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Abstract

In this work we study the gluon Debye screening mass and its dependence on
time and occupation number distribution using classical chromodynamics in
two spatial dimensions. We also study the characteristic momentum scale and
occupation number distributions. We determine the gluon Debye screening
mass by performing linear fits into the gluon dispersion relation in the low
momentum regime. We compare the result to the one obtained using a formula
derived from thermal field theory.

We start by quickly reviewing the heavy-ion physics context for this work.
Then we quickly recap the classical Yang-Mills theory in the continuum and on
the lattice.

We will go through a Fourier accelerated Coulomb gauge fixing procedure in
detail in the continuum theory and on the lattice. This will be an essential part
of this work, as some observables we use are meaningful only in the Coulomb
gauge.

Then we introduce the gauge invariant and gauge dependent observables
and the initial conditions used. In this work we find evidence for the existence
of a non-zero Debye screening mass at high occupation numbers and late
dimensionless times. We observe that the Debye mass gets bigger at higher
occupation numbers as expected from thermal field theory.

According to the thermal field theory the gluon Debye mass is also time
dependent through its occupation number distribution dependence. Due to low
statistics we cannot draw any firm conclusions about the time dependence of
the Debye screening mass.
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Tiivistelmä

Tässä työssä tutkitaan gluonin Debye-massaa, ja sen aika- ja miehityslukudis-
tribuutioriippuvuutta käyttäen klassista väridynamiikkaa kahdessa paikkaulot-
tuvuudessa. Työssä tutkitaan myös ominaista liikemääräskaalaa ja miehitys-
lukudistribuutioita. Gluonin Debye-massa määritetään sovittamalla suora glu-
onien dispersiorelaatioon pienellä liikemäärällä. Tuloksia verrataan termisestä
kenttäteoriasta johdetun kaavan ennusteisiin.

Aluksi tutustutaan raskasionifysiikkaan liittyvään viitekehykseen. Tämän
jälkeen kerrataan nopeasti klassinen Yang-Mills teoria jatkumossa ja hilalla.

Käydään läpi Fourier kiihdytetty Coulombin mitan kiinnitysmenetelmä yk-
sityiskohtaisesti jatkumossa ja hilalla. Tämä tulee olemaan oleellinen osa työtä,
koska jotkut käytetyt observaabelit ovat mielekkäitä ainoastaan Coulombin
mitassa.

Tämän jälkeen esitellään työssä käytetyt mittariippumattomat ja mittariip-
puvat observaabelit ja käytetyt alkuehdot. Löydetään viitteitä gluonin nollasta
poikkeavan Debye-massan olemassaolosta suurilla miehitysluvilla ja myöhäisillä
dimensiottomilla ajoilla. Havaitaan, että gluonin Debye-massa kasvaa suurem-
milla miehitysluvuilla, kuten termisestä kenttäteoriasta voisikin odottaa.

Termisen kenttäteorian mukaan gluonin Debye-massa riippuu myös ajasta
miehityslukudistribuutionsa aikariippuvuuden kautta. Alhaisen statistiikan
takia ei voida kuitenkaan vetää varmoja johtopäätöksiä Debye-massan aikariip-
puvuudesta.
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1
Introduction

The goal of heavy-ion physics is to produce Quark-Gluon Plasma (QGP), a
deconfined state of matter consisting of free quarks and gluons, whose existence
is predicted by Quantum ChromoDynamics (QCD) [1][2][3][4]. Currently the
properties of the quark-gluon plasma are studied at the Relativistic Heavy-Ion
Collider (RHIC) [5] [6] [7][8] at Brookhaven National Laboratory (BNL) and the
large hadron collider (LHC) at CERN [9][10][11] [12][13].

The space-time picture of a relativistic heavy-ion collision (which can be
seen in the figure 1.1), can be divided in roughly three parts. After the collision
the formed matter is in a pre-equilibrium state, which is sometimes also known
as the glasma phase. The matter then isotropizes and eventually thermalizes.
At this point we can call the matter QGP, as it is in thermal equilibrium. The
QGP undergoes rapid expansion and cooling. In this phase hydrodynamics
(first viscous and finally ideal) is applicable. As the system cools partons start
to form hadrons, which interact and form a hadron gas. (When we have only
hadron gas left, the system enters the hadron gas phase.) Eventually, due to
further expansion and cooling, interactions between hadrons cease and the
system drops out of equilibrium, which is called the freeze out.

The experimental results show apparently fast thermalization according to
the successful hydrodynamical description of the quark-gluon plasma [5][7][9]
[14][15] [16]. The observed thermalization time of the order of one fermi[7] poses
a major challenge for theory, and there is still no consensus how isotropization
and thermalization of the QGP happens. In this work we will solve the classical
Yang-Mills equations of motion numerically on the lattice, which is mainly
relevant for the pre-equilibrium phase in the framework of heavy-ion physics.

From the theory side our understanding of ultra-relativistic heavy-ion col-
lisions relies mostly on QCD in the weak coupling limit. Also alternative
approaches to thermalization have emerged recently, namely holographic ther-
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Figure 1.1: Schematic space-time picture of a heavy ion collision. The hyperbolae
represent different proper time τ =

√
t2 − z2 = constant curves. Different

phases have been marked with different colors.

malization scenarios, which rely on gauge-string dualities in supersymmetric
Yang-Mills theories[17][18]. In this framework one can study strongly coupled
non-abelian plasma, which is qualitatively different from weakly coupled one
[17]. The strong coupling results are derived for N = 4 super Yang-Mills
plasma, which is not strictly speaking the same as strongly coupled QCD
plasma. However, these calculations still provide us some insight about the
strongly coupled non-Abelian plasma. The question whether the QGP really is
strongly or weakly coupled is beyond the scope of this work.

Starting from QCD, a heavy-ion collision can be described using the Color
Glass Condensate (CGC) framework, which is an effective theory of QCD in
the high energy weak coupling regime [19] (for more information on CGC
see for example [20][21]). In the weak coupling framework a collision of large
nuclei creates gluon states of very high occupancy [22]. In this regime we can
treat the gluons as classical color fields [23], and therefore the dynamics is
essentially classical and can be studied using classical statistical lattice gauge
theory [22]. Lattice gauge theory is necessary here, because the classical Yang-
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Mills equations of motion are highly non-linear, and therefore extremely hard
to solve analytically (without any approximations). The equations of motion are
best solved using Wilson’s lattice formulation [24] to preserve gauge invariance,
which will be lost in a naive discretization.

Weakly coupled non-abelian plasmas are known to exhibit plasma instabil-
ities. Perhaps the best known instabilities are the chromo-Weibel instability
[25][26] and the Nielsen-Olesen instability [27]. There are hints that strongly
coupled plasmas may exhibit similar behaviour [28]. Plasma instabilities have
also been proposed to be one possible mechanism driving the plasma towards
isotropization [29]. In this work we study the gluon Debye screening mass
instead of plasma instabilities. Debye screening in electromagnetic plasma
suppresses the Coulomb potential between two point charges exponentially.
The scale of this exponential suppression is given by the Debye screening length,
which is also the characteristic length scale of the plasma. The inverse of the
Debye sceening length is the Debye mass, which in the case of electromagnetic
plasma is the photon effective mass. In the non-abelian plasma there is a similar
screening for the color electric fields, which gives the gluon effective mass. The
connection between the Debye screening mass and plasma instabilities is that for
the non-abelian plasma instabilities the growth rate of the plasma instabilities
determined by the plasmon mass (which in our case is the same as the gluon
Debye mass) [30].

Using classical statistical lattice simulations we can actually calculate the
plasmon mass assosiated to these plasma oscillations by studying the gluon
dispersion relation, from which the plasmon mass is obtained at its value at
zero momentum [30]. The plasmon mass is also calculable from thermal field
theory. In thermal field theory one calculates the needed propagator corrections
in thermal background and then finally gets the plasmon mass as the pole of the
corrected propagator [31]. In this work we will compare our results obtained
from the gluon dispersion relation with ones we get by utilizing a prescription
derived from thermal field theory.

All simulations in this work have been done in two spatial dimensions. The
implementation is particularly straightforward: we simply shrink the spatial
extent of our lattice to one point in the longitudinal direction. This will simplify
our numerical work in various ways. First it allows us to use significantly
smaller lattice sizes (as we have eliminated one entire dimension), but yet it
still allows us to study qualitatively happens in the transverse plane in an
ultra relativistic heavy-ion collision. Thus it is a very good starting point. In
the future we want to study these effects and plasma instabilities in the three
dimensional case, and thus our code is written for three dimensions. This
allows us to easily extend our work without needing to write a new code
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for it. In a fully three dimensional simulation we can also take into account
the characteristic asymmetry in the initial conditions. In a ultra relativistic
heavy-ion collision the initial momentum distribution of the outgoing particles
is highly anisotropic - the particles created in the collision have very high
transverse momenta, but relatively low longitudinal momenta. Working in two
dimensions also greatly simplifies the numerical work, because the Coulomb
gauge fixing is considerably harder when the momenta in the longitudinal
direction are close to zero.

The initial momentum distribution we used in our simulation is essentially a
Gaussian distribution multiplied by the momentum. There is no physical reason
behind this, but it creates a very clear typical momentum scale (which we will
refer to as ∆), and it allows us to effectively cross-check our results, because
Berges et al. have used similar initial states in their publications [32][33][34].

Kinetic theory might also provide some insight for our lattice approach,
because these two have an overlapping range of validity. The classical statistical
approach is valid at high occupation numbers, i.e. n(p) � 1. Kinetic theory,
on the other hand, is valid until n(p)� 1/αs [22]. It has also been argued that
kinetic theory and classical field theory are actually equivalent when the typical
occupation numbers are large [35] [36]. And indeed it has been shown that
they can yield quantitatively similar results at least for the UV cascade [37] [38].
We will not use kinetic theory in this work, but it would be interesting to see
whether it is in agreement with our results in the future.
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2
Theoretical background

2.1 Yang-Mills theory

The Yang-Mills theory [39] is defined by the Lagrangian

L = −1
2

Tr
(

FµνFµν
)

, (2.1.1)

where Fµν = ∂µ Aν − ∂ν Aµ + ig
[
Aµ, Aν] is the non-abelian field strength tensor,

Aµ is the gluon field and the trace is taken over the SU(N) color space. Aµ

and Fµν are N2 hermitian traceless matrices in the color space. Using the Euler-
Lagrange equation one can obtain the equations of motion of the theory without
external sources in the fundamental representation of SU(N):[

Dµ, Fµν

]
= 0, (2.1.2)

where Dµ is the gauge covariant derivative defined as Dµ = ∂µ + igAµ. By
choosing ν = 0 we get the non-abelian Gauss’s law

[Di, Ei] = 0, (2.1.3)

which is a non-dynamical constraint (as it contains no time derivatives). How-
ever it is an important sanity check for our simulation, and it also needs to be
taken into account with our initial state.

The Lie-algebra valued color electric field appearing in the equation (2.1.3)
is defined as

Ei = Fi0, (2.1.4)

and the color magnetic field is defined as

Bi =
−εijk

2
Fjk. (2.1.5)
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By performing a Legendre transformation on the Yang-Mills Lagrangian
(2.1.1) one obtains the Hamiltonian density correspoding to (2.1.1)

H = Tr
(

E2
i + B2

i

)
, (2.1.6)

which is given in temporal gauge. Gauge fixing is essential, because while per-
forming the Legendre transformation we observe that the temporal component
of the gluon field has no canonical momentum and the only way to circumvent
this problem is to eliminate it by fixing the gauge. Later on we will be interested
in the electric energy, magnetic energy, and total energy of our system, and
these are given by integrating equation (2.1.6) over the whole space.

