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Light storage and control of
photon-photon interactions in a

cold Rydberg gas

Daniel Maxwell

Abstract

The effect of strong interatomic interactions on an optical field stored in Ryd-
berg states of a cold atomic gas is investigated. Due to their large dipole mo-
ments Rydberg atoms interact very strongly with each other. The strength
of these interactions can be significant over length scales of several microns.
An effect known as dipole blockade leads to a suppression in the number of
Rydberg excitations supported in a medium of finite size. The experiments
described in this thesis aim to exploit this effect to create a medium with a
non-linear response which occurs at the level of single-photons.

A cold atomic cloud is tightly confined such that only a few Rydberg excita-
tions are supported. It is shown that the dipole blockade phenomenon leads
to strong photon-photon interactions, resulting in the generation of quan-
tum states of light. A microwave field is used to control the strength and
range over which the interactions between the stored optical photons occur.
In addition, it is shown that the propagation of the optical field through
the medium is non-trivial. Preliminary evidence is presented suggesting that
the slow-light group delay in the medium is dependent on the number of
propagating photons.
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Chapter 1

Introduction

This thesis describes work towards the realisation of a medium whose re-

sponse to an incident optical field is non-linear at the level of single-photons.

The motivation for the creation of such a medium is outlined in the follow-

ing section. The concept of single-photon non-linearities will then be briefly

introduced. Following this, the system employed in this experiment, which

combines Rydberg atoms with the technique of electromagnetically induced

transparency, will be described. Finally, quantum memories will be briefly

discussed.

1.1 Aims and motivation

The remarkable level of control over isolated quantum systems that is now

possible is a consequence of major technological and theoretical advances

over the past few decades. For example, the invention of lasers [1] has pro-

vided coherent, intense light sources which can be used to manipulate the

internal states of particles. The development of laser-cooling [2, 3] was also a

major breakthrough as it allows extremely cold, optically dense gases to be

produced. The low temperature of laser-cooled particles leads to increased

interaction times with laser fields and long coherence times. The preparation

of cold samples of trapped particles is now essentially routine.

It is this enormous level of control that has made theoretical ideas regarding

the storage and processing of information in quantum systems experimen-

1



Chapter 1. Introduction 2

tally feasible. In quantum information processing information is stored in

quantum bits, known as qubits. The key difference between these quantum

bits compared with classical bits, is that qubits can be in a superposition of

their 0 and 1 states. It has been shown that processing information stored

in qubits is more efficient than with classical computing for certain problems

[4]. In addition to its applications in computing, cryptography is another

field where quantum information can bring major advances [5]. Quantum

cryptography has already been implemented in commercial applications [6].

One of the aims of the experiment described in this thesis is to demon-

strate proof-of-principle techniques for use in optical quantum information

processing. Photons have emerged as ideal candidates for the storage and

transmission of quantum information due to their weak coupling with the en-

vironment and fast transmission rates [7]. However, to create a deterministic

gate where the information in these photons can be processed, it is necessary

to introduce interactions between the photons. The current experiment aims

to exploit the strong dipole-dipole interactions between highly excited atoms

to mediate interactions between photons.

In addition to the demonstration of strong photon-photon interactions, an-

other aim of the experiment is to observe the associated generation of non-

classical states of light. In particular, single photon generation is an area of

interest since optical quantum computing schemes generally require a deter-

ministic source of single photons. Theoretical proposals exist which exploit

strong interatomic interactions to generate single photons [8].

1.2 Single-photon non-linearities

The key gate operation which is required for the construction of a quantum

computer is the CNOT gate [4]. In a CNOT gate the state of a target qubit

is flipped, conditional on the state of a control qubit. Consider a two-qubit

gate where the effect of the control qubit on the state of the target qubit can

be written as [9]

1√
2

(|0〉+ |1〉)|1〉 → 1√
2

(|0〉+ e−iφ|1〉)|1〉. (1.1)
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Here the first term on each side corresponds to the target qubit, and the sec-

ond term is the control qubit. The phase, φ, picked up by the |1〉 component

of the target qubit depends on the strength of its interaction with the control

qubit. To realise a CNOT gate a π-phase shift is required. If the state of the

control qubit is |0〉 then there should be no interaction, giving φ = 0.

An example of the implementation of the CNOT gate is schematically illus-

trated in figure 1.1 [7]. A target photon is incident upon a 50:50 beam-splitter

creating the state on the left hand side of equation 1.1. In this case the states

|0〉 and |1〉 correspond to the two paths of the qubit. The final state after

recombination of the two paths depends on the acquired phase-shift. If a

π-phase shift is acquired then the NOT operation is realised. For this to be

a CNOT gate the phase shift should only be acquired if the control qubit is

in the state |1〉.











 












Figure 1.1: Two-qubit CNOT phase-gate using a pair of single photons. The

target photon is incident upon a 50:50 beam-splitter. It then acquires a phase-

shift, φ, if the control photon is in state |1〉. If φ = π then the CNOT operation is

realised. Adapted from [7].

The issue is realising a sufficiently strong interaction such that a single pho-

ton in the control arm causes a π-phase shift of a single photon in the target

arm. It has been proposed that a Kerr non-linearity could be exploited to

produce this large phase shift [10]. The Kerr non-linearity refers to the in-

tensity dependence of a materials refractive index [11]. Normally a very large

laser intensity is required to produce a significant Kerr non-linearity. How-

ever, large non-linearities are also possible using electromagnetically induced

transparency (EIT) [12]. A cross-phase modulation scheme exploiting EIT

has been proposed [13], where the presence of one beam modifies the refrac-

tive index experienced by the other. However, it was later shown that pulse

distortion arising from an inhomogeneous phase acquisition limits the fidelity
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of such an operation, even if it were realised at the single-photon level [9, 14].

Nevertheless, the route of cross phase modulation is still being pursued using

more elaborate schemes [15]. Although single-photon non-linearities have

yet to be demonstrated using cross-phase modulation, an all-optical switch

operating at the level of a few-hundred photons has been demonstrated [16].

Large single-photon non-linearities have been proposed [17] and demon-

strated in cavity QED systems [18]. However, up until very recently [19–

21] non-linearities approaching the single-photon level had not been realised

in free space. The aim of the current experiment is to demonstrate such a

non-linearity. The realisation of a CNOT gate is beyond the scope of this

work.

1.3 Rydberg EIT

Rydberg atoms (chapter 2) and EIT (section 3.2.1) will be discussed inde-

pendently in more detail later in this thesis. At this stage key concepts will

be introduced to motivate the use of Rydberg EIT in realising strong optical

non-linearities.

A Rydberg state is a state of high principal quantum number [22]. Rydberg

atoms are extremely sensitive to external electric fields and as a consequence

exhibit a very large Kerr effect [23]. The main property of Rydberg atoms

which is of interest in the current context is their strong interactions with

other Rydberg atoms. For sufficiently strong interactions, one Rydberg exci-

tation can block the Rydberg excitation of all other atoms in a surrounding

volume. This phenomenon is known as dipole blockade [24].

EIT is an effect where a medium is transparent to a laser frequency to which it

would otherwise be opaque [25]. The simplest setting for EIT is a three-level

system driven by two laser fields. The transparency arises on two-photon

resonance where two excitation pathways interfere destructively [12]. The

laser field is partially converted into an atomic coherence as it propagates

through the atomic medium. When the field reaches the end of the medium

it is then converted back into an electromagnetic excitation. The field which

leaves the sample is therefore sensitive to interactions between the atoms, or
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dephasing of the atomic states.

In the experiments described in this thesis one of the atomic levels used

in EIT is a Rydberg state [26]. The aim is to map the strong interactions

between Rydberg atoms onto an optical field which undergoes EIT. The effect

of dipole blockade has already been shown to produce strong absorptive non-

linearities [27, 28]. Recently these non-linearities were demonstrated the

single-photon level, where a filter for single photons was demonstrated [20].

The large dispersive component of the non-linearity has also been probed in

a cavity Rydberg EIT system [29].

It has been proposed that the long-range interactions between Rydberg atoms

could be used to realise a homogeneous π-phase shift between two single

photons undergoing EIT [30]. The homogeneity of the phase shift in this

scheme is a consequence of the fact that the dipole-dipole interaction is non-

local. The pulse distortion issues arising with the cross phase modulation

schemes mentioned in the previous chapter (which rely on the Kerr effect)

could therefore potentially be circumvented.

1.4 Quantum memories

The ability to store and retrieve quantum information is essential for com-

munication over large distances [31], and synchronisation in quantum com-

putation [32]. A quantum memory is a medium where the reversible storage

of quantum information is possible [33]. The storage and retrieval of optical

photons from quantum memories has been realised in several different ex-

perimental settings [32]. Tremendous progress has been made in solid-state

systems [34] where photon storage efficiencies of around 70% [35] have been

demonstrated. However, one difficulty is that it is difficult to generate single

photons with a sufficiently narrow bandwidth for use with solid-state mem-

ories [36]. In contrast, the generation of single photons [19, 37, 38] and their

subsequent storage [37, 38] has been successfully demonstrated using atomic

gases. It has also been shown that cold atomic gases can provide a long-

lived quantum memory, with photon storage possible on time scales of tens

of seconds [39].
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As is demonstrated in this work, a quantum memory also provides a suitable

environment for the controlled interaction between photons. The storage of

photons in Rydberg states means that the retrieved light field is sensitive

to the interactions between the Rydberg atoms [19, 21]. In this experiment

photon storage is performed by exploiting the slow-light effect associated

with EIT. The group velocity of the field undergoing EIT can be controlled

by varying the intensity of the second control field. The quantum statistical

properties of the field have previously been shown to be preserved using this

method [37, 38]. Storage efficiencies were previously limited to approximately

50% in both cold atoms [40], and in thermal samples [41], using EIT. However

in a recent breakthrough, a storage efficiency of 78% has been demonstrated

[42].

1.5 Thesis summary

The majority of the work presented in this thesis concerns experimental tech-

niques and measurements. However, in part I relevant theoretical concepts

necessary for understanding the experimental data are briefly introduced.

Part II is mostly devoted to describing experimental techniques, presenta-

tion of experimental data and its interpretation. In part III experimental

limitations and potential future work will be discussed.

The thesis is structured as follows:

• Chapter 2 A brief introduction to the special properties of Rydberg

atoms is given to motivate their use in this work. Particular attention is

paid to the interactions between Rydberg atoms, and the phenomenon

of dipole blockade.

• Chapter 3 The interaction between a classical, monochromatic light

source and an atom is introduced. The form of the electric susceptibility

for two, three, and four level atoms is discussed. Effects associated with

a three level atom such as electromagnetically induced transparency

and photon storage are considered in most detail as they are relevant

to the experiments described in this work.
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• Chapter 4 The experimental setup is presented. Key experimental

techniques are described, including laser-cooling in a magneto-optical

trap, and single photon detection. In addition, theoretical concepts

regarding quantum states of light are introduced.

• Chapter 5 The loading and alignment of a microscopic dipole trap

is discussed. Important experimental methods such as intensity mod-

ulation of the dipole trap are presented. The trap is characterised in

terms of atom number, temperature, and loss.

• Chapter 6 Experimental measurements of electromagnetically in-

duced transparency using Rydberg atoms are presented. The effects

of dipole blockade on the spectra are discussed. Microwave dressing of

the Rydberg atoms is also performed.

• Chapter 7 The storage of optical photons in Rydberg states is stud-

ied. Further evidence of dipole blockade is presented. The generation

of non-classical light fields provides evidence of photon-photon inter-

actions. In addition, preliminary evidence suggesting that the group

delay through the atomic medium is dependent on the number of prop-

agating photons is presented.

• Chapter 8 Experiments involving the coherent control of the state

of the stored photons using a microwave field are presented. Rabi os-

cillations of the stored photons are observed between two microwave

coupled Rydberg states. The strength of the photon-photon interac-

tions in the atomic medium can also be controlled with the microwave

field.

• Chapter 9 The experimental findings are summarised. The limi-

tations of the experimental setup and potential improvements are dis-

cussed. Future experiments which could be performed with an im-

proved setup are identified.
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Chapter 2

Rydberg atoms

In this chapter the special properties of Rydberg atoms will be briefly in-

troduced. This will motivate their use in the experiments described in this

thesis. The main property of interest is the strong dipole-dipole interac-

tion which arises between neighboring Rydberg atoms. The key concepts

regarding these interactions will therefore be discussed. In addition, the

phenomenon of dipole blockade will be introduced as this is vital to the

interpretation of many experimental results discussed in later chapters.

2.1 Properties

A Rydberg state is a state of high principal quantum number, n. The exper-

iments described in this thesis use 87Rb atoms which have a single valence

electron. The term Rydberg atom will therefore be used to describe an atomic

state where the valence electron occupies a state of large n.

Even using the simple Bohr theory of an atom, the interesting properties

of Rydberg atoms become immediately apparent. Bohr’s theory models a

Hydrogen atom as an electron moving in a classical orbit around a single

proton. This theory can also be applied to Rydberg atoms where a valence

electron in a highly excited state experiences an approximately Coulombic

potential arising from the net charge of the nucleus and the core electrons.

Bohr’s theory shows that the valence electrons orbital radius increases as n2

and its binding energy decreases as n−2. This means that Rydberg atoms

10
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have valence electrons with very small binding energies and with large orbits.

As a result of this it is relatively easy to ionize Rydberg atoms and to cause

strong shifts in their energy levels using an external electric field [22].

The scaling of key properties of Rydberg atoms with n are listed below [22].

• Dipole moment for transitions between adjacent Rydberg levels: n2.

• Energy separation between adjacent Rydberg levels: n−3.

• Polarisability: n7.

• Radiative lifetime of Rydberg state (for low angular momentum states):

n3.

The n2 scaling of the dipole moment gives an enormous level of control over

the interaction strength through the choice of the atomic state [43]. This

makes Rydberg atoms ideal qubits in the implementation of neutral atom

quantum gates [44]. In addition to their strong inter-atomic interactions,

another desirable feature of Rydberg atoms is their long lifetime, scaling as

n3.

2.2 Dipole-dipole interactions

The sensitivity of Rydberg atoms to external fields means that they interact

strongly with each other via dipole-dipole interactions. The electric dipole-

dipole interaction energy between two atoms is given by [45]

V (r) =
1

4πε0

(p1 · p2

r3
− 3

(p1 · r)(p2 · r)

r5

)
. (2.1)

Here r is the separation between the two atoms, and p1 and p2 are their dipole

moments. It is important to note that the two atoms under consideration

do not have permanent electric dipole moments. However, the dipole-dipole

interaction causes mixing of the initial two-atom state with other two-atom

states accessible within the selection rules for electric dipole transitions [46].

The dipole moments p1,2 correspond to transitions between these states. The

dipole-dipole interaction is illustrated schematically in figure 2.1.
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Figure 2.1: Dipole-dipole interaction between two atoms. (a) Induced dipole

moment p1,2 of two atoms separated by a distance r. (b) The dipole-dipole inter-

action couples the initial state of the atoms, |r〉, to neighboring states.

The dipole-dipole interaction energy causes coupling between adjacent states

of the form

|nlj〉+ |nlj〉 → |n+l+j+〉+ |n−l−j−〉. (2.2)

Here both atoms are initially in the state |nlj〉, and the states |n+l+j+〉 and

|n−l−j−〉 are higher and lower in energy respectively. The energy separation

between the states involved in the excitation transfer is given by

∆ = E(n+l+j+) + E(n−l−j−)− 2E(nlj), (2.3)

where the energies, E, are those of the bare states i.e. when the two atoms

are at infinite separation.

The form of the dipole-dipole interaction depends on the separation between

the atoms. For small separations, resonant dipole-dipole interactions dom-

inate, scaling as 1/r3. These arise when the magnitude of the interaction

energy is of the same order as the energy separation, ∆, to the neighboring

pair states [46]. The strength of the interaction is parameterised by the state

dependent C3 coefficient, scaling as n4 [43]. Resonant dipole-dipole interac-

tions cause a change of state of the atoms, as illustrated in figure 2.1 (b). For

larger separations the dipole-dipole interaction couples states off-resonantly.

In this case van der Waals interactions dominate, scaling as 1/r6. These

are not associated with a change in the internal state of the atoms. The

state dependent van der Waals coefficient, C6, parameterises the interaction

strength, scaling as n11 [43]. For the 60s1/2 state, the inter-atomic separation

at which the van der Waals and resonant dipole-dipole regimes cross-over is

approximately 2.1 µm [47].
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As will become clear later when experiments exploiting the dipole blockade

effect are discussed, resonant dipole-dipole interactions are often desirable

due to their long range. The length scale requirement for the realisation

of resonant dipole-dipole interactions can be lifted by applying an external

field. For example, a DC electric field can be used to Stark-shift adjacent pair

states into resonance [48, 49]. Similarly, off-resonant microwave frequency AC

fields can be used [50]. In these methods the interaction from the resonantly

coupled pair state dominates, leading to resonant dipole-dipole interactions.

Resonant microwave fields have also been shown to induce resonant dipole-

dipole interactions through the mixing of opposite parity Rydberg states

[51, 52]. External fields therefore provide an additional level of control over

the strength and range of dipole-dipole interactions.

2.3 Dipole blockade

The experiments described in this thesis involve the laser excitation of a

cloud of atoms initially in the ground state, |g〉, to a Rydberg state |r〉. It is

important to consider the effect of dipole-dipole interactions on the Rydberg

excitation process. Throughout this section it will be assumed that the van

der Waals interaction dominates, although the described effects also occur in

the regime of resonant dipole-dipole interactions.

In figure 2.2 (a) the effect of the van der Waals interaction on the Rydberg

excitation of two ground state atoms, |gg〉, is illustrated schematically. The

energy of the pair states is plotted as a function of the interatomic separa-

tion. The dipole-dipole interaction energy for two ground state atoms or for

the singly excited Rydberg state is taken to be negligible. The energy of

these pair states is therefore independent of the interatomic separation. A

laser field resonant with the transition |g〉 → |r〉 can excite the singly ex-

cited Rydberg state, |gr〉 or |rg〉. The doubly excited Rydberg state, |rr〉,
can also be excited for large inter-atomic separations. However, due to the

strong van der Waals interaction between Rydberg atoms, the energy of the

doubly excited Rydberg state |rr〉 is strongly shifted at small separations. If

the detuning of this state from the resonant laser frequency is larger than

the excitation linewidth, Γ, then excitation of |rr〉 is not possible. The sup-
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Figure 2.2: Dipole blockade. (a) Two atoms initially in the ground state, |gg〉,
are excited by a laser field resonant with the transition |g〉 → |r〉. For interatomic

separations below Rb, the doubly excited state |rr〉 is detuned from resonance.

(b) In the regime of dipole blockade spheres of radius Rb can only contain a single

Rydberg excitation.

pression of states containing multiple Rydberg excitations is known as dipole

blockade [24, 53]. An analogous effect is the Coulomb blockade in electron

transport [54].

The excitation of a single atom to a Rydberg state can in principle block the

Rydberg excitation of N atoms contained within a region of space known

as the blockade sphere. The blockade radius, Rb, is found by equating the

weakest van der Waals interaction, i.e. the interaction between two atoms

separated by the blockade radius, to the excitation linewidth. This gives [55],

Rb =
(C6

~Γ

) 1
6
. (2.4)

Atoms separated by Rb have the minimum energy shift to be blockaded.

Since the van der Waals interaction scales as n11, the blockade radius scales

as n11/6. Blockade radii of more than 10 µm have been observed [56].

The avoided volume between Rydberg excitations is illustrated schemati-

cally in figure 2.2 (b). For a sufficiently dense sample, the number of allowed

Rydberg excitations is less that the total number of atoms. This can be ob-

served as a saturation in the fraction of atoms excited into the Rydberg state

[57]. An associated suppression in the width of the Rydberg atom number

distribution has also been observed [58]. In addition, spatial correlations be-
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tween Rydberg excitations have been experimentally verified [59, 60]. It has

been proposed that a crystal of Rydberg excitations could be formed using

a technique where the frequency of the laser excitation pulse is chirped [61].

It is important to note that within each blockade sphere the single Rydberg

excitation is collectively shared between all N atoms [24]. The collective

Rydberg state formed results in a number of interesting effects. For example,

the collective Rabi frequency of the transition between the ground state and

the Rydberg state is enhanced by a factor of
√
N relative to the single-atom

Rabi frequency [62]. In addition, as will be discussed in section 3.2.2, singly

excited symmetric collective states can produce directional emission of single

photons [8, 63].

Dipole blockade forms the basis of the experiments described in this thesis.

As will be shown, the suppression in the number of Rydberg excitations

is accompanied by a non-linear response of the atomic medium to the laser

field. Under certain conditions this can be exploited to produce single photon

non-linearities.



Chapter 3

Atom-light interactions

In this chapter the interaction between a coherent light field and a sample

of atoms will be discussed. Although this work is centered around quantum

light fields interacting with a highly non-linear medium, it is more instructive

to initially consider the atom-light interaction in a simpler setting. Therefore

in this chapter monochromatic, classical light fields will be considered, and

it will be assumed that the response of the atomic medium to the field is

linear. Non-linear effects will be discussed briefly in chapter 6, although this

is mostly from a qualitative viewpoint.

The effect of the light field is to polarise the atoms in the medium according

to

P = ε0χE. (3.1)

Here P is the polarisation of the medium, χ is its susceptibility, and E is the

electric field of the light. The polarisation is the dipole moment, d = −er,

per unit volume. The change in the field after passing through the medium

can be characterised in terms of the fraction of its intensity transmitted, T ,

and its phase shift.

For a medium of length l, in the limit of small values of χ and when I0 << Isat,

T =
I

I0

= exp(−kχI l) = exp(−OD), (3.2)

where k is the wavevector of the light in free-space, I0 is the intensity incident

upon the medium, and OD = kχI l is the optical depth of the medium. The

16
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transmission is therefore related to the imaginary part of the susceptibility.

The real part of the susceptibility is related to the refractive index by n =
√

1 + χR, and is manifest as a phase shift of the light field through, ∆φ =

kχRl/2. In this work measurements of the phase shift are not performed.

The frequency dependence of the susceptibility will be considered for a few

relevant systems. Particular attention is given to the case of a three-level

atom since this is important for many of the experiments described in this

thesis.

