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Abstract

The turbulent atmosphere has two detrimental effects in astronomy. The

phase aberration induced by the turbulence broaden the point spread function

(PSF) and limits the resolution for imaging. If there is strong turbulence high in

the atmosphere then these phase aberration propagate and develop into intensity

fluctuations (scintillation). This thesis describes three novel instruments related

to these problems associated with atmospheric turbulence. The first is an optical

turbulence profiler to measure the turbulence strength and its position within

the atmospheric surface layer in real-time. The instrument is a development of

the slope detection and ranging (SLODAR) method. Results from the prototype

at Paranal Observatory are discussed. An instrument to improve the PSF for

imaging is also discussed. The instrument works by adaptively blocking the

telescope pupil to remove areas which are the most out of phase from the mean.

This acts to flatten the wavefront and can therefore be used after an adaptive

optics system as an additional clean up, or stand alone on a telescope as a

relatively affordable and easy way to improve the PSF. The third instrument

reduces the scintillation noise for high precision fast photometry. Simulation

results show that it is possible to reduce the scintillation noise to a level where

the measurements are photon noise dominated.
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Chapter 1

Introduction

1.1 Motivation

Throughout history humans have turned their attention to the skies and ques-

tioned our position within the universe. Only recently has it been possible

through the development of sophisticated observational techniques and instru-

mentation to confirm the existence of other planets orbiting the stars in our

galaxy. At the date of writing this (August 2010) there are nearly 500 con-

firmed extrasolar planet detections. A variety of methods have been used to

find these planets each one favouring planets of a certain mass range at a cer-

tain distance from the host star. All of the techniques, except direct imaging

of the planet, involves inferring its presence by its effect on the star or the light

from the star. Direct imaging of an extrasolar planet is very exciting as it al-

lows spectroscopic and photometric characterisation of the planets atmosphere,

which is of great interest for planetary formation and evolution studies [1, 2, 3].

However, direct imaging is a challenge due to the brightness difference and the

small angular separations of the star / planet system as viewed from the Earth.

1
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So far only very large planets orbiting at large separations have been directly

observed but this mile stone observation is leading the way to the ‘holy grail’

of extrasolar planet detection which is to detect an Earth sized planet in the

habitable zone as these are the only ones which are thought to be capable of

supporting life [4]. Currently the only detection technique with the sensitivity

required to potentially detect an Earth sized planet in a realistic time frame is

the transit method [5]. As the planet passes between us and the star it obscures

a small area of the star, blocking some of its light. This reduction in intensity

can be measured and used to infer not only the presence of the planet but a

wealth of information about it. Examining the transit curve can provide us

with the planets radius, temperature, albedo, atmospheric dynamics and com-

position and when combined with measurements of the radial velocity, which

are required anyway to remove false positives, the planetary mass, density and

hence its composition can also be estimated [6].

Ground based observatories are favourable to space based as they can be

made much larger, are cheaper per unit area of telescope and are easier to

maintain and upgrade. Space based instruments are expensive and complicated.

However, often a lot of money is spent on sending telescopes into space. This is

because of the Earth’s atmosphere. In some spectral bands observations form

the ground are impossible due to the atmospheric absorption. In other bands

the transmission is high but the atmospheric turbulence significantly degrades

the image. Figure 1.1 shows a simulated example of a short exposure image of

a diffraction limited system (i.e. no turbulence, the image size is determined

by the size and quality of the telescope and its optics) and an image through

strong turbulence. It is obvious that it would be much easier to distinguish two

objects which are close together in the diffraction limited image.

The Earth’s atmosphere is a shell of gasses surrounding the planet that is
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Figure 1.1: Example simulated long exposure images through a diffraction
limited system (a) and an image through strong turbulence (b). The light
is spread over a much larger area making high resolution and high contrast
imaging very difficult. The intensity is normalised to the peak intensity of
the diffraction limited case.

retained by gravity. It is impossible to define a point where the atmosphere

ends and outer space begins but it is generally accepted (by the Fédération

Aéronautique Internationale) to be at the Kármán line at 100 km. However,

about three quarters of the total mass of the atmosphere is located within the

first ∼12 km from the ground. This boundary is called the tropopause and is

the point where the air no longer cools with increasing altitude and is essen-

tially void of water vapour. Although turbulent air flow can occur above the

tropopause the lack of water vapour means that there is very little in the way of

weather systems present at altitude. Optical turbulence or ‘clear air turbulence’

as it is known by meteorologists is different from the large scale turbulence which

gives rise to weather systems. Optical turbulence is caused by the mechanical

mixing of layers of air with different temperatures and hence density. As the

refractive index of air changes with density this turbulence creates a contin-
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uous screen of spatially and temporally varying refractive indices. Above the

tropopause the temperature of the air is constant with altitude resulting in very

little high altitude optical turbulence. In the troposphere there is a very steep

temperature gradient creating conditions perfect for optical turbulence. The op-

tical turbulence profile (turbulence strength as a function of altitude) changes

with location and time. However, luckily for astronomers, we do not observe

a volume of optical turbulence in this zone but several thin discrete layers [7].

In general premiere observing sites will include a strong turbulent layer at the

ground generated by solar heating during the day and surface winds perturbed

by objects. There is also usually a strong turbulent layer at the tropopause

caused by wind shear between two layers in the atmosphere [8]. Often thin

turbulent layers are also observed at altitudes between these layers but rarely

above.

In the case of optical imaging, high resolution and high contrast imaging

is made possible form the Earth’s surface with adaptive optics (AO) systems.

AO uses a wavefront sensor to measure the phase aberrations and a deformable

mirror to flatten the wavefront. The purpose of which is to focus all of the star

light into a well defined diffraction limited point. Without this the light would

smear out into a large (in spatial extent) halo. This halo will make imaging of

faint companions very difficult (see figure 1.1). AO is now capable of very good

correction over a very small field of view, ideal for the imaging of extrasolar

planets. With new advances in AO concepts and technology it is also now

possible to obtain good correction over a large field of view. However, no AO

system is perfect and there are always residual wavefront errors. The technology

is still very much in development and there is room for improvement. These

improvements are made by using new understanding of the atmosphere and its

behaviour to generate new ideas. Corrective imaging techniques are in an era
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of massive development.

The atmosphere also perturbs the intensity of the image, this can be ob-

served by the naked eye as twinkling or scintillation. The scintillation limits the

precision of possible photometric measurements. However, unlike AO for imag-

ing there is currently no instrumentation dedicated to reducing scintillation.

There are some ‘tricks of the trade’, for example increasing the exposure time

or simply using a larger telescope to temporally or spatially average over the

intensity fluctuations. However, it is not always possible or practical to use time

on larger telescopes for photometric studies and this will be limited to very faint

targets and short exposure times to avoid saturation and may still be limited by

scintillation. Time averaging the intensity (i.e. increasing the exposure time)

will reduce the scintillation noise. However, for fast photometry, time averaging

can also only be used in circumstances where the target intensity fluctuations

have a much longer time scale than the scintillation. This may not be the case

if you want to make several measurements across a transit of an hour or so, as

would be the case for an Earth like planet.

In order to develop ideas for new imaging and scintillation correction tech-

niques we must first understand the structure and behaviour of the atmosphere.

This can be done by examining data from turbulence profiling instruments (e.g.

SLOpe Detection And Ranging, SLODAR [9], or SCItillation Detection And

Ranging, SCIDAR [10]). This information is also required to model and optimise

modern sophisticated AO systems which correct each individual turbulent layer

independently in order to increase the homogeneously corrected field of view

and for observatory site selection and characterisation. For these last two appli-

cations the surface layer is particularly important. Studies show [7, 11, 12, 13]

that at many observatories this surface layer tends to be very thin and contain

a large fraction of the turbulence.
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1.2 Synopsis

In chapter 2 we discuss the relevant theory required for the concepts discussed

in the later chapters. None of the material in this chapter is original work.

In chapter 3 we discuss a modification to the SLODAR instrument to profile

specifically the surface layer of optical turbulence, named surface layer SLODAR

or SL–SLODAR. Previous studies using SLODAR have shown that the surface

layer at Paranal observatory is very thin [7]. It was unresolved with vertical

resolutions of ∼100 m. SLODAR functions by triangulating the altitude of

the turbulent layer by comparing the wavefronts from two target stars. The

altitude resolution of SLODAR is governed by the instrument optics and the

target stars angular separation. By increasing this angular separation we can

increase the altitude resolution. SL–SLODAR works by separating the light

from the two stars into separate cameras allowing for much wider separations

and consequently much higher altitude resolution. By targeting stars with an

angular separation of approximately 16 arcminutes we can obtain resolutions of

∼10 m.

In chapter 4 we examine an idea to reduce the wavefront phase variance

for high contrast imaging. The concept involves using an adaptive pupil mask

to block areas of the telescope pupil which are out of phase with the mean

wavefront position. By doing this we actively flatten the wavefront and reduce

areas of the wavefront from constructively interfering and generating speckles

which average in long exposures to form the PSF halo. The instrument could

be used either after an AO system to further improve the image quality or on a

telescope without AO as a relatively easy and cheap form of image correction.

In chapter 5 we present a passive technique to reduce the atmospheric effects

on the intensity of a stars image. In a similar way that AO has allowed imaging

of extrasolar planets from the Earth’s surface it is hoped that this method will
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allow high precision photometry from the Earth’s surface and potentially lead

to the routine characterisation of extrasolar planets from the ground.

Finally, Chapter 6 summarises the conclusions drawn from this work and

describes the future prospects for the projects.



Chapter 2

Theory

2.1 Atmospheric Turbulence

The wavefront from an astronomical source can be considered flat at the top

of the atmosphere. As it propagates to the ground it gets corrupted by the

optical turbulence which forms a limit to the precision of measurements from

ground based telescopes. Optical turbulence is caused by the mechanical mixing

of layers of air with different temperatures and hence density. As the refractive

index of air changes with density this turbulence creates a continuous screen

of spatially and temporally varying refractive indices. Although each of the

refractive index inhomogeneities in the turbulent layers may be small the wave-

front passes through a large number of them and the cumulative effect can be

quite large. The cumulative refractive index variations delay parts of the in-

coming wavefront with respect to others. The net effect is that the wavefront

becomes aberrated. If we assume a horizontal turbulent layer at altitude, h,

above the ground and that the layer thickness, δh, is large compared to the

eddy size of the refractive index inhomogeneites but small enough so that we

8



CHAPTER 2. THEORY 9

can ignore diffraction effects within the layer (thin screen approximation [14])

then the phase fluctuations, φ(ε), induced by the turbulent layer is related to

the refractive index fluctuations, n(h, ε), along the propagation path by

φ(ε) = k

∫ h+δh

h

n(h, ε)dh, (2.1)

where k is the wave number, 2π/λ, with λ being the wavelength of the light and

ε is a spatial parameter. The wavefunction after the layer is then,

Ψ(ε) = exp(iφ(ε)). (2.2)

It is these aberrations in the wavefront which act to distort images from astro-

nomical telescopes. We are therefore not interested in the absolute value of the

phase only the difference between its value at two points, which is caused by the

spatial variance of the refractive index. The refractive index structure function,

Dn(ρ), is the spatial variance in the difference of refractive index as a function

of separation [15],

Dn(ρ) = 〈|n(ε) − n(ε + ρ)|2〉 = C2
n(h)ρ2/3, (2.3)

where 〈〉 denotes an ensemble average, Dn(ρ) depends only on the difference

in refractive index with separation, ρ, and not the position, ε. C2
n(h) is the

refractive index structure constant and is therefore a measure of the amount of

local refractive index inhomogeneites and can be used to quantify the strength

of the optical turbulence. The units of C2
n(h) is m−2/3. The turbulent layers

do have a finite thickness so it is usually more useful to look at the integrated

refractive index structure constant,
∫ h2

h1

C2
n(h)dh, between two altitude limits

which tells us the integrated turbulence strength of the optical turbulence in
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that range with units of m1/3.

The Fried parameter is often used to quantify the integrated strength of

the turbulence. This is a useful parameter as it is defined as the diameter of

an aperture in which the phase variance, σ2
φ is approximately one. Stronger

turbulence will therefore correspond to a smaller r0. r0 is related to C2
n(h) by

[14],

r0 =

(

0.423k2 sec (γ)

∫

∞

0

C2
n(h)dh

)

−3/5

, (2.4)

where γ is the zenith angle.

2.1.1 Kolmogorov atmospheric turbulence

Turbulent flow is very complicated and still not entirely understood. Andrei

Kolmogorov developed a simple physical model for turbulence that could be used

to analytically evaluate its effects. Kolmogorov’s model assumes that energy is

injected into the turbulent medium on large spatial scales (the outer scale, L0)

and forms eddies. These then break down into smaller eddies in a self-similar

cascade until the eddies become small enough that the energy is dissipated by

the viscous properties of the medium. This will occur at the inner scale, l0, of the

medium. In the inertial range between the inner and outer scales Kolmogorov

predicted a power law distribution of the turbulent power with spatial frequency,

κ−11/3.

There is experimental evidence that suggest that Kolmogorov’s model is

valid for atmospheric turbulence, for example Nightingale & Buscher (1991)

[16]. In the case of atmospheric turbulence it is solar heating and wind shear

which provides the initial energy on large scales and it is dissipated as heat by

viscous friction of the air at the inner scale [14].
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The Kolmogorov phase power spectrum is given by [14],

Φ(κ) = 9.7 × 10−3k2C2
n(h)dhκ−11/3, (2.5)

or in terms of r0,

Φ(κ) = 0.023r
−5/3
0 κ−11/3. (2.6)

We can now introduce the phase structure function which tells us the vari-

ance of the difference in phase as a function of separation in the pupil, which

is particularly useful as we are not interested in any particular value of the

phase but only in the difference of phase across the pupil. The phase structure

function can be calculated by [17],

Dφ(r) = 〈|φ(ε) − φ(ε + r)|2〉, (2.7)

where φ(ε) is the phase at position ε and φ(ε + r) is the phase at a different

position in the pupil separated by a distance r. The turbulence is isotropic and

therefore r = |r|. r is related to the wavelength, λ, focal length, f, and the

spatial frequency, κ, by r = λfκ. This means that greater pupil separations

enable us to resolve higher spatial frequencies (i.e. smaller spatial scales). The

structure function actually has two components, D(r) = Dφ(r) + Dχ(r), the

phase structure function (Dφ(r)) and the amplitude structure function (Dχ(r))

due to scintillation. Here we concentrate only on the phase component as the

amplitude effects are negligible with apertures greater than the Fresnel radius

rF =
√

λh. This is because the variance of the scintillation will be much less

than the variance of the phase (near field approximation) [14].

The phase structure function can be calculated from the phase power spec-
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trum [18],

Dφ(r) = 2

∫

∞

0

Φ(κ)(1 − cos (2πκr))dκ. (2.8)

Fried simplified this for small spatial separations to [17],

Dφ(r ≪ L0) = 6.88

(

r

r0

)5/3

, (2.9)

and for large r the structure function converges,

Dφ(r → ∞) = 2σ2
φ, (2.10)

where L0 is the outer scale of the turbulence and σ2
φ is the wavefront phase

variance.

Figure 2.1 shows a simulated example of the Kolmogorov phase aberrations

in the wavefront after it has propagated through a turbulent layer. The spatial

structure of the phase is fractal between the two inertial limits, l0 and L0. The

amplitude of the fluctuations depends on the strength of the turbulence.

2.1.2 Non Kolmogorov atmospheric turbulence

There is some evidence to suggest that the atmosphere does not always obey

Kolmogorov’s 11/3 power law (e.g. [19, 20, 21]). It is sometimes found to be

lower than 11/3 but rarely higher. Boreman and Dainty [22] generalised the

3D power spectrum for any power exponent, β. The generalised phase power

spectrum takes the form, [22]

Φ(κ) = BβΩ2
nκ−β , (2.11)

where Ω2
n is the refractive index structure constant with units of m3−β , Bβ is a

coefficient which keeps consistency between the power spectrum and structure
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Figure 2.1: An example of the wavefront phase aberrations due to Kol-
mogorov turbulence. The wavefront (which is initially flat) is multiplied by
this phase aberration map resulting in an aberrated wavefront. The spa-
tial structure of the phase is fractal and so it looks the same on all scales.
The magnitude of the phase aberrations depends on the strength of the
turbulence.
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function. Φ(κ) can also be stated as,

Φ(κ) =
Aβκ−β

ρβ−2
0

, (2.12)

where ρ0 is the generalised coherence length and is analogous to the Fried pa-

rameter, r0, and Aβ is a coefficient chosen such that the piston subtracted

wavefront variance over a pupil diameter D = ρ0 is equal to 1 radian2. The

structure function is then [18],

Dφ(r) = γβ

(

r
ρ0

)β−2

, 2 < β < 4, (2.13)

where γβ is another constant that keeps consistency between the power spectrum

and structure fucntion and is given by,

γβ =
2β−1

[

Γ
(

β+2

2

)]2

Γ
(

β+4

2

)

Γ
(

β
2

)

Γ (β + 1)
. (2.14)

If β=11/3, i.e. the Kolmogorov case, this will reduce down to the constant in

Fried’s structure function of 6.88 (equation 2.9).

Figure 2.2 shows an example of the phase aberration from a generalised

spectrum with β = 9/3. The figure can be compared to the Kolmogorov example

in figure 2.1. A lower β indicates more power on smaller spatial scales.

2.1.3 Inner and Outer Scale

Although the previous equations are not valid at the limits of scales, i.e. very

large and very small scales, this can often be ignored as a telescope acts as a

spatial filter so that large scale fluctuations have little effect and small scale

fluctuations contain very little energy. However, measured values of the outer

scale vary between 1 m and 100 m [23]. At the lower end of this range there
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Figure 2.2: An example of the wavefront phase aberrations for non–
Kolmogorov turbulence. In this case β = 9/3.

is an overlap with the size of modern astronomical telescopes and so should be

included in AO modelling. The von Karman spectrum is a modified version of

the Kolmogorov spectrum to take into account the finite outer scale, [18]

Φ(κ) = 9.7 × 10−3k2C2
n(h)dh|κ2 + κ2

0|−11/6, (2.15)

where κ0 = 2π/L0, or in terms of r0,

Φ(κ) = 0.023
|κ2 + κ2

0|−11/6

r
5/3
0

. (2.16)
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The generalised spectrum becomes,

Φ(κ) = BβΩ2
n(κ2 + κ2

0)
−β/2, (2.17)

or

Φ(κ) =
Aβ(κ2 + κ2

0)
−β/2

ρβ−2
0

. (2.18)

Due to the power law in Kolmogorov’s model there is very little power at

small length scales and so the inner scale can usually be safely ignored. However,

for completeness, the inner scale of optical turbulence has been measured to have

values between 1 and 10 mm [24, 14] and the Von Karman equation including

the inner scale is, [25]

Φ(κ) = 0.023
|κ2 + κ2

0|−11/6

r
5/3

0

exp (−κ2/κ2
m), (2.19)

where κ2
m = 5.92/l0. Figure 2.3 shows the power spectrum of Kolmogorov, non–

Kolmogorov and Von Karman turbulence with inner and outer scales of 5 mm

and 20 m respectively.

2.2 Imaging through turbulence

In the absence of turbulence the wavefront at the entrance pupil of a telescope

will be flat. A flat wavefront would propagate through the telescope optics and

focus to a diffraction limited point spread function (PSF). The full width at half

maximum (FWHM) of the diffraction limited PSF will be [26],

θ = 0.98
λ

D
, (2.20)
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Figure 2.3: Example power spectra for Kolmogorov and non–Kolmogorov
turbulence. The black line shows the standard Kolmogorov power spectrum
with an exponent, β = 11/3. The blue line is the generalised spectrum with
β = 9/3. This turbulence will have more energy on smaller scales and less
energy on larger scales. The red dashed line is the Von Karman spectrum,
which includes the inner and outer scale of turbulence. At spatial scales
larger than the outer scale the power converges and drops to zero at scales
smaller than the inner scale due to the dissipation of turbulent energy. The
dotted lines indicate the spatial wavenumbers corresponding to inner and
outer scales. The scale of the power spectrum is arbitrary and depends on
the strength of the turbulence.
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where D is the diameter of the telescope. The imaging resolution according to

the Rayleigh criterion is,

θ = 1.22
λ

D
, (2.21)

and is inversely proportional to the telescope diameter.

