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Chapter 1

ForewordThe Quantum Chromo-dynamis (QCD) is a theory of strong interations| interations between hadrons and, in partiular, between their inner on-stituents. In QCD, the fundamental building bloks are quarks and gluonswhose interations are ultimately de�ned by the Lagrangian density
LQCD = −1

4
F a

µνF a,µν + Ψ
k
(iγµDµ − mk)Ψk, (1.1)where Ψk denote the quark �elds, γµs the standard Dira matries, and

Dµ ≡ ∂µ − igst
aAa

µ (1.2)
F a

µν ≡ ∂µAa
ν − ∂νAa

µ + gsf
abcAb

µAc
ν , (1.3)where Aa

µ are the gluon �elds and gs denotes the strong oupling onstant.The matries ta are the SU(3) generators and fabc are the orrespondingstruture onstants. The physis ontent of LQCD has turned out to be veryrih, yet hallenging to work out. The most rigorous approahes to probe theinner workings of QCD are the lattie simulations, whih have demonstratedenouraging results e.g. for on�nement and prediting the mass-hierarhyof light hadrons. The lattie-QCD, however, quikly meets its limitationswhen the size of the studied system inreases and it omes to desribing sat-tering experiments. To apply QCD in suh situation, perturbative methodsto treat quarks and gluons are to be employed. The ultimate justi�ationfor the use of perturbative QCD (pQCD) tools lies in the fat that QCDenjoys what is known as asymptoti freedom | the strong interations be-oming e�etively weaker when the inherent momentum sale of the proessis large, Q2 ≫ 1GeV2, or equivalently, when the probed distanes are muhsmaller than the size of the hadron. As the strong interations neverthelessbind the quarks and gluons, partons, together to make a hadron, the exatway they are distributed inside the hadrons annot be negleted when ap-plying pQCD to hadroni ollisions. Intuitively, the struture of the hadron3



should not, however, have anything to do with the ollision, but is rathersomething that is inherent for the hadron itself. From the pQCD point ofview, suh property is known as fatorization, and the relevant struture ofthe hadrons is enoded in parton distribution funtions (PDFs) whih areproess-independent. In priniple, the PDFs should be omputable from
LQCD but suh task is far from being realized in pratie any time soon.Instead, they must be inferred from various experiments with the help ofpQCD | from global analyses.The role of the proton PFDs beomes emphasized in a hadron-hadron ol-lider like the CERN-LHC where the bakrounds are often huge and theexpeted physis signals relatively weak. Interpreting the experimental mea-surements in a situation like this, requires reliable knowledge of the PDFs.Similarly, the detailed knowledge of the quark-gluon ontent of the boundnuleons is of vital importane in preision studies on the properties ofthe strongly interating matter expeted to be produed in ultrarelativistiPb+Pb ollisions at the LHC and e.g. Au+Au ollisions at the BNL-RHIC.This thesis onsists of two parts, the separate introdutory part and thepublished four artiles. The introdution begins by a tehnially detaileddesription of the DGLAP evolution | the pQCD-physis behind the globalQCD analyses | as I understand it. I also disuss the fast numerial solvingmethod for the DGLAP equations, whih has been used in the numerialworks of the published artiles of this thesis. A write-up of the next-to-leading order (NLO) alulations for the deeply inelasti sattering (DIS)and the Drell-Yan (DY) dilepton prodution ross-setions, whih are thedata types that omprise most of the experimental input employed in theartiles of this thesis, is also inluded. The formalism of the inlusive sin-gle hadron prodution at NLO, the third type of experimental data utilizedin these artiles, is desribed as well, although less rigorously. The intro-dutory part ends with a disussion of the global QCD analyses in general,with a speial attention paid to the major work of this thesis [IV℄, the NLOanalysis of nulear parton densities and their unertainties. I have triedto avoid unneessary overlap between the introdutory part and the pub-lished artiles, but yet keep the introdutory part suh that it is logial andself-ontained, without leaning too muh on the published artiles. The ne-essary bakground for understanding what is presented in this thesis is thebasi knowledge of Quantum Field Theory and elementary phenomenologyof High Energy Physis.
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Chapter 2

DGLAP evolutionIn this hapter, I will disuss the physis of parton evolution. Instead of onlyskething general guidelines, I will take a somewhat more detailed point ofview, hoping this thesis would also serve as an elementary introdution tothe subjet. Muh of what I present here an be learned from works ofDokshitzer et al. [1, 2℄ and Altarelli [3℄.
2.1 Deeply inelastic scattering

k1

kn

k, s

k′, s′

p, σ

q = k − k′

X

Figure 2.1: Shemati piture of the deeply inelasti sattering. The vari-ables k and P denote the inoming momenta, whereas k′ and k1, . . . , kn areall outgoing. The spin states are marked by s, s′ and σ.In a deeply inelasti sattering (DIS) a lepton projetile hits a target nu-leon breaking it apart to a state X onsisting of a plethora of variouspartiles with invariant mass M2
X ≫ M2, where M denotes the rest massof the nuleon. In the simplest ase the lepton is an eletron or muon andthe interation is dominantly mediated by exhanging a virtual photon, asillustrated in Fig. 2.1 5



In the target rest frame, the four-momenta of the partiles an be hosen as
k = (E,k) = (E, 0, 0, E)

k′ = (E′,k′) = (E′, E′ sin θ cos φ,E′ sin θ sin φ,E′ cos θ)

P = (P 0,P) = (M, 0, 0, 0)

q = (ν,q) = (E − E′,k− k),

(2.1)where I have negleted the lepton mass. The standard invariant DIS-variables are
Q2 ≡ −q2 = 4EE′ sin2 (θ/2)

x ≡ Q2

2P · q =
Q2

2Mν
(2.2)

y ≡ P · q
P · k =

ν

E
,where the latter equalities refer to the target rest frame. The di�erential,spin-independent ross-setion for this proess an be written as

σ =
πMe4

|k · P |q4

d3k′

(2π)32E′
LµνWµν , (2.3)where e is the eletri oupling onstant and

Lµν ≡ 1

2
Tr[ /k′γµ/kγν ] (2.4)

4πMWµν ≡ 1

2

∑

n

∑

σ

n∏

i=1

d3ki

(2π)32k0
i

(2π)4δ(4)(P + q −
n∑

j=1

kj) (2.5)
〈n, out|Ĵµ(0)|(P, σ), in〉〈(P, σ), in|Ĵ†

ν(0)|n, out〉are the leptoni and hadroni tensors. In ontrast to the leptoni tensor Lµν ,the non-perturbative nature of QCD makes it impossible to ompute Wµνdiretly but its general form an nevertheless be written down without muhfurther input. Indeed, sine Lµν is symmetri under interhange of indies,the relevant part of the hadroni tensor should also satisfy Wµν = Wνµ,and together with the de�nition (2.5) this implies W ∗
µν = Wµν . A furtherrestrition is provided by the urrent onservation qµWµν = qνWµν = 0.The general expression satisfying these onditions an be written as

Wµν = −W1

(

gµν − qµqν

q2

)

+
W2

M2

(

Pµ − P · q
q2

qµ

)(

Pν − P · q
q2

qν

)

, (2.6)where W1 and W2 are, a priori unknown oeÆients. It is traditional tode�ne dimensionless struture funtions
F1(x,Q2) ≡ MW1 F2(x,Q2) ≡ νW2, (2.7)6



whih, in the M2 ≪ Q2 limit, an be projeted from the hadroni tensor as
F2

x
=

(

−gµν +
12x2

Q2
PµP ν

)

MWµν (2.8)
F1 =

(

−1

2
gµν +

2x2

Q2
PµP ν

)

MWµν =
F2

2x
−
(

4x2

Q2
PµP ν

)

MWµν .In terms of the struture funtions F1 and F2 the ross-setion in Eq. (2.3)an expressed in an invariant way
d2σ

dxdQ2
=

4πα2
em

Q4

1

x

[

xy2F1 + F2

(

1 − y − xyM2

s − M2

)]

, (2.9)where s ≡ (P + k)2 denotes the enter-of-mass energy, and αem ≡ e2/4πstands for the �ne-struture onstant.
Parton modelThe parton model [4, 5℄ an be motivated by onsidering the DIS not in thetarget-rest-frame but in the eletron-proton enter-of-mass system. In suha frame, the nuleon appears Lorentz ontrated, and the time dilatationslows down the intrinsi interation rate of the fundamental onstituents ofthe nuleon, the partons. During the short period it takes for the eletron totraverse aross the nuleon, the state of the nuleon wave funtion an thusbe envisioned as being frozen to a superposition of free partons ollinear withthe nuleon. Mathematially, the parton model is de�ned by the relation

dσ =
∑

q

∫ 1

0
dξdσ̂q

0(ξP )fq(ξ), (2.10)where σ̂q
0(ξP ) is the leading order (Born) ross-setion for the eletron-parton sattering, with the parton arrying a momentum p = ξP . Thefuntions fq(ξ) are alled parton distributions, and represent the numberdensity of partons of avor q in the nuleon.

p′

p

q

Figure 2.2: The leading-order diagram for photon-quark interation.7



In QCD, only quarks arry an eletri harge eq and the de�nition (2.10)with Eq. (2.3) implies that the hadroni tensor Wµν an be written as
Wµν =

∑

q

∫ 1

0

dξ

ξ
Ŵ q

µνfq(ξ), (2.11)where its partoni ounterpart Ŵ q
µν is essentially the square of the diagramin Fig. (2.2)

4πMŴ q
µν =

e2
q

2

∑

σ

d3p′

(2π)32p′0
(2π)4δ(4)(p + q − p′)Tr[/p′γµ

/pγν ]

=
e2
q

2

2πx

Q2
Tr[/p′γµ

/pγν ]δ(ξ − x). (2.12)Negleting the nuleon mass M ompared to the photon virtuality Q2,
gµν Tr[/p′γµ

/pγν ] = −4Q2 pµpν Tr[/p′γµ
/pγν ] = 0, (2.13)we �nd

−gµν(MŴ q
µν) = e2

qxδ(ξ − x) pµpν(MŴ q
µν) = 0. (2.14)Consequently, the parton model preditions for the struture funtions re-due to an eletri-harge-weighted sum of the quark distributions,

2xF1(x) = F2(x) =
∑

q

e2
qxfq(x), (2.15)and the ross-setion in Eq. (2.9) an be written as

d2σ

dxdQ2
=

d2σ̂0

dxdQ2

∑

q

e2
qfq(x), (2.16)where σ̂0 denotes the partoni Born ross-setion

d2σ̂0

dxdQ2
≡ 4πα2

Q4

[
y2

2
+

(

1 − y − xyM2

s − M2

)]

. (2.17)It is a predition of the parton model that the struture funtions F1,2 areonly funtions of x, and should not depend on Q2 in the Q2 ≫ M2 limit.This phenomenon, termed as Bjorken-saling, was indeed observed in theearly SLAC experiments providing diret evidene about the inner on-stituents of the nuleon. Later experiments whih have overed a larger do-main in the (x,Q2)-plane have revealed, however, that the Q2-independeneof the struture funtions F1,2, although a good �rst approximation, was notexatly true. Suh deviations are lear e.g. in Fig. 2.3, whih shows some8



experimental data for the proton struture funtion F2. The saling viola-tions, as they are nowadays alled, an however be fully explained by theQCD dynamis | by so-alled DGLAP equations, to be derived shortly.Together with the asymptoti freedom, these equations with fatorizationtheorem onstitute the main pillars of perturbative QCD.
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Figure 2.3: Experimental data for proton struture funtion F2 from SLAC[6℄ and CERN-EMC [7℄ experiments.
2.2 Initial state radiation

2.2.1 Origin of the scaling violationsDue to the inlusive nature of the deeply inelasti sattering nothing forbidshaving additional QCD partiles in the �nal state. First suh orretions tothe Born-level matrix element originate from a radiation of a real gluon asshown in Fig. 2.4. Both of these diagrams are divergent as the intermediatequark propagators are lose to being on-shell:
(p − k)2 = −2p0k0 (1 − cos θ) → 0,
(
p′ + k

)2
= −2p′0k0

(
1 − cos θ′

)
→ 0.9



p′, i

q

t, i

p, j

k, a

p

s

p′

kFigure 2.4: Real gluon radiation. The letter i, j, a are the olor indies.This an happen either if the momentum of the emitted partile goes tozero, k0, p′0 → 0, or if the emission is in the diretion of the inoming or theoutgoing quark θ, θ′ → 0. These are arhetypes of infrared and ollinearsingularities orrespondingly. There are also same kind of divergenes stem-ming from the virtual orretions, and it turns out that all but the ollineardivergene related to the gluon radiation from the inoming quark willeventually anel. In what follows, I will show how to extrat these diver-genes and how their resummation gives rise to the parton DGLAP evolution| the Q2-dependene of the parton distributions observed in the experi-ments.
2.2.2 One gluon emissionRather than drawing graphs for matrix elements, for the rest of this Chapter,I will draw the graphs in the ut diagram notation (see e.g. [8℄) diretly forthe ross-setions. The square of the diagrams in Fig. 2.4 look as

p

k
t

p′
q

Figure 2.5: Diagrams representing the γ∗q → qg proess. It should beunderstood that the parton lines in the middle are real, on-shell partiles.Although the suh squared matrix element is ertainly gauge invariant, theontribution of an individual graph depends on the hoie of gauge. How-ever, as I already mentioned it is only the ollinear (p − k)2 → 0 singularitywhih turns out to be the relevant one. In the Feynman gauge, all but theseond of the diagrams in Fig. 2.5 will ontribute in this kinematial limit,10



but, as it turns out, in the axial gauge it is the �rst diagram alone thatis responsible for the divergent behaviour. For obvious reasons I all it aladder diagram.
Axial gaugeThe lass of axial gauges is spei�ed by a gauge-�xing term − 1

2ξ (n · G)2in the QCD Lagrangian where G denotes the gluon �eld, n is an arbitraryfour-vetor and ξ is the gauge parameter. The gluon propagator in thisgauge is
Dµν(k) =

−i

k2

[

gµν − kµnν + kνnµ

k · n +
ξk2 + n2

(k · n)2
kµkν

]

. (2.18)The sum over the two physial polarization states ǫλ1,2(k) (k2 = 0), obeying
k · ǫλi(k) = 0 and n · ǫλi(k) = 0, normalized by ǫλi(k) · ǫλi(k) = −1, reads

∑

λ

ǫλ
µ(k)ǫ∗λν (k) = −gµν +

kµnν + kνnµ

(k · n)
− n2kµkν

(k · n)2
. (2.19)Usually, it is onvenient to hoose ξ = 0 and n2 = 0 whih spei�es the light-one gauge. The axial gauges are sometimes alled physial gauges : thereason for this is most distint in the light-one gauge as any propagatorin a Feynman diagram an be replaed by the polarization sum over thephysial states:

Dµν(k) =
i

k2

∑

λ

ǫλ
µ(k)ǫ∗λν (k). (2.20)A onvenient hoie for the light-like axial vetor in the present problem is

n ≡ q + ηp, η ≡ −q2

2p · q . (2.21)
Sudakov decompositionIn extrating the dominant part of the squared matrix elements, it is on-venient to parametrize the momenta of the outgoing partons by [9℄

k = (1 − z)p + βn + k⊥, β =
−k2

⊥

2(1 − z)p · q , (2.22)11



where k⊥ is a spae-like 4-vetor orthogonal to n and p: k2
T < 0, n · kT =

p · kT = 0. For example, in the enter-of-mass frame of p and n,
p = (P, 0, 0, P )

n = (P, 0, 0,−P ) (2.23)
k⊥ = (0,k⊥, 0)

k =

(

(1 − z)P +
−k2

⊥

4(1 − z)P
,k⊥, (1 − z)P − −k2

⊥

4(1 − z)P

)where P is some referene momentum. In suh a frame the interpretationof k2
⊥ = −k2

⊥ as the transverse momentum is evident. Furthermore,
t2 = (p − k)2 = k2

⊥/(1 − z),and we see that the ollinear t → 0 divergene should be found by extratingthe 1/k2
⊥-pole.

The calculationThe squared matrix element orresponding to the �rst diagram in Fig. 2.5reads
|MLadder

γ∗q→qg|2µν = CF g2
s

e2
q

2

∑

pol

1

t4
Tr
[
/p′γµ/t/ǫ/p /ǫ∗/tγν

]
, t = p − k (2.24)where the olor fator CF = 4/3 arises from (see Fig. 2.4)

1

3

∑

i,j,a

taij(t
a
ij)

∗ =
1

3

∑

a

Tr(tata) =
4

3
= CF .Using the polarization sum Eq. (2.19) one �nds

∑

pol

/ǫ/p /ǫ∗ =
2

1 − z
(/k + β/n) , (2.25)and after a short alulation

/t (/k + β/n) /t =

(
1 + z2

1 − z

)

(−k2
⊥) /p + O(/k⊥k2

⊥), (2.26)where the remaining terms are higher order in k⊥ and will not ontributeto the ollinear divergene. In total,
|MLadder

γ∗q→qg|2µν = g2
sCF

2(1 − z)

−k2
⊥

(
1 + z2

1 − z

)

×
e2
q

2
Tr
[
/p′γµ/pγν

]
+ · · · . (2.27)12



It is essential that the last ombination of terms is nothing but the squaredmatrix element in the Born approximation. Supplying the phase-spae ele-ment in the Sudakov variables
d3k

(2π)32k0
=

1

16π2

dz

1 − z
dk2

⊥, (2.28)one obtains
d3k

(2π)32k0
|MLadder

γ∗q→qg|2µν =
dk2

⊥

k2
⊥

dz
(αs

2π

)

Pqq(z)×
e2
q

2
Tr
[
/p′γµ/pγν

]
+· · · , (2.29)where

Pqq(z) ≡ CF

(
1 + z2

1 − z

) (2.30)is the so-alled Altarelli-Parisi splitting funtion assoiated with the un-polarized quark → quark transition. In the ollinear limit, the variable zis readily interpreted as the momentum fration of the quark left after thegluon emission. The ontribution to the quark tensor Ŵ q
µν is

4πMŴ q
µν =

∫
d3p′

(2π)32p′0

∫
d3k

(2π)32k0
|MLadder

γ∗q→qg|2µν(2π)4δ(4)(p + q − k − p′)

= 2π

∫
d3k

(2π)32k0
|MLadder

γ∗q→qg|2µν δ(p′2)θ(p′0).Negleting all O(k2
⊥) terms whih would anel the ollinear singularity inEq. (2.29),

p′2 = 2z(p · q) + q2 + O(k2
⊥) ≈ Q2

(
ξz

x
− 1

)and
gµν Tr[/p′γµ

/pγν ] ≈ −4Q2 ξ

x
pµpν Tr[/p′γµ

/pγν ] = 0. (2.31)Thus, the dominant O(αs) piee in the quark tensor is
−gµνMŴ q

µν = e2
q

[(αs

2π

)∫ dk2
⊥

k2
⊥

∫
dz

z
Pqq(z)

]

ξδ
(

ξ − x

z

)

+ · · · , (2.32)whih ontributes to the hadroni tensor by
−gµνMŴµν =

∑

q

e2
q

[(αs

2π

)∫ dk2
⊥

k2
⊥

∫ 1

x

dz

z
Pqq(z)

]

fq

(x

z

)

+ · · · . (2.33)As antiipated, the ollinear divergene manifests itself in the ∫ dk2
⊥/k2

⊥ in-tegral. The upper bound for this integral is proportional to Q2 but the lowerlimit remains zero for massless quarks. Even if the quark had a small reg-ulating mass m, the resulting logarithm log(Q2/m2) would not be infrared13



safe : the resulting ross-setion would be sensitive to the value of m2 inthe large-Q2 limit. The solution to this problem will require resumming awhole tower of suh logarithms. For the time being, however, I add thisdivergent piee to the DIS ross-setion
d2σ

dxdQ2

LL
=

d2σ̂0

dxdQ2

∑

q

e2
q

[

1 +
(αs

2π

)

log

(
Q2

m2

)

Pqq

]

⊗ fq, (2.34)where the designation LL means that I have kept only the leading logarith-mi ontribution, and the shorthand notation ⊗ stands for the onvolution
Pqq ⊗ fq ≡

∫ 1

x

dz

z
Pqq(z)fq

(x

z

)

= fq ⊗ Pqq, (2.35)
1 ⊗ fq ≡

∫ 1

x

dz

z
δ(1 − z)fq

(x

z

)

= fq(x).Sine the left-hand side of Eq. (2.34) is a measurable, �nite, quantity thenon-perturbative parton density fq is inevitably intertwined with the arbi-trary ut-o� sale m2 suh that the ross-setion is �nite.I still need to prove my laim that in the axial gauge this is the only ollinearlogarithm related to the initial state gluon radiation. This is atually quitea simple task: writing down the ross term
∼ 1

k2
⊥

∑

pol

Tr
[
/p′γµ(/p − /k)/ǫ/pγν(/q + /p) /ǫ∗

]
,one realizes that if the trae is independent of k⊥ there will be a similarollinear logarithm as found above. However, noting that

