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Abstract

A good description of processes involving the production and decay of

top quarks is crucial to phenomenology at the Tevatron and LHC. In

this thesis, a general method constructed using ideas from Effective

Theories is presented, allowing predictions to be made for differential

observables that importantly include the effects of non-zero top quark

virtuality. Calculations using this method can be significantly simpler

than those in standard perturbation theory and its use enables the

identification of potentially important structures in the amplitudes.

The method is applied to the example of top-pair production for a

realistic experimental setup at the Tevatron. A number of observ-

ables are studied and an evaluation of off-shell effects is given. The

latter tend to be small in general but do become enhanced in regions

near kinematical boundaries for distributions that are sensitive to the

invariant mass of top quarks.
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for their valuable comments on a preliminary draft of this thesis.

Many thanks must be extended to my office mates in OC118 - working

in the same office as them has been a very enjoyable experience. I

am hugely grateful to my collegues Adam Berlie, James Currie, Ilan

Fridman Rojas, Katy Morgan and Dave Winn for the many coffee

breaks and trips to the pub that kept me sane when work was tough.

I would also like to say a big thank you to Ellie; for putting up with

me all these years, for always putting a smile on my face and for all

the little things I probably haven’t appreciated enough.

Finally, I would like to thank Mum, Dad and Natalie whose constant

love and support has played a defining role in getting me to where I

am today.





Chapter 1

Introduction

Since the discovery of the top quark by the CDF [1] and D0 [2] experiments at

the Tevatron in 1996, the final ingredient of the Standard Model (SM) yet to

be found has been the Higgs Boson. The very recent announcements by the At-

las and CMS experiments at CERN indicate the existence of a Higgs-like scalar

[3, 4], however much work is still required to establish whether or not this re-

ally is the missing piece of the SM. Despite this discovery, the role of the top

quark for LHC (and Tevatron) physics still remains very strong. As the heaviest

known fundamental particle, it is expected to couple strongly to the Electro-

Weak-Symmetry-Breaking (EWSB) sector and can therefore be regarded as a

promising avenue to understanding EWSB as well as to potential hints of physics

beyond the Standard Model.

The top quark is unique amongst the known coloured particles because, due

to its relatively large width, Γt, it decays in a timescale smaller than 1/ΛQCD.

As such it provides us with the unique opportunity to study its properties with

high precision without having to deal with the unpleasantly difficult to handle

non-perturbative effects of hadronization.

At the Tevatron and LHC copious numbers of top quarks are produced. In

order to fully exploit this opportunity it is of vital importance to have available as

accurate as possible predictions for processes involving tops. The work presented

in this thesis attempts to provide an effective method to obtain predictions when

the often-made assumption of on-shell top quarks is relaxed.
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1.1 The Top Quark in QCD and the Standard

Model

Given that the top quark is a coloured particle, and given that we are now well and

truly in the ‘era of the LHC’ which has been aptly termed a ‘QCD machine’ by

some, it is only right that a few words are said about Quantum-Chromodynamics

(QCD). Similarly, other parts of the Standard Model of particle physics play

crucial roles in shaping the character of the top quark as well as dictating the

style of its appearance at collider experiments. QCD and the SM in general have

been the subject of a huge body of research and numerous textbooks, the bulk of

which is beyond the scope of this work. What follows will be a snippet of some

of the important aspects of these theories for the phenomenology of top quarks

at hadron colliders.

QCD is a non-abelian quantum-field theory with a local SU(3) symmetry,

whose fermions and gauge bosons are the quarks and gluons. It is described by

the simple-looking Lagrangian

LQCD = −1

4
F µν,aF a

µν +
∑
f

ψ̄fi
(
i /D −Mf

)
ij
ψfj (1.1)

+ Lgauge-fixing + LFadeev-Poppov, (1.2)

where ψfi are fermion fields1, in the fundamental representation, describing quarks

of flavour f carrying colour quantum number i ∈ {r, g, b} and the sum runs over

the possible flavours of quarks. F a
µν is the gluon field-strength tensor and takes

the form

F a
µν = ∂µA

a
ν − ∂νAaµ + gs f

abcAbµA
c
ν (1.3)

which involves the gauge vector fields Aaµ, in the adjoint representation, that

describe gluons carrying colour a (a = 1, . . . , 8). The covariant derivative is

1These are in the mass basis when considering the QCD Lagrangian as part of the full SM
Lagrangian.
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given by the expression

Dµ
ij = δij∂µ + i gs T

a
ij A

a
µ. (1.4)

The matrices T aij are the generators of SU(3) in the fundamental representation

whilst fabc are the generators in the adjoint representation (and the structure

constants of the SU(3) algebra). The strong coupling constant, gs, present in

the covariant derivative allows for the interaction of quarks and gluons. In the

work presented here we will assume that all quarks apart from the top quark are

massless, leading to some simplification of (1.1).

The terms of (1.2) are required for the correct quantization of the classical

QCD Lagrangian (1.1). A consistent definition of the gauge boson propagator

is only possible if the bilinear operator in the gauge fields is invertible. This

is achieved through the insertion of a gauge-fixing term; a common choice (the

Lorentz gauge) being:

Lgauge-fixing = − 1

2ξ
(∂µA

a, µ) (∂µA
a, µ) , (1.5)

where ξ is the gauge-fixing parameter. In general, individual diagrams involving

gluon propagators will depend on ξ, however in physical, gauge-invariant sets of

diagrams this dependence will cancel. The introduction of the gauge-fixing con-

straint in the functional integral of a non-Abelian gauge theory entails the addi-

tion of LFadeev-Poppov to the overall Lagrangian via the Fadeev-Poppov method.

For QCD this takes the form

LFadeev-Poppov = −ua ∂µ
(
∂µ δab − gs fabcAcµ

)
ub. (1.6)

The fields ua are known as the Fadeev-Poppov ghost fields and do not give rise to

physical particles. These appear in perturbative calculations only as internal lines

in loop diagrams but serve to cancel unphysical contributions from longitudinal

polarizations of gauge bosons. For many more details of this we refer to, for

example, the textbooks [5, 6].

The QCD Lagrangian forms only part of the full SM Lagrangian and though

QCD is a perfectly good theory on its own, other terms of the full SM should be

3



activated if important features of top quark physics are to be accounted for. The

SM is a renormalizable theory described by a Lagrangian, in four dimensions,

invariant under local SU(3)c � SU(2)L � U(1)Y symmetry (here c, L and Y

stand for ‘colour,’ ‘isospin’ and ‘weak-hypercharge’ respectively). Some of the

key contributions to the SM as far as top quarks are concerned are the quark and

lepton weak charged-currents:

LSM ⊃ L
quark
W + L

lepton
W

= −gew√
2

(
JµqW

µ + Jµ†q W
µ†)− gew√

2

(
J
µ
l W

µ + J
µ†
l W

µ†
)

(1.7)

where

J
µ
q, l = ψ̄q, lM γµ

1− γ5

2
VMN ψ

q, l
N . (1.8)

Here q and l indicate charged quark and lepton fermion fields, M and N are

flavour indices and W µ describes the W-boson field. For quark fields VMN is the

Cabibbo-Kobayashi-Maskawa (CKM) matrix which allows for flavour changes

between ‘up’ and ‘down’ type quarks via the weak interaction. This arises when

the fields are rotated from the flavour basis to the mass basis after the spontaneous

symmetry-breaking of SU(2)L�U(1)Y . If right-handed neutrinos are included as

part of the SM then a similar non-trivial matrix is present in the lepton current,

however, this reduces to the identity if these are not present. It is precisely these

weak charged-currents of the SM Lagrangian together with the large value of the

top mass that prevent the top quark forming bound states.

From the highlighted parts of LSM it is possible to derive Feynman rules and

construct an order by order perturbation theory expansion in the couplings gs

and gew for scattering amplitudes describing processes involving top quarks. The

expansion in couplings forms an important part of this thesis and will be discussed

at length later.

At hadron colliders top quarks are produced either singly or in pairs. As in-

dicated in Figures 1.1 and 1.2, single-top production proceeds via three channels

(t-, s- and associated production), whilst top-pair production occurs (at lead-

4



σ [pb] Tevatron, 1.96 TeV LHC, 8 TeV LHC, 14 TeV

tt̄ 7.08 234 920

s-channel single-top 0.523 3.79 7.93

t-channel single-top 1.04 56.4 154

associated t W 0.14 11.1 41.8

Table 1.1: Approximate-NNLO cross-sections of top-pair and s-, t- and associated
single-top production at the Tevatron and LHC [7, 8] for Mt = 173 GeV.

ing order) via quark-anti-quark or gluon-gluon partonic initial states. The work

presented in this thesis will be focused on top-pair production, although the for-

malism discussed in the forthcoming chapters is also applicable to the single-top

process. Approximate cross-sections for single-top and top-pair production at the

Tevatron and LHC are included in Table 1.1.

q

b

q′

t

W

q b̄

q̄′ tW

b

g

W

t

1

Figure 1.1: Single top production channels at hadron colliders

q

q̄

t

t̄

g

g

t

t̄

g

g

t

t̄

1

Figure 1.2: Top pair production channels at hadron colliders

The top quark decays before it has a chance to undergo hadronization. In the

SM this occurs via the weak current, where the possible decays of the top are:

t → W+b, W+s,W+d. Due to the structure of the CKM matrix determined by

experimental data, the first of these decays, t → W+b, occurs almost 100% of

5



the time, the others being hugely suppressed by the CKM elements Vts and Vtd.

Consequently, it is this dominant decay of the top quark that will be assumed

for this thesis (similarly, the anti-top decay t̄→ W−b̄ will be assumed). The W -

bosons can either decay leptonically, W+ → l+νl (W− → l−ν̄l)
2 or hadronically

W+ → ud̄ (jets) (W− → ūd). This splits possible top-pair signals into three

channels, the di-lepton channel, the single lepton plus jets channel and the fully

hadronic channel, according to whether the W’s originating from the top or anti-

top quarks decay leptonically or hadronically.

Top quarks are of great interest from a theory point of view and have been

studied in great detail, partly driven by their importance to phenomenology at

the Tevatron and LHC. Not only are processes involving top quarks important

backgrounds to undiscovered physics searches (which typically involve leptons,

missing energy plus jets signals), but also, top quark parameters such as its

mass, Mt, provide important constraints to parameters of New Physics such as

the mass of the Higgs boson.

The relevance of top quark parameters at the fundamental level can be high-

lighted with a physics example related to the Higgs boson. A key question that

may be asked is whether or not the SM, as a renormalizable quantum field theory,

can be run up to very high energy scales (around the Plank mass) whilst main-

taining stability of the Electro-weak vacuum. This is an entire area of research

in itself and we won’t delve into details, however, it is worth underlining that

the answer to this elementary question depends strongly on the mass of the top

quark. In fact, it has been recently pointed out [9] that it is actually the current

uncertainty on the top quark mass, more than that on any other parameter of

the SM, that is hindering a definite answer!

Fully exploiting the precision at which the experiments at the Tevatron and

LHC are capable of measuring top quark properties requires an equivalent or

better level of accuracy in the theoretical description of top quark processes.

Treating the top quark as heavy as well as unstable is clearly of vital importance.

Moreover, the development of theoretical tools where the final states are the decay

products of the tops (and not the tops themselves) and where it is possible to

impose cuts similar to an experimental analysis is highly desirable. Beginning

2The leptonic decay of the W-boson occurs with branching ratio, BR(W− → l− ν̄l) ' 0.108.

6



with these requirements it is still possible to make several approximations that

ease both the difficulty and complexity of the computations. In particular, when

making predictions at Next-to-Leading Order (NLO) in perturbative QCD, the

assumption that the top quark is on-shell (p2
t = M2

t ) is often made. This not only

captures a lot of the important physics, but also simplifies the NLO calculations

significantly. However, since the LHC will be doing precision top quark physics, it

is of great interest to assess the effects of relaxing this assumption and quantifying

exactly where the off-shell effects play an important role, as well as controlling

the impact these may potentially have on measuring parameters linked with the

top quark.

1.2 Effective Theory

A persistent undercurrent to much of the material presented here is the notion of

efficiently identifying and describing the important features of processes involving

unstable top quarks by making full use of the physical information provided. By

focusing on the dominant contributions it will be shown that the computations

are greatly simplified and also, importantly, much structure to the calculation is

revealed.

A key concept in Effective Field Theories (ETs) is the calculation of an ex-

pansion of scattering amplitudes rather than the full scattering amplitudes, or

alternatively working with an expanded form of the Lagrangian or Hamiltonian

describing a theory, rather than with the full theory itself. Such an expansion is

one in small parameters consisting of ratios of widely-separated scales (momen-

tum scales, mass scales, etc). Admittedly, ETs are limited in validity to regions

where these ratios remain small. However, within these regions it is straightfor-

ward to make powerful predictions using only the first few terms of the expansion

and safely neglect the suppressed higher terms. This makes one’s task much

easier than when working with the full scattering amplitudes or the full theory.

Moreover, the use of ETs can be instructive in highlighting structures or pat-

terns in predictions and calculations that would otherwise perhaps be clouded by

the complexity of a full theory computation. This is to be expected as ETs are

constructed to describe the key physics in their region of validity.

7



Motivated by the power as well as the convenience of using ETs, this the-

sis aims to adopt some ideas and apply them to the computations of quantities

relevant for making predictions in a collider physics environment. Making pre-

dictions of a fully differential nature, it will be necessary to adapt and further

develop such concepts. For processes involving unstable top quarks, the widely-

separated scales are Mt and Γt and the region which we shall be interested in,

the one dominating the cross-section, is the resonant region where p2
t ∼M2

t . The

key physics captured by an ET approach is that of the factorization of heavy top

quark production, propagation and decay subprocesses in addition to the role

played by soft gluons in such processes. Much more will be said of all this in the

forthcoming chapters.

Talking about an expansion when making predictions for collider processes

might sound a little strange at this point since almost all computations of scat-

tering amplitudes are performed in perturbation theory - an expansion in itself.

What an ET approach accomplishes here is a provision of a framework for the

computation of the series in powers of the small ‘kinematic’ variables present,

essentially achieving a re-arranging or re-organisation of the full perturbation

theory amplitudes.

1.3 Thesis Structure

Following this brief introduction, the focus turns to providing the background

and presenting the methods used for the study of unstable top-pair production

in the resonant phase-space regions. In Chapter 2 we introduce some of the key

tools used in the computation of the required scattering amplitudes for this work.

Ultra-violet and infra-red divergences arising in perturbation theory are also dis-

cussed along with relevant aspects of renormalization. Chapter 3 gives a short

excursion into how NLO calculations are realised, with particular attention on the

treatment of the real corrections, and how predictions made are related to exper-

imental observables. Details of some of the main methods used in the description

of heavy unstable particles are given in Chapter 4, where we also highlight some

of the corresponding results and calculations in the literature for top-pair produc-

tion. In Chapter 5 we explain and discuss at length the main methods developed

8



to make predictions for processes with unstable heavy particles, presenting the

methods using the example of top-pair production at hadron colliders. Here ideas

from ETs are developed for use in a differential setup for arbitrary observables.

Chapter 6 features the application of the methods of Chapter 5 to a basic exper-

imental setup for the Tevatron, with emphasis on the assessment of the effects of

treating the top quarks as off-shell in a broad range of observables. Finally, we

arrive at our conclusions and give a short outlook of possible future extensions

and improvements to this work in Chapter 7.
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Chapter 2

QCD Amplitudes and Field

Theory Divergences

In this chapter we describe techniques essential for the computation of scattering

amplitudes presented in later chapters. Divergences encountered in higher order

corrections are also discussed along with a few aspects of renormalization relevant

to the material of this thesis.

2.1 QCD Tools

A plethora of useful tools for calculating field theory amplitudes has been devel-

oped over the last two decades. Examples of good reviews on modern approaches

can be found in [10, 11]. In this section a few key tools that have been extensively

employed throughout the calculations presented in this work are outlined.

2.1.1 Colour Decomposition

Amplitudes in QCD can in general be written as a linear combination of colour

factors multiplied by so-called subamplitudes; expressions which are separately

gauge invariant and independent of colour,

AQCD =
∑
i

Ci(a1, . . . , an)α1...αmAi(a1, . . . , an)α1...αm , (2.1)

10



where a1, . . . , an and α1, . . . , αm are the colour indices of external gluons and

(anti-)quarks respectively (see, for example [12]). The colour factors can be writ-

ten solely in terms of generators of SU(3) in the fundamental representation by

replacing structure the constants, fabc, which enter amplitudes through the Feyn-

man rules for gluon 3- and 4- vertices. This can be done by making use of the

identity1

ifabc = 2
[
Tr
(
T aT bT c

)
− Tr

(
T bT aT c

)]
(2.2)

with further simplification of colour factors achieved via application of the Fierz

Identity:

T aijT
a
kl =

1

2

(
δilδjk −

1

Nc

δijδkl

)
. (2.3)

Arranging amplitudes in this form is often a convenient way of reducing one’s

work. By calculating the subamplitudes for a particular ordering of the exter-

nal partons one can then use the resulting expressions to obtain expressions for

all required orderings by permuting and crossing momenta (and helicities - see

below).

2.1.2 The Spinor Helicity Method

For processes of interest with massless external states, amplitudes for fixed external-

leg-helicity configurations may be calculated. The squared amplitude of the full

process is then given by the incoherent sum over all possible amplitudes (inter-

ferences between different helicity states are forbidden by Quantum Mechanics).

The advantage of calculating matrix elements in this fashion lies in the fact that

frequently, out of a potentially large number of helicity configurations, only a

small number are actually independent - the rest being obtained from this small

set via charge and/or parity flips or momentum swaps. It is also often the case

that the individual helicity amplitudes are quite compact which leads to much

simpler expressions (and code) for the full matrix elements.

1Note: we are using the normalization Tr
(
T aT b

)
= 1

2δ
ab.
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A comprehensive review on this method of calculating scattering amplitudes

is given in [12], here we outline only the basic notation.

If ψ(p) is a Dirac Spinor, then its chiral projections are given by

ψ±(p) :=
1

2
(1± γ5)ψ(p). (2.4)

For massless states, helicity is a good quantum number and it is useful to label

states with it. The standard notation for fermion states of definite helicity is

|p±〉 := ψ±(p), 〈p±| := ψ±(p) (2.5)

with spinor products denoted by

〈p q〉 := 〈p− |q+〉 , [p q] := 〈p+ |q−〉 (2.6)

and normalization given by

〈p± |γµ| p±〉 = 2pµ. (2.7)

The representation of SU(3) polarization vectors with momentum, p, is given

by

ε±µ (p, k) = ±〈p± |γµ| k±〉√
2 〈k ∓ |p±〉

, (2.8)

where k is an arbitrary light-light vector and represents the freedom to pick a

reference momentum when using the axial gauge2. In many cases, certain choices

of k significantly simplify the helicity amplitudes. Moreover, one is free to pick

different k’s for different sub-amplitudes, thus making this approach an even more

powerful one to calculate scattering amplitudes.

2In axial gauge we have
∑
λ=± ε

λ
µε
λ ∗
ν = −ηµν +

pµkν+pνkµ
p.k .

12



2.1.2.1 Massive Extension

For massive states, helicity is no longer a good quantum number as it becomes

a frame-dependent quantity. However, the spin information carried by massive

particles can still be used to construct a helicity basis in a defined frame. This

has been used to extend the spinor-helicity method for use when dealing with

external massive particles [13]. The latter is particularly useful for this work

since top quarks must be treated as massive. The idea is to decompose a massive

momentum p (p2 = m2) into two light-like momenta

p = αp[ + βη (2.9)

where α and β must satisfy αβ = m2

2p[.η
. The choice

α = 1, β =
m2

2p[.η
(2.10)

is made in this work (following the choice made in [14, 15] ). Following this, u

and v spinors may be defined as

u±(p,m; p[, η) :=
/p+m

〈p[ ∓ |η±〉 |η±〉 , ū±(p,m; p[, η) := 〈η∓| /p+m

〈η ∓ |p[±〉 (2.11)

v±(p,m; p[, η) :=
/p−m
〈p[ ∓ |η±〉 |η±〉 , v̄±(p,m; p[, η) := 〈η∓| /p−m

〈η ∓ |p[±〉 . (2.12)

The arbitrariness of the momentum η (or p[) essentially parametrises the

freedom we have to pick a frame in which to define helicity states for massive

momenta. The dependence on η must cancel in physical observables.

We finally note that keeping the dependence on p[ and η explicit in expressions

for helicity amplitudes allows one to relate different massive ‘helicity’ states via
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the relations:

u±(p,m; p[, η) = −
〈
p[ ± |η∓

〉
m

u∓(p,m; η, p[),

ū±(p,m; p[, η) =

〈
p[ ± |η∓

〉
m

ū∓(p,m; η, p[),

v±(p,m; p[, η) =

〈
p[ ± |η∓

〉
m

v∓(p,m; η, p[),

v̄±(p,m; p[, η) = −
〈
p[ ± |η∓

〉
m

v̄∓(p,m; η, p[).

These are particularly useful as they reduce the number of helicity configurations

one has to calculate by a factor of two for each massive external parton.

2.1.3 Dimensional Regularization

A convenient way of handling divergences in loop or phase-space integrals re-

quired to compute the virtual and real corrections respectively is to isolate or

regularise the singularities. The most widely-used method is that of Dimensional

Regularization due to ’t Hooft and Veltmann [16], in which the space-time di-

mension is analytically continued to d = 4−2ε dimensions. This renders the loop

integrals finite, with the singularities present in d = 4 now appearing as poles in

ε (ε−2 and ε−1 poles at NLO).

2.1.3.1 Dimensional Regularization Schemes

Dimensional regularization requires that unobserved momenta be analytically

continued away from d = 4 dimensions. Therefore, in principle, the gamma

matrices, including γ5, need to be defined in d 6= 4 dimensions.

This poses some difficulties as the consistent construction of an anti-commuting

γ5 in d-dimensions is not possible [17]. However, practical schemes do exist where

some properties are kept and allow calculations to be made. The accompanying

caveat is that, as explained formally in [17], some inconsistencies are introduced.

These lead to violations of Ward identities and must be corrected by hand. Con-
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sequently, virtual loop or real phase space integrals pick up a dependence on the

particular regularization scheme used. However, for physical observables this de-

pendence must disappear. We will parametrize the scheme dependence by ηsc,

where ηsc = 0 will correspond to the ’t Hooft-Veltmann (HV) scheme and ηsc = 1

will correspond to the four dimensional helicity (FDH) scheme (the use of other

schemes is of course also possible). Cancellation of the dependence on ηsc in

physical quantities will be made explicit where applicable.

Virtual and real corrections are often calculated in different schemes for con-

venience. Cancellation of ηsc in physical quantities requires the use of the same

scheme in both sets of corrections and therefore it is necessary to be able to con-

vert expressions between the two schemes. For details of how this is achieved we

refer to [18, 19].

2.1.4 The Method Of Regions

Standard methods of evaluating loop integrals such as via Feynman Parametriza-

tion or Mellin Barnes are widely reported in the literature and will not be men-

tioned here. However, one technique that is key to much of the work presented

is the method of regions; a method of computing asymptotic expansions of loop

integrals that involve hierarchies of scales. The original paper [20] on this method

is due to M. Beneke and V.A. Smirnov, whilst its formal mathematical formu-

lation has recently been presented in [21]. The content of the latter goes well

beyond anything that will be required here.

The aim of this subsection is to introduce the method via an example relevant

for the processes of interest in this thesis. For full details and mathematical rigour

we refer to [21].

Closely following the route suggested in the original paper, the steps to ap-

plying the method of regions to an integral are as follows. Once the hierarchy

of scales has been determined, the loop integration range is split up into regions,

according to this hierarchy. In each of these regions the integrand is then Tay-

lor expanded in the relevant small parameters. The integration of the resulting

expressions is performed over the full integration range and the original integral

is given by the sum of terms from each region. It may appear that the last step
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will lead to a double counting of regions. This is not the case as integrating the

Taylor expansions outside their region of validity leads to scaleless integrals which

vanish in dimensional regularization.

On the face of it, this method may appear much more complicated than

actually evaluating the original integral. However, integration of the integrands

post Taylor expansion is usually much simpler due to fewer scales being present

there. Furthermore, if only the first few terms of the asymptotic series of the

original integral are required, then these are often reproduced by the sum of the

leading term from each region. This turns out to be a significant simplification,

and will be the case in this work.

