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Resonant Pulse Propagation in
Dense Atomic Vapours

Thomas P. Ogden

Abstract

This thesis presents theoretical models and results of numerical simulations

describing the propagation of optical pulses through dense, thermal atomic

vapours. In particular we investigate the nonlinear effects of optical solitons

due to self-induced transparency (sit) in two-level systems, optical simultons in

V-type three-level systems and electromagnetically induced transparency (eit)

in Λ-type systems, including the storage and retrieval of dark-state polaritons.

An investigation is made into two-photon excitation of the 5D states of rubid-

ium in a high-intensity beam, including the hyperfine structure of the relevant

atomic levels. Decay from these states to the 6P manifolds is ruled out as a

cause of experimentally observed fluorescence due to the amount of power

broadening associated with intensities necessary to provide any significant

level of population in these highly excited states.

We combine the nonlinear effects of optical solitons and eit to explain

experimentally-observed steepened pulses in a V-type system in a micron-

length cell. We explain the behaviour as the early formation of a simulton pulse

drawn from a cw probe field by a strong coupling pulse, due to coherent pop-

ulation trapping. We predict that in a longer cell it may be possible to facili-

tate propagation of matched pulses, even when the transitions in the system

have different propagation coefficients, as long as decoherence from collision

broadening can be controlled. The fact that weak pulses can propagate with

this scheme suggests an approach to achieving transparent propagation of sin-

gle or few photon pulses distinct from, but related to, both sit and eit.



Resonant Pulse Propagation in

Dense Atomic Vapours

Thomas P. Ogden

A thesis submitted in partial fulfilment

of the requirements for the degree of

Doctor of Philosophy.

Department of Physics

Durham University

May 26, 2016



Declaration

I confirm that no part of the material offered has previously been sub-

mitted by myself for a degree in this or any other University. Where

material has been generated through joint work, the work of others has

been indicated.

Thomas P. Ogden

Durham, May 26, 2016

The copyright of this thesis rests with the author. No quotation from it

should be published without their prior written consent and informa-

tion derived from it should be acknowledged.

3



Acknowledgements

Thanks to Robert Potvliege, who guided me through the whole PhD, and

taught me so much both about physics and the curiosity and rigour needed

to be a good scientist. It has been a pleasure to work as your student. Thanks

to Charles Adams, who brought both interesting experimental systems for me

to model, and his enthusiam and insight in helping to uncover the underlying

physics. I already miss our conversations about physics and much else, includ-

ing on our runs around the Wear.

Thanks to Ifan Hughes, always generous with his time to explain anything

from the nature of refractive index to why Swansea beat Liverpool in the foot-

ball. Thanks to Simon Gardiner, whose warm welcome when I first came to

visit encouraged me to come to Durham. I’m very glad I did. Thanks to James

Keaveney and Kate Whittaker, for the excellence in experiment that gave me

the data to work with.

Thanks as a whole to the jqc group, whose winning combination of excellence

and community made the office such a pleasant place to work. Too many peo-

ple have contributed to that in my years here to list individually, and I am

sorry to everyone I leave out. But I must give thanks to Danielle Boddy, my

long-suffering running buddy (i.e. coach). Thanks for putting up with so much

of my ‘rambling chat’. Thanks to David Parades, who with his infectious en-

thusiasm motivated me often both in physics and to get up and meet him at

the gym. Thanks to Chris Wade, in particular for taking me out on some mem-

orable bike rides and not leaving me behind, even when I forgot to bring lights.

Thanks to Christophe Valliant, especially for answering my many, probably re-

4



peated, questions about angular momentum theory. Thanks to Hannes Busche

for the great fun we had blasting around Arizona and Utah in the ‘Canyonero’.

Thanks to those I enjoyed sharing an office and many conversations over tea

with: Tom Billam, Rob Bettles, Michael Köppinger, Mark Zentile, John Helm,
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1 Introduction

We all know what light is; but it is not easy to tell what it is.

— Samuel Johnson.

I have also a paper afloat with an electromagnetic theory of light

which, til I am convinced to the contrary, I hold to be great guns.

— James Clerk Maxwell, 5 January 1865.

The propagation of light through resonant matter underlies a huge array

of physical phenomena. Naturally occurring atmospheric effects such as

Rayleigh scattering, rainbows, auroras and sun dogs are well known and

pleasant diversions.

The question of how light travels and interacts with matter is fundamen-

tal to our understanding of the world, and it has thus been considered

since antiquity. Despite this long history, atom-light interactions remains

a focus of research, as we can see by the award of the 2012 Nobel prize

in physics to Haroche and Wineland for their work with atoms and ions

in optical cavities.1

Modern research has been greatly facilitated by continued development

of laser technology, which provides sources of intense, coherent and

monochromatic light for experimental study. This has allowed new and

12



Chapter 1. Introduction 13

interesting nonlinear optical phenomena to be observed in the labora-

tory, providing both a greater understanding of atom-light interaction

and novel applications in communications2 and quantum information

processing.3

The regime of nonlinear optics is defined to be that in which the optical

response of the medium is modified by the presence of the light itself,

such that the response depends on the intensity of the light in a nonlin-

ear manner.4 In this thesis we will investigate theoretically the propaga-

tion of coherent pulses of light in nonlinear media.

In order to make a complete description of the interaction of the atoms

that constitute a vapour with incident light, we should treat both as

quantal entities. The atoms should be described as charges moving in

quantised energy levels, and the light as a set of travelling wave modes

each with associated quantum harmonic oscillators whose excitation

number expresses the number of photons it contains.5 The appropri-

ate formalism for this complete description is quantum electrodynamics

(qed), in which the interaction is described by exchange of quanta be-

tween the atoms and light.

However, as we are interested here in high-intensity optical fields con-

taining a large number of photons, the light behaves in a way that is

sufficiently non-quantum for us to treat it as a classical electromagnetic

field.6 We maintain the quantum description of the atoms, but do not

treat each atom individually, considering the collection of atoms at each

point along the propagation axis as a statistical ensemble, with parame-

ters such as velocity and energy state given as distributions.

Where we cannot neglect the quantum nature of light is in considering

the important effect of spontaneous emission, whereby photons are non-

deterministically emitted from an atom into the vacuum field modes.

We include this by treating the decay process statistically, averaging over
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individual atomic emissions to the environment.7

We couple the Maxwell wave equation describing propagation of the

classical field to the Lindblad master equation describing the open

quantal atomic system. To account for thermal motion of atoms, we av-

erage their response over a velocity distribution.8

In this thesis we will consider in particular two important nonlinear ef-

fects: self-induced transparency and electromagnetically induced trans-

parency. We will go on to demonstrate that in combination these effects

provide a potentially useful means of propagating pulses in dense ther-

mal atomic vapours.

Self-induced Transparency

Self-induced transparency (sit) is a nonlinear phenomena in which

short, strong pulses with a specific (sech-type) profile and pulse area

(2π) are able to travel through an absorptive medium without distor-

tion.

As this optical soliton moves through the medium, its shaped lead-

ing edge is absorbed and inverts the atomic population, but its trailing

edge then rotates the population back to the ground state via stimulated

emission.9 If this process happens on a timescale that is much shorter

than the decay lifetime of the atoms, the pulse retains phase memory

and energy is conserved as it propagates. The group velocity is delayed

by the non-zero amount of time the pulse spends as an excitation as it

travels.

The first paper describing the effect was by McCall and Hahn in 1969.10

As well as an analytic description, results were presented from an exper-

iment using a liquid-helium cooled ruby absorber showing that intense

light can be transmitted without attenuation but delayed.
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The pulse is actually robust and will form the sech-type profile even

if it is initially of a different profile, as long as the pulse area is large

enough. The area theorem10 tells us that pulses with area > 3π will

break up into multiple solitons that travel at distinct group velocities.

Gibbs and Slusher presented further results from experiments in rubid-

ium vapours,11 including both large pulse delays and pulse breakup in

agreement with the theoretical prediction.

Electromagnetically Induced Transparency

Electromagnetically induced transparency (eit) is a technique for allow-

ing a probe light pulse to propagate through a medium it would ordi-

narily find to be opaque, facilitated by a second, coupling pulse on a

connected transition forming a three-level system.12

It is a coherent effect that can be understood as interference between

excitation channels. From another perspective, we can transform to a

dressed state basis and understand eit as originating in the formation of

a population of a dark-state superposition, decoupled from excitation.

This results in a narrow transmission window in the probe absorption

lineshape, which is nonlinear.

The introduction of eit as a nonlinear optical process was made by Har-

ris et al.in 1990,13 though Harris notes14 that the ‘essence of eit’ is in co-

herent population trapping, discovered in 1976 by Alzetta et al.15 Exper-

imental observation of eit in a strontium vapour was made by Boller et

al.16 in 1991.

At the same time as absorption is reduced, the dispersive properties of

the medium are inverted, significantly reducing group velocity on res-

onance. Pulses are then slowed in the medium. In experiments with

Bose-Einstein condensates (becs), group velocities have been reduced
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to 17 m/s by Hau et al.17

With a time-dependent coupling field, Fleishhauer and Lukin showed

that it is even possible to store and retrieve a pulse in a medium using

eit, and introduced the concept of the dark state polariton.18 This pro-

vides a possible implementation for quantum memory using photonic

qubits.3

1.1 Thesis Structure

The remaining chapters of this thesis are structured as follows:

Chapter 2 We derive a semiclassical model for propagation of light in

thermal atomic vapours based on the Maxwell-Bloch equations.

We introduce linear and nonlinear susceptibilities and discuss ana-

lytic results available under the weak probe approximation.

Chapter 3 We take the model into the regime of nonlinear optics,

demonstrating some effects that emerge from the interaction of

strong fields with atomic vapours, notably self-induced trans-

parency and simultons.

Chapter 4 We introduce the well-known phenomenon of electromagnet-

ically induced transparency and the related quasiparticle known

as the dark-state polariton. We describe how such systems may be

used to store and retrieve light pulses.

Chapter 5 We investigate the interaction of a high-intensity beam with a

thermal vapour of rubidium to model experimental results show-

ing population of highly excited 5d states. We include angular mo-

mentum structure and broadening effects and consider two-photon

excitation as a possible mechanism.
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Chapter 6 We present the key results of this thesis. We describe a

scheme to combine the nonlinear phenomena of optical solitons

and eit to propagate robust simultaneous pulses (simultons) in

V-type media, showing excellent agreement with experimental

results over a range of powers and temperatures. This scheme

avoids the requirement of high-intensity pulses in the sit system,

and shows that weak field soliton components may even be drawn

from a continuous wave field.

Chapter 7 We conclude, summarise the results and suggest future direc-

tions for continuing the research presented.

1.2 Publications Arising from This Work

T. P. Ogden et al., Formation of Simultons in an Atomic Vapor. [In prepara-

tion]



2 Propagation of Light in

Thermal Atomic Vapours

2.1 Introduction

In this chapter we will define the model for propagation in thermal

atoms to be used throughout the thesis, based on the well-known

Maxwell Bloch (mb) equations. We will introduce the concept of suscep-

tibilities and discuss analytic solutions to the equations that are available

in the regime of weak incident light, before generalising the problem to

nonlinear interaction with quantised atoms. Finally we will present re-

sults from numerical solutions and compare with the analytic results for

weak fields to verify the accuracy of the numerical model.

2.2 Deriving the Propagation Equation

In this section we will derive an equation to describe the propagation

of a classical elecromagnetic field in a polarised medium. Our starting

point, naturally, is Maxwell’s set of equations of classical electrodynam-

ics.

18



Chapter 2. Propagation of Light in Thermal Atomic Vapours 19

2.2.1 Maxwell’s Equations and the Wave Equation

In a medium with no free charges or free current, Maxwell’s equations

for the electric field E and the magnetic field B can be written6

∇ ·D = 0 (2.1a)

∇ · B = 0 (2.1b)

∇× E = −∂B
∂t

(2.1c)

∇× B = µ0
∂D
∂t

. (2.1d)

The electric displacement D accounts for the effect of charges in a

medium and is given by

D = ε0E + P (2.2)

where ε0 is the vacuum permittivity and the electric polarisation P de-

scribes the cumulative effect of induced dipole moments in individual

atoms. We’ll discuss the source of polarisation in atoms further in sec-

tion 2.3.

Taking the curl of (2.1c) and substituting (2.1d) we find

∇× (∇× E) = −µ0
∂2D
∂t2 .

We then apply the vector identity

∇× (∇× E) = ∇(∇ · E)−∇2E

and, assuming that the polarisation varies little in the plane transverse

to propagation such that ∇ · P ≈ 0, arrive at the Maxwell wave equation

∇2E− 1
c2

∂2E
∂t2 = µ0

∂2P
∂t2 . (2.3)

The Maxwell wave equation (mwe) thus describes the wave-like propa-

gation of an electric field E through a medium with polarisation P. The
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second derivative on the right-hand side tells us that the accelerating

charges described by P can act as a source of new components of the

electromagnetic field. For this reason, polarisation plays a critical role in

practically all optical phenomena.4

A similar propagation equation to (2.3) may be derived for the magnetic

field, however we’ll find that the interaction of atoms with the electric

field dominates and so we will not consider B further.

We will consider 1d propagation along the z-axis, a restriction well-

justified by the destructive interference of light scattered by atomic

dipoles in directions not aligned with the incident radiation.19 Then

we may write the transverse field as E = x̂E(z, t), where x̂ is a unit

vector perpendicular to z. We assume that we are dealing with atoms

that are electrically neutral to start with, such that all of the polarisa-

tion in the medium will be induced by that field, so we may similarly

set P = x̂P(z, t). In this way we can reduce the mwe to the scalar form

∂2E
∂z2 −

1
c2

∂2E
∂t2 = µ0

∂2P
∂t2 . (2.4)

In the absence of sources (i.e. P = 0) we can solve the homogeneous

equation (2.4) analytically. For a nonconducting medium with spatially

constant permeability and susceptibility the solution is a transverse

monochromatic plane wave6

Ẽ(z, t) = Ẽ0ei(kz−ωt). (2.5)

where as usual k represents wavenumber and ω the angular frequency.

The amplitude is given by Ẽ0. Of course, the electric field is an observ-

able physical quantity and so must be real-valued — it is the real part of

the complex Ẽ(z, t) given by

E(z, t) = <[Ẽ(z, t)] = 1
2 Ẽ0(z, t)ei(kz−ωt) + 1

2 Ẽ∗0(z, t)e−i(kz−ωt). (2.6)
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We continue with the complex notation for the usual reason that ma-

nipulations, such as adding components of different phases, are much

simpler.

By substituting (2.5) into (2.4) we obtain the simplest dispersion relation of

ω = ck, i.e. all frequencies travel at a speed c, a familiar result for light

in vacuo. Such plane wave solutions will propagate without attenuation

or dispersion, which is how we are able to look up at the night sky and

observe light from distant stars that has travelled enormous distance

through the void of interstellar space.

Light travelling through matter is a more complex problem. We next

want to look for solutions to (2.4) in the presence of sources, such that

we have P 6= 0 describing induced atomic dipoles in the medium. For

that we will need to make a useful approximation.

2.2.2 The Slowly Varying Envelope Approximation

If the spectrum of the electric field is narrowband, we approximate the

field as the product of a quasi-monochromatic carrier function with an-

gular frequency ω and wavenumber k and a slowly varying envelope

E(z, t) = 1
2E(z, t)ei(kz−ωt) + 1

2E∗(z, t)e−i(kz−ωt) (2.7)

where the envelope is in general a complex function

E(z, t) = |E |eiϕ. (2.8)

We apply the same treatment to the polarisation

P(z, t) = 1
2P(z, t)ei(kz−ωt) + 1

2P∗(z, t)e−i(kz−ωt) (2.9)

with a polarisation envelope

P(z, t) = |P|eiϕ. (2.10)
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We can substitute these into (2.4) and by matching co-rotating terms we

find1

[
(∂zz + 2ik∂z − k2)− 1

c2 (∂tt − 2iω∂t −ω2)
]
E = µ0(∂tt − 2iω∂t −ω2)P .

(2.11)

Now we’re set to make the slowly varying envelope approximation.20 If

the envelope changes only a small amount over the distance of a wave-

length, and over the duration of the optical period, we can take

|∂zzE| � k|∂zE|

|∂ttE| � ω|∂tE|

and neglect the second derivatives. Similar approximations hold for P ,

where we may also neglect the first-order time derivative

|∂zzP| � k|∂zP|

|∂ttE| � ω|∂tE|

|∂tP| � ω|P|.

In the case of visible light with wavelengths on the order of 100 nm and

optical periods of the order of 1 fs, where we’re interested in the be-

haviour over ns or µs, this approximation is justified.

With these approximations made, (2.11) becomes
[
2ik∂z − k2 + 1

c2 (2iω∂t + ω2)
]
E = −µ0ω2P (2.12)

As the carrier wavenumber and frequency are still related by the vac-

uum dispersion relation ω = ck we then obtain the first-order propaga-

tion equation [
∂

∂z
+

1
c

∂

∂t

]
E = i

k
2ε0
P . (2.13)

The wave equation (2.13), first-order in space z and time t, can be solved

numerically for a given medium, to determine how light will propagate
1Here we use subscript notation: ∂z := ∂/∂z, ∂zz := ∂2/∂z2 etc.
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through it. However, the response of the medium via P may itself be

affected by the field E , so we will next look at how we determine P .

2.2.3 Energy and Intensity

In an experiment we would not be measuring the electric field directly,

but the energy transferred to a detector such as a photon counter. Also,

any macroscopic measurement of light is necessarily going to extend

over many optical cycles (of duration ∼ 10−15 s). So a property useful

to us is the time-averaged power per unit area that the electromagnetic

field transports through the medium, which we call the intensity I and

is calculated to be21

I = 1
2 cε0|E2|. (2.14)

2.3 Linear Optics, Susceptibility and Refractive Index

The effect of an electric field E applied on a single neutral atom is to

separate the positively charged core (which moves in the direction of

the field E) and the negatively charged electron cloud (which moves in

the opposite direction −E) such that a dipole is induced on the atom

parallel to the field. For an atomic vapour subject to a field, dipoles will

be induced on many atoms. The cumulative effect is that the medium is

polarised, and we define P as the dipole moment per unit volume.

2.3.1 Susceptibility

In general, the instantaneous polarisation induced by the field at a time

t is some function of the input field, which we may write as a power ex-
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pansion4 in E,

Pinst(t) = ε0

[
χ(1)(t)E(t) + χ(2)(t)E(t)2 + χ(3)(t)E(t)3 + . . .

]
(2.15)

where the expansion coefficients χ(j)(t) are known as the jth- order sus-

ceptibilities.

If the applied field is weak, we find that the induced polarisation is

proportional to that field, such that susceptibilities higher than χ(1)

are taken as zero and terms higher than the first order in (2.15) are ne-

glected. This is the regime of linear optics. In this thesis we are particu-

larly interested in developing and understanding numerical solutions of

nonlinear problems, i.e. those in which higher order terms become sig-

nificant. We will look at the linear regime briefly, however, as systems

involving weak fields permit analytic solution and offer insight into a

broad range of optical phenomena.

The cumulative induced polarisation P(t) is an integral of the instanta-

neous polarisation over all times t′ previous

P(t) = ε0

∫ t

−∞
χ(t′)E(t− t′)dt′ (2.16)

where we no longer require a superscript to define the linear suscep-

tibility χ(t) := χ(1)(t). The upper limit on the integral expresses the

causality condition that only the applied field at times in the past may

affect the current state of the atoms.

So far we have described atomic response in the time domain, which is

particularly useful when looking at time-dependent input fields such as

short pulses. But it is also instructive to look at the frequency domain,

which is advantageous when the input field is monochromatic. The

change in perspective is effected as usual via the Fourier transform.19

We will use the convention for the transform on the electric field enve-
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lope E(t)
E(ω) =

∫ ∞

−∞
E(t)eiωtdt (2.17)

and for the inverse

E(t) = 1
2π

∫ ∞

−∞
E(ω)e−iωtdω (2.18)

and we define the transform in the same way for the polarisation enve-

lope P(t).

Making the envelope and carrier ansatz as in (2.7) and substituting

(2.18) into the right-hand side of (2.16), we get

P(t) = ε0

∫ t

−∞
χ(t′)

1
2π

∫ ∞

−∞
E(ω)e−iω(t−t′)dωdt′. (2.19)

We now define the frequency-dependent linear susceptibility

χ(ω) :=
∫ t

−∞
χ(t′)eiωt′dt′ (2.20)

such that

P(t) = 1
2π

∫ ∞

−∞
ε0χ(ω)E(ω)e−iωtdω. (2.21)

This expression gives the time-dependent polarisation in terms of

the frequency components of the field weighted by that frequency-

dependent susceptibility function. We may then take the Fourier trans-

form of the left-hand side and, as the equality holds for each frequency,

we obtain the frequency-domain linear response function

P(ω) = ε0χ(ω)E(ω). (2.22)

We may now substitute this expression into (2.13), with E(ω) time-

independent by the definition (2.17), to obtain

∂E(z, ω)

∂z
= i

k
2

χ(ω)E(z, ω). (2.23)

This first-order differential equation in z has the analytical solution

E(z, ω) = E(0, ω)ei k
2 χz. (2.24)
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Having determined an expression for the electric field envelope in terms

of the frequency-dependent susceptibility, we can put this expression for

the envelope into equation (2.13) in order to determine the effect it will

have. It is useful to separate the real and imaginary parts of the suscep-

tibility χ(ω) := χR(ω) + iχI(ω), and we find

E(z, ω) = E(0, ω)ei( k
2 χRz)e−

k
2 χIz. (2.25)

The real part of the frequency dependent susceptibility then corre-

sponds to a phase shift k
2 χRz and so dispersion, and the imaginary part

diminishes the field. As defined in (2.14) the intensity I ∝ |E |2 and so is

attenuated as it progresses through the medium via

I(z, ω) = I0(z, ω)e−α(ω)z (2.26)

where the absorption coefficient α(ω) := kχI(ω). This is the familiar

Beer law of absorption for weak fields.

2.3.2 Refractive Index

If we return back to the Maxwell equations, we see by substitution of the

susceptibility χ into the definition for displacement, equation (2.2), we

get

D = ε0(1 + χ)E. (2.27)

Deriving the Maxwell wave equation again using this substitution, we

find that the result is as for propagation in free space but with the vac-

uum speed c replaced with a general phase velocity

vp =
c√

1 +< [χ]
=

c
n

(2.28)

where n is the refractive index, familiar from geometrical optics. In

most linear media < [χ] is positive, so light travels more slowly in the

medium.22
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This leads us to consider what this velocity represents, considering that

photons are massless and must travel at c.23 The resultant field wave is

a superposition of the applied field wave and a secondary field wave

which results from induced dipoles. In linear media, this resultant wave

has the same carrier frequency but a different phase. The fact that the

frequency is the same is the reason dense transparent materials exist. If

the secondary wave lags the applied wave, the resultant wave will also

lag. An observer in the medium will have to wait longer for the peaks

of the resultant wave to come past. It is this phase difference which

leads to an apparently slower phase velocity. The refractive index rep-

resents the cumulative phase difference as the light moves through the

medium.19

2.4 Interaction of Light with Atoms

We have seen in the weak field regime how the linear susceptibility re-

lates to the absorptive and dispersive response of the medium. But we

have not yet determined how that susceptibility relates to the proper-

ties of the atomic ensemble. Beyond the linear regime, the susceptibility

is not a good descriptor for the response of the medium, and analytic

expressions for the field propagation are not available. In the nonlinear

regime, we will need to follow the dynamics of the atoms to determine

how the field will propagate through the medium.

For the dynamics of atom-light interaction to be properly considered

the system must be treated as an open quantum system. While the pro-

cesses of absorption and stimulated emission (of photons from and to

the applied field) can be described within a closed quantum system, the

process of spontaneous decay due to interaction with vacuum fluctu-

ations surrounding an atom cannot. As such, the time evolution is de-
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scribed by the Lindblad master equation

ih̄
∂ρ

∂t
= [H, ρ] + L {ρ} . (2.29)

The background of this equation and the conditions under which it is

valid are discussed in appendix A. It constitutes a set of differential

equations to be solved: one for each element of the density matrix ρ.

2.4.1 Spontaneous Decay of Excited States

As described in equation (A.9), coupling to the environment is imple-

mented via the Lindblad superoperator L which is completely defined

by a finite set of collapse operators. In the case of spontaneous emission

due to interaction with vacuum fluctuations, these are defined as

Cij =
√

Γij |i〉 〈j| . (2.30)

where Γij = 1/τij and τij is the stochastic rate at which electrons spon-

taneously decay from a higher state |j〉 to a lower state |i〉. The quantity

Γij is known as the natural linewidth for the specific transition |i〉 → |j〉,
for reasons that will be clarified in section 2.5.

2.4.2 The Interaction Hamiltonian

A single-electron (or hydrogenic) atom has a positively charged nucleus

and a negatively charged electron, both of which will interact with an

applied electromagnetic field. At optical wavelengths, however, the in-

teraction with the nucleus is negligible,24 so we focus our attention on

the electron.

Without interaction with an external field, the bare atomic Hamiltonian

is given by

H0 =
p2

2me
+ V(r) (2.31)
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where me is the mass of the electron, r and p = ih̄∇ are its position and

momentum operators, and V(r) is the spherical atomic potential.

The non-relativistic Hamiltonian of the electron interacting with an ap-

plied classical electric field E, in the Coulomb gauge, may be written

H = H0 +HI (2.32)

where the interaction Hamiltonian term HI describes the coupling of the

atomic dipole to the field.24 The problem of the atom-light interaction

is then one of calculating the matrix elements of HI as a perturbation to

the eigenstate basis of H0.

