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Abstract

Löytäinen, Topi
Lowest order perturbative quantum field theory calculations of bound state decay
widths
Master’s thesis
Department of Physics, University of Jyväskylä, 2017, 88 pages

The bound state decay widths of the processes J/ψ → l+l−, ηc → gg, O-Ps→ γγγ,
J/ψ → ggg and J/ψ → γgg are derived in the lowest order perturbative theory of
QED and QCD. In these calculations, three different methods for processing the
invariant amplitude are presented. The derived decay width results agree with the
established ones in the literature. Moreover, experimentally verifiable ratios between
calculated decay widths are presented. The theoretical predictions are RJ/ψ

1th =
Γ(J/ψ → γgg)/Γ(J/ψ → ggg) ≈ 0.104 and R

J/ψ
2th = Γ(J/ψ → l+l−)/Γ(J/ψ →

ggg) ≈ 0.060, which agree relatively well with experimental results. Finally it is
argued that the development can be generalized for other heavy mesons with the
same quantum numbers.

Keywords: bound state, particle decays, perturbative QFT, J/ψ meson
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Tiivistelmä

Löytäinen, Topi
Alimman kertaluvun häiriöteoreettisia kvanttikenttäteorialaskuja sidottujen tilojen
hajoamisleveyksille
Pro gradu
Fysiikan laitos, Jyväskylän yliopisto, 2017, 88 sivua

Työssä lasketaan sidottujen tilojen hajoamisleveydet prosesseille J/ψ → l+l−, ηc →
gg, O-Ps → γγγ, J/ψ → ggg ja J/ψ → γgg. Prosessit lasketaan perturbatiivisen
QED:n ja QCD:n alimmassa kertaluvussa. Laskuissa käydään läpi kolme erilaista
tekniikkaa invariantin amplitudin käsittelemiseksi. Johdetut hajoamisleveystulok-
set käyvät yksiin kirjallisuudesta löytyvien tulosten kanssa. Lisäksi tarkastellaan
kokeellisesti varmistettavissa olevia hajoamisleveyssuhteita. Teoreettiset ennusteet
ovat RJ/ψ

1th = Γ(J/ψ → γgg)/Γ(J/ψ → ggg) ≈ 0.104 sekä R
J/ψ
2th = Γ(J/ψ →

l+l−)/Γ(J/ψ → ggg) ≈ 0.060, jotka ovat melko lähellä kokeellisia arvoja. Lopuksi
argumentoidaan, että tulokset voidaan yleistää koskemaan muita raskaita mesoneita
joilla on samat kvanttiluvut.

Avainsanat: sidottu tila, hiukkasen hajoaminen, perturbatiivinen QFT, J/ψ mesoni



vi



vii

Foreword
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the trees; so to speak. Only after adequate control of the knowledge accumulated by
scientists before me, I can dream of inventing something new.
As such, the work at hand is more or less general knowledge on the field of particle
physics. A friend of mine once asked from me, why do I need to recalculate a collision
process which has already been done back in the 1970’s? My response to his question
was, why do the first graders need to learn how to calculate 1+1=2? After all a lot
of people have done that calculation before them. Why would they need to know
how to do that? With this the motivation for this master’s thesis should become
obvious.
Lastly I would like to thank professor Kari J. Eskola for his guidance during this
work. We had many intriguing conversations on the topic going down to the finest
details at times. I would also like to thank my friends and my colleagues of FYS4
for enduring my rants when I wasn’t able to solve some particular calculation. And
finally, I would like to thank Veera for her patience. She has been the one who has
had to tolerate my long working hours the most.

Jyväskylä, 17.10.2017

Topi Löytäinen
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1 Introduction

A typical book on quantum field theory (QFT) usually starts with a quick revision of
classical field theory or assumes it to be known [1]–[4]. With such an in-depth topic,
a certain level of pre-existing knowledge has to be assumed. Therefore, in this thesis
it is assumed that the reader is somewhat familiar with the phenomena of particle
physics and the mathematical machinery needed for its description. However, it is
our desire to present a detailed account of the most important calculations such that
the reader should be able to follow the development nearly without the need of a
pen and a paper.

The main interest in this thesis is in the lowest order (LO) perturbative quantum
field theory (QFT) calculations of bound state decays. The decays of the heavy
mesons J/ψ and ηc are taken as examples for decay processes that are described by
quantum chromodynamics (QCD). Moreover, the decay of the ortho-positronium
(O-Ps) is taken as an example of a process that can be described completely within
the framework of quantum electrodynamics (QED). In particular, we shall explicitly
derive the decay widths of the following decay processess: J/ψ → l+l−, ηc → gg,
O-Ps→ γγγ, J/ψ → ggg and J/ψ → γgg.

We are interested in the decays of those states where the orbital angular momentum
is zero i.e. L = 0. This is to say that we consider bound state particles with spin 1
or 0. Moreover, it should be noted that both J/ψ and ηc are bound states of the
charm c and anticharm c̄ quarks. The difference between these two particles is that
J/ψ is a JPC = 1−− particle and ηc is a JPC = 0−+ particle. Similarly with J/ψ,
the O-Ps is a JPC = 1−− particle. However, the O-Ps is a bound state of an electron
e− and a positron e+.

A particular emphasis is on the decay of J/ψ as one of our earliest motivations for
this topic came from the desire to understand the diffractive J/ψ-production in
deep inelastic scattering [5]. The decay width calculations allow us to derive ratios
between different decay channels. For example we derive the known result of the
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ratio between J/ψ → γgg and J/ψ → ggg:

Γ(J/ψ → γgg)
Γ(J/ψ → ggg) = 36

5
α

αs
Q2
c , (1.1)

where Qc is the fractional electric charge of the charm quark, α is the QED coupling
constant and αs is the QCD coupling constant [6]. As one can see, the equation 1.1
allows us to figure out the ratio between the QED and QCD coupling constants at
the given energy scale.
Because of the wide variety of different notational conventions, it is sensible to
explicitly state our notational choices. Throughout this thesis we work in a 4D
Minkowski space with the metric chosen to be gµν = (+, − , − ,−). Moreover, we
shall adopt the Dirac-Pauli representation. The reader may check appendix E for
the explicit form of this representation. When Greek letters µ,ν,ξ, . . . are used as
indices, they represent Lorentz indices going over the values 0,1,2,3. Similarly when
Latin letters i,j,k, . . . are used as indices, they go over the values 1,2,3. Moreover,
in general any three-vector is written with a bold faced letter or a vector sign on top
of it, e.g. k or ~k. The choice depends on the context. The four-vector counterpart
is then simply written as k. Lastly, throughout this thesis we shall also work with
natural units e.g. ~ = c = 1. Any other notational convention should be obvious
from the context.
Before presenting the decay width calculations, we shall introduce a method for
solving a two-body bound state decay process to LO analytically. This is an important
result from which we take full advantage of. Our development for the invariant
amplitude of bound state decays rests on the idea that we can first neglect the
annihilation of the bound state to calculate the binding, and then neglect the binding
to calculate the annihilation [1, p.233]. Then the desired invariant amplitude of the
bound state decay is obtained simply by multiplying these two together. We shall
also take the extreme nonrelativistic (NR) limit, where the momentum of the heavy
constituent particles is set to zero. This is a rather justifiable approximation when
working in the center-of-mass (CMS) frame of the decaying particle. In addition, the
development holds at the heavy-quark mass energy scales where α and αs are small
enough, such that perturbation theory can be applied. After this we shall consider
the processes of interest.
We shall calculate the decay width of the process J/ψ → l+l− in two different
ways. First by explicitly forming the matrix structure from the quark and antiquark
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spinors and calculating through. Then secondly, and maybe more elegantly, by taking
advantage of the helicity states of the J/ψ. There are two main reasons for this
development. First of all, any mathematical tools that allow us to circumvent some
of the tediousness of a brute calculation are valuable in themselves. Secondly, the
development should give a more in depth understanding of the physical process at
hand.
With this so called helicity technique at our disposal, we shall briefly revisit the
calculation of the decay width of ηc → gg as given in [7]. This is of interest to
us because ηc is in the spin singlet configuration and expressing this state in the
helicity basis gives us the whole picture of how the addition of angular momenta
of spin-1

2 particles works for this technique. In addition, this allows us to point
out the importance of how one chooses the set of independent basis spinors for
the Dirac equation (DE) solutions ψ. This choice is also intimately related to the
Clebsch-Gordan coeffiecients.
A bound system of an electron and its antiparticle positron is called positronium
and when it is in the spin triplet configuration it is called O-Ps. This decay width
calculation is well known in literature but has still evoked interest in the 21st
century [1], [8]–[10]. We are interested in this calculation since it may be used as a
stepping stone to the calculations of Γ(J/ψ → ggg) and Γ(J/ψ → γgg). After having
done the positronium calculation, the J/ψ decay width calculations essentially boil
down to figuring out the correct color factors.
Some of the calculational details have been placed to the appendices in order to
make the main text more concise. A reader interested in these details will find them
from there. The main text references them appropriately. Moreover, as we shall
extensively use the Feynman rules to derive the invariant amplitude, a quick recap
of QED and QCD Feynman rules has been gathered to appendix D. Before the
conclusions we shall briefly discuss how these calculations relate to experimental
results and how they can be generalized to cover other heavy mesons with the same
quantum numbers. Next, let us turn our attention to two-body bound states.
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2 Two-body bound state decays in general

The method of solving NR two-body bound state decays is common knowledge in
the field of particle physics. In this section we shall briefly go through the main
points and results of this development. A reader more interested in the details may
refer to literature for further information [1], [2], [7], [11]–[18].
Let us then consider an unstable particle α of mass M , which can decay to n other
particles as α → 1 + 2 + · · ·+ n. The decay event can result in multiple different
final states |fi〉. Let us choose a particular decay process with a final state |f〉 that
we are interested in. We may then define a quantity called the decay width Γf as

Γf ≡
Nf

Nα∆T , (2.1)

where Nf is the number of those decay events where the final state is |f〉, Nα is
the number of decaying particles and ∆T is the time interval in which we observe
the decay events. We can clearly see from equation 2.1 that the decay width is
proportional to the inverse of the average lifetime of the particle.
Then, by taking e.g. the plane wave approximation method and ”putting the particles
in a box” we may derive the decay width to the channel f = 1...n to be

Γf = 1
2Eα

∫  n∏
i=1

d3pi
(2π)32Ei

(2π)4δ(4)

pα − n∑
j=1

pj

|Mfi(α→ 1...n)|2, (2.2)

where Eα, Ei are the energies and pα,pi the four-momenta of the particles in ques-
tion [18]. The delta function δ(4) takes care of energy conservation and the invariant
amplitudeMfi contains the physics of the decay. We can also see that since the
energy Eα depends on the frame, the decay width also depends on the frame. Usually
the frame is chosen to be the CMS frame of the decaying particle since in it we have
the proper time of the system. Then the problem of finding the decay width is a two
fold process: determine the invariant amplitudeM for the process and compute the
phase space integral.
Next we need to figure out the form of the invariant amplitude. Let us start
by considering the wavefunction Ψ(r1,r2,t) of the bound state. If the interaction
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potential is time independent, we may write the wavefunction as follows:

Ψ(r1,r2,t) = ψ(r1,r2)e−iEt/~. (2.3)

In this thesis we shall limit ourselves to time independent potentials of QED and
QCD. We may then focus only on the spatial part ψ(r1,r2). For a purely QED
process, such as the O-Ps decay, we know the interaction potential V (r1,r2) to be the
Coulombic potential. However, for the decays of J/ψ and ηc the strong interaction
potential is unknown. So how can we solve a decay process of a bound state whose
interaction potential is unknown?
The answer is that, from first principles, we cannot. However, we can formally write
the decay width to be proportional to the square of the wavefunction at zero e.g.
|ψ(r = 0)|2. We can then experimentally determine this value. However, ratios
between different decay channels can be determined exactly as the wavefunction
terms will cancel each other out. Let us first derive the general form for the invariant
amplitude of a two-body bound state decay process and then solve for the exact
QED bound state decay solution.
Consider a system of two point like particles a1 and a2 as shown below in figure 2.1
whose positions are described by the position vectors r1 and r2 respectively. These
particles form the decaying particle α which we are interested in. Moreover, we are
interested in NR systems which consist of two particles of the same mass m. And by
neglecting any binding energies, it also follows that M = 2m. With these we may
write the CMS coordinate R and relative coordinate r as

R = 1
2(r1 + r2), r = r1 − r2. (2.4)

Abiding to this notation we can then write the conjugate momenta as

K = k1 + k2, k = 1
2(k1 − k2). (2.5)

In the center-of-mass frame the total momentum K is zero and thus k1 = −k2 = k.
With these results it proves out easier to work in the momentum space. So we take
the Fourier transform of the normalized wavefunction ψ(r) of the relative motion:

ψ̃(k) =
∫
d3xeik·rψ(r),

∫ d3k

(2π)3 |ψ̃(k)|2 = 1. (2.6)
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Figure 2.1. Two point like particles a1 and a2 of the mass m in a rectangular
coordinate system described by the position vectors r1 and r2 respectively.

Then by separating the NR wavefunction of the bound state |ΨBS〉 to the wavefunction
for the relative motion and the free motion of the CMS of the bound state, it follows
that |ΨBS〉 can be written as

|ΨBS〉 =
√

2
M

∫ d3k

(2π)3 ψ̃(k) |k1s1,k2s2〉 , (2.7)

where the front factor
√

2/
√
M follows from the 2EK̄ particles in a box relativistic

normalization convention and s1,2 denote the spins of a1,a2 [2, p.149]. We have now
written the bound state wavefunction in terms of certain factors multiplying the free
particle solution |k1,s1〉 and |k2,s2〉. Then it naturally follows that the invariant
amplitude for the decay from the bound state to some final state 1...n may be written
as

M(α→ 1...n) =
√

2
M

∫ d3k

(2π)3 ψ̃(k)M(a1a2 → 1...n). (2.8)

Moreover, by expandingM(a1a2 → 1...n) around k = 0, the momentum integral
over ψ̃(k) gives us the position-space wavefunction evaluated at zero ψ(r = 0). Thus,
our final result is:

|Mfi(α→ 1...n)|2 ≈ 2
M
|ψ(r = 0)|2|Mfi(a1a2 → 1...n)

∣∣∣2
k=0

. (2.9)

We may then use the Feynman rules to calculate the free particle invariant amplitude
on the right hand side (r.h.s.) of equation 2.9. As mentioned earlier, we cannot
define |ψ(r = 0)|2 from first principles for the decays of J/ψ or ηc. However, for the
O-Ps decay, which we go through in section 5, we know how to do this. Since O-Ps is
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a hydrogen like system for which L = 0, the wavefunction can be found by repeating
the development given in many textbooks, e.g. [11], [12].
Let us go through the main points of this development. We assume that the binding
potential is time independent and has no angular dependence. Then by working in
spherical coordinates, we may separate the wavefunction solution to a radial part and
an angular part. The solutions to the angular part give us the well known sperical
harmonics. After factoring out the asymptotic behaviour as r →∞, the radial part
is solved with a power series ansatz. This gives us a recursion formula which must
terminate at some point. With this we can define the principal quantum number n
and solve for the normalized eigenfunction as n = 1 and l = m = 0. This gives us
the LO position-space wavefunction:

ψ(r) ≡ ψ100(r,θ,φ) = R10(r)Y 0
0 (θ,φ) = 1√

πa3
e−r/a, (2.10)

where a = 2/(mα) is now twice the Bohr radius [11, p.138]. This follows from the
fact that as we are solving the O-Ps system in the CMS coordinates, the reduced
mass of the system is half of the electron mass m. Moreover, α is the QED coupling
constant. This concludes our formulation of the NR bound state system and with it
we may start to consider our first decay width Γ(J/ψ → l+l−).
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3 Decay width of J/ψ → l+l−

3.1 Explicit spin matrix approach

In this section we shall work through the calculation with conventional techniques
involving explicit spinor and spin matrix manipulations. Furthermore, we shall
proceed in the manner outlined in section 2. Then, in the LO this decay process can
be described by the Feynman diagram given in figure 3.1. As discussed in section 1,
we are interested in those particles for which L = 0. Since we know that J/ψ is a
JPC = 1−− particle, it follows that J = S = 1. J/ψ must also be in the color singlet
state, QQ̄=̂ 1√

3(rr̄+ gḡ+ bb̄) involving all quark colors symmetrically. Since the decay
to the lepton channel is a QED process, where only the quark lines involve color, we
can straightforwardly write the color factor Fc as Fc = 3√

3 =
√

3. The free particle
process cc̄→ l−l+ invariant amplitude may be written as

−iMC=0
S=1 (cc̄→ l−l+) = Fc(ū3(−ieγµ)v4)

−igµν
q2

(v̄2(ieQcγν)u1)

= −Fc
ie2Qc

q2 (ū3γµv4)(v̄2γ
µu1),

(3.1)

where u1 ≡ u(p1,s1) and similarly for other Dirac spinors. Moreover, Qc stands for
the fractional charge of the charm quark and q = p1 + p2 = p3 + p4.

Figure 3.1. The LO Feynman diagram for J/ψ decay into a lepton pair.
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We shall use a notation where spin s = 1
2 is denoted as s =↑ and s = −1

2 similarly as
s =↓. With this convention the standard spinors u(p,s) and v(p,s) at the NR limit
p→ 0 can be written as

u(p,s) = N(p)
 χs

σ·p
Ep+mχs

 p→0−−→
√

2m
χs

0

 ;


χs =

1
0

 for s =↑

χs =
0

1

 for s =↓

v(p,s) = N(p)
 −σ·pEp+mχs̃

χs̃

 p→0−−→
√

2m
 0
χs̃

 ;


χs̃ =

0
1

 for s =↑

χs̃ =
1

0

 for s =↓ .

(3.2)

Note that there is some freedom in choosing the basis vectors. Here we have
adapted the definition as given by Halzen and Martin [17, p.104]. In addition, it
should be noted that the factor

√
2m results from the normalization convention of

N(p) = N(−p) =
√
Ep +m, where m is now the mass of the charm quark.