2.2 Gauge fixing and the Gribov ambiguity

In gauge theories there are always unphysical degrees of freedom which give
us ability to perform gauge transformations on our fields without changing the
real physical fields. If one field configuration can be obtained from the other
by performing a gauge transformation these field configurations are physically
equivalent, and they are said to belong to same gauge orbit. In gauge fixing
procedure, we want to (in the ideal case) to choose only one representative from
each gauge orbit. This is especially important when evaluating path integrals
to eliminate double counting. In the classical field theory this is not a concern,
but gauge fixing can simplify our equations considerably. Gauge fixing is also,
of course, important when we are interested in gauge dependent quantities.
However, these are not observables, as those are always gauge invariant.

In this work we will employ two gauges. The temporal gauge, which
eliminates the temporal component of the gluon field, and the Coulomb gauge,
which eliminates the divergence of the gluon field. Before going into details one
should also note that gauge fixing in non-abelian gauge theory is considerably
harder than in abelian gauge theory. It can also be shown that in the non-abelian
gauge theory the Coulomb gauge condition does not uniquely determine the
gluon field, i.e. we have many field configurations which satisfy the Coulomb
gauge condition. This is known as the Gribov ambiguity [40].

The temporal gauge, which we will use in this work, is particularly simple
to fix. It is given by condition

A0 = 0. (2.2.1)

This is also easy to implement on the lattice. The Coulomb gauge is fixed by
requiring the divergence of the gluon field to vanish

∇ · A = 0. (2.2.2)
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However, there is an alternative gauge condition for the Coulomb gauge. It can
be shown, that Coulomb gauge is the gauge that minimizes the integral of A2

over the whole space [41]. This is easy to see in the classical electrodynamics,
where we can decompose the integral of the vector potential squared as

∫
A2d3x =

1
4π

∫
d3xd3x′

(∇× A (x)) ·
(
∇′ × A

(
x′
))

|x− x′|
(2.2.3)

+
1

4π

∫
d3xd3x′

(∇ · A (x))
(
∇′ · A

(
x′
))

|x− x′|
,

where we have neglected the surface terms. This expression is derived in
appendix B. The curl of the vector potential is gauge invariant, so clearly the
integral is minimized when the divergence of the vector potential is zero. Nu-
merically it is much easier to minimize this than to keep track of the divergence
of A on every point in space, as we can rather simply minimize the integral
(2.2.3).

As we want to consider scenarios relevant for heavy-ion physics, we want to
use anisotropic momentum distributions for gluons. We are especially interested
in an asymmetric situation, in which the momentum distribution is symmetric in
the transverse plane, but resembles a delta function in the longitudinal direction.
The momentum anisotropy makes gauge fixing considerably harder, because
our gauge condition does not constrain the gluon field in the longitudinal
direction very much. This is why we want to find as powerful a gauge fixing
algorithm as possible.

Next we find a way to minimize the integral (2.2.3). Here we follow very
closely reference [42]. First, consider the simple case of classical electrodynamics.
The gauge transformation for the magnetic vector potential is

Aµ → Aµ − ∂µχ. (2.2.4)

Now we want to minimize the integral (2.2.3). Let us choose χ = α∇ · A,
We do a gauge transformation on the equation (2.2.3) and integrate the term
proportional to α by parts. We get∫

A2d3x →
∫

d3x
(

A2 − 2α
(

∂i A
i
)2

+ α2∂j∂i A
i∂j∂k Ak

)
. (2.2.5)

From this expression we can see that choosing α sufficiently small, we can
minimize the integral (2.2.3) by an iterative procedure. However, we will soon
see that this algorithm is not very efficient in minimizing the integral (2.2.3).
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Now consider the nth step of the previous procedure

∂i A
i(n) = ∂i A

i(n−1) + α∂2∂j A
j(n−1). (2.2.6)

Now we decompose A into Fourier components, and denote them by tilde. We
get

∂ · Ã(n)
=
(

∂ · Ã(0)
) (

1− αk2
)n
≈
(

∂ · Ã(0)
)

exp
(
−αk2n

)
, (2.2.7)

where the last approximation was made in the limit when n becomes large. We
have denoted the eigenvalues of the ∂2 by k2. From the equation (2.2.7) we can
see that the convergence of each Fourier mode depends on the wavenumber and
that longer wavelengths converge slower than short ones. We also observe that
the mode corresponding to zero will never converge, but this is not an issue,
because the gauge transformation corresponding to the zero mode is present in
the whole space, and therefore corresponds to a global gauge transformation.

We can see from the equation (2.2.7) that stability requires α <
1

k2
max

, where

we have denoted the maximum eigenvalue of ∂2 by k2
max. The existence of

maximum (or minimum) eigenvalue of ∂2 will not be a problem in this work,
because the lattice discretization will regulate our theory both in the ultraviolet
and in the infrared. Now we observe that the time taken for the smallest
eigenvalue of ∂2 to converge is

tmin ∝
k2

max

k2
min

. (2.2.8)

If we perform the lattice discretisation with hypercubic lattice of length L, for
the minimum eigenvalue of ∂2 we have k2

min ∝ 1/L2. The time taken to perform
the rest of the algorithm (the gauge transformation) is proportional to V. Thus
the time needed to fix the Coulomb gauge using this algorithm is proportional
to V5/3 in three dimensions and V2 in two dimensions. This is known as critical
slowing down, as the gauge fixing becomes considerably harder when the size
of the lattice increases.

Fortunately, we can do better than this. Previously the convergence was
controlled by the long wavelength modes. Using a Fourier transform and
by adjusting the step size in the momentum space, we can actually make all
momentum components converge at the same rate. This is achieved by choosing
the step size in the momentum space as

α(p) = α
p2

max

p2 . (2.2.9)
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With Fourier acceleration, the gauge transformation done at each iteration
becomes

∂µχ = F̂−1α
p2

max

p2 F̂∂µ∂i A
i (x) , (2.2.10)

where F̂ denotes a Fourier transform (Fast Fourier Transform (FFT) in the
discretized case). Execution time of this algoritm grows as Vln (V) , as the cost
of FFT is proportional to Vln (V) , and the time taken to execute of the rest of
the algorithm is proportional to V.

It is also easy to show that the Coulomb gauge can be fixed with only one
iteration. Starting from the equation (2.2.4) we impose the condition that the
divergence of the transformed field vanishes. We get an equation for χ

∇ · A−∇2χ = 0. (2.2.11)

This has a formal solution

χ =
∇ · A
∇2 . (2.2.12)

Equation (2.2.11) is actually a Poisson equation for χ with a source term of
∇ · A. A standard technique to solve equations of this type is by doing a Fourier
transform (which clarifies the role of the inverse of ∇2 in equation (2.2.12)). In
position space the solution becomes

χ = F̂−1 1

k2 F̂∇ · A. (2.2.13)

This corresponds to equation (2.2.10) with choice α = 1/k2
max, which in the

continuous case cancels the singularity associated with k2
max.

The gauge fixing procedure on the lattice is quite similar to the continuum
procedure, but there we will change the degrees of freedom of our theory to
the appropriate ones in order to preserve exact gauge invariance. The lattice
gauge fixing procedure will be discussed in detail in section 3.2.

One should also note that the gauge fixing procedure becomes more com-
plicated when dealing with a non-Abelian theory. In abelian theory we were
dealing with the eigenvalues of the operator ∂2, but in the non-Abelian the-
ory the relevant operator becomes ∂ · D, as the gauge transformation becomes
Aµ → Aµ − Dµχ. This means that the eigenvalues are no longer independent
of the field. Fortunately this does not turn out to be as big of an issue as one
might think, but it does have an impact on the efficiency of our algorithm [42].

9



2.3 Debye screening mass

Fundamental properties of elementary particles can be modified by interactions.
This effect is present when particles propagate trough a medium, with which
they interact. Particles may, for example, acquire an effective mass, which is
different from the one measured in the vacuum [31]. Perhaps the best known
example of this is the screening of the electric field of a point charge in a static
thermal background in QED.

In the classical electrodynamics the potential between two point charges
is given by the Coulomb potential. However, in QED we can calculate the
potential between the two point charges in static thermal background. We find
out that the Coulomb potential turns into the Yukawa potential

V (r) ∼ exp (−r/rD)

r
, (2.3.1)

i.e. the electric field is screened with a characteristic length scale rD [31]. The
inverse of rD is the Debye screening mass mD, which is the effective mass of the
photon in a static thermal background.

We are interested in whether a similar behaviour can be observed in non-
abelian plasma (i.e. plasma in which the mediators of the interaction interact
also with each other, unlike in abelian plasma). It turns out that color electric
fields indeed get screened by interactions in thermal plasma. The value of the
screening mass can be calculated from thermal field theory [31].

In this work we will extract the value of the gluon Debye mass from gluon
dispersion relation, and then compare it to the one which can be obtained from
the thermal field theory.
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3
Lattice formulation

3.1 Lattice formulation of SU(N) Yang-Mills theory

For a more thorough discussion on the lattice formulation of non-abelian gauge
theory see e.g. [43] and [44]. In order to preserve gauge invariance in local
SU(N) gauge transformations we change the degrees of freedom of our theory
from Lie algebra (SU (N) ) valued gauge fields Aµ to Lie group valued link
matrices U, defined as

Ux,µ = exp
(

igaµ Aµ(x)
)

, (3.1.1)

which is a discretized version of the Schwinger line integral. The calculation
of matrix exponentials in SU (2) is explained in detail in the appendix C.
The physical interpretation for this is that a fermion wavefunction picks up
a phase factor which is given by the Schwinger line integral when moving
in the presence of a gauge field [44]. In a local SU(N) gauge transformation
the link matrix transforms as Ux,µ → V(x)Ux,µV† (x + µ) , where the notation
x + µ = x + aµµ̂. Here aµ stands for lattice spacing in the µ-direction. aµ = as
when µ = 1, 2, 3 and aµ = at when µ = 0. One should also remember that
we are using periodic boundary conditions. Using this we can build gauge
invariant observables by forming closed loops on the lattice with link matrices,
which are called Wilson loops, or plaquettes in the simplest 1× 1 loop case, and
by taking the trace. The plaquette is proportional to the field strength tensor in
the continuum limit

Ux,µν ≡ Ux,µUx+µ,νU†
x+ν,µU†

x,ν ≈ exp
(

igaµaνFµν

)
, (3.1.2)

as some algebra shows. Using this piece of information we can establish a
connection between the lattice quantities and the continuum quantities. By
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expanding to the lowest non-trivial order in lattice spacing we find that the right
hand side of the following expressions converge to the continuum expression
of the left hand side when taking the limit a→ 0

Ea
i (x) =

2
asatg

ImTr(taUx,i0) (3.1.3)

Ba
i (x) = −

εijk

a2
s g

ImTr
(

taUx,jk

)
(3.1.4)

Fa
µν(x) =

2
aµaνg

ImTr
(

taUx,µν

)
. (3.1.5)

Aa
µ(x) =

2
aµg

ImTr
(

taUx,µ

)
. (3.1.6)

The ta are generators of SU(N), normalised as Tr
(

tatb
)
=

1
2

δab, a = 1, 2, . . . N2−
1. If N = 2 these are Pauli matrices divided by two, and if N = 3 they are
Gell-Mann matrices divided by two.