The steps outlined above will now be applied to the example of the scalar

integral arising from the top quark decay vertex depicted in Figure 2.1. The

conditions on the momenta are p2
b = 0, p2

W = M2
W , p2

t 6= M2
t and Dt := p2

t−M2
t �

M2
t . This final condition essentially means the top quark is resonant and provides

the hierarchy of scales necessary to apply the method of regions successfully.

q

pt pb

pw

1

Figure 2.1: Method of Regions example: tWb vertex correction

The original scalar integral is given by 3

Ifull =

∫
[dq]

1

q2 + i0+

1

(q − pb)2 + i0+

1

(q − pt)2 −M2
t + i0+

(2.13)

=

∫
[dq]

1

q2

1

q2 − 2q.pb

1

q2 − 2q.pt +Dt

(2.14)

(the +i0+ prescription is assumed in the second line above and for the remainder

3[dq] = eεγE Γ(1− ε) d4−2εq
(2π)4−2ε
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of this section). This can be evaluated directly [22] to give

Ifull =
1

M2
W − p2

t

[
1

ε
ln

(
M2

t − p2
t

M2
t −M2

W

)
+ ln2

(
M2

t −M2
W

M2
t

)
− ln2

(
M2

t − p2
t

M2
t

)
+Li2

(
M2

W

M2
t

)
− Li2

(
p2
t

M2
t

)]
+ O(ε). (2.15)

Expanding this exact expression in Dt/M
2
t � 1 yields

Ifull =
1

M2
W −M2

t

[
1

ε
ln

( −Dt

M2
t −M2

W

)
− π2

6
+ ln2

(
M2

t −M2
W

M2
t

)
− ln2

(−Dt

M2
t

)
+Li2

(
M2

W

M2
t

)]
+ O(ε,

Dt

M2
t

). (2.16)

Now we proceed to evaluate the same integral via the Method of Regions.

The two regions are identified as

hard: q ∼M2
t and soft: q ∼ Dt,

in which the integrand can be expanded respectively as

1

q2

1

q2 − 2q.pb

(
1

q2 − 2q.pt

∞∑
j=0

( −Dt

q2 − 2q.pt

)j)
(2.17)

(in the hard region |q2 − 2q.pt| � |Dt|) and

1

q2

(
1

−2q.pb

∞∑
k=0

(
q2

2q.pb

)k)(
1

−2q.pt +Dt

∞∑
l=0

(
q2

−2q.pt +Dt

)l)
(2.18)

(in the soft region |2q.pb| � |q2| and |−2q.pt +Dt| � |q2|).
The leading terms of the expansion in each region can now be integrated (over

the full loop phase-space) to give

I
(0)
hard =

1

M2
W −M2

t

[
1

2ε2
+

1

ε
ln

(
M2

t

M2
t −M2

W

)
+
π2

24
+ ln2

(
M2

t

M2
t −M2

W

)
+Li2

(
M2

W

M2
t

)]
+ O(ε). (2.19)
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and

I
(0)
soft =

1

M2
W −M2

t

[
− 1

2ε2
− 1

ε

(
ln
(
M2

t

)
− ln (−Dt)

)
− 5π2

24
− ln2

(
M2

t

−Dt

)]
+ O(ε).

(2.20)

As desired, adding the two expressions, Ihard + Isoft (together with some simple

manipulations of logarithms), reproduces the leading term in the expansion of Ifull.

It is apparent that compared to the integral, Ifull, the hard and soft contributions

contain additional singularities which must cancel when the two are summed.

This is due to the fact that Taylor-expanding in the hard (soft) region results in

integrals that are more UV- (IR) divergent because of the additional powers of q

in the denominator (numerator) of the integrands. This behaviour will show up

again later when the method of regions is applied to a hadron collider process.

2.2 Next-to-Leading Order Calculations and Di-

vergences

Observables such as the differential cross-section can be expanded in the (small)

coupling constants of the SM. The focus in the work presented here will be higher

order QCD corrections, i.e. the computation of terms in an expansion in the

strong coupling constant, αs = g2
s/(4π),

dσ = dσLO + αs dσ
NLO + α2

s dσ
NNLO + . . . . (2.21)

We will confine ourselves to next-to-leading order in perturbation theory, where

one is required to calculate the terms dσLO and dσNLO in the series expansion.

The main ingredient to dσLO is the Born level matrix element, |AB|2, composed of

tree-level Feynman diagrams4. Radiative corrections to this can be split into two

sets, virtual and real contributions. Virtual corrections contribute to dσNLO via

2Re
(
ABA1−loop ∗), where A1−loop is made of diagrams with closed loop corrections

to the Born-level Feynman diagrams. The real corrections enter as |Areal|2 where

4This is not strictly true, as there are examples of loop-induced Born-level processes, for
example Higgs boson production via gluon fusion.
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Areal involves diagrams with an emission of an additional parton from the Born-

level configuration.

Both these sets of corrections contain divergences which are potentially dis-

astrous. Fortunately, for properly defined physical observables, the singularities

present in the virtual pieces cancel those coming from the real contributions. This

key physical result is the subject of the Bloch-Nordsieck [23] and Kinoshita-Lee-

Nauenberg [24, 25] theorems.

It should be noted that the virtual terms contain singularities of different

origin: Ultra-Violet (UV) singularities from regions where the loop momentum

k → ∞ and Infra-Red (IR) singularities from regions where k → 0. The UV

singularities are removed by a redefinition of the fields and parameters of the

QCD (and EW) Lagrangian in a procedure known as renormalization. Once

renormalization has been carried out the IR singularities present in the virtual

pieces are exactly cancelled by the singularities in the real corrections (which are

of IR origin only).

2.2.1 UV divergences and Renormalization of QCD

When computing loop corrections (tensor) integrals of the form

Iµ1...µm
n ({pi}) =

∫
[dk]

kµ1 . . . kµm∏n
j=1

(
(k − qj)2 −m2

j

) (2.22)

(where qi =
∑i

j=0 pj) are often encountered. Taking the limit k →∞, this takes

the form ∫
ddk

kµ1 . . . kµm

(k2)n
(2.23)

and the integrand now behaves as ∼ km−2n 5. When d + m − 2n ≥ −1, the

integral (2.23) has a singularity where k → ∞. Such singularities are the UV

singularities commonly found in loop integrals.

Here the process by which UV singularities are removed from scattering am-

plitudes will be discussed. The focus will be on renormalization of the Lagrangian

5k =
√
k2 =

√
kµkµ
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of QCD as this is most relevant to this work. The key point is that the parameters

and fields in the Lagrangian written down initially (known as the bare param-

eters) do not correspond to the physical or renormalized parameters and fields

in nature once higher order corrections from perturbation theory are included.

Bare parameters have to be related in a systematic way to the corresponding

renormalized parameters. It is only predictions making use of finite renormalized

quantities that make physical sense and the process of renormalization provides

a systematic way of defining these physical quantities.

The bare quantities Aµ a0 , ψq,0, mq,0 and gs,0 are related to the renormalized

ones via the relations

Aµ a0 = Z
1
2
G A

µ a
r , ψq,0 = Z

1
2
q ψq,r (2.24)

m0 = Zm mr, g2
s,0 = Zg2

s
g2
s,r (2.25)

with Zi = 1 + δZi
6. Equations (2.24) are known as the wavefunction renor-

malization of the gluon and quark fields, whilst (2.25) describe mass and strong

coupling-constant renormalization.

Plugging these equations into the QCD Lagrangian results in

LQCD,0 = LQCD,r + LQCD, ct (2.26)

where LQCD,r is identical to LQCD,0 with bare fields and parameters replaced by

renormalized ones and LQCD, ct contain the effects of the δZi in expressions known

as counter-terms. The latter lead to new Feynman rules which should be included

in perturbation theory calculations. An example of how this follows is outlined

6Note that δZi is O(α).
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here for the gluon-quark vertex:

LQCD,0 ⊃ gs,0 A
µ a
0 ψ̄q,0 γµ t

a ψq,0 (2.27)

= Z
1
2

g2
s
Z

1
2
G Zq gs,rA

µ a
r ψ̄q,rγµt

a ψq,r (2.28)

= gs,r A
µ a
r ψ̄q,r γµ t

a ψq,r

+

(
1

2
δZg2

s
+

1

2
δZG + δZq

)
gs,r A

µ a
r ψ̄q,r γµ t

a ψq,r (2.29)

These terms yield the standard gluon-quark vertex Feynman rule and, in addition,

the vertex counterterm Feynman rule (diagram (c) in Figure 2.2). We note that

at NLO it is safe to ignore terms of order O(δZ2
i , δZiδZj) as they only contribute

at NNLO. The relevant set of counter-term Feynman rules for this work is given

in Figure 2.2. The counter-term for the tW b-vertex is also included, despite not

technically forming part of the QCD Lagrangian, as this is required to renormalize

the top quark decay vertex.

The final aspect of renormalization that is required is to give meaning to the

term ‘physical’ quantity. What this means is that a precise definition or set of

(renormalization) conditions must be provided; these define the renormalization

scheme. The three physical quantities that will be of primary interest here are

the mass of heavy quarks, the strong coupling and the normalization of the gluon,

light quark and heavy quark fields. The conditions on these arise by interpreting

the complete propagators of the fields as descriptions of the propagation of single

particle states. This requires individual full propagators to have a simple pole of

residue i at the physical mass of the particle.

The widely-used modified-minimal-subtraction scheme, or MS-scheme, will

be employed for the strong coupling; this will not be discussed further here7. For

the quark and gluon fields as well as the heavy quark mass, the pole or on-shell

scheme will be used.

It is appropriate at this point to consider the propagator of the heavy quark,

7Renormalization of the electroweak coupling, gew, is not required in this work as this is not
renormalized at O(αs), which is the target accuracy in this work.
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(a)
ν, bµ, a

k

−i (k2gµν − kµkν) δab δZG i

(b)

p

i ((/p−mq,r) δZq − δmq)

(c)
µ, a

−i gs,r γ
µ ta (δZq +

1
2δZG + 1

2δZg2
s
)

(d)

µ

i gew√
2
γµ 1

2 (1− γ5) (
1
2δZt +

1
2δZb)

1

Figure 2.2: QCD and EW counter-term diagrams

Q. The complex pole, µQ, of the full propagator is given by the solution to

ΓQ(µQ) = 0, where

ΓQ(/p) = /p−MQ − ΣQ(/p). (2.30)

Here MQ and ΣQ are the renormalized heavy quark mass and self-energy. It

should be noted that the pole and on-shell schemes are slightly different. The on-

shell scheme defines the renormalized mass, MOS
Q to be the solution to Re

[
ΓQ(MOS

Q )
]

=

0, whereas in the pole scheme the renormalized mass, Mpole
Q , is defined to be

Mpole
Q = Re [µQ] . (2.31)

However, at the order to which we will work in this thesis, the pole scheme is

equivalent to the on-shell scheme8, so we choose to call the renormalized mass in

8The differences manifest themselves at NNLO, where the on-shell mass becomes a gauge-
dependent quantity. The pole mass, being defined as the real part of a physical parameter,
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any of these two schemes the pole mass.

In addition to this, the conditions for the normalization of the quark and

gluon fields are that the residues of the respective complete propagators are fixed

to unity, in accordance with the choice of condition for the renormalized mass.

The above mass and quark field conditions relate δm and δZq to the quark

(unrenormalized) self-energy Σ(/p) via

δMOS
q = Σ(MOS

q ) (2.32a)

δZOS
q =

∂Σ

∂/p
(MOS

q ). (2.32b)

The equations 2.30, 2.32a and 2.32a are solved order by order in perturbation

theory to identify the relevant structure of counter-terms. For massless fermions

the on-shell scheme implies that δmq = 0 as well as δZq = 0, thus we need

only consider mass and wavefunction renormalization for the top quark, which is

always treated as massive. For the gluon field the on-shell scheme implies

δZOS
G = −∂Π

′
T (0)

∂q2
, (2.33)

with ΠT (q2) the gluon transverse self-energy.

It is well known that the pole and on-shell mass definition for quark masses

suffer from non-perturbative ambiguities which do not allow for the determination

of these masses with an accuracy of better than O(ΛQCD) [28, 29]. Avoiding

such ambiguities requires the use of a mass scheme that is ideally not sensitive

to long-distance scale physics, such as the MS-mass (such masses are known

as ‘short-distance’ masses). However, as will be shown later on, the MS-mass

is poorly suited for use with the ET approaches employed in this work, which

require the renormalized mass used to be close to the pole mass. A better choice

of mass scheme here is, for example, the ‘Potential-Subtracted’ (PS) mass scheme

[30]9, which is well defined at all orders in perturbation theory as well as yielding

remains gauge-independent. These arguments were first discussed in [26, 27].
9This was introduced along with other so-called ‘threshold masses’ to aid the precise extrac-

tion of a well defined top-mass parameter from a threshold scan at a linear collider.
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renormalized masses close to the pole mass. The PS-mass is related to the pole

mass via the equation

MPS(µps) = Mpole −∆M(µps)

= Mpole +
1

2

∫
|~q |<µps

d3q

(2π)3
Ṽ (q), (2.34)

where Ṽ (q) is the static heavy-quark potential in momentum space. An important

aspect to highlight here is the appearance of the scale µps, which restricts the

above momentum space integral to the region containing long-distance effects. It

has been shown [30] that the behaviour of the perturbative expansion of Mpole

leading to the undesirable ambiguities matches that in the expansion of ∆M(µps)

and therefore renders MPS(µps) free of these non-perturbative effects. More will

be said about the choice of µps in Chapter 5.

Finally it is important to point out that the use of dimensional regulariza-

tion will, in general, result in a shift in the dimension of the parameters of the

Largrangian in order to maintain that dim [L] = d. The couplings are shifted

to g → µεRg where µR is an arbitrary mass scale, to account for the change in

dimension from 4 to 4− 2ε. Quantities in nature do not depend on this scale (it

is inserted for consistency in the method used for evaluation of loop and phase

space integrals), thus a prediction made to all orders should be independent of

this. In contrast, calculations at fixed order in perturbation theory maintain a

dependence on this artificial scale.

After renormalization, one loop amplitudes still contain IR divergences, man-

ifested as poles in ε. These are cancelled exactly by the divergences in the real

corrections once the latter are consistently included. This cancellation is guaran-

teed by the Bloch-Nordsieck [23] and Kinoshita-Lee-Nauenberg [24, 25] theorems

for infra-red safe observables (this class of observables will be discussed further

in §3.1.1). The singularities from real corrections will be discussed next.
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2.2.2 Divergences from Real Emissions

To illustrate the origin of the divergences we shall examine the case of a gluon

radiated off an external fermion line. The scenario is pictured in Figure 2.3.

k

1

Figure 2.3: Gluon emission from a final state fermion leg.

The amplitude for this process (dropping coupling and colour factors for sim-

plicity) is given by

∼ ū(p)γµ
(/p+ /k +Mf )

(p+ k)2 −M2
f

A(p, k, . . .) εµ(k)

= ū(p)γµ
(/p+ /k +Mf )

2p.k
A(p, k, . . .) εµ(k), (2.35)

where A simply collects together the expression of the grey blob. In the soft limit,

k → 0, this reduces, with the help of the Dirac equation, to

pµ

p.k
ū(p) A(p, 0, . . .) εµ(k). (2.36)

The important observation to make is that now there is a 1/k0 singularity at the

amplitude level; this is known as a soft singularity. In the case that the fermion

is massless, Mf = 0, then p.k = p0 k0(1− cos θ), where θ is the angle between the

fermion and the gluon. In the limit θ → 0 the scalar product p.k → 0 as well,

and (2.35) displays an additional divergence - a collinear singularity.

This infra-red behaviour of amplitudes is universal, in the sense that in the

soft and collinear limits, the squared amplitude or matrix element factorizes into

a function describing the singular behaviour multiplied by a tree-level matrix
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element. The tree-level parts of this encode all the dependence on the particular

process being studied, whilst the singular function is process independent.

Following the arguments of [31] (see also [19]), we consider the Born process

with two incoming partons a and b and n outgoing partons. The matrix elements

(squared amplitudes) for the Born and real processes are denoted by Mn and

Mn+1, and the flavour of the partons involved by ai. There are three basic limits

one has to consider; the soft limit and the limits where the additional parton

becomes collinear to either a final or initial state parton. In the emission of a soft

gluon, gk, the real matrix element behaves as

Mn+1(aa, ab; . . . gk, . . .)→ g2
s

∑
i,j

sij
si k sj k

Mij
n (aa, ab; a1, . . . , an), (2.37)

where sij = 2pi · pj. Mij
n denotes a colour-correlated square of Born amplitudes

(for further details, see for example [32]), and the sum is over all possible pairs

of external partons i and j the soft gluon can be emitted from. It is clear that

this structure arises when squaring expressions of the form of (2.36). The term

sij/(sik sjk) is known as an Eikonal factor and is singular for pk → 0.

In the case when a final state parton, k, becomes collinear to another final

state parton, j, their respective momenta can be written as pj = z(pj + pk) and

pk = (1− z)(pj + pk), where z → 1 is the extreme collinear limit. The behaviour

then is

Mn+1(. . . , aj, . . . , ak, . . .)→
g2
s

pj.pk
P̃(jk)∗→jk(z) Mn(. . . , a(jk), . . .). (2.38)

P̃(jk)∗→jk(z) is a universal splitting function which only depends on the flavours

of partons j and k. The ∗ simply indicates that the splitting function is slightly

off-shell to maintain momentum conservation.

Finally, in the case where a final state parton, k, becomes collinear to an

initial state parton, a, the momentum of k can be written as (1 − z)pa. The

factorization is a little more involved

Mn+1(aa, ab; . . . , ak, . . .)→
g2
s

pa.pk
P̃a→(ak)∗ k(z) Mn(a(ai)(z pa), ab; . . .) (2.39)
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as the momentum fraction z now appears in the Born matrix element in the

factorized expression. Once more, P̃a→(ak)∗ k(z) is a process independent splitting

function completely determined by the flavours of partons a and k10.

In all limits discussed above the singular terms result in poles in ε when

integrated over phase space. IR-singularities from the virtual corrections are

cancelled by these.

10The tildes on P̃(jk)∗→jk and P̃a→(ak)∗ k indicate that these are not the full splitting functions,
but splitting functions valid only for z < 1. They are related to the full splitting functions via
+ distributions and delta functions. For details we refer to [19].
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Chapter 3

Collider Predictions at NLO

3.1 Cross-sections at Hadron Colliders

Computations of hadronic cross-sections are made possible because of the Factor-

ization Theorem [33, 34], which states that these can be written as a convolution

of partonic cross-sections with non-perturbative functions describing the extrac-

tion of partons from hadrons. This is illustrated in Figure 3.1. More precisely,

cross-sections for two hadrons, h1(P1), h2(P2) interacting to produce a final state,

X, can be written as

σh1, h2→X(Q2) =
∑
a,b

∫ 1

0

dx

∫ 1

0

dy fa/h1(x;µ2
F )fb/h2(y;µ2

F )σab→X(pa, pb;µ
2
F , µ

2
R),

(3.1)

with pa = xP1 and pb = yP2.

The term σa, b→X is the partonic cross-section for the process a b → X, also

called the ‘hard-interaction’ cross-section. The sum is performed over all pos-

sible initial partonic states a and b that can give the final state X. This part

describes the short-distance physics and can be computed in perturbation theory.

The connection to the long-distance physics of the initial state hadrons is given

through the functions fi/hk(x;µ2
F ). These are the Parton Distribution Functions

(PDFs) which describe the probability of finding a parton i inside the hadron

hk, with a given momentum fraction, x, of the hadron’s momentum. Though
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non-perturbative, they are universal functions that can be extracted from exper-

iments (e.g. Deep Inelastic Scattering) and used in cross-section calculations. µF

is the factorization scale; an artificial scale inserted to separate short- and long-

distance physics. The cross-section in nature must once again be independent

h1

h2

a

b

t

t̄

1

Figure 3.1: Visualisation of the Factorization Theorem

of this scale. However, as one works to finite order in perturbation theory, the

resulting approximation of the physical cross-section carries a dependence on µF

(and µR). A variation of the unphysical parameters µF and µR, present in a

fixed order calculation, is often performed to obtain a rough handle on the size

of uncalculated higher order corrections.

Many groups are actively involved in the extraction of these PDFs from ex-

perimental data (see for example [35, 36, 37]). The PDF set chosen for the results

presented in this work is the MSTW2008 PDF set [36].

The quantities in 3.1 can be expanded in perturbation theory and in particular

the hard interaction part takes the form

σab→X = σLOab + σNLOab + . . . (3.2)

where σLO is the Born-level partonic cross-section and σNLOab is the NLO correc-

tion. When the final state X contains m partons, we have (using notation similar
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to that in [32])

σLOab =

∫
m

dσBab(pa, pb) (3.3)

σNLOab =

∫
m

dσVab(pa, pb) +

∫
m+1

dσRab(pa, pb) +

∫
m

dσCab(pa, pb;µ
2
F ). (3.4)

The terms dσVab and dσRab involve the virtual (one-loop) and real (single gluon

emission) corrections to the Born-level process. dσCab is the collinear counter-

term and arises from NLO corrections to the PDFs. Like the virtual and real

corrections, these are divergent and are collected in the collinear counter-term.

Although the terms above are individually divergent, their sum is finite and well

defined. Precisely how these are combined to give sensible results will be looked

at in detail in §3.2.

3.1.1 Measurement Functions and Infra-Red Safety

The coloured partons discussed in the context of perturbation theory are never

observed as final states due to QCD confinement. Quarks and gluons instead

manifest themselves in experimental final states as sprays of hadrons known as

jets. Correctly linking partonic calculations with physical observables (including

the cross-section) requires the introduction of a Measurement (or Jet) Function,

F, which defines measured quantities in terms of partonic momenta. In general

this will be composed of multiple theta functions, imposing conditions and cuts

on the final state X. With this introduction, the terms in 3.4 appear as∫
m

dσB,Vab =
1

2sab

1

n̄an̄b

∫
dΦm M

B,V,C
ab (pa, pb, {pi}) Fm(pa, pb, {pi}) (3.5)

∫
m

dσCab =
1

2sab

1

n̄an̄b

∫ 1

0

dx

∫
dΦm(x) MC

ab(xpa, pb, {pi}) Fm(xpa, pb, {pi}) (3.6)

∫
m+1

dσRab =
1

2sab

1

n̄an̄b

∫
dΦm+1 M

R
ab(pa, pb, {pi}) Fm+1(pa, pb, {pi}). (3.7)
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in a cross-section calculation. M
B,V,C,R
ab are the Born, virtual, collinear counter-

term and real matrix elements for the process1. Fm behaves as

Fm(pa, . . . , pm)→ 0, for pi.pj → 0, (3.8)

thus properly defining the Born process of interest, ensuring the constituents of

X are physically distinguishable and each with a measurable momentum.

F does not only serve to define our process, but also plays a crucial role

when higher order corrections are included. As previously mentioned, the can-

cellation of singularities between virtual and real corrections at higher orders in

perturbation theory is guaranteed by the KLN theorem for appropriately defined

quantities. The property that observables must have to guarantee this vital can-

cellation is infra-red safety. This restriction essentially means that observables

must remain unchanged upon radiation of soft and (or) collinear massless par-

tons. If not, observables are liable to receive large (infinite) corrections from every

order in perturbation theory.

The tool that ensures we calculate infra-red safe observables is F. The proper-

ties this must posses in the soft and collinear limits are (see for example [31, 32])

Fm+1(p1, . . . , pm, pm+1 = λq)→ Fm(p1, . . . , pm), for λ→ 0 (3.9)

Fm+1(p1, . . . , pi, . . . , pm+1)→ Fm(p1, . . . , (pi + pm+1), . . . , pm),

for pi → z(pi + pm+1), pm+1 → (1− z)(pi + pm+1).

(3.10)

3.2 Infra-Red Singularities and the Subtraction

Method

The key starting point in the computation of a NLO cross-section is (3.4). We

recall that V and R stand for the virtual and real corrections, whilst C labels

the collinear counter-term required for NLO cross-sections involving initial state

1Outside the integral signs, the terms 1/sab and 1/(n̄an̄b) correspond to the flux factor and
the spin-colour averaging factors respectively.
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partons. The terms
∫
m
dσV ,

∫
m+1

dσR and
∫
m
dσC are individually IR divergent.

However, as discussed earlier, for IR-safe observables, the singularities cancel in

the sum of these terms.

For the real contribution, it is required that the integral over the additional

parton phase-space,
∫

1
dσR, be performed in d-dimensions and the divergences

present extracted as poles in ε. These can then be cancelled by the ε poles from

the virtual contributions to yield finite (in ε) expressions. The limit ε → 0 can

then be safely taken and the integral over the m-parton phase-space can be per-

formed. However, the integral over the additional parton phase-space is often

impossible to compute analytically and one is forced to resort to a numerical

approach to extract meaningful quantities from 3.4. Despite this not being com-

pletely straightforward, as one has to deal with divergent quantities which sum

up to give finite results, it is well known how to progress.

There are two conceptually different approaches to this problem, the Sub-

traction method and the Slicing method [38]. In this work we will focus on the

former. The trick, known as the Subtraction method, is to add zero to 3.4; more

precisely, a term (known as a subtraction counter-term)∫
m+1

dσR,c.t. (3.11)

is added and subtracted. Should this term satisfy certain properties, namely, re-

produce all the singular regions of dσR exactly and if the integral
(∫

1
dσR,c.t.

