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Abstrat

We make use of the reent alulation of d3 by Baikov, Chetrykin and

Kuhn of N3LO QCD vauum polarization to analyze the inlusive tau-deay

ratio Rτ . We perform an all-orders resummation of the QCD Adler D fun-

tion for the vetor orrelator, in whih the part of perturbative oe�ients

ontaining the leading power of b, the �rst QCD beta-funtion equation oef-

�ient, is resummed to all-orders. We math the resummation to the exatly

known next-to-leading order (NLO), next-NLO (N2LO) and next-N2LO
(N3LO) results, we employ the Complete Renormalization Group Improve-

ment (CORGI) approah in whih all RG-preditable ultra-violet logarithms

are resummed to all-orders, removing all dependene on the renormalization

sale. Hene the NLO, N2LO and N3LO CORGI result an be obtained

and ompared with the �leading b� all-orders CORGI result. Using an ap-

propriate weight funtion, we an numerially integrate these results for the

Adler D funtion in the omplex energy plane to obtain so-alled "ontour-

improved" results for the ratio Re+e− and its tau-deay analogue Rτ . A table

showing the di�erenes of αS(M
2
τ ) and αS(M

2
Z) extrated from NLO, N2LO

and N3LO CORGI as well as all-orders CORGI results were made, together

with αS(M
2
τ ) and αS(M

2
Z) extrated diretly from Fixed-Order Perturbation

Theory at NLO, N2LO and N3LO. We also ompared the ALEPH data for

Rτ (s) with the all-orders CORGI result �tted at s = m2
τ .

We then go on to study the analytiity in energy of the leading one-

hain term in a skeleton expansion for QCD observables. We show that by

adding suitable non-perturbative terms in the energy regions Q2 > Λ2
and

Q2 < Λ2
(where Q2 = Λ2

is the Landau pole of the one loop oupling), one

an obtain an expression for the observables whih is a holomorphi fun-

tion of Q2
, for whih all derivatives are �nite and ontinuous at Q2 = Λ2

.

This funtion is uniquely onstrained by the requirement of asymptoti free-

dom, and the �niteness as Q2 −→ 0, up to addition of a non-perturabtive

holomorphi funtion. This full analytiity replaes the pieewise analyt-

iity and ontinuity exhibited by the leading one-hain term itself. Using

The Analyti Perturbation Theory (APT) Eulidean funtions introdued

by Shirkov and ollaborators, we �nally mathed the equations K
(L)
PT +K

(L)
NP

and U
(L)
PT+ U

(L)
NP with a resummation of oe�ients extrated from their Borel

Transform multiplied by the APT Eulidean funtions in the one loop ase.

For D
(L)
PT + D

(L)
NP , it is shown that it freezes to 2/b. Considering the GDH

Sum Rule, we onstrut an analyti funtion whih �ts well with data from

Je�erson Laboratory (JLab) for 0 < Q < 2GeV.
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Chapter 1

Quantum Field Theory

1.1 Quarks and Gluons in Quantum Field

Theory

Partile physis has been a great suess in modelling the interations of

elementary partiles using the formalism of quantum �eld theory.

Quantum Chromodynamis (QCD) provides a suessful explanation re-

garding the importane of the existene of the fundamental quarks and glu-

ons, whih in ombination give rise to the formation of protons and neutrons,

the basi building bloks of nulei. These partiles are also the building bloks

of mesons and baryons. These hadrons interat via the strong nulear fore,

one of the four fundamental fores of nature in addition to gravitational,

weak and eletromagneti fores. The strong fore is a residual e�et of

interations between quarks and gluons of di�erent hadrons. This residual

fore holds all atomi nulei together.

A solitary quark or gluon has never been observed, this is due to on-

�nement whih arises from the nature of the QCD olour fore whih grows

linearly with the separation of oloured objets, and it is for this reason that

quarks and gluons are always on�ned inside hadrons.

Quarks have a frational eletri harge in units of the eletron harge,

whih is+2
3
or−1

3
. Their presene an be reognized through eletromagneti

interations with other harged partiles. An eletron �red at a hadron an

interat with a onstituent quark or parton ontained in the hadron. This

deep inelasti sattering an be used to infer the quark harges from the

measured ross setion of the sattered eletron.

7
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Gluons at as the mediator of strong interations between quarks, and are

ruial in produing quark on�nement, and the resulting hadrons. Partiles

with an eletri harge interat eletromagnetially in the theory of eletro-

magnetism(QED); analogously in QCD, partiles have a olour harge whih

omes in red, green and blue varieties. In eletromagnetism, the photon

whih plays the role of a mediator whih has no eletri harge. In QCD, the

olour harge of gluons is onstruted from olour-anti-olour ombinations of

the olour harges of the quarks. These olour harges result in three-point

and four-point self interations for the gluon, making non-abelian QCD a

muh more omplex theory than abelian QED.

In this thesis, results obtained from the theory of QCD will be ompared

with experimental results from international failities suh as Jlab and LEP

in order to test the validity of QCD.

1.2 The Dira Equation

Prior to introduing Quantum Field Theory, we review advaned quantum

mehanis where we are in a position to write a wave equation for a partile

with no spin (a salar partile). Having no spin implies that the �eld has

only one omponent, whih we denote by φ. The di�erential operators for

energy, E, and momentum, p are

E −→ i/h
∂

∂t
, p −→ i/h∇, (1.1)

where in the relativisti ase they are related by E2 = p2c2 +m2c4 and for

the non-relativisti ase, E = p2/2m. The wave equation is then given by

(
1

c2
∂2

∂t2
−∇2

)
φ+

m2c2

/h
2 φ = 0, (1.2)

whih turns into the Klein-Gordon equation by setting

/h = c = 1 (in natural

units)

(✷+m2)φ = 0, (1.3)

where ✷ = ∂µ∂
µ
is the four-vetor partial derivative with respet to time and

the 3 spatial dimensions. Note that we have used the ovariant derivative

∂µ = (1
c
∂0,−∇). Nevertheless, the Klein-Gordon equation su�ers from sev-

eral �aws in partiular the probability density is not positive de�nite sine
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it is proportional to the energy and the possibility for the ourrene of neg-

ative energy states

1

. E = ±
√
p2c2 +m2c4 implies that the Klein-Gordon

equation ontains both positive-energy and negative-energy solutions. The

Klein-Gordon equation involves the non-linear

∂2

∂t2
term whih needs to be

replaed with a linear

∂
∂t
. Thus, the Klein-Gordon equation was disarded

and the Dira equation was the �ttest replaement.

(γµpµ −m)ψ = 0. (1.4)

It is then disovered that the equations turn out to be a 4× 4 matrix, whih

then dedued that the γµ matries must also be 4× 4 matries.

γ0 =

(
0 1
1 0

)
, γi =

(
0 −σi
σi 0

)
, (1.5)

where σi are the Pauli matries. Substituting pµ with i∂µ into Eq. (1.4)

(iγµ∂µ −m)ψ = 0. (1.6)

This equation is a 1st order di�erential equation. With (−iγµ∂µ−m) ating
on the LHS of the equation shows that the Dira equation implies the Klein

Gordon equation

(−iγµ∂µ −m)(iγν∂ν −m)ψ = (γµγν∂µ∂ν +m2)ψ = 0. (1.7)

In order for ψ to satisfy the Klein-Gordon equation, Eq.(1.3), whih an be

written in the form

(gµν∂µ∂ν +m2)ψ = 0, (1.8)

where gµν is a four-by-four diagonal matrix gµν = diag(1,−1,−1,−1), the
γµ matries must satisfy,

{γµ, γν} = 2gµν, (1.9)

1

The interpretation of negative energy states an be explained by Feynman-

Stuekelberg piture where its interpretation does not appeal to the exlusion priniple

but rather to a ausality priniple. Causality ensures that positive energy states with time

dependene e−iEt
whih propagate forwards in time is equivalent by imposing a negative

energy states propagating bakwards in time e−i(−E)(−t) = e−iEt
. This is an aeptable

theory whih is onsistent with ausality. We an simply view that the emission of a neg-

ative energy state partile with momentum pµ an be interpreted as the absorption of a

positive energy antipartile with opposite momentum −pµ. Note that Dira's sea piture

whih is also an attempt to explain negative energy states does not work for bosons as

they do not obey Pauli exlusion priniple.
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as γµγν + γνγµ = 0 for µ 6= ν.
We will now onstrut the probability urrent jµ to hek whether it is

positive. Taking the Hermitian onjugate of Eq.(1.6), this gives

ψ†(−iγ0←−∂0 + iγi
←−
∂i −m) = 0. (1.10)

ψ† is row vetor and the← shows that the operation is performed to the left.

Multiplying by γ0 and using γiγ0 = −γ0γi, gives

ψ̄(−iγµ←−∂µ +m) = 0. (1.11)

ψ̄ = ψ+γ0 is the adjoint spinor. Using Eqs. (1.6, 1.11), the urrent jµ = ψ̄γµψ
is onserved

∂µj
µ = 0. (1.12)

The urrent density j0 is therefore

j0 = ψ̄γ0ψ = ψ+ψ = |ψ1|2 + |ψ2|2 + |ψ3|2 + |ψ4|2, (1.13)

and always positive as it is made up of the ombination of absolute values.

j0 is �t to be the probability density for the partile whih shows the Dira

equation is preferred to the Klein-Gordon equation in this respet.

1.3 Dira Spinors

The Dira �eld ψ [1, 2℄ an be written as a ombination of plane-wave solu-

tions sine it obeys the Klein-Gordon equation.

ψ(x) = u(p)e−ip.x, (1.14)

where p2 = m2
. Here we denote ψ as a funtion of x. Plugging in ψ(x) into

the Eq. (1.4),

(γµpµ −m)u(p) = 0. (1.15)

This equation is best analyzed in the rest frame, taking the index i = 0. pµ
in the rest frame p0 = (m, 0)

(mγ0 −m)u(p0) = m

(
−1 1
1 −1

)
u(p0) = 0. (1.16)

The solutions to this equation are
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u(p0) =
√
m

(
ξ
ξ

)
. (1.17)

ξ is a 2-omponent spinor whih is normalized suh that ξ†ξ = 1. The fator√
m was hosen for future onveniene. For further reading on the spinor ξ,

rapidity η and boost in detail, refer to [2℄.

Applying a boost to u(p) and after some algebrai manipulation and

simpli�ation

u(p) = exp

[
−1
2
η

(
σ3 0
0 −σ3

)]√
m

(
ξ
ξ

)

=





(√
E + p3(1−σ

3

2
) +

√
E − p3(1+σ3

2
)
)
ξ(√

E + p3(1+σ
3

2
) +

√
E − p3(1−σ3

2
)
)
ξ





=

( √
p.σξ√
p.σ̄ξ

)
. (1.18)

where we have used the boost generator

S0i =
i

4
[γi, γj] = − i

2

(
σi 0
0 −σi

)
. (1.19)

In summary, the general solution for a positive-frequeny wave an be written

as a linear ombination of plane waves,

ψ(x) = u(p)e−ip.x, p2 = m2, p0 > 0. (1.20)

Thus, there are two independent solution as the spinor ξ an be spin up or

spin down.

us(p) =

( √
p.σξs√
p.σ̄ξs

)
, s = 1, 2, ξ1 =

(
1
0

)
, ξ1 =

(
0
1

)
.

(1.21)

Applying it analogously to the negative-frequeny solutions:

ψ(x) = v(p)e+ip.x, p2 = m2, p0 > 0 (1.22)

(It is impossible to set p0 < 0, the logial approah is to add a + sign into

the exponential). The 2 independent solutions are
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vs(p) =

( √
p.σξs

−√p.σ̄ξs
)
, s = 1, 2. (1.23)

These u and v spinors are spin eigenstates for partiles and antipartiles,

respetively.

1.4 Spin Sums

A ruial part of QED and QCD is the evaluation of Feynman Diagrams,

whih will involve a sum over the polarization states of a fermion.

∑

s=1,2

us(p)ūs(p) =
∑

s

( √
p.σξs√
p.σ̄ξs

)
(ξs†
√
p.σ̄, ξs†

√
p.σ). (1.24)

Using the relation below

∑

s=1,2

ξsξs† = 1 =

(
1 0
0 1

)
. (1.25)

Thus, we obtain the ompleteness relations

∑

s=1,2

us(p)ūs(p) = γ.p+m, (1.26)

∑

s=1,2

vs(p)v̄s(p) = γ.p−m. (1.27)

γ.p ours very often and is useful to introdue a new notation /p = γµpµ.

1.5 Gauge Invariane and Noether's The-

orem

Quantum Field Theory (QFT) an provide a lear desription of all the

fundamental interations with the exeption of gravity.

We de�ne a �eld theory as a three dimensional spae time 4-vetor �eld;

for example is the gravitational �eld whih takes the value of a vetor every-

where. The ation S de�ned by the Hamiltonian priniple (a partile travels

with the least ation between two points) is the integral of the Lagrangian

density L



CHAPTER 1. QUANTUM FIELD THEORY 13

S =

∫
Ld4x. (1.28)

Let us de�ne the Lagrangian density in �eld theory as, L , a funtion of the

auxiliary �elds (φj), and their derivatives with respet to spae and time

(∂φj/∂x
µ
)

L = L(φj,
∂φj
∂xµ

), (1.29)

with the subsript j labeling di�erent �elds, and the standard xµ whih

denotes the spae time oordinates with indies µ = 0, 1, 2, 3. 0 denotes time

while 1, 2, 3 denotes the 3-dimensional spatial oordinates. Using Hamilton's

Priniple of least ation, the Lagrangian density should remain unhanged

with respet to the �eld(s) as well as to a hange in the �eld(s); this leads to

the E-L equations,

∂µ(
∂L

∂(∂µφj)
)− ∂L

∂φj
= 0, (1.30)

where ∂µ denotes the partial derivative with respet to xµ.

Noether's theorem states that global gauge invariane is equivalent to the

onservation of a urrent. Consider a omplex salar �eld theory given by

L = ∂µφ
∗∂µφ−m2φ∗φ. (1.31)

The L remains invariant under the global transformation φ −→ φ′ = φeiα,
for a onstant α. Assuming that α is in�nitesimally small, φ′ = φ + iαφ,
thus, the Lagrangian density is hanged by

∂L
∂φ

iαφ+
∂L

∂(∂µφ)
iα∂µφ+ c.c, (1.32)

c.c denotes its omplex onjugate. For global gauge invariane of L , this

must be equal to zero up to an α2
term. Applying the E-L equation for the

�eld, the terms with α to the �rst power are

α∂µ(
∂L

∂(∂µφ)
) + c.c = 0. (1.33)

This shows that the urrent density is onserved

jµ = i(φ∂µφ
∗ − φ∗∂µφ)

∂µj
µ = 0 . (1.34)
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1.6 Lorentz Invariane of Wave Equation

In this setion, we will disuss the de�nition of "relativistially invariant"

when addressing an equation. A �eld or a olletion of �elds denoted by φ
with an operator D ating on φ is said to be "relativistially invariant" if φ
satis�es Dφ = 0, and when we apply a boost or rotation to the �eld to a

di�erent frame of referene, the transformed �eld will still satisfy the same

equation.

Thus, by the de�nition above, the equation of motion is Lorentz invariant

if the Lagrangian is a Lorentz salar. Let us onsider the Klein-Gordon

equation, the orresponding Lorentz transformation is given by

xµ −→ x
′µ = Λµνx

ν , (1.35)

for some 4 × 4 matrix Λ. Assuming, we transform x by a boost, the trans-

formed �eld is then

φ(x) −→ φ′(x) = φ(Λ−1x′). (1.36)

The equation shows that the transformed �eld (evaluated at a boosted point)

is equivalent to the original �eld (evaluated before boosting).

Note that the Klein-Gordon Lagrangian remains unhanged after Lorentz

transformation. The derivative of the �eld transforms suh that

∂µφ(x) −→ ∂′µ(φ(Λ
−1x′)) = (Λ−1)νµ(∂νφ)(Λ

−1x′). (1.37)

Note that one of the properties of metri tensor gµν is that it is Lorentz

invariant, the inverse matries Λ−1 must obey the identity

(Λ−1)ρµ(Λ
−1)σνg

µν = gρσ, (1.38)

while the transformation for the kineti term of the Klein-Gordon Lagrangian

is

(∂µφ(x))
2 −→ gµν(∂µφ

′(x))(∂νφ
′(x))

= gµν [(Λ−1)ρµ∂ρφ][(Λ
−1)σν∂σφ](Λ

−1x′)

= gρσ(∂ρφ)(∂σφ)(Λ
−1x′)

= (∂ρφ)
2(Λ−1x′). (1.39)

Thus the Lagrangian remains unhanged
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L(x) −→ L(Λ−1x′). (1.40)

Consequently, the ation S found by integratingL over spae time, is Lorentz

invariant. We now show that the equation of motion is also Lorentz invariant

(∂2 +m2)φ′(x) = [gµρ(Λ−1)νµ∂ν(Λ
−1)σρ∂σ +m2]φ(Λ−1x′)

= (gνσ∂ν∂σ +m2)φ(Λ−1x′)

= 0. (1.41)

Eq. (1.36) is the simplest transformation law for a �eld with just one om-

ponent φ(x). Of ourse, we know examples of other multi-omponent �elds

whih transform in a muh ompliated manner, in partiular vetor �elds

like the vetor potential Aµ(x). Quantities distributed in spae time are ori-

ented by performing boost or rotation, by expressing them in the form of

tensors whih also obey the transformation law. Using suh tensor �elds, a

variety of Lorentz invariant equations an be written, a simple example is

the Maxwell's equation

∂µFµν = 0, or ∂2Aν − ∂ν∂µAµ = 0. (1.42)

1.7 Loal Gauge Transformation

The Lagrangian density for a Dira �eld is

LDirac = ψ(iγµ∂
µ −m)ψ. (1.43)

The Dira equation whih desribes free fermions in relativisti quantum

mehanis follows from the E-L equation for the �eld ψ. Under loal gauge
transformation ψ −→ ψ′ = ψeiα(x), there will be an extra term ψγµ(∂

µα)ψ
in the free Dira Lagrangian. Nevertheless, the Lagrangian should remain

invariant and by replaing ∂µ with the term ∂µ + ieAµ in Eq. (1.43), the La-

grangian density will then remain invariant under the transformation ψ −→
ψ′ = ψeiα(x) with the ondition that the new �eld transforms from Aµ −→
A′µ = Aµ − 1

e
∂µα. Aµ is an eletromagneti �eld. For a free �eld

LMaxwell = −
1

4
F µνFµν ,

Fµν = ∂µAν − ∂νAµ, (1.44)
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whih remains invariant under the transformation Aµ−→A′µ = Aµ − 1
e
∂µα.

Using Eqs. (1.43, 1.44), the E-L equation for Aµ is

∂µF
µν = ejν ,

jµ = ψγµψ. (1.45)

This is Maxwell's inhomogeneous equations in the presene of a urrent, the

urrent is also onserved by Noether's theorem. e is a onstant whih is the

magnitude of the harge. In the ase for several Dira �elds, the �elds harge

Q should appear in the transformation for the Dira �eld ψ −→ ψeiQα(x) as
well as the Lagrangian density ∂µ + ieQAµ. The eletron has a harge of

Q = −1 and a proton has a harge Q = +1.

Quantum Eletrodynamis (QED), the quantum �eld theory of eletro-

magnetism, results from ombining separate �eld theories of free �elds. De-

manding invariane under the loal gauge transformation has introdued in-

terations given by jµAµ whih will appear in the Lagrangian density in

addition to the free (non-interating) �eld theory terms. In order to also

have a better desription of the real world, we must inlude non-linear terms

into the Hamiltonian. Thus the Interating Hamiltonian will be given by

Hint =

∫
d3xHint[φ(x)] = −

∫
d3xLint[φ(x)], (1.46)

with the orresponding interation Lagrangian (for further reading [2℄) given

by

Lint = −eQψ̄γµψAµ. (1.47)

The E-L equation for the Dira �eld with the interating �eld is now given

by

(i /D −m)ψ = 0, (1.48)

where we use the notation

/D = γµDµ, with

Dµ = ∂µ − ieQAµ. (1.49)

Dµ = ∂µ + ieAµ is the gauge ovariant derivative whih transforms under

Lorentz Gauge Transformation suh that (Dµψ) = D′µψ
′ = eiα(x)(Dµψ), so

(Dµψ) transforms in the same way as the �eld ψ itself.

The QED Lagrangian is given by
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LQED = LMaxwell +LDirac +Lint,

LQED = −1
4
F µνFµν + ψ(i /D −m)ψ, (1.50)

where

[Dµ, Dν ]ψ = −ieFµνψ, (1.51)

Fµν = ∂µAν − ∂νAµ. (1.52)

1.8 QED Lagrangian and Feynman Rules

Quantum Eletrodynamis (QED) is an abelian gauge theory. The eletro-

magneti �eld at as a mediator for the interation between the harged ψ
spin-1/2 �elds. The QED Lagrangian is given by

LQED = −1
4
FµνF

µν + ψ(i /D −m)ψ − 1

2ξ
(∂µAµ)

2, (1.53)

with their orresponding Feynman rules

µ −→ −ieQγµ

Figure 1.1: QED vertex

p −→

µ ν
p

−→ (i 6p+m)
p2−m2+iǫ

−→ −igµν
p2+iǫ

Figure 1.2: QED Propagators
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p −→

p −→

p −→

p −→

−→ ūs(p), outgoing fermion

−→ us(p), inoming fermion

−→ vs(p), outgoing anti-fermion

−→ v̄s(p), inoming anti-fermion

Figure 1.3: External Fermions

p −→

←− p

−→ ǫ ∗µ (p), outgoing photon

−→ ǫµ(p), inoming photon

Figure 1.4: External Photons

ψ obeys the ovariant derivative expression of Eq. (1.51) and Aµ photon

�eld is related to the eletromagneti tensor Eq. (1.52). The spinors and

their onjugates obey the Dira equation. The diretion of the arrow shows

whether they are fermions or anti-fermions with the vertex having an arrow

oming in and the other oming out to keep the same number of fermions

and antifermions.

One also has to impose momentum onservation at eah vertex and to

integrate for eah undetermined loop momentum

∫
d4p
(2π)4

. Finally one needs

to divide by the symmetry fator. Note also that the QED vertex, photon

propagator as well as the external fermions (polarization vetors and its

onjugate initial- or �nal-state photon) arises from the interation Lagrangian

Lint.

It is impossible to obtain the photon propagator from the �rst two terms

of the Lagrangian as the inverted matrix has zero determinant [3℄. This is
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due to gauge invariane but in order to have a de�ned photon propagator,

we need to �x the gauge by adding a gauge-�xing term

− 1

2ξ
(∂µA

µ)2. (1.54)

ξ is the gauge-�xing parameter de�ning a lass of ovariant gauges satisfying

the Lorentz ondition ∂µA
µ = 0, ξ = 1 orresponds to Feynman gauge and

ξ = 0 to Landau gauge. The third term does not hange physis: physial

results are gauge-invariant and gauge-independant. The ompliation that

arises is not easily de�ned but the photon propagator should be the solution

for the funtion Dµρ(x, y) suh that

(�gµν − ∂µ∂ν)
∫
d4yDµρ(x, y)A(y) = igνρA(x). (1.55)

A(x) is an arbitrary funtion. Eq. (1.55) has no solution. Adding the term

Eq. (1.54) into the Lagrangian alters Eq. (1.55) to

(�gµν − (1− 1/(ξ))∂µ∂ν)

∫
d4yDµρ(x, y)A(y) = igνµA(x). (1.56)

Eq. (1.56) has the solution

Dµν(x, y) =

∫
d4k

(2π)4
−idµν(k)
k2 + iǫ

e−ik.(x−y), (1.57)

where dµν = gµν − (1 − ξ)kµkν
k2

. A more straightforward derivation proposed

in [1℄ is to onsider

L = Lclassical +Lgauge−fixing,

=
1

2
Aµ
[
gµν�+

(
1

ξ
− 1

)
∂µ∂ν

]
Aν . (1.58)

Taking ξ to be �nite, the quadrati operator in momentum spae is

−k2gµν +
(
1− 1

ξ

)
kµkν , (1.59)

and its orresponding inverse gives the propagator

D(k)µν = −
1

k2

[
gµν + (ξ − 1)

kµkν
k2

]
. (1.60)

ξ is an arbitrary parameter, thus results from QED alulations for physial

quantities are totally independent of ξ. Note that we have used Feynman

gauge in de�ning the photon propagator in Fig. (1.2).
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1.9 QCD Lagrangian and Feynman Rules

Just as in QED, the alulation of physial proess in QCD requires Feynman

rules whih desribe the interations of quarks and gluons. The Lagrangian

[4℄ whih desribes strong interations is given by

LQCD = Lclassical +Lgauge−fixing +Lghost. (1.61)

This Lagrangian is based on the SU(N) group non-abelian gauge theory. The

lassial part of the QCD Lagrangian density is given by

Lclassical =
∑

f

ψf,i(iγµD
µ
i,j −mfδi,j)ψf,j −

1

4
F µν
a F a

µν . (1.62)

f is the number of quark �avours. ψf,i is the quark �eld (fundamental rep-

resentation) with olour index i = 1, . . . ,N and Aaµ is the gluon �eld

(adjoint representation) runs over N2 − 1 degrees of freedom a = 1, . . .

,N2
- 1 desribed by SU(N) group. As in QED, the γµ satisfy the Dira anti

ommutation relation

{γµ, γν} = γµγν + γνγµ = 2gµν . (1.63)

The ovariant derivative in the non-abelian gauge theory is de�ned as

Dµ
ij = ∂µδij − igAµaT aij . (1.64)

g is the strong oupling onstant whih determines the strength of interation

between quanta. T a are matries whih an be expressed in the form of

Hermitian traeless Gell-Mann matries. They are generators of the SU(N)

group whih satisfy the ommutation relation

[T a, T b] = ifabcT
c, (1.65)

where fabc are the struture onstant. As in QED, the ommutator of two

ovariant derivatives is related to the �eld strength tensor F a
µν of the gluon

�elds, from whih we an build the kineti energy part in the lassial La-

grangian of QCD,

[Dµ, Dν ] = iT aF a
µν , (1.66)

tr(T aT b) =
1

2
δab, (1.67)

∑
T aijT

a
jk = CF δik, CF =

N2 − 1

2N
, (1.68)
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where

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcA

b
µA

c
ν . (1.69)

Unlike photons in QED, the non-abelian property of the last term in Eq. (1.69)

gives rise to triplet and quarti gluon self interations and also asymptoti

freedom. Note that the Lagrangian has mass dimension of 4, thus it should

follow that ψ and Aaµ have mass dimensions of 3/2 and 1 separately. As

required, L should be loally gauge invariant and all of their omponents

transform under these loal gauge transformations,

ψf −→ Λ(x)ψf , (1.70)

T aAaµ −→ Λ(x)

(
T aAaµ − i

g
Λ−1(x)∂µΛ(x)

)
Λ−1(x), (1.71)

Λ(x) = exp(−iT aθa(x)), (1.72)

where θa(x) is a spae time dependent funtion. Like QED, a gauge �xing

term whih satis�es the Lorentz gauge ondition ∂µA
aµ

= 0 has to be added.

The physial reason for suh a hoie is to put a onstraint on Aaµ (whih has

2 polarization states) to avoid any unphysial states

Lgauge−fixing = −
1

2ξ
(∂µAaµ)

2. (1.73)

In QCD, the longitudinal part of the gluon �eld an interat with the trans-

verse (physial) omponent of Aaµ, this results in gluon loops and a subtra-

tion is of these ontributions is neessary. Therefore, we will now introdue

a ghost �eld alled the Faddeev-Popov ghost whih ats like a salar �eld.

Lghost = (∂µη
a∗)(∂µδab + gfabcA

µ
c )η

b. (1.74)

The origin of the Faddeev-Popov ghosts is to ensure onsisteny with the

path integral formulation whih demands an unambiguous and non-singular

solutions. The presene of gauge symmetry makes this impossible to on-

strut. This is beause there is no partiular proedure for seleting a so-

lution from a hoie of equivalently physial solutions (all derived by gauge

transformation). Suh problem ours from the path integrals overounting

�eld on�gurations due to gauge symmetries. This will orrespond to the

same physial state as the measurement of the path integrals ontain fa-

tors prohibiting to extrat various results from the ation obtained from the

Feynman diagrams. One possible hoie is to modify the ation by applying
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additional �elds, breaking the gauge symmetry as a onsequene. Suh teh-

nique is alled the Faddeev-Popov proedure with the additional �elds being

alled the ghost �elds. Ghosts �eld do not interpret into any physial real

partile in the external states. Their appearane only in the form of virtual

partiles in Feynman diagrams. Nevertheless, their presene are a neessity

to preserve unitarity of the S-matriix. The approah in the formulation of

ghosts varies and is dependent on the hoie of gauge, however, the same

results must be obtained for all hoies. The simplest hoie for this purpose

is the Feynman-'t Hooft gauge.

Thus, we have the �nal form of the Lagrangian

LQCD =
∑

f

ψf,i(iγµD
µ−mfδi,j)ψf,j−

1

4
F µν
a F a

µν−
1

2ξ
(∂µAaµ)

2+(∂µη
a∗)Dµ

abηb.

(1.75)

where ηa is a omplex salar �eld obeying Fermi statistis. The Feynman

rules orresponding to this QCD Lagrangian are

−→ (i 6p+m)
p2+m2+iǫ

Figure 1.5: Quark propagator

a

b

µ ν
−→ −iδab

p2+iǫ

(
gµν − (1− ξ)pµpν

p2

)

Figure 1.6: Gluon propagator

a

b

−→ −iδab
p2+iǫ

Figure 1.7: Ghost propagator



CHAPTER 1. QUANTUM FIELD THEORY 23

a, µ

−→ igγµT a

Figure 1.8: Quark-Gluon Vertex

a, µ

b, ν , ρ

−→ gfabc[gµν(k − p)ρ

−gνρ(p− q)µ + gρµ(q − k)ν ]

Figure 1.9: 3-Gluon Vertex

b, µ

a 

−→ −gfabcpµ

Figure 1.10: Gluon-Ghost Vertex

d, σ , ρ

a, µ
b, ν

−→ g2[fabcfcdeg
µρgνσ − gµσgνρ

+facefbde(g
µνgρσ − gµσgνρ)

+fadefbce(g
µνgρσ − gµρgνσ)]

Figure 1.11: 4-Gluon Vertex
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1.10 Summary

Quantum �eld theory (QFT) is an essential guide in onstruting quantum

mehanial models of systems parametrized by an in�nite number of dynam-

ial degrees of freedom and variables, that is, �elds and spinors in QED and

QCD. It is found that the fores between partiles are mediated by the pres-

ene of other partiles. In QED, the eletromagneti fore is mediated by

the exhange of photons, in QCD gluons mediate the strong fore. In this

Chapter, we brie�y summarized the important points seleted from various

textbooks of QFT whih are relevant to the topi of this researh.

We reviewed the fundamentals of relativisti quantum mehanis where

we an write a wave equation for salar partiles. The energy and momentum

operator is analogous to the ones in Classial Mehanis and the wave equa-

tion is the Klein-Gordon equation. Nevertheless, the equation has a probabil-

ity whih is not positive de�nite and there is the possibility of the ourrene

of negative energy states. The interpretation on negative energy states was

disussed using the Feynman-Stuekelberg piture base on the priniple of

ausality. The Dira equation was introdued as an extra equation to be sat-

is�ed in addition to the Klein-Gordon equation. The Dira urrent density

is a ombination of absolute values implying that it will always be positive,

although there are still negative energy states whih orrespond to antiparti-

les. It was through Dira's equation that the predition of antipartiles was

made and they were subsequently found. This seems a good indiator that

partile physis is on the right trak experimentally.

The Dira �eld obeys the Klein-Gordon equation and an be expressed

as a ombination of plane-wave solutions. Plugging this solutions into the

Dira equation provides us a four omponent spinor whih obeys the rotation

and boost generators. Considering the positive and negative frequeny and

the spinor ξ whih might be spin up or down. There will be four spinors

altogether. A ruial part of QED and QCD is the evaluation of the Feynman

Diagrams whih we sum over the polarization states of the fermions.