It is then not hard to show that in 3+1 dimensional Minkowski space-time
the Yang-Mills action (2.1.1) is reproduced by the following Wilson action [24]
as the lattice spacing goes to zero:

S = −β0 ∑
x

∑
i

(
1

2N
(Tr(Ux,0i) + Tr(U†

x,0i))− 1
)

(3.1.7)

+ βs ∑
x

∑
i<j

(
1

2N
(Tr(Ux,ij) + Tr(U†

x,ij))− 1
)

.

Varying this with respect to spatial links gives the equations of motion

Eb
j (t, x) = Eb

j (t− at, x)− 2

γ2asatg
∑
k

(
ImTr

(
tbUx,kUx+k,jU

†
x+j,kU†

x,j

)
− ImTr

(
tbUx,jU

†
x+j−k,kU†

x−k,jUx−k,k

))
, (3.1.8)

where temporal gauge has been adopted. This sets temporal links to unity. It is
straightforward to verify that these equations of motion are also gauge invariant
by writing them into matrix form. This is also more convenient to solve using a
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computer, since we do not have to solve essentially the same equation many
times. The matrix form is

Ej(t, x) = Ej(t− at, x) +
at

2ia3
s g

∑
k

(
Ux,jk −U†

x,jk −
1

N
Tr
(

Ux,jk −U†
x,jk

)
(3.1.9)

+ Ux,jU
†
x−k+j,kU†

x,−k,jUx−k,k −
(

Ux,jU
†
x−k+j,kU†

x,−k,jUx−k,k

)†

− 1

N
Tr
(

Ux,jU
†
x−k+j,kUx,−k,jUx−k,k −

(
Ux,jU

†
x−k+j,kU†

x,−k,jUx−k,k

)†
))

,

which can be found by writing the traces in terms of components, and the
imaginary part with the help of the matrix and its hermitean conjugate. Finally
one multiplies by tb and uses a Fierz identity. Varying the action with respect
to temporal links gives the discrete analogy of the Gauss constraint (2.1.3)

∑
j

(
Ej(x)−U†

x−j,jEj(x− j)Ux−j,j

)
= 0. (3.1.10)

We evolve our system forward in time using an algorithm similar to ref. [33],
proceeding as follows:

1. Using the equation (3.1.9) evolve electric fields to next time-step.

2. Using the definition of the color electric field on the lattice (3.1.3) calculate
the temporal plaquette.

3. Using the definition of the temporal plaquette in the temporal gauge solve
the link at the next timestep.

In order to simplify the numerical work we adopt SU(2) gauge group for
the simulations. The biggest differences between SU(2) and SU(3) simulations
would occur in step 2, where there is no trivial way to calculate the temporal
plaquette for SU(3), but for SU(2) this turns out to be rather straightforward,
because calculating the exponential of a SU(2) matrix is rather easy, but for a
SU(3) this cannot be done analytically.

We do not expect this simplification to affect our results qualitatively. Studies
have been done using both gauge groups and the results have turned out to be
qualitatively similar in the classical statistical gauge theory [33] and also in the
kinetic theory [45].

Now let us take a closer look at the steps performed when calculating the
time evolution of our system. When we know the links, step one is rather
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straightforward to perform. In step two, we use the fact that every SU(2) matrix
can be decomposed in the following way

Ux,i0 = c01 + 2icata, (3.1.11)

where 1 =
√

c2
0 + caca. This is fairly easy to prove by starting from the form of

a general 2 by 2 SU(2) matrix U =

(
α −β̄
β ᾱ

)
, where

√
|α|2 + |β|2 = 1. Now

we can easily see that equation (3.1.11) gives us matrices of this form and the

constraint 1 =
√

c2
0 + caca guarantees that the determinant is equal to one.

Using the definition of the color electric field (3.1.3), and plugging in the
decomposition (3.1.11) for the temporal plaquette, we obtain ca =

asatg
2

Ea. So
we can easily solve for the temporal plaquette

Ux,i0 =

√
1−

( asatg
2

Ea

)2
1 + iasatgEata. (3.1.12)

After this solving the link matrix for the next time-step from the definition of
the temporal plaquette in the temporal gauge is trivial: Ux+t,i = U†

x,i0Ux,i.
In order to verify that our simulation works correctly we have to verify that

energy is conserved. The Hamiltonian corresponds to the total energy of the
system. It is straightforward to verify that in the continuum limit the following
expression reduces to (2.1.6)

HL =
2

a2
s a2

t g2 ∑
j

(
2− TrUx,j0

)
+

2

a4
s g2 ∑

j<k

(
2− TrUx,jk

)
. (3.1.13)

This allows us also to monitor the distribution of energy between electric and
magnetic fields. In equation (2.1.6) the first term is the electric contribution, and
the second term is the magnetic contribution.

Lattice momentum

In section 3.2 we will discuss gauge fixing on the lattice, which will be done in
momentum space. Therefore we will go through the two different ways used to
define momentum on the lattice. When we perform a Fourier transform from
the position space to momentum space, we find out that the spacing between
modes on the lattice in momentum space in the i-direction is 2π/Li, where Li is
the lattice length in the i-direction. Therefore momentum on the lattice is given
by the following expression

p =
2π

as

(
mx
nx

,
my

ny
,

mz
nz

)
, (3.1.14)
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where mi = 0, . . . ni − 1 labels the lattice site in momentum space and ni stands
for the number of lattice sites in the i-direction.

On the other hand, we can study the dispersion relation on the lattice, as
done for scalar field in section 4.1.2 (where we will go through this argument in
more detail). It turns out that the the dispersion relation closely resembles that
of a massive particle, but the quantity which replaces the momentum is

p̃ =
2
as

(
sin
( pxas

2

)
, sin

( pyas

2

)
, sin

( pzas
2

))
, (3.1.15)

where pi are components of the lattice momentum defined by the equation
(3.1.14). This will be referred to as the effective lattice momentum. With this
definition the free dispersion relation ω2 = p̃2 holds also for scalar fields on the
lattice We also note that (3.1.15) approaches (3.1.14) when values of momentum
approach zero. We are not concerned by the deviations which occur in the
ultraviolet, as we are interested in what happens in regime of relatively low
momentum, where our theory is still accurate.

3.2 Gauge fixing on the lattice

Gauge fixing in the non-abelian case on the lattice has many similarities to the
abelian continuum case, and therefore one should verify that one understands
the contents of section 2.2 before proceeding to the non-abelian lattice case.
Once again we will follow very closely the reference [42].

In the continuum theory, we wanted to minimize the integral in the expres-
sion (2.2.3). Its counterpart on the lattice will be the functional

F (U, G) =
1

2Nc

1
4V ∑

x,i
Tr
(

UG
x,i + UG†

x,i

)
, (3.2.1)

where UG
x,i = G (x)Ux,iG

† (x + µ) and G (x) = exp
(
iβa (x) ta). The link matri-

ces Ux,i are the original links, which we want to transform to Coulomb gauge.
We will minimize F by using an iterative procedure.

Now let us calculate the gradient of F with respect to the parameter β:

δF
δβa (z)

∣∣∣∣∣
β=0

= − 1
N

1
4V ∑

µ

ImTr
(

taG (z)Uz,µG (z + µ)† − taG (z− µ)Uz−µ,µG (z)†
)

.

(3.2.2)
From equation (3.2.2) we see that the gradient behaves as it should - if our links
are already in Coulomb gauge, the gradient at G = 1 is zero, and the right hand
side corresponds to the Coulomb gauge condition.
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Writing equation (3.2.2) in matrix form (using the Fierz identity) gives

δF
δβ (z)

∣∣∣∣∣
β=0

=
1

16iNV ∑
i

(
∆−i

(
UG†

z,i − h.c.− Tr
))

, (3.2.3)

where
∆−i

(
Ux,j

)
= Ux−i,j −Ux,j. (3.2.4)

h.c. stands for the hermitean conjugate, and the trace is taken over the matrix
and its hermitean conjugate. From this we see that the gradient at G = 1 is

1
16iNV ∑

i

(
∆−i

(
U†

z,i − h.c.− Tr
))

. (3.2.5)

Analogously to the continuum theory we choose the gauge transformation
matrix as

G (x) = exp

(
α

2

(
∑

i

(
∆−i

(
Ux,i − h.c.− trace

))))
, (3.2.6)

where α is the step length, which we want to choose as big as possible while
keeping the algorithm stable. The division by two is just a convention. Now we
are ready to perform the gauge transformation to the link matrices, after which
we can repeat the previous step.

There is also another way to understand this algorithm. We start the al-
gorithm with initial condition G = 1 and calculate the gradient and the first
gauge transformation G1 (x). Then we calculate G2 (x) as the gradient of F at
G1 (x) and so on and so forth. We see that this algorithm is a steepest descent
algorithm. We always take steps of a fixed length into the direction of the
negative gradient, where the functional decreases the fastest.

The choice in the equation (3.2.6) corresponds to choosing χ = α∇ · A in
section 2.2. However, as before, this algorithm will suffer from critical slowing
down just as the one presented in the continuum case. Once again we want
to apply Fourier acceleration to this algorithm. This can be done easily, using
exactly the same procedure in momentum space. The gauge transformation
matrix becomes

G (x) = exp

(
F̂−1 α

2
p̃2

maxa2
s

p̃2a2
s

F̂

(
∑

i
∆−i

(
Ux,i − h.c.− trace

)))
, (3.2.7)

where F̂ stands for FFT, which in the lattice case is implemented using FFTW
[46], and p̃2a2

s is the lattice momentum squared multiplied by spatial lattice
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spacing squared in order to make it dimensionless. It is given by the square of
the effective lattice momentum (3.1.15)

p̃2a2
s = 4 ∑

i
sin2

( pias
2

)
. (3.2.8)

In (3.2.7) the parameter α has an optimal value, at least in abelian theory where
the choice α = 1/k2

max led to convergence with just one step. In non-abelian
theory this is more complicated, as we are dealing with eigenvalues of ∂ · D
instead of ∂2. On the lattice this gets even more complicated, and thus we
choose α by trying different values and seeing which gives the best convergence.
We found that values α = 0.07− 0.08 give the fastest convergence on our 2562

lattice .
However the convergence of the gauge functional (3.2.1) to its minimum

is rather hard to monitor, as we do not know the minimum value a priori.
Therefore it is easier to monitor the divergence of the gluon field instead. The
divergence on the lattice is given by

∆ = ∑
i

(
Ux−i,i −Ux,i − h.c.− trace

)
, (3.2.9)

where h.c. stands for hermitean conjugate, and with trace we mean
1

Nc
Tr with

the trace taken over everything what is to the left of it. Physically ∆ is the
divergence of the gluon field up to a constant. This can be seen as the expression
Ux,i − h.c.− trace gives the lattice gluon field in the matrix form (this can be
seen from the equation (3.1.6). As it is easier to monitor the convergence of the
divergence squared to zero as the divergence itself (as it can be negative), we
define

θ (x) = Tr
(

∆ (x)∆† (x)
)

. (3.2.10)

And then we define
θ =

1
VNc

∑
x

θ (x) , (3.2.11)

which will be the quantity whose convergence we monitor in our program.
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4
Initial conditions and observables

4.1 Gauge fixed observables

4.1.1 Occupation number and gluon distribution function

Before we start discussing the initial conditions, we will go trough the relevant
concepts in the abelian theory in order to understand their counterparts in the
non-abelian theory. We should also keep in mind that most of these results
cannot be derived from first principles in the non-abelian theory (where for
example the particle number is not strictly speaking a well defined concept),
but when the field amplitudes are sufficiently small they turn out to be fairly
accurate and useful.