We will consider a monochromatic field with angular frequency ω and

wavenumber k (the analysis extends to multi-chromatic fields, which we

will consider in chapter 3). We may write the field as

E(r, t) = x̂
[

1
2E(t)ei(k·r−ωt) + 1

2E∗(t)e−i(k·r−ωt)
]

(2.33)

where x̂ is the unit polarisation vector and E(t) is the field amplitude.

We simplify calculation of matrix elements by making the exponential

expansion

eik·r ≈ 1 + (ik · r) + 1
2!
(ik · r)2 + . . . (2.34)

and neglecting all but the first term, unity. This electric dipole approxi-

mation25 represents neglecting the spatial dependence of the field over

the extent of the atom, and is justified as the electronic wavefunction is

on the order of the Bohr radius at 10−10 m and the optical carrier wave-

length λ = 2π/k is on the order of 10−7 m. The approximation may

equivalently be derived as truncating a multipole expansion of the inter-

action at the dipole term.26

Applying the electric dipole approximation, we may write the interac-

tion Hamiltonian term as

HI = −er · E = −d · E (2.35)
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where in analogy with a classical dipole moment, d is the electric dipole

operator. And we may take the field out of the spatial integral implicit

in calculating the matrix elements between two bare atom eigenstates |a〉
and |b〉,

〈a| HI |b〉 = −
[

1
2E(t)e−iωt + 1

2E∗(t)eiωt
]
〈a| x̂ · er |b〉

= −
[

1
2E(t)e−iωt + 1

2E∗(t)eiωt
]

dab (2.36)

where dab is then the matrix element of the electric dipole operator d

projected on the polarisation direction of the electric field. The crux

of the problem is then in calculating (or looking up) dipole matrix ele-

ments for the eigenstates of a given system.

2.4.3 Dipole Matrix Elements and Parity

We can show that the diagonal matrix elements of d = er are zero by

making a parity argument. We define the parity operator Π as the uni-

tary operator (i.e. Π†Π = 1) that flips the sign of the position operator r

via

ΠrΠ† = −r. (2.37)

Operating with Π on the right of both sides shows that the anticommu-

tator {Π, r} = Πr + rΠ = 0 and thus the matrix elements vanish

〈i| {Π, r} |j〉 = 〈i|Πr + rΠ |j〉 = 0 (2.38)

for any states |i〉 , |j〉. Now Π commutes with H, and so has the same

eigenstates, so we have eigenvalues πi, πj such that Π |i〉 = πi |i〉 and

Π |j〉 = πj |j〉. Thus we can write

〈i|Πr + rΠ |j〉 = (πi + πj) 〈i| r |j〉 . (2.39)

The right hand side can only be zero if πi + πj is zero or if the matrix

element is. Now, as Π2 = 1, the eigenvalues π = ±1. So for the di-
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agonal matrix elements, πi + πi can’t be zero and πj + πj can’t be zero

so it must be that 〈i| r |i〉 = 〈j| r |j〉 = 0. The off-diagonal matrix ele-

ments 〈i| r |j〉 are non-vanishing if the states have opposite parity such

that πi = −πj.27

2.4.4 Atomic Coherence and Polarisation

We introduced the polarisation P in section 2.2 as the cumulative effect

of charge separation induced on individual atoms and defined it in 2.3

as the dipole moment per unit volume. In terms of atomic observables,

the polarisation at a distance z through the medium at time t may there-

fore be written as the expectation value of the scalar dipole operator for

those atoms

P(z, t) = N(z)〈d(z, t)〉 (2.40)

where N(z) is the number density (atoms per unit volume) of the

medium, which may in general be a function of propagation distance

z, for example in an atom cloud shaped by the geometry of a magneto-

optical trap,28 or constant for a cell in thermal equilibrium.

The expectation value of an observable for a system in a pure or mixed

state represented by a density matrix ρ is defined in equation (A.5), such

that we may write

P(z, t) = N(z)Tr [ρd(z, t)] (2.41)

where Tr[·] is the trace operator. As we know from the above parity ar-

gument that the diagonal matrix elements of the dipole operator are

zero, we may then write P directly in terms of the off-diagonal elements

and the atomic coherences, via

P(z, t) = N(z)∑
i 6=j

[
dijρij(z, t) + djiρji(z, t)

]
. (2.42)
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Now in order to relate this to the slowly varying envelope P , we need to

rotate the density matrix elements, via

ρij = ρ̃ij ei(kz−ωt)

ρji = ρ∗ij = ρ̃∗ij e−i(kz−ωt)

where tilde-notated variables ρ̃ij are slowly varying density matrix ele-

ments. Dropping the tilde notation, we then derive an expression for the

slowly-varying polarisation envelope in terms of the atomic coherences

P(z, t) = N(z)∑
i 6=j

dijρij(z, t) (2.43)

which we may substitute into the propagation equation (2.13).

Note that in our discussion of polarisation in this section we have made

no reference to the susceptibilities χ(j)(t). These are implicit in the den-

sity matrix coherences. This analysis is valid for any general nonlinear

form of polarisation as expressed in equation (2.15) if we can determine

the evolution of atomic states from the Lindblad equation (2.29).

2.4.5 Thermal Atoms

The above analysis for the atom-light interaction is appropriate for sta-

tionary (i.e. ultracold) atoms but must be modified for thermal atoms

due to the averaging effect of atomic motion.29

An atom moving with a velocity component v in the z-direction will in-

teract with a Doppler-shifted field frequency ω − kv. This shift is ef-

fected over a 1d Maxwell-Boltzmann probability distribution function of

velocity

f (v) =
1

u
√

π
e−(kv/u)2

(2.44)

where the thermal width u = kvw. Here k is again the wavenumber of

the quasi-monochromatic field and vw = 2kBT/m is the most probable
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speed of the Maxwell-Boltzmann distribution for a temperature T and

atomic mass m. As is usual, kB represents the Boltzmann constant.

To include this Doppler effect in the field propagation equations (2.13),

we replace the atomic coherence factor by an integral over a convolution

of f (v), with the atomic coherence now a function of velocity, so that

P(z, t) = N ∑
i 6=j

dij

∫ ∞

−∞
ρij(z, t; v) f (v)dv. (2.45)

This velocity-dependent ρij(z, t; v) represents the atomic coherence re-

sulting from interaction with a field at the Doppler-shifted frequency

ω− kv.

The result of the inclusion of thermal effects is a broadening of absorp-

tion resonance widths, a familiar concern in spectroscopy. We will con-

sider example spectral profiles in section 2.5.

2.4.6 Shifting to the Speed-of-Light Reference Frame

To solve the propagation equation (2.13) as a boundary value problem, it

is useful to introduce co-moving variables ζ = z and t′ = t− z/c. This is

equivalent to using a reference frame that moves with the speed of light

across the medium.29 We then have

∂

∂ζ
=

∂z
∂ζ

∂

∂z
+

∂t
∂ζ

∂

∂t
=

∂

∂z
+

1
c

∂

∂t
(2.46)

so that
∂

∂z
E(z, t′) = i

k
2ε0

N(z)∑
i 6=j

dij

∫ ∞

−∞
ρij(z, t; v) f (v)dv. (2.47)

In this reference frame we see that the propagation equation for the field

is now a differential equation only in z.
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2.4.7 A Recap

At this point we have derived a set of coupled partial differential equa-

tions describing the dynamics of the atomic density operator (2.29) and

the propagation of the electric field envelope (2.47).

These coupled equations can be integrated numerically for a given set of

boundary conditions defining the input profile of the electric field and

the initial state of the atoms. The integration proceeds via the following

recipe, which must be repeated in a self-consistent manner:

1. Solve the Lindblad master equation for the quantal dynamics of

the atomic density matrix over time t′.

2. Average the Maxwell-Boltzmann probability distribution over ve-

locity v.

3. Solve the Maxwell wave equations for propagation of the electro-

magnetic field over space z.

The description of the specific numerical algorithms used for integra-

tion, along with details of the Python code used to implement these al-

gorithms, is given in appendix B. We will make use of these methods

to solve the mb equations for various systems of interest throughout the

chapters of this thesis.

2.5 Linear Propagation in Two-level Atoms

Now that we have derived the necessary differential equations to de-

scribe 1d propagation in an atomic vapour and described computational

algorithms for the numerical solution of the problem for a given set of

boundary conditions, we will look at example results from simulated
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propagation of a monochromatic (i.e. single carrier frequency) field in a

simple two-level system.

We will define the two-level system and present the results of propa-

gation for some boundary conditions representative of laboratory ex-

periments: pulsed and continuous-wave (cw) input fields. We’ll then

make an analysis of the frequency dependent behaviour of the simu-

lated propagation of a wider-spectrum field. We will use these results

to verify that these results match the known analytic response functions

for the linear regime, such that we have confidence in the computational

scheme for the simulations we will later obtain for nonlinear systems

with more than one carrier frequency.

We will also introduce the natural unit system which will be used

throughout this thesis.

2.5.1 The Two-level System

No real atomic system exists with only two levels of course, but this

minimal scheme is a good approximation in the case of resonant inter-

action with a well-separated transition.

The system is defined by a Hilbert space covered by a basis that consists

of a ground state |0〉 and an excited state |1〉 with eigenenergies E0 and

E1. The resonance frequency ω0 = (E1 − E0)/h̄. As is conventional we

define the detuning of the input carrier frequency from resonance as

∆ = ω−ω0 and the complex Rabi frequency7

Ω(z, t) =
d01

h̄
E(z, t) (2.48)

where d01 = 〈0|d |1〉 is the transition dipole matrix element.

The time evolution is independent of the absolute value of the bare state

energies, so we may set the ground state energy E0 = 0. Making the
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rotating wave approximation, we find that the atomic Hamiltonian is

given by

H = h̄


 0 Ω/2

Ω∗/2 −∆


 (2.49)

in the frame rotating with the carrier frequency.9

For the Lindblad superoperator L we have just a single collapse opera-

tor representing spontaneous decay of the electron from the the excited

state to the ground state

C =
√

Γ |0〉〈1| . (2.50)

In two-level medium we only have one dipole matrix element and one

coherence to consider, such that (neglecting the Doppler effect for now)

the propagation equation (2.47) may be written

∂

∂z
E(z, t′) = iN(z)

k
2ε0

d01 · ρ01(z, t′). (2.51)

It is useful to write the propagation now in terms of the Rabi frequency

∂

∂z
Ω(z, t′) = iN(z)g · ρ01(z, t′) (2.52)

where we define a propagation coefficient

g01 =
d2

01k
2ε0h̄

(2.53)

which is constant for a given transition with dipole matrix element d01

and for a field with carrier wavenumber k.

2.5.2 The Natural Unit System

For a two-level system we have a single natural linewidth, and so it is

convenient to introduce a natural unit system, with frequencies in units

of the natural linewidth Γ, times in terms of the reciprocal spontaneous

decay lifetime τ = 1/Γ and distances in terms of the length of the

medium L.
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To give an illustrative example, we will take a rubidium 85 cell and ap-

ply a monochromatic field on resonance with the d1 transition from the

52S1/2 ground state to the 52P1/2 excited state at ω = 2π × 377 THz. The

spontaneous decay rate for the transition Γ = 2π × 5.75 MHz such

that the lifetime τ = 27.6 ns. The transition dipole matrix element is

d01 = 2.53 · 10−29 C m. From this we can calculate that the propagation

coefficient for the transition g01 = 2π × 4.34 · 10−9 MHz cm2.

The number density N in a contained cell is a function of the tempera-

ture of the cell. For an example temperature T = 200 C we have N =

9.26 · 1014 cm−3. If we then take a cell of a typical length L = 1 mm, the

key parameter we require for describing propagation in the medium can

be expressed purely in terms of the natural units as Ng01 = 2π× 70 Γ/L.

By introducing this natural unit system we are able to reduce the num-

ber of parameters involved in the mathematical problem. For example,

it becomes clear that increasing the length of the medium ten times is

equivalent to raising the number density by the same scale, or by choos-

ing a system with a suitably higher dipole moment.

2.5.3 Weak Probe Lineshape

The Lindblad master equation (2.29) represents a set of differential equa-

tions in time for the time evolution of each density matrix element.

As we know via equation (2.43) that the polarisation P is related to the

off-diagonal coherence ρ01, we write out the particular equation to fol-

low its time evolution, such that

dρ01

dt
= iΩ (ρ00 − ρ11) +

(
i∆− Γ

2

)
ρ10. (2.54)

In the case of weak field input on the medium, we may assume that

we’re in a quasi-static regime where the atomic density matrix changes
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negligibly over the time of the input. We thus set the time derivative in

equation (2.54) to zero.

The initial condition is that all of the atomic population starts in the

ground state. For a weak field we may also assume that population

transfer is negligible such that ρ11 = 0.

Under these weak field approximations, we may thus derive the steady

state, weak field lineshape

ρ01(z) = −Ω(z)
1

iΓ
2 + ∆

. (2.55)

2.5.4 Weak Pulse Propagation Results

The first Maxwell-Bloch simulation results we will consider are for an

input field profile of finite duration, namely a Gaussian pulse. In gen-

eral for short duration pulses, the atoms do not reach equilibrium with

the applied field before the pulse has passed, however for weak fields so

little population is transferred that a quasi-static regime can be a good

approximation. In the following simulations we solve the full Maxwell-

Bloch problem in order to compare to the analytically known equation

(2.54).

The Gaussian pulsed input field is defined by

Ω(t) = Ω0 exp

[
−4 (log 2)

(
t− t0

tw

)2
]

(2.56)

where Ω0 is the peak input Rabi frequency, t0 is the time at which the

function reaches that peak, and tw is the full width at half maximum

(fwhm) of the pulse.

In this simulation we let the peak Ω0 = 2π × 10−3 Γ, the centre t0 = 0

and the width tw = 0.1 τ. We define the medium to have a length L,
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Figure 2.1 The real part of the complex Rabi frequency Ω(z, t) (in Γ) showing the

simulated result of propagation of a weak pulse through a two- level

medium. (Inset 3d) The field has Gaussian profile entering the medium

at z = 0, with peak Ω0 = 2π × 10−3 Γ and width tw = 0.1 τ.

number density N and coupling g such that the key absorption parame-

ter Ng = 2π × 1 Γ/L.

In figure 2.1 we present a colour map of the simulated real part of the

complex Rabi frequency Ω(z, t) describing the field profile as it propa-

gates through the medium.

Time t is shown on the x-axis and the propagation distance z is shown

on the y-axis such that the field enters at the bottom of the plot. The

horizontal slice at z = 0 thus represents the Gaussian input field. All

propagation results are presented in the speed-of-light reference frame

described in section 2.4.

We see that the primary pulse envelope is attenuated and slightly fast,

such that the first peak arrives at the rear of the medium, z = 1 L, at

a time t ≈−0.05 τ in the speed-of-light reference frame. This is typi-

cal of propagation through a medium with a normal dispersion profile
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Figure 2.2 Density matrix elements of the two-level atom system as a function of z

and t during the simulation. (Top) Excited state population ρ11(z, t). (Bot-

tom) Coherence ρ01(z, t) between the states. The simulation parameters

and boundary conditions are as for figure 2.1.

(see section 4.3 for further discussion of fast- and slow-light group ve-

locities). Not all of the energy of the pulse is absorbed, however. This is

because the pulse is short in duration relative to τ, such that its spectral

profile is wider in frequency space than the absorption window of the

atoms. Thus some spectral components of the field see a medium which

is transparent to them. However, they remain subject to phase shift. We

see high-frequency ringing, also described as a 0π pulse as the total area

integrates to zero.9, 30

In figure 2.2 we present colour maps of simulated density matrix ele-

ments describing the response of the atoms along the medium as the

applied field reaches them.
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The cumulative Rabi frequency of the pulse is many orders of magni-

tude too small to saturate the excited state population so that for the

atoms at the front of the medium at z = 0, ρ11 continues to rise through

the pulse to a peak at time t ≈ 0.01 τ after the input field has peaked.

There is a small ‘echo’ in the excited state, due to the field ringing, visi-

ble at t ≈ 0.2 τ and between z = 0.4 L and 0.6 L.

A positive imaginary coherence =[ρ01] is driven by the applied field at

the front of the medium. We observe that the coherence decays at half

the rate of the excited state population, Γ/2, consistent with equation

(2.54).

2.5.5 Spectral Analysis

In section 2.3 we made use of Fourier transforms to shift perspective to

the frequency domain. We showed that in the linear regime it is possible

to derive a response function, given in equation (2.22), which when sub-

stituted into the propagation equation allows us to understand how the

susceptibility describes the frequency-dependent absorptive and disper-

sive properties of a medium with respect to a weak field.

In order to verify the numerical model we have developed, as well as to

demonstrate these spectral properties, we will now look at results from

a simulation of a pulse propagating through the two-level medium. We

wish to confirm that the results of the simulation match the known ana-

lytic response functions for the linear regime.

For this simulation we define an unusual and artificial time profile for

the input field boundary condition: a cardinal sine (sinc) function given

by

Ω(t) =
1

20
√

2π
sinc(10t). (2.57)
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Figure 2.3 (Top) The sinc function (pink) defined by equation (2.57) which forms a

simulated pulse profile in time Ω(t, 0) entering the medium at z = 0,

i.e. the boundary condition. (Bottom) (Purple solid) The discrete Fourier

transform |Ω(ω, 0)| of the sinc shape above, representing the same func-

tion in the frequency domain at z = 0. (Purple dotted) The resulting field

profile |Ω(ω, z = 1)| in the frequency domain at z = 1 L, after propagation

through the medium. The medium is defined with a length L, number

density N and coupling g such that Ng = 2π 1 Γ/L.
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This input profile, shown in the top subplot of figure 2.3, is clearly im-

practical for any experimental setup. We choose this profile because its

Fourier transform, shown in the bottom subplot of figure 2.3, is a square

function with a width of 10 Γ. This gives us a wide spectral range over

which to observe the effect of the two-level medium on the field.

The discrete Fourier transform (dft) is used as the numerical method

for shifting to the frequency domain, which results in some Gibbs ring-

ing31 seen at the corners at ±5 Γ.

A more-realistic Gaussian time profile, short in duration, would also

cover a wide spectral range. We choose the sinc function for the reason

that it provides greater accuracy in the wings far away from resonance,

where both the input and output field amplitudes would be extremely

small for the Gaussian function, bringing inaccuracy as we get close to

limits for floating point storage.

The absorptive effect of the medium is immediately visible if we com-

pare the |Ω(ω, z= 1)|, the profile at the back of the medium, also shown

(dotted) in the bottom subplot of figure 2.3. Around resonance there is

a significant dip of around 60% in the transmitted Rabi frequency (and

thus the electric field amplitude).

In figure 2.4 we show the results for |Ω(ω, z)| as the sinc pulse moves

through the medium. On resonance, the field decays exponentially

while in the spectral wings we see nearly full transmission.

We can compare the simulated result with the analytic expression given

in equation (2.25), which tells us that we can obtain the imaginary part

of the susceptibility by checking the attenuation of the field via

k
2

χI(ω)z = − log
|Ω(z, ω)|
|Ω(z = 0, ω)| (2.58)

and the real part of the susceptibility by checking the phase shift over
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Figure 2.4 Magnitude of the Fourier-transformed Rabi frequency |Ω(z, ω)| (in Γ),

showing propagation of the field through the medium in the frequency

domain during the simulation. The input boundary condition field profile

at z = 0 is the sinc function shown in figure 2.3. The medium is defined

with a length L and number density N such that Ng = 2π 1 Γ/L.

the medium,
k
2

χI(ω)z = φ(z, ω)− φ(z = 0, ω) (2.59)

where the φ is defined via

Ω(z, ω) = |Ω|eiφ. (2.60)

In figure 2.5 we present the simulated results for the susceptibility as

defined in (2.58) and (2.59).

We see that the imaginary part, describing absorption of the field, has

the Lorentzian lineshape familiar as a solution for classical systems in-

volving forced and damped resonance. The fwhm is measured numer-

ically, and as we would expect it is equal to 1 Γ, the natural linewidth

around which we designed the natural unit system.

Absorption linewidths observed in experiment will in general be signifi-

cantly wider, as the important effects of Doppler broadening and atomic
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Figure 2.5 (Top) (red solid) The imaginary part of the linear susceptibility χI derived

from the simulation via equation (2.58). (Bottom) (blue solid) The real part

of the linear susceptibility χR derived from the simulation via equation

(2.59). (grey dashed) Analytic functions of χI and χR derived from the

weak probe lineshape given in equation (2.61). The fwhm of the χI line-

shape is shown as measured numerically.
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collisions must be considered. This natural linewidth represents the the-

oretical minimum linewidth that could be observed for cold atoms due

to spontanous emission rate, which for an atom in free space can never

be reduced.7

The real component has the familiar dispersion lineshape describing the

phase of the input field relative to the frequency of the oscillator as it

passes over resonance from lagging to leading.19

By comparing the linear propagation equation (2.23) with the weak

probe approximation for the coherence, given in equation (2.55), we

note that we can also derive an analytic expression for the frequency-

dependent susceptibility in this regime,

k
2

χ(ω) = −Ng
1

i Γ
2 + ∆

. (2.61)

The real and imaginary parts of this function are overlaid (grey dashed

lines) on the simulated results and we see excellent agreement around

resonance. We see in (2.61) that the imaginary part of the susceptibility,

and thus the absorption, is solely due to the spontaneous decay term Γ.

This we can understand as it is this scattering of energy by the atoms to

the environment which results in a loss of energy in the system.

Spectral field components beyond ±5 Γ are negligible (as defined by

the sinc function, see figure 2.3) and so we see some noise in the re-

sult beyond this point. We also see deviation between the analytic and

simulated results in the dispersion profile far from resonance, which is

due to the linear susceptibility approximation being valid only for near-

resonant components of the field.

This result tells us that the computational scheme designed to model

propagation of light in atomic media is accurate in the linear regime,

which gives us confidence in the scheme for the work we will do later

going beyond this weak field limit.
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Figure 2.6 Peak transmission (top) and absoptive index (bottom) for a monochro-

matic cw field across a discrete range of 100 detunings ∆ around reso-

nance. The solid lines in both represent the same values for the continu-

ous spectrum deriving from propagation of the short sinc pulse function.

In the scope of input field boundary conditions, at the other extreme to

short duration, wide-spectral pulses are continuous wave (cw) fields,

with constant intensity over time. Such field envelopes are monochro-

matic, meaning that the frequency domain representation of a cw field

in the time domain is a Dirac delta function.

In figure 2.6 we make a scan of the field detuning ∆ across resonance

with the two-level atom, and mark the peak transmission (T = I/I0) of

the field along with the associated absorptive index.

We also plot the transmission and absorption index of the transmission

and absorption as a function of frequency for the wide-spectrum sinc

pulse. The close agreement tells us that the short pulse’s propagation is

as if it were composed of many monochromatic frequency components

interacting independently with the medium. In the linear regime, the

solution is a superposition of individual frequencies.4
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2.5.6 The Voigt Profile

As mentioned, the lineshapes presented thus far for weak probe spectra

neglect the thermal motion of the atoms, and so are only valid for atoms

that are stationary, i.e. close to absolute zero.

To account for thermal atoms, we must include the Doppler effect by

means of the average over detunings described by the integral in equa-

tion (2.45). The thermal lineshape function may then be expressed as

s(∆) =
∫ ∞

−∞
h(∆− kv)× f (∆)dv (2.62)

where the weak probe natural lineshape

h(∆) = −Ng
1

i Γ
2 + ∆

(2.63)

is given in equation (2.61) and f (v) is the Maxwell- Boltzmann distribu-

tion over atomic velocities v given in equation (2.44).

Using the convolution theorem for Fourier transforms, this integral can

be computed as

s(∆) =
i
√

π

2u
e−z2 × erfc(−iz) (2.64)

where z = ia/2 + b given a = Γ/u and b = ∆/u, and erfc is the comple-

mentary error function.32 This convolution of a Lorentzian function with

a Gaussian function is known as a Voigt profile.

In figure 2.7 we show simulated results for the real and imaginary parts

of the susceptibility for the same system as in figure 2.5, but this time

including Doppler effects in the numerical algorithm by a weighted av-

eraging over a range of velocity classes as described in appendix B. We

take the thermal width to be u = 2π × 0.5 Γ. As an example, this might

correspond to a ∼ 0.1 mK vapour of 85Rb probed on the d1 line.

We compare these simulated lineshapes with the weak probe Voigt pro-

file given in equation (2.64) and see agreement with the analytic result.
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Figure 2.7 Top) The imaginary part of the linear susceptibility χI derived from a

thermal simulation via equation (2.58). (Bottom) (blue solid) The real part

of the linear susceptibility χR derived via equation (2.59). (grey dashed)

Analytic functions of χI and χR derived from the convoluted Voigt profile

given in equation (2.64).

We see that the inclusion of temperature in the model has the effect of

broadening the spectral lineshapes.

2.6 Discussion

In this chapter we started from the Maxwell equations and derived a

propagation equation for monochromatic light, using the slowly varying

envelope approximation. We introduced the linear and nonlinear optics,

and for the linear regime, for weak fields, the useful concept of suscep-

tibility and how this relates to the absorptive and dispersive response of

the medium.

