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Abstract
An investigation into the temperature evolution of transmission and absorp-
tion coefficient spectra of Rubidium atoms in the hyperfine Paschen-Back
regime was successfully undertaken for a continuous laser detuning of ap-
proximately 150 GHz. All experiments were undertaken using a 1 mm long
cell of isotopically enhanced 87Rb. The magnet used had a peak field of
1.54 T. The forms of both the S0 and S1 Stokes Parameters showed excellent
agreement with the theory from ElecSus at temperatures ranging from 56 ◦C
to 160 ◦C, with the S0 parameter also agreeing in narrow-band spectra of up
to 20 GHz.
The absorption coefficient ratio of strong transitions, expected to be equal
to 3.00, was measured to be within their uncertainty of this value when a
possible temperature fluctuation of < 1 K was taken into account. Both the
strong and weak transitions were measured and compared to the theory from
ElecSus, which was found to successfully predict the behaviour of 87Rb atoms
in the hyperfine Paschen-Back regime. Areas of expansion and improvement
of the ElecSus program were identified.
The power evolution of the D2 line of Rubidium was also investigated for
a narrow beam of w < 0.4 mm in both no external magnetic field and the
hyperfine Paschen-Back regime. The inhomogeneous shape of the power
evolution was found to not fit the data, while the χ2 analysis showed that
the homogeneous shape was better.
The Weak Probe regime was found to be reached at values of I/Isat up to 2
orders of magnitude higher than the 10−3 found previously. This provides
possibilities for applications such that the SNR can be increased when mea-
suring transmission or absorption coefficients. It is unclear whether the use
of a magnetic field significantly changes the intensity required to reach the
Weak Probe regime. This should be investigated using a wider beam, with
a different experimental cell.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Light-Matter Interactions

Light’s far-ranging uses and applications mean it has previously been called

‘the great unifier across science’ [1]. From biology, where all life on earth

is dependent on photosynthesis; to physics, where solar energy has been of

interest since Bequerel discovered the photoelectric effect in 1839: [2] the

potential of understanding the effect light has on matter is hard to overstate.

The laws which govern these interaction are called quantum electrodynamics.

However, we only need a semi-classical approximation to understand most

of the physics. To this day, our knowledge of these interactions forms the

basis of many modern technologies. As recently as 2014, the Nobel prize in

physics was awarded for the invention of the blue LED [3].

Atomic physics is a rich, practical field in which light-matter interactions

can be studied. Applications within this community include laser cooling [4],

optical waveguides [5] and atomic clocks [6], and potentially quantum com-

puting [7].

During this thesis, we experimentally investigate a specific light-matter in-

teraction: Rubidium vapour interacting with near-infrared laser light. The

main focus is the Zeeman Effect, which describes the splitting of atomic

energy states under the influence of an external magnetic field. Specifically,

1
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this effect at very high magnetic fields, known as the hyperfine Paschen-Back

regime.

1.1.2 Quantum Computing

Quantum computing, first envisioned by Feynman in 1982 [8], may be the

best answer to the question of simulating quantum physics. As Feynamn said

in his original 1982 article and speech, “let the computer itself by built of

quantum mechanical elements which obey quantum mechanical laws”. Quan-

tum bits, or qubits, can be in |0〉, |1〉 and a linear superposition of the two,

unlike the binary 0,1 system used in classic computing [9].

Atomic and optical systems are a strong contender for qubits, as they offer

some unique advantages [7]: the foundations of quantum mechanics in these

systems have been extensively studied in the lab. The success of atom- and

ion-based atomic clocks as quantum coherent devices help provide motivation

for the use of atom and ion based quantum computers.

For approximately 20 years, atoms have been of particular interest [10] as

atoms couple weakly to the environment they are in, whereas ions interact

strongly with their environment, which leads to ‘decoherence’ channels from

technical noise sources. Moreover, atoms have a very short interaction range

so large ensembles of atoms can be used without perturbing each other, which

is the main advantage of atoms over ions.

1.1.3 Alkali Metals

Alkali metals are in Group I of the periodic table. Although hydrogen is not

technically an alkali metal, its structure is similar due to its single valence

electron.

This simple structure, amongst other things, means that it is much easier to

calculate state wavefunctions and energy levels of the atom, and hence the

atom-light interactions. This valence electron can be pumped by a laser into

an excited state, and then decay back into the ground state. The absorption

of light by the atom can be observed with the use of a photodiode, and so this

atomic system allows a quantative understanding of light-matter interactions.
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Specifically, alkali metal atoms would be of particular use in quantum com-

puters, as [7] their nuclear spin leads to hyperfine splitting in the ground

state, which have a long lifetime, and are potentially ideal qubits.

1.1.4 Ultra-Cold Atoms versus Thermal Vapours

First concepted in 1975 [11], laser cooling has driven a revolution in the

research of atomic physics. Work done in the experimental realisation of the

technique won the 1997 Nobel Prize [4, 12, 13]. In 1985, Chu [14] developed

a technique for cooling atoms below the Doppler limit. Since then, much

of atomic physics research has been dominated by ultra-cold alkali metals,

for example work in Bose-Einstein condensates won the 2001 Nobel Prize in

Physics [15, 16]

These systems generally have intricate setups, including Magneto-Optical

Traps (MOTs) [17], complex laser locking systems [18], and vacuum cham-

bers [19]. Therefore, although useful to study, the use of ultra-cold atoms in

a quantum computer seems challenging. Simplifying the setup may there-

fore be cheaper, more scalable and be easier to setup as multiple years of

experience of laser locking, vacuum chambers and MOTs would not be re-

quired. For example, it has been shown that arrays of microscopic thermal

vapor cells of alkali atoms can be used as a ‘scalable single-photon source’

[20]. This means that by using thermal vapours instead of ultra-cold atoms,

another route for a quantum computer can be established.

Thermal vapours also have a huge advantage that cold atoms do not: the

ability to change the vapour pressure over a logarithmic scale by changing

the temperature, and therefore the ability to fine-tune the number density,

which the strength of the atom-light interaction depends on. As can be seen

in Figure 1.1, the vapour pressure (in atmospheres, atm) of 87Rb depends on

the temperature of the vapour (in Kelvin, K) by the equation

log10 Pv =

{
4.857− 4215

T
, T < Tm,

4.312− 4040
T
, T > Tm,

} (1.1)

where T is temperature (in Kelvin, K), Tm is the melting point Tm =

312.45 K = 39.30 ◦C). The ability to fine-tune the strength of the atom-

light interaction is extremely useful because that means that the complex
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electric susceptibility, χe, can be fine-tuned, where the real part, χre, gives

the refractive index of the medium, and the imaginary part, χimag, gives the

absorption of light by the medium. This makes thermal vapours an excellent

choice to study as these can be quantitatively measured in the lab.
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Figure 1.1: Vapour Pressure of 87Rb as a function of temperature in ◦C, as

given by the equations in 1.1. The dashed line shows the melting point, where

the green line is the liquid phase (T > Tm), and the blue line is the solid phase

(T < Tm). This model is estimated to have an accuracy of ±5% from 24.85 ◦C to

276.85 ◦C [21].

1.1.5 High Magnetic Fields

When a magnetic field is applied to an alkali metal atom, the degeneracy

within the ground state of that atom breaks down as the energy levels split

apart from one another (the Zeeman Effect [22]). The excited states also
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experience splitting, so the optical transition has changed. The optical tran-

sition between ground and excited state is what is studied in this thesis. The

bulk of the theory behind this effect is discussed in Chapter 2.

Spectroscopy on the alkali metal atom 87Rb, the focus of this thesis, has

been undertaken at various magnetic fields. The magnetic fields previously

used in conjunction with spectroscopy of alkali metal atoms are rarely in the

hyperfine Paschen-Back regime [23–25].

To the best of our knowledge, the strongest magnetic field experimentally

studied and compared to theory for 87Rb is B = 0.6 T. In this thesis, the

magnetic field is more than double 0.6 T, at 1.54 T.

1.2 Recent Work In Area

At Durham University, an extensive theory for the weak-probe spectroscopy

of alkali-metals atoms has been published [26]. The program calculates the

‘Electric Susceptibilty’ χe, and is appropriately named ‘ElecSus’. It includes

the effects of magnetic field, temperature, polarisation of input light, self

broadening and additional broadening from buffer gases for the alkali metals.

It gives absolute values with real units which can be compared the laboratory

measurements for values such as the ‘S0’ absorption spectra from χre, and ‘S1’

faraday spectra from χimag, where ‘S0’ and ‘S1’ refer to Stokes parameters [27].

‘ElecSus’ is motivated by not only potential for future technology in quantum

computing, but also in more short-term applications. For example, the cal-

culations of Faraday rotation have allowed an optical isolator [24] to be built;

a Faraday filter with a noise bandwidth of less than 1 GHz [28] to be created;

and a new type of laser [29].These are just some of the possible applications

directly using the knowledge gained from the ‘ElecSus’ program [27].

So far, the ‘ElecSus’ has been used and tested for (1) 87Rb and 85Rb [30, 31];

(2) other alkali metals such as Cesium and Potassium [32–34]; (3) no magnetic

field [26, 35]; (4) up to B = 0.6 T [23–26]; (5) at various temperatures [26,

36]; (6) differing cell sizes [34, 35]; and has been shown to have excellent

agreement with all experimental data.
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1.3 Investigation Themes of this Thesis

One regime in which the accuracy of the ‘ElecSus’ program has not been

tested, however, is for high magnetic fields that are further into the hyperfine

Paschen-Back regime than 0.6 T. This regime has previously been studied

for other alkali metals, such as Sodium in 1988 with a magnetic field of up

to 0.028 T [37], and subsequently Sodium and Lithium in 1992 at magnetic

fields of up to 1 T [38]. Although the frequency at which the absorption

occurred was compared to theoretical values, no comparison for absorption

was undertaken. This is because the spectra were taken via fluorescence

measurements and as such have no absolute absorption measurements, and

have only arbitrary units.

The ‘ElecSus’ program works by calculating either the D1 or D2 line, but at

high magnetic fields the splitting of the energy levels means that these can

start to mix. One of the aims of this thesis is to continue this investigation

by determining whether the theory behind the ‘ElecSus’ program accurately

predicts the electric susceptibility, transition strengths and transition fre-

quency at magnetic fields of up to 1.54 T, which hasn’t been investigated

previously.

This thesis has two primary foci. Firstly, an undertaking of an investiga-

tion into the evolution of Rubidium spectroscopy at 1.54 T. Specifically, the

evolution of χre and χimag as a function of temperature and input-light po-

larisation. As this is measured with absolute values, rather than arbitrary

units, it is possible to directly compare to the theory from ‘ElecSus’ with

residuals.

Secondly, an investigation into the power evolution of Rubidium spectroscopy

at 1.54 T is undertaken: specifically whether the power at which one can be

sure to be in the weak probe regime changes in the hyperfine Paschen-Back

regime [39]. The effect of laser beam widths will also be discussed.



Chapter 1. Introduction 7

1.4 Thesis structure

This thesis is structured as follows:

• Theory: in which the relevent quantum numbers are defined; the Hamil-

tonian along with the fine and hyperfine structure of 87Rb is discussed

along with the degeneracy of energy states; the coupled and un-coupled

basis is explored; the different regimes that the magnitude of magnetic

field causes are explained; and the different possible transitions that can

be driven are outlined. Different types of lineshapes are their physical

origins are discussed and the theory behind the weak probe regime in-

cluding hyperfine pumping and dark states is explained. The chapter

ends with a discussion of the theoretical effect of temperature on the

different Stokes Parameters.

• Temperature Evolution: in which the temperature evolution of differ-

ent Stokes Parameters for 87Rb under the influence of a 1.54 T magnet

is investigated. The experimental setup is described and the steps

taken to convert raw time domain data into a frequency spectrum are

outlined briefly. This is undertaken using two different lasers which

allow both wide and narrow frequency detunings to be investigated.

The ‘strong’ and ‘weak’ transitions are observed separately and the re-

sults are compared to the theoretical spectra that the ElecSus program

provides.

• Power Evolution: in which the limits of the weak probe regime are

discussed and experimentally investigated for a laser beam with a much

smaller beam width than has been used in previous work, for 87Rb

atoms both with and without the high external magnetic field. The

power evolution for different transitions are also compared.

• Conclusion: a brief summary of the investigations into temperature

evolution and power evolution for the 87Rb atoms during the course of

this thesis is described, and an outlook for the future scientific possi-

bilities that can be achieved with the help of the work undertaken in

this thesis.



Chapter 2

Theory

In this chapter, the theory behind light-matter interactions is discussed. The

effect that different magnetic field strengths have on atom-light interactions,

and the electric susceptibility will be discussed, along with predictions for

the temperature dependence of transmission spectra and other Stokes pa-

rameters.

2.1 Quantum Numbers and Magnetic Mo-

ment

The classical model of the atom has an electron with negative charge orbiting

a positively charged nucleus, where the loop of the orbit induces a magnetic

moment. In this section, we discuss the quantum mechanics of magnetic

moments.

2.1.1 Bohr’s Atomic Model

The principal quantum number, n, is used to define the quantised energy

level En that is occupied by the electron [40, 41]. It has possible values of

integers of 1 or above, i.e.: n = 1, 2, 3..., where, for hydrogen and helium

atoms, n = 1 is the ground state and subsequent integers denote the higher

energy levels.

8
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The quantum number that defines the orbital angular momentum of the

electron, l, is found from the magnitude of the vector l. This quantum

number can range from l = 0, 1, ..., (n−2), (n−1). The values of l are also

given by letters: l = 0→ s, l = 1→ p, l = 2→ d, l = 3→ f , l = 4→ g, and

so on. These letters refer to the ‘s’, ‘p’, ‘d’, etc orbitals of the electron. The

quantum number l relates to the total orbital angular momentum, L via the

equation

L2 = ~2l(l + 1), (2.1)

where ~ is Planck’s constant h divided by 2π. The spatial orientation of l is

specified by ml, the corresponding magnetic quantum number, with 2l + 1

possibilities of ml for each l, assigned by: ml = −l, (−l + 1), ..., (l − 1), l.

2.1.2 Electron Spin

Like charge and mass, one of the fundamental properties of all particles is

spin. All particles have a defined spin of vector s, and the electron is no

different. Each individual electron’s spin has magnitude s = 1
2
.

As the atoms used in this thesis are alkali metals (group I of the periodic

table), so there is one valence electron and therefore the total electron spin

is given by S =
∑
i

si = 1
2
. The direction of the spin is assigned from a

secondary or magnetic quantum number ms, and the possibilities are in this

case are ms = −1
2
, 1

2
[42].

The total electronic angular momentum vector J is defined as the sum of

the vectors l and s, where the magnitude of J is denoted by J . When l,

and s couple to one another, using J to label different quantum states is

useful. Values of J range from |L− S|, to |L+ S|. There exists a magnetic

quantum number mJ , which defines the direction of the vector. mJ has a

range of 2J + 1, and takes the values mJ = −J, (−J + 1), ..., (J − 1), J .

The electron’s magnetic moment µJ also combines the contributions from

the orbital and spin contributions, [43] as

µJ = −gLµBL− gsµBS, (2.2)

where gs is the g-factor, or dimensionless magnetic moment, of the electron
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spin (gs = 2.00231930436153(53) [44]), gL is the corresponding g-factor of L

(gL = 1 [44]) and µB is the Bohr magneton.

2.1.3 Nuclear Spin

The nucleus also has its own spin I, and its own magnetic moment given by

µI = gIµNI = g′IµBI, (2.3)

where g′I (= −0.0009951414(10) [45] for 87Rb) is the corresponding g-factor,

which is several orders of magnitude less than gs or gL. µN is the nuclear

magneton, which is related to the Bohr magneton via the electron-proton

mass ratio [40], i.e.:

µN = µB
me

Mp

' µB

1836
. (2.4)

When the nuclear spin I couples with J , the total atomic angular momentum

quantum number F becomes a more useful quantum number to define the

states than J . F is the sum of the vectors I and J , with magnitude F , and

a corresponding magnetic quantum number, mF = |J − I|,...,|J + I|. The

total magnetic moment of the atom is therefore

µ = µJ + µI = −µB(gLL+ gsS + g′II), (2.5)

which is dominated by the electron magnetic moment, and is often taken to

be µ = µJ .

2.2 Hamiltonian of the Atom

The energy states of the atom are described by the eigenvalues of the atomic

Hamiltonian Ĥ, given by

Ĥ = Ĥ0 + Ĥfs + Ĥhfs + ĤZ, (2.6)

where Ĥ0 is the the simplest atomic structure given by the quantum num-

ber n, Ĥfs refers to the fine structure, Ĥhfs to the hyperfine structure, and

ĤZ gives the interaction between the atom and an external magnetic field.

