bright solitary matter-waves by groups at Rice University (Houston,

US) [5] and École Normale Supérieure (Paris, France) [6] in 2002 using 7Li.

Despite two inherently similar experiments, the ENS group succeeded in pro-

ducing a single solitary wave whereas the Rice experiment resulted in trains

of multiple solitary waves.

In order to utilize the Feshbach resonance in the non-magnetically trappable

F = 1,mF = 1 state of 7Li it is necessary to work using an optical dipole trap

[92]. In both experiments initial cooling of the atomic sample was carried

out in a magnetic trap using the F = 2,mF = 2 state before transferring to

a dipole trap and flipping the spin state of the atoms to suppress two-body

loss mechanisms and allowing access to the Feshbach resonance.

In the ENS experiment optical confinement was realised using a red detuned

crossed dipole trap. Here condensates of 2× 104 atoms were produced with

as = +39.7a0 in a ω = 2π × (710, 1000, 710) Hz crossed trap. After the

creation of the BEC, the scattering length was tuned close to as = 0 before

adiabatically reducing the power in one of the beams, producing a cylindrical

geometry, ω = 2π × (710, 710, 50) Hz. The bias field, and hence scattering

length, was then ramped to its final value before the weak beam was switched

off, releasing the cloud into a 1D waveguide. In this trap, the atoms experi-

ence a slightly expulsive potential due to the magnetic coils used to produce

the bias field. As a typical example, at B = 520 G, the trap frequency along

the waveguide can be considered imaginary, around ωz = 2iπ × 78 Hz. Tun-

ing the scattering length to a small negative value, as = −3.97 a0, resulted

in a soliton of 6 × 103 atoms able to propagate without dispersion for over

1.1 mm.

In contrast to the crossed ENS trap, the Rice experiment used a single red

detuned dipole beam to provide radial confinement, however two additional

blue detuned beams were needed in order to cap the ends of the trap in the

axial direction. After forming a condensate of 3×105 atoms with as ≈ 200a0
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the magnetic field controlling the scattering length was ramped exponentially

to the final value and the laser end caps switched off thus setting the resulting

solitary waves in motion.

In this experiment multiple solitary waves were observed. The number of

these wavepackets, Ns, was found to be insensitive to the time constant of

the exponential magnetic field ramp, however, Ns increased linearly with ∆t,

the time delay between the switch off of the end caps and the time of the

scattering length change to as < 0. For the Rice experiment 4 solitary waves

were observed for ∆t = 0 with this number increasing to 10 for ∆t = 35 ms.

The wavepackets were observed to propagate for ∼3 s completing several

periods of oscillation along the waveguide, this being limited by atom loss

rather than dispersion effects.

With many solitary waves confined in a single trap it becomes possible to

explore the dynamics of the wavepackets. Observation of the solitary wave

motion showed evidence of a short range repulsive interaction between neigh-

bouring wavepackets raising many questions regarding their formation and

collisional dynamics. A possible explanation for the formation of multiple

solitary waves was the presence of a modulational instability [73]. Here,

phase fluctuations of the condensate lead to a local increase in density at

wavelengths approximately equal to the healing length. The attractive non-

linearity leads to the growth of these density fluctuations and the emergence

of solitons.

In the non-interacting limit, two colliding solitary waves should pass through

each other, emerging from the collision unaltered. In reality the collisional

dynamics revealed a surprising result, implying repulsive interaction between

two solitary waves undergoing a collision. This interaction manifested itself

experimentally as a change in the spacing between neighbouring solitary

waves, increasing near the centre of the oscillation and decreasing near the

turning points. This result implied a relative phase of φ = π between neigh-

bouring solitary waves, somehow imprinted during their formation.

It was not until 2006 that bright solitary waves were again investigated exper-

imentally. In the intervening years many theoretical models were developed

to explain the repulsive interactions seen in the Rice experiment between



Chapter 7. Formation of bright solitary matter-waves 137

neighbouring solitary waves. The next series of experiments were under-

taken at JILA [7] using the same 85Rb experiment that had first observed

tunable atomic interactions [30] and controlled collapse [35]. This new work

concluded that the stable remnant observed previously in the collapse exper-

iments divided into similar solitary wave structures as seen at Rice. Unlike

the quasi 1D trapping used in the Rice experiment, the JILA trap remained

3D throughout the cooling and soliton formation stages with radial and axial

trap frequencies of 17.3 Hz and 6.8 Hz respectively.

Unlike the ENS and Rice experiments, the JILA apparatus used a purely

magnetic trap, however, the method of creating solitary waves by modifying

the scattering length can be considered an inherently similar process. After

producing condensates of up to 15,000 atoms at as > 0 the magnetic field

was adiabatically ramped to decrease the scattering length to as = 9a0. To

initiate the collapse, the field and hence scattering length, was then jumped

rapidly (0.1 ms) from positive to negative, to acollapse. Following some time

at the final scattering length, tevolve, the atoms were destructively imaged

following the turn off of the trap. Investigating the collapse process as a

function of acollapse and the initial condensate number, N0, it was clear that

the number of condensate atoms surviving the collapse could, in the right

conditions, greatly exceed Ncritical. The fraction remaining was found to

vary dramatically, from around 60 % at −5a0 to as little as 30 % at −50a0.

Notably, the lifetime of the stable remnant could be as long as several seconds.

Observations of the condensate size in the trap as a function of time sug-

gested a highly excited state had been produced during the collapse, with

the remnant cloud’s width doubling in size during its oscillation in the trap.

However, further analysis revealed that, as in the Rice experiment, multiple

solitary waves were being created which oscillated back and forth along the

weak axial direction of the trap. The wavepackets were observed to persist in

the trap for ∼ 3 s, undergoing as many as 40 collisions in this time. This pro-

vided additional experimental data to accompany the Rice experiments and

the growing body of theoretical work examining solitary wave stability. The

number of solitary waves created in the 85Rb collapse experiment was found

to be controllable, to a degree, depending on acollapse and N0. As expected,

Ns increased with |acollapse|. Importantly, the number of atoms observed in
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any one solitary wave was never found to exceed Ncritical.

7.1.2 Open questions: Validity of the GPE description

and the role of relative phase

In two of the previous three experiments multiple wavepackets were created,

allowing the study of the collision dynamics in the trap. The long lived nature

of the solitary waves and their apparent stability during binary collisions has

been the subject of much theoretical interest [74, 8, 63, 9, 10]. Central to

this work is the role of relative phase.

Within the framework of the GPE, the observed stability of solitary wave

collisions seen in previous experiments [5, 7] can only be explained by im-

posing a relative phase between neighbouring solitary waves such that the

collisions are effectively repulsive in character. Parker et al. found this phase

to be φ = π [41] whereas Carr et al. observed stability for a range of phases

π/2 < φ < 3π/2 [9]. In the absence of this phase, φ = 0, the increase in

density as the wavepackets overlap causes a collapse and the subsequent de-

struction of the solitary wave pair. For intermediate phases, 0 < φ < π, the

same GPE model used by Parker et al. predicts population transfer during

the collision [41] with the velocity of the two incoming wavepackets playing

a key role in the fraction of atoms transfered.

Although these GPE simulations successfully reproduce the behaviour and

stability of multiple wavepackets undergoing collisions previously observed,

the same results have been reported without the need for the GPE imposed

phase. Instead, the inclusion of quantum fluctuations [10] is sufficient to

render all collisions repulsive, irrespective of phase. However, this is limited

to 1D simulations, modelling a system similar to the Rice experiment. When

extended to 3D, a closer description of the JILA experiment, the inclusion of

3D quantum noise has a negative impact on the lifetime of the bright solitary

matter-waves. As such, the length of time for which the solitary waves were

observed to persist experimentally cannot be reproduced.