(/p − /k)/ǫ/p ≈ z /p/ǫ/p = 2z (p · ǫ) ,the polarization sum reveals the struture
pµ

(

−gµν +
kµnν + kνnµ

(k · n)

)

∼ kν
⊥, (2.36)demonstrating that no k⊥-independent term exists and the proof is om-plete1. Thus, in the ollinear limit and in the axial gauge, there is no1In the Feynman gauge with P

λ
ǫλ
µ(k)ǫ∗λ

ν (k) = −gµν this last step would not be true.14



interferene with the outgoing quark and, in the spirit of parton model, thefator
(αs

2π

)

log

(
Q2

m2

)

Pqq(z)an be interpreted as a probability density for the quark to radiate a gluonarrying a fration 1 − z of the quark momentum, before getting struk bythe photon. One should note that due to the 1/(1 − z)-pole in Pqq(z), thisprobability diverges in the infrared z → 1 limit, making the onvolutionintegrals apparently ill-de�ned. However, the probability that the quarkre-absorbs the emitted gluon diverges similarly and will wash out the z = 1singularity, as will be disussed soon.
2.2.3 Multiple gluon emissionsBased on the previous setion, it is natural to expet to �nd two similarollinear divergenes as in Eq. (2.34) if double gluon emission, shown inFig. 2.6, is onsidered. This is indeed the ase and employing the methodintrodued earlier one an extrat an α2

s log2(Q2/m2) ontribution to ross-setion Eq. (2.34). This is how it goes.
k1, a1, ǫ1

k2, a2, ǫ2

q
p′, i

t1, h

t2, i

p, jFigure 2.6: Ladder graph for two-gluon emission. Momenta of the produedgluons with polarizations ǫ1, ǫ2 are denoted by k1, k2, and the intermediatequark momenta are t1 ≡ p − k1, t2 ≡ p − k1 − k2. The olor indies aredenoted by i, j, h, a1, a2.The squared and spin-summed matrix element for the ladder diagram inFig. 2.6 reads
|MLadder

γ∗q→q,2g|2µν = g4
s

e2
q

2
C2

F

∑

pol

1

t41t
4
2

Tr
[
/p′γµ /t2 /ǫ2 /t1 /ǫ1/p /ǫ∗1 /t1 /ǫ∗2 /t2γν

](2.37)where the olor fator C2
F = (4/3)2 arises in the following way (summation15



over all indies is impliit):
1

3
(ta2

ih ta1

hj)(t
a2

is ta1

sj )
∗ =

1

3
(ta2

ih ta1

hj)(t
a2

si ta1

js)

=
1

3
(ta1ta1)hs(t

a2ta2)sh (2.38)
=

1

3
Tr(ta1ta1)

1

3
Tr(ta2ta2) =

(
4

3

)(
4

3

)

= C2
F ,where I used (tata)hs = (1/3) δhs. Introduing the Sudakov deompositionfor the lower gluon momentum

k1 = (1 − z1)p + β1n + k1⊥, β1 =
−k2

1⊥

2(1 − z1)p · q , (2.39)one immediately obtains, reading from the preeding alulation, that
∑

pol1

/t1 /ǫ1/p /ǫ∗1 /t1 =
2

1 − z1

(
1 + z2

1

1 − z1

)

(−k2
1⊥)/p + . . . , (2.40)where I have again omitted the terms higher order in k1⊥. In the same way,writing the Sudakov deomposition for the upper gluon momentum as

k2 = z1(1 − z2)p + β2n + k2⊥, β2 =
−k2

2⊥

2z1(1 − z2)p · q , (2.41)and dropping terms higher order in k1⊥ and k2⊥, one �nds the leadingontribution
∑

pol2

/t2 /ǫ2/p /ǫ∗2 /t2 =
2

1 − z2

(
1 + z2

2

1 − z2

)

(−k2
2⊥)/p + . . . . (2.42)Thus, the squared matrix element (2.37) aquires a form

|MLadder
γ∗q→q,2g|2µν = g4

s

−k2
1⊥

t41

[
2Pqq(z1)

1 − z1

] −k2
2⊥

t42

[
2Pqq(z2)

1 − z2

]

e2
q

2
Tr
[
/p′γµ/pγν

]
+ · · · , (2.43)where the last fator is again the Born matrix-element that has penetratedthrough the alulation. If there were not the fators t41,2 in the denominator,the leading fators for both emitted gluons would be idential. However,

t21 =
k2
1⊥

1 − z1

t22 =
k2
2⊥

1 − z2
+

1 − z1(1 − z2)

1 − z1
k2
1⊥ + k1⊥ · k2⊥, (2.44)16



where the latter one looks bad. In the region of phase spae where −k2
1⊥ <

−k2
2⊥ one an power expand Eq. (2.43) in k2

1⊥/k2
2⊥, shematially

|MLadder
γ∗q→q,2g|2µν ∝ 1

k2
1⊥

1

k2
2⊥

[

1 + A

(
k2
1⊥

k2
2⊥

)

+ B

(
k2
1⊥

k2
2⊥

)2

+ . . .

] (2.45)where the odd powers of k1⊥ are absent as they would vanish upon integra-tion. Whereas the integration over the �rst term gives the leading doublelogarithm,
∫ Q2

m2

dk2
2⊥

k2
2⊥

∫ k2

2⊥

m2

dk2
1⊥

k2
1⊥

=
1

2!
log2

(
Q2

m2

)

, (2.46)the rest an give only a single logarithm. In the opposite transverse mo-mentum ordering −k2
1⊥ > −k2

2⊥, one again obtains only single logarithms.Thus, the leading ontribution stems from the transverse momentum order-
Figure 2.7: Diagrams for two-gluon emission that do not ontain double-logarithms.ing −k2

1⊥ ≪ −k2
2⊥ for the emitted gluons, and

|MLadder
γ∗q→q,2g|2µν

LL
=

1 − z1

−k2
1⊥

[
2g2

sPqq(z1)
] 1 − z2

−k2
2⊥

[
2g2

sPqq(z2)
] (2.47)

e2
q

2
Tr
[
/p′γµ/pγν

]
,Following the same steps as earlier, we �nd

−gµνMŴ q→q,2g
µν = e2

q

1

2

[
αs

2π
log

(
Q2

m2

)]2 ∫
dz2

z2
Pqq(z2)

∫
dz1

z1
Pqq(z1)

ξδ

(

ξ − x

z1z2

)

, (2.48)whih ontributes to the hadroni tensor by
−gµνMŴµν =

∑

q

e2
q

1

2

[
αs

2π
log

(
Q2

m2

)]2

Pqq ⊗ Pqq ⊗ fq. (2.49)17



The onvolution between three objets above is de�ned by
Pqq ⊗ Pqq ⊗ fq =

∫ 1

x

dz2

z2
Pqq(z2)

∫ 1

x/z2

dz1

z1
Pqq(z1)fq

(
x

z1z2

)

, (2.50)with obvious extension to onvolutions between an arbitrary number offuntions. Thus, to O(α2
s), the leading logarithms organize themselves as

d2σ

dxdQ2

LL
=

d2σ̂0

dxdQ2

∑

q

e2
q

[

1 +
(αs

2π

)

log

(
Q2

m2

)

Pqq (2.51)
+

1

2

(αs

2π

)2
log2

(
Q2

m2

)

Pqq ⊗ Pqq

]

⊗ fq.Based on a similar reasoning as in the end of the previous subsetion, thediagrams like those in Fig. 2.7 annot ontain O(α2
s log2(Q2/m2)) terms inthe axial gauge | it is the ladder diagram in Fig. 2.6 alone that gives theleading logarithmi singularity.The generalization to an arbitrary number of ollinear gluon emissions fromthe initial quark is now quite straightforward: For n emitted gluons theleading logarithms originate from the region of the phase spae where thetransverse momenta are strongly ordered

−k2
1⊥ ≪ −k2

2⊥ ≪ · · · ≪ −k2
n−1⊥ ≪ −k2

n⊥ ≪ Q2,and the ontribution to the DIS ross-setion is
kn

k1

kn−1

q

p

p′

Figure 2.8: Ladder graph for n-gluon emission.
d2σ̂0

dxdQ2

∑

q

e2
q

1

n!

(αs

2π

)n
logn

(
Q2

m2

)

Pqq ⊗ Pqq ⊗ · · · ⊗ Pqq
︸ ︷︷ ︸

n times

⊗fq. (2.52)18



Thus, the leading logarithm ontributions to the DIS ross-setion onstitutea series whih is formally an exponential
d2σ

dxdQ2

LL
=

d2σ̂0

dxdQ2

∑

q

e2
q exp

[
αs

2π
log

(
Q2

m2

)

Pqq

]

⊗ fq. (2.53)Comparing this expression to the orresponding parton model predition,given in Eq. (2.16), one an see that the resummation of the leading log-arithms is equivalent to replaing the Q2-independent parton distributionfuntion by
fq(x) → fq(x,Q2) ≡ exp

[
αs

2π
log

(
Q2

m2

)

Pqq

]

⊗ fq. (2.54)Taking the Q2-derivative we see that fq(x,Q2) satis�es the following integro-di�erential equation
Q2 ∂

∂Q2
fq(x,Q2) =

αs

2π
Pqq ⊗ fq(x,Q2), (2.55)whih is an arhetype of the Dokshitzer-Gribov-Lipatov-Altarelli-Parisievolution equations [10, 11, 12, 13℄, or DGLAP equations in brief.

2.2.4 More splitting functionsThe gluon emission disussed above is, of ourse, only one possibility amongother QCD-interations. For example, from O(αs) onwards, also gluon-initiated subproesses ontribute to the deeply inelasti ross-setion. Thesimplest suh diagram is shown in Fig. 2.9. Similar to the gluon radiation
k, j

q
p′, i

p, ǫ, a

p − k, i

Figure 2.9: A gluon-initiated ladder diagram.graphs disussed in the preeding setions, also this diagram | and in theaxial gauge this ladder-type diagram only | gives a ollinear divergene.19



Extrating this divergene is rather straightforward having already are-fully done the groundworks during the previous setions. Starting from thesquared matrix element
|MLadder

γ∗G→qq|2µν = g2
sTRe2

q

1

2

∑

pol

1

t4
Tr
[
/p′γµ/t/ǫ/k /ǫ∗/tγν

]
, t = p − k (2.56)where

TR ≡ 1

8
taij(t

a
ij)

∗ =
1

8
Tr(tata) =

4

8
=

1

2is the appropriate olor fator, and introduing the Sudakov deomposition(2.22) for the outgoing quark momentum k, the polarization sum gives
∑

pol

/ǫ/k /ǫ∗ = 2
[
(1 − z)/p + β/n

]
. (2.57)To leading power in k2

⊥ we �nd
/t
[
(1 − z)/p + β/n

]
/t =

−k2
⊥

1 − z

[
(1 − z)2 + z2

]

/p, (2.58)and onsequently
|MLadder

γ∗G→qq|2µν
LL
= g2

s

2(1 − z)

−k2
⊥

TR

[
(1 − z)2 + z2

]
×

e2
q

2
Tr
[
/p′γµ/pγν

]
. (2.59)Comparing to Eq. (2.27) we realize that the leading ontribution to thedeeply inelasti ross-setion from the graph 2.9 beomes

d2σ̂0

dxdQ2

∑

q

e2
q

(αs

2π

)

log

(
Q2

m2

)

Pqg ⊗ fg, (2.60)where
Pqg(z) ≡ TR

[
z2 + (1 − z)2

] (2.61)is the splitting funtion for a gluon→quark transition and fg is the partondistribution funtion for the gluons.Having now onsidered two di�erent ladder verties, we an also pile themon top of eah other to form a parton ladder like the one in Fig. 2.10 below.The orresponding squared matrix element reads
|MLadder

γ∗G→qqg|2µν = g2
sTRCF

e2
q

2

∑

pol

1

t41t
4
2

Tr
[
/p′γµ /t2 /ǫ∗2 /t1 /ǫ1 /k1 /ǫ∗1 /t1 /ǫ2 /t2γν

]
, (2.62)20



k2, ǫ2, b

q
p′, j

p, ǫ1, a

t2 = p − k1 − k2, j

k1, ℓ

t1 = p − k1, i

Figure 2.10: Another gluon-initiated ladder diagram.where the olor fator arises as
1

8
(tbjit

a
iℓ)(t

b
jntanℓ)

∗ =
1

8
(tata)in(tbtb)ni

=
1

8
Tr(tata)

1

3
Tr(tbtb)

=
1

2

4

3
= TRCFUsing the momentum deomposition (2.39), the inner part of the trae abovegives the leading fator

∑

pol1

/t1/ǫ/k /ǫ∗ /t1 = 2
−k2

1⊥

1 − z1

[
(1 − z1)

2 + z1

]

/p + . . . , (2.63)and what is left inside the trae is, using (2.41),
∑

pol2

/t2 /ǫ∗2/p /ǫ2 /t2 = 2
(−k2

2⊥)

1 − z2

(
1 + z2

2

1 − z2

)

/p + . . . . (2.64)The leading region is again the one with −k2
1⊥ ≤ −k2

2⊥, and therefore
|MLadder

γ∗q→q,2g|2µν
LL
=

1 − z2

−k2
2⊥

[
2g2

sPqq(z2)
] 1 − z1

−k2
1⊥

[
2g2

sPqg(z1)
] (2.65)

e2
q

2
Tr
[
/p′γµ/pγν

]
,whih leads to a ontribution

d2σ̂0

dxdQ2

∑

q

e2
q

1

2

(αs

2π

)2
log2

(
Q2

m2

)

Pqq ⊗ Pqg ⊗ fg21



to the deeply inelasti ross-setion.Thus far we have only onsidered parton ladders with quarks at vertiallines. To illustrate how the alulation works when there are vertial gluonlines, let us onsider the diagram shown in Fig. 2.11. The squared matrix
k2, i

q
p′, j

t2 = p − k1 − k2, j

k1, ℓ

t1 = p − k1, a

p, nFigure 2.11: Ladder diagram with gluon as a vertial line.element is in this ase
|MLadder

γ∗q′→q′qq|2µν = g2
sCF TR

e2
q

2

∑

pol

1

t41t
4
2

Tr
[
/p′γµ /t2γα /k2γη /t2γν

]
Tr
[
/k1γβ/pγφ

]

[

−gαβ +
tα1 nβ + tβ1nα

t1 · n

][

−gηφ +
tη1n

φ + tφ1nη

t1 · n

]

, (2.66)where the olor fator omes from
1

3
(tajit

a
ℓn)(tbjit

b
ℓn)∗ =

1

3
Tr(tatb)Tr(tatb)

=
1

3
Tr(tata)

1

8
Tr(tbtb)

=
4

3

1

2
= CF TR.Applying the Sudakov deomposition (2.39), we �nd

Tr
[
/k1γβ/pγφ

]

[

−gαβ +
tα1 nβ + tβ1nα

t1 · n

][

−gηφ +
tη1n

φ + tφ1nη

t1 · n

]

=
8

z2
1

kα
1⊥kη

1⊥ + 2
−k2

1⊥

1 − z1

[

−gαη +
pαnη + pηnα

p · n

]

+ · · · (2.67)Whereas the seond term in the lower line expliitly ontains the sum overthe vertial gluon polarization states, the �rst term looks a bit puzzling. The22



trik is to notie that under the integration over the transverse momentumthis term beomes
∫

d2k⊥

kα
⊥kη

⊥

D(k2
⊥)

=
1

2

[

−gαη +
pαnη + pηnα

p · n

] ∫

d2k⊥

−k2
⊥

D(k2
⊥)

, (2.68)where D is a funtion that depends only on k2
⊥ and not on the transverseomponents separately. Thus, we may write

Tr
[
/k1γβ/pγφ

]

[

−gαβ +
tα1 nβ + tβ1nα

t1 · n

][

−gηφ +
tη1n

φ + tφ1nη

t1 · n

]

=
−2k2

1⊥

z1(1 − z1)

[
1 + (1 − z)2

z1

](

−gαη +
pαnη + pηnα

p · n

)

. (2.69)Applying again the Sudakov deomposition (2.41) we have
/t2γα /k2γη /t2

(

−gαη +
pαnη + pηnα

p · n

)

= 2
−k2

2⊥

1 − z2

[
(1 − z2)

2 + z2

]
z1/p + . . . ,and in the leading region

|MLadder
γ∗q′→q′qq|2µν

LL
=

1 − z2

−k2
2⊥

[
2g2

sPqg(z2)
] 1 − z1

−k2
1⊥

[
2g2

sPgq(z1)
] (2.70)

e2
q

2
Tr
[
/p′γµ/pγν

]
,where

Pgq(z) ≡ CF

[
1 + (1 − z)2

z

] (2.71)is the splitting funtion for the quark→gluon transition. The squared matrixelement above now leads to a term
d2σ̂0

dxdQ2

∑

q,q′

e2
q

1

2

(αs

2π

)2
log2

(
Q2

m2

)

Pqg ⊗ Pgq′ ⊗ fq′in the deeply inelasti ross-setion.The remaining splitting funtion to be alulated is Pgg orresponding tothe gluon→gluon transition. This an be omputed from the ladder diagramdepited in Fig. 2.12 whih orresponds to the squared matrix element
|MLadder

γ∗g→gqq|2µν = g2
sCGTR

e2
q

2

∑

pol

1

t41t
4
2

Tr
[
/p′γµ /t2γα /k2γδ /t2γν

] (2.72)
[

−gβη(t1 + p)φ + gηφ(p + k1)
β + gφβ(t1 − k1)

η
]

[

−gρξ(t1 + p)χ + gξχ(p + k1)
ρ + gχρ(t1 − k1)

ξ
]

[

−gαβ +
tα1 nβ + tβ1nα

t1 · n

][

−gδρ +
tδ1n

ρ + tρ1n
δ

t1 · n

]

ǫ1ηǫ
∗
1ξǫ2χǫ∗2φ.23



k2, i

q
p′, j

t2 = p − k1 − k2, j

k1, ℓ, ǫ2

t1 = p − k1, a

p, n, ǫ1Figure 2.12: A ladder diagram from whih one an ompute sthe plittingfuntion for gluon→gluon transition.The evaluation of this matrix element is somewhat more tedious than theprevious ones, yet straighforward. The resulting leading logarithmi ontri-bution to the deeply inelasti ross-setion is
d2σ̂0

dxdQ2

∑

q

e2
q

1

2

(αs

2π

)2
log2

(
Q2

m2

)

Pqg ⊗ Pgg ⊗ fg,with
Pgg(z) ≡ 2CG

[
1 − z

z
+

z

1 − z
+ z(1 − z)

]

, CG = 3. (2.73)From now on, one an pretty muh see how this goes on: eah additionalladder-ompartment in whih parton of avor i transforms to j, e�etivelyjust inrements the power of αs log Q2/m2 by one unit and adds the or-responding splitting funtion Pij to the onvolution integral. The possi-ble building bloks for onstruting the ladders are displayed in Fig. 2.13together with the harateristi splitting funtions. Clearly, we should a-ount for all possible parton ladders | also the gluon-triggered ones |when de�ning the sale-dependent quark densities. Therefore, we de�nethe sale-dependent parton distributions as a sum of all possible laddersthat end up with the spei� parton. The appropriate generalization of thede�nition (2.54) an be neatly written down as a matrix equation
(

fqi
(x,Q2)

fg(x,Q2)

)

≡ exp

[
αs

2π
log

(
Q2

m2

)(
Pqiqj

Pqig

Pgqj
Pgg

)]

⊗
(

fqj

fg

)

, (2.74)where qj should be understood as being a vetor with di�erent quark avorsas its omponents and the splitting funtions Pqiqj
, Pqig, Pgqj

as matries24



Figure 2.13: Unpolarized splitting funtions.with the appropriate dimension. In the leading logarithm approximation,the splitting funtions are avor-blind and we an write, expliitly
(

Pqiqj
Pqig

Pgqj
Pgg

)

=











Pqq 0 0 · · · Pqg

0 Pqq 0 · · · Pqg

0 0 Pqq · · · Pqg... ... ... . . . ...
Pgq Pgq Pgq · · · Pgg











. (2.75)The omplete set of DGLAP evolution equations follow by taking the Q2-derivative:
Q2 ∂

∂Q2

(
fqi

(x,Q2)

fg(x,Q2)

)

≡ αs

2π

(
Pqiqj

Pqig

Pgqj
Pgg

)

⊗
(

fqj
(Q2)

fg(Q
2)

)

. (2.76)25



In summary, the leading ollinear singularities in the perturbative Feynman-diagram expansion an be fatored to the sale-dependent parton distribu-tions fi(x,Q2) suh that the parton model predition for the DIS ross-setion stays formally intat, but the parton densities no longer respet theBjorken-saling but are Q2-dependent. Also the interpretation of the partondistributions as simple number densities upgrades to being number densi-ties with transverse momentum up to Q2. This and further extensions tothe simple parton model are often referred to as pQCD-improved partonmodel.There are still, however, two serious de�ienies in the equations (2.76):� The splitting funtions Pqq(z) and Pgg(z) diverge as z → 1 due to the
1/(1−z)-poles, making the onvolution integrals thereby meaningless.� The argument of the strong oupling onstant αs remains unde�ned.In order to �ll these gaps, we need to disuss also the virtual orretions tothe parton ladder on a same footing with the real parton radiation.