Let us consider the latter term (v̄2γ
µu1) of equation 3.1. In the sum over the index

µ the first term µ = 0 disappears:

(v̄2γ
0u1) = v†2γ

0γ0u1 = v†2u1 = 2m
(
0 χ†s̃2

)χs1

0

 = 0. (3.3)

While for k = 1,2,3 we get

(v̄2γ
ku1) = 2m

(
0 χ†s̃2

) 0 σk

σk 0

χs1

0

 = 2mχ†s̃2σ
kχs1 = 2m(σk)s̃2s1 , (3.4)

where the last equality is just a notation for the matrix product. Notice that this
does not specify the spin states s2 and s1 and thus holds in general. The invariant
amplitude then becomes:

−iM = −Fc
2mie2Qc

q2 (ū3γkv4)(σk)s̃2s1 , (3.5)

where we have lightened up the notation by dropping the sub- and superscripts of
M. We know that the J/ψ will initially be in the triplet configuration S = 1, thus
we have to sum over all the possible spin states and take the average of them. The
square of the total invariant amplitudeMtot for the free particle annihilation, can
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then be written withMs1s2 as

|Mtot|
2 = 1

3
∑
s3s4

(
|M↑↑|2 + |M↓↓|2 + 1

2 |(−iM↑↓)− (−iM↓↑)|2
)
, (3.6)

where the front factor 1/3 comes from averaging over the J/ψ spin states. Note
especially that now the initial state |SMz〉 = |10〉 is given by 1√

2(|↑↓〉−|↓↑〉) contrary
to what we are used to with the Clebsch-Gordan coefficients. This follows from the
adopted symmetric sign convention of equation 3.2. For more details see appendix A.1.
Then the rest of the calculation is straightforward. Let us inspect the first element
in equation 3.6 more closely:

|M↑↑|2 = 12m2e4Q2
c

q4 (ū3γkv4)(σk)↑↑(v̄4γlu3)(σl)∗↑↑, (3.7)

where we have now inserted ↑↑ in place of s2s1 and F 2
c = 3. It should be noted

that all of the quantities in brackets in equation 3.7 are just numbers and thus can
be moved freely around. Then the matrix product (ū3γkv4)(v̄4γlu3), which is just a
number, can be written with the summation convention as

(ū3γkv4)(v̄4γlu3) = (ū3)i(γk)ij(v4)j(v̄4)k(γl)kn(u3)n. (3.8)

Note that (u3)n is just the component n of the 4-vector u3 and thus can be moved
first. Then all the spinors are next to each other and we may use the well known
projection operators∑

s=↑,↓
u(p,s)ū(p,s) = /p+m and

∑
s=↑,↓

v(p,s)v̄(p,s) = /p−m. (3.9)

Then we are left with a matrix product which can be identified as a trace over the
matrix product. Furthermore, at this energy scale we may neglect the masses of the
leptons i.e. M � ml. Here M is the mass of the J/ψ and ml is the mass of the
lepton. Keeping in mind all this, we may process the squared invariant amplitude
further: ∑

s3s4

|M↑↑|2 = 12m2e4Q2
c

q4

∑
s3s4

(u3ū3γkv4v̄4γl)︸ ︷︷ ︸
Trace

(σk)↑↑(σl)∗↑↑

= 12m2e4Q2
c

q4 Tr(/p3γk/p4γl)(σ
k)↑↑(σl)∗↑↑.

(3.10)

For the trace in equation 3.10 we may use the well known trace identity

Tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ) (3.11)
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and write:∑
s3s4

|M↑↑|2 = 12m2e4Q2
c

q4 · 4 · pα3p
β
4 (gαkgβl − gαβgkl + gαlgβk) (σk)↑↑(σl)∗↑↑

= 48m2e4Q2
c

q4 (p3kp4l − (p3 · p4)gkl + p3lp4k)(σk)↑↑(σl)∗↑↑.
(3.12)

Notice that we still have the summation over the Lorentz indices k and l. This is
because the zeroth index goes always to zero in the NR-limit. Moreover, we are
considering the invariant amplitude for which s2s1 =↑↑. So we need to consider the
values of (σk)↑↑ and (σl)∗↑↑. Essentially we need to multiply the Pauli spin matrices
with the appropriate two-spinors. For example when k = 1 we get from equation 3.4:

(σ1)↑↑ =
(
0 1

)0 1
1 0

1
0

 = 1. (3.13)

Carrying this over for k = 2 and k = 3, we can denote the values of (σk)↑↑ and (σl)∗↑↑
with 4-vectors as below:

(σk)↑↑ = (0,1,i,0) & (σl)∗↑↑ = (0,1,− i,0). (3.14)

Let us then consider the product between the momentum 4-vectors and these 4-
vectors. Notice in particular that with our notational convention the subscript
denotes the particle in question and the superscript the element of the momentum
4-vector e.g. p1

3 is the underlined element in pµ3 = (p0
3,p

1
3,p

2
3,p

3
3)T. In addition, keeping

in mind the minus sign coming from the metric:

(p3kp4l − (p3 · p4)gkl + p3lp4k)(σk)↑↑(σl)∗↑↑ = (−p1
3 − ip2

3)(−p1
4 + ip2

4)

− (p3 · p4)(−1− 1) + (−p1
3 + p2

3)(−p1
4 − ip2

4)

= 2(p3 · p4) + 2(p1
3p

1
4 + p2

3p
2
4).

(3.15)

We may then continue to consider the otherM’s. Again it is beneficial to explicitly
denote the values of (σk)s2s1 and (σl)∗s2s1 for the other s2s1 states:

(σk)↓↓ = (0,1,− i,0) & (σl)∗↓↓ = (0,1,i,0)

(σk)↑↓ = (0,0,0,− 1) & (σl)∗↑↓ = (0,0,0,− 1)

(σk)↓↑ = (0,0,0,1) & (σl)∗↓↑ = (0,0,0,1).

(3.16)

We can immediately see that for |M↓↓|2 the expression is the same as for |M↑↑|2,
∑
s3s4

|M↓↓|2 = ... = 48m2e4Q2
c

q4 (2(p3 · p4) + 2(p1
3p

1
4 + p2

3p
2
4)). (3.17)
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Let us then denote the state |SMz〉 = |10〉 in equation 3.6 by I:

I :=1
2
∑
s3s4

|(−iM↑↓)− (−iM↓↑)|2

=1
2
∑
s3s4

|Fc
2mie2Qc

q2 (ū3γkv4)[(σk)↓↑ − (σk)↑↓]|2.
(3.18)

Notice in particular how the labeling of the spins works. By looking at equation 3.16,
we see that only the term k = 3 contributes to I. Moreover, by taking advantage of
the trace identity of equation 3.11 and by remembering the minus coming from the
metric, we can immediately write down the form

I = 48m2e4Q2
c

q4 (2(p3 · p4) + 4p3
3p

3
4). (3.19)

Now combining equation 3.19 with 3.17, the result which we have for |M↑↑|2 and by
remembering the 1/3 front factor we arrive at

|Mtot|
2 = 1

3
48m2e4Q2

c

q4 (6(p3 · p4) + 4(p1
3p

1
4 + p2

3p
2
4 + p3

3p
3
4)). (3.20)

Next we will clean up this result with dynamical variables. The Mandelstam variable
s is defined as

s = (p1 + p2)2 = (p3 + p4)2, (3.21)

which we can open up,
s = p2

3 + 2p3 · p4 + p2
4, (3.22)

and use the result p2
i = m2

i ≈ 0. Thus we have s = 2p3 · p4. Moreover, in the CMS
frame we have p3 = −p4 and the last term of equation 3.20 reduces to −4|p3|2.
Furthermore, in the CMS-frame the energy is evenly distributed for the outgoing
leptons i.e. E3 = E4 and because

√
s = Etot = E3 + E4, we can write |p3|2 with the

energy-momentum relation E2
i ≈ |pi|2 as |p3|2 = s/4. Thus we have the results

6(p3 · p4) = 3s and 4(p1
3p

1
4 + p2

3p
2
4 + p3

3p
3
4) = −s. (3.23)

Moreover, in the NR-limit we have M2 = q2 = s and m = M/2. Inserting these into
equation 3.20 we get

|Mtot|
2 = 16(M/2)2e4Q2

c

s2 (3s− s) = 4se4Q2
c

s2 2s = 8e4Q2
c

= 8 · 16π2α2Q2
c ,

(3.24)
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where in the last equality we used the result e4 = 16π2α2. Now by applying
equation 2.9 we get

|Mtot(J/ψ → l+l−)|2 = 2
M
|ψ(r = 0)|28 · 16π2α2Q2

c . (3.25)

Then from equation 2.2 we have

Γ(J/ψ → l+l−) = 1
2M

∫ d3p3

(2π)32E3

d3p4

(2π)32E4
(2π)4δ(4)(pJ/ψ − p3 − p4)

|Mtot(J/ψ → l+l−)|2.
(3.26)

By neglecting the running of α, we notice that the invariant amplitude is just a
constant. The integral of equation 3.26 can be worked down to the following form:

Γ(J/ψ → l+l−) =

√
λ(M2,0,0)
64π2M3

∫
dΩ|Mtot(J/ψ → l+l−)|2, (3.27)

where λ(a,b,c) = a2 + b2 + c2− 2ab− 2bc− 2ca and dΩ is the infinitesimal solid angle
element over which we are integrating. For details, see the appendix A.2. Since
|Mtot(J/ψ → l+l−)|2 is just a constant, the solid angle integral over dΩ gives 4π. By
substituting these we get

Γ(J/ψ → l+l−) = M2

64π2M3 · 4π ·
2
M
|ψ(r = 0)|2 · 8 · 16π2α2Q2

c

= 16πα2Q2
c

|ψ(r = 0)|2
M2 .

(3.28)

This is the well known Van Royen-Weisskopf formula [19].

3.2 Helicity basis approach

In this section we will repeat the previous calculation in the helicity basis. This
approach is rather ingenious and saves us from the explicit spin matrix calculations
of the previous section. Before this, however, we shall change our choice of the basis
spinors in equation 3.2. The only change we need to make, is to flip the sign of the
spin down basis spinor of the antiparticle. That is, in the NR-limit we define the
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helicity basis vectors as follows:

u(p,h) = N(p)
 φh

σ·p
Ep+mφh

 p→0−−→
√

2m
φh

0

 ;


φh =

1
0

 for h =↑

φh =
0

1

 for h =↓

v(p,h) = N(p)
 σ·p
Ep+mχh

χh

 p→0−−→
√

2m
 0
χh

 ;


χh =

0
1

 for h =↑

χh =
−1

0

 for h =↓ .

(3.29)

whereN(p) is as in equation 3.2 and h =↑ , ↓ refer to the positive and negative helicity,
correspondingly. The above sign convention is chosen for example in reference [20,
p.44-45]. And we can immediately see why this recovers the standard Clebsch-Gordan
coefficient results. The reader is encouraged to see equation A.9 to verify this. Then,
as given in reference [21], the Dirac spinors can be written in terms of the J/ψ initial
state polarization vectors ε as

u(↑)v̄(↑) = − 1√
2

(
/pJ +M

2

)
/ε(↑); u(↓)v̄(↓) = − 1√

2

(
/pJ +M

2

)
/ε(↓);

1√
2

[u(↑)v̄(↓) + u(↓)v̄(↑)] = − 1√
2

(
/pJ +M

2

)
/ε(0),

(3.30)

where ↑, ↓ and 0 for ε represent the helicity states 1, −1 and 0 respectively. Moreover,
we have set pJ = pc/2 = pc̄/2 where pJ is the 4-momentum of J/ψ and pc/c̄ is the
quark 4-momentum. In addition, M denotes the mass of the J/ψ. Note that we have
adopted the notational convention of reference [21], where the polarization vector
εµ(pJ ,h) is denoted by εµ(h). The subtleties of how these identities come about are
not very important for the decay width calculation. Thus the finer details of this
method have been relegated to appendix A.3.
The invariant amplitude is still given by equation 3.1. Now we shall denote the
lepton vertex (ū3γµv4) with Lµ. With these we may write the invariant amplitude as
follows:

−iMh = −Fc
ie2Qc

q2 Lµ(v̄2γ
µu1), (3.31)

where the subscript h denotes the helicity state of the J/ψ. Then similarly as what
we did in equation 3.8, we may identify the trace as

(v̄2)i(γµ)ij(u1)j = (u1)j(v̄2)i(γµ)ij = Tr(u1v̄2γ
µ) (3.32)
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and use the results of equation 3.30 to process equation 3.31 further:

−iMh = −Fc
ie2Qc

q2 LµTr(u1v̄2γ
µ) = −Fc

ie2Qc

q2 LµTr
(
− 1√

2

(
/pJ +M

2

)
/ε(h)γµ

)

= Fc

2
√

2
ie2Qc

q2 LµTr(M/ε(h)γµ)︸ ︷︷ ︸
=Mεν(h)4gνµ

= Fc

2
√

2
ie2Qc

q2 Lµ · 4Mεµ(h)

= Fc

√
2ie2Qc

q2 MLµε
µ(h), (3.33)

where in moving from the first line to the second line, we have used the fact that a
trace over an odd number of Dirac gamma matrices vanishes.
Then the summing over of the initial states of J/ψ can be written in terms of a sum
over the helicity eigenvalues 0,±1. Again by averaging over the initial states and
summing over the final state helicities, the total squared invariant amplitude for the
process cc̄→ l−l+ can be written as

|Mtot(cc̄→ l−l+)|2 = 1
3

∑
h=0,±1

∑
s3s4

F 2
c

2e4Q2
c

q4 M2LµL
∗
νε
µ(h)εν∗(h). (3.34)

We may then write the lepton vertex part as a trace similarly as in equation 3.10,
∑
s3s4

LµL
∗
ν = Tr(/p3γµ/p4γν), (3.35)

where we have again neglected the masses of the leptons. By substituting the result
of equation 3.35 into equation 3.34, we get

|Mtot|
2 = 2e4Q2

cM
2

q4

∑
h=0,±1

εµ(h)εν∗(h)Tr(/p3γµ/p4γν). (3.36)

We can further simplify this by noting that M2 = q2 = p2
J and that the sum over the

helicity states of the polarization vectors can be written as

∑
h=0,±1

εµ(h)εν∗(h) = −gµν + pµJp
ν
J

p2
J

. (3.37)

Let us then substitute equation 3.37 into equation 3.36,

|Mtot|
2 = 2e4Q2

c

q2

((
−gµν + pµJp

ν
J

p2
J

)
Tr(/p3γµ/p4γν)

)

= 2e4Q2
c

q2

−Tr(/p3 γ
ν
/p4γν︸ ︷︷ ︸

=−2/p4

) + 1
p2
J

Tr(/p3/pJ/p4/pJ)

 .
(3.38)
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Next we will use the results pJ = p4 + p3, /p2
3/4 = p2

3/4 = m2
3/4 ≈ 0 and 2Tr(/p3/p4) =

8(p3 · p4) = 4s = 4q2:

|Mtot|
2 = 2e4Q2

c

q2

(
2Tr(/p3/p4) + 1

p2
J

Tr(/p3(/p3 + /p4)/p4(/p3 + /p4))
)

= 2e4Q2
c

q2

4q2 + 1
p2
J

Tr(((m2
3/p4 + /p3m

2
4)(/p3 + /p4)︸ ︷︷ ︸

≈0

)

 . (3.39)

Thus only the first term contributes and we are left with

|Mtot|
2 = 8e4Q2

c = 8 · 16π2α2Q2
c (3.40)

which is what we had in equation 3.24. Then the rest of the calculation proceeds as
in the previous section.
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4 Decay width of ηc → gg

A calculation for the decay width of ηc → gg using the explicit spin matrix approach,
as presented in section 3.1, is done in detail in reference [7]. However, here we shall
derive this decay width by using the helicity basis approach as it offers a slightly
easier method for the calculation. Because of this we will only outline this calculation
here and further details can be found from [7], [15] and appendix B.
With the J/ψ case we went through all the possible ways of combining spin-1

2 particles
to a J = S = 1 and L = 0 particle state. Since ηc is a JPC = 0−+ particle with
J = L = S = 0, this gives us the remaining spin singlet state. By now the reader
should be sufficiently familiar with our method of calculating the decay width. The
three LO Feynman diagrams for the free-particle process are given in figures 4.1, 4.2
and 4.3 and the invariant amplitude is the sum of these three graphs:

−iMC=0
S=1 (cc̄→ gg) = v̄2

(
−igsγνtbjk

)
εν∗2

i(/p1 − /k1 +m)
(p1 − k1)2 −m2 ε

µ∗
1 (−igsγµtaki)u1

+ v̄2
(
−igsγµtajk

)
εµ∗1

i(/p1 − /k2 +m)
(p1 − k2)2 −m2 ε

ν∗
2

(
−igsγνtbki

)
u1

+ v̄2
(
−igstdjiγδ

)
u1
−igδρδcd

(p1 + p2)2 ε
µ∗
1 gsf

abc
[
gµρ(−2k1 − k2)ν

+ gρν(k1 + 2k2)µ + gνµ(k1 − k2)ρ
]
εν∗2 ,

(4.1)

where gs is the strong coupling constant, t’s are the generators of SU(3) and fabc are
the structure constants of SU(3).

Figure 4.1.
The t-channel graph.

Figure 4.2.
The u-channel graph.

