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Abstract

In this thesis we review gauge/gravity dualities. Some details on the background topics
of supersymmetric gauge theories, string theories and differential geometry of anti de Sitter
spacetimes are given. We will then proceed to motivate the Maldacena duality, in its original
form as a duality between type IIB string theory and the N = 4 super Yang-Mills theory, by
considering D3 branes and interactions of open strings on them. After introducing the Maldacena
duality with some level of technical detail, we finally review more general gauge/gravity dualities
and some results pertaining to QCD.
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1 Introduction

“Non-Euclidean calculus and quantum physics are enough to stretch any brain, and
when one mixes them with folklore, and tries to trace a strange background of multi-
dimensional reality behind the ghoulish hints of the Gothic tales and the wild whispers of
the chimney-corner, one can hardly expect to be wholly free from mental tension.”

–H.P. Lovecraft, “Dreams in the Witch House”–

The AdS/CFT duality is an interesting application combining non-Euclidean calculus, quantum
field theory and extra dimensions with string theory. It is currently the only known plausible
realization of the idea that QCD, which in some ways shows string-like behaviour in its bound
states such as mesons, might actually be describable as a theory of strings. Indeed, among the
early suggestions for an explanation of the strong interactions, bosonic string theory was a strong
candidate, until it was realized that it inevitably contained a spin-2 boson, the graviton (this
discovery, of course, led to the use of string theory as a theory of gravitation, and later a proponent
for a theory of everything in the form of superstring theory). Once QCD was invented, Gerard
t’Hooft showed that in the limit where the number of colors, N , is large, non-planar diagrams in
the perturbative expansion of QCD are suppressed and the theory takes on a stringy character.
Nonetheless, no concrete connection between a string theory and QCD was found until 1998, when
Maldacena together with Witten, Gubser, Klebanov and Polyakov proposed a duality between type
IIB superstring theory on a five dimensional anti de Sitter (AdS5, for short) spacetime background
and a conformal supersymmetric Yang-Mills theory living on the boundary of that space1 [1, 2, 3].

The Maldacena conjecture added the vital ingredient of an extra fifth dimension (actually the
string theory has five further dimensions, which are compactified on a sphere). The remarkable
feature that a four dimensional theory encodes the full dynamics of a five dimensional theory was a
realization of yet another idea which had been present for some time: quantum gravitational holo-
graphy. The idea of holography in quantum gravity stems from the Bekenstein-Hawking conjecture
for black hole entropy, which states that the entropy of a black hole is proportional to the surface
area of its event horizon. If entropy is to originate in the microscopic realm as (the logarithm of)
the possible number of microstates corresponding to a macrostate, then for a black hole the number
of microstates is only proportional to the area of the event horizon. Then the physics inside the
three dimensional black hole seems to be somehow “holographically” encoded on its two dimensional
horizon, and therefore any theory of quantum gravity should be holographic, in the sense that it
can be written as a theory with one dimension less and without gravity.

One of the main incentives leading to the AdS/CFT duality has been the relation between string
theory branes and gauge theories. Since the second superstring revolution in the mid-90’s, it has
been known that there is an intimate connection between gauge field theories and extended objects
in string theory known as Dp-branes.

A D-brane in string theory is a subspace on which open strings can end. The endpoints of open
strings can have either Neumann or Dirichlet boundary conditions, independently for each direction
in space. Since Dirichlet boundary conditions on a given coordinate of the the string fix the location
of its end point on that coordinate, choosing Dirichlet boundary conditions for D−p−1 coordinates
(where D is the dimension of the ambient space) defines a p+ 1 dimensional hyperplane on which
the ends of the strings are still free to move. The two ends of the strings may be bound on different
D-branes.

1Henceforth in this document we will use the term “Maldacena duality” to refer specifically to the duality between
type IIB string theory on an AdS5 × S5 background and the N = 4 super Yang-Mills theory. AdS/CFT duality may
refer to any duality between a conformal field theory and the corresponding string theory. For more general scenarios
we will use either the term gauge/gravity dualities or gauge/string dualities. AdS/QCD will refer to any approximate
duality proposed between gravity or string theories and QCD.
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In supergravity, p-branes are essentially black hole solutions that extend in p spatial dimensions
(and their spacetime dimension is therefore p+ 1). Since supergravity is the low-energy effective
theory of string theory, it is generally expected that the p-brane solutions are also solutions of the
full string theory.

It is now known that the D-brane and p-branes are in fact the same object, which also promotes
the D-branes from an artificial wall set by the boundary conditions to a dynamical object which is
perturbed by vibrations of the strings attached to it. These objects are called Dp-branes.

A field theory on the stack of branes is generated by N Dp-branes stacked on top of each other.
In this case, an open string which has both of its ends on the brane stack has two indices from 1 . . . N ,
denoting to which brane in the stack its ends are bound to. Therefore the string states are N ×N
matrices, which can be shown to form an adjoint representation of U(N). The low-energy effective
theory for these open strings on the stack, with type IIB string theory in the bulk, is actually the
N = 4 super Yang-Mills field theory (a U(1) factor related to the center-of-mass dynamics of the
brane decouples for most purposes, leaving an SU(N) symmetry). Since the geometry near the
brane is that of an anti de Sitter space, low-energy means short strings that do not extend far from
the brane and the full symmetries of the SYM and type IIB string theory (compactified on an
5-sphere) match, it was conjectured by Maldacena that type IIB string theory on an AdS5× S5 and
N = 4 SYM theory are exactly dual at all energy scales.