)
d=4−2ε

can be performed analytically, then 3.4 can be written as

σNLO
ab (pa,pb;µ

2
F ) =∫

m

(
dσVab(pa, pb) + dσCab(pa, pb;µ

2
F ) +

∫
1

dσR,c.t.(pa, pb)

)
ε=0

(3.12a)

+

∫
m+1

(
dσRab(pa, pb)− dσR,c.t.(pa, pb)

)
ε=0

. (3.12b)

Since the counter-term mimics the real matrix element in all its divergent regions,

the ε-poles of
∫

1
dσR,c.t. are identical to those of

∫
1
dσR. This means that (3.12a)
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is free of ε-poles and finite, so the integrals over the m-parton phase-space can be

performed numerically in 4 dimensions. Similarly, (3.12b) is also finite and the

integral over the m+ 1-parton phase-space can be done numerically.

The success of this method clearly hinges on the construction of the local

counter-term dσR,c.t. with desirable properties outlined above. Fortunately, this

is made possible by the universal IR behaviour of QCD scattering amplitudes.

The two mainstream approaches to constructing these local counter-terms are

the Dipole method of Catani and Seymour [32] (along with its generalization to

massive final state partons [39]) and the FKS method of Frixione, Kunszt and

Signer [40] (and its generalization to the massive case [41]). These two methods

will now be briefly described.

3.2.1 The Dipole Subtraction Method

As mentioned above, it is the universal IR behaviour of QCD amplitudes that is

exploited to construct the local subtraction counter-terms. In the Dipole Method,

a term is constructed that simultaneously captures the limits in which two partons

become soft or collinear to each other. Restricting ourselves to the case where a

final state k becomes soft or collinear to another final state, i, the method works

as follows. Firstly, the various partons involved are defined as the emittor parton,

(ik) (the one that splits), the emitted parton, k, and a spectator parton, labelled

j here. The latter is the parton colour connected to the emittor in the soft limit.

Dipole functions can then be written down which smoothly interpolate between

the strict soft and collinear limits and regions away from these. For the case

considered here, the dipole takes the form

Dik,j = Mij({p̃l}) Vik,j, (3.13)

where the factorization into a Born-level (colour-correlated) matrix element and a

function describing the singular limits is evident. The dipoles are universal in the

sense that the process dependence only enters in the Born-level matrix element,

Mij, whilst the expressions Vik,j are process independent (the only dependence

they have are on the flavour of the partons i, j and k). The Born-level matrix

element is evaluated with new momenta {p̃l}, obtained from the original momenta
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via a mapping

{pa, pb; p1, . . . , pn, pn+1} → {p̃a, p̃b; p̃1, . . . , p̃n}. (3.14)

This mapping must be performed as the Born-level matrix element requires a

reduced, n-final-state configuration.

In general, the emittor and the spectator can be either final state or initial

state partons, yielding four different types of dipole function. The full expres-

sions for these functions can be found in the original Dipole Formalism papers

[32, 39]. The full counter-term for the real matrix element can then be written

schematically as

dσR,c.t. =
∑
D

D({pi}) · F({p̃i})

=
∑

dipoles

dσB �
(
dVdipoles + dV ′dipoles

)
. (3.15)

The term dVdipoles matches the divergences of the real matrix element arising from

regions where the additional parton becomes soft and/or collinear to a final state

parton, whilst dV ′dipoles reproduces the singularities present when the additional

parton becomes collinear to an initial state parton. Integration over the additional

parton phase-space can be performed analytically to give∫
1

dσB � dVdipoles = dσB � I(ε) (3.16)

and ∫
1

dσB � dV ′dipoles =

∫ 1

0

dx dσB(xpa, pb) �
(
P(xpa, x, µ

2
F ) + K(x)

)
+

∫ 1

0

dy dσB(pa, ypb) �
(
P(ypb, y, µ

2
F ) + K(y)

)
. (3.17)

I, K and P are universal, so-called, insertion factors. dσB � I(ε) contains ε-poles

which cancel those from the virtual matrix element; the pole structure of the I
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insertions will be indicated explicitly where appropriate.

Putting everything together, the NLO correction to the cross-section can be

written as the sum of three separate finite terms,

σNLO(pa,pb;µ
2
F ) = dσNLO,{m+1}(pa, pb) + dσNLO,{m}(pa, pb)

+

∫ 1

0

dx
[
dσ̂NLO,{m}(xpa, pb;µ

2
F ) + dσ̂NLO,{m}(pa, xpb;µ

2
F )
]

(3.18)

with each term individually given by

dσNLO,{m+1}(pa, pb) =

∫
m+1

[
dσRab(pa, pb)−

∑
dipoles

dσB �
(
dVdipoles + dV ′dipoles

)]
,

(3.19)

dσNLO,{m}(pa, pb) =

∫
m

[
dσVab(pa, pb) + dσB � I(ε),

]
(3.20)

∫ 1

0

dx
[
dσ̂NLO,{m}(xpa, pb;µ

2
F ) + dσ̂NLO,{m}(pa, xpb;µ

2
F )
]

=

∫
m

[
dσCab(pa, pb;µ

2
F ) +

∫ 1

0

dx dσB(xpa, pb) � (K(x) + P(x, µ2
F ))

+

∫ 1

0

dx dσB(pa, xpb) � (K(x) + P(x, µ2
F ))

]
. (3.21)

These are now in a form that can be readily integrated with a Monte Carlo

integrator where arbitrary IR-safe cuts on the final state phase-space may be

imposed.

3.2.2 The FKS Subtraction Method

In the FKS method the universal IR behaviour of QCD amplitudes is exploited in

a rather different way to construct a local subtraction counter-term. To illustrate

the key idea we first consider a function f(ξ, y) which in the limits ξ → 0 and
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y → 1 diverges as 1/ξ and 1/(1− y) respectively and thus the integral

I =

∫ ξmax

0

dξ

∫ 1

−1

dy f(ξ, y) (3.22)

is singular. Due to the divergences appearing at the specified points in phase-

space, it is possible to isolate and remove them through the use of +-distributions.

Modifying the above integral to

Isubtr. =

∫ ξmax

0

dξ

∫ 1

−1

dy

(
1

ξ

)
ξcut

(
1

1− y

)
δ

ξ (1− y) f(ξ, y) (3.23)

where the +-distributions are defined by∫ ξmax

0

dξ

(
1

ξ

)
ξcut

g(ξ) =

∫ ξmax

0

dξ
g(ξ)− g(0)Θ(ξcut − ξ)

ξ
, (3.24)

∫ 1

−1

dy

(
1

1− y

)
δ

g(y) =

∫ 1

−1

dy
g(y)− g(1)Θ(y − 1 + δ)

1− y . (3.25)

The Θ-functions are the Heaviside-step functions and the parameters 0 < ξcut <

ξmax and 0 < δ < 2 are arbitrary parameters dictating how close to the divergent

phase-space points ξ and y can get. The modified integral takes the form

Isubtr. =

∫ ξmax

0

dξ

∫ 1

−1

dy {f(ξ, y)− f(0, y)Θ(ξcut − ξ)− f(ξ, 1)Θ(y − 1 + δ)

+f(0, 1)Θ(ξcut − ξ)Θ(y − 1 + δ)} (3.26)

and is finite under integration over dξ and dy. The prescription described by the

above equations is precisely the one that allows for a realisation of the Subtraction
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Method. To see this we now make the replacements

ξ → ξk, (3.27)

y → yik, (3.28)

f(ξ, y) dξ dy →MR(ξk, yik) ξk dξk dyik, (3.29)

where ξk and yik parametrize the energy of the additional parton, k and the

cosine of its angle relative to the parton i. MR is the real matrix element, which

depends on ξk and yik as well as other phase space variables. The limits ξk → 0

and yik → 1 are the soft and collinear limits, where by collinear we mean collinear

to parton i. The additional factor of ξk in the replacements above comes from

the measure of the emitted parton’s phase space. It is clear that the situation for

ξkM
R(ξk, yik) is just as for the function f(ξ, y) since as discussed the real matrix

element diverges as 1/ξ2
k and 1/(1− yik) in the soft and collinear limits.

As it stands, the above prescription is valid if there is only one coloured

external parton at Born-level. In order to make full use of this machinery in

practice a partitioning of the phase space must be performed, where in each

partition the emitted parton can become collinear to at most one other external

parton. This means that each partition contains no more than one soft and one

collinear singularity and the method described above using the +-distributions

can be applied. The splitting up of phase-space is achieved via the introduction

of functions Si constructed such that

MR =
∑
i

Si M
R (3.30)

and Si → 0 when k becomes collinear to a parton other than i.

The method so far provides the local subtraction counter-terms required for

(3.12b). To be consistent, the terms subtracted must be added back. The terms

added back will involve simpler integrals that can be straightforwardly evaluated

analytically in d-dimensions, providing the ε-poles required to cancel those present

in the virtual matrix element.

A feature of the method outlined here is that the dependence of the counter-
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terms on the parameters ξcut and δ translates to a dependence on these parameters

of (3.12a) and (3.12b) separately. However the physical quantity obtained when

adding these two contributions is, as expected, independent of the choice of these

parameters.

For many more details on the functions Si, the parametrization of phase-space

and all analytical formulas required, we refer to the original FKS paper [40] as

well as a more recent paper [41] describing the extension of the method to the

case of massive partons and its automation in NLO calculations in general.
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Chapter 4

The Unstable Top Quark

Unstable particles such as Z and W bosons or the top quark are not seen in

detectors. Instead, their existence is inferred by an examination of their decay

products. In this chapter we describe some of the main approaches to unstable

particle production and decay and discuss the role of hard and soft gluons in

higher order corrections to such processes.

4.1 Resummation of the Top Quark Propagator

Let us consider a process in which the final state {l1, . . . , lM , f1, . . . , fN} is pro-

duced and where a heavy unstable particle, X, may contribute to this final state

via X → f1, . . . , fN .

In general, the tree-level amplitude for this process may be written as

A(0) =
K(pi)

p2
X −M2

X

+ N(pi) (4.1)

where pi are the final state momenta, p2
X = (pf1 + . . . pfN )2 and MX is mass of

particle X. K includes the Feynman diagrams involving the decay subprocess

X → f1, . . . , fN , the resonant diagrams, whilst N accounts for the non-resonant

diagrams which do not involve a decay of X.

The kinematic limit p2
X → M2

X sees this amplitude run into a non-integrable

singularity. This is an indication that higher order terms in the pertubative ex-
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pansion become of the same magnitude as the leading term and must be included

to all orders. The known cure for this is a Dyson resummation of self-energy

insertions, ΣX , to the X-propagator. In the case where X is a top quark, this

amounts to performing the substitution

i(/pt +Mt)

p2
t −M2

t

→
i(/pt +Mt)

p2
t −M2

t

∞∑
n=0

[
−iΣt(/p)

i(/pt +Mt)

p2
t −M2

t

]n
(4.2)

for the resonant top quark propagators in (4.1). The Dyson resummation shifts

the pole of the heavy particle propagator away from the real axis as follows,

p2
X −M2

X → p2
X −M2

X − iΣX(p2
X), (4.3)

thus regulating the pole for real momenta.

Whilst in principle this is fine when just studying the propagator, making this

replacement in the amplitude (4.1), is potentially dangerous. The self-energy will

in general only be known up to some fixed order, and is a gauge-dependent quan-

tity. Thus the naive replacement (4.3) will usually yield gauge-dependent ampli-

tudes; a problem only cancelled by some (uncalculated) higher orders. Mixing up

orders in perturbation theory, if not done with care, will lead to violation of gauge

invariance - a property only guaranteed for fixed order amplitudes in perturba-

tion theory. Various approaches to treating unstable particles whilst maintaining

gauge-invariant amplitudes will now be outlined.

4.2 On-Shell Treatment

An assumption that can be made that simplifies the calculation of the amplitude

of (4.1) is to make the kinematic constraint that p2
X = (pf1 + . . . pfN )2 = M2

X .

We will see how this is an approximation that can be introduced in a systematic

manner.

The resonant part of the tree-level amplitude, K({pi}, p2
X), can always be

written as

K({pi}, p2
X) = Pα(i j → l1, . . . , lM , X)Παβ(pX)Dβ(X → f1, . . . , fN), (4.4)
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namely, factorized into production and decay parts, P and D linked together by

the numerator of the unstable particle propagator, Π(pX). The spin indices of X

are made explicit to emphasise that no approximations have yet been made and

that all correlations are still included in the expression on the RHS of (4.4).

Squaring this resonant amplitude (assuming that a resummation of the prop-

agator has been performed1) and integrating over the final state phase-space, we

have ∫
dΦij→l1,...,lM ,f1,...,fN

K({pi}, p2
X) K∗({pi}, p2

X)

(p2
X −M2

X)2 +M2
XΓ2

X

=

∫
dp2

X

2π

∫
dΦij→l1,...,lM ,X dΦX→f1,...,fN

K({pi}, p2
X) K∗({pi}, p2

X)

(p2
X −M2

X)2 +M2
XΓ2

X

. (4.5)

Now we can utilise the following expansion of the denominator above

1

(p2
X −M2

X)2 +M2
XΓ2

X

=
π

MXΓX
δ(p2

X −M2
X) + O(

ΓX
MX

) (4.6)

to simplify this expression. If we keep only the first term in the expansion it is

straightforward to see that this yields the expression

1

2MXΓX

∫
dΦij→l1,...,lM ,X̄ dΦX̄→f1,...,fNK({pi},M2

X) K∗({pi},M2
X), (4.7)

where the bar on X̄ simply indicated that now the unstable particle X is treated

as on-shell everywhere. Some simplifications follow from this.

Firstly, the condition p2
X = M2

X means that Π(pX) can be written as a sum

1Strictly speaking the form of the propagator with a fixed width, ΓX , is only valid when in
the region of p2X ∼ M2

X we have that Im[ Σ(p2X)] � M2
X and the approximation Im[ Σ(p2X)] '

Im[ Σ(M2
X)] can be applied, yielding the standard Breit-Wigner propagator.
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over a complete set of states

Π(pX) = /pX +MX =
∑
spins

u(pX)ū(pX), if X is a fermion, (4.8)

Π(pX) = −gµν +
pµXp

ν
X

M2
X

=
∑
pols

εµ(pX)εν ∗(pX), if X is a vector boson .

(4.9)

The full expression for the tree-level resonant piece reduces to

K({pi},M2
X) =

∑
s

A
(0)
prod(i j → l1, . . . , lM , X̄

s)A
(0)
dec(X̄

−s → f1, . . . , fN). (4.10)

A
(0)
prod and A

(0)
dec are now the actual amplitudes for the production and decay pro-

cesses i j → l1, . . . , lM , X̄ and X̄ → f1, . . . , fN . The amplitudes are still linked

by the sum over spins, thus correlations between production and decay subpro-

cesses are still present (as in the case where no approximations are made (4.4)).

However, any off-shell effects have been eradicated, hiding somewhere in the

higher orders in the expansion in ΓX/MX ; all effects of off-shell propagators have

amounted to a constant phase factor.

What has been thus far described is known as the improved Narrow Width

Approximation (iNWA). A further simplification can be achieved if one wishes to

ignore spin correlations between production and decay subprocesses. In this case

the resonant amplitude squared, integrated over phase space, reduces to

1

2MXΓX

∫
dΦi j→l1, ..., lM , X̄

∣∣∣A(0)
prod

∣∣∣2 ∫ dΦX̄→f1,...,fN

∣∣∣A(0)
dec

∣∣∣2 , (4.11)

known as the Narrow Width Approximation (NWA). It can be significantly sim-

pler technically to calculate the required matrix elements for the NWA compared

to calculating those required for the iNWA. In the case of the former, production

and decay matrix elements can be treated completely independently, whilst in

the latter case they must be spin correlated.

Going to higher orders in the perturbative expansion in the iNWA or NWA

is fairly straightforward. At NLO the computation of one-loop and real-emission
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corrections to A
(0)
prod or A

(0)
dec is required. Writing the differential cross-sections

of the production and decay subprocesses as dσP and dσD, at LO and NLO

respectively the total differential cross-section is given by

LO: dσ0 = dσ0
P � dσ0

D (4.12)

NLO: dσ1 = α dσ1
P � dσ0

D + α dσ0
P � dσ1

D. (4.13)

In principle, to be fully consistent in perturbation theory one should also expand

the decay width, ΓX , in the coupling α. The construction of an NLO correction

to the differential cross-section that is strictly of O(α) accuracy is then possi-

ble. The (i)NWA thus provides one with a consistent framework with which to

make predictions correct to whatever fixed order in perturbation theory required

(or possible). There is no danger of the width spoiling gauge cancellations be-

tween diagrams due to the fact that Dyson resummation of self-energies has been

demoted to a constant phase-space factor.

The corrections to the production and decay processes are known as factor-

izable corrections. Due to the way the phase space has factorized, as a result

of the on-shell condition, corrections connecting production and decay subpro-

cesses (non-factorizable corrections) are forbidden by momentum conservation.

Schematic diagrams indicating the corrections required in the on-shell case are

shown in Figure 4.1.

We note that when the on-shell assumption is made no effects coming from

non-resonant diagrams are included. The final matrix elements are strictly gauge-

invariant thanks to the intermediate unstable particle being on-shell and the

amplitudes themselves therefore correspond to physical amplitudes. In fact, this

also means that the production and decay amplitudes are also independently

gauge-invariant.

4.2.1 Decays of W-bosons

Throughout this work W -bosons are implicitly assumed to decay to leptons.

These decays are included in the iNWA which amounts to replacing the W -
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virtual

real

1

Figure 4.1: Schematic diagrams of corrections required in the production and
subsequent decay of an unstable heavy particle, X, in the (i)NWA. No loops con-
necting production and decay are present and interferences between real emissions
from production and decay are not permitted.

polarization tensors in the amplitudes with the expressions:

εµ(pW+ = pl+ + pνl)→
i gew√

2

1√
2MWΓW

〈pνl | γµ |pl+ ] (4.14)

εµ(pW− = pl− + pν̄l)→
i gew√

2

1√
2MWΓW

〈pl−| γµ |pν̄l ] . (4.15)
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At tree-level, hadronic decays, for example W+ → u d̄, can be incorporated in

much the same manner. These however, have not been included in the work

presented in this thesis.

4.2.2 On-Shell Top-Pair Literature

Next-to-leading order corrections to top-pair production processes where top

quarks are taken to be on-shell have been the object of studies spanning more

than two decades. Corrections to stable top-pair production have been presented

in [42, 43, 44, 45, 46]. As these calculations were made prior to the discovery

of the top quark, the studies were focused mainly on b-quark production and

light (Mt < 170 GeV) top quark production at relatively low center of mass en-

ergies. Corrections of up to 50% were observed both for total cross-sections and

in various distributions thus indicating the importance of NLO corrections in the

description of the production of heavy quarks. However, this pioneering work

does not allow for the construction of Monte Carlo’s where the final states gen-

erated are the decay products of the top quarks. To achieve this the decay of the

tops must be included.

QCD corrections to production and decay of a tt̄-pair, including spin corre-

lations, have been presented in [47, 48]. This description of top-pair production

has also been implemented recently in the public Monte Carlo generator, MCFM

[49]. This work allows for a realistic description of top-pair production at hadron

colliders due to the final states being the b-quark jets and leptons arising from the

decay of the tops. Including NLO corrections in the decay has significant effects in

some distributions; this will be illustrated further on. Moreover, for observables

sensitive to the spin of the heavy tops (e.g. the opening angle between the two

leptons), including spin correlations between production and decay subprocesses

has important effects, therefore for a good description of such observables the

iNWA should be employed over the NWA.

For a large class of observables, the (i)NWA is sufficient for a good description

of the partonic processes. In particular, the argument that corrections to the

(i)NWA are suppressed by a factor of ∼ Γt/Mt enforces this idea. However, as

will be explained in the next section, this argument only holds for observables
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that are inclusive in the invariant mass of the top and this strong suppression is

not expected to hold otherwise.

4.3 Off-Shell Treatment

Relaxing the assumption that X is on-shell results in complications. Not only

must care be taken to ensure gauge invariance upon inserting the Dyson re-

summed propagator, but, in addition, the calculation becomes more involved as

will now be discussed.

Firstly, contributions from background diagrams (the term N in (4.1)) can

no longer be ignored. As the split into resonant/non-resonant diagrams is not a

gauge-invariant one, these background diagrams must be included to guarantee

gauge invariance. Going to higher orders, this means one-loop and real-emission

corrections must be calculated for all background as well as resonant diagrams.

Simply due to the proliferation of diagrams that must be computed, this leads

to a significant increase in complexity of the calculation. Schematic diagrams

required in the fully off-shell scenario are depicted in Figure 4.2.

A further difficulty comes via the shift M2
t → µ2

t in the unstable particle

propagators due to Dyson resummation. All loop diagrams involving the unstable

particle in the loop require the evaluation of integrals with complex masses. This

presents additional challenges.

4.3.1 Non-Factorizable Corrections

A class of corrections that must be consistently included once the unstable particle

is considered to be off-shell are the non-factorizable corrections. These corrections

connecting production and decay subprocesses have traditionally been thought of

as technically difficult to compute as, in particular, they involve the computation

of multi-point and multi-scale integrals. Studies of the effects of non-factorizable

corrections have shown that for inclusive observables, such as the total production

cross-section of the unstable particle, the contributions are very small. The reason

for this is a cancellation of large logarithms (∼ log (Γt/Mt)) between such real

and virtual corrections, leaving residual terms of O(Γt/Mt) [50, 51]. For top quark
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Figure 4.2: Schematic diagrams of corrections required when the unstable heavy
particle, X, is fully off-shell.

production, this amounts to an effect of . 1−2% for the total cross-section. This

is one of the justifications for the use of the iNWA in the calculation of unstable

particle production and decay.

A priori, however, it is not clear whether the cancellation between real and

virtual contributions, demonstrated in [50, 51], remains for less inclusive observ-

ables and distributions. For the case of top quarks, it would be highly desirable to

have such effects under control, especially given the unique opportunity provided

by the LHC and Tevatron for precision top studies. Moreover, it is essential to

include this set of corrections if we are to determine the value of top mass to a

precision better than ∼ Γt.

4.3.2 The Complex Mass Scheme

As mentioned, the shift in the mass, M2
X → µ2

X required to overcome the non-

integrable singularity around p2
X = M2

X requires care so as not to spoil the gauge-

invariance of the matrix elements. One possible way around this at NLO is to
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introduce the complex mass consistently at the level of the Lagrangian via a new

renormalization scheme known as the Complex Mass Scheme (CMS) [52]. Here,

the unstable particle’s bare mass is split into a complex renormalized mass and

a corresponding complex counter-term,

M2
X,0 = µ2

X + δµ2
X . (4.16)

The unstable particle’s bare field has the same form as previously2,

X0 = (1 +
1

2
δZX)X. (4.17)

Introduction of these complex renormalized fields and masses for all unstable

particles of the Lagrangian leads to Feynman rules for renormalized vertices and

counter-terms that are complex. Standard perturbation theory can then be car-

ried out with these new Feynman rules. Clearly, the CMS implies that evaluation

of integrals with complex internal masses will be required for loop diagrams.

The counter-terms are fixed by the choice of conditions which in this case are

a generalization of the on-shell scheme, leading to [52],

δµ2
X = ΣX(µ2

X) and δZX = −Σ′(µ2
X), (4.18)

i.e. the same as the on-shell scheme except that the self-energy ΣX is evaluated

with the complex mass, µ2
X .

The consistent insertion of complex masses in the Lagrangian using the CMS

scheme ensures that Ward Identities are satisfied exactly at NLO, thus explicitly

preserving gauge invariance. The authors of [52] are confident that the CMS

scheme can be generalized to higher orders.

Though standard perturbation theory methods can be employed when using

the CMS, its use in NLO calculations still requires the computation of all back-

ground diagrams and corrections to these - a book-keeping feat made even more

challenging when all Feynman rules for vertices and counterterms are complex.

Another, perhaps undesirable feature, is that as all unstable particle masses are

rendered complex, all associated propagators contain the effects of an all-orders

2 X here is assumed to be a fermion or a vector boson.
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resummation of self-energies, irrespective of whether or not this is appropriate.

For example, in t-channel propagators (such as in t-channel single-top production)

this is not necessary.

4.3.3 The Pole Expansion

If we are interested in kinematic regions where the unstable particles are near their

mass-shell, i.e. resonant, then a method developed in the early 1990’s provides

a consistent and gauge-invariant way of performing resummation of the unstable

particle propagator. This method is the pole expansion [53, 54].

We again recall that a fixed-order amplitude runs into a non-integrable sin-

gularity in the resonant region, p2
X → M2

X . Simply resumming the fixed (lth)

order self-energy, Σ
l

X(p2
X), to all orders, thus ‘fixing’ this problem via the shift

p2
X −M2

X → p2
X −M2

X − Σ
l

X(p2
X), yields a gauge-dependent amplitude. This is

due to the gauge dependence of Σ
l

X(p2
X) and is only cancelled by higher order

contributions in the perturbative expansion.