Going beyond the linear regime, we need to follow the quantal dynam-

ics of the atomic density matrix, which we do with the Lindblad mas-

ter equation. We defined the interaction Hamiltonian within the electric



Chapter 2. Propagation of Light in Thermal Atomic Vapours 50

dipole approximation, and how the polarisation of the medium can be

derived from atomic coherences. For thermal atoms this coherence must

be averaged over a Maxwell-Boltzmann distribution. We discussed algo-

rithms (presented in appendix B) for integrating the propagation equa-

tions numerically for nonlinear propagation.

We presented results for a two-level system in the linear regime. In do-

ing so we used spectral analysis to compare with the analytic results de-

rived in this regime. The good agreement in these results gives us con-

fidence in the numerical methods. In the next chapter, we will employ

the model in considering nonlinear pulse propagation in two-level and

three-level systems.



3 Nonlinear Propagation Phenomena

3.1 Introduction

In chapter 2 we introduced a model for the propagation of light through

a thermal atomic vapour, based on the Maxwell-Bloch equations. We

presented analytic solutions of those equations in the linear regime of a

weak applied field, and introduced computational methods (described

in appendix B) to solve the equations beyond the weak field approxima-

tions.

In this chapter, we will take the model beyond the weak probe and into

the nonlinear regime, demonstrating some of the effects that emerge

from the interaction of thermal atomic vapours with strong applied

fields: notably self-induced transparency. We will also introduce light

propagation in three-level atoms, which has been found to result in a

variety of interesting phenomena due to the existence of dark superposi-

tion states.

Putting these together in the final section, we will look at strong applied

fields in three-level atoms leading to propagation of matched pulses and

simultons.

51
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3.2 Self-Induced Transparency & Optical Solitons

in Two-Level Atoms

In chapter 2 we made first use of the Maxwell-Bloch propagation model

to consider weak pulses of light incident on a medium of two-level

atoms, and saw that it is possible to derive analytic solutions to these

problems. Once we go beyond this linear regime, the approximations

made in deriving those weak field solutions are not available, so in gen-

eral the problem of nonlinear propagation must be solved numerically.

There exists another set of conditions, however, that has proved sus-

ceptible to analytic description, and that is the case of short, strong

pulses of light. By ‘short’ here we specifically mean that the duration

of the pulses is much shorter than the natural decay lifetime of the ex-

cited state, i.e. τw � τΓ. Strong, resonant interaction with light on this

timescale results in a response from the atoms that is definitively non-

classical, as the interaction all happens within the phase memory of

the atoms such that quantum-mechanical coherence is critical to under-

standing the propagation behaviour.

Neglecting damping in this way, it must be the case that the total energy

of the macroscopic atom-light system is a conserved quantity. This con-

servation law may be expressed as9

[
∂

∂z
+

1
c

∂

∂t

]
|E |2 + ∂U

∂t
= 0 (3.1)

where U is the matter energy density given by

U = Nh̄ω0

∫ ∞

−∞
ρ11 f (∆)d∆. (3.2)

We must also have conservation of probability in the density matrix,

such that

Tr [ρ] = ρ00 + ρ11 = 1 (3.3)



Chapter 3. Nonlinear Propagation Phenomena 53

and it is this latter conservation law that distinguishes the semiclassical

propagation model from any classical theory, with saturation of excita-

tion inherent in two-level atoms that can store energy only of h̄ω0. The

phenomena of self-induced transparency (sit) we shall discuss in this

section is one interesting result of such saturation effects.

3.2.1 The Area Theorem

A central tool for describing the propagation of short, strong pulses is

the nonlinear area theorem.10 The concept of the pulse area generalises

the Rabi frequency from steady fields such that it is useful for the de-

scription of time-dependent field envelopes. The pulse area is defined

by

θ(z) =
∫ ∞

−∞
Ω(z, τ)dτ (3.4)

where Ω(z, τ) as before is the Rabi frequency envelope of the pulse.

Inserting this definition for θ(z) into the expression we derived for the

time-evolution of the electric field envelope in equation (2.51) with an

analytic expression for the Rabi oscillation of the atomic coherence ρ01

on resonance, it is possible10 to derive an expression for the evolution of

the pulse area as the pulse propagates through the medium

∂

∂z
θ(z) = −α

2
sin θ(z) (3.5)

where α is the resonant absorption coefficient defined in equation (2.26).

In the case of weak fields such that θ(z) � 1 we may approximate

sin θ(z) = θ(z) and obtain the Beer absorption law, which we thus see

is generalised by the area theorem.
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Figure 3.1 The hyperbolic secant function (red) expressed in equation (3.6) and Gaus-

sian (blue) expressed in equation (2.56). Both have pulse area θ = 2π and

fwhm τw = 1.0 . The fwhms are indicated with dotted lines.

3.2.2 Self-Induced Transparency

Now looking at the case of a pulse of light with a time-dependent pro-

file such that θ(z) = 2π, we see that equation (3.5) tells us ∂θ/∂z = 0, i.e.

that the area of the pulse will remain constant.

This suggests that it is possible for some form of 2π pulse to travel

through the medium without attenuation. This indeed turns out to be

the case if the envelope profile is such that the Bloch vector is rotated

along a specific trajectory, effected by a hyperbolic secant profile

Ω2π(z, τ) =
2
τs

sech
(

τ − z/vg

τs

)
(3.6)

where τs defines the width of the pulse and vg is the group velocity.

In figure 3.1 we show the hyperbolic secant function expressed in equa-

tion (3.6) and compare it with the familiar Gaussian profile of equation
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(2.56) of the same pulse area θ = 2π and fwhm τw = 1.0 . We see that

these functions are similar but that the sech function has a smaller peak

amplitude and larger wings. We determine numerically that the fwhm

is related to the sech-width τs via τs ≈ 2.633916 τw.

The group velocity, relative to the speed-of-light reference frame, is

given by

vg =
2

Ng · τ2
s

(3.7)

which means that the exit of the envelope from the medium is delayed

relative to an equal travel distance in vacuo by L/vg. Recall that in this

reference frame the speed of light in vacuum is effectively infinite, with

the pulse arriving at each spatial point z at the same retarded time τ.

In figure 3.2 we show the results of a simulation, again using the nu-

merical scheme defined in appendix B, of the absolute part of the Rabi

frequency Ω(z, τ) for the propagation of a θ = 2π sech pulse through a

medium of two-level atoms. The pulse has a fwhm τw = 0.01 τΓ and the

medium is defined such that Ng = 2π 103 Γ/L.

We see that the 2π pulse retains its profile through the medium, but is

delayed by ≈ 0.05 τΓ. Recall that in the speed-of-light reference frame

shown in these figures, a pulse of light in vacuo arrives at the same time

it left.

In figure 3.3 we show the same result as a colour map, from which we

can more clearly see both the consistency of the pulse profile as it prop-

agates through the medium and the slower group velocity. The motion

corresponding to the analytic group velocity given in equation (3.7) is

shown by the dotted line, and we see that the pulse peak matches that

result.

We can understand the reason the pulse is able to travel without attenu-

ation by looking at elements of the density matrix.
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Figure 3.2 Simulated absolute value of the complex Rabi frequency Ω(z, τ) for the

propagation of a θ = 2π sech pulse of fwhm τw = 0.01 τΓ through a

medium with constant density such that Ng = 2π 103 Γ/L.
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Figure 3.3 Colormap showing the same simulated results shown in figure 3.2. The

dotted lines at z = 0, 1 L mark the start and end of the medium. The

dashed line indicates the predicted group velocity given in equation (3.7).
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Figure 3.4 Simulated excited state population ρ11 for the propagation of a θ = 2π

sech pulse of fwhm τw = 0.01 τΓ through a medium with constant density

for 0 ≤ z ≤ L such that Ng = 2π 103 Γ/L.
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Figure 3.5 Simulated imaginary coherence = [ρ01] for the propagation of a θ = 2π

sech pulse of fwhm τw = 0.01 τΓ through a medium with constant density

for 0 ≤ z ≤ L such that Ng = 2π 103 Γ/L.

Figure 3.4 shows the excited state population ρ11. We see that at each

point in space through the medium, the pulse transfers all of the pop-

ulation to the excited state as the atoms absorb energy from the field,

before returning it completely to the ground state.

In figure 3.5 we consider the imaginary part of the coherence = [ρ01].

We see that at each point in space through the medium, this makes a

complete oscillation.

Note that due to the form of the simulation, the results show atomic

populations outside of the area of the medium area. We may consider

the number density N to be arbitrarily close to zero in these regions.

As the sech pulse moves through the medium, its leading edge inverts

each slice of the atomic population via absorption before its trailing

edge returns the population to the ground state by stimulated emis-

sion.33 The fact that we are in the regime where we may neglect sponta-

neous decay means that this rotation happens entirely within the phase
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Figure 3.6 The pulse area θ(z) solution (in πΓ) to the area theorem differential equa-

tion (3.5) as a function of distance z and initial pulse area θ0(z) from 0 to

6π for an absorption coefficient α = 2π 2 Γ/L.

memory of the atoms, and no energy is taken from the pulse. This phe-

nomenon is known as self-induced transparency (sit) as it is the area of

the pulse itself which makes the medium transparent to it, and is an ex-

ample of an optical soliton.34

We can understand that the group velocity vg must necessarily be less

than c due to the fact that the pulse energy spends some non-zero

amount of its time as an excitation in the non-moving medium.

We are next led to consider the effect of applying a pulse of an area that

is not exactly 2π or of a different shape to the sech profile. In figure 3.6

we show the result of integration of the area theorem differential equa-

tions over a range of input pulse areas, representing the initial condi-

tion, from 0 to 6π for an absorption coefficient α = 2π 2 Γ/L. We ob-

serve that these inputs converge on stable solutions at the nearest even

multiple of π (i.e. θ(z)→ 0, 2π, 4π, . . . ).

In figure 3.7 we demonstrate the effect of sit for the propagation of



Chapter 3. Nonlinear Propagation Phenomena 60

t (τ)

−0.05
0.00

0.05
0.10

z
(L

)

0.0
0.2
0.4
0.6
0.8
1.0

Ω
(2

π
Γ)

0

40

80

t (τ)

−0.05
0.00

0.05
0.10

z
(L

)

0.0
0.2
0.4
0.6
0.8
1.0

Ω
(2

π
Γ)

0

40

80

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
z (L)

0

2

4

Pu
ls

e
A

re
a

(π
)

(a)

−0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
z (L)

(b)

Figure 3.7 Propagation of (a) 0.8π and (b) 1.8π pulses, showing (top) profiles of the

real part of the complex Rabi frequency Ω(z, τ) and (bottom) pulse area

θ(z).

resonant input pulses of 0.8π and 1.8π respectively. Both input pulses

are Gaussians of width τw = 0.01 τΓ and the medium is such that

Ng01 = 2π 103 Γ/L.

We see that for the 0.8π pulse in figure 3.7 (a) the area θ(z) rapidly de-

creased soon after entering the medium. The pulse energy is not entirely

absorbed, however. The pulse bandwidth is much wider than the ab-

sorption window but still prone to dispersion and so the envelope is

distorted and we see high-frequency ringing through the medium.

In clear contrast, for the 1.8π pulse in figure 3.7 (b) the area θ(z) tends

to 2π and the profile steepens and narrows into the sech-type soliton

which propagates without absorption, though there is ringing from a

small component of the pulse as it is reshaped. We thus observe that

the input pulse does not need to be of the sech profile to be capable of

propagating as an optical soliton as the medium can shape the pulse

into that profile as it propagates if the pulse area θ(z) > π.9



Chapter 3. Nonlinear Propagation Phenomena 61

−0.04 −0.02 0.00 0.02 0.04 0.06 0.08 0.10
Time (1/Γ)

0

50

100

150

200

250

t (τ)

−0.05
0.00

0.05
0.10

z
(L

)

0

1

Ω
(2

π
Γ)

0

250

0 2 4 6
Pulse Area (π)

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
D

is
ta

nc
e

th
ro

ug
h

th
e

m
ed

iu
m

(L
)

Figure 3.8 Propagation of a 4π sech-type pulse. (main colourmap) Absolute value of

the complex Rabi frequency Ω(z, τ). The dashed line indicates the analytic

pulse velocity given by equation (3.7). (inset 3d) Propagation profile of the

pulse. (left) pulse area θ(z).

We note again that the group velocity vg is lower than c due to the en-

ergy of the field spending some amount of its time as an excitation in

the fixed medium.

3.2.3 Pulse Breakup

For pulses > 3π, the area theorem predicts that the area will tend to

the nearest even multiple of π, but in fact there are no steadystate so-

lutions to the propagation problem other than the 2π sech pulse.35 In

larger pulses, we find that the Rabi frequency envelope breaks into dis-

crete 2π envelopes with different widths and thus group velocities.33

In figures 3.8 and 3.9 we see the result of 4π and 6π sech-type pulses of

width τw = 0.02 τΓ through a medium with Ng = 2π 103 Γ/L. Again we

neglect the spontaneous decay of the excited state. We see that the pulse

immediately breaks up on entering the medium and that the resultant
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Figure 3.9 Propagation of a 6π sech-type pulse. (main colourmap) Absolute value of

the complex Rabi frequency Ω(z, τ). (inset 3d) Propagation profile of the

pulse. (left) pulse area θ(z).

pulses steepen into sech-type solitons just like the single 2π pulse.

The resultant pulses have different widths and thus different group ve-

locities as predicted in equation (3.6), though we see that the final re-

sultant pulse travels at the same velocity as an incident 2π pulse of the

same original width. The area subplots confirm that the pulse area of

each resultant pulse is the steady-state solution, 2π.

Figure 3.10 shows the excited state population ρ11 corresponding to the

6π sech pulse. We see that the resultant pulses emerge from each of the

three full Rabi oscillations made by the 6π pulse.

The first paper by McCall and Hahn describing sit theoretically in-

cluded experimental evidence of the effect.10 Results were presented

from an experiment using a liquid-helium-cooled ruby absorber show-

ing that intense light was transmitted without attenuation but delayed.

In such early experiments however it was difficult to discount the pos-

sibilty of a hole-burning effect, where the absorber is saturated by the
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Figure 3.10 Simulated excited state population ρ11 for the propagation of a θ = 6π

sech pulse of fwhm τw = 0.02 τΓ through a medium with constant den-

sity such that Ng = 2π 103 Γ/L.

pulse. Gibbs and Slusher presented conclusive results from experiments

using rubidium vapours,11 including both large pulse delays and pulse

breakup in good agreement with the theoretical prediction.

3.3 Propagation of Light in Three-level Atoms

The solutions to the Maxwell-Bloch equations we have considered thus

far have all involved the two-level atom model. In reality atoms consist

of an infinite number of discrete levels along with a continuum of levels

corresponding to the free electron. Two-level atoms do not exist, but the

model can successfully describe the interaction of a monochromatic field

with a frequency near resonant with a pair of discrete energy levels. For

multi-chromatic fields, other energy levels may need to be introduced

due to transitions involving them becoming near-resonant with compo-

nents of the field.
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Figure 3.11 The three possible configurations of three-level atoms: (a) the Ξ (or lad-

der) configuration, (b) the Λ configuration and (c) the V configuration.

The simplest extension of the two-level model is obviously to add a sec-

ond frequency component near-resonant with a third atomic level. This

extension may seem incremental but in fact produces a variety of inter-

esting and useful phenomena, due to the presence of quantum superpo-

sition dark states. Such phenomena include stimulated Raman adiabatic

passage (stirap),36, 37 lasing without inversion38–40 and phaseonium,41, 42

which have been well-studied in theory and experiment. We will dis-

cuss further two other well-studied phenomena in this thesis: matched

pulses and simultons in this chapter, and electromagnetically induced

transparency (eit) in chapter 4.

First we take the opportunity to note that there are three available con-

figurations of three-level atoms according to the transitions chosen for

coupling. These are illustrated in figure 3.11.

In the Ξ (or ladder) configuration, the ground-state |0〉 is coupled to the

excited state |1〉 as in the two-level atom, and a second field couples the
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transition from this intermediate excited state to a higher state, which

we label |2〉. The transition |0〉 to |2〉 is considered to be dipole forbid-

den by virtue of these states having the same parity. This configuration

has proved useful for excitation to highly excited Rydberg states which

allow for strong dipole-dipole interaction between atoms.43

In the Λ configuration, the atom has two lower states |0〉 and |2〉, and

a single excited state |1〉 which is coupled to both lower states. These

could for example represent a ground state hyperfine doublet. Coupling

of the two lower states is taken to be dipole forbidden. We will investi-

gate the Λ configuration in greater detail when we investigate eit and

the propagation of dark-state polaritons in chapter 4.

Finally, in the V configuration, the atom has two excited states |1〉 and

|2〉, and a single ground state level |0〉 which is coupled to both excited

states. We do not allow transitions between the two excited states. It is

the V configuration we will consider further in this chapter, as we ex-

tend the theory of sit in two-level atoms to a pair of fields interacting

with a thermal medium on resonance with transitions such that we de-

scribe the medium as consisting of V-type atoms.

3.4 Matched Pulses & Simultons in Three-Level Atoms

The study of optical solitons propagating due to self-induced trans-

parency, summarised in section 3.2, can be extended to consider short

resonant pulses in three-level media. It has been determined theoreti-

cally that simultaneous optical solitons — or simultons — propagating

at the different transition wavelengths exist as analytic solutions to the

three-level mb equations.
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3.4.1 Literature Review

As the results of this work on short resonant pulses in three-level atoms,

beginning in the 1980s, are less familiar than that of soliton propagation

in the two-level system, we take the opportunity here to review some of

the key developments.

The first studies on propagation of simultaneous, different-wavelength

optical pulses were made by Konopnicki & Eberly, 1981.44, 45 The au-

thors derived analytic solutions to the mb equations representing optical

solitons propagating simultaneously at different wavelengths, which

they named simultons. They found analytic descriptions for exactly

matched sech pulses with identical oscillator strengths (i.e. g01 = g02

in the mb model) in Ξ-type and V-type three-level media.

Further analytic work by Kujawski, 1982
46 showed that the mb equa-

tions for the three-level system on two-photon resonance can be reduced

to the sine-Gordon equation,47 thus confirming that the simulton is an

optical soliton solution. The author also showed that the conditions re-

quired for multi-simulton propagating are the same as Konopnicki &

Eberly showed for single simultons.

Eberly, 1999 looked at transmission of dressed fields in Λ-type three-

level media.48 The Λ system has a dark state which is able to trap pop-

ulation (we will consider this further in chapter 4). The analytic solu-

tion in this case showed that the probe envelope Ωp is of the familiar

sech shape while the coupling envelope must be of a tanh profile, in a

counter-intuitive pulse sequence similar to that employed in stirap.

Rahman & Eberly, 1998, provided49 an ansatz for analytic solution of the

three-level MB equations for Doppler-broadened pulse pairs, including

analytic solutions for pulse amplitude, excited state population, group

and phase velocities. In an associated numerical study, the same authors
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looked at50 propagation of pulses in V-type media with inhomogeneous

broadening. The authors relaxed the conditions imposed by the analytic

model to include non-matched pulses and non-sech envelopes, finding

that it is possible for non-matched pulses to match themselves in certain

conditions and that, as in the two-level case, the sech shape is a natu-

ral steady state for V-type pulses rather than a mathematically singu-

lar solution, and so other pulse envelopes will propagate. Finally, they

demonstrated the numerical validity of a two-photon pulse area theo-

rem, including the case of pulse breakup.

3.4.2 The Two-Photon Area Theorem

We will consider the V-type system similar to that described in the latter

papers by Rahman and Eberly,50 and present some numerical results

from our mb model for this system. We start with a quantised V-type

three-level atom as illustrated in figure 3.11.

The total electric field vector for the two laser beams is described by

E(z, t) =
[

1
2 x̂pEp(z, t)ei(kpz−ωpt) + 1

2 x̂cEc(z, t)ei(kcz−ωct) + c.c.
]

(3.8)

where x̂p and x̂c are orthogonal polarisations of the fields and the en-

velopes Ep and Ec are in general complex functions. We define corre-

sponding Rabi frequencies Ωp = d01Ep/h̄ and Ωc = d02Ec/h̄ where d0j

is the dipole moment between level |0〉 and |j〉, which we take parallel to

its respective field polarisation.

The Hamiltonian for the V-type three-level atom interacting with these

two classical fields is

HV = −h̄(∆pσ11 + ∆cσ22)−
h̄
2
[
(Ωpσ10 + Ωcσ20) + h.c.

]
(3.9)

within the dipole approximation and in the frame rotating with the fre-

quencies of the optical fields. Here σij := |i〉 〈j| is the transition operator.
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The detunings of the fields are represented by ∆p and ∆c.

We may imagine a pair of synchronised input fields, such that

Ωc(0, τ) = rΩp(0, τ) (3.10)

for some constant r. The labels p and c denote the typical probe- cou-

pling setup in three-level atom experiments. It can be shown49 by sub-

stitution into the mb equations that the system is equivalent to the two-

level system addressed by a single pulsed field.

The concept of the area theorem then extends to the pair of field en-

velopes with

θ(z) =
√

θc(z)2 + θp(z)2 (3.11)

where θc(z) and θp(z) are the areas of the coupling and probe pulses

defined in the same way as equation (3.4). A pair of pulses that can be

expressed in the form of equation (3.10) are known as matched pulses.

Equation (3.11) does not constrain the individual pulse areas, and so

predicts that matched pulses will propagate through the medium even

if the area of either or both of the individual pulses would not be strong

enough to support a soliton solution in a two level system.

In figure 3.12 we show example numerical results for propagation of

matched pulses in a V-type medium. In both cases the input probe

pulse has an area θp = 0.5π. The medium is specified such that Ng =

2π 103 Γ/L on both transitions and spontaneous decay is neglected. In

figure 3.12(a) the input coupling pulse has area θc = 0.8π, such that the

total area given in equation (3.11) is θ(z=0) = 0.9π. We see that neither

of the fields propagates, both are absorbed and θ(z) → 0π. In figure

3.12(b), the input coupling pulse has area θc = 1.5π, such that the to-

tal area θ(z=0) = 1.6π. We see that both fields propagate as sech-type

solitons such that θ(z)→ 2π.
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Figure 3.12 Propagation of matched pulses. (a) A probe input 0.5π pulse with a 0.8π

coupling pulse. (b) A probe input 0.5π pulse with a 1.5π coupling pulse,

showing (top) profiles of the real part of the complex Rabi frequencies

Ω(z, τ) and (bottom) pulse areas θ(z).

This striking result suggests that it is possible for weaker pulses to prop-

agate through media they they would ordinarily find opaque, by virtue

of them being ‘carried along’ with an exactly matched coupling pulse.

3.5 Discussion

In this chapter we have taken the model introduced in chapter 2 for

propagation of light in thermal two-level atomic vapours beyond the

weak probe regime to consider nonlinear phenomena, specifically the

propagation of optical solitons via self-induced transparency. We then

extended the quantised atom model to consider three-level atom con-

figurations, which present a range of interesting properties due to the

presence of quantum superposition dark states. Finally we considered

the theoretical concept of simultaneous optical solitons, simultons in V-

type three-level configurations.



Chapter 3. Nonlinear Propagation Phenomena 70

We continue in chapter 4 with an investigation into another nonlinear

propagation effect with an investigation of dark-state polaritons in Λ-

type atoms.



4 Storage and Retrieval

of Dark-State Polaritons

4.1 Introduction

In chapter 3 we introduced the nonlinear optical phenomenon known

as sit, which allows a particular pulse profile, an optical soliton, to

travel unimpeded through a medium that it would ordinarily find to

be opaque. In this chapter we introduce another familiar technique for

overcoming the absorptive effect of a medium, known as electromagneti-

cally induced transparency (eit).12–14, 16

The phenomenon of eit is unlike sit in that it does not specify a partic-

ular pulse area as having the ability to be transmitted, though there are

bandwidth limitations as we will discuss. Instead, eit makes use of a

probe transition being strongly coupled to a second transition in a three-

level medium to drive coherence in atomic states and set up destructive

interference between excitation channels. This results in a useful large

dispersive nonlinear susceptibility around the probe resonance.

It is possible to construct such systems in a Ξ-type three-level medium51, 52

but we will focus on the most-commonly used Λ-type system, which is

the most convenient due to the possibility of using two lower levels with

negligible decay, which allows for a metastable dark state.12

71
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In addition to the result of transparency, if we are able to manipulate

parameters such as the coupling field power and the atomic density, we

gain powerful control over the propagation of light in the medium. This

includes the ability to adjust the speed of a propagating pulse and its

spatial extent. We will present the quasiparticle known as the dark-state

polariton, useful for understanding such eit propagation.18, 53

Of particular interest is the possibility of storing and retrieving a pulse

of light in an optically dense eit medium with a strong, time-dependent

coupling field, which provides a mechanism for the implementation of

quantum memory,3, 54 a key requirement for quantum information pro-

cessing (qip).55

4.2 Electromagnetically Induced Transparency

in Λ-Type Atoms

We recall from section 3.3 that the Λ-configuration three-level atom con-

sists of two lower states |0〉 and |2〉 coupled to a single excited state |1〉.
Transitions between the two lower states are dipole forbidden.

We apply a probe field near-resonant with the |0〉 to |1〉 transition and a

strong coupling field on the |2〉 to |1〉 transition. The total electric field

in the slowly varying envelope approximation (see section 2.2) is given

by

E(z, t) =
[

1
2 x̂pEp(z, t)ei(kpz−ωpt) + 1

2 x̂cEc(z, t)ei(kcz−ωct) + c.c.
]

(4.1)

where x̂p and x̂c are orthogonal polarisation of the vectors of the fields

and the envelopes Ep and Ec are in general complex functions. We de-

fine corresponding Rabi frequencies Ωp = d01Ep/h̄ and Ωc = d21Ec/h̄

where dj1 is the dipole moment between levels |j〉 and |1〉, which we

take parallel to its respective field polarisation.
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We then find the Hamiltonian for the Λ system interacting with this pair

of classical fields to be12

HΛ = −h̄
[
∆pσ11 + (∆p − ∆c)σ22

]
− h̄

[
Ωpσ10 + Ωcσ12 + h.c.