3.1 Two-level atom

The natural starting point when considering atom-light interactions is to take

the case of a laser field incident upon a two-level atom. The laser field will

be referred to as the probe field, with frequency ωp. The excitation scheme

of the two-level system is shown in figure 3.1 (a). The resonant transition

between the ground state, |1〉, and the excited state, |2〉, occurs at a frequency

ω21. The detuning of the probe field from this resonance frequency is given

by ∆p = ωp − ω21, and its Rabi frequency is denoted Ωp. The excited state

decays at a rate Γ21 due to spontaneous emission. In addition to spontaneous

emission, another source of decoherence is the finite linewidth of the laser,

γp [64]. The total dephasing rate is given by γ21 = Γ21/2 + γp [47, 64].

It is possible to calculate the components of the density matrix, ρ = |ψ〉〈ψ|,
of the two-level system starting from the master equation [65]. This provides

a convenient way of incorporating decay of the components of the density

matrix. In order to use analytical solutions of the master equation it will be

assumed that the system is in a steady-state, and that the probe field is weak

such that the atomic population remains in the ground state. The rotating

wave approximation is also taken.

The polarisation of the medium can be written in terms of the coherence

between levels |1〉 and |2〉, ρ21, through [12, 64],

P =
∑

N

〈er〉/V = ρ0[d12ρ21 exp(−iωpt) + c.c]. (3.3)
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Figure 3.1: Excitation scheme for a 2-level system coupled to a probe laser field,

and its steady-state susceptibility. (a) The probe field couples the ground state,

|1〉, to and excited state, |2〉, with a Rabi frequency of Ωp. (b) The real (red line)

and imaginary (blue line) parts of the steady-state susceptibility for Ωp = 0.1γ21.

The susceptibility is scaled in units of d2
21ρ0/ε0~γ21.

The expectation value of the transition dipole moment is summed over N

atoms in a volume V , with density ρ0. The relation 〈er〉 = Tr(ρer) has been

used to obtain the expression on the right-hand side. It has been assumed

that the response of all N atoms to the probe field is the same. Using equation

3.1 to substitute for P, it can be shown that χ is related to ρ21 by

χ =
−2d2

21ρ0ρ21

ε0~Ωp

. (3.4)

The expression for ρ21 obtained from the master equation in the steady-state,

weak probe regime then gives [47, 65],

χ =
d2

21ρ0

ε0~
iγ21 −∆p

Ω2
p/2 + γ2

21 + ∆2
p

. (3.5)

The real and imaginary parts of the susceptibility are plotted in figure 3.1.

The imaginary part of the susceptibility is centered around ∆p=0 with a

half-width at half maximum of γ21.
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3.1.1 Rabi oscillations

The driven two-level atom will now be considered outside of steady-state con-

ditions. It will be assumed that the atom is initially in the ground state, |1〉,
and that the probe field is on resonance and has a constant Rabi frequency.

Ignoring the effect of spontaneous emission from the excited state, it can be

shown that the probability the atom is in the ground state, P (|1〉), evolves

with time as [66]

P (|1〉) = cos2

(
Ωpt

2

)
. (3.6)

The rotation angle, Θ = Ωpt, governs the evolution of population between

the states.

To include the effect of spontaneous emission the master equation is used. In

figure 3.2 the excited state population, ρ22, is plotted as a function of time.

When the ratio of the spontaneous decay rate of the excited state to the Rabi

frequency of the probe field is very small, high contrast oscillations of the

population between the ground and excited state can be observed. As this

ratio becomes larger, the Rabi oscillations are more heavily damped, and the

0 1 2 3 4 5
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Figure 3.2: Rabi oscillations of a two-level atom. The excited state population,

ρ22, is plotted as a function of the rotation angle, Θ = Ωpt. The different lines are

for spontaneous decay rates of the excited state of Γ21/Ωp = 0 (red), Γ21/Ωp = 2/9

(blue), Γ21/Ωp = 2/3 (black), and Γ21/Ωp = 3 (green).
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population approaches a steady state value more quickly.

3.2 Three-level atom

A three level system where state |2〉 is coupled to a third state, |3〉, will now

be considered. The second laser field, with frequency ωc, will be referred to

as the coupling field. The resonant transition between the intermediate and

upper excited state occurs at a frequency ω32. The spontaneous decay rate

from state |3〉 is given by Γ3. The excitation scheme is shown in figure 3.3

(a). A ladder scheme is adopted in this work, where the upper level is a

Rydberg state. With a ladder scheme it is beneficial to arrange the probe

and coupling lasers in a counter-propagating configuration as this minimises

their Doppler mismatch.

In the regime of a weak probe field where the coherence ρ32 can be ignored,

equation 3.4 is also valid for a 3-level atom. Substituting the steady-state

expression for ρ21 yields [12, 47, 64],

Ωc

Ωp

1

2

3 Δc = ω  - ω  c 32

Γ21

(a) (b)

Γ3

−3 −2 −1 0 1 2 3
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0
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1

∆p/γ21

χ

Figure 3.3: Excitation scheme for a 3-level system and its steady-state suscep-

tibility. (a) The coupling field couples the intermediate state, |2〉, to state |3〉 with

a Rabi frequency of Ωc. (b) The real (red line) and imaginary (blue line) parts

of the steady-state susceptibility for Ωc = γ21, ∆c = 0, γ31 = γ21/1000. The

susceptibility is scaled in units of d2
21ρ0/ε0~γ21.
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χ =
iρ0d

2
21/ε0~

γ21 − i∆p + Ω2
c/4

γ31−i(∆p+∆c)

, (3.7)

where γ31 = Γ3/2 + γp + γc [47, 64], ∆c = ωc − ω32, and Ωc is the Rabi

frequency of the coupling laser. The linewidth of the coupling laser is γc.

The real and imaginary parts of the susceptibility are plotted in figure 3.3

(b). There is a remarkable difference in comparison with the susceptibility of

a two-level atom. The imaginary part of the susceptibility now vanishes in

a narrow window around the two-photon resonance, rendering the medium

transparent to the probe field. This effect is known as electromagnetically-

induced transparency (EIT). It can also be seen that the narrow transparency

window coincides with a steep variation of the real part of the susceptibility.

Note that a prominent transparency window, and therefore a steep dispersion

feature, emerges when state |3〉 is metastable, such that Γ3 << Γ2. Some

of the special properties associated with the three-level system will now be

discussed in more detail.

3.2.1 EIT

The origin of the transparency on resonance can be understood by considering

the eigenstates of the Hamiltonian governing the atom-light interaction [12].

It is found that a dark-state exists which does not contain a contribution

from the intermediate level, |2〉. The dark state does not couple to the probe

field, and is given by [12]

|D〉 = cos θ|1〉 − sin θ|3〉, (3.8)

where,

tan θ =
Ωp

Ωc

. (3.9)

For a weak probe field the dark-state corresponds to the ground state |1〉.
There are also two other eigenstates [12], known as bright-states. However,

destructive interference between these means that the probe field is not ab-

sorbed. As a result a transparency window emerges on resonance. Assuming
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negligible decoherence of the state |3〉, i.e. γ31 = 0, the full width at half

maximum of the EIT window is given by [12]

∆EIT = 2
Ω2

c√
Γ21γ21

1√
ρ0σl

. (3.10)

Here σ is the absorption cross section. It can be seen that the width of the

EIT window scales as Ω2
c. The dependence of the width on the density-length

product can be understood by examining equations 3.2 and 3.7. For large

density-length products, where kρ0l >> 1, the transparency window narrows

as only probe frequencies close to the center (where χI = 0) are transmitted

[67].

The probe pulse propagates through the medium with a group velocity given

by [12]

vgr =
dωp

dkp

=
c

n+ ωp(dn/dωp)
=

c

1 + χR/2 + ωp

2
(dχR/dωp)

. (3.11)

This equation shows the dependence of the group velocity on the gradient of

the real part of the susceptibility. As shown in figure 3.3, the gradient can be

very large around the two-photon resonance leading to low group velocities

[68, 69]. When both the probe and coupling lasers are on resonance, the

group velocity is given by [12]

vgr =
c

1 + 6π
k2

ρ0cΓ21

Ω2
c+γ31γ21

=
c

ngr

. (3.12)

Here ngr is the group index of the medium. It will be assumed that the group

index is much bigger than 1, in which case it is given by

ngr =
6π

k2

ρ0cΓ21

Ω2
c + γ31γ21

. (3.13)

As with the width of the EIT window, the group velocity and group index

are a function of Ω2
c. The decoherence terms impose an upper limit on the

group index, and hence a lower limit on the group velocity.

The group velocity also depends on the optical depth of the medium. The

density of the medium can be related to its optical depth over a propagation
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distance z, ODz, through [47]

ρ0 =
ODzk

2

6πz
. (3.14)

The reduced group velocity of the probe pulse results in it acquiring a time

delay relative to a free-space pulse. The time taken to propagate a distance

z is given by

τ =
z

vgr

=
ODzΓ21

Ω2
c + γ21γ31

. (3.15)

Where equation 3.14 has been substituted into equation 3.12. This equation

will be useful later when considering the time delay between different photons

propagating through a highly non-linear medium.

3.2.2 Dark-state polaritons and photon storage

The propagation of the probe pulse through the medium can be described

in terms of quasi-particles known as polaritons [70]. These correspond to

superpositions of atomic and electromagnetic excitations. Under conditions

of EIT the polariton field does not include the intermediate level, |2〉, and it is

therefore referred to as a dark-state polariton [70]. The dark-state polariton

field is given by [12]

Ψ(z, t) = cos θEp(z, t)− sin θ
√
ρ0ρ31(z, t)ei∆kz, (3.16)

where the effective wavevector of the spin wave is given by ∆k = kc − kp,

Ep corresponds to the probe electric field, and the mixing angle is related to

the group index by tan2 θ = ngr. The atomic component of the polariton,

contained in the coherence ρ31, is referred to as a spin wave. In this thesis

the terms polariton and spin wave will be used interchangeably.

Since the mixing angle between the electromagnetic and atomic components

of the polariton is governed by the group index, it is dependent on Ωc through

equation 3.13. In the limit where Ωc → 0, θ → π/2, and therefore cos θ → 0

and sin θ → 1. Thus the reduction of the group velocity towards zero is

accompanied by the complete transfer of the electromagnetic field into the
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atomic coherence. This is referred to as photon storage [71, 72]. Note that

the reduction of Ωc also leads to a modification of the dark state given by

equation 3.8. As a result the atomic population is transferred to state |3〉
during storage.

An important consideration in the storage process is the role of the finite

width of the transparency window, ∆EIT. Frequency components of the probe

pulse outside this window are absorbed. As Ωc is reduced so is the width of

the transparency window, as shown by equation 3.10. A consequence of this

is that Ωc must be reduced dynamically [73]. As Ωc is lowered there is also a

reduction in the width of the frequency distribution contained in the probe

pulse. This reduction is proportional to the reduction in ∆EIT [73]. Provided

that the frequency distribution of the probe pulse is contained within the

initial value of ∆EIT, the storage efficiency is not bandwidth limited. For a

probe pulse of a given duration one may think that Ωc can simply be increased

so that ∆EIT exceeds its bandwidth. However, for the entire probe pulse to

be stored it must be sufficiently spatially compressed such that it fits inside

the medium. This requires a sufficiently low group velocity, and therefore

sets an upper limit on the value of Ωc. For the bandwidth and group velocity

criteria to be both fulfilled, the optical depth of the medium must satisfy the

condition OD >> 1 [74, 75]. The optical depth of the medium therefore sets

the upper limit on the storage efficiency.

The stored photons can be retrieved from the medium by increasing Ωc.

This leads to an increase in the group velocity and a transfer of the atomic

coherence back into an electromagnetic excitation. Under ideal conditions

the retrieved field is emitted into the same mode as the probe field. To

understand the directionality of the retrieval it is important to note that the

spin waves are collective atomic coherences [73]. For example a spin wave,

|ψ〉, with a single atomic excitation has the form [8, 76]

|ψ〉 =
1√
N

N∑
j=1

eiφj |3j〉 , (3.17)

where |3j〉 = |1112 · · · 3j · · · 1N〉 denotes the state with atom j excited to

state |3〉 with all other atoms in the ground state, and N is the number of

atoms. The phase factors are given by φj = ∆k · rj, where rj is the position
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of atom j. The phase of each term in the superposition ensures that the

read-out emits a photon into the same spatial mode as the input. Since

the directionality of the retrieval relies on constructive interference between

each term, it increases with the number of atoms in the spin wave [8, 76], or

equivalently with the optical depth of the medium. The retrieval efficiency

into the phase-matched mode scales as approximately 1 − 1/OD [77]. The

size of the medium determines the spatial width of the emission distribution

[8, 76].

The retrieval efficiency of the spin wave is reduced by motional dephasing

of the atoms during the storage interval. Motion of the atoms disturbs the

initial phase structure written into the medium, given by the φj terms in

equation 3.17. It can be shown that the retrieval efficiency, ηret, decays

exponentially in the regime where motional dephasing dominates [78],

ηret = exp
(
− t2

τ 2

)
, (3.18)

where t is the storage time. The 1/e lifetime of the spin wave, τ , depends on

its wavelength and the atomic velocity through [78]

τ =
Λ

2πv
. (3.19)

Here v is the atomic velocity, and Λ is the period of the spin wave. The

wavelength of the spin wave is related to the wavelength of the excitation

lasers through

Λ =
2π

kc − kp

. (3.20)

The lifetime of the spin wave essentially corresponds to the time it takes

for the atoms to move a distance equal to its wavelength [78]. For photon

storage in Rydberg states using a 780 nm probe beam and a 480 nm coupling

beam, as in this thesis, Λ ≈ 1.2 µm. The short spin wave period means that

motional dephasing limits the lifetime of the spin wave to time scales on the

order of a few µs [19]. Longer lifetimes can be achieved by using colder atoms,

or by tightly confining the atoms in a lattice [79]. In addition much longer

spin wave periods are achievable by storing the photons in a ground hyperfine

state using a lambda excitation scheme [71, 72]. Using these methods, spin
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wave lifetimes of tens of seconds have been demonstrated [39].

3.3 Four-level atom

A four level system where state |3〉 is coupled to a fourth state, |4〉, will now

be considered. The excitation scheme is shown in figure 3.4 (a). For the

experiments described in this thesis the third field, with frequency ωµ, is a

microwave field. The resonant transition frequency between the microwave

coupled levels is ω43.

Again in the steady-state, weak probe regime equation 3.4 holds. The sus-

ceptibility of the four level medium is given by [80]

χ = − id2
21ρ0

ε0~

[
i∆p − γ21 +

Ω2
c

4

[
i(∆p + ∆c)− γ31+

Ω2
µ

4

[
i(∆p + ∆c + ∆µ − (γp + γc + γ41)

]−1]−1]−1

. (3.21)

Here γ41 = Γ4/2 + γµ, ∆µ = ω43 − ωµ, and Ωµ is the Rabi frequency of the

Ωc

Ωp

1

2

3

4

Ωμ

Δ = ω  - ω  43

(a) (b)

μ μ

Γ21

Γ3

Γ4

−3 −2 −1 0 1 2 3

−0.5

0

0.5

1

∆p/γ21

χ

Figure 3.4: Excitation scheme for a 4-level system and its steady-state suscepti-

bility. (a) The microwave field couples state |3〉 to state |4〉 with a Rabi frequency

of Ωµ. (b) The real (red line) and imaginary (blue line) parts of the steady-state

susceptibility for Ωµ = γ21/2, Ωc = γ21, ∆µ = 0, ∆c = 0, γ31 = γ21/1000, and

γ41 = 0. The susceptibility is scaled in units of d2
21ρ0/ε0~γ21.
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microwave field.

The real and imaginary parts of the susceptibility are plotted in figure 3.4 (b).

The effect of the microwave field is to split the EIT resonance such that there

are two transmission peaks.
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Chapter 4

Experiment

This chapter gives an overview of the experimental setup and key experi-

mental methods. In order to obtain the largest single photon non-linearity, a

single blockade sphere should be addressed by the excitation light. This can

be achieved through tight focusing of the probe field. In order to maximise

the optical depth of the medium, the atoms should also be tightly confined

on a scale comparable to the size of the probe focus to achieve a high atomic

density. This can be readily achieved using an optical dipole trap. Load-

ing the dipole trap requires a cold atomic cloud as a source of atoms. This

chapter includes a discussion of the laser cooling and trapping of atoms in a

magneto-optical trap (MOT), with measurements of atom number and tem-

perature. At this stage the details of loading the dipole trap will be ignored.

This is discussed in chapter 5. The method of detecting and characterising

optical fields at the single-photon level is also discussed.

4.1 Setup

A schematic of the experimental setup is shown in figure 4.1. Full details of

the construction of the vacuum chamber and the initial beam alignment can

be found in [47]. An aspheric lens pair (Lightpath 350240) mounted inside the

vacuum chamber provides strong focusing of the laser beams used for atomic

excitation and trapping. In principle, diffraction limited beam waists can be

achieved with these lenses. The probe beam, at a wavelength of 780.2 nm,

29
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propagates along the lens axis and is focused to a waist of 1.2± 0.1 µm. The

480 nm coupling beam, which counter-propagates with the probe beam, is

focused to a waist of 17.9 ± 0.3 µm. The larger waist of this beam ensures

that the Rabi frequency of the coupling laser is almost uniform across the

region addressed by the probe beam. A red-detuned dipole trapping beam

co-propagates with the probe beam, and is focused to a waist of 5.1±0.2 µm.

The dipole trap is loaded from a MOT formed in the center of the aspheric

lens pair. The MOT is formed using a quadrupole trap created by a pair

of current-carrying coils in an anti-Helmholtz configuration. Three pairs of

rectangular coils provide a bias magnetic field for stray field cancellation.

These coils are also used to provide a quantisation axis directed along the

lens axis. Due to the small distance (≈1 cm) separating the aspheric lens


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Figure 4.1: Schematic of the experimental setup, adapted from [47]. The vac-

uum chamber contains a pair of aspheric lenses which are used to strongly focus

the excitation and trapping beams. A magneto-optical trap (MOT) is formed in

the region between the lenses, from which an optical dipole trap is loaded. Photo-

detection is provided mainly by single photon avalanche photodiodes (SPADs). A

pair of CCD cameras are used to collect fluorescence from the atoms along, and

perpendicular to, the lens axis. A stub antenna provides a microwave field which

is incident perpendicular to the lens axis.
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pair, the planar MOT beams intersect at an angle of 20◦. At larger angles

the MOT beams would clip the lenses.

After passing through the vacuum chamber the probe beam is coupled into an

optical fibre and sent to single-photon avalanche photodiodes (SPADs). The

single-photon detection system is described in more detail in section 4.3. The

collection fibre for the probe beam can also be used to collect fluorescence

from atoms trapped in the MOT or the dipole trap. In addition, CCD

cameras are used to image the atom cloud. An off-axis CCD camera is used

to collect fluorescence from atoms in the MOT. As will be discussed in section

4.2.2, this is mainly for measuring the atom number and the temperature of

the atoms in the MOT. It is also used to position the atom cloud between the

aspheric lens pair. A second, electron-multiplying CCD camera is used to

collect fluorescence along the lens axis. This is mainly used to image atoms

in the dipole trap.

When collecting the probe beam or fluorescence along the lens axis, several

sources of background light must be suppressed in order to achieve reasonable

signal to noise levels. The two main sources of background light come from

the dipole trap beam and the coupling beam. These two wavelengths are

attenuated using three narrow-band interference filters (Semrock LL01-780-

25), which transmit more than 90 % of the 780 nm light.

In addition to the optical laser fields, a microwave field can be used to couple

adjacent Rydberg states. The microwave field is emitted from a stub antenna

and is incident at right-angles to the lens axis.

The excitation scheme for laser cooling in the MOT is shown in figure 4.2

(a). The MOT uses cooling light on the 5s2S1/2(F = 2) → 5p2P3/2(F = 3)

transition, and repump light on the 5s2S1/2(F = 1) → 5p2P3/2(F = 2) tran-

sition. The details of the laser system and the modulation-transfer locking

scheme used for the cooling light can be found in reference [47]. The probe

light originates from the same laser as the cooling light. The repump laser is

locked using the DAVLL technique described in [81].

The Rydberg excitation scheme is shown in figure 4.2 (b). The circularly

polarised probe light drives σ+ transitions on the same hyperfine transition

as the cooling light. The coupling light drives σ− transitions and is locked
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Figure 4.2: Atomic level schemes used for laser-cooling and Rydberg excitation

of atoms. (a) The laser-cooling of 87Rb uses two distinct laser frequencies. In

addition to the cooling light, repump light pumps atoms which have fallen into the

F = 1 ground state back onto the cooling transition. (b) Atoms are coupled to a

2ns1/2 Rydberg state via the intermediate 25p3/2 state using a probe (780.2 nm)

and coupling laser (480 nm). Adjacent Rydberg states can be coupled with a

microwave frequency field. Prior to Rydberg excitation repump light is required

to pump atoms onto the probe transition.

using the EIT scheme described in [82]. The microwaves are linearly po-

larised along the quantisation axis and drive π transitions. Ideally atoms are

optically pumped into the 5s2S1/2(F = 2,mF = 2) state before excitation.

This simplifies the situation since only one excitation pathway is followed.

The coupling of the atoms to the probe field is also maximised for this tran-

sition [83]. Optical pumping is discussed briefly in section 5.3.2. However it

is important to note that prior to excitation, while the atoms are held in the

dipole trap, the atomic population is distributed among the F = 1 ground

state. Repump light is therefore applied prior to excitation to pump atoms

into the F = 2 ground state. The repump light originates from the same

fiber as the probe beam and also drives σ+ transitions.

The power and the detuning of the cooling, repump, and probe beams can

be controlled using independent double-pass AOMs. For example, when
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measuring probe absorption and EIT spectra the detuning of the probe beam

is varied using an AOM. The power of the coupling light is controlled using

an EOM (Leysop EM 200K). This allows fast switching of light which is

useful for the photon storage experiments described in chapter 7.