An image is formed by the interference of the light from every part of the

wavefront with every other part. The refractive index fluctuations in the tur-

bulent atmosphere induces an optical path difference between different parts of

the wavefront. The focussed image will therefore not simply be a diffraction

limited spot but constructive interference around the central region will also

occur. The turbulence perturbed wavefront will cause the short exposure image

to break up into a number of speckles. Each one approximately the same size

as the diffraction limited PSF. However, the area over which the speckles are

spread will depend on the integrated strength of the optical turbulence along

the propagation path of the wavefront, quantified by the Fried parameter, r0.

For example in an atmosphere/telescope system with the ratio of D/r0 = 10

the speckles will be spread over an area approximately 10 times larger than

the diffraction limited PSF. Figure 2.4 shows example images for a diffraction

limited system and turbulence limited systems with D/r0 = 1, 4 and 10.

The phase variance across the aperture can be calculated using [17],

σ2 = 1.03

(

D

r0

)5/3

. (2.22)

If a telescope has a diameter less than r0 then the phase variance will be very

small and will be effectively diffraction limited even with the presence of optical

turbulence. If the telescope diameter is larger than r0 then there will be signif-

icant phase aberrations in the wavefront which will cause the image to appear

speckled. These speckles will process and evolve with time as the phase aberra-
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Figure 2.4: Example simulated images through a diffraction limited system
(a) and a turbulence limited system with D/r0 = 1 (b), 4 (c) and 10 (d). It
is seen that the image breaks up into a number of speckles. Each of these
speckles is approximately the size of the diffraction limited PSF but they
are spread over an area D/r0 times larger. The intensity is normalised to
the peak intensity of the diffraction limited case.
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tions change due to the atmosphere crossing the field of view of the telescope.

In a long exposure the speckles will add together to produce a large (in angular

extent) low level halo. Figure 2.5 shows example long exposure PSFs for diffrac-

tion limited and D/r0= 1, 4 and 10 systems. The FWHM of the turbulence

degraded image is,

θ = 0.98
λ

r0

, (2.23)

this value is independent of the telescope diameter and is known as the at-

mospheric seeing angle. The angular resolution will also be limited by the

atmosphere,

θ = 1.22
λ

r0

. (2.24)

In contrast to the short exposure PSF which is a direct result of the exact

form of the wavefront perturbations the long exposure is formed by averaging

over many instances of the turbulence and it is therefore possible to analytically

calculate the shape of this statistical PSF from the atmospheric parameters.

The long exposure PSF assuming on-axis observations can be calculated by,

PSF = F [MTF atmos × MTF tel] , (2.25)

where MTF atmos is the atmospheric modulation transfer function and MTF tel

is the telescope modulation transfer function.

In the case of diffraction limited imaging the first term can be ignored and

the PSF is only dependant on the telescope modulation transfer function which

is given by the autocorrelation function of the pupil function. In strong seeing

conditions the cut off frequency of the telescope MTF is much higher than the

atmospheric MTF and the second term can therefore be ignored (figure 2.6).

The atmosphere acts as a spatial filter. In the absence of this filter and a

perfect imaging system all of the information from the object would be repli-
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Figure 2.5: Example simulated long exposure images through a diffraction
limited system (a) and a turbulence limited system with D/r0 = 1 (b), 4
(c) and 10 (d). The PSF is spread oven an area approximately D/r0 times
larger. The intensity is normalised to the peak intensity of the diffraction
limited case. The images shown are the sum of 100000 unique images from
random phase screens.
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Figure 2.6: Modulation transfer functions for the telescope, MTF tel, dashed
line and the atmosphere, MTF tel, solid line. The cut off frequency of the
telescope MTF is much higher than that of the atmospheric MTF. For this
reason the telescope MTF can be ignored in equation 2.25. In this case r0

= 0.2 m and D = 1.0 m.

cated in the image. However, the atmosphere reduces the resolution, it removes

information about the object. The atmospheric transfer function, MTF atmos(r),

tells us how spatial frequencies in the object convert to spatial frequencies in

the image and is given by the auto-covariance function of the wavefront,

MTF atmos(r) = 〈Ψ(ε)Ψ⋆(ε + r)〉, (2.26)

or, using equation 2.2,

MTF atmos(r) = 〈exp(i[φ(ε) − φ(ε + r)])〉. (2.27)
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Roddier (1981) [14] shows that this can be re-written as,

MTF atmos(r) = exp(−0.5〈|φ(ε) − φ(ε + r|2〉). (2.28)

Using equation 2.7 MTF atmos(r) can now be written as [27],

MTF atmos(r) = exp(−0.5Dφ(r)). (2.29)

where the MTF is shown as a function of separation in the pupil, r, and Dφ(r)

is the phase structure function. We can now relate the phase structure function

to measurable atmospheric parameters using Kolmogorov’s turbulence models

(using equation 2.9). The seeing limited point spread function PSF is then

approximated by,

PSF = F
[

exp

(

−3.44
(

r
r0

)5/3
)]

, r ≪ L0. (2.30)

In the intermediate case, when 1 ≤ D/r0 ≤ 4 the telescope modulation

transfer function must also be included,

PSF = F
[

exp

(

−3.44
(

r
r0

)5/3
)

MTF tel

]

, r ≪ L0. (2.31)

As r approaches L0 the power in the low order modes will be reduced leading

to an increase in image quality. This can be included in the analytical model

by using a von Karman power spectrum rather than the Kolmogorov model.

2.3 Adaptive Optics

The turbulent atmosphere causes phase variations across a wavefront propagat-

ing from an astronomical object to a ground based telescope. It is well known
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that these distortions degrade the imaging performance of the telescope (see

section 2.2) and the whole field of adaptive optics (AO) has been developed to

ameliorate these distortions.

Figure 2.7 shows a simple diagram of an AO system. The distorted wavefront

is corrected by a deformable mirror. The wavefront sensor is usually placed

after the deformable mirror in the optical train so that it measures only the

residual wavefront error which is then added to the previous correction in order

to converge to a better correction. However, no AO system is perfect and

the partially corrected point spread function (PSF) from a typical AO system

consists of a diffraction limited core sitting on top of a much broader halo. The

short exposure halo is made up from speckles which are averaged in a long

exposure to produce a large (in angular extent) low level plateau which can

limit the achievable signal to noise ratio of the detection of faint objects around

bright stars.

2.3.1 Wavefront sensing

Wavefront sensors are used to measure the phase across a wavefront. There

are many varieties of wavefront sensors, each with their own strengths and

weaknesses. The adaptive pupil mask and SLODAR which are described in

later chapters both use Shack–Hartmann wavefront sensors. Therefore only the

Shack–Hartmann is described here.

The Shack–Hartmann wavefront sensor uses an array of lenslets (or sub-

apertures) positioned in the pupil plane of the telescope. A flat wavefront will

illuminate these lenslets and create a uniform pattern of spots at the focus. If

a lenslet is illuminated with a wavefront containing a local tilt in the angle of

arrival the spot will deviate from its central position. The amplitude of this de-

viation is a measure of the local tilt on each subaperture. The centroid positions
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Figure 2.7: The light emitted from a star is initially spherical. After propa-
gating the vast distance to the top of the Earth’s atmosphere the wavefront
is essentially flat. It is only in the last few 10’s of kilometres that the
wavefront gets distorted by the refractive index perturbations in the atmo-
sphere. Adaptive optics uses a deformable mirror to flatten the wavefront,
potentially restoring the diffraction limited potential of the telescope. Most
AO systems are closed loop, the wavefront sensor is positioned after the de-
formable mirror and measures the residual wavefront error which is passed
back to the deformable mirror.
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of all the spots can then be used to reconstruct the phase map in the wavefront.

Figure 2.8 is a simple diagram of a Shack–Hartmann wavefront sensor.

Figure 2.8: A flat wavefront illuminating the lenslet array will create a reg-
ular array of spots as shown in the top diagram. A distorted wavefront will
illuminate different subapertures with a different angle of arrival resulting
in a distorted spot pattern. The excursion of the spot from its central
position, ∆x, is a measure of the mean tilt across the subaperture.

2.3.2 Imaging with Adaptive optics

For partially corrected wavefronts the structure function is no longer given by

equations 2.9 and 2.10. An AO system will reduce the phase structure function

for low spatial frequencies as the deformable mirror can be manipulated in such

a way as to correct for them. Greenwood [28] proposed a model which can be

used to analyse the effect of an AO system on an aberrated wavefront. The
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model predicts the effect of a segmented AO system on the wavefront without

inferring any aperture. This model is an approximation to a real AO system

with an infinite aperture which has no edge effects and no noise. The model uses

a high pass filter, H(κd/2), to remove these low spatial frequencies as shown in

figure 2.9 (a),

H(κd/2) = 1 −
(

2J1 (κd/2)

κd/2

)2

− 16 (2/κd)
2
J2

2 (κd/2) (2.32)

where d is the diameter of the subapertures and Jn is a Bessel function of the

first kind of order n. The partially corrected phase structure function is given

by Greenwood [28] as,

Dφ,AO (r) = 4π

∫

∞

0

[1 − J0 (κr)] Φ(κ)H(κd/2)κdκ. (2.33)

Equation 2.33 can be re-arranged to,

Dφ,AO (x) = 6.14(d/r0)
5/3

∫

∞

0

[1 − J0(ux)]H(u/2)u−8/3du (2.34)

where x = r/d and u = κd in order to bring the d/r0 term to the front and so

that the integral does not depend on the atmospheric parameters. The phase

variance of a tip/tilt corrected wavefront is σ2 = 0.134(d/r0)
5/3 and so it can be

seen that the coefficient of the structure function is determined by the wavefront

variance and equation 2.34 can be written as,

Dφ,AO (x) = 45.8σ2

∫

∞

0

[1 − J0(ux)]H(u/2)u−8/3du. (2.35)

Due to the spatial filter term the structure function will saturate at some spatial

frequency. The frequency at which this occurs is determined by the parameters

of the AO system and the amplitude of the saturation is set by the coefficient and
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is therefore dependant on the wavefront phase variance. Increasing r0 will reduce

the wavefront variance and lower the saturation level of the structure function.

Figure 2.9(b) shows the partially corrected structure function for d/r0 = 1 and

it is seen that this converges to a value of 0.268 which is consistent with 2σ2.

From this we can confirm that equation 2.34 converges to 2σ2 and for a partially

corrected wavefront equation 2.10 becomes

Dφ,AO(r > d) = 2σ2. (2.36)
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Figure 2.9: Theoretical plots to show the effect of an AO system on the
wavefront structure function. (a) is the AO high pass filter function as de-
fined by Greenwood [28]. Low spatial frequencies are removed by the AO
system and high spatial frequencies propagate. (b) shows the theoretical
uncorrected structure function (green line) and the theoretical partially cor-
rected structure function (blue line). The simulated structure functions are
shown in black and red. The simulated partially corrected structure func-
tion is larger than the theoretical value as the simulation includes realistic
noise sources which are not in Greenwood’s theoretical model. The sim-
ulated uncorrected structure function underestimates the phase variance
at large separations as low order modes are not properly averaged. The
partially corrected structure function saturates when r > d (d = 0.5 m in
this case) as large spatial scale deformations (low spatial frequencies) have
been removed by the AO system as seen in (a).

The AO MTF can then be found by placing equation 2.35 in equation 2.29.
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Figure 2.10 (a) shows the MTF atmos for a number of values of d/r0 after AO

correction. The curves can be decomposed into a Gaussian with a dc bias. The

atmospheric component of the PSF will be a central peak defined by the dc

offset plus a Gaussian halo with width inversely proportional to the width of

the MTF atmos Gaussian component. As all the curves correspond to the same

total intensity the fraction of energy within the core is given by the value of the

dc offset, in this case the convergent value of MTFatmos, and when the phase

variance is low (< 1.6 radians2) the Maréchal approximation tells us that this

constant is equal to the Strehl ratio, which is defined as the ratio of the peak

intensity of the of the aberrated image to that of the diffraction limited PSF.

As the residual wavefront variance after AO correction can be small the

telescope MTF must now be included. The analytical PSF is,

PSF = F
[

exp

(

−3.07(d/r0)
5/3

∫

∞

0

[1 − J0(ux)]H(u/2)u−8/3du

)

MTF tel

]

.

(2.37)

2.3.3 AO Taxonomy

All the information above refers to single conjugate AO (SCAO). This is a

specific type of AO system where the deformable mirror is conjugate to the

telescope pupil and has only a very small corrected field of view. Away from

the guide stars (which are used for the wavefront sensing) the correction quickly

deteriorates due to the small isoplanatic angle associated with the atmospheric

turbulence. Extreme AO systems for high contrast imaging of extrasolar planets

for example use SCAO as they are only attempting to correct a very small field

of view. Other AO schemes have been developed to increase the homogeneously

corrected field of view although these often result in a worse correction. Ground

layer AO (GLAO) [29] can be used to improve image resolution over a wide field

of view by correcting only for turbulence close to the ground. Any turbulence
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Figure 2.10: The atmospheric modulation transfer function after AO correc-
tion depends on the wavefront variance, defined by the d/r0 ratio. The plot
shows the atmospheric modulation transfer function for a range of d/r0 val-
ues. A lower ratio means the AO system is capable of better correction and
so will converge at a higher level. Equation 2.29 states that the MTF atmos

converges to exp
(

−σ2
φ

)

which using the Maréchal approximation indicates

the fraction of energy within the diffraction limited core.

at higher altitudes will limit the magnitude of the correction. Measurements

have shown that in many astronomical sites the ground layer can contribute

up to 50% of the turbulence strength [13]. By removing this component a

large improvement in image quality can be obtained. To increase the imaging

resolution more complex systems, such as Multi-Conjugate AO (MCAO) [30],

correct for multiple layers including the ground layer. In this way the AO system

can deliver a large highly corrected field. Other variants exist but only those

mentioned are discussed in this thesis.
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2.4 Photometry through atmospheric turbulence

High precision fast photometry is key to several branches of research including

(but not limited to) the study of extrasolar planet transits (e.g. [31]), stellar

seismology [32] and the detection of small Kuiper belt objects (e.g. [33]). The

difficulty with such observations is that, although the targets are often bright,

the amplitude of variability is often very small (typically millimagnitudes or

less) and hence the noise is not limited by the detector or sky but by intensity

fluctuations (scintillation) produced by the Earth’s atmosphere. For this reason

fast photometers are generally put in space (e.g. CoRoT, Kepler and PLATO).

Extrasolar planetary transits can be detected from the ground. However the

measurement of the secondary eclipse (i.e. where the planet goes behind the

star) is a challenge. Such observations are crucial, as only the secondary eclipse

can give information on the planetary atmosphere, including the temperature

and albedo [34]. Secondary eclipses were detected for the first time from space

in 2005 using Spitzer at 3 µm [35]. There has been a great deal of effort to detect

secondary eclipses from the ground, but for years no detections were made (in

large part due to scintillation noise). Finally, in 2009, the first ground-based

detections were made, but these relied on near-IR measurements and had to

target the most bloated, closest (to their host star) exoplanets to maximise

the eclipse signal [36]. Since then a few other exoplanets have had secondary

eclipses detected from the ground in this way. As noted by Deming & Seager

[6], secondary eclipses recorded in visible light in addition to IR measurements

are crucial if we are to understand the relative contribution of thermal emission

and reflected light, and the planetary albedo.

Time averaging the intensity will reduce the scintillation noise by an amount

proportional to the square root of the exposure time [37]), but this will often

result in saturating the CCD which then requires de-focusing the telescope to
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distribute the image of the star over more pixels. De-focusing has certain advan-

tages, such as reducing the impact of pixel-to-pixel and intra-pixel sensitivity

variations, but it also significantly increases the sky and CCD readout noise

[38]. In addition, de-focussing is not routinely possible on some telescopes (e.g

the VLT) and it can not be done with crowded fields. More importantly for fast

photometry, time averaging can also only be used in circumstances where the

intrinsic variability of the target has a much longer time scale than the scintilla-

tion. As scintillation is caused by the spatial intensity fluctuations crossing the

pupil boundary, the time scale is determined by the wind speed of the turbulent

layer. Dravins et al. [39, 40, 37] studied the temporal autocorrelation of the

scintillation pattern at astronomical sites and found that the power is mainly

located between 10 and 100 Hz but actually spans many orders of magnitude.

Differential photometric measurements can be made by normalising with a

nearby comparison star (e.g. [41]). This is not to reduce the scintillation but to

correct for transparency variations in the atmosphere. However, this actually

makes the scintillation noise worse as it is inherently caused by high altitude

layers and therefore will have a very small angle of coherence (defined here as the

isophotometric angle, analogous to the isoplanatic angle for wavefront phase) in

the optical (typically ∼ 1′′).

2.4.1 Scintillation

The observational effects of Scintillation have been well documented [42]. High

altitude turbulence in the atmosphere distorts the plane wavefronts of light from

a star, which is effectively at infinity. As the wavefronts propagate, these phase

aberrations evolve into intensity variations. As the turbulent layer is blown

across the field of view these “flying shadows” or intensity fluctuations move

across the ground which we view with the naked eye as twinkling. Wavefronts
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incident on a telescope pupil have both phase variations, caused by the inte-

grated effect of light passing though the whole vertical depth of the atmosphere,

and intensity variations, caused predominantly by the light diffracting through

high altitude turbulence and interfering at the ground. Example simulated spa-

tial intensity fluctuations are shown in figure 2.11. As a wavefront propagates
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Figure 2.11: An example of a simulated pupil image with scintillation fluc-
tuations. In this case the turbulet layer was at an altitude of 10 km and
the telescope diameter was 1 m.

away from a turbulent layer the spatial intensity fluctuations become larger both

in terms of intensity and spatial extent. The characteristic spatial scale of the

fluctuations is given by the radius of the first Fresnel zone, rF =
√

hλ. This is

not dependant on the strength of the layer which only effects the magnitude of

the intensity fluctuations and not their spatial scale. Figure 2.12 shows exam-
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ple simulated pupil images for a several propagation distances and figure 2.13
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Figure 2.12: Example pupil images for no turbulence (a) and a turbulent
layer at 1 km (b), 5 km (c) and 10 km (d). As the wavefront propagates
further away from a turbulent layer the intensity fluctuations grow larger
both in terms of spatial scale and intensity.

shows the mean spatial covariance functions. The covariance functions have a

minimum at the Fresnel radius for each propagation distance.

The scintillation does modify the phase power spectrum. It is modulated by

a cosine squared with a frequency set by the altitude of the turbulent layer,

Φ(κ)scint = Φ(κ) cos2(πλhκ2) (2.38)

Figure 2.14 shows the modified phase power spectrum. As the modifications are

restricted to high spatial frequencies which contain little power the net effect
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Figure 2.13: Spatial covariance plots for scintillation pupil patterns. By al-
lowing the wavefront to propagate further the spatial intensity fluctuations
become larger (figure 2.12). The characterisitc spatial scale of these fluctu-
atios is given by the Fresnel radius, rF =

√
hλ. The spatial covariance has

a minimum corresponding to this distance.

on an optical image is small. Phase variations are normally more significant

as they dramatically affect the imaging performance of the telescope, and this

has lead to the development of adaptive optics (see section 2.3). The intensity

variations across the pupil are effectively averaged together when the light is

focussed and therefore have less effect. A larger aperture implies more spatial

averaging (which is why stars twinkle less when observed through a telescope

than with the naked eye). However, these small intensity fluctuations do become

significant when one is concerned with high precision photometry.