In the absence of an external magnetic field, the expectation of each respec-

tive operator Ĥ0 � Ĥfs � Ĥhfs, and the expectation value of the operator

ĤZ = 0 [46].
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2.2.1 Fine Structure

First named by Sommerfeld [47] to explain the hydrogen spectrum, fine struc-

ture in energy levels arises when there are multiple possible values of J for a

single l value. The spin-orbit term in the fine structure Hamiltonian is given

by (equation 8.102 in [48])

Ĥfs =
γfs

~2
L̂ · Ŝ, (2.7)

where γfs is the spin-orbit constant [40]:

γfs =
~2

2me
2c2

e2

4πε0

1

(na0)3l(l + 1
2
)(l + 1)

. (2.8)

The eigenenergy Efs from the expectation value of Ĥfs is

Efs =
γfs

2

[
J(J + 1)− L(L+ 1)− S(S + 1)

]
, (2.9)

and therefore if J has multiple possible values, there will be corresponding

values of Efs for each J .

For the atom of interest, 87Rb, there is one valence electron and therefore

S = 1
2
. For the ground state, (for 87Rb, n = 5) L = 0 therefore the possible

values of J are J = |0− 1
2
|, ..., |0 + 1

2
| = 1

2
. There is only one possible value

of J in the ground state, and therefore only one possible Efs value, and so for

the ground state there is no fine structure. This one ground state is defined

in n 2S+1LJ form as 5 2S 1
2
.

In the first excited state, the principal quantum number is still n = 5, and

the angular momentum of the electron L = 1. Therefore the possible values

of J range from J = |1− 1
2
|, ..., |1 + 1

2
|, and hence there are 2 possible values

of J : 1
2

and 3
2
. These two possibilities for the excited state can be defined,

in n 2S+1LJ form, as 5 2P 1
2

and 5 2P 3
2
.

We define the two possible transitions from the ground state to either the

J = 1
2

or J = 3
2

state as the ‘D1’ and ‘D2’ transitions respectively, which

are split by approximately 7.1 THz for 87Rb in the absence of an external

magnetic field. This thesis looks only at the D2 transition
(

2S 1
2
→ 2P 3

2

)
,

shown in figure 2.3.

On the left of diagram 2.1, the L and S are coupled to each other, making

J a good quantum number. The magnitude of J is a fixed value in the
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absence of external torque [40]. In the coupled basis, the magnitudes of L

and S remain constant while their directions change due to the spin-orbit

interaction, and hence the vectors precess about J , while J precesses around

the magnetic field axis as shown in the diagram.

On the right of the diagram, the uncoupled basis in which L and S indepen-

dently precess around the magnetic field axis, rather than around J . In this

case, L and S must be taken as separate quantum numbers, as J no longer

can be called a good quantum number. This regime is entered when L, S

interact more strongly with the external magnetic field than with each other.

�

�

�

Weak Field
Coupled basis

Strong Field
Uncoupled basis

B B

� � �

�

L,S L,S

�

�

�

�

Figure 2.1: Left: Diagram vectorally showing the L, S coupled basis, for which

L and S couple to one another and precess around J , while J precesses around

the B axis, which refers to the external magnetic field. J can be called a good

quantum number as its projection does not evolve in time, unlike the projections

of L and S, and mJ is also a good quantum number.

Right: Diagram vectorally showing the L, S uncoupled basis, with L and S sep-

arately defined and each precessing individually about the B axis. J is no longer

a good quantum number, and instead mL and mS can be taken as good quantum

numbers.
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2.2.2 Hyperfine Structure

There also exists a much smaller effect which has been appropriately named

‘hyperfine’ structure, that arises from the multiple possible values of F .

The effect includes the magnetic dipole interaction Ĥd, and the electric

quadrupole interaction Ĥq as

Ĥhfs = Ĥd + Ĥq. (2.10)

The magnetic dipole term arises from the interaction of the nuclear dipole

moment µI and the magnetic field produced from the orbit of the electrons

Be and is given by [49]

Ĥd = −µI ·Be =
Ahfs

~2
Î · Ĵ , (2.11)

where Ahfs is the magnetic dipole constant for each particular state. The

electric quadrupole term is given by the equation [49]

Ĥq =
Bhfs

2Î(2Î − 1)Ĵ(2Ĵ − 1)~2

[
3
(
Î · Ĵ

)2

+
3

2

(
Î · Ĵ

)
− Î
(
Î + 1

)
Ĵ
(
Ĵ + 1

)]
,

(2.12)

where Bhfs is the electric quadrupole constant of the state. Ĥq is zero for

I = 0, or 1
2

and for J = 0 or 1
2
.

The eigenenergies of the hyperfine interaction occur relative to the zero-

detuning energy, ∆Ehfs, is given as the combination of the magnetic dipole

interaction and the electric quadrupole interaction:

∆Ehfs =
Ahfs

2
K +

Bhfs

4

3
2
K(K + 1)− 2I(I + 1)J(J + 1)

I(2I − 1)J(2J − 1)
, (2.13)

where K is given by (equation 9.60 in [50])

K = F (F + 1)− I(I + 1)− J(J + 1), (2.14)

hence multiple values of F or J , Ehfs lead to hyperfine multiple energy levels.

These levels are split by the difference in their respective Ehfs, and each have

a degeneracy of 2F + 1 in the absence of a magnetic field, defined by their

respective mF numbers, ranging from −F , (−F + 1), ..., (F − 1), F .

In figure 2.2, a similar diagram to figure 2.1 is shown, except for the I, J

coupled basis. Here, it is F that precesses around the magnetic field axis,
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Weak Field
basis

Strong Field
Uncoupled basis

B B

�

�
�

I,J Coupled I,J 

Figure 2.2: Left: Diagram vectorally showing the I, J coupled basis, for which

I and J couple to one another and precess around F , while F precesses around

the B axis, which refers to the external magnetic field. F can be called a good

quantum number as it encompasses the directions and magnitudes of both L and

I, and mF is also a good quantum number.

Right: Diagram vectorally showing the I, J uncoupled basis, with I and J sepa-

rately defined and each precessing individually about the B axis. F is no longer

a good quantum number, where mJ and mI are good quantum numbers.

and while the magnitudes of I and J remain constant, it is their directions

that change and precess about F .

The nuclear spin for 87Rb is I = 3
2
. Therefore, for the ground state in which

J = 1
2
, the possible values of F are |1

2
− 3

2
| = 1, to |1

2
+ 3

2
| = 2. This leads to

a hyperfine structure of 2 separate energy levels within the ground state.

These states can be seen in the bottom half of figure 2.3, with a splitting of

6.83 GHz in the absence of an external magnetic field. The F = 1 level has

3 degenerate states: mF = −1, 0,+1, and the F = 2 level has 5 degenerate

states mF = −2,−1, 0,+1,+2.

The excited state for the D2 transition has J = 3
2
, and so the F values range

from |3
2
− 3

2
| = 0, to |3

2
+ 3

2
| = 3, which can be seen at the top half of the

figure 2.3. These states have a splitting from F = 0 to F = 3 of 495.81 MHz,

which is an order of magnitude less than that of the ground state.
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For B = 0, the degeneracy for each of these F states occurs as follows:

F = 0,mF = 0,

F = 1,mF = −1, 0,+1,

F = 2,mF = −2,−1, 0,+1,+2,

F = 3,mF = −3,−2,−1, 0,+1,+2,+3,

(2.15)

and these states are all shown in figure 2.3.

2.2.3 The Zeeman Effect

The degeneracy of 2F + 1 per F state breaks down when an external mag-

netic field is applied, as ĤZ is no longer zero. The expectation value of the

Hamiltonian is changed depending on the F , mF values of that state, and

therefore the energy levels start to split apart.

For a particular energy state, the magnetic field has an interaction with the

atom called the Zeeman effect, given by

ĤZ = −µ ·B, (2.16)

where µ is given by equation 2.5, and B refers to the external magnetic field

applied to the atom.

2.3 Magnetic Field Regimes

Magnetic fields have the effect on the atomic Hamiltonian described by 2.6.

However, the extent of this effect is dependent on the magnitude of B . In

this section, the different regimes that the magnitude of magnetic field causes

will be discussed.

2.3.1 Weak field

When the respective expectation values of Ĥfs � Ĥhfs � ĤZ, ĤZ acts only

as a perturbation to the rest of the Hamiltonian. The vectors I, J couple

to one another as in shown in figure 2.2 and so the quantum numbers F and
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Figure 2.3: Diagram showing the fine and hyperfine structure of the D2 transi-

tion of the 87Rubidium atom, at a magnetic field of B = 0 T. The degeneracy of

each individual F state is discussed in section 2.2.2, and is equal to 2F + 1. The

mF degenerate states are not shown. All energy splittings calculated by ElecSsus

and taken from [46].
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mF are called ‘good quantum numbers’ in that they describe the grouping

of the energy states. Furthermore, the magnetic field component of the

Hamiltonian, ĤZ , given by 2.16, is dominated by the electron’s magnetic

moment and can therefore be reduced to

ĤZ =
µB

~
(gLL+ gsS) ·B, (2.17)

as the nuclear magnetic moment is much smaller than both the electron’s

magnetic moment and any other part of the Hamiltonian. The shift in energy

level has a linear relationship to magnetic field in this region. This is known

as the Hyperfine Linear Zeeman regime (HLZ) [23]. The inset graph shown

in figure 2.4 shows the linear energy shifts of the F = 2 energy levels in the

HLZ regime, given by

E = mFgFµBB (2.18)

where the gF values are also shown in figure 2.3, and are given by

gF = gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)

+ gI
F (F + 1) + I(I + 1)− J(J + 1)

2F (F + 1)
,

(2.19)

which because gJ � gI , can be reduced to just the first term.

2.3.2 Intermediate and Strong Field

As the expectation value of ĤZ starts to become closer in value to the ex-

pectation value of Ĥhfs, the relationship between the shift and the magnetic

field is no longer linear, and the lines begin to curve. This regime is called

‘intermediate’, as neither the Zeeman effect nor the hyperfine part of the

Hamiltonian dominates.

When the respective expectation values of ĤZ � Ĥhfs, the nuclear portion

of the magnet moment can no longer be ignored, and must be included in

calculations of magnetic moment. In this regime, I, and J are no longer

coupled to one another, as shown in the right of diagram 2.2. This means

that F andmF are no longer ‘good quantum numbers’, and instead we use the

total angular momentum J , mJ and nuclear spin I, mI quantum numbers to
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describe the grouping of energy states. This is called the hyperfine Paschen-

Back regime (HPB).

In figure 2.4, a Breit-Rabi diagram of the 52S 1
2

ground state of 87Rb is shown

up to a magnetic field of 1.54 T. The figure shows the weak (inset), inter-

mediate (< 0.3 T) and hyperfine Paschen-Back (> 0.4 T) regimes. In the

main graph, the intermediate regime can be seen in the curvature of the lines,

where the respective expectation values of ĤZ and Ĥhfs are similar in size and

neither dominates. The weak field HLZ regime is shown in the inset, with

an external magnetic field of < 1 mT.

When the lines become linear again, this can be called the hyperfine Paschen-

Back regime, as at this point the respective expectation values of ĤZ � Ĥhfs.

It is clear that the states are now grouped by their J , mJ values. This is

especially clear for the F = 2, mF = −2 state, which starts degenerate with

the other F = 2 energy states and, as magnetic field is increased, joins the

mJ = −1
2

whereas the other F = 2 states keep in their mJ = +1
2

grouping

and are ordered by their mI values ranging between mI = +3
2

and mI = −3
2
.

In figure 2.5, the energy level splittings of the 52P 3
2

state is shown. The

states cross each other as they rearrange into an order defined not by their F

number, but by their mJ value. In each group of four, the states are ordered

by their mI which is between +3
2

and −3
2
.
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Figure 2.4: Breit Rabi Diagram showing 5 2S 1
2

up to 1.54 T. The intermediate

regime can be observed up to 0.3 T, and above 0.4 T the system is within the

hyperfine Paschen-Back regime. The HLZ regime can be seen in the inset, at a

much smaller magnetic field of < 0.01 T.

Figure 2.5: Diagram showing the energy level splitting up to B = 0.03 T of the

5 2P 3
2

state in both the intermediate and the HPB regimes.
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2.3.3 Strong field Limit

As the magnetic field increases even further (e.g.: > 200 T), the expectation

value of ĤZ becomes not only much larger than the expectation value of Ĥhfs

but also comparable to that of Ĥfs, and the D2 energy level splittings cross

the D1 energy levels. In figure 2.6 there are crossings from approximately

B = 200−400 T. At this regime, the respective expectation values of neither

Ĥfs nor ĤZ dominates, and it can be called a secondary intermediate regime.

For the regime in which the respective expectation values of ĤZ � Ĥfs, L

and S uncouple from each other as shown in figure 2.1, and J can no longer

be called a good quantum number. Therefore in this regime I, L and S all

precess independently, and we define the state using the separate quantum

numbers. This regime is known as the ‘Paschen Back’ regime.

For the atom of interest 87Rb, the fields required for all the energy levels to

have a linear relationship with the magnetic field again are approximately

600 T, as can be seen on figure 2.6. In this experiment it is very clear that

while 1.54 T magnets are being used, the Paschen-Back regime is still far

enough away that the D1 transition can confidently be ignored in our theory.

Figure 2.6: Energy levels where L=1, showing both the 52P 1
2

and the 52P 3
2

states in the Paschen-Back regime.
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2.4 Driving Transitions

The polarisation of light is one factor that influences which transitions be-

tween different energy states are driven. In this section, two types of transi-

tion will be discussed: specifically π and σ.

2.4.1 Decomposition of Light

The classical light field Ê of a plane wave can be written in terms of its spher-

ical components, or Cartesian components [51]. For atom-light interactions,

it is useful to use ẑ and a combination of the x̂ and ŷ axes for the electric

field of the light.

2.4.2 Transition Strength

For particular transition from an S to a P state, the orbital angular mo-

mentum quantum number must have ∆L = +1, and therefore ∆mL = 0,±1

depending on the polarisation of light. However, the projections of the nu-

clear and electronic spin remain unchanged. This leads to three different

types of matrix elements:

1. 〈mL,mS,mI |CL |mL′ = mL + 1,ms,mI〉 for LHCP light which drives a

∆mL = +1 transition,

2. 〈mL,mS,mI |CR |mL′ = mL − 1,ms,mI〉 for RHCP light which drives

a ∆mL = −1 transition,

3. 〈mL,mS,mI |C0 |mL′ = mL,ms,mI〉 for linearly polarised light which

drives a ∆mL = 0 transition,

where CL,R,0 refers to the dipole operators of the LHCP, RHCP, and linearly

polarised light respectively. Squaring each of these coefficients gives the tran-

sition strength of that transition, while for F → F ′ transitions which include

degenerate states each possible mF → mF ′ transition must be summed to

give the total transition strength.
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2.4.3 π Transitions

�

�

Ԑ�

�� = 0ħ

Figure 2.7: Vector diagram of

the external magnetic field axis

B along z, showing a perpendic-

ular axis for the propagation of

light, k, along the x-axis, and the

electric field parallel to B. Such

a configuration would drive a π

transition.

A π transition is defined as one in which the

magnetic quantum number (mI , mJ , mL,

mS, mF ) is not changed. This can also be

described by ∆m = 0, as shown in the third

point in the previous section.

As can be seen in figure 2.7, in order for π

transitions to be driven, the light must be

linearly polarised and Ê · B̂ 6= 0. In this the-

sis, the magnetic field used is parallel rather

than perpendicular to the beam, so π tran-

sitions should not be observed.

A small pertubation along k can lead to

a non-zero component in the perpendicular

axis rather than parallel axis, which would

drive π transitions. In order to not drive π

transitions, it is therefore important to try to keep k purely parallel to B,

so that there are no perpendicular components present.

2.4.4 σ Transitions

Light where k is parallel to B, rather than perpendicular, E is perpendicular

to B and is circularly polarised, drives a transition which follows the rule

∆m = |1|. This transition is called a σ transition. For ∆m = +1, this is

called a σ+ transition, and σ− for ∆m = −1. These matrix elements were

defined by the first two points in section 2.4.2.

From a planar perspective of looking into the beam, if the polarisation is

anticlockwise in time this is called ‘left hand circularly polarised’. The po-

larisations of the light are defined in 2.4.1. The electric field has components

in both the x and y axes and is given by

E = E0(x̂+ iŷ)ei(kz−ωt), (2.20)

and the spin Sz has a angular momentum change of +1~ relative to the
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yx

z

Figure 2.8: Left: Diagram showing left hand circularly polarised (LHCP) light

driving σ+ transitions.