4.2 MOT

Typically optical dipole traps have trap depths which are on the order of

mK. Therefore in order to load a dipole trap a cold source of atoms is re-

quired. A cold atomic cloud is formed from a background of thermal 87Rb

atoms in the vacuum chamber, which originates from a dispenser. This cloud

is formed using a magneto optical trap (MOT). The necessity of having a

cold sample of atoms extends beyond loading of the dipole trap. In order

for the blockade radius to be on a scale comparable to the extent of the

atomic medium, Doppler broadening needs to be suppressed. In addition, as

discussed in section 3.2.2, cold atoms are required to effectively store optical

photons in Rydberg states. For room temperature atoms, motional dephas-

ing would destroy the phase coherence of the spin wave on a time scale on

the order of 1 ns [78]. In order to access usable time scales for storage and

subsequent manipulation of the stored states, temperatures on the order of

µK are required.

Since the optical dipole trap is loaded with atoms from the MOT, the cloud

must be located in the region between the aspheric lens pair. This requires

careful alignment of the MOT beams. The position of the MOT is also

sensitive to the field produced by the bias coils, which means that the beam

alignment has to be done in conjunction with optimisation of the magnetic

field cancellation. Since the planar MOT beams intersect at an angle of 20◦

they form an interference pattern with a much greater contrast than if the

MOT beams were in the standard 90◦ configuration. As the interference

pattern is not stable, the atomic cloud moves to follow the high intensity

fringes. This causes issues with the stability of the dipole trap loading as

will be discussed later.
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4.2.1 Experimental sequence

The experimental sequence used for loading the MOT and imaging the atoms

is shown in figure 4.3. The MOT is typically loaded with a magnetic field

gradient of 15 G cm−1. Following this there is a molasses stage where the

quadrupole coils are turned off, and the detuning of the cooling light is in-

creased. The molasses stage reduces the temperature of the atoms via sub-

Doppler cooling [84]. After a time-of-flight period of 1 ms where all of the

laser light is extinguished, the atoms are imaged using the MOT beams for a

period of 0.3 ms. The fluorescence from the atoms is collected on the off-axis

CCD camera shown in figure 4.1. The pixel count of the CCD camera is

calibrated using beams of known power. This allows the fluorescence counts

from the atoms in the MOT to be converted into an atom number. The

magnification of the imaging system is also calibrated so that the size of the

cloud can be determined.
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Figure 4.3: Schematic of the timing sequence used for loading and imaging the

atoms in the MOT. The experimental parameters during the “MOT” stage are

chosen to maximise the atom number, whilst the parameters during the “Molasses”

stage are chosen to minimise the atom temperature.
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4.2.2 Optimisation

The optimum experimental parameters for loading the MOT will now be

studied. The two properties of interest are the number of atoms loaded, and

their temperature. Since the atoms in the MOT are ultimately transferred

to an optical dipole trap, a full characterisation of the MOT is not of pri-

mary importance. The experimental parameters were eventually adjusted to

maximise the number of atoms loaded into the dipole trap (see section 5.2.2).
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Figure 4.4: Optimising the atom number loaded into the MOT. (a) Effect of

varying the magnetic field gradient, dB/dz, at the center of the quadrupole trap.

(b) Effect of varying the intensity of the cooling light, Ic. (c) Effect of varying the

intensity of the repump light, Ir. (d) Effect of changing the detuning of the cooling

light, ∆.
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However, optimisation of the MOT performance is a natural starting point

before considering loading of the dipole trap.

The dependence of the number of atoms loaded into the MOT as a func-

tion of various parameters was first examined. The molasses stage of the

sequence shown in figure 4.3 was not used for these experiments. The results

shown in figure 4.4 show that the atom number is relatively sensitive to the

magnetic field gradient and the cooling light parameters. After setting the
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Figure 4.5: Minimising the temperature of the atoms after the molasses cooling

stage. (a) Effect of changing the duration of the molasses stage. (b) Effect of

changing the intensity of the cooling light, Ic. (c) Effect of changing the intensity

of the repump light, Ir. (d) Effect of changing the detuning of the cooling light,

∆. Representative errorbars are shown on selected data points.
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experimental parameters to optimise the atom number, a molasses stage was

introduced to minimise the temperature of the atoms. The dependence of

the atom temperature on the laser parameters during the molasses stage is

plotted in figure 4.5. The temperature of the atoms was measured using a

standard time-of-flight technique [85]. It can be seen that the temperature

of the atoms is relatively insensitive to the duration of the molasses stage. In

contrast to the optimum conditions for loading the trap, the minimum tem-

peratures are obtained with far-detuned, relatively weak cooling light. This

behavior is in qualitative agreement with other work, for example [86]. The

methods used to measure the atom number and temperature are described

in more detail in reference [47].

In figure 4.6 the number of atoms in the MOT is studied for different load

times. It can be seen that after roughly 6 s the number of atoms has satu-

rated. Note that due to systematic errors such as the collection efficiency of

the imaging system, the fractional uncertainty on the atom number in the

MOT is approximately 20%. For a 1 s load time around 2 × 105 atoms are

loaded into the MOT. The cloud radius is roughly 0.1 mm (standard devia-

tion of Gaussian fit). The atom number is probably limited by the small size

of the MOT beams and the small angle at which the planar beams intersect.
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Figure 4.6: MOT loading curve. The atom number in the MOT saturates after

a load time of roughly 6 s.
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4.3 Single-photon detection

Since the aim of this experiment is to create and manipulate light at the

single-photon level, a detection system capable of observing the quantum

nature of a light field is required. As the probe beam is very tightly focused,

the saturation intensity of the probe transition corresponds to powers in

the region of only 40 pW. Low-noise, high sensitivity detectors are therefore

required.

To detect these weak light fields, single-photon avalanche photodiodes

(SPADs) were employed (PerkinElmer SPCM-AQRH-14-FC). The detectors

have a dark-count rate of roughly 50 Hz and a dead-time of 28 ns. The typi-

cal background count rate on the SPADs is around 2 kHz. The 480 nm beam

accounts for most (around 70 %) of the background light. The contribu-

tion from ambient light in the laboratory is negligible. The detectors can be

gated with an external TTL signal. This is very useful as the detector only

counts photons during the periods of interest, reducing background counts.

The SPAD emits a TTL pulse for every counting event. These TTL pulses

are time-tagged using a commercial counting card (SensL HRMTime). The

time-tagged photon events are recorded on a computer for post-processing.

The maximum photon count rate that can be recorded is limited by the

counting card to roughly 2 MHz. The SPADs are capable of detecting count

rates in the region of 25 MHz.

4.3.1 Quantum states of light

Classical and quantum states of light can be distinguished by measuring the

photon statistics of the field under consideration [87]. To provide some insight

into this we will consider two different quantum states of light. For simplicity

single-mode excitations, where the electric field has a single wavevector and

polarisation, will be considered.

A single photon state, |1〉, is an eigenstate of the photon number operator,

n̂ = â†â, where

n̂|n〉 = n|n〉. (4.1)

Here a† and a are creation and annihilation operators respectively. The
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photon number state |n〉 has no number uncertainty, i.e. its variance (∆n)2 =

0. Photon number states are also known as Fock states.

The photon number state will now be compared with the quantum state

which is the closest analogue to a classical field, the coherent state. A coher-

ent state is a good approximation to the field emitted by a laser [88]. It is

given by

|α〉 = exp
(
− |α|

2

2

) ∞∑
n=0

αn

(n!)1/2
|n〉, (4.2)

where |α|2 = 〈n〉. A coherent state is a superposition of photon number

states with a Poissonian distribution. It follows that the number uncertainty

of this state is non-zero. Its variance is equal to (∆n)2 = 〈n〉. As will be

discussed in the following section, classical fields cannot have sub-Poissonian

photon statistics. A suppression in the photon number variance of a state be-

low the level of a Poisson distribution can therefore reveal its non-classicality.

In principle the photon statistics of a field can be obtained through a direct

measurement of the photon number distribution. The Mandel Q parameter

[89] can then be used to quantify the nature of the fields photon statistics.

However, this method is sensitive to losses between the source and detector

[90]. Another method, which is immune to losses, involves measuring inten-

sity correlations of the light field [91]. This is introduced in the following

section.

4.3.2 Intensity correlations

Temporal correlations in the intensity of a light field, known as its degree

of second order coherence, g(2), can reveal non-classical properties. Initially

a classical field, with cycle averaged intensity Ī, will be considered. In this

case g(2) can be written as [88]

g(2)(τ) =
〈Ī(t)Ī(t+ τ)〉

〈Ī2〉 , (4.3)

where τ = t2−t1 is the time delay between intensity measurements performed

at t1 and t2. This assumes a stationary light field where the processes re-

sponsible for producing intensity fluctuations are not time dependent [88]. In
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other words g(2) is only a function of the delay between t1 and t2, τ , not their

absolute values. The angled brackets represent statistical averages. It will

be assumed that g(2) has no spatial dependence. The g(2) function quantifies

the correlation between intensity fluctuations separated by τ . Its calculation

involves the cross correlation

〈Ī(t)Ī(t+ τ)〉 =
1

T

∫
T

Ī?(t)Ī(t+ τ)dt. (4.4)

Here T represents a time scale which is large compared to the time scale of

the intensity fluctuations being studied. Classically, the possible values of

g(2)(τ = 0) are bounded by 1 ≤ g(2)(0) ≤ ∞ [88].

The experiments described in this thesis involve pulses of light, therefore

an important consideration is whether the assumption of stationary light is

valid. The g(2) measurements described in chapters 7 and 8 do not involve the

correlation of temporally separate sections of the light pulse. It is therefore

not significant that the light is in the form of a pulse since the intensity

fluctuations which are being cross-correlated should in principle be identical.

When considering a quantised light field, the classical intensity Ī must be

replaced by the quantum intensity operator. It is then possible to show that

g(2) can be written as [88]

g(2)(τ) =
〈n(n− 1)〉
〈n〉2 =

(∆n)2 − 〈n〉
〈n〉2 + 1, (4.5)

where (∆n)2 is the variance of the photon number. In contrast to the possible

values of g(2)(0) allowed by equation 4.3, its possible values now lie in the

range 0 ≤ g(2)(τ) ≤ ∞ [88]. Values of g(2) below 1 correspond to sub-

Poissonian statistics and signify quantum states of light. For a (non-vacuum)

number state equation 4.5 reduces to

g(2)(τ) = 1− 1

n
. (4.6)

It follows that for a single photon number state g(2) = 0. In contrast it can

be shown that for a coherent state g(2) = 1 for all α [88].

In principal g(2) can be measured with a single detector as long as its temporal

resolution is fast compared to the time-scale over which intensity fluctuations
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are being investigated. The finite dead-time of the detector means that in

general this requirement is not met. A solution to this problem is to use two

detectors arranged in a Hanbury-Brown-Twiss configuration, as illustrated

in 4.7.

Figure 4.7: Hanbury Brown Twiss interferometer. A detector is placed at each

output arm of a 50:50 beam splitter. In this experiment the photon counts, P1

and P2, on single-photon counters (SPADs) are cross-correlated.

Labeling the output arms of the beamsplitter 1 and 2, g(2) can now be written

g(2)(τ) =
〈n1(t)n2(t+ τ)〉
〈n1(t)〉〈n2(t)〉 . (4.7)

In comparison with figure 4.7, n1 and n2 in equation 4.7 correspond to the

photocount distributions P1 and P2 on single-photon detectors 1 and 2 re-

spectively. In this experiment it is convenient to discretise the photocount

distributions in time windows corresponding to the pulse repetition rate of

the source. P1 and P2 therefore correspond to arrays of equal length, N,

where each element is the number of photon counts recorded per experi-

mental realisation. The Wiener-Khinchin theorem [92], which is analogous

to the convolution theorem [93], provides a convenient way to calculate the

cross-correlation between these two arrays. The required cross-correlation is

reduced to a calculation of the Fourier transforms of the photocount signals

P1 and P2, and gives

g(2)(τ) =
F−1(F(P1)F?(P2))

(
∑

N P1

∑
N P2)/N

, (4.8)

Equation 4.8 was used to calculate g(2) is this experiment.

It is important to consider the effect that a finite background signal has when
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measuring g(2). In the presence of background light the value measured,

g̃(2)(τ), is given by [94]

g̃(2)(τ) =
(

1 +
B

S

)−2

(g(2)(τ)− 1) + 1, (4.9)

where B/S is the ratio of the background light level to the true signal light be-

ing measured, and g(2)(τ) is the value that would be measured in the absence

of any background light. Note that it has been assumed that the background

light is uncorrelated with the signal light, and that the background light has

Poissonian photon statistics. The function given in equation 4.9 is plotted

in figure 4.8 for a single photon signal, i.e. for g(2)(τ) = 0. It can be seen

that even relatively small background light levels can significantly reduce the

observed suppression in g(2). The values of g(2) presented in this thesis have

been corrected for the finite background level against which measurements

were performed.
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Figure 4.8: Variation of the measured value of the second order correlation

function, g̃2(0), in the presence of a background signal. As the ratio of the back-

ground signal to the single photon signal increases, the observed suppression in

g2(0) rapidly decreases.
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Microscopic dipole trap

In the previous chapter it was shown that approximately 2× 105 atoms can

be loaded into the MOT in 1 s giving a peak atomic density of the order

1 × 1010 cm−3. The peak density corresponds to an average interatomic

spacing of roughly 3 µm. Since the waist of the probe beam is 1.2 µm,

it is clear that the probe field overlaps very poorly with the atoms in the

MOT. In order to maximise the coupling between the probe beam and the

atomic sample, the spatial density distribution of the atoms needs to be

more closely matched with the spatial mode of the probe beam. This requires

strong spatial confinement of the atoms which is achieved using a red-detuned

optical dipole trap. In this chapter the principles of forming an optical trap

from a strongly focused laser beam will be discussed. The techniques used to

align the trap with respect to the excitation beams and to characterise the

properties of the trap are also given.

5.1 Theory

The key concepts of dipole trapping can be understood using the results of

section 3.1, where the response of a two-level atom in a classical electro-

magnetic field was considered. The notation used below follows this section.

Dipole potentials occur due to the dispersive atom-light interaction. The

dipole potential, U , is given by [95]

43
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U = −1

2
〈Re(d) ·E〉, (5.1)

where the brackets represent a time average over the quickly oscillating elec-

tric field and dipole moment. The real part of the dipole moment is related

to the real part of the susceptibility through equation 3.1. Taking the real

part of the susceptibility from equation 3.5, in the limit of large detunings of

the laser field it can be shown that the dipole potential is given by

U(r) =
3πc2

2ω3
21

Γ21

∆
I(r). (5.2)

Here ∆ = ω − ω21 is the detuning of the trapping light from the atomic

resonance frequency, where ω is the frequency of the trap light. The spatial

variation of the dipole potential arises from its dependence on the local in-

tensity I(r). The gradient of the dipole potential results in a force on the

atoms.

The associated scattering rate of the trap light is given by Γscatt = Γ21ρ22.

The population of the excited state, ρ22, can be found from the Liouville

equation [65]. In the limit of large ∆ it can then be shown that

Γscatt(r) =
3πc2

2~ω3
21

(Γ21

∆

)2

I(r). (5.3)

It can be seen that for a given intensity the dipole potential scales as 1/∆,

whereas the scattering rate scales as 1/∆2. Heating of atoms due to scattering

of photons can therefore be made negligible using a far off-resonance trap [96].

The sign of the detuning determines whether atoms are trapped in the high

intensity or low intensity region of the optical field. A red detuned trapping

beam with a wavelength of 910 nm is used in this experiment. Atoms are

therefore trapped in the high intensity region of the field. Note that the

expressions above only apply when the rotating wave approximation is valid.

When calculating the properties of the dipole trap used in this experiment

the rotating wave approximation was not taken since the light field is far-

detuned from the atomic transition frequency.

For a multi-level atom such as Rb the principles of dipole trapping described

above still hold. However, the dipole potential becomes state dependent [95].
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With a red-detuned trap, the common way to form a minimum in the dipole

potential is to focus the trapping beam. For a Gaussian trapping beam

propagating along z, the resulting potential is of the form [97]

U(r, z) = U0
w2

0

w2(z)
exp
(−2r2

w2(z)

)
, (5.4)

where the 1/e2 radius of the beam is given by

w(z) = w0

√
1 +

( z
zR

)2

, (5.5)

and the trap depth, U0, in this work can be found from

U0 =
3πc2

2

(1

3

ΓD1

ω3
D1

∆D1

+
2

3

ΓD2

ω3
D2

∆D2

)
× 2P

πw2
0

. (5.6)

Here w0 is the waist of the trapping beam, zR is its Rayleigh range, P is

the power of the beam, and ∆D1,D2 refer to the detuning of the trap light

from the D1 and D2 resonance frequencies, ωD1,D2, respectively. For the trap

wavelength used in the following experiments the contribution of both the

D1 and D2 lines must be taken into account to obtain accurate estimates of

the properties of the trap.

An important property of the trapped atomic cloud is its size. The size of a

thermal cloud in a harmonic trapping potential is related to its temperature,

T , according to [95]

σr =

√
kBTw2

0

4U0

, (5.7)

and,

σz =

√
kBTz2

R

2U0

. (5.8)

Here σi is the standard deviation of the Gaussian density distribution in

direction i, and m is the mass of the 87Rb atom. The harmonic potential is

a suitable approximation to the Gaussian potential in equation 5.4 provided
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that kBT << U0 [95]. The dependence of the size of the cloud on the waist

of the trapping beam highlights the necessity of tight focusing in this work.

5.2 Trap loading and optimisation

The optimum experimental parameters for loading the MOT, discussed in

section 4.2.2, do not necessarily correspond to the optimum conditions for

loading atoms into the dipole trap. To maximise the optical depth of the

atomic cloud its density needs to be maximised. It is therefore important to

load as many atoms as possible from the MOT into the dipole trap, whilst

keeping the temperature of the cloud as low as possible. As will be discussed

in this section, the number of atoms loaded into the dipole trap is limited

by the small waist of the trapping beam and the low density of the MOT.

A description of the home-built laser system which provides the light for the

dipole trap can be found in section A.1.

5.2.1 Rough alignment

As mentioned previously it is desirable to match the cloud size with the

waist of the probe beam to achieve strong atom-light coupling. Equations

5.7 and 5.8 provide an estimate of the size of an atomic cloud in a dipole

trap of waist w0, at a temperature T . Assuming a trap depth of 0.6 mK

and an atom temperature of 0.1 mK, a trap beam with a waist of 5 µm

gives a cloud with σr = 1 µm and σz = 25 µm. The radial extent of the

cloud is comparable to the waist of the probe beam in this case. A waist of

around 5 µm for the trapping beam is therefore required in this experiment.

However, overlapping the co-propagating probe and dipole trap beams which

both have microscopic waists is challenging.

The initial alignment of the beams proceeded as follows. The probe beam

was aligned through the aspheric lens pair in the vacuum chamber using

methods described in [47]. The alignment procedure involved setting the

spot size on the input aspheric lens to give the desired beam waist, whilst

also adjusting the convergence of the incoming beam so that it matched the

divergence of the outgoing beam. Matching the convergence of the incoming
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and outgoing probe beam allowed the position of its focus to be centered

between the lenses.

The next step was to align the dipole trap beam such that it overlapped the

probe beam. The dipole trap beam originates from a separate optical fiber

to the probe beam, as shown in figure 4.1. The two beams are combined on

a dichroic mirror before entering the vacuum chamber and passing through

the aspheric lenses. The beams were overlapped radially to within several

microns by imaging them at two positions separated by a distance of approx-

imately 5 m. However overlapping the foci of the beams longitudinally was

more difficult since the beams could not be imaged in the focal plane. The

desired waist of 5 µm for the dipole trap beam constrains its spot size on

the input aspheric lens. The main method of tuning the longitudinal posi-

tion of the focus of a beam is to change its convergence on the input lens.

However, for a fixed distance between the source and the lens, changing the

beam convergence also changes its spot size on the lens. This results in a

variation of the focused beam waist. Zemax software was used to study the

interdependence of the beam properties. The variation of the effective focal
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Figure 5.1: Zemax calculations to determine the sensitivity of the effective focal

length (EFL) of the input aspheric lens on the properties of the input beam. (a)

Dependence of the EFL and waist of the focused beam on the convergence of the

incoming beam. The distance between the source and input aspheric lens is fixed.

(b) Dependence on the distance between the source and the input aspheric lens

for a fixed convergence of the input beam.
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length (EFL) and the waist of the dipole trap light with beam convergence

is illustrated in figure 5.1 (a). Note that the distance between the source of

the dipole trap light and the input aspheric lens is fixed. For changes in the

beam convergence of only 1 mrad, the EFL can be scanned over a distance

of over 200 µm. The EFL is less sensitive to changes in the distance between

the source and the input aspheric lens for a fixed beam convergence. This is

shown in figure 5.1 (b). For example, a change in the EFL of 100 µm is only

possible when displacing the source by more than 15 cm. The red dashed

lines in figure 5.1 show the convergence and source to lens distance required

to obtain an EFL matching that of the probe beam, along with the resulting

trap waist. Using the values predicted by Zemax, the beam convergence and

the source to lens distance were set to roughly overlap the beams. Given

the measured convergence of the beam and its estimated spot size on the

input aspheric lens, the waist of the dipole trap beam is estimated to be

5.1 ± 0.2 µm. Note that this value applies after the fine alignment of the

dipole trap beam described later in section 5.2.3.

5.2.2 Trap loading

Following the rough alignment of the trap beam, the loading of atoms into

the dipole trap from the MOT is studied. The timing sequence for loading

the dipole trap is shown in figure 5.2. The MOT is first loaded, followed

by a molasses stage. The dipole trap light is turned on part way through

the MOT load stage. As will be discussed shortly, having the dipole trap on

permanently while loading the MOT is detrimental. Following the molasses

stage there is a depump period where the repump light is extinguished. The

depump stage pumps atoms into the 5s2S1/2(F = 1) ground state. This has

been shown to be an important step when loading dipole traps as it suppresses

atom loss mechanisms such as hyperfine changing collisions and light-assisted

collisions [98]. The atoms are later repumped into the 5s2S1/2(F = 2) state

in preparation for excitation by the probe beam. This is done with repump

light originating from the same optical fiber as the probe beam. The stages

labeled “hold” ensure that mechanical shutters used to block certain beams

have sufficient time to open/close. Note that the quadrupole coils for the
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Figure 5.2: Timing sequence for loading the dipole trap. The MOT loading and

molasses stages are followed by a depump period where atoms are pumped into

the ground state. The atoms are later repumped ready for probe excitation.

MOT are turned off slowly (over a few ms) at the beginning of the molasses

stage. This is done to avoid vibrations arising from movement of the coils as

the current through them is switched. When current runs through the MOT

coils they experience an attractive force which flexes the structure in which

they are mounted.