Consider now the effect of these intensity variations in more detail. If we

ignore diffraction, then a flat wavefront which is the same size as the telescope



CHAPTER 2. THEORY 36

10-1 100 101 102

spatial frequency (m'1 )

10-10

10-8

10-6

10-4

10-2

100

102

104

(())
Kolmogorov
Kolmogorov with Scintillation
Von Karman

Figure 2.14: Scintillation modified phase power spectrum. In this case a
turbulent layer was assumed to be at 10 km and the wavelength is 500 nm.

pupil at a given high altitude, in the absence of atmospheric turbulence, will

propagate in a direction normal to the wavefront and will all be collected by

the telescope pupil. Now consider the effect of atmospheric distortion. Phase

aberrations cause different rays across the wavefront to propagate in different

directions, which interfere to produce scintillation. This in itself is not a sig-

nificant problem for photometry, as the integrated intensity across the pupil is

the same. The problem occurs either when high altitude areas of the wavefront,

which in the absence of turbulence would fall outside of the telescope pupil,

can be diffracted by the turbulence and interfere to cause intense regions within

the pupil area, or conversely when high altitude areas of the wavefront which

are diffracted by the turbulence interfere to cause intense areas at the ground

outside of the telescope pupil are lost. These effects lead to an increase and
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decrease in intensity, respectively, and at any one instant both of these effects

will be occurring, producing an overall change in intensity.

Scintillation is generally quantified by the intensity variance, named scintil-

lation index, and can be calculated by summing the difference of the intensity,

I(t, λ), from the expected value, 〈I〉,

σ2
scint =

∑ (I(t, λ) − 〈I〉)2
〈I〉2 . (2.39)

The scintillation index, σ2
scint, is dependent on the height of the turbulent

layers, h, the refractive index structure coefficient, C2
n(h), the wavelength, λ, and

the zenith distance and can be predicted using the theoretical model described

by Dravins et al. , [40],

σ2
scint ∝ λ−

7

6 (sec γ)
11

6

∫

∞

0

C2
n(h)h

5

6 dh. (2.40)

This expression assumes that there is no temporal or spatial averaging and so is

only valid for telescopes with a pupil diameter less than the characteristic spatial

correlation scale of the amplitude fluctuations, i.e. D < rF (see figure 2.13).

Larger telescopes average out the small scale spatial fluctuations. If the pupil

is much larger than the Fresnel radius (D ≫ rF ) equation 2.40 is modified to

σ2
scint ∝ D−

7

3 (sec γ)3
∫

∞

0

C2
n(h)h2dh. (2.41)

The scintillation index is then independent of wavelength and proportional

to the strength of the turbulent layer and the altitude of the turbulent layer

squared.

The scintillation index given in equation 2.41 is only valid for very short

exposures where there is no temporal averaging, i.e. the exposure time has to
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be less than the crossing time of the intensity fluctuations. The crossing time,

tc can be calculated as tc = D/vw, where vw is the velocity of the turbulent

layer. If the exposure time, t, is greater than the crossing time the scintillation

index is modified to [43],

σ2
scint ∝

D
−4

3

t

∫

∞

0

C2
n(h)h2

V (h)
dh, (2.42)

where V (h) is the velocity of the turbulent layer at altitude h.

2.5 Numerical Simulations

2.5.1 AO simulations

The existing Durham AO simulation platform [44] has been developed to test

novel real time correction ideas. The atmosphere is modelled by a number

of phase screens located at discrete altitudes. In reality the structure of the

turbulent layer will change with time as it mixes and evolves. This will be on

time scales longer than the crossing time of the turbulent layer and so we assume

that the atmosphere ‘screen’ is frozen as it moves across the pupil (Taylor’s

approximation).

The phase screens (φh) are derived using equations based on those discussed

by Ellerbroek [45] and are generated by filtering white Gaussian noise to obtain

a random field with the correct second order statistics. This is achieved by

multiplying a randomly generated repeatable white noise field (r(κ) + ir′(κ),

where κ is the spatial frequency variable and r and r′ are zero mean, unit

variance random fields) by a spatial power spectrum, Φ(κ), of the turbulence
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required. The spatial power spectrum is calculated as follows,

Φ(κ) =

∣

∣

∣

∣

κ2 +

(

W

L0

2)
∣

∣

∣

∣

−
11

6

, (2.43)

where W is the width of the phase screen and L0 is the outer scale of the

turbulence. The equation shown will calculate the spatial power spectrum of

von Karman turbulence. Kolmogorov statistics are achieved by setting the

turbulence outer scale, L0, to infinity, removing the second term in the spatial

power spectrum. The resulting product is 2D Fourier transformed (denoted by

F) and the real part is multiplied by a constant therefore,

PS =
0.1517√

2

(

W

r0

)
5

6

ℜF [
√

Φ(κ)(r(κ) + ir′(κ))]. (2.44)

The constant is used to scale the strength of the phase screen, so that different

layers within the atmosphere can be parameterized with a unique Fried param-

eter, r0. The phase screen is expressed in terms of a phase shift corresponding

to the wavelength of the wavefront passing through it rather than an optical

path difference.

A unique phase screen is generated for each turbulent layer. If only one on-

axis target is required the phase aberrations of each layer are summed assuming

geometrical optics. The simulation is capable of multi object handling in which

case the phase aberrations are summed through different areas of each phase

screen depending on its altitude. The phase screens are ‘infinite’ in extent in

that new areas are calculated during runtime instead of simply wrapping large

phase screens.

The simulation is modular and passes only phase information between the

modules. This simplifies the process of developing the simulation to include new

test modules. For the work presented in this thesis the simulation was modified
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to pass complex amplitudes between modules and a four-quadrant phase mask

coronagraph module was developed to test ideas for high contrast imaging.

2.5.2 Fresnel Simulations

The Fresnel propagation simulation has been developed from a version by Tim

Butterley and Richard Wilson. The Fresnel diffraction integral is given by [46],

Ψ (x′, y′, 0) =
i

λz
exp (ikz)

∫

Ψ (x, y, z)

exp

(

ik

2z

[

(x − x′)
2

+ (y − y′)
2
]

)

dx′dy′ (2.45)

where Ψ (x, y, z) and Ψ (x′, y′, 0) are the wave functions in the diffraction plane

at co-ordinates x, y, z and observation plane at co-ordinates x′, y′, 0 respectively

and z is the propagation distance. This can also be expressed as a convolution

of the wave function with a Fresnel diffraction kernel as,

Ψ (x′, y′, 0) = Ψ (x, y, z) ⊗ K(z), (2.46)

where ⊗ denotes a convolution and K(z) is the Fresnel propagation kernel and

is given by,

K(z) =
i

λz
exp (ikz) exp

(

ik

2z

[

(x − x′)
2

+ (y − y′)
2
]

)

. (2.47)

In the simulation the convolution can be performed with fourier transforms,

Ψ (x′, y′, 0) = F−1 (F (Ψ (x′, y′, 0)) ×F (K(z))) . (2.48)

In the case of atmospheric propagation between a number of turbulent layers,

at each layer the wave amplitude will be multiplied by the complex amplitude
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of the turbulent layer,

Ψ(x, y) = Ψ(x, y) × exp (iφh), (2.49)

where φh is the phase screen located at altitude h. The modified wave amplitude

is then propagated to the next layer via a convolution with the Fresnel kernel.

The intensity distribution at plane z, I (x, y, z), is equal to the wave amplitudes

squared.

Periodic phase screens are used in this simulation rather than the ‘infinite’

phase screens discussed in section 2.5.1. This is because the fourier transforms

require periodicity to avoid discontinuities in the resulting wavefront. The phase

screens can then be ‘wrapped’ and translated across the telescope field of view.

2.6 Site Characterisation

Knowledge of the vertical profile of optical turbulence at observatory sites is of

growing importance for the application of increasingly sophisticated adaptive

optical (AO) correction systems for astronomy. The latest AO systems address

correction of individual turbulent layers in the atmosphere, in order to overcome

the effects of anisoplanatism and thereby increase the corrected field of view.

For example Ground Layer AO (GLAO) [29] can be used to improve image

resolution over a wide field of view by correcting only for turbulence close to

the ground. In this case the size of the homogeneously corrected field of view

is determined by the thickness and vertical distribution of the ground-layer

turbulence. To increase the imaging resolution, more complex systems, such

as Multi-Conjugate AO [30] correct for multiple layers including the ground

layer. Hence detailed knowledge of the optical turbulence profile, and of the

ground layer in particular, is critical in order to predict, model and optimise the
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performance of the latest and next generation of AO instrumentation.

In addition to the optimisation of AO systems, turbulence profiling is re-

quired for site testing and selection for the next generation of large telescopes

[47]. It may be possible to shield the telescope from the majority of the turbu-

lence with novel dome design or even by building the telescope above the surface

layer of turbulence. Various observations have shown that the surface layer is

typically strong [12, 13], contributing a significant fraction of the total seeing

aberration, but also thin, as observed at Dome C in Antarctica [48]. Previous

measurements of the optical turbulence profile by SLODAR (SLope Detection

And Ranging) [9] at the Cerro Paranal observatory have also shown that the

surface layer (approx. the first 100m in altitude) contains a large fraction of the

total turbulence [7]. However, SLODAR was unable to resolve the surface layer

so that its true thickness could not be determined.

The surface layer is the lowest turbulent layer in the atmosphere. It is

primarily caused by the temperature differences between the ground and the

air. However, wind flow around obstacles such as artificial structures, large

rocks and mountains also result in turbulent flow leeward of the obstacle. The

surface layer is therefore highly dependant on local topography and is defined as

the maximum altitude that these surface effects have influence and is generally

considered to be less than ∼100 m. The surface layer completely dominates day

time solar observations and at Dome C, Antarctica [48].

The ground layer is a term prevalent with adaptive optics scientists particu-

larly those interested in GLAO. The thickness of the ground layer is defined so

that it is completely compensated by a GLAO system and is often quoted in the

literature as extending up to approximately 1 km. The thinner this layer is the

greater the isoplanatic angle of the AO system. The high altitude turbulence

in the “free atmosphere” is uncorrected and degrades the resolution. Turbu-
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lence at altitudes between the ground layer and the higher free atmosphere is

partially corrected by a GLAO system and is termed the “gray zone”.

A number of techniques for profiling of ground-layer turbulence have been

demonstrated in recent years. These include optical methods based on mea-

surement of the fluctuations of intensity (scintillation) induced by the turbulent

layers, including LOLAS (LOw LAyer SCIDAR) [49], HVR-Generalized SCI-

DAR [12] and the lunar scintillometer (LuSci) [50]. “Generalised” SLODAR

has been demonstrated to increase the resolution of a SLODAR system. By re-

conjugating the lenslet array between observations it is possible to increase the

resolution of the system [51]. However, this technique assumes the turbulence

is constant during re-conjugation. SODAR (SOnic Detection And Ranging)

acoustic profilers have also been used for ground-layer studies in astronomical

site testing [52].

2.7 Turbulence Monitoring Instrumentation

A number of instruments are mentioned in this thesis and an outline of some of

them is presented below.

2.7.1 Differential Image Motion Monitor (DIMM)

The DIMM is used to obtain an unbiased measurement of the seeing. The

DIMM is a well tested and trusted instrument. It measures the image motion

of two copies of a star through two small apertures (∼10 cm) separated in the

pupil. The differential image motion is converted into a seeing angle. The

differential method means that it is insensitive to tracking errors. The DIMM

was developed by ESO for the site selection campaign for the VLT by Sarazin

and Roddier [26] and is now used at most major observatories around the world.

The DIMM does not provide a turbulence profile.
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2.7.2 Multi-Aperture Scintillation Sensor (MASS)

The MASS uses the correlation between the stellar scintillation patterns at

varying scales to estimate the turbulent profile. As it works with scintillation

which is predominantly caused by high altitude turbulence the MASS is not

sensitive to surface layer turbulence. The ESO MASS piggy backs on the DIMM

telescope and provides turbulence strength estimates for 6 bins centred at h =

0.5, 1, 2, 4, 8 and 16 km with a resolution of h/2 [53]. By summing the total

MASS turbulence strength and subtracting from the DIMM measurement it is

possible to calculate the ground layer turbulence strength.

2.7.3 Lunar Scintillometer (LuSci)

LuSci is similar to MASS in that it measures the correlation of scintillation on

varying scales to estimate the turbulence strength at different altitudes. How-

ever, LuSci uses photodetectors to measure the intensity rather than annular

apertures and uses the Moon as its target to measure the profile of the sur-

face turbulent layer. It is well known that scintillation from extended source is

dominated by the surface layers [54]. The effects of a turbulent layer at a high

altitude is averaged as the light cone is large. For example the Moon will illu-

minate an area of turbulence nearly 100 m across at an altitude of 10 km above

the ground. The light cone through the lower layers is small (approximately

0.1 m at 10 m) and so will actually result in more scintillation. Beckers was the

first to use this phenomenon to measure the surface layer turbulence for day

time solar astronomy using the sun as its target with SHABAR [55]. Using the

moon creates additional challenges, not only is it only useable four days either

side of full moon but the response of the instrument also changes with its phase.
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Figure 2.15: Diagram of the LuSci geometry. The photodetectors are po-
sitioned such that correlation between different detectors corresponds to
turbulence of a certain altitude. As the moon is an extended object the
instrument is most sensitive to low altitude turbulence.

2.7.4 SCIntillation Detection And Ranging (SCIDAR)

SCIDAR is an optical triangulation technique. A turbulent layer at some al-

titude, h, illuminated by two stars with angular separation, θ, will result in

two copies of the same wavefront aberration on the ground separated by a dis-

tance hθ. There will therefore be a peak in the time averaged spatial covariance

function at a separation corresponding to this distance. The amplitude of the

correlation peak will correspond to the strength of the turbulence. The veloc-

ity of the layer can be found by calculating the cross covariance maps with a

temporal offset. The turbulent layer will traverse across the field of view of the

telescope as it is blown by the wind. This means that the wavefront aberration

will also appear to flow across the pupil. By calculating the time averaged co-

variance of the aberrations of one star, at time t, with the aberrations from the

other star a short time later, t+δt, the covariance peak will move. The distance
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the peak moves in δt can be converted to a wind speed.

Figure 2.16: If a turbulent layer at height, h, is illuminated by two stars
of angular separation, θ, then two copies of the aberration will be made
on the ground separated by a distance hθ. By cross correlating either the
centroid positions from a Shack–Hartmann wavefront sensor (SLODAR)
or the intensity patterns (SCIDAR) we can triangulate the height of the
turbulent layer and the amplitude of the correlation peak corresponds to
the strength of the layer.

SCIDAR uses the spatial intensity fluctuations caused by the turbulent layer

as the aberration pattern. As scintillation is dominated by high altitude turbu-

lence conventional SCIDAR is incapable of measuring the turbulence strength

close to the ground. A modification of SCIDAR called generalised SCIDAR

[10] has been developed to avoid this limitation. Generalised SCIDAR conju-

gates the analysis plane below the ground level. This allows the wavefront to

propagate through the optical system and develop measurable scintillation.

The vertical resolution of SCIDAR is limited by the minimum separation of

the autocorrelation peaks which can be determined. This in turn is set by the
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spatial scales of the turbulence. Therefore, in order to achieve high resolution

profiling the telescopes need to be quite large (>1 m [49]). This limitation

means that SCIDAR is not portable. Low Layer SCIDAR (LOLAS) [49] is a

variant of SCIDAR and is implemented on a small portable telescope. It is used

to profile the surface turbulent layer with high vertical resolution but a small

number of resolution bins.

2.8 SLOpe Detection And Ranging (SLODAR)

SLODAR is a stereoscopic technique which has been developed to profile the

vertical distribution of optical turbulence, C2
n(h). It is similar to SCIDAR except

that instead of using the scintillation patterns the phase aberrations of the

wavefront are used to profile the atmosphere. By triangulating the wavefront

gradients for two target stars, measured using a Shack Hartmann wavefront

sensor, we can estimate the altitude, strength and velocity of each turbulent

layer up to a maximum altitude determined by the geometry of the system

[9]. Figure 2.17 shows the geometry of the SLODAR method. The vertical

resolution, δh, of the SLODAR system is given by,

δh =
D

napθ
× cos(γ) (2.50)

where D is the diameter of telescope aperture, nap is the number of subapertures

subtended across the pupil, θ is the angular separation of the target stars and

γ is the zenith angle of the observation. The air mass correction is required

to convert between distance from the instrument to absolute altitude. The

maximum altitude that can be resolved is then,

Hmax = napδh. (2.51)
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Figure 2.17: SLODAR geometry. θ is the angular separation of the target
stars, D is the diameter of the telescope, Hmax is the maximum altitude
that can be resolved and δh is the altitude resolution of the system.

As the method is based on direct measurements of the wavefront phase

gradient, it is relatively straightforward to calibrate in terms of the absolute

optical turbulence profile. The technique can be applied to a small telescope as

a portable turbulence profiler or to a large telescope to profile the turbulence

with a very high vertical resolution.

2.8.1 SLODAR data analysis

A detailed description of the SLODAR data analysis method is given by But-

terley et al. (2006) [56]. However, a review of the general technique is presented

here for completeness. More details regarding the surface layer SLODAR (SL–

SLODAR) system specifically is described in chapter 3.

The SLODAR data analysis pipeline begins by recording the wavefront sen-

sor images for a few seconds with an exposure time of approximately 1–3 ms.

These frames are stacked up until about 30 seconds of data has been collected

which is then used to generate a single turbulence profile. The images are

processed to remove the background and examined to locate any subapertures
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which are not illuminated in all of the data, this subaperture is then ignored

from all further analysis. The Shack Hartmann wavefront sensor spots are found

with Gaussian fitting to the average image and the centroid positions in each

frame are calculated using standard centre of mass centroiding. The centroid

streams may be temporally filtered at 1 Hz to remove the slowly evolving tube

seeing [51]. The average centroid motion is removed from each frame of the data

to avoid bias from telescope guiding errors and wind-shake.

The centroid slopes from the two stars are cross correlated and averaged to

result in a 2D cross-covariance map. Figure 2.18 shows an example 2D auto-

covariance and cross-covariance.
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Figure 2.18: Example 2D auto-covariance (a) and cross-covariance (b) maps
for SLODAR. This data was taken at Paranal on the night of 8th February
2009. The profile is recovered from a fit to the cross-covariance in the
direction between the two stars, in this case in the upward direction. We can
see strong correlation in the central bin indicating turbulence at the ground
and another strong correlation at a separation, δi, of five subapertures
indicating a turbulent layer at an altitude of 5 × D cos(γ)/(nap × θ).

The cross covariance values on a line from the centre to the outer edge in

the direction of the two stars tells us the centroid correlation as a function
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of displacement in the pupil in the direction joining the two target stars. In

figure 2.18 the stars are aligned in the upward direction. Figure 2.19 shows a

slice of the 2D cross-covariance in the direction of interest. The slice shows a

strong peak at zero displacement signifying strong turbulence at the ground.

There is also a second peak offset by approximately 5 subapertures, this shows

that there is correlation in the centroid values at this separation and indicates

a second turbulent layer at an altitude of 5 × D cos(γ)/(nap × θ).

28 26 24 22 0 2 4 6 83i20.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

co
v
a
ri

a
n
ce

 (
a
rc

se
c2

)

Figure 2.19: 1D slice of the cross-covariance function in the direction be-
tween the two stars. δi is the separation in the pupil in units of subaper-
tures. The errors increase with greater separations as fewer subapertures
overlap.

The cross-covariance function peaks at positions corresponding to the alti-

tude of the turbulent layers but the shape of this function is not the turbulent

profile. The profile is recovered by fitting the cross-covariance function with the

response functions of the instrument. The auto-covariance function could be
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used as an estimate of the response of SLODAR to turbulence. However, the

process of removing the average centroid motion also removes any common tilt

motion induced by the atmosphere which means that a simple de-convolution

with the auto-covariance function will not result in the desired profile. Instead

theoretical SLODAR impulse response functions (SIRFs) defined by Butterley

et al. [56] are fitted to the cross-covariance of the centroid slopes for the two

stars to recover the fractional optical turbulence profile.