Despite the phase independence of collisions in 1D shown by Dabrowska-

Wüster et al. [10], they find there is insufficient evidence to suggest that
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quantum noise effects are the correct interpretation of experimental results

and indeed their 3D simulations do not support this theory. However, mean

field GPE simulations carried out by the same group also fail to explain the

system fully as the symmetry of initial wavefunction precludes the formation

of a repulsive relative phase for an even number of wavepackets. This is a

result of the mean-field theory which preserves the initial symmetry.

It is of course important to consider that Bose-Einstein condensates are in

fact many-body quantum mechanical systems at finite temperature and per-

haps the mean-field, zero temperature description given by the GPE may

not be capable of providing an explanation of the behaviour observed in ex-

periments. Beyond-mean-field effects (quantum and/or thermal effects) are

most commonly described by a stochastic GPE. However, one can also adopt

a more fundamental quantum mechanical approach, describing the many-

body dynamics via the multiconfigurational time-dependent Hartree method

for interacting bosons [190].

Using this Hartree method to explore the dynamics of two solitons, Ceder-

baum et al. [191] found the initial matter-wave trains rapidly lose their

coherence, becoming macroscopically fragmented BECs, or ‘fragmentons’.

This is in obvious contradiction to the results of GPE simulations.

Such a stark contrast between the conclusions regarding relative phase un-

doubtedly invites further experimental studies [78] as a means of testing

theoretical models of quantum many-body systems such as this. Not only

will this allow the questions over relative phase to be answered but the next

generation of experiments should also provide an insight into whether the

GPE is indeed the correct description for the solitary wave dynamics.

7.2 Loading a BEC into the waveguide

To create our single solitary wave we begin by forming a BEC containing

up to 10,000 atoms at a scattering length of as ≈ 300 a0. The crossed

beam trap in which the BEC is created has a roughly spherically symmetric

geometry at the point of condensation, with final trap frequencies of ωx,y,z =

2π×(31, 27, 25) Hz. Unfortunately, this trap is ill-suited to the observation of
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Figure 7.1: Waveguide setup: Experimental setup showing the crossed dipole

trap used to create the BEC, the optical waveguide and the quadrupole, bias

and offset coils.

bright solitary matter-waves and thus we must transfer the condensate into a

more quasi-1D trapping geometry. This geometry is created by an additional

1064 nm laser beam, focused to 117 µm, producing a 1D waveguide which

intersects the cross trap at 45◦ to each beam. This enters the glass science

cell through the back surface of the anti-reflection coated fused silica Dove

prism as shown in Fig. 7.1.

To load the condensate into the waveguide the scattering length is ramped

close to as = 0 in 50 ms thus reducing the condensate size and creating a

BEC approximately in the harmonic oscillator ground state of the cross trap.

The BEC is then held for 10 ms to allow the magnetic field to stabilise be-

fore simultaneously switching the waveguide beam on, the crossed beams off

and jumping the quadrupole gradient from 21.5 Gcm−1 to 26 Gcm−1. The

change in the magnetic gradient ensures a truer levitation of the atoms in the

waveguide trap, thus maximising the trap depth of the beam. In addition, the

presence of the quadrupole gradient provides much of the, albeit weak, axial

trapping along the beam [91]. At a beam power of 0.17 W the waveguide and

quadrupole potential produces a trap of ωx,y,z = 2π × (1, 28, 28) Hz. Here

the radial trap frequency (ωy,z) approximately matches that of the crossed

beam trap at the point of condensation. A small offset (2.6 mm) between the

crossed dipole trap, i.e. the waveguide loading position, and the quadrupole

centre means that once loaded into the waveguide, the BEC propagates freely
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Figure 7.2: Loading the waveguide: (a) Schematic of the release of the con-

densate from the crossed dipole trap into the waveguide. (b) Cloud size

after 50 ms of propagation time in the waveguide. The change in horizontal

size with magnetic field suggests the presence of tunable atomic interactions,

characteristic of a 85Rb Bose-Einstein condensate. The dotted line marks the

position of as = 0.

towards the minimum of the magnetic potential along the waveguide, under-

going harmonic motion. This is show schematically in Fig. 7.2(a). The

application of a small magnetic field along the axis of the waveguide as in

chapter 4, shifting the quadrupole field zero (and therefore the location of

the minimum of the magnetic potential), allows this offset to be changed

and hence the amplitude and velocity of the atoms’ motion to be precisely

controlled [45].

7.2.1 Tunable BEC in the waveguide

At the point of release into the waveguide, the magnetic bias field controlling

the atomic scattering length is also jumped (see Fig. 7.2(a)). To confirm that

the transfer into the waveguide does not destroy the condensate, we perform

a similar experiment to that described in section 6.6, looking for a signa-

ture of tunable atomic interactions. Once the loading into the waveguide is

completed, the bias field is jumped to some new value and and condensate

allowed to propagate in the waveguide for 50 ms. Before imaging, a 10 ms

time of flight stage at zero bias field allows the condensate to expand suf-

ficiently to allow the cloud size to be determined more accurately. A very
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coarse scan of the magnetic field and its effect on the condensate width is

shown in Fig. 7.2(b). The change in size with field indicates the presence of

tunable interactions and confirms that, despite the somewhat violent jump

in the trapping geometry, the condensate survives the transfer process.

0 2 5 5 0 7 5 1 0 0 1 2 5 1 5 00
2 0
4 0
6 0
8 0

1 0 0
1 2 0
1 4 0  1 6 5  a 0     N  =  1 0 , 0 0 0

   2 3  a 0       N  =  4 , 0 0 0
     4  a 0        N  =  3 , 0 0 0
    - 6  a 0       N  =  3 , 0 0 0
   - 1 1 a 0       N  =  2 , 0 0 0

Ho
riz

on
tal

 wi
dth

 (µ
m)

P r o p a g a t i o n  t i m e  ( m s )

( a )

- 1 0 0 0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0
0 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

( b )Ex
pa

ns
ion

 ra
te 

(m
m/

s)
N a s / 1 0 0 0  a 0  

Figure 7.3: Expansion in the waveguide: (a) Condensate expansion in the

waveguide for as = 165 a0 (black), 23 a0 (red), 4 a0 (blue), -6 a0 (green) and

-11 a0 (purple). Widths are rms values extracted from a Gaussian fit to the

data. Solid lines are linear fits to the data. (b) Condensate expansion rate

in the waveguide as a function of atom number and scattering length. The

solid line is the theoretical expansion rate, calculated using a cylindrically

symmetric 3D GPE [192].

7.3 Solitary wave formation

As the BEC propagates, the value of as determines the rate of expansion of

the condensate in the axial direction, along the waveguide. We probe this

expansion rate1 by measuring the condensate size as a function of propagation

time for different values of as as shown in Fig. 7.3(a). An rms width σ is

extracted by fitting a Gaussian profile, y = A exp[−(x− b)2/2σ2], to optical

depth crosscuts of the atomic cloud.

1Although strictly speaking the expansion is non-linear over the full range of times

measured, a linear approximation is valid over the range 10 ms. t .100 ms from which

we can extract this ‘rate’.
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Figure 7.4: Crosscuts of a repulsive BEC and solitary wave propagating

in the waveguide: Optical depth crosscuts along the axial direction of the

waveguide for multiple propagation times. (a) As a repulsive condensate

(as = 58 a0) propagates its width increases as the condensate spreads in

the axial direction. (b) As the solitary wave (as = −11 a0) propagates, its

width remains constant, the wavepacket being held together by the attractive

interactions in the condensate.