The atoms in the dipole trap are imaged using methods similar to those

described for the MOT in section 4.2. Following a time of flight period

of 10 µs where the atoms are released from the trap, the MOT beams are

turned on. The on-axis fluorescence from the atoms is then collected onto a

SPAD. An example of the fluorescence signal obtained can be seen in figure

5.7 (b). The photon count on the SPAD is converted into an atom number

using the estimated detection efficiencies and scattering rate of the imaging

light. Due to the small numbers of atoms loaded into the trap it was not

possible to collect sufficient off-axis fluorescence to image the cloud on a

CCD camera. Note that the loading of the dipole trap was optimised for a

cross-trap configuration as this was the arrangement originally planned (see
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appendix A.2). However, the optimum parameters for loading of the axial

trap only were found to be roughly the same.

The experimental parameters during the molasses stage were optimised to

maximise the number of atoms loaded into the crossed dipole trap. The

loading is not improved by adjusting the experimental parameters during

the MOT load stage. This is presumably because optimal MOT loading
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Figure 5.3: Optimising the number of atoms loaded into the crossed dipole trap.

The atom number in the dipole trap is studied as a function of various experimental

parameters during the molasses stage. (a) Dependence on the duration of the

molasses phase. (b) Dependence on the detuning of the cooling light, ∆. (c)

Dependence on the intensity of the cooling light. (d) Dependence on the intensity

of the repump light.
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gives the best starting point for loading the dipole trap. Studies of the

dipole trap loading are illustrated in figure 5.3. It can be seen that the

optimum molasses duration is around 60 ms. This is much longer than the

molasses duration required to minimise the atom temperature in the MOT.

The increased duration could reflect the time scale over which atoms are

transferred from the MOT into the dipole trap. It can also be seen that

the cooling light needs to be much further detuned to maximise the atom

number compared with when loading the MOT. This is probably due to the

fact that light assisted collisions are suppressed at these large detunings [98].

The sensitivity of the atom number on the intensity of the cooling light also

reflects this. Sufficient cooling light is required for efficient cooling of the

atoms into the trap, but high cooling intensities increase the loss rate [98].

It is also important to consider the optimum time during the experimental

cycle at which to turn the dipole trap on. In figure 5.4 (a) the atom number

in the dipole trap is studied as a function of its overlap time with the MOT.

The duration of the MOT load prior to the trap beam being turned on is
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Figure 5.4: Dependence of atom number in the dipole trap on its overlap time

with the MOT loading stage. (a) Effect of changing the overlap time of the dipole

trap and MOT following a fixed MOT load time of 1 s. (b) Effect of changing the

MOT load time preceding a fixed overlap time of 500 ms with the dipole trap. The

red data point corresponds to the case where the dipole trap is on permanently

i.e. during the entire MOT load.



Chapter 5. Microscopic dipole trap 52

fixed at 1 s. It can be seen that the atom number increases with the overlap

time. For overlap times beyond 500 ms the atom number does not increase

significantly. In figure 5.4 (b) the variation of the atom number as a function

of the MOT load time is plotted. Following the MOT load there is a period

of 500 ms where the dipole trap is overlapped with the MOT. Despite the

fact that the atom number in the MOT saturates after a loading time of

roughly 6 s, extending the MOT load time beyond 1 s does not lead to an

increase in the number of dipole trapped atoms. This is probably because

the density of the atoms in the region of the dipole trap does not increase

beyond this time. Turning the dipole trap on during the entire MOT load

(red data point) significantly reduces the number of atoms loaded. This is

probably because the Stark shifts produced by the trap light interfere with

laser cooling in the MOT. Alternation of the MOT and dipole trap beams

could potentially improve the trap loading [99].

Over 200 atoms can be loaded into the crossed-dipole trap. The number of

atoms that can be loaded into the axial trap alone with the same experi-

mental parameters is roughly 50% of the cross-trap number. Therefore there

are typically around 100 atoms loaded into the axial dipole trap. Due to

systematic errors the fractional uncertainty on the atom number in the data

presented is approximately 50%. In addition it can be seen that the statisti-

cal uncertainty on the atom numbers is large. The large fluctuations in the

number of atoms loaded into the dipole trap is attributed to instability of the

MOT. In chapter 4.2 it was pointed out that the planar MOT beams create

an interference pattern due to the small angle at which they intersect. As a

result, the atom cloud moves as it follows the fringes of high intensity. If the

waist of the dipole trap beam happens to be in a low intensity fringe, it can

be expected that the efficiency of dipole trap loading is reduced.

The number of atoms loaded into the dipole trap is probably limited by the

density of the cloud in the MOT. The small waist of the dipole trap beam

means that there is poor overlap with the density distribution of the MOT.

In principle compression of the cloud could be achieved by increasing the

gradient of the quadrupole field [100]. However, this was not feasible in the

current experiment as the electrical currents required for a compressed MOT

phase were too high.
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Figure 5.5: Lifetime of atoms in the dipole trap. From the fit the 1/e lifetime

is 6± 1 s.

The lifetime of the atoms in the dipole trap was measured by varying the

time for which they were held before imaging. The lifetime curve is shown

in figure 5.5. The data has been fit assuming an exponential decay giving a

1/e lifetime of 6± 1 s. The trap lifetime is much longer than the time scales

over which experiments are performed.

5.2.3 Fine alignment

The rough alignment of the probe and dipole trap beams discussed in section

5.2.1 provides a starting point for more precise overlap of the beams. An

atomic signal is used to give a more precise measure of their alignment. The

absorption of the probe beam by the atomic cloud is the quantity of most

interest, since this provides a measure of the optical depth of the medium.

In section 3.2.2 the importance of achieving a high optical depth for efficient

photon storage was discussed.

An electron-multiplying CCD camera was used to image the dipole trapped

atoms. Fluorescence was collected along the aspheric lens axis of the vacuum

chamber (see figure 4.1). Figure 5.6 shows an image of the MOT and the

dipole trap taken using the CCD camera. The probe beam was overlapped
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 

Figure 5.6: (a) Fluorescence from atoms in the MOT. (b) Fluorescence from

atoms in the dipole trap. In both cases the fluorescence is collected along the

aspheric lens axis.

with the fluorescence signal from the dipole trapped atoms, providing a fur-

ther diagnostic of the radial alignment of the trap and probe beams.

Initially there was no evidence of absorption of the probe beam by the dipole

trapped atoms. It was therefore difficult to use this as a diagnostic of the

beam overlap. Since a fluorescence signal from the atoms was available, an-

other diagnostic was developed to exploit this. The method involves imaging

the atoms without any repump light. Recall that after the depumping stage

the atoms are in the F = 1 ground state. Repump light originating from the

same optical fiber as the probe beam is then applied, pumping atoms into the

F = 2 ground state. Applying imaging light without any repump light means

that only the atoms which have been repumped fluoresce. The amount of

fluorescence obtained relative to the case where the atoms are imaged with

repump light therefore gives a diagnostic of the beam overlap. The level

scheme for the sequence is shown in figure 5.7 (a). The alignment of the trap

and probe beams is adjusted to maximise the fluorescence signal. This is

done using successively smaller repump intensities to increase the sensitivity

of the method. An example of the fluorescence signal obtained on a SPAD is

shown in figure 5.7 (b). Note that the atoms are imaged in free-flight. The

decay in the fluorescence signal with imaging time occurs as atoms move out

of the aspheric lens axis. Figure 5.7 (c) illustrates the method used to con-
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Figure 5.7: Fluorescence signal as a diagnostic of dipole trap alignment. (a)

Repump light originating from the probe fiber is used to pump atoms from the

F = 1 ground state into the F = 2 ground state. The atoms are then imaged

without any repump light. (b) Fluorescence signal collected on a SPAD for the

case where the atoms are imaged with (blue) and without (red) repump light.

The non-zero fluorescence signal when the atoms are imaged without repump light

comes from atoms repumped prior to imaging. (c) Cage system used to weakly

focus and align the dipole trap beam. The convergence of the beam can be varied

with micrometer adjustment of the position of the focusing lens.

trol the alignment of the dipole trap beam. The trap light originates from

an optical fiber and is weakly focused by an aspheric lens housed in a cage

mount. A micrometer adjustment allows the position of the focusing lens,

and hence the beam convergence to be precisely varied. Changing the beam

convergence varies the longitudinal position of the trap waist. Two mirrors

after the cage mount allow the beam to be aligned through the aspheric lens

pair in the vacuum chamber.

After following the procedures described above, a small probe absorption

signal was visible. To optimise this signal, the longitudinal position of the

dipole trap was varied by changing its beam convergence. The variation

of probe absorption with the position of the dipole trap focusing lens is
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Figure 5.8: Variation in probe absorption with position of dipole trap focusing

lens. The red curve is a guide to the eye (Gaussian with standard deviation

10 µm). From the measured dipole trap beam convergences at the two marked

positions (dashed lines), Zemax was used to estimate the corresponding EFL of

the focused spot inside the vacuum chamber. The change in beam convergence of

roughly 0.18 mrad between the two points translates to a change in the EFL of

approximately 40 µm.

plotted in figure 5.8. Note that to avoid inhomogeneous Stark shifts, the

atoms were released from the trap when measuring the probe absorption.

However, the probe absorption signal decays very rapidly (see figure 5.11) as

the atoms move out of the probe beam. As a result the absorption signal

cannot be optimised in real-time. It is necessary to perform many cycles of

the experiment to obtain a signal with a reasonable signal to noise level.

It can be seen that the maximum level of absorption of the probe beam is

only around 10 %. To improve the probe absorption a method of real-time

optimisation is required.

5.3 Trap modulation

It is desirable to perform experiments when the atoms have been released

from the dipole trap. As mentioned in the previous section, the trap causes
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broadening of the atomic transition lineshapes since atoms experience a po-

sition dependent Stark shift (see section A.3). The centers of the lineshapes

are also strongly shifted. However since the waist of the probe beam is very

small, when the atoms are released from the trap they leave the excitation

region very quickly. In order to increase the experimental integration time

per shot, the trap is rapidly modulated between an off-state and an on-state,

similar to the procedure demonstrated in [101]. Experiments are performed

during the trap-off states where the trapping light has been mostly extin-

guished. When the dipole trap light comes back on the atoms are then

re-trapped. The use of bottle beam traps using blue-detuned trapping light

can provide an alternative to releasing the atoms from the trap [102].

5.3.1 Sequence

A schematic of a typical trap modulation sequence is shown in figure 5.9 (a).

For probe absorption measurements, the probe light comes on during the

periods where the dipole trap is off. Experimental data is post-processed

 
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

  













Figure 5.9: Dipole trap modulation sequences. (a) For probe absorption mea-

surements the power of the dipole trap is modulated out of phase with the power of

the probe beam. (b) Sequence used to measure losses associated with modulating

the dipole trap.



Chapter 5. Microscopic dipole trap 58

so that only photon counts during the trap-off periods are counted. This is

necessary since a small fraction of the dipole trap light reaches the SPADs.

The sequence used to study the losses associated with modulating the dipole

trap is shown in figure 5.9 (b). The trap is modulated for a period of time

before turning it back on for a few ms. During this “hold” time atoms which

are no longer trapped leave the imaging region. The MOT beams are then

turned on and fluorescence from the atoms is collected on a SPAD. In figure

5.10 (a) fluorescence counts from the atoms are plotted as a function of the

trap modulation frequency. The trap is modulated for a duration of 1 ms.

The modulation frequency must be high enough such that atoms do not

leave the trapping region during the trap-off period. It can be seen that for

trap frequencies below around 60 kHz a large fraction of the atoms are lost

during the trap modulation period. Choosing a trap modulation frequency

is a compromise between the atom loss observed at low frequencies, and

the smaller time available during the trap-off period to do experiments at

high modulation frequencies. The fluorescence counts from the atoms as a
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Figure 5.10: Characterising the loss of atoms when modulating the dipole trap.

(a) Fluorescence signal from the atoms as a function of the trap modulation fre-

quency for a fixed modulation duration of 1 ms. (b) Variation of the fluorescence

signal with duration of trap modulation stage for a fixed modulation frequency

of 200 kHz. The fluorescence signals are normalised to the case where no trap

modulation occurs.
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function of modulation time at a fixed trap modulation frequency of 200 kHz

is plotted in figure 5.10 (b). It can be seen that even after 100 ms the

fluorescence signal remains largely unchanged.

5.3.2 Probe absorption

The variation in probe absorption with trap modulation time will now be

compared to the case where the atoms are released from the dipole trap

completely. The results are shown in figure 5.11. The trap modulation

period is 6 µs, corresponding to a frequency of roughly 167 kHz. These trap

modulation parameters are used throughout the remainder of this thesis.

When releasing the atoms from the dipole trap (black data points) the probe

absorption halves after roughly 30 µs. The time over which experiments can

be performed before the probe absorption begins to drop and the dipole trap

must be re-loaded is on the order of 10 µs. However, when modulating the
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Figure 5.11: Comparison of absorption signal when the dipole trap is turned

off completely (black points), with the absorption signal when the dipole trap is

modulated (blue points). When the trap is turned off the probe absorption signal

vanishes after roughly 0.1 ms. However when the dipole trap is modulated the

absorption signal remains roughly constant over tens of ms.
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dipole trap (blue data points) the probe absorption is constant over tens of

ms. Therefore over three orders of magnitude more signal can be obtained

per experimental cycle using the trap modulation technique. The variation

of probe absorption with trap modulation time is strongly dependent on the

power of the probe field. This is discussed in the next section. Note that the

increase in the probe absorption relative to the values in figure 5.8 is due to

an improvement in the trap alignment and its loading. These improvements

were made as a result of real-time optimisation of the probe absorption signal,

made possible by the trap modulation technique.

To maximimise the coupling of the probe beam to the medium the atoms

can be optically pumped into the 5s2S1/2(F = 2,mF = 2) state. However,

obtaining a diagnostic of the effectiveness of the optical pumping is difficult

in this experiment. A standard method of measuring the fraction of optically

pumped atoms is to magnetically trap them in the quadrupole field used for

the MOT [47]. However, the maximum magnetic field gradient that can be

generated in this experiment is roughly equal to the minimum value required

to magnetically trap the atoms. In addition, it is not known whether the

dipole trap is overlapped with the center of the quadrupole trap. Therefore
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Figure 5.12: Probe absorption as a function of repumping parameters. (a)

Probe absorption spectra for a quantisation field of 1 G (red) and with no quantisa-

tion field (blue). (b) Variation in probe absorption with duration of the repumping

stage.
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loading the magnetic trap is very difficult.

Given the optimised alignment of the dipole trap and probe beams, it is

necessary to consider what other experimental parameters can be varied to

maximise the optical depth of the medium. One stage of the experiment to

consider is the repump period (see figure 5.2), which pumps atoms into the

5s2S1/2(F = 2) state prior to probe excitation. In figure 5.12 (a) probe ab-

sorption spectra are compared with and without an applied quantisation axis.

The quantisation axis is turned on just before the repump stage and remains

on for the rest of the experimental cycle. It can be seen that application

of the quantisation axis leads to a significant increase in probe absorption.

The increase is most likely due to optical pumping by the repump beam. In

figure 5.12 (b) the probe absorption on resonance is plotted as a function of

the duration of the repump stage. After a repump time of roughly 1 ms the

probe absorption signal saturates. It can be seen that even when no repump

light is applied there is some absorption (≈ 25%). This suggests that the

atoms aren’t completely depumped prior to the repump stage.

An additional experimental parameter to consider is the depth of the dipole

trap. Increasing the trap depth should lead to an increase in the loading rate

of atoms [98]. However, the temperature of the atoms is also expected to
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Figure 5.13: Probe absorption and fluorescence signal as a function of dipole

trap depth. (a) Variation of probe absorption. (b) Variation of fluorescence signal

from the atoms.
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increase [98]. The variation of probe absorption with the depth of the dipole

trap is plotted in figure 5.13 (a). The probe absorption initially increases very

rapidly with trap depth before approaching saturation. In figure 5.13 (b)

it can be seen that the corresponding fluorescence signal from the atoms

also increases with trap depth. The increased absorption can therefore be

attributed to an increase in the number of trapped atoms.

All of the experiments that will be discussed in the remainder of this thesis

have been performed with a trap depth of roughly 0.45 mK unless stated

otherwise.

5.3.3 Loss

The absorption of the probe beam as a function of the dipole trap modulation

time shown in figure 5.11 was for a weak probe of approximately 1 pW, corre-

sponding to ≈ 0.03Isat. For higher probe powers the absorption signal decays

at a much faster rate. This is illustrated in figure 5.14, where the decay in

absorption is shown for different probe powers. The decay in absorption oc-

curs due to atom loss from the dipole trap, induced by the probe light. To

escape from the trap an atoms total energy, i.e. kinetic plus potential, must

exceed the trap depth. The decrease in atom number can be considered in

terms of a density dependent loss and a density independent loss [103]. Pos-

sible mechanisms for density dependent loss include light-assisted collisions

between atom-pairs in opposite parity states [104]. The density independent

loss occurs due to radiative heating of individual atoms by the probe beam.

The atom loss rate can be written as [98, 103]

dN(t)

dt
= −ΓN(t)− βN(t)(N(t)− 1)

2
. (5.9)

Here N is the number of atoms, Γ is the one-body loss coefficient, and β

is the two-body loss coefficient. The second term in equation 5.9 can give

rise to very fast loss rates at short times. For now the second term will be

ignored giving

N(t) = N0exp(−Γt), (5.10)

where N0 is the initial atom number.
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In order to fit this function to the data in figure 5.14 it is assumed that

the probe absorption is proportional to the atom number. From the fits to

the experimental data, it is observed that the decay in probe absorption is

reasonably well described by equation 5.10 at probe powers below around

17 pW. At higher probe powers the decay is much faster at short modulation

times, as shown in the inset to figure 5.14 (c). The faster decay probably

signifies the onset of density dependent losses. The one-body loss coefficient,
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Figure 5.14: Decay in probe absorption signal over trap modulation time due

to atom loss from the dipole trap. (a) Probe power of 3.3 pW (0.087Isat). (b)

Probe power of 12 pW (0.32Isat). (c) Probe power of 21 pW (0.56Isat). Inset: The

short time behavior shows evidence of density dependent losses. (d) One-body loss

coefficient, Γ, as a function of probe power.
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Γ, has been extracted from the loss curves at different probe powers and is

shown in figure 5.14 (d). The one-body loss coefficient varies approximately

linearly over the range of probe powers shown.

An alternative explanation for the decay in probe absorption could be

depumping of the atoms caused by the probe light. Since no repump light is

applied during probe excitation it is possible that the atoms are depumped

into the ground hyperfine state where the probe beam is no longer resonant.

To verify that atom loss is in fact responsible for the decay in the absorption

signal, the fluorescence from the atoms after a variable period of probe ex-

citation was studied (using a sequence similar to 5.9 (b)). The fluorescence

signal is shown in figure 5.15, where the signal has been normalised to the

case where no trap modulation or probe excitation occurs. A decay in the

fluorescence signal is observed showing that there is a decay in the atom

number remaining in the trap after the probe excitation period. If the atoms

were simply depumped, and not expelled from the trap, the fluorescence sig-

nal would not decay significantly over the short time scales plotted. The
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Figure 5.15: Fluorescence signal from atoms as a function of dipole trap mod-

ulation time when applying a probe beam (black), and when no probe beam is

applied (blue). The black data points are for a probe power of roughly 20 pW.

The dotted line is the approximate long-time (10 ms-100 ms) fluorescence signal

in the absence of probe light.
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fluorescence signal also provides further evidence of density dependent loss

at short modulation times where there is a more rapid decay in the signal.

The time scale of around 0.5 ms of this decay is similar to that shown in the

inset of figure 5.14 (c).

5.4 Atom temperature

There are several methods available to measure the temperature of the atoms

in the dipole trap. A time of flight measurement, which was used to measure

the atom temperature in the MOT, could be performed. Alternatively given

the waist of the trapping beam and the trap depth, the temperature can be

inferred from the spatial extent of the trapped cloud using equations 5.7 and

5.8. Both of these methods require direct imaging of the atomic cloud which

is difficult in this experiment due to the small atom number in the dipole

trap. As mentioned previously it is only possible to collect fluorescence from

the atoms using the aspheric lenses in the vacuum chamber.

The“release and recapture” technique [105] of measuring atom temperatures

involves releasing the atomic cloud from the dipole trap for a period of time,

before recapturing a fraction of the atoms by turning the dipole trap back

on. The release and recapture procedure is illustrated in figure 5.16 (a).

After preparing the atoms in the dipole trap, the trap is turned off for a

time ∆t. The trap is then turned back on for 50 ms and fluorescence from

the re-captured atoms is collected on a SPAD. Figure 5.16 (b) illustrates the

principle of the measurement. Following its release, an atom with kinetic

energy, K, moves in free-space by a distance which depends on its velocity,

and the release time. When the dipole trap is turned back on the atom

experiences a potential, U , at its new position. Only atoms whose total

energy, E = U+K, is less than the trap depth can be recaptured. Increasing

the time the dipole trap is turned off results in fewer re-captured atoms and

therefore a smaller fluorescence signal.

The variation of the recaptured fraction of atoms with release time allows

the temperature of the atomic cloud to be determined. In order to extract

the temperature a Monte-Carlo model is used to simulate the release and
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

Figure 5.16: Release and recapture procedure. (a) Atoms are released for a

variable amount of time before being recaptured in the dipole trap and imaged.

(b) To be successfully recaptured the total energy of an atom, E = U + K, must

be less than the trap depth, U0.

recapture process. The model used follows the method described in [106].

Given an initial estimate of the atom temperature, the standard deviation

of the spatial distribution and velocity distribution of the atoms can be cal-

culated by assuming a Boltzmann distribution. A random distribution of

atomic velocities and initial positions in the trap is generated using these

standard deviations. For a release time of ∆t the final position of an atom is

calculated from its velocity. The trap potential at the atoms new position is

then calculated. The total energy of the atom is compared to the trap depth

to determine whether it is recaptured. The model is repeated for different re-

lease times. The temperature of the atoms is adjusted to fit the experimental

data.

The results of the release and recapture method are shown in figure 5.17.