We can generate response functions for SLODAR by calculating the theo-

retical covariance for every combination of subaperture separations in the two

Shack-Hartmann spot patterns. The theoretical phase structure function, Dφ,

is known from equations 2.9 and 2.13. This tells us the expected phase variance

as a function of separation in the pupil. Using equations derived by Wilson &

Jenkins (1996) [57] the structure function can be used to estimate the phase

covariance relative to the aperture mean for a pair of subapertures. The im-

pulse response functions can then be found by averaging over all overlapping

aperture pairs for a given separation. Figure 2.20 shows some of the SLODAR

impulse response functions (SIRFs). The SIRFs are two dimensional, however,

the two dimensional information is only required if velocity measurements of

the turbulent layers are desired. If only the turbulence profile is required then

fitting to the longitudinal SIRFs (along the direction between the stars) only

will be sufficient.

The fractional profile is scaled by the total turbulence strength which can be

obtained from the tip/tilt subtracted centroid variance, this is also calculated

from the fit of the SIRFs to the centroid data. The fit is used as this will provide

a noiseless centroid variance [56]. r0 can be found from the centroid variance

for a square aperture using [58],

σ2
s = 0.162λ2r

−5/3

0 d−1/3, (2.52)
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Figure 2.20: SLODAR impulse response functions in the longitudinal (a)
and transverse (b) directions.

Re-arranging this and using equation 2.4,

r0 =

(

0.423k2 cos(γ)−1

∫

C2
n(h)dh

)

−3/5

, (2.53)

the integrated turbulence strength is given by,

∫

C2
n(h)dh =

σ2
sd−1/3

0.069 × 4π2 cos(γ)−1
. (2.54)

Figure 2.21 shows the profile recovered from the cross-covariance function show

in figure 2.18.

Shot and detector noise will increase the centroid variance introducing a bias

in the centroid values. This will manifest itself in the auto-covariance function

as an increased value at the central position (i.e δi = 0) and due to its random

nature will act to cancel itself at all other locations. The difference between the

measured centroid covariance at δi = 0 and the theoretical noiseless value from

the SIRF fit will give an accurate estimate of the centroid noise. This can then

be used to estimate the errors in the final profile.

As the turbulence moves across the field of view of the telescope, the corre-

sponding phase slopes will also traverse the pupil. The covariance function of
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Figure 2.21: An example SLODAR profile recovered from the cross-
covaraince function in figure 2.18. The panel on the right shows the re-
solved and unresolved integrated turbulence strength as well as the total
measured integrated turbulence strength.

one set of centroid data with a set taken a short time later will result in a peak

offset by a separation corresponding to the distance that the turbulent layer has

moved in that time. In this way the cross-covariance data can be used to calcu-

late the wind speed of each resolved layer. Figure 2.22 shows the 2D auto and

cross covariance functions with an increasing temporal offset. The turbulent

layer moves approximately 4 subapertures in 40 ms, which converts to approx-

imately 5 m/s. The stationary peak at the centre is because this data has not

been filtered for tube seeing. If the layer was seen in the auto-covariance but

not in the cross-covariance this would mean that the turbulent layer is above

the maximum resolved altitude of the instrument.

All the above assumes that the atmospheric turbulence obeys Kolmogorov’s

laws (i.e. a power spectrum with a slope of κ−11/3). There is evidence that

suggests that atmospheric does not always comply to Kolmogorov’s models (see

section 2.1.2) and therefore, we might find that a different power law actually

results in a better fit to the data. It is possible to calculate the SIRFs for any
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Figure 2.22: Example 2D auto-covariance and cross-covariance maps with
increasing temporal offset, δt. By correlating one set of centroids with
another set taken a time, t, later and measuring how far the correlation
peak has moved we can estimate the wind speed of the turbulent layer.
The top row shows the auto-covariance and the bottom row shows the
cross-covariance with a temporal delay of 20 ms per frame. The data shows
that on this occasion the turbulence was dominated by the surface layer.
This is because the moving peaks in the cross and auto–correlation plots
move in the same direction and at the same speed suggesting that it is very
likely they are the same layer and there are no other obvious peaks in the
auto–correlation. The residual peak in the centre is because the data has
not been filtered for tube seeing.
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power law by using the non Kolmogorov power spectrum (equation 2.13). We

can try to fit a number of values for β and select the one with the best fit. In

this case it will no longer be r0 and C2
n(h) which we measure but ρ0 and Ω2

n.

This means that we will not be able to compare parameters with differing β.

However, in calculating the optimum β fit we will be able to gain an insight into

the mechanisms of the turbulent atmosphere.

As the mechanism which creates the surface layer turbulence and the free

atmosphere turbulence are different there is no reason why the power law for

the two layers should be the same. Therefore, it is possible that a different β

should be used to fit each layer individually. Early results from SLODAR at

SALT by R. W. Wilson show that using differential βs works particularly well.

When using SLODAR on bigger telescopes it will also be necessary to include

the outer scale effects in the SIRFS. This is ignored for the small telescope case

as the outer scale is likely to be much larger than the telescope and therefore

subtracting the global tilt will remove any large scale aberrations.



Chapter 3

SLODAR

3.1 Introduction

In this chapter a prototype of a new SLODAR instrument for atmospheric opti-

cal turbulence profiling is discussed. The instrument targets double stars with

wide separations of several arc-minutes, to achieve profiling of the surface layer

of optical turbulence with very high resolution in altitude (10 m or less). We

describe the instrument and the results of preliminary observations at the ESO

Cerro Paranal observatory.

3.2 The Instrument

The vertical resolution, δh, of the SLODAR system is given by (equation 2.50),

δh =
D

napθ
× cos(γ) (3.1)

where D is the diameter of telescope aperture, nap is the number of subapertures

subtended across the pupil, θ is the angular separation of the target stars and

56
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γ is the zenith angle of the observation. For more details on the SLODAR

technique see section 2.8. The altitude resolution of a given SLODAR system

can be improved either by increasing the number of subapertures across the

pupil or by increasing the separation of the target stars. There is a limit to

the number of subapertures which can be used, fundamentally determined by

the photon flux. The target separation is limited by the field of view of the

telescope and of the imaging detector. Targets with larger angular separations

can be accommodated by employing a detector with a larger format sensor.

Figure 3.1 is a diagram of the SLODAR system. The beams from the targets

overlap at the lenslet array, which is in the pupil plane of the telescope. The

angular separation is limited by the size of the CCD.

Figure 3.1: Diagram of the SL–SLODAR instrument. The red and blue
lines indicate the light paths of the two stars. The lenslet array is placed in
the telescope pupil plane where the beams completely overlap. The beams
then separate and focus into spot patterns at different positions on the
camera.

The first demonstration of the surface layer SLODAR (SL–SLODAR) in-

strument used a single Andor Luca EMCCD on a portable 14 inch Celestron

telescope. With this instrument we could target stars with a maximum angular

separation up to 12’, corresponding to a vertical resolution of 12.5 m. Figure 3.2

shows an example of the Shack–Hartmann spot patterns from this system. As

we are using targets with a very large angular separation we see aberrations in
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the spot patterns due to the off-axis optical beams. The off-axis aberrations

can be seen as larger spot separations at greater deviations from the on-axis

path (i.e. towards the edge of the frame) and is therefore not simply tilt as this

would result in all the spots moving by equal amounts. The centroid position
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Figure 3.2: Example average SH spot pattern from a single Andor Luca
EMCCD camera. The target stars had an angular separation of 12’. The
off-axis aberrations can be seen in the spot patterns.

is calculated relative to the average position of the spot. It is therefore insensi-

tive to static aberrations unless the aberration results in a variable spot motion

for the same local tilt in different areas of the pupil. This can be diagnosed

by examining the time averaged centroid variance as a function of position in

the pupil. In an ideal situation the time averaged centroid variance in every

subaperture will be the same, the value of which will correspond to the seeing.

If the aberration was causing larger spot motions then the centroid variance
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would also be larger. Figure 3.3 shows a 2D map of the mean centroid variance

for centroid motion in the direction joining the two stars and orthogonal to it.

There is no gradient in variance across the pupil suggesting that aberrations of

this scale do not effect the centroiding process.

The edge subapertures do have a larger than average variance. This is prob-

ably due to mis-alignment of the optics so that the edge subapertures are vi-

gnetted and not fully illuminated. The pupil is not exactly sampled by the 8×8

subapertures.

Although the large format CCD used here does allow for impressive results

this method typically implies greatly increased detector readout times and still

has a limit to the star separation, albeit a larger one. Windowing of the CCD has

been used to reduce the read out times however the spot patterns are located

at the edge of frame and so it is not possible to use any stars with greater

separations to achieve higher vertical resolution. Instead, we have modified the

system to include a reflective wedge to divert the light from the two target

stars into separate, synchronized, wavefront sensors (figure 3.4). The target

separation is now limited only by the telescope field of view and can be tuned

by moving the wedge along the optical axis. With this modification targets

with an angular separation of ∼16′ and a 0.4 m telescope have been used to

yield a vertical resolution of less than 10 m. Richard Wilson is responsible for

the optical design of this instrument and Timothy Butterley for the impulse

response function fitting. The author was responsible for the data collection,

the rest of the data reduction and all of the data analysis.

The optics of the SLODAR system are chosen and aligned carefully to ensure

that the correct spot size and motion can be measured. Figure 3.5 is a diagram

of the optics and dimensions of the SL–SLODAR system at Paranal on the 16

inch Meade telescope. The lenslet array has a pitch, Dlenslet, of 0.3125 mm
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Figure 3.3: Time averaged centroid variance for the single camera wavefront
sensor for centroid motion in the direction joining the two stars (top panel)
and orthogonal to it (lower panel). The subapertures with anomalously
high variances indicate a mis-alignment of the optics. The mean centroid
variance value is 0.20±0.06 pixels2.



CHAPTER 3. SLODAR 61

Figure 3.4: SL–SLODAR employs a reflective wedge to divert the light from
the two target stars into separate wavefront sensors. Targets with very large
angular separations can then be observed. The wedge is mounted on a single
axis stage so that the correct angular separation can be selected for a given
target.

Figure 3.5: Diagram of SL–SLODAR optics and dimensions. The dashed
line indicates the position of the reflective wedge where the light will be
folded into two identical arms.
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therefore, if we want 8 × 8 subapertures the beam diameter, Dbeam, must be,

Dbeam = Dlenslet × nap = 2.5 mm. (3.2)

This constrains the collimator to have a focal length, fcol, of,

fcol = Dbeam × f/# = 25 mm, (3.3)

where f/# is the f number of the telescope and for the Meade this is 10. The

diameter of the collimator is not important but should be considerably larger

than the beam diameter to minimise aberrations on off-axis beams. The pixel

scale of the telescope is given by,

s =
1

D × f/#
= 0.25 radians m−1 = 52′′ mm−1. (3.4)

The pixel scale on the CCD can be found by multiplying this by the magnifica-

tion of the system,

sCCD =
fcol

flenslet

× s = 38′′ mm−1, (3.5)

where flenslet is the focal length of the lenslet array. The camera is set to bin

the pixels 2 × 2, each of which has a diameter of Dpix = 10µm, therefore the

final CCD pixel scale will be 38 × Dpix × 2 = 0.76′′ pixel−1.

In the prototype SL–SLODAR instrument, each channel comprises a Shack-

Hartmann wavefront sensor, deploying 8× 8 sub-apertures across the telescope

pupil, and equipped with an Andor Luca EM-CCD camera. The cameras have

a peak quantum efficiency of approximately 50% and effectively zero read noise

whilst running with a frame rate of approximately 60 Hz and an exposure time

between 2 and 5 ms. The centroid slopes can be temporally filtered at 1 Hz
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to remove the tube seeing. CCD exposures were synchronized via an external

electronic trigger signal. A photograph of the instrument identifying the com-

ponents is shown in figure 3.6. The instrument was mounted on a 0.4 m Meade

telescope, as shown in figure 3.7.

Figure 3.6: Photograph of the SL–SLODAR identifying the optical compo-
nents.

Figure 3.8 shows an example of the time averaged Shack–Hartmann spot pat-

terns from the modified system. The image shows considerably less windshake

than in figure 3.2. This is because the Meade telescope on the Astelco mount

is a much more rigid structure than the commercial Celestron telescope mount.

Figure 3.9 shows the time averaged 2D centroid variance maps for the modi-

fied system. The centroid variance is essentially constant with pupil position

suggesting that the optics are all well aligned.

3.3 Results

The prototype SL–SLODAR instrument was operated at Cerro Paranal for a

total of 17 nights in February 2009 and April 2009. An example turbulence pro-
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Figure 3.7: Photograph of the SL–SLODAR on the 16 inch Meade telescope
at Paranal.
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Figure 3.8: Example SH spot pattern from two single Andor Luca EMCCD
cameras. The target stars had an angular separation of 16’. There are still
off-axis aberrations but very little windshake.
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Figure 3.9: Time averaged centroid variance for two cameras for centroid
motion in the direction joining the two stars (top panel) and orthogonal to it
(lower panel). The centroid variance is constant across the pupil indicating
that the optics are well aligned and that the aberrations do not effect the
instrument. The mean centroid variance is 0.44±0.03 pixels2.
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file sequence is shown in figure 3.10. The altitude resolution changes gradually

as a function of time, because the vertical resolution of SLODAR is scaled by

the air mass of the target (equation 2.50). There are also discrete changes in

resolution due to changes of the target star. Figure 3.11 shows the histogram of

0 2 4 6 8 10
UT (hours)

0

20

40

60

80

A
lt

it
u
d
e
 (

m
)

5
 x

 1
0

V13  m1/3
Figure 3.10: Example SL–SLODAR profile sequence for the night of 9th

April 2009. The thickness of the trace at each point indicates the strength of
the turbulence at that altitude, with alternate bins coloured blue and purple
for clarity. The trace in the upper box shows the integrated strength of
the unresolved turbulence at higher altitudes. Black lines indicate negative
values: the fit of turbulence strength to the data does not enforce positivity,
so that small negative values are expected as a result of noise. Note the
systematic change in resolution of SLODAR as the elevation of the target
stars varies. Step changes indicate a change of target.

vertical resolution values. The median resolution is 9.3 m with maximum and

minimum values of 11.2 m and 5.8 m respectively.

Figure 3.12 is a plot of the median profile measured for Paranal over 17

nights. Since the resolution changes with the air mass of the target, the median
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Figure 3.11: The SLODAR vertical resolution changes depending on the
angular separation and the elevation of the targets. The histogram shows
resolution achieved with SL–SLODAR over the 17 nights in January and
April 2009.

profile was calculated by re-binning the data assuming a uniform distribution in

each bin. The median profile is not representative of any particular profile and

is shown only for completeness. The median profile shows a substantial surface

layer contribution, concentrated near the ground and with a scale height of

11 m. The subplot on the right shows the integrated C2
n(h) value for the surface

layer and the higher altitude atmosphere (above the limit of direct profiling), as

well as the median total turbulence strength (integral over all altitudes). Note

that the two subplots have different vertical scales.

3.4 Instrument Comparisons

In order to validate the results for SL–SLODAR we compare with contemporane-

ous data from an independent turbulence monitor, the combined MASS–DIMM
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Figure 3.12: The median surface layer profile for data acquired on 17 nights
in February 2009 and April 2009, at Cerro Paranal, Chile. The subplot
on the left shows the surface layer profile which has a strong boundary
layer and a decay height of approximately 11 m. The subplot on the right
shows the integrated surface layer (resolved) turbulence and the integrated
(unresolved) contribution from higher altitudes, and also the median total
turbulence strength for all altitudes.

instrument of the VLT automated site monitor (ASM) situated at Paranal.

Figure 3.13 plots the seeing value at Paranal for the night of 9th April 2009 as

estimated by the DIMM (Differential Image Motion Monitor [26]). The DIMM

is a well calibrated and tested instrument capable of accurately measuring the

integrated optical turbulence strength for the line of sight to its target star.

The seeing is corrected for airmass to estimate the seeing at the zenith. The

plot also shows the total seeing determined from SL–SLODAR on the same

night. The DIMM is located on a tower approximately 6 m higher than SL–

SLODAR. Hence we may expect the SL–SLODAR values to be systematically
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larger than for the DIMM if there is significant turbulence strength in the first

6m altitude. By removing the first SL–SLODAR bin, the two seeing estimates

are more closely matched in terms of air mass. The median vertical resolution

for this night was 9.6 m (9.4 m for all data). The SL–SLODAR instrument is

mounted at approximately 2 m so that if we subtract the first SL–SLODAR bin

(which is centred at the SLODAR telescope) we obtain a seeing estimate for the

whole atmosphere excluding the first ∼6 m. This is also shown on figure 3.13,

and a greatly improved agreement with the DIMM is apparent.
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Figure 3.13: Comparison of the seeing values (corresponding to the inte-
grated turbulence strength for the whole atmosphere) for SL–SLODAR and
DIMM for the night of 9th April 2009. The black line shows the seeing from
the Paranal DIMM site monitor and the blue line is the seeing as calculated
by SL–SLODAR. The red line is the seeing for the SL–SLODAR 6m+ cal-
culated by subtracting the first bin to give an estimate of the seeing from
6 m, to match the altitude of the DIMM.

Figure 3.14 compares the SL–SLODAR and the DIMM integrated C2
n values
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for the 17 nights of observations. SL–SLODAR has been corrected for the

altitude difference. The plot shows a correlation of 0.8 between the seeing

measured by the two instruments. Some scatter is expected due to the spatial

separation of the two instruments and the fact that the instruments monitor

different targets through different volumes of the atmosphere. The median

integrated C2
n(h) value for the DIMM is 522×10−15±29×10−15m1/3 compared

to the median for SL–SLODAR (6m+) of 533 × 10−15 ± 21 × 10−15m1/3. The

two instruments agree within the limits of the estimated errors.
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Figure 3.14: C2
n comparison between SL–SLODAR above 6 m and DIMM.

The correlation coefficient is 0.8 but there is significant scatter as expected
due to the spatial separation of the instruments and their use of different
target stars.

Figure 3.15 compares the integrated turbulence strength for the directly

resolved SL–SLODAR altitudes (again excluding the first bin) to contempora-

neous measures of the turbulence below 250m altitude provided by the MASS–

DIMM instrument for the 2009 data. The MASS (Multi-Aperture Scintillation

Sensor [53]) recovers the turbulence profile from measurements of the scintilla-
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tion indices for a set of concentric ring apertures. The MASS is not sensitive

to turbulence below an altitude of approximately 250m. However when com-

bined in operation with the DIMM, which senses the integrated turbulence for

all altitudes, the total turbulence in the first 250m altitude can be found by

differencing.

Here we compare the integrated turbulence from ∼6 m up to the maximum

altitudes resolved by the SL–SLODAR (altitudes up to approx. 80m) with the

surface layer estimate from the MASS–DIMM (below approx. 250m). There is

a discrepancy in the maximum altitude included in each case, since the altitude

range 80 to 250 m is not directly profiled by the SL–SLODAR. However, previous

observations with the original SLODAR instrument at Paranal, which profiled

with lower resolution to an altitude of approx. 1km, showed that the turbulence

strength is typically weak at these altitudes [7]. Hence we may expect the

SL–SLODAR integral to be comparable with the MASS–DIMM surface layer

measure in most cases. From figure 3.15 we see that this is broadly the case,

although again there is substantial scatter due to line–of–sight differences. There

were also a significant number of occasions on which the SL–SLODAR integral

was lower than the MASS–DIMM value, probably due to instances of stronger

than average turbulence strength in the 80–250m zone. The median turbulence

strength was 130 × 10−15 ± 5 × 10−15m1/3 and 223 × 10−15 ± 13 × 10−15m1/3

for SL–SLODAR and MASS–DIMM respectively.