We de�ne a �eld as a 3-dimensional 4-vetor �eld, for example is the

gravitational �eld whih takes the value of a vetor everywhere. Hamilton's

Priniple of least ations states that partile travels with the least ation

between two points. The ation S is the integral of the Lagrangian density

L , a funtion of auxiliary �elds. Using the Lagrangian of the Klein-Gordon

equation as an example, the onserved urrent an be derived from its E-L

equation sine there is a global symmetry for the �eld, undergoing global
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gauge transformations. Suh transformations do not alter the ation. This is

due to Noether's theorem whih states that the global symmetry is equivalent

to the onservation of urrent.

A �eld is "relativistially invariant" if an operator ating on the �eld

satis�es Dφ = 0, and when we apply rotations or boosts to the �eld in

di�erent frames of referene, the transformed �eld will still satisfy Dφ′ = 0.
We show that the Klein-Gordon equation is relativistially Lorentz invariant

under rotations and boosts along the axis. In short, quantity distributed in

spae time is oriented by performing rotation or boost by expressing them in

the form of tensors whih also obeys the transformation law. Many examples

an be made, a famous one is the Maxwell's equation.

We further showed that the Dira Lagrangian is invariant under gauge

transformations. Demanding invariane under loal gauge transformation

has introdued an interation term. Thus, this non linear interation term

is added to the Lagrangian. This interation term is then absorbed into

the Dira equation sine its partial derivative is modi�ed into a ovariant

derivative. Finally, in order to have a gauge independent and gauge invariant

Lagrangian, − 1
2ξ
(∂µAµ)

2
is added to the Lagrangian where the hoie of the

gauge �xing parameter ξ will not alter the physis. The sets of Feynman

Rules an be read diretly from the QED Lagrangian.

QED is based on an abelian theory but QCD in ontrast is derived from

non-abelian theory. In QCD, the existene of the gluon �eld give rise to triplet

and quarti interations gluon self interations and ultimately asymptoti

freedom. Similarly like in QED, a gauge �xing Lagrangian is also needed

but a further ompliation ours sine unphysial gluon polariztion states

an propagate . To remedy this a ghost �eld is then introdued alled the

Fadeev-Popov ghost whih ats like a salar �eld. This also ensures that the

unitarity of the S-matrix is not violated. The sets of Feynman Rules an be

read diretly from the QCD Lagrangian.



Chapter 2

Perturbative QCD

2.1 Dimensional Regularization

In omputing Feynman diagrams beyond the tree-level one inevitably en-

ounters divergenes when one integrates over undetermined loop momenta.

One enounters both ultraviolet (UV) and infra-red (IR) divergenes from

the large and small momentum regions, respetively. To ontrol these one

needs to �renormalize� the theory, introduing in�nite so-alled ounterterms

to onvert the in�nite parameters (masses, ouplings, harges) in the origi-

nal �bare� Lagrangian to �nite �renormalized� parameters. This proedure

involves a �renormalization proedure� or renormalization sheme (RS). An

essential ingredient is that of �regularization�. To handle suh divergenes

the simplest approah is to introdue an upper uto� on the loop-momenta

integrated over. This is referred to as �Pauli-Villars� regularization. We shall

work with a more sophistiated approah alled �dimensional regularization�

whih has the major merit of manifestly preserving gauge invariane, whih

is violated with the naive Pauli-Villars method.

To understand "dimensional regularization", it is best to see how this

tehnique works at the alulational level. A d-dimensional spae time has 1

time dimension and (d-1) spae dimensions. We Wik

1

-rotate the Feynman

integral over a d-dimensional Eulidean spae, onsider

∫
ddlE
(2π)d

1

(l2E +△)2
=

∫
dΩd
(2π)d

∫ ∞

0

dlE
ld−1E

(l2E +△)2
, (2.1)

1

Wik's rotation is a method of solving problem in a Minkowski spae from a solution

to a problem in an Eulidean spae by substituting a real variable with an imaginary

variable, example is ds2 = −(dt)2+dx2+dy2+dz2 = dt2+dx2+dy2+dz2 by onsidering

t to be imaginary

26
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where △ = m2 − x(1 − x)q2. x is the variable that ours when ombining

denominators through introdution of Feynman parameter and is related to

the shifted momentum l = k + qx. The �rst fator in Eq. (2.1) an be

expressed as the area of a unit sphere in d dimensions. We show the proof

below

(
√
π)d =

(∫
dxe−x

2

)d
=

∫
ddxe−

∑d
i=1 x

2
i

=

∫
dΩd

∫ ∞

0

dxxd−1e−x
2

=

(∫
dΩd

)
1

2

∫ ∞

0

d(x2)(x2)
d
2
−1e−x

2

=

(∫
dΩd

)
1

2
Γ(d/2). (2.2)

Thus the area of the unit sphere is

∫
dΩd =

2πd/2

Γ(d/2)
. (2.3)

The seond fator is algebraially derived as follows

∫ ∞

0

dl
ld−1

(l2 +△)2
=

1

2

∫ ∞

0

d(l2)
(l2)

d
2
−1

(l2 +△)2

=
1

2

(
1

△

)2− d
2
∫ 1

0

dxx1−
d
2 (1− x) d

2
−1, (2.4)

by making the substitution x = △/(l2 + △). By using the Beta funtion

studied by Euler and Legendre

∫ 1

0

dxxα−1(1− x)β−1 = Γ(α)Γ(β)

Γ(α + β)
, (2.5)

the integral is simply

∫
ddlE
(2π)d

1

(l2E +△)2
=

1

(4π)d/2
Γ(2− d

2
)

Γ(2)

(
1

△

)2− d
2

, (2.6)

having evaluated Eq. (2.5) over the variable x. Sine Γ(z) has poles at

z = 0,−1,−2,−3, ...., this integral also has a pole at d = 4, 6, 8...... Using

the approximation

1

Γ(z)
= zeγEz

∞∏

n=1

(
1 +

z

n

)
e−z/n, (2.7)
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and d = 4 − 2ǫ = with γE ≈ 0.5722 (Euler onstant), the integral will be of

the form

∫
ddlE
(2π)d

1

(l2E +△)2
=

1

(4π)2

(
2

ǫ
− log(△)− γE + log(4π) +O(ǫ)

)
. (2.8)

1/ǫ will still make the integral divergent when ǫ −→ 0. This orresponds to
a logarithmi divergene in the momentum integral whih an be absorbed

by using the Modi�ed Minimal Subtration Sheme (MS) [5℄.

2.2 Renormalization Theory

QCD and QED are renormalizable theories. After divergenes are regular-

ized, the troublesome divergent ontributions orrespond to rede�ning the

fundamental onstants of the theory like the oupling g and quark masses

m in QCD. In other words, physial quantities are expressed in terms of

renormalised parameters and do not involve any UV divergenes anymore,

examples are gren and mren. The renormalised onstants whih depends on ǫ
(dimensional regularization parameter), g (the bare oupling ), m (the bare

mass) and µ (an arbitrary sale) absorb all suh divergenes.

Rigorously demonstrating the renormalizability of QED is a hard prob-

lem, and the non-abelian ompliations inherent in QCD make this an even

harder problem. A good book to refer for a detailed demonstration of QED's

renormalizability an be found in [1℄. We will not demonstrate anything in

detail here but we will provide rather a heuristi physial explanation. Large

loop momenta produe UV divergenes. In the event that the loop momenta

are muh larger than the harateristi external momenta, the loop loses its

struture and an be onsidered as a point.

−→

Figure 2.1: Example of a ounterterms

Figure (2.1) shows the idea of renormalization. By onsidering the loop as

a point, a new quadrati ontribution to the Lagrangian emerges. Due to
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Lorentz and gauge invariane, the ontribution is of the form ≃ (∂µAν −
∂νAµ)

2
.

Renormalizability is related to the notion of an e�etive Lagrangian, refer

to [6℄ for more detail. To understand more learly how this tehnique works

it is useful to onsider the QCD e�etive Lagrangian extrated from the

Green's funtions whih an be obtained from the QCD Feynman diagrams,

L eff = − 1

4ZA
(∂µA

a
ν − ∂νAaµ)2 −

g

Z3A
fabc(∂µA

a
ν)A

bµAcν

− g2

Z4A
fabcf cdeAaνA

b
νA

µcAνd − 1

2ξ
(∂µAaµ)

2 +
1

Zη
∂µη̄

a∂µηa

+
g

Zη̄ηA
fabc∂µη̄aAbµη

c +
i

Zψ
ψ̄ 6 ∂ψ − m

Zm
ψ̄ψ +

g

Zψ̄ψA
ψ̄ψA. (2.9)

Z3A, Z4A, Zη̄ηA and Zψ̄ψA orrespond to the 3-gluon, 4-gluon, ghost-ghost-

gluon and quark-quark-gluon verties renormalization parameters. ZA, Zψ
and Zη orresponds to the gluon, quark and ghost propagators renormaliza-

tion parameters while Zm is the renormalization parameter for quark mass.

Ensuring the Kineti terms are redued to the standard form, we should

rede�ne the �elds

ABµ −→ Z
1/2
A Aµ, ηB −→ Z1/2

η η, ψB −→ Z
1/2
ψ ψ. (2.10)

Suh renormalization proedure are neessary to ensure the Lagrangian (de-

rived from ation) to remain physial and �nite. Any in�nities that our

orresponding to the verties and propagators must be renormalized as a on-

sequene. This subsequently result in a sensible and physial quark masses

and oupling onstants. We will now disuss how renormalization is imple-

mented in pratie in QED [2℄:

1) Resaling the �elds in the Lagrangian.

2) The Lagrangian is split into 2 piees to absorb in�nities and unobservable

shifts into ounter-terms.

3) Seleting a spei� renormalization onditions whih de�nes the physial

mass and oupling onstant while ensuring the �eld-strength renormaliza-

tions equal to 1.

4) Introdue new Feynman Rules, then ompute its new amplitude.

5) Finally, adjust the ounter-terms appropriately.
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One of the method of renormalization is regularization. We will present

the detail alulation of σ(e+e− −→ qq̄, qq̄g) in Setion 2.7, now it will be

just su�e to quote the result to show how regularization works in general.

One of the initially proposed regularization method is the introdution of

gluon mass

m2
g = ǫs (2.11)

whih we will then have,

σqq̄g = σ0CF
αs
2π

(
log2

1

ǫ
− 3 log

1

ǫ
+ 7− π2

3
+O(ǫ)

)
(2.12)

σqq̄ = σ0CF
αs
2π

(
− log2

1

ǫ
+ 3 log

1

ǫ
− 11

2
+
π2

3
+O(ǫ)

)
(2.13)

σtot = σ0CF
αs
2π

(
3

2
+O(ǫ)

)
(2.14)

Unfortunately, despite suh regularization gives a �nite answer as ǫ −→ 0 in

this ase, it violates gauge invariane and therefore does not generalize. A

muh preferred regularization will be touhed in Setion 2.3 and Setion 2.7.

2.3 Renormalization Example - One Loop

Vauum Polarization in QED

k k

p + k

p

Figure 2.2: The one loop vauum polarization diagram

For revision, we onsider a typial QED one loop orretion to the photon

propagator shown in Fig. (2.2). Using the Feynman Rules for QED in Setion

1.8, this partiular diagram is represented by the expression

−iΠµν(k2) =

(−1)
∫

d4p
(2π)4

(−ieγµ)α′β
i(6p+m)ββ′

p2−m2 (−ieγν)β′α
i(/p+/k+m)αα′

(p+k)2−m2 (2.15)
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where α and β are the spinor indies. Note that we will simplify the expres-

sion further by assuming a negligible mass by setting m = 0. Note also that
α =

e2

4π
and sine that it is a fermion loop, there is a fator of (-1). The

integral is divergent and has to be renormalized. The �rst step in renormal-

izing ths expression is to regularize the divergent integrals by the ommon

method of "dimensional regularization"

2

in whih the integral is performed

in d = 4 − 2ǫ spae time dimensions and then the limit ǫ −→ 0 is taken.

Thus, an evaluation of the expression

−iΠµν(k2) = −e2
∫

d4p

(2π)4
Tr[γµ/pγν(/p+ /k)]

p2(p+ k)2
. (2.16)

One then needs to use the trae identity given by

Tr[γµγλγνγρ] = 4(gµλgνρ − gµνgλρ + gµρgλν). (2.17)

This further redues the expression to

−iΠµν(k2) = −4e2
∫

d4p

(2π)4
[pµ(p+ k)ν − gµν [p(p+ k)] + (p + k)µpν ]

p2(p+ k)2
.

(2.18)

The denominator an be solved using a Feynman parameter

1

p2(p+ k)2
=

∫ 1

0

dx
1

[(1− x)p2 + x(p + k)2]2
. (2.19)

Changing the variable l = p+ kx, the numerator is then

2lµlν − gµνl2 − 2x(1− x)kµkν + gµν(x(1− x)k2), (2.20)

where the terms that are odd under l → −l whih vanish on integration have

been dropped from the expression. After performing a Wik's rotation where

l0 = il0E and applying the identity

∫
ddlE
(2π)d

1

(l2E +△)n
=

1

(4π)d/2
Γ(n− d/2)

Γ(n)
(
1

△)n−d/2 , (2.21)

and also

∫
ddlE
(2π)d

l2E
(l2E +△)n

=
1

(4π)d/2
Γ(n− d/2− 1)

Γ(n)
(
1

△)n−d/2−1, (2.22)

2

[2℄ The idea of "dimensional regularization" is suh that the Feynman diagrams are

omputed as an analyti funtion with spae time dimension d. Assuming that d is rel-

atively small, the loop-momentum integral will onverge, thus the Ward identity proven.

Hene, the observable will have a well de�ned limit as d −→ 4. The reason when to swith

from 4 dimensions to d = 4 − 2ǫ will be shown learer when introduing Eq. (2.21) and

Eq. (2.22).
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redues Eq. (2.18) to

−iΠµν(k2) = [kµkν − gµνk2]iΠ2(k
2), (2.23)

whih we note that Γ(z) has isolated poles at z = 0,−1,−2,−3, ... from [2℄.

Thus for n = 2 whih has been used for this partiular alulation, both

integrals Eq. (2.21) and Eq. (2.22) will have poles at d = 4, 6, 8, .... In order

to �nd the behavior near d = 4, we therefore de�ne d = 4 − 2ǫ by using

the approximation Γ(ǫ) = 1
ǫ
− γE + O(ǫ) with γE being Euler-Masheroni

onstant. Continuation to d-dimension endows the dimensionless oupling e
with a mass dimension, [e] = 2 − d/2 = ǫ, whih needs to be replaed with

e −→ eµǫ. Straightforward alulation of Π2(k
2) yields

Π2(k
2) = − α

3π

[
− 1

ǫ
+ ln

(−k2
µ2

)
+ �nite

]
. (2.24)

Counterterms are introdued to remove the

1
ǫ
divergenes, the �nite ontribu-

tion they also anel is arbitrary and determines the subtration proedure.

Modi�ed minimal subtration (MS) absorbs the ln(4π)− γE term, minimal

subtration (MS) does not. The logarithm in Eq. (2.24) is absolutely ruial

in disussing the onept of Renormalons(Chains and Bubbles) with QFT

in subsequent hapters, and re-summing powers of logarithms will generate

fatorial growth of large-order perturbative oe�ients.

2.4 The Running Coupling Constant

In QCD, asymptoti freedom and on�nement arise. Con�nement explains

why no solitary quarks are observed and why quarks are always bound within

the hadrons by the strong fore arried by gluons. It is important to stress

that perturbation theory is a great mathematial tool to analyze QCD . A

renormalized oupling onstant is said to �run� with energy. As we shall see

in QCD the renormalized oupling has a logarithmi running in energy Q
and is large at low energy and gradually deeases as energy inreases. This

physial behavior is alled Asymptoti Freedom. This weak oupling at large

energy sale property is ruial for the validity of �xed-order perturbative

QCD alulations.

Prior to introduing the running oupling, we need to introdue R. R
has to be a physial observable, dimensionless, a funtion dependent on the

energy sale (whih we will denote Q). We will assume that the energy Q is

muh larger than the quark masses and that massless quarks an be assumed.
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In QCD, the observable R is expanded as a perturbative series of the �ne

struture onstant αS = g2/4π where g is the bare oupling. This shows

that R has to be renormalized to remove its UV divergenes by introduing

a seond mass sale - a renormalization sale µ through the renormalization

proedure and subtration sheme disussed previously. Therefore, R in QCD

is dependent on the ratio Q2/µ2
and the renormalized oupling αs.

The value seleted for µ is part of the spei�ation of the renormalization

sheme. In fat, the QCD Lagrangian is independent of µ, but µ is required

to de�ne the theory of QCD. The µ-independene of R is expressed by

µ2 d

dµ2
R(Q2/µ2, αs) ≡ 0,

[
µ2 ∂

∂µ2
+ µ2∂αs

∂µ2

∂

∂αs

]
R = 0. (2.25)

Note that the 2nd line just simply shows a transformation of the derivative

d/dµ2
into separate partial derivatives. We rewrite Eq. (2.25) as

[ ∂
∂τ
− β(αs)

∂

∂αs

]
R = 0, (2.26)

by introduing the beta funtion β as a derivative of the running oupling

with respet to the renormalization sale

β(αs) = µ2∂αs
∂µ2

. (2.27)

Note that we an also write

τ = ln
(Q2

µ2

)
, (2.28)

as a funtion of Q2
as τ must also be dimensionless. This operation is allowed

as

∂

∂τ
= −µ2 ∂

∂µ2
, (2.29)

remains unhanged by adding an additional term ln(Q2)to τ . We will use

the same notation τ and the beta funtion β throughout this thesis. Note

that Eq. (2.26) is a 1st order partial di�erential equation whih an be now

solved by integrating the braketed terms
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τ =

∫ αs(Q2)

αs(µ2)

dx

β(x)
. (2.30)

We have to be slightly learer about what we are doing, we now rede�ne

αs(µ
2) = αs as the lower limit and the running oupling as αs(Q

2) as the
upper limit for the integral. Di�erentiating Eq. (2.28), we have

∂αs(Q
2)

∂τ
= β(αs(Q

2)). (2.31)

Note that in perturbative QCD, β is expanded as a series of αs and trunated
at order n.

Figure 2.3: 1-loop β funtion ontribution

2.5 The Callan−Symanzik Equation

The Callan−Symanzik equation is a di�erential equation desribing the evo-

lution of the n-point orrelation Green G(n)
funtions under di�erent energy

sales. The theory involves the de�nition of the beta-funtion. This equation

has the struture

[
µ
∂

∂µ
+ β

∂

∂g
+ nγ

]
G(n)(x1, ..., xn;µ, g) = 0. (2.32)

The parameter β and γ remains unhanged for any n hosen. This simply

implies that both β and γ are independent of the �eld's momenta denoted

by xi. Sine the Green's funtion must be renormalized, β and γ are both

independent of the ut o� sale and with dimensional analysis must also be

independent of the renormalization mass sale µ. This leads to a universal

funtion namely β(g) and an anomalous dimension γ(g) whih depends on

the Green funtion onerned with g as the renormalized oupling.

This leads on to our disussion on the β funtion in the next setion.
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2.6 The β funtion

We have shown that in renormalization theory, there is a lear distintion

between a bare Lagrangian LBare and the renormalized e�etive Lagrangian

Leff . Eq. (2.10) shows that suh in�nite re parameterization is arried out

via the introdution of ounterterms in Fig. (2.1). As disussed, there is

no spei� way of hoosing a sheme with ounterterm oe�ients to anel

the 1/ǫ divergenes. The β funtion expanded perturbatively on the RHS of

Eq. (2.31) is

da

d ln(µ)
= β(a) = −ba2(1 + ca+ c2a

2 + c3a
3 + ...). (2.33)

Notie that the LHS of Eq. (2.32) is the oupling a running logarithmially

with µ. a will be referred as the oupling throughout this thesis. Here we

expliitly relate the oupling with µ, a(µ2) = αs(µ
2)/π = g2(µ2)/4π2

. The

oe�ients in the orresponding β funtion have been algebraially derived

in the MS renormalization sheme [7℄ and [8℄, and [9, 10, 11℄

b =
1

6
(11CA − 2Nf), (2.34)

c =
1

12b
(−3

2
CA[7CA + 11CF ] + 3b[5CA + 3CF ]), (2.35)

cMS
2 =

2857− 5033
9
Nf +

325
27
N2
f

64b
, (2.36)

cMS
3 =

[
3564ζ3 +

149753

6
−
(6508

27
ζ3 +

1078361

162

)
Nf

+
(6472

81
ζ3 +

50065

162

)
N2
f +

1098

729
N3
f

]
/256b. (2.37)

b and c are Renormalization Sheme (RS) invariant whilst c2 and c3 are RS
dependent their values above are alulated in the MS sheme. CA = N (N
is the number of olours) and CF = (N2−1)/2N are adjoint and fundamental

Casimirs, respetively, of the QCD SU(N) theory. Eq. (2.34) to Eq (2.37)

an be rewritten as expansions in powers of b, a form of expansion that will

play a pivotal role in our later disussions of renormalons.
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c = −107
8b

+
19

4
, (2.38)

cMS
2 = −37117

768b
+

243

32
+

325

192
b, (2.39)

cMS
3 =

1218587 + 1389486ξ3
13824b

− 5857771 + 932400ξ3
27648

+
7761 + 1618ξ3

576
b− 1093

6912
b2. (2.40)

The N olor-dependent ontribution arises from gluon and ghost vauum po-

larization ontributions, while the Nf is the number of ative quark �avours.

If b is required to be positive, orresponding to Nf < 33/2 ≃ 17. a(µ) −→ 0
as µ2 −→ ∞ whih is a lear indiation of Asymptoti Freedom. ζn in the

above is the Riemann zeta funtion. Integrating the beta funtion, then one

obtains

∫ a

0

dx

β(x)
= F + ln(µ/Λ) (2.41)

where the onstant of integration F ontain its in�nite part. It is reason-

able to make the hoie F =
∫∞
0
dx/(−bx2(1 + cx)) and the dimensional

transmutation parameter Λ be replaed by Λ̃ de�ned by [12℄.

Λ̃MS =

(
2c

b

)c/b
ΛMS. (2.42)

Using F and Λ, we have

ln
(µ
Λ̃

)
=

∫ ∞

a

dx

bx2(1 + cx)
+

∫ a

0

[ 1

bx2(1 + cx)
+

1

β(x)

]
dx. (2.43)

Eq. (2.43) has two properties, �rst note that seond integral vanishes when

a −→ 0, the seond property is that the seond integral also vanishes again

when we hoose the a so-alled 't Hooft sheme setting c2 = c3... = cn = 0.

The solution for Eq. (2.33) at one loop level (retaining just the �rst term

on the RHS of Eq. (2.33)) is

a(µ2) =
2

b ln(µ2/Λ2)
, (2.44)

and for the two loop level (retaining two terms), the solution may be written

in terms of the Lambert W-funtion
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a(µ2) = − 1

c[1 +W (z(µ))]
, (2.45)

z(µ) = −1
e

(µ
Λ

)− b
c

, (2.46)

de�ned impliitly by W (z)eW (z) = z. For higher loops, a(µ2) will be de-

pendent on the hoies of c2, c3...cn. A useful feature is that in 't Hooft

sheme, a(µ2) may be written expliitly in terms of W (z) as above. To en-

sure asymptoti freedom, it is the W1 branh of the Lambert W-Funtion

whih is required [13, 14℄.

2.7 e+e− into hadrons and Re+e−

γ

e−(q1) e+(q2)

µ−(p1) µ+(p2)

Figure 2.4: e+e− −→ µ+µ− in QED

γ

e−(q1) e+(q2)

q(p1) q̄(p2)

Figure 2.5: The leading order ontribution to the e+e− −→ hadrons in
QCD

Using the Feynman Rules derived in Setion 1.8 and Setion 1.9, we an at

one draw the diagram and write down the amplitude for the e+e− −→ µ+µ−
proess in QED:

M = {v̄(q2)eγµu(q1)}
−gµν

(p1 + p2)2
{ū(p1)eγνv(p2)}. (2.47)

Rearranging and leaving the spin supersripts impliitly, we have
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iM(e+e− −→ µ+µ−) =
ie2

s
(v̄(q2)γ

µ
u(q1)) (ū(p1)γνv(p2)) , (2.48)

where s = (p1 + p2)
2
. In order to ompute the di�erential ross setion,

we need |M |2 whih require us to �nd the omplex onjugate of M . The

bi-spinor produt of (v̄γµu)∗ an be omplex onjugated as follows

(v̄γµu)∗ = u
†(γµ)†(γ0 )†v = u

†(γµ)†γ0 v = u
†γ0γµv = ūγµv . (2.49)

Thus the squared matrix element is

|M |2 = e4

q4
(v̄(q2)γµu(q1)ū(q1)γνv(q2)) (ū(p1)γ

µ
v(p2)v̄(p2)γ

ν
u(p1)) . (2.50)

Note that we are still free to speify any spinors to any desired spin states

of the fermions. In real experiments, it is di�ult to retain ontrol over the

spin states. In most experiments, the beams are unpolarized, thus the ross

setion measured is an average over the spins. We will assume to throw away

the spin information sine muon detetors are normally blind to polarization.

The expression for |M |2 simpli�es by omputing

1

2

∑

s

1

2

∑

s′

∑

r

∑

r′

|M(s, s′ −→ r, r′)|2. (2.51)

Using the ompleteness relations Eq (1.26) and Eq (1.27) from Setion 1.4,

and working with the �rst half of Eq (2.50) by writing in spinor indies so

we an move from one v to the next v , we have

∑

s,s′

v̄
s′

a (q2)γ
µ
abu

s
b (q1)ū

s
c (q1)γ

ν
cdv

s′

d (q2) = (/q2 −m)daγ
µ
ab(/q1 +m)bcγ

ν
cd,

= trae[(/q2 −m)γµ(/q1 +m)γν ].

(2.52)

Evaluating the seond half the same manner, we arrived at desired simpli�-

ation

1

4

∑

spins

|M |2 = 1

4

e4

s2
tr[(/q2 −me)γµ(/q1 +me)γν]tr[(/p1 +mµ)γ

µ(/p2 −mµ)γ
ν ].

(2.53)
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Thus, we have

1

4

∑

spins

|M |2 = 8e4

s2
{p1.q2p2.q1 + p1.q1p2.q2 +m2

µ(q1.q2) +m2
e(p1.p2)}, (2.54)

using the yli property on Eq (2.53) (and trae identity) by bringing it to

the left hand side

tr[(/q2 −me)γµ(/q1 +me)γν ] = 4[q2,µq1,ν + q2,νq1,µ − gµν(q1.q2 +m2
e)],

(2.55)

tr[(/p1 +mµ)γ
µ(/p2 −mµ)γ

ν ] = 4[pµ1p
ν
2 + pν1p

µ
2 − gµν(p2.p1 +m2

µ)].

(2.56)

Negleting fermion masses, we obtained

1

4

∑

spins

|M |2 = 8e4

s2
{p1.q2p2.q1 + p1.q1p2.q2}. (2.57)

In order to alulate

1
4

∑ |M |2 expliitly, suppose

qµ1 = (E, 0, 0, p) (negleting fermion mass p = E) , (2.58)

qµ2 = (E, 0, 0,−E) (enter of mass frame), (2.59)

then the total enter of mass energy is

s = (q1 + q2)
2 = 2q1.q2 = 4E2 → E =

1

2

√
s. (2.60)

The muon has momentum

pµ1 = (E ′, E ′sin(φ)sin(θ), E ′os(φ)sin(θ), E ′os(θ)), (2.61)

pµ1 = (E ′, E ′sin(θ), E ′sin(θ), E ′os(θ)), (due to ylindrial symmetry)

(2.62)

pµ2 = qµ1 + qµ2 − pµ1 ,
= (
√
s−E ′, 0,−E ′sin(θ), E ′os(θ))). (by energy onservation) (2.63)

Sine the anti-muon is massless
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pµ2 .p2,µ = (s−E ′)2 − E ′2sin2(θ)− E ′2os2(θ) = 0→ E ′ = E =
1

2

√
s. (2.64)

Inserting all the relevant expressions into Eq (2.57), the squared matrix ele-

ment is simply

1

4

∑

spins

|M |2 =
8e4

q4
{p1.q2p2.q1 + p1.q1p2.q2},

=
e4

2
{(1 + os(θ))2 + (1− os(θ))2},

= e4(1 + os

2(θ)) (2.65)

The total ross setion will not be possible to be alulated without deriving

the two-body phase spae, let

dPS =
d3p1

(2π)32E1

d3p2

(2π)32E2
(2π)4δ(4)(q1 + q2 − p1 − p2), (2.66)

integrating d3p2 on three spatial δ-funtions, yields

dPS =
d3p1

(2π)34E1E2
δ(
√
s− E1 − E2). (2.67)

Expressing E1 and E2 in terms of integration variables, and using spherial

oordinates:

E1 = |p1| = p, E2 = |p2| = | − p1| = p, (2.68)

d3p1 = p2 dp dos(θ) dφ, (2.69)

the two-body phase spae an be written as

dPS =
1

16π
dos(θ)

dφ

2π
, (2.70)

PS =
dos(θ)

16π
, (2.71)

using the integration of

∫
dφ
2π

= 1 (due to ylindrial symmetry) and inte-

grating out the �nal δ-funtion
∫
dp δ(

√
s− 2p) = 1

2
. The phase spae PS is

related to squared matrix element and di�erential equation by the relation
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dσ =
1

2s

(
1

4

∑
|M |2

)
PS, (2.72)

plugging in |M |2 and PS, the di�erential ross setion and then the ross

setion are simply

dσ

dos(θ)
=

1

2s

1

16π

1

4

∑
|M |2 = πα2

2s

(
1 + os

2(θ)
)
, (2.73)

σ(e+e− −→ µ+µ−, s) =

∫ +1

−1
dos(θ)

dσ

dos(θ)
=

4πα2

3s
. (2.74)

For the leading order ontribution to Figure (2.5), σ(e+e− −→ hadrons, s)lo,
intuitively we an replae the muon harge e with the quark harge Qf |e| (f
denotes the �avour) and ount eah quark three times, one for eah olor,

while �nally summing up the relevant �avours:

σ(e+e− −→ hadrons, s)lo =
4πα2

3s
3
∑

Q2
f . (2.75)

Here we have not inluded the emission of real and virtual gluon into the

alulations. Figure 2.6 depits the Feynman diagrams of real gluon emission

whih leads to 3-jets events in international laboratory.

γ

g(k) g(k)

γ

e−(q1) e+(q2)

q(p1) q̄(p2)

e−(q1) e+(q2)

q(p1) q̄(p2)

Figure 2.6: Real gluon emission

We an now write the amplitude for the real gluon emission (whih on-

tributes partially to next leading order orretion) by referring to the QCD

Feynman Rules

M = e2QfgT
a
ij{v̄(q2)γµu(q1 )}

−gµν
s

×
(
ūi(p1)

[
γσ

/p1 + /k

(p1 + k)2
γν − γν

/p2 + /k

(p2 + k)2
γσ

]
vj (p2 )

)
ǫσa(k).