The problem here stems from trying to cure a fixed-order calculation in an ad

hoc manner through the insertion of a shift in mass (albeit physically motivated).

A better approach would be to start from an expression that is valid in the

kinematic region we are interested in and extract the amplitudes we require up to

the precision desired. The pole expansion provides the first step in this direction.

The starting point is the amplitude for a process, correct to all orders in the

couplings,

A(p2
X) =

ω(p2
X)

p2
X − s̄X

+ n(p2
X). (4.19)

Here s̄X is the physical complex pole of the amplitude, defined through the so-

lution(s) to s̄X −M2
X − ΣX(s̄X) = 0 (with ΣX the all orders 1PI self-energy of

X). ω(p2
X) is the residue at this pole and n(p2

X) is the non-resonant piece. These

three parts are all physical gauge-invariant quantities. The amplitude A is clearly

gauge-invariant as there has been no expansion in coupling constants.

Expanding about the physical parameter s̄X results in an order by order gauge-
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invariant expansion, whose leading term is

A(p2
X) =

ω(s̄X)

p2
X − s̄X

+ O((p2 − s̄X)0). (4.20)

In principle, this can now be expanded in the coupling(s) α to any fixed order we

wish. The expression obtained through this is guaranteed to be gauge-invariant

as well as valid in the resonant region. The task now turns to computing the

O(α), say, corrections in the expansion above in practise, using results from what

is calculable, that is, from perturbation theory.

At LO all that is required is the tree-level on-shell production and decay

amplitude as well as the leading self-energy (which is O(α)). At NLO there are

corrections from both virtual and real-emission diagrams and the contributions

from each can be classed into factorizable and non-factorizable. At O(α), the

factorizable parts are essentially those corresponding to one-loop corrections or

single-emission corrections to the on-shell production or decay subprocesses. The

non-factorizable contributions are slightly more subtle. From the virtual diagrams

not involving an explicit 1/(p2
X−M2

X) propagator (these would go into the virtual-

factorizable corrections), one must extract only the terms that diverge as 1/(p2
X−

M2
X). These could for example be found in diagrams involving propagators of the

form 1/((pX + k)2 −M2
X), where k is the loop momentum, in the region where

k → 0. For the real non-factorizable corrections, as with the virtuals, only the

contributions that diverge as 1/(p2
X −M2

X) must be extracted. The self-energy

at two loops is also required to achieve O(α) accuracy.

The process of extracting the correct pieces from standard perturbation theory

to insert into (4.20) can be cumbersome. In particular, care must be taken to

use the correct pieces for the non-factorizable terms. This is not trivial; for

example, for loop diagrams this involves intricate manipulation of integrals to

obtain only the terms required. However, as will be explained in detail in the

forthcoming chapter, adopting ideas from ETs and making use of the method of

regions simplifies the problem of extracting the correct terms from loop diagrams

to one of book-keeping. In addition, we will see that an ET approach is almost a

natural way to implement the pole expansion in practice.

Finally, if there are multiple unstable particles present, then the pole expan-
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sion must be performed once for each unstable particle. This will be illustrated

in detail for the case of top-pair production.

4.3.3.1 Potential Limitations

As can be seen from (4.20), the residue ω(p2
X) is to be evaluated on-shell in the

pole expansion, i.e. with p2
X = s̄X . In practice, a projection must be made from

the off-shell phase space to the on-shell one that must be used for evaluation.

This projection is arbitrary and the results obtained with different projections

are expected to vary slightly. This variation however should be of O(αΓX/MX)

[54] relative to the precision to which we work.

As mentioned above, the starting-point for the pole expansion method is an

expression valid in the region where p2
X is near the physical pole s̄X . Here, the

relevant expansion parameter is p2
X − s̄X . Near threshold regions this will in

general pose problems. More specifically, unless p2
X actually corresponds to the

partonic centre of mass energy, ŝ, the pole expansion is simply not equipped to

describe these regions correctly. In threshold regions, the appropriate expansion

parameter is β =
√

1− ŝ/s̄X and it is only an expansion in β that captures the

behaviour correctly. A possible solution would be to switch to a Non-Relativistic

Effective Theory to describe the process in this region, however this is beyond

the scope of the work presented here. The assumption will be that the unstable

particle, X (or the system of unstable particles, in the case where multiple unsta-

ble particles are produced), is always at least a few widths away from threshold.

This can be enforced with a physical cut on the final states.

4.3.4 Off-Shell Top-Pair Literature

The NLO QCD corrections to the process involving a pair of fully off-shell top

quarks, i.e. the W− b W+ b̄ production process, was recently calculated by two

groups [55, 56, 57]3 using the Complex Mass Scheme. These calculations are

impressive even if only considering the complexity of the computations involved:

3The calculation of [57] also included effects of off-shell W -bosons. The differences between
treating the W s as off-shell and on-shell (iNWA) were observed not to exceed 0.5% for all
differential observables dominated by resonant top-quarks examined therein.
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over one thousand one-loop diagrams (involving over eighty pentagons and over

twenty hexagons) were evaluated. The two papers demonstrated that the differ-

ence in the total cross-section between treating the top on- or off-shell is of the

order of 1%, both at Tevatron and LHC energies, i.e. O(Γt/Mt), as expected by

the cancellation theorems [50, 51].

A detailed comparison of the full finite-top-width and iNWA predictions was

made in [58]. The latter study highlighted that for ‘standard’ Tevatron and LHC

experimental cuts, the full and iNWA yield inclusive cross-sections for W+ bW− b̄

production that differ by at most 1%. However, for differential observables, for

example the pT -distribution of the bb̄-system, the effects can reach up to 20-30%

in the tails of distributions. It is also clear that placing invariant-mass cuts of

the form Minv(W+ + Jb) > 200 GeV would greatly enhance the contributions of

both single- and non-resonant subprocesses and therefore also the contrast with

the iNWA predictions.

4.4 Scales in Processes involving Top Quarks

At this point we appeal to ideas from ETs to argue that scattering amplitudes

for processes involving unstable top quarks are dominated only by certain contri-

butions and many others do not play as significant a role.

Since the top quark decays in typical space-time scales of 1/Γt, top quark pro-

duction and subsequent decay subprocesses are also separated by such large(ish)

scales. Thus, possible QCD connections between production and decay can only

be significant when emitted gluons induce long-range interactions, i.e. only when

the gluons are soft, pg ∼ Γt. Hard gluons on the contrary can only generate

short-range interactions and so cannot affect subprocesses separated by an un-

stable top.

It would be optimal were it possible to exploit this physical observation to

simplify calculations involving unstable top quarks. From an ET viewpoint, one

would utilize the physical scales present and perform an expansion of the full

amplitudes in ratios of these scales (provided these ratios were small enough).

For the present scenario, the two physical scales are Γt and Mt and it would be

desirable to expand full amplitudes in the ratio Γt/Mt.
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It is possible to parametrize top quark virtualities through the kinematic

variable, ∆t,

∆t := p2
t − µ2

t . (4.21)

In the region where top quarks are resonant we have

∆t

M2
t

∼ MtΓt
M2

t

∼ Γt
Mt

� 1. (4.22)

It is then clear that an expansion in Γt/Mt also corresponds to an expansion in

the top quark virtualities in such regions. Furthermore, scattering amplitudes are

dominated by the leading terms in such an expansion, i.e. by subprocesses that

involve resonant top quark propagators. Processes not involving unstable top

quarks will be sub-leading in such an expansion, being accompanied by higher

powers of ∆t. Schematic diagrams that would yield leading contributions in an

expansion are depicted in Figure 4.3.

The reason behind the Born-level schematic diagram not involving a top quark

line is related to consistent ET counting. It may be that the leading parts of some

non-resonant diagrams scale as the leading NLO corrections, and thus must be

included for consistency.

Such an ET approach would allow one to systematically calculate the relevant

contributions to the process desired. This would significantly simplify the inclu-

sion of off-shell effects for unstable heavy particles compared to the standard fixed

order NLO approach. Furthermore, extending calculations for the processes con-

sidered here beyond NLO looks to be an almost impossible task using standard

approaches at present. Making full use of the physical information provided, as

advocated here, provides an inroad to computing higher-order corrections (though

even in an ET approach this would undoubtedly be a very challenging problem).

The application of these concepts at NLO are formalized and their use in practice

is discussed at length later on.
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4.4.1 Resonant Single Top Production

The application of ET concepts to the study of higher-order corrections to the

production of unstable particles was first examined in [59, 60]. The methods were

further developed for W -pair production near threshold in e+e−-collisions in [61]

and first applied to a hadron collider process for single-top production [62, 63].

Computing the process ub→ W+bd at NLO in QCD, by brute force, requires

roughly a factor of 8 more diagrams than that of the calculation of [62, 63]. The

ET methods allowed the authors to identify the dominant corrections prior to the

evaluation of any loop or real-emission diagrams thus resulting in a significant

reduction of the computational complexity. The off-shell effects were studied in

detail and, importantly, extensive comparison to the relevant on-shell calculations

(both NWA and iNWA) were made. The effects on the total cross-section as

well as many distributions were of the order of 1-2%, as expected for observables

inclusive in the invariant mass of the top. However, for more exclusive observables

and in particular near the edges of some distributions, differences of up to 10%

from the on-shell predictions were observed.

In addition, through the use of ET methods, important steps were made in

separating contributions that naturally live at the (widely-separated) hard and

soft scales of the process. The presence of such scales leads to the presence of large

logarithms (of the ratio of these scales) in perturbation theory. Complete separa-

tion of such contributions may allow for a resummation of these large logarithms

and progress towards this is reported further on. Having control of the effects

of these large logarithms is highly desirable and it should be noted that such a

separation is non-trivial to achieve when using standard fixed-order perturbation

theory.
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Figure 4.3: Schematic diagrams of corrections required when the unstable heavy
particle, X, is resonant, i.e. p2

X 6= M2
X , but p2

X ∼ M2
X . Loops connecting pro-

duction and decay as well as interferences between real emissions production and
decay must be included.
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Chapter 5

Resonant tt̄ Production at NLO

The method fusing the pole expansion with ideas from Effective Theories is pre-

sented in this chapter by means of the example of unstable, resonant top-pair

production at hadron colliders. Many of the methods have been carried on and

further developed from the work on single top production published in [62, 63]

as well as thoroughly documented in the PhD Thesis of Paul Mellor. A new

treatment of the real corrections is described which allows for the clean split of

NLO corrections into factorizable and non-factorizable corrections.

The condition that the tt̄ system is at least a few widths away from threshold

will be assumed throughout this chapter, unless otherwise stated. This is to

ensure the validity of the pole expansion. The reasons for the breakdown of the

method near and below threshold will be discussed.

5.1 Processes

In the introduction it was noted that top-pair production comes about via both qq̄

and gg initial states at hadron colliders. Here the focus will be on computing the

dominant NLO QCD corrections to qq̄ → W+bW−b̄ production in the resonant

region, i.e. where (pW+ + pb)
2 ∼ (pW− + pb̄)

2 ∼ M2
t . The double resonant

subprocess at tree-level is depicted in Figure 5.1. The qq̄-initiated process is the

dominant one at the Tevatron proton anti-proton collider, however it also plays an

important role at the LHC at CERN. To fully describe this process of course, one
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Figure 5.1: Double resonant diagram for qq̄ → b l+ νl b̄ l
′− ν̄l′

must also include the gg-initiated processes (as well as the qg- and q̄g-initiated

processes, which enter at NLO).

5.2 Notation

First we set up the notation to be used in this chapter. The momenta are as

labelled in Figure 5.1, with the top quark momenta given by

pt = p3 + p5 + p6 pt̄ = p4 + p7 + p8 (5.1)

pt9 = p3 + p5 + p6 + p9 pt̄ 9 = p4 + p7 + p8 + p9. (5.2)

The momentum p9 is that of the additional gluon radiation present in the real

corrections at NLO. In what follows, the b-quarks are taken to be massless, i.e.

p2
3 = p2

4 = 0. We also define terms denoting the denominators of top quark

propagators (standard and resummed) by

Dt = p2
t −M2

t Dt̄ = p2
t̄ −M2

t (5.3)

Dt9 = p2
t9 −M2

t Dt̄ 9 = p2
t̄ 9 −M2

t (5.4)

∆t = p2
t − µ2

t ∆t̄ = p2
t̄ − µ2

t (5.5)

∆t9 = p2
t9 − µ2

t ∆t̄ 9 = p2
t̄ 9 − µ2

t . (5.6)
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5.3 The Pole Expansion and Effective Theory

Power-Counting

As advocated in §4.3.3 a good starting-point for the computation of gauge-

invariant quantities for unstable particles is the full (all orders) amplitude for

the production of the associated decay products. In the case of tt̄, where the final

state is W+ b W− b̄, this full amplitude can be written as

Afull(p
2
t , p

2
t̄ ) =

KD(p2
t , p

2
t̄ , {pi})

(p2
t − µ2

t )(p
2
t̄ − µ2

t )

+
KS,t(p2

t , {pi})
p2
t − µ2

t

+
KS,t̄(p2

t̄ , {pi})
p2
t̄ − µ2

t

+ J({pi}). (5.7)

Here µ2
t is the position of the pole of the full top quark propagator (we have

called the corresponding quantity s̄X in §4.3.3). KD, KS,t(t̄) are the residues at

the double and single poles and contain the appropriate effects from double and

single resonant diagrams. J is the non-resonant remainder.

The next step is to perform an expansion of the full amplitude about the

complex poles [53, 54]. The presence of two unstable particles means we have to

use a ‘double pole expansion’1, which reads:

A
(0)
full =

KD(p2
t = p2

t̄ = µ2
t )

∆t∆t̄

+
1

∆t

[
KS,t(p2

t = p2
t̄ = µ2

t ) +
∂KD

∂p2
t

(p2
t = p2

t̄ = µ2
t )

]
+ (t↔ t̄)

+ . . . (5.8)

The term ∂KD/∂p2
t arises from the expansion of KD about p2

t = µ2
t and describes

single resonant contributions from double resonant diagrams. The ellipses denote

an infinite series of terms suppressed by ever higher powers of ∆t and ∆t̄. The

expression above can now be expanded in the perturbative couplings αs and αew

1The double pole expansion was successfully employed to study NLO QED corrections to
unstable W-pair production in e+e− collisions for inclusive quantities [64].
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to whatever order we wish. At each order the expression is gauge-invariant and

valid in the resonant region. The non-trivial task that remains is to extract

from the standard perturbative expansion, the relevant pieces that should be

included in the expansion of (5.8). One method of doing this is examining the

Feynman diagrams and keeping only those with resonant top-quark propagators

and inserting them into (5.8), evaluating the relevant amplitudes with p2
t = p2

t̄ =

µ2
t . This is fairly straightforward at tree-level but becomes an increasingly delicate

procedure when including higher orders (loop and real-emission diagrams).

Adopting ideas from how ETs approach the computation of scattering am-

plitudes it is possible to develop a framework that provides an easy and efficient

way to pick out the correct pieces of standard perturbation theory for use in the

pole expansion.

As a first step this involves the introduction of a power-counting scheme that

will allow for the systematic expansion of Feynman diagrams in a single, generic

small parameter, δ. As we will be interested in the process q q̄ → W+ b W− b̄,

the Feynman diagrams that will be examined are the relevant ones describing

this process. The small parameter, δ, is identified with ∆t(t̄)/M
2
t in the resonant

region, as well as with each of the coupling constants raised to some power. In

fact, the relative scalings are:

∆t

M2
t

∼ ∆t̄

M2
t

∼ αew ∼ α2
s ∼ δ. (5.9)

The first scaling ∆t(t̄)/M
2
t ∼ αew is a formal one as in the resonant region

∆t(t̄) ∼ ΓtMt and Γt ∼ αewMt. On the other hand the second scaling αew ∼ α2
s

is a purely numerical one. Should the relative sizes of the couplings differ to

the ones above, a different scaling can easily be accounted for. The power of a

series in δ is that it realises a simultaneous pole expansion and expansion in the

couplings. This combination ensures gauge invariance at each order of δ.

Powers of δ may now be associated with individual diagrams prior to their

computation. The power of δ indicates how the leading part (in an expansion

in ∆t(t̄)) of a diagram scales with δ. For example, by assigning powers of δ to

the diagrams in Figure 5.2 following the scalings of (5.9), we can deduce that the
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leading parts of each would scale as

A
lp
eg.(a) ∼ αsαew

1

∆t∆t̄

∼ δ
1
2 .δ

δ.δ
∼ δ−

1
2 (5.10)

A
lp
eg.(b) ∼ αsαew

1

∆t

∼ δ
1
2 .δ

δ
∼ δ

1
2 (5.11)

A
lp
eg.(c) ∼ αsαew ∼ δ

1
2 .δ ∼ δ

3
2 (5.12)

The sum of tree-level diagrams following an expansion in δ can be written as

A
(0)
tree =

1

2

(
δ ī3i1δ

ī2
i4
− 1

Nc

δ ī2i1δ
ī3
i4

)
αsαew

[
A

(1,1)
(−2) + A

(1,1)
(−1) + A

(1,1)
(0) + . . .

]
+
(
δ ī2i1δ

ī3
i4

)
α2

ew

[
A

(0,2)
(−2) + A

(0,2)
(−1) + A

(0,2)
(0) + . . .

]
(5.13)

where A
(j,k)
−l indicates the sum of contributions that have a total of l resonant

top or anti-top quark propagators and are multiplied by j and k powers of αs

and αew. Thus A
(1,1)
(−2) receives contributions from diagram (a) of Figure 5.2, A

(1,1)
(−1)

from diagrams including (b) and (a sub-leading part of) (a) of Figure 5.2 and so

on. The second line in the equation above indicates the purely EW contributions

to the full amplitude.

The terms in the two square brackets above (when we include the couplings),

scale as [ ∼ δ−
1
2 + ∼ δ

1
2 + ∼ δ

3
2 + . . . ] and [∼ δ0 + ∼ δ1 + ∼ δ2 + . . . ] once

the power-counting rules are applied. The ellipses indicate terms which scale as

higher powers of δ.

For the colour-averaged square amplitude, Mtree
full we have

Mtree
full =

CF
2Nc

α2
sα

2
ew

[∣∣∣A(1,1)
(−2)

∣∣∣2 + 2Re
{
A

(1,1)
(−2)A

(1,1) ∗
(−1)

}
+ . . .

]

+ α2
ew

[∣∣∣A(0,2)
(−2)

∣∣∣2 + . . .

]
. (5.14)

In the expression above we have kept terms that scale up to ∼ 1 and the ellipses

now indicate terms of order O(δ) and higher. In principle there could be an
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interference term of the form 2Re
{
A

(1,1)
(−2)A

(0,2)∗
(−2)

}
, which would scale as ∼ δ−

1
2 .

However, this vanishes as the colour interference is zero.

For a leading order (LO) calculation in δ we need only keep the first term in

(5.13). This term scales as δ−1 and involves only the double resonant diagram,

(a) of Figure 5.2. To consistently include corrections in δ we must deal with the

higher order virtual and real diagrams in an appropriate manner. This will be

discussed next.

The purpose of this work is to compute corrections of O(δ
1
2 ) to the leading

order matrix element. That is, from the matrix element at all orders in αs and αew,

Mall-orders
full , we must extract terms that scale as up to and including O(δ−

1
2 ). Parts

suppressed by higher orders in δ can be safely ignored to this level of accuracy.

Referring back to the relative scaling of small parameters in the resonant region,

(5.9), it is clear that these corrections will be comprised primarily of the O(αs)

or NLO QCD corrections. In principle, additional contributions scaling as δ−
1
2

may be present in higher orders in QCD or indeed QED/EW and these should

all be included for consistency. From now on we take ‘NLO’ to mean a correction

of O(δ
1
2 ).

One-loop corrections must be interfered with the Born-level amplitude and

therefore it it necessary to extract one-loop contributions that scale as ∼ 1 such

that the interference makes up a correction of O(δ
1
2 ) to the LO matrix element.

Examples of such one-loop terms can be found in the QCD corrections to the

double-resonant diagrams. The leading parts of such corrections have a power-

counting of

α2
sαewA

(2,1)
(−2) ∼ δ.δ

1

δ2
∼ 1, (5.15)

giving a contribution to the matrix element, after interfering with the tree-level

amplitude of

MVirt ∼ α3
sα

2
ew2Re

{
A

(2,1)
(−2)A

(1,1) ∗
(−2)

}
∼ δ−

1
2 . (5.16)

As is necessary when using perturbation theory to make predictions that are

fully differential, real-emission diagrams must be included for a correct treatment
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of higher order corrections2. Once again, the power-counting dictates that cor-

rections to the double-resonant Born diagrams are required. The leading parts of

such diagrams will scale as

α
3
2
s αewA

( 3
2
,1)

(−2) ∼ δ−
1
4 , (5.17)

and contribute to the matrix element as

MReal ∼ α3
sα

2
ew

∣∣∣A( 3
2
,1)

(−2)

∣∣∣ ∼ δ−
1
2 . (5.18)

As will be detailed further on, the expansion of the real corrections requires

some attention and is not as straightforward as the expansion of the virtual

contributions.

We will now explain how the relevant pieces required for the computation

of the matrix element up to O(δ−
1
2 ) are extracted from each order of the full

perturbation expansion.

5.4 Born Amplitudes

As mentioned previously, it is possible to separate the diagrams for the process

qq̄ → W+ bW− b̄ into three classes: double-, single- and non-resonant diagrams.

Examples of such diagrams are depicted in Figure 5.2. Working to leading-order

in δ only the leading piece of diagram (a) is required.

The expansion introduced in the previous section results in the following ex-

pression for the tree-level helicity amplitude (with incoming quark helicities fixed)

A
(0)
full =

∑
ρ=±

∑
λ=±

A
(0)
D,t(t

λ → W+ b) A
(0)
P (qq̄ → t−λ t̄ρ) A

(0)
D,t̄(t̄

−ρ → W− b̄)

∆t∆t̄

+ O(δ
1
2 ).

(5.19)

A
(0)
D,t(t̄) is the tree-level amplitude describing the decay of an on-shell (anti-)top

and A
(0)
P is the tree-level amplitude for on-shell tt̄ production. The helicity (spin)

2For completely inclusive quantities, the real corrections can be related to the imaginary
part of the virtual correction via the Optical Theorem.
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Figure 5.2: Example double-, single- and non-resonant tree-level diagrams of the
process qq̄ → W+ b W−b̄

information of the top quarks is explicitly maintained between production and

decay parts of the amplitude in the expression above. The form of the amplitudes

above make them perfectly suited for calculation with the spinor helicity method

and its massive extension.

More specifically, when the decay of W± to leptons (via the iNWA) is included,

the amplitudes are given by (hi indicates helicity)

A
(0)
D,t(p

ht
t , p3, p5, p6) = g2

ew δ
ī3
it
A

(0)
D,t(p

ht
t , p3, p5, p6) (5.20)

A
(0)
D,t̄(p

ht̄
t̄ , p4, p7, p8) = g2

ew δ
īt̄
i4
A

(0)
D,t̄(p

ht̄
t̄ , p4, p7, p8) (5.21)

A
(0)
P (p

hq
1 , p

−hq
2 , phtt , p

ht̄
t̄ ) = g2

s

1

2

(
δ īti1δ

ī2
it̄
− 1

Nc

δ ī2i1δ
īt
it̄

)
A

(0)
P (p

hq
1 , p

−hq
2 , phtt , p

ht̄
t̄ )

(5.22)

where

A
(0)
D,t(p

+
t , p3, p5, p6) =

〈3 6〉 〈η3| pt |5]

〈3[ η3〉
1√

2MWΓW
(5.23)

A
(0)
D,t̄(p

−
t̄ , p4, p7, p8) = −〈7| pt̄ |η4] [4 8]

[η4 4[]

1√
2MWΓW

(5.24)

A
(0)
P (p−1 , p

+
2 , p

−
t , p

+
t̄ ) = −2

〈2| pt |η3] 〈η4| pt̄ |1] +M2
t 〈2 η4〉 [1 η3]

s12 [3[ η3] [4[ η4]
. (5.25)

The momentum labels are as depicted in Figure 5.1. The momenta 3[ (4[) and
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η3 (η4) correspond to the light-like momenta that the top momentum, pt (pt̄) has

been decomposed into (see §2.1.2.1).

All other helicity configurations can be deduced from the expressions above.

However, choosing η3 = p5 and η4 = p7 the amplitudes A
(0)
D,t(p

−
t , p3, p5, p6) and

A
(0)
D,t̄(p

+
t̄ , p4, p7, p8) vanish. Thus the sum over all possible top and anti-top he-

licities in (5.19) reduces to a single term, with only the production amplitude

with p−t and p+
t̄ required. Of course, for the matrix element, the helicity am-

plitude with the helicities of the incoming quarks swapped is also needed; this

can be obtained from the amplitude above via charge conjugation and results in

A
(0)
P (p+

1 , p
−
2 , p

−
t , p

+
t̄ ) having the same expression as (5.25) with the swap 1↔ 2.