SL–SLODAR has also been compared with LuSci. Figure 3.16 shows the in-

tegrated turbulence strength as measured concurrently by the two instruments

over 16 nights in February 2009 and April 2009. The LuSci integrals were

calculated from 2 m to the maximum SLODAR altitude at the time of observa-

tion. The median SL–SLODAR measurement was 125 × 10−15m1/3 and LuSci

recorded 42 × 10−15m1/3. Although there is obviously a systematic difference
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Figure 3.15: Comparison of the integrated turbulence strength for the sur-
face layer between SL–SLODAR and MASS–DIMM.

between the instruments the correlation coefficient is 0.71. Figure 3.17 shows a

comparison of the integrated turbulence strength for the surface layer as mea-

sured by DIMM-MASS and LuSci. The median values are 250×10−15m1/3 and

51×10−15m1/3 respectively. Both of these comparisons show a large systematic

discrepancy which is explained by Tokovinin et al. [50] by the fact that the sur-

face layer at Paranal is tilted. Paranal observatory is located on a plateau with

steep sides to the desert floor. The prevailing wind comes from the north and

is likely to generate turbulence as it is pushed up by the plateau. SL–SLODAR

and the MASS–DIMM predominantly point south towards the celestial pole,

however, LuSci profiles the turbulence north of the plateau towards the moon.

3.5 Discussion

The example shown from 9th April 2009 is an interesting one as it shows events

at the ground as well as in the second bin and above in the unresolved bin. Fig-
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Figure 3.16: Comparison of the integrated turbulence strength for the sur-
face layer as measured by SL–SLODAR and LuSci. The LuSci measure-
ments were integrated from 2 m to the SL–SLODAR maximum height.
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Figure 3.17: Comparison of the integrated turbulence strength for the sur-
face layer as measured by LuSci and DIMM - MASS. The LuSci integrals
are calculated between 6 m and 250 m.
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ure 3.18 is an example of slow variability in a strong surface layer with very little

at other altitudes. The bottom panel shows a comparison of the seeing angle

measured by SL–SLODAR, SL–SLODAR 6 m+ and the DIMM. The differ-

ence between SL–SLODAR and SL–SLODAR 6 m+ is large demonstrating the

strength of this extremely thin surface layer. We have also observed occasions

when the surface layer has been extremely weak and the seeing has been dom-

inated by unresolved turbulence (figure 3.19). SLODAR is unable to identify

the altitude of this turbulence but contemporaneous measurements from MASS

(figure 3.20) show strong turbulence in the 2nd and 3rd bin corresponding to

bins centred at 1 and 2 km. These might be two layers or more likely (due to

the strong correlation) a single turbulent layer which has been split between the

MASS bins due to the overlapping response functions. So far all the examples

have only shown structure in the first two resolved bins. Figure 3.21 shows a

night with activity at all altitudes.

We are currently constructing a robotic version of SL–SLODAR that will be

permanently based at Paranal providing vital information on the surface layer

over a long period of time. Until this is complete we only have data from a

limited number of nights from the prototype. We do not yet have enough data

to present a statistically significant study on the surface layer at Paranal but it

is possible to comment on the results from the prototype.

It has been observed that the seeing at Paranal as measured by the DIMM

is often considerably worse than the seeing measured by the UTs. The DIMM

median seeing in 2009 was approximately 1.1′′ compared to the median value

from Isaac and FORS2 which was approximately 0.65′′. It is possible that this

difference could be explained by selection or outer scale effects. If the outer

scale is of the same order as the size of the telescope the low order modes will

be averaged out resulting in better image quality. However, Sarazin et al. [59]
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Figure 3.18: Often the seeing is dominated by the surface layer. In this ex-
ample we observe a very strong slowly varying surface layer and a generally
weak high layer. The lower panel shows the total seeing as a function of
time for the SL–SLODAR, SL–SLODAR 6 m+ and the DIMM.
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Figure 3.19: An example of a night where the surface layer was particularly
quiet. In this case the seeing was dominated by the unresolved turbulence.
Figure 3.20 shows the MASS profile from the same night and reveals a
strong layer at approximately 1.5 km.
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Figure 3.20: The MASS profile from the same night as figure 3.19 shows
a strong layer at approximately 1.5 km. The data could indicate two lay-
ers, however the strong correlation in structure suggests that it is actually
a single layer located on the boundary of the two over lapping response
functions of the MASS. From Paranal data archives.

noted that the DIMM seeing has been steadily deteriorating since construction of

the UTs. Archives show that the seeing as measured by the DIMM has degraded

from a median value of ∼0.65′′ in 1990 to ∼1.1′′ in 2009. However, the seeing

as measured by Isaac and FORS2 has remained virtually constant during this

time. Sarazin suggests that this difference is due to changes in the prevailing

surface layer conditions. For this to be the case they hypothesise that the surface

layer at Paranal must be extremely thin so that it will effect the DIMM but not

the UTs. The data from SL–SLODAR supports this hypothesis showing a very

strong and thin surface layer with nearly 20% of the total turbulence between

the DIMM height (6 m) and the UT dome height (30 m) with a scale height of
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Figure 3.21: On this occasion there is turbulent activity recorded at all
altitudes. This is indicative of a night with particularly bad seeing. At ap-
proximately 0700 the first bin measures a strong rise in turbulence strength.
This is not seen by the DIMM and is demonstrated by the difference be-
tween the SL–SLODAR total (blue line) and the SL–SLODAR 6 m+ mea-
surement (red line).
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11 m.

3.6 Conclusion

We have developed a modified SLODAR instrument which can profile the sur-

face turbulent layer with high resolution in altitude (less than 10 m). This

was achieved by employing separate wavefront sensor channels for each of the

target stars, to allow for greater separations and therefore a higher resolution.

Early data collected at Paranal are consistent with contemporaneous DIMM and

MASS measurements. Comparisons with LuSci demonstrate a systematic error

which is also observed in the LuSci / MASS–DIMM comparison. This could be

explained by the fact that SL–SLODAR and the MASS–DIMM predominantly

point south over the plateau and LuSci points north over the edge, suggesting

that the turbulence profile of the surface layer is directional. More data is re-

quired to make any statistical generalisation about the surface layer at Paranal.

We are currently working towards increased automation of the SL–SLODAR

system to this end.

The information from SL–SLODAR would also be valuable at the site test-

ing, selection and characterisation stage for future observatories as it would

allow estimations of the seeing expected from telescopes at heights other than

the DIMM platform. It will also be possible to estimate the seeing in altitude

ranges above the telescope in order to model the performance of AO systems.
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Adaptive Pupil Masking

4.1 Introduction

The turbulent atmosphere causes phase variations across a wavefront propagat-

ing from an astronomical object to a ground based telescope. It is well known

that these distortions degrade the imaging performance of the telescope and

the whole field of adaptive optics (AO) has been developed to ameliorate these

distortions. However, no AO system is perfect and the partially corrected point

spread function (PSF) from a typical AO system consists of a diffraction limited

core sitting on top of a much broader halo. The short exposure halo is made

up from speckles which are averaged in a long exposure to produce a large (in

angular extent) low level plateau which can limit the achievable signal to noise

ratio of the detection of faint objects around bright stars.

Here we describe a method to reduce residual speckles in an adaptive optics

system and which add to the halo of the point spread function (PSF). The halo is

particularly problematic in astronomical applications involving the detection of

faint companions. Areas of the pupil are selected where the residual wavefront

80
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aberrations are large and these are masked using a spatial light modulator.

The method is also suitable for smaller telescopes without adaptive optics as a

relatively simple method to increase the resolution of the telescope. We describe

the principle of the technique and show simulation results.

Areas of the wavefront whose phase error is larger than some threshold value

are completely blocked. If we mask some of the aperture then we are clearly

reducing the throughput of the system, but we are also blocking the areas of

the wavefront which tend to produce the halo rather than the central core of

the PSF. We propose to use an amplitude modulating spatial light modulator

(SLM) as the active element. We show that blocking areas of the pupil can lead

to both a reduction in the halo intensity and an increase in the central intensity.

There are other methods for improving the performance of telescopes which

are related to adaptive pupil masking. In a binary adaptive optics system [60]

areas of the pupil which are more than half a wave out of phase (modulo 2π) have

a correction of π added to them. The basic philosophy behind binary AO is that

all the parts of the wavefront which have a phase error of less than π are adding

approximately constructively at the telescope focus - and therefore should be

left unchanged. Areas of the wavefront which have an error of greater than π are

adding destructively at the telescope focus and therefore if a correction of π is

added then there will be a dramatic improvement of imaging performance. The

proposed method of adaptive pupil masking is similar, except here we completely

remove areas of the pupil with large phase errors, plus the criterium for masking

is not necessarily a phase error of π. These are important differences as it means

that this method is more suitable for use as an addition after a conventional

AO system and before coronagraphic techniques - rather than binary AO which

was proposed as a simple approach to full AO.

The adaptive pupil mask is also a variation on the Lucky Imaging-type
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techniques. This was first proposed by Fried [61] and consists of recording many

short exposure images without adaptive optics. A fraction of these images are

selected, according to their quality, and are co-added to produce impressive

results [62]. The probability, P , of observing a ‘lucky image’ (an image with

phase variance less than 1 rad2 as defined by Fried) can be calculated using

([61]),

P ≈ 5.6 exp

[

−0.1557

(

D

r0

)2
]

(4.1)

for D/r0 > 3.5, where D is the diameter of the telescope pupil and r0 is the Fried

parameter. As the telescope size increases the probability of observing a lucky

image decreases with a strong function of D/r0 which makes the method ideal

for small telescopes but for larger telescopes the probability becomes so high that

the method is unusable. A low order AO system increases the probability and

has been demonstrated on larger telescopes [63]. Here we present a development

of the standard lucky imaging method to increase its efficiency on telescopes

of all sizes. Instead of temporally filtering the wavefront we spatially filter.

This is similar to the work by Morossi et al. [64] who spatially select the best

subapertures on a large telescope and co-add them in order to improve the

resolution in the visible with AO systems configured for the IR. However, we

do not co-add instead we simply block the subapertures conserving the full

resolution of the telescope.

The adaptive pupil mask could be deployed on any telescope, for example

a small telescope without AO or a larger telescope with AO. For a telescope

with AO the threshold can be set so that the piston cutoff is smaller than the

residual piston after the AO correction in order to reduce the phase variance

further. Small or medium sized telescopes are often left uncorrected due to the

cost in pounds and complexity of a full AO system. The adaptive pupil mask

could be used to improve the performance of these telescopes for a fraction of
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the cost. The reduced phase variance will result in reduced halo, increased peak

intensity and reduced full width at half maximum (FWHM) of the PSF which

will be useful in many areas of astronomy. For example it could be beneficial for

multi-object spectrographs as the reduced FWHM will minimise the cross talk

between the spectrograph channels. The example used in this paper to quantify

the possible improvements is the detection of faint companions. We show that

the signal to noise ratio is significantly improved by using the adaptive pupil

mask. It should be noted that although we use the example of faint companion

detection it is unlikely that the technique will be useful for terrestrial exoplanet

detection. This is because the detection of extrasolar planets requires extremely

low residual phase variance in order to have sensible exposure times and when

we obtain this using extreme AO other factors then start to become significant.

Quasi static speckles ([65], [66], [67] and many others) appear due to the flaws

in the optical surfaces and setup. These speckles are not static enough to be

subtracted and not variable enough to average out. The temporal and spatial

statistics of these speckles will be changed by the adaptive pupil mask changing

the shape of the telescope pupil throughout an observation meaning that angular

differential imaging [68], as used by Marois et al. [1] in the first direct imaging

of an extra solar planet, will no longer work. Scintillation is also a fundamental

problem for the direct detection of extrasolar planets [69], [70] as this will alter

the pupil function which will change the PSF. This was not included in the

simulations or theoretical work as the effect is only significant when the phase

variance is near to zero which we did not approach in the simulations.

In the following sections we present results of a simulation of the technique

and a theoretical analysis which explains the critical threshold values.
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4.2 Simulation

Using the AO simulation framework developed at Durham University [44] we

have implemented and executed a full AO simulation including the adaptive

pupil mask. The simulation consists of a single turbulent layer with a Fried

parameter, r0, of 0.15 m and a wavelength, λ, of 500 nm. The location of

the turbulence is not important here as the simulation assumes geometric wave

propagation. The phase aberrations add linearly and so it is only the integrated

turbulence strength which is important. This assumes that the WFS subaper-

tures are larger than the spatial correlation scale of any scintillation and so

the near field approximation can be used. The phase screen is randomly evolv-

ing and is blown across the pupil of the telescope at 5 m/s. The segmented

deformable mirror is modeled on the Durham ELECTRA mirror [71] allowing

three degrees of freedom for each segment (piston, tip and tilt) with either 8x8

or 16x16 subapertures. The phase is measured via a Shack-Hartmann wave-

front sensor (WFS) and a successive over-relaxation reconstruction algorithm

estimates the phase map and passes the data to the mirror and the adaptive

pupil mask. The mask is placed after the mirror and WFS pickoff in the pupil

plane. The adaptive pupil mask will have the same geometry as the WFS (either

8x8 or 16x16 in this case). Ideally the subapertures will be a similar size to r0

to achieve the optimum performance although this is not necessary. The pupil

mask blocks the subapertures which have a reconstructed piston greater than a

threshold value and updates at the same rate as the deformable mirror (every 5

ms). The threshold value chosen will depend on the strength of the turbulence

in the atmosphere and the requirements of the user and will be discussed in

section 4.3. Figure 4.1 shows the data flow of the simulation and the location

of the pupil mask within the optical train.

The examples below were chosen to show the mask in two different regimes.
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Figure 4.1: Block diagram for the adaptive pupil mask system. The mask
is positioned in the pupil plane of the telescope after the deformable mirror
(DM) and after the wavefront sensor (WFS) pickoff.

(1) The small telescope scenario (1 m without AO, with 8x8 WFS) and (2) the

large telescope scenario (8 m with 16x16 AO). By blocking subapertures with a

large instantaneous phase excursion the wavefront will be flatter. The result of

which is a reduced PSF halo and an increased peak intensity. The extent of the

PSF improvement is dependent on the wavefront variance after the blocking and

so the the lower the wavefront phase threshold we choose to block the greater

the fraction of the pupil is removed and the flatter the wavefront becomes.

However, blocking the pupil will also reduce the total intensity of the PSF and

modify the diffraction pattern. The optimum threshold is a balance between

these two effects and can be found from plots of the full width at half maximum

(FWHM) of the PSF (figure 4.2) and the peak intensity of the PSF (figure 4.3)

as a function of the threshold value.

To quantify the improvements for a specific case in both of the following

examples the threshold is chosen to maximise the peak intensity. The first
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Figure 4.2: Simulation results showing how the FWHM of the PSF is mod-
ified by the adaptive pupil mask. All areas of the pupil which have a phase
error greater than the threshold (either positive or negative) are blocked.
The plots show the FWHM for (a) a 1 m class telescope and (b) an 8 m
telescope with AO. The solid horizontal black line at the top of the plot
shows the FWHM without the adaptive pupil mask and the dashed line
at the bottom shows the FWHM for a perfect system with no aberrations.
For a large threshold only a small fraction of the pupil is blocked and there
is little change of the PSF. As the threshold is reduced more of the pupil
is blocked, the resulting wavefront is flatter and the FWHM is reduced. If
the threshold is too low we block a large fraction of the pupil broadening
the diffraction pattern due to the low fill factor of the pupil.

example, figure 4.4, shows a 3D plot of the PSF from a 1 m telescope without

a deformable mirror but using a WFS with 8x8 subapertures and the threshold

was chosen to be ± 1.8 radians. The intensity of the PSF is increased by 40

% and the FWHM is reduced from 0.58′′ to 0.16′′ with the diffraction limited

FWHM being just 0.13′′. On average 42 % of the pupil was blocked.

Figure 4.5 is a 3D plot of the PSF from an 8 m telescope with a 16x16 AO

system. The peak intensity of the PSF is increased by a factor 0.23 and the

FWHM is reduced from 0.022′′ to 0.018′′ with the diffraction limited FWHM

being 0.016′′. The threshold was ± 1.4 radians and on average 19 % of the pupil

was blocked.

The advantage of this technique can be quantified by considering the case

of the detection of faint companions. As a consequence of the reduced fraction
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Figure 4.3: Simulation results showing how the peak intensity of the PSF
is modified by the adaptive pupil mask. (a) shows the peak intensity for
the 1 m telescope without AO and (b) for the 8 m telescope with AO. The
solid black line indicates the peak intensity of the PSF with no blocking.
For low threshold values large fractions of the pupil are blocked and so the
total intensity is also reduced by a large amount. For high threshold values
the effect is negligible, but there is an intermediate value where the peak
intensity is increased. The intensity is normalised to the peak value without
a pupil mask.

of energy in the PSF halo the background count from the parent star at the

position of the companion will be lower. Combining this with the increased peak

intensity results in an improved contrast ratio which equates to either a higher

signal to noise ratio (SNR) or a reduced exposure time to obtain a target SNR.

As the simulation were all run for a simulation time of 100 seconds the results

presented here are in terms of the possible gains in SNR. Figure 4.6 shows the

SNR as a function of the threshold assuming no sky background and a detector

with 100 % quantum efficency. The threshold for maximum SNR is different to

the optimum threshold for peak intensity as it is a balance between maximising

the peak intensity and minimising the FWHM. The simulation results are shown

in table 4.1. The magnitude difference in each case is chosen so that the SNR

after 100 s is 5 and the angular separation of the companions is 2λ/D. For a 1

m telescope this corresponds to a magnitude difference of 7.7 and a difference of

11.7 with an 8 m telescope. The noise terms in the SNR ratio include the shot
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Figure 4.4: Example PSF from a 1 m telescope without AO with r0 =
0.15 m. On the top left is the original PSF from the telescope with no
AO and on the top right is the PSF with no AO but using the adaptive
pupil mask with a threshold value of ± 1.8 radians. The bottom plot shows
the radial intensity profiles of the two PSFs. The black dashed line is the
original intensity pattern and the red line is the modified radial profile. The
modified intensity is 40 % higher and the FWHM 4 times smaller than the
original PSF.



CHAPTER 4. ADAPTIVE PUPIL MASKING 89

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Normalised Intensity

0 1 2 3 4 5 6 7 8
Radial Distance (\/D)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N
o
rm

a
lis

e
d
 I
n
te

n
si

ty

Figure 4.5: Example PSF from an 8 m telescope equipped with a 16x16
AO system with r0 = 0.15 m. On the top left is the original PSF from
the telescope and on the top right is the PSF with AO and the adaptive
pupil mask and a threshold value of ± 1.4 radians. The bottom plot shows
the radial intensity profiles of the two PSFs. The black dashed line is the
original intensity pattern and the red line is the modified radial profile. The
modified intensity is 23 % higher and the FWHM is reduced from 0.022 ”
to 0.018 ”. As the fraction of the light in the core has been increased the
halo component is seen to be reduced.
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Figure 4.6: SNR obtained as a function of threshold for observing a faint
companion at 2λ/D and δm = 7.7 with a D = 1 m telescope (a) and δm =
11.7 with a D = 8 m telescope (b). The solid black line shows the SNR for
the un-masked system.

noise from the star at the location of the companion and the shot noise due to the

signal from the companion. The exposure time is assumed to be long enough

to average out PSF speckle and therefore speckle noise is not included. The

adaptive pupil mask substantially increases the SNR in both cases, doubling it

to 10.5 for a 1 m telescope and increasing it to 7.1 for the 8 m telescope. A four

quadrant phase mask (FQPM) coronagraph [72] can be used to further increase

the SNR for faint companion detection by reducing the light from the parent

star (we stress that our proposed technique may not be suitable for detecting

terrestrial exoplanets - but a coronagraph can be useful in general for detecting

faint companions). The FQPM coronagraph is sensitive to pupil geometry [73]

and so the adaptive pupil mask will mean that the coronagraph can not operate

as effectively as it could. But the reduced wavefront variance after the pupil

mask will also mean that the FQPM coronagraph will be more efficient [74]. The

simulation results show that the reduced phase variance outweighs the effects

of the changing pupil geometry and that the coronagraph actually works better

after the adaptive pupil mask and so the combination of the pupil mask and

coronograph results in an SNR of 10.6, twice the original value. Figure 4.7
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shows radial cuts of the PSF after the coronagraph with and without the pupil

mask.