Measurements are shown for two different trap depths along with the fit

from the Monte-Carlo model (red lines). The temperature of the atomic

cloud increases with the trap depth as expected [98]. The temperatures

obtained correspond to roughly a tenth of the trap depth. For the typical

trap depth of 0.45 mK used in this experiment, the temperature of the cloud

has been measured to be 49± 3 µK.
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Figure 5.17: Release and recapture results. (a) U0 = 0.45 mK. From the fit

the temperature is 49± 3 µK. (b) U0 = 0.23 mK. From the fit the temperature is

22± 2 µK.

5.4.1 Experimental geometry

Using the measured temperature of the atomic cloud and the waist of the

dipole trap beam, the size of the atomic cloud is calculated using equations

5.7 and 5.8 to be roughly σz = 21 µm, σr = 0.8 µm. The peak density of the

cloud is roughly 4 × 1011 cm−3, which is an increase of more than an order

of magnitude when compared with the atomic density in the MOT. For a

blockade radius of 7 µm (typical in this experiment for the 60s1/2 state) the

cloud can support 3 blockade spheres in a chain within σz of the center. This

is illustrated schematically in figure 5.18.

σz ~ 20

Rb

σr ~ 0.8

μm

~ 7 μm

μm

Figure 5.18: Schematic of the experimental geometry. The typical value of Rb

for the experiments in this thesis is 7 µm. Since Rb is larger than both the waist

of the probe beam and the radial extent of the cloud, the system is essentially one

dimensional.
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The location and the number of Rydberg excitations depends on the exci-

tation region, defined by the overlap between the probe and coupling fields.

Since the waist of the probe beam (1.2 µm) is much less than that of the cou-

pling beam (18 µm), the probe field defines where the Rydberg excitations

are created in the cloud. The cloud is essentially one dimensional when Rb

is larger than σr. However, the number of Rydberg excitations allowed along

z is not well defined due to the Gaussian profile of the probe beam and the

atomic cloud. For low probe powers Rydberg excitations are more likely to

be created in the center of the cloud where the density is largest. However,

increasing the power of the probe beam probably increases the probability of

atoms in the wings of the cloud being excited. Note that the Rayleigh range

of the probe beam is 5.8 µm.

In chapter 7 measurements of the photon statistics of the probe field leaving

the cloud will be presented. This gives some insight into the number of

Rydberg excitations that were created in the medium.



Chapter 6

EIT

So far measurements involving the interaction of the dipole trapped atoms

with a single probe field have been considered. As discussed in section 3.2.1,

electromagnetically induced transparency (EIT) can be used to make the

medium transparent to the probe field. When strongly interacting Ryd-

berg states are used in EIT, the response of the medium can be highly non-

linear to changes in the probe intensity due to the dipole blockade effect

[20, 27, 107]. The atom-atom interactions mediate effective photon-photon

interactions [108] which have recently been observed by measuring photon

correlations of the transmitted probe field [20]. EIT therefore provides a

method of mapping the strong interactions between atoms onto an optical

field which has passed through the sample.

In this chapter evidence of dipole blockade in EIT spectra is presented. The

difficulties of observing an associated modification of the photon statistics of

the probe field are discussed. Also, spectra where an additional microwave

field is coupled to the 3-level EIT system are presented. These are used to

calibrate the microwave frequency and intensity.

6.1 Experimental procedure

The excitation scheme and pulse sequence used to measure EIT spectra is

shown in figure 6.1. Following the notation of chapter 3, level |3〉 is a Rydberg

state. For all of the experiments described in this chapter the coupling light

69
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







Figure 6.1: Pulse sequence used to measure EIT spectra. (a) The probe beam

is coupled to the 60s1/2 Rydberg state in a ladder scheme. (b) The probe and

coupling beams are pulsed on during the 3 µs period when the dipole trap is off.

is tuned to the 60s1/2 state. As with the probe absorption measurements, the

excitation light is pulsed out of phase with the dipole trap light. The width of

the probe pulse used is 1.5 µs. This is chosen to be sufficiently long that such

that the bandwidth is less than the width of the EIT window. The coupling

light is turned on before the probe pulse, and turned off after the probe pulse

has been extinguished. As with the probe absorption measurements, photon

counts are only binned during the periods where the dipole trap is off, with

the rest of the counts ignored.

6.2 Weak probe

The natural starting point when measuring Rydberg EIT spectra is to work in

a regime where dipole-dipole interactions are negligible. This can be done by

reducing the principal quantum number of the Rydberg state. Alternatively

a low probe power can be used where there is negligible population of the

Rydberg state.

EIT spectra obtained in the weak probe regime are used to calibrate the Rabi

frequency of the coupling laser, Ωc. The theoretical lineshape used to fit the

spectra is obtained by combining equation 3.2 with the imaginary part of the

susceptibility, taken from equation 3.7. The method used is the same as that

in reference [47]. The fit parameters include Ωc, ∆c, ∆p, γ31, and γ21. Figure

6.2 (a) shows a probe absorption spectrum in the absence of any coupling

light. When coupling light is added in figure 6.2 (b) a narrow transparency



Chapter 6. EIT 71

−20 −10 0 10
30

40

50

60

70

80

90

100

∆p (MHz)

T
ra

n
sm

is
si

o
n

(%
)

−20 −10 0 10 20

40

50

60

70

80

90

100

∆p (MHz)

T
ra

n
sm

is
si

o
n

(%
)

(a) (b)

Figure 6.2: Probe absorption and EIT spectra for a weak probe with Ωp/2π =

0.9 MHz (0.04Isat). (a) Probe only absorption spectrum. (b) EIT spectrum with

Ωc/2π = 5.6± 0.1 MHz, and ∆c/2π = 0.5± 0.2 MHz.

window appears on resonance. Perfect transparency is not achieved due to

the decoherence between the Rydberg state and ground state, γ31. From

the fit to the data γ31/2π = 0.46 ± 0.07 MHz. Since the 60s1/2 state has

a long lifetime of 103.5 µs (at 300 K) [109], γ31 is dominated by the two-

photon linewidth. It can be seen that the EIT spectrum is not completely

symmetric. This is due to a small detuning of the coupling laser from two-

photon resonance. This is partially compensated by applying a small DC

electric field across the atomic cloud to Stark-shift the Rydberg state.

The group velocity of the probe light under EIT conditions can be estimated

using the fit parameters obtained from the corresponding EIT spectrum.

Since the transmission is given by T = exp(−kχI l), an estimate of the length

of the cloud is required to obtain the imaginary part of the susceptibility.

The dimensions of the atomic cloud are discussed in section 5.4.1. Using the

imaginary component of the susceptibility, the real part of the susceptibility,

χR, can be calculated using equation 3.7. Equation 3.11 can then be used

to calculate the group velocity. The group velocity is estimated to be of the

order 1×103 ms−1 for typical experimental parameters used when performing

EIT. The group velocity can also be calculated for an arbitrary value of Ωc

using equation 3.12. This is useful when calculating the group velocity during
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photon storage, where Ωc is very small and therefore resolving EIT spectra

is difficult.

6.3 Strong probe

The response of a medium undergoing EIT in the regime of dipole blockade

can be extremely non-linear when increasing the power of the probe field

[20, 27, 107]. Generalising equation 3.1, the non-linear response of a medium

is governed by the power-law [11]

P = ε0(χ(1)E + χ(2)E2 + χ(3)E3 + ...), (6.1)

where the polarisation induced in the medium now depends on higher or-

der components of the electric field. Taking into account the non-linear

susceptibility terms, we can define an effective susceptibility given by χeff =

χ(1)+χ(2)E+χ(3)E2. For most materials the higher order susceptibility terms

are small [11]. Therefore in general the contribution of the non-linear terms

in equation 6.1 only becomes significant for large E. However, results shown

in reference [47] show that very large values of the third-order susceptibility,

χ(3), are possible in Rydberg media for modest electric fields. Even stronger

non-linearities occurring at the single photon level were demonstrated in [20].

The third-order susceptibility also gives rise to an intensity dependent refrac-

tive index, which can lead to self-defocusing of the probe beam for repulsive

atomic interactions [110]. Note that inversion symmetry must be broken for

the second-order susceptibility to be non-zero [11]. Therefore χ(2) = 0 in

general for atomic clouds.

To demonstrate this non-linearity, EIT transmission spectra are plotted in

figure 6.3 for two different probe powers. For a weak probe field (blue) there

is a large transparency window on resonance. However when the power of

the probe field is increased (red) the transparency on resonance is reduced

significantly. In the case of high probe powers it is not valid to fit the

spectrum using the susceptibility from equation 3.7 as this neglects the effects

of population transfer to the Rydberg state and interatomic interactions. The

line through the data points is purely a guide to the eye.
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Figure 6.3: Suppression of transmission on EIT resonance for a strong probe

beam. For a weak probe beam (blue) with Ωp/2π ≈ 0.9 MHz (0.04Isat) there is a

large fraction of transmitted probe light. When increasing the power of the probe

beam (red) to Ωp/2π ≈ 4.5 MHz (1.1Isat) there is a suppression of the transmitted

light. From the weak probe data Ωc/2π = 4.3 ± 0.1 MHz, and ∆EIT/2π = 2.2 ±
0.1 MHz

The suppression of the transparency is evidence of dipole blockade [27]. In

each blockade sphere only a single Rydberg excitation is allowed. As a re-

sult the excitation light is not resonant with the two-photon transition for

the remaining fraction of atoms, and the probe field is therefore scattered

[27, 110, 111]. With increasing probe power the probability of creating Ry-

dberg excitations increases, as does the probability of having multiple probe

photons in the same blockade sphere [111]. The observed transparency is

therefore reduced. In reference [27] it was shown that the optical response

is cooperative in nature, as the strength of the non-linearity depends on the

atomic density. This is a consequence of the fact that the non-linearity is due

to dipole-dipole interactions between the atoms. The non-linear response is

therefore not only governed by the electric field of the probe.

Recall equation 2.4, which relates the blockade radius to the interaction

strength and the linewidth of the Rydberg transition. In the case of EIT, for

the probe beam to be transmitted its frequency must lie within the trans-
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parency window. The blockade radius can therefore be written [24, 110]

Ro =
( C6

~∆EIT

) 1
6
, (6.2)

where C6 = −140 GHz µm6 for 60s60s interactions [112], and ∆EIT is the

FWHM of the transparency window. Here Ro represents the optical blockade

radius, relevant for conditions of EIT. For ∆EIT/2π = 1 MHz the blockade

radius is Ro ≈ 7 µm.

The transparency on resonance can be studied for a range of different probe

powers in order to extract the value of χ(3) [47]. However at the probe powers

where suppression is observed there is also loss of atoms from the dipole trap

due to heating (see section 5.3.3). Measuring high resolution EIT spectra at

these powers is therefore difficult in this experiment.

In principle the suppression of the transparency on resonance should be ac-

companied by antibunching of the probe photons [111]. Observation of this

effect would provide direct evidence of photon interactions in the medium.

In the extreme case where a single superatom with a high optical depth un-

dergoes EIT, a regular train of single photons should leave the sample, with

all other probe photons being scattered. This is equivalent to the“photon-

blockade” effect, first proposed and demonstrated in cavity QED experiments

[17, 18]. More recently this effect has been demonstrated in free-space using

Rydberg atoms [20]. Effectively the medium behaves as a filter for single

photons.

The modification of the photon statistics of the probe field are difficult to

observe in this experiment. This is due to low optical depth of the atomic

cloud, whose effects are two-fold. Firstly, there is a large fraction of un-

scattered probe photons which contaminate the probe photons which have

undergone EIT. Secondly, the temporal separation of the probe photons leav-

ing the medium is small. Equation 3.15 can be used to relate the time taken

for a photon undergoing EIT to propagate over a distance of one blockade

radius, to the optical depth per blockade sphere. Due to the low optical

depth of the medium this time is very small (of the order of 10 ns) and there-

fore correlation measurements would have to be performed with a very high

(around 1 ns) timing resolution. Consequently the time taken to perform g(2)
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measurements would be very large. For these reasons the photon statistics

of the probe field leaving the medium were not measured. A partial solution

to these problems is to store the probe photons in the medium to isolate the

signal from background photons. This is discussed in the next chapter.

6.4 Microwave dressing

The modification of EIT spectra when adding an additional microwave field

coupling to a fourth atomic level will now be examined. The purpose of

these measurements is to calibrate the microwave power and frequency for

experiments described in chapter 8. Rydberg atoms couple very strongly to

microwave fields due to the strong dipole moments of microwave transitions

between adjacent Rydberg states. Rydberg EIT spectra are therefore very

sensitive to microwave fields [113]. Dressing Rydberg states with a microwave

field provides a method of controlling the interaction strength between atoms

[51, 52].

To measure EIT spectra with microwave coupling, microwave pulses of 1.6 µs

duration are applied in phase with the probe and coupling fields. The experi-

mental sequence is shown in figure 6.4. The microwaves couple the 60s1/2 and

59p3/2 states for all of the data presented in this section. The linear polarisa-













Figure 6.4: Pulse sequence used for studying EIT spectra with microwave cou-

pling. (a) The 60s1/2 Rydberg state is coupled to the 59p3/2 state with a microwave

field. (b) The microwave field is pulsed on during the periods where the dipole

trap is off.
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tion of the microwaves is oriented along the quantisation axis such that the

microwaves drive π-transitions. The data is fit using the expression for the

four-level susceptibility given by equation 3.21. The additional fit parame-

ters compared with the 3-level EIT spectra are Ωµ, ∆µ, and γ41. The typical

values of γ41/2π obtained from the fits are in the range 0.1 MHz-1.1 MHz.

The approximate resonance frequency for the 60s1/2 to 59p3/2 transition is

found by studying EIT spectra at different microwave frequencies. The mi-

crowave pulses typically used in the experiments described in chapter 8 have
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Figure 6.5: Variation of EIT spectra with frequency of applied microwave field.

(a) No microwave field applied. (b) Microwave field of frequency 18.518 GHz.

(c) Microwave field of frequency 18.524 GHz. (d) Microwave field of frequency

18.530 GHz.
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a duration of 150 ns. The inverse of this pulse duration gives a corresponding

bandwidth of around 7 MHz. Therefore the resonance frequency only needs

to be determined to within a precision of a few MHz. Figure 6.5 shows spec-

tra taken at a fixed microwave power, for a variety of microwave frequencies.

The value of the microwave detuning, ∆µ, was extracted from the fit at each

microwave frequency. However, it was found that these values were not re-

liable. For the fits to converge the free parameters that were used included

Ωµ, ∆µ, γ41, ∆c and ∆p. The values of ∆µ obtained were probably not sen-

sible due to the large number of free parameters. However, the variation

in the shape of the spectra as the microwave frequency is varied provides

some insight into the approximate resonance frequency. For example, when

increasing the microwave frequency in going from figure 6.5 (b) to figure 6.5

(c) the spectrum becomes more symmetric. However when the microwave

frequency is increased further in figure 6.5 (d), there is very little perturba-

tion caused by the microwave field relative to the EIT spectrum in 6.5 (a).

The resonance frequency was therefore taken to be roughly 18.524 GHz for

this transition. Note that this differs from the value of 18.513 GHz calculated

using quantum defects [114] by J. D. Pritchard. This difference is probably

due to energy level shifts caused by the external fields present in the vacuum

chamber.

To calibrate the microwave Rabi frequency the frequency of the microwaves

was fixed while their power was varied. Figures 6.6 (a)-(c) show spectra

taken for increasing microwave power. The effect of the microwaves is to split

the EIT transmission peak. For microwave Rabi frequencies that are many

times the coupling Rabi frequency, it is not possible to determine Ωµ from

the spectra since the splitting becomes too great. Although the microwave

Rabi frequency can only be extracted for a limited range of powers, the

spectra are much more sensitive to the microwave power compared with the

microwave detuning. In figure 6.6 (d) the microwave electric field is plotted as

a function of the nominal power from the microwave source. The dependence

is approximately linear as expected.

The large number of free parameters required to fit the spectra suggests that

the 4-level model used is not completely accurate. This could be due to im-

perfect polarisation of the microwaves. The microwave Rabi frequency is very
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Figure 6.6: Variation of EIT spectra with power of applied microwave field.

In each case Ωc = 4.2 ± 0.1 MHz. (a) Control experiment where there is no

microwave field applied. From fit Ωµ = 0.7 ± 0.7 MHz. (b) Ωµ = 4.3 ± 0.4 MHz.

(c) Ωµ = 8.1± 0.5 MHz. (d) The microwave electric field extracted from the fitted

spectra as a function of the nominal power from the microwave source.

sensitive to the position of the antenna. This suggests that the microwaves

form an interference pattern due to reflections within or around the vacuum

chamber. The reflections could account for the microwaves driving imper-

fect π-transitions which would invalidate the 4-level model. Also the optical

pumping of the atoms prior to Rydberg excitation is imperfect. Again this

means that the microwave field is driving multiple transitions.
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Photon storage

In section 6.3 evidence of dipole blockade is presented in EIT spectra taken

at different probe powers. One of the aims of this experiment is to observe an

associated modification of the probe photon statistics due to dipole blockade.

However, the low optical depth of the atomic cloud means that in practice

this is very difficult to observe.

Rather than measuring the photon statistics of the probe field undergoing

EIT, the field is stored using the principles described in section 3.2.2. After a

finite storage time, the photon statistics of the retrieved field are then studied

[21]. The retrieved field is separated temporally from probe photons which

are not successfully stored, giving a larger signal to noise ratio compared

with a measurement on the field undergoing EIT. As will be discussed later

in chapter 8, storing the probe photons also has additional advantages. For

example it allows the interactions between neighboring Rydberg polaritons to

be studied, and it also allows the state of the stored photons to be controlled.

7.1 Experimental procedure

As discussed in section 3.2.2, to store photons from a probe field undergoing

EIT the intensity of the coupling field must be lowered towards zero. The

experimental sequence used is shown in figure 7.1. The probe field is stored

by reducing the intensity of the coupling field over a time of roughly 100 ns.

At this time photons from the probe field are stored as Rydberg polaritons.

79
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Figure 7.1: Experimental procedure for the storage and retrieval of probe pho-

tons. (a) The 3-level atomic scheme. (b) Pulse timing sequence. At 0 µs the

intensity of the coupling field (blue) is lowered and photons from the probe field

(red) are stored. Typically the probe pulse has a total duration of 1.6 µs. Af-

ter a storage time of roughly 900 ns the coupling field is turned back on. The

retrieved field (black squares) appears as a pulse, in this case with a FWHM of

120 ± 20 ns. The background signal without atoms (black circles) is also shown.

The dashed lines around the retrieved signal show the time window over which

data is extracted. The relative heights of the pulses are not to scale.

After a finite storage time the coupling field is turned back on to read out the

polariton field. The field retrieved along the probe propagation direction is

collected in a multi-mode optical fiber. This experimental cycle is repeated

every 6 µs, following the trap modulation technique described in section 5.3.

The retrieved signal (black squares) is taken in the window bounded by the

dashed lines. The number of retrieved photons is corrected for the finite

background count level (black circles). The background level is the signal

obtained when no atoms are loaded into the dipole trap.

In section 5.3.3 it was shown that the drop in probe absorption over the

dipole trap modulation time was dependent on the probe power. At high

probe powers large loss rates of atoms from the trap are observed. One

would therefore expect a similar variation in the storage efficiency over the

trap modulation time. Figure 7.2 shows the retrieved photon signal as a

function of trap modulation time for different probe powers. For the relatively

low probe powers in figure 7.2 (a), it can be seen that the retrieved signal
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Figure 7.2: Variation in retrieved photon signal over trap modulation time. (a)

Relatively weak probe with power ≈ 1 pW (0.03Isat). The decay rate over the

fitted region (red line) is Γ = 9 ± 1 s−1. Inset: Higher probe power ≈ 3 pW

(0.08Isat). The rate of increase of the retrieved photon signal at short modulation

times is larger in this case. (b) Strong probe with power ≈ 20 pW (0.5Isat). The

fit gives Γ = 108± 1 s−1.

initially increases at short modulation times before dropping at longer times.

It is not understood why the retrieved signal increases at short modulation

times. The rate of increase of the number of stored photons becomes larger

at higher probe powers, as shown in the inset of 7.2 (a), which could suggest

that the mechanism is associated with heating of the cloud. Recalling figure

5.14, similar responses have not been observed when studying the probe

absorption as a function of modulation time. Therefore the increase in the

retrieved photon signal cannot be attributed to an increased optical depth

of the medium. For the data taken at a higher probe power in figure 7.2

(b), the storage efficiency drops much more rapidly. It is therefore important

when comparing measurements at different probe powers to account for the

temporal variation in the retrieved signal. Sufficiently short measurement

times were used over which the retrieved signal did not decrease significantly.

The data in figure 7.2 is fitted to a function of the form of equation 5.10 in

the regions with a red line. It is instructive to compare the one-body loss

coefficient, Γ, of the retrieved photon signals to those of the probe absorption
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signals in figure 5.14. For a probe power of around 20 pW the retrieved

photon signal decays with Γ ≈ 110 s−1 whereas the probe absorption signal

decays with Γ ≈ 40 s−1. The retrieved photon signal therefore decays much

more quickly. This suggests that the reduction in the optical depth of the

cloud is not completely responsible for the decay of the retrieval signal. The

faster decay could be due to increased sensitivity to heating of the cloud

and to loss of atoms. This seems reasonable since heating would lead to

increased motional dephasing. In addition, atom loss would also reduce the

directionality of the read-out [76].

7.2 Optimisation

The ultimate limit on the efficiency of the photon storage process is the finite

optical depth of the medium [75]. This was discussed briefly in section 3.2.2.

Given a fixed optical depth there are a number of experimental parameters

that can be adjusted to optimise the storage efficiency. The experimental

procedure will be considered in two parts, photon storage followed by photon

retrieval.

The storage efficiency, ηstore, is defined in this work as

ηstore =
n̄store

n̄
, (7.1)

where n̄ is the mean photon number of the incident probe pulses, and n̄store

is the mean number of stored photons. This definition is reserved for the

regime where there are no saturation effects such as dipole blockade. Here the

response of the medium is expected to be linear in n̄. As will be shown shortly,

given a fixed n̄, n̄store depends strongly on a few key experimental parameters.

Note that the mean quantities correspond to the average values per store/

retrieve cycle. These are obtained by averaging over many, typically several

tens of thousands, store/ retrieve cycles.