Fitting the experimental data in this way, we can extract an expansion rate

for the BEC, dependent on as and N . This is shown in Fig. 7.3(b). We

compare the experimentally determined rate to a 3D cylindrically symmetric

GPE simulation of the expansion [192], finding good agreement. At as =

−11 a0 and N = 2000 we see the expansion of the BEC becomes smaller than

the noise associated with determining the cloud width, hence the expansion

rate becomes zero. This lack of dispersion with time indicates the formation

of a bright solitary matter-wave and is in stark contrast to the propagation

of a repulsive condensate, as shown in Fig. 7.4.

Calculating the critical number of atoms for the waveguide geometry (k =

0.675) and as = −11 a0 gives a value of Nc ∼2300, consistent with the

number of atoms observed in the solitary wave. However, the observed size

of the solitary wave in the axial direction σ = 13(3) µm is much larger than
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Figure 7.5: Propagation in the waveguide: (a) As a repulsive BEC propa-

gates along the waveguide the atomic interactions allow the condensate to

spread, leading to a drop in optical depth. (b) In contrast, the attractive

interactions present in a bright solitary matter-wave cause the wavepacket

to hold together as it propagates, maintaining its shape with time. Cross-

cuts shown are the horizontal optical depth profiles of the condensates after

140 ms propagation time along the waveguide.

the value of ∼ 4 µm calculated from Eq. (2.31). In the radial direction, the

width σr = 8(3) µm is again greater than one would expect, this time when

compared to the harmonic oscillator length aho,r ≈ 2 µm. This is most likely

the result of the limitation of the current imaging system which leaves us

unable to resolve and accurately measure objects on the scale of the solitary

wave.

7.4 Solitary wave propagation in the

waveguide

The experimental signatures associated with solitary wave formation are il-

lustrated again in Fig. 7.5. As a repulsive BEC propagates along the waveg-

uide, the optical depth drops as the condensate spreads in the axial direction

(Fig. 7.5(a)). In contrast, no such spreading or significant drop in optical

depth is seen for the solitary wave (Fig. 7.5(b)). We observe the single soli-

tary wave propagating over distances of 1.1 mm in a time of ∼150 ms with
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Figure 7.6: Oscillation amplitude in the waveguide: Motion of a cold cloud in

the waveguide for three different horizontal bias fields, 0 G (Black squares),

∼2 G (red circles) and ∼5 G (blue triangles) which offset the quadrupole

field zero along the axis of the waveguide. By moving the field zero relative

to the point of release into the waveguide (i.e. the crossed dipole trap, XDT,

position) the amplitude of the oscillation, and hence the velocity, of atoms

in the waveguide can be controlled. Sinusoidal fits to the data (solid lines)

are used to obtain an estimate of the axial trap frequency and the offset of

the quadrupole field zero.

very little distortion. Beyond this, atom loss from the solitary wave becomes

appreciable, possibly as a result of moderate heating of the wavepacket due

to a radial oscillation in the waveguide.

7.4.1 Oscillation amplitude

The motion of the solitary wave in the waveguide is governed primarily by

the weak harmonic confinement along the axial direction of the beam. This

is provided by the combination of the quadrupole gradient and the large bias

field. (The offset of the field zero due to the bias field creates a large re-

gion over which the potential remains harmonic rather than the usual linear

shape of the quadrupole (see section 3.3.3)). The amplitude of the solitary

wave’s motion and its centre is also determined by the quadrupole trap and

more specifically the position of the field zero. However, employing the same

technique described in section 4.6, it is possible to change the location of this

zero point with the application of a moderate bias field along the direction
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of the waveguide. Examples of the non-shifted trajectory of atoms in the

waveguide, along with two offset cases are show in Fig. 7.6. Fitting a sinu-

soidal waveform to the data allows the axial frequency of the waveguide to

be obtained, ωaxial = 2π×1.0(1) Hz, along with the position of the field zero

relative to the crossed dipole trap position, an offset of 2.6 mm.

Fortuitously, the way in which the contributing fields add (in quadrature)

leaves the overall bias field relatively insensitive to this offset field. We can

think of the contribution to the field in two ways. In the first we consider

the change in field due to the magnetic gradient along the direction of the

waveguide (13 Gcm−1) for a cloud initially displaced by 2.6 mm, moving to

the minimum of the potential. This gives a change in field of 3.4 G. When

added in quadrature to a 165 G bias field the total field is only increased

to 165.03 G. Alternatively we can consider the energy associated with the

harmonic motion in the trap being transfered into magnetic potential energy,
1
2
mω2∆x2 = µB. For a 1 Hz trap and the same 2.6 mm displacement this

analysis also yields a 0.03 G change in field. Close to the zero crossing of the

Feshbach resonance this translates into a change in scattering length on the

order of a0.

This uniformity in the field has important implications in potential future

experiments. For example, for small fields it allows one to control the velocity

of a solitary wave without the continual need to compensate for the effect

of the additional offset bias field on the scattering length. An unfortunate

quirk of our current experimental setup means that for large fields this is no

longer true. Due to spatial constraints we can only apply a horizontal bias

field from a single coil rather than the more traditional pair configuration.

This has the effect of causing a magnetic field gradient along the length of

the waveguide, complicating the process. However, with an equally matched,

on axis coil pair this problem can be readily addressed.

7.4.2 Velocity control

For future experiments (see chapter 8) where the velocity of a solitary wave

incident on a barrier will need to be precisely controlled, the ability to tune

the offset between the trap centre and the barrier is of huge importance.
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Figure 7.7: Adjustable offset between the quadrupole trap centre and barrier

potential: The application of a small bias field allows the quadrupole trap

centre to be shifted with respect to the waveguide loading point and any

barrier potentials used in the experimental setup. In this way the velocity of

the solitary wave can be tuned, most importantly during collisions.

Changing the distance between the release point of the atoms into the waveg-

uide and the quadrupole trap centre affects the amplitude of the motion and

hence the velocity of the wavepacket. As shown in Fig. 7.7, little or no offset

between the quadrupole trap and the starting position results in low incident

velocities at the barrier. In contrast, increasing the offset allows the atoms

to gain more momentum before reaching the barrier. In the current (non-

shifted) configuration an offset of 2.6 mm between the release point and the

quadrupole field zero results in a maximum velocity of ∼17 mms−1 as atoms

pass through the trap centre.

If we assume the case of a narrow barrier, that is we can neglect the effect of

the potential on the solitary wave’s motion in the trap as it approaches the

barrier position, we can calculate an estimate for the solitary wave velocity

at the barrier. The position of the wavepacket is given by

x(t) = xc + (xs − xc) cos(ωt), (7.1)

where xc is the location of the quadrupole trap centre and xs is the starting

position for the solitary wave (i.e. the crossed dipole trap position). If we
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Figure 7.8: Solitary wave velocity at a narrow barrier: Velocity at the bar-

rier as a function of the separation between the release point xs and the

quadrupole trap centre xc for barriers placed 500 µm and 50 µm from xs.

then set x = xb, where xb is the barrier position, Eq. (7.1) becomes,

xb − xc
xs − xc

= cos(ωt). (7.2)

Differentiating Eq. (7.1) yields an expression for the velocity,

v = −ω(xs − xc) sin(ωt)

= −ω(xs − xc)(1− cos2(ωt))1/2. (7.3)

Substituting Eq. (7.2) into Eq. (7.3) we have,

v = −ω(xs − xc)

(
1−

[
xb − xc
xs − xc

]2
)1/2

. (7.4)

This velocity is plotted as a function of the quadrupole trap position for two

fixed barrier locations in Fig. 7.8. By placing the barrier and quadrupole

trap centre close to the initial start position it should therefore be possible

to achieve incident velocities on the order of a few mms−1. Moreover, placing

the trap minimum between the barrier and the release point allows velocities

approaching zero to be realised (see lower panel of Fig. 7.7).
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Figure 7.9: Multiple solitary wave formation: (a) and (b) False colour images

of multiple solitary wave creation. (c) Optical depth crosscut of image (b)

showing three distinct peaks in the horizontal profile.