SNR
Tel Diam (m) δ Mag AO control APM FQPM APM + FQPM

1 7.7 no 5 10.5 - -
8 11.7 yes 5 7.1 6.6 10.6

Table 4.1: Simulation results for a combination of different telescope diam-
eters and instruments to show the achievable SNR with each system. The
target separation was chosen to be 2λ/D and the magnitude difference (δ
Mag) of the binary system was selected so that the signal to noise ration
(SNR) of the system without the mask (control) was 5. The adaptive pupil
mask (APM) can then increase the SNR dramatically. For the 8 m tele-
scope the SNR with a four quadrant phase mask coronagraph (FQPM) and
the combination of the APM and FQPM is shown.

4.3 Threshold Selection

It is important to calculate the optimum phase threshold for the system. This

could be done in real time on sky by a trial and improvement strategy how-

ever it would be useful to be able to calculate the optimum threshold from

measurements of the immediate seeing. In order to do this an analysis of the

performance of the mask as a function of wavefront variance is required. The

analysis will also help to explain the idea and the limitations of pupil masking.

The analysis treats the atmosphere and the telescope as separate spatial

filters. For pupil masking and AO correction we assume that the wavefront

correction takes place before the telescope accepts the wavefront. In doing

this we can de-couple the telescope and atmospheric effects. The point spread

function can be calculated by (from equation 2.25),

PSF = (F [MTF atmos × MTF tel]) ×
(

I ′T
IT

)

(4.2)
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Figure 4.7: Radial cut of PSF after the four-quadrant phase mask coro-
nagraph. The solid lines are the PSFs after AO correction and the four
quadrant phase mask coronagraph and the dotted lines are the PSFs after
AO, pupil masking and the four quadrant phase mask coronagraph. The
extinction is not as good as the diffraction limited case as the coronagraph
is very sensitive to residual tilt. The pupil mask will reduce some of the
residual wavefront error and hence result in greater extinction.

where F denotes the Fourier transform, MTF atmos is the atmospheric modu-

lation transfer function, MTF tel is the telescope modulation transfer function

and I ′T /IT is the ratio of the modified total intensity, I ′T , to the original total

intensity, IT , and is equal to the fraction of the pupil which is not blocked by

the mask. In chapter 2 we derived equations for the phase structure function for

uncorrected and partially corrected wavefronts. Fried [17] calculated the phase

structure function for uncorrected wavefronts to be,

Dφ(r ≪ L0) = 6.88

(

r

r0

)5/3

(4.3)
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and for large r,

Dφ(r → ∞) = 2σ2
φ (4.4)

where L0 is the outer scale of the turbulence and σ2
φ is the phase variance.

At separations greater than the outer scale the structure function converges

to a constant. For partially corrected wavefronts we use a filter function to

remove the low order modes, as described in chapter 2. This filter is derived by

Greenwood et al. [28] as,

H(κd/2) = 1 −
(

2J1 (κd/2)

κd/2

)2

− 16 (2/κd)
2
J2

2 (κd/2) , (4.5)

and using equation 2.33 the phase structure function can be written as,

Dφ,AO (x) = 45.8σ2
φ

∫

∞

0

[1 − J0(ux)]H(u/2)u−8/3du. (4.6)

Gaussian statistics can be used to describe independent atmospherically in-

duced fluctuations in the phase of a wavefront [14]. The atmospheric turbulence

induced phase aberrations are fractal, they are self similar on all scales. There-

fore if we remove the low order modes with an AO system the residual phase

fluctuations are still Gaussian in nature. So, whether or not the adaptive pupil

mask is used in conjunction with an AO system the piston distribution (P (φ))

will be a Gaussian with variance, σ2
φ. In the case that the phase variance is

large the piston distribution will be two π phase wrapped. The adaptive mask

will block the subapertures with the largest phase, truncating the Gaussian at

+/- T, where T is the threshold piston value. The variance will therefore be

reduced to,

σ2
T ≡

∫ +T

−T

(φ − φ̄)2P (φ)dφ (4.7)

where φ̄ is the mean piston of the wavefront. We can now plot the residual
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variance after the mask as a function of the initial variance entering the adaptive

mask and the threshold chosen (figure 4.8 (a)). By knowing the input wavefront

variance and choosing a threshold value we can select the resultant variance we

require. However, it is important to take account of the changing diffraction

limited PSF and in scenarios where the observer is photon starved the intensity

reduction may also be important (figure 4.8 (b)).
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Figure 4.8: The performance of the pupil mask is defined by the balance
between reducing the residual wavefront variance and minimising the frac-
tion of the pupil being blocked. The plot on the left shows the relationship
between initial variance and residual variance for a number of thresholds.
The lower the threshold the greater the reduction in variance. The plot on
the right shows the relationship between the initial variance and the frac-
tion of the pupil which is blocked for a given threshold. A low threshold
will result in a decreased wavefront variance but it will also require blocking
a large fraction of the pupil, reducing the total intensity in the image and
changing the diffraction limited PSF.

The masked phase structure function, Dφ,APM (r/d), will have the same

form as Dφ (r/d) but will be scaled so that it does not deteriorate as rapidly

and will now converge to 2σ2
T . By substituting equation 4.7 into equation 4.6

the phase structure function for partially corrected wavefronts becomes,

Dφ,AO+APM (r/d) = 45.8

∫ +T

−T

(φ − φ̄)2P (φ)dφ

∫

∞

0

[1 − J0(ux)]H(u/2)u−8/3du

(4.8)
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and for uncorrected wavefronts,

Dφ,APM (r/D) = 6.68
( r

D

)
5

3

∫ +T

−T

(φ − φ̄)2P (φ)dφ. (4.9)

Numerical analysis of the phase structure functions indicate that they all con-

verge towards a constant value of Dφ(r > s) = 2σ2
φ (assuming s < L0) where s

is the subaperture size in the case of partially corrected wavefronts or the diam-

eter of the telescope for uncorrected wavefronts. From equation 2.29 it follows

that the atmospheric transfer function also converges to a constant value,

MTF atmos(r → ∞) = exp
(

−σ2
φ

)

. (4.10)

Figure 4.9 (a) shows the MTF atmos for a number of values of d/r0, using the

analytical structure functions described above. The curves can be decomposed

into a Gaussian with a dc bias. The atmospheric component of the PSF will be a

central peak defined by the dc offset plus a Gaussian halo with width inversely

proportional to the width of the MTF atmos Gaussian component. As all the

curves correspond to the same total intensity the fraction of energy within the

core is given by the value of the dc offset, in this case the convergent value

of the MTFatmos, and when the phase variance is low (< 1.6 radians2) the

Maréchal approximation tells us that this constant is equal to the Strehl ratio.

The adaptive mask will raise the convergent value (figure 2.10 (b)) increasing

the fraction of energy in the diffraction limited core. Figure 4.10 shows a similar

plot for the case of a telescope with no AO. In this case the MTF converges to

zero. Again the pupil blocking raises this value, essentially performing the same

as an adaptive optics system, flattening the wavefront and returning the ability

to discern high spatial frequencies.

Even if we reduce the phase variance to zero we will not be able to recover
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Figure 4.9: The atmospheric modulation transfer function after AO correc-
tion depends on the wavefront variance, defined by the d/r0 ratio. The left
plot shows the atmospheric modulation transfer function for a range of d/r0
values as described by the analytical expression for the structure function.
A lower ratio means the AO system is capable of better correction and so
will converge at a higher level. Equation 4.10 states that the MTF atmos

converges to exp
(

−σ2
φ

)

which using the Maréchal approximation indicates

the fraction of energy within the diffraction limited core. The plot on the
right shows how the MTF atmos is modified by the pupil mask for a single
value of d/r0 = 4. As the threshold is reduced the system rejects more
subapertures and so the residual wavefront variance is reduced, increasing
the fraction of energy in the PSF core.

the diffraction limited PSF of the telescope. This is because we have modified

the pupil function. The telescope modulation transfer function is given by the

autocorrelation of the pupil function and as the adaptive pupil mask changes

the shape of the telescope pupil MTF tel will also be modified. The greater the

fraction of the pupil that is blocked the narrower MTF tel becomes (figure 4.11)

due the lower fill factor in the pupil.

The diffraction limited point spread function, PSFdl, is given by the Fourier

transform of the telescope modulation transfer function,

PSFdl(x) =

∫

∞

−∞

MTF tel(κ) exp (−2πixκ)dκ. (4.11)

The peak value in the MTF at a spatial frequency of zero corresponds to the total
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Figure 4.10: The atmospheric modulation transfer function without AO
correction is shown in blue. The red lines show the MTF after pupil masking
with thresholds of ± 0.8, 1.2 and 1.6 radians. Without AO or pupil masking
the MTF very quickly converges to zero as the high spatial frequencies are
filtered by the atmosphere.

intensity of the PSF and the integral of the MTF will equal the peak intensity of

the PSF. Therefore the narrowing of the MTF will correspond to a reduction in

the peak intensity of the diffraction limited PSF. As the MTF is defined for unit

intensity this will also mean a broadening of the PSF. However, as we are using

square blocking elements Babinet’s principle dictates that we can expect the

diffraction limited PSF to be a superposition of a square diffraction pattern and

the circular diffraction pattern from the pupil. The square diffraction pattern is

not symmetrical and therefore examining the azimuthally averaged MTF is not

enough. Figure 4.12 shows the MTF tel in two dimensions The square geometry

can be seen on spatial scales corresponding to the size of the subapertures.

Figure 4.13 shows the 2D diffraction limited PSFs for increasing fractions

of blocked pupil. The PSFs appear very similar except for the reduction in

intensity which is proportional to the fraction of the pupil which is blocked. We

would expect the square symmetry in the MTF to result in a square diffraction

pattern component in the diffraction limited PSF. As the mask elements are

much smaller then the telescope pupil the square diffraction pattern will be

larger than the primary circular diffraction pattern. Figure 4.14 shows the log10
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Figure 4.11: The adaptive pupil mask will have an effect on the telescope
transfer function. The magnitude of this effect will depend on the fraction
of the pupil that is blocked as the transfer function is given by the auto-
correlation of the pupil function. The black line in the plot is the telescope
MTF for a circular aperture, the blue line shows the MTF for a telescope
with a central obscuration 1/4 the diameter of the primary and the red
lines show the extent of modication due to the pupil mask with 20 %, 40 %
and 60 % of the pupil blocked. Each plot was generated by calculating the
autocorrelation function for 100 randomly blocked pupils with the required
blocked fraction.

of the diffraction limited PSFs when a fraction of 0.0 (i.e. no blocking), 0.2, 0.4

and 0.6 of the pupil is blocked. The central section of the blocked diffraction

limited PSF is very similar to the non-masked PSF except reduced in intensity

and reduced contrast in the minima. It is only at higher separations that the

square diffraction pattern appears. In the example the pupil mask was chosen to

have 8×8 square elements. The diffraction pattern from the mask will therefore

have a minimum at approximately eight times the separation of the primary

minimum of the non-masked PSF (i.e. at 8λ/D). Greater blocking fractions will

change the relative strengths between the circular diffraction pattern and the

square diffraction pattern, distributing more light into the square component

of the PSF. Therefore high blocking will result in a strong square diffraction

pattern superimposed on the circular PSF from the telescope pupil. However,

the diffraction rings are faint compared to the central core.

The pupil mask geometry is chosen to match that of the wavefront sensor.
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Figure 4.12: 2D telescope modulation transfer plot. The fraction of the
pupil blocked by the pupil mask is 0.0 (i.e. no pupil mask), 0.2, 0.4 and
0.6. The greater fraction of the telescope pupil which is blocked the faster
the MTF falls away. The central part of the MTF also becomes more square
due to the square mask elements.

The size of the blocking elements are fundamentally set by the number of pho-

tons entering the wavefront sensor and therefore larger telescopes will be able

to support more mask elements. This will stretch the square diffraction pattern

further pushing the diffraction rings away from the central part of the PSF.

The actual PSF is the Fourier transform of the product of the two modulation

transfer functions (atmospheric and telescope) normalised by the fraction of the

total intensity which is blocked (equation 2.25). The total MTF is shown in

figure 4.15. The Fourier transform operator ensures that the area of the MTF

curve is equal to the peak intensity of the PSF and the magnitude at κ = 0

is the total intensity of the PSF. We can see that the thresholds resulting in

curves greater than the original will increase the peak intensity whilst reducing

the total intensity, this means that the halo must be reduced.

The simulations shown in section 4.2 (figure 4.4 and figure 4.5) assumed

two test scenarios. The first was a 1 m telescope with 8 × 8 pupil masking.

With a threshold of ± 1.8 radians the peak intensity was increased by a factor

of 1.40 and 42% of the pupil was blocked. Figure 4.16 shows the theoretical

PSF which also has a peak intensity increase of 1.4 and 40% of the pupil was



CHAPTER 4. ADAPTIVE PUPIL MASKING 100

f=0.0 f=0.2 f=0.4 f=0.6

-4

-2

0

2

4

R
a
d
ia

l 
d
is

ta
n
ce

 (

g/D)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Intensity

Figure 4.13: Diffraction limited long exposure PSFs for blocked pupil frac-
tions (f) of 0.0, 0.2, 0.4 and 0.6. The secondary obstruction was one quarter
the diameter of the primary. The intensity of the PSF is reduced by an
amount proportional to the fraction of the pupil which is blocked. The
square diffraction pattern from the pupil mask can not be seen as it is too
faint.

blocked. We also examined a scenario with an 8 m telescope with 16 × 16 AO.

The theoretical PSF again has the same peak intensity increase and the same

fraction of the pupil is blocked. Therefore, the analysis agrees well with the

monte carlo simulation. The actual shape of the PSFs are slightly different.

This is likely to be due to additional noise sources within the the simulation

(e.g. AO latency, angular geometry of the primary mirror and finite integration

time).

We can now calculate the expected PSF from the input parameters (immedi-

ate seeing, telescope pupil function and number of subapertures) and calculate

the optimum threshold for maximum peak intensity. Given extra parameters for

a binary system (magnitude difference and separation) the optimum threshold

for faint companion detection can also be calculated. This will be a combina-

tion of increased peak intensity and reduced PSF halo which do not necessarily

correspond to the same threshold. It might even be beneficial to run a very

low threshold to reduce the phase variance significantly and use PSF subtrac-

tion techniques to remove the square diffraction pattern, as this will allow for a
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Figure 4.14: The colour plot shows the PSFs for the long exposure blocked
apertures for blocked fractions (f) of 0.0, 0.2, 0.4 and 0.6. The secondary
obstruction was one quarter the diameter of the primary. The lower plots
show the radial profiles of the PSFs including the reduced intensity due to
the blocking (left) and normalised to compare the structure of the PSFs
(right).

much reduced halo.

4.4 High contrast imaging

Modern extreme AO systems are capable of reducing the atmospheric seeing to

near diffraction limited over a small field of view and any residual wavefront

error after the AO system are random and will average out over time. The

direct imaging of extrasolar planets is now limited by static speckles. Speckles

caused by misalignment of optics and aberrations in the mirrors. These speckles
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Figure 4.15: Combined MTF from the telescope and atmosphere,
MTF atmos × MTF tel. The plot on the left shows the total MTF for AO
correction with d/r0 values of 1, 2, 3 and 4. Although it appears that the
MTF curves do not all converge to 1 at κ = 0 this is not true. The telescope
diameter was chosen to be 8 m and MTF atmos drops to its convergent value
very quickly (∼ κλf/d (figure 2.10)) therefore MTF atmos can be considered
constant. The plot on the right shows the total MTF for an 8 m telescope
with 16 × 16 AO, d/r0 = 4 and threshold values of 0.8, 1.2 and 1.6.

will not average and may cause false positives, i.e. be erroneously identified as

planets. They can not be subtracted either as although appearing static they

do actually vary with time as the telescope moves and the temperature changes.

There are now many static speckle removal techniques. Ribak & Gladysz

[76] suggest that the speckles can be removed by breaking the symmetry in the

optical system. By apodizing the primary with a rotating off-axis circular mask

the speckles will now move in the focal plane and average out. However, the

position of the star and planet will remain fixed. The adaptive pupil mask could

also be used in a similar way to break the symmetry as different areas of the

pupil are blocked.

The diffraction pattern due to the mask will be chromatic. Although this

might be a problem for imaging white light it is also possible that it could be

used in some way to further reduce the speckles. It is also possible that the

technique might be useful for larger telescope D > 8 m in order to help reduce

residual wavefront error, although that is a discussion for future work.
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Figure 4.16: Theoretical PSFs for a 1 m telescope without AO and a block-
ing threshold of ±1.8 radians (left) and an 8 m telescope with AO and
a threshold of ±1.4 radians (right). The peak intensity increase and the
fraction of the pupil which is blocked agrees well with the PSFs generated
by the monte carlo simulation (section 4.2, figure 4.4 and figure 4.5).

4.5 Conclusions

We have presented a novel technique for improving the quality of a PSF in

terms of increasing peak intensity and reducing the halo. Light from areas of

a telescope pupil which are out of phase will not add to the core but instead

create a diffuse halo. By blocking the appropriate subapertures we obtain a

much flatter wavefront and by controlling the extent of the blocking we can

maximise the peak intensity and minimise the PSF halo. If we block too much

the diffraction limited PSF becomes broader and the peak intensity will be

compromised. If we do not block enough there will be subapertures with large

piston error remaining. The performance of the adaptive pupil mask is most

dramatic in systems with a large fraction of energy in the halo but can also

provide significant improvements for higher Strehl images.

The optimum threshold is a function of initial phase variance and the ratio

of subaperture size to telescope diameter. A theoretical explanation of the pupil

mask has been developed in order to estimate the optimum phase threshold as

a function of initial phase variance. The two examples shown in this chapter
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are for two different scenarios but the technique will work in any instance where

the wavefront is properly sampled.

In simulations the peak intensity for a 1 m class telescope can be increased

by 40 % and the FWHM reduced by 76 % to near the diffraction limit. This

was done by blocking any subaperture with a piston excursion greater than 1.8

radians. For an 8 m class telescope equipped with AO the adaptive pupil mask

can increase the peak intensity by 23 % and the FWHM reduced from 0.022 ”

to 0.018 ”. The reduced FWHM and increased peak intensity is beneficial for

the direct imaging of faint companions as the contrast ratio will be reduced.

Simulations show that the SNR for a 100 s exposure observing a faint com-

panion at an angular separation of 2λ/D from the primary star with a magnitude

difference of 7.7 on a 1 m telescope is 5. The inclusion of the adaptive pupil

mask double this to 10.5. A binary system of the same separation but magni-

tude difference of 11.7 on an 8 m telescope also has a SNR of 5. The addition of

a four-quadrant phase mask coronagraph results in an increase to 6.6 which is

comparable to the addition of the pupil mask. If the pupil mask is used before

the coronagraph a SNR of 10.6 is achieved due to the reduced FWHM resulting

in a more efficient coronagraph.

It is perhaps unlikely that this technique will be of use to modern planet

imaging projects which use very high order AO systems (extreme AO) and are

now limited by static speckle rather than residual phase. However, it could be

useful for smaller telescopes as a relatively easy way to increase the imaging

resolution.

Digital Micromirror Device [77] technology is now reaching a very developed

stage and could easily handle the update rates and chip sizes required of the

adaptive pupil mask and could be used in the pupil plane of the telescope to

reflect the appropriate sections of the wavefront out of the optical path. For a
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telescope with no AO capabilities the pupil mask could be implemented with

a beam splitter, a Shack-Hartmann wavefront sensor and a DMD. A telescope

already equipped with an AO system can share the wavefront sensor and so only

requires positioning the DMD in the optical path after the deformable mirror.