Right: Diagram which shows right hand circularly polarised (RHCP) light driving

σ− transitions.

magnetic field axis, and therefore this type of light drives a σ+ transition.

This is shown on the left side of figure 2.8.

The right hand side of the diagram shows ‘right hand circularly po-

larised’ light where, from the perspective of looking into the beam, the po-

larisation is clockwise [51]. The electric field in this case is given by [52]

E = E0(x̂− iŷ)ei(kz−ωt), (2.21)

which leads to a angular momentum change of −1~ relative to the magnetic

field axis, which therefore drives a σ− transition.

In the lab, linear light polarised along the x̂ or ŷ axes is often used. For ex-

ample, light polarised along the x̂-axis is given by x̂ = 1
2
(RHCP+LHCP ) =

1
2
(x̂ + iŷ) + 1

2
(x̂ − iŷ). In this case, half of the light is LHCP and therefore

driving σ+ transitions, and half of the light is RHCP and therefore driving

σ− transitions.

If the magnetic field is large enough that the two types of σ transitions are far

detuned from one another, then at maximum, 50 % of the total light could

be absorbed by the atom at a given frequency, rather than 100 % normally

seen at no magnetic field.
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2.5 Effect of Temperature on Light-Matter

Interactions

As previously stated, one of the focusses of this thesis is observing the be-

haviour of an atom in the hyperfine Paschen-Back regime under the influence

of different temperatures. In this section, the theory behind the influence of

temperature on light-matter interactions will be discussed.

2.5.1 The Electric Susceptibility

As discussed in section 1.1.4, changing the temperature of a medium can fine-

tune the strength of the light-matter interaction. As temperature increases,

the vapour pressure increases as seen in figure 1.1 and equation 1.1. The

vapour pressure Pv in Pascals (Pa) relates to the number density N as

N =
Pv
kBT

, (2.22)

where T is the temperature in Kelvin K, kB is the Boltzmann constant, and

1 atm of pressure is equal to 101325 Pa. For a transition with Rabi frequency

Ω = −µE0

~
, (2.23)

where µ is the electric dipole operator, the number density N has a linear

relationship to the steady-state electric susceptibilty of stationary atoms,

given by [53, 54]

χ(∆) =
Nµ2

~ε0
fΓ(∆), (2.24)

where fΓ(∆) is the complex lineshape factor described by

fΓ(∆) =
i

Γ
2
− i∆

. (2.25)

The real and imaginary parts of the steady-state electric susceptibilty χ(∆)

given by

χRe(∆) = −Nµ
2

~ε0
∆

∆2 + Γ2/4
, (2.26)

χIm(∆) =
Nµ2

~ε0
Γ/2

∆2 + Γ2/4
, (2.27)

where Γ is the decay rate of the atom, and ∆ is the frequency detuning

between the driving light field and the particular atomic transition.
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2.5.2 Lorentzian Lineshape

In equation 2.25, the complex function lineshape of fΓ(∆) was described. The

Fourier transform of an exponential decay is described by the Lorentzian [55].

As the excited state has a finite lifetime τ , the spontaneous emission from

this state leads to the imaginary part of the lineshape being a homogeneous

Lorentzian.

The natural linewidth (full width at half maximum) for the Lorentzian is

known as Γ0, which is related to the radiative lifetime of the excited state τR

as Γ0 = 1/τR and is given by [54]

Γ0 =
ω0

3

3π~ε0c3

gg
ge
µ2, (2.28)

where gg, ge are the degeneracies of the ground and excited state respectively.

The value of the natural linewidth for the D2 transition of Rubidium is

given by Γ0 = 2π × 6.065 MHz [56], and is therefore not dependent on the

temperature of the system.

Including the effects of temperature on number density leads to a collisional

interaction between identical atoms: this is called self- broadening. To ac-

count for self- broadening an additional term in the Lorentzian linewidth Γ

is required:

Γ = Γ0 + Γself = Γ0 + βN , (2.29)

where β is known as the self-broadening coefficient, and for the D2 transition

can be calculated by [57]

β =
√

2
2

9~ε0
d2

2 = 2π ×
√

2 Γ

(
λ

2π

)3

, (2.30)

where d2 is the reduced dipole matrix element. This additional linewidth is

known as collisional, pressure or self-broadening [58], and is plotted in figure

2.9, in comparison to the other types of broadening including Γ0.

Γself is also defined as the inverse of a collisional time τ0. For room temper-

ature (T = 300 K), τ0 for 87Rb, which has β = 2π × 1.03× 10−7 Hz cm3, is

approximately 0.1 ms. Changing only the temperature to T = 473.15 K, the

lifetime is then approximately τ0 = 1.7 ns.
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2.5.3 Power Broadening

For a two-level atom, the intensity at which the stimulated emission is equal

to the spontaneous emission of the atoms is called the saturation intensity,

Isat, and is given by

Isat =
~ω0π

3λ2τ
, (2.31)

where λ is the wavelength of the transition. Using ω0 = kc, λ = 2π
k

and

τ = 1
Γ
, equation 2.31 can also be written as [59]

Isat = hc
Γk3

24π2
, (2.32)

where Γ is from equation 2.29, k is the wavenumber and c is the speed of

light. For the D2 transition of 87Rb, Isat = 1.67 mW cm−2.

There also exists a power broadening part of the linewidth, which related to

the saturation intensity of the two-level transition by

2Ω2

Γ2
=

I

Isat

, (2.33)

where Γ is sum of the natural linewidth and the self-broadened linewidth from

equation 2.29. Including the power and natural broadening, the linewidth

can now be given by

Γ = Γ0

√
1 +

I

Isat

, (2.34)

and so in order to minimise the power broadening of the system, I
Isat

must be

minimised. However, the intensity of the beam must still be large enough to

provide an output beam that a photodiode can detect. Too weak a beam will

mean that the signal to noise ratio (SNR) will not be large enough to measure

the absorption lineshapes precisely or accurately. Therefore a regime in which

the power broadening is not significant is named, known as the Weak Probe

Regime, defined as I � Isat. The ElecSus program is written to calculate

the value of the electric susceptibilty assuming this Weak Probe Regime.
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2.5.4 Gaussian Lineshape

Due to atomic motion, there also exists a temperature dependent lineshape:

the Gaussian. The Maxwell-Boltzmann distribution describes the probabilty

distribution of an atom having a particular velocity vz along the z-axis,

P (vz)dvz =

√
1

πu2
exp

[
−
(vz
u

)2
]
dvz, (2.35)

where u is the 1/e width equal to
√

2kBT/m, where T is temperature in

Kelvin and m is the mass of the atom. The broadening from the Doppler

effect is given by the full width half maximum of the Gaussian distribution

is

ΓD = ∆ωD = 2
√

ln 2ku, (2.36)

which is plotted in figure 2.9 against natural broadening Γ0 and self-

broadening Γself . For temperatures up to approximately 225 ◦C, ΓD sig-

nificantly larger than the other broadening parameters of the lineshape.

For an atom with zero velocity, the resonant frequency is given by ω0. If that

atom moved along the z-axis with velocity vz the resonant frequency would

be seen from the lab frame as

ω′0 = ω0(1− vz
c

), (2.37)

which is known as the Doppler effect. Redefining equation 2.37, the detuning

from resonance ∆ can be altered to include the thermal motion of the atoms

as

∆′ = ∆− kvz. (2.38)

Thus, the Doppler effect can be included in the electric susceptibilty of a

particular atom moving at a velocity vz by

χ(∆− kvz) = −Nµ
2

~ε0
fΓ(∆− kvz) = −Nµ

2

~ε0
1

(∆− kvz) + iΓ/2
. (2.39)
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Figure 2.9: Evolution of the Self-Broadening linewidth as a function of tem-

perature in blue, and the number density N shown as the black dotted line. Also

shown is the linewidth from the Doppler broadening as a function of temperature

in red, and the natural linewidth. The vertical dashed lines show the temperatures

that the self-broadening linewidth cross the natural linewidth in purple and the

Doppler linewidth.

2.5.5 Voigt Lineshape

Including both the Gaussian and Lorentzian lineshapes culminates in the

Voigt lineshape, s(∆), which is given by the convolution of fΓ(∆ − kvz)

from equation 2.25 with equations 2.34 and 2.35, defined as

s(∆) =

∫ +∞

−∞
fΓ(∆− kvz)× P (vz)dvz. (2.40)

This can be thought of microscopically as each possible velocity following

an individual Lorentzian linewidth, and macroscopically as the set of atoms

distributed normally around the natural frequency. In order to obtain the

absorption profile of the atomic ensemble, a sum of each of the individual

velocities is taken. Averaging the possible velocities leads to Isat increasing,

as the probe beam interacts with fewer atoms.

For the amplitude of a Voigt lineshape, the strength of the transition (C2) is
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important. The electric susceptibilty can then be given by

χ = C2Nµ2

~ε0
s(∆). (2.41)

2.5.6 The Weak Probe Regime

The weak probe regime is defined as when the laser light’s incident intensity

is weak enough that the absorption coefficient along with other properties

of the medium are not significantly perturbed. As the power of the incident

beam is increased, the power broadening of the system increases according

to equation 2.34, and therefore less light is absorbed by the atom.

In systems with multiple, non-degenerate ground states, a population transfer

from the resonant ground state may occur via spontaneous decay from the

excited state. When the selection rules of the transition mean that there is no

allowed decay from the off-resonant ground state back to the original ground

state, the off-resonant ground state is known as ‘dark’ (i.e.: transparent to

the laser beam). This is called optical pumping [60]. While the population of

the excited state remains small, the population of the resonant ground state

is reduced. A diagram of this process is shown in figure 2.10. As discussed

in [39], when a dark state is included, the population dynamics change as

the optical pumping process time scale is lengthened.

As this population shift takes place, fewer atoms are available to be pumped

to the excited state by the laser. This leads to a reduction in possible absorp-

tion of light on resonance. Collisional redistribution can return the atoms

to the original state, but the timescale for this is usually longer than the

time-of-flight of the atoms in the beam [39]. Therefore, in order to compare

measurement to the theory from ElecSus, the intensity of the laser should be

reduced such that the weak probe regime can be ensured.

However, reducing the beam’s intensity means that the signal-to-noise ratio

is decreased. It is therefore important to know the limits of the regime, so

the SNR can be maximised while still remaining in the weak probe regime.
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Figure 2.10: Diagram showing the ground state population shift due to optical

or hyperfine pumping, with more than one non-degenerate ground state. Spon-

taneous decay is shown as dashed lines, with the decay to the dark state shown

in red and the branching ratios given for each decay. Stimulated emission to the

resonant ground state is shown as a solid line.

The convention for discussing the weak probe regime uses the ratio of inten-

sity and the saturation intensity of the transition. Using equation 2.31, for

a two-level atom, a saturation intensity Isat can be defined as

Isat =
~ω0

2σ0τ
, (2.42)

where ~ω0 is the energy separation between the ground and excited state, τ

is the lifetime of the excited state, and σ0 is the resonant excitation cross-

section given by

σ0 =
3λ2

2π
, (2.43)

where λ is the wavelength of the transition. Note this is identical to the

relation given in equation 2.31.

The relationship between the relative line centre absorption α(I)
α(0)

of a transi-

tion and the I/Isat ratio can be defined in two different ways [39, 49]. The

homogeneous, Lorentzian line-centre absorption is defined as

α(I)

α(0)
=

1

1 + I/Isat

, (2.44)
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for power-broadened, stationary atoms, shown in figure 2.11 as the black

dashed line.

Meanwhile, for power-broadened, inhomogeneous moving atoms the relation-

ship is defined as
α(I)

α(0)
=

1√
1 + I/Isat

, (2.45)

shown in figure 2.11 as the solid red line.

As shown in figure 2.9 for temperatures below approximately 225 ◦C, the

Doppler-broadening ΓD is dominant over the Γ0 and Γself broadening param-

eters at the line-center. Therefore, using equation 2.34, the intensity depen-

dence of the light center absorption is dominated by the Doppler-broadening,

and so the line-center of the Voigt profile follows the inhomogeneous relation-

ship given by equation 2.45.

Figure 2.11: Characteristics of a inhomogeneous 2.45 (solid red line) and ho-

mogeneous 2.44 (black dashed) absorption line.
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2.5.7 Absorption Coefficient

Each transition has a corresponding absorption coefficient α, which can be

given in terms of the imaginary part of the electric susceptibility χIm(s) from

equation 2.41 as [46, 61]

α = kχIm(s), (2.46)

where k = 2π
λ

is the wavevector of the light. For each σ± transition type, there

is a corresponding absorption coefficient α±. It is important to note here that

χIm(s) is temperature dependent, as shown in figure 2.9, the number density

N rises very quickly as a function of temperature. The Doppler width is also

temperature dependent, but as also shown by 2.9, this is to a much lesser

extent as it is proportional to
√
T .

The transmission caused by these absorption coefficients depends on the po-

larisation of the light. If the light is polarised so that 100% drives σ− tran-

sitions, the transmission parameter S0 can be calculated by

S0 = exp (−α−`), (2.47)

but for a laser beam that has a percentage p of light polarised so that it

drives σ− transitions, S0 relates to both absorption coefficients by

S0 = p× exp (−α−`) + (1− p)× exp (−α+`), (2.48)

where p is the percentage of light that is polarised so that it drives σ− transi-

tions. This equation shows that the transmission of light through the medium

is also temperature dependent.

In figure 2.12, the evolution of the optical depth for the D2 line of the 87Rb

atom at a temperature of T = 80 ◦C over different magnetic field regimes

is shown. Optical depth is the absorption coefficient α multiplied by the

length of the cell ` = 1 mm. Only σ± transitions are excited in this experi-

ment. From these graphs, it is possible to observe the energy level splittings,

and the change of regime from the weak field to the hyperfine Paschen-Back

regime.

At B = 0 T, the σ± transitions are degenerate, as the states they are driving

transitions from and to are degenerate with each other.
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As the magnetic field is increased to B = 0.05 T, figure 2.5 shows that

the excited state is in the HFPB regime, while figure 2.4 shows that for the

ground state, the HLZ regime applies. σ+ and σ− are no longer degenerate, as

the energy levels for which they drive transitions have split apart. However,

the Doppler broadening of the states is still larger than the splittings. This

means that it is not possible to observe each transition as an individual peak

on the spectrum.

For B = 0.10 T, the splitting of the energy states has begun to be comparable

to the Doppler broadening discussed in section 2.5.4, as the previously smooth

peaks now have many individual peaks within them. The excited states are

still in the HFPB regime, and at this magnetic field figure 2.4 shows the

energy levels begin to curve and stop being linear functions of B, so enter

the intermediate regime between the HLZ and HFPB regimes.

At B = 0.60 T, this becomes even clearer and the state splittings now dom-

inate the Doppler broadening. The ground state begins to enter the HFPB

regime at this magnetic field. Each transition can be observed individually,

although there is still some overlap.

At this magnetic field, the larger peaks are the 16 transitions we expect to see

following the σ+, σ− selection rules. The absorption coefficients of the largest

8 peaks are 3× higher than the smaller 8 peaks, as we would expect from the

transition strengths of these individual peaks, calculated from the equations

in section 2.4.2. However, more transitions than the 16 expected can be

observed. Although much smaller than the larger 16 ‘strong’ transitions, 12

‘weak’ transitions in sets of 3 also occur. The origin of these ‘weak’ transitions

will be explained later in this thesis.

At B = 1.54 T, the magnetic field used in this thesis, both the ground and

excited states are within the HFPB regime. The symmetry of the σ± transi-

tions can be observed, and the splitting of the energy levels now dominates

the Doppler-broadening. The ‘weak’ transitions observed at 0.6 T have also

become much weaker. In comparison to the absorption coefficients of the 16

expected transitions, the smaller peaks can barely be observed.

Such a high magnetic field is useful, as due to the large energy level split-

tings, the overlapping of the Voigt profiles of each transition (discussed in
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section 2.5.5) is negligible. Each peak can be observed without significantly

overlapping onto each other. Furthermore, the ratio in peak absorption coeffi-

cient between the larger and smaller ‘strong’ transitions is still 3, as expected

from the Clebsch Gordon coefficients [62].

Transmission S0 can also be defined as

S0 =
I(`)

I0

, (2.49)

where I(`) is the intensity of light after a medium of length ` and I0 is the

initial intensity before the medium.

A theoretical transmission spectrum over a scan of over 140 GHz from the

‘ElecSus’ program is shown in figure 2.13, where the magnetic field is 1.54 T,

the temperature is T = 130 ◦C, the cell length is 1 mm, the atomic vapour

within the cell is 100% 87Rb, the polarisation of the light is linear and ad-

ditional broadening from other gases in the cell is equal to approximately

80 MHz.

From this spectrum, the symmetrical energy level splitting can be observed.

