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Abstract

Demirci, Sami
Evaluation of adjoint representation Wilson line 4-point correlators in the MV model
Master’s thesis
Department of Physics, University of Jyväskylä, 2018, 110 pages.

The Color Glass Condensate, a QCD effective theory, is presented. It describes
the small momentum fraction (x) gluons in a high energy hadron or nucleus, in the
saturation regime. Due to the high density of small-x gluons, they can be modelled
as a classical color field with large-x partons acting as sources for this field. It is
explained how the multiple scatterings of partons off of a color field can be summed
using Wilson lines. The main point of this work is to derive an analytical expression
for the adjoint representation Wilson line 4-point correlators. These correlators arise
when computing the scattering amplitudes for processes which involve two gluons
propagating through the color field together. The computation is done by assuming
the Gaussian distribution of color sources, which was argued in the MV model.

Keywords: color glass condensate, gluon saturation, Wilson line, adjoint represen-
tation, MV model



4



5

Tiivistelmä

Demirci, Sami
Adjungoidussa esityksessä olevien Wilsonin viivojen 4-pistekorrelaattoreiden
laskeminen MV mallissa
Pro gradu -tutkielma
Fysiikan laitos, Jyväskylän yliopisto, 2018, 110 sivua

Työssä esitellään Värilasikondensaatiksi kutsuttu QCD:n efektiivinen teoria. Se
kuvaa suurienergisen hadronin tai ytimen pienen liikemääräfraktion (x) gluoneita
saturaatioalueessa. Pienen (x):n gluonien suuren tiheyden vuoksi niitä voidaan ku-
vailla klassisella värikentällä, jonka lähteenä toimivat suuren (x):n partonit. Työssä
selitetään kuinka partonien lukuisat siroamiset värikentästä voidaan summata käyt-
täen Wilsonin viivoja. Työn päätavoite on johtaa analyyttinen lauseke adjun-
goidun esityksen Wilsonin viivojen 4-pistekorrelaattoreille. Näitä korrelaattoreita
ilmaantuu, kun lasketaan sironta-amplitudeja prosesseille, joissa kaksi gluonia etenee
yhdessä värikentän lävitse. Lasku tehdään olettaen Gaussinen jakauma värilähteille,
joka perusteltiin MV mallissa.

Avainsanat: värilasikondensaatti, gluonisaturaatio, Wilsonin viiva, adjungoitu esi-
tys, MV malli
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1 Introduction

The theory of strong interactions, quantum chromodynamics (QCD), has taken its
place as the theory describing the interactions between the constituents of regular
hadronic matter. These constituents are called quarks and gluons. The validity of
QCD in the high energy regime has been studied extensively in collider experiments,
for instance at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron
Collider (LHC).

The need for colliders is due to the asymptotic freedom of QCD, the coupling
between quarks and gluons becomes weak at high momentum transfers permitting
the usage of weak coupling methods, for instance perturbation theory. This is im-
portant, because the presence of strong coupling makes theoretical considerations
tremendously more difficult. Even though we study the weakly coupled regime of
QCD at high energies, some difficulties and subtleties arise when going to higher
and higher collision energies. One of these is the rapid rise of parton densities of
small momentum fraction (small-x) partons as implied by measurements of parton
distribution functions, for instance at Hadron-Electron Ring Accelerator (HERA)
[1]. Due to this, the high energy hadron can not be viewed as a bunch of individual
partons, but as a dense system of partons all interacting with each other. This is
when the density of the partons compensates for the small coupling constant, and
multiple scattering processes become important.

To address these high density effects arising when probing the small-x con-
stituents of hadrons, the QCD effective theory of Color Glass Condensate (CGC) was
formulated. The CGC was built on the ideas devised in the McLerran-Venugopalan
(MV) model, which was formulated in references [2–4]. The basic idea is that the
small-x parton densities become so large that the partons can be modelled as a
classical color field. The large-x partons, for instance the valence partons, act as
sources for these small-x partons. [5]

In this thesis we will be considering a proton-hadron collision. We consider
a process in which the scattering is initiated by a gluon from the proton. This
gluon proceeds to scatter with the dense small-x parton system of the nucleus.
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The gluon splits into two gluons during the scattering process and these produced
gluon hadronize after the scattering producing hadron showers. The scattering off
of the nucleus can not be described by ordinary perturbation theory, for we have to
take into account the multiple scatterings of the same gluon. Assuming an eikonal
scattering, the multiple scatterings of the gluons can be incorporated into path-
ordered exponentials of the color field of the nucleus, which are called Wilson lines.
Eikonal scattering means that the scattering particle travels in a straight line and
its trajectory is not altered by the scattering.

Every scattering gluon contributes one adjoint representation Wilson line to the
scattering amplitude. The squared scattering amplitude of the gluon splitting pro-
cess considered in the thesis contains 2-, 3- and 4-point functions of these adjoint
Wilson lines. We will concentrate on the 4-point function as the lower-point func-
tions can be found as limits of the 4-point function. Additionally the 2- and 3-point
functions are easy to compute using the same method we will use for the 4-point
function. The usual way of computing the 4-point function of the adjoint Wilson
lines is to express it as a linear combination of 8-point functions of fundamental
Wilson lines. The linear combination easily becomes cumbersome to compute and
thus one usually resorts to using the large-N approximation scheme. To avoid all
these difficulties, we will compute the adjoint 4-point function directly in the adjoint
representation.

The Wilson lines depend on the configuration of the color field of the nucleus.
This configuration can not be known and thus we have to average over all the possible
configurations with some probability weight. The color field can be connected to
the densities of the color sources in the nucleus and thus we can express the Wilson
lines as their functionals. Then we do not average over the color field, but over the
source densities. The MV model argues that the probability weight of these densities
should be Gaussian. This Gaussian approximation allows us to evaluate the adjoint
4-point function of the Wilson lines analytically, as we will do in the section 3.

How we can make sure that we really probe the small-x partons of the nucleus
so that it is justifiable to use the CGC framework? We want to probe the large-x
partons of the projectile proton and the small-x partons of the nucleus. This lets us
to model the scattering using CGC, but still allows us to use collinear factorization
for the projectile due to the diluteness of the proton at large-x. As an estimate, we
can relate the momentum fractions of the interacting partons to final state variables
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k1

k2

Figure 1. Production of two partons at forward rapidities in a p-A collision.
The proton is on the left, the nucleus is on the right and the blob in the middle
describes the interactions. k1 and k2 are the momenta of the produced partons.

by assuming a (2 → 2) process. Define xp to be the momentum fraction of the
parton coming from the proton with respect to that particular proton, and define
xA to be the momentum fraction of the parton coming from the nucleus with respect
to the nucleon from which it came from. Additionally, let us consider the kinematics
in the CM frame of the proton-nucleon system. With these assumptions, we find

xp = k1T√
s
ey1 + k2T√

s
ey2 , xA = k1T√

s
e−y1 + k2T√

s
e−y2 , (1)

where
√
s is the energy per interacting nucleon pair in the CM frame, kiT are the

transverse momenta of the produced particles, and

yi ≡ − ln
 tan

(
θi
2

) (2)

are their pseudorapidities. Here θi is the angle between the direction of the produced
particle and the positive direction of the collision axis. We have defined the proton
to be travelling to the positive direction. The figure 1 illustrates the situation. [6]

From (1) we can see that when the rapidities of the produced particles are positive
and large, xA is small and xp is large. Thus in particle production at forward
rapidities, i.e. in the fragmentation region of the proton, the probed parton densities
can be expected to be such, that we can use the CGC formalism. [6]

The CGC describes the high energy hadronic matter, and thus provides a de-
scription of the initial stages of ultrarelativistic heavy ion collisions. By studying
multiparticle correlations in p-A collisions with CGC, we can study the effects of
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gluon saturation to observables measured in collisions at LHC and RHIC. By study-
ing p-A collisions, and not A-A collisions, allows us to study correlations arising due
to the initial state of the colliding particles, without the interference of correlations
arising due to the final state, the quark-gluon plasma (QGP). CGC also provides a
possible initial condition for the later stages of heavy ion collisions.
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2 Color glass condensate and Wilson lines

2.1 The light-cone coordinates

We will almost exclusively work in light-cone coordinates. These coordinates are
extremely useful when discussing particles travelling at or near the speed of light.
The (+,−,transverse)-components of the light-cone coordinates for any 4-vector x
are defined as

x± = 1√
2

(x0 ± x3), (x⊥)i = xi, i = 1,2. (3)

The metric tensor gµν for the light-cone coordinates is not diagonal and its non-zero
elements are

g+− = g−+ = 1, g11 = g22 = −1. (4)

For comparison, the matrix representation of the usual Minkowski metric tensor in
regular spacetime coordinates ηµν and in light-cone coordinates gµν read

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , gµν =


0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

 . (5)

The light-cone metric implies that

x+ = x−, x− = x+. (6)

The dot product of two vectors x,y in the light-cone coordinates gives

x · y = xµyµ = x+y− + x−y+ − x⊥ · y⊥ (7)

and thus
x2 = 2x+x− − x2

⊥. (8)

One should note that some texts use different normalization for the (+,−)-components
of the light-cone coordinates (3). [7]



16

From this point forward, we will consider a collision of a light projectile, for
instance a proton, travelling to the positive z-direction and a heavy nucleus travelling
to the negative z-direction. Both projectiles are assumed to be highly energetic
in our reference frame and thus their light-cone momentums have only one large
component. More explicitly the momentum of the proton is

pp ≈ (p+
p ,0,0,0) (9)

and the momentum of the nucleus is

pN ≈ (0,p−N ,0,0). (10)

The figures 2 and 3 illustrate the two coordinate systems for the case of a proton-
nucleus collision.

z-axis

pproton

pnucleus

Figure 2. Proton-nucleus collision in regular spacetime coordinates (t,x,y,z).

2.2 Parton densities of a proton at high energies

The parton densities of the proton can be measured in a variety of collision ex-
periments. Deep inelastic lepton-proton scattering is an example of one of such
experiments. This type of scattering is preferred because the amount of produced
particles is small so it is easier control in comparison to, for instance, a proton-
proton scattering. Such experiments were done at the HERA particle accelerator
by colliding electrons and positrons with protons in 1992-2007 [1].

The color glass condensate approach was motivated by the observation that the
gluon densities in a proton rises rapidly as we consider partons with smaller and
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x+x−

z

t

p+
p

p−N

Figure 3. Proton-nucleus collision in light-cone coordinates (x+,x−,x,y).

smaller momentum fraction (x) [8]. The parton distribution functions (PDF) of a
proton at probe virtualities Q2 = 1.9 GeV2 and Q2 = 10 GeV2 can be seen in figures
4. The xuv and xdv are the valence up- and down-quark PDFs respectively, the
xS is the sea quark PDF and the xg is the gluon PDF. From the figures 4 we see
that the gluon density of a proton grows much more rapidly at small-x than other
parton densities. This trend becomes apparent when the energy (or resolution) of
the probe is high enough so it can see the small-x partons inside the proton.

The proton consists of valence quarks. In addition, it consists of gluon and
(anti)quark fluctuations. These partons can fluctuate into states of even greater
number of partons. All these fluctuations are present in the proton during an in-
teraction with a probe, but only fluctuations with longer lifetimes than the time
resolution of the probe, can actually be seen by the probe. At higher energy i.e.
smaller x, the probe sees more of these fluctuations because their lifetimes are in-
creased due to time dilation, and because the time scale of the interaction is shorter.
This results in larger parton densities seen in the process. At small-x the gluon den-
sity is much higher than other parton densities. The large difference between the
gluon and sea quark densities is due to the fact that the sea quark quark-antiquark
pairs are produced from gluons in the vertex g → qq̄. This implies that the sea quark
production is suppressed by a factor of strong coupling constant gs in comparison
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Figure 4. The parton distribution functions of a proton when probed with
virtualities (Q2) of 1.9 (top) and 10 GeV2 (bottom). Figures from ref. [1].
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to the production of gluons. [5]
Hadronic total cross sections increase with increasing center of mass energy

√
s.

The Froissart bound follows from the unitarity of the scattering matrix (the S-
matrix) and gives the upper bound for the increase of the total cross section with
increasing energy at high energies. The bound states that the total cross section can
not grow faster than some constant times ln2(s) as s increases. The rising parton
densities in a hadron at high energy result in rising cross sections. [9]

The linear QCD evolution equation Balitsky-Fadin-Kuraev-Lipatov (BFKL) equa-
tion [10] predicts the increase of gluon densities as with decreasing x, but the pre-
diction violates the Froissart bound at small-x. The problematically rapid growth of
the gluon density is cured by taking the non-linear effects into account, which result
in a non-linear evolution equation called the Balitsky-Kovchegov (BK) equation.
This equation predicts the rapid rise of the gluon density at small-x, but with it
saturating at some sufficiently small x due to the non-linear terms in the equation.
This solves the problem of the Froissart bound violation. [5]

When small-x gluon densities rise, recombination (gg → g) becomes as impor-
tant as gluon splitting (g → gg). This leads to a saturation of gluon densities. The
transverse size of a gluon is proportional to the inverse of its transverse momentum
xT ∝ k−1

T . Thus it is intuitive that the small transverse momentum i.e. large trans-
verse size gluons start to overlap and that their density can not grow indefinitely,
but they start to fuse together. [9]

The saturation (momentum) scale Qs separates the saturated and unsaturated
gluons. The gluon saturation effects are important for gluons whose transverse
momentum is smaller than the saturation scale i.e. k2

T < Q2
s. The saturation scale

increases as s increases i.e. x decreases. If the saturation effects are not taken into
account, the cross sections of hadronic collisions may increase faster than is allowed
by the Froissart bound and thus violate the unitarity of the S-matrix. This implies
that the saturation effects are indeed an important property of high energy hadrons.
[9]

The QCD effective theory Color Glass Condensate (CGC) was formulated to
address the gluon saturation effects in hadrons. The saturated gluons form a dense
system which results in nonlinear effects that are not important in an unsaturated
or dilute system. [5]

The figure 5 illustrates the landscape of the different regions of high energy QCD.
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On the left we see the nonperturbative region i.e. the region where the momentum
scale of the probe is so small that the coupling constant in the interaction is large,
of the order 1. In the dilute (non-saturated) region, the linear DGLAP and BFKL
equations describe the evolution of the parton distributions in increasing probe vir-
tuality Q2 and decreasing momentum fraction x respectively. When evolving the
gluon distribution towards decreasing x, we have to replace the BFKL equation
with the non-linear BK and JIMWLK (Jalilian-Marian, Iancu, McLerran, Weigert,
Leonidov and Kovner) equations as the parton saturation effects become important.
The BK equation is only valid in the large-N limit whereas the JIMWLK equa-
tion is its finite-N generalization. The saturation scale Qs separates the dilute and
saturated region. [11]

2.3 The McLerran-Venugopalan model

Let us consider a high energy nucleus in an infinite momentum frame (IMF) moving
in the negative z-direction. In this frame, the momentum of the nucleus has only
the p−A-component. We will be focusing on the dense system of small-x gluons in
the nucleus. Now we shall discuss the classical field description of the small-x gluon
field of the high energy nucleus as given by the McLerran-Venugopalan -model.