Chapter 5

Scintillation Reduction

5.1 Introduction

High precision fast photometry from ground based observatories is a challenge

due to intensity fluctuations induced by the Earth’s atmosphere. Here we de-

scribe a method to reduce this noise source by conjugating the pupil to the

altitude of a high dominant turbulent layer. We reduce the scintillation from

this layer by apodising the pupil and normalise with a comparison star to remove

the scintillation we now obtain from the lower layers. We find by simulation

that given a simple atmosphere with a single high altitude turbulent layer and

a strong surface layer a reduction in the intensity variance by a factor of ∼30

is possible. Given a more realistic atmosphere as measured by SCIDAR at

San Pedro Mártir we find that on a night with a strong high altitude layer we

can expect the median variance to be reduced by a factor of 7.8. By reduc-

ing the scintillation noise we will be able to detect much smaller changes in

brightness. If we assume a 2 m telescope and an exposure time of 30 seconds

a reduction from 0.76 mmag to 0.26 mmag is possible, which will enable the

106
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routine detection of, for example, the secondary transits of extrasolar planets

from the ground. If ultimately successful, the techniques developed here would

usher in a revolution with very-high precision photometric instruments, deploy-

able on easily accessible 1 to 2 meter class telescopes, which would be capable

of detecting highly-prized bright Earth-like exoplanets and characterizing the

atmospheres of known transiting exoplanets. This capability would make this

relatively low-cost instrument competitive with the science goals of much larger

planed projects, such as the dedicated space mission of PLATO[5].

5.2 Opto–mechanical design

The design of a conjugate-plane photometry is actually very simple. Figure 5.1

is a diagram of such an instrument. An aperture is placed in the collimated

beam at the conjugate plane of the turbulent layer. A lens is then used to focus

the light onto a CCD in the focal plane. As the aperture is not in the pupil

plane, any off-axis light will not illuminate the whole aperture and therefore

a separate optical arm is required for the target and comparison star. This

can be achieved with either a prism near to the focal point of the telescope, or

with pick off arms if more stars are required. This is completely different to an

adaptive optics type approach as there are no moving parts once the altitude

has been set. Figure 5.2 shows the full design of a prototype instrument which

Figure 5.1: Conceptual design for one arm of the instrument.

shall shortly be commissioning to demonstrate the conjugate-plane photometry
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technique. The optics were designed by Richard Wilson and mechanical design

by Simon Blake and the author was responsible for all of the simulations and

data reduction.

Figure 5.2: Prototype of the conjugate-plane photometer, that we are due
to test on-sky shortly.

5.3 Scintillation Calibration

High altitude turbulence in the atmosphere distorts the plane wavefronts of light

from a star which is effectively at infinity. As the wavefronts propagate these

phase aberrations evolve into intensity variations which we view with the naked

eye as twinkling. Wavefronts incident on a telescope pupil have both phase vari-

ations, caused by the integrated effect of light passing though the whole vertical

depth of the atmosphere, and intensity variations, caused predominantly by the

light diffracting through high altitude turbulence and interfering at the ground.

Phase variations are normally considered more significant as they dramatically
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affect the spatial resolution of the images, and this has led to the development

of adaptive optics. The intensity variations across the pupil are effectively aver-

aged together when the light is focused and therefore have less effect. A larger

aperture implies more spatial averaging (which is why stars twinkle less when

observed through a telescope than with the naked eye). However, these small

intensity fluctuations do become significant when one is concerned with high

precision photometry.

Consider now the effect of these intensity variations in more detail. If we

ignore diffraction, then a flat wavefront which is the same size as the telescope

pupil at a given high altitude, in the absence of atmospheric turbulence, will

propagate in a direction normal to the wavefront and will be collected by the

telescope pupil (see figure 5.3). Now consider the effect of atmospheric dis-

tortion. Phase aberrations cause diffraction in different directions and hence

produce scintillation. Effectively light from one part of the original wavefront is

redirected to other parts of the pupil. This in itself is not a significant problem

for photometry, as the integrated intensity across the pupil is the same. The

problem occurs either when rays from the wavefront at high altitude propagate

away from the telescope pupil, and are lost, or conversely when high altitude ar-

eas away from the telescope pupil area propagate into the telescope pupil at the

ground. These effects lead to a decrease and increase in intensity, respectively,

and at any one instant both of these effects will be occurring (see figure 5.3).The

turbulence is blown across the field of view of the telescope producing an overall

change in intensity as a function of time.

As a thought experiment, to show the basic concept behind our proposal,

if we could place an aperture which is smaller than the telescope pupil in the

sky at the altitude of high turbulence then this change in intensity could be

dramatically reduced. In this case, the rays that would have been deflected
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Figure 5.3: A spherical wavefront from a star will appear flat as it enters
the the atmosphere. In the absence of turbulence this flat wavefront will
be collected by the telescope pupil (left). In the presence of turbulence
the wavefront will diffract through the refractive index variations which
accompany the turbulent motion in the atmosphere. The wavefront will
then interfere with itself at the ground and cause intensity fluctuations. A
simplified geometrical model is shown on the right. The scintillation noise
occurs when extra light is focused into the telescope pupil or when light
is focused away from the pupil by the turbulent atmosphere. (Diagram
courtesy of V. Dhillon)
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Figure 5.4: By placing an aperture at the altitude of the turbulent layer we
can reduce the scintillation noise. It will now be impossible for any light
from outside of the telescope pupil to be focused into the collecting area.
It will also be unlikely for any parts of the wavefront to be focused off-axis
by such a degree as to escape from the collecting area all together. These
two situations are shown in red. These rays - which would normally be the
ones producing a change in the overall intergrated intensity - are blocked.
(Diagram courtesy of V. Dhillon)

away from the area of the pupil would still be collected by the (larger) telescope

pupil, and as the angle of diffraction is small no rays would be deflected into

the telescope pupil because of the aperture (figure 5.4). Increasing the size

difference between the aperture in the sky and the telescope pupil would improve

the scintillation rejection, but would also lead to increased loss of signal, and

clearly a balance between the two effects would need to be found.

Clearly placing an aperture at a high altitude in the sky is an impractical

proposal, but we can produce a similar effect using optics after the telescope

focus. Figure 5.5 shows how reconjugation can be produced by observing the

beam in a different plane downstream from the telescope focus. The high alti-

tude turbulent layer is reimaged onto an aperture which is slightly smaller than

the equivalent size of the full telescope pupil. Consider again the simplified

case of a single layer of turbulence at a high altitude. As already described,

this produces scintillation in the entrance pupil of the telescope. If we reimage

the high altitude layer at a conjugate plane then the rays will have propagated
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Figure 5.5: Ray diagrams for conjugation positions. The black lines show
the rays for an object at infinity. The top diagram shows the conjugate po-
sition of the telescope pupil. Every point in this plane will be an image of a
point on the telescope pupil (as shown by the red lines). The lower diagram
shows that by moving the observation plane towards the collimating lens
then an image of the wavefront at a height h above the telescope will be
produced. If a camera is in a position such that it is in the image plane of
the turbulent layer it is at the conjugate altitude of that layer. In practice
subsidiary optics may also be used, but this diagram shows the principle.

so as to “undo” the scintillation and we would view an approximately uniform

intensity [78]. High altitude areas of the wavefront, which in the absence of

turbulence would fall outside of the telescope pupil, can be diffracted by the

turbulence and interfere to cause intense regions within the pupil area. This

light would image in the conjugate plane outside of the aperture and can be

easily rejected by the mask. High altitude areas of the wavefront which are

diffracted by the turbulence and interfere to cause intense areas at the ground

outside of the telescope pupil are lost and will show up as areas of decreased

intensity towards the edge of the reimaged wavefront. This effect can also be

rejected with a mask at the reimaged altitude which is slightly smaller than

the pupil size. The remaining light within this mask will be approximately of

uniform intensity and scintillation free.

The above description has ignored two important effects, namely diffraction
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and turbulence from other atmospheric layers (predominantly low altitude tur-

bulence). In the far field the intensity pattern will have developed into the well

known Airy diffraction pattern and so will not change shape with propagation

distance. In the near field the diffraction pattern will develop with distance

which makes it more complicated to calculate. The Fresnel number, F , is used

to determine which set of approximations are valid and is given by,

F =
D2

tel

4zλ
(5.1)

where Dtel is the diameter of the telescope pupil, z is the propagation distance

and λ is the wavelength of the light. For F ≪ 1 far field Fraunhofer diffraction

can be assumed, if F > 1 we are in the near field and so Fresnel diffraction

theory is valid. In all astronomical cases the apertures are large enough that

Fresnel diffraction is always valid at optical wavelengths.

Figure 5.6 shows simulated images of reconjugated pupils for telescopes with

diameters, D = 0.4, 1.0, 2.0, 4.0 and 8.0 m and for reconjugated altitudes 0 m

(telescope pupil), 1000 m, 5000 m and 10000 m. At higher altitudes we see

ringing in the pupil. This ringing is caused by diffraction of the wavefront

through the telescope pupil and so larger telescope pupils or shorter propaga-

tion distances result in less diffraction and less ringing. The Fresnel number

is also shown underneath each plot. The diffraction rings are not constrained

to the outer edge of the pupil they actually permeate through the entire pupil

with exponentially decreasing amplitude as described by the Fresnel diffraction

integral.

In addition to high altitude turbulence most astronomical sites will also have

a strong surface layer [11, 13] and possibly turbulence at intermediate altitudes

as well. If we conjugate our system to the altitude of a high turbulent layer we

will still see scintillation from other layers. We will have effectively swapped
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Figure 5.6: Re-conjugated pupil intensity images for a number of aperture
diameters and increasing propagation distance. The Fresnel number is also
shown as an indication of the amount of diffraction. F ≪ 1 indicates far
field (Fraunhofer) diffraction. The images do not include any turbulence,
only diffraction.
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scintillation caused by high altitude turbulence with scintillation caused by tur-

bulence close to the ground. Fuchs et al. [78] demonstrated that if a turbulent

layer is below the conjugate plane (the surface layer for example) then a virtual

reverse propagation occurs over a distance z = |h − z0|, where z0 is the conju-

gate altitude and h is the altitude of the turbulent layer. Therefore the surface

layer will now cause scintillation in the conjugate plane as it will have effectively

propagated a distance z0. However a comparison star can be used to reduce the

scintillation from the surface layer as they will both sample the same turbulent

area, as shown in figure 5.7. This layer must also be quite thin to ensure the

wavefronts sample the same turbulence, and studies have demonstrated that

this is the case (it is often only a few 10’s of meters, [11, 13, 50]) meaning that

the isophotometric angle is now very large (up to 0.5◦).

Figure 5.8 shows the effect of reconjugation of a single high altitude layer,

including the effects of diffraction caused by the telescope pupil. The simulation

assumed a single high altitude turbulent layer at 10 km with
∫

C2
ndh = 353 ×

10−15 m1/3, where C2
n is the refractive index structure constant and

∫

C2
ndh is

the integrated turbulence strength of the atmospheric layer. This corresponds to

r0 = 0.15 m, where r0 is the Fried parameter and is a measure of the integrated

strength of the turbulence. It can be seen that the variations in intensity due

to scintillation largely disappear in the reconjugated image of the high altitude

layer - but that diffraction can clearly be seen. The diffraction rings are not

completely circular as a result of the phase distortions in the wavefront at the

telescope pupil. Figure 5.9 shows simulated images of the reconjugated pupils at

10 km for a two-layer atmosphere (0 and 10 km) for two stars separated by 40′′.

The two images are very similar indicating that one may be used to calibrate

the other. They are not identical, however, due to the high altitude turbulence

(and not the finite thickness of the layer) illuminating the surface layer with
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Figure 5.7: In differential photometry the intensity of the target star is cal-
ibrated by the intensity from a second comparison star. As the scintillation
is caused by high altitude turbulence the two light cones do not sample
the same turbulence and hence there will be very little correlation between
the two. By conjugating the telescope to the high-altitude layer we remove
the scintillation from this layer and it is replaced by scintillation from the
surface turbulent layer instead. However, as the two light cones sample
the same region of turbulence near the ground they will have very similar
scintillation patterns, allowing one to be corrected by the other. The angle
of separation of the two stars can be large as the surface layer is generally
found to be thin. (Diagram courtesy of V. Dhillon)
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Figure 5.8: Simulated pupil intensity patterns at the telescope pupil (left)
and at the conjugate altitude of the turbulent layer (right). The telescope
pupil is 2.0 m in diameter and the turbulent layer has

∫

C2
ndh = 353 ×

10−15 m1/3 and is located at an altitude of 10 km. The intensity pattern at
the conjugate altitude shows that the spatial intensity fluctuations have
been removed but have been replaced by diffraction rings concentrated
around the edges that also permeate throughout the pupil.

an aberrated wavefront. As this initial aberration is different for the two stars

the intensity distribution in the conjugate plane will also be different, and this

introduces a source of error - as described in more detail in the next section.

5.4 Theory and Simulation Results

Assuming a single turbulent layer at 10 km and no other turbulence the wave-

function, Ψ, at the telescope pupil is given by,

Ψ(x, y) = [K(z = +10 km) ⊗ exp (iφ10)] P (x, y), (5.2)

where z is the propagation distance, x and y are spatial co-ordinates, P (x, y) is

the telescope pupil function, φh is the turbulent phase screen at altitude h km,
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Figure 5.9: Pupil images conjugate to 10 km for two stars separated by
40′′. The spatial intensity fluctuations are a combination of the scintilla-
tion pattern from the surface turbulent layer and the diffraction pattern of
the telescope pupil (figure 5.8, right). The two images have very similar
intensity patterns as they are both formed by the propagation of the same
area of surface layer.

⊗ denotes a convolution and K is the Fresnel propagation kernel, given by,

K =
i

λz
exp (ikz) exp

(

ik

2z

[

(x − x′)
2

+ (y − y′)
2
]

)

, (5.3)

where k is the wavenumber λ is the wavelength of the light and x′ and y′ and

spatial co-ordinates in the observation plane located at a distance z. Positive z

indicates a diverging spherical wavefront and negative z is a converging spher-

ical wavefront or a negative propagation. Therefore, the wavefunction in the

conjugate plane, Ψ′(x′, y′), is found by a further propagation of the wavefront

by a negative distance,

Ψ′(x′, y′) =

K(z = −10 km) ⊗ [[K(z = +10 km) ⊗ exp (iφ10)] P (x, y)] . (5.4)
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In the case of an infinitely large pupil, Ψ′(x′, y′) = Ψ(x, y) and the pupil ampli-

tude is flat. Therefore, by placing the aperture at the conjugate altitude of the

turbulent layer we can reduce the scintillation caused by that layer. However,

with a real aperture the intensity profile at the conjugation plane is not flat

because the wavefront diffracts through the telescope pupil and causes diffrac-

tion rings at the edge of the pupil image which are a function of the turbulent

phase screen. If we include a ground layer, φ0, the Fresnel propagation equation

becomes,

Ψ′(x′, y′) = K(z = −10 km)

⊗ [[K(z = +10 km) ⊗ exp (iφ10)] exp (iφ0)P (x, y)] . (5.5)

The surface layer and telescope pupil are multiplied into the wavefront before the

final convolution. This is why these effects can not be de-coupled from the higher

turbulent layers and the wavefront in the conjugate plane will therefore depend

on the high altitude phase aberrations as well as the surface layer and will be

different for the target and comparison stars. In addition to the diffraction these

residual intensity variations will limit the effectiveness of the technique.

Our conjugate-plane photometry concept has been simulated using a modi-

fication to the simulation described in section 2.5.2. The simulation is a Fresnel

propagation wave optics simulation using the theory stated above and randomly

generated phase screens. It has been modified to propagate two beams through

each phase screen at the appropriate displacement depending on the layer alti-

tude. The simulation has also been modified to back propagate the wavefronts

to the conjugate plane where they are masked and sampled.

Scintillation is often quantified by the scintillation index, σ2
scint, which is

defined as the normalised variance of intensity fluctuations, σ2
scint = 〈(I −

〈I〉)2〉/〈I〉2, where I is the intensity of the image and 〈I〉 denotes the time
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averaged intensity [39]. Figure 5.10 shows the scintillation index as a function

of aperture size for a few example cases. The first case shows the theoretical

maximum reduction found by suspending the aperture in the sky above the

telescope (solid line). This is entirely unfeasible but places a maximum limit on

the reduction of the variance. The black dot–dashed line shows the scintillation

variance for differential photometry with the aperture in the conjugate plane.

Diffraction through the pupil means that light is redistributed in the pupil and

will result in a higher scintillation variance. The small shoulder in the curve

at approximately 0.07 m coincides with the radius of the first diffraction ring.

The red dashed lines show the scintillation variance with a high altitude layer

and a surface layer which varies in strength. In this case a comparison star

is required to normalise the scintillation. The strength of the surface layer is

selected so that the ratio of C2
n(10 km)dh/C2

n(0 m)dh is equal to 1, 2 and 4. If

the surface layer is weaker than the high turbulent layer the residual intensity

fluctuations will be lower. The maximum median variance reduction factor for

C2
n(10 km)dh/C2

n(0 km)dh = 1 (i.e. equal strength), 2 and 4 is 17, 23 and 47,

respectively and is found at Daperture − Dtel ≈ 0.1 m, for a simulated telescope

diameter of 2 m. The amplitude of the first diffraction ring is substantially

larger than any others (as seen in figure 5.8). The optimum aperture size is

therefore one which blocks this ring but none of the others. This will minimise

the residual diffraction and retain a large pupil area. The radius of the first

diffraction ring in the very near field is given by the radius of the first Fresnel

zone, rF =
√

λz, in this case 0.07 m (the location of the shoulder in the figure)

and is independent of telescope size.

Figure 5.11 shows the four possible light curves, the two normal light curves,

one from each target star, in the focal plane and the two reconjugated and

masked light curves. The normal light curves for the two target stars have
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Figure 5.10: The solid line shows the scintillation variance as a function
of aperture size for an aperture suspended in the sky 10 km above a 2 m
telescope. In this case it is possible to reduce the scintillation variance
to effectively zero. The black dot–dashed line shows the scintillation vari-
ance for a single high-altitude turbulent layer with the aperture in the
conjugate plane. The performance is not as good as the solid line due to
the diffraction from the telescope pupil. The red dashed lines show the
scintillation variance for the aperture in the conjugate plane of the high
turbulent layer and with a surface layer with strengths equal to C2

n(z0)dh,
2 × C2

n(z0)dh and 4 × C2
n(z0)dh, where z0 is the conjugate altitude, with

C2
n(z0)dh = 3.5 × 10−13m1/3. For small apertures there is less averaging

of the intensity fluctuations resulting in increased scintillation index. Due
to the aperture dependance of scintillation index, when using very small
apertures we expect the index to increase as shown in the figure. The data
points and error bars are the mean and standard errors of 20 simulations,
each with unique and randomly generated phase screens.
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no correlation as the scintillation is caused by the high altitude turbulence.

However, the reconjugated pupils are well correlated as the variations are caused

by the surface layer which is common to both stars and so can now be removed.
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Figure 5.11: Example simulated light curves for the normal and recon-
jugated pupils. The red and blue lines are the light curves for each
target star. The variations are caused by the high altitude turbulence
and so are uncorrelated. The black and turquoise light curves are sim-
ulated after the conjugate-plane photometer and are well correlated as
the variations are now caused by the low altitude turbulence which they
both sample. The simulation assumed a 2 m class telescope observing
through an atmosphere with a turbulent layer at 10 km and 0 m, both with
∫

C2
ndh = 353 × 10−15 m1/3. The exposure time of each frame is short so

that there is no temporal averaging of scintillation.

The reduction in scintillation noise can be clearly seen in figure 5.12, which

shows the normalised light curve for a sequence of 385 frames from a simulation

assuming a constant source intensity. The black line shows the original light
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curve with a variance of 1.5 × 10−4, due to scintillation. The red line is the

light curve after scintillation reduction and has a variance of 6.1 × 10−6, a

reduction factor of 20. The variance is in units of normalised intensity, ∆I/I.