The high temperature means that the highest possible absorption has been

reached at 50 %.

Also shown in this figure is an energy level diagram over magnetic field, and

the relevant ground and excited energy levels for each σ± transition. The

peaks from the ‘weak’ transitions are much larger here, as the temperature is

higher. The states shown next to each energy level of the ground state show

the admixtures of that state, including both the strong and weak components.

The origin of these admixtures will be discussed in the next section.
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Figure 2.12: Theoretical evolution of the optical depth against linear detuning

for different magnetic fields for the D2 transition of 100 % 87Rb, T = 80 ◦C. In

blue, the absorption coefficient for the σ+ transitions (α+) are shown, and in green

the absorption coefficient for the σ− transitions (α−) is shown. The cell length `

is 1 mm.
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Figure 2.13: Diagram showing energy levels of both the 5 2S 1
2

and 5 2P 3
2
, with

the allowed σ+ transitions in red, and σ− transitions in blue. Weak transitions

in paler corresponding colours are also shown, with the ‘admixtures’ of both the

strong and weak components shown. Also plotted is a theoretical S0 spectrum for

87Rb at 130 ◦C, B = 1.54 T, with linear polarisation.
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2.5.8 Weak Transitions

From figures 2.12 and 2.13, it would appear that there are additional tran-

sitions that do not come from the 16 σ± transitions expected, even at high

magnetic fields [63]. This arises in the weak field, as the I, J quantum num-

bers are coupled to each other [46], and also in the hyperfine Paschen-Back

regime because although I and J are mostly uncoupled, but not completely.

On the far right of figure 2.13, the ‘admixtures’ of each level are shown.

Despite being in the HFPB regime, the numbers from the strong component

of the energy level are not exactly 1, but are instead 0.997 or 0.998.

In the ground state shown in figure 2.4 and the bottom of figure 2.13, all the

energy states have additional admixtures, except for the
∣∣mJ = +1

2
,mI = +3

2

〉
state and the

∣∣mJ = −1
2
,mI = +3

2

〉
state. This is because these two states

have mF values of ±2 respectively in the weak field. However, the other 6

energy states all have one other weak coupled state, and mF values of ±1,0

in weak field. This is why we observe 16 σ± strong transitions, but only 12

σ± weak transitions.

For an electric dipole operator given by

− µ̂ · Ê = er̂ · Ê , (2.50)

where e is the charge of the electron, and r̂ is the unit vector of its position,

the strength of the resulting transition can be described by

|〈Ψa|µ̂|Ψb〉|2 = |〈Ψa| − er̂|Ψb〉|2. (2.51)

In the hyperfine Paschen-Back regime for an energy level with one strong

component and one weak component, the wavefunction |ΨA〉 is given by

|Ψ〉 = as |mJs ,mIs〉+ aw |mJw ,mIw〉 , (2.52)

where for the strong component s, mJs and mIs describe the mJ and mI

values, and as is the admixture, and vice-versa for the weak component w.

This is normalised by

as
2 + aw

2 = 1, (2.53)

and so the proportion of the strong component of the energy level is given

by as
2, while for the weak component the proportion is given by aw

2.
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The furthest positively detuned ‘weak’ transition from figure 2.4 (at approx.

+30 GHz at 0.60 T, and at approx. +70 GHz at 1.54 T), is a σ+ transition

so ∆mJ = +1, and the wavefunction of the ground state Ψg can be given by

|Ψg〉 = ag,s

∣∣∣∣−1

2
,
3

2

〉
+ ag,w

∣∣∣∣12 , 1

2

〉
. (2.54)

The relevant excited state for the σ+ transition is the strong part of the

second highest energy level from figure 2.5, with |mJ ,mI〉 =
∣∣3

2
, 1

2

〉
. Therefore

the only non-zero part of the transition strength is given by

|〈Ψe| − er|Ψg〉|2 = ag,wae,s

〈
1

2

∣∣∣∣ 1

2

〉 ∣∣∣∣〈+
3

2

∣∣∣∣−er̂ ∣∣∣∣+1

2

〉∣∣∣∣2
= ag,wae,s

∣∣∣∣〈+
3

2

∣∣∣∣−er̂ ∣∣∣∣+1

2

〉∣∣∣∣2,
(2.55)

where (ag,w)2 is the proportion of the weak component of the ground state,

and (ae,s)
2 is the proportion of the strong component for the excited state.

Figure 2.14 shows that the coefficient ae,s (blue line, horizontal dashes) of

the strong component of the excited state begins at 0 in the absence of

an external magnetic field, and rapidly increases with magnetic field, and

making up almost 100% of the energy level in the HPB regime.

Also shown the decline of the coefficient ag,w (blue, vertical dashes) of the

ground state’s weak component of the transition. This also shows how the

excited state enters the HFPB regime at a much lower magnetic field than

the ground state, as shown in figures 2.4 and 2.5.

In red is shown the strength of the transition, a2
e,s×a2

g,w, which peaks during

the intermediate regime, and then asymptotically approaches 0 as the mag-

netic field increases. This explains why in figure 2.12, the weak transitions

are much stronger at B = 0.60 T than at B = 1.54 T in comparison to the

strong transitions.

For the magnetic field at which the peak in transition strength occurs (ap-

prox. 0.05 T), the energy levels have not yet split enough to be discernible

from one another, as shown in figure 2.12. The Doppler broadening of the

thermal atoms is still too large to view the weak transitions separately from

the strong transitions.
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Figure 2.14: Graph showing the evolution of transition strength a2
e,s × a2

g,w as

a function of B, for the
∣∣mJ = 1

2 ,mI = 1
2

〉
→
∣∣m′J = 3

2 ,m
′
I = 1

2

〉
transition (red

line). The values of ae,s and ag,w are plotted in blue with vertical and horiztonal

dashed lines respectively.

2.6 Stokes Parameters

Since 1852 [64], the polarisation state of light has been characterised by

four parameters called ‘Stokes Parameters’. Conveniently measurable [65]

with linear optics and photodetectors, they are still used to measure the

polarisation of light.

2.6.1 S0 - Transmission

The transmission of light through a medium is equivalent to the S0 parameter,

given by

S0 ≡
I− + I+

I0

=
Ix + Iy
I0

=
I↗ + I↘

I0

(2.56)

where the x, y axes are defined respectively by the transmission and reflection

of light at a polarising beam-splitter after the medium. Useful applications

of the S0 parameter include primary thermometry [66]. All three of these

definitions are normalised by dividing by I0, which is defined as the off-

resonance transmission intensity. This means that the transmission can be

given as a unitless number, between 0 and 1.

In this case, Ix refers to the intensity of the light that transmits through
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such a beam-splitter, while Iy refers to the intensity of the light reflected.

Similarly, I↗ and I↘ refer to the intensity of light polarised at an angle

+45 ◦ or −45 ◦ from the x-axis respectively. Additionally, I− and I+ denote

the intensities of light that drive the σ± transitions.

A setup that can be used to measure an S0 spectrum is shown in figure 2.15.

Figure 2.15: Diagram showing an example of a schematic laboratory setup for

the measurement of an S0 or S1 signal. ECDL refers to an external cavity diode

laser, PBS refers to polarisation beam splitter, PD refers to a photodiode, λ/2

and λ/4 refers to half-wave plates and quarter-wave plates respectively. The linear

polarisation is shown by the blue arrows, ND refers to a neutral density filter and

M refers to the magnet. This figure is taken from [46].

Light is emitted from a laser, and either reflects or transmits through a

polarisation beam splitter, which makes it linearly polarised.

The light reflected from the PBS passes through the reference cell, and passes

through a λ/4 or quarter-wave plate twice, which reverses the direction of

its polarisation. The light is reflected back through the reference cell, and

due to the polarisation change it is now transmitted through the PBS and

arrives at the Photodiode (marked as ‘PD’) at the bottom of the diagram.
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This first section of the schematic is used for Sub-Doppler spectroscopy.

The light that transmits through the first PBS in the schematic then passes

through a λ/2, or half-wave plate and the polarisation after this waveplate is

shown and is linear and rotated 45◦ from the horizontal. The neutral density

filter is used to reduce the power broadening discussed in section 2.5.3.

The experimental cell is heated, and is shown between two magnets denoted

by ‘M’, with the direction of the magnetic field shown by the arrow and

denoted by ‘B-field’. After this, an optional λ/4 waveplate is shown, which

can be used for measuring different Stokes parameters.

There is a second PBS, where the y-axis is defined by the polarisation of

the light reflected from the PBS, shown by the vertical arrow and intensity

of which is denoted by Iy, which transmits into a PD. The x-axis is defined

by the polarisation of the light that is transmitted through the PBS, shown

by the horizontal arrow and the intensity of which is denoted by Ix, which

transmits into a different PD.

At the top of figure 2.16, an S0 spectrum is shown. The weak transitions are

shown at around ±10 GHz and at ±70 GHz.
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ℓ

Figure 2.16: Theory plots of the D2 line for a 1 mm, 99% 87Rb, 1% 85Rb

vapour cell of length ` = 1 mm in a 1.54 T magnetic field, assuming no Doppler

broadening, a linear polarisation, θ0 of 45 ◦ and a temperature of 80 ◦C. TOP:

A transmission (S0) spectrum. MIDDLE: The S1 spectrum, discussed later in

section 2.6.2. BOTTOM: The optical depth (α× `) spectrum for both the α+ (in

purple) and α− (in blue) coefficients, as discussed in section 2.5.7

Both the strong and weak transitions can be seen in the S0 and S1 spectra, but

the absorption coefficients for the weak transitions are so much smaller than for

the strong transitions that they cannot be observed at this scale.
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2.6.2 S1 and the Faraday Effect

The second Stokes parameter is called S1 and is defined as

S1 ≡
Ix − Iy
I0

(2.57)

where Ix and Iy are again the intensities of light that are transmitted and

reflected at a polarising beam-splitter, respectively, and I0 is the transmission

far-detuned from resonance. Normalising it in this way means that S1 is a

unitless parameter, between −1 6 S1 6 +1.

In the HPB regime, the energy level splitting is high enough that the σ+ and

σ− transitions are far detuned from one another, and so can be independently

measured. This means that the refractive indices n± of the polarisations that

drive the corresponding transitions will also be independent of one another,

known as circular birefringence.

For an initial polarisation angle of σ0 from the x-axis of 45 ◦, the S1 spectra

is sensitive to the rotation of polarisation from the Faraday effect. If the

optical depth of the medium is small, these combined conditions mean that

the equations [27]

S1 ≈ (n− − 1)k0`, (2.58)

S1 ≈ (1− n+)k0`, (2.59)

become valid, where k0 is the wavenumber of light in a vaccuum, which has

the relation k = nk0, where n is the refractive index of the medium. This

S1 parameter is shown in the middle of figure 2.16. Particularly noticeable

is that the ‘tails’ of each of the peaks do not reduce to 0 as quickly as they

do for the S0 spectra (top graph). The off-resonance wings of the resonance

peak follow a lorentzian lineshape [67], and continue to decrease infinitely.

This is particularly useful for applications such as off-resonance laser locking

[68–70].

The temperature dependence of the S1 parameter at a magnetic field of

1.54 T for a 99% 87Rb, 1% 85Rb cell of length 1 mm is shown in figure 2.17.

At room temperature T = 300 K, the S1 signal is small. As the temperature

increases, both Ix and Iy change due to the Faraday effect [71], where the

polarisation of the light is rotated by the axial magnetic field.
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Figure 2.17: Array of graphs showing the S1 spectra at different temperatures,

with a magnetic field of 1.54 T, σ0 = 45 ◦, for a 99% 87Rb, 1% 85Rb cell 1 mm in

length, with linear polarisation (equal parts RHCP, LHCP light).

So as the S1 parameter depends on n±, (which is temperature dependent),

S1 is also temperature dependent. A graph showing a theoretical S1 spectra

for a specific temperature is shown in figure 2.18, and similarly to figure 2.13,

the figure also shows the ground and excited state, the relevent transitions

for each S1 peak, and the admixtures of each energy level.

The S1 spectrum can be measured using the same setup as displayed in

figure 2.15, but instead of summing the Ix and Iy inputs, one is taken away

from the other.
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2.6.3 S2 and S3

The final two Stokes parameters are given by S2 and S3, which are described

here for completeness and are not the focus of this thesis. The parameter S2

is given by the equation

S2 ≡
I↗ − I↘

I0

, (2.60)

and along with the S1 parameter is useful for far off-resonance laser frequency

stabilising references [72].

The parameter S3 is given by the equation

S3 ≡
I− − I+

I0

, (2.61)

which is the dichroic atomic vapour laser lock error signal [69, 73]. These

parameters can be measured using the optional quarter-wave plate before the

second PBS shown in figure 2.15
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Figure 2.18: Diagram showing energy levels of both the 5 2S 1
2

and 5 2P 3
2
, with

the allowed σ+ transitions in red, and σ− transitions in blue. Weak transitions

in paler corresponding colours are also shown, with the ‘admixtures’ of both the

strong and weak components shown. Also plotted is a theoretical S1 spectrum for

87Rb at 130 ◦C, B = 1.54 T, with linear polarisation.
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Temperature Evolution of

Stokes Parameters

As dicussed in section 2.5, the temperature of the vapour sets the atomic

number density and this has a large effect on both the S0 and S1 Stokes

Parameters. By using the ‘ElecSus’ program, theoretical spectra can be

produced. In this chapter, this the temperature evolution of these parameters

is experimentally investigated and compared to the theoretical spectra.

3.1 Experimental Methods

3.1.1 Experimental Setup

Figure 3.1 shows a schematic of the experimental setup used. In this diagram,

the direction of the laser beam is shown by the red arrows, while the different

components are shown in grey boxes. The aim of this section is to discuss

the setup of the experiment itself.

47
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Sub-Doppler

Figure 3.1: Diagram showing the layout of the experiment setup, the com-

ponents of which are shown in labelled grey boxes. The photodiodes (PD) are

numbered between 1 and 5 and were all connected to an oscilloscope which mea-

sured the voltage from each photodiode over time.

3.1.2 Laser

A laser scanning over the D2 line frequency of 780 nm was used. At a

magnetic field of 1.54 T, the energy level splitting means that the furthest

weak transitions are approximately 140 GHz detuned from one another, as

shown in figure 2.13. The optical isolators shown in figure 3.1 directly after

the laser were used to ensure no back-reflections would distort the laser signal.

In order to take a continuous measurement with a wide frequency scan that

ranged over the entire 140 GHz detuning, a Distributed Feedback (DFB)

laser at the relevant D2 transition wavelength of 780 nm was used. Such

a wide scan is useful to have, as it means comparisons between different

atomic transitions can be made more accurately than having two separate
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scans, where the temperature of the medium or the power of the beam could

have changed between measurements.

The frequency of the laser was controlled by changing its temperature. This

meant that a continuous, unbroken scan over hundreds of GHz was possi-

ble, without the mode-hopping often seen in diode and other semiconductor

lasers [74–76]. However, changing the temperature is a slow process, and

in order to get a high SNR, each acquisition time was often over 2 minutes

long. For narrow scans of specific peaks rather than the entire spectrum, a

different laser was used in order to attain a more linear scan. A Toptica DL

Pro laser at 780 nm was used for this purpose, which could scan frequency

mode-hop free for a maximum of approximately 20 GHz. As the time for each

scan was in the order of milliseconds rather than minutes, certain sources of

uncertainty, such as temperature fluctuations, had a smaller effect.

3.1.3 Experimental Cell

As shown in figure 3.1, a Rubidium cell, referred to as the ‘experimental

cell’ is placed in the centre of a cylindrical permanent magnet of maximum

magnetic field B = 1.54 T. This cell was a cube with an optical path length

1 mm, and was made up of approximately 99% 87Rb with 1% 85Rb and a

small amount of additional buffer gas.

3.1.4 Polarisation and Stokes Parameter

Directly before the magnet, a half-waveplate was placed. This made it pos-

sible to control the input polarisation of the laser beam. For example, when

the experiment required linear polarisation, the half-waveplate could be used

to ensure the light was polarised such that σ+ and σ− transitions would be

driven equally. After the magnet, an optional quarter-waveplate is shown

before a final PBS. This made it possible to also measure an S3 signal by

changing the output polarisations from Ix, Iy to I−, I+.

Finally, two photodiodes are placed after the PBS, with the reflected and

transmitted light going to ‘PD 4’ and ‘PD 5’ respectively. The tempera-

ture of the experimental cell was measured using an external thermocouple
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connected to a multimeter. Once the temperature stabilised and did not

change more than 0.5◦C over a few minutes, the laser was scanned.