A small-x gluon carries a small fraction of the longitudinal nuclear momentum
and has a large longitudinal extent. Because of this, the gluon interacts with all the
nucleons in the nucleus on the longitudinal direction. One might think that because
the nucleus and the nucleons as a whole are colorless (or "white"), the gluon would
not interact with the colored constituents of the nucleus. However, the small-x
gluons have some transverse momentum, and if this transverse momentum is much
larger than the QCD scale ΛQCD, the transverse extent is much smaller than the
transverse extent of the nucleus. This results in the possibility of the gluon seeing
only parts of individual nucleons in the nucleus. For instance, the gluon could see
only one quark in a nucleon and thus interact with it. Thus the small-x gluon with
high enough transverse momentum can, and most presumably will, only interact
with parts of the nucleus. The nucleons are taken to be independent and thus the
interactions are taken to be random i.e. the gluon’s interaction with a nucleon does
not interfere with the gluon’s interactions with other nucleons. [10]

In the IMF frame, the high energy nucleus is highly Lorentz-contracted in the
longitudinal direction. Thus the nucleus can be approximated as a two dimensional
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Figure 5. The "map" of high energy QCD. The figure illustrates the partonic
content of a hadron or a nucleus, and the validity regions of evolution equations
describing them. Q is the virtuality of the probe and x is the momentum fraction
of the partons. Figure from ref. [11].
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object in the transverse plane. It can be argued that the gluon density in the
transverse plane of a nucleus is

ρgluon = xGA

S⊥
, (11)

where xGA is the gluon distribution of the nucleus and S⊥ is the transverse area
of the nucleus. For a dilute (non-saturated, relatively non-dense) nucleus, we can
assume the nucleon-nucleon effects are small and thus

xGA = AxGN ∼ A, (12)

where GN is the gluon distribution of a single nucleon and A is the the number of
nucleons in the nucleus or the mass number. The radius of a nucleus RA is often
approximated as

RA = r0A
1/3, (13)

where r0 is just a constant that varies a bit from nucleus to nucleus, but this is not
important for us. Equation (13) implies that the transverse size of the nucleus scales
as

S⊥ ∼ R2
A ∼ A2/3, (14)

and thus from the equation (15) we get

ρgluon = xGA

S⊥
∼ A1/3. (15)

Thus the gluon density ρgluon is greatly enhanced in a large nucleus consisting of
multiple nucleons compared to just one nucleon discussed earlier. [10]

The high gluon density implies high occupation numbers of gluons which in turn
implies that the small-x gluon field should be treated classically. The strongest
possible gluon field in QCD at small coupling g is of the order ∼ 1

g
. The highly

saturated gluon system is expected to reach this and thus the gluon field is expected
to be of that order i.e. Aµ ∼ 1

g
. [10]
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2.4 Separation of partons: sources and fields

The small-x partons are much more delocalized in the longitudinal direction than
the larger-x partons. The Lorentz-contraction of these larger-x partons is larger
than that affecting the small-x partons. Because of this, the small-x partons see
the larger-x partons as a thin sheet of classical color sources. The separation of the
small- and larger-x partons is assumed to be purely kinetic in the framework of the
MV-model. [12]

The lifetimes of the small-x partons are short compared to the lifetimes of the
larger-x partons. Thus the large-x partons seem like light-cone-time-independent
objects to the small-x partons. Because of this, the large-x partons are referred
to as static color sources for the smaller-x partons. These large-x color sources
are assumed to be unaffected by the momentum kicks received from the emission of
small momentum (small-x) partons. This is referred to as the eikonal approximation.
Under this approximation, the light-cone current Jµ generated by the color sources
has only one non-zero component, the (−)-component

Jµa = δµ−ρa(xT ,x+), (16)

where δµ− picks the one non-zero component of the current. Here ρa(xT ,x+) denotes
the color charge density of the color sources in the nucleus. The staticity of the color
sources can be seen in the light-cone time x− indepence of the color charge density
ρa(xT ,x+). [5, 12]

The small-x gluon field can be solved, at lowest order, from the Yang-Mills
equation with the color source Jµ seen in the equation (16). The equation reads

[Dµ,F
µν ] = Jν , (17)

where Dµ is the covariant derivative defined as

Dµ ≡ ∂µ − igAaµta, (18)

and the field tensor is defined as

F a
µν ≡ ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν . (19)

Here we have used the notation

Aµ ≡ Aaµt
a and Fµν ≡ F a

µνt
a. (20)
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A convenient choice for the gauge is the Lorenz gauge

∂µA
µ = 0. (21)

In this gauge, the gluon field A can be solved from the Yang-Mills equation (17)
yielding

A+ = Ai = 0, A− = − 1
∇2
⊥
ρ(x+,xT ), (22)

where the notation means that A− is a solution to the equation

∇2
⊥A
− = −ρ(x+,xT ). (23)

The solution (22) gives a connection between the gluon fields A and the source
densities ρ. [5, 13]

The equation can be solved using the Fourier transform. The solution for the
field A− reads

A− = −
∫
d2zTG0(xT − zT )ρa(x+,zT ), (24)

where
G0(xT − zT ) = −

∫ d2kT
(2π)2

eikT ·(xT−zT )

k2
T

(25)

is the Green’s function for the two-dimensional Laplacian. [13]

2.5 CGC target averages of operators

In the Color Glass Condensate formalism we deal with the nuclear target gluon
field (A) dependent operators. These operators are usually colorless combinations
of Wilson lines and they are computed in some particular configuration of the target
field. In practise, the field configuration can not be known, and thus we have to
average over all possible configurations with some probability distribution W [A].
Taking the average is sensible because the configuration is unknown, it does not
change during one scattering event but is different from scattering to scattering. As
we discussed earlier, the target field A can be related to the density of color sources
ρ. Thus we can replace the average over the field configurations with the average
over the source density average with a weight W [ρ].

In the presence of one nuclear source, the operator average of an nuclear source
ρA dependent operator O[ρA] is explicitly written as a functional integral〈

O
〉
≡
∫

[DρA]WA[ρA]O[ρA], (26)
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where WA[ρA] is the probability weight of the sources as discussed before and DρA
is the integration measure. This means integrating over all different possible target
source densities of the nucleus while weighting them with the probability of finding
the field in that particular configuration. After expressing all the desired opera-
tors, for some process in terms of the source densities, the observable quantities
are extracted by performing the averaging procedure. Thus we still need to define
the weight W [ρ] to be able to calculate any observable quantities related to these
operators. [13]

The MV-model provides the required probability distribution for a large nucleus
and argues that it should be a Gaussian in the source density ρ. Written explicitly,
the weight W [ρA] reads

WA[ρA] = exp
− ∫ dx+d2x⊥

ρA,a(x+,x⊥)ρA,a(x+,x⊥)
2µ2

A(x+)

, (27)

where µ2
A(x+) describes the color source density of the nucleus. The Gaussianity of

the probability weight can be justified by noticing that a highly Lorentz-contracted
nucleus has a very high density of color charges. Additionally these color charges
originating from different nucleons are taken to be uncorrelated. Because of there
are many uncorrelated (independent) color charges at every impact parameter (fixed
transverse coordinate, whole longitudinal extent) of the nucleus, the so called central
limit theorem states that, in such a system, the distribution of the color charges
should be nearly Gaussian. [5, 13]

2.6 Wilson lines

The scattering of a particle off the strong color field of the nucleus can not be
studied using ordinary perturbation theory. This is due to the high density gluon
fields compensating for the small coupling constant. Thus we need to take into
account the multiple scatterings of the particles scattering off the color field. In the
eikonal approximation, these scatterings are summed by Wilson lines defined as

U(x⊥) = P+ exp
ig ∫ ∞

−∞
dz+A−A(z+,x⊥) · T


= P+ exp

− ig ∫ ∞
−∞

dz+d2z⊥G0(x⊥ − z⊥)ρa(z+,z⊥)T a
,

(28)
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where the equivalence of the two exponentials follows from equation (24). Here P+

denotes path-ordering with respect to the (+)-light-cone coordinate z+ and the T a

is a generator of SU(3) (or more generally, SU(N)) in some representation. If the
scattering particle is a quark, the generator is in the fundamental representation
and if the particle is a gluon, the generator is in the adjoint representation. We will
denote the adjoint representation Wilson line as U and a fundamental representation
Wilson line as V . [6, 14]

The path-ordered exponential (28) is defined as

U(x⊥) =
∞∑
n=0

(−ig)n
∫ n∏

i=1
d2zi⊥G0(x⊥ − zi⊥)

∫ ∞
−∞

dz+
1

∫ z+
1

−∞
dz+

2 . . .
∫ z+

n−1

−∞
dz+

n

× ρa1(z+
1 ,z1⊥)ρa2(z+

2 ,z2⊥) . . . ρan(z+
n ,zn⊥)T a1T a2 . . . T an ,

(29)

which is almost like the Taylor series of an exponential, but the factorial is miss-
ing and has been incorporated into the bounds of the integrations over the (+)-
coordinate. Setting all the integral bounds from −∞ to ∞ would introduce the
factorial, but we would have to introduce path-ordering for the integrand [15]. [14]

2.7 Wilson lines in scattering processes

The main point of this thesis is to compute the four point correlators of adjoint
representation Wilson lines. These quantities arise when we have a process where
two gluons propagate through a dense gluon field. An example of such a process
can be found in the paper [6] where the scattering amplitude M for the partonic
process gA → ggX is computed. We shall take this computation as an example,
which illustrates how Wilson lines are incorporated to the calculations of scattering
amplitudes.

In the lowest order, the process gA → ggX has two contributing Feynman
graphs. These graphs correspond to the gluon splitting before and after the interac-
tion with the color field of the nucleus. These graphs are seen in the figure 6. The
scattering amplitude for this process can be written by applying Feynman rules to
these two graphs. Every gluon interacting with the color field introduces an adjoint
Wilson line. Thus the contribution corresponding to the graph on the left contains
one, and the graph on the right contains two adjoint Wilson lines. [6]

The scattering amplitude of the partonic process is the sum of the algebraic
expressions corresponding to the graphs 6. The scattering amplitude can be written
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Figure 6. The Feynman graphs for gluon splitting in the presence of a color
field of a nucleus. The left figure corresponds to the case where the gluon splits
after its interaction with the color field, and the right figure corresponds to the
gluon splitting before the interaction with both produced gluon interacting with
the field. The figures are from ref. [6].

as
MgA→ggX =M1 +M2, (30)

where M1 denotes the contribution of the graph on the left and M2 denotes the
contribution of the graph on the right. The scattering amplitude squared is

|M|2 = |M1|2 + |M2|2 +M1M∗
2 +M2M∗

1. (31)

Both parts of the amplitude contain Fourier transforms of adjoint Wilson lines in
position space. The Wilson line and color structure dependences of the parts of the
amplitude are

M1 ∝ fdbcUda(xT ), M2 ∝ faefUbe(xT )Ucf (yT ), (32)

where the antisymmetric structure constants f come from the Feynman rule for the
3-gluon vertex, d is an internal color index and xT ,yT are transverse coordinates of
the gluons propagating through the color field. Of course the amplitude also depends
on the Lorentz part, i.e. the part with the free propagators and polarizations tensors,
but they are not interesting for us right now. [6]

Due to the dependences seen in (32), the amplitude squared contains four dif-
ferent, colorless combinations of adjoint representation Wilson lines. The quantity
of interest, the Wilson line combination of four lines arises from the term |M2|2.
Explicitly written, this quantity reads

|M2|2 ∝ faeffae
′f ′Ube(xT )Ucf (y)Ube′(x̄T )Ucf ′(ȳ). (33)
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The two and three point operators of Wilson lines can be found by taking appropriate
limits of transverse coordinates of the four point operator seen here, according to
[6].

To calculate any observable quantities, we have to take the target average of the
Wilson line operators, as discussed before. This averaging procedure only affects
quantities that depend on the field or color charge densities of the target nucleus,
and thus we can calculate the averages before doing the Fourier transforms of the
Wilson line operators. This is we have to be able to calculate quantities like

faeffae
′f ′
〈
Ube(xT )Ucf (yT )Ube′(x̄T )Ucf ′(ȳT )

〉
(34)

Next we shall discuss how to evaluate an arbitrary four point correlator of adjoint
Wilson lines arising in scattering process calculations.
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3 Wilson line correlators

3.1 Color algebra

In this subsection I shall present the group theoretic definitions and identities re-
quired for the evaluation of fundamental and adjoint representation Wilson line
correlators. All the considerations are made for the SU(N) group with arbitrary
N ∈ N even though for us, the case N = 3 is the most interesting. This is done
because keeping the arbitrary N in calculations has its uses. We can for exam-
ple simplify our final results, or make some intermediate steps easier, by taking
advantage of the large N limit used for instance in the paper [16].