Since the AdS/CFT duality involves several seemingly unrelated concepts, we will begin this
thesis with two rather disconnected chapters. In the first one, we will quickly introduce the
supersymmetry algebra, the N = 1 supersymmetric gauge theory, and derive the N = 4 theory
by dimensional reduction from ten to four dimensions. In the second chapter, we will delve into
the geometry and conformal infinity of AdSn. Then in the chapter about string theory and branes,
we will begin to draw the various ingredients together, and after that we will finally get to the
Maldacena conjecture. The final chapter concentrates on various applications and variations of the
duality.
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2 Supersymmetric gauge theories

In this chapter we will give a short review of supersymmetric gauge theories. We will also derive the
four-dimensional N = 4 super Yang-Mills (abbreviated SYM) action as the dimensional reduction
of the ten-dimensional N = 1 SYM action.

2.1 The Coleman-Mandula -theorem and the supersymmetry algebra

The Coleman-Mandula -theorem [4, 5] states, in essence (there are some technical assumptions
required), that the Lie algebra of the symmetry group of a consistent non-trivial relativistic
quantum field theory with a mass gap is a direct product of the Poincaré algebra and the algebra of
some internal symmetry group. Therefore continuous internal symmetries cannot mix the various
irreducible representations of the Poincaré group and hence particles of different spin cannot mix.

A loophole in the Coleman-Mandula theorem is the assumption that the symmetry group is
generated by a Lie algebra. We can avoid this restriction by generalizing the group generators to
form a graded Lie superalgebra. A graded Lie superalgebra has a gradation and a generalized Lie
bracket which respects the gradation, i.e. if gi and gj are elements of the algebra with grades i, j
respectively, then the grade of [gi, gj ] is i+ j. The bracket is then antisymmetric (corresponding to
a commutator) or symmetric (corresponding to an anticommutator) depending on the grade,

[gi, gj ] = −(−1)ij [gj , gi]. (2.1)

The gradation is naturally Z2, since only the parity of the grade matters for the bracket. Note that
the term Lie superalgebra is actually a misnomer: a Lie superalgebra is not a Lie algebra, because
the generalized bracket does not respect the antisymmetry of the Lie bracket.

By the Haag-Lopuszanski-Sohnius theorem [5, 6], the only Lie superalgebra consistent with a
relativistic field theory is the supersymmetry algebra, which generalizes the Poincaré algebra to
include the supersymmetry generators QI and Q̄I , which are now the odd part of the algebra and
transform as Weyl spinors, with the generalized commutation relations [5, 7, 8]{

QIα, Q̄
J
β̇

}
= 2σµ

αβ̇
Pµδ

IJ (2.2){
QIα, Q

J
β

}
= εαβZ

IJ (2.3){
Q̄Iα̇, Q̄

J
β̇

}
= εα̇β̇

(
ZIJ

)∗
(2.4)[

Pµ, Q
I
]

=
[
Pµ, Q̄

I
]

= 0 (2.5)[
Mµν , Q

I
α

]
= −i(σµν) β

α QIβ (2.6)[
Mµν , Q̄

α̇I
]

= −i(σ̄µν)α̇
β̇
Q̄β̇I (2.7)

where { , } denotes the anticommutator (which is the generalized Lie bracket when both of the
elements are odd), σµ are the Pauli spin matrices, Pµ are the translation generators, iσµν =
i
4 (σµσ̄ν − σν σ̄µ) are the Lorentz transform generators in the Weyl spinor representation and QI , Q̄J

are supercharges, which extend the Poincaré algebra. The Poincaré generators obey the standard
commutation relations amongst themselves. The indices I = 1, · · · ,N label independent copies of
the supersymmetry algebra. The N > 1 algebras are called extended supersymmetry algebras. The
ZIJ are central charges, which are antisymmetric under the exchange of I and J and commute with
all elements of the algebra.

Eq. (2.5) and (2.6, 2.7) are determined by the Jacobi identities, or may alternatively be derived
from the transformation properties of the supercharges, which are Weyl spinors. For example,
if the supercharges did not commute with the translation generators, they would depend on the
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spacetime coordinates and we would have a local symmetry, which leads to supergravity. The grading
requires the right side of Eq. (2.2 - 2.4) to be bosonic, and the rest of the commutation relations
exclude the possibility of anything proportional to Mµν . In the case of a single supersymmetry the
transformation properties then fix the anticommutators except for a normalization, which we choose
as shown here. In the presence of several supercharges Eq. (2.2) gains a factor ∆IJ , which can be
chosen to be diagonal. Eq. (2.3, 2.4) are the most general choice allowed by the other commutation
relations. Note that when N = 1 the antisymmetry of the central charges requires them to vanish.

2.2 R-symmetry

The N = 1 supersymmetry algebra is invariant under a global U(1) phase transformation of the su-
percharges and the extended supersymmetry algebras are invariant under an SU(N ) transformation
mixing the supercharges. These are called R-symmetries.

2.3 N = 1 Super Yang-Mills

In order to construct supersymmetric field theories, we must find such multiplets of fields and such
transformation laws that represent the supersymmetry algebra on these fields. General methods to
do this can be found in the literature [5, 7], but we will only consider here the one representation
we are interested in. This is the supersymmetric generalization of a pure Yang-Mills gauge theory,
called a super Yang-Mills theory. The Lagrangian in the N = 1 case is [9]

L = tr
{
−1

2
FµνF

µν − iλ̄ΓµDµλ

}
, (2.8)

where Dµ is the gauge covariant derivative, Fµν = [Dµ, Dν ] = ∂Aµ − ∂Aν + ig [Aµ, Aν ] is the field
strength tensor, Aµ is the gauge field, λ is a spinor in the adjoint representation of the gauge group
and Γµ are the Dirac matrices. The exact nature of λ depends on the spacetime dimension D [10]:
in D = 3, 4 λ is a Majorana spinor, in D = 6 it is a Weyl spinor and in D = 10 it is a Majorana-Weyl
spinor. In ten dimensions this Lagrangian transforms as a total derivative under the supersymmetry
transformation [9]

Aµ → Aµ − iζ̄Γµλ, λ→ λ+
1
2
FµνΓµνζ, (2.9)

where ζ is an infinitesimal spinor transformation parameter and Γµν = 1
2 [Γµ,Γν ].