2.3 Virtual corrections

2.3.1 Quark self-energyThe Sudakov deomposition of the momentum provided a useful tool forextrating the ollinear limits of the parton radiation diagrams. This isalso true in the ase of loop-integrations, but the parametrization must beslightly modi�ed to aount for the non-zero virtuality of the loop momen-tum k. Also, the virtuality p2 of the parton (as it may lie in the middle ofthe ladder) should be kept arbitrary. As an appropriate extension to (2.22),I will deompose the loop momentum as2
k = zp + βn + k⊥, β =

k2 − k2
⊥ − z2p2

2z(p · n)
. (2.77)The axial-gauge expression for the quark self-energy diagram shown inFig. 2.14 reads

Σ(p) = −g2
sCF

∫
d4k

(2π)4
γµ(/p − /k)γν

[(p − k)2 + iǫ][k2 + iǫ]

[

gµν − kµnν + kνnµ

k · n

]

= ΣFeynman(p) + ΣAxial(p). (2.78)2An expliit de�nition of the axial vetor n is not needed here.26



p − k

k
a

ji i

p pFigure 2.14: Quark self-energy orretion at 1-loop. The momentum of theparent quark is p while the loop momentum is denoted by k. The letters
i, j, a stand for the olors indies.I will now arefully show how to extrat the ollinear divergene startingwith the Feynman gauge ontribution

ΣFeynman(p) = −g2
sCF

∫
d4k

(2π)4
γµ(/p − /k)γµ

[(p − k)2 + iǫ][k2 + iǫ]
. (2.79)First, in the numerator

γµ(/p − /k)γµ = −2(/p − /k)

= −2
[
(1 − z)/p − β/n − /k⊥

] (2.80)
= −2

[
(1 − z)/p − β/n

]
,where I dropped the /k⊥-term as its ontribution will vanish as an odd inte-gral. The denominator from the quark propagator is

(p − k)2 + iǫ = −1 − z

z

[

k2 − k2
⊥

1 − z
− zp2 − iǫ′

]

, (2.81)where I de�ned
ǫ′ ≡ z

1 − z
ǫ =

{
< 0 if z < 0 or z > 1

> 0 if 0 < z < 1.
(2.82)The sign of ǫ′ is essential in de�ning the loations of poles in the k2-plane.

ΣFeynman(p) = −αs

2π
CF

1

2π

∫

dzdk2
⊥dk2 z

|z|
1

1 − z

(1 − z)/p − β/n

[k2 + iǫ]
[

k2 − k2
⊥

1−z − zp2 − iǫ′
] (2.83)Exept for the k2-terms in the numerator whih will not ontribute to the

k2
⊥ → 0 divergene, the k2-integral an be evaluated as a ontour integral.Depending on the value of z, the loations of the k2-poles and the onvenientintegration ontours are shown in Fig. (2.15). If 0 < z < 1, the integration27



k2 k2

0 < z < 1 z < 0, z > 1

Figure 2.15: The integration ontours and the pole struture for 0 < z < 1(left) and z < 0, z > 1 (right).ontour an be losed in the lower half-plane enlosing k2 = −iǫ pole
∫ +∞

−∞

dk2

[k2 + iǫ]
[

k2 − k2
⊥

1−z − zp2 − iǫ′
] = −2πi

1 − z

k2
⊥ − z(1 − z)p2

, (2.84)while for other values of z the integral ontour an be losed in the upperhalf-plane where there are no poles and integral gives zero. Therefore,
ΣFeynman(p) ≈ i

(αs

2π

)

CF

∫ 1

0
dz

∫ Λ2

0

dk2
⊥

k2
⊥ − z(1 − z)p2

(2.85)
[

(1 − z)/p +
−k2

⊥ + z2p2

2z(p · n)
/n

]

≈ i/p
(αs

2π

)

CF log

(
Λ2

−p2

)∫ 1

0
dz(1 − z),where I have dropped all but the logarithmi ontribution diverging as p2 →

0, and regulated the UV-divergene by a ut-o� Λ2. The axial ontribution
ΣAxial(p) = g2

sCF

∫
d4k

(2π)4
/k(/p − /k)/n + /n(/p − /k)/k

[(p − k)2 + iǫ][k2 + iǫ]

1

k · n (2.86)an dealt with similarly. Applying the Sudakov deomposition plus drop-ping all k2-terms and those ones odd in k⊥, the numerator simpli�es to
/k(/p − /k)/n + /n(/p − /k)/k ≈ 2/n

k2
⊥

z
. (2.87)Apart from the fator k · n = zp · n, the denominator is idential with theFeynman-gauge ase and the k2-integral an be performed in a similar way.28



The result is
ΣAxial(p) ≈ i

/n

p · n
(αs

2π

)

CF

∫ 1

0

dz

z2

∫ Λ2

0

dk2
⊥k2

⊥

k2
⊥ − z(1 − z)p2

(2.88)
≈ i

p2

2p · n/n
(αs

2π

)

CF log

(
Λ2

−p2

)∫ 1

0
dz

2z

1 − z
.Thus, the total self-energy orretion is of the form

Σ(p) = ΣFeynman(p) + ΣAxial(p) = i

[

A/p + B
p2

2p · n/n

]

,and the 1-loop orreted quark propagator beomes
i/p

p2
+

i/p

p2
Σ(p)

i/p

p2
=

i/p

p2
[1 − A − B] + i

B

2p · n /n. (2.89)The last term above will lead to a loss of a leading logarithm in the par-ton ladder and thus the 1-loop orretion to the quark propagator an bee�etively aounted by a multipliative renormalization onstant
Zq(p

2) = 1 − A − B = 1 −
(αs

2π

)

CF log

(
Λ2

−p2

)∫ 1

0
dz

(
1 + z2

1 − z

)

. (2.90)This is also the residue of the p2 → 0 propagator pole needed (throughthe LSZ-redution) if the quark is an on-shell �nal/initial state partile.Although I did not arefully keep trak of the UV-divergenes, the Eq. (2.90)is also aurate in this sense | it is a ut-o� regulated version of the resultregulated by going to 4 − ǫ dimensions3
1 −

(αs

2π

) [2

ǫ
+ log

(
µ2

−p2

)]

CF

∫ 1

0
dz

(
1 + z2

1 − z

)

.To understand how this damps the singular behaviour of Pqq(z), it is sim-plest to look at the e�et of applying the O(αs) external leg orretion tothe leading order ontribution in the DIS ross-setion (2.34).
dσ

LL
= dσ̂0

∑

q

e2
q

[

Zq(−m2) +
(αs

2π

)

log

(
Q2

m2

)

Pqq

]

⊗ fq

= dσ̂0

∑

q

e2
q

[

Zq(−Q2) +
(αs

2π

)

log

(
Q2

m2

)

P̃qq

]

⊗ fq, (2.91)where I de�ned the regulated splitting funtion P̃qq(z) by
P̃qq(z) ≡ CF

(
1 + z2

1 − z

)

+

(2.92)
(

1 + z2

1 − z

)

+

≡
(

1 + z2

1 − z

)

− δ(1 − z)

∫ 1

0
dx

(
1 + x2

1 − x

) (2.93)3The loop alulations in the light-one gauge are also little triky, see [14, 15℄.29



Here, we meet so-alled plus distribution, whih should be understoodthrough integration against suÆiently smooth \test-funtion" h(x):
∫ 1

0
dzh(z)

(
1 + z2

1 − z

)

+

=

∫ 1

0
dz

(
1 + z2

1 − z

)

[h(z) − h(1)] . (2.94)There are two important things to be emphasized: First, the inlusion ofthe virtual orretion serves to regulate the z → 1 singularity of the split-ting funtion Pqq(z), as promised. Seond, the virtual piee Zq(−m2) getsreplaed by Zq(−Q2) whih no longer ontains ollinear m2 → 0 divergene.
2.3.2 Gluon self-energy

Figure 2.16: Diagrams ontributing to the gluon self-energy orretion at1-loop in the axial gauge.The gluon-self energy 1-loop orretion an be alulated following essen-tially the same proedure. In the axial gauge, there are only two ontributingdiagrams, shown in Fig. (2.16). Evaluating the quark and gluon loops thefollowing logarithmi piees are found
Πq

µν(p) = −i
αs

2π
p2

(

gµν − pµpν

p2

)

log

(
Λ2

−p2

)
2

3
nfTf (2.95)

Πg
µν(p) = i

αs

2π
log

(
Λ2

−p2

)

CG

[

p2

(

gµν − pµpν

p2

)(
11

6
− 2

∫ 1

0

dz

1 − z

)

+

(

pµ − p2

p · nnµ

)(

pν − p2

p · nnν

)

2

(

1 −
∫ 1

0

dz

1 − z

)]

.Thus, the result is of the form
Πµν(p) = i

[

Ap2

(

gµν − pµpν

p2

)

+ B

(

pµ − p2

p · nnµ

)(

pν − p2

p · nnν

)]

,induing a orretion
−i

k2

(

gµη − kµnη + kηnµ

k · n

)

Πηξ(p)
−i

k2

(

gξν − kξnν + kνnξ

k · n

)

= A
−i

k2

(

gµη − kµnη + kηnµ

k · n

)

− iB
nµnν

(k · n)230



to the gluon propagator. Again, the latter part above does not give a leadinglogarithm, and the loop insertions an again be e�etively aounted for bya multipliative renormalization onstant
ZG(p2) = 1 +

αs

2π
log

(
Λ2

−p2

)[

CG

(
11

6
− 2

∫ 1

0

dz

1 − z

)

− 2

3
nfTR

]

. (2.96)As a onsequene, the gluon → gluon splitting funtion Pgg(z) gets replaedby a regulated one
P̃gg(z) ≡ 2CG

[
1 − z

z
+

z

(1 − z)+
+ z(1 − z)

]

+

[
11

6
CG − 2

3
nfTf

]

δ(1 − z).(2.97)
2.3.3 Renormalization of the ladder vertexThe standard �eld theory text books (e.g. [16, 17℄) relate the running ou-pling onstant gs(µ

2) to the bare one g0s e.g. by
gs(µ

2) ≡

√

ZG(k2
A)
√

Zq(k
2
B)
√

Zq(k
2
C)

Z1(k2
A, k2

B , k2
C)

g0s, (2.98)with k2
A = k2

B = k2
C = −µ2, and where Z1 is the renormalization fator forthe qqg-vertex. At 1-loop, we have the well-known result

αs(µ
2) =

α0
s

1 − α0
s

4π β0 log
(

Λ2

µ2

) = α0
s

[

1 +
α0

s

4π
β0 log

(
Λ2

µ2

)

+ · · ·
]

,

=
4π

β0 log
(

µ2/Λ2
QCD

) (2.99)where β0 = 11
3 CG − 4

3TRnf , Λ2 in the �rst line denotes the ut-o�, and
ΛQCD ≈ 200MeV is the QCD sale parameter.In a parton ladder, however, the kinematis appear quite di�erent from thatin (2.98) | the virtualities k2

A, k2
B of the partons in the vertial lines arestrongly ordered while the horizontal rung k2

C is on-shell:
−k2

A,−k2
B > 0, −k2

A < −k2
B , k2

C = 0. (2.100)In order to disuss what is involved, I will adopt a spei� example withquark (A) splitting to a on-shell quark (C) and virtual gluon (B). The out-going quark ontributes by a fator Zq(−m2) with m2 → 0. However, tothe same order in O(αs) we should also onsider the ontribution from the31



√

Zq(k2
A)

Z1(k
2
A, k2

B, k2
C)

√

ZG(k2
B)

√

Zq(k2
C)

Figure 2.17: Various renormalization fators for a ladder vertex.
Figure 2.18: Diagram for gluon radiation from the outgoing quark.horizontal quark rung radiating an additional gluon as shown in Fig. 2.18.A alulation along the lines presented in Se. 2.2.2, reveals that the leadingontribution is e�etively a multipliative fator

[Ladder skeleton] × CF
αs

2π

∫ −k2
B
∼k2

⊥

m2

dk2
g⊥

k2
g⊥

∫ 1

0
dz

1 + z2

1 − z
, (2.101)where the upper limit k2

⊥ denotes the aggregate transverse momentum ar-ried by the outgoing quark-gluon system and derives from the requirementnot to upset the underlying logarithmi struture of the ladder. This isexatly of the same form as the quark renormalization fator Zq(−m2), andwhen ombined, the sum is learly free from ollinear divergenes. In ef-fet, we may simply make a replaement Zq(−m2) → Zq(k
2
B). Similarly,the inoming quark line involves a renormalization fator Zq(k
2
A) whih getsreplaed by Zq(k

2
B) by the mehanism demonstrated in Eq. (2.91) when theontribution of gluon radiation is inluded.The remaining piee is the vertex part Z1(k

2
A, k2

B , k2
C). However, in theaxial gauge it happens that if k2

B is kept �nite, Z1 does not ontain termsthat would be divergent in the k2
A,C → 0 limit. In other words, in axialgauge all mass singularities are ontained in the self-energy fators and we32



may safely replae Z1(k
2
A, k2

B , k2
C) by Z1(k

2
B , k2

B , k2
B) without losing largelogarithms. Thus, the virtual orretions indeed eventually ombine to theusual de�nition of the running oupling,

√

ZG(k2
A)
√

Zq(k
2
B)
√

Zq(k
2
C)

Z1(k2
A, k2

B , k2
C)

≈

√

ZG(k2
B)
√

Zq(k
2
B)
√

Zq(k
2
B)

Z1(k2
B , k2

B , k2
B)

= gs(−k2
B).Inorporation of the running oupling to the resummation of leading loga-rithms is straightforward: In eah ladder vertex we hange αs → αs(k

2
⊥),and do the nested transverse momentum integrals like (2.46) by a hange ofvariables

κ(k2
⊥) ≡ 2

β0
log

[
αs(m

2)

αs(k
2
⊥)

]

, (2.102)suh that
∫ Q2

m2

dk2
2⊥

k2
2⊥

αs(k
2
2⊥)

2π

∫ k2

2⊥

m2

dk2
1⊥

k2
1⊥

αs(k
2
1⊥)

2π

=

∫ κ(Q2)

0
dκ(k2

2⊥)

∫ κ(k2

2⊥
)

0
dκ(k2

1⊥) (2.103)
=

1

2
κ2(Q2).The orrespondingly orreted de�nition for the sale-dependent partondensities beomes

(
fqi

(x,Q2)

fg(x,Q2)

)

≡ exp

[

κ(Q2)

(
Pqiqj

Pqig

Pgqj
Pgg

)]

⊗
(

fqj
(x)

fg(x)

)

, (2.104)where the splitting funtions are understood as being the regulated ones.By di�erentiating with respet to κ and hanging variables, we obtain theomplete DGLAP evolution equations that resum all leading logarithms:
Q2 ∂fqi

(x,Q2)

∂Q2
=

αs(Q
2)

2π

[
Pqiqj

⊗ fqj
(Q2) + Pqig ⊗ fg(Q

2)
] (2.105)

Q2 ∂fg(x,Q2)

∂Q2
=

αs(Q
2)

2π

[
Pgg ⊗ fg(Q

2) + Pgqj
⊗ fqj

(Q2)
]
.

2.4 Higher ordersIn this setion I have systematially kept to the leading logarithm approxi-mation, in whih the logi is to retain only terms of the form αn
s logn(Q2/m2),33



disarding all ontributions whih are suppressed by additional powers of
αs. However, if one keeps trak also of the non-leading ontributions

αn+1
s logn(Q2/m2), αn+2

s logn(Q2/m2), . . .one �nds that the splitting funtions Pfifj
atually onstitute a power seriesin αs,

Pfifj
(z) = P

(0)
fifj

(z) +
αs

2π
P

(1)
fifj

(z) +
(αs

2π

)2
P

(2)
fifj

(z) + . . . . (2.106)Of these, P (1) have been known sine 1980's [18, 19℄ but P (2) have beenomputed only reently [20, 21℄. While the kernels P
(0)
ij are unique, inde-pendent of how the ollinear divergenes are regulated, the higher ordersplitting funtions P

(n)
ij , n > 0 are not unique but they depend on theframework.

2.5 Factorization in deeply inelastic scatteringFor ouple of times during this setion, I noted that when the divergentlogarithms from the parton ladders were extrated, a multipliative termthat oinided with the leading order ross-setion for photon-quark sat-tering, was found. This property is not, however, a speial feature of theleading order ross-setion, but order by order in perturbative alulations,the divergent logarithms an be systematially fatored apart from the per-turbative parton-level piees
dσ̂i = dσ̂

(0)
i +

(αs

2π

)

dσ̂
(1)
i +

(αs

2π

)2
dσ̂

(2)
i + . . . (2.107)That is, the ross-setion for deeply inelasti sattering retains its samesimple form

d2σ

dxdQ2
=
∑

i

d2σ̂i(x,Q2)

dxdQ2
⊗ fi(Q

2), (2.108)where the parton densities fq(Q
2) obey the DGLAP equations (2.106). Thisis a speial ase of the pQCD fatorization theorem [22, 23℄ whih statesthat the ollinear singularities an be, order by order, fatored to the saledependent parton densities, and �niteness of (2.108) is guaranteed. A moreomplete treatment indiates that the fatorization is subjet to power or-retions O

(

Λ2
QCD/Q2

)n whih may beome important for small Q2. Suhterms appear, for example, if the partons are not exatly ollinear withthe parent nuleon, but are allowed to arry some \primordial" transversemomentum k⊥. More generally, suh terms arise form multi-parton inter-ations. 34



The de�nition of the parton densities is not unique: starting from partondensities fi(x,Q2) we may de�ne another version f ′
i(x,Q2) by

f ′
i(x,Q2) ≡

∑

j

Cij ⊗ fj(Q
2), (2.109)where Cij(z) = 1 + αs

2πC
(1)
ij (z) +

(
αs

2π

)2
C

(2)
ij (z) + . . .. In terms of the primeddensities, the ross-setion an be written as

σ = σ̂i ⊗ fi = σ̂i ⊗ C−1
ij ⊗ f ′

j = σ̂′
i ⊗ f ′

i ,where I de�ned σ̂′
i ≡ σ̂i ⊗ C−1

ij . The same reshu�ing implies that f ′
i obeythe DGLAP equations with splitting funtions

P ′
ij =

[

C ⊗ P ⊗ C−1 − 2πβ(αs)
dC

dαs
C−1

]

ij

.In other words, beyond leading order, the perturbative oeÆients σ̂i, andthe splitting funtions P are intertwined with the exat de�nition for theparton densities. These kind of di�erent \bases" for omputing are known asfatorization shemes and, in priniple, the preditions for physial, mea-surable ross-setions should be independent of the hosen sheme. How-ever, as the hange from a sheme to another is failitated by the perturba-tive oeÆients Cij | often motivated by some partiular ross-setions |the preditions from various shemes are not preisely equal. However, suhdi�erene is always one power higher in αs than to whih the omputationwas performed.There is a similar ambiguity in hoosing the argument of fq(Q
2) in (2.108).This is beause di�erent sales are related perturbatively as

fi(x,Q2) = fi(x,Q2
f ) +

αs

2π
log
(
Q2/Q2

f

)
Pij ⊗ fj(Q

2
f ) (2.110)

+
1

2

(αs

2π

)2
log2

(
Q2/Q2

f

)
Pij ⊗ Pjk ⊗ fk(Q

2
f )

+ . . .