The gluon occupation number is given by the expression

dN

d3kd3x
= n (k, x) , (4.1.1)

and the gluon distribution function is given by

dN

d3k
= f (k) . (4.1.2)

So the total number of particles is given by

N =
∫

d3k f (k) , (4.1.3)

and there is a relation between the gluon distribution function and occupation
number

f (k) =
∫

d3xn (k, x) . (4.1.4)
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If a gluon with momentum k has energy of ω (k) , the total energy of the system
is

E =
∫

d3k f (k)ω (k) . (4.1.5)

We will discuss the energy of a gluon with momentum k in more detail in
section 4.1.2. By using this, and the expression (2.1.6) we can establish a relation
between the gluon distribution function (and occupation number) and the fields
in abelian theory.

First consider the total energy of our system, which is given by

E =
1
2

∫
d3x

(
E2 + B2

)
. (4.1.6)

In k-space in the Coulomb gauge (which eliminates k · A) we can write this as

E =
1
2

1

(2π)3

∫
d3k

(
|E (k) |2 + k2|AC (k) |2

)
, (4.1.7)

where the subscript C stands for Coulomb gauge. This intermediate step is
also covered in detail in the appendix A.2. There we will go through the use of
Parseval theorem, which we will use repeatedly in this section.

Now inspect energy of a single mode lying between k and k + dk, equating
the expressions above and assuming ω (k) = |k| we get

f (k) =
1
2

1

(2π)3

(
|E (k) |2

|k| + |k||AC (k) |2
)

. (4.1.8)

Assuming roughly equal distribution of energy between electric and magnetic
modes, i.e.

∣∣∣E2
∣∣∣ = ∣∣∣B2

∣∣∣ = k2 |AC|
2 one can also derive other equivalent expres-

sions for the particle distribution

f (k) =
1

(2π)3 |k||AC (k) |2 =
1

(2π)3
|E (k) |2

|k| =
1

(2π)3

√
|E (k) |2|AC (k) |2.

(4.1.9)
All of the expressions above are equivalent in the time averaged abelian theory.
The difference between the occupation number and the gluon distribution
function is a factor of V, which appears from integration of the equation (4.1.4).

When we refer to the occupation number distribution in this work, we will
use the following expressions

nAE (t, k) =
1

(2π)3 V

√
〈|E (t, k) |2〉〈|AC (t, k) |2〉. (4.1.10)
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nA (t, k) =
1

(2π)3 V
|k||AC (t, k) |2 (4.1.11)

nE (t, k) =
1

(2π)3 V

|E (t, k) |2

|k| . (4.1.12)

4.1.2 Dispersion relation

Dispersion relation in QED

In chapter 3 we saw how we can solve the time evolution of the gauge fields
and the electric fields on the lattice. Now we would like to establish a link
between the particle interpretation of our theory (which we had above) and the
field interpretation which will be used in the calculations. We will start looking
for this connection from the equations of motion of QED

∂µFµν = 0 = ∂2Aν − ∂ν∂ · A = 0. (4.1.13)

In Coulomb gauge, using the definition of the electric field, we get

−∇2Aν
C − ∂tE

ν = 0. (4.1.14)

Taking the Fourier transform this becomes

k2Aν
C (k) + iωEν (k) = 0. (4.1.15)

Then we solve for ω, take the absolute value squared of both sides and sum
over Lorentz indices. We get

ω2 (k) = k4 |AC (k) |2

|E (k) |2
. (4.1.16)

Using equation (4.1.16), the fact that in Coulomb gauge |BC| = k2 |AC (k)|2
and assuming equal distribution of energy between electric and magnetic field
modes we find the free dispersion relation ω2 (k) = k2. Using this we get

ω2 (k) =
|E (k) |2

|AC (k) |2
. (4.1.17)

For the non-abelian theory we take (4.1.17) as the definition of ω2 (k) and
use it to study modifications to the free dispersion relation ω (k) = |k| arising
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from the interactions - in particular mass. The thermal field theory predicts
that gluons can obtain effective mass due to the interactions, and the equation
(4.1.17) allows us to see if the Yang-Mills theory predicts similar behaviour.
If we use this along with (4.1.9), we can also calculate the total energy of the
system using (4.1.5). Comparing the result with the one we get using (3.1.13)
we can check how close the results given by these two alternative approaches
are from one another. If these two are in agreement, we can safely interpret our
results using the expressions which are derived in the abelian theory. We can
also calculate a prediction for the total energy using the abelian theory (which
assumes ω ≈ |k|) when we specify the gluon distribution function. We expect
that this should be in good agreement with the results obtained using (3.1.13)
and (4.1.5) when the field amplitudes are small. As the field amplitudes grow
bigger we expect bigger deviation due to the gluon Debye mass.

Dispersion relation on the lattice

Before we go deeper into the gluon dispersion relation in the lattice gauge
theory, we will go through an illustrating example in the scalar field theory.
Consider a massive scalar field given by the Lagrangian density

L =
1
2

(
∂µφ

)2
− 1

2
m2φ2. (4.1.18)

The equation of motion is (
�+ m2

)
φ (x) = 0. (4.1.19)

We can solve this using an ansatz

φ (x) = A exp (ip · x). (4.1.20)

By direct substitution we find

ω2 = p2 + m2, (4.1.21)

which is exactly what we wanted to find. However, in discretised theory
the dispersion relation is not the same as in continuum theory. Now let us
perform spatial discretisation while keeping time as a continuous variable. For
simplicity we discretise the space into a cubic lattice (a similar argument would
carry over to any rectangular lattice) of N3 points with lattice spacing as. As a
result our spatial coordinates are restricted to the set x =

(
mxas, myas, mzas

)
,

where mi = 0, . . . N − 1. By imposing periodic boundary conditions the allowed
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wavevectors are k =
2π

Nas

(
mx, my, mz

)
. We discretise the derivatives as (no

summation over i here)

∂2
i φ (x) =

φ
(
x + as î

)
+ φ

(
x− a− sî

)
− 2φ (x)

a2
s

. (4.1.22)

The discretised equation of motion becomes

∂2
t φ (x)−∇2

Lφ (x) + m2φ (x) = 0, (4.1.23)

where ∇2
L is the lattice laplacian discretised as in equation (4.1.22). By plugging

in the ansatz (4.1.20) and simplifying we get

ω2 − 4

a2
s

(
sin2

(
kxas

2

)
+ sin2

(kyas

2

)
+ sin2

(
kzas

2

))
−m2 = 0. (4.1.24)

This equation closely resembles the dispersion relation of a relativistic massive
particle

ω2 (p) = p2 + m2. (4.1.25)

Comparing the equations (4.1.24) and (4.1.25) we see that it makes sense to
define the effective lattice momentum, which we already defined in (3.1.15), as

p̃2 =
4

a2
s

(
sin2

( pxas
2

)
+ sin2

( pyas

2

)
+ sin2

( pzas
2

))
, (4.1.26)

where pi =
2π

Nas
mi, mi = 0 . . . N − 1.

From the equation (4.1.24) we see that the lattice dispersion relation is indeed
different from the continuum dispersion relation (it has the same continuum
limit though). And there is also a fundamental difference in the way it treats
different momentum modes with same magnitude: ω may be different for
two modes, for which |p1| = |p2|, which does not happen in the continuum.
One should also note that the dispersion relation on the lattice depends on the
chosen discretisation scheme. For dispersion relations in different discretisation
schemes (for scalar fields) see for instance [47].

The dispersion relation is actually gauge dependent. In QED in Coulomb
gauge one can show (as done in section 4.1.2) that the dispersion relation is
given by the expression

ω2 (k) =
〈|E (k) |2〉
〈|AC (k) |2〉

. (4.1.27)
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Debye mass

The plasmon mass, which in this case is equal to the Debye mass, can be
obtained using this relation when k→ 0 as

mpl = ω (k = 0) . (4.1.28)

We should keep in mind that different modes have different relaxation times,
and for the zero mode the relaxation time turns out to be infinite. Therefore we
have to extrapolate the value of the plasmon mass from our results.

The plasmon mass can also be calculated from thermal field theory. This
will serve as an important cross-check for our result. The expression for the
Debye mass is [38]

m2
D = 4g2Nc

∫ d3k

(2π)3
n (k)
|k| . (4.1.29)

We can evaluate this expression on the lattice by discretising the integral with

the substitution
∫

d3k→ ∑k
(2π)3

V
. We get

m2
D = 4g2Nc ∑

k

n (k)
|k|V . (4.1.30)

Equation (4.1.29) also gives us an important link between the occupation
numbers and gluon Debye mass. The Debye mass is a time dependent quantity,
but its time dependence is governed by the time-evolution of the occupation
number distribution.

Coulomb gauge occupation number

In the Coulomb gauge we can make an order of magnitude estimate for the
occupation number as follows. We get the total number of particles by using
equation (4.1.3) along with equation (4.1.9). The estimate is finally obtained by
dividing the particle number by the volume and size of the phase space, which
is roughly ∆2 in our case. Thus we define (in two dimensions)

nN
0 =

N

L2
(2π)2

∆2 . (4.1.31)

Physically this parameter tells us the average occupation number of our system.
If nN

0 � 1 we are in the regime in which the classical statistical approximation
is valid, and thus our results are applicable to physically relevant scenarios.
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4.2 Gauge invariant observables

4.2.1 Typical momentum squared

We want to study particle number distributions with typical momentum scale ∆,
which will later appear in our initial condition. However, as the gluon fields are
not gauge invariant, this is not a unique way to define our typical momentum
scale in the problem. One convenient way to define the typical momentum scale
gauge invariantly on the lattice is [38]:

〈k2〉KM =

∫
Tr (D× B)2 d3x

1
2
∫

Tr
(

E2 + B2
)

d3x
. (4.2.1)

The equation (4.2.1) can be justified from classical electrodynamics. Consider
the expression

〈k2〉 =
∫
(∇× B)2 d3x

1
2
∫ (

B2 + E2
)

d3x
, (4.2.2)

which corresponds to equation (4.2.1) in the classical electrodynamics. Decom-
posing B and E in Fourier-modes and assuming no angular dependence we get

〈k2〉 =
∫

k4|B (k) |2dk
1
2
∫

k2
(
|B (k) |2 + |E (k) |2

)
dk

. (4.2.3)

Now parametrically |B (k) |2 ∼ |E (k) |2 ∼ k f (k) , so this can be seen as a
parametric order of magnitude estimate for the expectation value of momentum
squared

〈k2〉 ≈ 〈k
5〉
〈k3〉

. (4.2.4)

We will also use a slightly modified version of the equation (4.2.1) [48].