]
(4.2)

within the dipole approximation and in the frame rotating with the fre-

quencies of the optical fields. Here σij := |i〉 〈j| is the transition operator.

If we write out the components of the Lindblad master equation (equa-

tion 2.29) we obtain a set of differential equations for the density matrix

elements

∂ρ00

∂t
= Γ10ρ11 +

i
h̄
[
Ωpρ10 − c.c.

]
(4.3a)

∂ρ01

∂t
= −

(
i∆p +

Γ10
2

)
ρ01 − iρ01Ω∗p (ρ00 − ρ11)− iΩ∗c ρ02 (4.3b)

∂ρ02

∂t
=
(
−i(∆p − ∆c)− Γ20

2

)
ρ02 + iΩ∗pρ12 − iΩcρ01 (4.3c)

∂ρ11

∂t
= −(Γ10 + Γ12)ρ11 +

i
h̄
[
Ωpρ01 − c.c.

]
+ i [Ωcρ21 − c.c.] (4.3d)

∂ρ12

∂t
=
(

i∆c − Γ12
2

)
ρ12 + iΩpρ02 + iΩc (ρ22 − ρ11) (4.3e)

∂ρ22

∂t
= Γ12ρ11 + i [Ω∗c ρ12 − c.c.] (4.3f)

Note that ρ10 = ρ†
01, ρ20 = ρ†

02 and ρ21 = ρ†
12.

4.2.1 Weak Probe Lineshape

Now we’ll take the same approach we took with the two-level atom in

section 2.5 to look at the optical response in the case that the probe field

is weak while the coupling field remains strong. We assume that the

coupling field is turned on long before the weak probe so that all pop-

ulation is optically pumped to the ground state |0〉 via decay from the

excited state |1〉.
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If we take equation (4.3e) with the time- derivative set to zero (i.e. the

steady state) and neglect the small Ωp, we find

ρ02 =
Ωc

∆p − ∆c − i Γ20
2

. (4.4)

Substituting this into equation (4.3d) and setting ρ00 = 1, we find the fol-

lowing expression for the steady state coherence on the probe transition

ρ01 = − Ωp

∆p + iΓ10
2 −

|Ωc|2

∆p−∆c−i Γ20
2

(4.5)

which gives us the frequency-dependent susceptibility of the medium

to the weak probe field in the strongly coupled system. As we expect,

setting Ωc = 0 gives us back the two-level lineshape equation (2.55).

In figure 4.1 we show the lineshapes calculated by solving the steady-

state Lindblad equations — i.e. setting the time derivatives in equations

(4.3) to zero. We see that the effect of the strong coupling field is to split

the resonance peak by Ωc. This is the Autler-Townes splitting.56 The

probe coherence = [ρ01] is, in contrast to the two-level lineshape, zero

on resonance, and as we know from equation (2.26) that this is propor-

tional to the absorption, we have a frequency window around resonance

in which light incident on the medium will not be absorbed.

In figure 4.2 we show the same lineshapes with a smaller coupling field

Rabi frequency Ωc. Even then we see a narrow window on resonance.

This absorption window is the effect known as electromagnetically in-

duced transparency (eit). Though objectively separating observations of

Autler-Townes splitting from eit in experiment can be difficult,57 they

are distinguished in that only eit provides strong transparency for a

weak coupling field due to the Fano interference.58
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Figure 4.1 Steady-state values for density matrix elements against probe detuning

for the Λ system, with Ωp = 2π × 10−3 Γ01. For the solid line Ωc =

2π × 1 Γ01, for the dashed line Ωc = 2π × 5 Γ01, both on resonance.

(Top, blue) The excited state population ρ11. (Middle, red) The coupled

lower state population ρ22. (Bottom, purple) The real part of the coherence

< [ρ01]. (Bottom, green) The imaginary part of the coherence = [ρ01].

4.2.2 Coherent Population Trapping & the Dark State

To investigate the cause of this transparency effect, we write the Hamil-

tonian in the so-called coherent population trapping (cpt) basis by tak-

ing the eigenstates of HΛ. Following Fleischhauer et al.,12 we solve for

HΛ |φ〉 = λ |φ〉 with equal detunings ∆ := ∆p = ∆c to find eigenvalues

λ0 = 0 (4.6a)

λ± = ±Ω̄− ∆/2 (4.6b)



Chapter 4. Storage & Retrieval of Dark-State Polaritons 76

−5.0 −2.5 0.0 2.5 5.0
0.0
0.2
0.4
0.6
0.8
1.0

ρ
11

×10−6

−5.0 −2.5 0.0 2.5 5.0
0.0
0.5
1.0
1.5
2.0
2.5

ρ
22

×10−5

−5.0 −2.5 0.0 2.5 5.0
Detuning (Γ)

−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6
0.8
1.0

ρ
01

×10−3

Figure 4.2 Steady-state values for density matrix elements against probe detuning

for the Λ system, with Ωp = 2π × 10−3 Γ01 and Ωc = 2π × 0.2 Γ01.

(Top, blue) The excited state population ρ11. (Middle, red) The coupled

lower state population ρ22. (Bottom, purple) The real part of the coherence

< [ρ01]. (Bottom, green) The imaginary part of the coherence = [ρ01].

where Ω̄ =
√

Ω2
p + Ω2

c + ∆2. The eigenvalues have corresponding nor-

malised eigenstates

|D〉 = 1√
N0

(
Ωc |0〉 −Ωp |2〉

)
(4.7a)

|B±〉 =
1√
N±

(
Ωp |0〉+ λ± |1〉+ Ωc |2〉

)
(4.7b)

where N0 := Ω2
p + Ω2

c and N± := N0 + 4λ2
±. The first thing to notice is

that the λ0 energy eigenvalue is zero such that it is decoupled from the

fields. Second, its corresponding eigenstate |D〉 has no component of the

excited state |1〉 and so population in this dark state has no opportunity

to decay to either of the lower states. The probe laser then couples only

to the |1〉 components of the bright states |B±〉 having equal magnitude

but opposite contributions such that we end up with destructive inter-
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ference of excitation and the probe laser is not absorbed. We thus see

that eit is a quantal coherent phenomenon.

4.3 Pulse Propagation in EIT Media

In the previous section we considered eit in the Λ system from the per-

spective of the medium along with linear response to stationary fields.

We will now look at the phenomena of eit as it applies to the field in-

cident on the medium, in particular the case of pulsed field envelopes,

using the propagation model developed in chapter 2.

In figure 4.3 we show the simulated propagation of a Gaussian probe

pulse incident on a Λ-type medium with the coupling field turned off, i.e.

Ωc(z = 0, τ) = 0. In this case the pulse has an area θp = 0.2 π and a

fwhm τw = 1 τΓ (see equation (2.56) for the Gaussian envelope profile).

The medium has constant density such that the absorption parameters

are given by N(z)g01 = N(z)g02 = 2π 10 Γ/L. We see that the pulse is

absorbed by the atoms, with 50% of its initial peak amplitude attenuated

after travelling a distance ∼ 0.2 L into the medium.

In figure 4.4 we show the same Λ-type system but this time apply a

strong cw coupling field such that Ωc(z = 0, t) = 2π 2 Γ. This time

we see that the pulse suffers much less attenuation, with over 50% of its

initial peak amplitude transmitted. The introduction of the strong cou-

pling field leads to an eit window which allows this transmission of the

probe pulse through the medium which it would ordinarily find to be

opaque.12
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Figure 4.3 Simulated absolute value of the complex Rabi frequency Ωp(z, τ) (in units

of 2πΓ) for the propagation of a Gaussian pulse with area θp = 0.2 π and

fwhm τw = 1 τΓ through a Λ-type medium with constant density such

that Ng = 2π 10 Γ/L. The coupling field is turned off such that Ωc(z, τ) =

0. The dotted lines at z = 0, 1 L mark the start and end of the medium.
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Figure 4.4 Simulated absolute value of the complex Rabi frequency Ωp(z, τ) (in units

of 2πΓ) for the propagation of the same pulse through the same Λ-type

medium as figure 4.3 but now with a strong cw coupling field Ωc =

2π 2 Γ.
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4.3.1 Group Velocity & Slow Light

In figure 4.3 we note that the peak of the pulse moves to the left such

that it arrives at each position before a pulse travelling at the vacuum

speed of light c would arrive. This is known as fast light. Recall that in

this speed-of-light reference frame, propagation at c is represented by a

vertical line.

The group velocity vg of light travelling in the medium is given by12

vg =
c

n + ωp(
dn

dωp
)

(4.8)

where n =
√

1 + χR is the refractive index introduced in equation (2.28).

For the two-level system, the familiar frequency-dependent lineshape of

the real part of the susceptibility χR shown in figure 2.5 demonstrates an

anomolous dispersion gradient dχR/dω < 0 around resonance.

In contrast, in figure 4.1 we see that under eit conditions, dχR/dω > 0

in the transparency window around resonance.59 Equation (4.8) then

tells us that eit transmission will be accompanied by a reduction of the

group velocity, which we indeed observe in figure 4.4.

We might wish for a medium in which the pulse can be delayed or sped

up without distortion or absorption. In fact, the Kramers-Kronig re-

lations60 tell us that there is a fundamental link between the real and

imaginary parts of the susceptibility, such that the dispersive properties

of the medium cannot be adjusted independently.

We may also be concerned that the concept of fast light contradicts

special relativity,61 or violates causality requirements. In fact, it can be

shown that in superluminal media the speed at which information trav-

els is not equivalent to the velocity of the wavepacket peak, and that this

information velocity retains an upper bound of c.62, 63
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Experiments using eit in Bose-Einstein condensates (becs) have been

used to reduce the the speed of light pulses by seven orders of magni-

tude, down to 17 m s−1.17, 64

4.3.2 Pulse Compression
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Figure 4.5 (Main) Simulated absolute value of Ωp(z, τ) for the propagation of a

Gaussian pulse with area θp = 0.2 π and fwhm τw = 1 τΓ through a Λ-

type medium. The medium is of non-uniform density, having a Gaussian

profile of fwhm 0.5 L and a peak density such that Nmaxg = 2π 500 Γ/L.

The coupling field is cw with Ωc = 2π 10 Γ. (Left) Spatial profiles of the

pulse at different times during the simulation corresponding to vertical

dotted lines in the main figure. (Inset) Pulse fwhms corresponding to the

profiles on the left.

In figure 4.5 we show results from a simulation with a medium of non-

uniform density, having a Gaussian profile with a peak absorption co-

efficient Nmaxg = 2π 500 Γ/L at z = 0.5 L. The fwhm of the density is

0.5 L, with a hard cutoff at the boundaries z = 0, 1 L.
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This high coefficient might correspond to either a particularly long or

dense medium. We see from the gradient of the profile that the pulse

slows down considerably as the density increases, and speeds up again

as it leaves the medium. The overall slow-light effect is large, with the

pulse arriving 8 τΓ later than it would covering the same distance in

vacuo.

At the same time as it is slowed, the spatial extent of the pulse is sig-

nificantly decreased as it moves into the high-density region. This hap-

pens because as the pulse moves into the medium its leading edge slows

down before the trailing edge while the field strength remains the same,

causing the pulse to ‘bunch up‘. The pulse is compressed by a factor

vg/c.17 In the bec experiment mentioned above, light pulses were com-

pressed from kilometre to sub-millimetre scale.

4.4 Storage & Retreival of Dark-State Polaritons

We can look at the propagation of the probe pulse through the eit

medium from the perspective of the atoms. Before the pulse arrives

at an atom at a position z in the medium, the atom has been optically

pumped into the ground state |0〉 by the coupling field. At this point

the state is equivalent to the dark state described in equation 4.7. As the

leading edge of the pulse hits the atom, it remains in the dark state but

transfers a component of its wavevector into a superposition between

states |0〉 and |2〉. In this way energy is transferred from the probe into

the medium. As the pulse reaches its peak and the trailing edge leaves

the atom, that energy is returned to the pulse.

Fleischhauer and Lukin18 introduced a useful formalism for describing

eit medium with a quasiparticle known as the dark-state polariton. We
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define a collective mixing angle ϑ via

tan ϑ(z, τ) =

√
Ng

ΩD(z, τ)
(4.9)

and then the dark polariton field envelope ΩD is given by

ΩD(z, τ) = cos ϑ(z, τ) Ωp(z, τ)− sin ϑ(z, τ)
√

Ngρ20(z, τ). (4.10)

The dark-state polariton quasiparticle thus describes the propagation

in terms of a coherent mixture of the electromagnetic field with atomic

spin wave excitation.

The collective mixing angle tells us how much of the polariton is stored

in the field and how much in the spin wave. For a mixing angle ϑ = 0,

all of the energy is in the field. For ϑ = π/2, all of polariton energy is in

the spin wave.

In the linear regime and on resonance it can be shown20 that ΩD obeys
[

∂

∂t
+ c cos2 ϑ

∂

∂z

]
ΩD = 0, (4.11)

a wave equation describing a shape-preserving propagation with group

velocity vg = c cos2 ϑ.

4.4.1 Storage & Retrieval

In figure 4.6 we show the results of the simulated propagation of the

same probe pulse as we considered in figure 4.5, a Gaussian with area

θp = 0.2 π and fwhm τw = 1 τΓ. The Λ-type medium also has the same

non-uniform density, having a Gaussian profile of fwhm 0.5 L and a

peak density such that Nmaxg = 2π 500 Γ/L.

The difference in this case is that the coupling field is time depen-

dent, being ramped down (see equation (6.3)) over a period of 0.5 τΓ at

t′ =4 τΓ and ramped up again at t′ =8 τΓ.
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Figure 4.6 Simulated absolute value of Ωp(z, τ) (in units of 2πΓ) for the propagation

of a Gaussian pulse with area θp = 0.2 π and fwhm τw = 1 τΓ through the

same Λ-type medium as in figure 4.5. In this simulation the cw coupling

field with Ωc = 2π 10 Γ is ramped down at 4 τΓ and ramped up again at

8 τΓ.

We see that the effect is that the pulse envelope vanishes as the coupling

field is ramped down, but returns dramatically, with the same profile, as

the coupling field is ramped back up. It appears as though the light has

been ‘stopped’ by the medium before being allowed to continue on its

way.

We can understand this behaviour by considering the propagation of the

dark state polariton in this system. Ramping down the driving field en-

velope Ωc once the pulse is in the medium equates to rotating the mix-

ing angle ϑ → π/2 such that it is coherently mapped on to the spin

wave. At a time later, in this case t′ =8 τΓ, we ramp up the driving field,

rotating the mixing angle back to its previous position, and the field

continues on its way. This excitation transfer can be seen in figure 4.7

which shows the separate components of the dark state field.

Although the storage and retrieval of dark-state polaritons is often de-
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scribed as ‘stopping light’, we must be careful to note that it is really a

coherent transfer of energy to the medium. No elecromagnetic field en-

velope remains at the limit ϑ = π/2, so the light itself is not ‘stopped’, it

has been transferred into a spin excitation.18

It is important to consider the limitations of these techniques. First, for

eit and associated slow light effect, the duration of the pulse τw must

be greater than the reciprocal of the eit bandwidth, so that spectrally

it propagates in the transparency window. Second, for storage of the

entire pulse to be possible, the spatial extent of the pulse must be com-

pressed below the length L of the medium, which is possible only if the

medium has a sufficiently large optical depth such that NgL� 1.12

The first demonstrations of this storage and retrieval technique were

made by Liu et al.65 and Phillips et al.,66 in which pulses were stored

for much longer than the pulse duration. Recent developments in ul-

tracold atomic systems have pushed storage records up to the order of a

minute.67

4.5 Discussion

The eit technique provides an alternative method to sit for transmis-

sion of light in an optically dense medium, with more control over its

associated effects such as slow light and pulse compression. We con-

sidered the transparency effect by looking at the time-evolution of the

atomic density matrix elements and the steady state lineshape in the

weak probe approximation.

By transforming to the cpt basis we were able to understand eit as a co-

herent effect based upon population of the dark-state superposition. In-

troducing the polariton quasiparticle allows us to understand the basis
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Figure 4.7 Dark-state polariton components for the storage and retrieval simulation

in figure 4.6. (Top) The field component cos ϑ(z, τ) Ωp(z, τ). (Middle) The

spin wave component − sin ϑ(z, τ)
√

Ngρ20(z, τ). (Bottom) The total dark

state field ΩD(z, τ).
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of this propagation and presents the possibility of storing and retrieving

light pulses.

The ability to ‘stop’ light is clearly interesting from a purely scientific

perspective, but the fact that information encoded in the pulse can be

reversibly transferred to long-lived spin waves has important applica-

tions. Significantly, it may be shown that the dark-state polariton pic-

ture also holds for quantised light fields, such that individual photon

wave-packets can be stored and retrieved.18 This provides a mecha-

nism for quantum memory, a key requirement for quantum information

processing.3, 54 The high fidently of the eit memory scheme compares

favourably with other proposals such as cavity qed and photon echo

techniques.68, 69

Finally, by coupling a probe transition to Rydberg states in a Ξ-type sys-

tem, polaritons can be made to interact due to strong dipole-dipole in-

teractions between such highly excited states.70



5 Two-Photon Excitation in a

High-Intensity Beam

5.1 Introduction

In keeping with the theme of atom-light interactions beyond linear

regimes, in this chapter we present a theoretical study of the interaction

of a high- intensity beam with a thermal vapour of rubidium. Specif-

ically, we investigate fluorescence from high-level states, observed in

scans across the d2 spectral lines. Recent experimental work71 found

dramatic enhancement of this fluorescence above a critical density, in-

dicating an increase in population transfer from the ground state to the

higher 5d states.

The high intensity of the beam makes invalid any recourse to the weak

probe approximation and necessitates the consideration of the signifi-

cant mechanisms of power broadening and hyperfine optical pumping.

We must also in our model take into account Doppler broadening due to

the motion of thermal atoms in the cell.

The combination of hyperfine pumping and the finite transit time of

non-stationary atoms in the beam also prevents us from simply taking

the steady-state atomic response: we must solve for quantum evolution

of the atomic system via the density matrix. The computational model

87
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here developed to study the system dynamics uses an exponential series

solver for the Lindblad master equation (2.29) over the many-level basis

of hyperfine angular momentum sublevels, along with parallel computa-

tion across the range of detunings.

5.2 Description of the Experiment

The experimental work in this chapter was carried out by Lee Weller,

and a full description may be found in Weller, 2013.72

A high-intensity cw laser beam, near-resonant with the d2 lines, was

incident on a thermal vapour cell of rubidium atoms in their natural

isotopic abundances. The d2 lines represent resonant transitions from

the 52S1/2 ground state of the atom to the 52P3/2 excited state mani-

fold. The Pyrex cell had a length of 2 mm in the propagation direction

z and sat in a thermal oven. The beam had a waist (i.e. 1/e2 radius) of

6.6± 0.2 µm and a power of 80 mW, providing a peak beam intensity of

1.2× 105 W cm−2.72

A lens was used to image fluorescence onto a multi-mode fibre con-

nected to a spectrometer. This revealed fluorescence from excited states

that cannot be accessed energetically from individual photon excitations

near-resonant with the d2 transitions. In order to investigate this flu-

orescence further, side-imaging was used in conjunction with a blue

bandpass filter to remove other optical wavelengths and to select only

the blue fluorescence from the vapour cell. The selected blue fluores-

cence was then focussed using a lens onto a calibrated photo-diode that

had a large gain over the visible spectrum.

By spectral analysis it was determined that the source of the fluores-

cence was decay from the 62P1/2 and 62P3/2 excited state doublet.
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Figure 5.1 Normalised experimental fluorescence from the 62P1/2 and 62P3/2 transi-

tions, recorded for light input across a GHz detuning range covering the

d2 lines, and over a range of number densities N (and thus temperatures

T). Data taken by Lee Weller.71

The high-intensity excitation laser was then scanned over the d2 lines,

with hyperfine saturated absorption spectroscopy used to calibrate the

detuning. A non-overlapping weak cw probe was simultaneously inci-

dent on the vapour cell in order to measure the atomic number density

as a function of the cell temperature.

In figure 5.1 the spectral dependence of the measured fluorescence is

visible as the laser is scanned over a 12 GHz frequency range covering

the d2 lines, with the zero centred on the centre-of-mass transition of

the fine structure manifolds. The fluorescence is shown normalised as

a function of detuning (on the horizontal axis) and number density (on

the vertical).

The inner, orange and grey, dashed lines correspond to the maximum

fluorescence for the F = 3 → F′ and F = 2 → F′ transitions of 85Rb, re-
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spectively. The outer, green and purple, dashed lines correspond to the

maximum fluorescence for the F = 2→ F′ and F = 1→ F′ transitions of
87Rb, respectively.

Even from the lowest number densities measured the data shows flu-

orescence, but the striking feature of these results is the sudden and

dramatic increase in fluorescence at around 2 × 1014 cm−3 across the

fluorescence peaks. Our aim in the theoretical work of this chapter is to

determine whether the dependence of the fluorescence on the number

density can be understood with a description based on the response of

individual atoms, or if we must consider collective effects like energy

pooling,73–75 where inelastic collisions between excited atoms results in

transfer to states with higher energies, or cooperative effects arriving

from dipole-dipole interactions.76, 77

5.3 Theoretical Model

We wish to investigate population of the 5D doublet states which lie

close to two-photon resonance as the high-intensity laser is scanned

across the d2 lines, and subsequent population of the 6P states via de-

cay. We will need to consider light coupling the 52S1/2 ground state to

the 52P1/2 and 52S3/2 states, and then coupling those intermediate states

up to the 52D3/2 and 52D5/2 via two-photon excitation. The model will

then incorporate the 62P1/2 and 62P3/2 levels after decay from the 5D

states. Decay from the 6P doublet back down to the 52S1/2 ground state

is the channel responsible for the blue fluorescence.

The fine structure manifolds included in the model and their hyperfine

levels are illustrated in figure 5.2. Experimentally measured values for

the transition frequencies to these manifolds from the ground state are

listed in table 5.1.
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Figure 5.2 Hyperfine structure of selected manifolds of rubidium 87. Frequencies of

the 52S1/2 → 52P1/2 (d1) and 52S1/2 → 52P3/2 (d2) transitions are shown,

along with the 52S3/2 → 52D3/2 and 52S3/2 → 52D5/2 transitions, close to

two-photon resonance on d2.

In order to investigate the cause of the fluorescence at the scanning res-

olution of the experiment, as well as to include the effect of pumping

mechanisms, our state basis must include the hyperfine structure and

magnetic substructure of these fine structure manifolds, consisting of

2F + 1 degenerate sublevels mF = −F,−F + 1, . . . , F − 1, F within each

hyperfine level.

The classical description of the high-intensity field is as we saw for a

two-level atomic model in chapter 2, consisting of a monochromatic

electric field

E(z, t) = 1
2 x̂
[
E(z, t)ei(kz−ωt) + E∗(z, t)e−i(kz−ωt)

]
(5.1)

where once again x̂ is the polarisation vector of the fields and the enve-

lope E(z, t) is a complex function.

As in the case of the two- and three-level systems described in chapters

2 and 3, in order to solve for the time evolution of the atomic system

during interaction with the field of equation (5.1), we must define the
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Manifold (J′) Energy Ahf for 87Rb Ahf for 85Rb

52S1/2 0.0 3, 417.34 1, 011.91

52P1/2 377.1074 406.20 120.53

52P3/2 384.2304 84.85 25.00

62P1/2 710.9602 132.56 39.12

62P3/2 713.2839 27.70 8.16

52D3/2 770.4827 14.43 4.18

52D5/2 770.5715 7.44 −2.19

Table 5.1 Experimental values of transition frequencies (in 2π THz) for selected en-

ergy levels of rubidium, along with hyperfine constants Ahf (in 2π MHz)

for the 85 and 87 isotopes. See equation (5.3) for the definition of Ahf. Val-

ues are from nist data, recorded in Sansonetti, 2006.78 Ahf values are from

Arimondo, 1977 and Banarjee, 2007.79, 80

dipole operator by determining the transition dipole matrix elements

coupling states of the atomic basis. First we will define the atomic basis

and the bare Hamiltonian with the inclusion of atomic angular momen-

tum structure.

5.3.1 Angular Momentum Structure

The bare atomic Hamiltonian for the hydrogenic description of a rubid-

ium atom represents the state of the valence electron prior to interaction

with the optical field.

Our basis consists of the set of all hyperfine sublevels contained in the

fine structure manifolds in the model, indexed by quantum numbers n

and J. The bare atomic Hamiltonian in the hyperfine basis is then given

by the sum of projection operators for those hyperfine sublevels, result-
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ing in a diagonal operator

H0 =h̄ ∑
FmF

δωF |FmF〉 〈FmF|+

h̄ ∑
n′ J′

∑
F′m′F

(ωn′ J′ + δωn′ J′,F′)
∣∣F′m′F

〉 〈
F′m′F

∣∣ (5.2)

where F and mF index the ground state hyperfine sublevels and δωF

values represent the energy shifts of the hyperfine levels relative to the

centre of gravity of the ground state manifold. Similarly, F′ and m′F
index the excited state hyperfine sublevels and δωn′ J′,F′ represent the

energy shifts relative to the the centre of gravity of those excited state

manifolds given by ωn′ J′ , the transition frequency from the ground state

manifold to each state, listed in table 5.1.