7.5 Multiple solitary wave formation

In almost all cases, a single solitary wave is formed during the experimental

cycle. However, on a small number of occasions, multiple wavepackets have

been observed in the waveguide. We attribute this to small, uncontrollable

fluctuations in either atom number or scattering length affecting the stability

of the condensate, ultimately leading to collapse. Example images are shown

in Fig. 7.9. Notably, the separate solitary waves tend to differ in size more so

than those observed previously at JILA [7]. Usually one central, large solitary

wave is formed, flanked by a number of smaller wavepackets. Implementing

the same experimental protocol as outlined in [5], releasing the BEC into the

waveguide and waiting some time before jumping the scattering length, fails

to reliably produce multiple solitary waves, although this has not be explored

extensively.

7.6 Reflection from a wide repulsive

Gaussian barrier

To further probe the stability of the solitary wave we investigate the effect of

a collision with a repulsive Gaussian barrier. This allows us to gain insight

into the suitability of solitary waves for future applications such as the study

of short-range atom-surface interactions and quantum reflection.
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7.6.1 Experimental implementation

To produce the repulsive potential we use a 532 nm Gaussian beam (Laser

Quantum Finesse), focused using a cylindrical lens to 131 µm horizontally

and 495 µm vertically with a typical power of 1.75 W. The barrier is aligned

to cross the waveguide in the horizontal plane at an angle of ∼45◦ and is

offset by ∼335 µm from where the BEC is released from the crossed dipole

trap. In the ideal case the barrier would be orientated perpendicular to the

direction of propagation along the waveguide, however, the input angle of

the beam is restricted by the available optical access close to the dipole trap

centre.
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Figure 7.10: Barrier potential: (a) Potential in the axial direction along the

waveguide in the presence of the repulsive barrier. (b) Experimental setup.

The barrier beam is positioned such that it intersects the waveguide at 45◦.

(c) Combined waveguide and Gaussian barrier potential.

7.6.2 Observation of classical reflection

As demonstrated in section 7.4, in the absence of a repulsive barrier a soli-

tary wave propagates along the waveguide with negligible dispersion. With

the addition of the 532 nm barrier, the motion is halted some way along

the waveguide before the direction of travel is reversed. Figure 7.11 shows

the horizontal centre of a solitary wave in these two cases. If left for suffi-

cient time, atoms held in the waveguide will continue to propagate back and

forth, undergoing many oscillations between the newly imposed boundary
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Figure 7.11: Horizontal centre of a solitary wave as a function of propagation

time in the waveguide: If allowed to propagate freely (red circles) the solitary

wave trajectory is the same as that of an atom in a harmonic potential. In

the presence of the barrier (black squares) the amplitude of the motion is

greatly reduced and the solitary wave oscillates between the barrier position

and the release point.

conditions; the barrier and the release point.

7.6.3 Effect of a barrier on solitary wave motion

In the initial experiment described in section 7.6.2 a power of 1.75 W was

used to form the repulsive barrier (height |U | ∼0.52 µK). Although a freely

propagating solitary wave would have sufficient kinetic energy at the position

of the barrier to overcome the repulsive potential, the wavepacket experiences

a slowing force as it approaches the beam. The result is that a much ener-

getically smaller barrier is needed to reflect the solitary wave than one may

predict from consideration of only the free propagation. By tuning the power

of the barrier it is possible to control whether the solitary wave is able to

propagate over and to the other side of the barrier or whether it is reflected

back towards the release point.

The solitary wave position for a given time can be calculated from a simple

consideration of F = ma where contributions to the force come from the

harmonic waveguide and the repulsive barrier. Starting from the harmonic
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Figure 7.12: Position of a solitary wave after 150 ms expansion time in the

waveguide as a function of barrier height: At sufficiently low power (red

circles) the solitary wave is able to travel over the barrier. As the power

is increased and the barrier height increases, the solitary wave slows before

eventually being reflected from the repulsive potential (black squares). The

solid line shows the solution to Eq. 7.7 modelled using only experimentally

measured parameters.

and repulsive barrier potentials,

Uharmonic =
1

2
mω2x2, (7.5)

Ubarrier = − 2Pβ

πwxwy
e

−2(x−x0)
2

σ2 , (7.6)

it is possible to extract an expression for the total force experienced by each

atom,

F = mẍ = −mω2x− 8Pβ

πwxwyσ2
(x− x0)e

−2(x−x0)
2

σ2 . (7.7)

Here, ω is the harmonic trap frequency, P the power of the 532 nm beam,

β accounts for the polarizability of the atom at 532 nm (∼ −196.8 a3
0 in

atomic units [93]), wx and wy are the beam waists horizontally and vertically,

σ is the horizontal barrier width ‘seen’ by the atoms (accounting for the

angle of incidence) and x0 is the distance between the harmonic trap centre

and the barrier. Solving this expression numerically as a function of barrier

height, one can plot the solitary wave position after a given propagation

time (150 ms). This is shown as the solid line in Fig. 7.12. Note, no free

parameters are used in the model, rather they have been experimentally
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Figure 7.13: Control of solitary wave velocity using a repulsive barrier: By

setting the barrier close to that needed to halt the solitary wave’s motion it

is possible to observe considerable slowing of the wavepacket. At a power of

1.11 W (red circles) the solitary wave is temporarily slowed close to the bar-

rier but eventually makes it over, continuing to propagate along the waveg-

uide. Only a small increase in power to 1.15 W is sufficient to reflect the

solitary wave back towards the release point (black squares).

measured or extracted from fits to data.

Figure 7.12 also shows the experimentally measured position of the solitary

wave 150 ms after release from the crossed trap. The points in red correspond

to the solitary wave successfully traversing the barrier and making it to the

other side. The black points are for solitary waves reflected backwards. The

final positions are of course governed by the velocity of the wavepacket, this

being partially determined by the repulsion due to the barrier.

Again using Eq. (7.7), this time to obtain an expression for velocity rather

than position, it is possible to determine the barrier power required to the-

oretically bring the cloud to a standstill at the position of the barrier. Al-

though experimentally it is difficult to completely stop and hold the solitary

wave at the barrier, close to the required power, it is possible to observe con-

siderable slowing down of the solitary wave as shown in Fig. 7.13. A slight

increase in power then causes reflection.
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Figure 7.14: Condensate width following a collision with a repulsive barrier:

In the absence of a barrier, a repulsive BEC will expand as it propagates

(red circles). With the barrier in place, an oscillation in the width is set

up following the reflection due to the compression of the condensate at the

barrier (black squares). The trapping potential created by the waveguide

and barrier restricts the expansion of the condensate causing the repeated

compression of the cloud. Conversely, a solitary wave undergoing the same

collision emerges unaltered (blue triangles). Solid lines are the theoretical

condensate widths calculated by solving the 3D (cylindrically symmetric)

GPE [192].

7.6.4 Effect of a barrier collision on solitary wave

width

A key signature of bright solitary matter-waves is their robustness, emerg-

ing unchanged from collisions with other solitary waves and with external

potentials. Using the repulsive Gaussian potential it is possible to test this,

examining the width of the solitary wave both before and after the reflection.

Again using a barrier power of 1.75 W (∼520 nK) we allow a solitary wave

(as = −12 a0, N = 2 × 103) to propagate along the waveguide, colliding

with the barrier. We then compare the observed solitary wave size to that

of a repulsive BEC (as = +57.5 a0, N = 4 × 103) colliding with the same

barrier and a repulsive BEC propagating unobstructed (as = +57.5 a0, N =

3.5 × 103). The horizontal condensate widths in each of the three cases are

shown in Fig. 7.14.
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Figure 7.15: 3D images of solitary wave and repulsive BEC collisions with

a barrier: (a) As expected, very little change is observed in the width of

a solitary wave colliding with the barrier. (b) Conversely, a repulsive BEC

incident on the barrier begins to undergo oscillations in its width. As the

cloud narrows as it hits the barrier there is a corresponding increase in optical

depth. Following the reflection the BEC begins to spread again, this cycle

of expansion and contraction continuing with time. White lines show the

approximate barrier position.