In order to measure an S0 spectrum, the final PBS could be removed so that

all of the light is detected by one photodiode. This is equal to a sum of

the polarisation components. Normalisation of the y-axis using the intensity

signal therefore leads to a transmission y-axis between 0 and 1.

In order to measure an S1 spectrum, the input polarisation would need to be

set as θ0 = 45◦ = π
4

so that with no atom-light interaction, Ix = Iy. Rather

than summing the two components, the Iy signal from ‘PD 4’ is subtracted

from the Ix ‘PD 5’ signal. Normalising the y-axis leads to a maximum signal

of +1 and a minimum signal of −1.

3.1.5 Normalisation of the detuning and transmission

axes

In order to compare the experiment with the theoretical data from the ‘Elec-

Sus’ program, the y-axis of the data would have to be normalised to between

0 and +1 for the S0 plots, and to between −1 and +1 for the S1 plots. How-

ever, the photodiodes measure the light intensity, outputting Voltage in units

of V.

Additionally, as the laser scanned in frequency, the intensity of the beam

changed. An intensity increase meant the voltage the photodiode recorded

also increased, and vice versa. In order to correct for this effect, an additional

photodiode labelled ‘PD 3’ which was placed after an unobstructed beam

so that the intensity change of the laser as it scanned could be measured.

The experimental signal measured by ‘PD 4’ in figure 3.1 was divided by

the intensity signal measured by ‘PD 3’. The scale of the y-axis could then

be obtained by setting the off-resonance value to 1.

Converting the x-axis from time into frequency was also necessary to compare

with the theory given by the ‘ElecSus’ program. This was achieved using the

well-known methods of using an optical cavity and Sub-Doppler spectroscopy

in conjunction with one another. More information on this can be found in

the Appendix B, as well as in [53].
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3.1.6 Fitting the Data with ‘ElecSus’

The ‘ElecSus’ program was used to fit the signal from the final, normalised

data to the theoretical models by floating various fitting parameters. This

enabled a theoretical signal to be produced and compared to the experimental

data.

The temperature of the cell was difficult to measure accurately. While a tem-

perature probe was used, early tests showed that there existed a systematic

error on the measurements by up to 10 ◦C, as it was not possible to have the

temperature probe directly next to the experimental cell itself. Therefore

the temperature of the cell was used as a floating parameter in the ‘ElecSus’

program, using the temperature probe measurement as an initial value.

Other variables that were floated by the ‘ElecSus’ program while creating the

theoretical signals included the polarisation of the light and the additional

broadening caused by the existence of buffer gases in the cell. The initial

value for the polarisation was measured by taking a very high temperature

measurement, where the absorption has reached its maximum. By measuring

the maximum absorption for both the σ+ and σ− transitions, the polarisation

of the light could be found.
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3.2 Wide Scan Results and Discussion

As the wide scan of the DFB laser took up to several minutes to complete,

air currents or other external temperature fluctuations could change the tem-

perature during the scan. By normalising the y-axis, turning off air condi-

tioning, shielding the optical bench and limiting unnecessary movement or

sound during data acquisition, fluctuations could be minimised.

3.2.1 The S0 Parameter

The top section of figure 3.2 shows the raw signal measured from the pho-

todiodes for the experimental and laser intensity measurements for a laser

scan lasting 60 seconds, at a temperature of 56 ◦C. The bottom section of

figure 3.2 shows the experimental signal divided by the intensity signal. The

x-axis shows acquisition time in seconds.

Dividing the two photodiode signals does not normalise the data, however.

The signal appears to have both an unexpected trend in the transmission,

and also an oscillation that can clearly be seen off-resonance.

The trend in the transmission shows a minimum occurs at t = 0, while a

maximum is reached at approximately 13 seconds, rather than the far off-

resonance transmission all reaching the same value of 1 as expected, and has

a magnitude that is not negligible in comparison to the absorption.

If temperature fluctuations on the laser itself were solely responsible for this

trend in transmission, we could expect them to be present in the intensity

signal from ‘PD 3’ as well as the experiment signal from ‘PD 4’, and the

normalisation process would correct for these errors. While observation of

the two signals makes them seem similar in form, the divided signal shows

that the division does not compensate for everything. In order to adjust for

extra trends seen, a 5th order polynomial was applied to the data to set the

off-resonance sections to have a transmission = 1.

The oscillation of the two raw signals shown in the top section of figure 3.2 has

a frequency of approximately 0.5 Hz in time, for the 60 second scan. After the

x-axis was converted to frequency, this oscillation is seen to have a frequency
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Figure 3.2: TOP: Raw data measured by the photodiodes ‘PD 3’ (black) and

‘PD 4’ (red) showing the intensity and experimental signals respectively, for one

frequency scan of length 60 seconds, corresponding to part (a) from figure 3.5.

BOTTOM: The experimental signal divided by the intensity signal in an attempt

to normalise the data.

of 15 GHz as can be seen in figure 3.3. This oscillation was not due to the

photodiodes, as no such oscillation was present in the background data, when

the laser light was blocked.

The amplitude of the oscillation is difficult to measure precisely due to the un-

derlying trend in the data, but for the intensity it ranges from approximately

4 to 50 mV. Using the simple error analysis method where the uncertainty is

equal to half the data’s range, the amplitude of the oscillation in the intensity

measurement can be written as 1.0 ± 0.9 % of the raw intensity signal. This

is imprecise as the uncertainty is equal to 90 % of the value itself.

Similarly, the oscillation for the experiment signal has an amplitude which

ranges from 0.0025 V to 0.035 V, corresponding to 1.2 ± 1.0 % of the signal.

Again, the amplitude varies so much over the scan that the uncertainty is

equal to 83 % of the value. The variation of the amplitude reduces signif-

icantly by the division of the two signals, shown in the bottom section of

figure 3.2 where it has a mean value, which is equal to 0.29 ± 0.07 % of
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the divided value. This process reduces the range in the amplitude measure-

ment to just 24 % of the value. Finally, a sinusoidal wave was fitted to the

off-resonance parts of the scan in order to compensate for the oscillation,

which reduced the oscillation’s amplitude to 2.7 ± 0.6 % of the maximum

absorption.

The x-axis of this data set is then converted from time to frequency (as dis-

cussed in Appendix B). For this particular data set, the final x-axis gave a

mean difference between the 8 measured Sub-Doppler peaks and their cor-

responding accepted values of 0.0 ± 1.2 MHz, where the uncertainty is the

standard error of the differences. The FWHM of each Sub-Doppler peak was

≈ 20 MHz. All of these Sub-Doppler peaks occurred between ±5 GHz, while

the entire data-set ranged from ±70 GHz. This means that the scaling of the

x-axis had to be applied to a region > 28× larger than the range of values

used.

The final, normalised data-set can be seen plotted in the top section of fig-

ure 3.3, where the normalised experiment data and the corresponding theo-

retical fit from the ‘ElecSus’ program are shown on one figure. Also shown

in these plots are the normalised residuals (defined as the difference between

theory and experiment, divided by the error bar and given by equation A.1

in Appendix A) for an uncertainty equal to the off-resonance amplitude of

the oscillation in the S0 parameter observed.
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Figure 3.3: TOP: Data (red, solid line) and theoretical fit (black, dashed

line) from (a) in figure 3.5. The theoretical parameters were: T = 56.03 ◦C

and σ− polarisation = 50.84%, to 2 d.p., assuming an additional broadening of

65 MHz. BOTTOM: Normalised residuals (blue), for an uncertainty equal to the

off-resonance oscillation amplitude (= 0.002) giving χ2
red = 0.96.

The absorption of the light by the atoms is small enough that the largest

absorption peak only reduces the transmission to approximately S0 = 0.94.

At this temperature, the absorption from the weak transitions (±10 GHz,

±70 GHz) is much smaller than the oscillation. It is therefore not possible

to measure the absorption from the weak transitions accurately or precisely.

The normalisation of the y-axis was not perfect. Although drift in the laser’s

intensity was mostly corrected, not all effects could be removed. This is

especially obvious between ±20 GHz, where a negative trend as frequency

increases can be seen. There is also clearly still some oscillation. The am-

plitude of this oscillation off-resonance was measured to be = 0.002, and

using this as the uncertainty, a χ2 analysis of the fit gave a reduced value of

χ2
red = 0.96. This oscillation is clearly the dominant source of uncertainty, as

when included the χ2
red is very close to 1 [77].

Other spectra were obtained at various different temperatures, and processed

as discussed above. Figure 3.4 shows the results at 117 ◦C with residuals.
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Figure 3.4: TOP: Data (red, solid line) and theoretical fit (black, dashed line)

from (c) in figure 3.5. The theory parameters were: T = 116.69 ◦C and σ− polari-

sation = 52.72% to 2 d.p., assuming a 65 MHz additional broadening. BOTTOM:

Normalised residuals (blue), for an uncertainty equal to the oscillation’s amplitude

off-resonance (= 0.002) giving χ2
red = 4.0.

At this higher temperature, the strong transitions have begun to reach the

maximum possible absorption at close to 0.5. The strong, negatively de-

tuned transitions are reaching the maximum absorption at approximately

53%, while the strong positively detuned transitions have a maximum possi-

ble absorption of approximately 47%, as the polarisation is not exactly 50%

pumping σ− transitions.

The oscillation of the y-axis clearly seen in figure 3.3 can barely be observed.

While the oscillation’s amplitude is unchanged at = 0.002, this is now much

less than the maximum absorption of light. Using this oscillation as the

uncertainty for a χ2 analysis of the fit found by the ‘ElecSus’ program, χ2
red =

4.0. Where in figure 3.3 all of the residuals are between ±4, in figure 3.4

they are instead between ±15. We can therefore conclude that at this higher

temperature, the oscillation of the y-axis is no longer the dominant source of

error. The process of normalisation of the x-axis must therefore be considered

as a candidate for dominant source of error while scanning over such a large
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frequency. In the vicinity of the sharp resonances, small errors in the detuning

cause a large change in transmission as is evident from the residuals plot.

Finally, the evolution of the S0 parameter over a range of temperatures is

shown in figure 3.5. The temperatures 56 ◦C, 87 ◦C, 117 ◦C and 150 ◦C

shown in figure 3.5 are all given with 2 significant figures, calculated from a

fit to the experiment data using the ‘ElecSus’ program.

The form of these graphs shows excellent agreement with theory. Even

the weak transitions that occur at frequencies of approximately ±10 and

±70 GHz are also shown in the theory. The ‘ElecSus’ program has success-

fully predicted the form of the temperature evolution of the S0 parameter over

a frequency range of ±70 GHz, and a temperature range of almost 100 ◦C,

between a very small absorption to maximum absorption for a near-linear

polarisation well into the hyperfine Paschen-Back regime at a magnetic field

of 1.54 T, and therefore provides evidence of its reliability in these conditions.
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Figure 3.5: Experiment measurement (red) of the temperature evolution for

the S0 parameter for the experiment cell under an external magnetic field of

B = 1.54 T ranging from 56 ◦C to 150 ◦C. The corresponding theoretical S0

parameter fitted using the ‘ElecSus’ program is shown in black.



Chapter 3. Temperature Evolution of Stokes Parameters 59

3.2.2 S1 Parameter

The corresponding temperature evolution graph for the S1 parameter is

shown in figure 3.6. The same frequency detuning is used, but this time

the temperature ranges between 75− 160 ◦C.

In these graphs, the oscillation in the y-axis is not observed. This is because

measuring the S1 parameter takes the difference between two photodiodes,

and in the process the oscillation cancels itself out- known as common-mode

rejection. We can therefore be sure that the oscillation is not a product of

vibrations or other sources of error on the photodiodes themselves.

The S1 parameter is useful to measure as it is directly proportional to the

refractive index [78]. Furthermore, the zero crossings that occur at a high

temperature can be used for frequency markers for locking lasers. This would

be particularly useful at large detunings, as discussed in section 5 of [78].

In addition, the location of the zero crossings can be far less temperature

sensitive than other parts of the S1 spectrum. Furthermore, the shape of

these spectra is very sensitive to magnetic field. Currently, large magnetic

fields tend to be measured using Hall probes. Figure 3.6 suggests atomic

spectroscopy could be an alternative technique to measure large magnetic

fields. Work is ongoing in this technique [79], and interest has been shown

up to magnetic fields of 58 T [80].

As the temperature of the vapour increases and, as with the S0 parameter,

the number density increases, and therefore so does refractive index. The

rotation angle of the polarisation of light is proportional to the refractive

index difference between the σ+ and σ− transitions. As the temperature

increases, the rotation angle Θ can exceed π/2 [72]. This is shown by parts

(c) and (d) of figure 3.6, where the temperatures of ≥ 123 ◦C mean that the

full range −1 < S1 < +1 is observed, by the zero crossings that occur in

those graphs.

The form of these graphs shows excellent agreement with theory at all tem-

peratures. Even very sharp peaks in the experimental data are all matched

by the theory. This provides evidence that the ‘ElecSus’ program can not

only successfully predict the S0 parameter, but also the S1 parameter for an

experiment far into the hyperfine Paschen-Back regime.
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Figure 3.6: Experiment measurement (red) of the temperature evolution for

the S1 parameter of the experiment cell placed in an external magnetic field of

B = 1.54 T ranging from 75 ◦C to 160 ◦C. The corresponding theoretical S1

parameter fitted using the ‘ElecSus’ program is shown in black.
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3.3 Narrow Scan Results and Discussion

3.3.1 Strong Transitions

In order to obtain a more accurate scan of the S0 parameter, the wide-

scanning DFB laser was replaced by a DL Pro laser. This laser could only

scan over a frequency of approximately 15 GHz without mode-hopping, and

so was not useful in making measurements of the S1 Parameter. However, it

was able to scan over these frequencies in a matter of milliseconds rather than

minutes. This reduced the problems with temperature fluctuations during

the scanning time faced when using the DFB laser.

With the shorter scan frequency range, the ‘four sets’ of S0 peaks for each

polarisation of light seen in figure 3.5 could not all be scanned simultaneously,

but individually. From this point onwards, the sets of peaks will be labelled

by their approximate linear detunings, ie: ±10 GHz, ±20 GHz, ±40 GHz and

±70 GHz. The peaks at ±20 GHz and ±40 GHz are the ‘strong’ transitions.

The peaks that take place around ±10 GHz and ±70 GHz are referred to

as the ‘weak’ transitions previously discussed in section 2.5.8. The atomic

transitions that are the source of each peak are shown more extensively in

figure 2.13.

For this thesis, the σ+ transitions were measured. The linear detunings that

these transitions took place at were: −10 GHz, +40 GHz, +20 GHz, and

+70 GHz. Two different polarisations were used, one near 100 % light po-

larised to drive σ+ transitions, and one near linear polarisation. Firstly,

spectra of each set of peaks were measured at a high temperature of approx-

imately T = 145 ◦C. This meant that the atoms had reached the maximum

possible absorption of light at this frequency, as shown in part (d) of figure

3.5.

ElecSus was used to determine the two polarisations of these measurements

by fitting the polarisation as a variable parameter, along with the tempera-

ture and additional broadening. 5 repetitions were taken at each polarisation

of both the +20 GHz and +40 GHz transition groups. This left 10 measure-

ments of each polarisation. From these measurements, the polarisations were

calculated to be 35.61± 0.02 % and 4.49± 0.01 % light polarised to drive σ−
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transitions. These polarisations are given as a percentage of σ− rather than

σ+ in order to match the ElecSus program.

In order to measure maximum absorption coefficients, a lower temperature

was required. The temperature was set to be approximately T = 85 ◦C, so

that the atoms would not be nearing the maximum possible absorption, but

were still hot enough to maximise the SNR.

Figure 3.7 shows the spectrum corresponding to the +40 GHz peaks at the

2 different polarisations, where the top and bottom graphs respectively have

35.51±0.02 % and 4.49±0.01 % light polarised to drive σ− transitions. From

this measurement, the maximum absorption coefficient of each of the 4 peaks

could be calculated. This was repeated 5 times for both polarisations, and

the weighted mean values and the corresponding uncertainty of each peak

are shown in table 3.1 as the top four rows. The weighted mean is discussed

in Appendix A as equations A.5 and A.6.