The energy shifts δωn′ J′,F′ express coupling between the total electronic

angular momentum J and the nuclear angular momentum I, and to first

order can be expressed via

δωn′ J′,F′ =
Ahf

h̄2 (I · J) (5.3)

where the values Ahf are (magnetic dipole) hyperfine constants, also

listed in table 5.1. We shall neglect higher-order corrections, including

electric quadrupole coupling, in this model as the energy shifts are rela-

tively small.

Figure 5.3 illustrates the hyperfine structure coupled by the field and

gives hyperfine energy level splittings for the 52S1/2, 52P1/2 52P3/2 and

52D3/2 levels coupled by the fields for both naturally occurring isotopes:
85Rb and 87Rb. We assume in this model that no static electric or mag-

netic fields are present to break the degeneracy of the magnetic sub-

levels.

Coupling this atom to a field of frequency ω, we as usual choose to

transform to the frame rotating with the field. For conciseness we will

index the fine structure manifolds directly coupled by the field so that
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Figure 5.3 Hyperfine splittings of the 52S1/2, 52P1/2 52P3/2 and 52D3/2 levels in rubid-

ium, for both isotopes, 85 and 87, showing the two-photon coupling and

transition frequencies. Each hyperfine level consists of 2F + 1 degenerate

sublevels. These splittings are determined from the experimental values

given and referenced in table 5.1.
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6p1/2

6p3/2

5d5/2

Figure 5.4 Couplings of hyperfine manifolds included in the model. The laser is

scanned across the 52S1/2 → 52P3/2 (d2) transition (red). The d1 transition

is too far from resonance and so is not coupled in the model. The same

d2 laser frequency couples 52P3/2 → 52D3/2 and 52P3/2 → 52D3/2 upper

transitions.

|F0mF0〉 labels states the 52S1/2 ground state,
∣∣F1mF1

〉
labels the 52P3/2

intermediate states, |F2mF2〉 labels the 52D3/2 excited states and |F3mF3〉
represents states in the other member of the excited doublet, 52D5/2.

We then write the bare Hamiltonian in the rotating frame as

H′0 = h̄ ∑
F0mF0

δωF0 |F0mF0〉 〈F0mF0 |+ h̄ ∑
F1mF1

(δωF1 − ∆01)
∣∣F1mF1

〉 〈
F1mF1

∣∣+

h̄ ∑
F2mF2

(δωF2 − (∆01 + ∆12)) |F2mF2〉 〈F2mF2 |+

h̄ ∑
F3mF3

(δωF3 − (∆01 + ∆13)) |F3mF3〉 〈F3mF3 | (5.4)

where we define ∆01 = ω − ω01 as the detuning from resonance of the

lower transition; ∆12 = ω − ω12 and ∆13 = ω − ω13 as the detunings

from resonance of the upper transitions.

The manifolds involved in direct coupling are illustrated in figure 5.4.

In the rotating frame description, eigenstates in the other manifolds are
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given zero energies, as they are not involved in the atom-light interac-

tion part of the Hamiltonian. Note in particular that this includes the

52P1/2 intermediate manifold. When we are near resonance with the d2

transition, we assume that the d1 resonance coupling frequency is far

enough from resonance to be neglected.

We see that this model is similar to a three-level system in the Ξ (ladder)

configuration, but with a fourth level introducing an additional excited

state manifold, forming a Y configuration. And of course in this case we

have the added complexity of hyperfine structure included.

The ladder is constrained in that it is the same field coupling the lower

and upper transitions, so that the detunings only differ by constants.

These are simply expressed as ∆12 = ∆01 + η2 and ∆13 = ∆01 + η3, where

η2 := (ω2 − ω1)− (ω1 − ω0) = ω2 − 2ω1 and η3 := (ω3 − ω1)− (ω1 −
ω0) = ω3 − 2ω1.

5.3.2 Reducing the Transition Dipole Matrix Elements

Now that we have defined a Hilbert space basis and expressed the bare

atomic Hamiltonian, the next step is to formulate the dipole operator. In

order to do this we must compute the transition dipole matrix elements

〈Fm|d|F′m′F〉 coupling individual basis states.

Calculating these matrix elements by integrating over the eigenstate

wavefunctions explicitly is a computationally intensive task. Fortunately,

the spherical symmetry of the single-electron atom model allows us to

use the spherical basis to factor out the angular part of the problem into

coefficients that can be calculated much more quickly.

The spherical vector basis for 3d space is often more convenient than the

Cartesian basis when dealing with angular momentum and spherical
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harmonics. The position vector r is given in this basis as

r = r−ê− + r0ê0 + r+ê+ (5.5)

where the basis unit vectors ê−, ê0 and ê+ are constructed as a complex

linear combination of the Cartesian unit vectors

e− =
ex − iey√

2
, (5.6)

e0 = ez, (5.7)

e+ =
−ex − iey√

2
. (5.8)

forming a complete orthonormal basis.

The vector coordinates we then get from substitution, as

r− =
x + iy√

2
(5.9)

r0 = z (5.10)

r+ =
−x + iy√

2
. (5.11)

We label the components r−, r0, r+ via the index q ∈ {−1, 0, 1}.

The Wigner-Eckart theorem,81, 82 with the dipole operator a tensor of

rank one, allows us to factor out the angular part of the dipole matrix

elements such that they can be written in terms of Wigner symbols. Our

derivation of the reduced dipole matrix elements will follow that given

in Steck, 2007.27

Firstly the matrix elements can be factored such that the dependence on

the mF and m′F quantum numbers is entirely within a Wigner 3-j factor,

via the expression

〈FmF|dq|F′m′F〉 = 〈F‖er‖F′〉

× (−1)F′−1+mF
√

2F + 1


 F′ 1 F

m′F q −mF


 (5.12)
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nLJ n′L′J′ ΓJ,J′ 〈J‖er‖J′〉
5S1/2 5P1/2 5.750 3.007

5S1/2 5P3/2 6.067 4.245

5P1/2 5D3/2 0.4756 1.143

5P3/2 5D3/2 0.1068 0.3935

5P3/2 5D5/2 0.6266 1.167

6P1/2 5D3/2 0.209 12.87

6P3/2 5D3/2 0.03770 4.103

6P3/2 5D5/2 0.2273 12.31

Table 5.2 Spontaneous Decay Lifetimes (ns) and reduced transition dipole matrix

elements (ea0) for fine structure transitions relevant to the model. Decay

lifetimes are from Safronova, 2011 and Sansonetti, 2006
78, 83 and transition

dipole matrix elements are calculated from the lifetimes via equation (5.14).

where 〈F‖er‖F′〉 is now the reduced hyperfine dipole matrix element.

We can go one step further in the reduction as the hyperfine transition

couples states corresponding to different F = J + I, but the dipole op-

erator depends only on the position of the electron, not the nuclear state

|ImI〉. We may thus factor out again

〈F‖er‖F′〉 =〈J‖er‖J′〉

× (−1)F′+J+1+I
√
(2F′ + 1)(2J + 1)





J J′ 1

F′ F I



 (5.13)

where now the dependence on F and F′ is also factored out of the re-

duced fine structure matrix element 〈J‖er‖J′〉 and the angular depen-

dence of the dipole matrix element is given by the Wigner 6-j coefficient,

which can be calculated easily.

The reduced fine structure matrix element must be calculated theoreti-

cally by integrating over the radial parts of the atomic wavefunction in a
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suitable basis for the required accuracy. Alternatively, and better for our

purposes, it can be determined experimentally via the relation7

ΓJ,J′ =
ω3

0
3πε0h̄c3

2J + 1
2J′ + 1

∣∣〈J‖er‖J′〉
∣∣2 (5.14)

where ΓJ,J′ is the spontaneous decay rate from the fine structure mani-

fold J′ to a lower state J. The factor (2J + 1)/(2J′ + 1) accounts for the

degeneracy of the fine structure manifolds. These decay rates may be

measured and thus used to derive transition dipole matrix elements.

Lifetimes and dipole matrix elements for the transitions relevant to our

model are listed and referenced in table 5.2.

5.3.3 Selection Rules

An additional benefit of the Wigner-Eckart theory is that the coefficients

vanish unless certain conditions are met, meaning that forbidden transi-

tions can be identified without time-consuming calculation.

In particular, the 3-j symbol in equation (5.12) is zero if the magnetic

quantum numbers do not satisfy the relation mF = m′F + q for q ∈
{−1, 0, 1}. The full hyperfine selection rules are

F′ = F or F′ = F± 1

m′F = mF or m′F = mF ± 1 (5.15)

F′ 6= F if m′F = mF.

5.3.4 The Interaction Hamiltonian

Now that we have expressed the transition dipole matrix elements, we

can put together the dipole operator and form the interaction Hamilto-

nian.
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To begin with we will consider a single fine structure transition, cou-

pling a lower energy manifold nJ to a higher energy manifold n′ J′. This

could for example represent coupling just on the d2 transition from

52S1/2 to 52P3/2. We will be able to extend the analysis to further levels

later.

The projection operators for the sublevels in a given manifold can now

be summed over the hyperfine quantum numbers and the magnetic sub-

level indices, and expressed as

P = ∑
FmF

|FmF〉 〈FmF|

P′ = ∑
F′m′F

∣∣F′m′F
〉 〈

F′m′F
∣∣ . (5.16)

Our restricted Hilbert space then consists of the two coupled manifolds.

The identity is P + P′ and the dipole operator is then given by

dq = (P + P′)dq(P + P′) (5.17)

= PdqP′ + PdqP′ (5.18)

= d(+)
q + d(−)q . (5.19)

We then expand these terms with (5.16) to find

d(+)
q = PdqP′

= ∑
FmFF′m′F

〈Fm|dq|F′m′F〉 |FmF〉
〈

F′m′F
∣∣ (5.20)

and then introduce the reduced dipole matrix element from (5.13) to ob-

tain

d(+)
q = ∑

FmFF′m′F

〈J‖er‖J′〉(−1)F′+J+1+I
√
(2F + 1)(2J + 1)





J J′ 1

F′ F I





× 〈FmF|F′m′; 1q〉 |FmF〉
〈

F′m′F
∣∣ . (5.21)

Applying the same for d(−)q one can show that

d(−)q = (−1)q(d(+)
q )†. (5.22)
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It is useful to define a weighted lowering operator to account for the an-

gular dependence factors

Σq = ∑
FmFF′m′F

(−1)F′+J+1+I
√
(2F + 1)(2J + 1)





J J′ 1

F′ F I





× 〈FmF|F′m′; 1q〉 |FmF〉
〈

F′m′F
∣∣ (5.23)

which then allows us to write the dipole operator as

dq = d(+)
q + d(−)q

= 〈J‖er‖J′〉
[
Σq + (−1)qΣ†

−q

]
(5.24)

The interaction Hamiltonian, in the same way we derived in chapter 2

for the two-level description, becomes

HΩ = −
(

d(+) · E (−) + d(−) · E (+)
)

. (5.25)

We define the fine structure manifold Rabi frequency as

Ωq :=
〈J‖er‖J′〉E+

q (0)
h̄

(5.26)

such that the interaction Hamiltonian can be written in the simple form

HΩ =
h̄
2 ∑

q

[
Ω∗qΣq + ΩqΣ†

q

]
(5.27)

Now for the two-photon Y-configuration, we have more than one transi-

tion to consider, as was illustrated in figure 5.4. Using the same index-

ing as before, with levels {52S1/2, 52P3/2, 52D3/2, 52D5/2} represented by

i = 0, 1, 2, 3 respectively, we can write the total interaction part of the

Hamiltonian as

HΩ =
h̄
2 ∑

q

[
Ω∗01,qΣ01,q + Ω∗12,qΣ12,q + Ω∗13,qΣ13,q + h.c.

]
(5.28)

The total Hamiltonian is then given by

H = H′0 +HΩ. (5.29)
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5.3.5 Spontaneous Decay and the Master Equation

At this point we have have defined all the necessary parameters re-

quired to follow coherent evolution of the atomic system during the

atom light interaction. We recall that the set of equations we hope to

solve are those defined by the Lindblad master equation, derived in ap-

pendix A,

ih̄
∂ρ

∂t
= [H, ρ] + L {ρ} (5.30)

where the Lindblad term accounting for dissipation is given by

L {ρ} = ∑
j

CjρC†
j − 1

2

(
ρC†

j Cj + C†
j Cjρ

)
. (5.31)

Our remaining task is to define the set of collapse operators Cj for the

system defining spontaneous decay of excited states to lower states, in-

cluding the included angular momentum structure. We are able to use

the same lowering operator Σq to account for the branching factors to

each hyperfine sublevel, and the collapse operators are then given by

CJ′→J =
√

ΓJ,J′

(
2J′ + 1
2J + 1

)
∑
q

Σq (5.32)

for each decay channel J′ → J allowed by fine structure selection rules.

The allowed decay channels for manifolds included in our model are

52P1/2 → 52S1/2, 52P3/2 → 52S1/2, 52D3/2 → 52P1/2, 52D3/2 → 52P3/2,

52D3/2 → 62P1/2, 52D3/2 → 62P3/2 and 52D5/2 → 62P3/2. These are illus-

trated in figure 5.5. The decay widths ΓJ,J′ are given in table 5.2.

The 6P states have decay channels via several states down to the ground

state. In this model we turn off decay from 6P such that they are sink

states. We are thus able to calculate how much population enters these

states over the time period of a simulation.



Chapter 5. Two-Photon Excitation in a High-Intensity Beam 103

5p1/2

5s1/2

5d3/2

5d5/2

6p1/2

6p3/2

5p3/2

Figure 5.5 Decay channels of selected hyperfine manifolds in rubidium. Blue fluores-

cence is from the decay from 62P1/2 and 62P3/2 to the 5S ground state. The

6P states in this model are populated via decay from the 52D3/2 and 52D5/2

states. Branching from 52D3/2 down to the 5P states and from the 5P states

to the 5S ground state are also included in the model.

5.4 Numerical Results

5.4.1 Weak Beam Spectra

Before we investigate the effect of a strong field on the atomic medium,

it is useful to look at the results of an applied field in the weak probe

regime. As discussed in chapter 2, in the weak field limit it is possible to

derive analytic expressions for the spectral Lorentzian (or Voigt, when

broadened) lineshape corresponding to the imaginary part of the coher-

ences and thus for the expected absorption profiles.

The ElecSus software package84 calculates transmission and susceptibil-

ity spectra for weak probes in thermal alkali metal vapours, in excellent

agreement with experimental data.32, 77 We use this tool as a reference

with which to compare the results for our model at weak field, before
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Figure 5.6 Simulated transmission (red) of a weak (I = 10−6 W cm−2) probe

beam scanned across the F = 1 → F d2 lines in a 1 cmlong vapour

cell of rubidium 87 is compared with the result of the ElecSus program

(grey dashed). Doppler broadening is neglected and the number density

N = 7.5 · 1015 m−3. The simulated transit time 2 µs.

we take our model beyond the constraints of the weak probe regime.

In figure 5.6 we show the results of a simulated scan of a weak probe

(with intensity I =10−6 W cm−2) with no Doppler broadening, corre-

sponding to a temperature close to 0 K, but with a number density of

N = 7.5 · 1015 m−3, corresponding via vapour pressure equations84 to

a temperature T = 20 °C. The removal of broadening is an artificial

constraint intended to separate the Lorentzian lineshape of the coher-

ence terms (and thus absorption profile) without needing to include the

Gaussian convolution. The simulated length of the medium in this case

is 1 cm.
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Figure 5.7 Populations of the 87Rb 5P3/2 (top) and 5P1/2 (middle) excited states and

5S1/2 ground states (bottom) after interaction with a weak (I =10−6 W

cm−2) beam on resonance with the F = 1 → F′ = 1 d2 line over a period

of 10 µs.

The top subplot covers the transition from ground state hyperfine lev-

els F = 1 to excited state hyperfine levels F′ = {0, 1, 2} and the bottom

subplot covers the transition from hyperfine levels F = 2 to excited state

hyperfine levels F′ = {1, 2, 3}. We see good agreement between the op-

tical Bloch model and the ElecSus result for the positions, widths and

amplitudes of the absorption troughs.

To obtain spectra for closed systems it is typical to compute the den-

sity matrix elements in the steady state, i.e. by setting ∂ρ/∂t = 0 in the

Lindblad master equation (2.29). This requires less computation than in-

tegrating the differential equations over time, but is not possible in this

system because of hyperfine pumping. As t → ∞, all of the population

is pumped to the other ground state. Instead, we solve the master equa-

tion over a range of detunings up to an average transit time of atoms

in the beam, in this case 2 µs, and take the resulting density matrix ele-

ments at this point in the time evolution.



Chapter 5. Two-Photon Excitation in a High-Intensity Beam 106

Figure 5.7 shows the populations of the hyperfine levels

ρFF = ∑
mF

Tr [|FmF〉 〈FmF|] . (5.33)

of the 5S and 5P states for one such detuning, on resonance with the

F = 1 → F′ = 1 d2 transition. As we would expect, we see that a small

amount of population is driven from the F = 1 ground state to the F′ =

1 excited state, reaching a peak at around 3 µs. This excited population

then begins to decrease over time as population is transferred from the

5S1/2F = 1 ground state to the 5S1/2F = 2 ground state by hyperfine

pumping.

5.4.2 Strong Beam Spectra

Next we move beyond the weak-probe approximation to investigate the

response of the atom is to a strong beam. Again we’ll consider just the

5S1/2 ground state manifold and the 5P3/2 excited state manifold repre-

senting the d2 transition.

Figures 5.8 and 5.9 show the system populations for a beam resonant

with the same F = 1 → F′ = 1 d2 transition as figure 5.7, but at

a stronger intensity of I = 1 W cm−2. The population excited to the

5P3/2F′ = 1 state is much higher, and now we see Rabi oscillations in

the populations. Here we see two-photon excitation to the 5D3/2 state

for the first time, albeit on the order of 10−13. Decay from the now pop-

ulated 5D3/2 states to 5P1/2 means we also see population in the latter,

which was not observed in the weak field solution shown in figure 5.7.

In figures 5.10 and 5.11 we show the results of simulated scan, again

over the d2 lines of rubidium 87, but this time with a strong beam of

intensity I = 1 W cm−2. This is beyond the saturation intensity and in

the regime where power broadening has a significant effect on the trans-

mission profile. The transit time is again 2 µs.



Chapter 5. Two-Photon Excitation in a High-Intensity Beam 107

0.0 0.5 1.0 1.5 2.0
Time (µs)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

s1/2F = 1
s1/2F = 2

0.0 0.5 1.0 1.5 2.0
0

1

2

3

4
×10−15

p1/2F = 1
p1/2F = 2

0.0 0.5 1.0 1.5 2.0
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

p3/2F = 0
p3/2F = 1
p3/2F = 2
p3/2F = 3

Figure 5.8 Populations of the 87Rb 5P3/2 (top) and 5P1/2 (middle) excited states and

5S1/2 ground states (bottom) after interaction with a strong (I =1 W cm−2)

beam scanned on resonance F = 1→ F′ = 1 d2 line over a period of 2 µs.
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Figure 5.9 Populations of the 87Rb 5D3/2 (top) and 5D5/2 (bottom) excited states for

the same systems as figure 5.8.
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Figure 5.10 Populations of the 87Rb 5S1/2 ground states (top) and 5P3/2 excited states

(bottom) after interaction with a strong (I = 1 W cm−2) beam scanned

across the F = 1→ F′ d2 lines with a transit time of 2 µs.

In figure 5.10 we show the populations of the hyperfine 5S1/2 ground

states and 5P3/2 excited states as the probe is scanned across the F = 1

to F′ = {0, 1, 2} transitions. We see that when we are far off-resonance

the population remains in the initial state, evenly divided between the

two ground state hyperfine levels. As the scan crosses the resonance

lines we see population is removed from the F = 1 state and pop-

ulates the excited hyperfine states according to that transition’s rela-

tive transition strength. The lineshapes are now much broader than

the natural linewidth due to power broadening.7 The F′ = 2 popula-

tion has a double- peaked lineshape. This is due to hyperfine pumping

saturating this transition at this probe strength, i.e. on resonance from

F = 1 → F′ = 2 all of the population decays to the F = 2 state within

2 µs at this intensity such that the population in the F′ = 2 state is lim-

ited.
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Figure 5.11 Populations of the 87Rb 5S1/2 ground states (top) and 5P3/2 excited states

(bottom) after interaction with a strong (I = 1 W cm−2) beam scanned

across the F = 2→ F′ d2 lines with a transit time of 2 µs.

In figure 5.11 we show the same populations as in figure 5.10, but for

the probe scanned across the F = 2 to F′ = {1, 2, 3} transitions. We

again see that far off-resonance the populations remain in their initial

condition state, evenly split between the two ground state hyperfine lev-

els. As the scan crosses the resonance lines, this time we see conversely

that the population is removed from the F = 2 state to populate the ex-

cited hyperfine states according to the transition strengths. This time it

is the F′ = 1 and F′ = 2 transitions that are saturated by the hyperfine

pumping such that the initial state population is limited on resonance

after 2 µs at this intensity.
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Figure 5.12 Populations of the 87Rb 5S1/2 ground states (bottom), 5P3/2 (middle) and

5P1/2 (bottom) excited states after interaction with a strong (I = 102 W

cm−2) beam scanned across the F = 2→ F′ d2 lines with a transit time of

2 µs.

5.4.3 Fluorescence with High-Intensity Beam

Now that we have investigated population of the 5S1/2 hyperfine ground

states as the probe is scanned across the d2 lines, both for a weak probe

and a strong probe, we will move onto adding in the two-photon ex-

cited states — firstly, the 5D3/2 and 5D5/2 states coupled near resonance,

and the 6P1/2 and 6P3/2 decay channels. Decay from the 6P1/2 state is the

source of optical fluorescence at 422 nm. We wish to observe if there is

enough population in these exited states through single-atom processes

to account for the fluorescence shown in figure 5.1.
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Figure 5.13 Populations of the 87Rb 5D5/2 (top) and 5D3/2 (middle) excited states, and

6P (bottom) sink states for the same system as in figure 5.12.
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In figures 5.12 and 5.13 we show the populations of all states for a sim-

ulated scan of a stronger beam with intensity I = 102 W cm−2. At this

power the individual 5P3/2 excitations overlap and are significantly

broadened, such that we show all of the d2 lines on the same plots over

a detuning range of 12 GHz. We see a small amount of population in

both of the 5D manifolds via two-photon excitation, and structure in the

6P sink states.
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Figure 5.14 Total populations of the 6P1/2 (blue) and 6P3/2 (red) manifolds after 2 µs

at I = 102 W cm−2 (top) and I = 5 × 103 W cm−2 (bottom). The solid

lines represent a 200 °C Doppler broadened atoms while the dotted rep-

resent ultracold (i.e. non- Doppler broadened) atoms.
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Figure 5.15 Simulated total population of the 87Rb 6P1/2 sublevels for light input

across a GHz detuning range covering the d2 lines, and over a range

of number densities N (and thus temperatures T).

In figure 5.14 we show the effect at two different strong beam intensi-

ties of including Doppler broadening via a Gaussian convolution as de-

scribed in section 2.5. In this case we give and example temperature of

200 °C corresponding to a number density of N = 9.26 · 1014 m−3. The

doppler width at this temperature is kv = 2π× 385 MHz. We see a slight

broadening effect at I = 102 W cm−2 but none at I = 5× 103 W cm−2 as

the power broadening dominates.

In figure 5.15 we show the population of the 6P1/2 state for I =

100 W/cm2, is scanned across the full range of the d2 lines. At this in-

tensity we see that the power broadening is such that the hyperfine

structure of the excited states is not visible and we see just two peaks

representing transition from the F = 1 and F = 2 ground states. The

intensity I = 100 W/cm2 is chosen here becauase the features are on the

same scale as those seen in the experimental data of figure 5.1. Power
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broadening here dominates over Doppler broadening.

The peak population is only on the order of 10−11, such that we expect

one in a hundred billion atoms to be excited to the 6P1/2, and of the

same order in 6P3/2, over a duration of 2 µs in the beam.

5.5 Discussion

The theoretical model built up in this chapter of light interacting with

the manifolds of the rubidium atom, including degenerate hyper-

fine structure, allows us to investigate transfer of population from the

ground state to excited levels. By going beyond the weak probe approx-

imation we can properly simulate the atom-light interaction at the high

beam powers used in the motivating experiments, far beyond saturation

intensity.

The model proceeds by solving the Lindblad master equation for den-

sity matrix elements covering the basis of hyperfine sublevels over a

time period of 2 µs representing the average transit time of atoms in the

beam. The system is then solved over a range of detunings covering the

d2 lines to simulate a scan of the probe beam.

Agreement with results of the ElecSus model for low intensities, where

the weak probe approximation is valid, gives us confidence in the model

to take it to higher intensities. At intensities where the power broaden-

ing is small enough to be compatible with the experimental data (on the

order of I = 100 W/cm2) the population to the 6P manifold via two-

photon excitation of the 5D state on the order of 10−11. In the 2 mm-long

cell at the higher densities of 7 × 1014 cm−3, on the order of 108 atoms

will be interacting with the beam. The results obtained at those higher

intensities thus suggest that two-photon excitation cannot be responsible
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for the observed fluorescence.

On the other hand, at higher intensities where the transfer of population

might be considered significant, power broadening would completely

wash out the spectral features observed.