It is noted that is has been possible to write the leading contribution to the

pole expansion in this factorized form due to the fact that the pole expansion

dictates that the residue of the pole must be evaluated on-shell. As a result,

we are able to introduce a complete set of states for the numerator of the top

quark propagators, thus achieving the form of (5.19), much akin to the iNWA

structure of (4.10). Here it is appropriate to make the point that the on-shell

condition p2
t = µ2

t can also be re-expressed as a series in δ. Explicitly this is

p2
t = µ2

t ' M2
t + O(αew) = M2

t + O(δ). To obtain the accuracy we aim for it

is sufficient to drop the O(δ) pieces of the on-shell condition and simply take

p2
t = M2

t .

5.5 One-Loop Amplitudes

A selection of one-loop corrections to the double-resonant tree-level diagram,

Figure 5.1 is shown in Figure 5.3. For a NLO calculation of qq̄ → W+ b W− b̄

where (pW + pb)
2 6= M2

t , the full set of one-loop corrections to all tree-level

(including single and non-resonant diagrams) would be required. In the resonant

region however, we will argue that the corrections we need to include are the

corrections to the double-resonant Born diagrams. It is important to re-iterate

that we should only keep the parts of these diagrams that scale as ∼ 1.

In order to pick out these relevant pieces it is necessary to be able to perform

an expansion in δ. The tool used to do this is the method of regions (see §2.1.4),

whereby the diagrams must be expanded in the hard (k0 ∼ ~k ∼ Mt) and soft
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

1

Figure 5.3: Selection of 1-loop corrections to the double resonant diagram of the
process qq̄ → W+ b W−b̄

(k0 ∼ ~k ∼ δ Mt) regions. Factors of Mt are suppressed in the power-counting to

ease arguments in the forthcoming discussion.

5.5.1 Power-Counting

Prior to computing hard and soft integrals resulting from an expansion in regions,

we can apply the same power-counting rules introduced earlier to obtain the

scalings of the leading terms in the expansions.
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For clarity we will run through an example, examining how the application

of the expansion by regions and power-counting works for diagram (c) of Figure

5.3. Using the Feynman rules, diagram (c) is given by the following expression

A
(1)
(c) = α2

s αew . . .
1

∆t ∆t̄

∫
[dk]

γµ (/pt − /k +Mt) γρ (/pt̄ + /k −Mt) γµ

k2 ((pt − k)2 −M2
t ) ((pt̄ + k)2 −M2

t )
. . . (5.26)

In the hard region, the denominator of the top-quark propagator, upon ex-

pansion, simplifies to

(pt − k)2 −M2
t = k2 − 2k.pt +Dt → k2 − 2k.pt. (5.27)

In this region the top propagators in the loop cannot be resonant and the resulting

expression for the leading hard term of full diagram becomes

A
(1)
(c),hard = α2

s αew . . .
1

∆t ∆t̄

∫
[dk]

γµ (/pt − /k +Mt) γρ (/pt̄ + /k −Mt) γµ

k2 (k2 − 2k.pt) (k2 + 2k.pt̄)
. . .

(5.28)

Applying the same power-counting rules as before to the expression above we find

the scaling

A
(1)
(c),hard ∼ δ . δ .

1

δ . δ
. 1 .

1

1 . 1 . 1
∼ 1 (5.29)

as in the hard region [dk] ∼ 1, k2 ∼ 1, k.pt ∼ k.pt̄ ∼ 1.

In the soft region, the top-quark propagators are expanded slightly differently,

leading to the denominators taking the form

(pt − k)2 −M2
t = k2 − 2k.pt +Dt → −2k.pt + ∆t. (5.30)

In the soft region it is evident that the top propagators are still resonant (scale as

∼ δ−1) and thus the shift Dt → ∆t must be performed in order that propagator

resummation effects are consistently included. The leading soft term of diagram
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Diagram Hard Soft

a 1 0 (tadpole)

b 1 0 (tadpole)

c 1 1

d 1 1

e 1 1

f δ δ

g δ 1

h δ 1

i δ2 1

Table 5.1: Power-counting for leading hard and soft contributions of double-
resonant one-loop diagrams.

(c) is thus

A
(1)
(c),soft = α2

s αew . . .
1

∆t ∆t̄

∫
[dk]

γµ (/pt +Mt) γρ (/pt̄ −Mt) γµ

k2 (−2k.pt + ∆t) (2k.pt̄ + ∆t̄)
. . . (5.31)

which then scales as

A
(1)
(c),soft ∼ δ . δ .

1

δ . δ
. δ4 .

1

δ2 . δ . δ
∼ 1. (5.32)

This scaling is obtained from the fact that in the soft region [dk] ∼ δ4, k2 ∼ δ2

and k.pt ∼ k.pt̄ ∼ δ. We also note that the k-terms in the numerator have

disappeared as they yield expressions that are suppressed by higher powers of δ.

Repeating this procedure for all diagrams in Figure 5.3 results in the scalings

of Table 5.1. The power-counting tells us that for diagrams (f)-(i) the hard

parts are beyond the order to which we work. The soft part of diagram (f) can

also be safely discarded. This leads to significant simplification of the one-loop

contributions as, in particular, only the soft parts of the pentagon and hexagon

diagrams must be included.

Due to the number of resonant top-quark propagators, it is clear that one-loop

corrections to single-resonant (non-resonant) Born diagrams will be suppressed

by a factor of δ (δ2) relative to the corrections to double-resonant Born diagrams.
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Multiplying the scalings in Table 5.1 by δ (δ2) we see that the leading hard and

soft contributions from the former set of corrections are well beyond our target

accuracy.

Similarly, QED/EW corrections as well as higher order QCD loops will in

general be suppressed by at least a factor of αs ∼ δ
1
2 relative to the terms in

Table 5.1 and so can be safely disregarded. However, care must be taken to

ensure this is really the case; we will see a little later that self-energy corrections

to the top propagators will require special attention.

5.5.2 Factorizable Corrections

1

Figure 5.4: Selection of one-loop corrections to the on-shell production process:
qq̄ → tt̄. These correspond to the factorizable corrections of qq̄ → W+ b W− b̄
arising from the tt̄ production subprocess.

1

Figure 5.5: One-loop correction to the on-shell decay process: t → W+ b. This
corresponds to the factorizable corrections of qq̄ → W+ b W− b̄ arising from the
t(t̄) decay subprocess.

A close inspection of the hard corrections that must be included reveals that
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they correspond exactly to the one-loop corrections to the production process

qq̄ → tt̄ or the decay process t → W+ b (or t̄ → W− b̄). Relevant Feynman

diagrams for these factorizable corrections are shown in Figures 5.4 and 5.5 re-

spectively. The production and decay subprocesses linked as in the iNWA (the

difference being that the denominators of the top propagators are evaluated off-

shell). This can be seen explicitly in (5.28). This is a general result and it is

precisely these hard corrections to production and decay subprocesses that for-

mally define the factorizable corrections. The pole expansion combined with the

method of regions provides a gauge-invariant separation of these corrections [59]

in contrast to a naive compilation of factorizable corrections selected on a diagram

by diagram basis, which is on the whole not gauge-invariant.

Finally, we write down the structure of the factorizable corrections (or the

leading hard corrections).

A
(1-loop)
hard =

∑
λ=±

∑
ρ=±

{
A

(1)
D,t(t

λ → W+ b) A
(0)
P (qq̄ → t−λ t̄ρ) A

(0)
D,t̄(t̄

−ρ → W− b̄)

∆t∆t̄

+
A

(0)
D,t(t

λ → W+ b) A
(1)
P (qq̄ → t−λ t̄ρ) A

(0)
D,t̄(t̄

−ρ → W− b̄)

∆t∆t̄

+
A

(0)
D,t(t

λ → W+ b) A
(0)
P (qq̄ → t−λ t̄ρ) A

(1)
D,t̄(t̄

−ρ → W− b̄)

∆t∆t̄

}

+ O(δ
1
2 ). (5.33)

The superscript (1) indicates that the amplitude for the on-shell subprocess (pro-

duction or decay) should be computed at one-loop.

The one-loop production amplitudes A
(1)
P have the structure

A
(1)
P (1q, 2q̄, pt, pt̄) = g4

s

{
Nc

2
δ ī3i1δ

ī2
i4
A

(1)
P ;1(1q, 2q̄, pt, pt̄)

+
1

2
δ ī2i1δ

ī3
i4
A

(1)
P ;2(1q, 2q̄, pt, pt̄)

}
(5.34)
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where the subamplitudes can be further decomposed into so-called primitive am-

plitudes as [48, 15]

A
(1)
P ;1(1q, 2q̄, pt, pt̄) = A

[lc]
P (1q, 2q̄, pt, pt̄)

− 1

Nc

(
Nf A

[f ]
P (1q, 2q̄, pt, pt̄) +Nh A

[h]
P (1q, 2q̄, pt, pt̄)

)
− 2

N2
c

(
A

[lc]
P (1q, 2q̄, pt, pt̄)− A[lc]

P (2q̄, 1q, pt, pt̄)
)

− 1

N2
c

A
[slc]
P (1q, 2q̄, pt, pt̄) (5.35)

where amplitudes are labelled by lc, slc, f and h for the leading colour, sub-

leading colour light and heavy fermion contributions respectively. For further

details and full expressions for all these primitive amplitudes we refer to the

paper by Badger, Sattler and Yundin [15] in which compact expressions for the

helicity amplitudes for on-shell tt̄ production have been computed. We note that

the expression for the sub-amplitude A
(1)
P ;2 is not required; due to colour it does

not interfere with the tree-level amplitude.

The one-loop helicity amplitude for the decays of the top and anti-top quarks,

A
(1)
D,t(pt, 3b, 5l+ , 6νl) = g2

s g
2
ew CF

1√
2MWΓW

A
(1)
D,t(pt, 3b, 5l+ , 6νl) (5.36)

A
(1)
D,t̄(pt̄, 4b̄, 7l− , 8ν̄l) = g2

s g
2
ew CF

1√
2MWΓW

A
(1)
D,t̄(pt̄, 4b̄, 7l− , 8ν̄l) (5.37)

can be extracted from the results of Campbell, Ellis and Tramontano in [65], in

which on-shell single-top production and decay were studied.

5.5.2.1 Renormalization of Factorizable Corrections

The counter-terms required for renormalization of the NLO factorizable correc-

tions are precisely those of the on-shell production and decay subprocesses. These

are shown in Figures 5.6 and 5.7. Using the Feynman rules for the counter-terms

(Figure 2.2), we find that only top-quark wavefunction and strong coupling renor-
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malization are required. We note that the propagator counter-term will also be

required once top quark self-energies are included - this is discussed in §5.5.3.

(a) (b) (c)

1

Figure 5.6: Counter-term diagrams required for renormalization of factorizable
corrections to the production process: qq̄ → tt̄

1

Figure 5.7: Counter-term diagrams required for renormalization of factorizable
corrections to the decay process: t → W+ b

Explicitly, applying the Feynman rules3 to the production diagrams we find

A
1-loop, prod
ct = Act, (a) + Act, (b) + Act, (c)

=

(
1

2
δZG +

1

2
δZg2

s

)
A(0) +

(
δZt +

1

2
δZG +

1

2
δZg2

s

)
A(0)

+ (−δZG)A(0)

=
(
δZt + δZg2

s

)
A(0). (5.38)

The decay process counter-term is

A
1-loop, dec
ct =

1

2
δZt A

(0). (5.39)

3We recall that in the on-shell scheme, for massless quarks we have that δZq = 0.
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In the on-shell and MS schemes respectively the wavefunction and strong cou-

pling counter-terms are given by

δZOS
t = −g2

s

CF
2

(
3

ε
+ 3 log

(
µ2

M2
t

)
+ 4 + ηsc

)
(5.40)

δZMS
g2
s

= −g2
s

1

2

{
1

ε

(
11

3
Nc −

2

3
Nf −

2

3

(
µ2

M2
t

)ε
Nh

)
− Nc

3
ηsc

}
. (5.41)

Here Nc is the number of colours (Nc = 3) and Nf and Nh the number of light

and heavy quarks (Nf = 5, Nh = 1).

5.5.2.2 Pole Structure of Virtual Factorizable Corrections

The virtual matrix elements describing the factorizable corrections to the pro-

duction and decay subprocesses are given by

M
NLO, V
P = CF N

2
c g

6
s 2 Re

{∑
hels

Â
(1)
P ;1 A

(0)∗

}
(5.42)

M
NLO, V
D,t = CF

N2
c − 1

4
g6
s 2 Re

{∑
hels

Â
(1)
D,t A

(0)∗

}
(5.43)

M
NLO, V
D,t̄ = CF

N2
c − 1

4
g6
s 2 Re

{∑
hels

Â
(1)
D,t̄ A

(0)∗

}
. (5.44)

The hatted amplitudes, Â, indicate that renormalization has been performed and

top quark decay and production subprocesses have been sewn together. The

explicit pole structure for the production subprocess is given by

M
NLO, V
P =

αs
4π

2

{
−2CF

ε2
+

1

ε

[
−5CF +

(
2

Nc

−Nc

)
log

(
M2

t µ
2

s2
1t

)

− 2

Nc

log

(
M2

t µ
2

s2
2t

)
+

1

Nc

s− 2M2
t

sβ
log

(
1− β
1 + β

)
+

1

Nc

log

(
µ2

s

)]

+CF ηsc

}
|A(0)|2 (5.45)
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where sij = (pi + pj)
2, β = (1 − 4M2

t /s)
1/2 and s = s12. The pole structure for

the decay subprocesses is

M
NLO, V
D,t (t̄) =

αs
2π

{
− 1

ε2
− 1

ε

(
2 log

(
M2

t −M2
W

M2
t

)
− 5

2
− log

(
µ2

M2
t

))

+
ηsc
2

}
|A(0)|2. (5.46)

5.5.3 Top Quark Self-Energies and Resummation

The discussion so far has not touched upon self-energy corrections to the top-

quark propagators. Similarly nothing has yet been discussed regarding exactly

what is ‘resummed’ in the propagators. The two are intricately linked and will be

detailed next. At one-loop, the possible top quark propagator corrections consist

of the QCD, QED and EW self-energy insertions depicted in Figure 5.8.

Performing the power-counting for diagram (a), we find that the leading hard

and soft contributions of the self-energy insertion scale as

A
self-energy
(a),hard ∼ δ−

3
2 (5.47)

A
self-energy
(a),soft ∼ 1. (5.48)

The soft part poses no problems and can be treated in line with the rest of the

soft contributions that we are required to include. These will be discussed further

in the next section. However, the power-counting reveals a potential disaster for

the hard contribution. This appears to be super-leading, that is, enhanced by

a factor of δ−1/2 with respect to the leading-order terms. Unfortunately this

appears to suggest a divergent expansion in δ, thus limiting the predictive power

of such an approach. Luckily disaster can be averted by the use of a sensible

mass-renormalization scheme.

To illustrate how this fits together, the top-quark self-energy will be examined

in detail. In what follows, we will focus on the top propagator and forget about
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W

b

γ, Z

(a) (b) (c)

1

Figure 5.8: Top-Quark Self-Energy Diagrams

the rest of diagram (a). The correction to the propagator can be written as

i(/pt +Mt)

Dt

[
−4π αs CF

∫
[dk]

γµ(/pt − /k +Mt)γµ

k2 (k2 − 2k.pt +Dt)

]
i(/pt +Mt)

Dt

. (5.49)

It is clear that just this part of the diagram scales as ∼ δ−3/2 in the hard region.

In the method of regions expansion we must keep not only the leading term,

but also the first sub-leading term (∼ δ−1/2), as this also contributes to the set

of corrections we aim to include. Performing the expansion and computing the

integrals yields [62]:

αsCF
2π

(
3

2ε
+ 2 +

ηsc
2

)(
M2

t

µ2

)−ε [2iM2
t (/pt +Mt)

D2
t

+
iMt

Dt

−
i(/pt +Mt)

Dt

]
(5.50)

where the super-leading behaviour is evident in the first term. To this the top-

propagator counter-term must be added. The expression for this is given by

i(/pt +Mt)

Dt

i
(

(/pt −Mt)δZt − δMt

) i(/pt +Mt)

Dt

, (5.51)

which can then be split into terms proportional to δZt and δMt. The former takes

the form

−
i(/pt +Mt)

Dt

δZt (5.52)

and yields a contribution to the full amplitude of −A(0)δZt. This cancels the
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final term in the square brackets of (5.50), as expected, since internal lines do not

require wavefunction renormalization. The term involving mass-renormalization

has the form

δMt

Mt

(
iMt

Dt

+
2iM2

t (/pt +Mt)

D2
t

)
. (5.53)

We notice that the counter-term and the self-energy diagram have super-leading

terms that are very similar in structure. This fact is the only potential saving

grace when it comes to the super-leading terms in the expansion. Should the

form of δMt be such that there is a cancellation of the super-leading terms when

(5.50) and (5.53) are added, then the super-leading terms disappear and we are

left with terms which are sub-leading in δ. The latter therefore do not require

resumming.

In the on-shell scheme, the mass counter-term has the form

δMOS
t = −αsCF

2π
Mt

[
3

2ε
+ 2 +

ηsc
2

](
M2

t

µ2

)−ε
. (5.54)

For this choice of mass scheme, the super-leading piece of the top-quark self-

energy is cancelled exactly4.

Expansion of diagrams (b) and (c) of Figure 5.8 results in terms scaling as

A
EW self-energy (W)
hard ∼ δ−1, A

EW self-energy (Z)
hard ∼ δ−1, A

QED self-energy
hard ∼ δ−1 (5.55)

A
EW self-energy (W)
soft → 0, A

EW self-energy (Z)
soft ∼ δ2, A

QED self-energy
soft ∼ 1. (5.56)

It is evident that the soft parts above are sub-leading and can be dropped. The

hard parts of the EW-Z-boson and QED insertions are leading in δ so must

be included. However, these have no imaginary part so their effect is absorbed

into the definition of the top mass. Finally, the hard part of the EW-W -boson

insertion is also leading. This does have an imaginary part that yields the LO

definition of the top quark width and must be resummed in the top propagator.

4In fact, in the on-shell scheme, the QCD self-energy is cancelled completely by the propa-
gator counter-term.
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There are a couple of final comments to add here. The hard part of the

two-loop QCD self-energy insertion is a leading contribution. But just as for

the one-loop insertion, this is completely cancelled in the on-shell scheme. The

hard part of the mixed QCD-EW two-loop insertion is sub-leading (∼ δ−
1
2 ) and

is not completely cancelled by renormalization. This must therefore be included

perturbatively in a similar fashion to the factorizable corrections. In the results

presented later on, the effect of this contribution is included by using the NLO

top-quark width in the resummed propagator5. The soft parts of these two-loop

insertions are beyond the accuracy we aim for. Higher loop self-energy insertions

are suppressed by factors of δ due to the additional powers of the couplings

involved and need not be included.

5.5.3.1 On Suitable Mass Renormalization Schemes

We have seen that the disappearance of the super-leading term in the one-loop

QCD self-energy insertion is crucially dependent on the mass scheme employed.

It is worth examining this closely considering that it appears that the methods

presented so far would break down should a super-leading term remain.

The top mass counter-term in a generic renormalization scheme, R, can be

written as

δMR
t = δMOS

t + αs δM
R−OS
t , (5.57)

thus giving a potentially super-leading contribution of

αs δM
R−OS
t

2iM2
t (/pt +Mt)

D2
t

∼ δ−
3
2 δMR−OS

t . (5.58)

This indicates a breakdown of the expansion in δ, unless δMR−OS
t ∼ δ1/2, in

which case the residual super-leading contribution is actually leading and can be

resummed in the propagator. This is the case in the PS-mass scheme as discussed

in detail below. In the MS-scheme, however, δMR−OS
t ∼ 1 and so a super-leading

term remains.

5This terms need not be resummed, however, the additional contributions included by re-
summing this are NNLO in δ
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In principle, the use of any renormalization scheme ought to be allowed. In

a generic renormalization scheme, the super-leading remainder requires the ex-

traction of such terms from many (infinite) higher order diagrams in order that

the accuracy we want is achieved. It appears that some schemes are far more

practical for the efficient extraction of terms from the all orders perturbative

expansion.

This peculiarity has its origin in the naive expectation we have had that order

by order, the perturbative expansion in couplings closely resembles the structure

of the full result (5.7). In particular we have implicitly assumed that the kine-

matic poles should be close to the physical poles, in order that the extraction of

terms contributing to the full residue is feasible. Of course, this need not be the

case when the perturbative expansion is arranged in a generic fashion, for example

through the arbitrary choice of renormalization scheme. More precisely, the as-

sumptions underlying the ET power-counting presented are that p2
t − (MR

t )2 ∼ δ

and p2
t − µ2

t ∼ δ. As pointed out in [62], this is the case when µ2
t − (MR

t )2 ∼ δ,

which holds in the on-shell scheme (and also in the PS-scheme), but however in a

generic scheme, for example in the MS-scheme, where the renormalized mass is

not related to the (region near the) pole of the full propagator, µ2
t−(MMS

t )2 ∼ δ
1
2 ,

thus violating these assumptions.

5.5.3.2 The PS-Mass Scheme

The PS-mass definition, introduced in Chapter 2, is an example of an alternative

to the pole mass that can be used in the calculations employing the ET techniques

described so far. It is given by [30]

MPS
t (µps) = Mt − αs ∆M(µps) (5.59)

where

∆M(µps) =
CF µps
π

[
1 +

αs
4π

(
a1 − b0

(
log

(
µ2
ps

µ2

)
− 2

)
+ O(α2

s)

)]
(5.60)

= ∆M1(µps) + αs∆M2(µps) + . . . (5.61)
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with Mt understood to be the pole mass of the top quark. The constants a1 and

b1 are given by

a1 =
31

3
− 10Nf

9
b0 = 11− 2Nf

3
. (5.62)

Since we have that

Mt, 0 = MOS
t

(
1 +

δMOS
t (MOS

t )

MOS
t

+ . . .

)
(5.63)

= MPS
t

(
1 +

δMPS
t (MPS

t )

MPS
t

+ . . .

)
, (5.64)

replacing MOS
t with MPS

t using (5.59), we find that the mass counter-term in the

PS-scheme can be thus related to that in the pole-scheme via

δMPS
t (µps) = δMOS

t (MPS
t ) + αs ∆M(µps). (5.65)

The first term above leads to a cancellation of the first two terms of (5.50).

However, in contrast to the pole-scheme where there is a complete cancellation

between the top quark QCD self energy and the propagator counter-term, in the

PS-scheme a residual term remains. This is given by

αs
∆M(µps)

MPS
t

[
iMPS

t

DPS
t

+
2i (MPS

t )2(/pt +MPS
t )

(DPS
t )2

]

= αs (∆M1 + αs∆M2)

[
i

DPS
t

+
2i MPS

t (/pt +MPS
t )

(DPS
t )2

]
, (5.66)

sounding alarm bells with the presence of the term proportional to (Dt)
2 in

the square brackets above. As mentioned in the previous subsection, should

∆M(µps) ∼ δ1/2 then the dangerous term is actually leading in δ. In detail,

choosing µps ∼ δ1/2 gives

∆M(µps) = αs
(
∼ δ1/2+ ∼ αsδ

1/2
)
, (5.67)
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and thus keeping terms scaling up to O(δ−1/2) in (5.66), is

αs
2iMPS

t (/pt +MPS
t )

(DPS
t )2

(∆M1 + αs ∆M2) ∼ δ−1 + δ−1/2. (5.68)

The final outcome is that the first term must be resummed in the propagator

whilst the second should be included perturbatively. The former leads to the

following shift in the propagator:

p2
t −M2

t + iMtΓt → p2
t − (MPS

t )2 − 2αsM
PS
t ∆M1 + iMPS

t Γt := ∆PS
t , (5.69)

whilst the latter yields the addition of the term

4α2
sM

PS
t ∆M2

(
p2
t − (MPS

t )2 − 2αsM
PS
t ∆M1

)
∆PS
t

M(0) (5.70)

to the factorizable corrections. These must be taken into account for each reso-

nant top quark propagator.

It is clear that the ET counting here allows for the easy identification of exactly

what needs to be resummed and what must only be included perturbatively.