2.4 N = 4 Super Yang-Mills

The supersymmetry theory relevant to the AdS/CFT duality is the N = 4 super Yang-Mills in
four dimensions. The four-dimensional N = 4 SYM can be derived by dimensionally reducing the
N = 1 SYM Lagrangian (Eq. (2.8)) from ten to four dimensions [10]. Let Greek indices with an
overbar run over all ten dimensions, Latin indices over the six dimensions to be compactified and
bare Greek indices over the remaining four. Then the gauge kinetic term becomes

Fµ̄ν̄F
µ̄ν̄ → (∂µ̄Aν̄ − ∂ν̄Aµ̄ + ig[Aµ̄, Aν̄ ])(∂µ̄Aν̄ − ∂ν̄Aµ̄ + ig[Aµ̄, Aν̄ ])

= FµνF
µν + ∂µAa∂

µAa + ∂νAb∂
νAb + ig[Aµ, Aa]∂µAa − ig[Aa, Aν ]∂νAa

+ig∂µAa[Aµ, Aa]− ig∂νAa[Aa, Aν ]
+i2g2[Aa, Aν ][Aa, Aν ] + i2g2[Aµ, Aa][Aµ, Aa] + i2g2[Aa, Ab][Aa, Ab]

= FµνF
µν + 2DµXiD

µXi − g2[Xi, Xj ][Xi, Xj ], Xi ≡ Ai. (2.10)

The compactified components Aa of the gauge field have become six scalars Xi, all transforming in
the adjoint representation, and an interaction term for them.
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Compactifying the spinor term gives

λ̄Γµ̄Dµ̄λ = λ̄
(
Γµ∂µλ+ igΓµ[Aµ, λ] + igΓi[Xi, λ]

)
= λ̄ΓµDµλ+ igλ̄Γi[Xi, λ]. (2.11)

This equation contains a ten-dimensional spinor λ and the ten-dimensional Dirac matrices Γµ,Γi.
In order to bring this to the form of a four-dimensional field theory we must break down the spinor
and the gamma matrices to components corresponding to four-dimensional representations of the
Poincaré group. From the fact that the gamma matrices form a ten-dimensional Clifford algebra,
we can deduce some properties required of the decomposition:

{Γµ̄,Γν̄} = 2ηµ̄ν̄I10

⇒ {Γµ,Γν} = 2ηµνI10{
Γi,Γj

}
= 2δijI10{

Γµ,Γi
}

= 0. (2.12)

In addition we have the Weyl condition

(I10 + Γ11)λ = 0, (2.13)

where Γ11 =
∏10
µ̄=1 Γµ̄, for the ten-dimensional spinor. One way to do the decomposition is as

follows: first write the ten-dimensional spinor as

λ = λ⊗ ξ, (2.14)

where λ = λµA has one four-dimensional spacetime index and another internal four-dimensional

index, which we will denote by capital Latin alphabet. The spinor ξ = 1√
2

(
1
−i

)
can be chosen

constant by virtue of Eq. (2.13). Then define the ten-dimensional gamma matrices:

Γµ = γµ ⊗ I4 ⊗ σ3,

Γ3+i = I4 ⊗ αi ⊗ σ1,

Γ6+i = γ5 ⊗ βi ⊗ σ3, where i ∈ 1, 2, 3 (2.15)

with γµ being the four-dimensional gamma matrices and the α and β matrices satisfying the algebra{
αi, αj

}
=
{
βi, βj

}
= 2δijI4 (2.16)

and σn being the Pauli spin matrices. The first factor of the tensor products operates on the
four-dimensional spacetime index of the spinor, the second factor on the internal index and the final
one on the ξ factor.

It is easy to check that the gamma matrices defined this way satisfy the ten dimensional Clifford
algebra, that the Γµ matrices satisfy the four-dimensional Clifford algebra on the spacetime index
of the spinor λ and that the Weyl condition Eq. (2.13) is fulfilled. In addition, the Γk matrices with
k ∈ {4...9} form the Clifford algebra of SO(6). Inserting this decomposition into Eq. (2.11) and
carrying out the ξ products gives

λ̄ΓµDµλ+ λ̄Γi[Xi, λ] =
4∑

A=1

λ̄Aγ
µDµλA + g

3∑
i=1

4∑
A,B=1

αiABλ̄A[Xi, λB]

+ig
6∑
i=4

4∑
A,B=1

βiABλ̄Aγ
5[Xi, λB]. (2.17)
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The single Majorana fermion of ten-dimensional N = 1 SYM therefore becomes four Majorana
fermions of N = 4 SYM.

The full N = 4 super Yang-Mills Lagrangian is then

L = tr {−1
2
FµνF

µν −DµXiD
µXi − g2

2
[Xi, Xj ][Xi, Xj ]− i

4∑
A=1

λ̄Aγ
µDµλA

−ig
3∑
i=1

4∑
A,B=1

αiABλ̄A[Xi, λB] + g
6∑
i=4

4∑
A,B=1

βiABλ̄Aγ
5[Xi, λB]} (2.18)

2.5 Symmetries of the N = 4 SYM

The most obvious symmetry of the N = 4 SYM is its Lorentz invariance, which forms the group
SO(1, 3). In addition, this theory is exceptional in that it enjoys an unbroken conformal symmetry
in the quantum level [9]. From the discussion of section 3.4, taking n = 5 we see that the four
dimensional conformal group is actually isomorphic to the group SO(2, 4). In addition, N = 4
SYM has the R-symmetry SU(4), which mixes the four supercharges and is isomorphic to SO(6),
giving the group SO(2, 4)× SO(6). Since spinors are involved, the covering groups of these need to
be considered, so that we have SU(2, 2)× SU(4). Finally the supercharges transform under this
group in such a way as to form the supergroup SU(2, 2|4), which has (2, 2) bosonic generators and
4 fermionic generators, and which is the full symmetry group of the theory.