Figure 3.8 shows the corresponding spectrum for the +20 GHz transitions,

where the top and bottom graphs show the data with 35.51 ± 0.02 % and

4.49±0.01 % light polarised to drive σ− transitions respectively. These were

measured twice, with the mean values of each maximum absorption at both

polarisations shown in the bottom four rows of table 3.1.
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Figure 3.7: Experiment measurement (red) of the absorption coefficient α in

units of m−1 for the +40 GHz transitions. The theoretical values of α are shown

in black, with fitted variables of T = 84.28 ± 0.01 ◦C (top) and 84.12 ± 0.01 ◦C

(bottom), additional broadening of 83.17± 0.02 MHz (top) and 85.02± 0.09 MHz

(bottom), with assumed polarisation 36.61± 0.02 % (top) and 4.49± 0.01 % (bot-

tom) light polarised to drive σ− transitions. Underneath each graph are the nor-

malised residuals using the root mean square (RMS) error equation A.4 as the

uncertainty.
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Figure 3.8: Experiment measurement (red) of the absorption coefficient α in

units of m−1 for the +20 GHz transitions. The theoretical values of α are shown

in black, with fitted variables of T = 84.69 ± 0.01 ◦C (top) and 84.90 ± 0.01 ◦C

(bottom), additional broadening of 57.30± 0.04 MHz (top) and 57.86± 0.03 MHz

(bottom), with assumed polarisation 36.61± 0.02 % (top) and 4.49± 0.01 % (bot-

tom) light polarised to drive σ− transitions. Underneath each graph are the nor-

malised residuals using the root mean square (RMS) error equation A.4 as the

uncertainty.
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Table 3.1: Weighted mean of maximum absorption coefficients of atomic σ+

transitions at two different polarisations of light polarised to drive σ− transitions.

σ− Polarisation (%)

4.49± 0.01 35.61± 0.02

σ+ Transition Absorption Coefficient α (m−1)

mJ = −1
2 → m′J = +1

2 ,

mI = −3
2

344± 5 349± 4

mJ = −1
2 → m′J = +1

2 ,

mI = −1
2

346± 3 353± 1

mJ = −1
2 → m′J = +1

2 ,

mI = +1
2

351± 2 357± 1

mJ = −1
2 → m′J = +1

2 ,

mI = +3
2

347± 1 355± 8

mJ = +1
2 → m′J = +3

2 ,

mI = +3
2

1145± 8 1126± 8

mJ = +1
2 → m′J = +3

2 ,

mI = +1
2

1153± 6 1133± 5

mJ = +1
2 → m′J = +3

2 ,

mI = −1
2

1158± 4 1138± 6

mJ = +1
2 → m′J = +3

2 ,

mI = −3
2

1144± 3 1133± 4

The difference between the two sets of absorption coefficients at near

4.49 ± 0.01 % and 35.62 ± 0.02 % light polarised to drive σ− transitions

is not negligible. However, theoretically the transition strength has no de-

pendency on the polarisation of the light. This is explained by the fact that

the separate measurements did not take place at exactly the same temper-

ature, as they took place within a few minutes of each other. Measurement

showed that a temperature change of approximately 1 ◦C could change the

maximum absorption coefficient of the mJ = −1
2
→ m′J = +1

2
transitions by

approximately 80 m−1, roughly equal to 7 % of 1150 m−1. The maximum

temperature differences of the different polarisation measurements shown in

table 3.1 was calculated by the ElecSus fit to be up to 1 ◦C. This seems to

account for the differences in the absorption coefficients observed between

the different polarisations of light.
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For the mJ = −1
2
→ m′J = +1

2
transitions, the Clebsch-Gordon coefficient

can be calculated to be
√

1
3
, while for the mJ = +1

2
→ m′J = +3

2
transitions

the Clebsch-Gordon coefficient is 1. Their transition strengths are propor-

tional to the Clebsch-Gordon coefficient squared. We would therefore expect

the ratio between the maximum absorption coefficients with the same mI

values to be exactly 3. The ratios measured are shown in table 3.2.

For example, using table 3.1, the bottom row mJ = +1
2
→ m′J = +3

2
,

mI = −3
2

transition’s maximum absorption coefficient would be divided by

the maximum absorption coefficient of the top row mJ = −1
2
→ m′J = +1

2
,

mI = −3
2

transition. This particular ratio is shown in the top row of table 3.2.

Table 3.2: Ratios of the weighted mean of maximum absorption coefficients of

atomic σ+ transitions at two different polarisations of light polarised to drive σ−

transitions.

σ− Polarisation (%)

4.49± 0.01 35.61± 0.02

mI Absorption Coefficient Ratio

−3
2 3.33± 0.04 3.25± 0.04

−1
2 3.35± 0.015 3.23± 0.02

+1
2 3.28± 0.02 3.17± 0.02

+3
2 3.29± 0.07 3.17± 0.07

Although the ratios were theoretically expected to be exactly 3, they are all

at least 5% above this value, and are as much as almost 12% above their

expected value. Furthermore, all of the ratios measured with 4.49 ± 0.01 %

light polarised to drive σ− transitions are further from the expected value of

3 than the ratios using the 35.61±0.02 % polarised light. There also appears

to be a trend where the ratios with negative mI values are higher than the

ratios with positive mI values, although they are within 2× their errors of

each other so this may not be significant.

Temperature fluctuations between the two measurements was most likely

the dominant source of the discrepancy between the theoretical prediction

of exactly 3 and the values shown in table 3.2. A simple calculation shows

that a temperature difference of only 1 ◦ C would lead to a ratio of approx-
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imately 1150+80
350

= 3.51. As all the measurements were taken within 1 ◦ C,

and the +20 GHz transitions were systematically larger than the +40 GHz

transitions, this would account for the variation from theory.

If any future measurements of this ratio were to be taken, it would be im-

portant to ensure temperature stability as even a fluctuation of less than

0.3 % of the temperature in Kelvin can significantly affect the absorption

coefficient and therefore the ratio of the two transitions by nearly 20 %.

3.3.2 Weak Transitions

The narrow-band laser was also used to measure the weak σ+ transitions

occurring at −10 GHz and +70 GHz. A much higher temperature was used

for these measurements in order to maximise the SNR, as the transitions are

significantly weaker than the strong transitions, absorbing much less light.

The temperature was measured to be approximately 145 ◦C, although fit-

ting with ElecSus showed that the temperature was actually approximately

156 ◦C.

As shown by figure 3.9, the +70 GHz group of transition again has an ex-

cellent fit. The residuals are normalised assuming an uncertainty of mea-

surement equal to the standard deviation of the noise in the wings, and the

reduced χ2
red = 4.8, 4.5 (found by using the techniques explained in [77]) for

the near-linear and near-100% polarisations respectively. As this uncertainty

does not include the uncertainty involved in the process of normalising the

x− and y−axes, the χ2
red values are above 1. 5 repetitions of this fit were

conducted, and the resulting average values of temperature and additional

broadening were assumed for the final σ+ group of transitions that occur at

−10 GHz. The fit was found by letting only the Linear-Detuning variable

float using the program.

This final fit for both polarisations of light is shown in figure 3.10. The fit is

visibly much less accurate. Again, the uncertainty was assumed to be equal

to the standard deviation of the noise in the wings. Although this again likely

underestimates the uncertainty, this is not the dominant source of error in

this fit. The χ2
red = 1400, 260 values for the near-linear and near-100 %

polarisations are both much larger than 1 in comparison to the values of the
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fit for figure 3.9. Furthermore, the near-linear fit has a significantly worse fit

than the near-100 % light polarised to drive σ+ transitions.

The presence of an extra, smaller peak at a linear detuning range of up to

1.5 GHz for both polarisations is not seen in the ElecSus program’s model,

and each of the 3 expected weak peaks have significantly higher absorption

coefficients than expected. Although smaller than the expected weak transi-

tion’s peaks, the ‘extra peak’ is large enough to be considered significant in

comparison to the expected peaks.

The peak occurs at exactly the expected linear-detuning for a strong π tran-

sition. Such a π transition would only take place for a laser beam’s electric

field component that is parallel to the magnetic field. As this π transition has

an absorption coefficient that is larger than that of the weak σ+ transitions,

only a small spatial component of the laser beam’s electric field would need

to be parallel to the magnetic field. Considering the orientation of the setup,

it is possible that the laser beam was incident to the atoms at a slight angle

from the perpendicular in relation to the magnetic field.

The π transition would also take place in a group of 4, with the other 3 peaks

occurring at approximately the same frequency that the 3 weak σ+ transitions

occur at, which could explain the extra absorption seen in the 3 weak σ−

transitions. The weak π transitions do not make a significant contribution to

the strong σ± transitions and can therefore be ignored. π transitions would

also explain why the fit is much worse in the near-linear polarisation than

in the near-100 % polarisation. While the absorption of the σ+ transitions

depends on the polarisation, the absorption of the π transition does not.

When converting to absorption coefficient from transmission, the strong π

transitions will be closer in size to the weak σ+ transitions in the near-linear

polarisation, and will therefore appear larger as absorption coefficient for the

near-linear than the near-100% polarisation.

However, ElecSus does not currently have an option to change the possible

input angle of the laser beam to account for π transitions. This would be a

significant improvement to the model. Furthermore, the existence of these

peaks could also be useful in order to check alignment as the peaks will not

appear when the laser’s k is exactly parallel to the direction of B.
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Figure 3.9: Experiment measurement (red) of the absorption coefficient α in

units of m−1 for the +70 GHz transitions. The theoretical values of α are shown in

black, with fitted variables of T = 156.46±0.01 ◦C (top) and 156.15±0.01 ◦C (bot-

tom), additional broadening of 109.30±0.06 MHz (top) and 104.37±0.04 MHz (bot-

tom), with assumed polarisation 36.61± 0.02 % (top) and 4.49± 0.01 % (bottom)

light polarised to drive σ− transitions. Underneath each graph are the normalised

residuals using the amplitude of the noise as the uncertainty, giving χ2
red = 4.8 and

4.5 for the top and bottom respectively.
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Figure 3.10: Experiment measurement (red) of the absorption coefficient α in

units of m−1 for the −10 GHz transitions. The theoretical values of α are shown in

black, with the same variables as in figure 3.9 with assumed polarisation 36.61 ±
0.02 % (top) and 4.49 ± 0.01 % (bottom) light polarised to drive σ− transitions.

Underneath each graph are the normalised residuals using the amplitude of the

noise as the uncertainty, giving χ2
red = 1400 and 260 for the top and bottom

respectively. The discrepancy between theory and experiment is a manifestation

of the π transitions, see text.



Chapter 4

Power Evolution of the

Absorption Coefficient

The theory underpinning ElecSus assumes that the atom-light interactions

take place in the ‘weak-probe regime’. Previous investigations have experi-

mentally found the bounds of intensity at which this regime takes place to be

several orders of magnitude less than the saturation intensity for a particular

transition [39, 67]. However, an investigation of the these bounds has never

previously been undertaken for Rubidium atoms in the hyperfine Paschen-

Back regime, or for beams with waists smaller than ≈ 0.5 mm. This chapter

aims to experimentally evaluate whether the bounds of this regime change

under these conditions.

In addition, the power evolution of absorption with a changing laser intensity

has not been experimentally studied for laser intensities much larger than

the saturation intensity of the transition. In this chapter this is undertaken,

and the claim that the line-centre absorption of the Voigt profile follows the

inhomogeneous relationship as the intensity of the laser beam is changed is

experimentally investigated.

71
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4.1 Limits of the weak-probe regime with no

external magnetic field

4.1.1 Previous Work

The limits of the weak-probe regime for Rubidium has previously been in-

vestigated by researchers, including Sherlock and Hughes in 2009 [39]. The

investigation took place without an external magnetic field being applied, and

so the ground state of the Rubidium atoms have 2 hyperfine non-degenerate

ground states, as well as the magnetic degenerate sub-levels, as shown by fig-

ure 2.4. Therefore optical pumping could take place from a resonant ground

state to the dark, non-degenerate hyperfine state. This process is called

hyperfine pumping.

The paper investigated the weak-probe regime for 3 different beam sizes,

with widths given by their FWHMs as 0.3, 1.7 and 2.7 mm. The range

of intensities spanned from I0/Isat ≈ 10−5 to just above 100. Three main

conclusions were found. Firstly, the beam width had a significant effect on the

line-centre absorption, due to the difference in time-of-flight, but the extent

of which was beyond the scope of the investigation. Secondly, for the widest

beam, ensuring the atom-light interaction was taking place in the weak-probe

regime meant that the intensity necessary was I0/Isat ≤ 10−3. The final

conclusion was that the extent of the hyperfine pumping is influenced by

whether the individual degenerate transitions are open or closed. Therefore,

in a composite transition of all open transitions, the effect of the hyperfine

pumping would be more pronounced than in a composite transition of two

open transitions, and one closed transition.

Another example of a weak-probe investigation of Rubidium is given as part

of Siddons et . al .’s, 2008 paper titled ‘Absolute absorption on rubidium D

lines: comparison between theory and experiment’ [53]. The investigation

was conducted for a beam width of 2 mm, though it is not stated whether

this is a FWHM value or another measurement of width, i.e.: 1/e2 width.

Assuming it is a measure of FWHM, it is a similar size to the values used in

Sherlock and Hughes (2009).
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The Gaussian relationship described in equation 2.45 does not successfully

fit the data, and was amended by the authors to include a fitting factor β as

1√
1 + β(I/Isat)

, (4.1)

to fit the data. However, this was done as a guide to the eye only.

The laser intensity was varied between I/Isat ≈ 0.001 and 1. The weak-probe

regime is concluded to be ensured for all four transitions at I/Isat ≈ 10−3.

4.1.2 Beam Width

The beam width w has previously been shown to be an important factor

when considering the weak-probe regime’s limits, not only for the line-centre

absorption [39] but also for the line shape [81]. The previous investigations

have mostly defined w as the FWHM, and typical values are in the order of

a few millimeters.

The cell used in this investigation had a width of 1 mm, enclosed in a cell

casing of 0.75 mm width. Therefore w could not be in the same range of

values as previously investigated, as much of the beam would have been

blocked by the cell’s casing. A cross-sectional view is shown in figure 4.1, and

the dotted circle inside the cell shows that radius of the beam r < 0.5 mm.

Figure 4.1: Cross-section of cell casing (black square) and laser beam (red).

The dotted circle shows the laser beam’s radius inside the casing.
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In this investigation, the 1/e2 radius is defined as the beam width measure-

ment w, rather than the FWHM as used in other literature. The difference

between the 2w = 1/e2 diameter and the FWHM of a Gaussian distribution

of laser intensity is given by the relationship

w2 =
FWHM2

2 ln 2
. (4.2)

A CCD camera and beam profiling software was used to measure w at the

focus of the beam. It was measured as approximately 50 µm. This value

is approximately 10 times smaller than the smallest beam width used in

Sherlock (2009).

The cell was displaced from the focus of the beam, so that w could be max-

imised. This was limited by the width of the cell itself as previously discussed.

The CCD camera was placed behind the cell and used to image the cell at var-

ious distances from the focus, ensuring that a normal distribution occurred

within the edges of the cell. This was observed by the lack of sharp, square

edges in the image from the cell casing. Screenshots of the beam profiling

software used, including images of the beam transmitted through the cell,

are given in Appendix C in figures C.1 and C.2.

Imaging the beam also showed that the cell was partially blocked by the cell

casing, such that the horizontal axis of the cell was much larger than the

vertical. In order to keep the cell in place, it was not possible to reduce this

block any more than is shown by the figures. This meant that the maximum

radius of the beam would have to be even less than 0.5 mm, the lowest beam

width used by Sherlock (2009).

The maximum beam width that could be used while still ensuring a nearly

normal distribution within the blocked cell was found to be wx = 230±4 µm,

wy = 268 ± 6 µm, where wx and wy are the widths in the x and y axes

respectively. The mean w value is approximately 250 µm.

The probability distribution of atomic time-of-flight H(t) of Rubidium atoms

across the beam, where t is the time-of-flight, can be given as a closed form

equation and has previously been derived [70]. In figure 4.2, H(t) is plotted

for the 3 beam widths used in Sherlock (2009), given as 1/e2 radii, and for

w = 250 µm. There is clearly a large dependence on beam width.
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Figure 4.2: Probability distribution H(t) of time-of-flight of 87Rb atoms travers-

ing a beam of various widths w. The distribution for the beam width used in this

experiment w ≈ 250 µm is shown as the black dashed line. Temperature assumed

to be T = 300 K.

For the D2 line of 87Rubidium, the lifetime of the transition is τ =

26.24(4) ns [56]. Previously, the time-of-flight of the atoms is assumed to

be much larger than the average lifetime of the transition, such that the

number atoms that decay before hyperfine pumping to the dark state can

take place is negligible. By looking at the percentage of the area of H(t)

before t = τ , it is possible to assess whether this assumption is correct.

The definite integral of H(t) between 0 and τ , as a percentage of the total

area under the curves, is equal to 6.4× 10−5 %, 1.7× 10−4 %, 5.4× 10−3 %

and 2.2× 10−2 % for w = 4.59 mm, 2.89 mm, 0.51 mm, 250 µm respectively.