The retrieval efficiency, ηret, is defined as

ηret =
n̄ret

n̄store

, (7.2)
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where n̄ret is the mean number of photons retrieved per store/ retrieve cycle.

As discussed in section 3.2.2, the retrieval efficiency is limited by dephasing

of the spin wave. Since the lifetime of Rydberg states is very long the main

source of dephasing occurs due to the motion of the atoms during the storage

interval. The lifetime of the spin wave has not been measured, but given the

temperature of the atomic cloud it is expected to be limited to roughly 3 µs

due to motional dephasing (calculated using equation 3.19).

Taking a fixed probe power, and therefore n̄, n̄ret is now studied as a function

of various experimental parameters. In figure 7.3 the mean number of pho-

tons retrieved per store/retrieve cycle is plotted as a function of the width of

the probe pulse for three different values of n̄. The width of the probe pulse

is varied about its centre. For small probe pulse widths the bandwidth of the

pulse exceeds the width of the EIT window, which for this data is approxi-

mately ∆EIT/2π = 1 MHz. Frequency components of the probe pulse outside

the EIT window are absorbed and therefore not stored [12]. For longer probe

pulses the bandwidth is reduced and therefore more photons are stored. Due
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Figure 7.3: Mean number of retrieved photons per store/ retrieve cycle, n̄ret,

as a function of the width of the probe pulse. The data sets correspond to probe

powers of approximately 1 pW (black), 3 pW (blue), and 10 pW (red). For the

maximum probe width of 1.6 µs these powers correspond to roughly n̄ = 6 (black),

n̄ = 18 (blue), and n̄ = 60 (red).
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to the finite time period where the dipole trap is off, the maximum width

of the probe pulse that can be used is limited. In the following experiments

the width of the probe pulse is typically 1.6 µs. The bandwidth of the probe

pulse could be reduced further by using a smoother pulse shape instead of

the square pulse used in this experiment. For large probe powers (red data)

the number of retrieved photons saturates for long probe pulses. This occurs

because the storage efficiency is no longer limited by the bandwidth of the

probe pulse.

The storage efficiency also depends on the peak Rabi frequency of the cou-

pling laser. For large values of Ωc the group velocity of the probe pulse is

not as strongly reduced and therefore it is not compressed as much inside the

medium (equation 3.12). For small values of Ωc the bandwidth of the EIT

window is reduced (equation 3.10) and therefore more frequency components

of the probe pulse are absorbed. The dependence of the number of retrieved

photons on Ωc is shown in figure 7.4 (a). The storage efficiency peaks at

around Ωc/2π = 4 MHz. The shape of the retrieved pulse also varies with

Ωc as shown in figure 7.4 (b). This reflects the speed at which the field is

retrieved from the medium. For small values of Ωc (red), where the group
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Figure 7.4: Dependence of the storage and retrieval process on the Rabi fre-

quency of the coupling laser. The probe pulse has a width of 1.6 µs and n̄ = 22.

(a) Mean number of retrieved photons as a function of Ωc. (b) Retrieved photon

pulse for two different values of Ωc.
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velocity of the light is small, the retrieved field is stretched as it leaves the

medium. At larger values of Ωc (blue) the field is retrieved more quickly and

therefore the width of the pulse is smaller.

Another important parameter to consider when optimising the storage ef-

ficiency is the probe detuning, ∆p. Figure 7.5 shows EIT spectra and the
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Figure 7.5: Dependence of storage bandwidth, ∆store, on Ωc. (a) EIT spectrum

with Ωc/2π = 3.0±0.1 MHz, and ∆EIT/2π = 1.6±0.2 MHz. (b) EIT spectrum with

Ωc/2π = 6.3±0.1 MHz, and ∆EIT/2π = 3.8±0.1 MHz. (c) Storage bandwidth for

the same experimental parameters as (a). From the fit ∆store/2π = 1.7±0.1 MHz.

(d) Storage bandwidth for the same experimental parameters as (b). From the

fit ∆store/2π = 3.8 ± 0.3 MHz. Note that ∆store and ∆EIT are full widths at

half-maximum.
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corresponding bandwidth of the storage process for two different values of

Ωc. As expected the optimum probe detuning coincides with the maximum

transparency on the EIT resonance. The bandwidth of the storage process

is dependent on Ωc since this determines the width of the EIT resonance,

∆EIT. It can be seen from figure 7.5 that the storage bandwidth, ∆store,

directly corresponds to the width of the EIT window.

The dependence of the storage efficiency on the optical depth of the cloud

has not been explicitly studied in this experiment. However large drops in

the number of retrieved photons have been observed over long measurement

times. This seems to be accompanied by a significant reduction in the probe

absorption and is attributed to poor dipole trap loading due to movement of

the MOT (as discussed in section 5.2).

7.3 Saturation

In the regime of dipole blockade there should be a limit on the number of

photons that can be stored inside the medium since each blockade sphere

can only support a single Rydberg excitation. A simple method of model-

ing this saturation is illustrated in figure 7.6. The probe light is initially

considered to be a coherent state. Therefore the probe pulses have a Poisso-

nian distribution of photon numbers (see section 4.3.1). Consider an atomic

medium which can contain a maximum of N blockade spheres. Photon num-

bers which are greater than the number of blockade spheres, N , cannot be

stored due to the blockade condition. Instead these photon numbers create

N Rydberg excitations, the maximum allowed. This effectively changes the

initial coherent state of the probe light to a truncated coherent state, with

an excess of photons at n = N . In order to accurately model the exper-

iment the storage efficiency and the retrieval efficiency must be taken into

account. These are defined in section 7.2. The finite storage efficiency ef-

fectively attenuates the initial mean photon number of the probe pulses by

a factor ηstore. This means that higher probe powers are needed to saturate

the medium compared to the case where the storage process is perfect. The

finite retrieval efficiency, ηret, means that the number of photons retrieved

from the medium is less than the number of photons stored. Note that all
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Figure 7.6: Modification of the photon number distribution of the probe field in

the regime of dipole blockade. (a) Initial Poisson distribution of photon numbers

in probe field with n̄ = 4. Photon numbers higher than the maximum number of

blockade spheres, N = 5, are highlighted. (b) Stored photon number distribution.

Photon numbers greater than N are mapped back onto n = N .

of the experimentally obtained values of n̄ret in this chapter are corrected for

the finite detection efficiency.

The model is implemented using a Monte-Carlo technique. A photon number

in each incident probe pulse is randomly generated from a Poisson distribu-

tion with mean n̄. For each probe pulse containing n photons, a random

number of photons are stored using a binomial distribution with a probabil-

ity of success of ηstore. The number of photons stored is then compared to

the maximum number of blockade spheres N and modified accordingly, as

illustrated in figure 7.6. The number of photons retrieved is generated using

a binomial distribution with a probability of success, ηret. The results of the

model are illustrated in figure 7.7 for different values of ηstore and N . The

retrieval efficiency is fixed at ηret = 100% for simplicity. As expected, larger

values of n̄ are required to observe the saturation in the number of stored

photons as ηstore is reduced. As N is increased the number of retrieved pho-

tons saturates at correspondingly higher values.

The experimental observation of saturation in the number of stored photons

is presented in figure 7.8. The number of retrieved photons is studied as a



Chapter 7. Photon storage 88

0 100 200 300 400
0

0.5

1

1.5

2

2.5

3

n̄

n̄
r
e
t

0 50 100 150
0

0.5

1

1.5

2

2.5

3

n̄

n̄
r
e
t

(a) (b)

Figure 7.7: Results of Monte-Carlo model simulating saturation in the number

of photons stored. (a) Mean number of retrieved photons, n̄ret, as a function of

mean photon number of probe input pulse, n̄, for different storage efficiencies. The

different points correspond to storage efficiencies of ηstore = 4% (red), 2% (blue),

1% (black), and 0.5% (green). The number of blockade spheres is fixed at N = 3.

(b) Dependence on the number of blockade spheres for N = 3 (black), 2 (blue), and

1 (red). The storage efficiency is fixed at ηstore = 4%. In both cases ηret = 100%.

function of the incident probe power for different Rydberg states. Varying

the Rydberg state changes the size of the blockade radius. Note that each

dataset has been processed over a fixed modulation time during which the

retrieved signal does not drop as the probe power is increased. This avoids an

apparent saturation appearing which is not a consequence of dipole blockade,

but which is rather due to loss and heating of the atoms. It can be seen

that n̄ret saturates at lower values as the principal quantum number of the

Rydberg state is increased. This is expected since the blockade radius scales

as n11/6, and therefore fewer photons can be stored inside the medium as

n is increased. For n = 60 (blue points) the experimental data has been

fit using the Monte-Carlo model with N= 4, and the storage and retrieval

efficiencies as free parameters. This choice of N is justified in the following

chapter. From the fit ηstore = 6 × 10−2, and ηret = 3 × 10−2. Note that the

accuracy of these values is not clear. It will be shown in the next section that

other quantitative predictions of the model do not agree with experimental

measurements. The storage and retrieval efficiencies obtained are very low.
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Figure 7.8: Mean number of retrieved photons per store/ retrieve cycle, n̄ret,

as a function of probe power. The retrieved signal saturates at different values

for different Rydberg states. The different data sets correspond to the Rydberg

states 46s1/2 (black), 60s1/2 (blue), and 80s1/2 (red). The fit to the data for

60s1/2 has been generated from the Monte-Carlo model with N = 4. From the fit

ηstore = 6× 10−2, and ηret = 3× 10−2.

Although the storage efficiency is ultimately limited by the low optical depth

of the atomic cloud, the storage process is far from optimised. For example,

the temporal variation of the coupling field during the writing stage could be

adjusted for optimum storage [75]. The storage efficiency has probably been

slightly underestimated since part of the probe pulse does not overlap with

the coupling field (see figure 7.1), and therefore does not contribute to the

storage process. The retrieval efficiency is probably significantly reduced by

motional dephasing of the spin waves which reduces the directionality of the

read-out. The storage time is approximately 900 ns, which is a significant

fraction of the estimated spin-wave lifetime of 2 µs. As will become clear

in the next chapter, the storage time cannot be reduced significantly since
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for some experiments the stored photons are coupled to a microwave field.

The directionality of the emission also depends on the number of atoms per

blockade sphere (see section 3.2.2). Since there are only roughly 10-20 atoms

per blockade sphere for n = 60, the directionality of the emission is probably

poor even in the absence of motional dephasing [8].

7.4 Photon statistics

The observed saturation in the number of stored photons provides further

evidence that dipole blockade effects are significant in the system under con-

sideration. Recently it has been shown that dipole blockade can be exploited

in photon storage experiments to produce a highly efficient single photon

source [19]. In order to study the effect of dipole blockade on the statistics

of the probe photons, g(2) is measured for the retrieved field. This involves

performing intensity correlation measurements on the retrieved field using

a Hanbury Brown Twiss interferometer, as described in section 4.3.2. In

general the entire retrieved pulse is binned over the region highlighted in

figure 7.1, giving a detected photon number on each SPAD for every store/

retrieve cycle. The quantity that is of interest in most cases is therefore

g(2)(0) since g(2)(τ 6= 0) corresponds to photon correlations between different

experiments. In principle the different store/ retrieve experiments should be

uncorrelated. It would be interesting to study photon correlations within

each retrieved pulse, however this requires more signal and therefore longer

data accumulation times. This is not feasible with the current experimental

setup.

7.4.1 Predictions of Monte-Carlo model

It is instructive to study the dependence of g(2)(0) on key experimental pa-

rameters predicted by the Monte-Carlo model introduced earlier in this chap-

ter. For each retrieved photon signal generated by the model, a 50:50 beam

splitter in a Hanbury-Brown-Twiss interferometer is simulated using a bino-

mial distribution with a probability of success of 0.5. The number of photons

at each output of the beam-splitter is then cross-correlated over all store/
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retrieve cycles according to equation 4.8.

In figure 7.9 (a) the dependence of g(2)(0) on the number of blockade spheres,

N , is plotted. AsN is increased g(2)(0) becomes larger since more excitations

can be supported inside the medium. Due to the finite storage efficiency

g(2)(0) also depends on the mean photon number of the incident probe pulse.

At large probe powers where the number of excitations in the medium has

saturated (black points), the value of g(2)(0) approaches that of a photon

number state with N excitations (see equation 4.6). However, for lower

probe powers (blue points) the effect of the truncation of the coherent state

is not as dramatic and the distribution of stored photons inside the medium

is closer to Poissonian. Therefore g(2)(0) is larger in this case. In figure 7.9

(b) the dependence of g(2)(0) on the mean photon number of the incident

probe pulse is plotted for a fixed value of N . Note that the variation of

g(2)(0) with storage efficiency for a fixed probe power follows a similar trend.

The value of g(2)(0) initially drops as the mean photon number of the probe
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Figure 7.9: g(2)(0) predicted by Monte-Carlo model. (a) Dependence on number

of blockade spheres, N . The variation of g(2)(0) is plotted for mean probe photon

numbers of 200 (black) and 20 (blue). The red line corresponds to a photon

number state with N excitations. The storage efficiency used in the calculation is

ηstore = 6%. (b) Dependence of g(2)(0) on the mean photon number of the probe

pulse, n̄ (black). The mean number of retrieved photons, n̄ret, is also plotted

(blue). The number of blockade spheres and the storage efficiency used in the

calculation are N = 4 and ηstore = 6% respectively. For simplicity, ηret = 100%.
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pulse increases, before leveling off when the medium becomes saturated.

7.4.2 Observation of quantum states of light

Experimental measurements of the photon statistics of the retrieved field will

now be presented. All of the g(2) measurements have been corrected for the

finite background signal shown in figure 7.1, using equation 4.9, unless stated

otherwise. Each g(2) measurement typically uses data accumulated from

around 1×107 store/ retrieve cycles. Figure 7.10 (a) shows g(2) as a function

of time delay between the two single-photon detectors for the 80s Rydberg

state. The entire retrieved field has been binned, as highlighted in figure 7.1.

Each bar in figure 7.10 (a) is therefore 6 µs in width, corresponding to the

repetition rate of the experiment. The strong suppression of g(2) at τ = 0

is a signature of dipole blockade [19, 20], and provides evidence of strong

photon-photon interactions [108]. In the absence of photon interactions g(2)

should be 1. It can be seen that g(2)(τ 6= 0) is greater than one indicating

bunching of the retrieved field. The reason for this is discussed shortly. The

variation of g(2)(0) with principal quantum number, n, is plotted in figure
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Figure 7.10: Measurements of g(2), where the entire retrieved field has been

binned. (a) g(2) of the retrieved field as a function of time delay, τ . For this data

set photons were stored in the 80s1/2 Rydberg state. (b) g(2)(0) of the retrieved

field for storage in different ns1/2 Rydberg states.
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7.10 (b). As n is increased the blockade radius becomes larger and therefore

the number of photons that can be stored inside the medium is reduced.

Consequently g(2)(0) falls with increasing n. The fact that g(2)(0) does not

fall to zero shows that multiple excitations can be stored inside the medium

for the Rydberg states studied.

The data presented in figure 7.8 shows that in order to reach the regime

where the number of stored photons approaches saturation, n̄ & 100. How-

ever, working at these probe powers is accompanied by large decay rates in

the storage efficiency as shown in figure 7.2. This means there is less time

available per experimental cycle to accumulate data. As a compromise the

g(2) data in figure 7.10 was measured at a probe power of approximately 4 pW

(n̄ ≈ 28). In figure 7.11 (a), g(2)(0) is plotted for different probe powers for

the 60s Rydberg state. It can be seen that there is no significant variation in

g(2)(0) when in the saturated and non-saturated regimes, contradicting the

results of the Monte-Carlo model presented in figure 7.9 (b). The discrep-

ancy could be due to the fact that the Gaussian density distribution of the

medium and the tight focusing of the probe beam have been ignored. As a

consequence of both of these factors, it is more likely to store photons in the
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Figure 7.11: Dependence of g(2)(0) on probe power for the 60s Rydberg state.

(a) Variation of g(2)(0) when in the saturated and non-saturated regimes. (b)

Variation of g(2)(0) with trap modulation time for n̄ = 13 (blue), n̄ = 28 (black),

and n̄ = 112 (red).
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center of the cloud rather than at the edges. This could mean that for low

probe powers N is effectively reduced, and therefore there is still significant

truncation of the initial coherent state, resulting in a suppression of g(2)(0).

One would expect that for a sufficiently weak probe pulse, e.g where n̄ << 1,

g(2)(0) would not be suppressed since dipole blockade would have no effect

on the photon statistics. However, it was not possible to study this regime

due to its inherently low signal to noise.

Assuming that N= 4 for the n = 60 Rydberg state, the Monte-Carlo model

predicts that g(2)(0) = 0.75 in the saturated regime. This is significantly

larger than the measured values shown in figure 7.11 (a). For the 80s1/2 Ry-

dberg state the blockade radius should increase by a factor of approximately

1.7. For N= 2 the model predicts that g(2)(0) = 0.5, which is again signif-

icantly larger than the measured value of g(2)(0) = 0.24 ± 0.12. The model

therefore fails to accurately predict the modification of the photon statistics

due to dipole blockade. This could be due to the fact that the model does not

take into account polariton correlations within the medium [20, 107]. Since

each Rydberg excitation must be separated by Ro, one would expect this

restriction to reduce the probability of storing multiple photons inside the

cloud. In other words, the probability of storing two photons is not simply the

probability of storing one photon squared. The polariton correlations would

be expected to reduce the values of g(2)(0) relative to those obtained from

the model [107]. In addition the interaction between neighboring polaritons

during the storage interval has been neglected. These have been observed

to cause dephasing when multiple polaritons are written into a sample [115].

Dephasing would make it more likely to retrieve single stored photons than

multiple stored photons, which would again reduce g(2)(0). The effects of

dephasing are discussed in more detail in the next chapter.

In figure 7.11 (b) g(2)(0) is plotted as a function of the trap modulation time

for different probe powers. For the medium power (black) and high power

(red) data g(2)(0) remains roughly constant over the time ranges considered.

For the low power data (blue), g(2)(0) seems to decrease at short modulation

times. This behavior is not understood. However the error bars on the data

at short modulation times are quite large, therefore it is difficult to draw any

reliable conclusions.



Chapter 7. Photon storage 95

0 2 4 6 8 10
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

τ (ms)

g
(
2
)

Figure 7.12: Variation of g(2) away from τ = 0. As τ increases g(2) falls steadily.

In figure 7.10 (a) it was seen that for cross-correlations performed between

different retrieved pulses, i.e. for τ 6= 0, g(2) was greater than 1. This

indicates bunching of the retrieved photon signal. This most likely arises

due to the variation in the retrieved signal with trap modulation time as

shown in figure 7.2. The variation of g(2) away from τ = 0 is studied more

closely in figure 7.12. Each point is an average of twenty store/ retrieve

cycles. It can be seen that as the time delay increases g(2) falls steadily. The

stronger bunching at short time delays could be because of the large variation

in the retrieved signal at short modulation times (see figure 7.2(a)). Note

that g(2) never falls to 1 since the retrieved signal is constantly varying, even

at long modulation times.

7.4.3 Preliminary evidence for a photon number de-

pendent group delay

So far when calculating g(2) the entire retrieved pulse has been binned. How-

ever, since the Rydberg excitations must be separated by a distance R ≥ Ro,

one may expect this to be evident in the temporal photon correlations within

each retrieved pulse. To examine this g(2)(0) is calculated for different regions
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Figure 7.13: Variation of g(2)(0) across the retrieved pulse. (a) Illustration of the

analysis windows over which photons from the retrieved pulse are correlated. The

red window extends from the trailing edge of the pulse towards the left, whereas

the blue window extends from the leading edge of the pulse to the right. The

variation of g(2)(0) for different probe powers as the width of the analysis windows

are varied is plotted in (b)-(d). (b) n̄ = 28. (c) n̄ = 13. (d) n̄ = 112.

of the retrieved pulse. The results are shown in figure 7.13.

In figure 7.13 (a) examples of the analysis windows over which the retrieved

pulse is studied are highlighted. All photon counts outside a given analysis

window are ignored. The width of the window is varied, starting from one

edge of the pulse and moving towards the other edge. The windowing process

is considered starting from both sides of the pulse, shown by the separate
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blue and red regions.

In figure 7.13 (b) g(2)(0) is plotted for different window widths for a mean

photon number of approximately n̄ = 28 per probe pulse. First the case

where the width of the analysis window is extended starting from the trailing

edge of the retrieved pulse (red data points) will be considered. It can be seen

that the variation of g(2)(0) exhibits a step-like structure, decreasing quickly

as the width of the analysis window is reduced. However, when extending the

window width starting from the leading edge of the pulse (blue data points),

the variation in g(2)(0) is remarkably different. In this case g(2)(0) remains

roughly constant before increasing for small window widths.

In figures 7.13 (c) and (d) the analysis procedure is repeated for weaker and

stronger probe powers respectively. The variation in g(2)(0) in these cases

is very different, highlighting the potential importance of the stored photon

number distribution on the observed effect.

To gain some insight into the origin of the observed variation in g(2)(0) we

must consider the effect of dipole blockade on the group delay of the probe

light. Due to the collective nature of the Rydberg excitations, modes with

different photon numbers experience different group delays. This is because

the optical depth experienced by each photon depends on the number of

photons in the medium. A single photon which collectively excites N atoms

drives the Rydberg transition with a Rabi frequency enhanced by a factor

of
√

N compared to the case of single atom excitation [62]. The optical

depth, and therefore the group index, is enhanced by a factor of N. However

when two Rydberg excitations are created, the two probe photons must be

separated during propagation by a distance Ro. Therefore each photon col-

lectively excites a smaller number of atoms, meaning that the enhancement

of the optical depth is not as large. This can be modeled phenomenologically

by taking Gaussian mode functions of the form [116]

f(t, n) =
1√

π(5− n)σ
exp

(
− (t− (5− n)τ − τ0)2

2((5− n)σ)2

)
. (7.3)

Here n is the photon number of the mode, σ is a width parameter such that

(5−n)σ is the standard deviation of the mode, τ is a parameter controlling the

time delay between different modes, and τ0 is a time offset used for fitting
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purposes. It is assumed that only modes containing up to four photons

contribute (due to dipole blockade). The propagating light field is taken to

be in a mixed state containing these four modes. It is also assumed that the

time separation and width of the modes is linear in n. This is equivalent to

assuming that the medium has a uniform density distribution.