Figure 4.3.
The s-channel graph.
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Notice that we have written the gluon propagator in the Feynman gauge. Let us
first inspect the color factors of these terms. Just like the J/ψ, ηc is in the color
singlet configuration with i = j. Then when we sum over the color indices we get
the following color factors:

t-channel: 1√
3

(tbta)ii = 1√
3
Tr(tbta) = T(F)δab√

3
.

u-channel: 1√
3

(tatb)ii = 1√
3
Tr(tatb) = T(F)δab√

3
.

s-channel: 1√
3

(tcfabc)ii = 1√
3
Tr(tc)︸ ︷︷ ︸

=0

fabc = 0,

(4.2)

where T(F) = 1/2 is the normalization for the fundamental representation of SU(3).
We can see that the color factor is the same for the channels t and u. Moreover, the
color factor of the s-channel vanishes and thus the graph 4.3 with a color-singlet
virtual gluon does not contribute at all. We may then simplify equation 4.1 further

−iMC=0
S=1 = −ig2

s

(
T(F)δab√

3

) v̄2/ε
∗
2(/p1 − /k1 +m)/ε∗1u1

−2p1 · k1

+
v̄2/ε
∗
1(/p1 − /k2 +m)/ε∗2u1

−2p1 · k2

.
(4.3)

Next we shall move into the rest frame of ηc and work in the Coulomb gauge. These
give us the following constraints:

p ≡ p1 = p2 = (m,~0), k1 = (m,~k), k2 = (m,− ~k), ki · ε∗j = 0, (4.4)

where we have denoted the 3-vector with an arrow and the indices i,j get values 1,2.
Next we shall apply the Dirac equation,

(/p−m)u(p) = 0, (4.5)

to simplify the invariant amplitude further. From the Clifford algebra {γµ, γν} = 2gµν

it follows that
/p1/ε
∗
i = −/ε∗i /p1 + 2(p1 · ε∗i︸ ︷︷ ︸

=0

) = −/ε∗i /p1, (4.6)

where the inner product goes to zero since we are working in the NR-limit where
~p1 = 0 with the Coulomb gauge condition where ε0i = 0. Thus we have shown that in
this case /p1 and the polarization vectors /εi anticommute. This same anticommutation
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relation holds also for the term /ki/εi by the virtue of the Lorentz gauge. Furthermore,
it is evident that m14 commutes with /ε∗i . As we have terms such as (/p1 + m)/ε∗iu1

appearing in equation 4.3, we can use equation 4.5 to show that

(/p1 +m)/ε∗iu1 = /ε∗i (−/p1 +m)u1︸ ︷︷ ︸
=0

= 0. (4.7)

Then by anticommuting /k1 with /ε∗i we are left with terms such as v̄2/ε
∗
i /ε
∗
j
/k1u1 in the

numerator. Then from equation 4.4, it follows that

−2p1 · ki = −2m2. (4.8)

With these we arrive to the following form of the invariant amplitude:

−iMC=0
S=1 = −ig2

s

(
T(F)δab√

3

)
1

−2m2 v̄2[/ε∗2/ε
∗
1/k1 + /ε∗1/ε

∗
2/k2]u1. (4.9)

It is at this point where we would like to apply our helicity basis approach. It can
be shown, as developed in appendix B.1, that the spin singlet state of the spinors
may be presented as

(1) 1√
2

[v(↑)ū(↓)− v(↓)ū(↑)] = 1√
2
γ5
(
/pη +Mη

2

)

(2) 1√
2

[u(↑)v̄(↓)− u(↓)v̄(↑)] = 1√
2

(
/pη +Mη

2

)
γ5,

(4.10)

where Mη is the mass of ηc, (1) holds for a final state and (2) holds for an initial
state. Then the total invariant amplitudeMtot in the spin singlet state withMs1s2

is written as
−iMtot = 1√

2
[(−iM↑↓)− (−iM↓↑)] . (4.11)

Next we want to apply the results of equation 4.10 to equation 4.9. How this comes
about is shown below for one term:

(v̄2)i[/ε∗2/ε
∗
1/k1]ij(u1)j = (u1)j(v̄2)i[/ε∗2/ε

∗
1/k1]ij = Tr(u1v̄2/ε

∗
2/ε
∗
1/k1). (4.12)

We may then use the result of equation 4.10 and take out the constant 1/(2
√

2).
Moreover, the term with Mη vanishes since the trace of odd number of gamma
matrices vanishes. Then in combining equations 4.11, 4.10 and 4.9 together we get

−iMtot = −ig2
s

(
T(F)δab√

3

)
1

−2m2
1

2
√

2
[
Tr(γ5/ε∗2/ε

∗
1/k1/pη) + Tr(γ5/ε∗1/ε

∗
2/k2/kη)

]
. (4.13)



22

In order to evaluate this we need the following trace identity:

Tr(γ5/a/b/c/d) = −4iεµνρσaµbνcρdσ, (4.14)

where

εµνρσ =


+1 if (µ, ν, ρ, σ) is an even permutation of (0,1,2,3)

−1 if (µ, ν, ρ, σ) is an odd permutation of (0,1,2,3)

0 otherwise.

(4.15)

This identity is derived in appendix B.2. Let us simplify the notation slightly by
denoting the front factor by C,

C = −ig2
s

(
T(F)δab√

3

)
1

−2m2
1

2
√

2
. (4.16)

In using these results we take advantage of the fact that pη = (2m,~0), where m is
the mass of a charm quark. Thus equation 4.13 becomes

−iMtot = C[(−4iεµνρ0ε∗2µε
∗
1νk1ρ2m) + (−4iεµ′ν′ρ′0ε∗1µ′ε∗2ν′k2ρ′2m)]

= 8imC[(ε0µνρε∗2µε∗1νk1ρ︸ ︷︷ ︸
=−(ε∗2×ε∗1)·k1

) + (ε0µ′ν′ρ′ε∗1µ′ε∗2ν′k2ρ′︸ ︷︷ ︸
=−(ε∗1×ε∗2)·k2

)], (4.17)

where we have accounted for the minus sign coming from the exchange µνρ0→ 0µνρ
and identified ε0µνρ with the Levi-Civita symbol εijk. Notice in particular that since
the zeroth term is taken away by pη the remaining indices are only spatial indices
and thus allows us to write this scalar triple product result.
We can use the fact that k2−k1 = −2k = −2êkm, where êk is a unit vector into the
direction of k. Moreover, we know that for any two three vectors ~a and ~b, it holds
that (~a×~b) = −(~b× ~a). Then the total invariant amplitude simplifies further:

−iMtot = −8imC[(ε∗1 × ε∗2) · (k2 − k1))] = −16im2C(ε∗1 × ε∗2) · êk. (4.18)

Next we can take advantage of the fact that the scalar triple product (ε∗1 × ε∗2) · êk is
invariant in rotations. This intuitive result can be understood through the geometric
interpretation of the scalar triple product. Geometrically, for three 3-vectors ~a, ~b and
~c, the product |~a · (~b× ~c)| is the volume of a parallelepiped defined by three vectors.
As such, it is then clear that the value of |(ε∗1 × ε∗2) · êk|2 cannot change in rotations.
Thus we may choose êk to be e.g. along the z-axis. It then follows that the triple
product (ε∗1 × ε∗2) · êk has only two possible values of ±i and gets them when the
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gluons are either left-handed (L) or right-handed (R). This can be seen by explicitly
calculating all the possible cases with the polarization vectors as given in equation A.3.
We may then finally form the squared invariant amplitude for the bound state as
given by equation 2.9. We will sum over the color indices a and b and over the final
state spins λ = L,R:

|Mtot(ηc → gg)|2 = 2
Mη

|ψ(r = 0)|2g4
s

(
16m2

4m2
√

2

)2 (T(F)√
3

)2∑
a,b

δabδab

(
| − i|2︸ ︷︷ ︸
λ=R

+ |+ i|2︸ ︷︷ ︸
λ=L

)
,

(4.19)

where we can now use the fact that ∑
a,b
δabδab = Tr(18) = 8 and simplify our result

down to
|Mtot(ηc → gg)|2 = 2

Mη

|ψ(r = 0)|2
(2

3

)
16g4

s . (4.20)

Again the squared invariant amplitude has no angular dependence and we may use
our result in equation 3.27. For the strong coupling constant we may use the result
g2
s = 4παs. Moreover, now the integration over the angles gives us 2π instead of 4π.

This is because we have two identical final state particles so that the phase space
integral constains one extra 1/2. With these steps our final result becomes

Γ(ηc → gg) =
(2

3

) 16πα2

M2
η

|ψ(r = 0)|2. (4.21)

This is the result derived by Silverman and Yao in [15].
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5 Decay width of O-Ps→ γγγ

Ortho-positronium (O-Ps) is a L = 0, J = S = 1 bound state of an electron e− and
a positron e+. In spectroscopic notation this state is denoted by 3S1. The decay of
this bound state into three photons is a pure QED process and has many similarities
to the process J/ψ → ggg. However, the process J/ψ → ggg cannot be described
within the framework of QED but we need QCD for its description. And QCD, being
a non-abelian gauge theory, is in general more difficult than QED. However, as we
shall see, most of the QCD complications do not contribute for the J/ψ calculation.
Our discussion relies heavily on the ideas presented in reference [1, p.233] and as
such, we will follow its notational convention. It should be pointed out that, even
though this process was calculated in the 1940’s for the first time [8], it has evoked
some interest in the 21st century [9], [22], [23]. Let us then begin by forming the
invariant amplitude.

5.1 Deriving the invariant amplitude

The Feynman graphs of this process to LO are given in figures 5.1-5.6. Notice in
particular our convention for indexing the emitted photons and the fact that these
different graphs can be categorized as different permutations of (123). We denote
the positron e+ spinor with v2 and the electron e− spinor by u1. When working in
the extreme NR limit we can take the 4-momentum of e− and e+ to be p1 = p2 ≡ p

where p = (m,~0). Here m is the mass of e−.

Figure 5.1.
Permutation (123).

Figure 5.2.
Permutation (132).

Figure 5.3.
Permutation (213).
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Figure 5.4.
Permutation (231).

Figure 5.5.
Permutation (321).

Figure 5.6.
Permutation (312).

The invariant amplitude can then be written as

−iMC=0
S=1 (e−e+ → γγγ) =

∑
permut

v̄2(−ieγµ)ε1µ
(
i(/p− /k2 − /k3 +m)
(p− k2 − k3)2 −m2

)

(−ieγν)ε2ν
(
i(/p− /k3 +m)
(p− k3)2 −m2

)
(−ieγσ)ε3σu1,

(5.1)

where the permutation sum contains all orderings of the photons as given in figures 5.1-
5.6. Notice that here we have chosen the polarization vectors εi to be real and
therefore we do not need to write in the complex conjugate ∗ as would be given by
the Feynman rules. In the rest frame of the O-Ps we have the following conservation
laws k1+k2+k3 = 2p = 2m and ~k1+~k2+~k3 = 0. It then follows that p−k2−k3 = k1−p
which we can use to simplify equation 5.1:

−iMS=1 =
∑

permut
−ie3v̄2/ε1

(
/k1 − /p+m

(k1 − p)2 −m2

)
/ε2

(
/p− /k3 +m

(p− k3)2 −m2

)
/ε3u1. (5.2)

Next we shall peel down the 4 × 4 matrix structure of the elements between the
spinors u and v down to a 2 × 2 matrix structure. This is justified when we are
working in the limit where the momentum of the spinors u and v goes to zero. This
can be seen by looking at the spinor solutions of equation 3.29. Holding on to the
4× 4 matrix structure would just account to carrying extra zeros around. This is to
say that from the matrix

/ε1

(
/k1 − /p+m

(k1 − p)2 −m2

)
/ε2

(
/p− /k3 +m

(p− k3)2 −m2

)
/ε3, (5.3)

we pick up the relevant parts to a 2× 2 matrix a123. By looking at the solutions of
equation 3.29, it is evident that the 2× 2 matrix is acquired by multiplying with a
2× 4 matrix from the left and by a 4× 2-matrix from the right:

a123 =
(
02 12

)
/ε1

(
/k1 − /p+m

(k1 − p)2 −m2

)
/ε2

(
/p− /k3 +m

(p− k3)2 −m2

)
/ε3

12

02

 . (5.4)
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Then in equation 5.2 the spinor v̄2 is replaced by −χ†s and u1 by φs, where χs and
φs are as in equation 3.29. Then equation 5.2 can be written as follows:

−iMs=1 = i2me3 ∑
permut

χ†sa123φs, (5.5)

where the permutation sum is now over the indices 123. Next we need to process the
from of a123 further. We shall adopt the following notational convention:

ωi = k0
i ; k̂i =

~ki
ωi

; δ̂i = k̂i × ε̂i, (5.6)

where the hat over εi emphasises that the photon polarization vector is a unit vector.
Moreover, it follows from the Coulomb gauge that we can choose the first component
of the photon polarization vector to be zero, i.e. ε0i ≡ 0, from which it immediately
follows that ε̂i · k̂i = 0. And since εi is normalized to unity we can see that δ̂i is
also a unit vector. Before evaluating a123 further, let us explicitly state the matrix
structure of the terms appearing in equation 5.4:

/εi =
 02 −ε̂i · ~σ
ε̂i · ~σ 02

 ; /ki =
ωi12 −~ki · ~σ
~ki · ~σ −ωi12

 ;

− /p+m = 2m
02 02

02 12

 ; /p+m = 2m
12 02

02 02

 ,
(5.7)

and note that

(ki − p)2 −m2 ≡ (p− ki)2 −m2 = p2 − 2p · ki + k2
i −m2 = −2ωim. (5.8)

We can then break a123 down into I1/ε2I2 and process further:

I1 =
(
02 12

)
/ε1

(
/k1 − /p+m

(k1 − p)2 −m2

)
=
(
ε̂1 · ~σ 0

) 1
−2ω1m

(
/k1 − /p+m

)
= 1
−2ω1m

(
ω1ε̂1 · ~σ iω1δ̂1 · ~σ

)
= − 1

2m
(
ε̂1 · ~σ iδ̂1 · ~σ

)
,

(5.9)

where we have used the results

(~σ · ~a)(~σ ·~b) = (~a ·~b)12 + i(~a×~b) · ~σ; ~a×~b = −~b× ~a; ωiδ̂i = ~ki × ε̂i. (5.10)

We may similarly develop the remaining terms:

I2 =
(

/p− /k3 +m

(p− k3)2 −m2

)
/ε3

12

02

 = 1
−2ω3m

(/p+m− /k3)
 0
ε̂3 · ~σ


= − 1
−2ω3m

iω3δ̂3 · ~σ
ω3ε̂3 · ~σ

 = − 1
2m

iδ̂3 · ~σ
ε̂3 · ~σ

 .
(5.11)
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We can then multiply everything together to get

a123 = − 1
4m2

(
(~σ · ε̂1)(~σ · ε̂2)(~σ · ε̂3) + (~σ · δ̂1)(~σ · ε̂2)(~σ · δ̂3)

)
. (5.12)

This is now the (123) permutation of the Feynman graphs. The full invariant
amplitude contains five more terms such as this. Essentially nothing but the labeling
of the indices changes for the remaining five terms. However, let us still show this
explicitly for the permutation a132. By looking at figure 5.2 and comparing it with
figure 5.1, we can see that the indices 2 and 3 are swapped. The first electron
propagator stays the same, the photon polarization vectors ε2 and ε3 change places
and in the second electron propagator we get k2 instead of k3. So by looking at
equations 5.2, 5.3 and 5.4 we can see that a132 has the following form:

a132 =
(
02 12

)
/ε1

(
/k1 − /p+m

(k1 − p)2 −m2

)
/ε3

(
/p− /k2 +m

(p− k2)2 −m2

)
/ε2

12

02

 . (5.13)

We can then use the results of equations 5.7-5.11 with the appropriate swapping of
the indices 3 and 2. With these replacements we can multiply a132 = I1/ε3I2 to get

a132 = − 1
2m

(
ε̂1 · ~σ iδ̂1 · ~σ

) 02 −ε̂3 · ~σ
ε̂3 · ~σ 02

− 1
2m

iδ̂2 · ~σ
~ε2 · ~σ


= 1

4m2

(
i(δ̂1 · ~σ)(ε̂3 · ~σ) −(ε̂1 · ~σ)(ε̂3 · ~σ)

)iδ̂2 · ~σ
~ε2 · ~σ


= − 1

4m2

(
(ε̂1 · ~σ)(ε̂3 · ~σ)(ε̂2 · ~σ) + (δ̂1 · ~σ)(ε̂3 · ~σ)(δ̂2 · ~σ)

)
,

(5.14)

which has the same form as equation 5.12. It should then be obvious that the remain-
ing terms go identically. In particular, this allows us to see what the permutation
sum in equation 5.5 actually means.
Applying the results of equation 5.10 to the permutation sum would leave us with
terms proportional to the unit matrix 12 and to the Pauli spin matrices σi. Taking
for example a123:

a123 = − 1
4m2

[
(ε̂1 · ε̂2)(~σ · ε̂3) + i

(
[(ε̂1 × ε̂2) · ε̂3]12 + i[(ε̂1 × ε̂2)× ε̂3] · ~σ

)
+ (δ̂1 · ε̂2)(~σ · δ̂3) + i

(
[(δ̂1 × ε̂2) · δ̂3]12 + i[(δ̂1 × ε̂2)× δ̂3] · ~σ

) ]
.

(5.15)

Keeping this in mind, we can start to inspect the trace of the permutation sum over
the 2× 2 matrices a123. First we note that for any square matrices A and B and a
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constant c ∈ C it follows that Tr(c(A+B)) = cTr(A) + cTr(B), i.e. trace is a linear
mapping. We can then write

∑
permut

Tr(a123) = − 1
4m2

∑
permut

Tr
(
(~σ · ε̂1)(~σ · ε̂2)(~σ · ε̂3) + (~σ · δ̂1)(~σ · ε̂2)(~σ · δ̂3)

)
.

(5.16)
Then by using the result Tr(σiσjσk) = 2iεijk, which is justified in appendix C and
where εijk is the Levi-Civita symbol, we can write

∑
permut

Tr(a123) = −1
4m2

∑
permut

Tr(σiε̂i1σj ε̂
j
2σ

k ε̂k3) + Tr(σiδ̂i1σj ε̂
j
2σ

kδ̂k3)

= −1
4m2

∑
permut

ε̂i1ε̂j2ε̂k3 Tr(σiσjσk)︸ ︷︷ ︸
=2iεijk

+δ̂i1ε̂k2 δ̂k3 Tr(σiσjσk)︸ ︷︷ ︸
=2iεijk


= −i

2m2

∑
permut

(
ε̂1 · (ε̂2 × ε̂3) + δ̂1 · (ε̂2 × δ̂3)

)
.