〈p2〉BR =

∫
Tr (D× B)2 d3x∫

Tr
(

B2
)

d3x
. (4.2.5)

Equation (4.2.5) is equivalent to (4.2.1) when the electric and magnetic energies
are approximately equal. Using equation (4.2.5) equation (4.2.3) becomes

〈p2〉 =
∫

k4|B (k) |2dk∫
k2|B (k) |2dk

. (4.2.6)
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Equation (4.2.5) is better suited for calculating average value for momentum
squared from our initial conditions, which contain purely magnetic energy.
Equations (4.2.1) and (4.2.5) are equal, when the total energy of the system
is equally divided between the electric and magnetic fields. The system also
tends to evolve into a state, in which the electric and magnetic energies are
approximately equal due to the equipartition of energy in the classical theory.
However, as our initial conditions contain purely magnetic energy, the numer-
ator in equation (4.2.1) is two times larger at t = 0 than at the time when the
energy of the system is equally distributed between electric and magnetic fields.
This means that we need to adjust normalization in equation (4.2.1). Thus we
take (4.2.5) as the definition of momentum squared at t = 0.

The lattice implementation of these gauge invariant momentum estimates is
discussed in detail in appendix D.

4.2.2 Occupation number

We would like to find a sufficient order of magnitude estimate for the occupation
number of our system. We can estimate the particle number by dividing the
total energy of our system by the typical momentum of a single particle. From
this we get the occupation number by dividing by the volume in position space,
and by the size of the phase space, which in our case will be roughly ∆2 in two
dimensions. Thus we define

nE
0 =

E

L2
√
〈k2〉

KM

(2π)2

∆2 (4.2.7)

This quantity has a similar interpretation as nN
0 defined in (4.1.31), and their

values should be in rough agreement. Thus they can be used as a cross-check.
Later we will study both of these quantities numerically and analytically.

4.3 Initial conditions

For initial conditions we choose a scenario similar to [32]. We set the electric
fields to zero (this is by far the easiest way to satisfy the Gauss constraint). We
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sample the gauge fields from the following distribution

〈Aa
i (p) A†b

j (q)〉 = 2
3

2π(
N2

c − 1
)
(D− 1)

δijδ
ab (2π)3 δ (p− q)

V
C

(2π)
3/2 ∆2∆z

exp

(
− p2

t

2∆2 −
p2

z

2∆2
z

)
(4.3.1)

Here ∆ is the transverse momentum scale, which can be associated to the
saturation scale Qs [49], and ∆z is the longitudinal momentum scale. Typically
we choose s.t. ∆� ∆z, and set ∆z to such a small value, that the longitudinal
distribution essentially resembles a delta function distribution. By Nc we denote
the number of colors and D is the number of space-time dimensions. In our
code D will always be equal to four, and in analytical calculations D will be
equal to four when we calculate estimates in three spatial dimensions, and
three, when we are considering estimates in two spatial dimensions. Instead of
D, we have a factor of D− 1 in the denominator in (4.3.1). This is because we
are working in temporal gauge, in which the temporal component of the gluon
field does not contribute.

The dimensionful parameters appearing in equation (4.3.1) are C and ∆.
Obviously [∆] = GeV as it represents the momentum scale. We deduce the
dimensions of C by starting from the fact that action has to be dimensionless,
thus

∫
A4 (x)d4x is dimensionless. Thus [A (x)] = GeV. In momentum space

[A (p)] = GeV−2 as it is obtained by integrating over three spatial dimensions
when Fourier transformed. Therefore A2 (p) has dimensions of 1/GeV4. In order
to achieve this C must have dimensions of 1/GeV.

In two dimensions equation (4.3.1) becomes

〈Aa
i (p) A†b

j (q)〉 = 2
3

Lz(
N2

c − 1
)
(D− 1)

δijδ
ab (2π)3 δ (p− q)

V
C

2π∆2

exp

(
−p2

t

2∆2

)
δ (pz) (2π)

Lz
,

where Lz is the length of our system in the z-direction. Thus the expectation
value of the field squared in three dimensions is

〈|A (p, t = 0) |2〉 = 2C

3 (2π)
1/2 ∆2∆z

exp

(
− pt

2

2∆2 −
p2

z

2∆2
z

)
≈ 1

(2π)3
f (p)
|p| . (4.3.2)
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As we are interested in studying a two-dimensional system, we take the limit

∆z → 0, and using the identity
1

a
√

π
exp

(
−x2/a2

)
−−→
a→0

δ (x) equation (4.3.2)

becomes

〈|A (p, t = 0) |2〉 = Lz
(2π)

2
3

C

∆2 exp

(
− pt

2

2∆2

)
(2π) δ (pz)

Lz
. (4.3.3)

As some of our observables are meaningful only in the Coulomb gauge, we
will next calculate the expectation value of the gluon field squared in that gauge.
In the Coulomb gauge the projection of the gluon field on the momentum vector
is always zero. Thus, we get the gluon field (using an abelian approximation)
in the Coulomb gauge as

Aa
C,i (p) =

(
δij −

pi pj

p2

)
Aa

j (p) . (4.3.4)

This corresponds to choosing χ = pj Aj/p2 analogously to equation (2.2.12). In
non-abelian case there is no easy way to do similar procedure analytically. Using
this the expectation value of the gluon field squared in the Coulomb gauge
becomes

〈
∣∣Aa

C,i (p)
∣∣〉 = 〈Aa

i (p) A†a
i (p)〉 − pi ph

p2 〈A
a
i (p) A†a

h (p)〉. (4.3.5)

Using the initial condition (4.3.1) and simplifying we get

〈|AC (p)|2〉 = D− 2
D− 1

〈|A (p)|2〉, (4.3.6)

Thus the expected value of the gluon field squared in the Coulomb gauge is
two thirds of that we get using the initial condition.

Meaningful lattice quantities

In lattice field theory no dimensionful quantity is meaningful per se, for example
the numerical value of momentum scale does not tell us anything, unless we
compare it to some other quantity.

Next we will derive a quantity which gives us an estimate how large the
occupation numbers we have actually are. We start from Fermi-Dirac statistics.
For massless fermions the distribution for energy (or momentum) for single
particle states is

n (ki) =
1

exp
(

ki − µ

T

)
+ 1

. (4.3.7)
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If we approximate this with continuous distribution at zero temperature the
distribution becomes a step function distribution, and thus the total particle
number is

N =
∫ ddkddx

(2π)d θ (k− µ) . (4.3.8)

From this expression we can identify the occupation number distribution as
n (k) = 1/(2π)3θ (k− µ). Thus for fermions there is a single fermion in each state
in our system when n (k) = 1/(2π)3. We can use this fact to approximate the
occupation number in our (bosonic) system.

We start from expression (4.1.11) in four space-time dimensions. Plugging
in the gluon field squared in the Coulomb gauge yields the expression

nA (k) =
1

(2π)3
4
9

C∆

3
√

2π∆2∆zV
|k|
∆

exp

(
− k2

t

2∆2 −
k2

z

2∆2
z

)
. (4.3.9)

Comparing this with (4.3.8) inspires us to define

n3d
0 =

4
9

C∆√
2π∆2∆zV

. (4.3.10)

This parameter tells us how large the occupation number for the mode with high-
est occupancy is , as for the highest occupancy mode |k|/∆ exp

(
−k2

t/2∆2 − k2
z/2∆2

z

)
∼

1. We also see that n3d
0 is dimensionless and independent of the volume of our

system. We can define the corresponding quantity in two dimensional case by
taking the limit ∆z → 0 in expression (4.3.9). We get

nA (k) =
1

(2π)4
4
9

C∆

3∆2V2d

|k|
∆

exp

(
− k2

t

2∆2

)
(2π) δ (kz)

Lz
, (4.3.11)

where V2d is the two dimensional volume defined as V2d = LxLy. Using this we

define the two dimensional counterpart of n3d
0 as

n2d
0 =

1

(2π)2
4
9

C
V2d∆

. (4.3.12)

Now we can write (4.3.11) using n2d
0

nA (k) =
n2d

0

12π2
|k|
∆

exp

(
− k2

t

2∆2

)
(2π) δ (kz)

Lz
(4.3.13)
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4.3.1 Related observables

We will now approximate analytically the relevant observables presented in
sections 4.1 and 4.2 at t = 0. This forces us to take (4.1.11) as the definition
of occupation number distribution, as our initial conditions contain purely
magnetic energy. This will also change the normalisation of nA in this section.
Because the equivalence of the different definitions of the occupation number
is based on the approximation that the energy stored in electric and magnetic
fields is approximately equal, we will have to divide the initial occupation
number distribution (4.3.13) by two while performing these calculations. This
difference in normalisation is analogous to the difference between the definitions
of 〈k2〉KM and 〈p2〉BR, appearing in equations (4.2.1) and (4.2.5). There (4.2.5)
is more suitable for our initial condition and turns out to yield consistent
results with (4.2.1) at later times. We will present some predictions for the three
dimensional case, but mostly we will focus on the two dimensional case, which
we will later study numerically.

We get the total particle number of our system by integrating equation (4.1.1).
Plugging in the distribution function in Coulomb gauge and doing the relevant
integrals in cylindrical coordinates gives

N =

C
(

∆2 cos−1( ∆z
∆ )√

(∆−∆z)(∆+∆z)
+ ∆z

)
9
√

2π5/2 . (4.3.14)

In the limit ∆z → 0 we get

N∆z=0 =
C∆

18
√

2π3/2 . (4.3.15)

Using the two dimensional occupancy parameter n2d
0 this becomes

N∆z=0 =
1
2

√
π

2
∆2n2d

0 V2d. (4.3.16)

Similarly we can calculate the total energy of the system in these cases. The
total energy is given by the equation (4.1.6). We approximate the dispersion
relation with the free massless dispersion relation ω = |k|. Once again we do
the integrals in cylidrical coordinates. We get

E =
C
(

2∆2 + ∆2
z

)
18π2 . (4.3.17)
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The two dimensional formula for the total energy in the limit ∆z → 0 using the
two dimensional occupancy parameter is

E∆z=0 = ∆3n2d
0 V2d. (4.3.18)

We can also calculate the average momentum squared as in (4.2.6). We make
use of the fact that in the Coulomb gauge |B|2 = |k|2|A|2. We get

〈k2〉BR = −2∆2 +
12∆4

2∆2 + ∆2
z
+ 3∆2

z. (4.3.19)

Thus the prediction for the averaged momentum squared using the gauge
invariant estimator is 〈k2〉BR = 4∆2.

If we plug in the initial occupation number distribution (4.3.11) we can easily
calculate the integral in the equation (4.1.29). The initial value of the gluon
Debye mass is

m2
D =

Cg2Nc

36π5V
. (4.3.20)

Writing this in two dimensions using the two dimensional occupancy parameter
gives

m2
D =

g2n2d
0 Nc∆

4π3Lz
. (4.3.21)

Due to the time evolution of the gluon distribution function this value is not
constant in time, but it still serves as an order of magnitude estimate for the
Debye mass. At first sight the 1/Lz dependence of the Debye mass appearing in
equation (4.3.21) seems somewhat bizarre. This is caused by the fact that we
parametrized the Debye mass with n2d

0 , which includes only two dimensional
volume as we needed 1/Lz for the normalisation of δ (pz) appearing in equation
(4.3.3). In three dimensions, using n3d

0 , no such problems arise. Solving n2d
0 from

equation (4.3.10) for C/V and plugging in (4.3.20) yields m2
D ∼ n3d

0 ∆∆z. It should
be noted that m2

D does not vanish as ∆z → 0 as n3d
0 is proportional to 1/∆z. Thus

m2
D behaves as it should with three dimensional parametrisation. Finally one

should note, that in two dimensions we run our code with 256× 256× 1 lattice.
Thus Lz is regularised with lattice spacing in numerical calculations such that
Lz = as.