The simulation assumes an atmosphere with two turbulent layers, one at the

ground and one at 10 km, both with
∫

C2
ndh = 353×10−15 m1/3 (r0 = 1.15 m),

the telescope diameter was 2 m and there was no temporal averaging.
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Figure 5.12: An example simulated light curve. The black line is the inten-
sity pattern from a simulation observing a star with a 2 m class telescope
through the atmosphere with a turbulent layer at 10 km and 0 m, both
with

∫

C2
ndh = 353×10−15 m1/3. The exposure time of each frame is short

so that there is no temporal averaging of scintillation. The red line shows
the scintillation corrected light curve. In this case the intensity variance is
reduced from 1.5× 10−4 to 6.1× 10−6, a factor of 20. The residual noise is
due to the uncorrected scintillation.

A mis-conjugation of the aperture will result in less than optimal perfor-

mance. Figure 5.13 shows the factor by which the scintillation variance is re-
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duced as a function of conjugate altitude for a turbulent layers at 0 m and a

layer at 6, 8, and 10 km. In the 10 km case the curve has a full width at half

maximum of approximately 3.5 km. This will be higher and narrower for tur-

bulent layers at lower altitudes and lower and wider for higher altitudes. The

maximum correction reduces at higher altitudes due to the extra propagation

distance meaning that the scintillation is stronger. The curve also broadens

at higher altitude as the residual scintillation due to mis-conjugation is small

compared to the scintillation due to the propagation from the turbulent layer to

the ground. Knowledge of the contemporaneous turbulence profile is therefore

essential to ensure that the aperture is conjugate to the correct altitude.

In the examples so far we have only considered profiles with two layers (a

high turbulent layer and the boundary layer). However, if a third layer is present

we will obtain scintillation from this layer at the conjugate altitude. If this third

layer is high so that it is not common to both stars it can not be cancelled out in

the same way as the ground layer. Figure 5.14 shows the scintillation calibration

technique response to a third layer at an altitude (h3). In the simulation we

assumed the third layer was the same strength as the other two layers i.e. r0

= 0.15 m. It is found that when the third layer is near to the altitude of the

second layer the improvement factor is high and when the distance between the

two layers is increased the improvement factor reduces as expected.

5.5 Performance Estimation

The Monte-Carlo simulations are useful to examine the performance for a partic-

ular parameter set. However, it is very inefficient for modelling the performance

as a function of time for real turbulence profiles with many turbulent layers. To

do this an analytical estimate of the intensity variance for a given parameter

set is required.
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Figure 5.13: Ratio of intensity variance for normal differential photometry
(σ2

diff) and scintillation corrected photometry (σ2
corr) versus conjugate alti-

tude for an atmosphere with a layer at 0 m and a layer at 6, 8, and 10 km,
all with

∫

C2
ndh = 353× 10−15 m1/3 and a telescope diameter of 2 m. The

curves are Lorentzian and the 10 km curve has a FWHM of approximately
3.5 km. At conjugate altitude 0 m we measure an improvement in the
intensity variance of ∼0.5, i.e. the variance is actually increased. This is
because the pupil size is reduced by the apodizing mask. The data points
and error bars are the mean and standard deviation of 20 simulations, each
with unique and randomly generated phase screens.
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Figure 5.14: Instrument sensitivity to additional turbulent layers at inter-
mediate altitudes. The fixed two layers are set at 0 m and 10 km and all
the layers have an r0 = 0.15 m. The position of the minimum is determined
by the separation of the target stars. When the third layer is located close
to the ground it can be partially removed by normalisation. Therefore,
the minimum will occur when the two light cones are separated by one
coherence length and can not be normalised.
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If the pupil is much larger than the Fresnel radius (D ≫
√

λz0) the intensity

variance due to scintillation, σ2
scint, can be predicted using the theoretical model

described by Dravins et al. [40],

σ2
scint ∝ D

−
7

3

tel (sec γ)3
∫

∞

0

C2
n(h)h2dh, (5.6)

where γ is the zenith angle. The scintillation index is then independent of

wavelength and proportional to the altitude of the turbulent layer squared and

the strength of the turbulent layer. We can calculate the scintillation index due

to all of the turbulent layers assuming the pupil is conjugate to an altitude, z0.

In this case the scintillation index, σ2
z0

, at a given altitude can be calculated

using a modification to the scintillation index equation (equation 5.6),

σ2
z0

∝ D
−

7

3

tel (sec γ)3
∫

∞

h>SL

C2
n (h) (h − z0)

2
dh, (5.7)

where (h − z0) is the separation between the layer altitude and the conjugate

altitude, ignoring the surface layer as this will be dealt with separately.

The corrected residual scintillation variance, σ2
corr, will be dominated by

this but we also add noise terms due to the pupil diffraction and the surface

layer. These noise sources are independent but the total is modulated by the

original scintillation variance (equation 5.5) and so the total residual scintillation

variance can be modelled by,

σ2
corr = 2σ2

z0
+

(

(σ2
scint)

j ×
(

(σ2
SL)k + F l

))

, (5.8)

where σ2
SL is the scintillation index due to the surface layer, F is the Fresnel num-

ber used to quantify the ‘amount’ of diffraction and is given by F = D2
tel/4λz,

and j, k and l are solved empirically from the simulation results and are found
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to be j = k = 0.66 ± 0.09, l = −1.4 ± 0.05. In this case it is important to note

that the σ2
z0

and σ2
SL should both be calculated with the diameter equal to the

size of the aperture and not the telescope pupil.

Figure 5.15 shows a comparison between the simulated data and the pre-

dicted values from equation 5.8. Each curve represents the scintillation variance

as a function of conjugation altitude for a layer at the ground and 6, 8, 10 or

12 km. The parameters were also tested and for telescopes of varying sizes and

layers of varying strengths.
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Figure 5.15: Comparison of simulated and predicted corrected scintillation
variance for turbulent layers at 0 m (all curves) and 6, 8 and 10 km, the
telescope diameter is 2 m and there was also a turbulent layer at the ground
of equal strength as the higher layer. The solid black lines with error
bars are the mean of 20 unique simulations, the error bars indicated the
standard error on the value. The coloured lines are the predicted values
using equation 5.8. The reduced χ2 value is 1.9.

Using high-resolution generalized SCIDAR turbulence profile data from San
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Pedro Mártir [79] and the model developed from the simulation results we can

estimate the expected improvement in intensity variance. The SCIDAR profile

shown in figure 5.16 was recorded on 19th May 2000 and shows a strong turbulent

layer at approximately 10 km throughout the night. Figure 5.17 shows the

expected improvement factor in intensity variance as a function of time for the

same night. The median improvement ratio is 11.5 for this example. Figure 5.18
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Figure 5.16: SCIDAR turbulence profile, i.e. the height above sea level
against time, where the colour indicates the strength of the turbulence,
from 19th May 2000 at San Pedro Mártir. The profile shows a dominant
layer at approximately 10 km throughout the night. San Pedro Mártir is
located at 2800 m above sea level.

shows the actual scintillation variance and the scintillation corrected variance

expected on the 19th May 2000.
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Figure 5.17: Predicted improvement in intensity variance as a function of
time for the night of 19th May 2000. The median improvement ratio for
this night is ∼11.5.

When calculating expected performance for real experiments it is also nec-

essary to include the exposure time of the integration as this will average out

the scintillation and reduce the intensity variance. The scintillation index given

in equation 5.6 is only valid for very short exposures where there is no tem-

poral averaging, i.e. the exposure time has to be less than the pupil crossing

time of the intensity fluctuations. The crossing time, tc, can be calculated as

tc = Dtel/vw, where vw is the velocity of the turbulent layer. If the exposure

time, t, is greater than the crossing time then the scintillation index is modified

to [43],

σ2
scint ∝

D
−4/3

tel

t

∫

C2
n (h)h2

V (h)
dh, (5.9)

where V (h) is the velocity of the turbulent layer at altitude h. Using this
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Figure 5.18: Predicted scintillation variance as a function of time for the
night of 19th May 2000. The black line is the expected scintillation variance
for differential photometry and the red line is the scintillation corrected
variance.

modification to the scintillation index we can calculate an example light curve

for a fictional extrasolar planet transit for a given turbulence profile.

Figure 5.19 shows an example simulated extrasolar planet transit. The tran-

sit depth is assumed to be 0.05 %, i.e. it is of a depth typical for the secondary

transit when the planet passes behind the star, and has a duration of 2.5 hours.

A 2 m telescope and 30 s exposure time are also assumed. The optical turbu-

lence profile used in the simulation is the same as that shown in figure 5.16 as

measured by SCIDAR at San Pedro Mártir. A wind speed of 5 ms−1 for the

surface layer and 20 ms−1 for all other turbulence is assumed. The normalised

scintillation noise in the visible is reduced from 0.70 × 10−3 (0.78 mmag) to

0.21 × 10−3 (0.23 mmag), an improvement factor of 3.3 (10.9 in variance). If
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we assume a target magnitude of 11 then we have reduced the scintillation to a

level which is comparable to the shot noise.

Although the aperture must be placed at the conjugate altitude of the tur-

bulence the photometry can be done in the focal plane. This means that we do

not expect any of the other noise sources to increase as a result of implementing

our conjugate-plane photometry technique. However, as the scintillation is now

caused by the lower turbulent layers which will inherently have a lower wind

speed the photometry fluctuations will take longer to average out. The mag-

nitudes of other noise sources such as shot noise, readout noise or flat fielding

noise will depend on other factors. There are three possible regimes in which

we are interested: scintillation dominated, other noise dominated and a mixture

of the two. In the first and last cases the noise will add in quadrature and so

a reduction in scintillation noise by a factor of n will reduce the total noise

to, σT2
=

√

σ2
T + σ2

scint

(

1
n2 − 1

)

, where σT is the total noise before scintilla-

tion reduction. Figure 5.20 shows a 2D plot of the total noise reduction factor

as a function of the telescope diameter and the target magnitude assuming the

same parameters as before. The atmospheric model was the median profile from

the SCIDAR data recorded on 19th May 2000. The optimum telescope size is

found to be between 1.2 m and 2 m. Less than this and the diffraction effects

limit the possible scintillation noise reduction and apertures greater than this

become shot noise dominated. In the latter scenario the scintillation noise is

insignificant and so scintillation correction techniques will have no effect.

The median reduction in intensity variance for all available SCIDAR data

collected over 24 nights in March/April 1997 and May 2000 at San Pedro Mártir

is a factor of 6. However, with the limited data available it is difficult to say if

this representative; it is possible that other times or sites will yield even better

results if the turbulence is more constrained to stratified layers.
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Figure 5.19: Simulated light curve of a secondary transit of an extrasolar
planet with a 0.05% transit depth. The data were calculated assuming
the same atmospheric parameters as measure by SCIDAR (figure 5.16) and
a 2.0 m telescope with 30 s exposure times in the v-band and a target
magnitude of 11. The top panel show the simulated light curves with no
scintillation correction (black points, top) and with scintillation correction
(red points, bottom), offset for clarity. The blue lines show the theoretical
light curve (i.e. with no noise). The data points are randomly selected
from a distribution with a variance equal to the total noise at that time,
and the error bar indicates the total noise at that time. The lower panels
show the normalised residuals.
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Figure 5.20: The magnitude of the improvement we can expect to observe
with conjugate-plane photometry depends on the other noise sources. If
we assume the same parameters as in figure 5.19 and an atmosphere given
by the median SCIDAR profile then we can plot the noise reduction fac-
tor as a function of target magnitude and telescope diameter. The white
line indicates the limiting magnitude for a given telescope size to prevent
saturating a 16 bit analogue to digital converter in a CCD. The optimum
telescope size is therefore the maximum reduction factor just above this
curve, i.e. between 1.2 m and 2 m. This will vary with seeing and camera
parameters.
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The scintillation is caused by the propagation of phase aberrations. There-

fore, adaptive optics (AO) systems can be used to greatly improve the per-

formance of this technique and could potentially return the diffraction limited

performance. The surface layer reduces the maximum scintillation correction

by more than an order of magnitude. A ground layer adaptive optics (GLAO)

system could be used to remove the phase aberrations induced by the turbulent

surface layer and therefore also reduce the residual scintillation. On occasions

when the atmosphere is dominated by a number of turbulent layers a multi–

conjugate AO system [80] combined with conjugate plane masks could be used to

significantly reduce the scintillation. However, as there are other noise sources

in the system (e.g. shot noise and background noise) the scintillation noise

could be insignificant with only one order of magnitude reduction which could

be possible without AO.

5.6 Conclusions

We have presented a technique, known as conjugate-plane photometry, to im-

prove the precision of fast photometry from ground based telescopes. The dom-

inant source of noise from the Earth’s surface is often scintillation due to high

altitude turbulent layers. By placing an aperture at the conjugate altitude of

this layer we can remove the majority of the scintillation from this layer. We

still detect scintillation from other layers, but evidence from turbulence profile

measurements suggests that at premier observing sites the atmosphere typi-

cally consists of a single strong high-altitude layer and a strong boundary layer.

Under such condition this technique could remove a large fraction of the scin-

tillation. Simulations show that the intensity variance can be reduced by an

order of magnitude. Theoretical calculations have been developed to estimate

the scintillation noise reduction for a given parameter set. For example, with
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an atmosphere as measured by SCIDAR at San Pedro Mártir on the 19th May

2000, the median reduction in intensity variance is a factor 11.5 . Using all

available SCIDAR data including times when we do not see a dominant high

altitude layer we still obtain a median improvement of a factor of 6. This is

because we are reducing the propagation distances from any single layer to the

conjugate altitude and the scintillation index is proportional to propagation dis-

tance squared. By generating a synthetic light curve for a 2 m telescope in the

visible using the variance expected from SCIDAR data and exposure times of

30 s it was found that we could reduce the scintillation noise from 0.78 mmag to

0.21 mmag, comparable to the shot noise. This reduction in noise will open up

new science areas from the ground, including the characterisation of extrasolar

planets through the observations of the secondary transit. The conjugate-plane

photometer is easy to implement as a passive correction technique. However, it

does require a contemporaneous SCIDAR measurement in order to ensure the

aperture is at the correct plane.



Chapter 6

Conclusions

The underlying theme through this thesis was the characterisation and correc-

tion of the atmospheric turbulence. This problem can be easily separated into

three main areas: atmospheric profiling and atmospheric correction for both

imaging and photometry. The conclusions and planned developments are col-

lated below.

6.1 Atmospheric Profiling

We successfully achieved high vertical resolution profiling of the turbulent sur-

face layer. By modifying the SLODAR system with a reflective wedge and two

synchronised cameras we are able to observe much wider visual binary systems

and hence increase the vertical resolution. The system can be tuned by moving

the reflective wedge along the optical axis to select separations in the range 12 to

17 arcminutes. On the 0.4 m Meade telescope these separations correspond to

altitude resolutions between 14 and 10 m with the actual achieved resolutions

being smaller than this due to the elevation of the targets. A prototype in-

strument has been tested and developed at Paranal Observatory. Initial results
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correlate well with the in situ ESO DIMM and MASS instruments. Comparisons

with LuSci demonstrate a good correlation but a systematic error. This is also

observed in comparisons between LuSci and MASS–DIMM. More data is re-

quired to make any statistical generalisation about the surface layer at Paranal.

We are currently working towards increased automation of the SL–SLODAR

system to this end. We have commissioned a bespoke open truss 0.5 m tele-

scope designed specifically to have low off-axis aberrations and no tube seeing.

The delivery of this new instrument is scheduled for October 2010.

6.2 Atmospheric correction – for imaging

Light from an aberrated wavefront will be focused by a telescope and interfere

with itself to from a speckled image. AO acts to reduce these aberrations with

a deformable mirror and concentrate as much of the light as possible into a very

small area. However, no AO system is perfect and there is always residual error.

Here we propose to use an adaptive pupil mask to actively block the regions

of the wavefront which are more than some threshold value out of phase of the

mean piston value. By blocking the appropriate subapertures we obtain a much

flatter wavefront and by controlling the extent of the blocking we can maximise

the peak intensity and minimise the PSF halo. This instrument would work

either on a telescope with AO as an addition clean up option or stand alone on

a telescope without AO as a relatively affordable and simple method to improve

the quality of the PSF.

The instrument has been examined both analytically via MTF calculations

and through Monte Carlo simulation. The two scenarios which were modelled

are the 8 m class telescope with a 16×16 AO system and a 1 m telescope without

AO. In both cases the peak intensity is increased and the FWHM reduced. For

the 8 m class telescope equipped with AO the adaptive pupil mask can increase
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the peak intensity by 23 % and the FWHM reduced from 0.022 ′′ to 0.018 ′′,

the threshold was set to ±1.4 radians. The peak intensity for a 1 m class

telescope can be increased by 40 % and the FWHM reduced by 76 % to near

the diffraction limit. This was done by blocking any subaperture with a piston

excursion greater than 1.8 radians. The reduced FWHM and increased peak

intensity is beneficial for the direct imaging of faint companions as the contrast

ratio will be reduced.

SNR calculations using the simulated data for a faint companion with an

angular separation of 2λ/D show that the adaptive pupil mask could drastically

reduce the exposure times required to reach a given SNR. It is also shown that

the mask in conjunction with a four-quadrant phase mask coronagraph could

double the SNR.

It is perhaps unlikely that this technique will be of use to modern planet

imaging projects which use very high order AO systems (extreme AO) and are

now limited by static speckle rather than residual phase. However, in addition

to the improved PSF the adaptive pupil mask will also break the symmetry

in the optics and would therefore also reduce the static speckles which are the

current limit in direct imaging of faint companions. However, as the mask uses

square apertures the resultant PSF must be convolved with a square diffraction

pattern. This may not be a problem as PSF subtraction techniques could be

implemented.

Although there are no plans to experiment more with the concept a demon-

strator would be simple to build. Digital Micromirror Device technology is now

reaching a very developed stage and could easily handle the update rates and

chip sizes required of the adaptive pupil mask and could be used in the pupil

plane of the telescope to reflect the appropriate sections of the wavefront out of

the optical path.
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6.3 Atmospheric correction – for photometry

We have presented a technique to reduce scintillation noise for high precision

photometry from ground based observatories. The concept uses an aperture

placed at the conjugate altitude of the turbulent layer. This aperture will block

any parts of the wavefront from outside of the pupil area form entering the pupil

and if the aperture is smaller than the pupil it will also prevent areas of the

wavefront from inside of the pupil from refracting away. We have developed

Monte-Carlo simulations to test the concept and found that we can expect to

reduce the scintillation variance by up to a factor of 20 for a 2 m telescope

and an atmosphere with two turbulent layers, one at 0 km and one at 10 km,

both with r0 = 0.15 m. Additional turbulent layers at intermediate altitudes

we limit the extent of the correction. However, turbulence profiling campaigns

at premiere observing sites suggest that it is rare to find strong turbulence at

these altitudes.

With a realistic atmospheric model, as measured by SCIDAR at San Pedro

Mártir on the 19th May 2000 the median reduction in intensity variance is a

factor 11.5. Using all available SCIDAR data including times when we do not

see a dominant high altitude layer we still obtain a median improvement of a

factor of 6. This is because we are reducing the propagation distances from any

single layer to the conjugate altitude and the scintillation index is proportional

to propagation distance squared. Using this realistic atmospheric model we

simulated a secondary transit of an extrasolar planet. Assuming an exposure

times of 30 s it was found that we could reduce the scintillation noise from

0.78 mmag to 0.21 mmag, comparable to the shot noise.

In its current form the instrument is not ideal for planet detection but would

be ideal for follow up work on planetary candidates form other projects, par-

ticularly to characterise the secondary transit of the system. We are currently
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working towards a prototype instrument which is scheduled to be tested on the

Nordic Optical Telescope, La Palma, in September 2010. We are also applying

for funding for further development.
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