(2.76)
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Thus, the squared matrix element is

1

4

∑
|M |2 =

4e4Q2
fg

2N

s
CF

× (p1.q1)
2 + (p1.q2)

2 + (p2.q1)
2 + (p2.q2)

2

(p1.k)(p2.k)
, (2.77)

where we have used the olour algebra

∑
T aij(T

a
ij)∗ = T aijT

a
ji = 1

2
δaa =

1
2
(N2 − 1) = N.CF . Performing all the neessary steps as disussed in the

alulation of σ(e+e− −→ hadrons, s)lo using phase spae integral as well as

spinor algebra, we �nally arrive at

σ(e+e− −→ qq̄g, s)nlo =
1

2s

s

16(2π)3

∫
dx1dx2

dos(θ)d(φ)d(α)

2(2π)2
1

4

∑
|M |2,

=
4πα2Q2

fN

3s
CF

αs
2π

∫
dx1dx2

x21 + x22
(1− x1)(1− x2)

,

= σ0CF
αs
2π

∫
dx1dx2

x21 + x22
(1− x1)(1− x2)

, (2.78)

where xi = 2pi/
√
s is the energy fration and αs = g2/4π is the strong-

interation analogue of �ne struture onstant with g2 as the strong intera-
tion oupling. In a 3-jets event, the ross setion diverges where the gluon

is ollinear (results in divergenes when the momentum vetor of the gluon

k is parallel to p1 or p2) with the quark or anti-quark. These events annot

be distinguished experimentally from 2-jets events. To ensure onsisteny,

we have to ompute all ontributions to quark-anti-quark prodution of the

same order of g. This involves also loop diagrams in Figure 2.7

g(k)

e−(q1) e+(q2)

q(p1) q̄(p2)

γ

g(k)

e−(q1) e+(q2)

q(p1) q̄(p2)

γ

g(k)

e−(q1) e+(q2)

q(p1) q̄(p2)

γ

Figure 2.7: Virtual gluon emission

in addition to the real gluon emission in Figure 2.6. Naively, one will think

sine the loop diagrams are of order e2g2 or e2αs, therefore the ontribution
must be of order e4g4 or e4α2

s, implying higher order than the real gluon
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emission whih of order e2g2 or e2αs. Nevertheless, there are interferene

terms with the leading order diagrams, suh interferene ontributes to the

ross setion of order e2g2 or e2αs equivalent to real gluon emission. This

is beause in the loop diagrams, there are ontributions whih the gluon is

almost ollinear with the quark and anti-quark. This gives rise to a similar

divergene in the infrared region but negative. This gives us some hope in

aneling the real divergene to obtain a �nite answer. With the fat that

both have the same physial origin: soft (soft divergenes are divergenes

whih arises from a zero energy gluon Eg = 0, implying x3 = 0) and ollinear

virtual gluons, this furthers inreases our hope of anellation.

The last divergenes we will disuss are ultraviolet divergenes ontribution

from the �rst two diagrams in Figure 2.7.

p1 → p1 + k →

k

Figure 2.8: Ultraviolet divergenes

These two diagrams do not ontribute as they vanish during renormalization

proess by introduing a ounterterm normally being labeled as δ2 plus �nite
terms. The δ2 is gauge dependent. For example, it has no one loop divergene

in Landau gauge ξ = 0.

Figure 2.9: The δ2 ounterterm

Notiing that the two diagrams do not ontribute and regularizing both real

and virtual ross setions, adding them together, a �nite answer will be

obtained and the regularization an be removed later on. This underpin the

foundation of Bloh-Nordsiek theorem. This is only true when one sums

over the �nal states that annot be distinguishable but not in the initial

state. Using d spae time dimensions d = 4− 2ǫ, ǫ < 0,
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σ(e+e− −→ qq̄g, s)nlo = σ0CF
αs
2π

(
22

ǫ
+

3

ǫ
+

19

2
− π2 +O(ǫ)

)
,

(2.79)

σ(e+e− −→ qq̄, s)nlo = σ0CF
αs
2π

(
−2

2

ǫ
− 3

ǫ
− 8 + π2 +O(ǫ)

)
.

(2.80)

Note that adding them up together Eq (2.79) and (2.80) yield a �nite answer

σ(e+e− −→ qq̄g + qq̄, s)nlo = σ0CF
αs
2π

(
3

2

)
,

= σ0
αs
π
, (2.81)

where in the last line, we have made the substitution of CF for QCD with

N = 3

CF =
N2 − 1

2N
=

32 − 1

2(3)
=

4

3
. (2.82)

Adding the leading order Eq (2.75) and next leading order ontribution Eq

(2.81), divided by Eq (2.74), we have the next leading order of the Re+e−

ratio

Re+e−,nlo = 3
∑

f

Q2
f

[
1 +

αs
π

]
. (2.83)

We have not onsider 4-jets and 5-jets events in our alulation, the ratio

itself is still a ompliated matter at present time of writing and our main

study will be the higher order perturbative orretions R(s) denoted by

R(s) = a(s) + r1a
2(s) + r2a

3(s) + r3a
4(s) + ... (2.84)

with r1, r2 and r3 omputed in the MS sheme. R(s) is related to the Re+e−

ratio by

Re+e− = 3
∑

f

Q2
f [1 +R(s)] . (2.85)

Disussions in highlighting the di�ering approahes to the Re+e− ratio will

dominate the ontent of our study. It is worth to note that the Re+e− ratio

dominates at energies far below the Z pole and for energy on the Z pole,
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the analogous quantity is the ratio of the partial deay widths of the Z to

hadrons and to µ+µ− pairs. These results are valid for massless quarks.

For q = u, ..., b, Re+e− = 11/3 and RZ = 20.09 while the measured value

at LEP is muh higher by 3% to 4% due to higher-order QCD orretions.

These provide guidanes in modifying our σ(e+e− −→ qq̄) when making

omparisons to experimental LEP results to test αs.

2.8 Summary

We made in this Chapter a brief introdution into some seletive interesting

topis of perturbative QCD. We began with dimensional regularization and

then moved into renormalization theory and disussed di�erent renormaliza-

tion shemes. The β funtion was then introdued, whih was then used to

de�ne the perturbative orretion to the Re+e− ratio, R(s).

QCD and QED are renormalizable theories. After divergenes are regular-

ized, the troublesome divergent ontributions an be removed by an in�nite

rede�nition of the fundamental onstants of the theory like the oupling and

the quark mass in QCD. In other words, physial quantities are expressed

in terms of renormalized parameters and do not involve any UV divergenes

anymore. Demonstrating the renormalizability of QCD an be an extremely

rigorous theorem. We provided rather a heuristi physial explanation. Large

loop momenta produes UV divergenes. In the event that the loop momenta

are muh larger than its harateristi external momenta, the loop loses its

struture and an be onsidered as a point. We then showed a brief example

of how renormalization is implemented in pratie in the next setion.

We then onsidered a QED one loop orretion to the photon propagator.

Using the QED Feynman Rules, we an write its full expression. We then

performed some ompliated algebrai manipulation and notie that a oun-

terterm needs to be introdued to remove the 1/ǫ divergenes. This serves as
an early exerise to piture the onept of Renormalons(Chains and Bubbles)

with QFT in subsequent hapters.

In QCD, asymptoti freedom and on�nement are introdued. Con�ne-

ment explains why no solitary quarks are observed and why quarks are always

bound within the hadrons by the strong fore arried by gluons. It is im-

portant to stress that perturbation theory is a great mathematial tool to

analyze QCD. A oupling onstant is said to run by being large at low energy

and gradually deeases as energy inreases. This physial behavior is alled
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Asymptoti Freedom. We introdue R a physial observable, dimensionless,

a funtion dependent of energy (whih we will denote as Q)and we took a

zero quark-mass limit. We made the assumption that the energy Q is muh

larger than the quark masses and that the quark mass an be negleted. R
in QCD is dependent on the ratio Q2/µ2

and the renormalized oupling αS.
The hoie of seleting µ is part of speifying the renormalization sheme.

We �nally provide a detail alulation of the Re+e− ratio by �rst alu-

lating the ross setion of e+e− −→ µ+µ− whih then generalizes to Re+e−,lo

ratio at the lowest order by onsidering Qf and number of olours. Real and

virtual gluon emissions are then onsidered to wrap up the alulation of

Re+e−,nlo ratio at the next lowest order before highlighting the importane of

perturbative orretion R(s).



Chapter 3

MS and CORGI

3.1 Minimal Subtration Sheme

The most ommon sheme preferred is the (MS) modi�ed minimal subtra-

tion sheme [5℄. In MS, the fators ln(4π)− γE whih appear together with

the pole 1/ǫ are not subtrated, inMS these fators are ompletely removed

together with the pole 1/ǫ. These two shemes have been popular among

partile physiists as they failitate the alulation and omputational pro-

edure. Nevertheless, there are no theoretial arguments to uniquely prefer

these shemes over any other. There is a omplete demoray in the hoie

of sheme.

As we shall see in Se 3.2 the MS and MS renormalization shemes an

be related exatly to eah other given a NLO alulation (e.g. the oe�ient

r1 in Eq. (2.84)) [15, 16℄.

ΛMS = ΛMS exp

[
rMS
1 (µ)− rMS

1 (µ)

b

]
, (3.1)

rMS
1 (µ)− rMS

1 (µ) =
b

2
(ln(4π)− γE), (3.2)

where the relation

ΛMS =
√
4πe−γE/2ΛMS, (3.3)

obtained is ompletely independent of N and Nf . The only di�erene is the

renormalization sale µ whih arises due to the seletion of sheme. This

implies that by seleting µMS in MS, we have

47
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µMS = 2.66µMS, (3.4)

this emphasises that the meaning of the renormalization sale µ is orrelated

with the hosen subtration proedure. The use of a physial sale hoie re-

lated to the energy of the proess, e.g. µ =
√
s for the perturbative orretion

R(s), does not ,therefore, uniquely speify the sheme.

3.2 Complete Renormalization Group Im-

provement

The original idea of omplete renormalization group improvement(CORGI)

[17℄ was motivated by the problem of sheme dependene in perturbative

QCD. Trunated perturbative series depend on the hosen renormalization

sheme (RS), whih as we shall disuss below, an be spei�ed by the vari-

able τ ≡ b ln(µ/Λ̃), related to the renormalization sale µ, and by the non-

universal beta-funtion oe�ients (c2, c3, . . .). The standard approah used

by experimentalists is to use MS subtration with a �physial� sale hoie

µ = Q , where Q is a �natural� energy sale of the proess, e.g.

√
s for the

R(s) ratio as noted above. Our attitude will be that the sheme-dependene

an be avoided if instead of trunating the series one resum to all-orders

parts of the higher perturbative oe�ients whih are renormalization group

(RG)-preditable. As we shall disuss this preditability re�ets the self-

onsisteny of perturbation theory. This resummation removes the τ and ci
dependene and leads to unique preditions whose unertainty is determined

by unknown but RS-invariant higher orretions. In ontrast theoretial un-

ertainties in the standard approah are dealt with by arbitrary variation of

the sale µ, typially taking µ = Q as the entral value, and µ = 2Q and

µ = 1
2
Q to provide upper and lower error estimates. This approah an give

extremely misleading estimates of the underlying ΛQCD parameter, and the

�theoretial error� has no real meaning.

Without loss of generality, onsider R(s), Eq. (2.84) as perturbative series
where a ≡ αs(µ)/π is the RG improved oupling satisfying Eq. (2.33). We

shall use the notation of Stevenson [18℄, we label the τ ≡ b ln(µ/Λ̃) whih
an be obtained as the solution of the transendental equation

1

a
+ c ln(

ca

1 + ca
) = τ −

∫ a

0

dx(− 1

B(x)
+

1

x2(1 + cx)
), (3.5)

with the non-universal beta-funtion oe�ients c2, c3, .....a(τ, c2, c3, ...) and
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B(x) = x2(1 + cx+ c2x
2 + c3x

3 + ...). (3.6)

Eq. (3.5) is obtained by integrating Eq. (2.33) with a suitable hoie of bound-

ary ondition. Sine τ is dependent on Λ̃, so must be the boundary ondition.

As we shall disuss, assoiated with a given observable R one has a di-

mensionful parameter ΛR (dependent on the partiular observable) whih

is independent of the renormalization sheme and an be related to the di-

mensional transmutation parameter in a partiular subtration sheme , e.g.

ΛMS by

ΛR ≡ er/bΛ̃MS, (3.7)

where we set r ≡ rMS
1 (µ = Q) with a preferene of r1 (NLO perturbative

oe�ient) rather than τ . This is possible beause [18℄

τ − r1 = ρ0(Q) ≡ b ln(Q/ΛR). (3.8)

ρ0 is RS invariant whih implies that τ an be traded for r1. By evaluating

the RHS of Eq. (3.7) in two di�erent shemes one arrives at the Celmaster

Gonsalves relation of Eq. (3.1) [16℄.

Note that the RHS of Eq. (3.7) is independent of the subtration sheme

applied. Thus we an now de�ne a(r1, c2, c3, ...) using Eqs. (3.5, 3.8). For the
perturbative oe�ients ri, there must be a anellation of the RS-dependent
a when the series is resummed to all-orders. Perturbation theory requires self

onsisteny during alulation. This results in a demand that the result of

a NnLO(trunating at rn+1a
n+2

) alulation in two di�erent shemes should

have a di�erene of O(an+2). This leads to the following dependene of the

ri on the sheme parameters

r2(r1, c2),

r3(r1, c2, c3),

. .,

. .,

rn(r1, c2, c3, ..., cn). ., (3.9)

To �nd the general struture of rn on the sheme parameters, we di�erentiate

Eq. (3.5) w.r.t ci,
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∂a

∂ci
= −bβ(a)

∫ a

0

xi+2

β2(x)
dx. (3.10)

Consisteny of perturbation theory for an O(an) alulation then translates

into the statement that

∂R(n)

∂τ
= O(an+1),

∂R(n)

∂ci
= O(an+1). (3.11)

Using Eq. (3.10) and Eq. (3.11) we have for the n = 1 ase

R(1) = a+ r1a
2, β(a) = −ba2(1 + ca), (3.12)

∂R(1)

∂τ
= O(a2),

∂R(1)

∂ci
= O(a2), (3.13)

∂r1
∂τ

= 1,
∂r1
∂c2

= 0. (3.14)

The last equation is obtained by performing a partial di�erentiation on

Eq. (3.13). Integrating the onditions Eq. (3.14), we have

r1 = τ −X0. (3.15)

Inserting into Eq. (3.8), we will now have

X0(Q) ≡ b ln

(
Q

ΛR

)
, (3.16)

this shows that X0 is an RS-invariant and has a genuine physial signi�-

ane. Repeating a similar proedure for n = 2 we will have a further set of

onditions

∂r2
∂r1

= 2r1 + c,
∂r2
∂c2

= −1, ∂r2
∂c3

= 0. (3.17)

Integrating all these onditions and repeating the proedure up to arbitrary

rn, one obtains

r2(r1, c2) = r21 + cr1 +X2 − c2
r3(r1, c2, c3) = r31 +

5

2
cr21 + (3X2 − 2c2)r1 +X3 −

1

2
c3

. .

. .

. . (3.18)
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where the struture an be generalized as

rn(r1, c2, .., cn) = r̃n(r1, c2, ..., c(n−1)) +Xn − cn/(n− 1). (3.19)

r̃n is an nth order polynomial in r1. r̃n an be determined given a om-

plete Nn−1LO alulation. These are the �RG-preditable� piees of higher

oe�ients that we alluded to earlier.

Xn is a onstant of integration and is determined when given a omplete

NnLO alulation. Xn is Q-independent and RS-invariant. Given a N2LO
alulation in the usual MS sheme, the RS invariant X2 will be determined

as the ombination

X2 = rMS
2 (µ = Q)− (rMS

1 (µ = Q))2 − crMS
1 (µ = Q) + cMS

2 , (3.20)

with the renormalization sale µ = Q(energy). A ompleteNnLO alulation

means we have a set of alulated c2 to cn and a omputed set of r1 up to rn.

Eq. (2.84) an then be written in the form

R(Q2) = a + r1a
2 + (r21 + cr1 +X2 − c2)a3

+ (r31 +
5

2
cr21 + (3X2 − 2c2)r1 +X3 −

1

2
c3)a

4, (3.21)

where eah term exhibits the RS-dependene expliitly. a depends on the

sheme parameters suh that

a ≡ a(r1, c2, c3, ...). (3.22)

Given a Feynman diagram of a given order one should resum all known RG-

preditable terms. AtNLO, r1 is determined butX2, X3, ... remain unknown.

Setting R(Q2) ≡ a0 and X2, X3, ..., Xn = 0, the omplete subset of known

terms in Eq. (3.21) at NLO is

a0 ≡ a+ r1a
2 + (r21 + cr1 − c2)a3 + (r31 +

5

2
cr21 − 2c2r1 −

1

2
c3)a

4 + ... (3.23)

The justi�ation to sum these terms, a0, an be understood by the following

arguments. a0 onsist of in�nite subsets of terms where summation of all the

terms leads to an RS independent result, as the X2, X3, ..., Xn = 0 dependent
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terms annot anel their RS-dependene and the fat that Eq. (3.21) is RS-

invariant to all-orders. RS-independene allows us to set r1 = 0, c2 = 0, c3 =
0, ...,, so that all the terms exept the �rst in Eq. (3.23) vanish and we obtain

a0 = a(r1 = 0, c2 = 0, c3 = 0, ..., cn = 0). (3.24)

This is equivalent to 't Hooft sheme with c2, ...., cn = 0 and r1 = 0. Setting
r1 = 0 yields the MS sale µ = e−r/bQ by simple manipulation of Eq. (3.8).

a0 also immediately satis�es

1

a0
+ c ln(

ca0
1 + ca0

) = b ln(
Q

ΛR
). (3.25)

Thus a0 is given by Eq. (2.45) and Eq. (2.46) involving the Lambert W-

funtion, with Λ replaed by ΛR. Λ̃ from Eq (3.7) is based on Stevenson's

[17℄ de�nition whih is di�erent than the standard Λ̃MS, so now we rede�ne

ΛR = er/b(
2c

b
)−c/bΛMS. (3.26)

Given a N2LO alulation, X2 an be omputed. Resumming the augmented

set of X2-dependent RG-preditable terms using Eq. (3.20), we have

X2a
3
0 = X2a

3 + 3X2r1a
4 + ...., (3.27)

and onsequently at N2LO one has

R(Q2) = a0 +X2a
3
0, (3.28)

whih the observable R(Q2) in N2LO form.

Repeating this proedure ontinuously, we will have the CORGI version

of R(Q2) given by

R(Q2)CORGI = a0 +X2a
3
0 +X3a

4
0 + ...+Xna

n+1
0 + ..., (3.29)

whih is simply the perturbation series in the RS with r1 = c2 = c3 = ... =
cn = ... = 0. This immediately results in

a0(µ
2) = a(µ2). (3.30)
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3.3 Disussions on CORGI and Effetive

Charges

A detailed introdution on CORGI and its motivation has been given. It

is worthwhile to review the losely related method of E�etive Charges dis-

ussed by Grunberg [19℄ and to highlight its relationship with the CORGI

approah.

The main idea of the method of E�etive Charges is to reognize that

there is a hoie of RS in whih the QCD observable R(Q2) is equal to the

oupling . That is in the E�etive Charge (EC) sheme the higher perturba-

tive oe�ients vanish, r1 = 0, r2 = 0, r3 = 0, .... The CORGI approah , as

we have seen, orresponds to a hoie of RS with r1 = 0, c2 = 0, c3 = 0, ....
This means that at NLO level CORGI and EC give exatly the same result.

The appliation of E�etive Charges is highlighted in [20℄ whih in the

paper onsiders the dimensionless QCD observable D(Q) = a +
∑∞

1 dna
n+1

(related to the Adler D-funtion and to be disussed in Chapter 4) is equiv-

alent to the renormalized oupling itself. The ouplings a, a in the MS and

EC sheme are related by

β(a) =
da

da
β(a(a)), (3.31)

where the beta-funtion in the EC sheme is given by

β(a) = −ba2(1 + ca+ ρ2a
2 + ...+ ρka

k + ...), (3.32)

with D = a ( the QCD observable being the oupling itself ). Note that

c = ρ1 ensuring sheme invariane. Then Eq (3.31) gives

ρ(D) =
dD

da
β(a(D)), (3.33)

where a(D) is the inverted perturbation series. Expanding the above equa-

tion on both sides and then making re-arrangements gives

d2(d1, c2) = d21 + cd1 + (ρ2 − c2)

d3(d1, c2, c3) = d31 +
5

2
cd21 + (3ρ2 − 2c2)d1 +

1

2
(ρ3 − c3)

. .

. .

. . (3.34)
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One �nds that the Q-independent and RS-invariant EC beta-funtion oef-

�ients ρ2, ρ3, ..., are losely related to the CORGI invariants X2, X3, ... of
Eq.(3.18). One has ρ2 = X2 and ρ3 = 2X3. The onnetion between the

two approahes may be further lari�ed by onsidering that the oupling in

a general RS labelled by a(r1, c2, c3, ...) an be expanded in powers of the

CORGI oupling a0 of Eq.(3.24). One has that

a(0, c2, c3, ...) = a0 + c2a
3
0 +

c3
2
a40 + ... (3.35)

Sine a0 an be written analytially in terms of the Lambert W -funtion as

in eqs.(2.14),(2,15), this enables one to obtain the oupling in a general RS

without solving transendental equations. We shall exploit this approah in

our work on tau deays in Chapter 6. In the EC sheme a = a(0, ρ2, ρ3, ..),
and so the above equation reprodues the CORGI expansion of Eq.(3.20).

Comparing oe�ients one sees that ρ2 = X2 and ρ3 = 2X3, as laimed

above. This shows in partiular that at NNLO the CORGI and EC results

di�er by O(a50), and that in general they will be lose to eah other.

3.4 Summary

The most ommon renormalization sheme among phenomenologists is the

modi�ed minimal subtration sheme. In MS, the fator ln(4π)− γE whih

appears together with the pole 1/ǫ is preserved. In MS, this fator is om-

pletely removed together with the pole 1/ǫ. Nevertheless, there is no om-

pelling theoretial argument to prefer this sheme over any other sheme.

The original idea of a omplete renormalization group improvement (CORGI)

was motivated by problems arising from renormalization sheme dependene

of �xed order perturbative QCD whih leads to a dependene of �xed-order

preditions on the RS, with onsequent large theoretial errors if the stan-

dard physial sale approah of hoosing µ = Q is used. An in�nite subset

of RG-preditable terms should be identi�ed and resummed, resulting in

RS-invariant estimates, with the unertainty due to remaining unalulated

terms in perturbation theory now involving RS-invariant quantities suh as

X2. In Chapter 6 we shall apply CORGI to the inlusive τ -deay ratio Rτ

where the perturbative orretions are rather large.

At the end of this hapter, we wrap up the similarities and di�erenes

between CORGI and E�etive Charges.



Chapter 4

Review of Renormalons

4.1 Divergent Series in Perturbation The-

ory

Divergent series are ommon in mathematis and theoretial physis. Feyn-

man argued that QED an be onsidered equivalently to the theory of the

motion of harges ating on eah other by diret ation from a distant, for

example is the interation between two like harges whih is proportional

to e2 where e is the eletron harge. This led Dyson [21℄ to propose that

suppose the onditions are suh to verify Feynman formulation of the theory,

let (the series in e2)

f(e2) =
∞∑

n=0

fne
2n, (4.1)

be a physial quantity alulated by performing an integration over the equa-

tions of motion of the theory over time whih an be �nite or in�nite. e2 is
always positive. Suppose that the series presribed above onverges for some

e2, f(e2) is then an analyti funtion of e at e = 0.

Then, we an say that for small values of e, f(−e2) is then a well-behaved an-
alyti funtion whih expands as a onvergent power-series. This statement

is not true as the argument presented by Dyson was as follows. Consider a

system of N interating eletrons, from thermodynamis, it is obvious that

the energy of the eletrons will be given by

E ≃ NT +
1

2
N2V e2. (4.2)

55
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where T is the mean kineti energy and V is the mean oulomb potential of

the partile. The number of interating partile pairs is equivalent to ≃ 1
2
N2

.

e2 > 0 orresponds to the usual world where like harges repel and unlike

harges attrat. The ondition −e2 < 0, however, orresponds to a situation
where like harges attrat and unlike harges repel resulting in an unstable

vauum state whih is prone to the reation of more and more partile pairs.

This immediately results in f(−e2) as being an impossible andidate to be

onvergent. To �nd the N whih maximizes E, we di�erentiate Eq. (4.2)

equation and set it to 0, we will then obtain

dE

dN
≃ T +NV e2 = 0, (4.3)

Nmax ≃
T

V |e|2 ≃
1

e2
. (4.4)

This implies that there is no stable minimum and the divergent nature of per-

turbative series emerges when more terms are taken into aount. Therefore

we have

fn+1

fn
≃ 1

e2
≃ Nmax ≃ n, (4.5)

⇒ fn ≃ n!, (4.6)

as the fne
2n

terms derease for n < Nmax. This an lead us to onlude that

perturbation series in QED are divergent with oe�ients growing like n! in
nth order. This n! growth is onneted with a �vauum instability� ut at

e2 = 0. It is su�e to end the disussions here on the relationship between

energy and divergent series in perturbation theory without disussions on the

alternatives presribed in [21℄.

4.2 Asymptoti Series and Borel Summa-

tion

Consider the dimensionless observable R, a divergent series expanded as

R =

∞∑

n=0

rna
n. (4.7)
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This series is said to be asymptoti inside the domain C of the omplex a-
plane if the series diverges for all a/=0, and there exist oe�ients rN suh

that

|R−
N∑

n=0

rna
n| ≦ rN+1|a|N+1. (4.8)

There will be error whih arises from the trunation of the series but the

error is muh less than the negleted terms. This allows us to trunate the

series at n = Nopt rather than taking n to ∞, where Nopt orresponds to

trunation at one term before the smallest in magnitude. This then provides

the optimal approximation.

Disovered by Emile Borel, an asymptoti funtion an be transformed

into a series by using the method of Borel Summation. If rn ≃ n!, the Borel
transform of the series is then de�ned as

B[R](z) =
∞∑

n=0

rn
n!
zn. (4.9)

We will normally arrange our QCD perturbation series so that r0 = 1. The
RHS of this equation will now have a �nite radius of onvergene, allowing

us to write

R =

∫ ∞

0

dz

a
e−z/a

∞∑

n=0

rn
n!
zn. (4.10)

This is permitted sine integrating the expression term by term and using

the result

∫ ∞

0

dze−z/azn = n!an+1, (4.11)

reprodues the original series for R. If this has a �nite radius of onvergene
then B[R](z) will have an in�nite radius of onvergene. The usual sum of

the series for R is then equal to the Borel sum. Borel summation is said to

be a �regular� summation method.

R =

∫ ∞

0

dz

a
e−z/aB[R](z). (4.12)
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For the ase of interest where R has a zero radius of onvergene, B[R](z)
will have a �nite radius of onvergene, and may be analytially ontinued

outside of the radius of onvergene onto the whole integration range [0,∞].

R ≈

∫ ∞

0

dz

a
e−z/aB[R](z). (4.13)

≈ means "asymptoti to". So the idea is that the divergent asymptoti

series is asymptoti to the funtion orresponding to the Borel integral. The

appliation of Borel transformation to the Adler D funtion will be disussed

in the next hapter.

4.3 Bubbles and Chains

Renormalons are a ertain pattern of divergene of perturbative expansions

in quantum �eld theories present at all orders and arising from a ertain lass

of diagrams, and related to their small and large momentum behavior. To

demonstrate the mehanism of how suh divergenes emerge, we return to the

example of a QED one loop orretion in Chapter 2 and shown in Fig. (2.2).

Fig. (2.2) an be represented by the diagram illustrated in Fig. (4.1), by mak-

ing lear that we do not inlude the external gauge QED photon propagator

(denoted as hain) oupled to both sides of the fermion loop whih we will

denote as the (bubble). Fig. (4.1) shows a diagram of a fermion loop and a

photon propagator.

= −iΠµν(k
2)

= −i(k2gµν − kµkν)Π0

= −iP µν(k2)
= −i

(
gµν

k2
− (1− ξ)kµkν

k4

)

Figure 4.1: A fermion loop diagram and the photon propagator with their

expressions

Any lass of diagrams whih ontains hains of bubbles were disovered to

produe renormalon divergenes. Fig. (4.2) gives a learer piture of an n-
bubble hain. The omplete vauum polarization funtion Π(k2) ontains
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ontribution from the diagram ontaining just a single n-bubble hain whih

is shown in Fig. (4.3).

µ ............................. ν

1 2 n

= µ ν =B(n)
µ ν(k2)n

Figure 4.2: A single n bubble hain

n

Figure 4.3: An n-bubble hain inserted into a fermion loop

Suh ontributions an be lassi�ed as diagrams ontaining an internal,

omplete gauge boson propagator. The n-bubble hain in Fig. (4.2) an be

expressed as

Bµν
(n)(k

2) =

(−iP µβ1)(−iΠβ1α2)(−iP α2β2)(−iΠβ2α3)...(−iP αnβn)(−iΠβnαn+1)(−iP αn+1ν),

and then further simpli�ed into

Bµν
(n)(k

2) =
n∏

k=1

[(−iP αkβk)(−iΠβkαk+1
)](−iP αn+1ν). (4.14)

Substituting µ = α1 and after some simple algebra, it is obvious that

P αkβkΠβkαk+1
=

1

k2
Παk
αk+1

. (4.15)
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B (k2) = +

++

+

+.................................................................

Figure 4.4: Summing bubble hains from n = 0 to ∞

Note that the produt P αkβkΠβkαk+1
is gauge-independent despite the fat

that it onsists of strings of propagators whih are gauge ξ-dependent. Eval-
uating the produt of Eq. (4.15) yields

n∏

k=1

[Παk
αk+1

] = Πα1
αn+1

Πn−1
0 (k2)n−1. (4.16)

Thus, Eq. (4.14) an be expressed as

Bµν
(n)(k

2) =
−1n
k2

Πα1
αn+1

Πn−1
α0

(−iP αn+1ν)

= (−1)n(Π0)
n(
i

k2
)[gµν − kµkν

k2
], (4.17)

whih in fat orresponds to evaluation in the Landau gauge, ξ = 0. One has

Bµν
(n)(k

2) = (−1)n(Π0)
n(
i

k2
)[−iP µν(k2, ξ = 0)] (4.18)

This is the omplete gauge boson propagator. It is the sum of all possible

diagrams with two external photon lines only and suh exat alulations

would orresponds to trunating the perturbative series at the ∞th order.

This is something whih we will not do. Therefore, we restrit the alula-

tion to just inlude one loop diagrams without onsidering any higher-loop

diagrams for simpliity. This means performing the onstrution of diagrams

with only the above �bubble' orretions to the �bare� gauge boson propaga-

tor. As demonstrated in Fig. (4.4), summing over Bµν
(n)(k

2) from n = 0 to ∞
and inluding one loop ontributions only, the omplete photon propagator.
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Bµν(k2) an be expressed as

Bµν(k2) = −iP µν(k2) +
∞∑

n=1

Bµν
(n)(k

2)

= (
−i
k2

)[gµν − kµkν

k2
]
∞∑

n=0

(−1)n(Π0)
n + (

−i
k2

)
kµkν

k2
ξ

= (
−i
k2

)[gµν − kµkν

k2
]

1

1 + Π0
+ (
−i
k2

)
kµkν

k2
ξ. (4.19)

It is interesting to see how a single fermion bubble diagram ontaining a

single internal, omplete gauge boson propagator ontributes to the vauum

polarization funtion Π(q2) as represented in Fig. (4.5). This represents the

entire set of diagrams with the nth order ontribution of Fig. (4.3). The

diagram in Fig. (4.5) has an nth order term assoiated with an n! fator, this
ontributes to what we have disussed in length as "renormalon divergenes".

4.4 Large-Nf approximation for vauum po-

larization

Instead of onsidering the vauum polarization funtion itself, it is useful to

study a losely related objet known as the Adler D funtion. The Adler D

funtion plays a ruial role in providing a theoretial desription of strong

interation proesses like the e+e− annihilation into hadrons whih is heav-

ily based on this funtion. At high energies, perturbation theory remains

the most reliable tool for alulating the Adler D funtion. The Adler D-

funtion is proportional to the logarithmi derivative of Π(s) with respet to

s. This allows us to avoid an unspei�ed onstant assoiated with Π(s). We

shall de�ne it more arefully in Chapter 5. Expanded in the oupling a in

perturbative QCD we have

D = a +
∞∑

n=1

dna
n+1. (4.20)

We will explain its relation to the parton model result and R(s) in Chapter

6.