2.6 The ’t Hooft coupling

In a SU(N) gauge theory, when N is considered a free parameter of the theory, the effective
perturbative coupling is not actually the Yang-Mills -coupling gYM , but it is the coupling g2

YMN .
This is because any diagram calculation will involve a sum over Feynman diagrams for each of the
N species of particles in the fundamental representation of the gauge group separately for each
vertex. Therefore the final diagram picks up a factor of g2

YMN from each vertex. Because of this,
the large N limit in itself is not interesting, but we must take the ’t Hooft coupling λ = g2

YMN as a
constant while letting N run to infinity. [11]
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3 Anti de Sitter space

We will now review the properties of the anti de Sitter spacetime (AdS), which will be the background
of the Maldacena duality. First we introduce AdSn as a submanifold of the pseudo-Euclidean manifold
R2,n−1 and derive its metric. Then we will show that it is a vacuum solution of the Einstein equations
with a non-zero cosmological constant, proving that it is a maximally symmetric constant negative
curvature space in the process. After constructing a few different coordinate parametrizations for
the AdSn manifold, we will study the conformal infinity of the space.We will mostly follow the
presentation in [12].

3.1 AdSn as an embedded manifold

Geometrically we can define an n-dimensional AdSn space as the set

AdSn = {y ∈ R2,n−1 : y2 = ycydηcd = −b2, b ∈ R }, (3.1)

endowed with a metric inherited from the metric ηab = diag(−1,+1,+1, ...,+1,−1) of the ambient
pseudo-Euclidean R2,n−1 space2. In this section Latin indices run from 0 to n, and b is the “radius”
of the AdSn manifold.

In order to find an explicit form for the AdSn metric, introduce the stereographic coordinates
(xµ) = (x1, ..., xn) such that

y0 = ρ
1 + x2

1− x2

yµ = ρ
2xµ

1− x2
(3.2)

where
x2 ≡ xµxνηµν ,

ηµν = diag(+1,+1, ...,+1,−1), Greek indices run over the AdSn components from 1 to n, and they
are raised and lowered with ηµν . It is easy to see that y2 = −ρ2, so indeed when ρ2 = b2 the xµ

describe the AdS manifold.
Now the standard formula for the induced metric gµν of an embedded manifold gives the AdSn

metric:

gµν =
∂y

∂xµ
· ∂y
∂xν

=
∂ya

∂xµ
∂yb

∂xν
ηab. (3.3)

We need the partial derivatives

∂x2

∂xµ
=

∂(xαxβ)
∂xµ

ηαβ = 2xµ,

∂y0

∂xµ
= b

2xµ(1− x2) + 2xµ(1 + x2)
(1− x2)2

= b
4xµ

(1− x2)2
and

∂yν

∂xµ
=

2δνµ(1− x2) + 4xµxν
(1− x2)2

2Our choice of sign here differs from that in [12], where the metric in the embedding space is chosen to be mostly
minus, giving a positive “radius squared”.
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from which we may construct the metric. With a slight abuse of notation in contracting the yα

with ηµν , we have

gµν =
∂ya

∂xµ
∂yb

∂xν
ηab = − ∂y

0

∂xµ
∂y0

∂xν
+
∂yα

∂xµ
∂yβ

∂xν
ηαβ

= b2
−16xµxν + 4(1− x2)2ηµν + 16xµxν(1− x2) + 16xµxνx2

(1− x2)4

= 4b2
ηµν

(1− x2)2
. (3.4)

The AdSn metric is conformally flat, that is, it factorizes to the form gµν(x) = eφ(x)ηµν , with
φ(x) = log 4b2− 2 log(1− x2) in our case. Note that inverting this metric is simple, gµν = e−φ(x)ηµν .

We will now show that the AdSn metric solves the vacuum Einstein equations in D = n
dimensions with a positive cosmological constant. In this case the Einstein equations simplify to

Rµν −
1
2
gµνR =

1
2

Λgµν
∣∣ · gµν

R(1− 1
2
D) =

1
2
DΛ

Rµν =
1
2

Λgµν(1 +
D

2−D
) =

Λ
2−D

gµν . (3.5)

We need to work out the Ricci tensor. During the following calculation, we raise and lower
Greek indices by ηµν instead of gµν . Contractions are of course carried out with gµν , which amounts
to inserting the additional e±φ(x) factor. For the Riemann tensor we need the Christoffel symbols:

Γµνρ =
1
2
e−φηµλ

(
∂νe

φηρλ + ∂ρe
φηνλ − ∂λeφηνρ

)
=

1
2
(
δµρ∂νφ+ δµν ∂ρφ− ηνρ∂µφ

)
. (3.6)

From them we form the derivatives and products

∂ρΓµνσ =
1
2

(δµσ∂ρ∂νφ+ δµν ∂ρ∂σφ− ηνσ∂ρ∂µφ)

ΓµλρΓ
λ
νσ =

1
4

(2δµρ∂σφ∂νφ− ησρ∂µφ∂νφ+ δµσ∂ρφ∂νφ+ δµν ∂ρφ∂σφ

−ηνρ∂µφ∂σφ− δµρ ηνσ∂λφ∂λφ), (3.7)

and then we are ready to write down the Riemann tensor:

Rµνρσ = ∂ρΓµνσ − ∂σΓµνρ + ΓµλρΓ
λ
νσ − ΓµλσΓλνρ

=
1
2
(
δµσ∂ρ∂νφ− δµρ∂σ∂νφ− ηνσ∂ρ∂µφ+ ηνρ∂σ∂

µφ
)

+
1
4

(δµρ∂σφ∂νφ− δµσ∂ρφ∂νφ+ (ηνσ∂ρφ− ηνρ∂σφ)∂µφ

+(ηνρδµσ − ηνσδµρ )∂λφ∂λφ). (3.8)