We expect that the results derived in this section hold when we are “close”
to the abelian theory, i.e. when the field amplitudes are small. This is mainly
controlled by the parameter C in (4.3.2), or equivalently the more physically
meaningful parameter n2d

0 . We can also verify this from equation (4.3.14) or
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(4.3.16). However, as we increase the numerical value of n2d
0 we depart further

from the “abelian regime” of our theory, and our results will start to differ
from the ones we obtained by analytical approximations in this section. Even in
this regime the abelian results will still serve as important order of magnitude
estimates.

4.3.2 Practical implementation

In practice we implement the initial condition (4.3.2) as follows. We get the
gauge fields in the position space by doing the inverse Fourier transform on the
field in momentum space

A (x, t = 0) =
1

(2π)3

∫
d3pA (p, t = 0) exp (ip · x), (4.3.22)

where A (p, t = 0) is given by (4.3.2). This is then discretised by turning the
integral into a sum over all possible momenta

∫
p d3p→ ∑p a3

p, where ap is the
lattice spacing in momentum space. In momentum space the spacing between

different momentum modes is
(2π)

L
, where L is the lattice length in the given

direction. Thus a3
p =

(2π)3

V
, where V is the lattice volume. Now we substitute

the expression (4.3.2) into (4.3.22) and replace the sum over momentum modes
by sum over lattice sites. We get

Ak =
1
V ∑

m
Am exp

(
2πi

m
n
· k
)

, (4.3.23)

where we have also made substitution x = as

(
kx, ky, kz

)
, and adopted the

multi-index notation for the momentum modes
m
n

=

(
mx
nx

,
my

ny
,

mz
nz

)
. This is

simply the discrete inverse Fourier transform of A (p) normalized with lattice
volume. Fourier transforms are covered in more detail in the appendix A.

We use the FFTW library [46] to perform the Fourier transforms. When
we have calculated the gluon fields in position space, it is straightforward to
calculate the links using the definition of the link matrix (3.1.1).

As we are interested in two dimensional situation, we set the lattice length
in the longitudinal direction to 1 instead of performing dimensional reduction
to the theory. In practise this means that we have only zero momentum modes
available in the longitudinal direction. As a consequence these modes are global
in position space, so there will be no z-dependence there either.
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We implement the gluon distribution as follows. First we set all fields
with same momenta to a constant value in color and direction, and we assign
the same value in the real and imaginary part. This constant value is chosen
such that summing over colors and directions we recover the expectation value
appearing in (4.3.3). Then each component of the field (i.e. color, direction and
real and imaginary part) is multiplied by a gaussian random number x. These
random numbers are chosen such that 〈x〉 = 0, so they are centered around
zero, but 〈x2〉 = 1.

As noted in appendix A, a Fourier transform of real data possesses her-
mitean symmetry. This means that roughly half of the data is redundant, some
frequencies can be obtained as complex conjugates of others as explained in A.
We force our complex data to obey this symmetry, by checking explicitly for
each complex frequency whether if has a conjugate frequency, and if it does, we
set the values of our fields accordingly. Some frequencies, like zero frequency,
are real and thus they are their own complex conjugates. Real frequencies can
be treated with the same procedure, as they are their own conjugate frequencies.
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5
Results

5.1 Practicalities

All results presented in this chapter have been obtained using a 2562 lattice
with only one point in the longitudinal direction. For parameters we used
as = 1, g = 1, as∆ = 0.3 and at = 0.01as. The gauge fixing parameters used were
α = 0.07 and the criterion for stopping the iterative gauge fixing procedure was
θ < 10−10. The values of 〈|A (k) |2〉 and 〈|E (k) |2〉 were recorded in Coulomb
gauge at dimensionless times t∆ = 3, 6, 9 . . . , 30. In practice this was done by
averaging over all angles and 10 runs (i.e. averaged over 10 initial conditions).
The range of available lattice momenta squared between 0 and k̃

2
max were

divided in equally large bins in k2 and the amount of bins used in all runs was
10000. The values of 〈|A (k) |2〉 and 〈|E (k) |2〉 were then chosen to represent
average k2 in their bins. From these observables we can then reconstruct
the gluon distribution function using equation (4.1.9), the occupation number
distribution using equation (4.1.10) and the dispersion relation using (4.1.17).
These can then be used to calculate the total energy of the system, which can
be compared to the one we get from plaquettes. When we calculated the total
energy of the system, we used the nAE definition of the occupation number
(4.1.10). At these same instants of time we also calculated the expectation value
of the average momentum squared using (4.2.1). This can then be compared to
the value we get using the abelian approximation (4.3.19).
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5.2 Dispersion relation

We start by studying the gluon dispersion relation given by equation (4.1.27). As
stated in section 5.1, we fixed Coulomb gauge every thousandth timestep, and
recorded the values of the modulus of the color electric fields and color magnetic
fields. From these we are able to reconstruct the approximate dispersion relation
for gluons using equation (4.1.27).

In figure 5.1, we have the time evolution of a typical dispersion relation
in dimensionless time. We observe that at early times the dispersion relation
is oscillating, but at late times we observe a linear dispersion relation at low
momenta. These oscillations arise, because the solutions of the non-interacting
theory are plane waves, and thus on a very schematic level the solutions are
of the form A ∼ cos (|k| t) and thus E ∼ sin (|k| t). Therefore ω ∼ tan (|k| t).
From this we can deduce that dispersion relation should have peaks and dips
in k whose distance from one another is proportional to 1/t. From the figure 5.1
we observe that at t∆ = 6 there are roughly 1.5 oscillations between k2/∆2 = 40
and k2/∆2 = 50. For t∆ = 12 the corresponding value is 3, for t∆ = 18 4.5
and for t∆ = 24 we find ∼ 6 oscillations. Thus we observe that the period of
oscillations in k doubles as we double the amount of time elapsed. At t∆ = 30.
we can not observe these oscillations anymore. The reason for this is that the
non-abelian effects cause the decoherence by introducing a coupling between
different modes.

The equilibration speed does not depend only on time, but also on the value
of the parameter n2d

0 . This is quite natural, as n2d
0 gives the amplitude of the

gluon field, and therefore the non-abelian interactions are stronger at larger n2d
0 ,

which leads to shorter decoherence time.

Figure 5.2 shows a typical late time dispersion relation. As the oscillations
have already decohered at these times, we can meaningfully extract the Debye
screening mass by doing a linear fit in the low momentum regime. In the figure
5.2, we chose the momentum regime to be k̃2/∆2 ≤ 1/2 (as in all other fits done
in this work).

In figure 5.3, we have plotted the dispersion relations at different times. This
time we used a logarithmic scale to enhance the low momentum regime. We
also performed linear fits to the data in the same momentum regime as before,
and we see that the value of the Debye screening mass tends to decrease as we
go to higher dimensionless times. The fact that the value of the Debye mass
seems to be higher for t∆ = 12 than for t∆ = 18 in figure 5.3 is likely caused by
low statistics.
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Figure 5.1: Typical time-evolution of the dispersion relation. The value of the
parameter n2d

0 used was 0.028. The time evolution for other values of n2d
0 is

qualitatively similar, but the speed of decoherence varies depending on the
value of n2d

0 . Systems with higher value of n2d
0 decohere faster than the ones

with a lower value.
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Figure 5.2: Typical dispersion relation at late times. The value obtained for the
Debye mass from the fit was m2

D/∆2 = 0.0338597. The value used for parameter
n2d

0 was 0.028.

5.3 Average momentum squared

We also studied the value of the gauge invariant momentum scale, given by
the equation (4.2.1). The time evolution of the results for different values of
parameter n2d

0 is shown in figure 5.4, along with the analytical prediction given
by equation (4.3.19), which now simplifies to 〈k2〉 = 4∆2. We find that this
prediction is in very good agreement with our results.

We can also see some non-abelian effects in figure 5.4. The values of k2 are
ordered in n2d

0 , i.e. when we increase the value of the parameter n2d
0 the average

momentum squared increases. This behaviour is not predicted by the abelian
theory.

Interestingly, we cannot observe any time evolution for the values of the
average momentum squared in the figure 5.4. We would have expected the
values of the momentum scale to increase, as it has been shown that there is an
UV-cascade in Yang-Mills theory ([38] , fig 1.). Briefly, this (UV-cascade) means
that particles occupy states of higher and higher momentum due to the the
infinite phase space available in the ultraviolet. The fact that we can not observe
this might be caused by low statistics, or the fact that we have not evolved our
system up to large enough dimensionless times. Yet another difference between
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Figure 5.3: Four different dispersion relations from the same simulation at
different dimensionless times. We have also performed the fits in the region
in which k2/∆2 ≤ 1/2. The value used for parameter n2d

0 in this simulation was
0.028.

the calculation of reference [38] and ours is that we are working with a two
dimensional theory, which may affect this kind of behaviour.

5.4 Occupation number

We start studying the time-evolution of the occupation number distribution by
performing a cross-check with the analytical estimate at t = 0 and our initial
condition used in our lattice calculations. The result is shown in figure 5.5.
We find that the analytical prediction and the lattice occupancy are in perfect
agreement as they should be. We have also included the same distribution at
t∆ = 30 in the figure 5.5. We observe that the occupancy in the low momentum
modes increases dramatically as time goes on.

In figures 5.6 , 5.7 and 5.8 we can see the typical time evolution of the
occupation number by using the three different definitions ((4.1.10) , (4.1.11)
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Figure 5.4: Values of momentum scale squared (calculated using (4.2.1)) for
different values of ∆t and n2d

0 .

and (4.1.12)) of the occupation number. We have also drawn the analytical
estimate for the occupation number, which is given by equation (4.3.13). We
find that all of these definitions predict qualitatively similar time-evolution.
After initial equilibration all definitions show increased occupancy in the low
momentum regime, whereas in the high momentum regime the occupation
number distribution remains unchanged. We observe that particle number is
not conserved, as the particle number is essentially given by the integral of the
occupation number distribution. This is not a concern as we know that gluons
can both fuse and split, thus we take this as an indication of gluon splitting.
Figures 5.6, 5.7 and 5.8 can also be used to compare the equilibration times of
different definitions of the occupation numbers. We find that nA seems to be
the most unstable definition, and nAE seems to be the least unstable.
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Figure 5.5: Cross-check for the occupation number distribution at t = 0 using
equation (4.1.11) as the definition of the occupation number. We find that
the analytical and numerical occupation number distributions are in excellent
agreement as they should be. The t = 0 data has been divided by 2, because
in the derivation of the different occupation number distributions we assumed
that the electric and magnetic modes have approximately equal energy. This is
not true for our initial condition, which contains purely magnetic energy. The
solid line corresponds to an analytical calculation of the occupation number
distribution using equation (4.3.13).

Figure 5.9 shows the three definitions of the occupation number at time
t∆ = 3. We find that these definitions are very strongly inequivalent at early
times, but at late times, as shown in figure 5.10 they start to agree, except at
very low momenta. Figures 5.6, 5.7 and 5.8 tell us that the occupation number
distributions are oscillatory up to times t∆ = 18. The initial disagreement might
be due to presence of the Debye mass (which was assumed to be zero when we
derived the expressions for the occupation number), or due to the fact that the
system has not had enough time to equilibrate. At late times, as shown in the
figure 5.10 we see that the definitions do agree, except in the low momentum
regime. Here the inequivalence can be taken as an indication of the Debye mass
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Figure 5.6: Time-evolution of the occupation number distribution using equation
(4.1.11) as the definition of the occupation number. The solid line corresponds to
an analytical calculation of the occupation number distribution using equation
(4.3.13) divided by two to compensate the lack of elecric energy in the initial
condition.

as it concerns only the low momentum regime, where the effect of the Debye
mass should be visible.