Note that the nth term in D(q2) and Π(q2) are derived from the same

diagram. So dna
n+1

will ontain ontributions from diagram in Fig. (4.6)

the alulation of whih simply involves ombining the expression for an n-
bubble hain, Bµν

(n)(k
2) with the relevant fermion propagators of the loop and
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then integrating over the loop momentum of the fermion loop p and that of

the photon momentum k. This leads to

= + +......+1 2 n

Figure 4.5 Diagram of a omplete photon propagator inserted into a bubble

dna
n+1 ∼ a

∫
d4k

(2π)4
d4p

(2π)4

×
[
Bσρ

(n)(k
2)Tr(γν

1

6 p+ 6 q+ 6 kγρ
1

6 p+ 6 qγµ
1

6 pγσ
1

6 p+ 6 k )

+ 2Bσρ
(n)(k

2)Tr(γν
1

6 p+ 6 qγµ
1

6 pγσ
1

6 p+ 6 kγρ
1

6 p)
]

(4.21)

∼ a

∫
d4k

(2π)4
d4p

(2π)4

[
Bσρ

(n)(k
2)Xνρµσ + 2Bσρ

(n)(k
2)Xνµσρ

]
. (4.22)

X and X are the tensor strutures found by evaluating

Xνρµσ = Tr(γν
1

6 p+ 6 q+ 6 kγρ
1

6 p+ 6 qγµ
1

6 pγσ
1

6 p+ 6 k ), (4.23)

Xνµσρ = Tr(γν
1

6 p+ 6 qγµ
1

6 pγσ
1

6 p+ 6 kγρ
1

6 p). (4.24)

Eah oe�ient dn may be expanded in powers of Nf

dn = d[n]n N
n
f + d[n−1]n Nn−1

f + . . .+ d[0]n . (4.25)

The leading d
[n]
n Nn

f term orresponds to evaluating the one-hain diagrams

of Fig(4.6). The sub-leading Nn−1
f term arises from two-hain diagrams as in

Fig. (4.7) , whih generates a ontribution of order al+m+2N l+m
f ∼ an+1Nn−1

f

.
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+ 2

q
p

p+q k+p+q

n

q
k+p

k
q q

p+k

p+q

k

n

Figure 4.6 : Contribution to dna
n+1

The large-Nf all-orders result an desribe QED vauum polarization, but

for QCD the orretions to the gluon propagator involve gluon and ghost

loops (see Fig(2.3)), and are gauge (ξ)-dependent. The result for Π0(k
2) f.

Eq. (2.24) is proportional to −Nf/3 whih is the �rst QED beta-funtion

oe�ient, b. In QCD one expets large-order behaviour of the form dn ∼
Knγ(b/2)nn! (γ is the frational exponent related to the anomalous dimen-

sion) involving the QCD beta-funtion oe�ient b = (33− 2Nf)/6 [22℄, it is
natural to replae Nf by (33/2− 3b) to obtain an expansion in powers of b

dn = d(n)n bn + d(n−1)n bn−1 + . . .+ d(0)n . (4.26)

The leading-b term d
(L)
n ≡ d

(n)
n bn = (−3)nd[n]n bn an then be used to approxi-

mate dn to all-orders. One imagines that the fermion bubble hains in QED

are replaed by hains of e�etive QCD bubbles involving gauge invariant

ombinations of gluon and ghost ontributions, so that for both QED and

QCD

Π0(k
2) =

ba

2
(ln
−k2
µ2

+ C), (4.27)

with either b = −2Nf

3
, or b = (33−2Nf)/6. It is onvenient to use a partiular

hoie of RS, the V -sheme whih orresponds to using the MS sheme with

a sale µ2 = Q2e−5/3. This ensures that C = 0, so that

Π0(k
2) =

ba

2
ln
−k2
Q2

. (4.28)

We have

d[n]n N
n
f a

n+1 ∼ a

×
∫

d4k

(2π)4
d4p

(2π)4
[Bσρ

(n)(k
2)Xνρµσ + 2Bσρ

(n)(k
2)Xνµσρ](4.29)

= a

∫
d2k̃

k̃2
F (k̃2)(−Π0)

n. (4.30)
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where we integrate over fermion loop momenta p and the angle of the gluon

momentum k. F (k̃2) itself is ompliated and its exat expression an be

found in [23℄. Here we have introdue the notation k̃2 = −k2/Q2
. The

oe�ient d
[n]
n (V ) is expliitly given by [24, 25℄

d[n]n (V ) =
−2
3
(n + 1)

(−1
6

)n

×


−2n− n+ 6

2n+2
+


 16

n + 1

∑

n
2
+1>m>0

m(1− 2−2m)(1− 22m−n−2)ζ2m+1




n!.

(4.31)

This has n! growth and an be resummed using Borel summation as we shall

see in Chapter 5. Hene, using the presentation in [26℄,

d[n]n N
n
f a

n+1 = a

∫
d2k̃

k̃2
F (k̃2)

(
ba

2
ln
k̃2Q2e−5/3

µ2

)n

, (4.32)

⇒ D ≃
∞∑

(n=0)

d[n]n N
n
f a

n+1 =

∞∑

(n=0)

a

∫
d2k̃

k̃2
F (k̃2)

(
ba

2
ln
k̃2Q2e−5/3

µ2

)n

.

(4.33)

l

m

Figure 4.7 : A double hain ontribution to D(k̃2)

Provided that the renormalization sale µ is kept �xed to the order of per-

turbation theory, the dominant ontributions to the integral ome from both

regions of small k ≪ Q and large k ≫ Q behavior of F (k̃2).

F (k̃2) = 3CF k̃
4 +O(k̃6 ln(k̃2)) (4.34)

F (k̃2) =
2CF
3

1

k̃2

(
ln(k̃2) +

5

6

)
+O

(
ln(k̃2)

k̃4

)
(4.35)

This onludes that the ultraviolet and infrared �niteness of the Adler D

funtion implies that F (k̃2) must have a power like approah to zero in both
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regions. Splitting the integral of Eq. (4.33) at k̃2 in both regions, we will

obtain

D = CF

∞∑

(n=0)

an+1

[
3

4

(
Q2

µ2
e−5/3

)−2(
− b
2

)n
n! +

1

3

(
Q2

µ2
e−5/3

)(
n+

11

6

)
bnn!

]
.

(4.36)

The �rst term from small k̃ and the seond from large k̃. The singularities

in the Borel plane lie at t = −2/b for IR renormalon and t = 1/b for UV
renormalon with the Borel transform given by

B[D](u) =
3CF
2

(
Q2

µ2
e−5/3

)−2
1

2− u (1st IR Renormalon)

+
CF
3

(
Q2

µ2
e−5/3

)[
1

(1 + u)2
+

5

6

1

1 + u

]
(1st UV Renormalon)

(4.37)

Here we de�ne u = −bt. Note that this is not the exat Borel transform

for Fig. (4.6). The exat Borel transform for the Adler D funtion will be

de�ned in Chapter 5.

Multi-hain diagrams in QED have been analyzed that higher order orre-

tions in 1/Nf do not modify renormalon singularities exept their strength

indiated by b. As the loation of the singularities are a funtion of b, we will
have di�erent loation of UV and IR renormalons in QED and QCD. We will

highlight a few important harateristis of UV renormalons, IR renormalons

as well as their di�erenes with instantons in QCD brie�y.

Ultraviolet renormalons are loated at t = m/b, m are positive integers

implying u = −1,−2, ... UV renormalons produe alternating sign fatorial

divergenes. All UV renormalons are double poles, restriting oneself to the

bubble diagram of Fig. (4.6). The �rst singularity u = −1 has been analyzed

in detail using renormalization group method, whih turned out to be a om-

pliated branh point struture attahing to it. They are theory-spei� but

proess-independent (proess-dependene fatorizes and is alulable). In 4-

dimensions, UV renormalons are always loated at positive integer multiples

of 1/b although there are exeptional ases if the theory ontains power di-

vergenes (begins at some negative integer multiples of 1/b) or in the ase of

heavy quark e�etive theory (an our at half-integer u).
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Infrared renormalons are loated at t = −m/b, with m = 2, 3, ... implying

u = 2, 3, ... This result in the minimal term assoiated with this subseries is

of order (Λ/Q)4 (this will be learer as we go along Chapter 5 and 7) due

to the �rst IR renormalon. Contrary to UV renormalons, IR renormalons

are µ-independent suggesting that its ambiguities might have physial signif-

iane. For the Adler funtion, we an assoiate them with the absene of

dimension-2 ondensate in the OPE as the u = 1 singularity is absent. All

IR renormalons are double poles exept for u = 2, whih is a single pole.

The �rst singularity has been analyzed in detail using renormalization prop-

erties of gluon ondensate whih it was onluded that the pole turned into

a branh ut with struture simpler than the �rst UV renormalon.

Instantons are also known to produe divergent series but as they arry

topologial harge, they are unrelated to perturbative expansion in QCD. In

QCD, instanton singularities are far away from the origin of Borel plane im-

plying that it plays insigni�ant role in large-order behaviour of perturbative

expansion in QCD.

UV renormalons

t = m/b, m = 1, 2, ...

IR renormalons

t = −m/b, m = 2, 3, ...

Instantons-anti-instantons

singularities at 4π, 8π

Figure 4.8: Singularities in the Borel plane of Π(k2), the orrelator funtion
in QCD. Shown are UV renormalons, IR renormalons and instantons

4.5 Summary

We began this hapter by introduing divergent series in perturbation theory

and the appliation of the Borel method to de�ne an asymptoti series as a

funtion. We later explained bubbles and hains in a very informal manner

showing all the details step by step and its relation to the Adler D funtion.

A brief introdution to the Adler D funtion as a divergent series was made

and we �nally pointed out what a "renormalon" is, distinguishing between
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UV and IR renormalons orresponding to large and small momenta- k �ow-

ing through the fermion or e�etive QCD bubble hains.

We end the hapter by highlighting the theoretial analysis on UV and IR

renormalons while making a brief introdution to instantons.



Chapter 5

IR Freezing of Eulidean

QCD Observables

5.1 Introdution

Fixed-Order Perturbation Theory in QCD has proved suessful in making

aurate approximations to physial observables at large energies, Q2
. Nev-

ertheless, suh a perturbative approah breaks down below the Landau pole

Q2 = Λ2
, this is due to non-perturbative e�ets in the Infrared region. Non-

perturbative information is essential to make perturbation theory sensible

as higher perturbative oe�ients exhibit fatorial growth making the series

not onvergent. Resummed perturbation series an be represented by a Borel

integral whih is ambiguous due to singularities on the positive real axis (also

known as Infrared Renormalons) of the Borel plane. These ambiguities are

in the form of powers of Λ2/Q2
and we will disuss them in more detail in

Chapter 7. In this hapter, we will demonstrate how to use Borel summation

to resum the �leading-b� terms in perturbative orretions to the Polarized

Bjorken Sum Rule KpBj, Unpolarized Bjorken Sum Rule UuBJ and the Adler

D funtion to all orders. We begin by de�ning the three Eulidean quantities

of interest but �rstly with a heuristi detailed desription on deep inelasti

sattering, struture funtions, parton distribution funtion and an overview

of sum rules.

5.2 DIS and Sum Rules

Deep inelasti sattering (DIS) or high energy lepton-nuleon sattering plays

a role in understanding the partoni struture of the proton. We will not

touh on the detailed kinematis of DIS. Deep inelasti struture funtions

68
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provide not only some of the most preise test to the theory but also mo-

mentum distributions of partons in hadrons. The struture funtion Fi(x,Q
2)

(where Q2 = −q2 with q as the four-momentum transfer from an exhanged

partile like photon or Z to the nuleon and x is the fration of nuleon's

momentum arried by struk quark) whih parameterize the struture of the

target as 'seen' by the virtual photon - are de�ned in terms of lepton satter-

ing ross setions. In the hadroni region Q2 << Λ2
, the wavelength of the

photon is too small to resolve the struture of the nuleon and the nuleon

simply undergoes elasti sattering. At higher values of Q2
, Q2 > Λ2

, the

sattering beomes inelasti as the photon starts to resolve the substruture

of the nuleon and, in partiular, the momentum fration arried by the par-

tons.

The Bjorken limit (or Bjorken saling) is de�ned as the independene of the

struture funtion on Q2
where F1(x,Q

2) −→ F1(x) and F2(x,Q
2) −→ F2(x)

implying sattering from point-like onstituents within the proton. In this

limit, the struture funtion obey an approximate saling law. The parti-

ipating struture funtion for an unpolarized (neutral- and harged-urrent

DIS on unpolarized nuleons) proton target are F ν
2 , xF

ν
3 , F

ν̄
2 , xF

ν̄
3 , F

em
2

and 2xF1 = F2. em denotes neutral urrent arises from neutral urrent

eN −→ eX (N denotes nuleon and X denotes hadrons) proesses whih

involves photons and Z exhange. ν denotes harge urrent struture fun-

tions whih exlusively derived from W exhange proesses like eN −→ νX
or νN −→ eX . Polarized DIS involve the heliities (±1) of the inoming

lepton and nuleon with �ve struture funtions g1,....5(x,Q
2). For e− or ν

initiated proesses, the di�erene to the polarized ross setion arises from

the di�erene of anti-parallel minus parallel spin, for e+ or ν̄ initiated pro-

esses, this is the opposite. Note that there is the same tensor struture

between the spin-dependent and spin-independent parts of hadroni tensor,

thus the substitution of F1 −→ −g5, F2 −→ −g4 and F3 −→ −2g1 in alu-

lation of the ross setion is allowed. g2 and g3 are suppressed by powers of

M2/Q2
(M denotes nuleon mass) for longitudinal nuleon while for trans-

verse nuleons, the ross setion di�erene vanishes as M/Q −→ 0. Using

the Callan-Gross relations F i
L = 0 and the Dius relations giL = 0, there are

two independent polarized struture funtions g1 (onserves parity) and g5
(violates parity), in analogy to F1 and F3.

In quark-parton model, Fi and gi are expressed in parton distribution fun-

tions q(x,Q2) of the proton where q = u, ū, d, d̄, s, c, b and g. q(x,Q2)dx is

the number of that partiular parton arrying a momentum fration between

x and x + dx of the proton's momentum in a frame in whih the proton
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momentum is large.

Integrals over ertain ombinations of parton distribution funtions had par-

tiular values in the parton model, suh integrals are alled sum rules. In

QCD, these sum rules remain valid up to perturbative orretions. This sum

rules provide onstraints on parton distributions and tests of onservation law

up to the measurement of αs. Most of the famous sum rules are ombination

of these sum rules

∫ 1

0

uv(x)dx = 2,

∫ 1

0

dv(x)dx = 1,

∑

q

∫ 1

0

x[q(x) + q̄(x)]dx =

∫ 1

0

x[uv(x) + dv(x) + 6S(x)]dx ≈ 0.5.

Here, we have assumed the sea of quarks of the partile (in this ase a pro-

ton) to be symmetri in quark �avors (whih the partile has an in�nite sea

of light qq̄ pairs) where we have u(x) = uv(x) + S(x), d(x) = dv(x) + S(x)
and S(x) = ū(x) = d̄(x) = s(x) = s̄(x). The subsript v denotes the word

valene. Note the last sum rule

∑
q

∫ 1

0
x[q(x) + q̄(x)]dx is obtained through

experiment. The interpretation of the sum rule indiates the perentages of

the partile's momentum (in this ase a proton) arried by the partons (in

this ase quarks) whih is equivalent to 50%. And the rest are arried away

by gluons.

In the partoni region Q2 >> Λ2
, the shape of the quark and gluon dis-

tributions hanges quikly at very low x. The sea beomes more �avour

symmetri. This is beause at low x, the evolution is �avour-independent,

and there are more and more sea quarks and gluons. This on�rms the foun-

dational predition of QCD whih was veri�ed by the HERA experiments at

DESY.

However, there is not a unique set of Parton Distribution Funtions being

ommonly aepted. There are several groups ompeting to provide the best

parametrization of the parton distributions. They do not use the same input

data, parameterisation, treatment of heavy quarks, value of the oupling on-

stant as well as the way the estimation of the experimental and theoretial

errors are treated. A reommended on line program written by professional

groups is at the link:

http://hepdata.edar.a.uk/pdf/pdf3.html
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By hanging the parameters set in the program, we did not just verify all the

fats on the parton distribution funtion but also from the shape and area

under the urve, we an predit the expetation values of the sum rules.

5.3 The Gross-Llewellyn-Smith Sum Rule

The GLS Sum Rule applies to the F3 struture funtion measured in neutrino-

and antineutrino-proton sattering, in the parton model, it has a value of 3.
The sum rule is de�ned as

GGLS =
1

2

∫ 1

0

F ν̄p+νp
3 (x,Q2)dx. (5.1)

In the parton model this is given by,

GGLS =

∫ 1

0

(
u(x)− ū(x) + d(x)− d̄(x)

)
dx,

but inorporating QCD orretions we have,

GGLS = 3(1− 3

4
CFG(Q

2)),

where G(Q2) is de�ned as,

G(Q2) = a +G1a
2 +G2a

3 + ........ (5.2)

G1, G2 and G3 are the oe�ients alulated in the MS sheme.

5.4 The Gerasimov-Drell-Hearn Sum Rule

The GDH Sum Rule is expliitly disussed in [27℄. The GDH Sum Rule

relates the heliity struture of the ross setions in the inelasti region with

ground state properties. Base on the physis law like Lorentz and gauge

invariane, ausality and unitarity, GDH Sum Rule is important for us to

hek our understanding on the hadroni struture. There are many forms

of GDH Sum Rule written in di�erent forms and notations. In general, the

GDH Sum Rule is expressed as

I1(Q
2) =

2M2

Q2

∫ 1

0

[
g1(x,Q

2)− 4x2M2

Q2
g2(x,Q

2)

]
dx, (5.3)
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where x = Q2/2Mν with M being the nuleon mass and ν being the energy

transfer. Note that the quark distribution funtion are related to densities

for longitudinal and transverse quark polarization denoted by f ↑,↓i and f→,←i .

e denotes the value of the harges of the quarks while i denotes the quark

�avour

g1(x,Q
2) −→ g1(x) =

1

2

∑

i

e2i

(
f ↑i − f ↓i

)
, (5.4)

g2(x,Q
2) −→ g2(x) =

1

2

∑

i

e2i (f
→
i − f←i )− g1(x). (5.5)

We will revisit GDH Sum Rule in Chapter 7 under usual experiment ondition

by negleting g2(x,Q
2) ontribution and relating it to the polarized Bjorken

Sum Rule.

5.5 Polarized Bjorken Sum Rule

The polarized Bjorken Sum Rule is de�ned via the spin-dependent proton

and neutron struture funtions gep1 , g
en
1 with x = Q2/2Mν, ν denotes the

energy transfer and M is the nuleus mass. At extremely large Q2
, KpBj

arrived at its renowned value of = |gA/6gV |. At �nite Q >> Λ, KpBj is

dominated by perturbative orretions K(Q2) to the parton model sum rule

in an

KpBj ≡
∫ 1

0

gep−en1 (x,Q2)dx

=
1

6

∣∣∣∣
gA
gV

∣∣∣∣
(
1− 3

4
CFK(Q2)

)
, (5.6)

where gV and gA are the nuleon vetor and axial vetor ouplings. K(Q2)
is de�ned as,

K(Q2) = a+K1a
2 +K2a

3 + ........ (5.7)

K1,K2 andK3 are the oe�ients alulated in theMS sheme. Higher-twist

terms are not taken into aount. [28, 29℄
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5.6 Unpolarized Bjorken Sum Rule

The unpolarized Bjorken Sum Rule for F1 struture funtion of νN deep

inelasti sattering still remains experimentally unheked. However at Neu-

trino Fatories, there is a possibility to determine the xF νN
and xF ν̄N

stru-

ture funtions whih provides the �rst experimental determination of the

unpolarized Bjorken Sum Rule. The unpolarized Bjorken Sum Rule is given

by

UuBj ≡
∫ 1

0

F νn−νp
1 (x,Q2)dx.

In the parton model, this is given by

UuBj =

∫ 1

0

(
u(x)− ū(x)− d(x) + d̄(x)

)
dx.

UuBJ is related to the Adler isospin Sum Rule UuBj2 and the Callan-Gross

relation for νN deep inelasti sattering UuBjL by

UuBj(Q
2) = UuBj2(Q

2) + UuBjL(Q
2),

where,

UuBj2(Q
2) =

∫ 1

0

F νn−νp
2 (x,Q2)

dx

2x
= 1,

UuBjL(Q
2) =

∫ 1

0

F νp−νn
L (x,Q2)

dx

2x
.

Inorporating QCD orretions we have [30℄,

UuBj(Q
2) =

(
1− 1

2
CFU(Q

2)

)
, (5.8)

where higher-twist terms are negleted and

U(Q2) = a+ U1a
2 + U2a

3 + ........ (5.9)

U1, U2 and U3 are oe�ients also alulated in the MS sheme [28, 29℄.
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5.7 Q2−Dependene Of The Eulidean Ob-
servables

We follow the presentation and notation of [31℄ [32℄ very losely, and refer

the reader there for more details. The Adler D funtion D(Q2) is de�ned as

the logarithmi derivative of Π(Q2) with respet to the energy Q2

D̃(Q2) = −3
4
Q2 d

dQ2
Π(Q2), (5.10)

where Π(Q2) is the QCD vauum polarization funtion. Π(Q2) is related to

the orrelator of the two vetor urrents

(qµqν − gµνq2)Π(Q2) = 16π2

∫
d4xeiq.x < 0|T [Jµ(x), Jν(0)]|0 >, (5.11)

where qµ is a vetor satisfying q2 = Q2
. The funtion Π(Q2) an be alu-

lated from the diagrams in Fig. (5.1).

Eq. (5.10) onsists of the parton model result and the QCD orretions,

D(Q2),

D̃(Q2) = N
∑

f

Q2
f (1 +

3

4
CFD(Q2)). (5.12)

N is the number of olours and Qf is the harge of quark �avour f . We

neglet here �light-by-light� terms whih will be mentioned in Chapter 6.

Here D(Q2) is given by two terms

D(Q2) = DPT (Q
2) +DNP (Q

2), (5.13)

where the �rst term is the perturbative term and the seond term is the

non-perturbative term. The perturbative term is given by

DPT (Q
2) = a(Q2) +

∑

n>0

dna
n+1(Q2), (5.14)

where a(Q2) = αs(Q
2)/π is the renormalized oupling and for one loop ap-

proximation (whih we have disussed in Setion 2.6)

a(Q2) =
2

b ln(Q
2

Λ2 )
(5.15)

as the plots in this hapter will just be a simple model using just one loop

approximation. Use of the one loop oupling together with the �leading-b�
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ontributions to the perturbative oe�ients automatially ensures that the

all-orders resummations are independent of the RS sale µ, whih is the only

soure of RS-dependene at the one loop level. Q2 = −q2 > 0 is the single

spae like energy sale. D(Q2) −→ 0 as Q2 −→ ∞ thanks to asymptoti

freedom. We will not take into aount non-perturbative ontributions aris-

ing from the OPE (Operator Produt Expansion). These will be overed in

Chapter 7. In this hapter we shall be onerned with trying to resum to all-

orders the perturbative �leading-b� terms disussed in Chapter 4 Eq. (4.26).

The polarized Bjorken (KpBj) Sum Rule is de�ned in Eq. (5.6) and the

orresponding GLS Sum Rule in Eq. (5.1). G(Q2) and U(Q2) are split into
perturbative (PT) and non-perturbative (NP) parts just like the ase for

D(Q2). Note that ontributions due to "light-by-light" diagrams are omitted

for the perturbative orretions to the GGLS and KpBj.

q q

q q

q q

k

k

k

n

n

n

1

1 2

2
21

Figure 5.1: Leading large Nf ontributions of Π(Q2) at nth order

1 12 2 2 1

n
n

n

Figure 5.2: Leading large Nf ontributions to KpBJ , UuBJ and GGLS at nth

order

Fig. (5.2) provides the leading Nf ontributions to all these sum rules.

These large Nf results will be used to ompute the leading-b all-orders re-

summation of these perturbative orretions denoted by D
(L)
PT (Q

2), K
(L)
PT (Q

2)

and U
(L)
PT (Q

2).

We reall from Chapter 4 that in the large Nf limit, we an expand dn as
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dn = d[n]n N
n
f + d[n−1]n Nn−1

f + ... + d[0]n , (5.16)

where d
[n]
n is the leading large Nf oe�ient whih an be omputed to all-

orders from a set of Feynman diagrams Fig(5.1). Replaing Nf = (33/2−3b),
we will then obtain an expansion of the form

dn = d(n)n bn + d(n−1)n bn−1 + ... + d(0)n , (5.17)

where omputation of the �leading-b�, d
(L)
n ≡ d

(n)
n bn to all-orders based on

large-Nf results is possible. One an then arrive at an all-orders leading-b

result by resumming the d
(L)
n an+1

terms using a Borel transform tehnique.

We will now write the Borel transform of D
(L)
PT found in [33℄,

B[D
(L)
PT ](z) =

∞∑

n=1

A0(n)− A1(n)zn
(1 + z

zn
)2

+
A1(n)zn
(1 + z

zn
)

+
∞∑

n=1

B0(n) +B1(n)zn
(1− z

zn
)2

− B1(n)zn
(1− z

zn
)
, (5.18)

where

A0(n) =
8

3

(−1)n+1(3n2 + 6n+ 2)

n2(n+ 1)2(n+ 2)2

A1(n) =
8

3

b(−1)n+1(n + 3
2
)

n2(n+ 1)2(n+ 2)2

B0(1) = 0,

B0(2) = 1,

B0(n) = −A0(−n), n ≥ 3 (5.19)

B1(1) = 0,

B1(2) = − b
4
,

B1(n) = −A1(−n), n ≥ 3

zn =
2n

b

Here zn ≡ 2n
b
give the positions of IR renormalons at z = zn and UV renor-

malons at z = −zn in the Borel plane. We will derive the Borel transform

of D
(L)
PT expliitly in the next setion by using a skeleton expansion and on-

verting it to the Borel representation by a hange of variable. This turns out

to be muh easier than evaluating the result using the two loop one-hain
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result for d
[n]
n (V ) in Eq. (4.31). The Borel transform of K

(L)
PT and U

(L)
PT whih

have a simpler struture struture than that for the Adler D funtion an be

written as [34℄

B[K
(L)
PT ](z) =

4

9

1

1 + z
z1

− 1

18

1

1 + z
z2

+
8

9

1

1− z
z1

− 5

18

1

1− z
z2

, (5.20)

and

B[U
(L)
PT ](z) =

1

6

1

1 + z
z2

+
4

3

1

1− z
z1

− 1

2

1

1− z
z2

. (5.21)

They are muh simpler as they ome from inserting hain of n-bubbles into
a tree level diagram shown in Fig. (5.2), rather than inserting into a quark

loop. Eq. (5.20) has 4 poles while Eq. (5.21) has three poles in ontrast to

Eq. (5.18) whih has an in�nite amount of poles.

The following resummed expressions for D
(L)
PT (Q

2),K
(L)
PT (Q

2) and U
(L)
PT (Q

2)

D
(L)
PT (Q

2) =

∞∑

n=1

zn

{
e(zn/a(Q

2))Ei

( −zn
a(Q2)

)[
zn

a(Q2)
(A0(n)− z1A1(n)− znA1(n))

]

+ (A0(n)− znA1(n))

}
+

∞∑

n=1

zn

{
e(−zn/a(Q

2))Ei

(
zn

a(Q2)

)[
zn

a(Q2)
(B0(n) + z1B1(n)

− znB1(n))

]
− (B0(n) + znB1(n))

}
, (5.22)

K
(L)
PT (Q

2) =
1

9b

[
− 8e(−z1/a(Q

2))Ei

( −z1
a(Q2)

)
+ 2e(−z2/a(Q

2))Ei

( −z2
a(Q2)

)

+ 16e(−z1/a(Q
2))Ei

(
z1

a(Q2)

)
− 10e(−z2/a(Q

2))Ei

(
z2

a(Q2)

)]
, (5.23)

U
(L)
PT (Q

2) =
1

3b

[
8e(−z1/a(Q

2))Ei

(
z1

a(Q2)

)

− 6e(−z2/a(Q
2))Ei

(
z2

a(Q2)

)
− 2e(z2/a(Q

2))Ei

( −z2
a(Q2)

)]
, (5.24)

an easily be obtained using the standard integrals involving the Ei(x) fun-
tion
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∫ ∞

0

dz(
e−

z
a

1 + z
zn

) = −zne
zn
a Ei(−zn/a), (5.25)

∫ ∞

0

dz
e−

z
a

(1 + z
zn
)2

= zn[1 +
zn
a
e

zn
a Ei(−zn/a)]. (5.26)

The Ei(x) funtion known as the exponential integral funtion [35℄ is de�ned

as

Ei(x) = −
∫ ∞

−x
dt
e−t

t
, (5.27)

for x < 0. For x > 0, only the prinipal value of the integral is onsidered

and an be expanded suh that

Ei(x) = ln |x|+ γE +O(x), (5.28)

for small values of x. For the regionQ2 < Λ2
, the one loop oupling Eq. (5.15)

hanges sign on passing throughQ2 = Λ2
and we need to introdue a modi�ed

Borel representation introdued and motivated in [31℄, expanded in powers

of |a| given by

D
(L)
PT (Q

2) = −
∫ ∞

0

dze−z/|a(Q
2)|B[D

(L)
PT ](−z), (5.29)

by making a hange of sign on

a(Q2) −→ −a(Q2),

zn −→ −zn,

and then adding an overall (-) in Eqs. (5.22), (5.23) and (5.24). It is straight-

forward to see that these equations are invariant under these hanges. We

expliitly heked this by making these alteration to the odes in Maple re-

quired to plot Eqs. (5.22), (5.23) and (5.24). This worked suessfully.

Changing A1 −→ −A1 and B1 −→ −B1 in Eq. (5.22) are neessary as

they ontain zn in their de�nitions. 1/b also needs to hange sign sine it has

been fatorized from z1, z2 in Eqs. (5.23) and (5.24).

[31℄ provides a deeper analytial disussion on Eqs. (5.20), (5.21) and

(5.18). Our plots of Eqs. (5.22), (5.23) and (5.24) obtained with Maple are

shown in Fig. (5.3). [31℄ and [32℄ learly explains and disusses the analytial
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behavior of Eqs. (5.22), (5.23) and (5.24) suh that they obey the following

relations when Q2 −→ Λ2
.

D
(L)
PT (Q

2 = Λ2) =
∞∑

n=1

zn[A0(n)−B0(n)]−
∞∑

n=1

z2n[A1(n)− B1(n)] ln(n)

≈ 0.679938

b
(5.30)

K
(L)
PT (Q

2 = Λ2) ≈ − 8

9b
ln 2 (5.31)

U
(L)
PT (Q

2 = Λ2) ≈ − 8

3b
ln 2 (5.32)

These leading-b results hange sign in the viinity of Q2 = Λ2
, where they

remain �nite , and as Q2 → 0 they approah the freezing limit of 0. The

Q-dependene is only pieewise analyti, with only the �rst three derivatives

d
d lnQ

for D(L)(Q2) being �nite, and only the �rst derivative for the sum rules.

The full result inluding non-perturbative e�ets must be an analyti funtion

of Q2
. This will be further disussed in Chapter 7.

5.8 Skeleton Expansion And Borel Repre-

sentations For The Adler Funtion

We begin by re-writing the leading Adler D funtion expressed in leading

term of the skeleton expansion whih arises from the integral orresponding

to a hain of bubbles

D
(L)
PT =

∫ ∞

0

dtω(t)a(eCtQ2). (5.33)

Here t = k2/Q2
. ω(t) is the harateristi funtion and C is the standard

MS subtration sheme onstant = −5/3. In this thesis, we will set C = 0.
This orresponds to the V-sheme with the renormalization sale

µ2 = e−5/3Q2. (5.34)

The harateristi funtion ω(t) is normalised suh that

∫ ∞

0

dtω(t) = 1. (5.35)
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Figure 5.3: Q2
-dependene of the perturbative orretions to the observables

in Eqs. (5.22), (5.23)and (5.24), resummed to all orders in the leading-b

approximation. All plots by Maple 11

We will now demonstrate how to onvert the skeleton expansion into a

Borel representation by introduing the vauum polarization funtion Π(Q2)
of Eq. (5.11) being re-de�ned as,

Π(Q2) =

∫ ∞

0

dtωΠ(t)a(tQ
2). (5.36)

where the harateristi funtion ωΠ(t) in the t ≤ 1 ←→ IR region is given

by

ωΠ(t) = −t
4

3
tΞ(t), (5.37)

and for the t ≥ 1←→ UV region

ωΠ(t) = −
1

t

4

3
tΞ(

1

t
). (5.38)
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Nevertheless, these 2 regions are related by the onformal symmetry t −→
1/t.