Contracting µ and ρ, we have

Rνσ = Rµνµσ =
1
2

(∂σ∂νφ−D∂σ∂νφ− ηνσ∂µ∂µφ+ ∂σ∂νφ)

+
1
4

(D∂σφ∂νφ− ∂σφ∂νφ+ ηνσ∂µφ∂
µφ− ∂σφ∂νφ+ ηνσ∂

λφ∂λφ− ηνσD∂λφ∂λφ)

=
(

1− D

2

)(
∂σ∂νφ−

1
2
∂σφ∂νφ

)
+

1
2
ηνσ

([
1− D

2

]
(∂φ)2 − ∂2φ

)
, (3.9)
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where (∂φ)2 = ∂µφ∂µφ and ∂2φ = ∂µ∂µφ. Plugging in the derivatives

∂µ∂νφ = 4
ηµν

1− x2
+ 8

xµxν
(1− x2)2

∂µφ∂νφ = 16
xµxν

(1− x2)2
(3.10)

gives the final result

Rµν = −4
D − 1

(1− x2)2
ηµν = −D − 1

b2
gµν =

Λ
2−D

gµν , when

Λ =
(D − 1)(D − 2)

b2
, (3.11)

so indeed AdSn is a solution of the Einstein equations with a positive (in our choice of signs)
cosmological constant. In addition, it is of constant negative curvature, which can be easily seen by
calculating the curvature scalar

R = Rµνg
µν = −D(D − 1)

b2
. (3.12)

Combining Eq. (3.10), Eq. (3.8) and Eq. (3.12), we further see that the maximum symmetry
condition

Rµνρσ =
R

D(D − 1)
(gνσδµρ − gνρδµσ), (3.13)

which guarantees that the spacetime has the full possible set of D(D + 1)/2 Killing vectors [13], is
satisfied:

Rµνρσ =
4

(1− x2)2
(ηρνδµσ − ησνδµρ ) =

R

D(D − 1)

(
4b2

(1− x2)2
ησνδ

µ
ρ −

4b2

(1− x2)2
ηρνδ

µ
σ

)
. (3.14)

If we can now find a group of symmetries on AdSn with dimension n(n+ 1)/2, we know based
on the above that there are no more symmetries. Since the group SO(2, n− 1) preserves the metric
on R2,n−1, it also maps the embedded AdSn to itself. With y ∈ AdSn a vector of the embedding
space, y ∈ R2,n−1, y2 = −b2, consider the transformation by an element Λ ∈ SO(2, n− 1) such that
y 7→ y′. Let ai, bi be in the tangent space TyAdSn of the point y ∈ AdSn and a′i, b′i in Ty′AdSn.
Then

a′ · b′ = Λika
kΛjlb

lηij = akblηkl = a · b, (3.15)

since ΛT ηΛ = η by the definition of SO(2, n− 1). Therefore SO(2, n− 1) induces the corresponding
symmetry on AdSn. Also, dimSO(2, n − 1) = n(n + 1)/2 so this is the full symmetry group of
AdSn.

3.2 Alternative coordinate systems

While AdSn is conveniently defined in stereographic coordinates, some other coordinate systems
will turn out useful later.

Let us first define the so called “light cone coordinates” for the embedding space 3:

u = y0 + yn, v = y0 − yn (3.16)
~y = (y1, y2, ..., yn−1),
~y2 = yαyβηsαβ, ηsαβ = diag(1, 1, ...1, s),

y2 = ~y2 − uv. (3.17)
3This differs from the definition in [12] by including the sign s. This way we avoid using complex coordinates,

which produces problems and indeed a potentially imaginary norm for some vectors in the presentation given by [12].
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Here s defines the signature of the embedding manifold, s = −1 being the case described above.
When s = 1 we have a “Euclidean” version of the AdSn manifold, which is actually the n dimensional
hyperbolic space. The above definition indeed describes the embedding space: the map f : (u, v, ~y)→
R2,n−1, with the usual metric in R2,n−1,

f(u, v, y1, y2, ..., yn−1) =
(

1
2

(u+ v),
1
2

(u− v), y1, y2, ..., yn−1

)
(3.18)

is an isometry to the embedding space. The case with s = 1 gives the alternative case where the
isometry defined by Eq. (3.18) goes to R1,n and the subspace produced by the equation y2 = −b2
gives a version of AdSn with Euclidean signature.

From the light cone coordinates we further define

ξα ≡ yα

u
, α = 1, ..., n− 1

~ξ ≡ (ξ1, ..., ξn−1), ~ξ2 =
~y2

u2
(3.19)

so that the AdSn equation becomes

y2 = u2~ξ2 − uv = −b2, or (3.20)

v = u~ξ2 +
b2

u
. (3.21)

Now we can pick the set (u, ~ξ) as coordinates in the AdSn. To calculate the metric in this case, use
the dot product derived from Eq. (3.17)4,

y1 · y2 = ~y1 · ~y2 −
1
2
u1v2 −

1
2
u2v1, ~y1 · ~y2 = yα1 y

β
2 η

s
αβ, (3.22)

directly on the formula for the induced metric of an embedded manifold. Denoting the light-cone
components by y = (u, v, yα) we have

ds2 =
∂y

∂u
· ∂y
∂u
du2 +

n−1∑
α=1

∂y

∂ξα
· ∂y
∂ξα

(dξα)2 +

2
n−1∑
α=1

∂y

∂u
· ∂y
∂ξα

dudξα +
∑
α 6=β

∂y

∂ξα
· ∂y
∂ξβ

dξαdξβ

=

n−1∑
β=1

ηsββ

(
∂yβ

∂u

)2

− ∂u

∂u

∂v

∂u

 du2 +
n−1∑
α=1

ηsαα

(
∂yα

∂ξα

)2

(dξα)2

=
b2

u2
du2 + u2d~ξ2,

d~ξ2 ≡
n−2∑
α=1

(dξα)2 + s(dξn−1)2. (3.23)