The time evolution of the occupation number turns out to be interesting.
Initially the distribution is heavily peaked around k2/∆2 = 1. Figures 5.6, 5.7
and 5.8 show that for this configuration (in which n2d

0 = 0.028) it takes around
t∆ = 18 for the definitions of occupation number to agree, as the oscillations
are still present at t∆ = 12 in all figures, but they are gone by the time t∆ = 18.
We do not see very much time-evolution happening between t∆ = 18 and
t∆ = 30, which is quite interesting. This means that the value of the Debye
mass should stay approximately the same according to the thermal field theory
prescription, as can be seen from the equation (4.1.29). It should also be noted
that there should be an UV-cascade in Yang-Mills theory, as pointed out in
[38]. Our results in occupation number distributions can be compared to the
ones appearing in figure 4 in [38] and in figure 1 in [34]. Both references
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Figure 5.7: Time-evolution of the occupation number distribution using equation
(4.1.12) as the definition of the occupation number. The solid line corresponds to
an analytical calculation of the occupation number distribution using equation
(4.3.13) divided by two to compensate the lack of elecric energy in the initial
condition.

show increased occupancy in the high momentum regime, but different kind of
scaling behaviour. The fact that we do not see similar scaling could be caused
by the fact that we do not evolve our system so far in time and instead of full
three dimensional theory we are working on two dimensional case. In reference
[38] the time-evolution lasts up to thousand times longer than in our calculation.
This might indicate that the reason why we can not see similar behaviour is
because of insufficient time-evolution.

Figure 5.11 shows the occupation number distribution at t∆ = 30 with higher
occupancy. We see that now the shape of the occupation number distribution
is different from the shape we saw before. Before the occupation number
distribution reached a plateau-like shape in k2 roughly at k2/∆2 ∼ 1. Now
we observe that this kind of shape has disappeared completely and has been
replaced by a straigth line. The straight line corresponds to occupation number
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Figure 5.8: Time-evolution of the occupation number distribution using equation
(4.1.10) as the definition of the occupation number. The solid line corresponds to
an analytical calculation of the occupation number distribution using equation
(4.3.13) divided by two to compensate the lack of elecric energy in the initial
condition.

distribution in which n ∼ − log
(

k2
)

. We also notice that now the equilibration
time of the occupation number is considerably shorter than it was before,
because even the curve at t∆ = 6 in figure 5.11 does not exhibit oscillatory
behaviour. This kind of behaviour is natural. In abelian theory we have no
interactions, and thus the occupation number distribution is constant in time.
Thus the time-evolution of our system is driven by the non-abelian interactions,
which are naturally stronger at higher field amplitudes, which correspond to
higher occupation numbers. Therefore we expect that similar shape of the
occupation number distribution would be achieved in other simulations as well,
if we evolve them far enough in time.

Interestingly, the time-evolution shown in [34] is considerably different
from our time-evolution. Their initial occupation number distribution seems
to be qualitatively similar to ours, which can be seen from figure one. In their
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Figure 5.9: Occupation numbers calculated by using three different definitions.
We see that they have some oscillatory behaviour, and that they are not yet in
agreement even above the scale k2/∆2 > 1. We used C = 0.011 in this simulation.
The solid line corresponds to initial (abelian) occupation number distribution,
which we can calculate analytically using the definition of the occupation
number involving only the gluon field (i.e. nA) at t∆ = 0.

simulation the occupation number distribution eventually reaches a power
law shape, but in our simulation the occupation number distribution seems to
behave as n (k) ∼ − log

(
k2
)

. This remarkable difference might be caused by
differences in dimensionality, but further time-evolution in two dimensions is
needed to conclude that our initial condition does not evolve into a power law
shape in the low momentum (p2/∆2 < 1) regime at asymptotically large times.

In chapter 4 we derived two expressions ((4.1.31) and (4.2.7)) for the typical
occupation number of our system. The dependence of these expressions on the
parameter n2d

0 is shown in figure 5.12. We find that both of these definitions
show linear behaviour in n2d

0 as expected (because both energy and particle
number depended linearly on n2d

0 in our analytical calculations in section 4.3.1),
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Figure 5.10: The same plot as 5.9 but at t∆ = 30. Now the three definitions
of the occupation number are inequivalent below k2/∆2 ≤ 0.1, which could be
caused by the existence of non-zero Debye mass. Above that scale the three
definitions are in good agreement.

but the slope seems to be steeper in numerical calculations.

5.5 Energy conservation

In order to verify energy conservation we calculated the total energy of the
system using two methods. First using the lattice Hamiltonian (3.1.13) and
second using the dispersion relation and the equation (4.1.5) along with the
numerically extracted gluon distribution function. We find that these two
are in excellent agreement in the figure 5.13, which verifies that energy is
indeed conserved and both approaches make sense. Values obtained using
both methods have been divided by the analytical estimate for energy at t = 0.
We find that the numerical values for energy are about 60% bigger than the
ones we get by using the analytical estimate (4.3.18). It is natural that the
energies obtained from the analytical estimate are smaller than the ones we
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Figure 5.11: Same plot as 5.8, but now the value of the occupancy parameter
n2d

0 used was 0.040. We can observe significantly faster time-evolution than in
5.8, due to the fact that the equilibration process is driven by the non-abelian
interactions.

obtain numerically, as the analytical calculation completely omits the Debye
mass. This hints that the energy stored in interactions is actually a substantial
part of the total energy of the system.

Figure 5.14 shows us the division of energy between electric and magnetic
modes. We find that the electric and magnetic field energies are approximately
equal, and that the system tends to have very slightly more electric than
magnetic energy. This verifies that the approximation we made about the equal
division of energy between electric and magnetic modes is valid.

5.6 Debye screening mass

As stated in section 5.2, the values of the Debye screening mass were extracted
from the data using two different methods. The first method was to perform
a linear fit to the ω2/∆2 vs. k2/∆2 data, from which we can directly obtain the
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Figure 5.12: Comparison of the two different estimates for occupation number
and analytic estimates for them. The steeper curves correspond to numerical
calculations of n0

E using equation (4.2.7), and n0
N using equation (4.1.31). The

analytical predictions have been obtained by using equations (4.3.18) for the
the total energy, (4.3.16) for particle number and (4.3.19) for the gauge invariant
momentum estimate. We find that the behaviour of the occupation number is
linear in n2d

0 , but analytical approximation yields smaller results.

value of the Debye screening mass in the units of the momentum scale. The
second method was using thermal field theory prescription by utilising the
equation (4.1.29). We also derived the equation (4.3.20) for the Debye screening
mass at t∆ = 0, which can be compared to the results we obtained from our
simulations.

All the fits we performed were performed to the data, in which k2/∆2 ≤ 1/2.
The values obtained were somewhat sensitive to the fit range. The fits were
made with Python and Gnuplot.

As stated before, according to thermal field theory the Debye screening mass
is a time dependent quantity trough the occupation number dependence as can
be seen from the equation (4.1.29). From the analytical estimates, we see that
the occupation of the system is dictated by the parameter n2d

0 . The dependence
is given by equation (4.3.13) at t = 0.
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Figure 5.13: The total energy of the system calculated with different values of
the parameter n2d

0 using two different definitions of the total energy. We find
that these values are in excellent agreement.

5.6.1 Occupation number dependence

Figure 5.15 shows the dependence of the Debye screening mass in the units of
the momentum scale on the parameter n2d

0 . We chose the late time (t∆ = 30)
results, because the oscillation in the dispersion relation have already died out
by that time (The figure 5.1 shows that early time dispersion relation curves
had huge oscillations.).

It turns out that the values we obtain from the dispersion relation grow much
faster in n2d

0 than the values we get using the thermal field theory prescription
on our lattice data using equation (4.1.29). All computations show the correct,
increasing trend for the Debye mass squared in n2d

0 , however the thermal field
theory predictions deviate considerably from the results of the fits. This might
be caused by the fact, that the fits are done with quite low statistics. In order
to get the dispersion relation accurately, we need data points especially at low
k2. This forces us to use very small bins, in order to access this regime. Small
bins in turn lower the statistics. The effect of low statistics is visible in figure
5.15, as one Debye mass value turns out to be negative, which can not be the
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case. The values we get for the Debye mass are also unstable, which can be
seen clearly from the figure 5.15. The Debye mass values obtained from the
dispersion relation do not show consistent increase, as they also decrease at
one instant. This, along with one negative value, tells us about instability and
therefore we need more statistics in order to determine the values of the Debye
mass accurately using the dispersion relation. However, the trend in general
shows correct, increasing behaviour.

From figure 5.15 we can conclude that the values of the Debye screening
mass obtained by using the thermal field theory prescription tend to increase
as we increase the occupancy in our system. This means that the Debye mass
behaves qualitatively as it should, when determined using thermal field theory
prescription. We find that the analytical estimates using the fields at t = 0
and the results obtained using the thermal field theory prescription are quite
consistent, even though analytical estimates yield somewhat lower values.

5.6.2 Time dependence

The time dependence of the values of the Debye screening mass is shown in
the figure 5.16. We can not draw any firm conclusions on the time evolution
of the Debye screening mass. The values obtained using thermal field theory
prescription are almost completely constant in time, and the results from the
fit show a slightly decreasing trend, but more statistics is needed to verify this.
Our expectation for these results was, that the value of the Debye screening
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Figure 5.15: Dependence of the Debye screening mass in the units of momentum
scale on the parameter n2d

0 . Once again values we obtained by fitting are marked
in blue, and the red squares show the results we get using the thermal field
theory formula (4.1.29). The values were calculated at t∆ = 30.

mass should decrease in time, as such results have been obtained for example
in [34] figure 3. However we should keep in mind the differences concerning
dimensionality and the time-evolution of the occupation number distribution
when comparing our results to those appearing in [34].

In order to get more conclusive results from the fits to the dispersion relation
we will need more statics. Once again the values we get using the thermal field
theory prescription are about a factor of 10 smaller than the ones we get by
fitting in the small occupancy regime, and further studies are needed to shed
light on this issue.

In figure 5.3 we have plotted dispersion curves of the same simulation at
different times. We also show the fits to the data in the region k2/∆2 ≤ 1/2. There
we see similar behaviour as in [34], i.e. the curves are ordered in time, except for
t∆ = 18 and t∆ = 12. The cause of this effect is probably low statistics, which
causes large fitting errors. The results we get from figure 5.3 are actually the
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Figure 5.16: Time dependence of the Debye screening mass in the units of the
momentum scale. The values of the Debye mass were obtained from the fits,
which were done in the regime k2/∆2 ≤ 1/2, are shown in blue. The red squares
label the results obtained by using equation (4.1.29), predicted by the thermal
field theory, on the lattice data. The definition for the occupation number used
to obtain the results using the thermal field theory prescription was equation
(4.1.10). We find that the values obtained using thermal field theory are a factor
of ∼ 10 smaller than the ones we get from the fits.

same as in figure 5.16, but here we have plotted the dispersion relation only at
four different times instead of 7 in figure 5.16.
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6
Conclusions

In summary we have observed a non-zero gluon Debye screening mass at
sufficiently high occupation numbers. The occupation number dependence of
the Debye mass seems to behave as expected by using both ways, the formula
derived from thermal field theory and linear fits to the dispersion relation, to
calculate the Debye mass. The thermal field theory prescription shows increased
values of the Debye mass at increased occupancy. The values obtained from
fits of the dispersion relation behave qualitatively similarly, but low statistics
causes some instability in the fits. We could not observe any time evolution in
the values of the Debye screening mass. This might be caused by low statistics,
and further studies are needed to improve our results.