3.1.1 Color algebra needed for the fundamental representation calcula-
tion

Let us define ta to be the generators of the Lie group SU(N) in the fundamental
representation. The generators are represented by N2 − 1 linearly independent
traceless and Hermitian N ×N matrices. Thus the index a runs from 1 to N2 − 1
and

Tr(ta) = 0 (35)

for any a ∈ {1,2,...,N2 − 1}. The conventional choice for the normalization of the
generators is

Tr(tatb) = δab

2 (36)

and their commutation relation is

[ta,tb] ≡ tatb − tbta = ifabctc, (37)

where f is the totally antisymmetric structure constant. Summation over repeated
indices is left implicit. [15]

An important identity for the generators of the fundamental representation is
the Fierz identity

taijt
a
kl = 1

2δilδjk −
1

2N δijδkl, (38)
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where the generators have been written using the index notation for matrices. Using
this, we can easily derive the expression for the sum of the squares of fundamental
representation generators

[tata]ij = taikt
a
kj = 1

2δij δkk︸︷︷︸
=N

− 1
2N δikδkj︸ ︷︷ ︸

=δij

= N2 − 1
2N δij ≡ CF δij (39)

or when written in the matrix form

tata = CF IN . (40)

Here we have defined the quadratic Casimir

CF ≡
N2 − 1

2N , (41)

where the subscript F refers to the fundamental representation. From equation (40)
we can easily see that the sum of the squares commutes with all other matrices.
We will make use of this property when dealing with tadpole contributions to the
Wilson line correlators. [16]

As we will later see, the only identity we need for the evaluation of fundamental
representation Wilson line correlators is the Fierz identity (38). This is a result of
the simplicity of the fundamental Wilson line singlet states. [16]

3.1.2 Color algebra needed for the adjoint representation calculation

Evaluating adjoint representation Wilson line correlators is not quite as straightfor-
ward as the evaluation of fundamental representation ones. This is mainly due to
the more complicated structure of the singlet states and the more complex expres-
sion for the Fierz type identity for the adjoint representation generators. Because
of these complications, we need many more color algebraic identities to be able to
evaluate the adjoint representation correlators without reverting the analysis to the
fundamental case. This could be done, but it would render the final result much
more complicated because of the redundant degrees of freedom we would have to
introduce to the calculations. These degrees of freedom would of course vanish in
the final result, but they still render the final result unnecessarily complicated. I
will give an example of this in the coming sections of this thesis.

The generators of the adjoint representation of SU(N) are defined element wise
using the antisymmetric structure constants f seen in the equation (37). The explicit
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expression for the adjoint generators T reads

T abc ≡ −ifabc, (42)

where the subscript indices b,c are the matrix indices of the generator T a and all the
indices a,b,c ∈ {1,2,...,N2 − 1} which is evident from the equation (37) . Thus the
adjoint representation generators are antisymmetric (N2 − 1)× (N2 − 1) matrices.
[15] The adjoint representation generators obey the commutation relation

[T a,T b] ≡ T aT b − T bT a = ifabcT c. (43)

Now with our choice for the normalization of the fundamental representation gen-
erators, we have

Tr(T aT b) = f cdaf cdb = Nδab ≡ CAδ
ab, (44)

where we have defined the quadratic Casimir

CA ≡ N, (45)

where the subscript A refers to the adjoint representation. [17] Using equation (44)
we can easily get the relation

[T aT a]bc = T abdT
a
dc = −fabdfadc = fadbfadc = CAδ

bc (46)

or when written in matrix form

T aT a = CAIN . (47)

The anticommutator of fundamental representation generators reads

{ta,tb} ≡ tatb + tbta = 1
N
δabIN + dabctc, (48)

where d is the totally symmetric structure constant. For these we have an identity

dcdadcdb = N2 − 4
N

δab (49)

[17]. It sometimes turns out to be useful useful to define symmetric (N2−1)×(N2−1)
matrices D as

Da
bc = dabc (50)

[18].
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Using equations (37) and (48), we can find explicit expressions for the elements
of the antisymmetric and symmetric structure constants with respect to the funda-
mental representation generators. From equation (37) we get

[ta,tb] = ifabdtd =⇒ [ta,tb]tc = ifabdtdtc =⇒ −i[ta,tb]tc = fabdtdtc.

Now by taking the trace and using equation (36), we get

fabc = −2iTr([ta,tb]tc). (51)

From equation (48) we get

{ta,tb} = 1
N
δabIN + dabdtd =⇒ {ta,tb}tc = 1

N
δabtc + dabdtdtc

and now, by taking the trace and using the equations (36) and (35), we get

dabc = 2 Tr({ta,tb}tc). (52)

The contractions of the structure constants in equations (44) and (49) can be cal-
culated by writing the structure constants as traces of fundamental representation
generators by using the equations (51) and (52) and then contracting the generators
with the same index by using the Fierz identity given in equation (38).

Using the fundamental generator representations (51) and (52) of the structure
constants, we can show that they are "traceless" in a sense that

daab = 0 (53)

and
faab = 0. (54)

Equation (54) follows from the equation (51) as follows

faab = −2iTr([ta,ta]︸ ︷︷ ︸
=0

tb) = 0

and equation (53) follows from (52) and (40)

daab = 2 Tr({ta,ta}︸ ︷︷ ︸
=2CF IN

tb) = 4CF Tr(tb)︸ ︷︷ ︸
=0

= 0.

Remembering the (anti)symmetricity of the (anti)symmetric structure constants
under pairwise exchange of two indices, we conclude that, assuming summation over
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a repeated index, the structure constant evaluates to zero whenever it has two of
the same index. This is true for the antisymmetric structure constants even without
the summation, but requires the summation for the symmetric structure constants.

Furthermore we will need the Jacobi and Jacobi-like identities for the structure
constants which read

fabef ecd + f cbefaed + fdbeface = 0, (55)

fabedecd + f cbedaed + fdbedace = 0 (56)

and

fabef cde = 2
N

(δacδbd − δadδbc) + dacedbde − dbcedade (57)

[19]. We will also need lesser known identity

dα1α4γdα2α3γ =
 2(24− 10N2 +N4)
N(48− 29N2 + 3N4)

[δα1α2δα3α4 + δα1α3δα2α4 ]

+
 2(N2 − 12)(4−N2)
N(48− 29N2 + 3N4)

δα1α4δα2α3

+
 24− 15N2 +N4

48− 29N2 + 3N4

[dα1α2γdα3α4γ + dα1α3γdα2α4γ].

, (58)

which is valid for N = 2,3. I have included the proof of identity (58) in the appendix
A. Lastly, we will need trace identities for the matrices (42) and (50) up to traces
of four matrices. I will cite them here, without proof, as they were presented in the
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appendix A of the paper [20]. The identities read

Tr(T a) = Tr(Da) = Tr(T aDb) = 0 (59a)

Tr(T aT b) = Nδab (59b)

Tr(DaDb) = N2 − 4
N

δab (59c)

Tr(T aT bT c) = i
N

2 f
abc (59d)

Tr(T aT bDc) = N

2 d
abc (59e)

Tr(DaDbT c) = i
N2 − 4

2N fabc (59f)

Tr(DaDbDc) = N2 − 12
2N dabc (59g)

Tr(T aT bT cT d) = δadδbc + 1
2(δabδcd + δacδbd) + N

4 (fadef bce + dadedbce) (59h)

Tr(T aT bT cDd) = i
N

4 (dadef bce − fadedbce) (59i)

Tr(T aT bDcDd) = 1
2(δabδcd − δacδbd) + N2 − 8

4N fadef bce + N

4 d
adedbce (59j)

Tr(T aDbT cDd) = −1
2(δabδcd − δacδbd) + N

4 (fadef bce + dadedbce) (59k)

Tr(T aDbDcDd) = i
2
N
fadedbce + i

N2 − 8
4N fabedcde + i

N

2 d
abef cde (59l)

Tr(DaDbDcDd) = N2 − 4
N2 δadδbc + 1

2δ
acδbd + N2 − 8

2N2 δabδcd + N

4 f
adef bce

+ N2 − 16
4N dadedbce − 4

N
dabedcde.

(59m)

Now we have all the color algebraic machinery we need for the evaluation of funda-
mental and adjoint representation Wilson line correlators.

3.2 Evaluation of Wilson line correlators

Next I shall explain how one can evaluate the Wilson line correlators analytically in
the MV-model. First I will discuss the Wilson line dipole since it is the most simple
physically relevant correlator and its evaluation is the most straightforward. It is
useful to discuss the dipole first for it gives some insight to the evaluation process
without introducing transitions between singlet states, which makes the evaluation
of higher point correlators more difficult. This is due to the dipole only having one
possible singlet configuration.
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After evaluating the dipole, I will discuss the main point of this thesis, the
evaluation of the four point correlator of adjoint representation Wilson lines. This
can be done by reverting the treatment to the fundamental representation case, but
this method renders the result unnecessarily complicated. I will discuss this method
mainly to explain the evaluation of fundamental representation correlators and to
demonstrate how the fundamental representation method differs from the adjoint
representation case. The main result of this thesis is the evaluation of the four point
adjoint representation Wilson line correlator directly in the adjoint representation.
In the following calculations of correlators, we will be using the method and notation
presented in [16] with some required modifications. Finally I will briefly discuss the
calculation of matrix exponentials that appear in the final result of the evaluation
of the Wilson line correlators.

3.2.1 The Wilson line dipole

We wish to calculate the fundamental representation Wilson line dipole of the form

Cdip,F (x1,x2) =
〈
V (x1)β1α1V

∗(x2)β2α2

〉
, (60)

where all the xi ≡ xi,⊥. I will suppress the symbol ⊥ from this point forward. We
are interested in calculating correlators that correspond to color singlet states. The
only color singlet for the dipole (60) is [14]

N (a) = Cdip,F (x1,x2)δα1α2δβ1β2 =
〈

Tr(V (x1)V †(x2))
〉
. (61)

To ease the SU(N) algebraic considerations, we introduce the graphical repre-
sentation of Wilson lines presented in the paper [16]. Using this representation, we
can express the sole singlet configuration (61) of the dipole as

N (a) =
〈

Tr(V (x1)V †(x2))
〉
=̂ x1

x2
, (62)

where the line with an arrow pointing to the right represents a Wilson line V , the line
with an arrow pointing to the left represents a Hermitian conjugate of a Wilson line
V † and the endpoints represent how the Wilson lines are multiplied. The horizontal
direction corresponds to the x+ coordinate which is increasing to the right. Every
loop represents a trace and thus because of the cyclicity of the trace, one can start
reading the graph from any point.
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The two point function of the source ρA given by (26) with the Gaussian weight
(27) is [16]〈

ρA,a(x+,x⊥)ρA,b(y+,y⊥)
〉

= δabδ(x+ − y+)δ(x⊥ − y⊥)µ2
A(x+). (63)

It is important to notice that the correlator (63) is local in the +-component of
the spatial coordinate which can be thought of as the temporal coordinate for the
eikonal Wilson line. The locality of the transverse components is not as important
but the δab-term plays a crucial role in the upcoming calculation. Because of the
Gaussian form of the weight WA[ρA] (27), we can evaluate higher point functions of
ρa’s by connecting different ρa’s pairwise by the use of Wick’s theorem. This means
that, for instance, the four point correlator of sources would be〈

ρaρbρcρd
〉

=
〈
ρaρb

〉〈
ρcρd

〉
+
〈
ρaρc

〉〈
ρbρd

〉
+
〈
ρaρd

〉〈
ρbρc

〉
.

Additionally because of the Gaussian weight, averages over an odd power of sources
goes to zero 〈∏

odd

ρi
〉

= 0.

By writing the Wilson lines in the dipole (61) as a power series, we notice that
the averaging procedure

〈
. . .
〉
only affects the densities ρ. By using Wick’s theorem,

we can write the higher point correlation functions of ρ’s as product of two point
functions (63). These two point functions force the indices of two different generators
of SU(N) to be the same. Thus by writing the higher point correlator of ρ’s as
product of two point functions, we get contributions corresponding to contracting
the generators in every possible way. Because of the locality of the two point function
in x+, only contractions that happen at the same time contribute.

The contractions of generators can happen between different Wilson lines (ladder
type contributions) or within a same Wilson line (tadpole type contribution). We
can also express the contractions of generators within the formalism of the graphical
representation of paper [16]. The ladder type contribution for the dipole is〈

Tr(V (x1)tataV †(x2))
〉
=̂ (64)

and the tadpole type contribution is

〈
Tr(V (x1)tataV †(x2))

〉
=̂ , (65)
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where the black dots represent generators of SU(N) and the wavy line indicates
which two generators have the same index, that is, which two generators do we
contract. Both endpoints of the wavy line have a generator, so the tadpole type
contribution has two generators at the same point. Note that for the dipole, these
two contributions have the same color algebraic structure. However, this is not
generally true if we have more Wilson lines, that is, when we are discussing higher-
than-2-point functions of Wilson lines. The main difference of these different types
of contributions is their origin. As we discussed earlier, the tadpole generators
originate from the same Wilson line and the ladder generators from different lines,
and thus it can be expected them to have different contributions to the correlator
that arise from the remaining part of the Wilson line associated to that particular
contraction. Furthermore, when we draw the black dots in the right edge of the
graph, we mean that the color generator contractions are due to the contraction of
two of the ρ’s with the largest values of the (+)-coordinate. Thus, the color structure
(64) corresponds to the contraction of the largest-(+) ρ of the upper Wilson line
and the largest-(+) ρ of the lower Wilson line. In turn, the color structure (65)
corresponds to the contraction of the largest and second largest-(+) ρ’s of the upper
Wilson line.

As stated before, the path-ordering of Wilson lines dictates the possible contrac-
tions. Due to locality in x+, not all contractions contribute. Examples of contrac-
tions that do not contribute include

(66)

and an example of a contributing graph would be

. (67)

In the end, the tadpole contributions ∝ tata factor out because of their commuta-
tivity, which is evident from the equation (40). Because the contractions of ρa’s
have to be local in light-cone-time in order of them to contribute, it is natural to do
the contractions in the order with increasing (or decreasing) (+)-coordinate. This
is precisely how we will be doing the contractions in the following calculations.
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The tadpole contributions factorize out from the expression of two explicitly
written Wilson lines and effectively form one-point functions of Wilson lines [13].
This result can be assumed to generalize to higher-point correlators: we get one
one-point correlator for every Wilson line in the correlator. The dipole can then be
written as [13] 〈

V (x1)V †(x2)
〉

=
〈
V (x1)

〉〈
V (x2)

〉
︸ ︷︷ ︸

∝I

×
〈
V (x1)V †(x2)

〉
︸ ︷︷ ︸

Only ladder contributions

. (68)

Thus 〈
Tr(V (x1)V †(x2))

〉
=
〈
V (x1)

〉〈
V (x2)

〉
×
〈

Tr(V (x1)V †(x2))
〉

︸ ︷︷ ︸
Only ladder contributions

. (69)

As we saw in equations (68) and (69), the sum of all contributionsMD factorizes
into a product of all ladder type contributions ND and all tadpole type contributions
TD

MD = NDTD. (70)

Let us define an object that is associated with the tadpole contractions that reads

L(x,x) ≡ g2
∫

z⊥
G0(x⊥ − z⊥)2, (71)

where the bounds of the integral will be discussed later in the thesis due to infrared
divergences the propagator integrals possess. The tadpole contributions exponenti-
ate and evaluate to

TD ≡ exp
[
− 1

2CFµ
2
A[L(x1,x1) + L(x2,x2)]

]
, (72)

where the factor 1
2 arises because the endpoints of the tadpole contractions are path-

ordered due to them originating from the same Wilson line. This means that every
tadpole type contraction brings in a delta function which eliminates one integral i.e.
we get [14] ∫ z+

1

−∞
dz+

2 δ(z+
1 − z+

2 ) = 1
2 , (73)

due to path-ordering. We denote the integrated density by

µ2
A ≡

∫ ∞
−∞

dz+µ2
A(z+), (74)
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where we use the same symbol but without the argument. [16]
For the dipole, the only ladder type contributions are

, , , . . . ,

where the contributions are proportional to

L(x,y) ≡ g2
∫

z⊥
G0(x⊥ − z⊥)G0(y⊥ − z⊥), (75)

which is a generalization of the equation (71). Summing over all the possible ladder
contributions we get

ND =
∞∑
n=0

∫
z+

1 <...<z
+
n

Nn(z+
1 , . . . ,z

+
n ), (76)

where Nn is the contribution with n ladder type contractions in it. Writing Nn
explicitly, we get

ND =
∞∑
n=0

∫
z+

1 <...<z
+
n

[ n∏
i=1

µ2
A(z+

i )
][
CFL(x1,x2)

]n
. (77)

Now we can remove the path-ordering by introducing a factor 1
n! and thus

ND =
∞∑
n=0

1
n!