(5.17)

With ε̂1 · (ε̂2 × ε̂3) = −ε̂1 · (ε̂3 × ε̂2), we notice that the epsilon triple product terms
are completely cancelled. The odd permutations cancel out the even permutations.
Similarly with δ̂1 · (ε̂2 × δ̂3) = −δ̂3 · (ε̂2 × δ̂1) we notice that the terms where the
middle polarization vector is the same are cancelled out completely. This could also
be though through the graphs, where figure 5.1 would get cancelled out by figure 5.5,
and so forth. With this we see that the trace over the permutations really goes to
zero, ∑

permut
Tr(a123) = 0.

Then as pointed above, the form of the a123 matrices is a12 + bσi, where a,b ∈ C.
With this we have

∑
permut

Tr(a123) = Tr(a12 + bσi) = aTr(12) + bTr(σi) = 0, (5.18)

which forces a = 0. We may then get rid of all the terms proportional to the unit
matrix. Then equation 5.15 reduces to

a123 = 1
4m2

[
(ε̂1 · ε̂2)(~σ · ε̂3)− [(ε̂1 × ε̂2)× ε̂3] · ~σ

+ (δ̂1 · ε̂2)(~σ · δ̂3)− [(δ̂1 × ε̂2)× δ̂3] · ~σ
]
.

(5.19)

This obviously holds also for the other permutations of a123. Then from the form of
equation 5.19, it is evident that the permutation sum over a123 has the form ~σ · ~V .



30

We may thus write as follows:

∑
permut

a123 = −1
4m2~σ ·

∑
permut

(
ε̂3(ε̂1 · ε̂2)− (ε̂1 × ε̂2)× ε̂3 + δ̂3(δ̂1 · ε̂2)− (δ̂1 × ε̂2)× δ̂3

)
︸ ︷︷ ︸

=~V

.

(5.20)
We may then inspect the form of ~V further by using the triple product identity:

~a× (~b× ~c) = ~b(~a · ~c)− ~c(~a ·~b). (5.21)

With it, we can open up the triple products and write them in terms of the dot
products. Some of the terms cancel out with each other and some of them can be
added together because of the commutativity of the dot product e.g. ~a ·~b = ~b ·~a. By
meticulously keeping track of the terms we arrive at the result

∑
permut

a123 = ~σ · ~V , (5.22)

where
~V = − 1

2m2

∑
cyclic

(
ε̂1(ε̂2 · ε̂3 − δ̂2 · δ̂3) + δ̂1(ε̂2 · δ̂3 + ε̂3 · δ̂2)

)
. (5.23)

Now the sum contains only the cyclic permutations, i.e. (123), (231) and (312).
Up to this point we have hold on to the notation that the polarization vector is
denoted with a hat on top of the epsilon. Now, for notational ease, we shall drop the
hat and denote the three vectors with bold letters, e.g. ε. It is then obvious from
the context which vectors are unit vectors.
It is beneficial to define complex vectors ε±i = εi ± iδi. We immediately see that the
following holds:

(1) (ε±)2 = (εi ± iδi) · (εi ± iδi) = ε2
i︸︷︷︸

=1

+2i εi · δi︸ ︷︷ ︸
=0

− δ2
i︸︷︷︸

=1

= 0

(2) ε+
i · ε−i = (εi + iδi) · (εi − iδi) = ε2

i + δ2
i = 2

(3) ε±i · ε±j = (εi ± iδi) · (εj ± iδj) = εi · εj − δi · δj ± i(εi · δj + εj · δi).

(5.24)

Then from

ε+
1 (ε−2 · ε−3 ) + ε−1 (ε+

2 · ε+
3 ) =(ε1 + iδ1)(ε2 · ε3 − δ2 · δ3 − i(ε2 · δ3 + ε3 · δ2)

+(ε1 − iδ1)(ε2 · ε3 − δ2 · δ3 + i(ε2 · δ3 + ε3 · δ2)

=2ε1(ε2 · ε3 − δ2 · δ3) + 2δ1(ε2 · δ3 + ε3 · δ2),

(5.25)
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it follows that equation 5.23 can be written as

V = − 1
4m2

∑
cyclic

(
ε+

1 (ε−2 · ε−3 ) + ε−1 (ε+
2 · ε+

3 )
)
. (5.26)

We remind the reader that up to this point we have only dealt with the 2× 2-matrix∑
permut

a123 inside equation 5.5. Since we know that the structure is of the form σ ·V ,
we may write

σ · V = σ1V 1 + σ2V 2 + σ3V 3 =
 V 3 V 1 − iV 2

V 1 + iV 2 −V 3

 , (5.27)

where the components of V = (V 1,V 2,V 3) can be read from equation 5.26. With
this development we may finally start to consider what happens to the square of the
total invariant amplitudeMtot

S=1.

5.2 Squaring the invariant amplitude

Since O-PS is in the triplet configuration, we get the same three terms as we had
with the J/ψ in section 3. Moreover, the indices denoting the helicities are in the
order s1s2, e.g. MS=1;s1s2 . With these we get the following:

−iMS=1;↑↑ = i2me3χ†↑σ · V φ↑ = ie3
(
0 1

) V 3 V 1 − iV 2

V 1 + iV 2 −V 3

1
0


= i2me3(V 1 + iV 2),

−iMS=1;↓↓ = i2me3χ†↓σ · V φ↓ = ie3
(
−1 0

) V 3 V 1 − iV 2

V 1 + iV 2 −V 3

0
1


= i2me3(−V 1 + iV 2),

−iMS=1;↑↓ = i2me3
(
−1 0

)
σ · V

1
0

 = −i2me3V 3,

−iMS=1;↓↑ = i2me3
(
0 1

)
σ · V

0
1

 = −i2me3V 3,

1√
2
(
(−iMS=1;↑↓) + (−iMS=1;↓↑)

)
= −i2me

3
√

2
2V 3 = −i2me3√2V 3.

(5.28)

Then in forming the squared invariant amplitude, we will sum over the photon
polarization states and average over the initial positronium spin states. This averaging
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gives us a factor of 1/3 in front. This is to say that we are interested in the unpolarized
decay width of the O-Ps. By looking at the results of 5.28 we can readily see the
form of the squared invariant amplitude |Mtot

S=1|2:

|Mtot
S=1|2 = 1

3

(
|MS=1,↑↑|2 + |MS=1,↓↓|2 + 1

2 |(−iMS=1;↑↓) + (−iMS=1;↓↑)|2
)

= 4m2 1
3
∑

γ polar

(
2e6V 2

1 + 2e6V 2
2 + 2e6V 2

3

)
,

(5.29)

and since V has a three-vector structure we may write

|Mtot
s=1|2 = 4m2e6 2

3
∑

γ polar
V2, (5.30)

where V2 = V · V . It should also be stressed out that we now have two different
sums over which we are calculating. The cyclic permutation sum within V and the
sum over the photon polarizations in the squared total invariant amplitude. Next we
need to figure out the form of V2 from equation 5.26,

V 2 =
( −1

4m2

)2 ∑
cyclic

(
ε+

1 (ε−2 · ε−3 ) + ε−1 (ε+
2 · ε+

3 )
)
·
∑

cyclic

(
ε+

1 (ε−2 · ε−3 ) + ε−1 (ε+
2 · ε+

3 )
)
.

(5.31)

In each sum we have six terms, so altogether by opening up V 2 we get 36 terms.
However, by remembering that (ε±)2 = 0 we immediately see that six of these
terms are zero. And since ε+

i is the complex conjugate of ε−i , we can denote
(ε−i · ε−j )(ε+

i · ε+
j ) = |ε+

i · ε+
j |2. Then by meticulously keeping track of the vectors we

get

V2 = 2
16m4

∑
cyclic

(
2|ε+

2 · ε−3 |2 + (ε+
1 · ε+

2 )(ε−2 · ε−3 )(ε−3 · ε−1 ) + (ε−1 · ε−2 )(ε+
2 · ε+

3 )(ε+
3 · ε+

1 )

+ (ε+
1 · ε−2 )(ε−2 · ε−3 )(ε+

3 · ε+
1 ) + (ε−1 · ε+

2 )(ε+
2 · ε+

3 )(ε−3 · ε−1 )
)
.

(5.32)

Notice in particular that the last two terms appearing on the first line are complex
conjugates of each other. The same holds for the terms on the second line. Since
2Re(c) = (c+ c∗) for all c ∈ C, we can write the equation 5.32 in the form

V2 = 1
4m4

∑
cyclic

(
|ε+

2 · ε−3 |2 + Re[(ε+
1 · ε+

2 )(ε−2 · ε−3 )(ε−3 · ε−1 )]

+ Re[(ε+
1 · ε−2 )(ε−2 · ε−3 )(ε+

3 · ε+
1 )]
)
.

(5.33)



33

Up to this point the development in regards to the real polarization vectors has
been completely general. Next we have to choose their form. From conservation
of momentum, it is clear that the spatial momentum vectors k1,k2 and k3 define a
reaction plane. The polarization vectors can then be chosen to be into the direction
of the normal n to this plane or to lie in the reaction plane but so that they are
perpendicular to the momentum vectors. This is illustrated in figure 5.7.

Figure 5.7. The reaction plane defined by the momentum vectors ki. Then
related to each momentum vector ki there are two possible polarization vectors
n and ki × n.

Note that we may choose these vectors to be unit vectors, i.e. all of the vectors
εi,n, k̂i and δi are unit vectors. We can then label these vectors as given below:

(a) εi = n; δi = k̂i × n; ε+
i = αi = n+ ik̂i × n; ε−i = α∗i = n− ik̂i × ni

(b) εi = k̂i × n; δi = −n; ε+
i = −iαi; ε−i = iα∗i , (5.34)

where ∗ denotes complex conjugate. Note that these choices are consistent with
our earlier definitions of ε±i and δi. Notice also that since εi can be defined in two
different ways, it automatically follows that δ can also be defined in two different
ways.
Next we will sum over the photon polarizations. This sum consists of the permutations
of the two choices of equation 5.34 for the (123). Again for notational convenience,
let us denote the polarization vectors with αi as given in equation 5.34. Then, if
we choose all the polarization vectors to be according to the option (a), we denote
this by (123)→ (aaa) and so forth. The end result is that only the absolute value
square term will contribute. This is easy to understand by looking at equation 5.34
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as the only difference between these two choices is the sign and the imaginary unit.
However, let us see how the last two terms will disappear:

Permutation (ε+
1 · ε+

2 )(ε−2 · ε−3 )(ε−3 · ε−1 )
(123)→ (aaa) +2(α1 ·α2)(α∗2 ·α∗3)(α∗3 ·α∗1)
(123)→ (baa) +2(α1 ·α2)(α∗2 ·α∗3)(α∗3 ·α∗1)
(123)→ (aba) +2(α1 ·α2)(α∗2 ·α∗3)(α∗3 ·α∗1)
(123)→ (aab) −2(α1 ·α2)(α∗2 ·α∗3)(α∗3 ·α∗1)
(123)→ (abb) −2(α1 ·α2)(α∗2 ·α∗3)(α∗3 ·α∗1)
(123)→ (bab) −2(α1 ·α2)(α∗2 ·α∗3)(α∗3 ·α∗1)
(123)→ (bba) +2(α1 ·α2)(α∗2 ·α∗3)(α∗3 ·α∗1)
(123)→ (bbb) −2(α1 ·α2)(α∗2 ·α∗3)(α∗3 ·α∗1)

Permutation (ε+
1 · ε−2 )(ε−2 · ε−3 )(ε+

3 · ε+
1 )

(123)→ (aaa) +2(α1 ·α∗2)(α∗2 ·α∗3)(α3 ·α1)
(123)→ (baa) −2(α1 ·α∗2)(α∗2 ·α∗3)(α3 ·α1)
(123)→ (aba) −2(α1 ·α∗2)(α∗2 ·α∗3)(α3 ·α1)
(123)→ (aab) +2(α1 ·α∗2)(α∗2 ·α∗3)(α3 ·α1)
(123)→ (abb) −2(α1 ·α∗2)(α∗2 ·α∗3)(α3 ·α1)
(123)→ (bab) −2(α1 ·α∗2)(α∗2 ·α∗3)(α3 ·α1)
(123)→ (bba) +2(α1 ·α∗2)(α∗2 ·α∗3)(α3 ·α1)
(123)→ (bbb) +2(α1 ·α∗2)(α∗2 ·α∗3)(α3 ·α1)

We can then clearly see that summing all these together we are left with zero.
Similarly, for the first term we have 8 possible choices and thus equation 5.33 reduces
down to ∑

γ polar
V 2 = 1

8m4

∑
cyclic

2|α2 ·α3|2 · 8 = 2
m4

∑
cyclic
|α2 ·α3|2, (5.35)

which we can substitute into equation 5.30 to get

|Mtot
s=1(e−e+ → γγγ)|2 = 4m2e6 4

3m4

∑
cyclic
|α2 ·α3|2. (5.36)
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We can still process the cyclic sum further by using 5.34. Take for example α2 ·α3:

α2 ·α3 = (n+ ik̂2 × n) · (n+ ik̂3 × n)

= n2 + in · (k̂3 × n)︸ ︷︷ ︸
=0

+i (k̂2 × n) · n︸ ︷︷ ︸
=0

−(k̂2 × n) · (k̂3 × n)

= 1− k̂2 · k̂3 = 1− cos θ23,

(5.37)

where θ23 is the angle between the vectors k2 and k3. In equation 5.37 we have used
the cyclicity of the triple product a · (b× c), the fact that a× a = 0 for any vector
a and the identity

(a× b) · (c× d) = (a · c)(b · d)− (a · d)(b · c). (5.38)

With this we get our final form for the squared invariant amplitude to be

|Mtot
S=1(e−e+ → γγγ)|2 = 4m2e6 4

3m4

∑
cyclic

(1− cos θ23)2

= 4m2e6 4
3m4

[
(1− cos θ23)2 + (1− cos θ31)2 + (1− cos θ12)2

]
.

(5.39)

5.3 Phase space integration

We have now derived the final form for the squared invariant amplitude for the
free-particle process. Then according to equation 2.9 we have to multiply this result
by (2/M)|ψ(r = 0)|2 to get the squared invariant amplitude for the O-Ps decay.
Moreover, we need to divide the phase space integral by 3! = 6 because we have three
identical particles in the final state. Substituting all this into equation 2.2 we get

Γ(O-Ps→ γγγ) = 1
6

1
2M

∫ d3k1d
3k2d

3k3

(2π)32ω1(2π)32ω2(2π)32ω3
(2π)4δ(4)(p− k1 − k2 − k3)

2
M
|ψ(r = 0)|24m2e6 4

3m4

∑
cyclic

(1− cos θ23)2,

(5.40)

where M is the positronium mass. Then denoting ψ(r = 0) = ψ(0) and using
M = 2m and e2 = 4πα, equation 5.40 simplifies to

ΓO-Ps = 4α3

9π2m4 |ψ(0)|2
∫ d3k1d

3k2d
3k3

8ω1ω2ω3
δ(4)(p−k1−k2−k3)

∑
cyclic

(1−cos θ23)2. (5.41)
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From equation 2.10 we already know the value of the wavefunction at the origin,

|ψ(0)|2 = 1
πa3 = m3α3

8π . (5.42)

However, let us keep the explicit form of the square of the wavefunction still in our
expression for the decay width. This is because we can use the O-Ps decay width
calculation in the J/ψ decay width calculations. Then just before the final answer
of the O-Ps decay width, we will substitute the result of equation 5.42.

Our next task is then to do the phase space integration. Let us denote

I =
∫ d3k1d

3k2d
3k3

8ω1ω2ω3
δ(4)(p− k1 − k2 − k3)

∑
cyclic

(1− cos θ23)2. (5.43)

We may use the following identity

∫ d3k3

2ω3
=
∫
d4k3θ(ω3)δ(k2

3) (5.44)

to write I as

I =
∫ d3k1d

3k2

4ω1ω2ω3
d4k3δ

(4)(p− k1 − k2 − k3)θ(ω3)δ(k2
3)
∑

cyclic
(1− cos θ23)2. (5.45)

Then using the fact that each term in the cyclic sum contributes equally we may
write the cyclic sum as 3(1− cos θ12)2 and do the k3 integral to get

I = 3
∫ d3k1d

3k2

4ω1ω2
θ(ω3)δ(k2

3)(1− cos θ12)2
∣∣∣
k3=p−k1−k2

. (5.46)

Inside the remaining delta function we now have (p− k1 − k2)2 which can be opened
as follows:

k2
3 = (p− k1 − k2)2 = p2 + k2

1 + k2
2 − 2p · k1 − 2p · k2 + 2k1 · k2

= 4m2 − 4mω1 − 4mω2 + 2ω1ω2(1− cos θ12).
(5.47)

Similarly we have ω3 = 2m− ω1 − ω2 inside the theta function. Next we shall move
into spherical coordinates. Since the integrand has no azimuthal angle dependence,
we may trivially integrate over it. Then the polar angle has to be restricted such
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that momentum is conserved. Thus we get

I = 3
∫ 4πω2

1dω12πω2
2dω2(d cos θ12)

4ω1ω2
θ(2m− ω1 − ω2)

δ
(
4m2 − 4mω1 − 4mω2 + 2ω1ω2(1− cos θ12)

)
(1− cos θ12)2

= 3π2
∫
dω1dω2(d cos θ12) 2ω1ω2 θ(2m− ω1 − ω2)

1
2ω1ω2

δ

(
2m2

ω1ω2
− 2m
ω2
− 2m
ω1

+ 1− cos θ12

)
(1− cos θ12)2

= 3π2
∫
dω1dω2(d cos θ12) θ(2m− ω1 − ω2)

δ

(
2m2

ω1ω2
− 2m
ω2
− 2m
ω1

+ 1− cos θ12

)
(1− cos θ12)2.