The values of the Debye screening mass obtained using the thermal field the-
ory prescription, and fits to the gluon dispersion relation were not in agreement.
It seems that the results obtained from the fits were a factor of 10 bigger than the
results obtained from the thermal field theory prescription. The cause for this
is not known, and further research is needed to shed light on the issue. Larger
lattice sizes with more statistics could however yield more accurate results from
the fits, which suffered considerably from low statistics in our simulations.

Interestingly, the momentum scale seems to increase as we increase the
occupancy of our system. This effect is purely non-abelian, as abelian theory
does not predict this kind of dependence. This does not seem to affect the values
we get for the Debye screening mass, even though the increased occupancy at
high momentum states should reduce its value. Thus it seems that the effect of
the increased occupancy is stronger than the effect of the increased momentum
scale. The momentum scale was quite close to the analytical predictions.

We could not observe any time-evolution in the momentum scale. This is
interesting, because recently it has been proposed that the momentum scale
should scale as (t∆)7/2 [38]. Thus it would be interesting to study this further
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with larger lattice sizes, more statistics and further in time. It would also be
interesting to see whether the number of dimensions affect this behaviour, as our
system was effectively two dimensional, whereas [38] used three dimensional
system. We could also check, whether initial conditions have an impact on this
issue.

We also studied the time-evolution of the occupation number distribution
using three different definitions. We found that the occupation number dis-
tributions exhibit oscillatory behaviour at early times, and are also strongly
inequivalent especially in the low momentum regime. At late times the occupa-
tion number distributions seemed to reach a rather steady state. After this we
could not observe increase in the occupancy in the ultraviolet. This might be
due to low statistics, and insufficient time-evolution.

The observed inequivalence in the definitions of the occupation numbers in
the low momentum regime hints towards the existence of the Debye screening
mass, as we assumed a massless dispersion relation while deriving the different
expressions for the occupation number distributions. In the future it would be
interesting to study the time-evolution of the occupation number distribution
longer in time to see whether further time evolution occurs, and at which time
scales it occurs. It has been argued that the occupation number distribution
scales as p−3/2 [34] at sufficiently high dimensionless time. It would be interest-
ing to see whether we can find similar scaling at sufficiently high dimensionless
times in three dimensions, because our two dimensional solution seems to scale
as − log k2. However, to unambiguously confirm this two dimensional result,
further studies are needed.

Finally we observed that we can calculate the total energy of our system
using two methods. First is the field interpretation, where we calculate the
total energy from the lattice Hamiltonian. And secondly by using the particle
interpretation. The equivalence of these two methods tells us that we are in
sufficiently weakly coupled regime for the particle interpretation to work (as
particle number is not really well defined concept in interacting field theories).

In the future it would be interesting to repeat a similar study with more
statistics, bigger lattice sizes and more time evolution in order to get more
conclusive data on time and occupation number dependence of the Debye
screening mass. An increase of factor of 10 (or even 100) in statistics should not
be a problem when using a cluster, as our current simulations were done on a
standard workstation lasting in total about a week. We could also take a more
realistic initial condition (in the context of heavy-ion physics), which would be
the McLerran-Venugopalan model [50][51][52].
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A
Fourier transforms & Parseval theorem

A.1 Fourier transforms

We define the Fourier transform as

f (p) =
∫

dnx f (x) e−ip·x. (A.1.1)

And the inverse transform is defined as

f (x) =
1

(2π)n

∫
dnx f (p) eip·x. (A.1.2)

We notice that if function f is real in position space, then it has hermitean
symmetry in the momentum space, i.e. f (−p) = f (p)† . This is easy to see by
taking the complex conjugate of (A.1.1).

In discrete case the counterpart of Fourier transform is the discrete Fourier
transform (DFT). Suppose we have a d dimensional array xn1,n2,··· ,nd

with nl =
0, 1, · · · , Nl − 1. We define the DFT as

Xk =
N−1

∑
n=0

e−2πik·n/N xn, (A.1.3)

where we have adopted briefer vector notation n = (n1, n2, · · · , nd) , and n/N is
understood as n/N = (n1/N1, n2/N2, · · · nd/Nd) . The summation over n is under-
stood as summation over all indices nj from 0 to Nj − 1. Note that the result is
periodic in each dimension with a period of Nj. The inverse transform is given
by

xn =
1

∏d
l=1 Nl

N−1

∑
n=0

e2πin·k/N Xk. (A.1.4)
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For real data there is a similar symmetry as in continuous case. If we take
each xn to be real, it is easy to verify with a direct substitution that

Xk1,k2,··· ,kd
= X†

N1−k1,N2−k2,···Nd−kd
. (A.1.5)

This eliminates half of the degrees of freedom of the complex data. Taking
the one dimensional case as an example, it is easy to see that this symmetry is
similar to the one we saw earlier in the continuous case. In one dimension we
can interpret the first half of the frequencies as the positive frequencies, and
the latter half as the negative frequencies in backwards order (which can be
seen using periodicity). Then, similarly, in multiple dimensions the negative
frequency corresponding to frequency n is the frequency N − n.

For computing purposes we can use the relation (A.1.5) to reduce the amount
of storage space needed for complex data to roughly one half of the original
requirement. One can use the equation (A.1.5) for the last dimension of the
data, as is done by the FFTW library, to cut its size to about one half of the
original. However, this does not eliminate all redundant degrees of freedom,
because we are still left with some frequencies, which are real, and some are
complex conjugates of others. For example the zero frequency is always real,
which is quite easy to see from the equation (A.1.5). In principle it is possible
to eliminate all redundant degrees of freedom in the complex data, but the
implementation would be rather cumbersome.

A.2 Parseval theorem

We will go through only the magnetic contribution to the equation (4.1.7), as
the electric part involves the same tricks and is easier. First we decompose the
magnetic field into Fourier components and remind ourselves of the fact that in
the abelian theory B = ∇ · A, and the Levi-Civita representation of the cross
product. Then (4.1.7) becomes

1
2

∫
d3xB2 (x) = −1

2
1

(2π)6

∫
d3xd3kd3k′εijkεilmk j Ak (k) k′l Am

(
k′
)

exp
(

i
(

k + k′
)
· x
)

.

Now use integral representation of the Dirac delta function, Coulomb gauge
condition and the fact that εijkεilm = δjlδkm − δjmδkl. We get

1
2

∫
d3xB2 (x) = −1

2
1

(2π)3

∫
d3kd3k′

(
δ
(

k + k′
)

k · k′A (k) · A
(

k′
))
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Now use the delta function to do the integral over k′ and make use of the fact
that A (x) is real, therefore A (k) = A† (−k) . We obtain the desired result

1
2

∫
d3xB2 (x) =

1
2

1

(2π)3

∫
d3kk2 |A (k)| .
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B
Derivation of equation (2.2.3)

First we write (2.2.3) as,∫
A2 (x)d3x =

∫
A (x) · A

(
x′
)

δ
(

x− x′
)

d3xd3x′

≡
∫

A · A′δ
(

x− x′
)

d3xd3x′.

Now make use of the third Green’s identity

δ
(

x− x′
)
= − 1

4π
∇2 1
|x− x′|

=
1

4π
∇ ·∇′ 1

|x− x′|
,

and integrate by parts (neglecting the surface terms) to get

∫
A2 (x)d3x =

1
4π

∫
d3xd3x′

(
∇ ·∇′

) (
A · A′

)
|x− x′|

We can write the numerator as(
∇ ·∇′

) (
A · A′

)
= δii′δjj′∂i∂

′
i′Aj Aj′ ,

and use
εkij′εki′ j = δii′δjj′ − δijδi′ j′

to get

∫
A2d3x =

1
4π

∫
d3xd3x′

(
εkij′εki′ j∂

′
i′∂i A

′
j′Aj + (∇ · A)

(
∇′ · A′

))
|x− x′|

.
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Now integrate by parts the term on the left hand side of the previous expression
to turn the primed partial derivatives into unprimed partial derivatives and
vice versa. We get

1
4π

∫
d3xd3x′

(∇ · A)
(
∇′ · A′

)
|x− x′|

+
1

4π

∫
d3xd3x′

(
εkij′∂

′
i A
′
j′εki′ j∂i′Aj

)
|x− x′|

,

which is the desired result.
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C
Exponentials of SU (2) matrices

During the simulation we will also have to calculate exponentials of SU(2)
matrices if we are given an initial state in terms of Aµ. This can be done using
the following theorem: Let v̂ be a unit vector and θ ∈ R, then

exp (iθv̂ ·~σ) = cos (θ) 1 + i sin (θ) v̂ ·~σ,

where~σ is the Pauli vector. First we remind ourselves of the anticommutation
relations of Pauli matrices

{
σa, σb

}
= 2δab

1. Then we calculate (v̂ ·~σ)2 = 1. We
get this result by remembering that each Pauli matrix squared is equal to one,
and by using the anticommutation relations on the rest of the product. Then
calculate

exp (iθn̂ ·~σ) =
∞

∑
n=0

(iθ)n (n̂ ·~σ)
n!

=
∞

∑
n=0

(−1)n θ2n

(2n)!
1 + i (n̂ ·~σ)

∞

∑
n=0

(−1)n

(2n + 1)!
θ2n+1

= cos θ1 + i sin θ (n̂ ·~σ) ,

where we separated the series into even and odd powers of n, made use of the
powers of the Pauli vector and identified the series of sine and cosine.

By using this we can calculate exponential of an arbitrary SU(2) matrix
(which can be written as ~v ·~σ, where ~v is a real vector with three components)

expressed with normalized generators ta, by choosing θ =
||~v||

2
. We get

exp i~v ·~t = cos
(
||~v||

2

)
1 + i sin

(
||~v||

2

)
2v̂ ·~t
||~v|| .
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D
Lattice implementation of gauge invariant

momentum scale

The covariant derivative of a quantity Gi (x) , which transforms in a gauge
transformation as Gi (x)→ Ux,iGi (x)U†

x,i can be calculated (in the direction j)
as

DjGi (x) =
Gi (x)−U†

x−j,iGi (x− j)Ux−j,i

as
.

Expanding this expression to lowest non-trivial order in lattice spacing shows
that this converges to the continuum covariant derivative when lattice spacing
goes to zero.

The magnetic field is calculated the using matrix form of the equation (3.1.4).

Bi (x) = −
εijk

4ia2
s g

(
Ux,jk −U†

x,jk −
1

N

(
Ux,jk −U†

x,jk

))
.

The cross product of covariant derivative and magnetic field can be calculated
easily

(D× B)i (x) = εijkDj (x) B (x)k ,

in which we can combine the definitions above. The squaring done in (4.2.1)
can be calculated easily as the dot product of vectors whose components are
matrices, and the trace is taken over the color space. The integral is easily turned
into a sum, and the integration measure turns into a factor of a3

s . Averaging was
done over a range of initial conditions. In practise we calculate the integral in
different simulations, and calculate the mean.

The denominator in (4.2.1) is just the total energy of the system, which is
much more straightforward to calculate than the numerator.
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