∫
z+

1 ,...,z
+
n

[ n∏
i=1

µ2
A(z+

i )
][
CFL(x1,x2)

]n
. (78)

In equation (78) we identify the power series of the exponential and employ the
notation (74) and thus get

ND = exp
[
µ2
ACFL(x1,x2)

]
. (79)

Substituting equations (72) and (79) to the equation (70), we get

MD = exp
[
µ2
ACFL(x1,x2)− 1

2CFµ
2
A[L(x1,x1) + L(x2,x2)]

]
. (80)

We can define Γ-functions as

Γ(x− y) ≡ L(x,x) + L(y,y)− 2L(x,y), (81)

where we have used the translational invariance of the transverse coordinates i.e. the
functions can only depend on the relative difference of the transverse coordinates.
Using this, we can write equation (80) as

MD = exp
[
− 1

2CFµ
2
AΓ(x1 − x2)

]
. (82)
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After contracting all the generators in the Wilson lines i.e. when V → IN , we are
left with factors

Tr(IN) = N (83)

to every contributing graph. This can be thought to be the initial condition for
the dipole as it corresponds to the case where the quark does not scatter at all i.e.
V = I. Because of the contribution (83) we get the final result

Cdip,F (x1,x2) = N exp
[
− 1

2CFµ
2
AΓ(x1 − x2)

]
. (84)

The result (84) corresponds to the result given in the paper [13], where the differing
factor of N is explained by the tracing procedure. [16]

The adjoint representation Wilson line dipole is

N (a)
A =

〈
Tr(U(x1)U †(x2))

〉
. (85)

The structure of the adjoint representation Wilson line is the same as with the
fundamental representation one. Only the representation of the group generators
are changed. Thus, because all the generator contractions for the dipole are done
between adjacent generators, only the quadratic Casimir and the initial condition
(the trace) give a differing contribution. The Casimir factor is replaced as CF → CA

and the initial condition changes as N → N2 − 1 and thus we get the result

Cdip,F (x1,x2) = (N2 − 1) exp
[
− 1

2CAµ
2
AΓ(x1 − x2)

]
. (86)

The propagator integral (L-function) (75) is an infrared divergent quantity. The
origin of the divergences is the fact that the color neutrality of the target nucleus
is not taken into account in the weight (27). The L-function can be regularized by
introducing a upper cutoff ΛQCD to the z⊥-integral. Physically, the addition of the
cutoff corresponds to requiring color neutralization at the distance scale of 1/ΛQCD.
The introduction of the cutoff renders the L-function quadratically divergent with
respect to the cutoff scale. However, the L-functions combine to form Γ-functions
that are only logarithmically divergent. The physical reason for the softening of the
singularity is the color singlet structure of the Wilson lines in question. The color
singlets are almost free of long-ranged color interactions, but they still introduce the
logarithmic divergence. In this thesis we will only consider color singlet states so we
can always expect the L-functions to combine into Γ-functions. [14, 16]
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3.2.2 Fundamental representation 8-point correlators

The goal of this thesis is the evaluation of adjoint representation Wilson line corre-
lators directly in the adjoint representation. In this section I will show how one can
straightforwardly express the adjoint four point correlators as a linear combinations
of fundamental representation eight point correlators. I will also show how one can
evaluate the fundamental eight point correlators.

Let us take a concrete example. One possible adjoint representation four point
correlator is

C4,A(x1,x2,x3,x4) =
〈

Tr
[
U(x1)U †(x2)

]
Tr
[
U(x3)U †(x4)

]〉
. (87)

The adjoint representation Wilson line can be expressed elementwise as fundamental
representation Wilson lines by the identity [21]

Uab(x) = 2 Tr[taV †(x)tbV (x)], (88)

where a,b are the matrix indices of the adjoint Wilson line U , the t’s are the fun-
damental representation generators and the V ’s are the fundamental Wilson lines.
Note that the fundamental Wilson lines depend on the same transverse coordinate.
Now, making the replacement

Uab(x)→ 2 Tr[taV †(x̄)tbV (x)], (89)

and contracting all generators using the Fierz identity (38), we get an fundamental
Wilson line 8-point correlator expression for the adjoint 4-point correlator. The
exact equality is recovered by taking the limit x̄→ x.

To demonstrate the process, let us consider the correlator in equation (87). First,
we express the adjoint Wilson lines in the correlator in index form as

C4,A(x1,x2,x3,x4) =
〈
Uab(x1)U †ba(x2)Ucd(x3)U †dc(x4)

〉
=
〈
Uab(x1)Uab(x2)Ucd(x3)Ucd(x4)

〉
,

where we have used the fact that the adjoint Wilson lines are real i.e.

U∗ = U ⇐⇒ U †ab = Uba. (90)

Next we replace the adjoint Wilson line elements with fundamental Wilson line
traces using (89). Doing this, we get

C4,A(x1,x2,x3,x4) =24
〈

Tr[taV †(x̄1)tbV (x1)] Tr[taV †(x̄2)tbV (x2)]

× Tr[tcV †(x̄3)tdV (x3)] Tr[tcV †(x̄4)tdV (x4)]
〉∣∣∣∣

x̄i=xi

.
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Now we shall employ the Fierz identity (38) to contract the generators with the
same index. Let us leave the limit x̄i = xi implicit for simplicity. The "Fierzing"
procedure yields

C4,A(x1,x2,x3,x4) = Tr[V (x1)V †(x̄2)] Tr[V (x2)V †(x̄1)] Tr[V (x3)V †(x̄4)] Tr[V (x4)V †(x̄3)]

− 1
N

Tr[V (x1)V †(x̄2)] Tr[V (x2)V †(x̄1)] Tr[V (x3)V †(x̄3)V (x4)V †(x̄4)]

− 1
N

Tr[V (x1)V †(x̄2)] Tr[V (x2)V †(x̄1)] Tr[V (x3)V †(x̄4)V (x4)V †(x̄3)]

+ 1
N2 Tr[V (x1)V †(x̄2)] Tr[V (x2)V †(x̄1)] Tr[V (x3)V †(x̄3)] Tr[V (x4)V †(x̄4)]

− 1
N

Tr[V (x1)V †(x̄1)V (x2)V †(x̄2)] Tr[V (x3)V †(x̄4)] Tr[V (x4)V †(x̄3)]

+ 1
N2 Tr[V (x1)V †(x̄1)V (x2)V †(x̄2)] Tr[V (x3)V †(x̄3)V (x4)V †(x̄4)]

+ 1
N2 Tr[V (x1)V †(x̄1)V (x2)V †(x̄2)] Tr[V (x3)V †(x̄4)V (x4)V †(x̄3)]

− 1
N3 Tr[V (x1)V †(x̄1)V (x2)V †(x̄2)] Tr[V (x3)V †(x̄3)] Tr[V (x4)V †(x̄4)]

− 1
N

Tr[V (x1)V †(x̄2)V (x2)V †(x̄1)] Tr[V (x3)V †(x̄4)] Tr[V (x4)V †(x̄3)]

− 1
N2 Tr[V (x1)V †(x̄2)V (x2)V †(x̄1)] Tr[V (x3)V †(x̄3)V (x4)V †(x̄4)]

+ 1
N2 Tr[V (x1)V †(x̄2)V (x2)V †(x̄1)] Tr[V (x3)V †(x̄4)V (x4)V †(x̄3)]

− 1
N3 Tr[V (x1)V †(x̄2)V (x2)V †(x̄1)] Tr[V (x3)V †(x̄3)] Tr[V (x4)V †(x̄4)]

+ 1
N2 Tr[V (x1)V †(x̄1)] Tr[V (x2)V †(x̄2)] Tr[V (x3)V †(x̄4)] Tr[V (x4)V †(x̄3)]

− 1
N3 Tr[V (x1)V †(x̄1)] Tr[V (x2)V †(x̄2)] Tr[V (x3)V †(x̄3)V (x4)V †(x̄4)]

− 1
N3 Tr[V (x1)V †(x̄1)] Tr[V (x2)V †(x̄2)] Tr[V (x3)V †(x̄4)V (x4)V †(x̄3)]

+ 1
N4 Tr[V (x1)V †(x̄1)] Tr[V (x2)V †(x̄2)] Tr[V (x3)V †(x̄3)] Tr[V (x4)V †(x̄4)],

(91)

where we could represent the traces graphically using the same graphical represen-
tation we used for the dipole. For instance, the last product of traces in equation
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(91) would get the following graphical representation:

Tr[V (x1)V †(x̄1)] Tr[V (x2)V †(x̄2)] Tr[V (x3)V †(x̄3)] Tr[V (x4)V †(x̄4)]

=̂

x1
x̄1
x2
x̄2
x3
x̄3
x4
x̄4

.
(92)

Now we have expressed the adjoint Wilson line 4-point correlator (87) as a linear
combination of fundamental Wilson line 8-point correlators (91). Thus, by cal-
culating the fundamental 8-point correlators, we can evaluate the adjoint 4-point
correlator by taking the limit introduced in (89).

Let us now evaluate the 8-point correlators using the procedure presented in the
paper [16] and we shall largely use the notation presented in the paper. The paper
discusses the evaluation of the fundamental Wilson line 4-point correlators but the
process generalizes straightforwardly for 8-point correlators. In matter of fact, the
main ideas from the dipole calculation generalize to the calculation of any 2n-point
fundamental correlator. First, we need a basis for possible singlet states for the 8
Wilson lines which equates to finding all the possible contractions for〈
Vβ1α1(x1)V ∗β2α2(x2)Vβ3α3(x3)V ∗β4α4(x4)Vβ5α5(x5)V ∗β6α6(x6)Vβ7α7(x7)V ∗β8α8(x8)

〉
(93)

so that the states preserve the color flow i.e. a Wilson line always follows a Hermitian
conjugate of a Wilson line and vice versa. The following calculation needs us to
choose a basis with only either the α’s or only the β’s contracted. Because of the
path ordering, we can always do the group generator contractions starting from α’s
or from β’s i.e. starting from the x+ = −∞ side or from the x+ = ∞ side, which
leaves the topology of the other side unchanged. Let us now do the contractions
starting from the beta-side so that our singlet base consist of every possible color
flow preserving beta-index contractions. Let us also choose αi = αi+1, i = 1,3,5,7
for notational clarity. This choice can be changed in the end of the calculation and
it will only affect the initial conditions which are easy to change.

The 8-point correlators are extremely cumbersome to write down algebraically or
graphically, so to lighten up the notation, we shall use the notation that I introduced
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in my research report. The notation is closely related to the notation used when
describing cyclic permutations. Using the cyclic notation, we can write

Tr[V (x1)V †(x2)] Tr[V (x3)V †(x4)] Tr[V (x5)V †(x6)] Tr[V (x7)V †(x8)]=̂(1,2)(3,4)(5,6)(7,8),
(94)

where every bracket implies a trace and the number represents a Wilson line with
the same index in its parameter. For the fundamental Wilson lines we will use the
convention that every odd numbered parameter represents a Wilson line and every
even numbered parameter represents a Hermitian conjugate of a Wilson line. In the
graphical representation the i:th line from the top will always represent a Wilson
line (conjugate) having the parameter xi.

Using the cyclic notation we can write our choice for the 8-point correlator (93)
basis as

N (1) = (1,2,5,6)(3,4,7,8)

N (3) = (1,2,3,4,7,8,5,6)

N (5) = (1,2,5,6,3,4,7,8)

N (7) = (1,2,3,4)(5,6)(7,8)

N (9) = (1,2,5,6,3,4)(7,8)

N (11) = (1,2)(3,4)(5,6,7,8)

N (13) = (1,2,3,4,5,6)(7,8)

N (15) = (1,2,5,6)(3,4)(7,8)

N (17) = (1,2)(3,4,7,8)(5,6)

N (19) = (1,2,3,4,5,6,7,8)

N (21) = (1,2)(3,4,5,6)(7,8)

N (23) = (1,2,7,8)(3,4,5,6)

N (2) = (1,2,3,4)(5,6,7,8)

N (4) = (1,2,5,6,7,8,3,4)

N (6) = (1,2)(3,4,7,8,5,6)

N (8) = (1,2,5,6,7,8)(3,4)

N (10) = (1,2,7,8,3,4)(5,6)

N (12) = (1,2,7,8,5,6,3,4)

N (14) = (1,2)(3,4,5,6,7,8)

N (16) = (1,2,7,8,5,6)(3,4)

N (18) = (1,2,7,8,3,4,5,6)

N (20) = (1,2,3,4,7,8)(5,6)

N (22) = (1,2)(3,4)(5,6)(7,8)

N (24) = (1,2,7,8)(3,4)(5,6).

(95)

Let us have one more example to summarize all the different representations we
have for the Wilson line singlet states i.e. the correlators. The first basis state in
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equation (95) reads

N (1) = (1,2,5,6)(3,4,7,8)

= Tr[V (x1)V †(x2)V (x5)V †(x6)] Tr[V (x3)V †(x4)V (x7)V †(x8)]

=

x1
x2
x3
x4
x5
x6
x7
x8

.

(96)

We will suppress the transverse component parameters xi and keep the ordering of
the Wilson lines i.e. the horizontal lines unchanged. We will let the connections
in the end points change and thus this convention still allows us to represent every
possible topology without any restrictions.