=
∑

j

Dij(Q
2/Q2

f ) ⊗ fj(Q
2
f ), (2.111)and de�ning σ̂j(x,Q2, Q2

f ) ≡ σ̂i(Q
2, Q2

f ) ⊗ Dij(Q
2/Q2

f ), the fatorizationformula (2.108) beomes
d2σ

dxdQ2
=
∑

i

d2σ̂i(x,Q2, Q2
f )

dxdQ2
⊗ fi(Q

2
f ). (2.112)35



The sale Q2
f is alled the fatorization sale, whih we are free to hoose.A typial hoie is Q2

f = cQ2, where c is between 0.5 and 2. Again, in all-orders alulation a physial ross-setion does not depend on this hoie,but in pratie, as only the �rst few terms in the perturbative expansionare known, the predition retains sensitivity to the adopted hoie.
2.6 Factorization for other processesAlthough I have here onsidered only the deeply inelasti sattering, theunderlying physis is shared in variety of other proesses involving hadronsin the initial state | the struture of the ollinear singularities is the same.It follows that the parton densities should be independent of the atual hardproess, universal. For example in the Drell-Yan prodution of dileptons innuleon-nuleon ollisions, the leading logarithms originate from diagramslike that in Fig. 2.19. The formal proofs for fatorization are highly tehnial

µ+

µ−

Figure 2.19: Ladder-type diagram that gives rise to a leading logarithmiterm.and mathematially demanding. Therefore, there are only few proesses forwhih suh all-order proofs atually exists [23℄, but it is typially assumedthat for hadroni interations that are \hard enough" (involve a large in-variant sale), the pQCD-improved parton model is appliable. Ultimately,however, it is the omparison with experiments that is of essene.36



2.7 Example of parton densitiesIn their full glory, the fatorization and DGLAP equations are exploited andtested in global QCD-analyses, to be desribed in Chapter 7. In short, theirpurpose is to extrat the x-dependene of the parton distributions from theexperimental data. The Fig. 2.20 displays a typial outome of suh analy-ses, and Fig. 2.21 demonstrates how the Q2-dependene of the experimental
F2 data beomes orretly reprodued by the DGLAP evolution.
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Chapter 3

Deeply inelastic scattering at

NLOIn this hapter I present the full alulation of the deeply inelasti satteringross-setion at next-to-leading order pQCD. Based on the disussion inChapter 2, there will be three types of divergenes: ollinear, infrared, andultraviolet. The most sophistiated and gauge-invariant way to regulatethese is to use the dimensional regularization methods [27℄ and perform allalulations in N = 4− ǫ spae-time dimensions as in [28℄, or e.g. [29℄. Thedivergenes will appear as 1/ǫn-poles but only those whih orrespond tothe ollinear divergenes will remain. These are removed by absorbing theminto the parton densities, after whih the ǫ → 0 limit an be safely taken.The generi form of the hadroni tensor Wµν in Eq. (2.6) is independentof the spae-time dimension, but the projetions to the two independentstruture funtions F1 and F2 reeive some ǫ-dependene:
F2

x
=

2

2 − ǫ

[

−gµν + (3 − ǫ)
4x2

Q2
PµP ν

]

MWµν (3.1)
F1 =

F2

2x
−
(

4x2

Q2
PµP ν

)

MWµν ,as may be diretly veri�ed, remembering that gµνgµν = 4 − ǫ.
3.1 Leading-order contributionFor onsisteny, also the leading-order ontribution must be omputed in
N = 4 − ǫ dimensions. The appropriate N -dimensional extension of the39



partoni tensor for the leading-order γ∗q → q proess in Eq. (2.12) is
4πMŴ q

µν =
e2
q

2

dN−1p′

(2π)N−12p′0
(2π)Nδ(N)(p + q − p′)Tr[/p′γµ

/pγν ]

=
e2
q

2

2πx

Q2
Tr[/p′γµ

/pγν ]δ(ξ − x).The ontrations with gµν and pµpν give
gµν Tr[/p′γµ

/pγν ] = −2(2 − ǫ)Q2 pµpν Tr[/p′γµ
/pγν ] = 0, (3.2)and we �nd

−gµν(MŴ q
µν) = e2

qz
(

1 − ǫ

2

)

δ(1 − z) PµP ν(MŴ q
µν) = 0, (3.3)where I have de�ned the variable z ≡ x/ξ = −q2

2p·q .
3.2 Gluon radiationThe diagrams ontributing to the real-gluon emission proess γ∗q → qgare shown in Fig. (3.1). The squared, spin-independent matrix element

p′

k
p

q

p

q

k

p′

Figure 3.1: The graphs for O(αs) real gluon radiation.ontrated with −gµν reads
−gµν |Mγ∗q→qg|2µν =

e2
q

2
g2
sCF (µ2)ǫ/28(1 − ǫ

2
) (3.4)

[

(1 − ǫ

2
)

(

− ŝ

t̂
− t̂

ŝ

)

− 2
q2û

t̂ŝ
+ ǫ + O(ǫ2)

]

,where gs(µ
2)ǫ/4 is the strong oupling in N = 4 − ǫ dimensions and wherethe Mandelstam variables ŝ, t̂, û are de�ned as

ŝ ≡ (p + q)2 = (k + p′)2

t̂ ≡ (p − k)2 = (q − p′)2

û ≡ (p − p′)2 = (q − k)2.40



As we are eventually taking the ǫ → 0 limit, the last two terms in Eq. (3.4)will not ontribute and I will forget them from now on. The 2-partile phasespae in N dimensions an be written as
dΠ(2) =

dN−1p′

(2π)N−12k0

dN−1k

(2π)N−12k0
(2π)N δ(N)(p + q − k − p′)

=
dNp′

(2π)N−1

dN−1k

(2π)N−12k0
(2π)N δ(N)(p + q − k − p′)θ(p′0)δ(p′2)

= (2π)2−N dN−1k

2|k| δ+((p + q − k)2) (3.5)In the enter-of-mass frame of q and p, we may hoose the momenta as
p = (|p|, 0, 0, . . . , |p|)
q = (q0, 0, 0, . . . ,−|p|)
k = (|k|, . . . , |k| cos θ)

p′ = (|p′0|, . . . ,−|k| cos θ).The squared matrix element does not depend on the momenta whih wereleft unspei�ed above and we may perform the redundant angular integra-tions
dN−1k = |k|N−2d|k|ΩN−1 (3.6)

= |k|N−2 sinN−3 θ d|k|dθdΩN−2
∫

dΩN−2 =
2π(N−2

2 )

Γ
(

N−2
2

) ,where ∫ dΩn is the surfae area of an n-dimensional eulidean unit-sphere.The phase spae (3.5) thus beomes
dΠ(2) =

1

4π

(4π)ǫ/2

Γ(1 − ǫ
2)

d|k||k|1−ǫd(cos θ)
(
1 − cos2 θ

)−ǫ/2
δ(ŝ − 2|k|

√
ŝ). (3.7)The |k|-integration eliminates the remaining δ-funtion

∫

d|k||k|1−ǫδ(ŝ − 2|k|
√

ŝ) =
1

4

(
4

ŝ

)ǫ/2

, (3.8)and after introduing an angular variable y ≡ 1
2(1 + cos θ), the 2-partilephase spae beomes

dΠ(2) =
1

8π

1

Γ(1 − ǫ
2)

(
4π

ŝ

)ǫ/2 ∫ 1

0
dy [y(1 − y)]−ǫ/2 . (3.9)41



In terms of y, Q2, and z = −q2/2p · q, the Mandelstam invariants are
ŝ =

Q2

z
(1 − z), t̂ = −Q2

z
(1 − y), û = −Q2

z
y. (3.10)The square brakets from (3.4) and y integral from the phase spae (3.9)leads to

∫ 1

0
[y(1 − y)]−ǫ/2

[

(1 − ǫ

2
)

(
1 − z

1 − y
+

1 − y

1 − z

)

+ 2
zy

(1 − z)(1 − y)

]

, (3.11)whih may be evaluated using a generi identity
∫ 1

0
dyyα−1(1 − y)β−1 =

Γ(α)Γ(β)

Γ(α + β)
, (3.12)resulting in

Γ2(1 − ǫ/2)

Γ(1 − ǫ)

[

−2 − ǫ

ǫ

(

1 − z +
2z

1 − z

1

1 − ǫ

)

+
1 − ǫ/2

2(1 − ǫ)(1 − z)

]

. (3.13)Altogether,
−gµν

(

MŴ q
µν

)

∣
∣Real

= −gµν |Mγ∗q→qg|2µν dΠ(2) 1

4π
(3.14)

= e2
q(1 − ǫ/2)CF

αs

2π

(
4πµ2

Q2

)ǫ/2
Γ(1 − ǫ/2)

Γ(1 − ǫ)
(

z

1 − z

)ǫ/2 [

−2 − ǫ

ǫ

(

1 − z +
2z

1 − z

1

1 − ǫ

)

+
1 − ǫ/2

2(1 − ǫ)(1 − z)

]

,where the designation \Real" reminds that this is a ontribution from thetree-level real gluon emission. In this expression the ollinear y → 1 diver-genes (gluon being emitted in the diretion of inoming quark) are manifestas expliit 1/ǫ-poles whih now remain �nite for ǫ < 0. However, the ex-pression is also singular as z → 1 orresponding to the vanishing energy ofthe radiated gluon or gluon being ollinear with the outgoing quark. Thesesingularities an be made expliit by a distribution identity
1

(1 − z)1+ǫ
= −1

ǫ
δ(1 − z) +

1

(1 − z)+
− ǫ

[
log(1 − z)

1 − z

]

+

, (3.15)where the plus-distributions are de�ned as in Eq. (2.94). Applying thisidentity to the lowest line of Eq. (3.14) gives
8

ǫ2
δ(1 − z) − 2

ǫ

[
1 + z2

1 − z
− 3

2
δ(1 − z)

]

+ (1 + z2)

[
log(1 − z)

1 − z

]

+

−3

2

1

(1 − z)+
− 1 + z2

1 − z
log z + 3 − z +

7

2
δ(1 − z), (3.16)42



and we arrive at
−gµν

(

MŴ q
µν

)

∣
∣Real

= e2
q(1 − ǫ/2)CF

αs

2π

(
4πµ2

Q2

)ǫ/2
Γ(1 − ǫ/2)

Γ(1 − ǫ)
{

8

ǫ2
δ(1 − z) − 2

ǫ

[
1 + z2

1 − z
− 3

2
δ(1 − z)

]

+ (1 + z2)

[
log(1 − z)

1 − z

]

+

−3

2

1

(1 − z)+
− 1 + z2

1 − z
log z + 3 − z +

7

2
δ(1 − z)

}

, (3.17)The ontration with PµP ν is simpler and does not lead to singular be-haviour:
PµP ν

(

MŴ q
µν

)

∣
∣Real

=
1

4π
PµP ν |Mγ∗q→qg|2µν dΠ(2) (3.18)

= e2
q (1 − ǫ/2) CF

αs

2π

Q2

4z

( z

x

)2

3.3 Virtual corrections

Figure 3.2: Virtual orretions to deeply inelasti sattering.The virtual orretions to the Born ross-setion Eq. (3.3) stem from twosoures: from loop orretion to the photon-quark vertex and from the self-energy orretions to the external legs. These are shown in Fig. 3.2. Inthe Feynman gauge the 1-loop vertex orretion (with massless externalquarks) is simply a multipliative fator [1 + Γ] to the tree-level Feynmanrule −ieγµ, with
Γ =

αs

4π
CF

(
4πµ2

Q2

)ǫ/2
Γ(1 − ǫ/2)

Γ(1 − ǫ)

[

− 8

ǫ2
− 8

ǫ
+

2

ǫUV
− 8 − π2

3

]

, (3.19)where I have separately indiated the ultraviolet divergene ǫUV > 0 thatours in the high end part of the loop momentum. The renormalizationonstant ZF for massless quarks is, in turn,
ZF = 1 +

αs

4π
CF

(
2

ǫ
− 2

ǫUV

)

. (3.20)43



The ultraviolet poles anel, and the total virtual ontribution is
−gµν(MŴ q

µν)∣∣Virtual
= −gµν(MŴ q

µν)∣∣Born

[

|1 + Γ|2 Z2
F − 1

] (3.21)
= e2

q (1 − ǫ/2) δ(1 − z)
αs

2π
CF

(
4πµ2

Q2

)ǫ/2

Γ(1 − ǫ/2)

Γ(1 − ǫ)

[

− 8

ǫ2
− 6

ǫ
− 8 − π2

3

]

.

3.4 Total quark contributionWhen the virtual piees and those from real gluon radiation are ombined,the double poles 1/ǫ2 evidently anel, giving altogether
−gµν

[

(MŴ q
µν)∣∣Virtual

+ MŴ q
µν)
∣
∣Real

]

= e2
q(1 − ǫ/2)CF

αs

2π

(
4πµ2

Q2

)ǫ/2

Γ(1 − ǫ/2)

Γ(1 − ǫ)

{

−2

ǫ

[
1 + z2

1 − z
+

3

2
δ(1 − z)

]

+ (1 + z2)

[
log(1 − z)

1 − z

]

+

−3

2

1

(1 − z)+
− 1 + z2

1 − z
log z + 3 − z −

(
9

2
+

π2

3

)

δ(1 − z)

}

.The total quark ontribution to the struture funtions an now be obtainedby folding them with the quark densities
MW q

µν =
∑

q

∫ 1

x

dξ

ξ
q0(ξ)

[

(MŴ q
µν)∣∣Born

+ (MŴ q
µν)∣∣Virtual

+ MŴ q
µν)
∣
∣Real

]

,where the q0(ξ) denotes the \bare", non-physial density whih will even-tually go along the rede�nition of the quark densities. When the variouspiees are put together as instruted in Eq. (3.1),
1

x
F q

2 =
∑

q

e2
q

∫ 1

x

dξ

ξ
q0(ξ) (3.22)

{

δ(1 − z) − 2

ǫ

αs

2π
Pqq(z)

Γ(1 − ǫ/2)

Γ(1 − ǫ)

(
4πµ2

Q2

)ǫ/2

+
αs

2π
Cq(z)

}

,where the oeÆient funtion Cq(z) is de�ned as
Cq(z) ≡ CF

{

(1 + z2)

[
log(1 − z)

1 − z

]

+

− 3

2

1

(1 − z)+
(3.23)

−1 + z2

1 − z
log z + 3 + 2z −

(
9

2
+

π2

3

)

δ(1 − z)

}

.44



3.5 Initial state gluonsThe exat NLO alulation of the initial state gluon ontributions proeedsmuh in a similar fashion as extration of the quark ontributions above.When averaging over the transverse gluon polarization states, one shouldremember that there are 2 − ǫ suh states instead of usual 2. The squared,
p

p′

k

p

p′

k

q q

Figure 3.3: The diagrams for O(αs) initial state gluon ontribution.matrix element orresponding to the diagrams shown in Fig. 3.3, ontratedwith −gµν reads
−gµν |Mγ∗g→qq|2µν =

e2
q

2
g2
sTR(µ2)ǫ/28

[

(1 − ǫ/2)

(
û

t̂
+

t̂

û

)

+ 2
q2ŝ

t̂û

]

.Supplying the phase-spae element and doing the angular integrals, we endup with a following gluon ontribution
−gµν

(

MŴ g
µν

)

= − 1

4π
gµν |Mγ∗g→qq|2µν dΠ(2) (3.24)

= e2
q

αs

2π

(
4πµ2

Q2

)ǫ/2

2TR

Γ(1 − ǫ/2)

Γ(1 − ǫ)

{

−2

ǫ

[
z2 + (1 − z)2

]
+ log

(
1 − z

z

)
[
z2 + (1 − z)2

]
}

.The analogous results from the ontration with PµP ν are
PµP ν |Mγ∗g→qq|2µν =

e2
q

2 − ǫ
g2
sTR(µ2)ǫ/28

zQ2

x2
(1 − z), (3.25)

PµP ν
(

MŴ G
µν

)

= e2
q

αs

2π
TRQ2 z(1 − z)

x2
. (3.26)From these the we an build the initial state gluon ontribution to thestruture funtions

1

x
F g

2 (x,Q2) = 2
∑

q

e2
q

∫ 1

x

dξ

ξ
g0(ξ) (3.27)

{

−2

ǫ

αs

2π
Pqg(z)

(
4πµ2

Q2

)ǫ/2
Γ(1 − ǫ/2)

Γ(1 − ǫ)
+

αs

2π
Cg(z)

}

,45



where the oeÆient funtion Cg(z) is de�ned as
Cg(z) ≡ Pqg(z) log

(
1 − z

z

)

+ TR6z(1 − z) − Pqg(z). (3.28)
3.6 Total F2 and PDF-schemesWe are now in a position to add up the quark and gluon ontributions tothe total F2. The remaining ǫ-dependent terms ome with a ommon fator

2

ǫ

(
4πµ2

Q2

)ǫ/2
Γ(1 − ǫ/2)

Γ(1 − ǫ)
=

2

ǫ
− γE + log(4π) + log

(
µ2

Q2

) (3.29)
=

1

ǫ̂
+ log

(
µ2

Q2

)

,where I introdued a short-hand notation absorbing the Euler-Masheronionstant γE and log(4π) to 1/ǫ̂. Writing the total F2 expliitly, we have
1

x
F2(x,Q2) =

∑

q,q

e2
qq0 ⊗

{

1 − αs

2π

[
1

ǫ̂
+ log

(
µ2

Q2

)]

Pqq +
αs

2π
Cq

}

+ 2
∑

q

e2
qg0 ⊗

{

−αs

2π

[
1

ǫ̂
+ log

(
µ2

Q2

)]

Pqg +
αs

2π
Cg

}

.Based on the disussion of Chapter 2, the ollinear divergenes, the 1/ǫpiees, should be absorbed into the rede�nition of the quark and gluondensities whih, as already noted, are not unique. In the dimensional reg-ularization framework, the general NLO de�nitions of the sale-dependentquark and gluon distributions at a ertain fatorization sale Q2
f an bewritten as

q(x,Q2
f ) ≡ q0 ⊗

{

1 − αs

2π

[

1

ǫ̂
+ log

(

µ2

Q2
f

)]

Pqq +
αs

2π
f scheme

q

}

+ g0 ⊗
{

−αs

2π

[

1

ǫ̂
+ log

(

µ2

Q2
f

)]

Pqg +
αs

2π
f scheme

g

}(3.30)
g(x,Q2

f ) ≡ g0 ⊗
{

1 − αs

2π

[

1

ǫ̂
+ log

(

µ2

Q2
f

)]

Pgg +
αs

2π
hscheme

g

}

+
∑

q,q

q0 ⊗
{

−αs

2π

[

1

ǫ̂
+ log

(

µ2

Q2
f

)]

Pgq +
αs

2π
hscheme

q

}

,where f scheme
q,g , hscheme

q,g are arbitrary (�nite) funtions. It should be under-stood that these terms are just the �rst ones of a whole series whih formally46



exponentiate and give rise to the DGLAP evolution as disussed in Chap-ter 2. With these de�nitions the expression for the NLO struture funtion
F2 beomes

1

x
F2(x,Q2) = (3.31)
∑

q,q

e2
qq(Q

2
f ) ⊗

{

1 − αs

2π
log

(

Q2
f

Q2

)

Pqq +
αs

2π

[

Cq − f scheme
q

]
}

+2
∑

q

e2
qg(Q2

f ) ⊗
{

−αs

2π
log

(

Q2
f

Q2

)

Pqg +
αs

2π

[

Cg − f scheme
g

]
}

,where
Cq(z) ≡ CF

{

(1 + z2)

[
log(1 − z)

1 − z

]

+

− 3

2

1

(1 − z)+
(3.32)

−1 + z2

1 − z
log z + 3 + 2z −

(
9

2
+

π2

3

)

δ(1 − z)

}

Cg(z) ≡ Pqg(z) log

(
1 − z

z

)

+ TR6z(1 − z) − Pqg(z). (3.33)Obviously, there are arbitrarily may ways to de�ne the sheme | the twomost ommon ones are� MS-scheme:In this sheme only the ollinear divergene and the regularization-framework-originating −γE +log(4π) are absorbed into the de�nition,i.e. one hooses f scheme
q = f scheme

g = hscheme
q = hscheme

g = 0.� DIS-scheme:This sheme is de�ned by hoosing f scheme
q = Cq and f scheme

g = Cg,whih maintains the simple naive parton model form of the ross-setion at Q2 = Q2
f . How to de�ne hscheme

q and hscheme
g in DIS-shemeis, however, more or less a matter of onvention. Usual hoie [30℄ isditated by the momentum onservation

∫ 1

0
x




∑

q,q

qMS + gMS



 =

∫ 1

0
x




∑

q,q

qDIS + gDIS



 ,whih requires hscheme
g = −2nfCg and hscheme

q = −Cq.47



For ompleteness, I reord here also the expressions for F1:
F1(x,Q2) =

1

2x
F2(x,Q2) −

∑

q,q

e2
qq(Q

2
f ) ⊗

[αs

2π
CF z

] (3.34)
− 2

∑

q

e2
qg(Q2

f ) ⊗
[αs

2π
TR2z(1 − z)

]

.

3.7 Numerical estimateThe numerial alulation of deeply inelasti struture funtions and ross-setions at NLO is relatively simple with only single integrals to be numeri-ally evaluated. In order to get in touh with the expeted size of the NLOorretions, I have omputed the proton F2 both in the leading and in thenext-to-leading order (MS-sheme) with the same set of parton densities(CTEQ6L1 [31℄). The Fig. 3.4 presents the results at two typial sales, at
Q2 = 10GeV2 and at Q2 = 100GeV2. In most x-values the expeted NLO
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Figure 3.4: The left panel shows the behaviour of absolute proton F2 at Q2 =

10GeV2 and Q2 = 100GeV2 (with o�set +0.2) alulated with CTEQ6L1leading order parton densities in the leading-order and in the next-to-leadingorder. The panels on the right display the NLO ontributions from the quarkand gluon hannels separately normalized by the leading-order F2.orretions are of the order of few perents and only the quark ontributionshows a growing behaviour at very large x. Although the leading-order termdominates and F2 as suh is not very sensitive e.g. to the gluon ontent of48



the nuleon1, suh terms annot, however, be negleted in a preision anal-ysis. An example of a quantity that is diretly muh more sensitive to thegluons is the longitudinal struture funtion FL ≡ F2−2xF1 whih vanishesat leading order, as an be seen from Eq. 3.34.Also the NNLO oeÆient funtions for the deeply inelasti struture fun-tions are nowadays known [32℄, and an analogous estimate as shown herereveals the expeted magnitude of the NNLO vs. NLO orretions similarto the NLO vs. LO shown here. In other words, the NNLO terms in theoeÆient funtions are still important.