Classi QED work in [36℄ shows that Eq. (5.36) an be obtained simply by

adding appropriate olor fators. This is related to the Bethe-Salpeter kernel

for the sattering light-by-light. It is also the �rst term in a well-de�ned QED

skeleton expansion. Fig. (5.4) is the diagram of the relevant kernel

Figure 5.4: Light-by-light sattering diagrams for ωΠ(t) alulation

The diagrams in Fig. (5.4) an reprodue the topology of Fig. (5.1). The

QCD skeleton expansion is problemati and we will avoid its detailed disus-

sion ompletely. Let us de�ne Ξ(t)

Ξ(t) =
4

3t
[1−ln(t)+(

5

2
− 3

2
ln(t))t+

(1 + t)2

t
[L2(−t)+ln(t) ln(1+t)]], (5.39)

with L2(x) as the dilogarithmi funtion given by

L2(x) = −
∫ x

0

dy
ln(1− y)

y
. (5.40)

The relation between the Adler D funtion and the vauum polarization

funtion Π(Q2) given by Eq. (5.5) will have a one-hain skeleton expansion

term assoiated with ωD(t
2) where

D
(L)
PT (Q

2) =

∫ ∞

0

dtωD(t)a(tQ
2). (5.41)

ωD(t) is obtained by applying Eq. (5.5) on ωΠ(t)

D
(L)
PT (Q

2) = −3
4
Q2 d

dQ2

∫ ∞

0

dtωΠ(t)t

(
a(tQ2)

t

)
,

= +
3

2b
Q2 d

dQ2

∫ ∞

0

dt
d

dt
[ωΠ(t)t] ln[a(tQ

2)],

(5.42)
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and then integrating by parts

= −3
4

∫ ∞

0

dt[ωΠ(t) + t
d

dt
ωΠ(t)]a(tQ

2).

This indues a transformation in ωΠ(t) suh that

Π(Q2) −→ Q2 d

dQ2
Π(Q2) = −4

3
D(Q2)⇒ ωΠ(t)

−→ ωΠ(t) + t
d

dt
ωΠ(t) = −

4

3
ωD(t), (5.43)

spoiling the onformal symmetry present in ωΠ(t). ωD(t) are more ompli-

ated in the UV and IR regions

ωIRD (t) =
8

3
[(
7

4
− ln(t))t+ (1 + t)[L2(−t) + ln(t) ln(1 + t)]], (5.44)

ωUVD (t) =
8

3
[1 + ln(t) + (

3

4
− 1

2
ln(t))

1

t
+ (1+ t)[L2(−t−1)− ln(t) ln(1 + t−1)]].

(5.45)

We will now expand ωΠ(t)in powers of t. The expressions in both the IR

and UV regions onsists of expansion in t and an expansion multiplied by a

logarithm whih is

ωIRΠ (t) = −4
3
(

∞∑

n=1

ξnt
n + ln(t)

∞∑

n=2

ξ̂nt
n). (5.46)

By the onformal symmetry expressed in Eq. (5.37) and Eq. (5.38) implies

that the UV part an be written in terms of ξn and ξ̂n

ωUVΠ (t) = −4
3
(

∞∑

n=1

ξnt
−n − ln(t)

∞∑

n=2

ξ̂nt
−n). (5.47)

This steps are neessary to ensure us to write the Borel representations of

D
(L)
PT (Q

2) =

∫ ∞

0

dze−z/a(Q
2)B[D

(L)
PT ](z), (5.48)

in the region Q2 > Λ2
and

D
(L)
PT (Q

2) = −
∫ ∞

0

dze−z/|a(Q
2)|B[D

(L)
PT ](−z), (5.49)

in the region Q2 < Λ2
, onverted from skeleton expansion. This is done by

making a hange of variables.



CHAPTER 5. IR FREEZING OF EUCLIDEAN QCD OBSERVABLES83

ξn and ξ̂n are extrated by omparing Eq. (5.39) to Eq. (5.47) and Eq. (5.48)

and are found to be

ξn>1 =
4

3

(2− 6n2)(−1)n
(n− 1)2n2(n + 1)2

,

ξ̂n>1 =
4

3

2(−1)n
(n− 1)n(n + 1)

, (5.50)

ξ1 = 1,

ξ̂1 = 0.

As we have disussed previously an indued transformation through Eq. (5.44)

is neessary, this permits us to express ωD(t) in a similar expansion

ωIRD (t) =
∞∑

n=1

[ξn(1 + n) + ξ̂n]t
n + ln(t)

∞∑

n=2

ξ̂n(n+ 1)tn, (5.51)

ωUVD (t) =

∞∑

n=1

[ξn(1− n)− ξ̂n]t−n + ln(t)

∞∑

n=2

ξ̂n(n− 1)t−n. (5.52)

With the above expansions, we an now represent D
(L)
PT (Q

2) in terms of

a Borel integral. Expressing D
(L)
PT (Q

2) in terms of ωD(t) whih is then split

into the IR and UV regions

D
(L)
PT (Q

2) =

∫ ∞

0

dtωD(t)a(tQ
2)

=
∞∑

k=0

a(Q2)

∫ 1

0

dtωIRD (t)(−ba(Q
2)

2
ln(t))k

+
∞∑

k=0

a(Q2)

∫ ∞

1

dtωUVD (t)(−ba(Q
2)

2
ln(t))k

= a(Q2)

∞∑

k=0

(−ba(Q
2)

2
)k[

∫ 1

0

dt(

∞∑

n=1

[ξn(1 + n) + ξ̂n]t
n

+ ln(t)

∞∑

n=2

ξ̂n(n+ 1)) ln(t)k +

∫ ∞

1

dt(

∞∑

n=1

[ξn(1− n)− ξ̂n](t)−n

+ ln(t)

∞∑

n=2

ξ̂n(n− 1)t−n)(ln(t))k]. (5.53)



CHAPTER 5. IR FREEZING OF EUCLIDEAN QCD OBSERVABLES84

We have used the mathematial relation below in deriving the above expres-

sion

a(xy) = a(y)

∞∑

k=0

(−ba(y)
2

ln(x))k. (5.54)

Using the fat that at n = 1

[ξn(1− n)− ξ̂n] = 0,

this allows us to omit the term from the D
(L)
PT (Q

2).

D
(L)
PT (Q

2) an be transformed into a Borel integral of the form Eq. (5.49)

with a hanges of variables

z = −a(Q2)× (n+ 1) ln(t) −→ IR,

z = a(Q2)(n− 1) ln(t), −→ UV,

in their respetive regions. Using integration by parts, we manage to remove

the extra ln(t) term in the integral. The standard Borel representation should

be of the form

D
(L)
PT (Q

2) =

∫ ∞

0

dze−z/a(Q
2)[

∞∑

n=1

[ξn(1 + n) + ξ̂n]

n + 1

1

1− bz
2(n+1)

−
∞∑

n=2

ξ̂n(n + 1)

(n+ 1)2
1

(1− bz
2(n+1)

)2
]

+

∫ ∞

0

dze−z/a(Q
2)[
∞∑

n=2

[ξn(1− n)− ξ̂n]
n− 1

1

1 + bz
2(n−1)

+

∞∑

n=2

ξ̂n(n− 1)

(n− 1)2
1

(1 + bz
2(n−1))

2
], (5.55)

for Q2 > Λ2
, a(Q2) > 0 of Eq. (5.49), and for Q2 < Λ2

, a(Q2) < 0, we will

have the modi�ed Borel representation of Eq. (5.50) with its upper limit at

−∞. Making ontat with Eq. (5.18), the following relations an be identi�ed

ξn(1 + n) + ξ̂n
n + 1

= −B1(n + 1)zn+1, (5.56)

for n ≥ 1
ξn(1− n)− ξ̂n

n− 1
= A1(n− 1)zn−1, (5.57)
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for n ≥ 2, for the single pole residues and

−ξn(1 + n)

(n+ 1)2
= B0(n+ 1) +B1(n+ 1)zn+1, (5.58)

for n ≥ 2
ξn(1− n)
(n− 1)2

= A0(n− 1)− A1(n− 1)zn−1, (5.59)

for n ≥ 2, for the double pole residues. The equations above are veri�ed by

substituting ξn and ξ̂n given by Eq. (5.19) into Eq. (5.51).

Note that expliit derivation of all relations have been performed with penil

and paper as well as solved in Maple for exerise.

For further details, please refer to [31℄ whose alulational steps we have

largely followed.

5.9 Summary

We begin with a brief introdution on deep inelasti sattering, struture

funtions, sum rules and then disussing the signi�ane of �xed-order Per-

turbation Theory in QCD whih has been very suessful in making aurate

approximations to physial observables at large energies, Q2
. Nevertheless,

suh a �xed-order perturbative approah breaks down below the Landau

pole. Non-perturbative information is essential to make perturbation theory

sensible as higher perturbative oe�ients exhibit fatorial growth making

the series not onvergent. Resummed perturbation series an be represented

by a Borel integral whih is ambiguous due to singularities on the positive

real axis (also known as Infrared Renormalons) of the Borel plane.

We then moved on to introdue the Polarized Bjorken Sum Rule KpBJ

and the Unpolarized Bjorken Sum Rule UuBJ , relating them to the Parton

model and their orresponding perturbative orretions.

The Adler D funtion is �rst introdued as a logarithmi derivative of the

QCD vauum polarization funtion with respet to the energy. The funtion

itself is alulated from a set of diagrams in Fig. (5.1). It is then fairly

straightforward that from the parton model result, the QCD orretions an

be split into perturbative PT and non perturbative NP parts. Let us just

fous on the PT part for now whilst disussion of the physial interpretation

of the NP part will be made in Chapter 7. Fig. (5.2) shows the leading Nf
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ontributions for the KpBJ , UuBJ and GGLS sum rules at leading order. A

very brief introdution on leading-b approximation is then made whih is

essential beause all these large Nf results will be used to ompute leading-b

all orders resummations of the perturbative orretions disussed. We then

write the Borel transform of B[D
(L)
PT ](z), B[K

(L)
PT ](z) and B[U

(L)
PT ](z) where the

struture for the last two are simpler with a �nite number of poles in ontrast

to B[D
(L)
PT ](z) whih has an in�nite number. The reason that they are muh

simpler omes from the fat that one is inserting a hain of n-bubbles into a
tree level diagram shown in Fig. (5.2) whih is muh simpler than insertion

into a quark loop. A brief analysis of its mathematial behavior makes a

ompletion to the setion. Fig(5.3) shows the leading-b approximations for

D
(L)
PT , and the K

(L)
PT and U

(L)
PT Sum Rules.

The rigorous mathematial derivation of the Borel transform for D
(L)
PT

was performed by using a one-hain skeleton expansion. We begin this task

by re-writing the leading Adler D funtion expressed in leading term of the

skeleton expansion whih arises from the integral orresponding to the hain

of bubbles. The omputation has been arried out in the V-sheme where

C = 0 whih we were using throughout this thesis. The harateristi fun-

tion is then introdued for IR and UV regions whih they also ful�ll the

renormalization ondition setting them equal to 1 when integrated from 0
to ∞. The vauum polarization funtion is dependent on the harateristi

funtion and upon ompleting ertain equations, diret omparisons ould

be made to verify the Borel transform of the Adler D funtion disussed in

the previous setion. We �nally show the existene of single and double pole

behavior in its orresponding Borel transform.

The Borel transform of the Adler D funtion is the main ingredient of

this thesis for our N3LO Renormalon resummations and our derivation for

fully analyti perturbative QCD.



Chapter 6

Numerial Calulation of

R(s) and Rτ

6.1 Re+e− in 4 shemes

We begin with the de�nition of the dimensionless observable the Re+e− ratio

for some value of the enter of mass energy

√
s

Re+e−(s) =
σTOT (e

+e− −→ hadrons)

σ(e+e− −→ µ+ µ−) = 3
∑

f

Q2
f [1+R(s)]+

(
∑

f

Qf

)2

R (s),

(6.1)

where Qf is the eletri harge of eah quark �avour and the sum is over

the di�erent �avours. R(s) denotes the QCD perturbative orretions to the

parton model result and an be expressed as

R(s) = a +
∑

n>0

rna
n+1, (6.2)

where quarks produed in eletromagneti interations beome part of the

�nal-state hadrons. a = αs(µ
2)/π is the renormalized oupling. The oe�-

ients r1, r2 and r3 are omputed in the (MS) sheme using the renormaliza-

tion sale µ2 = s. Full expressions of the oe�ients will be provided in the

next setion. R (s) omes from the "light-by-light" part in the �gure below,

and has a (
∑
Qf )

2
dependene.

87
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e−

e+

q

q

Figure 6.1 : Light-by-light orretions diagram

The ratio Re+e− is related diretly to the transverse part of the orrelator

of two vetor urrents in the Eulidean region with the ondition that s =
−q2 > 0. In order to avoid an unspei�ed onstant, the logarithmi derivative

with respet to s was onsidered and the Adler D funtion was de�ned and

given by Eq. (5.12). We now an replae the perturbative orretion R(s)
with D(s) written as a perturbative series

D(s) = a +
∑

n>0

dna
n+1. (6.3)

By analytial ontinuation from Eulidean to Minkowskian, one may notie

that the Minkowskian observable R(s) an be related to D(−s) by the dis-

persion relation,

R(s) =
1

2πi

∫ s+iǫ

s−iǫ
dt
D(−t)
t

. (6.4)

It is very lear from the expression above that the 'landau pole' in the ou-

pling a(s) laying along the positive real s-axis an now be well-de�ned. Thus

R(s) will be de�ned for all s. The dispersion relation an now be expliitly

expressed as

R(s) =
1

2π

∫ π

−π
dθD(seiθ), (6.5)

where we perform an integration around a irular ontour in the omplex

energy-squared s-plane. It is worth noting that the dispersion relation of

Eq. (6.5) is valid for values of s > Λ2
above the 'Landau pole'. The idea

whih leads to the 'ontour-improved' perturbation series omes from the

expansion of D(seiθ) as a power series in a ≡ a(seiθ), and performing the

integration of θ term-by-term, where at eah order, an in�nite subset of ana-

lytial ontinuation terms present in Eq. (6.2) are resummed. This omplete

analytial ontinuation, as we shall see, serves to freeze R(s) with an infrared
limit as s→ 0 of R(0) = 2/b.

As an example, we begin by onsidering the 'ontour-improved' series for

a one loop oupling. The one loop oupling whih we have introdued in the
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β funtion setion is given by

a(s) =
2

b ln(s/Λ2
MS

)
. (6.6)

Now, we will onsider the "ontour-improved" perturbation series for R(s)
by rewriting

R(s) = A1(s) +
∞∑

n=1

dnAn+1(s), (6.7)

where the funtion An(s)

An(s) =
1

2π

∫ π

−π
dθan =

1

2π

∫ π

−π
dθ

an(s)

[1 + ibθa(s)/2]n
, (6.8)

are obtained by applying the ontour integration on the oupling. Suh

integral are evaluated in losed-form as

A1(s) =
2

πb
arctan(

πba(s)

2
),

An(s) =
2an−1(s)

πb(1− n)Im[(1 +
ibπa(s)

2
)1−n]. (6.9)

We an then obtain the one loop "ontour improved" series for R(s),

R(s) =
2

πb
arctan(

πba(s)

2
)+d1[

a2(s)

(1 + b2π2a2(s)/4)2
]+d2[

a3(s)

(1 + b2π2a2(s)/4)2
]+...

(6.10)

As s → 0 one has A1(0) = 2/b as the freezing limit, whereas Ai(0) = 0 for

the higher i > 1 funtions. We see that this proedure resum in eah order

an in�nite set of terms involving powers of π2b2, whih arise from the ana-

lytial ontinuation. Sine these terms are large they should be resummed

to all-orders to ahieve aurate approximations, and this is preisely what

the Contour Improved (CIPT) approah ahieves.

We will move now to a onsideration of the two loop "ontour improved"

perturbation series to alulate results in the MS, CIPT, CORGI and CIPT

+ CORGI sheme. Further disussions on the physial behavior of the one

loop "ontour improved" perturbation series are presented in Ref. [37, 38℄.

Beyond the simple one loop approximation, the freezing ould be analyzed by

seleting a renormalization sheme with the beta funtion equation written

in its two loop form

∂a(µ2)

∂ lnµ2
= − b

2
a2(µ2)(1 + ca(µ2)). (6.11)
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This is the 't Hooft sheme in whih we set all the non-universal beta-

funtion oe�ients to zero. Here c = (153 − 19Nf)/12b is the seond

universal beta funtion oe�ient. In these shemes, the oupling an be

expressed analytially in losed form in terms of the Lambert W funtion

where W (z)exp(W (z)) = z [13℄. Note that ln(z), as all logarithms has

di�erent branhes, thus the branhes an be seleted so that Re(W ) has

the interval [−∞,∞] and Im(W ) with the interval [−iπ, iπ]. The other

branhes has the same interval for Re(W ) with the imaginary part taking

a set of intervals [iπ, 3iπ], [−iπ,−3iπ] and et. These orresponds to the

branhes having a branh ut along the negative real axis in the z-plane.
The Lambert-W funtion has a similar struture assuming the funtion is

large and real. For the limit Re(W ) −→ ∞ and Im(W ) with the interval

[−iπ, iπ] orresponds to the prinipal branh denoted by W0. In the simi-

lar limit Re(W ) −→ ∞, W±1 have the interval [±iπ,±3iπ]. Analogously,

W±n have the interval [±niπ,±(n + 2)iπ] where n is a positive integer for

Re(W ) −→ ∞. Nevertheless, for the limit Re(W ) −→ −∞, W±1 have an-

other imaginary intervals running from [0,±2iπ] with [±2iπ,±4iπ] for W±2
and so on. The prinipal branh W0 loses up at the point on the real axis

where Re(W ) = −1 and is the only branh with a branh ut along the neg-

ative real axis starting at z = −1
e
while the other branhes have their branh

uts along the negative real z axis in the z plane. One of the important

harateristi is Wn(z) = W ∗
−n(z

∗). Other important properties essential to

the algebrai manipulation will be pointed out as the thesis proeeds.

Solving, the two loop beta funtion, one will then have

a(µ2) = − 1

c[1 +W−1(z(µ))]
, (6.12)

z(µ) = −1
e
(
µ

Λ̃MS

)(−b/c), (6.13)

by solving the beta funtion. Λ̃MS is de�ned onventionally in Ref. [39℄ and

is related to the standard de�nition

Λ̃MS = (2c/b)−c/bΛMS, (6.14)

provided in [12℄. The "-1" subsript orresponds to the branh ut of the

Lambert W funtion and is the branh ut whih will preserve asymptoti

freedom. Intuitively, the seletion was made based on the neessity to have a

real oupling with large µ. The only 3 branhes of the Lambert-W funtion

whih an take real values are W0 and W±1. W0 will not provide asymptoti

freedom as −→ 0, µ −→ 0 giving a non-zero oupling. W−1 is hosen as we
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demand W (z(µ)) to be ontinuous against µ in the omplex plane. The W1

branh will return non-zero imaginary part for µ = |µ| when expeting a real

oupling. For a detail tehnial disussion on the seletion of the branhes,

we advise reader to refer [14℄. Reader an also onvine themselves by mak-

ing a plot of Eq. (6.12) with real positive oupling in di�erent branhes to

understand the seletion of the branhes better.

We selet the renormalization sale µ2 = xs, where x is an arbitrary dimen-

sionless onstant, for the perturbation series of D(s) in Eq. (6.2). Expanding
the integrand in Eq. (6.4) for R(s) in powers of a ≡ a(xse1θ) expressed in

terms of Lambert W funtion using Eq. (6.12), we will obtain

a =
−1

c[1 +W (A(s)eiKθ)]
, (6.15)

where

A(s) = −1
e
(

√
xs

Λ̃MS

)−b/c, K =
−b
2c
. (6.16)

Using Eqs. (6.12), (6.13) and (6.15), the funtion An(s) in the "ontour

improved" series are omputed

An(s) =
1

2π

∫ π

π

dθan =
1

2π

∫ 0

−π
dθ

(−1)n
cn

[1 +W1(A(s)e
iKθ)]−n

+
1

2π

∫ π

0

dθ
(−1)n
cn

[1 +W−1(A(s)e
iKθ)]−n . (6.17)

It is neessary to apply the appropriate branhes of the Lambert-W funtion

in the two di�erent regions of integration and by making a hange of variable

w = W (A(s)eiKθ), one will obtain

An(s) =
(−1)n
2iKcnπ

∫ W−1(A(s)eiKπ)

W1(A(s)eiKπ)

dw

w(1 + w)n−1
. (6.18)

Noting the relationship between the +1 and the -1 branh uts in the Lambert-

W funtion W1(A(s)e
−iKθ) = [W−1(A(s)e

iKθ)]∗, we an then evaluate the

elementary integral

A1(s) =
2

b
− 1

πKc
Im[ln(W−1(A(s)e

iKπ))], (6.19)

for n = 1, where 2/b is the residue of the pole at w = 0. For n > 1, we have

An(s) =
(−1)n
cnKπ

Im[ln(
W−1(A(s)e

iKπ)

1 +W−1(A(s)eiKπ)
) +

n−2∑

k=1

1

k(1 +W−1(A(s)eiKπ))k
],

(6.20)
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where the �rst four funtions A1(s), A2(s), A3(s) and A4(s) are plotted versus

sx/Λ̃2
MS

in Fig. (6.2) with Nf = 5 �avours of quark. Note that the �gures

show that the Ai(Q) all show the behavior of asymptoti freedom, approah-

ing zero as Q→∞. A1(0) = 2/b, whereas for i > 1 one has Ai(0) = 0.

Note that we only ompute An(s) in the 't Hooft sheme where we only

onsider a two loop beta funtion. To avoid onfusions with n > 2 loops, we

set the two loop An(s) funtion as

A(0)1(s) = A1(s), (6.21)

A(0)n(s) = An(s). (6.22)

For higher loops beta funtion, our urrent interest is the 4 loop beta funtion

to math the latest alulation for d3 given in Ref. [40℄, we have

∂a(µ2)

∂ lnµ2
= − b

2
a2(µ2)(1 + ca(µ2) + c2a

2(µ2) + c3a
3(µ2)). (6.23)

Theoretially, the solution for a(µ2) in a 4 loop beta funtion an be solved

by onsidering a(µ2) as a perturbative series of a(µ2) = −1/c[1+W−1(z(µ))]
(the solution for a(µ2) in a 2 loop beta funtion) whih for onveniene and

to avoid onfusion is set suh that a(µ2) = −1/c[1 +W−1(z(µ))] = a0. Thus
a4(µ

2) (the solution of a in 4 loop beta funtion) is

a4(µ
2) = a0(µ

2) + k1a
2
0(µ

2) + k2a
3
0(µ

2) + k3a
4
0(µ

2) + k4a
5
0(µ

2). (6.24)

By equating the oe�ients of the beta funtion on both sides of this expres-

sion we an �x the ki as

k1 = 0,

k2 = c2,

k3 =
1

2
c3,

k4 =
1

3
c22 +

1

2
c3 +

4

3
cc2 −

2

3
cc3. (6.25)

Expressions for c2, c3 and all the orresponding variables required to �t for

αs using the MS, CIPT, CORGI and the CIPT + CORGI versions of PT

will be given in the next setion. Sine we an expand a4(µ
2) = a0(µ

2) +
k1a

2
0(µ

2)+k2a
3
0(µ

2)+k3a
4
0(µ

2)+k4a
5
0(µ

2), we an write our 4-loop oupling as

a sum of a0 terms. Sine a0 is known analytially in terms of the Lambert-W
funtion we avoid having to solve the transendental 4-loop beta-funtion
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equation, whih makes alulations more straightforward. Similarly a 4-loop

A(4)n(s) funtion an be expanded perturbatively with a two loop A(0)n(s)
funtion suh that

A(4)1(s) = A(0)1(s) + k2A
3
(0)1(s) + k3A

4
(0)1(s) + k4A

5
(0)1(s), (6.26)

A(4)n(s) = A(0)n(s) + k2A
3
(0)n(s) + k3A

4
(0)n(s) + k4A

5
(0)n(s). (6.27)

Note that Eqs. (6.21) and (6.22) are essential for the alulation in the

CORGI and CIPT + CORGI version while Eqs. (6.26) and (6.27) are needed

for the CIPT version. Thus, the orretion R(s) to the 4-loop Re+e− in the

MS (version 2) and CIPT (version 3) are

R(s)MS = a4(µ
2) + r1a

2
4(µ

2) + r2a
3
4(µ

2) + r3a
4
4(µ

2) (6.28)

R(s)CIPT = A(4)1(s) + d1A(4)2(s) + d2A(4)3(s) + d3A(4)3(s) (6.29)

while the orretion R(s) to the 4-loop Re+e− in the CORGI(version 1) de-

rived with great detail in Chapter 3 and CIPT + CORGI (version 4) is given

by

R(s)CORGI = a(µ2) +X2Ra(µ
2)3 +X3Ra(µ

2)4 (6.30)

R(s)CIPT+CORGI = A(0)1(s) +X2DA(0)3(s) +X3DA(0)4(s) (6.31)

The last equation is the appliation of the "ontour improved tehnique" in

the CORGI sheme (version 1).
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Figure 6.2 : The funtion A1(s), A2(s), A3(s) and A4(s) against sx/Λ̃MS -

showing asymptoti freedom behaviour. All plots by Maple 11
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6.2 Analytial preditions of τ in 4 ver-

sions

It is useful to �t data for R(s) to the parameter τs ≡ b ln(
√
s/Λ̃MS). This

is a onvenient hoie whih an easily be onverted into αs(MZ) or Λ̃MS

as required. As disussed, we shall onsider four versions of perturbation

theory for R(s), and make �ts for the orresponding values of τ whih we

denote τMS, τCIPT , τCORGI and τCIPT+CORGI whih an be extrated from

Eqs. (6.28), (6.29), (6.30) and (6.31). Regrouping all the essential equations

R(s)MS = a4(µ
2) + r1a

2
4(µ

2) + r2a
3
4(µ

2) + r3a44(µ
2)

R(s)CIPT = A(4)1(s) + d1A(4)2(s) + d2A(4)3(s) + d3A(4)3(s)

R(s)CORGI = a(µ2) +X2Ra(µ
2)3 +X3Ra(µ

2)4

R(s)CIPT+CORGI = A(0)1(s) +X2DA(0)3(s) +X3DA(0)4(s)

R(s =M2
Z)=0.03904±0.00087 is the value onsidered by Baikov and ollabo-

rators [40℄ using the value of αs(M
2
Z)

NNLO
extrated from the working group

of [41℄ inluding terms up to O(α3
s). The main reason we are onsidering to

use this value is to ensure the onsisteny with the latest d3 alulation as

well as to hek in the later Setion 6.5 if the value of αs(M
2
Z) we obtained will

be agreeable with value obtained by Baikov and ollaborators by performing

a shift of δαs(M
2
Z) = 0.0005 implying αs(M

2
Z)

NNNLO
Baikov = 0.1190 ± 0.0026exp.

We believe that using the latest d4 alulation will not hange the result sig-

ni�antly or hanging the onlusion of our preditions. Ignoring the error,

we will set R(s) = R(s =M2
Z) = 0.03904 and the rest of the versions having

the equivalent value to test the value of αs extrated from its version,

R(M2
Z)MS = R(M2

Z)CIPT = R(M2
Z)CIPT+CORGI = R(M2

Z)CIPT+CORGI = 0.03904
(6.32)

This will be the value we use throughout our alulation to extrat τ from

eah of the 4 versions. All 4 taus are solved with Maple 11 by using approriate

ommands and tehniques. The oe�ients b, c, c2, c3, r1, r2, r3, d1, d2, d3,
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X2R, X3R, X2D, X3D are

b =
1

6
(11CA − 2Nf ) (6.33)

c =
1

12b
(−3

2
CA[7CA + 11CF ] + 3b[5CA + 3CF ]) (6.34)

c2 =
2857− 5033

9
Nf +

325
27
N2
f

64b
(6.35)

c3 =
1218587 + 1389486ξ3

13824b
− 5857771 + 932400ξ3

27648

+
7761 + 1618ξ3

576
b− 1093

6912
b2 (6.36)

r1 = d1 −
1

12
π2b2 (6.37)

r2 = d2 −
1

24
(6d1 + 5c)π2b2 (6.38)

r3 = d3 −
1

24
(12d2 + 14cd1 + 3c2 + 6c2)π

2b2 +
1

80
π4b4 (6.39)

d1 = (
11

4
− 2ξ3)b+

CA
12
− CF

8
(6.40)

d2 = (
151

18
− 19

3
ξ3)b

2 + CA(
31

6
− 5

3
ξ3 −

5

3
ξ5)b

+ CF (
29

32
− 19

2
ξ3 + 10ξ5)b+ C2

A(
799

288
− ξ3)

+ CACF (−
827

192
+

11

2
ξ3) + C2

F (−
23

32
) (6.41)

d3 = N3
f [−

6131

5832
+

203

324
ξ3 +

5

18
ξ5]

+ N2
f [−

1045381

15552
− 40655

864
ξ3 +

5

6
ξ23 −

260

27
ξ5]

+ Nf [−
13044007

10368
+

12205

12
ξ3 − 55ξ23 +

29675

432
ξ5 +

665

72
ξ7]

+
144939499

20736
− 5693495

864
ξ3 +

5445

8
ξ23 +

65945

288
ξ5 −

7315

48
ξ7(6.42)

X2R = r2 − r21 − cr1 + c2 (6.43)

X3R = r3 − r31 −
5c

2
r21 − (3X2R − 2c2)r1 +

c3
2

(6.44)

X2D = d2 − d21 − cd1 + c2 (6.45)

X3D = d3 − d31 −
5c

2
d21 − (3X2D − 2c2)d1 +

d3
2

(6.46)

Having all these equations, �ts to τ of eah version (performed with Maple

11 to 100 digit preision) ould be obtained where in this partiular ase, we
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set Nf = 5. We �nd �tting to R(MZ) = 0.03904

τMS = 22.561 (6.47)

τCIPT = 22.569 (6.48)

τCORGI = 22.544 (6.49)

τCIPT+CORGI = 22.574 (6.50)

The value of τ 's show that all four versions are quite onsistent to one another

as might be expeted for a N3LO alulation at a large

√
s. All the values are

onsistent with αs(MZ) = 0.119. Clearly the impat of resumming analytial

ontinuation terms π2b2 is not great at this order and energy. We will see

muh larger di�erenes when we go on to apply similar �ts to the muh lower

energy inlusive Rτ observable.

6.3 Contour integral representation of Minkowski

observables

Among all the leptons, only the tau partile an deay into hadrons as it

is the heaviest lepton and therefore has the neessary mass. Some of the

ommon leptoni deays are into a tau neutrino, eletron and eletron anti

neutrino (τ− −→ ντe
−τ̄e) or tau neutrino, muon and muon anti neutrino

(τ− −→ ντµ
−τ̄µ). The possibility for the deay of tau into a tau neutrino,

eletron and eletron anti neutrino is only slightly higher than the deay of

tau into tau neutrino, muon and muon anti neutrino [42℄. The reation of a

tau neutrino is due to the onservation of lepton number in weak interation

whereas the reation of eletron or muon is due to the onservation of harge

by the emission W−
gauge boson. The Feynman diagram below represents

the possibility of some of the deay modes.

W−
τ−

ντ

e, µ, d, s

νe, νµ, u

Figure 6.3: Feynman diagram of the tau deay
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While the hadroni deay modes(τ− −→ ντdθū) will produe quark-antiquark
pairs dominated by u, d and s where dθ = cos(θC)d + sin(θC)s. Note that

sine mesons must be olorless, the pair must have the olor anti-olor om-

bination. Thus, the possible mesons that an be reated are π−(ud), K−(us),
ρ−(ud) and K∗−(us). Despite that ρ−(ud) and K∗−(us) have the same quark

ontent as π−(ud) and K−(us), they di�er by parity. Other mesons involved

are η(uu+dd−2ss√
6

) and ω(uu+dd√
2

). There are other deay modes whih required

detail explanation whih will not be disussed here like 3 harged traks and

5 harged traks deay modes. Hene, the branhing ratios for the di�erent

hannels are expeted to be approximately [43℄:

Bl = Br(τ− −→ ντ lν̄l) =
1

5
= 20% (l = e, µ), (6.51)

R̃τ =
Γ(τ− −→ ντ + hadrons)

Γ(τ− −→ ντe−νe)
≈ N = 3, (6.52)

whih are onsistent with experimental averages [44℄. The agreements are

relatively good and taking notie that the measured τ hadroni width pro-

vides evidene for the olor degree of freedom. Note the measured value of

R̃τ at its lowest order predition R̃τ ≈ N and the branhing ratio of the

leptoni hannel Bl is dominated by the dynamis of QCD perturbative or-

retion Rτ = 0.2038 (the leading order + other orders, whih the leading

order ontributes most) show that the tau deay is a good hoie to extrat

QCD strong oupling. For reviews of tau deays into hadrons see [45, 46℄.