5.5.4 Non-Factorizable Corrections

So far only the leading hard part of the one-loop diagrams have been discussed

in detail. As indicated by the scalings of Table 5.1, there are contributions from

the expansion in soft region which must be included for consistency. The con-

tributions that need to be kept from the set of diagrams in Figure 5.1 are given

79



individually by

A
1-loop
(c), soft = − 1

4Nc

(
δ ī3i1δ

ī2
i4
− δ ī2i1δ

ī3
i4

)
Itt̄(pt, pt̄,Mt; ε, µ) A(0) (5.71)

A
1-loop
(d), soft =

CF
2

(
δ ī3i1δ

ī2
i4
− δ ī2i1δ

ī3
i4

)
Itq(pt, p3,Mt; ε, µ) A(0) (5.72)

A
1-loop
(e), soft =

1

4Nc

(
(N2

c − 2)δ ī3i1δ
ī2
i4

+
1

Nc

δ ī2i1δ
ī3
i4

)
× (Itq(pt, p1,Mt; ε, µ) + Itq(pt̄, p2,Mt; ε, µ)) A(0) (5.73)

A
1-loop
(g), soft = − 1

4Nc

(
δ ī3i1δ

ī2
i4
− δ ī2i1δ

ī3
i4

)
It̄b(pt̄, pt, p3,Mt; ε, µ) A(0) (5.74)

A
1-loop
(h), soft =

1

4Nc

(
(N2

c − 2)δ ī3i1δ
ī2
i4

+
1

Nc

δ ī2i1δ
ī3
i4

)
Iqb(pt, p1, p3,Mt; ε, µ) A(0) (5.75)

A
1-loop
(i), soft = − 1

4Nc

(
δ ī3i1δ

ī2
i4
− δ ī2i1δ

ī3
i4

)
Ibb̄(pt, pt̄, p3, p4,Mt; ε, µ) A(0). (5.76)

It is clear that there is a common structure to the soft contributions, that of a soft

scalar integral (I) accompanied by a colour factor multiplied by A(0), the leading

double-resonant Born contribution. All necessary soft integrals are catalogued in

Appendix B.

The sum of all soft corrections yields the following structure for the soft-virtual

amplitude,

A
(1)
soft = g2

s

(
δ ī3i1δ

ī2
i4
A

(1)
soft,1 + δ ī2i1δ

ī3
i4
A

(1)
soft,2

)
(5.77)
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where (suppressing the dependence of the soft integrals on Mt, ε and µ)

A
(1)
soft,1 = A(0)

{
CF
2

(Is.e.(pt) + Is.e.(pt̄) + Itq(pt, p3) + Itq(pt̄, p4))

+
N2
c − 2

4Nc
(Itq(pt, p1) + Itq(pt̄, p2) + Iqb(pt, p1, p3) + Iqb(pt̄, p2, p4))

+
1

4Nc

(
2 (Itq(pt̄, p1) + Itq(pt, p2) + Iqb(pt̄, p1, p4) + Iqb(pt, p2, p3))

− (Itt̄(pt, pt̄) + Itb̄(pt, pt̄, p4) + Itb̄(pt̄, pt, p3) + Ibb̄(pt, pt̄, p3, p4))
)}

.

(5.78)

The expression for A
(1)
soft,2 has been omitted as due to colour this does not interfere

with the tree-level amplitude.

5.5.4.1 Pole Structure of Virtual Non-Factorizable Corrections

Using (5.78) along with the expressions for the soft integrals in Appendix B, it is

possible to derive the pole structure of the soft-virtual matrix element as

αs
4π

1

ε
2CFNc

{
2CF +

η (log (−ξ+)− log (−ξ−))

4Nc(ξ+ − ξ−)

− N2
c − 2

2Nc

[
log

(
s1ts3t

M2
t s13

)
+ log

(
s2t̄s4t̄

M2
t s24

)]

− 1

2Nc

[
log

(
M2

t s34

s3t̄s4t̄

)
+ 2 log

(
s2ts3t

M2
t s23

)

+2 log

(
s1t̄s4t̄

M2
t s14

)
− log

(
−s3t

s3t̄

+ io+

)]}
|A(0)|2, (5.79)

where ξ± = (η ±
√
η2 − 4 + io+)/2 and η = (s− 2M2

t )/M2
t .
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5.6 Real Amplitudes

In a standard NLO calculation, though perhaps a little messy, the real corrections

are by now routine to include; the Dipole and FKS subtraction methods allowing

straightforward handling of the divergent regions. However, due to the expansion

of the amplitudes used so far, the virtual matrix element is no longer the standard

full one, but rather a modified one. In order to have singularity-matching the

treatment of real corrections has to be changed a little.

In the study of resonant single top production [62, 63] there was a slight mod-

ification of the real subtraction term, where the usual NLO subtraction method

dσNLO =

(
dσV +

∫
1

dσR,c.t.
)

+

∫
1

(dσR − dσR,c.t.) (5.80)

was replaced by

dσNLO '
(
dσVexp +

∫
1

dσR,c.t.exp

)
+

∫
1

(dσR − dσR,c.t.) (5.81)

to account for the fact that the virtual matrix element is now expanded to a

certain order in δ. So long as the added back counter-term in the first term

above is expanded to the same order in δ then the pole cancellation is exact.

We note here that dσV above involves the sum of the relevant hard and soft

virtual corrections. There are two slightly undesirable features here. The first

is that the term added back is slightly different to what is initially subtracted

from the real matrix element. The difference in the terms is however of higher

order in δ and thus is not of practical concern. The second feature is that the

pole cancellation is achieved for the sum of factorizable and non-factorizable

contributions. This is due to the fact that the real matrix element has not been

split into factorizable and non factorizable parts. In what follows, a new treatment

of the real matrix element is presented where this split is achieved. In doing so, a

complete separation of factorizable and non-factorizable corrections to the process

of interest is manifest.
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5.6.1 Split of Real Matrix Element

It has been indicated in Section 5.3 that contributions scaling as δ−1/4 from the

real corrections are required to compute the cross-section to the order to which

we are working. Naively, this requires the real corrections to the double-resonant

tt̄ Born-level process, shown in Figure 5.9.

However, a strict expansion in δ for the case where an additional gluon is

present in the final state is difficult compared to the expansion of amplitudes

where only the Born-level configuration is involved. The reason for this is that it

is no longer straightforward to identify precisely what the expansion parameter

is. A resonant top quark momentum can now either be (p3 + p5 + p6)2 ∼ M2
t

or (p3 + p5 + p6 + p9)2 ∼ M2
t , or indeed both of these (and similarly for the

anti-top). The critical requirement of pole cancellation between real and virtual

contributions, together with the structure of the virtual amplitudes unveiled by

the method of regions, provide clear guidance as to how the real amplitudes must

be split up. It is then possible to write the real matrix element as a sum of terms

resembling the expanded virtual matrix element.

The idea is to split up the full real amplitude Areal
full , into four parts; three pro-

portional to 1/(DtDt̄), 1/(Dt9Dt̄) and 1/(DtDt̄9) respectively with the fourth one

suppressed by higher powers of δ. Following the pole expansion, the numerators

of these terms must be evaluated on-shell and the denominators will be replaced

by 1/(∆t ∆t̄), 1/(∆t9 ∆t̄) and 1/(∆t ∆t̄9) to include effects of resummation of

higher-order terms in the top quark propagators. The real amplitude can then
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1

Figure 5.9: Real corrections to double resonant diagrams

be written as

Areal
full =

∑
λ=±

∑
ρ=±

{
AR
D,t(t

λ → W+ b g) A
(0)
P (qq̄ → t−λ t̄ρ) A

(0)
D,t̄(t̄

−ρ → W− b̄)

∆t9∆t̄

+
A

(0)
D,t(t

λ → W+ b) AR
P (qq̄ → t−λ t̄ρ g) A

(0)
D,t̄(t̄

−ρ → W− b̄)

∆t∆t̄

+
A

(0)
D,t(t

λ → W+ b) A
(0)
P (qq̄ → t−λ t̄ρ) AR

D,t̄(t̄
−ρ → W− b̄ g)

∆t∆t̄9

}

+ AR
sub-leading , (5.82)
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where we will abbreviate the first three terms as AR
P , AR

D,t and AR
D,t̄ to aid the

discussion that follows. AR
P , AR

D,t and AR
D,t̄ are the real corrections to the Born-

level tt̄-production, t-decay and t̄-decay processes. These real corrections scale as

δ−1/4, as required. Effects of real corrections to single- and non-resonant diagrams

are captured by the term AR
sub-leading.

The expression (5.82) has been obtained by simply re-writing the full real

amplitude in a way that makes the resonant structures explicit, followed by the

evaluation of the latter with appropriate on-shell configurations (as required for

consistency with the pole expansion used for the virtual contributions). For

diagrams with a gluon emission off a (potentially resonant) top-quark line it may

appear difficult to decide whether the gluon is emitted from the production or

decay subprocesses. Such diagrams can be split up using the following identity

(/pt +Mt) /ε(k) (/pt + /k +Mt)

(p2
t −M2

t ) ((pt + k)2 −M2
t )

=
(/pt +Mt) /ε(k) (/pt + /k +Mt)

(p2
t −M2

t ) (2pt.k)

−
(/pt +Mt) /ε(k) (/pt + /k +Mt)

(2pt.k) ((pt + k)2 −M2
t )

(5.83)

to explicitly identify the parts with the different pole structures. It is now easy

to see that the first term on the RHS above would contribute to a pole-expanded

real amplitude where p2
t ∼ M2

t , whilst the second term would contribute to one

where p2
t9 ∼ M2

t . This confirms that the split in (5.82) is the appropriate one

picking out the correct terms from the perturbative expansion (at NLO) for use

in the pole-expanded amplitudes. It is also clear that the first and second terms

above will originate from amplitudes describing real corrections to production

and decay sub-processes respectively.

Squaring the full amplitude then results in

|Areal
full |2 = |AR

P |2 + |AR
D,t|2 + |AR

D,t̄|2 (5.84a)

+ 2Re
(
AR
P AR ∗

D,t + AR
P AR ∗

D,t̄ + AR
D,t A

R ∗
D,t̄

)
+ . . . (5.84b)

Now the squared amplitudes of (5.84a) are nothing but the factorizable real cor-

rections to the on-shell production and decay subprocesses. These corrections

85



are depicted in Figures 5.10 and 5.11. The interference terms of (5.84b) must

be kept at the order in δ to which we work, whilst the ellipses indicate terms

that are further suppressed and may be safely dropped. It is emphasised that the

individual terms above are each gauge-invariant.

1

Figure 5.10: Real corrections to the on-shell production process qq̄ → t t̄

1

Figure 5.11: Real corrections to the on-shell decay process t→ W+ b

Given that the terms of (5.84a) are factorizable corrections, yielding ε-poles

cancelling the corresponding poles found in the factorizable virtual corrections,

the interference terms of (5.84b) correspond to the non-factorizable real correc-

tions. Furthermore, as the ellipses indicate higher order terms in δ, the interfer-

ence terms must reproduce the (soft) poles of the non-factorizable virtual matrix

element. For the process being examined here the latter will be demonstrated

explicitly below.

Following this split of the amplitudes, the real contributions to the NLO cross-
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section is given by

dσR, NLO = dσRP + dσRD,t + dσRD,t̄ + dσRNF + . . . , (5.85)

with the first three terms in the sum indicating the factorizable contributions and

dσRNF the non-factorizable contribution.

In accordance with the pole expansion and the approach taken thus far, all am-

plitudes must be computed with on-shell momentum configurations where the top

quarks are on-shell. For the amplitudes above, this means AR
P must be evaluated

with a momentum configuration {pi}9
1 with (p3 +p5 +p6)2 = M2

t = (p4 +p7 +p8)2,

AR
D,t with {pi}9

1 where (p3 + p5 + p6 + p9)2 = M2
t = (p4 + p7 + p8)2 and AR

D,t where

{pi}9
1 with (p3 +p5 +p6)2 = M2

t = (p4 +p7 +p8 +p9)2. As for the terms evaluated

with a Born-level momentum configuration, these on-shell momentum configura-

tions are obtained from the corresponding off-shell ones via an expansion of the

momenta in δ.

5.6.2 Structure of Real Factorizable Corrections

The terms dσRP , dσRD,t and dσRD,t̄ can be computed straightforwardly à la standard

real subtraction methods. The pole structure of these can be extracted from the

insertion factors of [32, 39] and [65]. For the production subprocess the insertion

factor is explicitly

IP (ε)|A(0)|2 =
αs
2π

{
2CF
ε2

+
1

ε

[
5CF −

(
2

Nc

−Nc

)
log

(
M2

t µ
2

s2
1t

)

+
2

Nc

log

(
M2

t µ
2

s2
2t

)
− 1

Nc

s− 2M2
t

sβ
log

(
1− β
1 + β

)
+

1

Nc

log

(
µ2

s

)]

+CF ηsc

}
|A(0)|2 (5.86)
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and for the decay subprocesses we have

ID,t (t̄)(ε)|A(0)|2 =

{
1

ε2
+

1

ε

(
2 log

(
M2

t −M2
W

M2
t

)
− 5

2
− log

(
µ2

M2
t

))

−ηsc
2

}
|A(0)|2. (5.87)

As expected, comparing with (5.45) and (5.46), we have analytical cancellation

of ε-poles between factorizable real and virtual contributions. Note also, that in

all three sets of factorizable contributions the dependence on the regularization

scheme disappears in the sum of virtual and real, as it should.

We note in passing that in contrast to the full real amplitude, where there is

no soft singularity when a gluon is emitted from an intermediate top quark (as

the top is off-shell), the ‘expanded’ real amplitude does exhibit soft singularities

in such diagrams. This is understood physically as the modified real amplitudes

are evaluated with on-shell momentum configurations. Thus essentially the top-

quark (as far as IR-behaviour is concerned) is a final state, on-shell particle. The

presence of additional singularities is to be fully expected from a method that

treats real corrections in line with the method of regions used for the virtual

corrections where, as mentioned previously, the expansion in regions introduces

additional singularities to the individual (hard and soft) expansions.

5.6.3 Structure of Real Non-Factorizable Corrections

The non-factorizable real corrections only contain soft singularities. There are

no collinear singularities due to the fact that AR
P , AR

D,t and AR
D,t̄ have different

collinear divergent regions. Thus the interference terms, although appearing to

contain collinear divergences, are actually integrable in these regions. On the

other hand, all amplitudes have soft singularities ∼ 1/p9,0 and thus the interfer-

ence term contains a non-integrable 1/p2
9,0 singularity, manifesting itself as a 1/ε

pole.

The requirement that the three amplitudes AR
P , AR

D,t and AR
D,t̄ be evaluated

with different on-shell momentum configurations leads to difficulties in construct-

ing a real counter-term for the non-factorizable matrix real matrix element. In the
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Dipole method, the subtraction counter-term smoothly interpolates between the

strict soft (and collinear) limits and regions away from these, and are functions

of a single momentum configuration. The fact that soft and collinear regions are

treated simultaneously in this way makes it difficult to use the Dipole method

without significant modification to construct a local counter-term. However, as

the FKS method treats soft and collinear regions separately, together with the

fact the counter-term is a function of the real momentum configuration in the

strict limits (where the three different momentum configurations we must use are

the same), it is more straightforward to construct a local counter-term.

From the FKS soft counter-term we can extract the pole structure of the

non-factorizable matrix element:

αs
2π

CFNc

2

1

ε
{−4CF

+

(
1

Nc

− Nc

2

)[
log

(
M2

t

s1t

)
+ log

(
M2

t

s2t̄

)
+ log

(
µ2

s1t

)
+ log

(
µ2

s2t̄

)]

− 1

Nc

[
log

(
M2

t

s1t̄

)
+ log

(
M2

t

s2t

)
+ log

(
µ2

s1t̄

)
+ log

(
µ2

s2t

)]

− 2CF

[
log

(
M2

t

s3t

)
+ log

(
M2

t

s4t̄

)
+ log

(
µ2

M2
t

)]

+
2

Nc

[
log

(
µ2

s14

)
+ log

(
µ2

s23

)
− log

(
µ2

s13

)
− log

(
µ2

s24

)
− 1

2
log

(
µ2

s34

)]

+Nc

[
log

(
µ2

s13

)
+ log

(
µ2

s24

)]
− 1

2Nc

1

Vtt̄
log

(
1 + Vtt̄
1− Vtt̄

)} ∣∣A(0)
∣∣2 . (5.88)

Here Vtt̄ = (1− (2M2
t /stt̄)

2)
1/2

and sij = 2pi.pj.

After a little manipulation of the non-factorizable virtual pole structure, (5.79)

and making the replacement η = 2 (1− V 2
tt̄)
−1/2

, it is relatively straightforward to

see that the above non-factorizable real poles do indeed cancel those of the soft-

virtual matrix element. This however does take place via a delicate cancellation

of terms from different logarithms.

This completes the discussion regarding the methods to consistently extract

factorizable and non-factorizable corrections from both loop and single-emission
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contributions in perturbation theory. We emphasise that this means that, at the

order in δ to which we work, the fully differential NLO cross-section can now be

written as

dσNLO = dσP + dσD, t + dσD, t̄ + dσNF, (5.89)

where ‘P ’, ‘D, t(t̄ )’ label the production and (anti-) top-decay factorizable cor-

rections and ‘NF’ labels the non-factorizable corrections.

Finally, it is pointed out that the matrix elements making up each part

of the differential cross-section must be evaluated using projected momenta.

Resonant top propagators must however be kept off-shell. Schematically, for

each NLO contribution J(m) = V, C, R (with m final state particles) to dσI

(I = P, (D, t), (D, t̄), NF) of (5.89) , we must ensure that

dσJ(m), I ∼
∫
dΦ({poff

i }m1 )
MJ(m), I({p̂ on

i }m1 )

∆off
t ∆off

t̄

Fm({poff
i }m1 ). (5.90)

The denominators of the resonant propagators have been pulled out to highlight

that they are to be evaluated with the off-shell configurations. Details of the

projections used are given in Appendix A.

5.7 Remarks on Effective Theory Structure

It is clear that the use of the method of regions in conjunction with the pole expan-

sion for the virtual contributions, together with the consistent method developed

to subsequently treat the real corrections, points towards a definite structure to

the matrix elements in the resonant regions. Taking the arguments of §4.4 into

account, this structure is to be fully expected.

The physical scales present imply that there is a kind of factorization of top

quark production, propagation and decay subprocesses where the only connec-

tions between these can be provided by soft gluons. The ET picture of the scenario

for top-pair production is shown in Figure 5.12.

In a formal ET approach, the high virtuality modes would be integrated out of

the full theory leaving a theory comprised of operators describing the production,
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Figure 5.12: Effective Theory picture of Resonant tt̄ production. Operators de-
scribing the production, propagation and decay of heavy quarks are only con-
nected via soft gluons.

propagation and decay of heavy top quarks, indicated schematically by the violet

box and brown and purple discs respectively in Figure 5.12. These would all be

accompanied by Wilson (or matching) coefficients which describe the effects of

the high virtualities (hard gluons for the case at hand) and are strictly gauge-

invariant. The factorizable contributions arising from the expansion in δ capture

precisely these parts of an ET approach, hence they are expected to be gauge-

invariant. Furthermore, matching coefficients are always evaluated on-shell, a

property reflected in the factorizable corrections, which as previously discussed

are essentially corrections to on-shell top-quark production and decay.

Once the high virtuality modes have been integrated out, there are some

dynamical modes (of low energy or virtuality) still left in the theory. In general

there will be multiple dynamical modes remaining. However, for the processes

at hand, the only dynamical modes are those describing soft gluons. These are

the only fields in the ET that can possibly connect the production and decay

operators. In Figure 5.12 the dynamical modes are depicted by the green circle

and associated connections of this to the ET operators via the green gluon lines.
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The effects of hard gluons connecting production and decay would be contained in

higher dimensional operators (e.g. operators describing production of an on-shell

top in association with a W−-boson and a b-quark), but these are suppressed by

powers of the high matching scale. This provides an ET explanation to why the

hard contributions of the ‘non-factorizable’ diagrams are sub-leading in δ.

In ETs, there is an honest factorization of hard and soft modes. The meth-

ods outlined in the previous sections allow for the extraction of the dominant

contributions (i.e. those that lead to the picture in Figure 5.12) from the stan-

dard perturbative expansion and, moreover, for their complete separation into

the hard and soft modes of an ET. In other words, it is now possible to treat

these different sets of corrections as separate entities living as one might expect,

at different scales; soft, µs ∼ Γt and hard µh ∼Mt.

Of course, simply evaluating the soft and hard corrections at different scales

is not consistent. Importantly, this may well lead to a spoiling of what the

method of regions so elegantly provides us with: the important part of the full

result given via a sum of simpler terms. A naive evaluation with different scales

would almost certainly ruin the pole structure, let alone the finite terms of the

sum of these simpler integrals. The appropriate way to do this would be to run

the hard corrections from µh to µs using the renormalization group equations,

and evaluate the amplitudes at the common scale there, thus maintaining the

correct pole structure of the full result. Furthermore, this procedure would have

the added benefit of providing a resummation of large logarithms of the form

∼ log (µh/µs). It should be pointed out that despite an important step being

made towards this in the work presented here, the framework for the resummation

of the large logs mentioned is not yet in place. One of the difficulties is that we

are dealing with exclusive quantities with arbitrary cuts on final states which

somewhat complicates the running between the hard and soft scales.

Finally, it has been pointed out that the methods described above are only

strictly valid above threshold. The reason for this is that a new scale enters the

problem and thus a new region must be taken into account in the method of

regions6. Near threshold, the ET thus changes to one that realises a consistent

6More precisely, in this region the top momentum can be parametrized as pµt = Mt v
µ + qµ

with v = (1,~0) and q0 ∼ δ, ~q ∼ δ1/2. This new region, known as the Potential or Coulomb
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expansion in this new region.

5.8 Remarks on Potential Limitations

Despite the power of the methods presented here in simplifying the calculation of

processes involving unstable particles as well as picking out important structures

in the full expansion of perturbation theory, there are a few limitations. The

latter are mainly manifest in the kinematic cuts that must be applied to the final

states. The predictions made using the methods developed here would by no

means be valid in all kinematic regimes of a W+ b W− b̄ final state.

As underlined, the ET expansion is only really valid in the regions where the

top quarks are resonant and where the top anti-top system is above threshold.

From an experimental point of view, perhaps the former condition is not as im-

portant if the objects of interest are the top quarks. These must be tagged in

some way, which often involves imposing invariant mass cuts on the top quark

decay products in a very similar vein to the assumptions the calculations in this

chapter have been built upon. The threshold condition is only expected to have a

small numerical effect to inclusive quantities at LHC energies. Some distribution

bins may change a little, in particular those sensitive to the invariant mass of the

tt̄ system near threshold.

It is clear that threshold effects would be very important at an e+e− Linear

Collider for a threshold scan about the top mass. In this case, it might be possible

to match the calculations presented here with one that captures the important

physics near threshold, using for example, NRQCD, or another appropriate ET. A

significant challenge is the extraction of the appropriate real corrections consistent

with the new expansion of the amplitudes - a necessary requirement for the study

of exclusive observables.

region must systematically be taken into account.
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Chapter 6

Results

In this chapter we explore in detail the numerical results of the implementation of

the method detailed in Chapter 5. The focus will be mainly on results relevant for

the Tevatron, because it is for the latter that the qq̄ initiated process dominates

top-pair production. We will endeavour to carefully compare the differences be-

tween on-shell and off-shell approaches as well as highlighting observables that are

sensitive to off-shell effects. The particularly topical ‘Forward-Backward asym-

metry’ as well as the effects of using a different mass-scheme suitable for use with

the ET method will also be discussed.

6.1 Setup of Differential Computations

The matrix elements described in detail in the previous section have been as-

sembled into an ensemble of Fortran code to produce fully differential results

for a variety of observables. The phase-space generation in this work has made

use of the ‘Vegas’ adaptive Monte Carlo algorithm from the ‘Cuba’ library for

multi-dimensional numerical integration [66].

In order that contact is made with measurements in real experiments the

final state partons, the b-quarks (and gluon at NLO), are clustered into jets.

The algorithm employed is the sequential recombination kt-algorithm [67, 68],

although in principle any IR-safe jet algorithm can be used. The PDF set used is

the (LO and NLO) MSTW2008 set [36], which also provides the numerical values
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for αs(µ).

6.1.1 Observable Definition

In order to experimentally identify tt̄ events certain conditions are usually im-

posed on the final states observed. The basic requirements we have are that

a b-jet, Jb, and b̄-jet, Jb̄, are found by the jet-algorithm, in addition to a W+

and a W− being perfectly reconstructed (i.e. the four-momenta of the W ’s are

p(W+) = p(l+)+p(νl) and p(W−) = p(l−)+p(ν̄l)). Whilst the latter is not possi-

ble at experiments, where only the total missing momentum of the two neutrinos

can be measured, it will allow us to cleanly identify features likely to be present

in an experimentally more rigorous analysis. We define the ‘top’ momentum as

p(t) = p(Jb) + p(W+) and the ‘anti-top’ momentum as p(t̄) = p(Jb̄) + p(W−),

where the quotation marks ‘’ highlight the fact that in a realistic setup it is not

possible to unambiguously determine the top or anti-top momenta, even if these

are correctly identified. This is of course due to (numerous sources of) additional

radiation in experimental events that can leak into or out of the construction of

jets, hence affecting momentum measurements. On the theory side, this arises

naturally at NLO through the presence of the additional emitted parton from the

real corrections.