1Gluons, however, are the driving fore in the DGLAP evolution of small-x quarks andthus their e�et on F2 is signi�ant but indiret.49
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Chapter 4

Drell-Yan NLO cross-sectionThe Drell-Yan dilepton prodution in nuleon-nuleon ollisions is anotherproess whih an be employed in probing the parton distributions. Here,I will derive the double-di�erential NLO ross-setion d2σ/dM2dyR, where
M2 and yR denote the invariant mass and the rapidity of the lepton pair. Adetailed omputation of this partiular ross-setion has proven to be sur-prisingly diÆult to �nd from the literature: Up to my knowledge, suh anonly be found in [33℄ whih employs a massive gluon sheme to regularizethe ollinear and infrared singularities. However, in order to rigorously em-ploy the NLO de�nitions of the sale dependent parton densities disussedin the ontext of deeply inelasti sattering in Chapter 2, the dimensionalregularization methods are to be used. The results obtained in this setionoinide with those given in [34℄.
4.1 Leading-order calculation

p1

p2

q

k1

k2

µ−

µ+

q

qFigure 4.1: Leading-order parton diagram for Drell-Yan dilepton produ-tion.In the leading order, the lepton pair prodution proeeds by annihilation ofquark and antiquark as shown in Fig. 4.1. The unpolarized, olor-averagedsquare of the matrix element orresponding to this diagram an be om-51



patly written as
|M0|2 =

e4e2
q

12q4
LµνH0

µν , (4.1)where, in N dimensions,
Lµν ≡ Tr [/k1γ

µ/k2γ
ν ] (4.2)

H0
µν ≡ Tr

[

/p2
γµ/p1

γν

]

.When the leptoni tensor Lµν is integrated over the 2-partile phase spae,the dependene on momenta k1 and k2 washes out and the result onlydepends on the virtual photon momentum q. Moreover, sine qµLµν =

qνL
µν = 0, the Lorentz struture is neessarily

∫

dΠ(2)Lµν =

(

gµν − qµqν

q2

)

L(q2), (4.3)where
L(q2) =

1

N − 1

∫

dΠ(2) (gµνLµν) .Similarly, qµH0
µν = qνH0

µν = 0 and therefore
H0

µν

∫

dΠ(2)Lµν =
(
gµνH0

µν

)
L(q2). (4.4)Thus, the ross-setion splits into independently alulable leptoni andhadroni piees

σ̂q
0 =

1

2ŝ

e4e2
q

12q4

∫

dΠ(2)LµνH0
µν (4.5)

=
1

2ŝ

e4e2
q

12q4

(
gµνH0

µν

) 1

N − 1

∫

dΠ(2) (gµνLµν) ,simplifying the alulation. From (4.2), we have
gµνLµν = −2(2 − ǫ)q2 (4.6)
gµνH0

µν = −2(2 − ǫ)ŝ.Sine the leptoni quantity 1
N−1

∫
dΠ(2) (gµνLµν) will be ommon also forthe higher order diagrams, it is unneessary to drag its exat N -dimensionalexpression throughout the alulation | what matters is the hadroni part

gµνH0
µν . In the N → 4 limit ∫ dΠ(2) = 1

8π , and (4.5) gives
σ̂q

0 =
4πα2

9q2
e2
q . (4.7)52



The invariant mass M2, and the rapidity yR of the produed lepton pair arede�ned as
M2 ≡ (k1 + k2)

2 = q2 (4.8)
yR ≡ 1

2
log

(k0
1 + k0

2) + (k3
1 + k3

2)

(k0
1 + k0

2) − (k3
1 + k3

2)
=

1

2
log

q0 + q3

q0 − q3
. (4.9)At leading order, k1 + k2 = p1 + p2, and in the enter-of-mass frame of theolliding nuleons

p1 =

√
s

2
ξ1(1, 0, 0, 1), p2 =

√
s

2
ξ2(1, 0, 0,−1), (4.10)it follows that

M2 = ξ1ξ2s, yR =
1

2
log

ξ1

ξ2
. (4.11)Thus, the double-di�erential partoni ross-setion in these kinemati vari-ables an be written as

d2σ̂q
0

dM2dyR
= σ̂q

0δ(M
2 − ξ1ξ2s)δ

(

yR − 1

2
log

ξ1

ξ2

) (4.12)
=

4πα2
em

9ŝM2
e2
q δ(1 − z)δ

(

yR − 1

2
log

ξ1

ξ2

)

.where z ≡ M2/ŝ. To obtain the orresponding hadroni ross-setion weintegrate over the parton densities of the inoming nuleons and sum overall avors
d2σ0

dM2dyR
=

∫ 1

0
dξ1dξ2

∑

q

d2σ̂q
0

dM2dyR

[

q(1)(ξ1)q
(2)(ξ2) + q(2)(ξ2)q

(1)(ξ1)
]

.Performing the integrals we �nd
d2σ0

dM2dyR
=

4πα2

9sM2

∑

q

e2
q

[

q(1)(x1)q
(2)(x2) + (1 ↔ 2)

]

,where
x1 ≡

√
τeyR , x2 ≡

√
τe−yR , τ ≡ M2

s
. (4.13)

4.2 Gluon radiationThe QCD orretions to the Born-level ross-setion from emission of oneadditional unobserved gluon are shown in Fig. 4.2. The orresponding par-toni ross-setion for suh proess an be written as
σ̂q

R =
1

2ŝ

1

q4

1

2 × 2
︸ ︷︷ ︸

spin

× 3 × 3
︸ ︷︷ ︸

color

e4e2
q

∫

dΠ(3)LµνHR
µν , (4.14)53



p1

p2

q

k3 k1

k2Figure 4.2: Gluon radiation in Drell-Yan dilepton prodution to NLOpQCD.where Lµν is the same leptoni tensor as in the previous setion, and HR
µν isobtained from the spin- and olor-summed square of diagrams in Fig. 4.2.In order to separate the leptoni and hadroni piees as was done in theleading order, we use an identity

1 =

∫
dM2

2π

∫
dN−1q

(2π)N−12Eq
(2π)N δ(N)(q − k1 − k2)∣∣

∣(k1+k2)2=M2

, (4.15)to rewrite the 3-partile phase spae as
dΠ(3) =

dN−1k1

(2π)N−12Ek1

dN−1k2

(2π)N−12Ek2

dN−1k3

(2π)N−12Ek3

(4.16)
(2π)Nδ(N)(p1 + p2 − k1 − k2 − k3)

=
dM2

2π

[
dN−1k1

(2π)N−12Ek1

dN−1k2

(2π)N−12Ek2

(2π)Nδ(N)(q − k1 − k2)

]

[
dN−1k3

(2π)N−12Ek3

dN−1q

(2π)N−12Eq
(2π)N δ(N)(p1 + p2 − k3 − q)

]

=
dM2

2π
dΠ

(2)
L dΠ

(2)
H .By this trik,

dσ̂q
R

dM2
=

e4e2
q

72ŝM4

1

2π

1

N − 1

(∫

dΠ
(2)
L gµνLµν

)(∫

dΠ
(2)
G gµνHR

µν

)

=
4πα2

em

9ŝM2

1

6π

1

2(2 − N)

(∫

dΠ
(2)
G gµνHR

µν

)

, (4.17)where I already took the ǫ → 0 limit of the leptoni part 1
N−1

∫
dΠ

(2)
L gµνLµν .In the present ase, we de�ne the Mandelstam variables

ŝ ≡ (p1 + p2)
2 =

M2

z

t̂ ≡ (p1 − k3)
2 = −M2

z
(1 − z)(1 − y)

û ≡ (p2 − k3)
2 = −M2

z
(1 − z)y,54



where I have introdued the angular variable y ≡ 1
2(1 + cos θ) ∈ [0, 1], with

θ referring to the angle between inoming quark and emitted gluon in theenter-of-mass frame of the inoming quark and antiquark
p1 = (

√
ŝ/2, 0, 0, . . . ,

√
ŝ/2)

p2 = (
√

ŝ/2, 0, 0, . . . ,−
√

ŝ/2)

k3 = (|k3|, . . . , |k3| cos θ); |k3| = (ŝ − M2)/(2
√

ŝ)

q = (q0, . . . ,−|k3| cos θ); q0 = (ŝ + M2)/(2
√

ŝ)and z ≡ M2/ŝ ∈ [τ, 1]. The rapidity y∗R of the produed lepton pair in thisframe is
y∗R =

1

2
log

1 − y(1 − z)

z + y(1 − z)
, (4.18)and owing to the additivity under Lorentz-boosts, the rapidity yR in thenuleon-nuleon enter-of-mass frame is

yR =
1

2
log

ξ1

ξ2
+ y∗R =

1

2
log

[
ξ1

ξ2

1 − y(1 − z)

z + y(1 − z)

]

. (4.19)Thus, the wanted doubly di�erential ross-setion is obtained by
d2σ̂q

R

dyRdM2
=

dσ̂q
R

dM2
δ

(

yR − 1

2
log

[
ξ1

ξ2

1 − y(1 − z)

z + y(1 − z)

])

. (4.20)Having now �xed the kinematis, we an write down the squared matrixelement, ontrated with the metri tensor gµν ,
gµνHR

µν = −g212CF (1 − ǫ/2)

[

(2 − ǫ)

(
û

t̂
+

t̂

û

)

+ 4
ŝM2

t̂û

]

. (4.21)In terms of the variables z and y this beomes
gµνHR

µν = −g212CF (2 − ǫ)

[

(1 − ǫ/2)

(
1 − y

y
+

y

1 − y

)

+
2z

(1 − z)2y(1 − y)

]

.A similar alulation that led to Eq. (3.9) gives the 2-partile phase spae
∫

dΠ
(2)
H =

1

8π

1

Γ(1 − ǫ
2)

(
4π

M2

)ǫ/2

(1 − z)1−ǫzǫ/2

∫ 1

0
dy [y(1 − y)]−ǫ/2 .(4.22)At this moment, the various poles that our in the kinemati orners z → 1,

y → 1, y → 0 should be made expliit by using the following distributionidentities
1

(1 − z)1+ǫ
= −1

ǫ
δ(1 − z) +

1

(1 − z)+
− ǫ

[
log(1 − z)

1 − z

]

+

1

z1+ǫ
= −1

ǫ
δ(z) +

1

z+
− ǫ

[
log z

z

]

+

.55



After some algebra, we �nd the following stak of terms
(1 − z)1−ǫzǫ/2

[y(1 − y)]ǫ/2

[

(1 − ǫ/2)

(
1 − y

y
+

y

1 − y

)

+
2z

(1 − z)2y(1 − y)

]

= δ(1 − z) [δ(1 − y) + δ(y)]

(
4

ǫ2
+

3

ǫ

)

+ δ(1 − z)

{

−2

ǫ

[
1

(1 − y)+
+

1

y+

]

+

[
log(1 − y)

1 − y

]

+

+

[
log y

y

]

+

+

log(1 − y)

y
+

log y

1 − y

}

+ [δ(1 − y) + δ(y)]

{

−2

ǫ

[
1 + z2

(1 − z)+
+

3

2
δ(1 − z)

]

+

2(1 + z2)

[
log(1 − z)

1 − z

]

+

−

(1 + z2) log z

1 − z
+ (1 − z)

}

+
1 + z2

(1 − z)+

[
1

(1 − y)+
+

1

y+

]

− 2(1 − z).All terms in the third line above are irrelevant as they vanish under inte-gration: for example
∫ 1

0
dy δ

(

yR − 1

2
log

[
ξ1

ξ2

1 − y(1 − z)

z + y(1 − z)

])

δ(1 − z)

(
log y

y

)

+

= δ

(

yR − 1

2
log

ξ1

ξ2

)

δ(1 − z)

∫ 1

0
dy

(
log y

y

)

+
︸ ︷︷ ︸

=0

= 0.We also notie the following analyti result
∫ 1

0
dy δ

(

yR − 1

2
log

[
ξ1

ξ2

1 − y(1 − z)

z + y(1 − z)

])

δ(1 − z)

[
log(1 − y)

y
+

log y

1 − y

]

= δ

(

yR − 1

2
log

ξ1

ξ2

)

δ(1 − z)2

∫ 1

0
dy

log y

1 − y
︸ ︷︷ ︸

−ζ(2)=−π2

6

= −π2

3
δ

(

yR − 1

2
log

ξ1

ξ2

)

δ(1 − z),where ζ(2) refers to the Riemann zeta-funtion. Performing the remaining δ-funtion-restrited y-integrals, we reah the �nal form of the partoni ross-56



setion:
d2σ̂q

R

dyRdM2
=

4πα2
em

9ŝM2

αs

2π
CF

(
4πµ2

M2

)ǫ/2
1

Γ(1 − ǫ/2)
(4.23)

{

δ

(

yR − 1

2
log

ξ1

ξ2

)

δ(1 − z)

[
8

ǫ2
+

6

ǫ
− π2

3

]

+

[

δ

(

yR − 1

2
log

zξ1

ξ2

)

+ δ

(

yR − 1

2
log

ξ1

zξ2

)]

×
{

−2

ǫ

[
1 + z2

(1 − z)+
+

3

2
δ(1 − z)

]

+

2(1 + z2)

[
log(1 − z)

1 − z

]

+

− (1 + z2) log z

1 − z
+ (1 − z)

}

+

J(z, ξ1, ξ2)

[
1 + z2

(1 − z)+

[(
1

1 − y0

)

+

+

(
1

y0

)

+

]

− 2(1 − z)

]}

,where I have de�ned
y0 ≡ 1

2

[

1 − 1 + z

1 − z
tanh

(

yR − 1

2
log

ξ1

ξ2

)] (4.24)
J(z, ξ1, ξ2) ≡ dy

dyR
=

1

2

1 + z

1 − z
sech2

(

yR − 1

2
log

ξ1

ξ2

)

. (4.25)
4.3 Virtual correctionsThe virtual 1-loop diagrams are essentially same as for deeply inelasti sat-tering, Eqs. (3.19) and (3.20), but the vertex ontribution must be analyti-ally ontinued to the time-like region Q2 = −q2 → −M2 < 0. The virtualontributions may be written as

d2σ̂q

dyRdM2 ∣∣Virtual

=
4πα2

em

9ŝM2

αs

2π
CF

(
4πµ2

M2

)ǫ/2

Γ(1 − ǫ/2)

[

− 8

ǫ2
− 6

ǫ
− 8 + π2

]

δ

(

yR − 1

2
log

ξ1

ξ2

)

δ(1 − z). (4.26)57



Adding the virtual and real gluon emission ontributions, the infrared 1/ǫ2-poles anel, giving
d2σ̂q

R

dyRdM2
+

d2σ̂q

dyRdM2 ∣∣Virtual

=
4πα2

em

9ŝM2
(4.27)

{

δ

(

yR − 1

2
log

ξ1

ξ2

)

δ(1 − z)
αs

2π
CF

[
2π2

3
− 8

]

+

[

δ

(

yR − 1

2
log

zξ1

ξ2

)

+ δ

(

yR − 1

2
log

ξ1

zξ2

)]

αsfǫ(z) +

J(z, ξ1, ξ2)
αs

2π
CF

[
1 + z2

(1 − z)+

[(
1

1 − y0

)

+

+

(
1

y0

)

+

]

− 2(1 − z)

]}

,where
αsfǫ(z) ≡ αs

2π
Pqq(z)

[

−1

ǫ̂
+ log

M2

µ2

] (4.28)
+

αs

2π
CF

{

2(1 + z2)

[
log(1 − z)

1 − z

]

+

− (1 + z2) log z

1 − z
+ (1 − z)

}

.To turn the partoni ross-setion above to a hadroni one, we integrateover the parton densities
d2σq

dyRdM2
=

∫ 1

0
dξ1dξ2

[

d2σ̂q

dyRdM2 ∣∣Born

+
d2σ̂q

R

dyRdM2
+

d2σ̂q

dyRdM2 ∣∣Virtual

]

H0(ξ1, ξ2),where
H0(ξ1, ξ2) ≡

∑

q

e2
q

[

q
(1)
0 (ξ1)q

(2)
0 (ξ2) + q

(2)
0 (ξ2)q

(1)
0 (ξ1)

]

.The 0-subsript above is to remind us that these are still \bare" partondensities, antiipating their replaement by the sale-dependent ones. Per-forming the integrals onstrained by the delta-funtions, we obtain
d2σq

dyRdM2
=

4πα2
em

9sM2

{

H0(x1, x2)

[

1 +
αs

2π
CF

(
2π2

3
− 8

)] (4.29)
+ αs

∫ 1

x1

dξ1

ξ1
H0(ξ1, x2)fǫ(

x1

ξ1
) + αs

∫ 1

x2

dξ2

ξ2
H0(x1, ξ2)fǫ(

x2

ξ2
)

+
αs

2π
CF

∫ 1

x1

dξ1

ξ1

∫ 1

x2

dξ2

ξ2
H0(ξ1, ξ2)J(z, ξ1, ξ2)

[
1 + z2

(1 − z)+

[(
1

1 − y0

)

+

+

(
1

y0

)

+

]

− 2(1 − z)

]}

,58



p1
q
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k3
p2 p2

p1

k3

q
k1

k2Figure 4.3: Gluon-quark subproess in Drell-Yan dilepton prodution.
4.4 Initial state gluonsThe seond type of O(αs) proess that ontributes to the Drell-Yan ross-setion is the one with a gluon in the initial state. The two diagrams forsuh proess are shown in Fig. 4.3. The orresponding partoni ross-setionan be written as

σ̂qG =
1

2ŝ

1

q4

1

2 × (2 − ǫ)
︸ ︷︷ ︸

spin

× 3 × 8
︸ ︷︷ ︸

color

e4e2
q

∫

dΠ(3)LµνHqG
µν , (4.30)and it follows that

d2σ̂qG

dyRdM2
=

4πα2
eme2

q

9ŝM2

1

2π

−1

8(2 − ǫ)2

(∫

dΠ(2)gµνHqG
µν

) (4.31)
δ

(

yR − 1

2
log

[
ξ1

ξ2

1 − y(1 − z)

z + y(1 − z)

])

.The hadroni part HqG
µν is the olor- and spin-summed square of the diagramsshown in Fig. 4.3

gµνHqG
µν = −g2

s(µ
2)−ǫ/264TR (1 − ǫ/2)

[

(1 − ǫ/2)

(−û

ŝ
+

−ŝ

û

)

− 2
t̂M2

ŝû

]

.In terms of variables y and z, de�ned as in the previous setion, this reads
gµνHqG

µν = −g2
s(µ

2)−ǫ/264TR (1 − ǫ/2) (4.32)
{

(1 − ǫ/2)

[

y(1 − z) +
1

y(1 − z)

]

− 2(1 − y)z

y

}

.The phase-spae is
∫

dΠ(2) =
1

8π

1

Γ(1 − ǫ
2)

(
4π

M2

)ǫ/2

(1 − z)1−ǫzǫ/2

∫ 1

0
dy [y(1 − y)]−ǫ/2 .59



In this ase only ollinear y → 0 singularities are present, whih an beturned into expliit 1/ǫ-poles by distributions:
[y(1 − y)]−ǫ/2 (1 − z)1−ǫzǫ/2

{

(1 − ǫ/2)

[

y(1 − z) +
1

y(1 − z)

]

− 2(1 − y)z

y

}

= δ(y)

{

−2

ǫ

[
z2 + (1 − z)2

]
+
[
z2 + (1 − z)2

]
log

(1 − z)2

z
+ 1

}

+ 2z(1 − z) + (1 − z)2y +
z2 + (1 − z)2

y+
.Putting all fators together, we have

d2σ̂qG
R
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=

4πα2
eme2

q

9ŝM2

αs

2π
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(
4πµ2

M2

)ǫ/2
1

Γ(2 − ǫ/2)
(4.33)

{

δ

(

yR − 1

2
log

ξ1

zξ2

)[

−2

ǫ

[
z2 + (1 − z)2

]
+
[
z2 + (1 − z)2

]
log

(1 − z)2

z
+ 1

]

+J(z, ξ1, ξ2)

[

2z(1 − z) + (1 − z)2y0 +
z2 + (1 − z)2

y0+

]}

.De�ning
KqG

0 (ξ1, ξ2) ≡
∑

q

e2
q

[(

q
(1)
0 (ξ1) + q

(1)
0 (ξ1)

)

g
(2)
0 (ξ2)

]

, (4.34)the hadroni ross-setion beomes
d2σqG

R

dyRdM2
=

4πα2
em

9sM2

{

αs

∫ 1

x2

dξ2

ξ2
KqG

0 (x1, ξ2)gǫ(
x2

ξ2
) (4.35)

+
αs

2π
TR
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x2
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ξ2
KqG
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]}

,where
αsgǫ(z) ≡ αs

2π
PqG(z)
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−1
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M2
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]

+
αs

2π
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(1 − z)2

z
− 1
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+ TR

}

.The ontribution from the mirror proess is obtained similarly. De�ning
KGq
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∑
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q
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g
(1)
0 (ξ1)
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q
(2)
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, (4.36)60



the result is
d2σGq

R

dyRdM2
=

4πα2
em

9sM2

{

αs
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]}

.