Now we can begin the calculation which is mostly a generalization of the calcu-
lation involving the dipole. The graphical representation for the Fierz identity (38)
is [16]

= 1
2 − 1

2N . (97)

Just like in the dipole case, the ladder and tadpole type contributions decouple.
The first term in (97) implies that the generator contractions may result in state
transitions between the singlet states (95). This was not possible for the dipole
due to it having only one possible singlet state. The factorization of all contraction
contributions MF,8 is completely analogous to the dipole factorization (70) and it
reads

MF,8 = NF,8TF,8, (98)

where, again, NF,8 includes all contractions between different Wilson lines and TF,8
contains all the tadpole contractions. The evaluation of the tadpole contributions
yields

TF,8 = exp
[
− 1

2CFµ
2
A

8∑
i=1

L(xi,xi)
]
. (99)

Let us now denote NF,8,n(z+
1 , . . . ,z

+
n ) as the part of the ladder type contributions

NF,8 that includes precisely n ladder type contractions. Thus the whole ladder type
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contribution can be written as

NF,8 =
∞∑
n=0

∫
z+

1 <...<z
+
n

NF,8,n(z+
1 , . . . ,z

+
n ). (100)

The singlet states in (95) span a basis and thus we can write every NF,8,n(z+
1 , . . . ,z

+
n )

as their linear combination

NF,8,n(z+
1 , . . . ,z

+
n ) =

24∑
i=1

ai,nN (i). (101)

When we have written the contribution NF,8,n−1 as a linear combination of the basis
states, we can get the contribution NF,8,n recursively by adding a gluon link (a
ladder) in every possible way to the contribution NF,8,n−1. Thus we get a recursion
relation

NF,8,n =µ2
A(z+

n )a1,n−1

L(x1,x2)

− L(x1,x3) + L(x1,x4)

. . .

+ µ2
A(z+

n )a2,n−1

L(x1,x2) + . . .



+ µ2
A(z+

n )a3,n−1

 . . .
+ . . .

(102)

In equation (102) the µ2
A(z+

n ),L’s and± in front of the L’s come from the components
of the Wilson lines that are associated with the generator contraction in question.
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The ± in front of the L’s come from the imaginary unit in the Wilson line which
results in a −-sign to the conjugated Wilson line. Thus we get a factor (±i)2 = −1
when we have contraction between two Wilson lines or two conjugated Wilson lines.
We get a factor −i · i = +1 when the contraction is done between a Wilson line and
a conjugated Wilson line.

Next we shall employ the graphical Fierz identity (97) to express the equation
(102) in the form (120). After we have done this, we can replace all the linearly in-
dependent basis topologies (95) with linearly independent R24 vectors. The obvious
choice is to replace the basis topologies with the standard basis vectors as

N (i) = ei, i ∈ 1,2, . . . ,23,24, (103)

where for instance

e2 =
[
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

]T
.

(104)
Doing the replacement, we can rewrite the recursion relation (120) as

a1,n

a2,n
...

a24,n

 = µ2
A(z+

n )M



a1,n−1

a2,n−1
...

a24,n−1

 , (105)

whereM is the z+-evolution matrix describing the evolution of the Wilson line states
as we add gluon contractions to them. It is straightforward to find the elements of
the matrix M by comparing equation (105) to the fully contracted form of equation
(102). The recursion relation (105) is can be easily solved yielding

a1,n

a2,n
...

a24,n

 =
 n∏
i=1

µ2
A(z+

i )
Mn



a1,0

a2,0
...

a24,0

 , (106)

where the values of ai,0 are extracted from the expression of the correlator we are
calculating. We shall discuss this more when we get the final result. The equation
(106) does not take into account the initial conditions of fully contracted Wilson
line correlators. Noticing that the ai,n corresponds to the correlator N (i), we can
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add the initial conditions as

[
N (1)

ini N (2)
ini · · · N (24)

ini

]


a1,n

a2,n
...

a24,n

 =
 n∏
i=1

µ2
A(z+

i )
 [N (1)

ini N (2)
ini · · · N (24)

ini

]
Mn



a1,0

a2,0
...

a24,0

 .
(107)

To get the final expression, we still have to sum over all possible number of ladders,
introduce the path-ordered integration over the +-coordinate originating from the
definition of the Wilson line and multiply with the tadpole contributions. This yields

∞∑
n=0

 ∫
z+

1 <...<z
+
n

n∏
i=1

µ2
A(z+

i )


︸ ︷︷ ︸
Remove path-ordering =⇒ 1

n!

[
N (1)

ini N (2)
ini · · · N (24)

ini

]
Mn



a1,0

a2,0
...

a24,0

 TF,8

=
∞∑
n=0

1
n!

 ∫
z+

1 ,...,z
+
n

n∏
i=1

µ2
A(z+

i )


︸ ︷︷ ︸
=µ2n

A

[
N (1)

ini N (2)
ini · · · N (24)

ini

]
Mn



a1,0

a2,0
...

a24,0

 TF,8

=
[
N (1)

ini N (2)
ini · · · N (24)

ini

] ∞∑
n=0

1
n!µ

2n
A M

n

︸ ︷︷ ︸
exp(µ2

AM)



a1,0

a2,0
...

a24,0

 TF,8

=
[
N (1)

ini N (2)
ini · · · N (24)

ini

]
exp(µ2

AM)



a1,0

a2,0
...

a24,0

 TF,8.

(108)

Now the full expression for any fundamental 8-point correlator CF,8 can be found
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from

CF,8 =
24∑
i=1

ciN (i)

=
[
N (1)

ini N (2)
ini · · · N (24)

ini

]
exp(µ2

AM)



c1

c2
...
c24

 TF,8.
(109)

Let us now discuss this final result (109). The initial conditions of the basis states
N (i) depend on how we choose the close the z+ =∞ side of the basis topologies i.e.
the right side of the topologies in the graphical representation. In the fundamental
representation, the initial condition is found by replacing every Wilson line with an
identity matrix i.e. every loop (or trace) in the topology gives a power of Tr[I] = N .
For example an one loop topology has an initial condition of N and a three loop
topology has an initial condition ofN3. The coefficients ci are the factors multiplying
the correlator we wish to evaluate. For instance the correlator

N2
〈

Tr[V (x1)V †(x2)V (x3)V †(x4)] Tr[V (x5)V †(x6)V (x7)V †(x8)]
〉

(110)

would have the coefficients

c2 = N2, cj = 0, ∀j 6= 2. (111)

The L-functions in the tadpole and ladder contributions combine to form Γ-
functions and the remaining L-functions can be written as Γ-functions by adding
suitable zeroes to the matrix elements. The analytical evaluation of the matrix
exponential is cumbersome, but can be done using diagonalization or Jordan form.
We shall discuss this more in the section 3.3. The exact expression for the transition
matrix M can be found in the appendix B. The transition matrix elements were
found using the Mathematica code that I wrote as part of my research training. I
have included the code in the appendix C.

Now we know how to calculate the adjoint 4-point correlator (87) by using the
relation (91) and by taking the limit discussed earlier in conjuction with the re-
placement (89). Note that the equation (91) includes fundamental 8-point corre-
lators with 4 different topologies for the connections in the z+ = ∞ side of the
basis topologies. Thus our result for the adjoint 4-point correlator will be a sum of
4 different contractions of the transition matrix (as seen in (109)) with 4 different
initial conditions for the basis states.
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3.2.3 Adjoint representation 4-point correlators

Now we get to the main point of this thesis: how to evaluate an adjoint repre-
sentation Wilson line 4-point correlator in the MV-model? We shall use the same
method that we used in the fundamental case earlier. Now the basis states and state
transitions are much more complicated, but the procedure is mostly analogous.

According to [14], the singlet state base for four adjoint representation Wilson
lines

SA,4 = 〈U(x1)β1α1U(x2)β2α2U(x3)β3α3U(x4)β4α4〉 (112)

can be chosen to be

N (1) = SA,4δ
α1α2δα3α4

N (2) = SA,4δ
α1α3δα2α4

N (3) = SA,4δ
α1α4δα2α3

N (4) = SA,4d
α1α2γdα3α4γ

N (5) = SA,4d
α1α3γdα2α4γ

N (6) = SA,4d
α1α2γfα3α4γ

N (7) = SA,4d
α1α3γfα2α4γ

N (8) = SA,4d
α1α4γfα2α3γ

(113)

where the indices are matrix indices of the adjoint representation Wilson lines U .
This basis is only valid for SU(3) for the symmetric structure constants d are zero
for SU(2) and the result of appendix A implies that the set of states (113) is not
a complete base for SU(N), N > 3. This omits the possibility of employing the
large N limit but still leaves the result valid for the QCD-case.

Again, the calculation does not depend on the choice of the contractions of the
z+ = −∞ i.e. the beta-index side. The choice only affects the initial conditions as
it did in the fundamental case. For notational clarity, let us consider the case where
β1 = β2 and β3 = β4.

Let us use the same graphical representation for the Wilson lines and the genera-
tor contractions as before. Note that in the adjoint case the Wilson line "directions"
can change as long as the arrows are mirrored in the whole loop. This means that

N (1) = Tr[U(x1)U †(x2)] Tr[U(x3)U †(x4)]

= Tr[U †(x1)U(x2)] Tr[U †(x3)U(x4)].
(114)
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This follows from U ∈ R and from the invariance of the trace under transposing

Tr[U(x1)U †(x2)] = Uab(x1)U †ba(x2)

= U †ba(x1)Uab(x2) = Tr[U †(x1)U(x2)]

and it is valid for traces of multiple adjoint Wilson lines i.e. the order of the lines
gets mirrored and the lines are turned into their Hermitean conjugates and the
conjugates are turned into non-conjugated Wilson lines.

Calculations using the graphical representation get cumbersome rather quickly
in the adjoint representation as we will shortly see. However, it is useful for getting
the initial algebraic expression for the generator contractions. This is why it is
useful to introduce graphical representations for the structure constants f and d.
The symmetric structure constant d can be represented as

dabc =
a

b

c

(115)

and the antisymmetric structure constant f can be represented as

fabc =
a

b

c

, (116)

where the arrow denotes the ordering of the indices in f . The antisymmetric struc-
ture constant is invariant under cyclic permutation and thus we can start reading
the indices from any point as long as we are faithful to the ordering. Changing
the direction of the arrow in the circular path introduces an overall −-sign. The
symmetric structure constant has no ordering due to its symmetricity under any
permutation. The graphical representation of f differs from regular Feynman 3-
gluon vertex because the Feynman rule is symmetric under permutations whereas f
is not, thus the ordering is required.

The structure of the adjoint Wilson line is the same as the fundamental one.
The two-point correlator of the sources ρ’s are the same. With these remarks, we
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expect the adjoint Wilson line contractions to factorize into the ladder and tadpole
contributions

MA = NATA. (117)

The tadpole contributions yield

TA = exp
[
− 1

2CAµ
2
A

4∑
i=1

L(xi,xi)
]
. (118)

We will again denote the n-ladder contribution of NA as NA,n(z+
1 , . . . ,z

+
n ). The

whole ladder type contribution is then

NA =
∞∑
n=0

∫
z+

1 <...<z
+
n

NA,n(z+
1 , . . . ,z

+
n ). (119)

The singlet states (113) form a basis and thus we can write

NA,n(z+
1 , . . . ,z

+
n ) =

8∑
i=1

Ai,nN (i). (120)

The NA,n can be found from NA,n−1 by adding one ladder type contraction in every
way to the basis states

NA,n = µ2
A(z+

n )A1,n−1

L(x1,x2) − L(x1,x3) + . . .



+ µ2
A(z+

n )A2,n−1

L(x1,x2) + L(x1,x3) + . . .



+ µ2
A(z+

n )A3,n−1

 . . .


+ µ2
A(z+

n )A4,n−1

L(x1,x2) + . . .



+ . . . .

(121)
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As in the fundamental case, the sign in front of the L-functions depends on the
orientation of the graphically represented adjoint Wilson lines in the endpoints of
the contraction. We have to fix the orientation for the graph we are calculating,
but the specific choice does not alter the end result. This is due to a −-sign that
is introduced to every contraction endpoint on every flipped Wilson line. Thus
the flipping of an Wilson line introduces the same amount of −-signs in front of
the L-functions as to the generator contractions that are written as antisymmetric
structure constants f .

Let us have some examples on how to calculate the contractions in the equation
(121) and how the Wilson line orientation invariance arises. Let us first define

S̃A,4 = 〈U(x1)β1α1U(x2)β2α2U(x3)β3α3U(x4)β4α4〉δβ1β2δβ3β4 (122)

Take for example the second contraction term in the recursion relation (121)

−L(x1,x3) = −L(x1,x3)S̃A,4T γα1α2T
γ
α3α4

= L(x1,x3)S̃A,4T γα1α2T
γ
α4α3 = L(x1,x3)

, (123)

where we see the invariance under conjugation of adjoint Wilson lines. Now using
the identities color algebra discussed in subsection 3.1.2 we get

L(x1,x3)S̃A,4T γα1α2T
γ
α4α3 = −L(x1,x3)S̃A,4fγα1α2fγα4α3

= L(x1,x3)S̃A,4fα1α2γfα3α4γ

= L(x1,x3)S̃A,4
[ 2
N

(
δα1α3δα2α4 − δα1α4δα2α3

)
+ dα1α3γdα2α4γ − dα2α3γdα1α4γ

]

= L(x1,x3)S̃A,4

 2
N

(
δα1α3δα2α4 − δα1α4δα2α3

)
+ dα1α3γdα2α4γ

−

 2(24− 10N2 +N4)
N(48− 29N2 + 3N4)

[δα1α2δα3α4 + δα1α3δα2α4 ]

−

 2(N2 − 12)(4−N2)
N(48− 29N2 + 3N4)

δα1α4δα2α3

−

 24− 15N2 +N4

48− 29N2 + 3N4

[dα1α2γdα3α4γ + dα1α3γdα2α4γ]
,

(124)

where we have written the contraction as a linear combination of the basis states
(113).
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Let us take an example involving a contraction involving structure constants.
One contributing contraction is

= S̃A,4T
η
α1aT

η
bα2d

abγdα3α4γ

= S̃A,4T
η
α1aT

η
bα2D

γ
abd

α3α4γ = S̃A,4T
α1
ηa T

α2
bη D

γ
abd

α3α4γ

= S̃A,4d
α3α4γ Tr

[
Tα2Tα1Dγ

]
= S̃A,4d

α3α4γ
N

2 d
α2α1γ = S̃A,4

N

2 d
α1α2γdα3α4γ,

(125)

where we used the trace identity listed in (59). All the remaining contractions in
equation (121) can be expressed using the chosen singlet base (113) by using the
color algebra introduced in subsections 3.1.1 and 3.1.2.