As expected, the solitary wave width is unaffected by the collision. This is not

the case for the repulsive condensate. Prior to the collision, the condensate

expands as in the unobstructed case, however once the barrier is hit, the

expansion is halted. Instead an oscillation in the condensate width is set

up. This arises because of the spatial extent of the condensate causing it to

be strongly compressed at the turning point. This change in width can be

seen again in Fig. 7.15. A narrowing of the repulsive condensate width is

accompanied with an increase in optical depth as atoms pile up in a smaller

volume.

7.7 Summary

In this chapter we have shown it is possible to transfer a Bose-Einstein con-

densate between two different trapping geometries. We begin with the con-

densate in the crossed dipole trap before loading it into a quasi-1D waveguide.

Once here, we are able to tune the atomic scattering length thus controlling
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the expansion of the condensate in the waveguide. We compare the expan-

sion rate with a theoretical simulation, finding good agreement between the

two.

By making the interactions sufficiently attractive we are able to demonstrate

the formation of a bright solitary matter-wave from the 85Rb condensate.

The solitary wave is observed to propagate a distance of ∼1.1 mm in the

optical waveguide in 150 ms without dispersion.

Using a broad, repulsive, Gaussian barrier we explore the classical reflection

of a solitary wave and a repulsive condensate. Following the reflection an

oscillation in the width of a repulsive condensate it set up as a result of

compression at the turning point. In contrast to this, the solitary wave is

found to reflect cleanly from the barrier, maintaining its width following the

reflection. Although these are only very preliminary results, the nature of the

reflection of the solitary wave from the wide Gaussian barrier illustrates the

superiority of these attractive condensates for use in reflection experiments

such as those to be described in chapter 8.



Chapter 8

Conclusions and outlook

In this thesis we have demonstrated the formation of bright solitary matter-

waves from a 85Rb Bose-Einstein condensate. Using a magnetic Feshbach

resonance to manipulate the atomic scattering properties, we are able to cre-

ate a BEC with tunable interactions and to form solitary waves by switching

the interactions from repulsive to attractive.

In order to access the magnetic Feshbach resonance we choose to work with

a crossed optical dipole trap. This has an advantage over a magnetic trap in

that the radial trap frequencies are insensitive to any applied bias fields. We

began by exploring the simplest case of optical trapping, a single laser beam

used in conjunction with a magnetic quadrupole trap to produce a hybrid

single beam trap. We characterised this system using 87Rb and demonstrated

that, with the application of a moderate bias field to displace the quadrupole

trap centre, atoms can be transported over distances of several millimetres

along the length of the laser beam. In this first trap we produced condensates

of 87Rb by both direct evaporation and by using a surface to selectively

remove the hottest atoms from the trapped cloud.

An unfortunate limitation of this trap showed itself with the application of

any significant bias field in the vertical direction. This effectively removes

the axial trapping, reducing the trap to a waveguide. In order to access the

broad Feshbach resonance in the F = 2,mF = −2 state of 85Rb we need

to apply a 155 G magnetic field, hence this trap was no longer suitable.

Instead we moved to a crossed beam trap, using more power and larger

157



Chapter 8. Conclusions and outlook 158

beam waists to create a larger volume trap. Again we initially characterised

the system using 87Rb for convenience, exploiting its low inelastic loss rates.

We demonstrated that three distinct trapping configurations may be realised

using a combination of laser light, magnetic fields and magnetic gradients.

In each of these traps we again produced condensates of 87Rb. By virtue of

the trapping geometry we were also able to form a 1D optical lattice and

performed some basic manipulations of a condensate produced in the lattice.

With the crossed trap fully characterised we turned our attention to the trap-

ping and cooling of 85Rb. Using a combination of the hybrid crossed dipole

trap and a levitated trap (produced with the application of a magnetic bias

field) we exploited the variation of both the elastic and inelastic scattering

properties close to the 155 G Feshbach resonance to efficiently evaporate to

degeneracy. We demonstrated the tunable nature of the atomic interactions

in the condensate and observed the collapse phenomenon associated with

attractive BECs.

Finally we described the transfer of the condensate from the 3D crossed trap

to a quasi-1D waveguide. Once here we again tuned the s-wave scattering

length of the atoms, this time to control the expansion of the condensate

in the waveguide. In doing so we created a bright solitary matter-wave.

We observed the propagation of the solitary wave in the waveguide, finding

negligible dispersion over a distance of ∼1.1 mm. We demonstrated the

particle like nature of the solitary wave via a classical reflection experiment

from a repulsive Gaussian barrier produced by a blue detuned laser beam.

As we expected, the solitary wave reflected cleanly from the barrier and we

contrasted this to the case of a repulsive condensate where an oscillation in

the radial width was set up following the reflection.

8.1 Future work

Following the successful realisation of a bright solitary matter-wave we im-

mediately turn our attention to the plethora of exciting and potentially in-

sightful experiments ahead.
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8.1.1 Reflection from a narrow barrier

The first, and most obvious, avenue to investigate is to extend the preliminary

reflection experiment described in chapter 7. Although a wide barrier allows

the study of classical reflection, to observe quantum effects a barrier waist on

the order of, or less than, the solitary wave width is required. When aligned

to be in the path of the propagating soliton, the barrier then appears as a

rapid variation in the waveguide potential; for a repulsive barrier as a hump

along the waveguide and for an attractive barrier as a step down (or potential

well).

Repulsive barriers

At high kinetic energy soliton splitting is energetically allowed at narrow

repulsive barriers within the formalism of the GPE. The effect of quantum

tunnelling means the barrier can act as a beam splitter, dividing the soliton

into two parts. These multiple wavepackets can then be used to investigate

the phase dependence of binary collisions [78], the effect of collisions of two

solitary waves on a barrier [193] and would provide a solid first step towards

the realisation of a bright solitary wave interferometer [194, 4]. Work to

study this type of splitting is currently underway in the Hulet group (Rice,

Texas) using solitary waves formed from 7Li condensates [195].

In the limit of low kinetic energy, a mean-field GPE treatment of the prob-

lem begins to break down [196] and quantum behaviour, described by the

Lieb-Liniger Hamiltonian [197], becomes more significant. Here, splitting

of the soliton is energetically forbidden and it becomes possible to create

Schrödinger-cat states [198, 199] where the effect of the barrier is to create

a superposition of one soliton containing all the atoms being simultaneously

on both sides of the barrier at once.

Attractive barriers

For the case of a slow soliton incident on an attractive potential well, reflec-

tion, transmission, and trapping of the soliton are predicted [200], strongly

dependent on the well’s depth. Importantly it is the level structure of the
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well which leads to the formation of quasi-bound states causing the trapping

of the soliton. As such, solitons could be used to experimentally probe bound

states of an unknown localized potential well using this sort of scattering.

8.1.2 Controlled formation of soliton pairs via tuning

of the s-wave scattering length

As an alternative to the barrier splitting methods described previously, care-

ful tuning of the scattering length has been proposed as a controlled way

in which to create soliton, or solitary wave pairs [201]. In this scheme a

condensate with large repulsive interactions is first created in the centre of

a shallow trap. This causes the cloud to spread by virtue of the strong in-

ternal repulsion. Once the cloud becomes sufficiently large, the interactions

are then switched from repulsive to attractive using a Feshbach resonance.

This should produce a pair of solitons, as the result of modulational insta-

bility [9], moving with opposite velocities away from each other in the trap.

Importantly the precise switching of the scattering length should yield full

control over the splitting process.