This metric further simplifies by setting b = 1 and changing variables by u→ 1/ξ0, which leads to

ds2 =
(
− dξ0

(ξ0)2

)2

(ξ0)2 +
d~ξ2

(ξ0)2
=

1
(ξ0)2

(
(dξ0)2 + d~ξ2

)
. (3.24)

4Here subscript indices denote different vectors, not covariant components.
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3.3 The boundary of AdSn

A projective boundary can be defined on the Anti de Sitter space. This is in some sense the limiting
geometry in the limit of a very large ~y. Define the rescaled light cone coordinates for the embedding
space

ũS = u, ỹαS = yα, ṽS = v, (3.25)

With these, the AdSn equation is

~̃y2 − ũṽ = − b
2

S2
. (3.26)

Now consider points very far away (large ~y), but with the scale S correspondingly large so that
the coordinates with a tilde remain finite. As S →∞, the right hand side of Eq. (3.26) goes to zero,
and therefore the boundary is defined by

~̃y2 − ũṽ = 0. (3.27)

We still have one degree of freedom too much, since the overall scale of the coordinates cannot
matter now that we essentially scaled out an infinity from them. To remedy this, we define the
points in the boundary ∂AdSn of AdSn as the set of possible directions to which the points may
escape to infinity, or equivalently as equivalence classes of the set {(u, v, ~y) : ~y2 − uv = 0} under
rescaling

(u, v, ~y) ∼ (tu, tv, t~y) for all t ∈ (0,∞). (3.28)

To eliminate the redundancy caused by the equivalence, we may choose a representative point from
each equivalence class.

As a first exercise in dealing with the AdS boundary, we show that topologically it is S1 × Sn−2

in the case of Minkowski signature s = −1, and R × Sn−2 in the Euclidean case s = 1:

t2~y2 − t2uv = t2
n−2∑
α=1

(yα)2 + st2(yn−1)2 + t2(y0)2 − t2(yn)2 = 0

⇒ t2
n−2∑
α=1

(yα)2 + t2(y0)2 = t2(−s(yn−1)2 + (yn)2). (3.29)

Now fix the scale such that s(yn−1)2 + (yn)2 = 1. This leads to the equations

n−2∑
α=1

(yα)2 + (y0)2 = 1

−s(yn−1)2 + (yn)2 = 1, (3.30)

which is the equation of a sphere for the two subspaces when s = −1. When s = 1, the latter
equation becomes that of a hyperbola, which is homeomorphic to R × Z2. In the latter case, we
could also have moved the yn−1 term to the left hand side in Eq. (3.29) and fixed the scale such that

t2
n−2∑
α

(yα)2 + t2(y0)2 + t2(yn−1)2 = 1

⇒ yn = ±1 (3.31)

in order to reach the conclusion that the topology is equivalent to Sn−1×Z2, that is, two disconnected
n − 1 dimensional spheres. The meaning of this second result is not completely clear, since we
have been unable to find an explicit conformal transformation which would map Sn−2 × R × Z2 to
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Sn−1 × Z2. The fact that in the two-dimensional case an inversion maps S1 × R to S1 × S1 does
cast some doubt on the above result. The error could be that the scale fixing in Eq. (3.31) somehow
implicitly scales different components of the vector differently.

Another way to choose the scale is setting v → 1. Since this only works when v 6= 0, it gives a
coordinate patch on the v 6= 0 part of the boundary manifold. In this case, Eq. (3.27) gives u = ~y2,
so we may choose ~y as the coordinate set. By symmetry, another choice is u → 1 for u 6= 0, so
that v = ~̂y2 and ~̂y gives coordinates on the patch u 6= 0. Obviously these two scalings give different
coordinates for the same point. The coordinate transformation between them is

~̂y =
~y

~y2
(3.32)

Since the points on the boundary are defined only up to an arbitrary scale, we cannot inherit a
full metric from the bulk AdSn. Nonetheless, the angles between vectors are well defined because
normalization eliminates scale, and we can therefore inherit a conformal structure from AdSn.
Finding out this structure is easiest in the (tu, ~ξ) coordinate set. Notice that ~ξ does not carry the
scale t since it is defined as the ratio of u and ~y. The boundary condition in these coordinates leads
to ξ0 = (tu)−1 =

~ξ2

tv , and therefore the inherited metric on the boundary is

(ds2)boundary =
t2v2

~ξ4
d~ξ (3.33)

which indeed explicitly depends on the choice of scale. Now the cosine of the angle between two
vectors ~a,~b in the tangent space of the boundary at (tu, tv, ~ξ) is

cos θ
~a~b

=
t2v2

~ξ4

∑
i a
ibi√

t4v4

~ξ8

∑
j(aj)2

∑
k(ak)2

=
∑

i a
ibi√∑

j(aj)2
∑

k(ak)2
, (3.34)

which is independent of scale. We may therefore take the inner product on the tangent space of the
boundary to be the same as that between the ~ξ components in the bulk AdSn, which is in practice
either the Minkowskian or the Euclidean inner product. Since ~y = u~ξ, it is easy to see that using ~y
with the same inner product is equivalent.

In light of Eq. (3.34) we see that the AdSn boundary is locally the flat n − 1 dimensional
conformal space. The change of coordinates in Eq. (3.32) is a conformal transformation, and we
should expect to see the full conformal group to manifest itself on the boundary. It is indeed
generated by the SO(2, n− 1) symmetry of AdSn.

3.4 The conformal group on the boundary

The goal of this section is to demonstrate that SO(2, n− 1) transformations acting on AdSn act as
the conformal group on its boundary. We begin with a small overview of the conformal group.