After doing all the contractions on the RHS of the recursion relation (121) and
expressing them as a linear combination of the basis states (113), we can express
the basis states as vectors as we did in the fundamental case. Now our basis is
8-dimensional, so we replace the states with R8 standard basis vectors ei as

N (i) = ei, i ∈ 1,2, . . . ,8. (126)

Doing the replacements, we can write the recursion relation as



A1,n

A2,n
...

A8,n

 = µ2
A(z+

n )W



A1,n−1

A2,n−1
...

A8,n−1

 , (127)

where W is the z+-evolution matrix. After the same treatment we did in the fun-



55

damental case, we arrive to a similar looking result

CA,4 =
8∑
i=1

ciN (i)

=
[
N (1)

ini N (2)
ini · · · N (8)

ini

]
exp(µ2

AW )



c1

c2
...
c8

 TA,4,
(128)

where, again, the tadpole contributions combine with the L-functions on the di-
agonal of the W -matrix to form Γ-functions. The rest of the L-functions form
Γ-functions despite the W -matrix elements are much more complicated than the
M -matrix elements we discussed in the fundamental case.

The W -matrix elements are listed in the appendix B. An important thing to
note is that the W -matrix is block diagonal with 5- and 3-dimensional blocks

W =
W5×5 0

0 W3×3

 . (129)

This ultimately means that the first 5 and the last 3 basis states do not mix through
the z+-evolution represented by theW -matrix. Additionally because the correlators
arising in physical calculations are usually color states corresponding to the 5 first
basis states (113) (i.e. c6 = c7 = c8 = 0), we can reduce the equation (128) to a
simpler form.

The simplification follows straightforwardly from the equation (128). Let us now
show this. Let us first define

W1 =
W5×5 0

0 0

 , W2 =
0 0

0 W3×3

 (130)

for which
W = W1 +W2 (131)

and
[W1,W2] = 0. (132)

Due to the commutativity (132) it holds that

exp(W ) = exp(W1 +W2) = exp(W1) exp(W2), (133)
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and thus assuming c6 = c7 = c8 = 0, we get from the equation (128)

CA,4 =
8∑
i=1

ciN (i) =
5∑
i=1

ciN (i)

=
[
N (1)

ini N (2)
ini · · · N (8)

ini

]
exp(µ2

AW )



c1

c2
...
c8

 TA,4

=
[
N (1)

ini N (2)
ini · · · N (8)

ini

]
exp(µ2

AW1) exp(µ2
AW2)︸ ︷︷ ︸

→exp(0)=1



c1

c2
...
c8

 TA,4

=
[
N (1)

ini N (2)
ini · · · N (8)

ini

]
exp(µ2

AW1)



c1

c2
...
c8

 TA,4

=
[
N (1)

ini N (2)
ini · · · N (5)

ini

]
exp(µ2

AW5×5)



c1

c2
...
c5

 TA,4,

(134)

where we have used the fact that the upper block W5×5 only operates on the first
5 coefficients ci and the first 5 initial conditions N (i). Additionally we have used
the fact that the lower block only operates on the last 3 ci’s which are zero and
thus every power of W2 acting on the ci-coefficient vector gives a zero and therefore
the exponent with W2 evaluates to 1. Because W5×5 does not operate on the 3 last
initial conditions N (i), the last 3 basis states are redundant and thus we can make
the replacement we did in the last line of (128). The final reduced expression for
the adjoint 4-point correlator reads

CA,4 =
5∑
i=1

ciN (i)

=
[
N (1)

ini N (2)
ini · · · N (5)

ini

]
exp(µ2

AW5×5)



c1

c2
...
c5

 TA,4.
(135)
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The initial conditions are found the same way as in the fundamental represen-
tation case by setting every Wilson line to identity U → I. The initial conditions
depend on how we contract the β-indices of the singlet states (112). For instance,
if we wish to calculate

Tr[U(x1)U †(x2)] Tr[U(x3)U †(x4)],

we would have to contract the singlets with δβ1β2δβ3β4 . With this β-contraction
choice, the initial condition for the first basis state would be

N (1)
ini = Tr[I] Tr[I] = (N2 − 1)2, (136)

where (N2− 1) is the dimension of the adjoint representation. The initial condition
for the 4th basis state would be

N (4)
ini = dα1α1γdα3α3γ = 0 (137)

and for the 5th state we would get

N (5)
ini = dα1α3γdα1α3γ =

(
N2 − 4
N

)
δγγ =

(
N2 − 4
N

)
(N2 − 1). (138)

It is important to note that the result (135) is only valid for N = 3 i.e. the
QCD-case. The N = 2 case might work with some modification to the result. In this
case the symmetric structure constants vanish (d = 0) and thus the antisymmetric
structure constants f can be written as linear combinations of the Kronecker deltas
δ which can be seen from the equation (57). This implies that the singlet basis for
N = 2 is not the same as for N = 3 and must be constructed separately if one wishes
to calculate correlators for N = 2. For values N > 3 this calculation will not work
because of the result derived in the appendix A. The result implies that the basis
(113) does not span the whole basis for the possible singlet state configurations and
must be supplemented with some additional states.

3.3 Analytical evaluation of matrix exponentials

The matrix exponentials arising in the calculation of the Wilson line correlators can
be evaluated in a closed form, but this is generally a cumbersome process, especially
for large matrices. Nevertheless, we shall discuss how one could evaluate these
exponents, if one would like to do so. This is straightforward if we can exploit the
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diagonalizability of the exponentiated matrix. For non-diagonalizable matrices, we
need to utilize the Jordan canonical form of the matrix. We shall discuss both of
these cases in this section.

3.3.1 Diagonalizable matrix

Take a diagonalizable matrix A ∈ Mn×n(C) with n ∈ N. For this a diagonalizable
matrix A, one can find a basis change matrix P so that

B = P−1AP, (139)

where the matrix B is diagonal. Inverting (139), we get

A = PBP−1, (140)

Furthermore, we can easily see that

An = (PBP−1)n = PBnP−1. (141)

Now we are ready to tackle the challenge that is exp(A). The matrix exponential
is defined as a series, and thus

eA =
∞∑
k=0

Ak

k! = P
[ ∞∑
k=0

Bk

k!

]
P−1, (142)

where the equation (141) was used to get the second equality. Due to the diagonality
of the matrix B, we get

Bk =



B11 0 · · · 0
0 B22 0
... . . . 0
0 0 0 Bnn



k

=



Bk
11 0 · · · 0
0 Bk

22 0
... . . . 0
0 0 0 Bk

nn

 , (143)

and thus

eA = P
[ ∞∑
k=0

1
k!



Bk
11 0 · · · 0
0 Bk

22 0
... . . . 0
0 0 0 Bk

nn


]
P−1 = P



eB11 0 · · · 0
0 eB22 0
... . . . 0
0 0 0 eBnn

P
−1

(144)
The equation (144) gives us the analytic expression for the exponentiated matrix,
as we desired.
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3.3.2 Non-diagonalizable matrix

Let us have an non-diagonalizable matrix M ∈ Mn×n(C) with n ∈ N. One way
to tackle exp(M) is to employ the so called Jordan form of the matrix M . The
Jordan form coincides with the diagonalized form of the matrix when considering
a diagonalizable matrix, and thus is a more general object. It can be thought as
writing the matrix in a basis in which it is closest to a diagonal form. [22]

Let us first introduce the definition of a nilpotent matrix. Let N ∈Mn×n(C) be
a nilpotent matrix. Then there exists a q ∈ N so that

N q = 0. (145)

We will need the definition of the nilpotent matrix in the coming discussion. [22]
Even though the matrix M can not be diagonalized, we can "block-diagonalize"

it. The Jordan form of the matrix M reads

J = S−1MS =



J1 0 · · · 0
0 J2 0
... . . . 0
0 0 0 Ji

 , (146)

where the J1, J2, . . . Ji are Jordan blocks. The Jordan blocks are of the form

Ji =



λi 1 · · · 0
0 λi

. . . 0
... . . . 1
0 0 0 λi

 . (147)

The Jordan blocks are not necessarily of the same size, but the are always square
blocks. Every block Ji has one eigenvector with an eigenvalue λi. All the diagonal
elements are the same λi and the elements just above the diagonal are ones. All the
other elements are zeroes. [22]

Let us now discuss how we find the basis change matrix S in equation (146). The
matrix M does not have enough eigenvectors to form a basis, and thus they have
to be supplemented with so called generalized eigenvectors. These vectors belong
to strings initiated by the proper eigenvectors of M . After finding the eigenvalues
of the matrix M using the usual procedure, we can find the proper eigenvector x1

corresponding to the eigenvalue λ1 as

Mx1 = λ1x1. (148)
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The string of vectors (x1,x2, . . . ,xj) initiated by the eigenvector x1 can be found
from the expression

Mxj = λxj + xj−1. (149)

These eigenvectors and generalized eigenvectors form the columns of the basis change
matrices S. Explicitly written, the matrix S reads

S =
[
x1 x2 x3 y1 y2 . . . z1 z2 z3

]
, (150)

where xa,yb,zc represent strings of vectors corresponding to eigenvalues of the matrix
M . [22]

Let us now discuss how to exponentiate the matrix M using the Jordan form as
discussed in [23]. Inverting the equation (146) we get

M = SJS−1. (151)

Let us again consider the Jordan form J (146). Let us divide the matrix J into two
parts

J = D +N, (152)

where the D contains all the diagonal elements of J and N contains all the ones
that lie on the superdiagonal of J . Let us denote the blocks of D and N as Di and
Ni respectively and let us keep the sizes of the blocks the same as for J so that

Ji = Di +Ni. (153)

The blocks Di are diagonal

Di = λiI (154)

and thus

DiNi = NiDi. (155)
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From this it follows

DN =



D1 0 · · · 0
0 D2 0
... . . . 0
0 0 0 Di





N1 0 · · · 0
0 N2 0
... . . . 0
0 0 0 Ni

 =



D1N1 0 · · · 0
0 D2N2 0
... . . . 0
0 0 0 DiNi



=



N1D1 0 · · · 0
0 N2D2 0
... . . . 0
0 0 0 NiDi

 =



N1 0 · · · 0
0 N2 0
... . . . 0
0 0 0 Ni





D1 0 · · · 0
0 D2 0
... . . . 0
0 0 0 Di


=ND

(156)

that is
[D,N ] = 0. (157)

Using the Jordan form (151) and the equation (152) we get

eM = eSJS
−1 = SeJS−1 = SeD+NS−1 = SeDeNS−1, (158)

where D is a diagonal matrix and N is a strictly upper triangular matrix and is thus
nilpotent. The exponent of D is easily computed as it is a trivially diagonalizable
matrix and the series expansion of the exp(N) terminates at some point, so we have
to sum a finite amount of powers of D. Thus we have found a way to express the
exponent of a non-diagonalizable matrix in an analytical way.

Computing the matrix exponential in this way can easily become cumbersome.
Luckily, there exist computing systems with pre-existing commands that provides
us with the Jordan form and the basis change matrices of a given matrix. This
makes computing the exponential much easier. One of such systems is Wolfram
Mathematica and its command named JordanDecomposition. The remaining task is
then to compute the nilpotent part and to take the product of the evaluated matrices.
This can still be a cumbersome task for large matrices with horrible eigenvalues and
(generalized) eigenvectors, but might be worthwhile to do for smaller matrices.
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4 Conclusion

The main point of this thesis was getting the expression for the 4-point correlator of
adjoint Wilson lines from which the correlator can be evaluated. The most general
expression can be found in the equation (128). Due to the block-diagonality ((5 ×
5) and (3×3)) of the adjoint transition matrix ((8×8)) found in the appendix B, the
general expression decouples, and can be simplified to yield the expression (135).
This is an useful simplification, because scattering processes usually only contain
the states corresponding to the first 5 singlet states in our chosen basis (113). The
(5×5)-block contains all the information about the evolution of these 5 states. Thus
we only need to calculate the exponential of a (5×5)-matrix and not the exponential
of the whole (8× 8)-matrix.

The evaluation of the adjoint 4-point correlator can be related to the evaluation
of a fundamental 8-point correlator as discussed before. In that case we would have
to compute the exponential of a (24× 24)-matrix, which would be computationally
much more expensive than the exponential of the (5 × 5)-matrix. Additionally we
would potentially have to contract the matrix exponential with multiple (initial
condition, coefficient)-pairs. Thus it is analytically much neater to do the whole
computation in the adjoint representation as done in this thesis.

The result of this work can be used to study multi-particle correlations within
the Color Glass Condensate framework, without having to rely on the large-N limit
when computing the adjoint Wilson line 4-point correlators, potentially giving better
results. The large-N limit is used extensively in literature by first expressing the
adjoint Wilson line correlators in terms of fundamental Wilson line correlators, and
then by neglecting all but the leading-N terms.
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A Representing dα1α4γdα2α3γ as a linear combina-
tion of chosen basis singlet states

We start out by writing dα1α4γdα2α3γ as a general element of space spanned by the
basis singlet states (113). Doing this we get

dα1α4γdα2α3γ =Aδα1α2δα3α4 +Bδα1α3δα2α4 + Cδα1α4δα2α3

+Ddα1α2γdα3α4γ + Edα1α3γdα2α4γ

+ Fdα1α2γfα3α4γ +Gdα1α3γfα2α4γ +Hdα1α4γfα2α3γ,

(159)

where A,B,C,D,E,F,G,H ∈ C are the coefficients of the states. Contracting the
equation from the both sides (159) with δα1α2δα3α4 , we get

dα1α4γdα1α4γ =(N
2 − 4
N

)(N2 − 1)

=Aδα1α1δα4α4 +Bδα1α4δα1α4 + Cδα1α4δα1α4

+Ddα1α1γdα4α4γ + Edα1α4γdα1α4γ + Fdα1α1γfα4α4γ

+Gdα1α4γfα1α4γ +Hdα1α4γfα1α4γ

=A(N2 − 1)2 +B(N2 − 1) + C(N2 − 1) +D · 0

+ E(N
2 − 4
N

)(N2 − 1) + F · 0 +G · 0 +H · 0

=⇒ (N
2 − 4
N

)(N2−1) = A(N2−1)2 +B(N2−1)+C(N2−1)+E(N
2 − 4
N

)(N2−1).