4.5 Finite resultThe results derived above still ontain all ollinear 1/ǫ-poles. The uni-versality of the parton distributions requires that it must be possible toremove these singularities by the same de�nition as has been applied indeeply inelasti sattering. To �rst order in strong oupling we an invertthe de�nitions (3.30) to write
H0(x1, x2) = H(x1, x2, Q

2
f ) (4.38)

+
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∣
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∣
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∣
∣
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∣
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Inserting these expressions to (4.29), all 1/ǫ-poles in (4.29), (4.35) and (4.37)anel giving the �nal, �nite results:
d2σqq

dyRdM2
=

4πα2
em

9sM2

{
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2
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2π
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)] (4.40)
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+

+
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+
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=
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,where
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.It is not very diÆult to integrate these expressions over yR to reover thedi�erential dσ/dM2 ross-setion given e.g in [48℄.
4.6 Numerical implementationThe presene of double integrals makes the numerial alulation of Drell-Yan ross-setion somewhat more hallenging than the deeply inelasti sat-62



tering. Espeially, one should pay attention how to evaluate integrals in-volving a produt of plus-distributions. First, by hange of variables
1

1

A

B

C

z=1

z=x1

z=x2 z=

y 0
=

0

y0 = 1

Figure 4.4: The integration regions for yR > 0. The onstant y0-lines and
z-hyperbola are indiated.
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(
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=

∫∫

A+B+C

dz

z
dy0, (4.42)where the division of the retangular integration region in (ξ1, ξ2)-plane to

A, B and C parts are indiated in Fig. 4.4 for yR > 0. Among other terms,the NLO ontribution to quark-antiquark proess involves a term
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.Aording to the de�nition of the plus-distributions,

∫∫

A

dz

z
dy0

1 + z2

(1 − z)+

H(ξ1, ξ2)

(1 − y0)+
=

∫ 1

x1

dz

z

1 + z2

(1 − z)+

∫ 1

0
dy0

H(ξ1, ξ2) − H(x1

z , x2)

1 − y0
,where

ξ1 = x1

√

1

z

z + y(1 − z)

1 − y(1 − z)
, ξ2 =

τ

zξ1
.63



Applying the de�nition of plus-distributions again to the remaining z-integral,we have
∫ 1

0

dz
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∫ 1
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,where the subtration term evidently vanishes, leaving
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.The regions B and C avoid both the z = 1 and the y = 1 singularities,
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.Sine H(ξ1, ξ2) = 0 for ξ1, ξ2 ≥ 0, the y0-integrals for regions B and C maybe extended to range from 0 to 1, and all integrals an be grouped neatlytogether:
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.Although we onsidered here the speial ase yR > 0, the result above isvalid also for yR ≤ 0. The treatment of other integrals involving plus-distributions is a straightforward extension to what was presented aboveand for ompleteness, I reord here the MS-sheme ross-setions in a formwhih no longer expliitly involves plus-distributions and an thus easily beturned into a omputer ode: 64
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.

4.7 Numerical estimateIn order to get a feeling about the size of the NLO orretions to the lead-ing order ross-setion, Fig. 4.5 shows a numerial result in the MS-sheme65
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Figure 4.5: An example of the rapidity distributions in Drell-Yan proessomputed in the MS-sheme. The left panel shows the behaviour of theabsolute ross-setion for √s = 38.76GeV and M = 8GeV using CTEQ6L1leading-order parton densities and indiating the leading order and next-to-leading order ontributions separately. In the right panel, the relativeontributions normalized to the leading order ross-setion σ0 of quark-antiquark and (anti)quark-gluon proesses are shown.with the fatorization sale hoie Q2
f = M2, for a kinematial on�gu-ration √

s = 38.76GeV (orresponding to a �xed target experiment with
800GeV proton beam) and M = 8GeV using the CTEQ6L1 leading-orderparton distribution funtions. Unlike in the deeply inelasti sattering, theontribution of the NLO terms is rather large | always at least 50% andinreasing when going away from the midrapidity. It is interesting to notiethat the quark-gluon ontribution remains always negative, partly anellingthe large positive ontribution of quark-quark subproesses.The Drell-Yan rapidity distribution, omputed here to NLO, is nowadaysknown still one power higher in αs (NNLO) [34℄. The size of the NNLOorretions relative to the NLO are not, however, as large as the NLO relativeto LO and the perturbative expansion seems to stabilize.
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Chapter 5

Inclusive hadron productionFor a deeply inelasti sattering event the experimental signature typiallyonsists of the sattered lepton and a narrow shower, a jet of hadrons, orig-inating from the struk parton that balanes the transverse momentum ofthe sattered lepton. The hadronization | how the partons transformthemselves into a asade of hadrons | is a non-perturbative proess andbeyond the reah of pQCD-tools. As long as we are not onerned about thestruture of the jet, we an simply ignore suh proess. This kind of �nalstate is said to be fully inlusive. However, as the jets onsist of hadrons,with a suitable detetor they an be identi�ed and their momentum mea-sured. In this Chapter I shortly desribe how suh indenti�ed hadron pro-dution ross-setions are alulated in pQCD, espeially in hadron-hadronollisions.
5.1 Fragmentation functionsLet us return to the leading-order deeply inelasti sattering, where a high-
Q2 photon knoks a quark q to an esape-ourse from the nuleon triggeringo� a jet as shown shematially in Fig. 5.1.

p

q

p′ P ′

Figure 5.1: Hadron prodution in deeply inelasti sattering.67



The number density of hadrons h arrying a fration z of the jet energy isdesribed by a fragmentation funtion Dh
q (z), where the q indiates theparton that initiated the fragmentation. Consequently, the leading-orderross-setion for single partile (plus anything else) prodution in the deeplyinelasti sattering (SIDIS) is

d2σh
0

dxdzdQ2
=

d2σ̂0

dxdQ2

∑

q

e2
qfq(x)Dh

q (z), (5.1)where the energy-fration z may be expressed in an invariant form as
z ≡ P · P ′

P · q =
Ehadron

ν
, (5.2)where the latter equality refers to the target rest frame. Beyond leadingorder, however, ollinear divergenes due to e.g ollinear gluon radiationfrom the outgoing quark emerge. Here, I would emphasize that these diver-genes remain only beause the �nal state is not inlusive enough: If it wasnot for the fragmentation funtions | if we would not are what the quarkwill eventually beome of | the divergenes above would exatly anelagainst the loop diagrams. In the axial gauge, the dominant O(αs) loga-rithm originates from the quark-splitting diagram shown in Fig. 5.2, and
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Figure 5.2: Dominant gluon radiation graphs for deeply inelasti hadronprodution.the ontribution to the ross-setion an be expressed as
d2σ̂0

dxdQ2

∑

q

e2
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2π
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(
Q2

m2

)

Pqq

]

⊗ Dh
q +

αs

2π
log

(
Q2

m2

)

Pqg ⊗ Dh
g

}

,where ⊗ again denotes the onvolution integral and the splitting funtions
Pqq and Pgq are the same as earlier. These leading logarithmi terms anbe resummed essentially in the same way as was done in Chapter 2 forthe initial state radiation. Then, by absorbing these logarithms into thede�nition of sale-dependent fragmentation funtions Dh(z,Q2), they are68



seen to follow the same DGLAP equations
Q2 ∂Dh

qi
(x,Q2)

∂Q2
=

αs(Q
2)

2π

[

Pqiqj
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qj
(Q2) + Pqig ⊗ Dh

g (Q2)
] (5.3)

Q2 ∂Dh
g (x,Q2)

∂Q2
=

αs(Q
2)

2π

[

Pgg ⊗ Dh
g (Q2) + Pgqj

⊗ Dh
qj

(Q2)
]

,as the parton distribution funtions do. At the leading logarithmi ap-proximation, the splitting kernels are exatly the same as derived in theinitial state parton branhing, but at higher orders they beome di�erentbeing still related by a proper analyti ontinuation [35℄. As was arguedin Chapter 2, the ollinear divergenes between the inoming and outgoingpartons do not interfere. That is, they independently fatorize, and the �rstpQCD-improved version of Eq. (5.1) would be the one in whih the partondistributions and fragmentation funtions are sale-dependent,
d3σh

dxdzdQ2
=

d2σ̂0
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∑

q
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qfq(x,Q2)Dh

q (z,Q2). (5.4)For an exat NLO alulation, one should onsider the lepton-parton pro-esses
ℓ(k) + pi

1 → pj
2 + ℓ(k′) + X,and adopt the dimensional regularization methods to alulate the di�eren-tial ross-setions

d3σ̂
ℓ+pi

1
→pj

2
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dx̂dẑdQ2
, x̂ =

Q2

2pi
1 · q

, ẑ =
P · pj

2

P · q .The diagrams for suh alulation are the same as those displayed in Chapter3, but the phase-spae integrals should be onstrained by an additional deltafuntion δ(ẑ − (P · pj
2)/(P · q)). I will not get into details here [36℄, but atthe end, the partoni ross- setions will retain several 1/ǫ-poles from theollinear divergenes. Multiplying these expressions by the \bare" partondensities and fragmentation funtions one an onstrut the hadroni ross-setion
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0 (ξ2), (5.5)where pi
1 = ξ1P and pj

2 = P ′/ξ2. De�ning the sale-dependent fragmenta-tion funtions similarly to the parton distributions in Eq. (3.30), and writing69



the bare quantities fi0(x) and D0(x) in terms of the sale-dependent ones,one an take the ǫ → 0 limit
d3σh

dxdzdQ2
=

∑

i,j

∫ 1

x

dξ1

ξ1

∫ 1

z

dξ2

ξ2
fi(ξ1, Q

2
fac)

d3σ̂ℓ+pi
1
→pj

2
+ℓ+X

dx̂dẑdQ2
Dj→h(ξ2, Q

2
frag),where dσ̂ depends on Q2, Q2

frag, and Q2
fac. This is a ross-setion guaranteedto be free from ollinear divergenes.The fragmentation funtions an be determined by analyzing experimentaldata by a similar proedure whih is used to extrat the parton densities (tobe desribed later) [37, 38, 39, 40℄. The leanest enviroment to extrat thefragmentation funtions are the e+e−-indued proesses due to less rowded�nal state (ompared to the ollisions involving hadrons), and as they arenot ompliated by the parton distribution funtions. However, the e+e−-data alone annot onstrain all omponents of the fragmentation funtionswell, and therefore some latest analyses like [39℄ are omplemented by SIDISmeasurements just introdued, and also by data from hadron-hadron ol-lisions [38, 39, 40℄ to be desribed shortly. The resulting fragmentationfuntions obviously somewhat depend on the partiular set of parton den-sities used in the analysis, and the most omplete analysis would ombineboth to a single analysis.

5.2 Single-inclusive hadron production in hadronic

collisionsThe fragmentation funtion formalism an also be applied to inlusive pro-dution of large transverse momentum hadrons in hadron-hadron ollisions:
H1(K1) + H2(K2) → H3(K3) + X,where K1 and K2 denote the inoming hadron momenta, K3 is the momen-tum of the observed hadron, and X is, as usual, anything. The alulation ofthis ross-setion begins by omputing the invariant partoni ross-setions

p0
3

dσ̂ǫ(p
i
1 + pj

2 → pℓ
3 + X)

d3p3
. (5.6)At NLO [41℄, these onsist of three piees: purely tree-level 2 → 2 and 2 → 3diagrams, and 2 → 2 diagrams deorated with loops. As earlier, there willbe various divergenes: ollinear, infrared, and ultraviolet. The singularitiesappearing as 1/ǫ2-poles anel between the real and virtual ontributions,and when the ultraviolet divergenes from the loop integrals are subtrated70



aording to the adopted renormalization presription, only the ollinear
1/ǫ-poles remain. Multiplying these quantities by the (bare) parton densitiesand fragmentation funtions and integrating over the available phase-spae,the invariant hadroni ross-setion beomes

E3
dσ(H1 + H2 → H3 + X)

d3K3
= (5.7)

∑

ijl

∫

dx1

∫

dx2

∫
dx3

x2
3

fH1

i0 (x1)f
H2

j0 (x2)D
l→H3

0 (x3)

p0
3

dσ̂ǫ(p
i
1 + pj

2 → pl
3, µ

2
ren)

d3p3 p1 = x1K1

p2 = x2K2

p3 = K3/x3

,where the additional fator 1/x2
3 originates from d3K3/E3 = x2

3d
3p3/p3.Writing the bare quantities fi0(x) and D0(x) in terms of the sale-dependentones, the remaining ollinear divergenes again anel and a �nite result isobtained in the ǫ → 0 limit,

E3
dσ(H1 + H2 → H3 + X)

d3K3
= (5.8)

∑

ijl

∫ 1

xmin
1

dx1

∫ 1

xmin
2

dx2

∫ 1

xmin
3

dx3

x2
3

fH1

i (x1, µ
2
fact)f

H2

j (x2, µ
2
fact)

Dl→H3
(x3, µ

2
frag) p0

3

dσ̂(pi
1 + pj

2 → pl
3, µ

2
ren)

d3p3 p1 = x1K1

p2 = x2K2

p3 = K3/x3

.The ross-setions are often reported speifying the enter-of-mass energy√
s of the hadron-hadron ollision, the transverse momentum pT , and therapidity yR of the observed hadron. In terms of these variables, the integra-tion limits in the expression above are
xmin

1 =
pT eyR

√
s − pT e−yR

, xmin
2 =

x1pT e−yR

x1
√

s − pT eyR
, xmin

3 =
2pT cosh yR√

x1x2s
.Similarly to the Drell-Yan dilepton prodution, the leading-order approxi-mation to the inlusive hadron prodution turns out to undershoot the ex-perimental data [42℄ by a typial fator of ∼ 2, depending on the kinematialvariables and sale hoies. The larger ross-setions at NLO improve suhsituation niely [43℄, although at low √

s . 60GeV the theory still seemsto undershoot the data. For more reent work disussing RHIC data foronstraining the fragmentation funtions, see e.g. [38, 39℄.71
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Chapter 6

Solving the DGLAP

equationsGlobal QCD-analyses, to be desribed later in Chapter 7, require an eÆientway of solving the DGLAP evolution equations. Being integro-di�erentialequations, there is not muh that an be done purely analytially but nu-merial methods are to be used. Several methods to aomplish this hasbeen developed | for an elementary aount for ouple of treatments atleading order, see [44℄. At leading order, the DGLAP equations are stillfairly easy to solve but the tehnial diÆulties signi�antly inrease whengoing to higher orders (NLO & NNLO). The method I desribe in this se-tion is based on [45℄ and it has been employed in the publiations [III, IV℄of this thesis. For desription of further methods and available odes seee.g. [46, 47℄.
6.1 Decomposition of the DGLAP equationsThe full set of evolution equations to be solved an be written as

Q2 ∂qi

∂Q2
=

αs

2π

[
∑

k

Pqiqk
⊗ qk +

∑

k

Pqiqk
⊗ qk + Pqg ⊗ g

]

Q2 ∂qi

∂Q2
=

αs

2π

[
∑

k

Pqiqk
⊗ qk +

∑

k

Pqiqk
⊗ qk + Pqg ⊗ g

] (6.1)
Q2 ∂g

∂Q2
=

αs

2π

[
∑

k

Pgqk
⊗ qk +

∑

k

Pgqk
⊗ qk + Pgg ⊗ g

]

,where the arguments of parton densities and the strong oupling are notdisplayed. A useful deomposition [19, 48℄ of the splitting funtions Pqq73



and Pqq is to separate the avor-preserving \valene" and possibly-avor-hanging \sea" parts as
Pqiqk

= δikP
V
qq + PS

qq (6.2)
Pqiqk

= δikP
V
qq + PS

qq.At leading order only P V
qq in (6.2) is non-zero, but at NLO they all arenon-trivial, but respet the following relations:

P V
qq = P V

qq , P V
qq = P V

qq , PS
qq = PS

qq = PS
qq = PS

qq

Pqig = Pqig ≡ Pqg, Pgqi
= Pgqi

≡ Pgq, (6.3)whih are reetions from the harge-onjugation invariane and the SU(3)avor symmetry, but an also be easily understood on the basis of the Feyn-man diagrams1. By de�ning
P± ≡ P V

qq ± P V
qq

PFF ≡ P+ + 2nfPS
qq (6.4)

PFG ≡ 2nfPqg

PGF ≡ Pgq,where nf is the number of ative avors, and
q±i ≡ qi ± qi, q± ≡

nf∑

i

q±i , (6.5)the set of equations (6.1) an written as
d

d log Q2

(
q+

g

)

=
αs

2π

(
PFF PFG

PGF PGG

)(
q+

g

) (6.6)
dq−i

d log Q2
=

αs

2π
P− ⊗ q−i (6.7)

d

d log Q2

[

q+
i − 1

nf
q+

]

=
αs

2π
P+ ⊗

[

q+
i − 1

nf
q+

]

. (6.8)The densities q−i and q+
i − (1/nf )q+ evolve independently, whereas q+ and

g are oupled. The strategy to solve the evolution of individual avors qi,is to substitute q+ derived from (6.6) to result of (6.8) and use (6.5). Agood referene ontaining the expressions for all splitting funtions neededto solve (6.6)-(6.8) is [49℄.1At NNLO, however, P S
qq 6= P S

qq 74



6.2 The Taylor expansionTo keep the subsequent disussion as transparent as possible, let us on-sider the simplest evolution equation, namely that for the valene quarks
qv(x,Q2) ≡ q−(x,Q2) (with P = P−),

Q2 ∂

∂Q2
qv(x,Q2) =

αs(Q
2)

2π

∫ 1

x

dξ

ξ
P (

x

ξ
)qv(ξ,Q

2) (6.9)
=

αs(Q
2)

2π
P ⊗ qv,with a given initial ondition qv(x,Q2

0). To make the Q2-evolution appearas linear as possible, it is useful to de�ne a new evolution variable
t ≡ 2

β0
log

αs(Q
2
0)

αs(Q2)
, (6.10)where β0 = 11

3 CG − 4
3TRnf appears in the QCD renormalization groupequation

Q2 dαs(Q
2)

dQ2
= −αs(Q

2)

[

β0
αs(Q

2)

4π
+ β1

(
αs(Q

2)

4π

)2

+ . . .

]

. (6.11)Trading the Q2-derivative with t-derivative, we have
Q2 d

dQ2
=

αs(Q
2)

2π

[

1 +
β1

2β0

αs(Q
2)

2π

]
d

dt
+ O(α3

s). (6.12)With this hange of evolution variable, the Eq. (6.9) reads
[

1 +
β1

2β0

αs(Q
2)

2π

]
d

dt
qv(x, t) = P ⊗ qv(t). (6.13)To the NLO auray, the splitting funtion P is of the form

P (z) = P (0)(z) +
αs

2π
P (1)(z), (6.14)and we may write Eq. (6.13) as

∂

∂t
qv(x, t) = Ω ⊗ qv(t), (6.15)where

Ω ≡ P (0) +
αs(Q

2)

2π

(

P (1) − β1

2β0
P (0)

)

. (6.16)75



The very rux of the matter here is to expand qv(t) as a Taylor series aroundthe initial sale t0 = t(Q2
0) = 0

qv(x, t) =
∞∑

k=0

tk

k!