Equation 7.3 is used to generate retrieved pulse shapes, from which the vari-

ation of g(2)(0) across the pulse can be calculated. Using σ, τ , and τ0 as

free parameters, the pulse shape and variation of g(2)(0) are simultaneously

fit to the experimental data. In addition, fit parameters representing the

weight of each mode, P(n), are allowed to vary. These weights determine

the relative contribution of each mode to the shape of the retrieved pulse.

In figure 7.14 (a) the retrieved pulse for n̄ = 28 is fitted. Each of the four

modes which sum to give the fit are also plotted, along with their weights.

It can be seen that the different shape and delay of each mode gives rise to

the asymmetry of the retrieved pulse. In figure 7.14 (b) the values of g(2)(0)

predicted by the model (red and blue lines) are plotted. It can be seen that
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Figure 7.14: Retrieved pulse shape and variation of g(2)(0) across the pulse,

fitted using a model which assumes a photon number dependent group delay. (a)

The fit to the retrieved pulse (dark blue line) is formed from the sum of four modes

with different photon numbers. Inset: The weight P(n) of each mode used in the

fit. (b) The variation of g(2)(0) predicted by the model (blue and red lines). Note

that the same fit parameters are used in (a) and (b).



Chapter 7. Photon storage 99

while the model reproduces some of the qualitative features of the data, there

is a large discrepancy between the experimental results and the predictions of

the model. This is most likely due to the fact that in obtaining equation 7.3

it was assumed that the density distribution of the medium is uniform. The

fact that the probe beam has a short Rayleigh range and therefore a non-

uniform Rabi frequency across the sample has also been ignored. Both of

these simplifying assumptions probably significantly contribute to the large

discrepancies observed. A more sophisticated model is therefore required to

confirm the observation of the described effects.

The hypothesis of a photon number dependent group delay was proposed

after private discussions with C. Ates, S. Bettelli, T. Fernholz, and I.

Lesanovsky [116]. It is worth mentioning that photon number dependent

group delays have previously been predicted [117] and observed [118] for a

system where an ensemble of three-level atoms is strongly coupled to a cavity.



Chapter 8

Coherent control of Rydberg

polaritons

The preceding chapter demonstrated the storage and retrieval of photons

from a cold atomic gas. As a consequence of dipole blockade, a limit on the

maximum number of stored photons was observed. The retrieved field was

shown to be antibunched, as demonstrated in [19]. The partial suppression

of g(2)(0) measured for Rydberg states in the range 46 ≤ n ≤ 80 is consistent

with a sample that can support more than one excitation.

It has been proposed that the read-out of multiple photons from an atomic

cloud can be suppressed through dephasing of the spin-waves [119, 120]. This

involves introducing long-range interactions, for example resonant dipole-

dipole interactions, between neighboring excitations. This chapter presents

experiments where the states of stored photons are coherently controlled us-

ing a microwave field. Photons initially stored in the 60s1/2 Rydberg state

are coupled to a neighboring n′p3/2 Rydberg state. Polariton-polariton in-

teractions are observed as a result of the microwave coupling, leading to a

modification of the photon statistics of the retrieved field.

8.1 Coherent evolution of polariton state

In the regime of dipole blockade a single Rydberg excitation is shared between

all atoms within the corresponding blockade sphere (see section 2.3). Conse-

100
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quently, during the storage process each photon is mapped into a polariton

in the collective state [8, 24]

|s〉 =
1√
N

N∑
j=1

eiφj |sj〉 , (8.1)

where |sj〉 = |1112 · · · sj · · · 1N〉, N is the number of atoms per blockade

sphere, and φj = ∆k ·rj. Here s represents an ns1/2 Rydberg excitation, and

1 corresponds to the ground state. As discussed in section 3.2.2, the phase

factors φj are responsible for the directionality of the retrieved field. The

effective wave vector of the spin-wave is ∆k, and rj is the position of atom

j.

The state of each polariton can be controlled by applying a field resonant

with a neighboring Rydberg state. For example, a microwave field resonant

with the state n′p3/2, as illustrated in figure 8.1 (a), couples |s〉 to

|p〉 =
1√
N

N∑
j=1

eiφj |pj〉 . (8.2)

Here |pj〉 = |1112 · · · pj · · · 1N〉, where p denotes an n′p3/2 Rydberg excitation.

The p3/2 state is used in all experiments described in this chapter. This is

because one eigenstate of the resonant dipole-dipole interaction potential for

the p1/2 state has zero interaction energy [52]. Figure 8.1 (b) illustrates the

experimental procedure for photon storage and the subsequent state control

of the Rydberg polaritons. The procedure is identical to that shown in figure

7.1 (b) except that now a microwave pulse is applied during the storage

interval.

The retrieved field now depends on the final state of the polaritons after

the state evolution driven by the microwave field. First we will consider N
independent polaritons, in the absence of any dephasing mechanisms. The

microwave field coherently couples the two polariton states |s〉 and |p〉. Each

polariton can therefore be considered an effective two level system, analogous

to a spin-1
2

particle. Similar to the case of a two-level atom undergoing Rabi

oscillations described in section 3.1.1, the state evolution is determined by

the rotation angle, Θ. Here the rotation angle is given by Θ = Ωµt, where

Ωµ is the Rabi frequency of the microwaves and t is the duration of the
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Figure 8.1: Quantum state control of stored photons. (a) The level scheme used

to couple photons stored in the 60s1/2 Rydberg state to a neighboring n′p3/2 Ryd-

berg state with a microwave field. (b) Experimental pulse sequence. A microwave

pulse of duration 150 ns - 300 ns is applied during the storage interval. Other than

the additional microwave field, the sequence is identical to that in figure 7.1 (b).

microwave pulse. There is however an important distinction between the

Rabi oscillations of N Rydberg polaritons in this experiment, and those of a

single two-level atom driven by optical frequency radiation. This arises due to

the long wavelength of the microwave driving field (typically around 1.5 cm),

which is much larger than the extent of the atomic cloud (of the order of

40 µm). A consequence of this is that the phase structure of each polariton

is conserved. In addition, the microwave field does not resolve individual

polaritons. Instead, it collectively addresses the whole sample. Therefore

under microwave coupling an N -particle Dicke state is formed. Prior to the

microwave pulse the collective polariton state is |s1s2.....sN 〉, which can be

written |J = N /2 ,M = −N /2〉. The evolution from this state to the Dicke

state |J,M ′〉 is given by the Wigner rotation matrix D [121]. To find the

retrieval probability, P , the final state is set equal to the initial state in the

Wigner rotation matrix. The retrieval probability oscillates as a function of

Θ according to [21]

P =

[
cos2

(
Θ

2

)]N
. (8.3)

It has been assumed that population can only be read from the initial state,

|s1s2.....sN 〉. The justification for this follows from considering the interaction
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between neighboring polaritons, which have been ignored so far. Coupling

|s〉 to |p〉 introduces resonant dipole-dipole interactions between polaritons

[51, 119]. The interaction energy is given by

Vdd(Ro) =
d2

4πε0R3
o

, (8.4)

where d is the electric dipole moment of the Rydberg transition, and Ro is

the blockade radius associated with the optical excitation during the polari-

ton formation (see equation 6.2). Since resonant dipole-dipole interactions

have a longer range than the van der Waals interactions responsible for the

separation of the polaritons, application of the microwave field can introduce

polariton-polariton interactions. These interactions are expected to disturb

the phase structure of each polariton [119, 120]. Due to the finite time (typi-

cally of order 200 ns - 350 ns) between the microwave pulse and the read-out

stage, Dicke states with a p component should dephase due to dipole-dipole

interactions between the polaritons. Therefore only the initial state can be

retrieved from the sample in the phase matched direction.

Equation 8.3 does not take into account dephasing of the polariton modes

occurring during the microwave pulse, i.e. during the evolution between

|s〉 and |p〉. This would reduce the retrieval probability and therefore the

amplitude of the Rabi oscillations. This is discussed further in section 8.3.

8.2 Weakly-Interacting Regime

An obvious starting point in observing Rabi oscillations between the states

|s〉 and |p〉 is to work in a regime where the interaction between neighboring

polaritons is weak. From equation 8.4 it can be seen that given the initial

60s1/2 Rydberg state and therefore fixed Ro, the only controllable parameter

is d, the dipole moment between the microwave coupled states. Since the

dipole moment between adjacent Rydberg states scales as ∆n−2, the inter-

action strength can be tuned through the choice of the n′p3/2 Rydberg state.

This choice was limited in practice by the range of microwave frequencies

that could propagate through the waveguide used. Microwaves at 56.3 GHz

were used to couple the 60s1/2 state to the 58p3/2 state. The dipole moment

for this transition is
√

2/9×468 ea0 (all dipole moments are calculated using
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Figure 8.2: Rabi oscillations of polaritons between the 60s1/2 and 58p3/2 Ry-

dberg states. (a) Unfitted data. The microwave Rabi frequency increases lin-

early from left to right, with the microwave pulse duration fixed. The retrieval

probability, P, is normalised to the case where no microwave field is applied i.e.

P(Ωµt = 0) = 1. (b) The first three oscillations are fit to the function given by

equation 8.5. The fit is used to calibrate the rotation angle Θ = Ωµt. The mean

number of retrieved polaritons is a fit parameter, with N = 2.4 ± 0.2 for this data

set.

the Numerov method by J. D. Pritchard [47]). Figure 8.2 (a) shows Rabi

oscillations between these states. In order to map out the Rabi oscillations

the microwave power is varied, keeping the duration of the microwave pulse

fixed at 150 ns. In principle the duration of the microwave pulse could be var-

ied, leaving the microwave power fixed. However, this cannot be done with

sufficiently high resolution with the microwave generator used. The mea-

sured retrieval probability, P, is given by the number of retrieved photons

normalised to the case where no microwave field is applied.

In figure 8.2 (b) the data is fit phenomenologically to the function

P = C0 + C1

[
cos2

(
C2x+ C3

2

)]C4

× [1 + tanh(C5(x− C6))]

+ C7 exp(−C8x). (8.5)

The second term is equivalent to equation 8.3 combined with a tanh envelope.
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There are eight free parameters denoted Ci, with the independent variable

x proportional to the rotation angle. The fit parameter C4 is equal to the

number of retrieved polaritons. This will be denoted N in the remainder of

this thesis. Since the data is accumulated over many experimental realisa-

tions this represents the mean value. From the fit N = 2.4 ± 0.2. Unless

stated otherwise this function is used to fit Rabi oscillation data throughout

this thesis.

Since N > 1, the data provides evidence for the collective nature of the Rabi

oscillations predicted by equation 8.3. The dipole-dipole interactions between

the polaritons after application of the microwave pulse, prior to read-out,

must therefore be significant. If this was not the case then the |s1s2.....sN 〉
state would not be preferentially retrieved (see section 8.1). However, the

fact that most of the Rabi oscillations have a high visibility suggests that

the interactions do not lead to significant dephasing during the period of

microwave coupling. In other words, it is possible to return to the state

|s1s2.....sN 〉 with high fidelity.

It can be seen that the retrieval probability does not fall to 0 at the troughs

of the oscillations. This is not fully understood, although it could be because

light is collected from a large solid angle by the lens in the vacuum chamber.

Light that is not in the phase-matched mode could therefore be partially

collected.

The role of the interaction between polaritons during the period of microwave

coupling will now be examined.

8.3 Strongly-Interacting Regime

To increase the resonant dipole-dipole interaction strength between polari-

tons, a closer-lying n′p3/2 Rydberg state is used. Microwaves at 18.5 GHz

couple the 60s1/2 state to the 59p3/2 state. The dipole moment for this tran-

sition is
√

2/9×3468 ea0. Since the resonant dipole-dipole interaction scales

as d2, the interaction energy is roughly 55 times larger for this transition

compared with the transition to the 58p3/2 state. Unless stated otherwise

the 59p3/2 state is considered in the remainder of this chapter.
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8.3.1 Interaction induced dephasing

Figure 8.3 shows Rabi oscillations for the case of microwave coupling to the

59p3/2 state. The Rabi oscillations exhibit remarkably different behavior to

those shown in figure 8.2. It can be seen that the amplitude of the oscillations

is strongly suppressed at small values of Ωµ, while the oscillations revive at

large Ωµ. As will be discussed below, resonant dipole-dipole interactions be-

tween the polaritons during the period of microwave coupling are responsible

for the strong suppression of the Rabi oscillations.

The behavior of the Rabi oscillations in figure 8.3 can be understood by

introducing a second blockade scale associated with the microwave transition

[51]

Rµ =
( C3

~Ωµ

) 1
3
. (8.6)

Here C3 is the resonant dipole-dipole interaction coefficient. The microwave

blockade radius, Rµ, gives the length scale over which resonant dipole-dipole
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Figure 8.3: Rabi oscillations of polaritons between the 60s1/2 and 59p3/2 Ryd-

berg states. The microwave pulse duration is 300 ns. The amplitude of the Rabi

oscillations is strongly suppressed at low Ωµ due to interaction-induced dephasing

of the polaritons. This occurs due to resonant energy exchange between the dipole-

coupled states. At large Ωµ the degeneracy between the dipole-coupled states is

lifted and the microwave driving is large compared to the dipole-dipole interaction

between polaritons. From the fit N = 2.8 ± 0.2.
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interactions dominate the microwave driving. Varying Ωµ changes the ratio

Rµ/Ro.

The left hand side of figure 8.3 corresponds to ~Ωµ < Vdd, i.e. Rµ > Ro. In

this regime there is strong dephasing of the polaritons due to dipole-dipole

interactions. This is manifest as a fast exponential decay of the retrieval

probability, followed by small amplitude Rabi oscillations for increasing Ωµ.

The right hand side of figure 8.3 corresponds to ~Ωµ > Vdd, i.e. Rµ < Ro. In

this regime the amplitude of the Rabi oscillations increases before saturating

at large Ωµ. The revival in the oscillations occurs because the dipole-dipole

interactions only weakly perturb the microwave driving.

The interplay between the dipole-dipole interactions and the microwave driv-

ing can be more clearly understood by considering the interaction Hamilto-

nian for the system. Considering the polaritons as localised spin-1
2

particles

separated by a distance Ro, the Hamiltonian can be written [21]

H =
Ωµ

2

N∑
i=1

µzi + Vdd

∑
〈ij〉

(µ+
i µ
−
j + µ−i µ

+
j − 2µziµ

z
j) . (8.7)

Here µz,± is the dipole operator for ∆m = 0,±1 transitions, and i and j

refer to nearest neighbor polaritons. The microwave field is assumed to drive

π-transitions. The eigenvalues of this Hamiltonian for two polaritons as a

function of their separation are plotted in figure 8.4. The calculations were

performed using code written by J. D. Pritchard.

The dipole-dipole interaction term in equation 8.7 leads to mixing of the

eigenvalues, which correspond to different angular momentum states. For

weak driving, as in figure 8.4 (a), the eigenvalues are strongly mixed in the

vicinity of Ro. This leads to excitation exchange between polaritons [122,

123]. However as Ωµ is increased, for example as in 8.4 (b), the states are

split and mixing occurs at smaller polariton separations. To understand the

origin of the dephasing it is necessary to note that in reality the polaritons

are not localised. The Vdd term in equation 8.7 should therefore be replaced

by a sum over all interacting atom pairs from each polariton, V p,q
dd . Since the

separation, and therefore V p,q
dd , of each atom pair is different, each pair has a

different excitation exchange term. The net effect is that the phase structure
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Figure 8.4: Eigenvalues of polariton Hamiltonian 8.7 for two polaritons sepa-

rated by a distance R. (a) Ωµ/2π = 20 MHz. (b) Ωµ/2π = 200 MHz. The red line

is located at R = Ro, and the blue line is located at R = Rµ. Calculated by J. D.

Pritchard.

of each polariton is not conserved and therefore the directionality of the

read-out is degraded. This leads to the reduced retrieval probability in the

dephasing regime. The retrieval probability does not reach 1 at large Ωµ since

the influence of the dipole-dipole interactions does not vanish completely.

8.3.2 Modification of photon statistics

It has been proposed that the dephasing induced by dipole-dipole interactions

between polaritons can suppress the retrieval of states with more than one

photon [119, 120]. This relies on the emission of multiple photon states

being outside the phase matched mode. The number of polaritons created

should follow the Poissonian distribution of the probe input pulse (with an
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upper limit determined by the blockade condition). Dephasing can only occur

when multiple polaritons are written into the sample. In some experimental

realisations only one polariton will be formed. In these cases no interaction

induced dephasing can occur, and ideally a single photon should be retrieved.

If the dephasing process is effective in destroying the directionality of the

read-out, then there should be an excess of single photons retrieved relative

to multi-photon retrievals.

To see whether this is reflected in the collective read-out of the polaritons,

the value of N is studied for different ranges of Ωµ. Each peak of the Rabi

oscillations in figure 8.5 (a) is fit individually over a range defined by a

sliding window to extract a value of N . Note that the tanh envelope and the

exponential term are dropped when fitting the individual peaks. The peak

centered at roughly Ωµt = 3π is not included since the exponentially decaying

part of the fit to the entire data set still has a significant contribution in this

range.

In figure 8.5 (b) it can be seen that the value of N increases steadily with

Ωµ. The first Rabi oscillation gives a value of N close to 1, supporting
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Figure 8.5: Variation of N over different ranges of Ωµ. (a) High resolution Rabi

oscillation data using a microwave pulse length of 150 ns. Fitting the full data

set gives N = 3.0 ± 0.2. The dashed vertical lines show the sliding window over

which each peak is fitted individually. (b) Value of N extracted from fit of each

individual peak.
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the hypothesis that only single excitations are retrieved in the dephasing

regime. This is also reflected in the photon statistics of the retrieved field

as discussed below. As Ωµ is increased the dephasing of the polaritons is

reduced and N increases. The value of N obtained in the regime of strong

microwave driving should therefore reflect the mean number of polaritons in

the sample. The maximum value of N observed is around 3. This is realistic

given the geometry of the system and the size of the blockade radius, Ro.

Since the microwave field has been shown to suppress the retrieved photon

signal for ~Ωµ < Vdd, it is interesting to examine whether there is an associ-

ated change in the photon statistics of the retrieved field. In the ideal case

where only single excitations contribute to the read-out, g(2)(0) should be

strongly suppressed [119]. To determine whether the retrieved photon signal

shows enhanced anti-bunching, g(2) was measured in the regime of weak mi-
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Figure 8.6: Measurement of g(2) of the retrieved field at two different points

on the Rabi oscillation curve. When no microwave coupling is applied (blue),

g(2)(0) = 0.62±0.06. After weak microwave coupling (green), g(2)(0) = 0.32±0.18.

Dephasing of the polaritons due to interactions induced by the microwave field

suppresses the retrieval of multiple photons.
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crowave coupling. In figure 8.6, g(2) is plotted for two different points on the

Rabi oscillation curve. When no microwave coupling is applied (blue point)

g(2)(0) = 0.62± 0.06. After a weak microwave pulse is applied (green point),

with a rotation angle corresponding to the peak of a Rabi oscillation, the

value of g(2)(0) decreases. For the point highlighted g(2)(0) = 0.32±0.18. The

enhanced anti-bunching of the retrieved field therefore supports the theory

that single Rydberg excitations are preferentially retrieved from the sample

in the regime where interaction induced dephasing of the polaritons occurs.

A similar measurement was performed for microwaves driving the 60s1/2 to

58p3/2 transition. In this case after weak microwave coupling g(2)(0) = 0.51±
0.13. As expected g(2)(0) is not as strongly suppressed since the interaction

between polaritons, and therefore the dephasing, is much weaker.

The variation of g(2)(0) with trap modulation time exhibits interesting be-

havior in the case where a microwave field is applied. Figure 8.7 (a) shows

this variation for the case of no microwave coupling (black), microwave cou-

pling to the 58p3/2 state (blue), and microwave coupling to the 59p3/2 state

(red). Whereas the variation in g(2)(0) when no microwave field is applied is

very small, when a microwave field is applied g(2)(0) clearly increases with
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Figure 8.7: Variation in g(2)(0) with trap modulation time. (a) Variation in

g(2)(0) for the case of no microwave coupling (black), microwave coupling to the

58p3/2 state (blue), and microwave coupling to the 59p3/2 state (red). (b) Vari-

ation in mean number of retrieved photons per store/ retrieve cycle, n̄ret, for no

microwave coupling (black) and with microwave coupling to the 59p3/2 state (red).
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trap modulation time. This increase is most pronounced for the case of mi-

crowave coupling to the 59p3/2 state. This behavior is not fully understood

and further work is required to confirm its origin. However, some insight

may be gained by examining the variation in the retrieved photon signal as

a function of trap modulation time (also see section 7.1). This is plotted for

the case of no microwave coupling (black) and with microwave coupling to

the 59p3/2 state (red) in figure 8.7 (b). It can be seen that the variation in

the retrieved signal in both cases is very similar. There is an offset between

the signals due to the reduced retrieval probability in the dephasing regime

under microwave coupling. The increase of g(2)(0) at short modulation times

could be due to the increasing number of photons stored, meaning that there

are fewer cases where there are single excitations in the cloud. The reason

for the continued increase in g(2)(0) at longer modulation times is not clear.

Note that the values of g(2)(0) after microwave coupling quoted above were

taken for a trap modulation time of 4 ms.

It is interesting to examine whether there is a change in the retrieved pulse

shape after microwave coupling compared to the case where no microwave

field is applied. It was proposed in section 7.4.3 that the shape of the retrieved

pulse is sensitive to the distribution of photon numbers retrieved from the

sample. As the microwave field modifies the photon statistics of the retrieved

field, one would expect an associated change in the retrieved pulse shape. In

figure 8.8 (a) the retrieved pulses are fitted using equation 7.3 for the cases of

no microwave coupling (blue), and with microwave coupling (red) during the

storage interval. Note that the experimental data used corresponds to the

same data points highlighted in figure 8.6. Each mode contributing to the

pulse is also plotted for the case where microwave coupling has been applied.