(5.48)

The theta function ensures the conservation of energy and gives us the restriction

2m > ω1 + ω2. (5.49)

Moreover, since the photons are real, we have ω1, ω2 > 0. Also we see that the delta
function makes the d cos θ12 integration trivial and imposes the restriction

cos θ12 = 2m
ω1ω2

− 2m
ω2
− 2m
ω1

+ 1. (5.50)

Since −1 ≤ cos θ ≤ 1 we get

1 ≥ 2m
ω1ω2

− 2m
ω2
− 2m
ω1

+ 1 & − 1 ≤ 2m
ω1ω2

− 2m
ω2
− 2m
ω1

+ 1

⇒ 1
ω2

+ 1
ω1
≥ m

ω1ω2
& 0 ≤ 2m2 − 2ω1m− 2ω2m+ 2ω1ω2

⇒ ω1 + ω2 ≥ m & 0 ≤ (m− ω1)(m− ω2).

(5.51)

Now if both ω1 and ω2 would be larger than m then both of the above delta function
requirements would be fulfilled. However, equation 5.49 forbids this case. Therefore
we are left with the conditions

0 ≤ ω1, ω2 ≤ m & m− ω1 ≤ ω2. (5.52)

With the above results, we can write equation 5.48 as

I = 3π2
m∫

0

dω1

m∫
m−ω1

dω2(1− cos θ12)2, (5.53)

where
1− cos θ12 = 2mω1 + ω2 −m

ω1ω2
. (5.54)
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With a change of variables ω1/m = x and ω2/m = y, we may write the integral as

I = 3π24m2
1∫

0

dx

1∫
1−x

dy
(x+ y − 1)2

x2y2 . (5.55)

The first integral with respect to y is a trivial one, giving

I = 12π2m2
1∫

0

dx

x2 [x(1− x) + x+ 2(1− x) ln(1− x)] . (5.56)

In order to solve this we make the power series substitution for the logarithm,

ln(1− x) = −
∞∑
k=1

xk

k
. (5.57)

By inserting this power series into the equation 5.56, we can calculate further as
shown below:

I =12π2m2
1∫

0

dx

[
x− x2

x2 + x

x2 − 2(1− x)
x2

∞∑
k=1

xk

k

]

= 12π2m2
1∫

0

dx

[
2− x
x
− 2

∞∑
k=1

(1− x)xk−2

k

]
.

(5.58)

The first few terms of the sum are
1− x
x

+ 1− x
2 + (1− x)x

3 + · · · (5.59)

Thus we may cancel out the first term from the sum and integrate over:

I = 12π2m2

[x]10 − 2
[ ∞∑
k=2

1
k

( 1
k − 1x

k−1 − 1
k
xk
)]1

0


= 12π2m2

1− 2
∞∑
k=2

1
k

( 1
k − 1 −

1
k

)
= 12π2m2

1− 2
∞∑
k=2

( 1
k − 1 −

1
k
− 1
k2

),
(5.60)

where in the last line we have used partial fractions decomposition to write the sum
in the given form. We notice that the first two terms in the sum form a telescoping
sum and the last term is of the form of Riemann zeta function evaluated at two. The
telescoping sum gives 1, and for the last term we may use the well known result

∞∑
k=1

1
k2 = π2

6 ⇒
∞∑
k=2

1
k2 = π2

6 − 1. (5.61)
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Plugging all this into equation 5.60 we get:

I = 12π2m2
(

1− 2
(

1−
(
π2

6 − 1
)))

= 12π2m2
(
−3 + π2

3

)

= 4π2m2(π2 − 9),
(5.62)

Substituting this into equation 5.41 we get

ΓO-Ps = 16α3

9m2 |ψ(0)|2(π2 − 9). (5.63)

We can then still substitute the value of equation 5.42 for the square of the wave-
function to get

ΓO-Ps = 2mα6

9π (π2 − 9). (5.64)

Note that we can do this because we know the form of the QED potential energy.
For the QCD calculations we cannot do this substitution. Equation 5.63 is the result
we shall be refering to in the following J/ψ decay width calculations.
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6 Decay width of J/ψ → ggg

6.1 Graph contributions

The last section was more or less a prelude to this particular decay process. We
will see that the calculation reduces to the one we had before, but this is by no
means a trivial result. We begin by considering which of the LO Feynman diagrams
contribute to this calculation. Since we have now stated multiple times that the O-Ps
result can be used here, the reader might guess that the graphs which contribute to
this calculation are the ones in figures 6.1-6.6.

Figure 6.1.
Permutation (123).

Figure 6.2.
Permutation (132).

Figure 6.3.
Permutation (213).

Figure 6.4.
Permutation (231).

Figure 6.5.
Permutation (321).

Figure 6.6.
Permutation (312).

These graphs are essentially the same which we had with the O-Ps decay calculation.
The only difference is that the photon lines are replaced by gluon lines and now
the outgoing gluons may also carry color. However, in QCD gluons have also three-
and four-point self-couplings which gives us additional 10 graphs to consider. The
s-channel graphs are presented in figures 6.7-6.10
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Figure 6.7. First s-channel. Figure 6.8. Second s-channel.

Figure 6.9. Third s-channel. Figure 6.10. Fourth s-channel.

However, the graphs 6.7-6.10 do not contribute because at the vertex where the
quarks annihilate the Feynman rules give us −igs(td)ijγµ. Since the J/ψ is in a color
singlet state, we have i = j, which gives us Tr(td) = 0 when we sum over the gluon
colors. Thus regardless what the rest of the invariant amplitude would look like, this
vertex negates contributions from these graphs. Thus, from the conservation of color,
it follows that we cannot have a color singlet gluon propagator.

Finally we may also draw six diagrams where the J/ψ would first decay into one real
and one virtual gluon and then the virtual one would emit the third gluon. These
are given in figures 6.11-6.16.

Figure 6.11.
Permutation (12)3.

Figure 6.12.
Permutation 1(23).

Figure 6.13.
Permutation 2(13).
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Figure 6.14.
Permutation (23)1.

Figure 6.15.
Permutation 3(12).

Figure 6.16.
Permutation (13)2.

Note that we have chosen to write parentheses around those two gluons which come
from the same quark-gluon vertex. These six graphs in figures 6.11-6.16 are slightly
trickier than the s-channel graphs. With a pure color argument, like the one before,
we cannot make these graphs disappear. Neither does any argument about spin seem
to help us here either. The end result, however, is that the contributions from the
(12)3 permutation are exactly cancelled by the 3(12) permutation. Similarly the
permutation 1(23) is cancelled by (23)1 and the permutation 2(13) is cancelled by
(13)2. Let us see how this result is acquired.
Looking at figure 6.11 we can write down the invariant amplitude as

−iM(12)3 =v̄2(−igs(te)jdγµ4)
(

−i
(k1 + k2)2

)(
− gsf eab[gµ4µ1(k1 + k2 + k1)µ2

+ gµ1µ2(−k1 + k2)µ4 + gµ2µ4(−k2 − (k1 + k2))µ1 ]
)
ε1µ1ε2µ2(

i(/p1 − /k3 +m)
(p1 − k3)2 −m2

)
(−igs(tc)di)/ε3u1.

(6.1)

This can be simplified to

−iM(12)3 =v̄2g
3
s(te)jd(tc)dif eab

γµ4

(k1 + k2)2 [gµ4µ1(2k1 + k2)µ2 + gµ1µ2(k2 − k1)µ4

− gµ2µ4(2k2 + k1)µ1 ]ε1µ1ε2µ2

(
/p1 − /k3 +m

(p1 − k3)2 −m2

)
/ε3u1.

(6.2)

We can again use the fact that J/ψ is in the color singlet state, sum over the quark
colors and identify the color factor in front:

Cabc = 1√
3

(te)id(tc)dif eab = 1√
3
Tr(tetc)︸ ︷︷ ︸
=T(F)δec

f eab = T(F)√
3
fabc, (6.3)

where T(F) = 1/2. Then in the Coulomb gauge where εi · ki = 0, we can write
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equation 6.2 as

−iM(12)3 =g3
sC

abc 1
(k1 + k2)2 v̄2[2/ε1(k1 · ε2) + (ε1 · ε2)(/k2 − /k1)− 2/ε2(k2 · ε1)](

/p1 − /k3 +m

(p1 − k3)2 −m2

)
/ε3u1,

(6.4)

where we can denote

/κ12 ≡ [2/ε1(k1 · ε2) + (ε1 · ε2)(/k2 − /k1)− 2/ε2(k2 · ε1)], (6.5)

to get

−iM(12)3 = g3
sC

abc 1
(k1 + k2)2 v̄2/κ12

(
/p1 − /k3 +m

(p1 − k3)2 −m2

)
/ε3u1. (6.6)

We do not need the explicit form of /κ12 and we can simply denote κ12 = (κ0
12,~κ12).

Then similarly what we did with the O-Ps calculation, we can simplify the inner
4× 4 matrix structure down to a 2× 2 matrix structure. We denote this inner 2× 2
matrix structure similarly as before with a(12)3. Moreover, we notice that the result
of equation 5.11 can be used here:

a(12)3 =
(
02 12

)
/κ12

(
/p1 − /k3 +m

(p1 − k3)2 −m2

)
/ε3

12

02


=
(
~κ12 · ~σ −κ0

1212

) −1
2m

iδ̂3 · ~σ
~ε3 · ~σ


= − 1

2m
(
i(~κ12 · δ̂3)12 − (~κ12 × δ̂3) · ~σ − κ0

12(~ε3 · ~σ)
)
,

(6.7)

where we have again used (~σ · ~a)(~σ ·~b) = (~a ·~b)12 + i(~a×~b) · ~σ. Next we multiply
a(12)3 with χ†s from the left and with φs from the right. Any term proportional to the
unit matrix 12, will give us a term with the form Cχ†sφs, where C is some constant.
Keeping in mind equation 3.29 we can calculate:

χ†↑φ↑ =
(
0 1

)1
0

 = 0; χ†↓φ↓ =
(
−1 0

)0
1

 = 0;

χ†↓φ↑ + χ†↑φ↓ =
(
−1 0

)1
0

+
(
0 1

)0
1

 = 0,
(6.8)

which is then equivalent to saying that any term proportional to the unit matrix in
the expression for the 2× 2 matrix element will disappear from the final invariant
amplitude. Thus the relevant part of a(12)3 can be written in the form

a(12)3 = 1
2m

(
(~κ12 × δ̂3) · ~σ + κ0

12(~ε3 · ~σ)
)
. (6.9)
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We may then repeat this above calculation for the graph in figure 6.15. The invariant
amplitude can be written as

−iM3(12) =v̄2(−igs(tc)jd)/ε3

(
i(/p1 − /k1 − /k2 +m)
(p1 − k1 − k2)2 −m2

)
(−igs(te)diγµ4)

(
−i

(k1 + k2)2

)
(
− gsf eab[gµ4µ1((k1 + k2) + k1)µ2 + gµ1µ2(−k1 + k2)µ4

+ gµ2µ4(−k2 − k1 − k2))µ1 ]
)
ε1µ1ε2µ2u1.

(6.10)

Again, we notice that the color factor in front is

Cabc = 1√
3

(tc)id(te)dif eab = T(F)√
3
fabc. (6.11)

Then with identical steps as before, the invariant amplitude can be taken to the form

−iM3(12) = g3
sC

abc 1
(k1 + k2)2 v̄2/ε3

(
/k3 − /p+m

(k3 − p) +m2

)
/κ12u1. (6.12)

Immediately we notice that the front factor g3
sC

abc/(k1 + k2)2 is the same as with the
permutation (12)3. We can then identify the 2×2 matrix a3(12) within our expression
of the invariant amplitude. Note that now we may use the result of equation 5.9,

a3(12) =
(
02 12

)
/ε3

(
/k3 − /p+m

(k3 − p) +m2

)
/κ12

12

02


= −1

2m
(
~ε3 · ~σ iδ̂3 · ~σ

) κ0
1212

~κ12 · ~σ


= − 1

2m
(
(~ε3 · ~σ)κ0

12 + i(δ̂3 · ~κ12)12 − (δ̂3 × ~κ12) · ~σ
)
,

(6.13)

We can again get rid of the term proportional to 12 and write the relevant part as

a3(12) = − 1
2m

(
(~κ12 × δ̂3) · ~σ + κ0

12(~ε3 · ~σ)
)
. (6.14)

We can see that this is exactly the same as equation 6.9 but with a minus sign in
front. Moreover, the front factors are also the same. Thus regardless of the spin
configuration, these two terms will cancel each other out. This calculation is identical
for the pairs 1(23)↔ (23)1 and 2(13)↔ (13)2 and as such we will not repeat them
here.
With this we are then left with only the six Feynman diagrams in figures 6.1-6.6 to
consider. If there would be no color factor to consider, this calculation would be
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identical to the one we had with the O-Ps. Then by looking at figure 6.1 and keeping
in mind the O-Ps calculation, the invariant amplitude can then be written as

−iMC=0
S=1 (cc̄→ ggg) =

∑
permut

v̄2(−igsγµtajm)ε1µ
(
i(/p− /k2 − /k3 +m)
(p− k2 − k3)2 −m2

)

(−igsγνtbmn)ε2ν
(
i(/p− /k3 +m)
(p− k3)2 −m2

)
(−igsγσtcni)ε3σu1,

(6.15)
It suffices to consider what is the color factor in front of each permutation. Hanging
on to our earlier notation, the color factors for each permutation are as follows:

(123)↔ (tatbtc)ji; (132)↔ (tatctb)ji; (213)↔ (tbtatc)ji;

(231)↔ (tbtcta)ji; (321)↔ (tctbta)ji; (312)↔ (tctatb)ji.
(6.16)

Then using the fact that J/ψ is in a color singlet state we have i = j, summing over
i = 1,2,3, remembering the 1/

√
3 front factor and using the result

Tr(tatbtc) = T(F)
2 (dabc + ifabc), (6.17)

where dabc are the completely symmetric structure constants and fabc are the com-
pletely antisymmetric structure constants, we get the following color factors:

(123)↔ 1√
3
T(F)

2 (dabc + ifabc); (132)↔ 1√
3
T(F)

2 (dacb + ifacb);

(213)↔ 1√
3
T(F)

2 (dbac + if bac); (231)↔ 1√
3
T(F)

2 (dbca + if bca);

(321)↔ 1√
3
T(F)

2 (dcba + if cba); (312)↔ 1√
3
T(F)

2 (dcab + if cab).

(6.18)

The completely symmetric structure constants can be permuted to give dabc for each
permutation. Similarly the antisymmetric structure constants can be permuted to
give fabc but now the sign depends on whether we are considering an odd or an even
permutation. We may then borrow the result of equation 5.5 to write

−iMS=1 = i2mg3
s

1√
3
T(F)

2 χ†s

dabc ∑
permut

a123 + i
∑

permut
fabca123

φs. (6.19)

Note in particular that dabc can be taken as a common factor and fabc has to be
inside the permutation sum. The end result is that the permutation sum with fabc

will not contribute to the invariant amplitude. This can indeed be anticipated since∑
permut

a123 is fully symmetric in exchanges of final state particles while fabc is fully

antisymmetric. In order to recover a fully symmetric M, the fabc terms should
vanish. Let us see how this comes about.
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6.2 Processing the invariant amplitude

It is fairly easy to see how we end up with the equation 6.19 for the invariant
amplitude. We may neglect all the constants and the 2-spinors since they are
the same for every term within the sum. We will use our previous result from
equation 5.12 and denote the 3-vectors with bold letters. Moreover, denoting this
sum by S and by opening it up:

S =
∑

permut
fabca123 = fabc

4m2

[
− (σ · ε1)(σ · ε2)(σ · ε3)− (σ · δ1)(σ · ε2)(σ · δ3)

+ (σ · ε1)(σ · ε3)(σ · ε2) + (σ · δ1)(σ · ε3)(σ · δ2)

+ (σ · ε2)(σ · ε1)(σ · ε3) + (σ · δ2)(σ · ε1)(σ · δ3)

− (σ · ε2)(σ · ε3)(σ · ε1)− (σ · δ2)(σ · ε3)(σ · δ1)

+ (σ · ε3)(σ · ε2)(σ · ε1) + (σ · δ3)(σ · ε2)(σ · δ1)

− (σ · ε3)(σ · ε1)(σ · ε2)− (σ · δ3)(σ · ε1)(σ · δ2)
]
.

(6.20)

Note how the even permutations of (123) have a minus sign in front and the odd
permutations have a plus sign. We can then group these terms with (σ · εi) and
(σ · δi). From this we notice that there are commutators of the form [(σ · εi),(σ · εj)].
For these terms, we can use the following result:

[(σ · εi),(σ · εj)] = [σkεki ,σmεmj ] = εki ε
m
j [σk,σm]︸ ︷︷ ︸

=2iεkmlσl

= 2iεi · (εj × σ)

= 2iσ · (εi × εj).
(6.21)

For the terms with δ we can use the familiar identity of (~σ·~a)(~σ·~b) = (~a·~b)12+i(~a×~b)·~σ.
With these we get

S = fabc

4m2

[
(σ · ε1)(2iσ · (ε3 × ε2)) + (σ · δ1)[(ε3 · δ2)12 + i(ε3 × δ2) · σ

− (ε2 · δ3)12 − i(ε2 × δ3) · σ]

(σ · ε2)(2iσ · (ε1 × ε3)) + (σ · δ2)[(ε1 · δ3)12 + i(ε1 × δ3) · σ

− (ε3 · δ1)12 − i(ε3 × δ1) · σ]

(σ · ε3)(2iσ · (ε2 × ε1)) + (σ · δ3)[(ε2 · δ1)12 + i(ε2 × δ1) · σ

− (ε1 · δ2)12 − i(ε1 × δ2) · σ]
]
.

(6.22)
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We notice that we have terms of the form (σ · εi)(σ · (εj × εk)). If we open up these
we can get rid of the terms proportional to σ by using the Jacobi identity for the
cross product,

a× (b× c) + b× (c× a) + c× (a× b) = 0. (6.23)

Then for the rest, we can open up them further and regroup them accordingly:

S = fabc

4m2

[
2iε1 · (ε3 × ε2)12 + 2iε2 · (ε1 × ε3)12 + 2iε3 · (ε2 × ε1)12

+ (ε3 · δ2 − ε2 · δ3)(σ · δ1) + (ε1 · δ3 − ε3 · δ1)(σ · δ2)

+ (ε2 · δ1 − ε1 · δ2)(σ · δ3)

+ i[δ1 · (ε3 × δ2 − ε2 × δ3) + δ2 · (ε1 × δ3 − ε3 × δ1)

+ δ3 · (ε2 × δ1 − ε1 × δ2)]12

+ σ · [δ1 × (ε2 × δ3 − ε3 × δ2) + δ2 × (ε3 × δ1 − ε1 × δ3)

+ δ3 × (ε1 × δ2 − ε2 × δ1)]
]
.