∂kqv(x, t = 0)

∂tk
, (6.17)where ∂kqv(x, 0)/∂tk are multiple derivatives

∂0qv(t)

∂t0
= qv(t)

∂qv(t)

∂t
= Ω ⊗ qv(t)

∂2qv(t)

∂t2
=

∂Ω

∂t
⊗ qv(t) + Ω ⊗ ∂qv(t)

∂t
∂3qv(t)

∂t3
=

∂2Ω

∂t2
⊗ qv(t) + 2

∂Ω

∂t
⊗ ∂qv(t)

∂t
+ Ω ⊗ ∂2qv(t)

∂t2

∂4qv(t)

∂t4
=

∂3Ω

∂t3
⊗ qv(t) + 3

∂2Ω

∂t2
⊗ ∂qv(t)

∂t
+ 3

∂Ω

∂t
⊗ ∂2qv(t)

∂t2
+ Ω ⊗ ∂3qv(t)

∂t3...By using the lower-order derivatives in the expression for the higher deriva-tives, the nth one we an be written as
∂nqv(t)

∂tn
= M (n) ⊗ qv(t), (6.18)where eah M (k) an be iteratively omputed from previous ones

M (0) = 1

M (1) = Ω(0)

M (2) = Ω(1) + Ω(0) ⊗ M (1)

M (3) = Ω(2) + 2Ω(1) ⊗ M (1) + Ω(0) ⊗ M (2)

M (4) = Ω(3) + 3Ω(2) ⊗ M (1) + 3Ω(1) ⊗ M (2) + Ω(0) ⊗ M (3)...where Ω(0) ≡ Ω, and Ω(k) ≡ dkΩ(t = 0)/dtk for k ≥ 1. In general,
M (k) =

k−1∑

n=0

(
k − 1

n

)

Ω(n) ⊗ M (k−1−n) (6.19)
Ω(0) = P (0) +

αs(Q
2
0)

2π

(

P (1) − β1

2β0
P (0)

) (6.20)
Ω(n) =

(

−β0

2

)n αs(Q
2
0)

2π

(

P (1) − β1

2β0
P (0)

) (6.21)76



where (ab) = a!
b!(a−b)! is the usual binomial oeÆient. Thus, the Taylor series(6.17) beomes

qv(x, t) =

[
∞∑

k=0

tk

k!
M (k)

]

⊗ qv(x, 0). (6.22)The ruial feature to be notied is that the for eah x, the evolution fun-tions M (k) are independent of the parton density qv. Also, the magnitudeof t in the physially oneivable domain is ∼ 0.1, and one an expet theseries to onverge with a reasonable number of terms in the expansion.Sine the parton densities tend to generally diverge as x−δ, (δ > 0) towards
x → 0, it is numerially more stable to damp suh bad behaviour by writ-ing the evolution not for the absolute parton density q(x,Q2) itself, butrather for the momentum distribution q̂(x,Q2) ≡ xq(x,Q2). Multiplyingthe expansion (6.22) by x,

q̂v(x, t) =

[
∞∑

k=0

tk

k!
M (k)

]

⊗̂ q̂v(x, 0), (6.23)where the \hatted" onvolution ⊗̂ should be understood as
f1 ⊗̂ f2 ⊗̂ . . . ⊗̂ q̂ =

∫ 1

x
dξ1f1(ξ1)

∫ 1

x
ξ1

f2(ξ2) . . .

∫ 1

x
ξ1ξ2···ξN−1

fN (ξN )q̂(
x

ξ1ξ2 · · · ξN
).

6.3 IntegrationIn order to atually alulate the very formal Taylor expansion written downin the above setion, one needs to evaluate a series of \nested" integrals, eahone of the general form
I ≡

∫ 1

x
dξP (ξ)F (

x

ξ
), (6.24)where F is a result from a similar integral. To aomplish this task it isuseful to break the x-interval [x, 1] into N smaller sub-intervals by a dis-rete grid (x0 = x, x1, x2, . . . , xN−1, xN = 1), and approximate the funtion

F (x) in eah interval by a simpler one, like a polynomial, for whih theintegrals against the splitting funtions an be analytially evaluated. Inother words, we write
F (x) ≈

m∑

ℓ=1

a
(k)
ℓ gℓ(x), ∀x ∈ [xk, xk+1], (6.25)77



where a
(k)
ℓ are oeÆients whih naturally depend on F (x). For example,if we employ a 3rd order polynomial, gℓ(x) = xℓ−1, m = 4, the oeÆients

a
(k)
ℓ an be taken to satisfy
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, (6.26)that is, the oeÆients of the polynomial are hosen to math the F (x) atfour points around xk as illustrated in Fig. (6.1). By inverting (6.26),

xk+3xk+2xk+1xkxk−1

F (x)

g(k)

Figure 6.1: Illustration of a polynomial �t to the funtion F (x) used in theinterval x ∈ [xk, xk+1]. The blak dots denote the mathing points.
a

(k)
ℓ =

4∑

r=1

G
(k)
ℓr F (xk+r−2), (6.27)where

G
(k)
ℓr =








1 xk−1 x2
k−1 x3

k−1

1 xk x2
k x3

k

1 xk+1 x2
k+1 x3

k+1

1 xk+2 x2
k+2 x3
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−1

ℓr

.The various terms in the splitting funtions P an be grouped to the fol-lowing ategories
P (z) =

A(z)

(1 − z)+
+ B(z) + Cδ(1 − z), (6.28)78



and inserting suh expression to (6.24), we �nd
I∣∣x=xi

= xi

∫ 1

xi

dz

z

[
A(xi/z)F (z) − A(1)F (xi)

z − xi
+

1

z2
B(xi/z)F (z)

]

+
[

C + A(1) log(1 − xi)
]

F (xi).Deomposing the integrals above as ∫ 1
xi

=
∑N−1

k=i

∫ xk+1

xk
, and using the ap-proximation (6.25), we �nd

I∣∣x=xi
≈

m∑

ℓ=1

a
(i)
ℓ

(

β
(i)
ℓ + ρ

(i)
iℓ

)

+
N−1∑

k=i+1

m∑

ℓ=1

a
(k)
ℓ

(

γ
(i)
kℓ + ρ

(i)
kℓ

) (6.29)
+

[

C + A(1) log(1 − xi) − A(1)σi
]

F (xi),where
β

(i)
ℓ ≡ xi

∫ xi+1

xi

dz

z

A(xi/z)gℓ(z) − A(1)gℓ(xi)

z − xi
(6.30)

ρ
(i)
kℓ ≡ xi

∫ xk+1

xk

dz

z2
B
(xi

z

)

gℓ(z)

γ
(i)
kℓ ≡ xi

∫ xk+1

xk

dz

z

A(xi/z)gℓ(z)

z − xi

σ(i) ≡ xi

∫ 1

xi+1

dz

z

1

z − xi
.Substituting here the oeÆients a

(k)
ℓ from Eq. (6.27), the integral I∣∣x=xian be written as

I∣∣x=xi
=

∫ 1

xi

dξP (ξ)F (
xi

ξ
) =

N∑

k=0

PikF (xk), (6.31)where the entries of the matrix Pik an be omputed from
Pik ≡

4∑

r=1

4∑

ℓ=1

[

G
(i)
ℓr

(

β
(i)
ℓ + ρ

(i)
iℓ

)]
∣
∣
∣k=i+r−2

(6.32)
+

4∑

r=1

4∑

ℓ=1

N−1∑

n=i+1

[

G
(n)
ℓr

(

γ
(i)
nℓ + ρ

(i)
nℓ

)]
∣
∣
∣k=n+r−2

+
[

C + A(1) log(1 − xi) − A(1)σi
]
∣
∣
∣k=i

.In this way, the splitting funtions P and onsequently also the funtions
Ω(n) and M (n) derived from those, beome matries and the multi-dimensional79



integrals redues to mundane matrix multipliation
q̂v(xi, t) =

[
∞∑

k=0

N∑

n=0

tk

k!
M

(k)
in

]

⊗̂ q̂v(xn, 0), (6.33)where the matries M do not depend on the form of the parton density, butonly on the x-grid, and the initial sale Q2
0. That is, they an be omputedone and for all. The hard manual work is to analytially evaluate the inte-grals in Eq. (6.30) for all splitting funtions. At leading order the expressionsare still reasonable to ompute even by hand, but already at NLO-level theexpressions beome long | involving speial funtions like polylogarithmsand Riemann zeta funtions | and use of a symboli omputer programlike Mathematica is, in pratie, mandatory.

6.4 Numerical test of the methodUsing the NLO splitting funtions given in [49℄ (and also the leading-orderones disussed in Chapter 2), I have onstruted a Fortran ode for alu-lating the evolution with the method desribed above. In order to verifythe auray of the method, I have tested it against the benhmark valuesof parton distribution funtions given in Ref. [50℄. This referene ontainsarefully ross-heked results for evolution of a given initial parametrizationof partons from 2GeV2 up to 10000GeV2 with an unambiguously de�ned
αs. For doing the omparison, I have onstruted an x-grid from x = 10−4to x = 1 with 100 logarithmi intervals in a range 10−4 . . . 10−1 and 100linear intervals in a range 10−1 . . . 1. I have trunated the Taylor expansionto inlude the �rst 9 terms. The results for spei� ombinations of partonsare displayed in Fig. 6.2 as a relative di�erene to the benhmark partonsin perents. The evidently exellent agreement with the benhmark partonsproves the applied integration method aurate as well as that already the9th order Taylor expansion seems to onvergene niely. Only at very large
x, where the parton densities are numerially very small | typially fallingo� like (1−x)α, α & 3 | a third-order polynomial does not optimally �t theinput densities and a higher order expansion would be needed. However, forthe purposes of our global PDF analyses the very large-x region is ratherirrelevant for all other parton types exept maybe the valene quarks whihare numerially larger.

80



-8

-6

-4

-2

0

2

4

6

8

-8

-6

-4

-2

0

2

4

6

8

uv dv

-8

-6

-4

-2

0

2

4

6

10-4 10-3 10-2 10-1 1

d - u

10-4 10-3 10-2 10-1 1

u + d

s

-8

-6

-4

-2

0

2

4

6

8

c

10-4 10-3 10-2 10-1 1

b

-8

-6

-4

-2

0

2

4

6

10-4 10-3 10-2 10-1 1

g

xx x x

10
0

q
-

q
R

ef

q
R

ef

Figure 6.2: Comparison to the benhmark NLO partons [50℄ for valenequarks, sea quarks, and gluons.
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Chapter 7

About global QCD analysesWithin the pQCD-improved parton model, the hadroni ross-setions forhard sattering proesses an be alulated through the fatorization theo-rem folding the universal, sale-dependent PDFs fi(x,Q2
f ) with the pertur-batively alulable piees dσ̂, formally

dσA+B→c+X =
∑

i,j=q,q,g

fA
i (Q2

f ) ⊗ fB
j (Q2

f ) ⊗ dσ̂ij→c+X(µ2, Q2
f ). (7.1)The physial ontent of this expression has been disussed in the preedinghapters. Thus, experimental measurements provide information about thePDFs fi(Q

2
f ) as well as about the underlying parton dynamis dσ̂. This is,in short, the entral idea behind the global QCD-analyses of PDFs. Herethe word \global" is related to the universality-hypothesis of the PDFs i.e.their proess-independene: As muh experimental data as possible shouldbe onsidered simultaneously to �nd whether this is really true | an theyall be desribed by same set of PDFs. If not, it may be a sign of fatorizationbreakdown or perhaps disovering new physis beyond the Standard Model.However, due to the enormous omplexity of the present-day aelerator-based experiments, one should also be autious of not being misled by e.g.utuations in the data that might not respet any textbook statistis. Itshould be emphasized that the global analyses do not only onstrain thePDFs, but also various fundamental parameters like the strong oupling αs,the heavy quark masses, and even the elements of the CKM-matrix.The modern global analyses employing data from several free proton ex-periments was ushered in by works of Mor�n and Tung [51℄1, triggeringan enormous e�ort whih today demonstrate a huge suess with ontinu-ously inreasing amount of data aommodated in the analysis. The leading1Sadly, Wu-Ki Tung passed away during the writing of this thesis in Marh 2009.83



groups in this domain are nowadays the CTEQ [52℄, the MSTW [53℄, andthe NNPDF [54℄ ollaborations, but various other parties like the HERA-PDF onsortium (see e.g. [55℄) whih often fous only on a more restriteddata input, exist.It is well known that when the ross-setions measured with nulear targetsare ompared to the free proton results, the two are not idential, but variousnulear e�ets are observed [56, 57, 58℄. Although, the QCD fatorizationis not as well-grounded theorem in the ase of bound nuleons (see e.g. Ref.[59℄), the pioneering work [60, 61℄ and subsequent analyses like [62, 63℄, andespeially the artile [IV℄ of this thesis, have nevertheless revealed that suhonjeture holds to a very good preision in desribing the world data fromdeep inelasti sattering and Drell-Yan dilepton measurements. In e�et,only the shapes of the PDFs are modi�ed by the presene of the nulearenvironment. In other words, although the strong, non-perturbative nulearbinding has an e�et on the quark-gluon struture of bound nuleons, thepartons at high Q2 appear to largely obey the same QCD dynamis as dotheir free ounterparts.In what follows, I will desribe some general features of global QCD-analysespaying speial attention to the nulear PDFs in the light of the publiationsof this thesis. I will keep the disussion here quite ondensed, yet logial.For muh more pedanti desription about the free proton global �ts withomprehensive referene list, onsult e.g. the very profound MSTW paper[53℄. Also, the leture notes from the series of Summer Shools ran bythe CTEQ ollaboration are an inexhaustible soure of pedagogi up-to-date material. Muh more tehnialities about the nulear PDF �ts an befound in the publiations of this thesis [II, III, IV℄.
7.1 Choice of experimental dataAs mentioned above, the guideline in a global QCD-analysis is to keep itreally global, i.e. inlude as many di�erent types of data as possible |ideally all. In pratie, however, it is neessary to somewhat restrit whatdata is aepted and what is not.One obvious restrition is that the fatorization framework is only appliablewhen the proess is \hard" i.e. the invariant sale Q2 inherent for thewhatever proess is large Q2 ≫ Λ2

QCD. For example, in deeply inelasti84



sattering typial kinematial uts are
Q2 ≥ 4GeV2, M2

X = (P + q)2 = M2 + Q2 1 − x

x
≥ 12GeV2,where the latter ondition is to keep away from the resonanes. Beyond suhlimits it may be neessary to aount also for the higher-twist Q−2n ontri-butions (e.g. by parametrizing them as they are usually poorly known), aswell as target-mass orretions [64, 65℄.It sometimes happens that independent data sets are not ompatible witheah other. In a ase where there are several measurements for the sameobservable and only one data set disagrees with the rest, it may be possibleto rule out the one measurement as being \wrong" or \not fully understood",and onentrate solely on the others. However, when there are not too manyindependent measurements, it may be neessary to ompletely abandon thattype of data for safety i.e. for not being too biased by subjetive hoies.An example of this kind of issue has been the diret photon prodution[66, 67, 68℄ whih is nowadays not inluded in the latest free-proton PDFanalyses despite its potential ability to onstrain gluons. However, due toomplexity of the modern ollider experiments, small mutual inonsisteniesbetween independent data sets are more a rule than an exeption. This iseventually reeted in the PDF unertainty analysis, neessitating variousextensions to the strit rules of ideal statistis.Typial proesses employed in the free-proton PDF analyses inlude� Deeply inelasti sattering related measurements� Drell-Yan dilepton prodution� Rapidity distributions in heavy boson (W± and Z) prodution� Jet measurementsThe sensitivity of these data types for di�erent PDF-omponents is exten-sively doumented e.g. in [53℄, and I will not go to details here.

Bound protonsIn the ase of the nulear PDF studies the variety, amount and kinematialreah of the available data is muh smaller, see Fig. 7.1. For this reason,typial nulear PDF studies have so far adopted the standpoint that the free-proton PDFs are taken as �xed, fully known, and only the nulear modi�a-tions suggested by the data are inferred. The data onventionally utilized in85
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prodution, as shown by the dots in Fig. 7.1, but those data alone ouldnot onstrain the nulear gluon PDFs very onviningly. Indeed, the usualproedure has been to �x a large part of the nulear modi�ations for gluonsby hand invoking reasoning based on physial intuition. To relax the needfor suh assumptions, our latest global analysis in the nulear setor [IV℄inludes data from inlusive π0-prodution (the gray line in Fig. 7.1) mea-sured reently at BNL-RHIC [70℄. These data are not yet very preise, butprovide a handle to some extent improve the determination of the nuleargluons.
7.2 The traditional approachThe onventional proedure of global analyses an be summarized as follows:
A.

The PDFs are first parametrized at a chosen initial scale Q2
0 im-

posing the sum rules. For absolute free-proton PDFs the funtional formof the parametrization is typially
fi(x,Q2

0) = x−α(1 − x)βF (x),where the funtion F (x) varies from one analysis to another. Ideally, thisfuntion should be as exible as possible, but too muh freedom may in-due unphysial, ompletely arti�ial features to the PDFs. At the end,how muh omplexity one should build in F (x), depends on the diversityand auray of the input data. In the nulear PDF analyses, usually thenulear modi�ation fators RA
i (x,Q2

0) enoding the relative di�erene tothe free proton PDFs are parametrized. A typial parametrization indiat-ing whih x-regions are meant by the ommonly used terms: shadowing,antishadowing, EMC-e�et, and Fermi-motion, is shown in Fig. 7.2. Forexample, in [II, III, IV℄ we de�ne the bound proton PDFs by
fA

i (x,Q2) ≡ RA
i (x,Q2)fp

i (x,Q2), (7.2)for eah parton avor i. Above fp
i (x,Q2) refers to a �xed set of the free-proton PDFs, and we onsider three di�erent modi�ation fators: RA

V (x,Q2
0)for both u and d valene quarks, RA

S (x,Q2
0) for all sea quarks, and RA

G(x,Q2
0)for gluons. Also their A-dependene is parametrized but the nulear or-retions for the Deuteron (A = 2) whih are expeted to be of order 1..2%[62, 71℄, are negleted. 87



0.2

0.6

1.0

1.5

10
-3

10
-2

10
-1

1

ya

ye

xa xe

y0 shadowing

antishadowing

EMC-
effect

Fermi-
motion

Figure 7.2: Shemati piture of the nulear modi�ations to PDFs.In priniple there is no real physis reason for assuming avor-independentnulear modi�ation fators for valene and sea quarks at Q2
0. Unfortu-nately, the presently available experimental data does not allow to deter-mine suh avor dependene. However, as was shown in [I℄, a di�erenebetween RA

dV
(x,Q2

0) and RA
uV

(x,Q2
0) would a�et the extration of the Wein-berg weak-mixing angle sin2 θW from neutrino sattering o� an Iron target.Conretely, suh undertaking was done by the Fermilab NuTeV ollabora-tion whih measured the Pashos-Wolfenstein ratio [72℄

R−
Fe(x,Q2) ≡ dσν,NC

Fe /dxdQ2 − dσν,NC
Fe /dxdQ2

dσν,CC
Fe /dxdQ2 − dσν,CC

Fe /dxdQ2
≈ 1

2
− sin2 θW, (7.3)where NC and CC refer to the harged (W± mediated) and neutral (Zmediated) urrent proesses. Surprisingly, the sin2 θW found, lied threestandard deviations away from the world average | an observation knownas the NuTeV anomaly [73℄. Among others soures possible, the simplerelation above reeives a orretion from non-isosalarity of Iron whih is ofthe form

R−
Fe(x,Q2) ≈

(
1

2
− sin2 θW

)[

1 + f

(
A − 2Z

A

uA
V − dA

V

uA
V + dA

V

)]

, (7.4)where f is a ertain funtion, and uA
V , dA

V are the average up and downvalene-quark distributions in a bound nuleon. Thus, a di�erene between
RFe

dV
and RFe

uV
would a�et the NuTeV analysis. As found in [I℄, suh di�er-ene an be quite large without really showing up in the global analyses and88



ould very naturally redue the anomaly by one standard deviation or so.There is, however, also orretion originating from an asymmetri strangesea, ∫ dxx[s(x) − s(x)] 6= 0, whih is not very well onstrained either andwhih ould explain even the whole NuTeV anomaly alone [74℄.
B.

The absolute PDFs are evolved from the parametrization scale Q2
0

to other perturbative scales Q2 > Q2
0 by the DGLAP equations.On the pratial level, an eÆient numerial solver for the parton evolutionis ritial for a suessful global analysis with a reasonable omputing time.One, working, solution was disussed in Chapter 4. Another solution wouldbe to make a shortut and use ready-made pakage like QCDNUM [75℄.Under the evolution, also the nulear modi�ation fators RA

i (x,Q2) beomesale-dependent, and the initial avour-independene, if it was assumed,usually disappears. Signi�ant di�erenes between e.g. RA
dV

and RA
uV

donot, however, seem to build up if they start from the same initial ondition.
C.

The cross-sections are computed using the factorization theorem.As beame expliitly demonstrated for deeply inelasti sattering (Chapter3) and Drell-Yan dilepton prodution (Chapter 4), the numerial evaluationof the NLO ross-setions is sometimes quite demanding, involving mul-tiple integrations. Consequently inreased omputing time is a potential\killer" for a global analysis beyond leading order. For example, Monte-Carlo integrations for inlusive jet prodution NLO ross-setions, with var-ious experimental uts implemented, would simply be too slow to be alwaysrealulated at every round of parameter iteration. The simplest solutionis to alulate so-alled \K-fators", σNLO/σLO, for all data points with aneduated guess for the NLO PDFs. Then, one an resort to omputing onlyleading order ross-setion, whih, when multiplied by suh pre-omputedfator, serves as an approximation to the NLO one. However, triks similaras used in Chapter 6 to redue an integration to a matrix multipliation,are also viable [76, 77℄. A speial feature of the nulear PDF studies whihtake the free-proton PDFs �xed, is that sometimes it is possible to performsome integrals also beforehand, see Appendix of Ref. [IV℄.
D.