We can thus rule out two-photon excitation as a mechanism for the flu-

orescence. One possible mechanism which might next be considered is

energy pooling, whereby one atom transfers to a higher energy state in

an elastic collision.73, 75 Another is a cooperative effect,85, 86 whereby the

dipole-dipole interaction between atoms in proximity in an optical field

may increase dramatically when they are closer than a critical distance

λ/2π, where λ is the resonant wavelength of the field.

The OpticalBloch simulation package developed for this calculation for

solving for the time-evolution of atomic systems, including the full hy-

perfine structure and all the relevant angular momentum factors in cal-

culating transition dipole matrix elements, is available for future stud-

ies in many applications involving vapours of alkali metals beyond the

weak probe, and can easily be extended to consider the including of the

Zeeman effect due to the application of magnetic fields.



6 Propagation of Short Pulses

in V-Type Atoms

6.1 Introduction

In previous chapters we have investigated a subset of the fascinating ar-

ray of phenomena that have been studied in the propagation of resonant

optical beams in three-level media. We looked at the extension of the

well-known effect of sit and optical solitons to simultons in V-type me-

dia in chapter 3, and the propagation of dark-state polaritons under eit

conditions in Λ-type media in chapter 4.

In this chapter we return our attention to the propagation of light

through atoms in the V-type system. Our motivation for this theoreti-

cal investigation is recent experimental work at Durham into coherent

atomic dynamics on the sub-nanosecond timescale in thin (on the order

of a micron in length) vapour cells.87 The experiment is designed to in-

vestigate the effect on susceptibility of a medium with respect to a probe

beam when significant population has been transferred into an excited

state via a second, strong pulse.

If the two pulses were of the same wavelength, addressing the same

transition, it would be experimentally difficult to separate detection of

the probe signal in order to determine how its propagation had been af-

116
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fected. In addition, the decay time of the excited state (on the order of

nanoseconds) is too short for the pulses to be well-separated in time

while maintaining the required population transfer in the medium.

Thus, a second laser on a separate wavelength is used for the coupling

field.

Similar systems have been designed to transfer population on the or-

der of nanoseconds in rubidium vapours, using the Ξ (ladder) scheme

to couple an excited state to a higher Rydberg state.88, 89 However, the

optical power required is prohibitively large due to the weak transition

strength, so the experiment makes use again of the V-type configuration,

coupling the ground state of rubidium to a pair of non- degenerate ex-

cited states.

In the next section we shall briefly describe the experiment and present

results, before we go on to describe the theoretical model. The exper-

iments were performed and results taken by Kate A. Whittaker and

James Keaveney. Further details of the experimental setup may be found

in Keaveney, 2013.87

6.2 Description of the Experiment

A dense thermal vapour of rubidium atoms in their natural isotopic

abundances, contained in a thin cell on the order of a micron in length,

is addressed with two co-propagating monochromatic lasers, forming

the V-type excitation scheme illustrated in figure 6.1(a). The probe laser

is resonant with the d1 transition from the 52S1/2 ground state to the

52P1/2 excited state and the coupling laser is resonant with the d2 transi-

tion coupling the ground state to the 52P3/2 excited state.79, 80 The beams

are linearly polarised and orthogonal, and following propagation they

are separated by a polarising beam splitter.
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Figure 6.1 V configuration level diagrams.
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The 52S1/2 ground state in rubidium is a doublet state split on the order

of GHz,79 as shown in figure 6.1(b) for 85Rb. The experimental carrier

frequencies are tuned resonant with transitions from the
∣∣52S1/2 F=3

〉

level for 85Rb and so are far-detuned from the other energy level in the

doublet. The coupling beam is focused to a waist of ∼20 µm while the

probe beam is focused more tightly to a waist of ∼10 µm, which min-

imises variation of the coupling intensity for atoms in the probe beam.87

Transmission of the beams through the medium is detected using a fast

photodiode with a bandwidth of 8 GHz input to a 12 GHz bandwidth

oscilloscope with an effective sampling rate of ∼400 GS/s. The oscillo-

scope is sampling rather than real-time, so the data must be averaged

over many cycles. Systematic noise is recorded by taking measurements

with the probe laser off and later removing the background from the

measured signal.

The cell windows alter the focusing region of the beams, and so spectro-

scopic measurements are needed to establish accurate Rabi frequencies.

The Rabi frequency of the coupling beam atom-light interaction is mea-

sured using the Autler-Townes splitting of the ground states. The Rabi

frequency of the probe beam is then estimated using the coupling beam

as a guide.

Results were taken over a range of peak intensities for the coupling

pulse of 10 to 100 mW and over a vapour temperature range of 200 to

300 °C. In all cases the coupling pulse is shaped to a short Gaussian pro-

file with a fwhm of 0.8 ns. This shaping is performed by a Pockels cell

placed between two crossed Glan-Taylor prisms to rapidly rotate the po-

larisation of the beam.
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Figure 6.2 Recorded probe transmission against time (green circles). The resonant

coupling pulse intensity (grey filled area), shown after it has passed

through the medium, has a fwhm tw = 0.8 ns, a peak power of 82 mW

and is centred at zero. The temperature T = 200 °C and the cell length

L = 2 µm.

6.2.1 Experimental Results

In figure 6.2 we see an example result for probe field transmission from

the experiment described. The change in signal detected is plotted

against time. In this case the temperature T = 200 °C and the cell length

L = 2 µm. The coupling pulse has a peak power of 82 mW and is cen-

tred at t=0. The coupling pulse plotted is an average of many shots, but

there is practically no variation in the pulse shape from shot to shot.

We see the probe transmission peak sharply around 0.5 ns before the

maximum of the coupling pulse, which suggests a superluminal ef-

fect, perhaps due to a negative refractive index in the medium.90 In this

chapter we aim to demonstrate that in fact it is a reshaping due to non-
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linear pulse propagation effects.

There is a brief, smaller oscillation before the transmission returns to its

original level. The input pulse profile applied in the experiment has an

additional ‘bump’ as an artefact of the way the pulse is shaped (this can

be seen in the grey pulse shape).
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Figure 6.3 Recorded probe signal against time (coloured lines) over a range of tem-

peratures from T = 200 °C to 290 °C. The resonant input coupling pulse

intensity, shown for the experiment at T = 200 °C (grey filled area) in each

case has a width tw = 800 ps, is centred at zero and has a peak optical

power of 82 mW. The pulse is shown here normalised for time reference.

In figure 6.3 we show the recorded change in signal over a range of tem-

peratures from 200 °C to 290 °C. The coupling pulse has a peak optical

power of 82 mW and is centred at t = 0. For clarity the data has been

smoothed using a moving average with a triangular window function.

We see that over the range of temperatures investigated at this power,

the steep early response is consistent in time and that the peak of the

response increases with temperature in an approximately linear way,
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with possible saturation of that increase at 290 °C.

In order to understand the distinctive reponse profile of the signal and

determine the physical principles underlying these results, we will now

begin building up a theoretical model for the system.

6.3 Theoretical Model

We start with a quantised three-level atom as illustrated in figure 6.1(a).

The linearly polarised probe beam couples the ground state |0〉 to an ex-

cited state |1〉 while an orthogonally polarised coupling beam couples

|0〉 to an adjacent excited state |2〉. The transition |1〉 to |2〉 is dipole-

forbidden, completing the definition of the V-type atom. With this sim-

plified model of the atomic system, we are neglecting the hyperfine

structure of the 52S1/2, 52P1/2 and 52P3/2 states. We will discuss this ap-

proximation further in section 6.6.

The total electric field vector for the two laser beams is described by

E(z, t) =
[

1
2 x̂pEp(z, t)ei(kpz−ωpt) + 1

2 x̂cEc(z, t)ei(kcz−ωct) + c.c.
]

(6.1)

where x̂p and x̂c are orthogonal polarisation of the vectors of the fields

and the envelopes Ep and Ec are in general complex functions. We de-

fine corresponding Rabi frequencies Ωp = d01Ep/h̄ and Ωc = d02Ec/h̄

where d0j is the dipole moment between levels |0〉 and |j〉, which we

take parallel to its respective field polarisation.

The Hamiltonian for the V-type three-level atom interacting with these

two classical fields is

HV = −h̄(∆pσ11 + ∆cσ22)−
h̄
2
[
(Ωpσ10 + Ωcσ20) + h.c.

]
(6.2)

within the dipole approximation and in the frame rotating with the fre-

quencies of the optical fields. Here again σij := |i〉 〈j| is the transition
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operator. Along with accounting for off-resonant fields, the inclusion of

detunings ∆p and ∆c allows us to consider Doppler broadening via an

atom distribution P(∆) as described in chapter 2.

Armed with this Hamiltonian we can apply the semiclassical Maxwell-

Bloch propagation models described in chapter 2 to solve for the electric

fields Ep,c and atomic density operator ρ over z and t as the fields move

through the medium.

The temporal profile of the cw probe and Gaussian pulsed coupling in-

put at the front of the medium (z= 0) constitute the necessary boundary

condition on the fields.

Switching on the cw probe field instantaneously from zero to Ωp0

would introduce a discontinuity and thus spurious ringing due to the

Gibbs phenomenon.31 We thus construct a switch-on function which

ramps up smoothly. We take a real-valued Ωp function

Ωp(z=0, t) =





Ωp0 exp
[
−4 log 2

(
t−t0

tw

)2
]

t < t0

Ωp0 t ≥ t0

(6.3)

where t0 is the point at which the function reaches its peak Ωp0. The du-

ration of the ramp-on is governed by tw, which is the full width at half

maximum (fwhm) of a Gaussian. We also require an initial condition for

the atomic states, where it is reasonable to assume negligible population

in either of the excited states.

The interaction Hamiltonian allows us to follow coherent evolution of

pure atomic states. To our analysis we will also include the interaction

of atoms with the environment via spontaneous decay of excited states.

We’ll still be considering coupling pulses much shorter than the decay

time associated with this decay as discussed in chapter 3.

The spontaneous decay effect is included in the model via collapse oper-
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ators Cj in the Lindblad equation (2.29) describing time evolution of the

atomic states. For the V configuration atom we have Cj =
√

Γ0jσ0j for

j ∈ {1, 2} representing spontaneous decay of the excited states, where

Γ0j are the decay rates.

6.3.1 Simulation Results

With this theoretical model, we are now in a position to set up and run

numerical simulations of the physical system using the Maxwell-Bloch

propagation algorithm described in Appendix B.

We present results of an example simulation in figures 6.4, 6.5 and 6.6.

In this example we take a rubidium cell of length L = 2 µm at a tem-

perature T = 230 °C, which translates to absorption coefficients of

Ng01 = 2π × 66.7 Γ/L and Ng02 = 2π × 128 Γ/L (see chapter 2 for a de-

scription of the absorption coefficients). Given the decay time τ = 1/Γ01,

the input (z = 0) coupling pulse has a fwhm of tw = 0.029 τ, (equivalent

to 0.80 ns), a peak of Ωc = 2π × 130 Γ (2π × 748 MHz) and is centred at

t=0. The cw probe is ramped up to Ωp = 2π × 15 Γ (2π × 86 MHz) long

enough before the pulse (at t = −1.5 τ) for the system to reach a steady

state.

In figure 6.4 we look at the evolution of the fields, as described by the

real part of the complex Rabi frequencies Ωp and Ωc, in the time win-

dow around the pulse. The contoured colour maps correspond to the

real parts of Ωp and Ωc according to the colour scale on the right, with

local time t′ on the x-axis (these results are displayed in the co-moving

reference frame) and the distance z that the fields travel through the

medium on the y-axis. The input boundary conditions are thus repre-

sented by a horizontal slice at at z=0.

We see that the coupling pulse (bottom) is not attenuated over this dis-
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Figure 6.4 Real parts of the complex Rabi frequencies (in units of Γ/2π) Ωp (top) and

Ωc (bottom) in the simulated pulse/cw scheme. The coupling pulse has

width tw = 0.029 τ and peak Ωc of 2π × 130 Γ. The absorption coefficients

are Ng01 = 2π × 66.7 Γ/L and Ng02 = 2π × 128 Γ/L.

tance, but in fact is reshaped and split around the centre (t = 0). A long-

time tail emerges towards the end of the medium (z=L).

Before the pulse, the cw probe field (top) is attenuated as it progresses

through the medium, as we would expect from the usual Beer law of ab-

sorption. This behaviour is abruptly disturbed by the coupling pulse,

however. In response to the arriving pulse, the probe field is first ampli-

fied over a period of about 0.01 τ and then strongly attenuated, and this

process repeats twice over the duration of the pulse. After the pulse the

field returns to its initial state.

In figure 6.5 we look at the evolution of the atomic populations of the

states |0〉, |1〉 and |2〉 during the same window as figure 6.4, with local

time t′ on the x-axis and the distance z that the fields travel through the

medium on the y-axis. These diagonal elements of the density matrix
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Figure 6.5 Populations of the ground state ρ00 (top) and excited states ρ11 (middle)

and ρ22 (bottom) over z and t′ in the simulated pulse/cw scheme, with

parameters as those in figure 6.4.

are real and must sum to unity as expressed in equation (A.4), and so

the colour scale is from zero to one on each plot.

We see that the population is initially divided evenly between ρ00 (top)

and ρ11 (middle), with no population in the |2〉 state, as expected since

initially the medium is in the steady state driven on resonance by the

cw probe field. During the pulse population is driven between ρ00 and

ρ22 (bottom). The population in ρ11 is reduced during the pulse. The

small positive slope of these features on each of the colour maps shows

the pulse arriving later in time relative to the speed-of-light frame as

the fields move through the medium. This corresponds to a slow-light

refractive index (see chapter 4).

In figure 6.6 we look at the evolution of the off-diagonal density ma-
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Figure 6.6 Selected coherences of the atomic density matrix. The imaginary parts of

ρ01 (top) and ρ02 (middle) and the real part of ρ12 (bottom) over z and t′ in

the simulated pulse/cw scheme, with parameters as those in figure 6.4.

trix elements during the same window. Some interesting behaviour of

the system is demonstrated here. The top two subplots with orange-to-

purple colour maps, show imaginary parts of coherences ρ01 and ρ02 be-

tween the ground state and the two excited states. The bottom subplot,

with red-to-green colour map, shows the real part of the ρ12 coherence

between the two excited states, corresponding to phase coherence be-

tween these states.

Firstly, we note that the ={ρ02} coherence (middle) makes around four

complete oscillations during the pulse, corresponding to the strong driv-

ing field. Secondly, ={ρ01} (top) makes around two oscillations but out-

of-phase with ={ρ02} such that it is first driven negative. Finally, <{ρ12}
(bottom) is nonzero such that there is a real coherence between the two
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excited states despite them not being coupled directly. This oscillates on

the same timescale as ={ρ01}.

The fact that we see such strong early amplification of the probe field

in figure 6.4 suggests that this model includes the cause of the pulse

steepening observed in experiment, however there are some important

physical mechanisms we should include in order to simulate the system

accurately, and we will consider these now.

6.3.2 Inhomogeneous Broadening

As the experiments described in section 6.2 involved thermal atoms, in

order to compare these results with our numerical simulations we need

to include some important averaging and dephasing effects due to the

motion of the atoms.

Due to the Doppler effect the motion of the atoms along the z-axis re-

sults in a 1d Maxwell-Boltzmann probability distribution function over

detuning8, 52

f (∆) = 1
u
√

π
e−(∆/u)2

(6.4)

where the thermal width u = kvw. Here k is again the wavenumber of

the quasi-monochromatic field and vw =
√

2kBT/m is the most probable

speed of the Maxwell-Boltzmann distribution for a temperature T and

atomic mass m.91

To include this effect in the field propagation equations, as described

in chapter 2, we replace the atomic coherence factor by an integral over

the convolution of P(∆) with the atomic coherence now a function of

detuning, so that
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∂Ωp

∂ζ
(ζ, τ) = iNg01

∫ ∞

−∞
ρ01(ζ, τ, ∆) f (∆)d∆, (6.5a)

∂Ωc

∂ζ
(ζ, τ) = iNg02

∫ ∞

−∞
ρ02(ζ, τ, ∆) f (∆)d∆. (6.5b)

In figure 6.7 we again show the evolution of the real part of the complex

Rabi frequencies Ωp and Ωc for the model in figure 6.4, but this time

with the inclusion of the inhomogeneous broadening described for the

vapour temperature of 230 °C.
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Figure 6.7 Real parts of the complex Rabi frequencies (in units of Γ) Ωp (top) and Ωc

(bottom) in the simulated pulse/cw scheme for the parameter set in figure

6.4, with the inclusion of Doppler broadening for a vapour temperature of

230 °C.

We see that the peaks in the probe response are reduced somewhat from

those without this motional effect (figure 6.4) and are somewhat broad-

ened now that the atoms no longer all interact with a field perfectly on

resonance.
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6.3.3 Collision Dephasing

We also consider that a thermal cloud of atoms is randomly distributed

and that moving atoms will collide with one another. Transient dipole-

dipole interactions between colliding atoms leads to a dephasing of

dipoles and an additional broadening. We account for this effect by

defining a self-broadening coefficient β and a parameter known as the

Weisskopf radius92

rW =

√
β

2πv̄
(6.6)

where

v̄ = 2

√
2
π

vw (6.7)

is the expected relative speed of a pair of atoms. We may make a binary

approximation, considering that all collisions involve only two atoms, on

the condition that93

4π
3 Nr3

W < 1 (6.8)

which means that in a sphere around any given atom with a radius rW ,

we will expect to find at most one other atom. This dephasing effect is

then included via additional off-diagonal decay terms

Γcol,j = Nβ j = N
d2

3h̄ε0

√
2J′ + 1
2J + 1

(6.9)

where 2J + 1 and 2J′ + 1 are the fine structure multiplicities of the

ground and excited states.77, 92 Collision broadening thus has the effect

of increasing uncertainty in the off-diagonal terms.

For rubidium thermal vapour we have βd1 = 2π × 0.73 MHz µm3 and

βd2 = 2π × 1.03 MHz µm3 for the d line transitions.77 The binary ap-

proximation then breaks down only at a density of N ≈ 1017 cm−3 corre-

sponding to a temperature of T = 360 °C, and so is a good approxima-

tion across the temperature range of the experiment.
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Figure 6.8 Real parts of the complex Rabi frequencies (in units of Γ) Ωp (top) and

Ωc (bottom) in the simulated pulse/cw scheme for the parameter set in

figures 6.4 and 6.7, now with the inclusion of collision broadening.

In figure 6.8 we again show the evolution of the real part of the com-

plex Rabi frequencies Ωp and Ωc for the model in figures 6.4 and 6.7,

but this time with the addition of both motional effects: Doppler broad-

ening and collision broadening.

We no longer see the level of amplification and splitting on the coupling

pulse that we saw in figure 6.4, with the pulse maintaining its profile

through the medium. Whereas the effect of the Doppler broadening was

mostly seen in reducing the height of the inital peak on the cw probe

field, the inclusion of collisions has had more of an effect in damping

out the subsequent oscillations. The periods of attenuation return the

field Rabi frequency to the level observed without the pulse over this

distance.
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6.3.4 Hyperfine Pumping

The final physical mechanism we include in our model is that of optical

hyperfine pumping, which will affect the propagation of both fields.94–96

A rubidium atom with nuclear spin I has two angular momentum val-

ues for the ground state: F = I±1/2. The hyperfine splitting of this

ground state is on the order of GHz, whereas the splitting on the 5P ex-

cited states is on the order of MHz, as shown in figure 6.1(b).

If the monochromatic field is tuned to the transition from the lower

ground state to the excited state manifold, the higher ground state is

far from resonance and so does not couple significantly. The mechanism

of decay via spontaneous emission to the higher ground state will then

remove atoms from the probe and coupling system.97

Atoms that have decayed to the lower ground state are dark to the opti-

cal fields until they are transferred via collision into the higher ground

state. The transit time of atoms in the beam is shorter than the timescale

of this transfer by collision so the dark ground state is a sink for atomic

population, reducing the effective number density and thus absorption

of the fields.98

To account for hyperfine pumping, we will add a fourth level as a sink

to the three-level system and adjust our initial condition to evenly pop-

ulate the two ground states. The decay rates Γ01 and Γ02 to the ground

state are then split by branching ratios

BF→J′ =
∑F′ SF→F′

2J′ + 1
(6.10)

where J, F are the orbital and hyperfine angular momentum numbers

for the ground state and J′, F′ are those of the excited state, and the hy-
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Figure 6.9 Simulated probe transmission (relative intensity) at the end of the

medium, z = 1 L as the probe responds to the input coupling pulse, with-

out hyperfine pumping (red dashed) and with (solid).

perfine strength factors SF→F′ are given by99

SF→F′ = (2F′ + 1)(2J + 1)





J J′ 1

F′ F I





2

. (6.11)

In figure 6.9 we compare results from models with and without the ad-

dition of hyperfine pumping to a sink state, for the transmission ob-

served at the end of the medium, z = 1 L. With the inclusion of pump-

ing, we observe that during the simulation the absorptive power of the

medium decreases as population is trapped in the off-resonant dark

ground state. This results in an increase in the baseline transmitted sig-

nal after the pulse with respect to that beforehand. The peak with the

inclusion of hyperfine pumping is slightly earlier, as the slow-light effect

of the medium is reduced with the depopulation of the resonant states.
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6.4 Comparison of Simulation Results with Data

In the previous section we built up a theoretical model for the physical

system, including the significant effects of motion and atomic structure,

and presented numerical simulations using parameters matching those

of the experiment described in section 6.2. We’ll now compare the re-

sults of those simulations with the experimental data.
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Figure 6.10 Comparison of normalised probe transmission profiles from the labora-

tory data (green circles) and simulation results (red line) for an experi-

ment in the cw/pulse scheme. The measured input coupling pulse inten-

sity (grey filled area) has a width tw = 0.80 ns ≡ 0.029 τ, a peak power of

85 mW and is centred at zero. In this example T = 230 °C and L = 2 µm.

In figure 6.10 we present again an example of the response in the

probe signal (green circles) as a result of the medium being disturbed

by the coupling pulse (grey filled area). In this case the temperature

T = 230 °C, the length of the vapour cell L = 2 µm and the peak pulse

power is 85 mW. In contrast to figure 6.2, the probe signal is normalised

to unity. Overlaid on the data for comparison this time is the simulation

result (red line). The simulated coupling pulse matches the experimental



Chapter 6. Propagation of Short Pulses in V-Type Atoms 135

width of t = 0.029 τ.

The only fitted parameter in the simulation is the peak Rabi frequency

of the coupling pulse envelope. As we shall see when we look at power

dependence, the peak Rabi frequency of the coupling pulse determines

the arrival time of the signal response. We here use the arrival time of

the experimental signal to fit a simulated peak Rabi frequency Ωc =

2π 130 Γ.

A low-pass filter is applied to the simulation result to account for a limit

in resolution of the photon detector of 2π · 8 GHz. This is effected by a

Fourier transform of the intensity profile in the time domain to the fre-

quency domain and removal of frequencies |ω| > ωc before an inverse

transform is made back to the time domain. A sharp cutoff would intro-

duce discontinuities, so instead we apply a convolution with the first-

order Butterworth filter100 for a roll-off frequency curve

f (ω) =
1√

1 +
(

ω
ωc

)2
. (6.12)

We see good qualitative agreement with the data. The simple three-level

model result shows the distinctive steep rise in the probe transmission,

the early peak around t = −0.015 τ followed by a subsequent, smaller

oscillation. The smaller peak arrives early in the simulation, and is nar-

rower than in the data. Both experiment and simulation show the signal

returning to its original level beyond t = 0.04 τ.

The additional ‘bump’ in the pulse profile is the likely cause of a follow-

ing oscillation in the probe signal. This artefact is not included in the

simulation, so it is not observed in the probe signal tail.
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Figure 6.11 Comparison of numerical results (red) with experimental data (green

circles) for the normalised transmitted probe signal at L = 2 µm over a

range of peak coupling pulse powers. The measured coupling pulse sig-

nal (grey filled area) has a width τw = 0.80 ns ≡ 0.029 τ in each case, and

the 100 mW pulse envelope is shown in each subfigure. The temperature

is fixed at 200 °C.
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6.4.1 Power Dependence

In figure 6.11 we present results for the probe transmission signal over

a range of experimental coupling pulse powers from 20 mW to 100 mW.

The input pulse in each case has a fwhm of 0.80 ns, equivalent to τw =

0.029 τ in the natural unit system.

As discussed in section 6.2, the effective probe and coupling Rabi fre-

quencies for the atom-light interaction in the cell is difficult to deter-

mine due to the focussing effect of the cell windows. The peak Rabi fre-

quency in the simulation is therefore fitted for that of the 100 mW data,

at Ωc = 2π 140 Γ. This value is approximately half of that which we cal-

culate directly from the laser power, beam waist and transition dipole

matrix element for 85Rb. The difference is reasonable if we take into ac-

count our uncertainty in the field amplitude at the site of the atoms due

to beam focussing as well as the effective transition dipole matrix ele-

ment (tdme) due to hyperfine degeneracy (we will discuss this in sec-

tion 6.6). The Rabi frequencies for other input intensities are derived

from the 100 mW value, following the relationship Ω ∝
√

I.

The simulation and experimental data are normalised to the peak inten-

sity in response to the 100 mW run. The response peaks at lower powers

are reduced in the data, to 0.93 in the 20 mW run. This is matched in the

simulation. The key feature of increasing power is to push the response

peak earlier relative to the coupling pulse, from around −0.08 τ for the

20 mW run to −0.15 τ for the 100 mW run, and to steepen the peaks. The

simulation results also match this behaviour over the power range inves-

tigated.