The methods used to compute the scattering amplitudes for off-shell top

quarks have relied on the condition that the tops are near resonance. In ad-

dition, we have advocated that we must stay above the tt̄ threshold for our re-

sults to be trusted. These two important conditions are reflected in the following

invariant-mass constraints on the final states that will always be made,

140 GeV <Minv(t) =

√
(p(Jb) + p(W+))2 < 200 GeV

140 GeV <Minv(t̄ ) =

√
(p(Jb̄) + p(W−))2 < 200 GeV

Minv(tt̄ ) =

√
(p(t) + p(t̄ ))2 > 350 GeV. (6.1)

In addition to these cuts that should always be made in the off-shell case, the
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Collider: Tevatron,
√
s = 1.96 TeV

pT (Jb) > 15 GeV pT (l+) > 15 GeV /ET > 20 GeV

pT (Jb̄) > 15 GeV pT (l−) > 15 GeV Rjet = 0.7

Mt = 172.9 GeV ΓNLO
t = 1.3662 GeV MZ = 91.2 GeV

MW = 80.4 GeV ΓW = 2.14 GeV αew = 0.03394

Table 6.1: Example process definition at the Tevatron Collider,
√
s = 1.96 TeV

and parameter setup.

setup of Table 6.1 is considered1 as an example application of the code. Values

of the parameters used are also indicated there.

The process these cuts define is

p p̄ → Jb Jb̄ /ET l
+ l− +X, (6.2)

typical of an experimental setup for studying top-pair production. Of course,

in addition to the qq̄-initiated process, the gg-initiated (and at NLO the qg and

q̄g-initiated) process must be included. However, as the qq̄-initiated process is by

far the dominant one at the Tevatron, we focus on this here.

6.2 Checks and Validation

The code written that provides the sample results presented here has been put

through numerous validation checks. Some of these will be outlined here as will

a comparison to the literature in the case where we consider on-shell top-pair

production.

The computation of the NLO piece from the real corrections was implemented

using two independent codes with two different subtraction methods, the Dipole

method and the FKS method. For all observables tested, both methods give

the same numerical results (within Monte Carlo integration uncertainties), thus

1It is precisely the set of experimental cuts combined with the jet definition that form the
measurement function introduced earlier.
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σincl.
LO [fb] σincl.

NLO [fb]

MCFM TOPIXS US MCFM TOPIXS US

pp̄ 1.96 TeV 66.46(2) 66.449(1) 66.449(4) 79.62(8) 79.71(1) 79.71(2)

pp 7 TeV 335.11(8) 335.037(1) 335.04(3) 383.4(4) 383.94(5) 383.89(5)

pp 14 TeV 1039.6(2) 1039.43(1) 1039.4(1) 1167.5(5) 1168.0(1) 1167.9(3)

Table 6.2: Comparisons of σinclusive for on-shell tt̄-production (in the di-lepton
channel) with the publicly available codes TOPIXS [69] and MCFM [49]. Decays
of the top quarks are included here at LO. Scales have been set to µF = µR = Mt.

providing a strong check on these contributions to the differential cross-sections.

Comparisons of the total inclusive cross-section (i.e. not implementing the

cuts in Table 6.1) for on-shell tt̄-production, at different centre of mass energies

and scales, have been made with the publicly available programs TOPIXS [69]

and MCFM [49], where full agreement has been found. More precisely, these

comparisons include the corrections to the production subprocess but not to the

top or anti-top decay subprocesses. A selection of these comparisons is shown in

Table 6.2.

In addition to this, corrections to the production at the differential level have

been cross-checked against a number of distributions produced by MCFM. For

the observables checked, very good agreement was found and for illustration,

a couple of distributions are shown in Figure 6.1. These not only provided an

additional check on the factorizable corrections to the production subprocess, but

also checked our implementation of spin correlations.

Due to the modular nature of the scattering amplitudes, it has been straight-

forward to check each set of corrections individually. The factorizable corrections

to the top and anti-top decay vertices have been compared with the earlier work

involving resonant single-top production [62, 63], where complete agreement was

found. For the non-factorizable corrections, there were no ‘easy’ checks to be

made with any literature, however, exact pole cancellation between real and vir-

tual terms provides us with confidence that these have been correctly computed.

Furthermore, the analytic expressions for the soft integrals have been compared

to numerical integrations with very good agreement. The non-factorizable real
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Figure 6.1: Sample distribution comparisons with MCFM, η(Jb +W+) (left) and
cos(θl+l−) (right). LO and NLO results are compared for µF = µR = 2Mt.

corrections, computed using the FKS method, display the required independence

on the ξcut parameter, providing an additional strong check.

6.3 1.96 TeV Tevatron Observables

In this section we present a detailed analysis of the numerical results for the setup

of Table 6.1. In particular, the importance (or not) of off-shell effects is discussed

at length. The following definitions are introduced to aid the illustration of the

various effects:

dσNLO-correction = dσNLO, off-shell − dσLO, off-shell (6.3)

dσoff-shell effects = dσNLO, off-shell − dσNLO, on-shell. (6.4)

In addition to these two types of correction to the cross-section, we have also

implemented and examined the effects of the leading order single-resonant con-

tributions which are suppressed by factor of δ relative to the LO double-resonant

contributions (i.e. ‘NN’LO in the power-counting, see (5.13) and (5.14)).
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6.3.1 Cross-Sections

We first examine the inclusive cross-section for the setup described. The scale

dependence of the LO and NLO, on-shell (dashed) and off-shell (solid) cross-

sections under varying µ = µF = µR is shown in Figure 6.2. As expected, within

a reasonable range of scales, the NLO cross-sections display a reduced scale-

dependence compared with the LO cross-sections. We also note that the shape

of the inclusive LO cross-section under scale variation remains the same when

LO PDFs are used (indicated by the solid grey line in Figure 6.2), the difference

appearing only as a slight shift of the curve.

 0.01
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Figure 6.2: Scale variation of the LO and NLO cross-sections for p p̄ →
Jb Jb̄ /ET l

+ l− + X. The solid lines correspond to the off-shell results, whilst
the dashed lines correspond to the on-shell case.

A more direct comparison of on-shell versus off-shell inclusive numbers can be

found in Table 6.3 in which each correction making up the total NLO result is also

contrasted. The differences between on-shell and off-shell numbers are around

2-4%, which is a little larger than what is to be expected by the cancellation

theorems of [50, 51] (Γt/Mt ∼ 1%). This is likely to be related to a slight spoiling
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of the cancellation of large logarithms brought about by the cuts imposed on

our final state. The pure non-factorizable corrections make up a very small 0.5%

correction to the NLO off-shell cross-section. The reason for this tiny number is

illustrated later through the explicit visualisation of the large cancellations that

occur there.

on-shell off-shell % difference

σLO [fb] 49.368(4) 47.680(5) -3.4 %

σNLO [fb] 43.137(5) 42.00(2) -2.6 %

σNLO-prod-correction [fb] 9.118(3) 8.782(3) -3.7%

σNLO-tdec-correction [fb] -7.673(1) -7.373(1) -3.9%

σNLO-t̄dec-correction [fb] -7.675(1) -7.373(1) -3.9%

σNLO-NF-correction [fb] N/A 0.29(2) N/A

σSR [fb] N/A 0.6984(3) N/A

Table 6.3: Breakdown of the NLO on-shell and off-shell cross-sections for µF =
µR = Mt. The contributions of factorizable and non-factorizable corrections are
detailed. The last column indicates the % change in going from on-shell to off-
shell. Numbers in brackets are Monte Carlo uncertainties.

It is interesting to observe that the corrections to the production subprocess

are positive whilst the decay corrections are negative and thus leaving out either

set leads to significantly different numbers for the full NLO cross-section. This is

also indicated in Figure 6.2, where the gold and green lines trace the NLO cross-

sections where corrections to only production and only decay are respectively

included.

Table 6.3 also indicates the size of the single-resonant contributions, σSR, that

are suppressed by a factor of δ relative to the LO numbers. More precisely, the

single-resonant piece contains both 2Re[A
(1,1)
−2 A

(1,1)∗
−1 ] and |A(1,1)

−1 |2 of (5.14), al-

though the latter term is formally even further suppressed2. These terms consti-

tute a correction of 1.5% to the LO cross-section, agreeing well with the estimate

2To be strict in the power-counting we should also include the double-resonant EW term

∼ |A(0,2)
−2 | along with the single-resonant pieces.
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of their size from a power-counting point of view (corrections of δ1/2 and δ roughly

correspond to 10% and 1% corrections).
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Figure 6.3: The various contributions to the invariant-mass of the top quark are
shown in the upper panel. The lower panel shows the size of the NLO corrections
(blue), off-shell effects (dark green), non-factorizable corrections (dark red) and
single-resonant contributions (dashed purple) with respect to LO.

The effects on the inclusive cross-sections of including the off-shellness of top

quarks are, as expected, rather small. However, the modest size of these correc-

tions appears to be strange if one examines a differential observable such as the

invariant mass of the top. Figure 6.3 depicts the LO and NLO distributions as

well as the NLO off-shell corrections and the single-resonant contributions. The

lower panel indicates the size of the latter three, relative to the LO predictions.

What is perhaps surprising is that the off-shell corrections, as defined by (6.4)

are large over the whole range of Minv(t) shown. The key reason behind the small

impact the top off-shellness has on the inclusive cross-section is the fact that the
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off-shell effects change sign from positive to negative around Minv(t) 'Mt, that is

at the peak of this distribution. This cancels out the large positive effects arising

from the tails of the distribution when integrating over the range of Minv(t). This

will be a common feature in other distributions sensitive to the off-shellness of

the top quarks.

Figure 6.3 also highlights that in the region of Minv(t) ' Mt, the NLO cor-

rections and off-shell effects dominate, indicating that the ET method is working

well here. We notice that the single-resonant pieces do begin to gain some sig-

nificance moving towards the tails of the distributions. However, these are still

smaller than the full NLO corrections and off-shell effects. Note that the increas-

ing influence of the single-resonant pieces as we move further out of the resonant

region is a tell-tale sign that the ET method employed here is one based on an

expansion in a small ‘kinematic’ parameter. The cuts on Minv(t) allow this kine-

matic parameter, ∆t/M
2
t to lie in the range [0.005, 0.35]. Towards the upper

extreme of this range it is clear that the scaling is no longer ∆t/M
2
t ∼ α2

s ∼ δ,

but rather ∆t/M
2
t ∼ δ1/2, indicating that the counting slowly misjudges the size

of the various contributions (for example, the single resonant contributions grow

to scale as the NLO corrections, no more contributing as ‘NN’LO). However, as

the cross-section is very small in this region, the increasing importance of the

sub-leading terms is not of great concern.

6.3.2 ‘Standard’ Distributions

In this subsection we look at some common distributions displayed in Figures

6.4 and 6.5. The green and red bands are the LO and NLO off-shell predictions

obtained by varying µF = µR = µ in the range [Mt/2, 2Mt]. The solid green

and red lines indicate the LO and NLO off-shell distributions at the central scale

µ = Mt, whilst the NLO on-shell and sub-leading contributions (multiplied by a

factor of 10 to make them visible) at the same scale are given by the blue and

purple lines respectively. The ratio of off-shell effects versus the NLO off-shell

results (red) and sub-leading terms over the LO weights (blue) are plotted in the

lower panels. The first ratio allows for a clear identification of the regions in

which off-shell effects are important whilst the second gives us a measure of how
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well the ET power-counting estimates the suppressed terms.

It is important to stress that wherever we study an observable of the top or

anti-top, it is implicitly assumed that we are referring to the reconstructed top

or anti-top, i.e. defined via the b-jets and W -bosons, and never that the actual

top or anti-top are somehow artificially isolated.

Figure 6.4 includes kinematic distributions for (left to right, top to bottom) the

rapidity of the top, η(t), the invariant mass of the top-anti-top system, Minv(t, t̄),

the rapidity of the positively charged lepton, η(l+), the cosine of the opening

angle between the two charged leptons (in the lab frame), cos θl+l− , the trans-

verse momentum of the top-anti-top system, pT (tt̄) and the hadronic transverse

momentum, HT (Jb, Jb̄). These are defined via:

η(t) =
1

2
log

( |~p(t)|+ pz(t)

|~p(t)| − pz(t)

)

Minv(t, t̄) =
[(
p(Jb) + p(l+) + p(Jb̄) + p(l−) + pmiss

)2
]1/2

η(l+) ≡ y(l+) =
1

2
log

(
p0(l+) + pz(l

+)

p0(l+)− pz(l+)

)

cos θl+l− =
~p(l−) · ~p(l+)

p0(l+)p0(l−)

pT (tt̄) = pT (t) + pT (t̄ )

HT (Jb, Jb̄) = pT (Jb) + pT (Jb̄) (6.5)

It is immediately apparent that, in line with the differences in the inclusive

cross-sections, the NLO corrections to the distributions are in general moderate

and negative. The NLO corrections tend to modify the LO distributions in a way

that respects the LO shapes in Figure 6.4 on the whole. The curves for η(t) and

η(l+) are made slightly asymmetric by the NLO corrections; this is well known

and will be discussed further in the context of the Forward-Backward asymmetry

a little later. We also notice a decreased dependence on the factorization and

renormalization scales for the NLO compared with the LO distributions.
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Figure 6.4: A selection of ‘standard’ kinematical distributions.
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The on-shell curves lie slightly above the corresponding off-shell ones with very

similar shapes. To quantify this difference, we examine the lower panels to find

that for these observables the off-shell effects do not tend to exceed a few per cent

of the NLO off-shell results right across the range of bins. The fact that the ratio

of off-shell effects versus NLO on-shell is relatively constant more or less over the

full ranges means that the shapes predicted by the on-shell calculations for these

observables can be trusted. The difference in relaxing the on-shell assumption

here only results in a small lowering of the curves. In addition, we point out that

for these ‘standard’ distributions the off-shell effects amount to changes that are

smaller in magnitude than the scale uncertainties3.

It is also clear that the size of the sub-leading terms rarely increases above

1%, except near the lower end of the ranges for the rapidity and HT (Jb, Jb̄)

curves. This is a strong indication that the power-counting is functioning well

on a differential level. The shapes of the curves for the sub-leading contributions

also in general follows those of the LO distributions.

Figure 6.5 reveals the kinematical distributions for (left to right, top to bot-

tom) the transverse anti-top momentum, pT (t̄ ), the transverse momentum of

the b-jet, pT (Jb), the rapidity of the negatively charged lepton, η(l−) and the

pseudo-rapidity of the top, y(t). The definitions of the latter two are given by

η(l−) ≡ y(l−) =
1

2
log

(
p0(l−) + pz(l

−)

p0(l−)− pz(l−)

)

y(t) =
1

2
log

(
p0(t) + pz(t)

p0(t)− pz(t)

)
. (6.6)

The upper panels indicate the off-shell LO and NLO results at µ = Mt. For

comparison, the separate corrections to the production, top decay and anti-top

decay subprocesses as well as the single-resonant contributions (multiplied by a

factor of 5) are displayed. The lower panels give the size of the separate NLO

factorizable corrections with respect to the LO weights.

As with the previous observables, the overall NLO corrections are negative,

though the production and decay corrections are positive and negative respec-

3We similarly note that for these observables the off-shell effects are, in general, smaller than
the typical uncertainties in the PDFs.
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Figure 6.5: A selection of ‘standard’ kinematical distributions with a break-
down of the various NLO corrections. Plotted in the upper panel are: LO
off-shell (green), NLO off-shell (red), NLO production correction (blue), NLO
top-decay correction (pink), NLO anti-top decay correction (dashed green) and
single-resonant contributions (dashed purple). The lower panels indicate the size
of NLO production (blue), top decay (pink), anti-top decay (dashed green) and
single-resonant (dashed purple) correction with respect to the LO off-shell pre-
dictions.

tively, with the former constituting corrections ranging from 10% to upwards of

30%, whilst the former yield corrections consistently between -10% and -20%.

The lower panels also clearly point out that the effects of the single-resonant dia-

grams are by far eclipsed by the NLO corrections, giving correction with respect
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to LO of the order of 1% for the greatest part of the kinematical ranges considered

here.

The breakdown of contributions, as presented in Figure 6.5, allows for the

identification of some interesting behaviour of the NLO corrections. For the

rapidity distributions it is clear that the asymmetrical shapes at NLO come about

due to the asymmetry present in the corrections to the production subprocess. In

contrast, the corrections to top and anti-top decay are flat in rapidity and simply

result to a lowering of the LO curves. It is also interesting to observe that there

is a small asymmetry arising from the single-resonant contributions, though this

is clearly outweighed by that of the production corrections.

Moving on to examine the pT distributions, we find that the production cor-

rections tend to decrease for increasing pT , while the top and anti-top decay

are much flatter, however they do become smaller slowly for increasing pT . The

single-resonant contributions are once more drowned out by the NLO factorizable

corrections.

6.3.3 Mass-variable Distributions

We now turn to examine distributions that are sensitive to the off-shellness of

the top quarks and thus of greater interest in this work. The first of these is the

invariant mass of the top, displayed in Figure 6.6. Such distributions are not only

important for the study of off-shell effects, but also experimentally are the basis

for the modelling of ‘templates’ used for fitting data curves in the extraction of

the top mass. Thus precisely how higher-order corrections affect the shapes of

such curves is of vital importance to control.

In the upper panel, the green and red curves once again indicate the LO and

NLO off-shell predictions whilst the blue line traces the NLO on-shell curve. The

LO on-shell distribution would be a delta-function centered on Mt, which is not

drawn in the figure. The LO off-shell curves show the standard Breit-Wigner

distributions, whilst it is clear that the NLO corrections significantly modify the

curves by smoothing out the sharp LO result. An important feature to pick out

is that the NLO on-shell distribution displays a significantly different shape to

the corresponding off-shell one. The higher-order corrections in the on-shell case
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Figure 6.6: The Minv(t) = Minv(Jb +W+) distribution. The upper panel displays
the LO (green) and NLO (red) off-shell results under scale variation, along with
the NLO on-shell curve (blue) and the single-resonant contributions multiplied
by a factor of 10 (purple). The lower panel indicates the size of off-shell effects
(red) with respect to NLO on-shell and of non-factorizable corrections (blue) and
single-resonant contributions (green) with respect to the LO off-shell prediction.

cannot cure the delta-function spike at Mt present at LO, the contrast with the

off-shell NLO being particularly stark for Minv(t) or Minv(t̄ ) > Mt.

The lower panel of Figure 6.6 indicates the size of the off-shell effects (red)

and single-resonant contributions (blue) with respect to the NLO off-shell results.

The former highlight the fact that the off-shell corrections are large, especially

in the region around Mt where, in places, they exceed 80-90%. The regions

above Mt also display larger off-shell corrections. It should also be pointed out

that the single-resonant contributions start becoming competitive with the NLO

corrections when moving to greater values of Minv(t) or Minv(t̄) away from Mt.

In the remainder of this subsection we study three ‘transverse’ masses - ob-
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Figure 6.7: The MT (t) distribution. The upper panel displays the LO (green)
and NLO (red) off-shell results under scale variation, along with the NLO on-
shell curve (blue) and the single-resonant contributions multiplied by a factor
of 10 (purple). The lower panel indicates the size of off-shell effects (red) and
single-resonant contributions (blue) with respect to the NLO on-shell prediction.

servables that are sensitive to off-shell effects. These are defined here by

MT (t) =
(
(|~pT (Jb)|+ |~pT (l+)|+ |ET (νl)|)2 − (~pT (Jb) + ~pT (l+) + ~pT (νl))

2
)1/2

MTr(t) =
(
(p(Jb) + p(l+))2 + 2(ET (b, l+)ET (νl)− (~pT (Jb) + ~pT (l+)) · ~pT (νl))

)1/2

MTr2(t) =
(
(p(Jb) + p(l+) + p(νl))

2 + (~pT (Jb) + ~pT (l+) + ~pT (ν))2
)1/2

(6.7)

where ~pT (k) is the transverse momentum of the final state k and ET (b, l+) =

[(p(Jb) + p(l+))2 + (~pT (Jb) + ~pT (l+))2]1/2. The same variables for the anti-top

are obtained by swapping {Jb ↔ Jb̄, l
+ ↔ l−, νl ↔ ν̄l}. A common property

shared by the distributions of all three of these variables is that, when the tops

are assumed to be on-shell, they display sharp edges at Mt. Relaxing the on-shell

assumption therefore is expected to result in significant effects near these edges.

Once again, it is highly desirable to understand how the shapes of these curves
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change when the off-shellness of the tops is accounted for.

Figures 6.7, 6.8 and 6.9 depict distributions for MT (t), MTr(t̄ ) and MTr2(t̄ )

respectively, where the feature of an edge is clearly visible in all three. The lower

panel indicates the significance of the off-shell effects and single-resonant contri-

butions. The three plots show that off-shell effects are small over most of the

allowed ranges. However, near the edges, the off-shell effects become important.

Their absolute effect can reach values exceeding 20% locally, but more impor-

tantly, the sign of these (large) effects changes in crossing the Mt boundary. This

crucially changes the shape of each distribution by smearing the region around

Mt, leading to much less pronounced edges.
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Figure 6.8: The MTr(t̄ ) distribution. The upper panel displays the LO (green)
and NLO (red) off-shell results under scale variation, along with the NLO on-shell
curve (blue) and the single-resonant contributions multiplied by a factor of 10
(purple). The lower panel indicates the size of off-shell effects (red) with respect
to NLO on-shell and non-factorizable (blue) and single-resonant contributions
(green) with respect to the LO off-shell prediction.

It was pointed out in [62, 63] that the pattern of off-shell effects increasing

in significance near edges or kinematic boundaries in distributions occurs due to

an averaging effect becoming less effective. In general, the weight of a particular

110



 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016
dσ

 / 
dM

T
r2

 [p
b/

G
eV

]
LO off-shell

NLO off-shell
NLO on-shell

10*Single-Resonant

-0.1
 0

 0.1
 0.2

 140  160  180  200  220  240  260  280  300  320

-0.1
 0
 0.1
 0.2

MTr2(Jbbar + W-) [GeV]

off-shell effects/NLO onshell
single-resonant/LO

NF/LO

Figure 6.9: The MTr2(t̄ ) distribution. The upper panel displays the LO (green)
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observable in a particular bin will receive contributions from events with Minv(t)

and Minv(t̄ ) anywhere in the range [140, 200] GeV (as required by the cuts im-

posed). Due to the fact that the off-shell effects change sign near Minv(t) ' Mt

and Minv(t̄ ) ' Mt this leads to an averaging of the impact the off-shellness has

in that bin4. However, for bins which can receive contributions from events with,

say, only Minv(t) > Mt, then this averaging effect is spoiled to some degree,

leading to the off-shell contributions having a more noticeable effect.

Once again, the size of the single-resonant diagrams with respect to the LO

contributions is generally very small. However, near the tails of the distribu-

tions and more specifically in regions of high top and anti-top invariant masses,

effects from these sub-leading parts can become important. In such regions of

4This is actually the reason why off-shell effects are modest for the ‘standard’ observables
studied. Most (or all) bins of such distributions will receive contributions from events spanning
the full range of Minv(t) and Minv(t̄ ), thus leading to large cancellations and small effects.
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phase-space however, the cross-section is so small that at least for the observables

studied here, it is not clear if these effects will be of practical importance.

-0.00015

-0.0001

-5e-05

 0

 5e-05

 0.0001

 0.00015

 20  40  60  80  100  120  140  160  180

dσ
 / 

dp
T
  [

 p
b 

/ G
eV

 ]

pT(Jbbar)  [ GeV ] 

full NF correction
real NF correction

virtual NF correction

-0.00015

-0.0001

-5e-05

 0

 5e-05

 0.0001

 0.00015

 100  110  120  130  140  150  160  170  180  190

dσ
 / 

dM
T
  [

 p
b 

/ G
eV

 ]

MT(tbar)  [ GeV ] 

full NF correction
real NF correction
virtual NF correction

Figure 6.10: Plots indicating the large cancellation occurring within the non-
factorizable corrections. The full non-factorizable correction is shown in red,
whilst the real and virtual contributions to this are in green and blue respectively.

Finally, it is interesting to examine the non-factorizable pieces separately.

Figure 6.10 shows the real and virtual parts of these small pieces separately. Of

course, these are themselves not physical quantities, however the plots indicate the

large and delicate cancellations amongst the components of the non-factorizable

corrections that conspire to make the latter so modest in size. For observables,

such as pT (Jb̄) on the left, the cancellations are almost perfect, leading to tiny

corrections. In the case of observables that are less inclusive in the top and anti-

top invariant masses (at least in some regions of phase-space), the cancellations

are not as good leading to slightly larger effects. The figure can be viewed as

a visualization of the cancellation theorems of [50, 51] promoted to the fully

differential level.