(6.24)

To simplify this, we can use the cyclicity of the triple product e.g. δ1 · (ε3×δ2) is the
same as−δ2·(ε3×δ1). Furthermore, by using the identity a×(b×c) = b(a·c)−c(a·b)
to the last two lines, we cancel out the second and the third lines. Then we are left
with

S = fabc

4m2

[
2iε1 · (ε3 × ε2)12 + 2iε2 · (ε1 × ε3)12 + 2iε3 · (ε2 × ε1)12

+2iδ1 · (ε3 × δ2)12 + 2iδ2 · (ε1 × δ3)12 + 2iδ3 · (ε2 × δ1)12
]
.

(6.25)

By using the anticommutativity of the cross product e.g. a × b = −b × a, it is
evident that S can be written as

S = −if
abc

2m2

∑
cyclic

(ε1 · (ε2 × ε3) + δ1 · (ε2 × δ3)) 12. (6.26)

We can see that this is proportional to the unit matrix 12. Thus regardless of the
constants in front of it, we can use our earlier result of equation 6.8, to see that
all such contributions will go to zero. This is how we are left with the result of
equation 6.27,

−iMS=1 = i2mg3
s

1√
3
T(F)

2 dabcχ†s~σ · ~V φs. (6.27)

Comparing this with equations 5.5 and 5.22 we see that the only difference, in addition
to the obvious replacement e → gs, is that now we have the extra color factor in
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front. Once we figure out what happens to this color factor, we can immediately use
the result that we know for the decay width of the O-Ps.
As we can see, this is a rather easy task to complete. Squaring equation 6.27 and
summing over the colors a,b,c gives the color factor C to be

C =
∑
abc

(
1√
3
T(F)

2 dabc
)2

= 5
9

1
16
∑
a

δaa︸ ︷︷ ︸
Tr(18)

= 5
18 , (6.28)

where we have used the result

dacddbcd = N2 − 4
N

δab = 5
3δ

ab. (6.29)

Therefore we may borrow the result of equation 5.39 to state our final result for the
squared invariant amplitude:

|Mtot
S=1(cc̄→ ggg)|2 = 5

184m2g6
s

4
3m4

∑
cyclic

(1− cos θ23)2, (6.30)

where m is now the mass of the c-quark. Furthermore, the phase space integration is
also identical to the one we had with the O-Ps. We may then use equation 5.63 to
write our final answer,

Γ(J/ψ → ggg) = 5
18

26

9
π2 − 9
M2 α3

s|ψ(0)|2 = 160
81

π2 − 9
M2 α3

s|ψ(0)|2, (6.31)

where M is the mass of J/ψ. This is in accordance with the standard literature in
the field [24], [25].
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7 Decay width of J/ψ → γgg

We have now calculated a bound state decay into three final state particles for O-Ps
and the heavy meson J/ψ. In these calculations the final state particles have been
identical. Moreover, we found the O-Ps decay calculation particularly helpful when
calculating the decay of J/ψ into three gluons. We would like to use that result also
in the calculation of Γ(J/ψ → γgg). For this, we need to identify the same kind of a
permutation sum here.
In the last section we considered in the figures 6.7-6.10 the s-channel decay processes
of two quarks into three gluons. It was shown that this type of an annihilation is
impossible since the J/ψ is in a color singlet state. Similarly here, we cannot have a
graph with a color singlet gluon propagator. With these arguments we can draw the
contributing LO Feynman diagrams as presented in figures 7.1-7.6.

Figure 7.1.
Permutation (123).

Figure 7.2.
Permutation (132).

Figure 7.3.
Permutation (213).

Figure 7.4.
Permutation (231).

Figure 7.5.
Permutation (312).

Figure 7.6.
Permutation (321).

The reader might notice that these graphs are somewhat different to what we had in
the three gluon case. This follows from the fact that now we are able to distinguish
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between some of the final state particles. Note in particular that the photon has
the same momentum and polarization vector in all graphs. However, by looking at
the graphs we can see that the invariant amplitude can be written in terms of the
permutation sum that we have now worked already twice with.
By looking at figure 7.1 we can immediately write the invariant amplitude as

−iMC=0
S=1 (cc̄→ γgg) =

∑
permut

v̄2(−igs(ta)jmγµ)ε1µ
(
i(/p− /k2 − /k3 +m)
(p− k2 − k3)2 −m2

)

(−igs(tb)miγν)ε2ν
(
i(/p− /k3 +m)
(p− k3)2 −m2

)
(−ieQcγ

σ)ε3σu1.

(7.1)

There are few details that are worth mentioning. One quark-gluon vertex is now
replaced by a quark-photon vertex. This is equivalent to replacing one gs by eQc,
where Qc is the fractional charge of the charm quark as in section 3. Then by keeping
in mind equation 5.2 we can simplify the invariant amplitude to be

−iMs=1(cc̄→ γgg) =
∑

permut
−ig2

seQc(tatb)jiv̄2/ε1

(
/k1 − /p+m

(k1 − p)2 −m2

)
/ε2(

/p− /k3 +m

(p− k3)2 −m2

)
/ε3u1.

(7.2)

Note in particular that the order of tb and ta depends on the permutation. However,
this does not matter for the resulting color factor. Let us explicitly show this. The
color factors can be written in a similar manner as in equation 6.16. This gives us

(123)↔ (tatb)ji; (132)↔ (tatb)ji; (213)↔ (tbta)ji;

(231)↔ (tbta)ji; (321)↔ (tbta)ji; (312)↔ (tatb)ji.
(7.3)

Since J/ψ is in the color singlet state we have i = j and thus we will have a trace
over the two matrices. And since Tr(tatb) = Tr(tbta) we get the color factor C as
follows:

C = 1√
3

(tatb)ii = 1√
3
Tr(tatb)︸ ︷︷ ︸
=T(F)δab

= 1√
3
T(F)δab, (7.4)

where again T(F) = 1/2. We can then carry all constants out of the permutation
sum and write

−iMC=0
s=1 (cc̄→ γgg) = −ig2

seQc
1√
3

1
2δ

ab
∑

permut
v̄2/ε1

(
i(/p− /k2 − /k3 +m)
(p− k2 − k3)2 −m2

)

/ε2

(
i(/p− /k3 +m)
(p− k3)2 −m2

)
/ε3u1.

(7.5)
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In comparing this with equations 5.2 and 5.3, we can see that there is again the
same kind of matrix structure. The permutation sum can then be developed in an
identical manner as before. We still have to account for the contribution from the
color factor. Continuing to sum over a and b:

C2 = 1
3

1
4
∑
ab

δbaδab = 1
3

1
4Tr(18) = 2

3 . (7.6)

With one final modification the rest of the calculation proceeds as with the O-Ps
calculation. In the O-Ps calculation we had three identical particles in the final state.
Now there are only two. Therefore the 1/3! factor reduces to 1/2!. This is equivalent
to multiplying our earlier result by three. Then by using equation 5.64 we get:

Γ(J/ψ → γgg) = 2
3 · 3 ·

26

9
π2 − 9
M2 Q2

cαα
2
s|ψ(0)|2, (7.7)

which simplifies to:

Γ(J/ψ → γgg) = 128
9 Q2

cαα
2
s

π2 − 9
M2 |ψ(0)|2, (7.8)

where α is the QED coupling constant, αs is the QCD coupling constant and M is
the mass of J/ψ. This agrees with the established result in literature [26].



54



55

8 Discussion

8.1 Helicity basis approach

A decent amount of work in this thesis was spent in learning the helicity basis
approach for processing the invariant amplitude in sections 3.2 and 4. For clarity, let
us explicitly state how the product of the Dirac spinors can be expressed in terms of
the polarization vectors in a certain helicity eigenstate:

J = 1 vector meson:

u(↑)v̄(↑) = − 1√
2

(
/pbs +M

2

)
/ε(↑); u(↓)v̄(↓) = − 1√

2

(
/pbs +M

2

)
/ε(↓);

1√
2

[u(↑)v̄(↓) + u(↓)v̄(↑)] = − 1√
2

(
/pbs +M

2

)
/ε(0);

J = 0 pseudoscalar meson:
1√
2

[u(↑)v̄(↓)− u(↓)v̄(↑)] = 1√
2

(
/pbs +M

2

)
γ5,

(8.1)

where u and v are the Dirac spinor helicity-base solutions of the quarks that make
up the bound state. Furthermore, pbs is the momentum of the bound state, M is the
mass of that particle and the polarization vector ε(h) describes the helicity state of
the bound state. In particular, notice that the identities of equation 8.1 hold for a
meson in an initial state.
In this thesis we have addressed the question of how the process of a two-body bound
state decay can be described. A natural sequel to this would be to ask how these
bound states are formed in particle collisions. As mentioned in the introduction, one
of our earliest motivations for this topic came from the desire to understand the
diffractive J/ψ-production in deep inelastic scattering. The helicity basis approach
seems to be a particularly useful technique for such considerations. For further
details we refer the reader to [5], [21]. Let us then turn our attention to how the
calculations for the J/ψ decays compare with experimental results.
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8.2 Comparison with experimental results

For the sake of clarity let us present our results for the decay widths on one single
page. Collecting the results from equations 3.28, 4.21, 5.64, 6.31 and 7.8 we have:

Γ(J/ψ → l+l−) = 16πα2Q2
c

|ψ(0)|2
M2

J

, [19] (8.2)

Γ(ηc → gg) =
(2

3

) 16πα2

M2
η

|ψ(0)|2, [15] (8.3)

Γ(O-Ps→ γγγ) = 2meα
6

9π (π2 − 9), [8] (8.4)

Γ(J/ψ → ggg) = 160
81

π2 − 9
M2

J

α3
s|ψ(0)|2, [27] (8.5)

Γ(J/ψ → γgg) = 128
9 Q2

cαα
2
s

π2 − 9
M2

J

|ψ(0)|2, [26] (8.6)

where MJ is the mass of J/ψ, Mη is the mass of ηc, me is the mass of an electron, α
is the QED coupling constant and αs is the QCD coupling constant. Furthermore, Qc

is the fractional charge of the charm quark and ψ(0) is the value of the position-space
wavefunction at origin. Note in particular that for the O-Ps process we know the
explicit form of this wavefunction and can thus substitute a value for it.
These results are in precise agreement with theoretical ones found in the literature.
The unfortunate fact is that we still have the square of the wavefunction evaluated
at zero appearing in our expressions of the decay widths. However, we can partly
get around this dubiety by forming ratios out of the calculated decay widths. Take
for example the following:

R
J/ψ
1th = Γ(J/ψ → γgg)

Γ(J/ψ → ggg) = 36
5
α

αs
Q2
c , (8.7)

R
J/ψ
2th = Γ(J/ψ → e+e−)

Γ(J/ψ → ggg) = 81π
10(π2 − 9)

α2

α3
s

Q2
c , (8.8)

where th labels the fact that these are theoretical predictions in the LO. In order to
acquire a value for these ratios, we need to figure out the values of α and αs at the
energy scale of the J/ψ which in our case is the mass MJ ≈ 3 GeV [28]. The value of
α is rather stable up to the mass of the Z-boson MZ ≈ 91 GeV but it clearly changes
when the energy scale changes [29], [30]. This running of the coupling constant is
presented in figure 8.1 [31]. We can then read off the value of the QED coupling
constant from the graph to be α ≈ 1/134 .
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Figure 8.1. Evolution of the QED coupling α as a function of Q2. Here Q is
the energy scale of the process. The figure is from [31].

For the QCD coupling constant, we can read off the value of αs from figure 8.2 to be
around 0.23 when the energy scale is around Q ≈ 3 GeV [32]. Substituting these
values for RJ/ψ

1th and RJ/ψ
2th in equations 8.7 and 8.8 we get:

R
J/ψ
1th = Γ(J/ψ → γgg)

Γ(J/ψ → ggg) = 36
5

(1/134)
0.23

(2
3

)2
≈ 0.104, (8.9)

R
J/ψ
2th = Γ(J/ψ → l+l−)

Γ(J/ψ → ggg) = 81π
10(π2 − 9)

(1/134)2

(0.23)3

(2
3

)2
≈ 0.060. (8.10)

We can form these same ratios from the experimental data provided by [28]. These
values are found to be:

R
J/ψ
1exp = Γ(J/ψ → γgg)/Γtot

Γ(J/ψ → ggg)/Γtot
= 8.8%

64.1% ≈ 0.137, (8.11)

R
J/ψ
2exp = Γ(J/ψ → e+e−)/Γtot

Γ(J/ψ → ggg)/Γtot
= 5.971%

64.1% ≈ 0.093, (8.12)

where exp labels the fact that these are experimental results. We can see that RJ/ψ
1th

agrees rather well with RJ/ψ
1exp taking into account that our theoretical prediction is

only the LO approximation. However, when the ratio depends more strongly on the
powers of the coupling constants, we can see that the values start to differ more.
This is to say that the discrepancy between the values of RJ/ψ

2th and RJ/ψ
2exp becomes

larger.
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QCD αs(Mz) = 0.1181 ± 0.0011

pp –> jets
e.w. precision fits (N3LO)

0.1

0.2

0.3

αs (Q2)
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Heavy Quarkonia (NLO)
e+e– jets & shapes (res. NNLO)

DIS jets (NLO)
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)(–)

Figure 8.2. Summary of the measurements of αs(Q2) as a function of the
energy scale Q. The respective order of QCD perturbation theory used in the
extraction of αs is indicated in brackets. The figure is from the reference [32].

Nevertheless, taking into account all the approximations we have made to make the
problem easier to solve, it is quite imposing how well our theoretical predictions go
together with experimental values. The accuracy of the theoretical predictions could
be improved by taking into account higher order terms of the coupling constants. For
example for J/ψ → e+e− the first QCD corrections were calculated in [33]. Moreover,
by using the Dirac spinor solutions for non-zero momentum and not neglecting the
masses of the outgoing leptons, would give us a more precise prediction for the
decay width. Nevertheless, these LO calculations are good for order of magnitude
approximations.

8.3 Generalization of the results

It should be noted that these calculations can be easily modified to accommodate
other JPC = 0−+ and JPC = 1−− heavy mesons. There are only two parameters
that we have to adjust: the fractional charge of the constituent quark and the mass
of the decaying meson. This same point is argued in the reference [24]. Then in
equations 8.2, 8.3, 8.5 and 8.6 one could simply replace the mass and Qc to get the
decay width for any decaying meson that has the same forementioned properties.
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When forming the ratios, we need to account for the running of the coupling constants.
Let us take the 1S state of the Υ(bb̄)-meson as an example which has a mass of
MΥ ≈ 9.4 GeV [34]–[36]. Reading from figure 8.2 we get the strong coupling constant
to be αS ≈ 0.18. Similarly, based on figure 8.1, we will adjust the value of α to be
1/132. Moreover, since Υ is a bb̄ bound state we have Qc = 1/3. The theoretical
predictions are then:

RΥ
1th = Γ(Υ→ γgg)

Γ(Υ→ ggg) = 36
5

(1/132)
0.18

(1
3

)2
≈ 0.034, (8.13)

RΥ
2th = Γ(Υ→ e+e−)

Γ(J/ψ → ggg) = 81π
10(π2 − 9)

(1/132)2

(0.18)3

(1
3

)2
≈ 0.032. (8.14)

We can form these same ratios from the experimental data provided by [34]. These
values are found to be:

RΥ
1exp = Γ(Υ→ γgg)/Γtot

Γ(Υ→ ggg)/Γtot
= 2.2%

81.7% ≈ 0.027, (8.15)

RΥ
2exp = Γ(Υ→ e+e−)/Γtot

Γ(Υ→ ggg)/Γtot
= 2.38%

81.8% ≈ 0.029. (8.16)

Again the theoretical predictions compare quite nicely with the experimental values.
In addition, it seems that the theoretical predictions for the Υ ratios are in better
agreement with the experimental ratios than the J/ψ counterparts. This suggests
that the higher order effects would be relatively decreasing towards higher energy
scales. Furthermore, this hints towards our claim that the decay width of any meson
fulfilling our assumptions, can be acquired in an identical manner. As a final note it
should be pointed out that the Υ-decays are in practise used to measure the running
of the αs. These measurements effectively contribute to the accuracy of figure 8.2.
For further details see for example the discussion in [37].
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9 Conclusion