The computed cross-sections are compared to the experimental

ones, and the parametrization is varied until the best agreement89



with the data is reached. What is meant by \best agreement" is, tosome extent, a matter of onvention. An elementary solution is to tune theparameters by trial and error to establish a parametrization that simply\looks good" [60℄ when ontrasted with the data. However, nowadays suhproedure is replaed by more algorithmi methods based on minimizationof a χ2-funtion, de�ned e.g. as in [III, IV℄
χ2({a}) ≡

∑

N

wN χ2
N ({a}) (7.5)

χ2
N ({a}) ≡

(
1 − fN

δnorm
N

)2

+
∑

i∈N

[
fNDi − Ti({a})

δi

]2

. (7.6)Within eah data set labeled by N , Di denotes the experimental data valuewith δi point-to-point unertainty, and Ti is the theory predition orre-sponding to a parameter set {a}. The weight fators wN are used to am-plify the importane of those data sets whose ontent is physially relevant,but ontribution to χ2 would otherwize be too small to be notied by anautomated minimization.In ertain ases, an overall relative normalization unertainty δnorm
N is spei-�ed by the experiment. The normalization fator fN ∈ [1− δnorm

N , 1+ δnorm
N ]is introdued to aount for suh ases. For eah set of �t parameters {a},its value is solved by minimizing χ2

N making thus the �nal fN not somethingthat is put in by hand, but really an output of the analysis. This proeduregives a possibility to reprodue the shape (relative magnitude) of the datathus apturing the relevant PDF-physis, and not be mislead by problemswith, sometimes model-dependent, normalization. Apart from the experi-mental normalization unertainty, there may also be unknown ontributions| like eletroweak orretions | to the absolute omputed ross-setionshaving nothing to do with the PDFs. Thus, there is also a theoretial allfor suh tunable normalization fator.Although it may sound straightforward, �nding the minimum χ2 in pra-tie is a non-trivial task as the χ2 is a highly non-linear funtional of the�t parameters. An eÆient onvergene of a minimization algorithm of-ten relies on the knowledge of the gradient terms and the seond-derivativematrix at the given loation in the spae of �t parameters. Due to the�nite auray of the DGLAP-solver and numerial multi-dimensional in-tegrations, the χ2 beomes atually non-ontinuous at very small parame-ter intervals, whih makes the reliable derivative alulations ompliated.Consequently, general-purpose pakages like MINUIT [78℄ beome easily in-suÆient for harsh requirements of global analyses and tailor-made add-onsor independent minimizing routines are often needed.90



7.3 Treatment of heavy flavorsThe alulations of the partoni ross-setions σ̂ are enormously simpli�edby treating all quarks as massless partiles. This is perfetly �ne if theinvariant sales in the ross-setions are muh larger than the heavy quarkmasses (only harm and bottom are relevant to present global analyses).However, rather than ompletely forgetting the heavy avor masses a fol-lowing presription to feed them in is often adopted:� The parton distribution for the heavy quark qH(x,Q2) remains zeroif Q2 ≤ m2
H , but follows the DGLAP evolution when Q2 > m2

H . Inother words, the number of avors (nf ) is inremented by one everytime a heavy-quark mass-threshold is rossed.� When the fatorization sale Q2
f in a ross-setion is below the heavy-quark mass-threshold, the alulation is performed as this quark avordid not exist | even if there is enough enter-of-mass energy to phys-ially produe it.This treatment of heavy avors is known as Zero-mass variable avornumber sheme (ZM-VFNS). It is extremely simple but its shortomingsare also rather obvious. In any ase, it has been the standard hoie in theglobal analyses until only very reently, and it is also the one used in thepubliations of this thesis.Another extreme is to work harder with the partoni ross-setions retain-ing the full heavy quark mass-dependene and never onsider the heavyquarks as partons i.e. keep the number of ative avors �xed in the DGLAPequations. Suh sheme is known as Fixed avor number sheme (FFNS).The problem in this sheme is its limited domain of appliability: the par-toni ross-setion ontain terms ∼ log(Q2/m2

H) whih beome unstable atlarge Q2, where only resummation of the large logarithms would bring theperturbative expansion under ontrol.The lass of shemes that ombine the advantages and avoid the short-omings of both ZM-VFNS and FFNS shemes are alled General-massvariable avor number shemes (GM-VFNS). In short, these are hains ofFFNS-type of shemes with spei� mathing onditions. For a pedagogialreview, see [79℄. These have now beome the standard in the most ompre-hensive QCD analyses and providing a learly improved �t to the data [80℄.It is also possible to onstrut something alled Intermediate-mass vari-able avor number shemes [80℄, whih preserve the simpliity of the ZM91



sheme, but mimi the full GM sheme by implementing its most relevantkinematial e�ets.
7.4 Uncertainty analysisFinding only the single set of parameters {a0} that optimally �ts the ex-perimental data in the sense of giving the minimum χ2, does not, however,alone represent everything that an be learned about the PDFs. Due tothe experimental unertainties and utuations in the data, the partonsobtained by steering the �t parameters slightly o� from the χ2-minimum,annot be right away ruled out as being \ompletely wrong". Quantifyingthe unertainties of suh origin has beome an inreasingly important topiin the global PDF analyses. For example, the e�ets of suh unertaintiesin the preditions for the LHC \standard andles", W± and Z produtionin pp-ollisions, are of the order of few perents [52, 53℄. Thus, measuringeventually something whih is like 10% apart from these preditions wouldbe very interesting as suh large disrepany would be diÆult to �x bysimply re-�tting the PDFs. Several methods for performing the PDF un-ertainty analysis exist. Some ommon ones and the ideas behind themare:
Lagrange multiplier method [81]De�ning

Ψ(λ, {a}) ≡ χ2({a}) + λX({a}),and minimizing Ψ(λ, {a}) for several �xed values of λ, gives a sequene of
(χ2

λ,Xλ)-pairs, orresponding to a best χ2 that an be ahieved with Xtaking a spei� value Xλ. These pairs omprise a χ2-pro�le as a funtionof X with minimum at X = X0 = X({a0}). By restriting the allowedgrowth of χ2 above the minimum χ2
0, the ahievable range for X beomesmapped out. This is a robust proedure, but has a limited appliability as�nding the unertainty for one single PDF-related quantity X requires anability to perform several global �ts.

Monte Carlo technique [55]The priniple is to prepare multitude replia of the original ross-setions
σi by transformation

σi → σi (1 + δi Ri) ,where δi denotes the experimental unertainty and Ri is a random numberdrawn from a Gaussian distribution entered at 0. Performing a �t to eah92



of the prepared replia gives a orresponding set of PDFs. The unertaintyin any quantity X is then estimated from the spread of the individual pre-ditions omputed by these sets. Although simple and easy to implement,the problem is that in order to get enough statistis, hundreds of separatePDF �ts are required, but still nothing guarantees that the all relevantpossibilities are overed [82℄.
The Hessian method [83]This method is superior in its usefulness in various appliations. As ex-plained in detail in [IV℄, it rests on expanding the χ2 around its minimum
χ2

0 as
χ2 ≈ χ2

0 +
∑

ij

1

2

∂2χ2

∂ai∂aj
(ai − a0

i )(aj − a0
j ) ≡ χ2

0 +
∑

ij

Hij(ai − a0
i )(aj − a0

j),(7.7)whih de�nes the Hessian matrix H. The non-zero o�-diagonal elementsin the Hessian matrix are a sign of orrelations between the original �tparameters, invalidating the usual error propagation
(∆X)2 =

(
∂X

∂a1
· δa1

)2

+

(
∂X

∂a2
· δa2

)2

+ · · · (7.8)for a PDF-dependent quantity X. Therefore, it is useful to diagonalize theHessian matrix, suh that
χ2 ≈ χ2

0 +
∑

i

z2
i , (7.9)where eah zi is a ertain linear ombination of the original parametersaround {a0}. In these variables, the usual form of the error propagation

(∆X)2 =

(
∂X

∂z1
· δz1

)2

+

(
∂X

∂z2
· δz2

)2

+ · · · (7.10)is justi�ed. The pratiality of the Hessian method resides in onstrutingso-alled PDF error sets S±
k whih are obtained by displaing the �t pa-rameters to the negative/positive diretion along eah zk separately suhthat χ2 grows by a ertain amount ∆χ2. Approximating the derivatives inEq. (7.10) by �nite di�erenes, the error formula an be re-written e.g. as

(∆X)2 =
1

4

∑

k

[
X(S+

k ) − X(S−
k )
]2

, (7.11)where X(S±
k ) denotes the value of the quantity X omputed with the PDFerror set S±
k . 93



The methods above require to speify how muh the χ2 is allowed to grow2above its minimum value χ2
0, i.e. what is ∆χ2. To determine suh range is,however, far from being a straightforward exerise. On the ontrary, it is aproblemati and muh debated issue with no universally agreed proedure.As the spirit of the PDF unertainty analysis is not so muh to �nd statis-tially ideal answers, but more to map out the physially relevant rangefor the partons, hoosing the statistially ideal one-sigma 68% on�deneriterion ∆χ2 = 1 [84℄ would not make muh sense. The basi reason being,as mentioned earlier, that in a truly global analysis the data sets seldomlydemostrate a perfet mutual harmony, but small inonsistensies tend to ex-ist. From the pratial point of view, if the absolute minimum χ2 is ∼ 1000(as in the NLO analysis of this thesis [IV℄), it would be very naive to rule outpartons whih inrease χ2 by only one unit. Instead, adopting a presrip-tion that requires eah data set to remain roughly within its 90%-on�denerange [81, 83, IV℄, we �nd ∆χ2 = 50 muh better motivated.Apart from the experimental unertainties and their treatment desribedshortly above, there are also other soures of unertainties. One issue is theadopted form of the parametrization whih may introdue a bias and makethe unertainty bands too narrow in the region whih is not overed by thedata. Suh issue an be addressed in a neural network approah, whih triesto get rid of the �t-funtion bias [54℄. Although providing a very exible wayto parametrize the PDFs, it has been ritiized as being too exible: Thereare often physial reasons for piking a �t funtion of a partiular form, andtoo muh freedom may lead to unphysial behaviour of PDFs. This is anexample that falls to the ategory of \Theoretial unertainties" [85℄ amongother things like unknown higher-order pQCD orretions, resummationsnear the phase spae boundaries, higher-twist orretions, and absorptivee�ets in parton evolution. The size of suh unertainties is often impossibleto quantify in pratie.

2In the Monte Carlo proedure similar role is played by the width of the normaldistribution. 94



Chapter 8

Status of global nuclear PDF

analysesFinally, I review the main results from the nulear PDF analysis of thisthesis, EPS09 [IV℄, whih is an NLO suessor to the pioneering leading-order work EKS98 [60, 61℄, and artiles [II℄ and [III℄ of this thesis.
8.1 Nuclear modifications at LO and NLOAs mentioned, the goal of these studies is to test the QCD fatorizationand �nd the proess-independent nulear modi�ations to the free protonPDFs. The results from EPS09NLO are shown in Fig. 8.1 for Lead. Ihave plotted the obtained modi�ations at two sales, at Q2

0 = 1.69GeV2and at Q2 = 100GeV2, in order to emphasize their sale-dependene. Oneprominent feature that beomes learly onveyed by this �gure is that evenrather large unertainty band for the initial small-x gluon modi�ation RA
G,shrinks along the sale evolution quite a bit. This is a lear predition ofthe fatorization approah. The unertainty band for the valene quarksat large x beomes very small, only ∼ 2%, thanks to large amount of deepinelasti data. However, as the unertainty beomes so small, negleting thenulear e�ets in Deuteron might not be justi�ed if the PDFs are de�ned asin (7.2). This is an example of the experimental unertainties being smallenough that the theoretial unertainty may atually dominate.The large unertainty of the small-x gluons is not very surprising. It wasalso investigated in our preeding leading order analysis EPS08 [III℄, wherewe searhed for the strongest possible gluon shadowing whih was still inagreement with the DIS data, but only barely so. Satisfyingly, the resultfound in that analysis is very lose to the lower unertainty limit whih95
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Figure 8.1: The nulear modi�ations RV , RS , RG for Lead at an initialsale Q2
0 = 1.69GeV2 and at Q2 = 100GeV2. The thik blak lines indiatethe best-�t results, whereas the dotted green urves denote the individualerror sets. The shaded bands are the total unertainty, omputed aordingto equation lose to Eq. 7.11.we now �nd by the Hessian method in the leading-order version of EPS09[IV℄. This is demonstrated in Fig. 8.2 whih displays the low-Q2 nulearmodi�ations for Lead from several leading-order analyses.

8.2 Data vs. theory

8.2.1 Deeply inelastic scatteringThe DIS data are the \bread and butter" of all global PDF analyses. InFig. 8.3 I show a ompilation of measured nulear modi�ations for deepinelasti struture funtions with respet to Deuterium
RA

F2
(x,Q2) ≡ FA

2 (x,Q2)

F d
2 (x,Q2)

(8.1)for various nulei and ompare them with the EPS09NLO parametrization.The shaded bands denote the unertainty derived from the EPS09NLO and96
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8.2.2 Drell-Yan dilepton productionThe situation is rather similar with the nulear e�ets in the Drell-Yandilepton data
RA

DY(x1,2,M
2) ≡

1
AdσpA

DY/dM2dx1,2

1
2dσpd

DY/dM2dx1,2

, (8.2)where M2 is the invariant mass of the lepton pair and x1,2 ≡
√

M2/s e±yR .I display the omparison to the E772 and E866 data in Fig. 8.4.
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8.2.3 Inclusive hadron productionWhereas the free-proton PDF studies an exploit the inlusive jet produ-tion data from Fermilab experiments Z0 and CDF to aess the large-xgluons, there are not yet1 orresponding nulear data to use for this pur-pose. Consequently, the nulear modi�ations for the gluons have beenlargely unknown. To do better job in this respet, almost anything whihis sensitive to the gluons is welome if it redues the need for theoretialassumptions and �ts in with the other data. As we have learned [III, IV℄,1There is, however, hope that jet measurements performed in nulear ollisions atRHIC ould be exploited for the nPDF analyses.98
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Rπ

dAu ≡ 1

〈Ncoll〉
d2NdAu

π /dpT dy

d2Npp
π /dpT dy

min.bias
=

1
2Ad2σdAu

π /dpT dy

d2σpp
π /dpT dy

,where the pion transverse momentum is denoted by pT , rapidity by yR, andwhere 〈Ncoll〉 denotes the number of binary nuleon-nuleon ollisions. Inthe fatorization framework the ross-setions are omputed, shematially,by
σA+B→π+X =

∑

i,j,k=q,q,g

fA
i (µ2) ⊗ fB

j ⊗ σ̂ij→k+X ⊗ Dk→π,where the additional fator Dk→π is the fragmentation funtion for parton
i to make a pion. Due to the presene of this piee, pion data is not usedin the free-proton PDF �ts as there are unertainties in disentangling be-tween the PDF-originated e�ets and those inherent to the fragmentationfuntions. However, in the nulear ratio Rπ

dAu, many details of the frag-mentation funtions seem to anel: It is reassuring that the shape of Rπ
dAuis pratially independent of the partiular fragmentation funtions used inthe alulation | modern sets like [37, 39, 40℄ all give about equal results inthe required kinematial domain (yR = 0). Having made this observation,99



it should be quite safe to utilize this type of data in the nPDF analysis.The omparison with the PHENIX and STAR data is shown in Fig. 8.5. Inthe omputed blak urve the downward trend at the large-pT end is dueto the presene of an EMC-e�et in the large-x gluons, while the turnovertoward small pT originates from the gluon shadowing. No other e�ets areneeded to reprodue the observed spetra, and the �t does not seem to showa signi�ant tension between this and the other data.As already mentioned, in the EPS08-artile [III℄ we studied the hanes ofa very strong gluon shadowing. This study was inspired by the suppres-sion observed in the nulear modi�ation RdAu for the negatively-hargedhadron yield in the forward rapidities (η = 2.2, 3.2) by the BRAHMS ollab-oration [91℄ in d+Au ollisions at RHIC. Although a quite deep shadowingat small-x and at low-Q2 was found out to be well within the experimentalunertainties, we found a lear tension between the BRAHMS and small-xdeeply inelasti NMC data, as demonstrated in Fig. 8.6 below.
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Being aware that suh issue existed, we deided not to use the BRAHMSdata in the subsequent EPS09 [IV℄ analysis. There is, however, a deeperreason for not to inlude the BRAHMS data in EPS09. The Fig. 8.7 displaysthe CTEQ6.1M and EPS09 preditions (with fDSS fragmentation funtions[38℄) ompared with the BRAHMS data for the absolute h− spetra,
d3Npp

d2pT dy
min.bias

=
1

σinelastic
NN

d3σpp

d2pT dy
;

d3NdAu

d2pT dy
min.bias

=
〈Ncoll〉
σinelastic

NN

1
2Ad3σdAu

d2pT dy
.In the η = 2.2 panel, the measured p+p and d+Au spetra are both ingood agreement with the NLO pQCD. However, in the most forward η =

3.2 bin there is a systemati and signi�ant disrepany present betweenthe measured and omputed pT spetrum for the p+p ollisions, althoughthe d+Au spetrum in the same rapidity bin is better reprodued. Thisobservation helps to throw some light on the inonsisteny revealed by theEPS08-analysis: whether the fatorization breaks down already for the p+pollisions and the agreement in d+Au is just by a hane, or there are somediÆulties with the BRAHMS data in the forwardmost rapidities, where themeasurements are very hallenging.
8.2.4 Scale-breaking effectsAs the theory goal of the global nulear PDF studies is largely to test theQCD fatorization | to �nd deviations from the DGLAP dynamis | thesale-breaking e�ets deserve speial attention. Suh e�ets are leanly visi-ble e.g. in the E886 Drell-Yan data in Fig. 8.4 where tendeny of diminishingnulear e�ets toward larger invariant mass M2 is observed, although theexperimental unertainties are admittedly large. The x-binned DIS dataversus Q2, shown in Figs. 8.8 and 8.9, also reveal some general features: Atsmall x the Q2-slopes look positive, while toward larger x, the slopes gradu-ally die out and beome even a bit negative. In both ases, the EPS09NLOreprodues suh features supporting the validity of the fatorization.
8.3 Comparison between the NLO worksBesides the EPS09NLO, there are two other NLO-level nulear PDF setsavailable, and Fig. 8.10 ompares the nulear modi�ations for Lead as theyare predited by these three sets. This omparison is shown at two sales,at Q2

0 = 1.69GeV2 and at Q2 = 100GeV2. The signi�ant disrepaniesbetween EPS09NLO and others | that is, urves being outside the blueEPS09NLO error bands | are found from the sea quark and gluon setors.102
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At low x, the di�erenes rapidly shrink when the sale Q2 is inreased, butat high-x region notable disrepanies persist. Most of the di�erenes areexplainable by the assumed behaviours of the �t funtions, for whih nDSand HKN07 allowed less freedom. The use of more rigid form of the �t fun-tion was due to lak of gluon onstraints (they did not employ the RHICpion data whih is inluded in EPS09 [IV℄), and giving the gluons more free-dom would probably not have improved their �ts but instead led to a pooreronvergene with parameters drifting to their limits. To larify the onse-quenes of distintly di�erent behaviour espeially between EPS09NLO andHKN07, the Fig. 8.11 shows the pion RdAu omputed also with HKN07.Despite the rather large data unertainties, the qualitatively ontraditingsign of the pT -slope in RdAu is a promising �nding as more data with betterpreision should be soon able to deisively disriminate between di�erentsenarios.
8.4 Conclusions and future prospectsAt the end, the onlusion that an be drawn from the global QCD analysesfor nulear PDFs performed so far is that the QCD fatorization onjetureseems to work very well in the explored kinematial region and for thepresently analysed data types. In order to �nd evidene of disrepanies |espeially nuleus-enhaned power orretions in the parton evolution [93℄or in the ross-setions [94℄ | the sope of the global analysis should betherefore extended. In addition to enlarging the kinematial overage andthe variety of inluded proesses, also an extended theoretial treatmentof the parton dynamis (by inluding power-suppressed terms) should beof importane. The next steps at the horizon toward reahing smaller xand higher Q2, ould possibly be realized by running the LHC also in thep+Pb mode. In farther future, eletron-ion olliders like the planned eRHIC[95℄ or LHeC [96℄, would also penetrate deeper in the (x,Q2)-plane. Aboutnew proesses to inlude, diret photon data from RHIC d+Au and Au-Auollisions should be available shortly and there are also data from deeplyinelasti neutrino-Iron sattering from the Fermilab NuTeV ollaboration[97℄ available. The neutrino data has reently been laimed [98℄ to pointtoward di�erent nulear e�ets than what are obtained e.g. in EPS09. Iftrue, it would indiate that there are proess-dependent e�ets present,asting doubts on the fatorization. This issue ertainly deserves a furtherlari�ation.
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It is a sort of a peuliar situation that almost all global free-proton �tsinlude data with nulear (deuterium or heavier) targets2 | all groups withtheir own favorite way to \orret" for the nulear e�ets. Thus, there isa danger of irularity as the baseline PDFs whih should be free of anynulear e�ets, do atually somewhat depend on how the nulear e�etswere orreted for | the free-proton and nulear PDF analyses are notentirely independent. This observation opens the road for a future workwhih will ombine the free and bound proton PDF analyses into a single,\master" global analysis.

2For example, the NuTeV data is one of the main soures for onstraining the strangesea asymmetry. 107
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