The ratio R̃τ is de�ned analogously to R(s) as the ratio of the total τ hadroni
deay width to its leptoni deay width,

R̃τ≡
Γ(τ → ντ + hadrons)

Γ(τ → ντe−ν̄e)
. (6.53)

R̃τ involves 2 two-point orrelation funtions

Πµν
ij,V (q) = i

∫
d4xeiqx〈0|T (V µ

ij (x)V
ν
ij (0)

†)|0〉, (6.54)

Πµν
ij,A(q) = i

∫
d4xeiqx〈0|T (Aµij(x)Aνij(0)†)|0〉, (6.55)

where V µ
ij = ψ̄jγ

µψi is the vetor and Aµij = ψ̄jγ
µγ5ψi is the axial vetor

with the indies i, j orrespond to the �avour u, d, s. We will then have the

Lorentz deompositions
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Πµν
ij,V/A(q) = (−gµνq2 + qµqν)Π1

ij,V/A(q
2) + qµqνΠ0

ij,V/A(q
2), (6.56)

where 0 and 1 are the angular momentum J in the hadroni rest frame. Note

that the imaginary part of the two-point funtions are proportional to the

spetral funtions for hadrons with the quantum numbers 0 and 1. Thus the
tau deay rate an be written as the integral of these spetral funtions over

the invariant mass of the �nal-state hadrons

R̃τ = 12π

∫ m2
τ

0

ds

m2
τ

(
1− s

m2
τ

)2 [(
1 + 2

s

m2
τ

)
ImΠ(1)(s) + ImΠ(0)(s)

]
.

(6.57)

The ombinations of orrelators are

ΠJ(s) = |Vud|2[Π(J)
ud,V (s) + Π

(J)
ud,A(s)] + |Vus|2[Π

(J)
us,V (s) + Π

(J)
us,A(s)]. (6.58)

The inlusive ontributions assoiated to di�erent quarks an be separated:

R̃τ = R̃τ,V + R̃τ,A + R̃τ,S. (6.59)

R̃τ,V and R̃τ,A are the �rst two terms of Eq. (6.58). R̃τ,S is the suppressed

Cabbibo ontribution. R̃τ,V and R̃τ,A are measured experimentally from the

even or odd pions in the hadroni �nal state while R̃τ,S is measured from

the number of odd kaons. The hadroni spetral funtion is sensitive to-

wards non-perturbative e�ets of QCD, this makes the alulation of integral

Eq. (6.57) to be impossible at present. The best approah is to analyze the

analyti properties of the orrelators Π(J)(s). For more detail, [43℄ will be

a reommended referene, at the moment it will be su�e to express R̃τ,V/A

and R̃τ,S as

R̃τ,V/A =
3

2
|Vud|2SEW

(
1 +

5

12

α(m2
τ )

π
+ Rτ + δPC

)
, (6.60)

R̃τ,S = 3|Vus|2SEW
(
1 +

5

12

α(m2
τ )

π
+Rτ + δPC

)
. (6.61)

Adding all the three terms, the total ratio R̃τ an be expressed perturba-

tively as

R̃τ = N(|Vud|2 + |Vus|2)SEW
[
1 +

5

12

α(mτ
2)

π
+Rτ (s) + δPC

]
, (6.62)
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with Vud and Vus are elements extrated from the CKM mixing matrix. s =
m2
τ lies below the threshold for harmed hadron prodution. Therefore, only

three �avours u,d and s whih are ative. The eletroweak orretion is

given by

5
12
α(m2

τ )
π
≃ 0.001 with the fator SEW = 1.0194 [43℄. δPC are power

orretions whih arises from the leading quark-mass orretions whih are

extremely small for up and down quarks but extremely large for strange

deays (δ
(2)
us ≈ 20%). Nevertheless, the value was suppressed by the fator

sinθ2C whih a�ets the total R̃τ ratio only by ≈ −1%. The value of suh non-

perturbative orretions an be obtained from the invariant-mass distribution

of the �nal hadrons in tau deay, although it is still unpreditable urrently,

it an be alulated the same way like R̃τ . Rτ (s) is the purely perturbative

orretion ignoring quark masses, whih an be expanded as

Rτ (s) = a(1 +
∑

n>0

rτna
n) . (6.63)

Sine summation over the u,d and s quarks leads to (
∑
Qf)

2
=0, there will

be no "light-by-light�. This permits us to diretly express both R and Rτ in

terms of the transverse part of the orrelator of two vetor urrents in the

Eulidean region.

We an now relate both Minkowskian observables denoted by R̂(s0) toD(−s)
by analytial ontinuation from the Eulidean to Minkowskian region whih

is formulated as an integration around a irular ontour in the omplex

energy squared s-plane [47℄,

R̂(s0) =
1

2π

∫ π

−π
W (θ)D(s0e

iθ)dθ , (6.64)

W (θ) is the weight funtion whih is dependent on the observable R̂ with

s0 as the initial energy extrated from τ then inserting into the initial ou-

pling a(s0) (whih is required for reursion relation). Evaluating the above

equation with W (θ) = 1 one will produe R̂(s0) = R(s0) while using the

expression W (θ) = (1 + 2eiθ − 2e3iθ − e4iθ), one will then have R̂(m2
τ ) = Rτ .

Expanding D̃(s0e
iθ) perturbatively in ā≡a(s0eiθ) and performing numerially

the θ integration term-by-term, one will then obtain �ontour-improved� per-

turbative results. Note that at eah order, an in�nite subset of analytial

ontinuation terms present in R(s) and Rτ are resummed. We have dis-

ussed in the previous setions that suh terms must not be ignored as they

are potentially quite large, involving powers of π2
and other beta-funtion

oe�ients. This is easily seen by expanding ā in powers of a(s0) and then

performing integration. We shall fous on this "ontour-improved" version
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of perturbation theory throughout this thesis. Comparisons of the two ver-

sions were made in great detail and length together with an emphasis of the

importane of resummation of the analytial ontinuation terms, in [47℄.

The basi numerial algorithm we shall use for the evaluation of the inte-

gral in Eq. (6.65) is to split the range from θ = 0 to π into K steps of size

∆θ = π/K and then perform a sum over the integrand evaluated at θn = n∆θ
where n = 0, 1, ..., K. Thus the integral an represented as

R̂(s0)≃
∆θ

2π
[W (0)D(s0) + 2Re

K∑

n=1

W (θn)D(sn)], (6.65)

where sn≡s0ein∆θ. In pratie, we perform suh trivial algorithm with all

sorts of numerial pakages as well as oding manually in Mathematia 6.0

and Maple 11. Rewriting D̃(sn) as a perturbative expansion, one will then

have

D̃(sn) = ān + d1ā
2
n + d2ā

3
n + . . . . (6.66)

Here ān is de�ned as a(sn). Using Taylor's theorem in evolving ān to ān+1,

we will begin with ā0 = a(s0), the following reursion relation is then given

by

ān+1 = ān − i
∆θ

2
bB(ān)−

∆θ2

8
b2B(ān)B

′(ān) + i
∆θ3

48
b3[B(ān)B

′(ān)
2

+B(ān)
2B′′(ān)] +O(∆θ4) + .., (6.67)

with B(x) being de�ned as

B(x) = x2 + cx3 + c2x
4 + . . . , (6.68)

so that ā will satisfy

∂ā

∂lns
= − b

2
(ā2 + cā3 + c2ā

4 + ...) = − b
2
B(ā) . (6.69)

b = (33−2Nf)/6, and c = (153−19Nf)/12b are the �rst two universal beta-
funtion oe�ients with the subsequent oe�ients ci, i > 1 being sheme-

dependent. We will now move on to the appliation of CORGI to the ontour

integral representation of the Minkowski observables.
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6.4 All Orders and Fixed-Order D(s) in

the CORGI approah

Our previous disussion has shown that in the CORGI approah, the renor-

malization sale µ-dependene ould be avoided ompletely by performing

a omplete resummation of the UV logarithms. It is suh a resummation

whih builds the dependene of the observable on the physial energy sale

[48℄. [49℄ demonstrates the diret relation between the observable and the

diret transmutation parameter of the theory ΛMS. This allows us to de�ne

the CORGI version of D(s),

D(s) = a0(s) +X2a
3
0(s) +X3a

4
0 + . . .+Xna

n+1
0 + . . . . (6.70)

Here a0(s) is the CORGI oupling in terms of the Lambert W -funtion,

a0(s) = − 1

c[1 +W (z(s))]
,

z(s) ≡ −1
e

(√
s

ΛD

)−b/c
, (6.71)

where ΛD≡ed/b(2c/b)−c/bΛMS. d is de�ned as the NLO perturbative oe�-

ient d1 for D(s) in the MS sheme with µ2 = s. a0(s) is the oupling in

the sheme with µ2 = e−2d/bs with all the other oe�ient ci, (i > 1) set
to zero in the 't Hooft sheme. In the CORGI sheme d1 = 0, and is ex-

atly equivalent at NLO to the E�etive Charge approah disussed in [50℄

whereas onventional RG-improvement in this sheme ompletely resum all

ultraviolet logarithms. This is equivalent to the CORGI approah and an

be formulated in any sheme [48℄. X2 and X3 are the N2LO and N3LO
sheme-invariant oe�ients

X2 = c2 + d2 − cd1 − d21, (6.72)

X3 =
c3
2
+ d3 − d31 −

5c

2
d21 − (3X2 − 2c2)d1 , (6.73)

built from the oe�ients d1 and d2 and beta-funtion oe�ients. Note

that X2 and X3 are equivalent to X2D and X3D in Setion 6.1. d1, d2 and d3
are known exatly and have been alulated in [40℄. Therefore, the N3LO
ontour-improved CORGI model an be obviously onstruted for Minkowski

observables R̂(s0), using the numerial approah desribed in Setion 6.3.
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The fat that knowing a0(s) in losed form expressed in terms of the Lambert

W -funtion, whih has a well-de�ned branh struture in the omplex plane,

one an evaluate it diretly avoiding the numerial approah of evolving ān
in Eq. (6.71). It is worth mentioning again that the seletion of the W−1
branh of the funtion on the range of integration [0, π℄, and the W1 branh

on the range [−π, 0℄ are neessary to ensure asymptoti freedom as well as a

sensible value of integration. We will not disuss the possibility of avoiding

the use of Simpson's Rule integration in the Re+e− ratio for W (θ) = 1 in this

thesis, for interest, one an refer to [51℄.

We will now test the auray of the �xed-order perturbative approximation

by attempting to approximate the still unalulated oe�ients di, (i > 2)
in D(s) using the suggested �leading-b� approximation. As we have previ-

ously disussed, dn an be written as an expansion in powers of Nf , given

by Eq. (5.16). These large-Nf oe�ients d
[n]
n are alulated exatly to all-

orders. We are motivated by the struture of renormalon singularities in the

Borel plane whih lead to �nd it possible to onvert this expansion into the

leading-b expansion desribed in Eq. (5.17) by using Nf = (33/2− 3b).

We will onstrut an all-orders "leading-b" resummation as disussed in

Chapter 5. One an use the exat V-sheme leading-b result of [24℄.

d(L)n (V ) =
−2
3
n!
(n+ 1)

2n
[−2n− n + 6

2n+2

+
16

n+ 1

∑

n
2
+1>s>0

s(1− 2−2s)(1− 22s−n−2ζ2s+1)]b
n . (6.74)

The resulting leading-b resummation of D(s) an be expressed as

D(L) = a(1 +
∞∑

k=0

d
(L)
k ak), (6.75)

where the prinipal value (PV) is regulated by the Borel Sum,

D̃(L)(1/a) = PV

∫ ∞

0

dze−z/aB[D(L)](z) , (6.76)

where B[D̃(L)](z) is the Borel transform whih behaviour has been disussed

extensively in Chapter 5, where its struture is Eq. (5.18)

B[D̃(L)](z) =

∞∑

j=1

A0(j) + A1(j)z

(1 + z
zj
)2

+
B0(2)

(1− z
z2
)
+

∞∑

j=3

B0(j) +B1(j)z

(1− z
zj
)2

. (6.77)
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Note that the residues of these poles an be omputed from the exat all-

orders large-Nf result whih makes it easy to ompute the UV and IR renor-

malon ontributions, expressed in terms of the exponential integral funtion,

Ei(x) = −
∫ ∞

−x
dt
e−t

t
. (6.78)

We reall that for IR renormalons where x > 0, the Ei(x) funtion is de�ned
by taking the Cauhy prinipal value of the integral. Suh arbitrariness in

regulating the IR renormalon ontributions implies that the perturbative

series is laking the power orretions of the operator produt expansion

(OPE) whih are essential in order to have a sensible result. There is no

relevant operator in dimension of two in the Operator Produt Exapansion

for the vetor orrelator. This is therefore in aordane with the fat that

the singularity IR1 is absent , and the nearest singularity to the origin in the

Borel plane is UV 1. This generates the leading d
(L)
n asymptoti behaviour

[49℄,

d(L)n (V )≈(12n+ 22)

27
n!

(
−1
2

)n
bn . (6.79)

The UV renormalon and IR renormalon an be expressed as the ontribu-

tions of in�nite sums of the Ei funtions,

D(L)(F )|UV =

∞∑

j=1

zj{eF (a)zjEi(−Fzj)[Fzj(A0(j)− zjA1(j))− zjA1(j)]

+(A0(j)− zjA1(j)))} , (6.80)

and

D(L)(F )|IR = e−Fz2z2B0(2)Ei(Fz2)
∞∑

j=3

zj{e−FzjEi(Fzj)[Fzj(B0(j) + zjB1(j))− zjB1(j)]

−(B0(j) + zjB1(j))} , (6.81)

where we have used F≡1/aV with aV denoted as the oupling in the V-

sheme. Referring to [49℄, A0(j), A1(j) are related to the residues of the UV j

poles by

A0(j) =
8

3

(−1)j+1(3j2 + 6j + 2)

j2(j + 1)2(j + 2)2
, A1(j) =

4

3

b(−1)j+1(2j + 3)

j2(j + 1)2(j + 2)2
. (6.82)
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The UV residues are related to the IR residues with B0(j) = −A0(−j) and
B1(j) = −A1(−j) for j>2, and B0(1) = B1(1) = B1(2) = 0, and B0(2) = 1
[49℄ by onformal symmetry [52℄ of the vetor orrelator . The ontour inte-

gral is then evaluated using the D(L)(F ) result by modifying the de�nition

of the Ei funtions in aord to their argument involving 1/aV (s0e
iθ) whih

is omplex for θ not equal to zero. Therefore, it is best to generalize the Ei
funtion Ei(n, z) suh that

Ei(n, z) =

∫ ∞

1

dt
e−tz

tn
, (6.83)

whih is analyti in the omplex z-plane with a branh ut along the nega-

tive real axis as what we required. The replaement of the Ei(−Fzj) in the

UV ontribution with −Ei(1, F zj), and Ei(Fzj) in the IR ontribution with

−Ei(1,−Fzj) + iπsign(Im(Fzj)) are neessary as this is where the dison-

tinuities aross the branh ut are removed with the �nal iπ ontribution

[49℄. The �nal result for D̃(L)(F ) is simply the sum of the UV and IR on-

tributions. Eqs. (6.80) and (6.81) have rapidly onvergent behavior sine the

A(j) and B(j) oe�ients have a j−4 dependene for large j. For the nu-

merial omputation whih will be disussed in Setion 6.5, we will trunate

Eq. (6.80) and Eq. (6.81) at NUV = 15 and NIR = 17 respetively. Suh an

arrangement NIR = NUV + 2 is sensible as the symmetry properties imply

that A0(j) = −B0(j + 2) ensuring that the �rst O(a) term in the perturba-

tion series has the orret unit oe�ient B0(2) = 1.

Our last step is to use the results above to perform an all-orders CORGI

resummation whih an formally be expressed as

DCORGI = a0 +X2a
3
0 +X3a

4
0 +

∑

n>3

X(L)
n an+1

0 , (6.84)

where the exatly known N2LO X2 and N
3LO X3 oe�ients are inluded

and the remaining unknown oe�ients are approximated at leading-b, X
(L)
4

,X
(L)
5 , . . . . Note that a0 is the full CORGI oupling of Eq. (6.71) in whih all

the Renormalization Group-preditable UV logarithms ontaining the exat

d1 are resummed. Note that suh a resummation is ahieved by taking note

of the ombination suggested in [39℄

ρ0 = bln

(
µ

Λ̃

)
− d1(µ) , (6.85)

whih is sheme-independent. The oupling a(L)(s) is de�ned as
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a(L)(s) =
1

bln(
√
s/Λ̃)

, (6.86)

at the leading-b level for a simple ase of one loop. Note that in the CORGI

sheme, d
(L)
1 = 0, and by evaluating the invariant ρ0 in the V sheme and

the CORGI sheme, the relations between the ouplings in the two shemes

are lear and an be expressed as

1

a
(L)
V

=
1

a0
+ d

(L)
1 (V ) . (6.87)

Now it is straightforwardly follows that the formal resummation in Eq. (6.84)

is simply

DCORGI = D(L)

(
1

a0
+ d

(L)
1 (V )

)
+ (X2 −X(L)

2 )a30 + (X3 −X(L)
3 )a40 , (6.88)

where the D(L)
term with the exat X2 and X3 are replaed by X

(L)
2 and

X
(L)
3 . This expression is orreted by the orresponding seond and third

term. Now it is possible to approximate N4
LO and higher CORGI results by

the trunation of Eq. (6.84). The X
(L)
n an then be evaluated immediately

by using the leading-b of Eq. (6.87) where one will then �nd

X(L)
n = Cn+1



∞∑

k=0

d(L)n (V )

(
a

1 + ad
(L)
1 (V )

)k+1

 . (6.89)

The symbol Cn[f(a)] is the oe�ient of an expanded in power series of f(a)

whih the expression of d
(L)
n (V ) an be diretly obtained from Eq. (6.74).

With the above results of Eq. (6.89), we an generate all-orders resummed

and �xed-order ontour-improved CORGI results for the Minkowski observ-

able Rτ to perform phenomenologial studies in the next two setions.

6.5 All-Orders CORGI versus NLO, N2LO

and N3LO CORGI Results

The observable Rτ has been the subjet of experimental study by the ALEPH

ollaboration via e+e− → τ+τ− on the Z resonane [53℄. If data onsisting of
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Figure 6.4 : All Orders CORGI resummation versus NnLO �xed order

strange quarks are omitted (this is neessary as the strange quarks are muh

heavier than the up and down quarks, thus its inlusion will a�et our predi-

tion) from the data. The latest value is given by R̃τ = 3.479±0.011 [54℄. We

use the values of the variables Vus = 0, and Vud = 0.97418±0.00027 [55℄ from
the CKM matrix. The estimated power orretion ontribution is given by

δPC = −0.003±0.004 [54℄. Plugging in all the values olleted, one �nds from
Eq. (6.62) that the experimental value is then given by Rτ = 0.2038±0.004.
Note that we have negleted the QED ontribution to the experimental value.

By doing so, we will be able to obtain an all-orders �leading-b� resummation

of the ontour-improved CORGI as well as the �xed-order version where we

will trunate the series at orresponding terms of NLO, N2LO and N3LO
desribed in Setions 6.3 and 6.4. As a generalization, we will set Nf = 3 per-
manently throughout the alulations exept when making �avour threshold

alulations. We will �x Λ
(3)

MS
where our goal is to make a theoretial om-

parison of the all-orders CORGI versus �xed-order trunated CORGI result

in reproduing the measured entral value Rτ = 0.2038. We present the re-

sults in Fig. (6.4) with the solid red line representing the all-orders CORGI

result �xed to the data, and the red points are the NnLO �xed-order CORGI

results. In this ase, we selet the N3LO (n = 3) �xed-order result as a om-

parison, whih is the highest order exatly known to date. It turns out to be

in exeptionally good agreement with the all-orders CORGI resummation.

Nevertheless, suh a leading-b approximation NnLO eventually shows an os-

illatory behavior whih beomes more and more explosive for n > 7. This is



CHAPTER 6. NUMERICAL CALCULATION OF R(S) AND Rτ 108

0.28 0.30 0.32 0.34

0.14

0.16

0.18

0.20

0.22

0.24

PSfrag replaements

αs(m
2
τ )

Rτ
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�xed-order CORGI result.

when �xed-order CORGI eventually breaks down. Suh osillatory behavior

is exatly what we ould predit from the alternating positive and negative

sign fatorial growth of the ontribution from the leading UV 1 renormalon

of Eq. (6.82).

We will now make an attempt to estimate the unertainty in αs(m
2
τ ) ex-

trated fromRτ measurements. The di�erene between the all-orders CORGI

and the exat N3LO �xed-order CORGI results will be used in the estima-

tion of unalulated higher order terms. Fig. (6.5) represents Rτ versus

αs(m
2
τ ) where the upper solid urve is the all-orders CORGI result while

dense dotted lines are the NLO, N2LO and N3LO trunated �xed-order

CORGI result. From the plot, we an dedue that by having more of the ex-

at higher n order terms will lead us to onlude that the �xed-order CORGI

gets loser to the all-orders CORGI result. Note also that the separation be-

tween the urves inreases rapidly as Rτ inreases. As the experimentally

measured Rτ≃0.2038, we are therefore quite fortunate that the separation

of the urves is reasonably small in this region. Using data olleted from

ALEPH, we extrat αs(m
2
τ ) for all-orders CORGI and the �x order CORGI

in Table 6.1. Note that the right hand olumn of Table 6.1 represents the

value of αs(m
2
τ ) extrated from the standard MS �xed-order perturbation

theory alulation whih we denote as FOPT, whih learly shows that it is

badly de�ned at the N3LO trunation as well as the all-orders FOPT whih
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settles at a higher value than the all-orders CORGI. This learly shows the

motivation of CORGI as a substitute to the standardized FOPT. Now, evolv-

ing these αs(m
2
τ ) results through �avour thresholds up to µ =MZ using the

three-loop mathing onditions [56℄, we present values of αs(M
2
Z) in Table

6.2.

αs(m
2
τ )
CORGI
allorders = 0.315+0.0033

−0.0033 αs(m
2
τ )
FOPT
allorders = 0.321+0.0032

−0.0033

αs(m
2
τ )
CORGI
N3LO = 0.343+0.0051

−0.0051 αs(m
2
τ )
FOPT
N3LO = 0.263

αs(m
2
τ )
CORGI
N2LO = 0.351+0.0053

−0.0052 αs(m
2
τ )
FOPT
N2LO = 0.316

αs(m
2
τ )
CORGI
NLO = 0.376+0.0063

−0.0063 αs(m
2
τ )
FOPT
NLO = N/A

Table 6.1 αs(m
2
τ ) extrated from All-orders CORGI(red) versus

Fixed-Order NLO, N2LO and N3LO CORGI with omparison to Fixed

Order Perturbation Theory(blue)
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αs(M
2
Z)

CORGI
allorders = 0.118+0.0004

−0.0004 αs(M
2
Z)

FOPT
allorders = 0.119+0.0004

−0.0004

αs(M
2
Z)

CORGI
N3LO = 0.121+0.0005

−0.0007 αs(M
2
Z)

FOPT
N3LO = 0.110

αs(M
2
Z)

CORGI
N2LO = 0.122+0.0005

−0.0006 αs(M
2
Z)

FOPT
N2LO = 0.118

αs(M
2
Z)

CORGI
NLO = 0.125+0.0006

−0.0006 αs(M
2
Z)

FOPT
NLO = N/A

Table 6.2 αs(MZ) extrated from All-orders CORGI(red) versus

Fixed-Order NLO, N2LO and N3LO CORGI with omparison to Fixed

Order Perturbation Theory(blue)

Our main interest is in the estimation of the unertainty in αs(M
2
Z) due to

missing higher-order orretions. We an take this to be α(M2
Z)

CORGI
N3LO −

α(M2
Z)

CORGI
allorders = δαs(M

2
Z)≈0.003. A plot showing the resummed all-orders

CORGI versus the �xed-orders CORGI results for Rτ versus αs(M
2
Z) is shown

in Fig. (6.6). We should ompare our �t for αs(m
2
τ )
CORGI
N3LO = 0.343± 0.0051

in Table 6.1 with other omparable αs(m
2
τ ) determinations based on the use

of CIPT and FOPT. Baikov et al [40℄ �nd 0.332 ± 0.0043, Davier et al [54℄
�nd 0.344 ± 0.009, Menke [57℄ gives 0.342 ± 0.010 while Pih [58℄ reports

0.342± 0.012. Our determination is seen to be onsistent with these. There

are other determinations not using CIPT, but using FOPT augmented by

renormalon or power orretion models [59, 60, 61℄. These tend to �nd lower

values of αs(m
2
τ ), but these values are highly dependent on the models used.

The values found are atually similar to our all-orders leading-b CORGI re-
sult αs(m

2
τ )
CORGI
allorders = 0.315 ± 0.0033 found in Table 6.1. We would stress

that our CORGI result uses CIPT and so all RG-preditable terms and all

analytial ontinuation terms known at N3LO are resummed to all-orders.

We de�ne the quantity R̃τ (s0) as

R̃τ (s0)≡
Γ(τ→ντ + hadrons; shad < s0)

Γ(τ→ντeν̄e)
=

∫ s0

0

ds
dR̃τ (s)

ds
, (6.90)

where

dR̃τ

ds
is the inlusive hadroni spetrum. R̃τ (s0) an be extrated from

the experimental data for

dR̃τ

ds
using the proedure outlined in [62℄, i.e., mul-

tiplying the normalised distribution by the world average for R̃τ and inte-

grating (summing) bins.

In terms of the various theoretial ontributions, we have

R̃τ (s0) = N(|Vud|2)SEW [(2x− 2x3 + x4) +
3

4
CFRτ (s0) + δPC ] , (6.91)
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Figure 6.7 : R̃τ (s) as a funtion of energy s (GeV2
) versus ALEPH data

extrated from [53℄ using the proedure of [62℄.

with x≡s0/m2
τ . It is then possible to ompute Rτ (s0) from Eq. (6.64) with

the appropriate weight funtion,

W (θ) = 2x(1 + eiθ)− 2x3(1 + e3iθ) + x4(1− e4iθ) . (6.92)

Fig. (6.7) shows the lose �t of the all-orders leading-b CORGI resummation

(solid line) in omparison to the ALEPH data for R̃τ (s) (red dots) extrated

from [53℄ using the proedure of [62℄ with data �tted at s = m2
τ and where

we have Rτ (m
2
τ ) = R̃τ . Referring to Eq. (6.71), the CORGI oupling has

a Landau pole at

√
s = ΛD and by �tting to the experimental value of Rτ ,

we determine the value of ΛD = 0.725GeV. This implies that the predition

is valid only for s > 0.525 GeV2
. This shows an exellent agreement with

the data. On the sale hosen for the plot the �xed-order CORGI or FOPT

result would be indistinguishable from the all-orders CORGI result and so

we have not displayed them separately.

6.6 Summary

We began this hapter with the de�nition of the dimensionless Re+e− ratio

for some value of the enter of mass energy

√
s where R(s) denotes the QCD

perturbative orretions to the parton model result. This ould be related to

the Adler D-funtion D(−s) by performing an analytial ontinuation from
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Eulidean to Minkowskian regions represented by a ontour integral in the

omplex s-plane. This enabled us to introdue ontour improved perturba-

tion theory (CIPT) whih resum to all-orders known and large analytial

ontinuation terms involving powers of π2b2. We ould also write a simi-

lar ontour integral for the inlusive tau-deay ratio Rτ . Using the reently

omputed N3LO orretions d3 of [40℄, a good desription of R(MZ) and Rτ

were also obtained. Various di�erent versions of perturbation theory involv-

ing CIPT , and also using the CORGI approah desribed in Chapter 3, were

employed to extrat αs(m
2
τ ). We also used leading-b renormalon tehniques

disussed in Chapter 5 to onstrut all-orders CORGI and CIPT resum-

mations whih ould be ompared with �xed-order N3LO results. We also

evolved through �avour thresholds to obtain orresponding αs(M
2
Z) values

and estimated an unertainty δαs(M
2
Z) ≈ 0.003. These αs values below and

above threshold are tabulated in Tables 6.1 and 6.2. We saw that the N3LO
CORGI result for αs(m

2
τ ) was onsistent with other determinations using

CIPT and FOPT. Fits to the τ spetral funtion Rτ (s) were also performed.



Chapter 7

Fully Analyti IR Freezing

7.1 Introdution

In Chapter 5, it has been shown that in the leading-b approximation, pertur-

bative orretions to the GLS and unpolarized

1

Bjorken Sum Rules (denoted

by K
(L)
PT and U

(L)
PT respetively) are simply linear ombinations of the following

funtions,

F
(n)
+ (Q2) ≡

(
Λ2

Q2

)n
Ei

(
n ln

Q2

Λ2

)
, (7.1)

and

F
(n)
− (Q2) ≡

(
Q2

Λ2

)n
Ei

(
−n ln Q

2

Λ2

)
. (7.2)

Where Ei(x) is the Exponential Integral funtion, de�ned for x < 0 by

Ei(x) = −
∫ ∞

−x
dt
e−t

t
. (7.3)

Here we assume that the prinipal value (PV) of Ei(x) is taken for x > 0.

The F
(n)
+ (Q2) terms orrespond to ontributions from the IR renormalon

singularities , loated at zn = 2n/b on the positive real semi-axis of the

Borel plane. Equivalently, the F
(n)
− (Q2) terms are the ontributions from UV

renormalon singularities, loated at zn = −2n/b on the negative real semi-

axis of the Borel plane. The leading-b form of Adler D funtion, D
(L)
PT , an also

1

Perturbative orretions to the polarized Bjorken Sum Rules are idential to those of

the GLS Sum Rule, up to a series of 'light-by-light' orretions whih we do not onsider

here.

113
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be written as a ombination of F
(n)
± terms, but with additional (1/a(Q2))F

(n)
±

2

ontributions.

These leading-b results are �nite overall when all ontributions are om-

bined, furthermore, they are also ontinuous at Q2 = Λ2
, due to anella-

tions between potentially divergent IR and UV renormalon ontributions as

demonstrated in Chapter 5. Additionally, one �nds smooth infrared freez-

ing behaviour, with the orretions to the parton model result vanishing as

Q2 −→ 0.

The �rst logarithmi derivative in Q2
is also ontinuous at Q2 = Λ2

,

however higher derivatives are neither �nite or ontinuous, and hene there is

only pieewise ontinuity and �niteness. The true result, of ourse, should be

an analyti funtion in theQ2
-plane, with all derivatives �nite and ontinuous

at Q2 = Λ2
.

With the PV de�nition one has

Ei(x) = ln |x|+ γE +O(x). (7.4)

It is then straightforward to show that one an rewrite the Ei(x) funtions
in F±(Q

2) as,

Ei

(
n ln

Q2

Λ2

)
= Ei

(
−n ln Λ2

Q2

)

= ln

[
n

(
1− Λ2

Q2

)]
+ γE + fn

(
1− Λ2

Q2

)
(7.5)

= ln

[
n

(
1− Q2

Λ2

)]
+ γE + f̃n

(
1− Q2

Λ2

)
(7.6)

= ln

[
n

(
1− Q2

Λ2

)]
+ γE + fn

(
1− Λ2

Q2

)
+ ln

Λ2

Q2
,

(7.7)

2(1/a(Q2))F
(n)
± is required to be treated separately to avoid singularity at Q = 0, more

detailed disussion on (1/a(Q2))F
(n)
± will be made in explaining the relevane of adding a

non-perturbative term to this equation.
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and

Ei

(
−n ln Q

2

Λ2

)
= Ei

(
n ln

Λ2

Q2

)

= ln

[
n

(
1− Λ2

Q2

)]
+ γE + f̃n

(
1− Λ2

Q2

)
(7.8)

= ln

[
n

(
1− Λ2

Q2

)]
+ γE + fn

(
1− Q2

Λ2

)
+ ln

Q2

Λ2

(7.9)

= ln

[
n

(
1− Q2

Λ2

)]
+ γE + fn

(
1− Q2

Λ2

)
. (7.10)

Here, fn(1−Λ2/Q2) and f̃n(1−Q2/Λ2) are power series in (1−Λ2/Q2) and (1−
Q2/Λ2), respetively. As suh, they are fully di�erentiable at Q2 = Λ2

with

all derivatives �nite. In ontrast, the ln[n(1− Λ2/Q2)] and ln[n(1−Q2/Λ2)]
terms diverge at Q2 = Λ2

. As was disussed in [40℄, relations between IR and

UV renormalon residues ensure that these ln terms anel for the ombined

F
(n)
± terms, and also for their �rst logarithmiQ2

derivative. However, similar

anellations do not take plae for higher derivatives, whih are therefore not

�nite at the Landau pole.