6.3.4 The Forward-Backward Asymmetry

The top forward-backward (FB) asymmetry (and the related leptonic asymmetry)

has been measured by the CDF and DO Tevatron experiments to be larger than

that given by SM predictions (at present) [70, 71]. This has sparked much activity

and excitement in the theory community with numerous new physics models
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devised to explain the apparent discrepancy.

One of the standard inclusive top asymmetries studied is

AFB =
σ(∆y > 0)− σ(∆y < 0)

σ(∆y > 0) + σ(∆y < 0)
(6.8)

where ∆y = y(t)− y(t̄ ) and the related leptonic asymmetry

AlFB =
σ(η(l+) > 0)− σ(η(l−) < 0))

σ(η(l+) > 0) + σ(η(l−) < 0))
. (6.9)

In the SM, the FB asymmetry is zero at LO (when considering solely the QCD

contributions to top-pair production diagrams) and becomes non-zero at NLO.

This comes about due to the asymmetry present in the one-loop box corrections

to qq̄ → tt̄ as well as that in the interference of initial-final state radiation in the

real corrections under t ↔ t̄ exchange5 [72]. At NLO in QCD, the SM predicts

a relatively small (inclusive) FB asymmetry due to a partial cancellation of the

asymmetric contributions between real and virtual.

Here we study the relevant differential observables

top asymmetry:
dσ

dy(t)
− dσ

dy(t̄ )

lepton asymmetry:
dσ

dη(l+)
− dσ

dη(l−)
(6.10)

paying particular attention to the effects introduced by relaxing the assumption

that the top quarks are on-shell. It is to be expected from our previous experience

with rapidity observables (see Figure 6.4), where off-shell effects were found to

be consistently small, that these effects will not affect the asymmetries much at

all.

Examining Figure 6.11, where the upper panels display the NLO on-shell and

off-shell curves along with the sub-leading terms, we see that this is indeed the

case. The lower panels measure the importance of the off-shell effects and single-

5The gluon-gluon initiated channel is symmetric under charge conjugation thus gives zero
contribution to the FB asymmetry. This means that at the LHC, where top-pair production is
dominated by the gg-channel, this asymmetry is very challenging to study.
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Figure 6.11: Top (left) and lepton (right) differential asymmetries as defined in
(6.10). The upper panels show the LO (green) and NLO (red) off-shell, NLO
on-shell (blue) and single-resonant (purple) curves. The lower panel shown the
ratio of off-shell effects (red) and single-resonant contributions (blue) versus the
NLO on-shell result.

resonant contributions with respect to the NLO on-shell predictions. From this

we can gauge that going from on-shell to off-shell on the whole tends to reduce

the asymmetry by 2-3%. What is perhaps more interesting in the plots is that

the effects introduced by the sub-leading terms are comparable with the off-shell

effects. For the case of the top asymmetry the sub-leading terms enhance the

on-shell results by about 5%, whilst for the leptonic observable, they make up

corrections of -10%. The single-resonant contributions give rise to an asymmetry

due to the fact that they contain diagrams with W -boson emissions off initial

state b-quarks. We note that this is not the full set of sub-leading contributions

to the FB asymmetry as there is a non-zero LO EW correction which we have

not included.

6.3.5 Effects of using the PS-mass scheme

In this subsection we explore the effects of using a PS-mass of 172.9 GeV instead

of a pole mass of the same numerical value. As an example, we have chosen to

fix the PS-scale to µps = 20 GeV. This corresponds to a pole mass of MOS
t '

174.3 GeV (see (5.59)) with the difference between the two masses being roughly
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the same as the current experimental uncertainty on the top mass [73]. The aim

here is to investigate whether it is at all feasible to distinguish between the two

schemes, albeit without the rigour of a full experimental analysis.
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Figure 6.12: Kinematical distributions for η(l−) (left) and MTr(t̄) (right). The
upper panels display LO and NLO curves in the OS-scheme and PS-scheme with
µps = 20 GeV. The lower panels plot the ratio of the difference in the predictions
using the OS-scheme and PS-scheme relative to the OS-scheme, at LO and NLO.

Figure 6.12 displays two distributions with contrasting effects. For the first

of these, the rapidity of the negatively charged lepton, η(l−), using the PS-mass

has a very small effect of roughly 1% over the full range of η. The two curves

at LO and NLO have the same shapes and can hardly be distinguished from one

another. However, the changes are slightly more visible in the second distribution

plotted. Given that the pole mass is greater than 172.9 GeV for the value of the

PS-mass chosen, a shift of the edge of the distribution in the PS-scheme to slightly

higher values of MTr2 is noticed relative to the OS-scheme curves. The shift due

to the different pole mass is evident in the constant 4% difference in the curves

over the lower range of MTr2 and the stark differences near the edge.

Making use of the distributions sensitive to the top mass definition it would

be interesting to see whether or not the two different masses can be distinguished.

The result for MTr indicate that there is a fairly sizeable difference between the

two, however, a realistic analysis would need to be performed to evaluate if this

is feasible.

115



Chapter 7

Conclusions and Outlook

A summary of the main ideas and results presented in this thesis is given in this

final chapter along with an outlook for future research and developments that

could follow on from this work.

7.1 Conclusions

The top quark has played a key part for much phenomenology at the Fermilab

Tevatron and will continue to do so for many years at the LHC at CERN. Un-

derstanding its properties in detail will not only allow for a better grasp of the

SM but will also aid physicists along the quest for new physics.

The main goal of the work presented in this thesis has been a description

of top quark production processes at hadron colliders respecting the important

properties of top quarks, namely that they are massive and, because of their

large width, they decay before forming bound states. The assumption that the

top quark is on-shell, known as the Narrow-Width Approximation, simplifies the

calculations significantly, however, it evidently disregards any effects the non-zero

virtuality may introduce.

As the bulk of the cross-section for processes involving the production of un-

stable tops lies in the resonant regions (where p2
t ∼M2

t ) the description we have

aimed at is one that is valid here, without resorting to the on-shell assumption.

ETs systematically pick out the dominant physics in different regions of momen-

tum space via expansions of scattering amplitudes in small parameters. In the
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material presented here ET ideas have been employed to aid the extraction of the

dominant physics in regions of phase space where the top quarks are resonant.

The realisation of a simultaneous double expansion of the full process am-

plitudes about the complex poles of resonant propagators as well as in the per-

turbative couplings αs and αew is precisely what is required to describe the res-

onant regions efficiently. This is made possible by the introduction of an ET

power-counting scheme, along with the use of the method of regions, providing

a systematic framework for picking out relevant contributions to such a double

expansion from tree-level and loop diagrams in perturbation theory. The ex-

pansion in regions separates virtual contributions into hard and soft. The first

set corresponds to factorizable corrections to production and decay subprocesses

whilst the latter, the non-factorizable corrections, link up these two, which are

moderately separated in phase-space.

In the description of differential observables, the real corrections have to be

explicitly dealt with, unlike in the case of inclusive quantities where they can

be dealt with in line with the virtual corrections by use of the Optical Theorem.

However, the treatment of the real corrections must be consistent with the method

of regions used for the loop corrections if the desirable feature of the complete

separation into factorizable and non-factorizable pieces is to hold. This would

not only allow for the examination of the properties of these sets of corrections

individually, but also for a better way of evaluating these, namely at their natural

hard and soft scales. We have presented a method of treating the real corrections

for general differential observables that enables this desired full split.

These ET inspired methods have been applied to the case of top-pair produc-

tion. In particular, the focus has been on the qq̄-initiated channel that dominates

at the Tevatron. A number of distributions have been studied for a basic ex-

perimental setup and a detailed comparison made with the predictions made in

the iNWA. For observables inclusive in the invariant top and anti-top masses the

differences between treating the tops as on-shell and off-shell are modest, the off-

shell effects usually making up negative corrections of 2-4% to the NLO on-shell

results. However, differential observables that are less inclusive in Minv(t) can and

do display more significant enhancements of the off-shell corrections. In particu-

lar, for distributions possessing sharp edges at kinematic boundaries, the transi-
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tion from on-shell to off-shell is often stark, with corrections even exceeding 15%

and moreover, resulting in a modification of the distribution shape. In addition

to these studies, differential observables related to the Forward-Backward asym-

metry have been presented, where, as for other quantities inclusive in Minv(t),

including the off-shellness of top quarks results in minor modifications. We have

also shown that it is possible to use a scheme other than the pole mass-scheme

in our ET method. For the observables studied, the differences between the pole

and PS schemes are small, though larger effects can be seen near sharp edges due

to differences in the pole mass in the two schemes.

We emphasise that the framework presented for the treatment of unstable

heavy tops is applicable with only minor modifications to processes involving

other unstable particles and thus it may well be of importance in the coming

years where any new particles discovered by the LHC are likely to be both heavy

and unstable. The method is a systematically improvable one and moreover, the

ET structures found at ‘N’LO can guide one in the computation of higher order

terms. The computation of corrections to the matching coefficients as well as

the introduction of higher suppressed operators in a strict ET approach, points

us to include such effects in the counterparts to these, where unstable particle

production is concerned.

7.2 Outlook

Finally, we give an outlook as to how the work discussed in this thesis can be

improved on and extended. Once the gluon-gluon and gluon-quark initiated pro-

cesses have been included a realistic description of resonant top-pair production

and decay for the LHC will be possible. Including these additional subprocesses

can be included using the framework presented in Chapter 5 without modifi-

cations. Going beyond this involves further developing the ET approach in a

number of different directions in order that the accuracy of the predictions made

is increased.

The first of these directions is related to one of the limitations to the method,

namely that the invariant mass of the pair of unstable tops must be kept above
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threshold in order that the ET power-counting remains valid. As discussed, the

ET would have to be slightly modified in order to account correctly for the new,

‘potential’ region encountered near threshold. Although the numerical effects of

describing such a region properly in a hadron collider context is likely to only

result in small corrections, it would be both desirable and essential to do so in

the case of pair-production at a linear collider, where the expected precision with

which properties such as the top mass could be measured is significantly higher.

This improvement would require the smooth interpolation between the method

of this work and one based upon NRQCD. Once more, a big hurdle here would

be the treatment of the real contributions in a fashion similar to the virtual

corrections, allowing for the study of fully differential observables.

Improvements to the method presented here could be achieved through mak-

ing the description of the processes involving unstable particles better. A clear

way this can be done is to include higher order corrections. Here we have in-

cluded corrections of O(δ1/2) to the LO predictions, which have, for the most

part, included one-loop and single real-emission QCD corrections. The computa-

tion of O(δ) corrections would require us to include two-loop QCD and one-loop

EW corrections to the double-resonant diagrams along with their real correction

counterparts, as well as all appropriate tree-level single-resonant contributions.

This would certainly be a tough challenge, but it would definitely be simpler than

computing, say, the full two-loop corrections to W+ b W− b̄ production.

To finish, we stress that the ET inspired methods have allowed for the clean

split of hard and soft corrections. Here we have evaluated both sets using a com-

mon hard scale. However, to minimize the effects of large logarithms appearing

in both sets, each ought to be evaluated at its appropriate scale. More precisely,

the hard scale µh = Mt should be used for the factorizable corrections and the

soft scale µs = Γt for the non-factorizable. To do this consistently, the hard cor-

rections should be run down from µh to µs using renormalization group equations

and predictions be made at the common scale µs. This would achieve a resumma-

tion of logarithms of the form µs/µh and in this way would avoid the presence of

unwanted large logarithms in both sets. Furthermore, this may actually lead to

an enhancement of the soft corrections since the value of αs(µ) grows at smaller

µ. Extending the framework discussed throughout this thesis to allow for such a
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resummation would be of phenomenological interest for the process at hand, as

well as perhaps giving some indication as to how to include other resummation

effects for arbitrary exclusive observables.
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Appendix A: Momentum

Projections

Due to the fact that in the work presented in this thesis we study the effects of

treating top quarks as off-shell, we generate phase-space such that at Born-level

the momentum configurations satisfy

{pi}8
1 : p2

t = (p3 + p5 + p6)2 6= M2
t and p2

t̄ = (p4 + p7 + p8)2 6= M2
t (1)

and for the real corrections momenta are produced such that

{pi}9
1 : p2

t = (p3 + p5 + p6)2 6= M2
t and p2

t̄ = (p4 + p7 + p8)2 6= M2
t

p2
t9 = (p3 + p5 + p6 + p9)2 6= M2

t and p2
t̄9 = (p4 + p7 + p8 + p9)2 6= M2

t .

(2)

These are the momentum configurations that must be used for binning, as indi-

cated in (5.90). However, the ET power-counting along with the pole expansion

dictate that the residues of the top quark propagators must be evaluated with on-

shell top momenta. This means that the weight from the matrix element, except

for the denominators of the top propagators themselves, must be one obtained

using a configuration where the top quarks are on-shell. Clearly it is necessary

to project the fully off-shell configurations to on-shell ones.
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Projection for Born and virtual terms

For the Born and virtual matrix elements the situation is fairly straightforward.

We must construct a projection that maps {pi}8
1 to {p̃i}8

1, where (p̃3 + p̃5 + p̃6)2 =

M2
t and (p̃4 + p̃7 + p̃8)2 = M2

t , allowing for the residues of the double-resonant

matrix elements to be evaluated on-shell. For the results presented in Chapter 6,

we have used the following mappings:

p̃3,5,6 =
p3,5,6

x

p̃4,7,8 =
p4,7,8

y
(3)

with

x =
p2
t

M2
t

y =
p2
t̄

M2
t

. (4)

The sum of the initial momenta is mapped as follows

p1 + p2 → q̃ = q̃1 + q̃2 (5)

where

q̃ = p1 + p2 − pt(1−
1

x
)− pt̄(1−

1

y
). (6)

q̃1 and q̃2 are arbitrary but still light-like. The decomposition of q̃ into q̃1 +

q̃2 is similar to (2.9), where the massive top momentum is written as a linear

combination of two light-like momenta.
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Projections for real terms

Projections for the real corrections must come in three variants since in the pres-

ence of an additional gluon, the factorizable corrections are split into real emis-

sion corrections to one of the production, top decay or anti-top decay vertices.

This results in three possible situations: either p2
t = p2

t̄ = M2
t (production),

p2
t9 = p2

t̄ = M2
t (top decay) or p2

t = p2
t̄9 = M2

t (anti-top decay), for each of which

an appropriate mapping of momenta must be made. The projections used are

similar to the one used above for the Born and virtual terms.

For the factorizable corrections to the production subprocess, we have exactly

the same projection as above, with the gluon momentum unchanged, i.e. p̃9 = p9.

In the case of emissions off the top decay vertex, we use

p̃3,5,6,9 =
p3,5,6,9

x

p̃4,7,8 =
p4,7,8

y
(7)

with x and y now given by

x =
p2
t9

M2
t

y =
p2
t̄

M2
t

. (8)

The projection for the anti-top decay scenario is given by the top decay projection

with the swaps p3,5,6 ↔ p4,7,8, pt9 → pt, pt̄ → pt̄9 and x↔ y.

The caveats to using this set of projections is that the new incoming momenta

q̃1,2 are no longer head on. In addition, the modified leptonic momenta satisfy

(p5 + p6)2 =
M2

W

x2
(p7 + p8)2 =

M2
W

y2
, (9)

i.e. do not reconstruct the physical W -bosons. This is not a problem since the

projected momenta {p̃i} are not the physical momenta, but only the momenta
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that are used for evaluating (part of) the matrix element weights.

We note that this projection is by no means unique. In fact it may be of

concern that this is the case since different projections would in general lead to

different results. Due to the fact that the projection mapping off-shell to on-

shell is a kind of expansion of the momenta, then we would expect that using

alternative projections gives results that are different, but close enough such that

the differences are smaller than our target accuracy. We have checked our results

with three projections and the results satisfy the expectations.
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Appendix B: Soft Scalar Integrals

Here we catalogue the Scalar integrals relevant for the soft-virtual contributions.

The integrals Is.e., Itq, Iqb can be found in [62], whereas Itt̄, Itb̄ and Ibb̄ were

calculated anew. In what follows we will always assume sij = 2 pi · pj.

Is.e.(pt,Mt; ε, µ) = −16π i αsµ̃
2εM

2
t

∆t

∫
ddk

(2π)d
1

k2

1

∆t − 2k.pt
(10)

=
αs
2π

(
1

ε
+ 2

)(
− ∆t

µMt

)−2ε

(11)

Itq(pt, pq,Mt; ε, µ) = −16π i αsµ̃
2ε(pt.pq)

∫
ddk

(2π)d
1

k2

1

−2k.pq

1

∆t − 2k.pt
(12)

=
αs
2π

(
1

2ε2
+

5

24
π2

)(
− ∆t

µMt

)−2ε

(13)

Itt̄(pt, pt̄,Mt; ε, µ) = 16π i αsµ̃
2ε(pt.pt̄)

∫
ddk

(2π)d
1

k2

1

∆t − 2k.pt

1

∆t̄ + 2k.pt̄
(14)

=
αs
4π

η

(
1

ε
I

(−1)
tt̄ + 2 log (µMt) I

(−1)
tt̄ + I

(0)
tt̄

)
(15)
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with η = (s− 2M2
t )/M2

t and

I
(−1)
tt̄ =

log (−ξ−)− log (ξ+)

ξ+ − ξ−
(16)

I
(0)
tt̄ =

1

2(ξ+ − ξ−)

(
π2 + 2(log(ξ+)− iπ) log

(
ξ−

ξ− − ξ+

)

+ 4 log(−∆t)(log(−ξ+)− log(−ξ−)) + log2(ξ+ − ξ−)− log2(ξ− − ξ+)

+ log(−ξ−)

(
4 log

(
∆t

∆t + ∆t̄ξ−

)
− 2 log

(
ξ+

ξ+ − ξ−

)
+ log(−ξ−)

)

− 2 log2

(
∆t̄

∆t + ∆t̄ξ+

)
+ 2 log2

(
∆t̄

∆t + ∆t̄ξ−

)

+ i

(
4(π + i log(ξ+)) log

(
∆t

∆t + ∆t̄ξ+

)
+ (2π + i log(ξ+)) log(ξ+)

)

− 4Li2

(
∆t̄ξ+

∆t + ∆t̄ξ+

)
+ 4Li2

(
∆t̄ξ−

∆t + ∆t̄ξ−

)

+2Li2

(
ξ+

ξ+ − ξ−

)
− 2Li2

(
ξ−

ξ− − ξ+

))
(17)

where ξ± =
η±
√
η2−4+io+

2
.

Iqb(pt, pq, pb,Mt; ε, µ) =

− 16π i αsµ̃
2ε(pq.pb)

∫
ddk

(2π)d
1

k2

1

−2k.pq

1

−2k.pb

∆t

∆t − 2k.pt
(18)

=
αs
2π

(
− 1

ε2
− 1

ε
log

(
sqt sbt
M2

t sqb

)
+ Li2

(
1− sqt sbt

M2
t sqb

)
− 5

12
π2

)(
− ∆t

µMt

)−2ε

(19)
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Itb̄(pt, pt̄, pb̄,Mt; ε, µ) =

16π i αsµ̃
2ε(pt.pb̄) ∆t

∫
ddk

(2π)d
1

k2

1

2k.pb̄

1

∆t − 2k.pt

1

∆t̄ + 2k.pt̄
(20)

= −αs
2π

∆t̄

(
1

ε
I

(−1)

tb̄
+ 2 log (µMt) I

(−1)

tb̄
+ I

(0)

tb̄

)
(21)

with

I
(−1)

tb̄
=

log (−ξ4) + log (−∆t)− log (−∆t̄)

ξ4∆t + ∆t̄

(22)
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and

I
(0)

tb̄
= − 1

6(∆tξ4 + ∆t̄)

(
7π2 − 6iπ log(ξ4)− 6 log(ξ−) log(ξ4)

+ 6 log(−ξ−)(log(−∆t̄)− log(−∆tξ− −∆t̄))

+ 6 log(−ξ+)(log(−∆t̄)− log(−∆tξ+ −∆t̄))

− 3 log2(−ξ− + ξ4) + 6 log(ξ−) log(−ξ− + ξ4)

+ 3 log2(−ξ+ + ξ4)− 6 log(−ξ4) log(−ξ+ + ξ4)

+ 3(log(−∆t)− log(−∆tξ− −∆t̄))
2 + 3(log(−∆t)− log(−∆tξ+ −∆t̄))

2

+ 6 log2(∆tξ4 + ∆t̄)− 6 log2(−∆t̄)

+ 12 log(−∆t̄)(− log(−∆tξ4 −∆t̄) + log(−∆t) + log(ξ4))

− 6Li2

(
ξ−

ξ− − ξ4

)
+ 6Li2

(
ξ4

ξ4 − ξ+

)

+6Li2

(
∆tξ−

∆t̄ + ∆tξ−

)
+ 6Li2

(
∆tξ+

∆t̄ + ∆tξ+

)
+ 12Li2

(
∆t̄

∆t̄ + ∆tξ4

))
(23)

and ξ4 = s4t̄
s4t
− io+.

Ibb̄(pt, pt̄, pb, pb̄,Mt; ε, µ) =

16π i αsµ̃
2ε(pb.pb̄) ∆t ∆t̄

∫
ddk

(2π)d
1

k2

1

−2k.pb

1

2k.pb̄

1

∆t − 2k.pt

1

∆t̄ + 2k.pt̄
(24)
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An analytical expression for this was found in terms of a decomposition of the

pentagon into the soft boxes Iqb and Itb̄. This decomposition takes the form

Ibb̄(pt, pt̄, pb, pb̄,Mt; ε, µ) =

= −αs
2π

∆t∆t̄

(
− ε b1 I

6−2ε
5

+ b2 Itb̄(pt, pt̄, pb̄,Mt; ε, µ) + b3 Itb̄(pt̄, pt, pb,Mt; ε, µ)

+b4 Iqb(pt̄, pb, pb̄,Mt; ε, µ) + b5 Iqb(pt, pb̄, pb,Mt; ε, µ)
)
, (25)

where

b1 =
4CtCt̄ − C2

tt̄

Wtt̄

(26)

b2 =
−2Ct sb̄t ∆t − Ctt̄ sb̄t̄ ∆t + Ctt̄ sb̄t ∆t̄ + 2Ct̄ sb̄t̄ ∆t̄

Wtt̄

(27)

b3 =
2Ct sbt ∆t + Ctt̄ sbt̄ ∆t − Ctt̄ sbt ∆t̄ − 2Ct̄ sbt̄ ∆t̄

Wtt̄

(28)

b4 =
sbb̄ (2Ct ∆t − Ctt̄ ∆t̄)

Wtt̄

(29)

b5 =
sbb̄ (2Ct̄ ∆t̄ − Ctt̄ ∆t)

Wtt̄

(30)

Wtt̄ = 2
(
Ct ∆2

t − Ctt̄ ∆t ∆t̄ + Ct̄ ∆2
t̄

)
(31)

Ct = M2
t sbb̄ − sbt̄ sb̄ t̄ (32)

Ct̄ = M2
t sbb̄ − sbt sb̄ t (33)

Ctt̄ = sbt̄ sb̄t + sbt sb̄t̄ − sbb̄ stt̄. (34)
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The expression for I6−2ε
5 is given by

I6−2ε
5 = − 1

2ε

1

sbb̄M
2
t − sbt̄ sb̄t̄

(
log

(
sbt̄ sb̄t̄
M2

t sbb̄

)
I5,0

+I5,1(ξ3) + I5,1(1/ξ4)− I5,1(ζ+)− I5,1(ζ−)

)
, (35)

where

I5,0 =
log (−Z+)− log (−Z−)

Z− − Z+

(36)

I5,1(xz) =
1

Z− − Z+

(
Li2

(
Z−

Z− − Re(xz)

)
− Li2

(
Z+

Z+ − Re(xz)

)

+
1

2

(
log2(Re(xz)− Z+)− log2(Re(xz)− Z−)

)
+ log

(
1− Re(xz)

Z−

)(
log

(
1− Re(xz)

Z−

)
− log

(
− 1

Z−

)
+ iπ

)

− log2

(
1− Re(xz)

Z+

)
+

(
log

(
− 1

Z+

)
− iπ

)
log

(
1− Re(xz)

Z+

)

− 2iπ(1− θ(−Im(xz)))
{

log(Re(xz)− Z−)

− log(Re(xz)− Z+)− log(−Z−) + log(−Z+)
})

(37)
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and

Z± =
1

2 (M2
t − sbt̄ sb̄t̄/sbb̄)

(
M2

t (ζ− + ζ+)− sbt̄ sb̄t̄
sbb̄

(ξ3 + 1/ξ4)

±
[
−4

(
M2

t −
sbt̄ sb̄t̄
sbb̄

)(
M2

t ζ−ζ+ −
sbt̄ sb̄t̄
sbb̄

ξ3

ξ4

)

+

(
M2

t (ζ− + ζ+)− sbt̄ sb̄t̄
sbb̄

(ξ3 + 1/ξ4)

)2
]1/2

 (38)

ζ± =
stt̄ ± (stt̄ − 4M4

t + io+)
1/2

2M2
t

. (39)
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