To restate: the only fitted parameter in the simulated results of figure

6.11 is the coupling laser Rabi frequency Ωc in the 100 mW case. The

coupling Rabi frequency for the other datasets is derived from this con-
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straint, and the agreement is good across the powers measured down to

20 mW.

6.4.2 Temperature Dependence

In figure 6.12 we present numerical results for the probe transmission

signal in the time window around the pulse (t = 0) over a range of tem-

peratures from 200 °C to 282 °C. These simulated results are shown on

top of the experimental data for comparison, and the measured cou-

pling pulse for each run is shown (normalised) for reference on the time

axis.

For these datasets, the only fitted parameter is again the coupling Rabi

frequency Ωc, which is the same in each case. We see again that there

is good qualitative agreement between the simulated result and experi-

mental data across the temperature range. The increase in temperature

does not significantly affect the peak time of the response signal, but

does linearly increase the peak intensity, and this is matched in the sim-

ulation. The behaviour of the probe after the pulse has passed is also

in reasonable agreement, though there are clear oscillations in the data

which are not matched in the simulation.

6.4.3 A Recap

At this point we have built up a theoretical model based on propagation

of the fields through a V-type three-level medium, considering impor-

tant physical effects of inhomogeneous broadening, binary collisions

and hyperfine pumping. We’ve chosen appropriate parameters to com-

pare simulation results with the experimental data and observe a good

qualitative fit across the power and temperature parameter space cov-

ered in the laboratory study.
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Figure 6.12 Comparison of numerical results (red) with experimental data (green

circles) for the transmitted probe signal at L = 2 µm over a range of

temperatures from 200 °C to 282 °C. The signals are normalised to the

peak of the 282 °C data. The normalised measured coupling pulse signal

(grey filled area), shown for comparison, has a width τw = 0.80 ns ≡
0.029 Γ in each case. The coupling pulse power is 85 mW.
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Having some trust that our model is useful in matching the experiment,

we’d like to gain physical insight into the underlying mechanisms re-

sponsible for the observed data. We begin by looking more closely into

the response of an individual atom to the applied fields.

6.5 Analysis of the Evolution of a Single Atom

In order to understand the steep, early response in the cw probe signal

observed in the experiment and matched in the numerical simulations,

we turn in this section from the fields to focus on the evolution of the

density matrix of a single atom as it is addressed by the probe and sub-

sequently disturbed by the coupling pulse.

As discussed in appendix A, the density matrix ρ is used to describe

the state of an open quantum system such as an atom interacting both

with coherent fields and with a stochastically modelled environment.

We follow the evolution of ρ using the Lindblad master equation (A.8).

The Hamiltonian for the V-type atom was given in equation (6.2). In the

case of the pulsed coupling scheme, at the front of the medium we have

input time-dependent fields Ωp(t) and Ωc(t) and thus a time-dependent

Hamiltonian HV(t). We can solve the the Lindblad equation numerically

given an initial condition.

We imagine the cw probe having plenty of time to equilibrate before the

pulse, so we first find the steady state solution with the probe on and

the coupling pulse off. This steady state constitutes the initial condition.

In figure 6.13 we show the time evolution of density matrix populations

and coherences for an example Gaussian pulse profile of peak 100 Γ and

width 0.02 τΓ, where here we ll assume Γ := Γ01 = Γ02 and define

τΓ := 1/Γ as the reciprocal lifetime. The cw probe Rabi frequency is 50 Γ.
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Figure 6.13 Time evolution of the density matrix elements from numerical solution

of the master equation for the V configuration atom. (a) Rabi frequency

profiles of the two fields: a cw probe Ωp (red) and Gaussian pulsed cou-

pling Ωc (grey) with amplitude 2π × 100 Γ and width tw = 0.02 τΓ. (b)

Populations of the atomic eigenstates. (c) The imaginary part of coher-

ence ρ01 (purple) and the real part of coherence ρ12 (green).
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Before the pulse, the steady state population is an even split between ρ00

and ρ11. As the pulse ramps on we see it coherently drive population

transfer such that it oscillates between populations ρ11 and ρ22. This is

accompanied by a positive real coherence ρ12, and an imaginary coher-

ence ρ01 which oscillates first negative and then positive. After the pulse

we see damped oscillation of ρ00 and ρ11, and at long times we expect

the system to return to its steady state.

The behaviour of the imaginary part of ρ01 is of particular interest as

we know that the macroscopic consequence of this atomic coherence is

polarisation of the medium with respect to the probe field, and resulting

attenuation or amplification of that field. From the observed evolution

we can then predict that during the pulse, without the populations |0〉
and |1〉 being inverted, we will find reduced absorption and possibly

gain in the probe field.

To understand this time evolution, we write out the components of

equation (2.29) for the V configuration to get a set of differential equa-

tions for the density matrix elements

∂ρ00

∂t
= Γ01ρ11 + Γ02ρ22 +

i
2

[
Ωp(ρ01 − ρ10) + Ωc(ρ02 − ρ20)

]
(6.13a)

∂ρ01

∂t
= −Γ01

2
ρ01 − i∆1ρ01 +

i
2

[
Ωp(ρ00 − ρ11)−Ωcρ21

]
(6.13b)

∂ρ02

∂t
= −Γ02

2
ρ02 − i∆2ρ02 +

i
2

[
−Ωpρ12 + Ωc(ρ00 − ρ22)

]
(6.13c)

∂ρ11

∂t
= −Γ01ρ11 −

i
2

Ωp(ρ01 − ρ10) (6.13d)

∂ρ12

∂t
= −Γ01

2
ρ12 −

Γ02

2
ρ12 + i(∆1 − ∆2)ρ12 −

i
2
(Ωpρ02 −Ωcρ10) (6.13e)

∂ρ22

∂t
= −Γ02

2
ρ22 −

i
2

Ωc(ρ02 − ρ20). (6.13f)

Note that ρ10 = ρ†
01 and ρ20 = ρ†

02.

Starting with equation (6.13e) we see that in the case of two-photon res-
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onance (∆1 = ∆2 = 0) and in the steady state at the start of the pulse

∂ρ12(t0)

∂t
≈ i

2
Ωc(t0)ρ10(t0). (6.14)

The steady state ρ10 for the two-level system is positive imaginary, thus

ρ12 is initially driven real and positive by the pulse.

If we next look at equation (6.13b), we see that again on resonance and

in the steady state with ρ11 = ρ00

∂ρ01(t0)

∂t
≈ − i

2
Ωcρ21 (6.15)

such that with ρ21 real and positive ρ01 is driven imaginary and nega-

tive. This is consistent with the behaviour observed in the evolution of

coherences in figure 6.13.

6.5.1 Coherent Population Trapping

We may gain further insight into the transient effect of the pulse on the

system by considering the eigenstates of the atom dressed by the fields,

that is the eigenvectors of HV.20, 38 If we consider equal detunings ∆ :=

∆p = ∆c and solve for HV |ψ〉 = h̄λ |ψ〉 we find eigenvalues

λ0 = −∆ (6.16a)

λ± =
−∆± Ω̄

2
(6.16b)

where Ω̄ =
√

Ω2
p + Ω2

c + ∆2. These eigenvalues have corresponding

normalised eigenstates

|D〉 = 1√
N0

(
−Ωc |1〉+ Ωp |2〉

)
(6.17a)

|B±〉 =
1√
N±

(
− 2λ∓ |0〉+ Ωp |1〉+ Ωc |2〉

)
(6.17b)

where N0 := Ω2
p + Ω2

c and N± := N0 + 4λ2
∓.



Chapter 6. Propagation of Short Pulses in V-Type Atoms 144

−0.10 −0.08 −0.06 −0.04 −0.02 0.00 0.02 0.04 0.06 0.08 0.10
t (τ)

0.0

0.2

0.4

0.6

0.8

1.0
|D〉
|B−〉
|B+〉

Figure 6.14 Time evolution of the populations of the cpt state populations |D〉 (blue),

|B−〉 (red) and |B+〉 (green dashed) for the V-type atom addressed by a

coupling pulse with amplitude 100 Γ and width tw = 0.02 τΓ.

Note that the energy eigenvalue λ0 is zero on resonance. For this reason,

its corresponding eigenstate |D〉, which does not contain any compo-

nent of the ground state and so is decoupled from the fields, is known

as a dark state. Any population entering the dark state cannot be driven

out again by the coherent fields, it can only decay spontaneously. This

phenomenon is known as coherent population trapping (cpt).12 The

states |B±〉, which are coupled to the fields, are known as bright states.

We can transform from the bare state density matrix ρ to the similar cpt

state density matrix ρ′ via

ρ′ = T −1ρT (6.18)

where T is the unitary transform defined by equations (6.17).

In figure 6.19, we show the time evolution of the populations of the cpt

states |D〉 and |B±〉 during the pulse shown in figure 6.13 for the bare

states. We see that during the pulse, an amount of population is driven

into the dark state |D〉, where it will be trapped. As the population is



Chapter 6. Propagation of Short Pulses in V-Type Atoms 145

trapped the absorption in the medium is reduced, thus allowing part of

the field to propagate further into the medium than it would otherwise.

In summary, in this section we have analysed the time evolution of the

atomic states in both the bare and cpt basis during the pulse. We found

that the strong pulse drives an oscillation, first negative, in the imagi-

nary part of ρ01, which we expect to cause a reduction in absorption of

the probe beam due to the relation of this coherence to the macroscopic

polarisation of the medium.

These findings are consistent with the observed signal increase in the

probe beam during the early part of the pulse. It does not, however, ex-

plain the increase in the signal response with increased temperature.

For a complete understanding of the behaviour, we will next move on to

considering the effects of pulse propagation and investigate what would

happen if we extend the simulations to longer propagation distances.

6.6 Simulating Longer Propagation Distances

Thus far we have considered the behaviour of the atomic medium as

addressed by the cw probe and disturbed by the strong pulse over the

propagation distance of the thin cell. The restricted propagation dis-

tance is a limit of the current experimental setup, but in our numerical

simulations we are not subject to the same constraint. We may extend

the propagation medium arbitrarily far to observe what happens to both

the atoms and the propagating fields. This will complete our analysis of

the observed signal response, and also allow us to make predictions for

future laboratory studies.
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6.6.1 Propagation in the Coupling Pulse Scheme

We will first consider some demonstration cases, before looking at the

specific parameters for the experimental system. We know from the

study of two- and three-level media in chapter 3 that a key property in

the propagation of short pulses in nonlinear systems is the pulse area θ

defined in equation 3.4. Thus we’ll design simulations with fixed input

pulse areas, rather than specifying the peak intensities as we have done

so far. Of course, for a given Gaussian pulse width, these definitions are

interchangeable.

We will for now neglect the motional and hyperfine pumping effects we

added to the model in section 6.3, as we seek to gain physical insight

into the specific effects of propagation.
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Figure 6.15 Propagation of (a) 0.8π and (b) 1.8π coupling pulses (blue) through a

medium addressed by a 10 Γ cw probe (green), showing (top) profiles

of the real part of the complex Rabi frequencies Ω(z, τ) and (bottom)

pulse areas θ(z). The red dotted line gives the combined pulse area θ =√
θ2

p + θ2
c .

In figure 6.15 we present numerical results for the cw probe, coupling
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pulse scheme in a medium with absorption coefficients set at Ng01 =

Ng02 = 2π 103 Γ/L. This is an order of magnitude larger than those rep-

resenting the thin cell experiments, and therefore represents a longer

distance of propagation. The coupling input pulses are Gaussians of

width τw = 0.01 τΓ and have pulse areas of (a) 0.8π (corresponding to

a peak Ωc = 2π 28 Γ) and (b) 1.8π (a peak Ωc = 2π 62 Γ). In both cases

the cw probe is strong with Rabi frequency Ωp = 2π 10 Γ.

In figure 6.15(a) we see that for the 0.8π pulse both the cw probe and

the coupling pulse are absorbed close to the front of the medium, with

the pulse area dissipated by around z = 0.1 L. From then on the only

remnant of the fields is the fast ringing.

In figure 6.15(b) we see that for the 1.8π pulse, the large coupling pulse

kicks up a pulse from the cw field, consistent with our analysis of a pe-

riod of reduced absorption. Of interest in this long distance simulation

is that the resultant probe pulse is able to form its own steady-state soli-

ton, as described in the study of matched pulses in chapter 3. Rather

than dissipating entirely, the probe pulse area θp (bottom, green) is held

abruptly at around z = 0.1 L to a value of around 1π. The simultane-

ous propagating pulses first steepen toward the sech shape, but then

broaden and slow due to the spontaneous decay. We see the initially

large area of the cw probe at z = 0 decreases but doesn’t disappear,

and the combined pulse area θ =
√

θ2
p + θ2

c (bottom, red dashed) finds

its steady state at 2π. The pulses do not reach the end of the medium in

the duration of the simulation, propagating a distance of z = 0.7 L.

We may ask: what does it mean to define a pulse area for an input cw

field? For our purposes, we may take it to be arbitrarily large. Numeri-

cally, we integrate the Rabi frequency envelope over the duration of the

simulation. The key point is that in the case that the combined pulse

area is large enough to support simultaneous propagation, this arbitrar-
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ily large pulse area does not dissipate but is held.

What happens for stronger pulses? In figures 6.16 and 6.17 we present

results for larger-area pulses input on the same medium with the same

cw probe field of Ωp = 10 Γ. The coupling input pulses are again Gaus-

sians of width τw = 0.01 τΓ.
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Figure 6.16 Propagation of a Gaussian 4.5π input coupling pulse with width 0.01 τΓ

through a V-type medium addressed by a 10 Γ cw probe. (Top left) Prop-

agation profile of the probe (green) and coupling (blue) fields. (Bottom

left) Pulse areas of the fields and the total area (red dashed). (Right)

Colourmaps of the real part of the complex Rabi frequencies Ωp and

Ωc (in units of Γ/2π).

In figure 6.16, for the 4.5π pulse, we see the coupling pulse break apart

as we’ve seen previously. Again we see that the pulse kicks up a simul-

taneous pulse in the probe field as the absorption is initially reduced,

which allows a small pulse area to move through, and this is carried on

by the first resultant 2π pulse.

We may understand the reason that only one pulse propagates in the

probe field by considering the evolution of the off-diagonal matrix ele-

ments we presented in figure 6.6. For every two oscillations in ρ02, the
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system evolves through one oscillation in ρ01. This oscillation forms the

probe component of a pulse that matches with the first coupling pulse

and propagates as a simulton.
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Figure 6.17 Propagation of a Gaussian 6.5π input coupling pulse with width 0.01 τΓ

through the V-type medium addressed by a 10 Γ cw probe. (Top left)

Propagation profile of the probe (green) and coupling (blue) fields. (Bot-

tom left) Pulse areas of the fields and the total area (red dashed). (Right)

Colourmaps of the real part of the complex Rabi frequencies Ωp and Ωc

(in units of Γ/2π).

In figure 6.17, for the 6.5π pulse, we see that the coupling pulse breaks

into three resultant pulses as we’d expect and the kicked up pulse area

in the probe field is carried mostly by the first and third resultant 2π

pulses.

These demonstrative simulations provide an interesting result: a portion

of the cw probe field is in fact picked up by the strong pulse and carried

along as one or more simultaneous pulses with the same width, at the

same velocity, and capable of propagating over long distances.
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6.6.2 Comparison with Experimental Data

Understanding that a strong coupling pulse has the effect of causing a

long-distance propagating soliton in the cw probe leads us to consider

the experimental results from the thin cell, using the parameters of sec-

tion 6.2, but imagining that the cell is longer. Recall that in the case of

transitions on the the rubidium d1 and d2 lines we have distinct values

for g01 and g02, as they are proportional to the square of the respective

dipole moments, d2
0j. This may affect the ability of the pulses to match

and propagate.

In figure 6.18 we present again the comparison of numerical result and

experimental data shown in figure 6.10. In the experiment the tempera-

ture T = 230 °C, and the peak pulse power is 85 mW, and the same pa-

rameters are simulated. We again present the real part of Ωp and Ωc but

continue the simulation over a longer distance, imagining that the cell

is much longer at 50 µm ≡ 25 L. This will allow us to predict the long-

distance behaviour.

The coupling pulse has a large pulse area θc = 9.1π, and so over the

longer distance we start to see the same pulse break-up we saw in fig-

ures 6.16 and 6.17. Again it is the earliest resultant pulse which carries

along a pulse in the probe field, rising before the centre of the pulse at

t = 0. The later resultant pulses in the coupling field are unable to prop-

agate far into the medium due to the dephasing effect of collision broad-

ening.

The simulated result of the field propagation over longer-distances thus

gives us an understanding of the mechanism behind the observed trans-

mission profiles in the probe field when the system is disturbed by the

strong coupling pulse. We see that it is the formation of this nascent soliton

in the probe field which causes the steeping early in the experimental
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Figure 6.18 (Top) Comparison of numerical results (red) with experimental data

(blue circles) for the normalised transmitted probe signal. The mea-

sured coupling pulse signal (grey filled area) has a width τw = 0.80 ns
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signal as the probe field is shaped towards a sech-shaped soliton.

It also explains why the peak intensity increases with temperature and

number density as observed in figure 6.12, as we are in the nascent stage

when the pulse is being shaped. We expect it to saturate as the sech-

shape reaches its steady state, and this may be what we see in figure 6.3

at the highest temperature investigated of T = 290 °C.

6.6.3 Hyperfine Structure & Degeneracy

A complete account of the electronic energy level structure of rubidium

would include fine and hyperfine structure, as considered for the model

in chapter 5. Approximating the rubidium vapour as a three- or four-

level atomic medium appears to be justified here on the basis that the

simulated transmission profiles provide a good qualitative fit to the data

along with physical insight into the underlying coherent mechanism.

The discovery, however, that pulse propagation effects are significant in

this problem means that the physical structure of the atomic energy lev-

els requires further consideration. This is clear if we consider the pulse

area, introduced in chapter 3, which is given by

Θ(z) =
∫ ∞

−∞
Ω(z, t)dt =

d
h̄

∫ ∞

−∞
E(z, t)dt. (6.19)

This quantity is well-defined only if the atomic levels coupled have a

uniquely specified dipole moment d. We understand that the physical

system in fact has this deeper hyperfine structure due to coupling of the

electron’s orbital angular momentum L, spin S and the nuclear spin I,

as shown in figure 6.1(b). An additional concern is that, in the absence

of an applied magnetic field, the 2F + 1 sublevels of these hyperfine F

levels are degenerate such that there is no straightforward way for these

mF states to be addressed separately. 1

1By adding a huge magnetic field (on the order of 0.5 T) the atomic energy levels
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The couplings between these degenerate sublevels will then have differ-

ent dipole matrix elements 〈FmF| er |F′m′F〉 and therefore different Rabi

frequencies Ω, and this can be expected to suppress the formation of co-

herent optical solitons.

However, in the case of the experimental study of this chapter, the short-

ness of pulse duration is such that its spectral width is on the order of

∼ 2π 1 GHz. The hyperfine manifolds of the 52P1/2 and 52P3/2 levels are

spread over an energy range on the order of ∼ 2π 100 MHz, so the pulse

interacts with the full manifold of excited state hyperfine levels J → J′,

and this excited hyperfine structure is not accessible.

Taking just a single J → J′ transition for now, the effective dipole mo-

ment for a particular ground state sublevel |FmF〉 is then found by sum-

ming the coupling to all of these excited state sublevels. In general for

J = 1/2,103 and in the case of linearly polarised light coupling levels such

that the angular momentum difference q = m′F −mF = 0, we have99

∑
F′
(2F′ + 1)(2J + 1)





J J′ 1

F′ F I





2

|〈F mF|F′ 1 mF 0〉|2 =
1
3

(6.20)

independent of the particular values of F and F′ such that the effective

dipole moment is given by

d =

√
1
3
〈J||er||J′〉. (6.21)

for every sublevel |FmF〉, where 〈J||er||J′〉 is the reduced dipole operator

for the fine structure transition, which is known experimentally from the

natural linewidth.

This factor of
√

1/3 can be understood as due to spherical symmetry, by

may be separated beyond the Doppler width, such that individual two- and three-level

systems are addressable.101, 102 Though F and mF cease to be good quantum numbers

in this case.
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considering that the linearly polarised light will interact with only one

of the spherical components of the dipole operator.99

Then what about the orthogonal, linearly polarised beam? As we have

defined the first transition to be the π (q = 0) transition (polarisation

vector z), the orthogonal beam is defined by a polarisation vector x com-

prising of a symmetric combination of photons either adding or sub-

tracting a quantum of angular momentum to the atom.

By summing the dipole matrix elements in quadrature over F′ and q as

in equation (6.20), we find the same 1/
√

3 factor, which we would expect

again by considering the symmetry of the system.

The result is then for the system to respond as if there were indeed a

unique dipole moment, but one which must take into account the sym-

metry factor in equation (6.21) and we are justified in applying the sim-

ple three-level model.

6.6.4 Weak Probe Fields

Thus far we have considered examples of propagation in the cw probe

scheme in which the field is strong. Such strong fields were required in

the experiment in order to achieve good detection on the fast photon

counter employed. Theoretically, however, we are inclined to consider

weak pulses as they may be useful in applications such as quantum in-

formation processing and storage.

As described in chapter 3, the pulse area theorem in the case of three-

level V-type systems applies not to the individual pulse areas, but to

their sum in quadrature. This suggests that if the coupling pulse ap-

plied on the adjacent transition is strong, we may be able to consider

the scheme for propagation of weak probe through a medium to which

it would normally be opaque.
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Figure 6.19 Propagation of a 2.2π Gaussian input coupling pulse with width 0.01 τ

through the V-type medium addressed by a weak Ωp = 0.001 Γ cw

probe field. The number density is such that Ng = 2π 103 Γ/L. (Top

left) Propagation profile of the probe (green) and coupling (blue) fields.

(Bottom left) Pulse areas of the fields and the total area (red dashed).

(Right) Colourmaps of the real part of the complex Rabi frequencies Ωp

and Ωc.
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In figure 6.19 we present numerical results which indicate that this is

indeed the case. The input Gaussian has a pulse area of 2.2π, while the

cw probe field has a Rabi frequency of only 0.001 Γ.

Before the pulse, the probe field is absorbed immediately by the

medium. We see that as for the strong probe field, the coupling pulse

allows transmission of the probe field. We observe that this weak probe,

despite being weak enough to excite only a tiny fraction of the atomic

population to the ρ11 state, is able to propagate simultaneously with the

coupling pulse just as the strong probe was. The three-level pulse area

is nearly all in the coupling field, but the induced pulse in the probe

field is not attenuated as it would be were the coupling field not present.

Some high- frequency ringing is seen in the probe field.

Figure 6.20 shows the populations of the atomic states. We see propaga-

tion of a 2.2π Gaussian input coupling pulse with width that the prop-

agation of the induced pulse in the probe field occurs despite negligible

population transfer to the |1〉 excited state. The population is nearly en-

tirely transferred from the ground state |0〉 to the |2〉 excited state.

6.7 Discussion

The results presented early on in this chapter, from experiments on a

thermal vapour of rubidium atoms addressed by two co-propagating

lasers in a V-type scheme, are certainly intriguing. Over a range of tem-

peratures and powers we observe an early, steep peak in response of the

cw probe on the d1 transition when disturbed by a strong, short pulse

on the d2 transition.

In order to understand this response behaviour, we designed a theo-

retical model for the system based on a three-level Maxwell-Bloch de-
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Figure 6.20 Populations of the ground state (top) ρ00 and excited states ρ11 (mid-

dle) and ρ22 (bottom) over z and t during the 0.01 τ through the V-type

medium addressed by a weak Ωp = 0.001 Γ cw probe field, as shown in

figure 6.19.
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scription for semiclassical propagation. We included significant physical

effects of inhomogeneous Doppler broadening, dephasing due to colli-

sions between moving atoms and hyperfine pumping to a far-detuned

state in the ground state doublet. This simple model provides a good

qualitative fit to the data over the range of temperatures and powers in-

vestigated experimentally, accounting for the peak times of the response

relative to power and the relative height of the peak relative to atomic

density.

By considering the behaviour of a single atom addressed by the co-

propagating fields, both in the bare atomic state basis and the coher-

ent population trapping (cpt) basis, we gain important physical insight

into the transient reduction of absorption in the scheme. Looking then

into the effects of nonlinear propagation over longer distances, we de-

termine that the steepening of the response is in fact due to the ability

of the coupling field to sculpt the pulse toward a sech-shaped soliton.

Over longer distances the simulations demonstrate that this probe soli-

ton would propagate simultaneously with the resultant coupling pulse.

The tendency of the pulses to separate, having different velocities due to

the distinct absorption strengths of the transitions, is overcome by pulse

locking.

Notably, the area theorem as applied to simultons allows the propaga-

tion even of a weak probe field in this scheme through media it would

ordinarily find opaque. Our simulations of weak probes here show such

propagation.

In single-field sit the field must be strong for the propagation of solitons

to overcome the weak nonlinearity of the medium. But combining this

approach with the cpt effect as described here suggests a way around

this, and a novel approach to achieving transparent propagation of sin-

gle or few photon pulses distinct from, but related to, both sit and eit.
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It should be stressed that the results of the thin cell experiment show

the nascent formation of solitons in the cw probe, but for conclusive ev-

idence of simulton propagation further investigation is required over

longer distances. Balancing the requirement of low collision dephasing

widths and high optical depth required may be difficult but we suggest

is certainly worth attempting.