As is well known these renormalon resummations of perturbation theory

will also have to be ombined with the non-perturbative ontributions of the

OPE whih are required in order to remove IR renormalon ambiguities due to

poles on the positive axis in the Borel z-plane. These ambiguities are easily
seen to be ∼ (Λ

2

Q2 )
n
e�ets for an IR renormalon. For Q2 > Λ2

one therefore

expets a standard OPE of the form

DNP =

∞∑

n=1

Cn
(
Λ2

Q2

)n
.

In reality the oe�ients are atually oe�ient funtions of the oupling.

For Q2 < Λ2
one needs to swith to a modi�ed Borel representation where

the ontour of integration is along the negative z-axis (see Eq. (5.29)) [37℄.

There will then be Borel ambiguities assoiated with UV renormalons. It

is easily seen that these ambiguities will be of the form ∼ (Q
2

Λ2 )
n
. One then

antiipates a modi�ed OPE for Q2 < Λ2
of the form

DNP =
∞∑

n=0

C̃n
(
Q2

Λ2

)n
.
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Notie that a onstant n = 0 �rst term is allowed in this expansion, but of

ourse is absent in the regular OPE whih must vanish as Q2 → ∞ due to

asymptoti freedom.

Our ruial observation is that for Q2 > Λ2
, the ln[n(1 − Λ2/Q2)] term in

Eqs. (7.5, 7.8, 7.9) has a valid expansion in powers of Λ2/Q2
, of the same form

as the standard operator produt expansion (OPE) above. Thus, by adding

a suitable non-perturbative ontribution to the perturbative omponent, the

ln term an be anelled, and a funtion F ∗(Q2) is obtained all of whose

derivatives are �nite at Q2 = Λ2
. Similarly for Q2 < Λ2

, the ln[n(1−Q2/Λ2]
term in Eqs. (7.6, 7.7, 7.10) has a valid expansion in powers of Q2/Λ2

, whih

is of the same form as the modi�ed non-perturbative OPE expansion above.

Again, by adding a suitable non-perturbative term to the perturbative om-

ponent, one an arrange that the ln term is anelled. Hene by adding

suitable ompensating non-perturbative terms in the two regions Q2 > Λ2

and Q2 < Λ2
, one an arrange that a single analyti funtion F

∗(n)
± (Q2) is

obtained whih is holomorphi in Q2
, and all of whose derivatives are �nite

and ontinuous at Q2 = Λ2
.

7.2 The n = 1 and n = 2 ases

We shall �rst show how this works for the n = 1 and n = 2 ases, relevant

for the DIS sum rules KpBJ and UuBJ . For Q
2 > Λ2

we an use Eq. (7.5) to

rearrange the expression for F
(1)
+ (Q2) as follows

F
(1)
+ (Q2) =

{
Λ2

Q2
ln

(
1− Λ2

Q2

)
− Λ2

Q2
ln

Λ2

Q2

}
+ γ

E

Λ2

Q2

+
Λ2

Q2
f1

(
1− Λ2

Q2

)
+

[
Λ2

Q2
ln

Λ2

Q2

]
. (7.11)

Similarly, for Q2 < Λ2
, it an be rearranged using Eq. (7.7) as

F
(1)
+ (Q2) =

{
Λ2

Q2
ln

(
1− Q2

Λ2

)}
+ γ

E

Λ2

Q2
+

Λ2

Q2
f1

(
1− Λ2

Q2

)

+
Λ2

Q2
ln

Λ2

Q2
. (7.12)

The terms in urly brakets are non-perturbative OPE-like terms in the Q2 >
Λ2

region, and of the form of a modi�ed non-perturbative term in the Q2 <
Λ2

region. Expliitly the OPE has the form of an expansion in powers of

(Λ2/Q2), with a leading term O(Λ2/Q2), whereas the modi�ed expansion
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proposed in Chapter 5 is an expansion in powers of Q2/Λ2
with the leading

term potentially a onstant. No suh onstant is allowed in the OPE beause

non-perturbative terms have to vanish as Q2 −→ ∞, in order to satisfy

asymptoti freedom.

Note that suh a onstant is present in the urly braket of the Q2 < Λ2

expression in Eq. (7.12). As Q2 −→ 0 this tends to the limit −1. The

terms involving Λ2/Q2
in the remaining part of the expression are singular

as Q2 −→ 0, but this will be anelled by a singularity in the f1 term. The

remaining part of the expression freezes to the limit 1, ensuring that overall

F
(1)
+ (Q2) ∼ O(a(Q2)) freezes to F

(1)
+ (0) = 0.

The idea is that ompensating OPE or modi�ed expansion terms should

be added in the two Q2
regions to ensure that the same funtion of Q2

is

obtained in the two regions. In the present ase the ompensating term is

that in the square braket in Eq. (7.11). It is a non-perturbative OPE term

in the Q2 > Λ2
region, and so an be simply added and subtrated again

inside the urly braket. The non-perturbative ontribution to be added to

F
(n)
± (Q2), whih we denote by F̄

(n)
± (Q2), is then hosen to be minus the term

in the urly braket

F̄
(1)
+ (Q2) = −Λ2

Q2
ln

(
1− Λ2

Q2

)
+

Λ2

Q2
ln

Λ2

Q2
(Q2 > Λ2), (7.13)

F̄
(1)
+ (Q2) = −Λ2

Q2
ln

(
1− Q2

Λ2

)
(Q2 < Λ2). (7.14)

Note that up to an ±iπ term (re�eting the Landau ut), the same funtion

is obtained in both Q2
regions. Combining this non-perturbative ompo-

nent with the perturbative omponent, leads to a single funtion at all Q2
,

F
∗(n)
± (Q2) ≡ F

(n)
± (Q2) + F̄

(n)
± (Q2), whih is a holomorphi funtion, with all

derivatives �nite and ontinuous in the whole Q2
plane. Disarding the urly

brakets in Eqs. (7.11,7.12) we �nd

F
∗(1)
+ (Q2) = γ

E

Λ2

Q2
+

Λ2

Q2
f1

(
1− Λ2

Q2

)
+

Λ2

Q2
ln

Λ2

Q2
. (7.15)

In e�et, the non-analytiity of the perturbative omponent is anelled ex-

atly by the non-analytiity of the non-perturbative omponent. This results

in a perturbative + non-perturbative expression whih exhibits the neessary

analyti properties whih the observables must have, and whih were the ba-

sis for the ritiism of the work in [31℄ found in [63℄.
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Using similar rearrangements we an now obtain the remaining expres-

sions for n = 1, 2. For Q2 > Λ2
we have

F
(2)
+ (Q2) =

{(
Λ2

Q2

)2

ln

(
2

(
1− Λ2

Q2

))
+

Λ2

Q2
−
(
Λ2

Q2

)2

ln
Λ2

Q2
− ln 2

(
Λ2

Q2

)2
}

+ γ
E

(
Λ2

Q2

)2

+

(
Λ2

Q2

)2

f2

(
1− Λ2

Q2

)

+

[
−Λ2

Q2
+

(
Λ2

Q2

)2

ln
Λ2

Q2
+

(
Λ2

Q2

)2

ln 2

]
, (7.16)

and for the region Q2 < Λ2

F
(2)
+ (Q2) =

{(
Λ2

Q2

)2

ln

(
2

(
1− Q2

Λ2

))
+

Λ2

Q2
− ln 2

(
Λ2

Q2

)2
}

+ γ
E

(
Λ2

Q2

)2

+

(
Λ2

Q2

)2

f2

(
1− Λ2

Q2

)

− Λ2

Q2
+

(
Λ2

Q2

)2

ln
Λ2

Q2
+

(
Λ2

Q2

)2

ln 2, (7.17)

The non-perturbative terms that need to be added to F
(2)
+ (Q2) are

F̄
(2)
+ (Q2) = −

(
Λ2

Q2

)2

ln

(
2

(
1− Λ2

Q2

))
− Λ2

Q2

+

(
Λ2

Q2

)2

ln
Λ2

Q2
+

(
Λ2

Q2

)2

ln 2, (Q2 > Λ2), (7.18)

F̄
(2)
+ (Q2) = −

(
Λ2

Q2

)2

ln

(
2

(
1− Q2

Λ2

))
− Λ2

Q2
+

(
Λ2

Q2

)2

ln 2, (Q2 < Λ2).

(7.19)

One then �nds the holomorphi funtion

F
∗(2)
+ (Q2) = (γ

E

+ ln 2)

(
Λ2

Q2

)2

+

(
Λ2

Q2

)2

f2

(
1− Λ2

Q2

)
− Λ2

Q2
+

(
Λ2

Q2

)2

ln
Λ2

Q2
.

(7.20)

Finally we onsider the expressions for F
(1),(2)
− . For Q2 > Λ2

we �nd

F
(1)
− (Q2) =

{
Q2

Λ2
ln

(
1− Λ2

Q2

)
+ 1

}
+ γ

E

Q2

Λ2
+
Q2

Λ2
f1

(
1− Q2

Λ2

)
+
Q2

Λ2
ln
Q2

Λ2
− 1.

(7.21)
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and for the region Q2 < Λ2

F
(1)
− (Q2) =

{
Q2

Λ2
ln

(
1− Q2

Λ2

)
+ 1− Q2

Λ2
ln
Q2

Λ2

}
+ γ

E

Q2

Λ2

+
Q2

Λ2
f1

(
1− Q2

Λ2

)
+

[
Q2

Λ2
ln
Q2

Λ2
− 1

]
. (7.22)

The non-perturbative terms that need to be added to F
(1)
− (Q2) are

F̄
(1)
− (Q2) = −Q

2

Λ2
ln

(
1− Λ2

Q2

)
− 1 (Q2 > Λ2), (7.23)

F̄
(1)
− (Q2) = −Q

2

Λ2
ln

(
1− Q2

Λ2

)
− 1 +

Q2

Λ2
ln
Q2

Λ2
(Q2 < Λ2). (7.24)

One then �nds the holomorphi funtion

F
∗(1)
− (Q2) = γ

E

Q2

Λ2
+
Q2

Λ2
f1

(
1− Q2

Λ2

)
+
Q2

Λ2
ln
Q2

Λ2
− 1. (7.25)

For F
(2)
− (Q2) in the region Q2 > Λ2

one has

F
(2)
− (Q2) =

{(
Q2

Λ2

)2

ln

(
2

(
1− Λ2

Q2

))
+
Q2

Λ2
+

1

2
−
(
Q2

Λ2

)2

ln 2

}

− Q2

Λ2
+

(
Q2

Λ2

)2

ln 2− 1

2
+ γ

E

(
Q2

Λ2

)2

+

(
Q2

Λ2

)2

f2

(
1− Q2

Λ2

)
+

(
Q2

Λ2

)2

ln
Q2

Λ2
, (7.26)

and for the region Q2 < Λ2

F
(2)
− (Q2) =

{(
Q2

Λ2

)2

ln

(
2

(
1− Q2

Λ2

))
+

1

2
−
(
Q2

Λ2

)2

ln
Q2

Λ2
+
Q2

Λ2
−
(
Q2

Λ2

)2

ln 2

}

+

[
−Q

2

Λ2
+

(
Q2

Λ2

)2

ln 2− 1

2
+

(
Q2

Λ2

)2

ln
Q2

Λ2

]
+γ

E

(
Q2

Λ2

)2

+

(
Q2

Λ2

)2

f2

(
1− Q2

Λ2

)
.

(7.27)
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The non-perturbative terms that need to be added to F
(2)
− (Q2) are

F̄
(2)
− (Q2) = −

(
Q2

Λ2

)2

ln

(
2

(
1− Λ2

Q2

))
− Q2

Λ2
+

(
Q2

Λ2

)2

ln 2− 1

2
, (Q2 > Λ2),

(7.28)

F̄
(2)
− (Q2) = −

(
Q2

Λ2

)2

ln

(
2

(
1− Q2

Λ2

))
− Q2

Λ2
+

(
Q2

Λ2

)2

ln 2

+

(
Q2

Λ2

)2

ln
Q2

Λ2
− 1

2
, (Q2 < Λ2). (7.29)

The resulting holomorphi funtion is

F
∗(2)
− (Q2) = −1

2
+ (γ

E

+ ln 2)

(
Q2

Λ2

)2

+

(
Q2

Λ2

)2

f2

(
1− Q2

Λ2

)
− Q2

Λ2
+

(
Q2

Λ2

)2

ln
Q2

Λ2
.

(7.30)

This ompletes the evaluation of the n = 1, 2 funtions required for the sum

rules KpBJ and UuBJ .

In terms of the F
(1),(2)
± (Q2) we have

K
(L)
PT (Q

2) =
1

9b
[16F

(1)
+ (Q2)− 10F

(2)
+ (Q2)− 8F

(1)
− (Q2) + 2F

(2)
− (Q2)],

(7.31)

U
(L)
PT (Q

2) =
1

3b
[8F

(1)
+ (Q2)− 6F

(2)
+ (Q2)− 2F

(2)
− (Q2)]. (7.32)

The non-perturbative (NP) omponents to be added to obtain full analytiity

are

K̄
(L)
NP (Q

2) =
1

9b
[16F̄

(1)
+ (Q2)− 10F̄

(2)
+ (Q2)− 8F̄

(1)
− (Q2) + 2F̄

(2)
− (Q2)],

(7.33)

Ū
(L)
NP (Q

2) =
1

3b
[8F̄

(1)
+ (Q2)− 6F̄

(2)
+ (Q2)− 2F̄

(2)
− (Q2)]. (7.34)

Adding the perturbative and non-perturbative omponents together gives

the fully analyti funtions K∗(L)(Q2) and U∗(L)(Q2). These funtions are

simply the original leading-b perturbative form of the observables, plus a non-

perturbative term, the exat form of whih is determined by the analytiity

onstraint. In e�et, we use this onstraint to determine the form of the

non-perturbative terms.
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7.3 Freezing and Landau pole behaviour

of the fully analyti form of K and U
From Eqs. (7.14,7.19,7.24,7.29), one an read o� the infrared freezing limits

of the non-perturbative omponent. One �nds

F̄
(1)
+ (0) = 1, F̄

(2)
+ (0) =

1

2
, (7.35)

F̄
(1)
− (0) = −1, F̄

(2)
− (0) = −1

2
. (7.36)

Sine the perturbative omponent freezes to zero as Q2 −→ 0, the freezing
limits of the analyti funtions are found to be

K∗(L)(0) =
1

9b
[16− 5 + 8− 1] =

2

b
, (7.37)

U∗(L)(0) =
1

3b
[8− 3 + 1] =

2

b
. (7.38)

Remarkably, one �nds the same freezing limit for K(Q2) and U(Q2), even
though di�erent UV and IR renormalon residues are involved. This suggests

the existene of yet another relation between UV and IR residues. The sum

is required to vanish to sreen the Landau pole, and the weighted sum is 2
in eah ase. It is interesting that

2
b
is also the freezing limit found in the

Analyti Perturbation Theory (APT) approah of Shirkov and ollaborators

[64℄. This onnetion will be disussed further later in the Chapter.

We an also �nd the values of the analyti funtions at Q2 = Λ2
. From

Eqs. (7.15,7.20,7.25,7.30) one �nds

F
∗(1)
+ (Λ2) = γ

E

, (7.39)

F
∗(2)
+ (Λ2) = γ

E

+ ln 2− 1, (7.40)

F
∗(1)
− (Λ2) = γ

E

− 1, (7.41)

F
∗(2)
− (Λ2) = γ

E

+ ln 2− 3

2
. (7.42)

Assembling these results gives

K∗(L)(Λ2) =
(−8 ln 2 + 15)

9b
, (7.43)

U∗(L)(Λ2) =
(−8 ln 2 + 9)

3b
. (7.44)
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Figure 7.1: Combination of Perturbative and Non-Perturbative Part of Po-

larised Bjorken Sum Rule K∗(Q2) versus Q2
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The ln 2 piees orrespond to the results found in Chapter 5, and are shifted

by the extra terms added to ahieve full analytiity.

We plot in Fig(7.1) and Fig(7.2) the analyti funtions K∗(L)(Q2) and

U∗(L)(Q2) (solid line), and for omparison the pieewise analyti funtions

K
(L)
PT (Q

2) and U
(L)
PT (Q

2) (dashed line), as in Chapter 5, we assume Nf = 0
ative quark �avours. As it has been disussed that this is the minimal

model, this is the reason why Fig(7.1) and Fig(7.2) disagree at high Q2

despite we hange numerous parameters signi�antly, the disagreement will

still be signi�ant. A solution to this problem is to introdue another non-

perturbative terms but some questions that remain will be what and why?

7.4 The Adler D funtion

For the Adler D funtion, one has an in�nite sum (of renormalon singularities)

over n, and so to onsider its freezing behaviour one needs a general result

for F
(n)
± (Q2). We �nd the holomorphi funtions

F
∗(n)
+ (Q2) = −

n−1∑

k=1

1

k

(
Λ2

Q2

)n−k
+ lnn

(
Λ2

Q2

)n
+ γ

E

(
Λ2

Q2

)n

+

(
Λ2

Q2

)n
fn

(
1− Λ2

Q2

)
+

(
Λ2

Q2

)n
ln

Λ2

Q2
, (7.45)

F
∗(n)
− (Q2) = −

n∑

k=1

1

k

(
Q2

Λ2

)n−k
+ lnn

(
Q2

Λ2

)n
+ γ

E

(
Q2

Λ2

)n

+

(
Q2

Λ2

)n
fn

(
1− Q2

Λ2

)
+

(
Q2

Λ2

)n
ln
Q2

Λ2
. (7.46)

The non-perturbative terms that need to be added to F
(n)
+ (Q2) are for

Q2 > Λ2

F̄
(n)
+ (Q2) = −

(
Λ2

Q2

)n
ln

(
n

(
1− Λ2

Q2

))
−

n−1∑

k=1

1

k

(
Λ2

Q2

)n−k
+

(
Λ2

Q2

)n
ln

Λ2

Q2

+ lnn

(
Λ2

Q2

)n
, (7.47)

and for Q2 < Λ2
,

F̄
(n)
+ (Q2) = −

(
Λ2

Q2

)n
ln

(
n

(
1− Q2

Λ2

))
−

n−1∑

k=1

1

k

(
Λ2

Q2

)n−k
+ lnn

(
Λ2

Q2

)n
.(7.48)
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For F
(n)
− (Q2) in the region Q2 > Λ2

the NP terms to be added are

F̄
(n)
− (Q2) = −

(
Q2

Λ2

)n
ln

(
n

(
1− Λ2

Q2

))
−

n∑

k=1

1

k

(
Q2

Λ2

)n−k
+ lnn

(
Q2

Λ2

)n
,

(7.49)

and for Q2 < Λ2

F̄
(n)
− (Q2 = −

(
Q2

Λ2

)n
ln

(
n

(
1− Q2

Λ2

))
−

n∑

k=1

1

k

(
Q2

Λ2

)n−k
+ lnn

(
Q2

Λ2

)n

+

(
Q2

Λ2

)n
ln
Q2

Λ2
. (7.50)

D
(L)
PT

(Q2) in terms of the F
(n)
± (Q2) is given by

D
(L)
PT

(Q2) =

∞∑

n=1

zn

{
F

(n)
− (Q2)

[
zn

a(Q2)
(A0(n)− znA1(n))− znA1(n)

]

+ (A0(n)− znA1(n))

}

+

∞∑

n=1

zn

{
F

(n)
+ (Q2)

[
zn

a(Q2)
(B0(n) + znB1(n))− znB1(n)

]

− (B0(n) + znB1(n))

}
. (7.51)

The non-perturbative omponent whih needs to be added for analytiity is

D̄
(L)
NP

(Q2) =

∞∑

n=1

zn

{
F̄

(n)
− (Q2)

[
zn

a(Q2)
(A0(n)− znA1(n))− znA1(n)

]}

+

∞∑

n=1

zn

{
F̄

(n)
+ (Q2)

[
zn

a(Q2)
(B0(n) + znB1(n))− znB1(n)

]}
.

(7.52)

Nevertheless, adding suh a non-perturbative term will de�nitely lead to an

in�nite freezing limit, this is due to the 1/a(Q2) term whih diverges to ∞
as Q2

goes to 0. However, we shall show in Setion 7.7 that one an de�ne

the non-perturbative F̄
(n)
± funtions for a renormalon with a single pole Borel

singularity as a di�erential operator involving D ≡ d
dτ

ating on the oupling
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a(τ) = 1
τ
. For the Adler D-funtion one has double poles in the Borel plane

and hene needs to at with the square of this operator. In this way one

�nds a di�erent

¯̄F n
+(Q

2) non-perturbative term for Q2 > Λ2

¯̄F
(n)
+ (Q2) = −n

(
Λ2

Q2

)n

×
[
L2

(
1− Λ2

Q2

)
− π2

3
−

n−1∑

k=1

(
1

k2

(
Λ2

Q2

)n−k)
− 1

2

(
Λ2

Q2

)n
ln

(
Λ2

Q2

)2
]
,

(7.53)

Here L2 denotes a dilogarithm (see Eq. (5.40) for the de�nition), and for

Q2 < Λ2

¯̄F
(n)
+ (Q2) = n

(
Λ2

Q2

)n [
L2

(
1− Q2

Λ2

)
−

n−1∑

k=1

(
1

k2

(
Λ2

Q2

)n−k)]
.

(7.54)

The other two analogous (−) equations, for Q2 > Λ2
are

¯̄F
(n)
− (Q2) = −n

(
Q2

Λ2

)n [
L2

(
1− Λ2

Q2

)
+

n∑

k=1

(
1

k2

(
Q2

Λ2

)n−k)]
,

(7.55)

and for Q2 < Λ2

¯̄F
(n)
− (Q2) = −n

(
Q2

Λ2

)n

×
[
L2

(
1− Q2

Λ2

)
− π2

3
+

n∑

k=1

(
1

k2

(
Q2

Λ2

)n−k)
+

1

2

(
Q2

Λ2

)n
ln

(
Q2

Λ2

)2
]
.

(7.56)

Using these new double pole non-perturbative terms, we modify the D̄
(L)
NP

(Q2)
suh that
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D̄
(L)
NP

(Q2) =
k∑

n=1

[
¯̄F n
−(Q

2)zn (A0n− znA1(n))− F̄ n
−(Q

2)zn (znA1(n))
]

+

k+2∑

n=3

[
¯̄F n
+(Q

2)zn (B0n + znB1(n))− F̄ n
+(Q

2)zn (znB1(n))
]

− F̄
(2)
+ (Q2)

(
4

b

)2(
−1
4

)
. (7.57)

To math our alulation in Chapter 6, we trunate Eq. (7.57) at k = 15.

Adding the above perturbative and non-perturbative omponents gives

the analyti funtion D∗(L)(Q2). The infrared freezing limit of the non-

perturbative omponent is given by

F̄
(n)
+ (0) =

1

n
, F̄

(n)
− (0) = −1

n
, ¯̄F

(n)
+ (0) =

1

n2
, ¯̄F

(n)
− (0) = − 1

n2
, (7.58)

whih is onsistent with Eqs. (7.35,7.36). One then �nds the freezing limit

for the analyti funtion D∗(L)(Q2)
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D∗(L)(0) =
k∑

n=1

[
−
(

1

n2

)
zn (A0n− znA1(n)) +

(
1

n

)
zn (znA1(n))

]

+

k+2∑

n=3

[(
1

n2

)
zn (B0n + znB1(n))−

(
1

n

)
zn (znB1(n))

]

−
(
1

2

)(
4

b

)2(
−1
4

)
=

2

b
. (7.59)

This freezing limit is absolutely amazing and it agrees with the APT version

of analyti perturbation theory provided by Shirkov and ollaborators [64℄

whih we will touh on in Setion 7.8. This mathes the preditions with

K(Q2) and U(Q2) whih both also freeze to a 2/b limit. In fat we shall

show that our D-operator onstrution of the F̄ and

¯̄F , is equivalent to an

all-orders resummation of Shirkov's APT series.

We now plot the analyti funtion D∗(L)(Q2) in Fig. (7.3) and the non-

perturbative part de�ned by KNP (Q
2), UNP (Q

2) and DNP (Q
2) in Fig. (7.4).

We will assume Nf = 0 in our plots.

One an generalize the Q2 = Λ2
values of the omponents into Eqs. (7.39-

7.42),

F
∗(n)
+ (Λ2) = γ

E

+ lnn−
n−1∑

k=1

1

k
, (7.60)

F
∗(n)
− (Λ2) = γ

E

+ lnn−
n∑

k=1

1

k
. (7.61)

Substituting these results in Eq. (7.51) and Eq. (7.57) one �nds

D∗(L)(Λ2) ≈ (0.679938 + 0.121342)

b
. (7.62)

The �rst term in the numerator is the result found in [31℄, this is shifted by

the extra terms required for analytiity.

We have shown that it is possible to add non-perturbative terms to the

pieewise analyti one-hain skeleton expansion result in the regions Q2 > Λ2

and Q2 < Λ2
, suh that when ombined, an analyti funtion of Q2

re-

sults. Although both perturbative and non-perturbative omponents are
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Figure 7.3: D∗(L)(Q2) (solid line), DPT (Q
2) (green dots) and DNP (Q

2) (red

dots) against

Q2

Λ2
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Figure 7.4: Non-perturbative terms - KNP (Q
2) (green dots), UNP (Q

2) (red

dots) and DNP (Q
2) (solid line) against

Q2

Λ2
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only pieewise analyti funtions, their sum is fully analyti. The non-

perturbative terms to be added are onstrained by requiring asymptoti free-

dom as Q2 −→ ∞, and �nite freezing behaviour as Q2 −→ 0. Of ourse, one
an always add additional analyti and asymptotially free non-perturbative

ontributions to the fully analyti funtion. Hene, the non-perturbative

ontribution we have derived here may be subjet to further orretions.

Cruially however, we have demonstrated that the remarkable freezing and

Landau pole behaviour of the leading-b expressions disovered in [31℄, is

ompatible with the neessary analytiity requirements of QFT, whih were

expounded by the authors of [63℄.

7.5 The GDH Sum Rule and freezing be-

haviour of KpBj(Q
2)

In this setion, we onsider the exat low-energy Gerasimov-Drell-Hearn

(GDH) Sum Rule whih an be related to the KpBj(Q
2) polarized Bjorken

DIS sum rule. We shall show that it is possible to add an extra holomorphi

non-perturbative funtion to K∗(L)(Q2) in suh a way that the GDH Sum

Rule is satis�ed. [65℄ Consider the Q2
-dependent integral

I1(Q
2) =

2M2

Q2

∫ 1

0

g1(x,Q
2) dx. (7.63)

This is de�ne for all Q2
with g1(x,Q

2) being the generalization for all Q2

of g1(x). Note that g1(x) is the standard sale-invariant struture funtion

independent of Q2
. We ignore elasti ontribution at x = 1 to the sum

rule. We de�ne x = Q2/2Mν and making the relevant hange of variable,

one reovers the integral over all energies of spin-dependent photon-nuleon

ross setion Q2 = 0, whose value is given in [66, 67℄. Here M is the nuleon

mass and ν is the energy transfer. The low energy GDH sum rule is

I1(0) =
−µ2

A

4
, (7.64)

where µA is the nuleon anomalous magneti moment in units of nulear

magnetons [68℄. [69℄ For the polarized Bjorken Sum Rule [70℄, we have

KpBj(Q
2) ≡

∫ 1

0

gep−en1 (x,Q2)dx

=
1

6

∣∣∣∣∣
gA
gV

∣∣∣∣∣

(
1− 3

4
CFK(Q2)

)
, (7.65)
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with the spin-dependent proton and neutron struture funtions gep1 , gen1 .

gA = 1.267 ± 0.004 is the nuleon axial harge obtained from the neutron

β-deay. We would then expet that as Q2 −→ 0

2M2

Q2
KpBj(Q

2) −→
(µ2

A,n − µ2
A,p)

4
. (7.66)

Here µA,n and µA,p are, respetively, the anomalous magneti moments of the

neutron and proton in units of nulear magnetons. It is immediately obvious

that the freezing behaviour of K∗(L)(Q2) plotted in Fig 7.1 violates the GDH

low energy sum rule expetation in Eq. (7.66). Approximating K(Q2) by

K∗(L)(Q2) we have as Q2 −→ 0

2M2

Q2
KpBj(Q

2) ≈ 2M2

Q2

1

6

∣∣∣∣∣
gA
gV

∣∣∣∣∣

(
1− 2

b
+O(a(Q2)) +O(Q

2

Λ2
)

)
. (7.67)

This diverges like Q−2 as Q2 −→ 0 and a �nite GDH infrared limit is not

found. To satisfy the GDH Sum Rule we need to add an additional non-

perturbative analyti term whih anels the onstant and O(a(Q2)) terms

in Eq. (7.63). This �xes the form of K(Q2) to be

K(Q2) = K∗(L)(Q2) + (1−K∗(L)(Q2))F(Q2). (7.68)

Here F(Q2) is an analyti funtion of Q2
whih for Q2 < Λ2

has a modi�ed

NP expansion of the form

F(Q2) = 1 + λ
Q2

Λ2
+O

((
Q2

Λ2

)2
)
. (7.69)

Whilst for Q2 > Λ2
it admits an OPE expansion in powers of Λ2/Q2

. One

then �nds the Q2 −→ 0 behaviour

KpBj(Q
2) ≈ −1

6

∣∣∣∣∣
gA
gV

∣∣∣∣∣

(
1− 2

b

)
λ
Q2

Λ2
+O

((
Q2

Λ2

)2
)
. (7.70)

Fixing the value of the oe�ient λ to be

λ = − Λ2

2M2
6

∣∣∣∣∣
gV
gA

∣∣∣∣∣

(
1− 2

b

)−1 (µ2
A,n − µ2

A,p)

4
, (7.71)

the GDH Sum Rule of Eq. (7.66) will be satis�ed.
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7.6 Conformal non-perturbative expansions

We will need to onstrut analyti funtions F(Q2) whih admit expansions

in powers of (Λ
2

Q2 ) valid for Q2 > Λ2
of the same form as the OPE,

F(Q2) =

∞∑

n=1

Cn
(
Λ2

Q2

)n
. (7.72)

For Q2 < Λ2
they must admit the modi�ed expansion in powers of (Q

2

Λ2 ),

F(Q2) =

∞∑

n=1

C̃n
(
Q2

Λ2

)n−1
, (7.73)

where in satisfying the GDH Sum Rule we require C̃1 = 1. Cruially these

expansions must orrespond to a single analyti funtion of Q2
at all values of

Q2
. This an be ensured by formulating the following modi�ed �onformal�

expansions,

F(Q2) =
∞∑

n=1

Ĉn

(
Λ2

Q2

)n

(
1 + Λ2

Q2

)2n−1 (7.74)

=
∞∑

n=1

Ĉn

(
Q2

Λ2

)n−1

(
1 + Q2

Λ2

)2n−1 . (7.75)

Term-by-term these series are idential funtions of Q2
at all values of Q2

,

and for Q2 < Λ2
Eq. (7.74) admits an expansion in powers of (Λ

2

Q2 ) whih

must be equivalent to Eq. (7.72), whilst for Q2 < Λ2
Eqn(7.75) admits an

expansion in powers of (Q
2

Λ2 ) whih must be equivalent to Eqn(7.73). Using

the Binomial theorem and equating oe�ients one �nds

Ĉ1 = C1 = C̃1
Ĉ2 = C2 + C1 = C̃2 + C̃1.
.

.