The decay of a two-body bound state to some particular final state is by no means a
trivial problem. A set of simplifying approximations render the calculation possible
and rather straightforward. We have assumed that the bound state decay can
be described as a free-particle annihilation process where the momentum of the
annihilating particles is set to zero. The invariant amplitude of this free particle
process is then weighted by the value of the wavefunction describing the system.
The fact that we evaluate this wavefunction at zero has a rather clear intuitive
interpretation: when the particles are at the same place, they annihilate.
We then used these principles to calculate an O-Ps decay width and four different
heavy meson decay widths. In essence the problem was in figuring out how the
invariant amplitude could be processed in the most efficient way. The explicit spin
matrix approach is simple in the sense that it requires little insight to the problem
at hand. One just calculates all the different matrices whilst meticulously keeping
track of the elements.
This in part emphasises the detail of how the Dirac spinor solutions are chosen.
The choice of equation 3.2 might be the one that most of people would choose first.
However, this does not allow us to use the Clebsch-Gordan coefficients. By changing
our definition to the one presented in equation 3.29 we recovered the forementioned
results. This choice is then important when explicitly calculating the spin matrix
elements.
In the helicity basis approach, the computation of the explicit matrix elements is
replaced by the calculation of traces over gamma matrices. However, to be able to
use this approach we had to rigorously establish the fact that the assumed identities
hold. It was then here, on the grounds of completeness, that the ηc decay calculation
was presented. With it we have the complete picture how spin 1/2 particles can be
added together and presented in the helicity basis. The result of this development is
summarized in equation 8.1.
After this we turned our attention towards the decay of O-Ps into three photons. By
peeling down the 4×4 matrix structure to a 2×2, we avoided the explicit calculation
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of every 4× 4 matrix product. In effect this introduced a third method for processing
the invariant amplitude. Furthermore, the O-Ps decay calculation also highlights the
difference between QED and QCD. We do not know the explicit form of the QCD
potential, and thus in the final form of the decay width we are left with |ψ(0)|2. This
is not the case for a pure QED process.
The decay widths of J/ψ into three gluons or one photon and two gluons were
then relatively easy to calculate. We only had to take into account how the color
factor contributes for the calculation. Manipulating the color factors appropriately
and summing over the colors we were left with a number multiplying the invariant
amplitude. The form of the invariant amplitude was then practically identical to the
analogous invariant amplitude of the O-Ps decay. We could then use the O-Ps result
to get the J/ψ decay widths.
It was then put forth that the helicity basis approach could be useful in the consid-
eration of heavy quarkonium production in particle collisions. However, any of the
three techniques could be used, with the right assumptions, in such calculations. In
addition to developing further on the results of this thesis, it would salient to take
into account Feynman graphs of higher order in the coupling constant.
In conclusion, this thesis covers a certain range of heavy-quark bound state decays
and does it with a set of rather simple assumptions. Moreover, it is obvious that
the development can be generalized to encompass any JPC = 1−− or JPC = 0−+

heavy meson decay. An example of the Υ(1S) decay width ratios was offered to
support this view. In considering the decay width ratios it is important to keep
in mind the running of the coupling constants as the energy scale is increased.
Theoretically one would get a better hold of this only by doing the required next-
to-LO calculations. Taking into account the fact that our calculations are only to
the LO, the theoretical predictions for the ratios of the decay widths agree relatively
well with the experimental results.
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A Calculations for section 3

A.1 Addition of fermion spins; photon polarization vectors

We wish to show that with our choice of equation 3.2 for the basis vectors in
section 3.1, the addition of angular momenta for the state |SMz〉 = |10〉 of two Dirac
spinors u and v is given by 1√

2(|↑↓〉 − |↓↑〉) where |↑↓〉 = |s1s2〉. One way of doing
this is to consider the annihilation process of a lepton-pair into a virtual photon
l+l− → γ∗. Before this, we need to establish the form of the photon polarization
vector, which we need in calculating this process in the LO by using the Feynman
rules.
In section A.3 we shall see that the following development holds also for a spin-1
particle with mass M . Let us then first consider a massless free photon. From QED
we know that the wavefunction Aµ of a free photon satisfies in the Lorentz gauge
the equation of motion

�Aµ = 0, (A.1)

where � is the d’Alembertian i.e. � = ∂ν∂
ν . It is clear that equation A.1 admits

solutions of the form Aµ = εµ(q)e−iq·x, where εµ(q) is the polarization vector of the
photon and q is the momentum on the photon. The Lorentz gauge ∂µAµ = 0 imposes
the condition

qµε
µ = 0. (A.2)

So essentially there are three independent components of the polarization vector εµ.
In the Coulomb gauge we choose the first component of εµ to be zero [17, p.134].
As discussed in section A.3, the condition A.2 holds also for a massive (virtual)
photon. Then for a virtual photon travelling along the z-axis with the momentum
vector q = (q0,0,0,q3), the normalized polarization vectors can be then chosen as


εµh=±1 = ∓ 1√

2(0,1,± i,0),
εµh=0 = 1√

q2
(q3,0,0,q0), (A.3)
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where h tells us the helicity eigenvalue of the photon [17, p.139]. We are particularly
interested in the h = 0 polarization vector as this is the one which would couple to
the fermion-antifermion state |SMz〉 = |10〉.
Let us still explicitly show that the given vectors in equation A.3 are indeed the
eigenvectors of the helicity operator. Helicity is defined as the projection of spin to
the direction of the momentum and its operator ĥ is given by

ĥ = êp · Ŝ, (A.4)

where êp is the unit vector to the direction of the momentum and Ŝ is the spin vector
operator. In our case, when the photon is travelling along the z-axis, the helicity
operator reduces to Ŝz. Then taking the spatial components of the polarization
vectors, we can check that they fulfil the desired eigenvalue equation. Note that now
Ŝz is the spin vector operator for a spin-1 particle, whose matrix representation is
given e.g. in [14]. Thus,

Ŝzεh=1 ⇒


0 −i 0
i 0 0
0 0 0

 1√
2


−1
−i
0

 = 1√
2


−1
−i
0

⇒ Ŝzεh=1 = hεh=1,

Ŝzεh=−1 ⇒


0 −i 0
i 0 0
0 0 0

 1√
2


1
−i
0

 = −1√
2


1
−i
0

⇒ Ŝzεh=−1 = hεh=−1,

Ŝzεh=0 ⇒


0 −i 0
i 0 0
0 0 0

 1√
q2


0
0
q3

 =


0
0
0

⇒ Ŝzεh=1 = hεh=0.

(A.5)

We have now established the form of the photon polarization vectors. Now from
the Feynman rules we may derive the scattering matrix structure for the process
l+l− → γ to be

v̄2/εh=0u1. (A.6)

As shown in the main text, the µ = 0 case disappears in the NR-limit and by sticking
to our notation we may write this element as

v̄2/εh=0u1 = v†2γ
0(−ε3h=0γ

3)u1 = −2mq0
√
q2 σ

3
s2s1 . (A.7)

Now for the state 1√
2(|↑↓〉 − |↓↑〉) we get the element

1√
2
−2mq0
√
q2 (σ3

↑↓ − σ3
↓↑), (A.8)
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and by inspecting the term (σ3
↑↓ − σ3

↓↑) more closely:

(σ3
↑↓ − σ3

↓↑) =
(
1 0

)1 0
0 −1

1
0

− (0 1
)1 0

0 −1

0
1


= (1− (−1)) = 2 6= 0,

(A.9)

which confirms that leptons in this state annihilate to a γ∗. We now see that if we
would have followed the standard Clebsch-Gordan coefficient notation and had a plus
sign in between the states, we would have gotten zero. That is to say that the lepton
pair in the (1/

√
2)(|↑↓〉 + |↓↑〉) could not annihilate into a photon. That clearly

cannot be the case, since a virtual photon does have the longitudinal polarization
state too. This is the reason why the invariant amplitude sign convention has to be
chosen as it is chosen in the main text. When we define the spinor basis vectors
differently, we regain the traditional Clebsch-Gordan coeffiecient results.

A.2 Phase space integral

The following development is done in detail in reference [18]. However, it is beneficial
to go through the main points. The delta function in equation 3.26 can be divided
into one-dimensional and a three-dimensional delta function as δ(4)(pJ/ψ − p3− p4) =
δ(M−E3−E4)δ(3)(p3+p4). Notice that we are still working in the CMS-frame. Then
d3p4 integration can be done with δ(3)(p3 + p4) which just leaves us the integrand
evaluated at p3 = −p4. Then by moving into spherical coordinates we may write
the remaining d3p3 as dΩdp3p

2
3. Then by using the delta function result

δ(g(x)) = δ(x− x0)
|g′(x0)| , (A.10)

where x0 is a zero of the function g(x) and g′ is the derivative of g(x) with respect
to x, we may write the remaining delta function as

δ(M − E3 − E4) = E3E4

p3M

∣∣∣∣
p3=pz

δ(p3 − pz), (A.11)

where pz is the zero of the expression M − E3 − E4. It is found to be

pz =

√
λ(M2,m2

3,m
2
4)

2M , (A.12)

where λ(a,b,c) = a2 + b2 + c2 − 2ab− 2bc− 2ca as given in the main text. Then the
remaining integral over dp3 just leaves us with the integrand evaluated at p3 = pz
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and we get the result

Γ(J/ψ → l+l−) =

√
λ(M2,m2

3,m
2
4)

64π2M3

∫
dΩ|Mtot(J/ψ → l+l−)|2. (A.13)

Since we neglect the masses of the leptons this is equivalent to equation 3.27.

A.3 Helicity basis approach

This approach for the decay width rests heavily on understanding the relationship
between the Dirac spinors and the bound state polarization vectors. Before tackling
this, it is beneficial to investigate the equation of motion for a massive vector particle.
The free particle wave equation for a spin-1 particle of mass M can be written as

(gνλ(� +M2)− ∂ν∂λ)Bλ = 0, (A.14)

where Bλ is the wavefunction that describes our particle [17, p.138]. Multiplying
equation A.14 by ∂ν from the left,

(∂λ(� +M2)− ∂ν∂ν∂λ)Bλ ⇒M2∂λBλ = 0, (A.15)

which forces the constraint ∂λBλ = 0 regardless of the gauge and reduces A.14 to
the same form as the Klein-Gordon equation (KGE),

(� +M2)Bµ = 0. (A.16)

We know that the solutions of equation A.16 are of the form Bµ = εµe
−iq·x. The

condition ∂λBλ = 0, then gives us the restriction that qµεµ = 0. This is also what we
had with equation A.2. We have already shown that polarization vectors of the form
of equation A.3 are the eigenvectors of the eigenvalue equation ĥεh = hεh . However,
it is still worth noting that the vectors of equation A.3 are normalized as follows:

εh=0 · ε∗h=0 = ε0h=0ε
0∗
h=0︸ ︷︷ ︸

= |q|
2

M2

− ε1h=0ε
1∗
h=0︸ ︷︷ ︸

=0

− ε2h=0ε
2∗
h=0︸ ︷︷ ︸

=0

− ε3h=0ε
3∗
h=0︸ ︷︷ ︸

= E2
M2

= |q|
2 − E2

M2 = −M
2

M2 = −1,

εh=±1 · ε∗h=±1 = ε0h=±1ε
0∗
h=±1︸ ︷︷ ︸

=0

− ε1h=±1ε
1∗
h=±1︸ ︷︷ ︸

= 1
2

− ε2h=±1ε
2∗
h=±1︸ ︷︷ ︸

= 1
2

− ε3h=±1ε
3∗
h=±1︸ ︷︷ ︸

=0

= −1,

(A.17)
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where we have now identified
√
q2 = M , q0 = E and q3 = |q| since q||z-axis. Before

continuing to derive the results of equation 3.30, let us quickly show why equation 3.37
holds. We will make an ansatz of the form (here q = pJ)∑

h

εµ(h)εν∗(h) = Agµν +BpµJp
ν
J , (A.18)

where A and B are some numbers and pJ = (p0
J ,0,0,p3

J) is the momentum vector of
the particle in question. Then by multiplying equation A.18 by pJµ from the left:

∑
h

(pJ · ε(h))︸ ︷︷ ︸
=0

εν
∗(h) = ApνJ +Bp2

Jp
ν
J ⇒ B = − A

p2
J

, (A.19)

where we have used the condition pµJεµ = 0. Then using this result and multiplying
equation A.18 by gµν from the right:

∑
h

ε(h) · ε∗(h)︸ ︷︷ ︸
=−1

= A(gµνgµν︸ ︷︷ ︸
=4

− pJ · pJ
p2
J︸ ︷︷ ︸

=1

)⇒ A = −1, (A.20)

where we have used the results of A.17. Then substituting these back into equa-
tion A.18 we find ∑

h

εµ(h)εν∗(h) = −gµν + pµJp
ν
J

p2
J

. (A.21)

We may now show how the results of equation 3.30 arise. We shall first explicitly
derive the matrix form for the final state particle identities as given below:

v(↑)ū(↑) = − 1√
2
/ε∗(↑)

(
/pJ +M

2

)
; v(↓)ū(↓) = − 1√

2
/ε∗(↓)

(
/pJ +M

2

)
;

1√
2

[v(↑)ū(↓) + v(↓)ū(↑)] = − 1√
2
/ε∗(0)

(
/pJ +M

2

)
.

(A.22)

From the results of equation A.22, it is then a relatively easy task to derive the
results of equation 3.30. We will do this first in the special case where momentum
and spin lie on the z-axis, and then rotate this to an arbitrary direction. Up to this
point we have been working in the NR-limit where momentum of the charm quarks
goes to zero. However, we may show the results of equation 3.30 to hold for any
momentum of the vector meson as long as the condition pc = pc̄ = pJ/2 holds.
We shall be working with the spinors as given in equation 3.29. Note that σ is a
vector that contains the Pauli spin matrices e.g. σ = (σ1,σ2,σ3). Moreover, since
pJ = 2p and M = 2m where p is the momentum of the charm quark and m is the
mass of the charm quark. Finally the energy Ep is given as E2

p = |~p|2 +m2.
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Our method of proving the wanted identities relies on forming the explicit form of
the matrices of v(h)ū(h) and showing that the r.h.s. of equation A.22 is the same.
Note that for notational convenience, we have truncated the momentum p from our
spinors. First we will show the identity for v(↑)ū(↑):

v(↑)ū(↑) = (Ep +m)
 σzpz
Ep+mχ↑

χ↑

(φ†↑ φ†↑
(
σzpz
Ep+m

)†)
γ0

=
 σzpzχ↑φ

†
↑ −σzpzχ↑φ†↑

(
σzpz
Ep+m

)†
(Ep +m)χ↑φ†↑ −χ↑φ†↑ (σzpz)†



=


0 0 0 0
−pz 0 (Ep −m) 0

0 0 0 0
(Ep +m) 0 −pz 0

 .
(A.23)

Then let us open −1√
2/ε
∗(↑)/pJ+M

2 with p = pJ/2 and m = M/2,

−1√
2
/ε∗(↑)/

p
J

+M

2 = 1
2(−γ1 + iγ2)(/p+m)

= 1
2

 0 −σx + iσy

σx − iσy 0

(Ep +m)12 −pzσz
pzσz (−Ep +m)12



=


0 0 0 0
−pz 0 (Ep −m) 0

0 0 0 0
(Ep +m) 0 −pz 0

 ,

(A.24)

which is the same as equation A.23. Therefore the equality

v(↑)ū(↑) = −1√
2
/ε∗(↑)/

p
J

+M

2 (A.25)
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holds. Now continuing for v(↓)ū(↓):

v(↓)ū(↓) = (Ep +m)
 σzpz
Ep+mχ↓

χ↓

(φ†↓ φ†↓
(
σzpz
Ep+m

)†)
γ0

=
 σzpzχ↓φ

†
↓ −σzpzχ↓φ†↓

(
σzpz
Ep+m

)†
(Ep +m)χ↓φ†↓ −χ↓φ†↓ (σzpz)†



=


0 −pz 0 (−Ep +m)
0 0 0 0
0 −(Ep +m) 0 −pz
0 0 0 0

 .
(A.26)

Continuing for −1√
2/ε
∗(↓)/pJ+M

2 :

−1√
2
/ε∗(↓)/

p
J

+M

2 = −1
2 (−γ1 − iγ2)(/p+m)

= 1
2

 0 σx + iσy

−σx − iσy 0

(Ep +m)12 −pzσz
pzσz −(Ep −m)12



=


0 −pz 0 (−Ep +m)
0 0 0 0
0 −(Ep +m) 0 −pz
0 0 0 0

 ,

(A.27)

which is the same as equation A.26, thus the equality

v(↓)ū(↓) = −1√
2
/ε∗(↓)/

p
J

+M

2 . (A.28)

Finally continuing for 1√
2(v(↑)ū(↓) + v(↓)ū(↑)). We have now twice calculated these

type of matrices, so we may be a bit more straightforward with our calculations.
First we have

v(↑)ū(↓) =
 σz · pzχ↑φ†↓ −σz · pzχ↑φ†↓

(
σz ·pz
Ep+m

)†
(Ep +m)χ↑φ†↓ −χ↑φ†↓ (σz · pz)†

 , (A.29)

and similarly

v(↓)ū(↑) =
 σz · pzχ↓φ†↑ −σz · pzχ↓φ†↑

(
σz ·pz
Ep+m

)†
(Ep +m)χ↓φ†↑ −χ↓φ†↑ (σz · pz)†

 , (A.30)
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and adding these two together we get:

(v(↑)ū(↓) + v(↓)ū(↑)) =


−pz 0 (Ep −m) 0

0 −pz 0 (−Ep +m)
−(Ep +m) 0 pz 0

0 (Ep +m) 0 pz

 ,

(A.31)

where we have chosen not to write in the 1/
√

2 factor. Next we continue to inspect
the r.h.s. of equation A.22. Keeping in mind the form of the polarization vector as
given in equation A.3 and the normalization of the polarization vector as shown in
equation A.17, we can write down the matrix form:

−/ε∗(0)/
p
J

+M

2 = −1
m

(pzγ0 − Epγ3)
(Ep +m)12 −pzσz

pzσz −(Ep −m)12


= −1

m

pz12 −Epσz
Epσz −pz12

(Ep +m)12 −pzσz
pzσz −(Ep −m)12


=
 −pz12 (Ep −m)σz
−(Ep +m)σz pz12

 ,
(A.32)

which is the same as in equation A.31. Therefore the identity

1√
2

(v(↑)ū(↓) + v(↓)ū(↑)) = − 1√
2
/ε∗(0)/

p
J

+M

2 (A.33)

holds.
Next we would like to rotate the vectors ε, u, v and p, and show that our results hold
in any arbitrary direction. To do this we first have to consider what happens to the
solutions of the Dirac equation in a proper Lorentz transformation (LT). The Dirac
equation can be written as

(i/∂ −m)ψ(x) = 0, (A.34)

which has solutions of the form ψ(x) = u(p)e−ip·x where u(p) = (u1(p),u2(p),u3(p),u4(p))T .
The contravariant 4-vector xν transforms as

x′µ = Λµ
νx

ν , (A.35)

where Λµ
ν are the componenets of the LT. It then follows that a covariant 4-vector

xα transforms as
x′µ = Λ α

µ xα, (A.36)
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where Λ α
µ are the components of the inverse LT,

(λ−1)µν = gµαΛβ
αgβν = Λ µ

ν . (A.37)

Then for a LT of the form x′ = Λx, it follows that there must exist a relation

ψ′(x′) = Sψ(x), (A.38)

where S is some matrix that accomplished the desired transformation. In addition
to knowing how the spinor transforms, we need to know how the conjugate spinor ψ̄
transforms. The following development derives that result. See reference [17, p.113]
for further details. We may write the Dirac equation in two different inertial frames:

iγµ
∂ψ(x)
∂xµ

−mψ(x) = 0 and iγµ
∂ψ′(x′)
∂x′µ

−mψ′(x′) = 0, (A.39)

Since from equation A.36 we know that covariant vectors transform with the inverse
LT we may open up the primed DE:

iγµ
∂ψ′(x′)
∂x′µ

−mψ′(x′) = 0

⇒ iγµ
∂

∂x′µ
Sψ(x)−mSψ(x) = 0

⇒ iγµ(Λ−1)νµ
∂

∂xν
Sψ(x)−mSψ(x) = 0

⇒ iγµS(Λ−1)νµ∂νψ(x)− Smψ(x) = 0 || → S−1

⇒ i S−1γµS(Λ−1)νµ︸ ︷︷ ︸
=γν

∂νψ(x)−mψ(x) = 0,

(A.40)

where the underbraced equality must hold in order for the DE to be Lorentz covariant
i.e. the equations of motion in different frames need to be equivalent. We then have
the constraint

S−1γµS = Λµ
νγ

ν , (A.41)

which also gives
SγνS−1 = (Λ−1)νµγµ. (A.42)

Then for a proper infinitesimal LT of the form Λν
µ = δνµ + ενµ, the S-matrix can be

shown to be
S = 1− i

4σµνε
µν and S−1 = 1 + i

4σµνε
µν , (A.43)

where
σµν = i

2(γµγν − γνγµ), (A.44)
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and each εµν is some real number and as discussed below εµν = −ενµ. Clearly also
σµν = −σνµ. Let us then show these results. We demand the invariance of the scalar
products,

x · y = x′ · y′ ⇔ gµνx
µyν = gραΛρ

µx
µΛα

νy
ν ⇔ gµν = gραΛρ

µΛα
ν . (A.45)

By substituting in our infinitesimal LT and ignoring higher order terms, we get

gµν = gραΛρ
µΛα

ν = gρα(δρµ + ερµ)(δαν + εαν)

⇒ gµν = gµν + gµαε
α
ν + gρνε

ρ
µ

⇒ gµαε
α
ν = −gρνερµ ⇒ εµν = −ενµ.