In this section we denote vectors on the boundary ∂AdSn by Latin characters from the end or
middle of the alphabet, and vectors in the tangent space of ∂AdSn by Latin characters from the
beginning of the alphabet. Even powers of a vector denote half the power of the dot product of a
vector with itself.

Let x ∈ ∂AdSn. Then the conformal group consists of dilations:

x 7→ x′ = λx, λ ∈ R (3.35)
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and special conformal transformations, which are compositions of an inversion, translation and
another inversion, x 7→ x′ such that:

x 7→ x′′ =
x

x2
+ p, p ∈ ∂AdSn

x′′ 7→ x′ =
x′′

x′′2
=

x
x2 + p

( x
x2 + p)2

=
x+ x2p

1 + 2x · p+ x2p2
. (3.36)

It is often convenient to leave the last inversion implicit:

x′

x′2
=

x

x2
+ p. (3.37)

It is easy to see that the transformation (3.35) is conformal. To see that the special conformal
transformations are indeed conformal, start by implicitly differentiating Eq. (3.37) with respect to
xα, which yields in components

∂x′µ

∂xα x
′2 − 2

(
∂x′ν

∂xα x
′
ν

)
x′µ

x′4
=
δµαx2 − 2xαxµ

x4
. (3.38)

Contracting α in this equation by a vector a ∈ Tx∂AdSn, and using the transformation law

a′
µ =

∂x′µ

∂xα
aα

for tangent vectors under a coordinate transformation, yields

a′µx′2 − 2(a′ · x′)x′µ

x′4
=
aµx2 − 2(a · x)xµ

x4
. (3.39)

Now contract the equation on both sides with the corresponding equation for another tangent vector
b to get

a′ · b′

x′4
=
a · b
x4

. (3.40)

This easily leads to
a · b√
a2b2

=
a′ · b′√
a′2b′2

, (3.41)

which is a statement of conformal invariance under the transformation.
The infinitesimal versions of the transformations are

x 7→ x′ = x(1 + λ) (3.42)
x 7→ x′ = x(1− 2p · x) + x2p. (3.43)

Let us examine the effects that a Lorentz transformation Λµν ∈ SO(2, n− 1) acting on R2,n−1

has on the embedded AdSn and its boundary. An infinitesimal Lorentz transformation can be
written as

Λµν = δµν + ωµν , (3.44)

where ωµν is an antisymmetric matrix 5. Applying the coordinate transformation from the basis yα

to (u, v, ~y),

Λµν
′ =

∂y′µ

∂yα
∂yβ

∂y′ν
Λαβ, (3.45)

5Notice that the ω in Eq. (3.44) has one covariant and one contravariant index, so it is not, in general, antisymmetric.
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gives an infinitesimal transformation of the form

Λµν
′ = δµν +

 a 0 ~αT

0 −a ~βT

1
2
~β 1

2~α ωn−1

 , (3.46)

acting on the coordinates (u, v, ~y), where ~α and ~β are column vectors and ωn−1 is the lower-right
(n− 1)× (n− 1) submatrix of ωµν .

This transformation acts on the point (u, v, ~y) in the AdSn space such that u
v
~y

 7→
 u(1 + a) + ~α · ~y

v(1− a) + ~β · ~y
1
2(u~β + v~α) + (1 + ωn−1)~y

 . (3.47)

The effect on points on the boundary of AdSn are given by the same formula, but whatever
convention we use for picking representatives from the projective equivalence classes of the boundary
points may not be respected. If, for example, we hold the convention that the point with v = 1 is
chosen as the representative (in which case, since u = ~y2, we can parametrize the whole boundary
except for the point v = 0 with the vector ~y), the transformed point may have v 6= 1. We therefore
must explicitly enforce the convention by dividing by the transformed v = v(1− a) + ~β · ~y, which
yields

~y′ =
1
2(u~β + v~α) + (1 + ωn−1)~y

v(1− a) + ~β · ~y
=

1
2(~y2~β + ~α) + (1 + ωn−1)~y

1− a+ ~β · ~y
(3.48)

and further, using the fact that all the transformation parameters are infinitesimal

~y′ = ~y(1 + a− ~β · ~y) + ωn−1~y +
1
2

(~y2~β + ~α). (3.49)

With Eq. (3.49) we can analyze the effect of the transformation on the boundary. First of all, if
only ~α is non-zero, we have

~y 7→ ~y +
1
2
~α, (3.50)

which is a translation. If only ωn−1 6= 0,

~y 7→ ~y + ωn−1~y (3.51)

which is an infinitesimal, potentially Lorentz6, rotation. If only a 6= 0,

~y 7→ ~y(1 + a), (3.52)

so that we have an infinitesimal dilation. Finally, if only ~β is non-zero, we have the transformation

~y 7→ ~y(1− ~β · ~y) +
1
2
~y2~β, (3.53)

which is the same as Eq. (3.43) with the identification 2p = ~β, i.e. a special conformal transformation.
Therefore we see that the Lorentz symmetries of the embedding space generate the conformal

group on the boundary of the AdSn7

6The sign ultimately sneaks in from the signature of the embedding R2,n−1 space through the ωµν matrix
7Formally we would still need to prove that the infinitesimal generators commute as required by the Lie algebra of

the conformal group.
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4 Superstring theory, branes and Yang-Mills theories

The twist of the Maldacena duality is intimately related to the connections between branes in
superstring theory and Yang-Mills theories living on those branes. In this section we will look into
superstrings, supergravity and branes, as a motivation for the next chapter, where we get to the
Maldacena duality itself.