. (7.76)

From whih we onlude that the oe�ients in the OPE of Eqn(7.72) and

the modi�ed expansion of Eqn(7.73) are idential, Cn = C̃n. The onfor-

mal expansions are essentially an Euler transformation of the original non-

perturbative expansions.
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We an now �x the Ĉn oe�ients in suh a way that the GDH Sum Rule

holds. We write

(1−K(Q2)) = 1−K∗(L)(Q2)− (1−K∗(L)(Q2))F(Q2), (7.77)

where the analyti funtion F(Q2) has the onformal expansion

F(Q2) =
1(

1 + Q2

Λ2

) +

[
1− C̃K2

(1−K∗(L)(Q2))

]
Q2

Λ2

(
1 + Q2

Λ2

)3 +

[
2− (3C̃K2 −C̃K3 )

(1−K∗(L)(Q2))

] (
Q2

Λ2

)2

(
1 + Q2

Λ2

)5 + . . .

(7.78)

We then �nd for (1−K(Q2)) the �onformal expansion�

(1−K(Q2)) = 1−K∗(L)(Q2)− (1−K∗(L)(Q2))(
1 + Q2

Λ2

) −

[
(1−K∗(L)(Q2))− C̃K2

]
Q2

Λ2

(
1 + Q2

Λ2

)3

+

[
3C̃K2 + C̃K3 − 2(1−K∗(L)(Q2))

] (
Q2

Λ2

)2

(
1 + Q2

Λ2

)5 + . . . (7.79)

This expansion should be valid at all values of Q2
. In the infrared region

Q2 < Λ2
as Q2 −→ 0 this has the modi�ed non-perturbative expansion

(1−K(Q2)) = C̃K2
(
Q2

Λ2

)
+ C̃K3

(
Q2

Λ2

)2

+ . . . , (7.80)

where, by onstrution, the oe�ients are independent of K∗(L)(Q2). To

ensure the GDH Sum Rule one needs to �x

C̃K2 |GDH =
(µ2

A,n − µ2
A,p)

4

(
Λ2

2M2

)
6

∣∣∣∣∣
gV
gA

∣∣∣∣∣. (7.81)

Using PDG booklet values for these quantities one �nds C̃K2 |GDH ≈ 0.308 Λ2

GeV2 .

For Q2 > Λ2
, Q2 −→∞, the result has the form of the analytized perturba-

tive result (1−K∗(L)(Q2)) plus a non-perturbative OPE expansion

(1−K(Q2)) = (1−K∗(L)(Q2))− (1−K∗(L)(Q2))

(
Λ2

Q2

)
+ C̃K2

(
Λ2

Q2

)2

+ C̃K3
(
Λ2

Q2

)3

+ . . .

(7.82)
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One might be tempted to onlude that the higher OPE terms have the

same oe�ients as the terms in the modi�ed non-perturbative expansion

whih applies in the infrared, but this would be laiming too muh. The

funtion K∗(L)(Q2) is the minimal way of ombining pieewise analyti per-

turbative and non-perturbative omponents to ahieve an analyti behaviour

overall. As we noted earlier we an always add any additional analyti non-

perturbative term H(Q2), replaing K∗(L)(Q2) everywhere by K∗(L)(Q2) +
H(Q2). If we assume that H(Q2) admits the OPE expansion

H(Q2) =
∞∑

n=1

Hn

(
Λ2

Q2

)n
, (7.83)

then Eq. (7.80) still applies as Q2 −→ 0, but the OPE expansion in Eq. (7.82)

will be modi�ed to

(1−K(Q2)) = (1−K∗(L)(Q2))− (1−K∗(L)(Q2) +H1)

(
Λ2

Q2

)

+ (C̃K2 −H2 −H1)

(
Λ2

Q2

)2

+ (C̃K3 −H3 +H2)

(
Λ2

Q2

)3

+ . . .

(7.84)

7.7 The Inverse D Operator

Consider a QCD observable R having the Borel representation

R =

∫ ∞

0

dze−z/aB[R](z). (7.85)

Here we assume as usual that R has the perturbative expansion

R = a + r1a
2 + r2a

3 + . . .+ rna
n+1 + . . . . (7.86)

The main result we will need is that if B[R](z) = 1/(z − zi)n i.e. a pole

in the z-plane, then introduing the di�erential operator D ≡ d
dτ

where we

assume a one loop oupling a(τ) = 1
τ
, we have the operator relation

R =
(−1)n

(D ∓ zi)n
a(τ) . (7.87)

So elegantly one has an inverse D-operator ating on the oupling. To prove

this one simply writes a(τ) =
∫∞
0
dze−z/a(τ). Noting that e−z/a = e−zτ we see

that ating with Dn
pulls down a fator (−1)nzn inside the integrand whih
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on integration over z will reprodue the series expansion for R. We shall

show that the funtions F
(n)
± involving the ontributions of renormalon sin-

gle poles are reprodued by the D-operator expression. Note that this result

does not work only for poles. We have the general result R = B[R](−D)a(τ)
for any Borel summable series with a one loop oupling.

The further interest is in reproduing the non-perturbative ontributions

F̄
(n)
± whih need to be added to obtain an analyti result. It turns out

that these an be onstruted from the funtion A1(Q
2) in Shirkov's APT

formalism whih will be disussed in the next setion. One has the APT

expansion

R = A1(Q
2) + r1A2(Q

2) + . . .+ rnAn+1(Q
2) + . . . . (7.88)

De�ning L ≡ ln(Q
2

Λ2 ) one has at the one loop level

A1(Q
2) =

2

b

[
1

L
+

1

(1− eL)

]
. (7.89)

The seond OPE-like term regulates the Landau pole at Q2 = Λ2
in the

�rst term whih is simply the oupling a(τ). The Ai terms satisfy the beta-

funtion like equation

Ak+1(Q
2) = − 1

kb

dAk(Q2)

dL
. (7.90)

This is enough to ensure that for a simple pole ontribution B[R](z) = 1
(z±zi)

one has

R =
1

zi ±D
A1(Q

2) . (7.91)

Again we note that this does not just work for poles but more generally we

have the result R = B[R](−D)A1(Q
2), where A1(Q

2) is the one loop APT

funtion. The D−1 operator ating on the NP

1
(1−eL) piee of A1(Q

2) an be

used to generate the non-perturbative F̄
(n)
± terms whih need to be added to

the PT F
(n)
± terms arising from the D−1 operator ating on the �rst term

a(τ). The impliation is that one an formally onstrut an all-orders resum-

mation of the APT series for R using this tehnique. Before we disuss all

of this further we need to provide an introdution to the D-operator method

for solving onstant oe�ient linear ODE's.

We onsider linear di�erential equations where a general linear di�erential

equation of order n an be written in the form of
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a0(x)
dny

dxn
+ a1(x)

dn−1y

dxn−1
+ ...+ an−1(x)

dy

dx
+ an(x)y = R(x). (7.92)

If R(x) = 0, the resulting equation is a homogeneous equation and if

R(x) 6= 0, the resulting equation is a non-homogeneous equation. Generally,

we adopt the notation Dy, D2y,....,Dny to denote

dy
dx
,

d2y
dx2

,...,

dny
dxn

. These no-

tations Dy, D2y,....,Dny are alled di�erential operators and have properties

of algebrai quantities. With this notations, it is permitted for us to write

[a0(x)D
n + a1(x)D

n−1 + ... + an−1(x)D + an(x)]y = R(x), (7.93)

or simply

φ(D)y = R(x), (7.94)

where φ = [a0(x)D
n + a1(x)D

n−1 + ... + an−1(x)D + an(x)] is the operator

polynomial in D. In order to obtain the general solution of Eq. (7.86) for

R(x) 6= 0, let yc(x) be the Complementary homogeneous equation

φ(D)y = 0, (7.95)

yc(x) is referred as the omplementary homogeneous solution. The superpo-

sition theorem

Theorem− 1 - The general solution of Eq. (7.87) is obtained by adding

the omplementary solution yc(x) to a partiular solution yp(x) suh that

c(x) + yp(x). (7.96)

A simple example is the omplementary solution yc(x) = c1e
x + c2e

2x
for

(D2 − 3D + 2)y = 0 and the partiular solution yp(x) = 2x2 + 6x + 7 for

(D2 − 3D + 2)y = 4x2, the general solution for (D2 − 3D + 2)y = 4x2 will

then be y = c1e
x+c2e

2x+2x2+6x+7. We will not touh the other theorems

from [71℄ but proeed diretly to method of inverse operators.

Let us de�ne a partiular solution yp for

1
φ(D)

R(x) suh that φ(D)yp =

R(x). We will refer

1
φ(D)

as the inverse operator. Without going into the

mathematial depth of why

1
φ(D)

is simply a linear operator as well as the

rigorous proof of �nding the partiular solutions for the inverse operators, we

simply present the following two important relations whih will be essential

in our thesis
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1

D −mR(x) = emx
∫ x

e−mxR(x)dx, (7.97)

and in ase of multiple inverse operators ating on R(x) where we will have

1

(D −m1)(D −m2)....(D −mn)
R(x) = em1x

∫
em1xem2x

....

∫
emn−1xemnx

∫
e−mnxR(x)dx.

(7.98)

We note an important property of the D−1 operator, we have only spei�ed

the upper limit of integration in Eq. (7.97). Speifying a onstant lower limit

of integration orresponds to adding a omplementary funtion proportional

to emx.

The �rst simplest example to onsider is

1

D − λ
1

τ
= eλτ

∫ τ e−λt

t
dt

= eλτ
∫ λτ

∞

e−u

u

= eλτEi(−λτ). (7.99)

Here we have introdued the substitution u = λτ from line 1 to line 2. This

result is what we need to derive the F
(n)
± (Q2) funtions needed for the K

(L)
PT

and U
(L)
PT Sum Rules.

1

1 + z
z1

→ z1
z + z1

→ −z1
D − z1

1

τ

= −z1ez1τEi(−z1τ)
= −z1F (1)

− (Q2), (7.100)

and similarly

1

1− z
z1

→ −z1
z − z1

→ z1
D + z1

1

τ

= z1e
−z1τEi(z1τ)

= z1F
(1)
+ (Q2). (7.101)
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The nth order operators an be generalized as follows

1

1 + z
zn

→ −znF (n)
− (Q2), (7.102)

1

1− z
zn

→ znF
(n)
+ (Q2). (7.103)

The last job will be showing how the transformation of the non-perturbative

part in the Shirkov's APT Eulidean funtions [72℄ in the 1-loop ase is equiv-

alent to the non-perturbative part required to be added to F
(n)
+ and F

(n)
− for

both the regions of Q2 > Λ2
and Q2 < Λ2

whih we denote as F̄
(n)
+ and

F̄
(n)
− in Eqs. (7.47, 7.48, 7.49, 7.50). The non-perturbative ontribution of

Shirkov's APT Eulidean funtions [72℄ in the one loop ase is simply given

by

(
Λ2

Λ2 −Q2

)
=

(
1

1− Q2

Λ2

)
,

=

(
1

1− eL
)
,

we �rst onsider applying the operator orresponding to the simple pole

1/(1− z
zn
) to Λ2

Λ2−Q2 . We shall rede�ne D ≡ d
dL

(rather than using τ)

n

D + n

(
1

1− eL
)

= ne−nL
∫ L

ent
1

(1− et)dt

= n

(
Λ2

Q2

)n ∫ Λ2/Q2

x−n

(1− x−1)
−dx
x

= n

(
Λ2

Q2

)n ∫ Λ2/Q2

x−n

(x− 1)
dx. (7.104)

Here we have used the substitution x = e−t when going from line 1 to line 2.

The integral in Eq. (7.104) has the form

∫ Λ2/Q2

x−n

(x− 1)
dx =

[
− ln(x− 1)−

n−1∑

k=1

1

k

(
1

x

)k
+ ln(x)

] Λ2

Q2

0

. (7.105)

After some manipulation, we �nally arrive at
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∫ Λ2/Q2

x−n

(x− 1)
dx = − ln

(
n

(
1− Λ2

Q2

))
−

n−1∑

k=1

1

k

(
Λ2

Q2

)−k
+ ln

Λ2

Q2
+ ln(n).

This reprodues all of the terms in Eq. (7.47) for F̄
(+)
n in the region Q2 > Λ2

.

Changing the upper limit to Q2/Λ2
for the region Q2 < Λ2

, it is possible

to obtain Eq. (7.48) for F̄
(+)
n . Repeating a similar proedure but with the

operator orresponding to 1/(1 + z
zn
) ating on

Λ2

Λ2−Q2 , Eqs. (7.49, 7.50) for

F̄
(−)
n in the two energy regions are reprodued.

We now need to onsider the double pole ontributions whih appear in

the Borel transform forD
(L)
PT . We need the square of the appropriate operator.

We apply the operator orresponding to ( 1
1− z

zn

) again to Eq. (7.105), this gives

∫ Λ2

Q2

[
− ln(x− 1)−

n−1∑

k=1

1

k

(
1

x

)k
+ ln(x)

]
x−n

dx

x
. (7.106)

Solving this partiular integral, it has the form

[
L2

(
1− Λ2

Q2

)
−

n−1∑

k=1

(
1

k2

(
Λ2

Q2

)n−k)
− 1

2

(
Λ2

Q2

)n
ln

(
Λ2

Q2

)2
]
, (7.107)

for any positive real integer n. This reprodues part of the struture of

Eq. (7.53) for

¯̄F
(n)

+ in the region Q2 > Λ2
. Cruially we see that there

is an additional −π2/3 ontribution in Eq. (7.53). This additional term is

required to ahieve ontinuity at Q2 > Λ2
when hanging over to the Q2 < Λ2

region and Eq. (7.54). We are allowed to add this additional ontribution of

n(Λ2/Q2)
n
π2/3 sine this power orretion term is part of the omplementary

funtion, and orresponds to speifying a lower limit of integration when

applying the D−1 operator. We have previously not needed to add suh

ontributions in disussing the single pole ontributions. The π2/3 arises via
the dilogarithm relation

L2(x) + L2(1− x) = − ln(x) ln(1− x) + π2

6
. (7.108)

We an similarly obtain Eqs. (7.55, 7.56) using the squared operator orre-

sponding to the 1/(1 + z
zn
)2 double pole. Similar π2/3 terms are also needed

to ensure ontinuity between the two regions Q2 > Λ2
and Q2 < Λ2

of

Eq. (7.55) and Eq. (7.56). We now move on to a brief disussion of Analyti

Perturbation Theory.
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7.8 Analyti Perturbation Theory

The whole idea of Analyti Perturbation Theory arose from onsidering the

problem of unphysial or ghost singularities of invariant harges in QCD.

Suh a di�ulty �rst appeared in QED in the mid 1950s. It played a ruial

role in the advanement and development of Quantum Field Theory.

In the 1950s, Shirkov and ollaborators suggested the resolution to this

problem by merging the renormalization group method with a Kallen-Lehman

representation. This simply implies analytiity in the omplex Q2
-variable.

The onsiderations underlying APT are reviewed at length in Ref. [64℄.

The APT expansion has the form of Eq. (7.88) where at the one loop

level we will denote the appropriate Ai(Q2) funtions as [72℄

A (1)
shir−1(Q

2) =
2

b

[
1

L
+

1

1− eL
]
, (7.109)

A (1)
shir−2(Q

2) =
2

b2

[
1

L2
− eL

(eL − 1)2

]
, (7.110)

A (1)
shir−k+1(Q

2) = − 1

kb

dA (1)
k

dL
, (7.111)

where the supersript implies we are onsidering the 1-loop ase and the

subsript simply means Shirkov. These funtions all vanish as Q2 → ∞.

The A1(Q
2) funtion has the freezing limit of 2/b as Q2 → 0 while the

higher Ai funtions vanish as Q2 → 0. We an now obtain LO, NLO and

N2LO trunations of the APT series forK
(L)
PT , U

(L)
PT and D

(L)
PT whih we denote

by K1
shir−LO, K

1
shir−NLO, K

1
shir−N2LO, U

1
shir−LO, U

1
shir−NLO, Ushir−N2LO, and

D1
shir−LO, D

1
shir−NLO and D1

shir−N2LO, respetively. These are alulated us-

ing the K
(L)
i , U

(L)
i and d

(L)
i leading-b V -sheme oe�ients. In Figs(7.5, 7.6,

7.7) these trunated APT results are plotted versus Q2/Λ2
and ompared

with the analytized U∗(L)(Q2), K∗(L)(Q2) and D∗(L)(Q2) results. We have

laimed that the analytized results ombining the PT+NP, F + F̄ , ontribu-
tions should be a formal all-orders resummation of the APT series. This is

on�rmed niely by the plots of Fig(7.5) and (7.6) for the Sum Rules where

we see that the N2LO results lie on the solid line representing the analy-

tized (supposedly all-orders) APT result. For the D∗(L)(Q2) ase in Fig(7.7),

however, we see that the N2LO result and analytized result (solid line) are

disrepant. This disrepany is plotted in Fig(7.8). It behaves like Λ2/Q2
as

Q2 → ∞ and vanishes as Q2 → 0, so the behavior is like that of an Ai(Q2)
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funtion. We suspet that this disrepany is onneted with the need to

restore ontinuity at Q2 = Λ2
by adding a omplementary funtion ontri-

bution when applying the D−1 method to the double pole ontributions (see

disussion below Eq. (7.108)), but it needs further investigation.

In the next setion we shall need higher-loop APT funtions. One possi-

bility is to approximate the 2 and 3 loop Eulidean and Minkowskian APT

ases using the so-alled e�etive log approah. In this ontext, it is possible

to use the simple model one loop expressions of Eqs. (7.110, 7.111, 7.112)

with some e�etive two loop log L∗ aumulating the two loop "log-of-log",

A (3)
shir−1,2,3((L)) −→ Amod

shir−1,2,3 = A (a)
shir−1,2,3(L

∗), (7.112)

L∗ = L+
c

b2
ln(
√
L2 + 2π2). (7.113)
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Figure 7.5: Polarised Bjorken Sum Rule K∗(Q2) (in red line) and the orre-

sponding K1
shir−LO,NLO,N2LO (in dots) versus

Q2

Λ2 - observe that K∗(Q2) and

K1
shir−N2LO( in blak dots) lay on top one another at eah partiular point
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Figure 7.6: Unpolarised Bjorken Sum Rule U∗(Q2) (in red line) and the

orresponding U1
shir−LO,NLO,N2LO (in dots) versus

Q2

Λ2 - observe that U∗(Q2)

and U1
shir−N2LO( in blak dots) lay on top of one another at eah partiular

point
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Figure 7.7: D∗(Q2) (in red line) and the orresponding D1
shir−LO,NLO,N2LO

(in dots) versus

Q2

Λ2 - observe that D∗(Q2) and D1
shir−N2LO( in blak dots)

show slight disrepany
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Figure 7.8: Disrepany betweenD∗(Q2) and D1
shir−N2LO( in blak dots)
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7.9 Fits to Low Energy JLab data

In this setion we shall perform �ts to the reent Je�erson Lab (JLab) and

some existing data for KpBj(Q
2) (Eq. (7.65)) at low Q2

values 0.1 < Q2 <
3 GeV2

. We shall use the "onformal expansion" of Eq. (7.79) whih provides

a toy model to desribe the Q2
behavior at all values of Q2

down to Q2 = 0.
We shall replae K∗(L) in Eq. (7.79) by various trunated APT series ana-

lyti results. We assume a minimal model in whih we �x C̃K
2 to the value

in Eq. (7.81) required to reprodue the low-energy GDH Sum Rule, and set

higher oe�ients in Eq. (7.80) to zero. We also set H(Q2) in Eq. (7.83) to

zero so we do not add any additional analyti ontribution.

To onstrut two loop APT analytization we shall use the results of Ma-

gradze in [73℄ who shows that one an write the two loop APT funtions

as

A(2)
n (s) = α(2)n

s (s) =
1

π

∫ ∞

0

ρ
(2)
n (σ)

σ + s
dσ =

1

π

∫ ∞

−∞

et

et + s/Λ2
ρ̃(2)n (t)dt, (7.114)

where

ρ̃(2)n (t) =

(
b

c

)n
Im

[
− 1

1 +W1(
b2

ce
exp(−b2t/c+ i(b2/c− 1)π))

]
. (7.115)

We onstrut a two loop LO analytization and a NLO analytization using

these funtions.

K2
1−Magradze = A(2)

1 (s), (7.116)

K2
2−Magradze = A(2)

1 (s) + k1A(2)
2 (s), (7.117)

where the supersript denotes that the equations are in two loop approxi-

mation. K1 is simply the �rst exat alulated NLO perturbative oe�ient

of the polarized Bjorken Sum Rule given by −0.333Nf + 1.48N + 0.438/N .

Substituting these results for K∗(L) in Eq. (7.79) one obtains the red and

blue lines plotted in Fig 7.9. We an also onsider LO and NLO APT results

using the one loop Shirkov funtions in Setion 7.8. These are the green and

blak urves in Fig(7.9). Finally we an onsider a NLO trunation using

the Shirkov two loop e�etive log result of Eqs. (7.113, 7.114). These are the

diamond points in Fig(7.9). We have used Λ
(3)

MS
= 380 MeV, this is the value

of ΛMS used by Shirkov and ollaborators for their theoretial model, thus
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it is a good hek if the theoretial toy plots we obtained will be similar to

the experimental results.

Fig. (7.9) shows the omparison of these theoretial preditions with existing

and reent experimental data. All points with error bars orrespond to ex-

perimental data [74, 75, 76℄ with the olor blue denoting JLab Hall B CLAS

EG1b (alulation of the virtual photon asymmetry A1 and the longitudinal

spin struture funtion g as well as the moments of g and then extrating

the neutron spin struture funtion gen1 from the ombined proton gep1 and

deuteron ged1 data using ammonia NH

3
and ND

3
), green denoting JLab Hall

B CLAS EG1a (a previous alulation with lesser kinemati range and less

advaned statistis), red denoting JLab Halls A,B E94010/EG1a [2002℄ (mea-

surement of the neutron spin struture funtion gen1 at low Q2
using (He

3
)

Helium for E94010) and blak denoting SLAC E143. For further details of

the experimental analyses, see [77℄ for example. CLAS is the aronym of

CEBAF (Continuous Eletron Beam Aelerator Faility) Large Aeptane

Spetrometer and SLAC is the aronym of Stanford Linear Aelerator. We

see that given that we have used a minimal model with no adjustable param-

eters, as desribed above, all the APT analytizations are in good qualitative

agreement with the data. This ould of ourse be improved by adjusting the

higher CKn oe�ients and introduing an extra analyti funtion H(Q2).

7.10 Summary

We have onsidered in this Chapter how to make the sum of PT+NP ef-

fets for the Sum Rules and Adler D funtion in leading-b approximation

an analyti funtion of Q2
, as the true physial result must be. The PT

omponent ontributed by an UV or IR renormalon an be represented by

funtions F
(n)
+ (Q2) and F

(n)
− (Q2). These funtions involve the Ei funtion

and they ontain a logarithmi branh point at Q2 = Λ2
. This means that

the freezing results investigated in Chapter 5 were only pieewise analyti.

We showed that we ould remove the branh ut in a minimal way by adding

non-perturbative ontributions F̄
(n)
+ (Q2) and F̄

(n)
− (Q2). The separate PT and

NP funtions are pieewise analyti with separate de�nitions for the regions

Q2 > Λ2
and Q2 < Λ2

, but the sum of the two omponents yields a sin-

gle analyti funtion F
∗(n)
± (Q2) for eah renormalon. We found that these

analytized renormalon ontributions resulted in a freezing limit of 2/b for

the Sum Rules, the same as that found in the APT formalism of Shirkov

and ollaborators. We showed that we ould reprodue our non-perturbative

F̄
(n)
± funtions by ating with a D−1 operator on the non-perturbatve part
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Figure 7.9: KpBj(Q
2) plotted versus Q/GeV. All points with error bars

orrespond to existing and reent experimental data. The four lines of red,

blue, green and blak arise, respetively, from inserting the two loop LO

and NLO, and one loop analytizations at LO and NLO in Eq (7.79). The

diamond shape points orrespond to the NLO two loop "e�etive log" Shirkov

analytization. We hose Λ = 380MeV.



CHAPTER 7. FULLY ANALYTIC IR FREEZING 146

of the leading APT funtion A1(Q
2). In this way our analytized renormalon

ontributions ould be onsidered as an all-orders resummation of the APT

series. There are ompliations for the Adler-D funtion whih has double

poles in its Borel transform. We showed that for the polarized Bjorken Sum

Rule the exat low-energy Gerasimov-Drell-Hearn (GDH) Sum Rule gave im-

portant onstraints on the form of infrared freezing, and we ould derive the

"onformal expansion" of Eq. (7.79) whih should be valid at both small and

large values of Q2
. We onsidered a minimal toy model based on this result

and were able to �nd good qualitative agreement with the reent JLab data

for KpBj(Q
2) on the range 0.1 < Q2 < 3 GeV2

using various trunated one

and two loop APT preditions.



Chapter 8

Conlusions

The fundamental ingredient underpinning the researh in this thesis is va-

uum polarization. The alulation of QED one loop vauum polarization was

undertaken in Chapter 2. The renormalized result for vauum polarization

Π(k2) in the so-alled V-sheme is proportional to b ln(−k
2

µ2
), where k is the

momentum �owing through the bubble. In QED b = −2Nf

3
is the �rst beta-

funtion oe�ient.

As disussed in Chapter 4 this simple result has amazing onsequenes

when one onsiders alulating a omplete photon propagator with the inser-

tion of hains of bubbles inside the vauum polarization loop. One �nds that

the lass of so-alled "renormalon" diagrams ontaining a single hain of n
bubbles has a bnn! growth in nth order perturbation theory. The bnn! growth
arises beause of the powers of b ln(−k

2

µ2
) arising from eah bubble, integrated

over k. Using a Borel representation one �nds evenly spaed singularities in

the Borel z-plane on both positive and negative semi-axes at intervals of 2/b,
arising from small and large k regions, respetively, in the loop integration

over k.

In QCD one has b = (33− 2Nf)/6 and so one an reast QCD perturba-

tive oe�ients at nth order as an expansion in powers of the QCD b. The
�leading-b�, bn term an then be used as an approximation for the pertur-

bative oe�ient and all-orders resummations of this piee of the oe�ient

performed. One thinks of this QCD leading-b term as built from hains of

e�etive bubbles whih involve gauge invariant ombinations of gluon and

ghost loops resulting in the same b ln(−k
2

µ2
), and it is a more sophistiated

onstrut than the simple QED hain of fermion bubbles.

In the ase of QCD the singularities on the positive real Borel z semi-axis

147
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are infrared (IR) renormalons , and they imply that the resummed pertur-

bation theory (PT) result must be supplemented by extra non-perturbative

(NP) terms in the form of the operator produt expansion (OPE) in pow-

ers of Λ2/Q2
. The IR renormalon ambiguity an then be anelled and a

well-de�ned result obtained for the sum of the PT and NP omponents. The

singularities on the negative real z semi-axis are ultraviolet (UV) renormalons

and do not impede the Borel summation (at least for large enough energies

where the renormalized one loop oupling is positive). Leading-b resumma-

tions with a one loop oupling therefore provide a toy model test laboratory

to investigate the interplay of PT and NP physis.

In Chapter 5 the results of [31℄ for all-orders leading-b resummations for

the Adler D-funtion assoiated with vauum polarization and some Deep

Inelasti sattering (DIS) sum rules were reprodued. One obtains a freezing

behavior for the resummed PT result as Q2 → 0 whih remains �nite at

the Landau pole Q2 = Λ2
where the one loop oupling a(Λ2) diverges. The

observables then hange sign and freeze smoothly to vanish in the infrared

at Q2 = 0. For Q2 < Λ2
one needs to introdue a di�erent Borel repre-

sentation with the integral along the negative real z semi-axis and with UV

renormalon ambiguities. This freezing behavior is unphysial, however, as

higher Q2
derivatives are not �nite and the freezing in Q2

is only pieewise

analyti. In reality the sum of the PT and NP omponents must be analyti

in Q2.

In Chapter 6 a new perturbative QCD alulation of the N3LO (O(α4
s))

oe�ient d3 in Ref. [40℄ was used to perform �ts to data on the inlusive

Re+e− ratio at s = MZ , and on the related Rτ inlusive deay ratio. Both

of these quantities an be related to the Adler D-funtion of vauum po-

larization via a ontour integration in the omplex energy-squared s-plane,
whih serves to analytially ontinue the Eulidean D to the Minkowskian

Re+e− and Rτ . Contour improved PT (CIPT) was applied in whih the D-

funtion is expanded perturbatively inside the integral whih is then evalu-

ated term-by term, serving to resum to all-orders potentially large analytial

ontinuation terms involving π2b2 and other beta-funtion oe�ients. In

Chapter 3 the problem of the renormalization sheme (RS) dependene of

�xed-order perturbative preditions was reviewed. The so-alled CORGI ap-

proah was introdued in order to avoid renormalization sale µ-dependene
by a resumming to all-orders the RG-preditable sale logarithms. Fits to

ALEPH data on Rτ were made using various perturbative approahes involv-

ing CIPT and CORGI at N3LO, NNLO and NLO, and making ontat with

the leading-b renormalon disussions of earlier hapters all-orders resumma-
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tions of the Adler D-funtion inside the ontour integral were made to obtain

an all-orders CORGI result mathed to the exatly known perturbative o-

e�ients. The di�erenes between the �ts for αs(m
2
τ ) obtained using these

di�erent approahes were disussed. One sees reassuringly that the sues-

sive NLO, NNLO, and N3LO CORGI results get progressively loser to the

all-orders result. By evolving up to αs(M
2
Z) using the three-loop mathing

onditions to ross quark �avour thresholds one obtains the values tabulated

in Table 6.2. An estimate of the unertainty in αs(M
2
Z) of δα(M

2
Z) = 0.003

was made. Data on the spetral funtion Rτ (s) was also suessfully �tted

using the N3LO CORGI results.

Finally in Chapter 7 we returned to the problem of how the sum of PT

+ NP omponents an be rendered analyti, given that the PT omponent

by itself is only pieewise analyti. We showed that the leading-b PT the-

ory omponent for an IR or UV renormalon, F
(n)
± (Q2), involves exponential

integral funtions Ei and has a logarithmi "Landau" branh ut extending

from Q2 = 0 to Q2 = Λ2
in the omplex Q2

plane, this ould be removed in

a minimal way by adding non-perturbative OPE terms (expansion in powers

of Λ2/Q2
) for Q2 > Λ2

and modi�ed non-perturbative terms (expansion in

powers of Q2/Λ2
) in the region Q2 < Λ2

, denoting these non-perturbative

piees as F̄
(n)
± (Q2) The PT+NP split is F

(n)
± (Q2)+ F̄

(n)
± (Q2). Eah term sep-

arately is pieewise analyti having a di�erent form in the two regions, but

the sum of the two denoted F ∗(n)(Q2) is a single analyti funtion of Q2
for

both regions. We showed that the freezing limit as Q2 → 0 of the fully an-

alyti leading-b results was 2/b for the DIS sum rules, but formally in�nite

for the Adler D-funtion. This was interesting sine 2/b is also the freezing

limit of observables in the Analyti Perturbation Theory (APT) approah

of Shirkov and ollaborators. We showed that our analytized renormalons

are equivalent to an all-orders resummation of the APT series, by developing

a formalism in whih observables are represented as a di�erential operator

ating on the oupling. This approah also produed a �nite freezing limit

of 2/b for the Adler D-funtion. We showed how for the polarized Bjorken

Sum Rule the exat IR Gerasimov-Drell-Hearn (GDH) Sum Rule as Q2 → 0
imposes strong onstraints on how observables behave at low Q2

values, and

we onstruted a "onformal expansion" Eq. (7.78) whih is simultaneously

an expansion in Q2/Λ2
and Λ2/Q2

. This provides a model that an be tested

against data in the large Q2
perturbative region right down to Q2 = 0. We

analyzed partiularly low energy JLab data for the Bjorken sum rule down

to very low Q2 ∼ 1GeV2
values, and obtained surprisingly suessful �ts

Fig(7.9). This analyti leading-b resummation looks very promising for fur-



CHAPTER 8. CONCLUSIONS 150

ther interesting studies of the interplay between large Q2
perturbative QCD

physis and the more intratable strong-oupling low-Q2
physis.
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