8.1.3 Investigating phase dependence of binary

solitary wave collisions

Using a narrow barrier or tuning of the scattering length to controllably

create two solitary waves provides an ideal starting point for the investigation

of solitary wave collisions. Once formed the two separate wavepackets can be

spatially separated thus allowing a relative phase to be imprinted between

the two.

Considering the many competing theoretical models of the formation and

dynamics of solitary waves (discussed in section 7.1.2) the ability to probe

the effect of relative phase on the stability of collisions is of obvious value. The

observation of population transfer predicted in Refs. [41] and [78] would also

be a conclusive test of the GPE. Potentially experiments such as these could

then help settle the debate over the correct description of these quantum

many-body systems.
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8.1.4 Beyond mean field effects

Consideration of beyond mean field effects also predicts a number of in-

teresting phenomena which raise yet more questions about the nature of the

solitary waves observed in experiments. Many-body calculations by Streltsov

et al. [42] result in the emergence of ‘fragmentons’, objects combining macro-

scopic fragmentation of the wavefunction and the dynamical properties of a

soliton. Unlike solitons these fragmentons are not coherent objects. Found

to form even when the production of a two soliton train from the initial

state is energetically forbidden, fragmentons arise as excited states of the

quantum many-body system become energetically accessible. This would

therefore suggest the existence of a new kind of low lying excited state which

is unavailable within the framework of the GPE.

Results such as this cast doubt over whether the Gross-Pitaevskii formalism

is indeed the correct description of the system, not only for the particular

case of an attractive 1D Bose gas investigated in [42], but in a more general

sense.

8.1.5 Bose-Einstein condensation close to a surface

Short range atom-surface interactions

Although reflection and splitting experiments with narrow barriers show the

potential to settle the theoretical debate over solitary wave formation and

dynamics, the ability to probe such narrow and hence rapidly varying po-

tentials using these wavepackets also lends itself to an obvious application in

precision measurement.

Atoms close to a surface are subject to the short-range Casimir-Polder and

van der Waals potentials. This results in an attractive potential between

the atom and the surface in question. As highlighted in chapter 4, load-

ing precisely tailored surface traps or lattices, positioning atoms only a few

microns from the surface, allows one to test a number of novel schemes to

measure the atom-surface potential, including interferometry in a double-well

potential [140] and the study of Bloch oscillations [141].
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Figure 8.1: Schematic of the experimental setup proposed for the study of

atom-surface interactions and quantum reflection: Solitary waves are guided

towards the prism surface along a waveguide formed from a 1064 nm laser

beam. The position of the solitary wave and its velocity is determined by

a magnetic quadrupole trap used to provide weak magnetic confinement

along the waveguide. An optional evanescent wave potential can be pro-

duced through total internal reflection of a 532 nm laser beam inside the

prism.

As described in chapter 3, the apparatus presented here includes a super-

polished Dove prism suitable for atom-surface experiments. The geometry of

the prism is such that an additional (blue detuned) laser beam can be used

to produce a repulsive, evanescent mirror at the front surface of the prism

as shown in Fig 8.1. In this way the net potential experienced by the atoms

approaching the surface can be tuned from attractive to repulsive, as shown

in Fig. 8.2, through control of the laser power. This presents the opportunity

to observe both classical [128, 202] and quantum reflection from the surface

[203], allowing information about the short-range atom-surface potential to

be extracted. Theoretical work [3] suggests that solitary waves should prove

a superior tool for such experiments, enhancing the precision obtainable with

ultracold gases or large, repulsive BECs seen in previous work [119].

Quantum reflection from a surface

The classically counterintuitive phenomenon of quantum reflection results in

the reflection of a matter-wave from an attractive potential and reinforces
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Figure 8.2: Atom-surface potential: At short range, the atom-surface interac-

tion is dominated by the attractive van der Waals (vdW) and Casimir-Polder

(CP) potentials. However, the use of an evanescent wave (EW) potential can

be used to overcome this interaction, the result being a tunable potential

close to the surface. With sufficient power in the EW laser beam a repulsive

barrier can be created allowing one to examine both classical and quantum re-

flection. The example shown here is for λEW =532 nm light (I =85 MWm−2)

incident on the prism surface (n = 1.5) at 45◦ .



Chapter 8. Conclusions and outlook 164

the description of atoms as wave-like objects.

Quantum reflection requires a rapid variation in the local wavevector k such

that k varies within the deBroglie wavelength by more than k itself,

1

k2

dk

dr
> 1. (8.1)

In the vicinity of a surface the local wavevector is given by [204]

k =

√
k2

0 − 2mUint

~2
. (8.2)

Here k0 = mv/~ is the wavevector perpendicular to the surface far away (i.e.

r →∞) and Uint is the atom-surface interaction potential.

The probability of reflection has been studied extensively for an atom-surface

potential and is given by [205]

R ≈ 1− β4mv

~
, (8.3)

where β4 =
√

2mC4/~2 is the length scale associated with the Casimir-

Polder C4 coefficient. A high reflection probability therefore requires low

incident velocity, v = ~k0/m→ 0, or weak attraction to the surface. Previous

experiments [204, 206, 207, 208] have achieved this using low mass elements

such as He and H reflecting from liquid He or through trajectories with only

grazing incidence to reduce the component of the velocity normal to the

surface.

Although an experiment using a harmonic trap close to a surface [209] has

previously been used to observe quantum reflection from a solid surface, the

small size and attractive interactions present in a solitary wave should make

lower incident velocities attainable and reflection signals cleaner [3].

8.2 Next phase of the experiment

It is likely that experiments discussed in this chapter will ultimately require

the modification of our current system. In the new setup a crossed dipole trap

constructed from two independent laser beams should offer greater control of

the evaporative cooling and, most importantly, the loading of the waveguide.
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It is likely that one of the two beams will be delivered through the back

surface of the super-polished Dove prism, as the waveguide beam is now.

Rather than transferring the condensate from the crossed dipole trap into

a separate waveguide, this geometry should allow a smooth release of the

condensate into one of the two crossed beams as the intensity of the second

is ramped to zero.

In this new design both the quadrupole and crossed dipole traps will also

be positioned much closer to the Dove prism surface. This will allow us to

use the same guided transport scheme presented in chapter 4, along with

the manipulation of the trapping potential discussed in chapter 7, to deliver

solitary waves up to the surface with low incident velocities.

8.3 Concluding remarks

The use of narrow barriers to controllably split solitary waves is a vital step

towards a greater understanding of solitary waves and their collisional dy-

namics. Ultimately this will prove an essential stage in the development of

a solitary wave interferometer. In the future, the realisation of Schrödinger

cat states using solitary waves could open the door to quantum enhanced

interferometry, where the conventional bounds of precision of measurements,

such as the shot noise limit or the standard quantum limit, might be beaten

[210].

Arguably the most exciting prospect for bright solitary matter-waves in the

context of this experiment is their use as probes of atom-surface forces. The

control and precision offered by this new generation of cold atom experi-

ments promises to revolutionise the way we approach such measurements.

Ultimately the ability to measure short-range forces between atoms and sur-

face could lead to the exploration of short-range corrections to gravity and

the search for exotic forces beyond the Standard Model.



Appendix A

Off resonance laser frequency

stabilization using the Faraday

effect

Prior to the realisation of 85Rb BEC it was unclear as to whether direct

evaporation in the optical trap would prove a successful method to attain

condensation. An alternative approach considered at this time was to use

Raman sideband cooling [211] to aid the cooling of the atoms. This method

requires a far detuned optical lattice into which the atoms are loaded. As

a first step towards the experimental implementation of sideband cooling

a laser frequency stabilisation technique using the Faraday effect was devel-

oped and characterised, potentially for use in controlling the lattice detuning.