Theoretically, for modelling few photon propagation we might wish to

look at a quantised field method. An interesting development of the

scheme might be in coupling to Rydberg states to introduce interactions

between simultons, with applications in quantum information process-

ing.70, 104, 105



7 Conclusions

We began this thesis by describing in chapter 2 a model for the propa-

gation of pulses in dense thermal atomic vapours, based on the Maxwell

Bloch equations. We introduced the regimes of linear and nonlinear op-

tics, and using the propagation model presented the concepts and simu-

lated examples of two important nonlinear techniques: sit and the prop-

agation of optical solitons and simultons in chapter 3, and three-level

eit and the propagation, storage and retrieval of dark-state polaritons in

chapter 4.

In chapter 5 we investigated the properties of two-photon excitation of

a rubidium vapour with high-intensity beam, which required consid-

eration of hyperfine pumping and thus the degenerate hyperfine struc-

ture of the coupled atomic states. We were able to rule out such two-

photon excitation as a cause, and even as a significant contribution, of

the dramatic increase in fluorescence observed in experimental data

taken when scanning over resonance with the d2 lines.

Finally, in chapter 6, we constructed a model to explain an interesting

observed nonlinear effect, making use of the effects of sit and eit pre-

viously introduced, indicating that this is, to our knowledge, a first ob-

servation of simulton propagation in an atomic vapour. Moreover, by

considering the behaviour of the system over longer propagation dis-

tances, we described an approach for facilitating propagation of weak

160
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pulses through dense atomic vapours.

The OpticalBloch software package developed for solving the Maxwell

Bloch equations is presented in appendix B and was used for producing

the numerical results throughout this thesis. It has been designed to be

easily extensible to other systems, including those with many atomic

levels and with multiple co-propagating fields.

The simulated results of simulton propagation presented in chapter 6

give a good quantitative fit to the experimental data over a range of

powers and temperatures, including for the arrival time and relative

heights of the first peak in the probe signal. This gives us confidence

in the model but those fits (see figures 6.12 and 6.11) are less than per-

fect, notably in the oscillations subsequent to the initial peak. Improving

this fit should be a goal of future work. Now that we have an under-

standing of the propagation mechanism, experiments can be designed to

monitor all of those parameters we now know to be important, includ-

ing the coupling pulse profile before and after transmission through the

vapour cell. We can also use our understanding of the pulse breakup

Rabi frequencies to carefully measure the coupling strength involved the

atom-light interaction.

Improvements should also be considered for the theoretical model. We

can adjust the simulated coupling pulse from a pure Gaussian to match

the exact profile input on the medium. We might consider time-of-flight

effects as an additional broadening mechanism, as the atoms travel both

longitudinally in the thin cell and transversally through the tightly fo-

cussed beams. Finally, we justified averaging over the hyperfine sub-

levels in excited states, however an obvious and useful extension to the

model will be to include the angular momentum structure developed

in chapter 5 to account for any effects due to degeneracy and optical

pumping.
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Experimental work has begun to investigate propagation of simultons

over longer distances in micron-scale Caesium vapour cells, which will

enable us to test the feasibility of weak propagation using the simulton

scheme.

An exciting extension of the scheme would be in the possibility of cou-

pling using Rydberg states in order to introduce strong dipole-dipole in-

teractions between atoms to mediate interactions between solitons, with

applications for photonic quantum information processing.70, 105, 106



A Dynamics of Open

Quantum Systems

A.1 The Density Operator

We typically describe the state of a quantised atomic system via its state

vector

|ψ〉 = ∑
j

cj |j〉 , (A.1)

a linear superposition of the eigenstates |j〉. There are many physical

situations, however, in which there is significant coupling to an external

environment the state evolution of which we cannot follow.

Atom-light interactions are one such system. While the processes of ab-

sorption and stimulated emission (of photons from and to the applied

field) can be described within a closed quantum system, the process of

spontaneous decay cannot in the case that we take the external field to

be classical, and the atomic system is necessarily in a mixed state.

For such open quantum systems it is useful to generalise the concept of

|ψ〉 to that of the density operator ρ. A pure state is one that can be repre-

sented by a linear superposition as in (A.1), for which the density matrix

is defined as ρ = |ψ〉 〈ψ|. This is clearly equivalent in information to |ψ〉.
The usefulness of the density operator ρ is that it can be generalised in a
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statistical way to represent incoherent superpositions of wavefunctions.

We assume we have a mixture of states |ψs〉 each with different expan-

sions in the eigenbasis |j〉, contained in the ensemble with probabilities

P(s) ≥ 0. The density operator for this general mixed state is then de-

fined as

ρ = ∑
s

P(s) |ψs〉 〈ψs| (A.2)

where for proper normalisation

∑
s

P(s) = 1. (A.3)

We may consider that |ψ〉 describes the intrinsic Heisenberg uncertainty

required by quantum mechanics, where ρ is also able to describe addi-

tional uncertainty representing our state of knowledge of the system.27

The matrix representation of the density operator in a particular ba-

sis is also known as the density matrix. The off-diagonal elements

ρjk = 〈j| ρ |k〉 depend on relative phase of the coefficients and are known

as coherences. The diagonal matrix elements ρjj = 〈j| ρ |j〉 represent the

probability of a measurement finding the system in state |j〉 and are

known as populations. These populations form a probability distribution

and so must be normalised such that

Tr [ρ] = ∑
j

ρjj = 1. (A.4)

The expectation value of an operator A in the density matrix formalism

is given by

〈A〉 = Tr [Aρ] . (A.5)
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A.2 The Master Equation

By substituting the density operator ρ into the standard Schrödinger

equation for motion of the quantum state

ih̄
∂

∂t
|ψ〉 = H |ψ〉

we obtain the von Neumann equation for unitary evolution

ih̄
∂ρ

∂t
= [H, ρ] (A.6)

which for pure states is equivalent to the Schrödinger equation.

We wish to extend the formalism to mixed states and derive an equation

of motion for the open quantum system interacting with an environ-

ment. The observed effect of interaction with an unmonitored environ-

ment is to introduce non-deterministic transitions between eigenstates

and dephasing between them.

We start by expanding the model to include the environment, such that

the total system is closed and described by (A.6). In order to meet this

requirement, we must consider the Hilbert space of the total system, and

a total Hamiltonian operating over that space

HΣ = H+HE +HC (A.7)

where H is the Hamiltonian of the system, HE is the Hamiltonian of

the environment, and HC is the Hamiltonian describing the interaction

between the system and the environment.

As we’re only concerned with the dynamics of H, we then make a par-

tial trace over the environment degrees of freedom in (A.6) to obtain a

master equation for time evolution of the system. The Lindblad master

equation is a general, trace-preserving and positive form for the reduced

density matrix ρ, given by

ih̄
∂ρ

∂t
= [H, ρ] + L {ρ} (A.8)
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where the Lindblad term given by

L {ρ} = ∑
j

CjρC†
j − 1

2

(
ρC†

j Cj + C†
j Cjρ

)
(A.9)

is a superoperator describing the system interaction with its environ-

ment via collapse operators Cj coupling states. For example, to account

for a stochastic interaction with the environment representing the decay

of a system from state |k〉 to state |j〉 with rate Γjk, we include a collapse

operator

Cj =
√

Γjk |j〉 〈k|

in the Linblad term.

For the Lindblad equation (A.8) to be applicable as a master equation

for the system, a couple of approximations must be justified. Firstly,

the Born approximation requires that the environment is sufficiently

large that it is not much affected by interaction with the system. We may

write this as

ρΣ ≈ ρ⊗ ρE. (A.10)

Secondly, the Markov approximation requires that the time evolution

depends on ρ(t) and not any past history — this is also called a ‘short-

memory environment’.



B Numerical Integration of the

Maxwell-Bloch Equations

In this appendix we describe the design and implementation of numeri-

cal methods to solve the coupled Maxwell-Bloch (mb) equations describ-

ing the nonlinear propagation of near-resonant light through thermal

atomic vapours. The derivation of the mb equations is given in chapter

2 and simulated results from the scheme here described are presented

throughout the thesis.

B.1 Formulating the Problem

The mb equations are together equations (2.47) and (2.29), which we will

restate here for completeness. They are the first-order Maxwell wave

equation with the slowly varying envelope approximation

∂

∂z
E(z, t′) = i

k
2ε0

N(z)∑
i 6=j

dij

∫ ∞

−∞
ρij(z, t; v) f (v)dv.

describing propagation of the field envelope and the Lindblad master

equation

ih̄
∂ρ

∂t
= [H, ρ] + L {ρ}

describing the time-evolution of the atomic density matrix interacting

with that field.
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We describe the problem in the natural unit system defined in section

2.5: in terms of the length of the medium L, the natural linewidth of the

transition Γ (specifically the probe transition in the case of schemes with

multiple field modes) and its reciprocal natural decay time τ = 1/Γ. Our

goal is to solve the mb equations over a domain in 1d space z ∈ [0, 1]

and co-moving time t′ ∈ [tmin, tmax].

We begin by setting up a discrete lattice over z and t′, with Nz equal

spacesteps of length hz = 1/Nz, such that zj = j · hz ∀j ∈ {0, 1, 2, . . . , Nz}
and Nt equal timesteps of duration ht = 1/Nt, such that tk = k · ht ∀k ∈
{0, 1, 2, . . . , Nt}.

The overall strategy is then to calculate values for the discretised elec-

tric field Ej,k across the lattice, for which we must determine the macro-

scopic polarisation Pj,k of the atoms, which in turn is derived from the

density matrix ρj,k. A self- consistent algorithm is required for compu-

tation. Note that the electric field and polarisation envelopes in general

consist of multiple modes, representing polarisations and wavelengths

resonant with different transitions. For clarity in describing the scheme

we will present only a single mode Ej,k, but describe how the algorithm

is extended to multiple modes later on.

We define a discrete set of detunings {∆l}, representing atoms across a

range of Doppler-shifted velocity classes. This range should be broad

enough to cover the Maxwell-Boltzmann probability distribution and

dense enough to accurately map the spectral absorption window. We

will discuss those accuracy requirements in section B.3.

Any formulation of an integration scheme for partial differential equa-

tions is complete only with the definition of appropriate boundary con-

ditions. Here we take a boundary condition for the field at the front of

the medium (i.e. j = 0) defining the field profile over time input on the

medium Ej=0,k. In a typical simulation of experiment this might be a
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Figure B.1 Finite difference integration scheme for the Maxwell-Bloch equations.

The equations are solved for a discrete lattice over space z and co-moving

time t′. At each lattice point (zj, t′k) we wish to solve for the electric field

E(zj, t′k) and the atomic density matrix ρ(zj, t′k). The initial condition is

illustrated by the two- level icons on the left. The boundary condition

defining the electric field pulse profile over time input on the medium is

illustrated by the sketched pulse at the bottom.

pulse or a ramp-on to a cw field. We must also specify an initial con-

dition for the density matrix ρj,k=0. Typically we set this such that all

population starts off in the atomic ground state.

B.2 Computational Scheme

The finite difference scheme is illustrated in figure B.1 and sketched

out with pseudocode in algorithm 1. For each spacestep index j in the

medium, we take the field Ej,k arriving on that step for all timesteps

t′k. For the first spacestep (j = 0) this is the input boundary condition,
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Algorithm 1 Maxwell-Bloch integration.

1: for j = 2 to Nz do . Loop over spacesteps

2: for l = 0 to N∆ do . Loop over velocity classes

3: ρl
j = solve lindblad(ρinit, Ej, ∆l)

4: end for

5: for k = 0 to Nt do . Loop over timesteps

6: Pj,k = Nz ∑a 6=b
∫

l dabρl
j,k[a, b] f (∆l, u)d∆

7: Ej+1,k = Ej+1,k + ihz
k

2ε0

[
3
2Pj,k − 1

2Pj−1,k

]
. The ab step

8: end for

9: end for

illustrated in red in figure B.1. Next (lines 2–4 in the pseudocode) we

loop over the velocity classes l and pass the detuning ∆l, the field pro-

file Ej,k and an initial condition (ρinit) to an ode solver for the Lindblad

master equation. That solver contains an implicit loop through the Nt

timesteps, and integrates the Lindblad equation to find the density ma-

trix at each of those timesteps t′k.

At this point we have solved for the density matrix ρl
j at the spacestep zj

for each time tk and for atoms in each velocity class l. In a loop over the

timestep index k (lines 5–8) we then perform an average of the density

matrix coherences over detuning, weighted by the Maxwell-Boltzmann

probability distribution for a defined width u, and sum them to find

(line 6) the polarisation Pj,k at that point in space zj and time tk.

Once we have computed the polarisation, and still within the loop

over timesteps, we can advance the field at that timestep to the next

spacestep Ej+1,k in the medium for each k using a second-order Adams-

Bashforth method. Note then that this method is not strictly chronologi-

cal, but is self-consistent in the co-moving frame of reference.
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B.2.1 Details of the Algorithm

The pseudocode above describes the general calculation scheme, but

omits a number of details that we will now describe.

First, we have considered only a single field mode. For multiple modes,

we must input all of those modes to the Lindblad solver (in line 3). We

must also calculate polarisations for each mode separately from its cou-

pled transitions (line 6) and advance the fields for each mode (line 7).

Second, note that we started the spacestep loop (line 1) at j=2. The two-

step Adams-Bashforth method requires two starting points to begin. We

therefore use an explicit Euler step to take the input field at j = 0 to the

next step at j = 1. As the local error in the Euler step is of order O(hz),

we use a smaller step to avoid introducing a large global error. The sec-

ond step is then a two-step Adams-Bashforth with different stepsizes.

The correct difference formula for this step (C.6) is derived in Appendix

C. The remaining steps use the standard two-step Adams-Bashforth step

as shown in the pseudocode.

Third, the Lindblad solver (line 3) requires the electric field envelope

Ej to be passed as a function of time, rather than an array, as the adap-

tive method may choose different inner stepsizes (i.e. steps between t′k
and t′k+1 for any k) that we do not know in advance. We construct this

function for arbitary points in the time domain using quadratic spline

interpolation.107, 108

Fourth, the complex values for the field envelopes Ej,k and atomic den-

sity matrix ρj,k across the lattice is saved to disc in binary format, such

that the results of each simulation can be loaded without needing the

calculation to be repeated. To optimise storage and memory require-

ments, a data resolution in zh and tk may be specified, sufficient for

analysis and visualisation without needing to record all of the steps that
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may be required for stability and accuracy.

Spectral analysis of the results is performed using a discrete Fourier

transform of the complex field.107

B.2.2 Code Implementation

The algorithm for solving the mb equations was implemented in Python

using the SciPy scientific computing stack.109, 110

The code uses the OB class of the OpticalBloch package in order to de-

fine the atom-light interaction and solve the Lindblad equation for in-

stances representing various atomic systems, with few-level or with full

angular momentum structure. The QuTiP library111 is used for quantum

state and operator objects and its master equation solver for dynamics of

open quantum systems.

B.3 Convergence & Accuracy

We check the accuracy of the method with a quantitative measurement

of the convergence of results for a particular system with increased

number of spacesteps and velocity classes. We wish the results to be

as accurate as possible, but with an awareness of the trade-off that the

computational complexity (and thus running time) scales with O(Nz)

and O(N∆) where N∆ is the number of velocity classes.

In figure B.2 we show the results of convergence of the integrated solu-

tions for different numbers of spacesteps Nz between 10 and 500. The

convergence is measured relative to a benchmark at 10, 000 spacesteps

— a number which ensures high accuracy but is too slow for perform-

ing many calculations. The maximum value of the absolute difference
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Figure B.2 Convergence of an example integrated solution, for a weak pulse in a

medium with N g = 2π 100 MHz, for different numbers of spacesteps Nz.

(Main plot) The minimum absolute residual between an integrated solu-

tion Nz and a benchmark solution with 10, 000 steps (blue circles), plotted

on a logarithmic y-axiz. The dotted line represents a chosen accuracy re-

quirement of 10−3 and the green circled data point is the lowest number

of steps tested which meets this requirement, in this case Nz = 200. (In-

set) Normalised Ω against time at the final spacestep j = Nj for both the

benchmark and the Nz = 200 run, with the residual shown underneath.
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Figure B.3 Convergence of an example integrated solution, for a weak pulse in a

medium with N g = 2π 100 Γ/L and a thermal width of 2π 10 Γ, for dif-

ferent numbers of velocity classes N∆. (Main plot) The minimum absolute

residual between an integrated solution N∆ and a benchmark solution

with 10, 000 velocity classes, plotted on a logarithmic y-axis. The dotted

line represents a chosen accuracy requirement of 10−3 and the green cir-

cled data point is the lowest number of steps tested which meets this re-

quirement, in this case N∆ = 100. (Inset) Normalised Ω against time at

the final spacestep j = Nj for both the benchmark and the N∆ = 100 run,

with the residual shown underneath.

(residual) between the benchmark and each run is plotted. We see that

the maximum absolute residual decreases with the number of steps Nz

down to 200 steps, after which the increase in accuracy for an increased

number of steps is reduced. If we choose a tolerance for the maximum

absolute residual of 10−3 (shown by the dotted line), the first tested run

within that tolerance is Nz = 200. Running simulations with this num-

ber of spacesteps would therefore reduce calculation many times over

the benchmark while keeping a sufficient level of accuracy.
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In figure B.3 we show a similar figure for results of convergence for the

integrated solutions for different numbers of velocity classes N∆ be-

tween 1 and 1, 000 spread over a width of 2π 40 Γ.

The convergence is measured relative to a benchmark at 10, 000 velocity

classes. We see that the maximum absolute residual is large for few ve-

locity classes, around 1. If we again choose a tolerance for the maximum

absolute residual of 10−3 (shown by the dotted line), the first tested run

within that tolerance is Nz = 100. The ‘return on investment’ for ad-

ditional velocity classes is reduced from then on, with Nz = 1, 000 not

providing an order of magnitude improvement in accuracy.

In picking a range of velocity classes for an accurate simulation, there

are two important considerations. First, it is important to cover the

Maxwell- Boltzmann distribution. We check the integration width is

sufficient by using a simple trapezoidal integration over the discrete

Maxwell-Boltzmann distribution to ensure it is close to unity. In each

of the calculations above we used an evenly spaced sampling over four

times the fwhm. The integral is far from unity until around 20 detun-

ing steps (when it reaches 0.995), which explains why we don’t see con-

vergence in the first few samples. Second, it is important to sample

accurately the Lorentzian resonance window, which is typically much

smaller than the thermal width (in our case it is specified to be 2π 1 Γ).

In order to achieve both of these goals with an optimised number of de-

tuning steps, we use a non-evenly spaced grid with a denser number of

velocity classes around resonance, which can improve accuracy without

requiring as many velocity classes.
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Figure B.4 Speedup of parallelised computation versus number of cpus for different

numbers of velocity classes N∆ = {5, 10, 20, 40}, relative to the serial

algorithm. Each data point is ‘best of two’ to avoid times where the cpus

might otherwise be used by the operating system.

B.4 Parallelisation & Performance

The pseudocode in algorithm 1 contains a number of nested loops,

which leads us to consider if any parts of the implementation may read-

ily be parallelised.

The iterations of the outermost loop over spacesteps zj (algorithm 1, line

1) are not independent (i.e. the field at a point in space j is dependent

on the previous space points 0, 1, . . . , j− 1) which necessitates that these

be processed in serial. However, the iterations of the inner loop over ve-

locity classes ∆l (algorithm 1, line 2), calculate the evolution of atoms

subject to different Doppler shifts with respect to the fields along z. The

evolution of each class is completely independent of the others so these

may be processed in parallel, with the weighted average calculated at

the end.
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In figure B.4 we present measured speedup of parallelised computation

with increasing number of cpu for example simulations using 5, 10, 20

and 40 velocity classes, relative to the serial code.

We see that, for all numbers of velocity classes tested, using the parallel

code but only allowing use of a single cpu incurs a slowdown due to the

overhead of passing objects into the parallelised functions.

In general the speedup decreases with the number of velocity classes,

which indicates that there is significant overhead in parallelisation. With

2 cpus we have speedup up to the case of 20 velocity classes. With 4

cpus, the parallel algorithm results in significant speedup, above 60%

in each case. The speedup for 5 velocity classes with 4 cpus or more is

obviously limited.

The Lindblad solver routine in the velocity class loop represents the

most computationally intensive part of the whole algorithm, so it is cer-

tainly useful to be able to make use of multiple core computers to per-

form these calculations. For the work described in this thesis we made

use of an Intel Core i7 with up to 4 cpu cores, and for the most intensive

calculations we used Durham University’s Hamilton hpc Cluster with up

to 12 cpu cores for each simulation.

Another process which could be computed in parallel is the iteration

over timesteps tk (algorithm 1, line 7), which performs the weighted av-

erage over density matrix coherences to determine the polarisation of

the medium at that time, and advances the field via the ab step. How-

ever, for the number of timesteps used in calculations we saw negligible

speedup due to the high overhead required for this loop in passing ar-

rays containing the polarisations and fields. In fact, for systems where

less than Nk = 1000 timesteps are required for the necessary accuracy,

this overhead caused the parallel implementation to be slower than the

serial. It was therefore not used.
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For fields with many modes, loops over these modes could be paral-

lelised for computing polarisation. In this work we have only needed

to consider systems of one or few modes, so it was not appropriate to

implement parallelisation here.



C The Two-Step Adams-Bashforth

Method with Varying Stepsize

Adams-Bashforth integration methods have a well-known derivation

but we are not aware of a reference for the two-step method in the case

that the two stepsizes are different, so we present the result here. This

numerical method is used in solving the mb equations as described in

chapter B. The two-step method requires two initial points, and the sec-

ond point is calculated using a Euler step, which we wish to keep small

to avoid introducing a large global error. The third point is then calcu-

lated with the Adams-Bashforth method with different step sizes. From

then on the standard Adams-Bashforth method can be used.

We take an ordinary differential equation y′ = f (z, y(z)) with an initial

condition y(z0) = y0 that we wish to solve numerically. If we know y(z)

at a time zn and want to know what z is at a later time zn+1, the funda-

mental theorem of calculus tells us that we find it by integrating y′ over

the time interval

y(zn+1) = y(zn) +
∫ zn+1

zn
y′(z)dz = y(zn) +

∫ zn+1

zn
f (z, y(z))dz. (C.1)

The idea behind any ode integrator is to compute the right-hand- side

integral for some numerical approximation of f . The problem is then

computed over a series of steps n = 1, 2, . . . N to give a sequence of

points zn which approximate y(z) to some order of accuracy as a func-

179
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tion of the stepsize. The method is consistent if the local error (i.e. the

error from step n to step n + 1) goes to zero faster than the stepsize

(zn+1 − zn) goes to zero.

Where the Euler method takes the slope f to be a constant on the inter-

val [zn, zn+1], the idea behind Adams-Bashforth methods is to approxmi-

ate f by a Lagrange interpolating polynomial112

P(z) =
m

∑
j=1

Pj(z) (C.2)

where

Pj(z) = yj

m

∏
k=1
k 6=j

z− zk
zj − zk

. (C.3)

Here P(z) is the polynomial of degree ≤ (m− 1) that passes through the

m points (z1, y1 = f (z1)), (z2, y2 = f (z2)) . . . (zm, ym = f (zm)). We’ll

take the linear (m = 2) interpolant on the point zn and an earlier point

zn−1, so we have

P(z) = f (zn, yn)
z− zn−1

zn − zn−1
+ f (zn−1, yn−1)

z− zn

zn−1 − zn
. (C.4)

Now if we substitute this approximating polynomial into the integral in

(C.1), we find

∫ zn+1

zn
f (z, y(z))dz ≈

∫ zn+1

zn
P(z)dz

=
∫ zn+1

zn

[
f (zn, yn)

z− zn−1

zn − zn−1
+ f (zn−1, yn−1)

z− zn

zn−1 − zn

]
dz

into which we may then put in the limits to obtain

∫ zn+1

zn
f (z, y(z))dz ≈ (zn − zn+1)

2(zn−1 − zn)

[
f (zn, yn)(zn + zn+1 − 2zn−1)

− f (zn−1, yn−1)(zn − zn+1)
]
. (C.5)



Appendix C. The Two-Step Adams-Bashforth Method 181

If we let h1 := zn − zn−1 and h2 := zn+1 − zn then

∫ zn+1

zn
P(z)dz =

h2

2h1
[(2h1 + h2) f (zn, yn)− h2 f (zn−1, yn−1)] .

Putting this back into the approximation of (C.1), we get

y(zn+1) ≈ y(zn) +
h2

2h1
[(2h1 + h2) f (zn, yn)− h2 f (zn−1, yn−1)]

and our sequence of approximation points yn is calculated as

yn+1 = yn +
h2

2h1
[(2h1 + h2) f (zn, yn)− h2 f (zn−1, yn−1)] (C.6)

for n = 1, 2, . . . N. This is the correct second-order Adams-Bashforth

finite difference step in the case that the stepsizes are different.

If the steps are of equal size, i.e. h := h1 = h2 we find

yn+1 = yn +
3
2

h f (zn, yn)−
1
2

h f (zn−1, yn−1) (C.7)

which is the standard two-step Adams-Bashforth method.113, 114
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eslavovich Gorshkov. Coulomb bound states of strongly interacting

photons. Phys. Rev. Lett., 115(September):123601, 2015.

106 Thibault Peyronel, Ofer Firstenberg, Qi-Yu Liang, Sebastian Hoffer-

berth, Alexey Vyacheslavovich Gorshkov, Thomas Pohl, Mikhail D.
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