(A.46)

We can also see that S−1 is as given in equation A.43. Again ignoring the higher
order terms:

SS−1 =
(

1− i

4σµνε
µν
)(

1 + i

4σµνε
µν
)

= 1 + i

4σµνε
µν − i

4σµνε
µν = 1. (A.47)

Then in substituting these into equation A.41, we can see that the S is truly the
desired matrix: (

1 + i

4σµνε
µν
)
γα
(

1− i

4σµνε
µν
)

= (δαβ + εαβ)γβ

⇒ γα − i

4ε
µν [γα, σµν ] = γα + εαβγ

β

⇒ 1
8ε

µν [γα,γµγν − γνγµ] = εαβγ
β.

(A.48)

In order to process this commutator further we need some commutator identities
and gamma matrix results:

(1) [a,b+ c] = ab+ ac− ba− ca = [a,b] + [a,c],

(2) [a,bc] = abc− bca = abc− bca+ bac− bac = b[a,c] + [a,b]c,

(3) {γµ,γν} = 2gµν14 ⇒ [γµ, γν ] = 2(gµν − γνγµ).

(A.49)

Let us then process the commutator further:

[γα,γµγν − γνγµ] = [γα,γµγν ]− [γα, γνγµ]

= γµ[γα, γν ] + [γα, γµ]γν − γν [γα, γµ]− [γα, γν ]γµ
= −2γµγνγα − 2γµγαγν + 2γνγµγα + 2γνγαγµ
= −4γµδαν + 4γνδαµ.

(A.50)
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Substituting this back into the l.h.s. of A.48:
1
8ε

µν(−4γµδαν + 4γνδαµ) = 1
2(−εµαγµ + εανγν) = εανγν = εανγ

ν . (A.51)

We can see that with equation A.51 we have recovered the r.h.s. of equation A.48.
Thus we have shown that for a proper LT, the matrix S is given by equation A.43.
We have gone through all this to be able to show that the inverse of S is given by

S−1 = γ0S†γ0 ⇔ S†γ0 = γ0S−1. (A.52)

Keeping in mind that γµ† = γ0γµγ0 we may inspect S†:

S† =
(

1− i

4σ
µνεµν

)†
= 1 + i

4ε
†
µνσ

µν† = 1 + i

4εµν
(−i

2 (γν†γµ† − γµ†γν†)
)

= 1 + i

4εµν
(−i

2 (γ0γνγµγ0 − γ0γµγνγ0)
)
||γ0 →← γ0

⇒ γ0S†γ0 = 1 + i

4εµν
(−i

2 (γνγµ − γµγν)
)

︸ ︷︷ ︸
=σµν

≡ S−1.

(A.53)

With these results we may finally inspect how the spinors transform in LTs. From
equation A.38 and the solutions of the DE, it follows that Su = u′, where u is some
Dirac spinor and u′ is the transformed one. Then from:

ψ̄′ = ψ′†γ0 = ψ†S†γ0 = ψ†γ0S−1 ≡ ψ̄S−1, (A.54)

it follows that ū′ = ūS−1. This is to say that the Dirac spinors transform with S
multiplied from the left and the conjugate spinors transform with S−1 multiplied
from the right.
We may then finally rotate the result of equation A.25 to hold in any direction.
Multiplying from the right with S and with S−1 from the left:

Sv(↑)︸ ︷︷ ︸
=v′(↑)

ū(↑)S−1︸ ︷︷ ︸
ū′(↑)

= −1
2
√

2
(
Sε∗µ(↑)γµpJνγνS−1 + Sε∗µ(↑)γµMS−1

)

= −1
2
√

2

ε∗µ(↑)Sγµ S−1S︸ ︷︷ ︸
=1

γνS−1pJν + ε∗µ(↑)SγµS−1M

 .
(A.55)

Then we use equations A.41 and A.42 to write the inverse LT on every term where
it is possible

v′(↑)ū′(↑) = −1
2
√

2

(
ε∗µ(↑)

(
Λ−1

)µ
α
γα
(
Λ−1

)ν
β
γβpJν + ε∗µ(↑)

(
Λ−1

)µ
α
γαM

)
(A.56)
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and by using A.36 it clearly follows that:

v′(↑)ū′(↑) = −1√
2
/ε′∗(↑)/

p′
J

+M

2 . (A.57)

We have now generalized the result of equation A.25 to hold for pJ into an arbitrary
direction. We can also see that the same developmet holds for the other results
of A.22. The only thing left to do is to show that 3.30 follows from A.22. Let us
do this next. We can start by taking the hermitean conjugate of equation A.57 and
dropping the primes for clarity:

(v(↑)ū(↑))† = −1
2
√

2
(/ε∗(↑)(/pJ +M))†

⇒ γ0u(↑)v†(↑) = −1
2
√

2
(
p†Jµγ

µ†ε∗†ν (↑)γν† +Mε∗†ν γ
ν†
)

⇒ γ0u(↑)v†(↑) = −1
2
√

2
(
pJµγ

0γµγ0εν(↑)γ0γνγ0 +Mεν(↑)γ0γνγ0
)
.

(A.58)

Then by multiplying with γ0 from the left and the right, we recover the form

u(↑)v̄(↑) = − 1√
2

(
/pJ +M

2

)
/ε(↑), (A.59)

as given in equation 3.30. We can also see that the other results of 3.30 come about
identically.
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B Calculations for section 4

B.1 Helicity basis identity

Our aim in this section is to derive the results given in equation 4.10. We will
work with the solutions of the Dirac equation as is given in the equation 3.29.
By looking at equations A.29, A.30 and A.31 we can immediately see the form of
[v(↑)ū(↓)− v(↓)ū(↑))] in the case where ~pη||z-axis:

[v(↑)ū(↓)− v(↓)ū(↑)] =


pz 0 (−Ep +m) 0
0 −pz 0 (−Ep +m)

(Ep +m) 0 −pz 0
0 (Ep +m) 0 pz

 , (B.1)

with pz, Ep and m being charm quark quantities. Then on the r.h.s. of equation 4.10
we get

γ5/
p
η

+M

2 = γ5(p0γ
0 − pzγ3 +m14) = γ5

(Ep +m)12 −pzσz
pzσz −(Ep −m)12


=
 pzσz −(Ep −m)12

(Ep +m)12 −pzσz

 .
(B.2)

We can clearly see that equations B.1 and B.2 are equal and thus the identity

1√
2

[v(↑)ū(↓)− v(↓)ū(↑)] = 1√
2
γ5/
p
η

+M

2 (B.3)

holds. Of course this proves the result only in the special case that the pseudoscalar
meson is moving into the z-axis direction. However, as was developed in the
section A.3, this result can also be rotated into an arbitrary direction. Since the
proof is essentially identical, we shall not repeat it here. However, we can see
that by taking the hermitean conjugate of equation B.3, we get the latter result of
equation 4.10:

1√
2

[γ0u(↓)v†(↑)− γ0u(↑)v†(↓)] = 1
2
√

2
(pηµγµ† +M)γ5†, (B.4)
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and by multiplying with γ0 from left and right, we recover:

1√
2

[u(↑)v̄(↓)− u(↓)v̄(↑)] = 1√
2
/pη +M

2 γ5, (B.5)

where we have used the results γ5† = γ5, γµ† = γ0γµγ0 and {γ5, γµ} = 0.

B.2 Trace identities

Let us justify the identity of equation 4.14. We know that Tr(γ5) = 0 and (γµ)2 = ±14.
First we need to consider the trace Tr(γ5γµγν). Assuming µ = ν we have

Tr(γ5γµγν) = Tr(γ5 γµγµ︸ ︷︷ ︸
=±14

) = Tr(±γ5)︸ ︷︷ ︸
=0

= 0. (B.6)

We may then assume that µ 6= ν and get

γ5γµγν = iγ0γ1γ2γ3γµγν = ±iγαγβ, (B.7)

since the indices µ and ν have to be one of the values 0,1,2,3 and by the Clifford
algebra {γµ, γν} = 0, whenever µ 6= ν. Notice that it especially holds that α 6= β.
We then can use the anticommutation of the gammas and the cyclic property of
trace to get

Tr(γ5γµγν) = ±iTr(γαγβ)⇒ Tr(γαγβ) cycl.= Tr(γβγα) anticom.= −Tr(γαγβ). (B.8)

Thus Tr(γαγβ) = 0 and we have

Tr(γ5γµγν) = 0. (B.9)

With this done we can consider the trace of γ5 with four other gamma matrices,
Tr(γ5γµγνγργσ). Clearly it must hold that µ 6= ν 6= ρ 6= σ. This is to say that each
index has a different value. Since if they would not be different we would recover
the result of equation B.9. So we have that (µ, ν, ρ, σ) is a permutation of (0,1,2,3).
We will first choose (µ, ν, ρ, σ) = (0,1,2,3):

Tr(γ5 γ0γ1γ2γ3︸ ︷︷ ︸
=−iγ5

) = −iTr
(

(γ5)2︸ ︷︷ ︸
=14

)
= −4i. (B.10)

Now if we would have some other permutation of the indices (0,1,2,3) we would
need to anticommute the gamma matrices to their right places in order to recover
the result of equation B.10. Thus with an even number of exchanges we get the
same result, −4i, and with an odd number we get +4i. This is how the result of
equation 4.14 comes about.
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C Calculations for section 5

C.1 Proof of some identities

We have been extensively using trace and vector identities. Even though some of
these results should be familiar to the reader from elementary physics courses, let
us still justify some of them. Let us first go through the result Tr(σiσjσk) = 2iεijk.
Assume we know that

Tr(12) = 2; Tr(σi) = 0; σiσj = δij12 + iεijkσk; Tr(σiσj) = 2δij. (C.1)

With these results we can turn to inspect Tr(σiσjσk):

Tr(σiσjσk) = Tr([δij12 + iεijlσl]σk) = Tr(δijσk + iεijlσlσk)

= δij Tr(σk)︸ ︷︷ ︸
=0

+iεijl Tr(σkσl)︸ ︷︷ ︸
2δkl

= 2iεijk.

(C.2)

The first identity of equation 5.10 follows from

(~σ·~a)(~σ·~b) = σiaiσjbj = aibjσiσj = aibj(δij12+iεijkσj) = (~a·~b)12+i(~a×~b)·~σ. (C.3)

Then let us inspect the term ε3 × (ε1 × ε2):

ε3 × (ε1 × ε2) = εijkεj3ε
klmεl1ε

m
2 = εkijεklmεj3ε

l
1ε
m
2

= (δilδjm − δimδjl)εj3εl1εm2 = εi1ε
m
3 ε

m
2 − εi2εl3εl1

= ε1(ε3 · ε2)− ε2(ε3 · ε1).

(C.4)

Let us also justify the identity of equation 5.38:

(a× b) · (c× d) = εijkajbkεilmcldm = εijkεilmajbkcldm

= (δjlδkm − δjmδkl)ajbkcldm

= (a · c)(b · d)− (a · d)(b · c).

(C.5)

Finally, let us justify how the three-dimensional integral can be turned to a four-
dimensional one as shown below:∫ d3k3

2ω3
=
∫
d4k3θ(ω3)δ(k2

3), (C.6)
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where θ(ω3) is the Heaviside step function. First pointing out that for a delta function
with a function g(x) as its argument, we can write

δ(g(x)) =
∑
i

δ(x− xi)
|g′(xi)|

, (C.7)

where xi are the zeros of g(x) and g′ denotes the derivative of g with respect to x.
Starting with the r.h.s. of equation C.6, using equation C.7 and k2

3 = ω2
3 − k2

3:∫
d4k3θ(ω3)δ(k2

3) =
∫
dω3d

3k3 θ(ω3)δ(ω2
3 − k2

3)

=
∫
d3k3

∫
dω3 θ(ω3) 1

2ω3
(δ(ω3 + |k3|) + δ(ω3 − |k3|))

=
∫
d3k3

 1
2ω3

θ(ω3)
∣∣∣
ω3=−|k3|︸ ︷︷ ︸
=0

+ 1
2ω3

θ(ω3)
∣∣∣
ω3=|k3|︸ ︷︷ ︸

=1


=
∫ d3k3

2ω3
.

(C.8)



79

D Feynman rules

There are multiple different sources that offer a comprehensive listing of the Feynman
rules. See for example the following [2], [4], [7], [18]. However, for purposes of
completeness, let us explicitly state them here.

D.1 QED

Propagators

Photon:
= − i

k2 + iε

(
gµν − (1− λ)k

µkν

k2

)

In the Landau gauge λ = 0.
In the Feynman gauge λ = 1.

Lepton or a quark: = − i(/k +m)
k2 −m2 + iε

Vertex

f denotes the
flavour.
Qf = −1 for e,µ, τ
Qf = +2

3 for u,c,t
Qf = −1

3 for d,s,b

= ieQfγ
µ
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External particles

Incoming lepton or
a quark. = u(k,s)

Incoming antilep-
ton or an anti-
quark:

= v̄(k,s)

Outgoing lepton or
a quark: = ū(k,s)

Outgoing antilep-
ton or an anti-
quark:

= v(k,s)

Incoming photon = εµ(k,λ)

Outgoing photon. = ε∗µ(k,λ)
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D.2 QCD

Propagators

Gluon: = − iδab

k2 + iε

(
gµν − (1− λ)k

µkν

k2

)

Quark: = iδij(/k +m)
k2 −m2 + iε

Ghost: = iδab

k2 + iε

Vertices

Quark-gluon
coupling: = −igs(ta)jiγµ

3-gluon
self-coupling:

= −gsfa1a2a3
[
gµ1µ2(k1 − k2)µ3

+ gµ2µ3(k2 − k3)µ1

+ gµ3µ1(k3 − k1)µ2
]
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4-gluon
self-coupling:

= −ig2
s

[
f ea1a2f ea3a4(gµ1µ3gµ2µ4 − gµ1µ4gµ2µ3)

+ f ea1a3f ea4a2(gµ1µ4gµ3µ2 − gµ1µ2gµ3µ4)

+ f ea1a4f ea2a3(gµ1µ2gµ4µ3 − gµ1µ3gµ4µ2)
]

Ghost-gluon
coupling: = −gsfabckµ1

External lines

These are the same as in QED but the photon line is replaced by the gluon line as
given above. Color is treated in the vertices.
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E Pauli matrices and Dirac matrices

For purposes of completeness, we shall give the explicit form of the Pauli and Dirac
matrices. For references, see for example [2], [3], [11].

Pauli matrices

The Pauli matrices σi satisfy the following equation:

σiσj = δij + iεijkσ
k, (E.1)

where δij is the Kronecker delta function and εijk is the Levi-Civita symbol. From it,
we can derive the commutation and anticommutation relations

[σi,σj] = 2iεijkσk; {σi, σj} = 2δij12. (E.2)

The explicit form for the Pauli matrices can be derived to be

σ1 ≡

0 1
1 0

 ; σ2 ≡

0 −i
i 0

 ; σ3 ≡

1 0
0 −1

 . (E.3)

With these we may also define the so called Pauli vector ~σ = (σ1,σ2, σ3).

Dirac matrices

The Dirac matrices γµ satisfy the following anticommutation relation given by the
Clifford algebra

{γµ, γν} = 2gµν14. (E.4)

In the Dirac representation, the explicit form is

γ0 =
12 0

0 −12

 ; γi =
 0 σi

−σi 0

 , (E.5)

where σi are the Pauli spin matrices. Moreover, we may define an additional matrix
γ5 which in the Dirac basis can be explicitly written as follows:

γ5 ≡ iγ0γ1γ2γ3 =
 0 12

12 0

 . (E.6)
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