The results of this work are published in the paper ‘Off resonance laser fre-

quency stabilization using the Faraday effect ’, Opt. Lett. 36, 64 (2011) and

presented here.

A.1 Abstract

We present a simple technique for stabilization of a laser frequency off res-

onance using the Faraday effect in a heated vapour cell with an applied

magnetic field. In particular we demonstrate stabilization of a 780 nm laser

detuned up to 14 GHz from the 85Rb D2 52S1/2 F = 2 to 52P3/2 F
′ = 3

166
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transition. Control of the temperature of the vapour cell and the magnitude

of the applied magnetic field allows locking ∼6-14 GHz red and blue detuned

from the atomic line. We obtain an rms fluctuation of 7 MHz over one hour

without stabilization of the cell temperature or magnetic field.

A.2 Introduction

In the field of atomic and molecular physics it is commonplace to require

a frequency stabilized or ‘locked’ laser source. Many established techniques

exist for locking close to an atomic resonance (within a Doppler linewidth)

including: frequency-modulation spectroscopy [81], polarization spectroscopy

[212], dichroic atomic vapour laser locking [213] and Sagnac interferometry

[214]. In contrast, schemes for locking away from resonance, that is, greater

than twice the Doppler linewidth away, can present more of an obstacle.

Nevertheless, in many instances it is desirable to be detuned by more than

1 GHz from resonance. This is particularly important in experiments using

two photon or Raman transitions where population of the intermediate state

should be avoided. Examples include Raman cooling [215] and two photon

excitation of Rydberg states [216]. It is also common to manipulate ultracold

atoms in optical lattices formed using laser fields detuned many GHz from

resonance. Applications of such lattices include degenerate Raman sideband

cooling (DRSC) [211] and the study of quantum accelerator modes [217].

A common approach for locking off resonance is to employ a second laser,

slaved in some way to a reference laser which is locked on resonance. For

example, an electro-optic modulator can be used to produce off resonant side-

bands on the reference laser which are then used to seed the slave laser [218].

Alternatively, a beat measurement can be used to stabilize the frequency dif-

ference between the slave and reference lasers [219]. In a similar fashion, an

optical cavity can be used to bridge the frequency gap between the two lasers

[220, 221]. However, the experimental complexity of these approaches means

that realising their full potential can be technically challenging, especially

for larger detunings. Here we present a simple alternative based upon the

Faraday effect in a heated vapour cell with an applied magnetic field which

allows locking 6-14 GHz (red and blue) detuned from an atomic line without
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Figure A.1: Schematic of the experimental apparatus used to obtain the

Faraday signal: ECDL: external cavity diode laser, GB: glass blank, PBS:

polarizing beam splitter, PD: differencing photodiode.

the need for a second laser.

The Faraday effect is a magneto-optical phenomenon. A magnetic field ap-

plied along the direction of light propagation causes the medium involved

to respond differently to left and right circularly polarized light as the field

shifts the σ transitions. The result of this circular birefringence is a rotation

of linearly polarized light entering the medium due to the phase shift accu-

mulated between its circular components. A key example of where this effect

can be exploited is in optical isolators. A similar dispersive response to that

exhibited by the isolator crystal can be seen in atomic media.

In previous work the Faraday effect has been applied to produce a narrow-

band optical filter or ‘Faraday filter’ [222] and, more recently, in a slow light

medium to produce a gigahertz-bandwidth atomic probe [223]. Here we

present a technique which uses the Faraday effect in a heated cell to lock off

resonance from an atomic transition using that same transition. We consider

the specific case of red detuning >10 GHz from the 780 nm 85Rb D2 52S1/2

F = 2 to 52P3/2 F
′ = 3 transition in order to perform degenerate Raman

sideband cooling on ultracold atoms in the F = 2 ground state.

A.3 Experimental setup

We use the setup shown in Fig. A.1 to produce the Faraday signal. Light is

derived from a homebuilt 780 nm external cavity diode laser (based upon a

Roithner Lasertechnik RLT 780-150 GS laser diode). The design incorporates

current feed forward circuitry which allows the current to be modulated (with
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Figure A.2: Normalized Faraday signal: Shown as a function of detuning

from 85Rb F = 2 to F ′ = 3 obtained using a cell heated to 124◦C with

∼ 270 G applied magnetic field. A room temperature Doppler broadened

transmission spectrum is shown for reference.

an amplitude of 20 mA) synchronously with the piezo. As a result of this

modification the scan range of the laser is increased from 2.5 GHz to around

14 GHz. The laser output is split into two beams using a glass blank. The

weak reflection from the glass blank is used to record a transmission spectrum

using a room temperature vapour cell for reference. The transmitted beam

is sent through a half-waveplate and polarizing beam splitter (PBS) cube

to pick off light for the Raman sideband cooling, leaving a small proportion

of the total output light for the Faraday beam. This light is sent through

a second PBS to ensure well defined polarization (extinction of 500:1) and

is attenuated to ∼ 170 µW. Inside the cell the beam has a 1/e2 radius of

1.30(2) mm. The Faraday cell is a modification of the DAVLL cell used in

[224] consisting of two 43 mm long solenoids, each wound with 8 layers (53

turns per layer) of 0.8 mm polyurethane coated copper wire (rated at 150 ◦C)

surrounding a 7.5 cm long rubidium vapour cell. When supplied with 6 A

the solenoids produce a magnetic field of ∼ 270 G (the field varies smoothly

between 240 G and 300 G along the length of the cell) and simultaneously

heat the rubidium vapour cell enclosed to 110 ◦C once thermal equilibrium
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Figure A.3: Effect of temperature on detuning: Detuning from 85Rb F = 2

to F ′ = 3 of the last (black, bottom), second to last (red, center) and third

to last (blue, top) zero crossings of the Faraday signal as a function of cell

temperature for an applied magnetic field of ∼ 270 G. At lower temperatures

there is no visible third to last crossing. The fitted lines are a guide to the

eye only. Inset: Example signals obtained with a magnetic field of ∼ 270 G

for three cell temperatures.

is reached. The output from the Faraday cell is analysed by polarimetry.

The light is split using a PBS and a half-waveplate set such that, in the

absence of any optical rotation, an equal amount of light is incident on each

of two photodiodes. (We note all polarization optics are positioned away

from the cell to avoid thermal effects.) To produce the Faraday signal the

difference in the two photocurrents (Ix - Iy) is converted to a voltage via

a transimpedance amplifier (R = 1.2 MΩ). Fig. A.2 shows a typical signal

normalized to the transmission in the absence of the applied magnetic field

(obtained by switching off the cell current), I0 = Ix0 + Iy0 . Each zero crossing

in the observed signal corresponds to a π phase shift between the left and

right circular components of the input light and is a potential locking point.

A room temperature Doppler broadened transmission spectrum is shown

to highlight that several lock points exist both red and blue detuned from

resonance. Close to resonance there is no Faraday signal as the atomic vapour

is optically thick.
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A.4 Effect of temperature

The number and detuning of potential locking points exhibited by the Fara-

day signal are determined by the combination of the coil temperature and

magnetic field. This, in principle, allows the detuning of the lock point to

be controlled. To investigate the effect of temperature on the detuning of

the lock points the cell was heated by adjusting the current supplied to the

copper windings. The temperature was monitored using a K PTFE ther-

mocouple probe inside the metal coil mounting around the cell. Before each

measurement the current was set back to 6 A to generate the same magnetic

field within the cell without allowing the temperature to change. As the tem-

perature of the cell, and therefore the atomic vapour pressure, is increased,

the refractive index of the medium increases leading to a greater circular

birefringence and an enhanced magneto-optical effect at larger detunings.

The detunings of the last, second to and third to last zero crossings with

temperature are shown in Fig. A.3. This temperature dependence gives a

good coarse adjustment of the lock point between ∼ 6 and 14 GHz. Below

∼ 70 ◦C the rotation does not extend beyond the optically thick region and

as such there are no suitable lock points.