To examine the relative contribution of each mode to the retrieved pulses

obtained with and without microwave coupling, the ratio of the weights of

each mode are calculated. These are plotted in figure 8.8 (b). As expected

the single photon mode, n = 1, remains unchanged after microwave cou-

pling. The other modes are all significantly attenuated, with the attenuation

increasing for modes with higher photon numbers. Note that these results

are preliminary. As shown in section 7.4.3 the model does not reproduce the

measured values of g(2)(0). Therefore the accuracy of the inferred photon
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Figure 8.8: Modification of the shape of the retrieved pulse after microwave

coupling. (a) Retrieved pulses when no microwave coupling is applied (blue), and

with microwave coupling during the storage interval (red). The fits are obtained

using equation 7.3. The different modes contributing to the retrieved pulse ob-

tained with microwave coupling are also plotted. (b) For each mode the ratios of

the weight parameters used in the fits of the data with and without microwave cou-

pling are plotted. P′(n) denotes the weights in the presence of microwave coupling,

and P(n) are the weights when no microwave field is applied.

number distributions is questionable.

8.3.3 Dependence on initial conditions and microwave

pulse parameters

The response of the system when changing key experimental parameters will

now be studied. This will provide further evidence to support the origin of

the dephasing and also allows important parameters to be identified.

The effect of changing the duration of the microwave pulse will first be ex-

amined. Rabi oscillations for microwave pulse lengths of 150 ns (blue) and

300 ns (red) are shown in figure 8.9. A large phase shift of approximately π

radians is observed between the two data sets. This phase shift is examined

more closely in figure 8.10. Each peak of the Rabi oscillations is individually

fitted for data sets taken with different microwave pulse lengths. The phase

offset of each peak, which corresponds to C3 in equation 8.5, is obtained
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Figure 8.9: Effect of changing the duration of the microwave pulse. The blue

(circles) and red (squares) lines correspond to microwave pulse durations of 150 ns

and 300 ns respectively. There is a phase shift of approximately π radians between

the two data sets.

by fixing the frequency term, C2, but allowing all other fit parameters to

vary. The tanh envelope and the exponential term are dropped from the

fit function. The phase offset gives the deviation from single-particle Rabi

oscillations where the peaks are at integer multiples of 2π. In figures 8.10

(a)-(c) the phase offset seems to be largest for the initial peak, before drop-

ping towards a steady value for later peaks. The offset could be caused by

an effective detuning of the microwaves caused by the interaction between

polaritons. Since the interactions have the largest effect at small Ωµ this

would account for the variation in the phase offset. The phase offset also

increases with the duration of the microwave pulse. This behavior could be

due to the dependence of the maximum blockade radius for the microwave

transition, Rµ, on the duration of the microwave pulse. For very small values

of Ωµ, e.g. around the first peak in the Rabi oscillations, there will be an

upper bound on Rµ due to the bandwidth of the microwave pulse (assuming

this exceeds the dephasing rate of the microwave transition). This upper

bound therefore depends on the duration of the microwave pulse. Since Rµ

gives the range of the dipole-dipole interactions this could account for the
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Figure 8.10: Phase shift of individual peaks of Rabi oscillations relative to

single-particle oscillations. (a) Microwave pulse length, t = 150 ns. (b) t = 225 ns.

(c) t = 300 ns. (d) Control experiment using microwave coupling on the 60s1/2 to

58p3/2 transition with t = 150 ns.

variation in phase shift with the duration of the microwave pulse. In figure

8.10 (d) where microwave coupling is applied on the weaker 60s1/2 to 58p3/2

transition, the phase offset is much smaller. This supports the hypothesis

that interaction effects have a role in the observed phase shifts. However,

further investigations are required to confirm the origin of these effects.

Another important parameter is the mean number of polaritons in the sam-

ple. This can be varied by changing the power of the probe beam. From

equation 8.3, for the case of a single polariton i.e. N= 1, the Rabi oscilla-

tions should revert to single-particle oscillations. In addition suppression of



Chapter 8. Coherent control of Rydberg polaritons 116

the Rabi oscillations should not occur in this case since there are no polariton-

polariton interactions. The effect of varying the number of polaritons there-

fore provides an important test of the origin of the many-body nature and

dephasing of the Rabi oscillations. It should be noted that for all of the

data presented so far the mean number of retrieved photons in the absence

of microwave coupling is roughly n̄ret ≈ 0.05. Comparing this value to the

data in figure 7.8, it can be seen that the experiments so far have not been

performed in the regime where the medium is saturated. In figure 8.11, Rabi

oscillations are plotted for two different probe powers. The relative number
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Figure 8.11: Rabi oscillations for two different probe powers. (a) Low probe

power where the mean number of retrieved photons in the absence of microwaves

is n̄ret = (2.6 ± 0.5) × 10−3. From the fit N= 1.5 ± 0.3. (b) Higher probe power

where n̄ret = 0.031± 0.002. Here, N= 3.1± 0.3.
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of polaritons written into the sample in each case can be parameterised in

terms of the mean number of photons retrieved in the absence of microwaves,

n̄ret. As shown in figure 7.8, the number of photons retrieved increases ap-

proximately linearly with probe power until the medium is saturated due

to dipole blockade. In figure 8.11 (a), where n̄ret = (2.6 ± 0.5) × 10−3, the

Rabi oscillations have a large amplitude and the many-body nature is not

clear. In this case the data at small Ωµ does not fit to an exponential de-

cay. The dotted line is shown to guide the eye. In figure 8.11 (b), where

n̄ret = 0.031±0.002, the Rabi oscillations are suppressed and the many-body

nature is much more apparent.

In figure 8.12 a systematic study of the visibility and many-body character

of the Rabi oscillations for different probe powers is presented. The visibility,

denoted V in figure 8.12 (a), corresponds to the value of C1 obtained from

the fit function 8.5. Only the first Rabi oscillation, centered around approxi-

mately Ωµt/π = 3, is fitted since it is the suppression in the dephasing regime
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Figure 8.12: Variation of the visibility and many-body nature of the Rabi

oscillations as a function of the number of polaritons written. (a) Variation of the

visibility, V, of the first peak of the Rabi oscillations. The variable plotted along

the x-axis is the mean number of retrieved photons in the absence of microwaves.

This is proportional to the mean number of polaritons written (see figure 7.8). (b)

Corresponding variation in N . The values were extracted from a fit of the final

three Rabi oscillations (see figure 8.11).
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(~Ωµ < Vdd) that is being studied. As a single peak is fitted, the tanh and

exponential terms are dropped from the fit function. It can be seen from

figure 8.12 (a) that initially the visibility drops very sharply as the probe

power is increased. The decrease in the visibility then slows down at higher

probe powers. The fact that the suppression of the Rabi oscillations depends

strongly on the number of excitations written into the sample provides strong

evidence that the observed dephasing is due to dipole-dipole interactions be-

tween polaritons. In figure 8.12 (b) the associated change in N as the probe

power is varied is plotted. To obtain a value representative of the number of

polaritons written into the sample, N was extracted from a fit of the final

three Rabi oscillations i.e. in the regime ~Ωµ > Vdd, where interaction in-

duced dephasing should be suppressed. It can be seen that initially the value

of N seems to increase steadily with increasing probe power. At larger probe

powers N then decreases. This behavior is not understood, although it can

be seen that the errors on the values of N are large. Higher resolution data

may be required, especially for large values of n̄ret where large loss rates are

observed. Alternatively, the data could imply that the model used to fit the

data is not complete.

Another experimental parameter which can be considered is the frequency of

the microwave field. In figure 8.13 Rabi oscillations are plotted for microwave

frequencies covering a range of 6 MHz. The relative heights of the Rabi

oscillations seem to be very sensitive to the microwave detuning. In order

to understand this behavior the effect of the microwave detuning on the

interaction Hamiltonian in equation 8.7 needs to be included. This is outside

the scope of this work.
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Figure 8.13: Rabi oscillations at different microwave frequencies. (a) Microwave

frequency of 18.530 GHz. (b) Microwave frequency of 18.527 GHz. (c) Microwave

frequency of 18.524 GHz. The resonance frequency is estimated to be roughly

18.524 GHz. The spline fits are guides to the eye.
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Chapter 9

Conclusions and future work

In this thesis the controlled interaction between stored optical photons has

been demonstrated. In addition, evidence of non-linear effects associated

with photon propagation through the atomic medium has been presented.

There is clear scope for improvement of the experiment to enhance these

effects and allow further studies to be undertaken. In this chapter an overview

of the experimental findings will be given. Following this, potential research

directions to pursue in future work will be discussed.

9.1 Overview of the experiment

The experiment described in this thesis concerns the highly non-linear inter-

action of a weak probe field with a tightly confined atomic cloud. To realise

strong coupling of the probe field with the atomic cloud, a pair of high nu-

merical aperture aspheric lenses are mounted inside the vacuum chamber to

tightly focus the laser fields. Unfortunately one of these lenses has been par-

tially coated with rubidium resulting in dark spots on the lens surface. In

addition, the beam path through the other aspheric lens has been partially

blocked by a conducting wire. A consequence of these issues is that the cou-

pling efficiency of the probe beam into a single-mode collection fiber is only

around 15%. The signal level is therefore seriously compromised, which is a

serious issue when performing time-intensive g(2) measurements.

Another problem with the experiment is the positional instability and low
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density of the MOT due to the small angle at which the planar MOT beams

intersect. Around 100 atoms can typically be loaded into the dipole trap.

The small atom number means that the optical depth of the atomic cloud is

low (OD≈ 1). The optical depth is important as it governs the size of the

slow-light group delay, and the efficiency of photon storage [74]. The low

optical depth makes the observation of some effects difficult, and means that

the atomic medium is a very inefficient quantum memory.

It has also been observed that the intensity of the microwaves experienced by

the atomic cloud is very sensitive to the position of the antenna. This suggests

that the reflection of microwaves from metal surfaces forms an interference

pattern in the vacuum chamber. These reflections could also compromise the

polarisation purity of the microwave field experienced by the atoms.

Despite the problems described above, a number of interesting experiments

have been performed. Through the measurement of the photon statistics

of an optical field stored in the medium, it has been shown that Rydberg

blockade can be exploited to generate non-classical states of light [19–21].

In addition, control of the state of stored photons using a microwave field

has been demonstrated. The microwave field has been shown to introduce

long-range interactions between the stored photons, with single-photon states

preferentially retrieved from the medium. The system therefore provides a

potential interface between the optical and microwave domains [124].

9.2 Plans for an improved experimental setup

Many of the experiments performed in this thesis, such as the g(2) measure-

ments or the observation of Rabi oscillations of the stored photons, are very

time intensive. For example, the typical time required to perform a single

g(2) measurement is around 5-8 hours. The instability of the dipole trap

loading is an issue over these long measurement times as it can lead to large

fluctuations in the optical depth of the cloud. The poor collection efficiency

of the probe field into a single-mode fiber is also a major problem. The range

of experiments that can be performed is limited by these issues.

A new experimental setup is being designed and constructed by Hannes
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Busche which aims to solve these problems. The new features of this setup

include:

• Higher focal length, wedge shaped aspheric lenses inside the vacuum

chamber. The new lenses mean that the MOT beams can be arranged

in the typical 90◦ configuration. The problems associated with the

small intersection angle of the planar MOT beams in the current ex-

periment will therefore be avoided. In addition, larger MOT beams

can be used which will increase the number of captured atoms.

• A new, clean set of aspheric lenses should mean that a much higher

collection efficiency of the probe beam is possible.

• A 2D-MOT [125] to provide a source of atoms from which a 3D-MOT

will be loaded. The advantages of using this rather than loading the

MOT from a background vapor are two-fold. First, the high flux of

atoms from the 2D-MOT should allow faster loading of the 3D-MOT.

Currently the experimental cycle time is dominated by the MOT load-

ing stage. It is estimated that the experimental cycle time could be

reduced from around 2 s to a few 100 ms with the new setup. Sec-

ondly, the source of atoms is directional and can therefore be directed

away from the aspheric lenses in the vacuum chamber.

• The MOT quadrupole coils will be located inside the vacuum chamber.

As a result of this much higher field gradients will be possible allowing

a compressed-MOT phase [100] in the experimental cycle.

• As a consequence of the improvements detailed above many more atoms

such be loaded into the dipole trap. A much higher optical depth should

therefore be achievable. This should lead to improved photon storage

and retrieval efficiencies from the sample.

• Microwave antenna will be located inside the vacuum chamber. The

fact that there will be fewer metal surfaces between the atomic sample

and the antenna will hopefully result in a more uniform microwave field,

with better polarisation purity.
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The changes detailed above should allow experiments to be performed with

a much higher repetition rate. In addition the experiment should be much

more stable from shot to shot.

9.3 Future experiments

The improvements described in the previous section should make a range

of future experiments feasible. As discussed in chapter 1, one of the long-

term goals of this work is to create a phase gate for photons. Some of

the experimental demonstrations in this thesis are directly exploited in a

scheme proposed by David Paredes [126]. The scheme proposes to use the

dipole blockade effect to store single-photons in two spatially resolved sites,

from multi-photon input pulses. As discussed in chapter 7, this is possible

provided that the blockade radius is larger than the excitation region. The

gate operation is realised using a microwave field. In chapter 8 it was shown

that a microwave field can be used to control the range of the dipole-dipole

interaction between Rydberg atoms, essentially giving an additional blockade

radius. It is proposed that the two interaction scales can be used to give a

conditional phase aquisition to the stored photon states [126].

The storage of two photons in adjacent sites could also allow spatially re-

solved studies of resonant dipole-dipole interactions to be undertaken [123].

For example, following the storage of two single photons in different ns1/2

Rydberg states, a microwave field could be used to drive one atom into an

n′p3/2 Rydberg state. Resonant dipole-dipole interactions between the two

Rydberg excitations should be manifest as excitation hopping between the

two sites. Since only the photon in the ns1/2 state can be retrieved, the site

from which the photon emerges is sensitive to the dipole-dipole interactions.

This could also be exploited in an optical switch, where a photon stored in

one site is retrieved from an adjacent site upon application of a microwave

field. In addition, it is known that resonant energy exchange plays an im-

portant role in the process of photosynthesis [127]. Ultra-cold atoms provide

a well-controlled environment where the role of resonant energy transfer in

biological systems could potentially be more closely studied.
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Appendix

A.1 Dipole trap laser system

As discussed in section 5.1, to reduce the scattering rate of dipole trap light

it is necessary to use a trap wavelength which is far-off resonance. In this

experiment a trap wavelength of 910 nm is used. This is a convenient wave-

length given the beam waist used as relatively little power (≈ 160 mW) is

required to give trap depths on the order of mK. The corresponding scatter-

ing rate is on the order of 10 Hz. The trap light is generated from a diode

laser and is amplified using a second laser. The laser system is described

below.

The master laser for the dipole trap is a homebuilt extended cavity diode

laser (ECDL) based on the design in [128]. A diagram of the laser assembly

is shown in figure A.1 (a). The laser components are mounted on a fine

adjustment mirror mount. This provides a stable, compact base for the laser

assembly. A holographic diffraction grating is attached to the front plate of

the mirror mount, with the laser diode housed in a collimation tube on the

back piece of the mount. The fine adjustment screws allow precise variations

of the angle of the diffraction grating, and hence the laser wavelength, to be

made. The mirror mount sits on a thermo-electric cooler (TEC) which is in

thermal contact with a heat-sink. A thermistor is placed inside a hole drilled

in the base of the mirror mount. This allows the temperature to be regulated

using an external controller which works in conjunction with the TEC.
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Figure A.1: The home-built laser system used to provide light for the dipole

trap. (a) The master laser is an extended cavity diode laser (ECDL) assembled

on a fine adjustment mirror mount. The bare laser diode runs at a wavelength of

905 nm. (b) Light from the master laser is amplified using a tapered amplifier (TA).

The TA chip is mounted in an assembly consisting of two copper blocks. Aspheric

lenses mounted inside the copper blocks provide focusing and subsequent collima-

tion of the light passing through the TA. (c) Schematic showing the structure of

the TA chip. The gain region (red) is tapered along the propagation direction of

the input light.

Amplification of the light from the master laser is achieved using a home-

built tapered amplifier assembly similar to that described in [129]. This is

illustrated in figure A.1 (b). A tapered amplifier (TA) has a semiconductor

heterojunction structure as in a diode laser. However the ends of the TA chip

are antireflection coated so that the incoming light only passes through the

gain region once [130]. An illustration of the structure of the TA is shown in

figure A.1 (c). It can be seen that the gain medium is tapered along the direc-

tion of the input light. The input aperture of the TA is approximately 3 µm

in size. Due to the small dimensions of the input aperture, the TA must be
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mounted such that a well defined alignment can be achieved between the in-

put light and the gain medium. The TA is assembled in a configuration such

that the incoming light is focused at the TAs input aperture to a spot size

approximately equal to the aperture size. The light then expands through

the TA chip filling it’s gain region. The structure used to mount the TA

assembly consists of two copper blocks, each with a circular aperture. The

axis going through the center of these apertures defines the optical axis. The

piece labeled part 1 in figure A.1 (b) is the copper block which holds the

TA chip. This also holds an aspheric lens to focus the incoming light onto

the input aperture of the TA. The position of this aspheric lens is adjusted

to optimize the input coupling into the TA. The other copper block, labeled

part 2, holds an aspheric lens to collimate the output light from the TA. Due

to the size and shape of the output aperture of the TA, the output beam

is very divergent and astigmatic. The output aspheric lens is therefore used

to collimate the vertical axis of the beam, which is the most diverging. A

cylindrical lens external to the TA assembly is used to collimate the hori-

zontal axis of the beam. The optical axes of the copper blocks are aligned

when bringing them together by centering rods. The two copper blocks are

then screwed together. A TEC providing thermal stabilisation is sandwiched

between the copper blocks and an aluminium heat sink. The copper blocks

are screwed onto the heat sink, using ceramic spacers to thermally isolate

the screws from the copper blocks.

The maximum power available from the master laser after optical isolation

and beam shaping is 46 mW. This is significantly amplified by the TA. In

figure A.2 (a) the output power from the TA as a function of the driving

current is plotted for a fixed input power of 46 mW. It can be seen that the

output power can exceed 1.2 W. In figure A.2 (b) the output power from the

TA is plotted as a function of the input power from the master laser for a

fixed driving current. It can be seen that the output power does not quite

reach saturation. To achieve the maximum possible output power from the

TA a higher power master laser diode would be needed.
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Figure A.2: Characterisation of the output power from the TA. (a) Output

power from the TA as a function of driving current. The input power from the

master laser is fixed at 46 mW. (b) Output power from the TA as a function of

input power from the master laser. The TA driving current is fixed at 2.8 A.

A.2 Crossed dipole trap

To try and reduce the size of the atomic cloud a crossed dipole trap setup

was tested. The second, transverse dipole trapping beam crossed the ax-

ial trapping beam at 90◦. The desired effect of the transverse trap was to

compress the atomic cloud longitudinally and therefore reduce the number

of Rydberg excitations that could be supported. The high atomic densities

achievable in crossed dipole traps have been used to produce BECs [131], and

have been successfully used in experiments employing a dynamical reduction

of the trap size [132].

In order for the transverse dipole trap to cause a significant longitudinal

compression of the atomic cloud a small beam waist was required. A lens

system external to the vacuum chamber focused the beam to a waist of

5.7± 0.3 µm. Due to the small waist of both dipole trap beams, overlapping

the two traps is challenging. A variety of diagnostic techniques can be used.

Resonant 780 nm light coupled into the transverse trap lens system can be

used to image the atoms in the axial dipole trap. Alternatively repump

light can be used following the method described in 5.2.3. Both of these
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Figure A.3: Fluorescence from dipole trapped atoms as a function of transverse

trap position.

techniques were used to roughly overlap the two traps. Following this the

fluorescence signal from the dipole trapped atoms was used. Figure A.3

shows the fluorescence signal obtained after loading both traps as a function

of the position of the transverse trap. The enhancement in the fluorescence

signal obtained when scanning the position of the beam both horizontally

and vertically is a signature of the overlap between the two trap beams.

No enhancement in the absorption of the probe field was observed when

using the crossed dipole trap. In addition it was found that the position of

the transverse trap beam was unstable. For these reasons the crossed trap

arrangement was not used in the experiments described in this thesis.

A.3 Absorption spectra of dipole trapped

atoms

In figure A.4 the absorption lineshape of the dipole trapped atoms is pre-

sented. It can be seen that the absorption lineshapes are blue-shifted for

both the axial trap (red data) and cross trap (blue data), relative to that

of the untrapped atoms (black data). The lineshapes of the trapped atoms
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Figure A.4: Absorption spectra of dipole trapped atoms. The center of the

absorption lineshape is strongly shifted when the atoms are held in the axial trap

(red points) or crossed dipole trap (blue points), relative to the case where the

atoms are released from the trap (black points).

are also broader. This is a consequence of that fact that the light shift ex-

perienced by an atom depends on its position in the trap. The light shift

therefore varies across the atomic cloud, broadening the lineshape relative

to the case of a free-space cloud at the same temperature. The inhomoge-

neous broadening is the reason that experiments are performed on untrapped

atoms. The larger the temperature of the cloud, the greater its spatial extent

and therefore the greater the broadening. The probe absorption lineshape

of the dipole trapped atoms could therefore potentially be used to measure

their temperature [133, 134]. However, since the spatial extent of the probe

beam is smaller than the atom cloud this method was not employed.

A.4 EIT transients

Most of the data presented in this thesis involves photon counting using

SPADs. Since the detection time of every photon count has been recorded, a

massive amount is information is accessible when post-processing the data.
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For example, one area which has been ignored is the transient effects which

arise when switching the intensities of the fields under EIT conditions [135].

In figure A.5 (a) photon counts from the probe beam (red data), which

is on EIT resonance, are plotted as a function of time. For reference the

background probe signal (blue data) when no atoms are loaded into the

dipole trap is also plotted. In both cases the initial increase in the number

of photon counts corresponds to the turn-on of the probe beam. Note that

the coupling beam is permanently on. At around 1.1 µs a microwave field
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Figure A.5: Transients in EIT. (a) Photon counts from a probe field on EIT

resonance (red data), and the corresponding background level (blue data) when no

atoms are loaded into the dipole trap. (b) There is initially large absorption of the

probe beam before the medium becomes transparent. The increase in absorption

at around 1.1 µs is due to the application of a microwave field.
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is turned on which results in absorption of the probe field (for example see

figure 6.6 (c)). In figure A.5 (b) the absorption of the probe beam is plotted

as a function of time. It can be seen that the medium is initially absorbing for

a few hundred ns before becoming transparent. The transients have not been

studied in this experiment but could be an interesting direction for future

work in order to understand the role of atomic interactions on the population

of the dark-state.
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