This shows that reducing w by a factor of ≈ 20 increases the probability of

an atom having a time-of-flight smaller than τ by a factor of ≈ 350.

This shows that, for the thin beams used in this work, there is a higher

probability that hyperfine pumping will not occur for a given beam intensity,

and conversely, for wide beams, there is more time for hyperfine pumping to

occur during an atom’s transit. It is therefore predicted that the weak-probe

regime can be obtained with higher intensities than in previous work.
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4.1.3 Results and Discussion

The intensity evolution for the experimental cell without an external mag-

netic field is shown in figure 4.3, for laser powers ranging from a few nW,

to ≈ 155 µW. The power of the laser was measured using an ‘Ophir Nova

II’ power meter, placed before the cell, and varied using ‘Thorlabs’ neutral

density filters.

Efforts were made to reduce the background lighting as much as possible

during measurement, including shielding the power meter and turning off

room lights. In addition, the laser was turned off and the background light

measured for each power measurement so that it could be subtracted from

the power measurement.

In figure 4.3, the spectra are colour coded to show power evolution of the

transmission. The lowest intensity spectrum is shown as a dark blue, which

corresponds to the spectrum with the highest absorption peak. As the inten-

sity is increased the spectra are shown as progressively more green until the

highest intensity spectrum is shown as a bright green. This is the spectrum

with the lowest amount of absorption.

The theoretical spectrum is shown as a black dashed line. This spectrum

was calculated by ElecSus using the fitted parameters of the 3rd smallest

intensity spectrum.

The lowest intensity spectrum has a low SNR in comparison to the higher

intensity spectra. There are 15 transmission spectra plotted, but several

spectra overlap with the lowest spectrum, so only ≈ 7 can be easily observed

on the graph. The overlapping spectra have a much higher SNR than the

spectra with the lowest intensity, as their intensities are up to 2 or 3 orders

of magnitude larger than the lowest intensity.

In addition to the 2 large 87Rb peaks, separated by 6.8 GHz as expected from

figure 2.3, two smaller peaks are also seen from the 1 % of 85Rb present in the

experimental cell. The uncertainty of these measurements were considered

too small to calculate their absorption coefficients accurately.
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Figure 4.3: 15 experimental transmission spectra through the experimental

cell with no external magnetic field applied, showing the evolution of changing

laser beam intensity against linear detuning. As the beam becomes more intense,

a higher SNR is achieved and less absorption takes place shown by the colour

change from dark blue to light green. The theoretical spectrum is shown as the

black dashed line, with fitted variables from ElecSus of T = 85.01 ◦C and additional

broadening of 56.79 MHz.

Using the relationships S0 = e−α±L or I = I0e−α±L, the absorption coefficient

can be calculated from the Transmission. The corresponding maximum ab-

sorption coefficients for the data shown in figure 4.3 is plotted against I/Isat in

figure 4.4. Note the logarithmic x-axis. It is evident that there is a dramatic

reduction in the absorption coefficient for intensities ≥ Isat. Also plotted as

a black dashed lined is the theoretical maximum absorption coefficient as-

suming the weak-probe regime. This theory was calculated by fitting to the

3rd smallest intensity spectrum using ElecSus.

Two curves have been fitted to the data. The solid curve follows the inho-

mogeneous relationship discussed previously, with a fitting factors ai and bi

as included in [67], given by

α = ai ×
1√

1 + bi(I/Isat)
. (4.3)

The dashed curve follows the form of the homogeneous relationship given by
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equation 2.44, including fitting factors ah and bh, as

α = ah ×
(Γ/2)

(Γ/2)2 + bh(I/Isat)
, (4.4)

where Γ is the natural linewidth (FWHM), and is equal to 2π×6.0666(18) MHz

for the D2 line of 87Rb.

The inhomogeneous relationship that has previously been used to describe

the evolution of the absorption coefficient with changing intensity has χ2
red

values of 49 and 70 for the F = 1 → F ′ and F = 2 → F ′ transitions

respectively, while the homogeneous relationship has χ2
red values of 2.6 and

2.4 respectively (all to 2 s.f.). The error values for the χ2
red calculations

were found by measuring the difference between the average value in one of

the wings (Linear Detuning < −4.4 GHz) of the theoretical spectrum from

ElecSus and the measured spectrum. For the lowest intensity measurement,

the standard deviation of the noise in the wings was instead used as the error

value as it is much more dominant.

A visual inspection of the data, and the χ2 analysis, both clearly indicate

that the homogeneous relationship has a much better for to the data than the

inhomogeneous fit. It is not currently understood why this is the case as the

Doppler broadening is two orders to magnitude greater than the homogeneous

width. However, a detailed explanation of this is well beyond the scope of

this experimental thesis. Some research is known to be ongoing at Durham

University into whether this can be explained with theory [82].

Very thin beams are useful in many experiments, such as quantum memories

with atoms confined to fibres and atomic vapours in which narrow optical

fibres confine the light [83–86]. In addition, the data shows that the weak-

probe regime can be reached at I0/Isat values of up to 10−1 for beams of this

size. This is contrast with Sherlock (2009) and Siddons (2008), which both

showed that values of at maximum I0/Isat < 10−3 was required to be in the

weak-probe regime for beam widths in the range of a few millimeters. Unlike

in Siddons (2008), the two peaks do not seem to reach the weak-probe regime

at a significantly different intensity.

Being able to ensure the weak-probe up to 2 orders of magnitude higher in-

tensities than previously thought is extremely useful for future spectroscopy

using Rubidium, and potentially other alkali-metal atoms. Being able to in-
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crease the SNR while staying in the weak-probe regime means that the atoms’

absorption coefficient along with other measurements can be calculated much

more precisely than previously thought.

This is especially clear in figure 4.3, where the the low SNR of the lowest

intensity spectrum overlaps with multiple other spectra. Measuring the value

of the absorption coefficients from this spectrum will have a large uncertainty,

as is seen by the error bar of the corresponding value in 4.4 in comparison to

the error bars of all the other measurements. The uncertainty of measurement

is therefore reduced by using a higher intensity measurement.
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Figure 4.4: Absorption Coefficient α plotted against I0/Isat for the two 87Rb

transitions shown in figure 4.3, assuming Isat ≈ 1.67 mW/cm2. The theoretical α

value from ElecSus, fitted from the 3rd smallest intensity spectrum, is shown as

a black dashed line. The inhomogeneous fit from equation 2.45 is shown as the

solid curves, while the homogeneous fit from equation 2.44 is shown as the dashed

curves.
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4.2 Limits of the weak-probe regime in the

hyperfine Paschen-Back regime

The limits of the weak-probe regime have not previously been investigated for

Rubidium atoms when a large magnetic field has been applied. It is possible

that in the hyperfine Paschen-Back regime, the hyperfine splitting is large

enough that the power evolution of the absorption coefficient is significantly

changed.

This section will investigate this possibility by comparing the power evolution

and the limits of the weak-probe regime in a parallel magnetic field (Faraday

Geometry) of 1.54 T with the evolution and weak-probe regime limits without

an external magnetic field considered in section 4.1.

4.2.1 Effect of magnetic field on hyperfine pumping

Previously, the transitions measured were made up of 3 Doppler-broadened,

non-degenerate transitions. Each of these transitions were made up of mul-

tiple degenerate sub-levels from their magnetic quantum numbers. Of all

of these states, only 2 were closed transitions, which meant that hyperfine

pumping to a dark state could take place for almost all the transitions. The

application of the external magnetic field means that the hyperfine sub-levels

of both the ground and excited state are no longer degenerate.

At a magnetic field of B = 1.54 T, the system is within the hyperfine Paschen-

Back regime, and there are therefore 8 non-degenerate hyperfine ground lev-

els (see figure 2.4), and 16 non-degenerate hyperfine excited levels (see fig-

ure 2.5). The separation of the transitions exceeds the Doppler width (see

figures 2.12, lower and 2.13) so the absorption coefficients can be measured

separately to each other, whereas previously the degenerate hyperfine states

meant that only composite transitions could be measured.

Some of the transitions considered in this investigation were the 4 strong σ−

transitions that occur at approximately −20 GHz, which are defined as the

mJ = −1/2→ m′J = −3/2, ∆mI = 0 transitions (shown in figures 2.12, lower

and 2.13). Each of these transitions are closed which means that hyperfine
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pumping to a dark state is forbidden by the selection rules. It would therefore

be expected that the weak-probe regime can be reached at a higher intensity

than previously shown by Sherlock (2009) or Siddons (2008).

The other group of transitions considered in this investigation was the 4

strong σ− transitions that occur at approximately −40 GHz, defined as the

mJ = +1/2 → m′J = −1/2, ∆mI = 0 transitions (again shown in fig-

ures 2.12, lower and 2.13). They are all open transitions as the selection

rules mean that spontaneous decay could occur as a π transition to the non-

resonant and therefore dark mJ = −1/2 state. As optical pumping is allowed,

it would be expected that a lower intensity laser would be required to reach

the weak-probe regime for these transitions.

However, as the small beam width used has already been shown to make a

large difference to the limits of the weak-probe regime, it is possible that the

limits will not be changed significantly by the addition of a magnetic field.
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4.2.2 Results and Discussion

Power Evolution of the ‘−20 GHz’ peaks

Transmission spectra were measured for the ‘−20 GHz’ set of σ− peaks. The

experimental setup was the same as in the previous section, except the cell

was placed inside the magnet as described in chapter 3. The beam size was

kept the same as the cell was placed at the same distance from the focus of

the beam as previously.

Again the power of the beam was measured, and the average background

light levels were subtracted from the measurement. This was converted to

intensity, and the saturation intensity Isat = 1.67 mW/cm2 for a two-level

atom was again used. Using this value is actually more relevant for this part

of the investigation, as the transitions are closed.

15 total laser intensities were used, and for each intensity 5 transmission

spectra were measured. For each of the 5 transmission spectra, the resonant

absorption coefficient was calculated independently such that uncertainty

from the normalisation process of the x- and y- axes could be reduced.

In figure 4.5, one of the five transmission spectra for each laser intensity has

been plotted. The spectrum with the lowest laser intensity of 25±8 µW/cm2

is shown in dark blue, and the colour of each spectrum gets progressively more

green until the highest laser intensity (9.2± 0.3 W/cm2) spectrum, which is

shown in bright green.

As the laser beam’s intensity is reduced, a greater percentage of the light

is absorbed until the weak-probe regime is reached. Once the weak-probe

regime has been attained, reducing the laser beam intensity no longer in-

creases the absorption peak. Of the 15 spectra, only ≈ 8 are observable

from the graph, because of the large amount of noise present in the lowest

laser intensity measurement, but also as once in the weak-probe regime the

spectra overlap.

The theoretical spectrum is plotted on figure 4.5 as a black dashed line, and

was calculated using the 2nd lowest laser intensity transmission measurement,

fitted using ElecSus. The fitted parameters of the theoretical spectrum are

shown in the caption.
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The average values for the 5 experimental measurements of each of the 4

lowest intensity spectra are as follows: the temperature was 93.3 ± 0.3 ◦C

and the additional broadening was 100 ± 15 MHz. The mean value of

the light’s polarisation, calculated using the 5 measurements of the lowest

intensity spectra, was 41.6± 0.4 % light polarised to pump σ− transitions.

Figure 4.5: Experimental power evolution of transmission against linear detun-

ing spectra with an external magnetic field B = 1.54 T applied, for the ‘−20 GHz’

set of σ− peaks. 1 of 5 measured spectra for each laser intensity is plotted. With

increased beam intensity, the SNR increases shown by the colour change from dark

blue to light green. The theoretical spectrum is the black dashed line, fitted to

just the 2nd smallest intensity spectrum using ElecSus, with fitted variables of

T = 93.13 ◦C, additional broadening of 98.4 MHz and 41.33 % light polarised to

pump σ− transitions.

The polarisation of the beam was also important, and therefore the relation-

ship between α− and transmission S0 can be defined as

α− = − 1

L
ln

(
1− 1− S0

p

)
, (4.5)

where p is the fraction of light polarised to pump σ− transitions. A small

change in polarisation can have a large effect on the absorption coefficient.
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The absorption coefficients calculated from the transmission spectra are plot-

ted in figure 4.6. An average value of the independently calculated absorption

coefficients for each of the 5 measured transmission spectra is plotted along

with each corresponding uncertainty. Error analysis shown in appendix A.

In the figure, the theoretical absorption coefficient values are shown as the

grey area, with its upper and lower bounds shown as the solid black lines.

This was calculated from the mean and standard deviation of the 5 absorp-

tion coefficient values for each of the 4 transitions in the 2nd lowest laser

intensity spectrum. In the previous data, only one transmission spectrum

per intensity value was measured, so the theoretical weak probe value of the

Absorption Coefficient was given as a single value, rather than as a range of

values.

2 equations are again fit to the data, the inhomogeneous fit given by equa-

tion 4.3, and the homogeneous fit given by equation 4.4. In order to quantify

how well the equations fit the data, a χ2 analysis was performed, using the

uncertainty in the absorption coefficient measurement as the error. The χ2
red

values from the fits shown in figure 4.6 are as follows: the inhomogeneous fit

(solid curves) values are (i) = 130, (ii) = 130, (iii) = 128 and (iv) = 129;

and the homogeneous fit (dashed curves) values are (i) = 4.50, (ii) = 3.90,

(iii) = 3.31, (iv) = 3.47, all given to 3 significant figures. This shows that,

as in section 4.1, the homogeneous fit is a much better fit than the expected

inhomogeneous fit. This is therefore not changed by the inclusion of a large

magnetic field.

Almost all the data points lie within their uncertainty on the homogeneous fit,

except for the 5th and 6th lowest intensity measurements which are multiple

standard deviations away from the fit. The 5th lowest intensity measurement

is more than 2 error bars below each of the fitted values, while the 6th lowest

intensity measurement is between more than 2 error bars above each fitted

value. None of the individual measurements used to calculate the Absorption

Coefficient values were outliers to the other measurements. These are the

only data points which are significantly displaced from the homogeneous fit

shown by the dashed lanes.
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Figure 4.6: The absorption coefficients α corresponding to the peaks shown

in figure 4.5. The inhomogeneous fit is shown for each as a solid curve, and the

homogeneous as a dashed line. The upper and lower bounds of the theoretical α

value is shown by the black solid lines, with the area between them shaded grey.

This was calculated using the 5 measurements of the smallest intensity spectrum

and fitting with ElecSus. T = 93.3 ±0.3 ◦C, additional broadening = 100 ±15 MHz

and 41.6 ± 0.4 % of the light is polarised to pump σ− transitions.
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Power Evolution of the ‘-40 GHz’ peaks

This experiment was repeated for the set of σ− peaks that occur in the

‘−40 GHz’ region. The peaks in this set refer to the mJ = +1/2 → m′J =

−1/2, ∆mI = 0 strong σ− transitions. The selection rules mean that the

possible decays are via stimulated emission back to the original mJ = +1/2

state, or via spontaneous emission back to either the original mJ = +1/2

state, or the off resonant, and therefore dark, mJ = − 1/2 state.

As these transitions are all open rather than closed like the ‘−20 GHz’ set

of peaks, they will be affected by optical pumping. This would be expected

to decrease the power required to reach the weak-probe regime. Each peak

represents only one σ− transition for 87Rb. There is also 1 % 85Rb in the

cell, the middle 2 peaks will include a very small additional absorption from

those transitions, which occur within their Doppler broadening. This is why

the middle two peaks are a very small amount larger than the outside two,

but not enough to have a significant effect for this section. Although these

transitions are open, their power evolution of these peaks may not necessarily

be similar to that of the peaks with no external magnetic field applied. This

is because the peaks investigated in this section are made up of only one
87Rb transition each, separated in frequency by more than their Doppler

broadening by the magnetic field, whereas at no magnetic field each peak

was a composite of 3 transitions, of which far more than 1 dark state was

possible due to the degeneracy of the energy sub-levels.

Figure 4.7 shows 1 transmission spectra for each laser beam intensities rang-

ing from 35 ± 1 µW/cm2 to 8.1 ± 0.2 W/cm2. As previously, reducing the

intensity of the laser beam increases the absorption of the laser beam by the

Rubidium vapour. This is shown graphically by the change in line colour

from a dark purple to green and then to a dark yellow colour. The theo-

retical spectrum, fitted with ElecSus using the lowest intensity spectrum, is

shown as a dashed red line. 15 different intensities were used, and 5 trans-

mission spectra were measured at each intensity. However, only ≈ 7 of the

spectra are observable from the graph, due again to the fact that the lowest

intensity spectra have such low SNR. The temperature of the atoms during

this experiment was fitted using ElecSus to be 123.0± 0.5 ◦C, the additional
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broadening to be 100 ± 10 MHz, and 44.5 ± 1.0 % light polarised to pump

σ− transitions. The temperature was increased from the ≈ 90 ◦C used for

the ‘20 GHz’ transitions in order to have as large an absorption as possible,

without reaching the maximum possible absorption.