Contractions with rest of the basis states are done in the same fashion. We get
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a system of equations

4
N
− 5N +N3 =A(N2 − 1)2 +B(N2 − 1)

+ C(N2 − 1) + E( 4
N
− 5N +N3),

4
N
− 5N +N3 =A(N2 − 1) +B(N2 − 1)2

+ C(N2 − 1) +D( 4
N
− 5N +N3),

0 =A(N2 − 1) +B(N2 − 1) + C(N2 − 1)2

+D( 4
N
− 5N +N3) + E( 4

N
− 5N +N3),

32− 24
N2 −

17N2

2 + N4

2 =B( 4
N
− 5N +N3) + C( 4

N
− 5N +N3)

+D(24− 16
N2 − 9N2 +N4) + E(32− 24

N2 −
17N2

2 + N4

2 ),

32− 24
N2 −

17N2

2 + N4

2 =A( 4
N
− 5N +N3) + C( 4

N
− 5N +N3)

+D(32− 24
N2 −

17N2

2 + N4

2 ) + E(24− 16
N2 − 9N2 +N4),

0 =F (4− 5N2 +N4) +G(−2 + 5N2

2 − N4

2 )−H(−2 + 5N2

2 − N4

2 ),

0 =F (−2 + 5N2

2 − N4

2 ) +G(4− 5N2 +N4) +H(−2 + 5N2

2 − N4

2 ),

0 =− F (−2 + 5N2

2 − N4

2 ) +G(−2 + 5N2

2 − N4

2 ) +H(4− 5N2 +N4)
(160)

for contractions with δα1α2δα3α4 , δα1α3δα2α4 , δα1α4δα2α3 , dα1α2γdα3α4γ, dα1α3γdα2α4γ,
dα1α2γfα3α4γ, dα1α3γfα2α4γ and dα1α4γfα2α3γ respectively. Solving this system of
equations for the coefficients gives

A = B = 2(24− 10N2 +N4)
N(48− 29N2 + 3N4) ,

C = 2(N2 − 12)(4−N2)
N(48− 29N2 + 3N4) ,

D = E = 24− 15N2 +N4

48− 29N2 + 3N4 ,

F = G = H = 0.

(161)
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Substituting the coefficients to the equation (159), we get the desired identity

dα1α4γdα2α3γ =
 2(24− 10N2 +N4)
N(48− 29N2 + 3N4)

[δα1α2δα3α4 + δα1α3δα2α4 ]

+
 2(N2 − 12)(4−N2)
N(48− 29N2 + 3N4)

δα1α4δα2α3

+
 24− 15N2 +N4

48− 29N2 + 3N4

[dα1α2γdα3α4γ + dα1α3γdα2α4γ].

(162)

We can check the correctness of identity (162) by evaluating it for N = 2,3
and comparing it to known results. This is easy for N = 2, for we know that the
symmetric structure constants d are zero in this case. Thus in the case of N = 2
equation (162) reduces to

0 =
 2(24− 10 · 22 + 24)

2(48− 29 · 22 + 3 · 24)

[δα1α2δα3α4 + δα1α3δα2α4 ]

+
 2(22 − 12)(4− 22)

2(48− 29 · 22 + 3 · 24)

δα1α4δα2α3

⇐⇒ 0 = 0.

=⇒ Equation (162) is trivially valid for SU(2).
Next we shall consider the less trivial SU(3) case. Now the symmetric structure

constants are not generally zero and the equation (162) gives

dα1α4γdα2α3γ =1
3[δα1α2δα3α4 + δα1α3δα2α4 ]

+ 1
3δ

α1α4δα2α3

− [dα1α2γdα3α4γ + dα1α3γdα2α4γ].

This can be written more neatly as

dα1α2γdα3α4γ + dα1α3γdα2α4γ + dα1α4γdα2α3γ = 1
3[δα1α2δα3α4 + δα1α3δα2α4 + δα1α4δα2α3 ].

(163)
The equation (163) can be found in literature, for instance in the paper [19]. From
this we can conclude that the identity (162) is also valid for the case of SU(3).

We can also try and check whether or not the identity (162) is valid for an
arbitraryN . If the identity would be valid for allN , the squares (or contractions with
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itself) of the LHS and the RHS should be equivalent. This condition is necessary, but
not sufficient for the validity. Doing the contractions of (162) we get the equation

(N2 − 4)2 (N2 − 1)
N2 = (N − 2)(N − 1)(N + 1)(N + 2) (N6 − 23N4 + 164N2 − 192)

N2 (3N4 − 29N2 + 48) ,

(164)
which is valid for N = 3, but not for N = 4. From this we can conclude that the
identity (162) is not valid for N > 3 and thus the singlet base (113) does not span
the whole singlet space when considering the N > 3 case. Thus if we would want
to calculate the adjoint representation Wilson line four point function so that we
would be able to take the large-N limit in the end, we would have to know how the
base of the singlet states behave with increasing N . However, the N = 3 case is
sufficient for us at this time.



73

B Transition matrix elements

B.1 Fundamental representation matrix

In this appendix I present the elements for the (24 × 24) fundamental transition
matrix with the base (95). We will use the notation L(i,j) ≡ L(xi,xj). The matrix
is valid for an arbitrary N . For presentation purposes, let us define the matrix as

[
x1 x2 . . . x24

]
, (165)
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where xi are column vectors. The column vectors read

x
1

=

                                                                      −
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C
F
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C
F
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F
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F
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−
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+
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−
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−
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+
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6)
2N
−
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−
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−
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−
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+
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2N
−
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6)
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+
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7)
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−

L(
5,

8)
2N
−

L(
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7)
2N

+
L(
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8)

2N
−

L(
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2N

0
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2
+

L(
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2
−
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2
−

L(
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2

L(
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2

+
L(
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7)

2
−

L(
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7)
2
−

L(
4,
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2

−
L(

1,
3)

2
+

L(
1,

8)
2

+
L(

3,
6)

2
−

L(
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8)
2

0 0 0 0 0 0 0 0 0
L(
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4)

2
+

L(
7,

8)
2
−

L(
3,

7)
2
−

L(
4,

8)
2

0
L(

1,
2)

2
+

L(
5,

6)
2
−

L(
1,

5)
2
−

L(
2,

6)
2

−
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2,
4)

2
+

L(
2,

7)
2

+
L(

4,
5)

2
−

L(
5,

7)
2

0 0 0 0 0 0

                                                                      

(166)
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x
2

=

                                                                      

0
−
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+
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C
F
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L(
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C
F

+
L(
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+
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−
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−
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−
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+
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−
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−
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−

L(
3,

6)
2N

+
L(

3,
7)

2N
−
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−
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+
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+
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−
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−
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+
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2
−
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2
−

L(
3,
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2

0 0
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2
+
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2
−
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5,
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−
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0 0 0
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2
+
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2
−
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3)
2
−
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2,

4)
2

−
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2,
6)

2
+

L(
2,
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2

+
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3,
6)

2
−
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0 0 0 0 0 0
−

L(
1,
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2

+
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1,
8)

2
+

L(
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5)
2
−

L(
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2

0 0 0 0 0
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                                                                      

(187)
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x
23

=

                                                                      

0 0 0 0
−

L(
2,

4)
2

+
L(

2,
5)

2
+

L(
4,

7)
2
−

L(
5,

7)
2

0 0 0 0 0 0
L(

1,
4)

2
+

L(
5,

8)
2
−

L(
1,

5)
2
−

L(
4,

8)
2

0 0 0 0 0
−

L(
1,

3)
2

+
L(

1,
6)

2
+

L(
3,

8)
2
−

L(
6,

8)
2

L(
2,

3)
2

+
L(

6,
7)

2
−

L(
2,

6)
2
−

L(
3,

7)
2

0
L(

1,
2)

2
+

L(
7,

8)
2
−

L(
1,

7)
2
−

L(
2,

8)
2

0
−

L(
1,

2)
2N

+
L(

1,
8)
C
F

+
L(

2,
7)
C
F

+
L(

3,
6)
C
F

+
L(

4,
5)
C
F

+
L(

1,
3)

2N
−

L(
1,

4)
2N

+
L(

1,
5)

2N
−

L(
1,

6)
2N

+
L(

1,
7)

2N
−

L(
2,

3)
2N

+
L(

2,
4)

2N
−

L(
2,

5)
2N

+
L(

2,
6)

2N
+

L(
2,

8)
2N
−

L(
3,

4)
2N

+
L(

3,
5)

2N
+

L(
3,

7)
2N
−

L(
3,

8)
2N

+
L(

4,
6)

2N
−

L(
4,

7)
2N

+
L(

4,
8)

2N
−

L(
5,

6)
2N

+
L(

5,
7)

2N
−

L(
5,

8)
2N
−

L(
6,

7)
2N

+
L(

6,
8)

2N
−

L(
7,

8)
2N

L(
3,

4)
2

+
L(

5,
6)

2
−

L(
3,

5)
2
−

L(
4,

6)
2

                                                                      
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x
24

=

                                                                      

0 0 0 0 0 0 0
L(

2,
5)

2
+

L(
6,

7)
2
−

L(
2,

6)
2
−

L(
5,

7)
2

0
−

L(
1,

3)
2

+
L(

1,
4)

2
+

L(
3,

8)
2
−

L(
4,

8)
2

0 0 0 0 0
−

L(
1,

5)
2

+
L(

1,
6)

2
+

L(
5,

8)
2
−

L(
6,

8)
2

0 0 0
L(

2,
3)

2
+

L(
4,

7)
2
−

L(
2,

4)
2
−

L(
3,

7)
2

0
L(

1,
2)

2
+

L(
7,

8)
2
−

L(
1,

7)
2
−

L(
2,

8)
2

−
L(

3,
5)

2
+

L(
3,

6)
2

+
L(

4,
5)

2
−

L(
4,

6)
2

−
L(

1,
2)

2N
+

L(
1,
8)
C
F

+
L(

2,
7)
C
F

+
L(

3,
4)
C
F

+
L(

5,
6)
C
F

+
L(

1,
3)

2N
−

L(
1,

4)
2N

+
L(

1,
5)

2N
−

L(
1,

6)
2N

+
L(

1,
7)

2N
−

L(
2,

3)
2N

+
L(

2,
4)

2N
−

L(
2,

5)
2N

+
L(

2,
6)

2N
+

L(
2,

8)
2N

+
L(

3,
5)

2N
−

L(
3,

6)
2N

+
L(

3,
7)

2N
−

L(
3,

8)
2N
−

L(
4,

5)
2N

+
L(

4,
6)

2N
−

L(
4,

7)
2N

+
L(

4,
8)

2N
+

L(
5,

7)
2N
−

L(
5,

8)
2N
−

L(
6,

7)
2N

+
L(

6,
8)

2N
−

L(
7,

8)
2N

                                                                      
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B.2 Adjoint representation matrix

In this appendix I present the elements for the (8×8) adjoint transition matrix with
the base (113). We will use the notation L(i,j) ≡ L(xi,xj). The matrix is valid for
N = 3. For presentation purposes, let us define the matrix as

[
x1 x2 x3 x4 x5 x6 x7 x8

]
, (190)

where xi are column vectors. The column vectors read

x1 =



−L(1,3)+L(1,4)+L(2,3)−L(2,4)
N

+ (L(1,2) + L(3,4))N + (L(1,3)−L(1,4)−L(2,3)+L(2,4))N(N2−9)
3N4−29N2+48

2(L(1,3)−L(1,4)−L(2,3)+L(2,4))(N2−8)(2N2−3)
N(3N4−29N2+48)

−2(L(1,3)−L(1,4)−L(2,3)+L(2,4))N(2N2−13)
3N4−29N2+48

− (L(1,3)−L(1,4)−L(2,3)+L(2,4))(N4−15N2+24)
3N4−29N2+48

2(L(1,3)−L(1,4)−L(2,3)+L(2,4))(N4−7N2+12)
3N4−29N2+48

0
0
0



,

(191)

x2 =



2(L(1,2)−L(1,4)−L(2,3)+L(3,4))(N2−8)(2N2−3)
N(3N4−29N2+48)

−L(1,2)+L(1,4)+L(2,3)−L(3,4)
N

+ (L(1,3) + L(2,4))N + (L(1,2)−L(1,4)−L(2,3)+L(3,4))N(N2−9)
3N4−29N2+48

−2(L(1,2)−L(1,4)−L(2,3)+L(3,4))N(2N2−13)
3N4−29N2+48

2(L(1,2)−L(1,4)−L(2,3)+L(3,4))(N4−7N2+12)
3N4−29N2+48

− (L(1,2)−L(1,4)−L(2,3)+L(3,4))(N4−15N2+24)
3N4−29N2+48

0
0
0



,

(192)
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x3 =



2(L(1,2)−L(1,3)−L(2,4)+L(3,4))
N

−2(L(1,2)−L(1,3)−L(2,4)+L(3,4))
N

(L(1,4) + L(2,3))N
L(1,2)− L(1,3)− L(2,4) + L(3,4)
−L(1,2) + L(1,3) + L(2,4)− L(3,4)

0
0
0



, (193)

x4 =



− (L(1,3)−L(1,4)−L(2,3)+L(2,4))(N−2)(N+2)(N2−8)(N2−6)
6N6−58N4+96N2

(L(1,3)−L(1,4)−L(2,3)+L(2,4))(N−2)(N+2)(5N4−44N2+48)
6N6−58N4+96N2

− (L(1,3)−L(1,4)−L(2,3)+L(2,4))(5N4−58N2+152)
6N4−58N2+96

L(1,3)−L(1,4)−L(2,3)+L(2,4)
N

+ N(N2−9)(L(1,3)−L(1,4)−L(2,3)+L(2,4))
9N4−87N2+144 + 1

6(3L(1,2) + L(1,3) + 2L(1,4) + 2L(2,3) + L(2,4) + 3L(3,4))N
(L(1,3)−L(1,4)−L(2,3)+L(2,4))(N2−8)(N4−7N2+12)

6N5−58N3+96N

0
0
0



,

(194)

x5 =



(L(1,2)−L(1,4)−L(2,3)+L(3,4))(N−2)(N+2)(5N4−44N2+48)
6N6−58N4+96N2

− (L(1,2)−L(1,4)−L(2,3)+L(3,4))(N−2)(N+2)(N2−8)(N2−6)
6N6−58N4+96N2

− (L(1,2)−L(1,4)−L(2,3)+L(3,4))(5N4−58N2+152)
6N4−58N2+96

(L(1,2)−L(1,4)−L(2,3)+L(3,4))(N2−8)(N4−7N2+12)
6N5−58N3+96N

L(1,2)−L(1,4)−L(2,3)+L(3,4)
N

+ N(N2−9)(L(1,2)−L(1,4)−L(2,3)+L(3,4))
9N4−87N2+144 + 1

6(L(1,2) + 3L(1,3) + 2L(1,4) + 2L(2,3) + 3L(2,4) + L(3,4))N
0
0
0



,

(195)

x6 =



0
0
0
0
0

1
4(2L(1,2) + L(1,3) + L(1,4) + L(2,3) + L(2,4) + 2L(3,4))N

1
4(−L(1,3) + L(1,4) + L(2,3)− L(2,4))N
1
4(−L(1,3) + L(1,4) + L(2,3)− L(2,4))N



, (196)
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x7 =



0
0
0
0
0

1
4(−L(1,2) + L(1,4) + L(2,3)− L(3,4))N

1
4(L(1,2) + 2L(1,3) + L(1,4) + L(2,3) + 2L(2,4) + L(3,4))N

1
4(L(1,2)− L(1,4)− L(2,3) + L(3,4))N



(197)

and

x8 =



0
0
0
0
0

1
4(L(1,2)− L(1,3)− L(2,4) + L(3,4))N
1
4(L(1,2)− L(1,3)− L(2,4) + L(3,4))N

1
4(L(1,2) + L(1,3) + 2L(1,4) + 2L(2,3) + L(2,4) + L(3,4))N



. (198)



101

C Mathematica code for finding the fundamental
representation transition matrix

I have included the Mathematica code that I wrote as a part of my research training
in this appendix. This is done because the research report containing the code was
not properly published due to it being more of an internal report. The code uses
the cyclic notation that was also used in this thesis.