A.5 Lock stability

To lock to a zero crossing in the Faraday signal we use a homebuilt locking

servo. The input to this is the non-normalized output of the differencing

photodiode (see inset Fig. A.4). In order to investigate the stability of the

Faraday lock a second copy of the setup shown in Fig. A.1 was constructed.

Both lasers were locked using their respective Faraday signals and light taken

from the two setups was combined and detected on a fast photodiode (2 GHz

bandwidth). The frequency of the beat note between the lasers was recorded

at 1 s intervals for ∼ 80 minutes and the Allan variance [225] calculated.

Fig. A.4 shows the square root of the Allan variance as a function of averag-

ing time of the beat frequency between the two Faraday locked lasers. For

comparison we also show the results for the case of one laser free running

and the second locked with modulation transfer spectroscopy [80] to the 85Rb
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Figure A.4: Allan variance: Square root of the Allan variance of the beat

frequency between two Faraday locked (circles) ECDLs. For comparison

data for one free running laser and one locked with modulation transfer

spectroscopy is also shown (triangles). Inset: Example raw photodiode signal

obtained at 113◦C.

F = 3 to F ′ = 4 transition, stable to ∼ 0.1 MHz. For the Faraday locked

lasers the fractional frequency stability was 4.9 x 10−10 for a 5 s averaging

time and over the full monitor period the rms frequency deviation from the

mean was ∼ 7 MHz. For applications such as DRSC, where the resulting

optical potential scales as 1/detuning, this frequency stability (≈ 0.1% of

the total detuning) is more than adequate.

To understand the observed fluctuations the sensitivity of the signal to tem-

perature and magnetic field was examined. From Fig. A.3, at 110 ◦C, the

temperature dependence of the last zero crossing is ∼ -0.2 GHz/◦C. The ef-

fect of magnetic field gives a shift of - 0.49(2) MHz/mA, which, assuming

a field of 270 G translates into a field sensitivity of - 10.9(4) MHz/G. Con-

sidering these sensitivities we attribute the observed fluctuations to small

changes in the cell temperature caused by the current supply. We note that

the supply to the coil was operated in constant current mode but the current

was not actively stabilized. In addition, there was no active stabilization of

the ambient temperature and magnetic field. However, with stabilization of

temperature (∼ 1 mK) and current (∼ 10 µA), frequency stability on the
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order of 200 kHz should be possible.

A.6 Summary

In summary, we have demonstrated a simple laser locking technique which

allows off resonance (∼ 6-14 GHz red and blue detuned) stabilization to an

absolute frequency using the Faraday effect. A compact heated cell is used,

not only to achieve increased rubidium vapour pressure but also to produce a

magnetic field parallel to the direction of light propagation. Implementation

of the Faraday locking technique extends the useful locking range of an atomic

reference considerably. The usual accessible sub Doppler transition range

of a few hundred MHz is increased to, in our case, around 25 GHz. We

propose the technique for use in the generation of off resonant optical lattices,

such as those needed in DRSC schemes. Potentially the detuning achieved

could be extended by careful cell design. From extrapolation of Fig. A.3, we

expect detunings of 25 GHz and 50 GHz would require 155 ◦C and 200 ◦C

operating temperatures respectively. Cell designs capable of achieving such

temperatures are currently under construction.
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[203] R. Côté, B. Segev, and M. G. Raizen, Retardation effects on quantum

reflection from an evanescent-wave atomic mirror, Phys. Rev. A 58,

3999 (1998).

[204] F. Shimizu, Specular reflection of very slow metastable neon atoms

from a solid surface, Phys. Rev. Lett. 86, 987 (2001).

[205] H. Friedrich, G. Jacoby, and C. G. Meister, Quantum reflection by

Casimir–van der Waals potential tails, Phys. Rev. A 65, 032902 (2002).

[206] V. U. Nayak, D. O. Edwards, and N. Masuhara, Scattering of 4He

atoms grazing the liquid-4He surface, Phys. Rev. Lett. 50, 990 (1983).

[207] I. A. Yu et al., Evidence for universal quantum reflection of hydrogen

from liquid 4He, Phys. Rev. Lett. 71, 1589 (1993).



Bibliography 192

[208] J. J. Berkhout et al., Quantum reflection: Focusing of hydrogen atoms

with a concave mirror, Phys. Rev. Lett. 63, 1689 (1989).

[209] T. A. Pasquini et al., Quantum reflection from a solid surface at normal

incidence, Phys. Rev. Lett. 93, 223201 (2004).

[210] V. Giovannetti, S. Lloyd, and L. Maccone, Quantum-enhanced mea-

surements: Beating the standard quantum limit, Science 306, 1330

(2004).

[211] A. J. Kerman, V. Vuletić, C. Chin, and S. Chu, Beyond optical mo-

lasses: 3D Raman sideband cooling of atomic cesium to high phase-

space density, Phys. Rev. Lett. 84, 439 (2000).

[212] M. L. Harris et al., Polarization spectroscopy in rubidium and cesium,

Phys. Rev. A 73, 062509 (2006).

[213] K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman,

Frequency-stabilized diode laser with the Zeeman shift in an atomic

vapor, Appl. Opt. 37, 3295 (1998).

[214] N. P. Robins, B. J. J. Slagmolen, D. A. Shaddock, J. D. Close, and

M. B. Gray, Interferometric, modulation-free laser stabilization, Opt.

Lett. 27, 1905 (2002).

[215] H. J. Lee, C. S. Adams, M. Kasevich, and S. Chu, Raman cooling of

atoms in an optical dipole trap, Phys. Rev. Lett. 76, 2658 (1996).

[216] T. A. Johnson et al., Rabi oscillations between ground and Rydberg

states with dipole-dipole atomic interactions, Phys. Rev. Lett. 100,

113003 (2008).

[217] M. K. Oberthaler, R. M. Godun, M. B. d’Arcy, G. S. Summy, and

K. Burnett, Observation of quantum accelerator modes, Phys. Rev.

Lett. 83, 4447 (1999).

[218] M. G. Bason, A. K. Mohapatra, K. J. Weatherill, and C. S. Adams,

Narrow absorptive resonances in a four-level atomic system, J. Phys.

B: At. Mol. Phys. 42, 075503 (2009).



Bibliography 193

[219] U. Schünemann, H. Engler, R. Grimm, M. Weidemüller, and

M. Zielonkowski, Simple scheme for tunable frequency offset locking

of two lasers, Rev. Sci. Instrum. 70, 242 (1999).

[220] T. Hansch and B. Couillaud, Laser frequency stabilization by polariza-

tion spectroscopy of a reflecting reference cavity, Opt. Comm. 35, 441

(1980).

[221] P. Bohlouli-Zanjani, K. Afrousheh, and J. D. D. Martin, Optical trans-

fer cavity stabilization using current-modulated injection-locked diode

lasers, Rev. Sci. Instrum. 77 (2006).

[222] P. P. Sorokin, J. R. Lankard, V. L. Moruzzi, and A. Lurio, Frequency

locking of organic dye lasers to atomic resonance lines, Appl. Phys.

Lett. 15 (1969).

[223] P. Siddons, N. C. Bell, Y. Cai, C. S. Adams, and I. G. Hughes, A

gigahertz-bandwidth atomic probe based on the slow-light Faraday effect,

Nature Photon. 3, 225 (2009).

[224] D. J. McCarron, I. G. Hughes, P. Tierney, and S. L. Cornish, A heated

vapor cell unit for dichroic atomic vapor laser lock in atomic rubidium,

Rev. Sci. Instrum. 78, 093106 (2007).

[225] D. Allan, Statistics of atomic frequency standards, Proceedings of the

IEEE 54, 221 (1966).