Figure 4.7: Experimental transmission spectra through the experimental cell

with an external magnetic field B = 1.54 T applied, for the ‘−40 GHz’ set of σ−

peaks, showing the transmission evolution of changing laser beam intensity against

linear detuning. 1 of 5 measured spectra for each laser intensity is plotted. As

the beam becomes more intense, less absorption takes place shown by the colour

change from dark purple through green to a dark yellow. The theoretical spectrum

is shown as the red dashed line, and has been fitted to the 4th smallest intensity

spectrum using ElecSus, with variables of T = 123.5 ◦C, additional broadening of

90 MHz and a laser polarisation of 44 % pumping σ− transitions.

Figure 4.8 shows the line-centre absorption coefficient of each peak against

I0/Isat, where Isat is again assumed to be equal to 1.67 mW/cm2, the value for

a two-level closed transition. It should be noted that the transitions consid-

ered here are in fact open and have 1 possible off-resonance dark state each.

This means that the x−axis values are not necessarily correct. Therefore,

although in these graphs the absorption coefficients appear to remain in the
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weak-probe regime until approximately I0/Isat = 100, this is not necessarily

accurate.

The labels on the graphs refer to the transitions as follows: (v) is the

mI = +3/2 transition and is the furthest negatively detuned peak shown

in figure 4.7; (vi) is the mI = +1/2 transition and is the 2nd peak most

negatively detuned; (vii) is the mI = −1/2 transition and is the 3rd most

negatively detuned peak; and finally (viii) is the mI = −3/2 transition and

is the 4th and least negatively detuned peak. The predicted values for the

absorption coefficient of each peak is shown by the grey area, bounded by

black lines. This was calculated using ElecSus for the 3rd lowest intensity

spectrum.

The values of absorption coefficient were calculated in the same way as for

the ‘−20 GHz’ set of peaks, and the homogeneous and inhomogeneous equa-

tions, given by equations 4.4 and 4.3 respectively, were fitted to the data.

In figure 4.8, the homogeneous fit is shown as the dashed curve, while the

inhomogeneous fit is shown as the solid curve. As shown previously, the ho-

mogeneous curve is a better fit to the data. This is quantified by the χ2
red

values, which are as follows: (v) is 2.83 and 49.2, (vi) is 2.85 and 48.8, (vii)

is 2.84 and 47.4, and finally (viii) is 3.16 and 45.8, for the homogeneous

and inhomogeneous fits respectively. This means that the fits are 17.4 ×,

17.1 ×, 16.7 × and 14.5 × better for each transition respectively from (v) to

(viii). While the inhomogeneous fit is still a much worse fit than the homo-

geneous fit for (viii), the χ2 analysis shows that the difference is reduced in

comparison to the other 3 transitions.

While these values show that the homogeneous curve fits the data much

better than the inhomogeneous curves, the difference in the values is consid-

erably less than for the ‘−20 GHz’ set of peaks. The values here show that

the the homogeneous fits are approximately 16 × better than the inhomoge-

neous fits, whereas for the previous section they were between 29 and 39 ×
better. This could be because the ‘−40 GHz’ transitions are open rather

than closed and therefore hyperfine pumping can take place or, because of

the temperature increase, atoms are more likely to be within the beam’s

width so hyperfine pumping is more likely to occur.
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Figure 4.8: The absorption coefficients α corresponding to the peaks shown

in figure 4.7. The inhomogeneous fit is shown for each as a solid curve, and the

homogeneous as a dashed line. The upper and lower bounds of the theoretical α

value is shown by the black solid lines, with the area between them shaded grey,

calculated using the fitting function from ElecSus using the 5 measurements of the

3rd smallest intensity spectrum.
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Figure 4.9: The normalised absorption coefficients α(I)/α(0) corresponding to

the peaks shown in figure 4.7. The homogeneous fits are shown as a solid line in

the colours matching figure 4.8.

The differences between these power evolution of the 4 transitions can also

be observed in the combined figure 4.9, where all four normalised absorption

coefficients have been plotted on one graph. The homogeneous fit from fig-

ure 4.8 for each transition is plotted in the relevant colours. The gradient of

(viii) (red), above values of I0/Isat = 0, is less steep than the 3 others. The

3 other gradients are indistinguishable from one another in this graph.

Power Evolution Comparison

In order to compare the power evolution of the absorption coefficients of these

different transitions, the corresponding homogeneous fits for each transition

have been plotted together on figure 4.10. They have been normalised by

dividing each point by each corresponding absorption coefficient value at

I0/Isat = 0. The data from figure 4.4 is shown as the dashed black line and
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solid green line for the F = 2 → F ′ = 3, 2, 1 and F = 1 → F ′ = 2, 1, 0

transitions respectively. The four dotted red curves refer to the data in

figure 4.6 at approximately ‘−20 GHz’, while the four solid blue curves refer

to the data shown in figure 4.6 which occurs at approximately ‘−40 GHz’.

It is important to note that the only peaks for which the used value of

Isat = 1.67 mW/cm2 is actually accurate is the ‘−20 GHz’ data, as these are

the only closed transitions. The power evolution of the 4 ‘−20 GHz’ peaks

appear to be similar to one another, while the evolution of the 4 ‘−40 GHz’

peaks have 3 similar curves and one with a less steep gradient, as is also

shown in figure 4.9. In comparison, however, the sets of peaks appear to

evolve with power at a very different rate. Too much should not be made of

this difference, due to the assumption of the value of Isat, and the different

temperatures of the measurements .

However, some observations about the curves shown in figure 4.10 can still be

made. The composite peaks of mostly open transitions at no magnetic field

mean that more hyperfine pumping can take place than for a single closed

transition. However, not all of the transitions that make up the composite

peaks are closed. For the F = 2 → F ′ = 3, 2, 1 composite peak, the F =

2,mF = +2 → F ′ = 3,m′F = +3 σ+ transition is closed, as well as the F =

2,mF = −2 → F ′ = 3,m′F = −3 σ− transition, while the other 34 possible

σ±, π transitions are open, and for the F = 1→ F ′ = 2, 1, 0 composite peak

all the 18 σ±, π transitions are open.

The figure appears to show that the F = 1 → F ′ = 2, 1, 0 peak requires a

smaller I0/Isat value than the F = 2 → F ′ = 3, 2, 1 peak to reach the weak-

probe regime. Furthermore, the former peak follows a very similar curve to

the 4 ‘−20 GHz’ transitions, which are all closed. The reason for this is

unclear. None of the transitions in the non-magnetic field peak are closed,

but there are fewer transitions in this composite peak than for the F = 2→
F ′ = 3, 2, 1 composite peak. This could help explain why the similarity to

power evolution of the closed ‘−20 GHz’, but a complete explanation is well

beyond the scope of this experimental thesis.

In order to compare the effect of the magnetic field on the limits of the weak-

probe regime, more work is clearly required to provide a theory for the value
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of Isat for the open transitions. There are two conclusions that can currently

be made unambiguously: the narrow beam has a large influence on the limits

of the weak-probe regime, such that it can be reached at higher intensities

than previously thought; and that for this narrow beam, the homogeneous

fit appears to be a much more accurate fit to the power evolution of the

vapour than the previously used inhomogeneous fit, at both no magnetic field

and in the hyperfine Paschen-Back regime. The relation between these two

conclusions is at this point unclear, as in previous investigations the upper

limits of the I0/Isat values did not surpass ≈ 101, as the power evolution at

high intensities was not of interest.

Figure 4.10: Homogeneous fits to the relative line-centre absorption coefficient

α(I)/α(0) plotted against I0/Isat for the two peaks in no magnetic field from fig-

ure 4.4 (dashed black line and solid green line for F = 1 → F ′, F = 2 → F ′

respectively), the 4 ‘−20 GHz’ peaks from figure 4.6 (dotted red lines), and 4

‘−40 GHz’ peaks from figure 4.8 (solid blue lines).



Chapter 5

Conclusion

In this chapter, the overall conclusions that can be taken from the results

of this investigation will be discussed. In section 5.2, possibilities of further

work in this area is discussed.

5.1 Results

Temperature Evolution

An investigation into the temperature evolution of transmission and ab-

sorption coefficient spectra Rubidium atoms in the hyperfine Paschen-Back

regime was successfully undertaken for a continuous laser detuning of ap-

proximately 150 GHz. The forms of both the S0 and S1 showed excellent

agreement with the theory from ElecSus at temperatures ranging from 56 ◦C

to 160 ◦C. Furthermore, the S0 parameter was shown to have excellent agree-

ment with ElecSus for narrow-band plots of up to 20 GHz.

The absorption coefficient ratio of two sets of strong transition peaks, ex-

pected to be equal to 3.00, was measured to be within their uncertainty of

this value when a possible temperature fluctuation of < 1 K was taken into

account.

Both the strong and weak transitions were measured and compared to the

theory from ElecSus. It was found that ElecSus successfully predicts the

behaviour of 87Rb atoms in a magnetic field large enough that the atoms are
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in the hyperfine Paschen-Back regime. Additionally, some areas of potential

improvement or expansion of the ElecSus program were identified, so that a

non-parallel angle between the laser beam’s k and the magnetic field B could

be considered. If the angle is small, then at lower temperatures the magnitude

of the strong π transitions that coincide in frequency with the smaller detuned

weak σ± transitions would not significantly perturb the transmission, in the

same way that the weak σ± transitions do not absorb significant amounts of

light at low temperatures. It is unclear the effect that a cell with a longer

length would have. However, the existence of the strong π transitions can

be exploited to ensure that the angle between k and B is perpendicular,

as there are 4 strong π transitions and only 3 weak σ± transitions at those

frequencies.

Power Evolution

The power evolution of the D2 line of Rubidium was investigated. The

experimental cell, made up of 99% 87Rb and 1% 85Rb along with some buffer

gases, had a length of 1 mm and due to the casing, a width of < 1 mm. This

meant that a much narrower beam than previously investigated was required.

While the atoms were not under the influence of an external magnetic field,

the power evolution was found to not follow the inhomogeneous equation

assumed in previous literature. This change is likely due to the beam width.

Furthermore, the normalised power evolution of the two Doppler-Broadened
87Rb transitions also followed different shapes: the F = 2 → F ′ transitions’

power evolution was less steep than the F = 1 → F ′ transitions’. As these

Doppler-Broadened peaks were each made up of 3 individual transitions, it

follows that the normalised power evolution of the 2 combined peaks are not

identical.

Once a magnetic field of 1.54 T was applied, the strong σ− transitions that

occurred at approximately −20 GHz and −40 GHz were investigated. The

temperatures were chosen to maximise the transmission of each set of tran-

sitions. The normalised power evolution of the 4 peaks that occur at around

−20 GHz were found to have a much shallower shape than that of the 4 peaks

that occur at around −40 GHz. This could be due to whether the transitions
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are open or closed. It is also possible that assuming Isat = 1.67 mW/cm2 for

all the transitions is not correct as this assumes that all the transitions are

closed, 2−level transitions with no optical pumping.

The Weak Probe regime was found to be reached at a much higher value

of I/Isat than previously understood: up to 2 orders of magnitude higher

than the 10−3 previously considered to be the minimum required. This pro-

vides possibilities for applications such that the SNR can be increased when

measuring transmission or absorption coefficients. This seemed to be mostly

provided by the use of a narrow beam. It is unclear whether the use of a

magnetic field significantly changes the intensity required to reach the Weak

Probe regime. This should be investigated using a wider beam, with a dif-

ferent experimental cell.

5.2 Outlook

The Boltzmann factor defines the ratio [87] of a Boltzmann Distribution of

two separate states, and therefore is given by:

pi = e−∆Ei,j/kBT , (5.1)

where ∆Ei,j refers to the difference between the states i and the j.

Using this equation, it may be possible to define the Boltzmann constant by

using spectroscopy to measure pi, and therefore kB. If the temperature, the

difference in energy level of two states and probability of being in that state

are measured experimentally, the Boltzmann constant could be calculated.

However, this relationship also means that ∆Ei,j needs to be sufficiently large

that different pi for energy states are detectable.

When taking into account the signal-to-noise ratio (SNR) that the value of

kB could be measured, it is clear that in order to measure the same or better

precision as previous work has managed [88, 89], larger magnetic fields are

required. The magnetic field applied in this work was B = 1.54 T, which

corresponds to Boltzmann factors of 0.9942 and 1.0000, equal to a change of

0.0058, or 0.58%.

In order to measure kB precisely, a much stronger magnetic field is required.
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Eventually, this project hopes to use magnetic fields of up to B = 8 T, which

would enable a Boltzmann factor difference between the highest and lowest

ground states of 3.31%.

As Rubidium spectroscopy at such a high magnetic field has not previously

been undertaken, it is important to understand the hyperfine Paschen-Back

regime before increasing the magnetic field to such a high value. This

work has made progress towards understanding the hyperfine Paschen-Back

regime, as well as providing insight into the effectiveness and accuracy of

ElecSus in the hyperfine Paschen-Back regime, identifying ways in which it

could be improved before further experimentation is instigated.



Appendix A

Error Analysis

Normalised residuals rn are found by [77]

rn,i =
ye,i − yt,i

αi

, (A.1)

where ye,i is the individual experimental value, yt,i is the individual theoretical

value and αi is the corresponding individual uncertainty of the experiment

value. The reduced χ2 value is given by

χ2
red =

∑
i r

2
n,i

ν
, (A.2)

where ν is the number of degrees of freedom for a function that hasN variable

parameters using N independent data points where:

ν = N −N . (A.3)

The Root Mean Square error (RMS) is given by [90]

RMS =

√
1

N 2

∑
i

(ye,i − yt,i)2. (A.4)

The weighted mean µ is calculated by [77]

µ =

∑
i yiwi∑
iwi

, (A.5)

where yi is one measurement and wi = 1/α2
i is the corresponding weighting,

and the error of the weighted mean is equal to

αµ =

√
1∑
iwi

(A.6)
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Sub-Doppler Spectroscopy

The ‘Sub-Doppler’ technique was used to convert the data from an arbitrary

linear axis into a frequency axis in Hz. Shown in figure 3.1 as a labelled

grey box, it is a nonlinear Spectroscopy technique which is used to measure

transitions usually hidden within the Doppler-broadening of the Voigt profile.

It is a well established technique and as such the theory behind it will not be

discussed in this thesis. Thorough explanations of Sub-Doppler Spectroscopy

for the D2 line of Rubidium can be found in [60], while a more general

discussion is given in textbooks such as [91].

A 75 mm reference cell of both 85Rb and 87Rb in their natural abundances

was used to perform Sub-Doppler spectroscopy, and room temperature was

sufficient to measure a significant absorption with a good SNR. The position

of the hyperfine peaks were fit to a linear equation that compared them to

the theoretical peak frequencies. This equation was then used to convert the

entire x-axis into a linear frequency axis with units of Hz.

This is a well documented technique for converting into a frequency axis.

The hyperfine transitions of the D2 line for both 85Rb and 87Rb all take place

within 7 GHz of each other in the absence of a magnetic field. Extrapolating

the fit across frequencies ranges up the 160 GHz range required at a magnetic

field of B = 1.54 T has not been well studied. Part of the aim of this thesis

is to evaluate whether this technique is reliable enough to use for even higher

magnetic fields.

An example of a spectrum measured using this technique is shown in blue in
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figure B.1. The green lines show the position of the peaks that were used to

compare to their theoretical counterparts.
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Figure B.1: An example spectrum using the Sub-Doppler technique in blue,

showing the negatively detuned group of 3 hyperfine transitions and their crossover

resonances from 87Rb atoms on the left, and the corresponding group for 85Rb

atoms on the right, over the linear, arbitrary axis attained using the cavity. In

green is shown the positions of the specific peaks used for x-axis calibration.
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Cell Imaging
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Figure C.1: Screenshot of beam profiler software including image and pixel

values on x, y axes showing sharp edges of cell as the beam was too wide. Dark

patches inside the cell show where rubidium has condensed on the glass surface of

the cell. The y axis shows how the beam was cut off by the edges of the cell, with

a sharp gradient at approximately 1.8 to 2.0 mm on the y axis. The dashed lines

show a fitted normal distribution to the CCD data.

Figure C.2: Screenshot of beam profiler software including the image and pixel

values on x, y axes showing the beam width measurements through the cell. The

dark patches inside the cell show solid rubidium where it has condensed on the

glass surface of the cell. The dashed lines show a fitted normal distribution to the

data from the CCD.
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