Slightly modified version of my research report’s appendix: This section contains
a Wolfram Alpha code that calculates the recursion matrix for any 2n-point corre-
lator. It requires the user to input the basis topologies with one side chosen to be
constant. The basis topologies are given in a form that resembles the permutation
cycle notation. For example the basis topology Tr(U(x1)U †(x2)) Tr(U(x3)U †(x4)) is
written as (1,2)(3,4) and Tr(U(x1)U †(x2)U(x3)U †(x4)) is written as (1,2,3,4). The
numbers represent the number of the line. Every bracket represent a loop and the
numbers in the brackets tell the ordering of the lines. The lines are connected to the
next line in the loop and the last line is connected to the first line in the loop. The
odd numbered lines go from left to right (= U) and the even numbered lines go from
right to left (= U †). The basis topologies are given to the script by adding them
to the list e[i]. The topologies of the fundamental four-point function are given to
the script as an example, as list elements e[1] and e[2]. A 2n-point basis topologies
N (i) are given to the script as list elements e[i]. User can add as many e[i]’s as there
are basis topologies. User should make sure that one side of the topology is kept
constant and that the arrows on the lines are followed carefully. After giving the
script the required basis topologies, evaluating the notebook gives the corresponding
recursion matrix.



(*Author: Sami P. Demirci*)

(*Basis topologies. Odd numbers represent Wilson lines and even

numbers represent daggered Wilson lines. The coordinates have been

chosen so that Wilson lines go from left to right and the daggered

Wilson lines go in the opposite direction. Numbers in parentheses

represent closed loops and their connections. For example 1,4,3,2

means that the Wilson line loop connections are 1  4  3 

2  1  ... Furthermore 1,23,4 means that there are two separate closed

loops with following connections: 1  2  1 ... and 3  4  3 ...*)

e[1] := "(1,2)(3,4)"

e[2] := "(1,2,3,4)"

countTheLines[] := 

loops1 = StringSplit[e[1], {")(", "(", ")", ","}];

n1 = 1;

While[n1 < Length[loops1] + 1,

loops1 = ReplacePart[loops1, n1  ToExpression[Extract[loops1, n1]]];

n1++;

];

loops1 = Sort[loops1, Greater];

NW := Extract[loops1, 1];

numberOfBasisTopologies := NW  2!;



countTheLines[];

(*Permutes a loop. For example permutation["1,2,3,4"] = 2,3,4,1.*)

permutation[loop_] := 

listOfLines5 = StringSplit[loop, ","];

x5 = Extract[listOfLines5, 1];

listOfLines5 = Append[Drop[listOfLines5, 1], x5];

numberOfLines5 = Length[listOfLines5];

n5 = 1;

out5 = "";

While[n5 < numberOfLines5 + 1,

out5 = StringJoin[out5, ",", Extract[listOfLines5, n5]];

n5++;

];

out5 = StringTrim[out5, ","];

out5





(*Arranges a loop so that the line with

the smallest number is in front of the expression.*)

arrangeLoop[loop_] := 

listOfLines7 = StringSplit[loop, ","];

numberOfLines7 = Length[listOfLines7];

x7 = Extract[listOfLines7, 1];

n7 = 1;

While[n7 < numberOfLines7 + 1,

y7 = Extract[listOfLines7, n7];

If[ToExpression[y7] < ToExpression[x7]

, listOfLines7 = Append[Extract[TakeDrop[listOfLines7, 1], 2], x7];

x7 = Extract[listOfLines7, 1];

n7 = 1

, n7++

];

];

m7 = 1;

out7 = "";

While[m7 < numberOfLines7 + 1,

out7 = StringJoin[out7, ",", Extract[listOfLines7, m7]];

m7++;

];

out7 = StringTrim[out7, ","];

out7



(*Arranges all loops so that the line with the smallest number in the loop

is in front of the expression. Arranges the order of the loops depending

on the number of the first number in the loop from smallest to largest.*)

arrangeAllLoops[top_] := 

listOfLoops8 = StringSplit[top, {")(", "(", ")"}];

numberOfLoops8 = Length[listOfLoops8];

n8 = 1;

While[n8 < numberOfLoops8 + 1,

listOfLoops8 = ReplacePart[listOfLoops8,

n8  StringSplit[arrangeLoop[Extract[listOfLoops8, n8]], ","]];

n8++;

];

listOfLines8 = Range[numberOfLoops8];

m8 = 1;

While[m8 < numberOfLoops8 + 1,

listOfLines8 = ReplacePart[listOfLines8,

]
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m8  ToExpression[Extract[Extract[listOfLoops8, m8], 1]]];

m8++;

];

listOfLines8 = Reverse[Sort[listOfLines8, Greater]];

k8 = 1;

While[k8 < numberOfLoops8 + 1,

listOfLines8 =

ReplacePart[listOfLines8, k8  ToString[Extract[listOfLines8, k8]]];

k8++;

];

out8 = Range[numberOfLoops8];

n8 = 1;

While[n8 < numberOfLoops8 + 1,

m8 = 1;

While[m8 < numberOfLoops8 + 1,

If[Extract[listOfLines8, n8]  Extract[Extract[listOfLoops8, m8], 1],

out8 = ReplacePart[out8, n8  Extract[listOfLoops8, m8]];

m8 = numberOfLoops8 + 1, m8++];

];

n8++;

];

n8 = 1;

outer8 = "";

While[n8 < numberOfLoops8 + 1,

m8 = 1;

loop8 = "";

While[m8 < Length[Extract[out8, n8]] + 1,

loop8 = StringJoin[loop8, ",", Extract[Extract[out8, n8], m8]];

m8++;

];

outer8 = StringJoin[outer8, "(", StringTrim[loop8, ","], ")"];

n8++;

];

outer8



(*Checks which side of the topology is kept constant.*)
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whichSideIsConstant[] := 

rhsIsConstant = True;

i20 = 1;

x20 = Extract[StringSplit[arrangeAllLoops[e[1]], {")(", "(", ")", ","}], 2];

While[i20 < numberOfBasisTopologies + 1,

If[

x20 == Extract[StringSplit[arrangeAllLoops[e[i20]], {")(", "(", ")", ","}], 2],

Null,

rhsIsConstant = False];

i20++;

];

keepRHSConstant := rhsIsConstant;



whichSideIsConstant[];

(*Adds a link to a topology.*)
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addALink[top_, numberOfLine_] := (

If[keepRHSConstant,

If[OddQ[numberOfLine],

StringReplace[top, {StringJoin[",", ToString[numberOfLine], ","] 

StringJoin[",", "t", ",", ToString[numberOfLine], ","],

StringJoin["(", ToString[numberOfLine], ","] 

StringJoin["(", "t", ",", ToString[numberOfLine], ","],

StringJoin[",", ToString[numberOfLine], ")"] 

StringJoin[",", "t", ",", ToString[numberOfLine], ")"]}],

StringReplace[top, {StringJoin[",", ToString[numberOfLine], ","] 

StringJoin[",", ToString[numberOfLine], ",t,"],

StringJoin["(", ToString[numberOfLine], ","] 

StringJoin["(", ToString[numberOfLine], ",t,"],

StringJoin[",", ToString[numberOfLine], ")"] 

StringJoin[",", ToString[numberOfLine], ",t)"]}]],

If[OddQ[numberOfLine],

StringReplace[top, {StringJoin[",", ToString[numberOfLine], ","] 

StringJoin[",", ToString[numberOfLine], ",t,"],

StringJoin["(", ToString[numberOfLine], ","] 

StringJoin["(", ToString[numberOfLine], ",t,"],

StringJoin[",", ToString[numberOfLine], ")"] 

StringJoin[",", ToString[numberOfLine], ",t)"]}],

StringReplace[top, {StringJoin[",", ToString[numberOfLine], ","] 

StringJoin[",t,", ToString[numberOfLine], ","],

StringJoin["(", ToString[numberOfLine], ","] 

StringJoin["(t,", ToString[numberOfLine], ","],

StringJoin[",", ToString[numberOfLine], ")"] 

StringJoin[",t,", ToString[numberOfLine], ")"]}]

]]

)

(*Checks if the topology with two links is a

term that gets a CF factor when the links are removed.*)
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isThisACFTerm[top_] := 

loopList6 = StringSplit[top, {")(", "(", ")"}];

numberOfLoops6 = Length[loopList6];

out6A = False;

out6B = False;

If[StringContainsQ[top, "t,t"], out6A = True, out6A = False];

top6 = "";

n6 = 1;

While[n6 < numberOfLoops6 + 1,

top6 = StringJoin[top6, "(", permutation[Extract[loopList6, n6]], ")"];

n6++;

];

If[StringContainsQ[top6, "t,t"], out6B = True, out6B = False];

out6 = out6A || out6B;

out6



(*Permutes a loop until there's a link in front.*)

arrangeLoopTFirst[loop_] := 

T = False;

loop9 = loop;

While[T  False,

If[StringTake[loop9, 1]  "t", T = True, loop9 = permutation[loop9]];

];

loop9



(*Removes the link of a loop with only one link.*)

fierz1TLoop[loop_] := 

loop10 = arrangeLoopTFirst[loop];

loopList10 = StringSplit[loop10, "t"];

loop10A = Extract[loopList10, 1];

loop10A = StringTrim[loop10A, ","];

loop10B = Extract[loopList10, 2];

loop10B = StringTrim[loop10B, ","];

{loop10A, loop10B}



(*Removes the links of a loop with two links.*)
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fierz2TLoops[loop1_, loop2_] := 

x11 = StringDrop[arrangeLoopTFirst[loop1], 2];

y11 = StringDrop[arrangeLoopTFirst[loop2], 2];

StringJoin[x11, ",", y11]



(*Removes the links of a topology.*)

fierz[top_] := 

loopList12 = StringSplit[top, {")(", "(", ")"}];

numberOfLoops12 = Length[loopList12];

numberOfTLoops12 = 0;

out12 = "";

i12 = 1;

j12 = 1;

While[i12 < numberOfLoops12 + 1,

x12 = Extract[loopList12, i12];

T12 = StringContainsQ[x12, "t"];

If[T12, numberOfTLoops12++;

k12[j12] = x12;

j12++, out12 = StringJoin[out12, "(", x12, ")"]];

i12++;

];

If[numberOfTLoops12  1,

y12 = fierz1TLoop[k12[1]];

out12 = StringJoin[out12, "(", Extract[y12, 1], ")(", Extract[y12, 2], ")"],

out12 = StringJoin[out12, "(", fierz2TLoops[k12[1], k12[2]], ")"]

];

out12



(*Takes a topology as an input and

gives the corresponding standard basis vector.*)
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topologyToVector[top_] := 

top13 = arrangeAllLoops[top];

out13 = Range[numberOfBasisTopologies];

n13 = 1;

Whilen13 < numberOfBasisTopologies + 1,

x13 = arrangeAllLoops[e[n13]];

T13 = x13  top13;

If[T13, out13 = ReplacePart[out13, n13  1],

out13 = ReplacePart[out13, n13  0]];

n13++;

;

out13



(*Adds a term to the recursion matrix.*)

addToAMatrix[matrix_, rowNumber_, columnNumber_, addThis_] := 

row14 = Extract[matrix, rowNumber];

row14 =

ReplacePartrow14, columnNumber  Extract[row14, columnNumber] + addThis;

matrix14 = ReplacePart[matrix, rowNumber  row14];

matrix14



(*Handles the correct adding of terms

into the matrix. Takes a vector as an input.*)

addAVectorToAMatrix[matrix_, vector_, columnNumber_] := 

matrix15 = matrix;

n15 = 1;

While[n15 < numberOfBasisTopologies + 1,

matrix15 = addToAMatrix[matrix15, n15, columnNumber, Extract[vector, n15]];

n15++;

];

matrix15



(*Main program*)
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r = 1;

n = 1;

rMatrix = ConstantArray[0, {numberOfBasisTopologies, numberOfBasisTopologies}];

Whiler < numberOfBasisTopologies+ 1,

n = 1;

Whilen < NW + 1,

m = n + 1;

Whilem < NW + 1,

topo = e[r];

topo = addALink[topo, n];

topo = addALink[topo, m];

T = isThisACFTerm[topo];

IfT, topo = CF * topologyToVector[e[r]], topo =

1  2 * topologyToVector[fierz[topo]] - 1  2 N * topologyToVector[e[r]];

rMatrix = addAVectorToAMatrixrMatrix, -1^n + m + 1 *

StringJoin["L(", ToString[n], ",", ToString[m], ")"] * topo, r;

m++;

;

n++;

;

r++;

;

MatrixForm[rMatrix]

L(1,2) CF + L(3,4) CF + L(1,3)
2 N

- L(1,4)
2 N

- L(2,3)
2 N

+ L(2,4)
2 N

L(1,2)
2

- L(1,3)
2

- L(2,4)
2

+ L(3,4)
2

- L(1,3)
2

+ L(1,4)
2

+ L(2,3)
2

- L(2,4)
2

L(1,4) CF + L(2,3) CF - L(1,2)
2 N

+ L(1,3)
2 N

+ L(2
2
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