4.1 Superstring theory

We will review string theory here only extremely briefly, omitting all details. The fundamental idea
is to replace point particles with one-dimensional strings. Since the equation of motion for a free
classical point particle is the geodesic equation, which minimizes the path length of its world line
(or in spacetimes with Lorentzian signature, maximizes proper time), a natural generalization of the
action for a string is the one that minimizes the area of the world sheet swept out by the string
moving through spacetime. If the string has world-volume coordinates Xµ(xα), where indices µ, ν
etc are indices on the D-dimensional spacetime through which the string is moving, and xα ∈ {σ, τ}
are coordinates on the world sheet, with x1 ≡ σ spacelike and x2 ≡ τ timelike, and indices α, β refer
to the world sheet coordinates, then its world sheet area is

A =
∫ √

| det ∂αXµ∂βXνgµν |d2x (4.1)

where gµν is the spacetime metric and the determinant is taken over the α, β indices. The square root
makes this action difficult to quantize, but an action which is classically equivalent to minimizing
the area is

S = −T
2

∫
hαβ∂αXµ∂βXν

√
| deth|gµνd2x (4.2)

where T is the string tension, which is the only free parameter of the theory, and hαβ is an auxiliary
field which may be interpreted as a metric on the world sheet. Using the equations of motion one can
eliminate the hαβ field and show that Eq. (4.1) and Eq. (4.2) are indeed equivalent. Quantizing the
action Eq. (4.2) by Fourier-decomposing the solutions of the wave equation resulting from minimizing
the action, promoting the Fourier coefficients to operators and imposing canonical commutation
relations (which then lead to commutation relations for the Fourier coefficient operators) on the
world sheet coordinates Xµ and their canonical momentum conjugates Pµ = −gµν ∂L

∂Ẋν
= TẊµ

leads to the theory of the bosonic string. For the Lorentz-symmetry anomalies resulting from the
quantization to cancel, it turns out that D = 26 is required.

Unfortunately the bosonic theory has two problems which make it unsatisfactory: it has no
fermionic states, and the ground state of the string turns out to have negative mass squared, which
spoils causality. Both of these problems can be resolved by adding a fermionic degree of freedom on
the world sheet. The simplest action is

S =
1

2πα′

∫
(hαβ∂αXµ∂βXµ + iψ̄µρα∂αψµ)

√
|deth|d2x, (4.3)

where the ρα matrices satisfy the Dirac-Clifford algebra in two dimensions, and α′ = 1
2πT is the

string parameter. This action is globally supersymmetric, but usually local supersymmetry is
required on the world-sheet. This can be achieved by adding some extra terms to the action, which
can then be gauged away, resulting ultimately in the addition of some gauge-choice conditions. In
this superstring theory, the cancellation of Lorentz-anomalies on a flat background requires D = 10.
Negative mass squared, or tachyonic, string states appear also in superstring theory, but there are
five consistent versions of the theory where the tachyons may be projected away by the so-called
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GSO projection (This projection also generates space-time supersymmetry from the world-sheet
supersymmetry). They are known as type I, type IIA, type IIB and heterotic string theories, with
the heterotic string theory coming in two flavours, one with gauge group SO(32) and the other with
E8 × E8.

In a string theory, we have the choice of using either open or closed strings, or both. Open
strings alone are not consistent, since there is always an interaction where both ends of two open
strings interact, forming a closed string. The string theory where we have both open and closed
unoriented strings is called Type I superstring theory.

For closed strings, the wave solutions of the string equations of motion contain excitations that
move around the string in anticlockwise and clockwise directions, called left- and right-movers.
In a theory with only closed oriented strings, it turns out we can choose what is essentially the
chirality of the massless ground states of the left- and right-movers independently, and that the
interactions do not mix the choice of chiralities. Choosing both to be the same gives type IIB
superstring theory, and choosing them to be opposite gives type IIA superstring theory. In addition,
the boundary conditions for fermionic closed strings may be periodic or anti-periodic, and may also
be chosen for the left- and right movers independently. In a consistent string theory, both boundary
conditions must be present. Periodic boundary conditions are known as Ramond (or R) boundary
conditions and anti-symmetric boundary conditions are known as Neveu-Schwarz (or NS) boundary
conditions. Since we have separate boundary conditions for left- and right movers, the possible
choices of boundary conditions give so called RR, R-NS, NS-R and NS-NS sectors of the theory.

The one remaining consistent superstring theory is called heterotic. In heterotic string theory,
the right moving degrees of freedom come from a type II superstring theory (in this case we do
not need to distinguish between IIA and IIB, since we are dealing only with right movers) and the
left movers come from bosonic string theory. Of the 26 bosonic dimensions, 16 are considered as
compactified on a 16-dimensional torus so that the dimension of the whole theory is 10. [7]

4.2 Symmetries of superstring theory

In addition to the symmetries of its background, type IIB superstring theory also has two spacetime
supersymmetries, so it is an N = 2 supersymmetric theory. In ten dimensions this means that the
total number of supersymmetry generators is 2D/2 = 32. In type I superstring theory the open
string boundary conditions break half of the supersymmetries, leaving an N = 1 supersymmetric
theory with 16 generators. The type IIB theory does not admit any gauge symmetries per se
(although compactifying it on various manifolds can generate such symmetries), whereas type I
theory classically allows any Lie group as a gauge group, by introducing group theory indices called
Chan-Paton factors on the endpoints of the string. Quantum mechanically, SO(32) and E8 × E8

are singled out as the only consistent gauge groups. [14]

4.3 Branes

Superstring theory has two superficially distinct concepts of branes. The first one is related to
boundary conditions of open strings [15]:

1. Neumann boundary conditions: ∂σXµ = 0, where σ is the spacelike world-sheet coordinate,
on the endpoints of the string. This is a Lorentz-invariant condition, which physically requires
that no momentum must flow out of the ends of the string and that the endpoints must move
at the speed of light [14].

2. Dirichlet boundary conditions: The endpoint coordinates Xµ are constant. This boundary
condition is clearly not Lorentz -invariant, and is often ignored in pure string theory.
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The Dirichlet and Neumann boundary conditions can also be mixed. We can take Neumann
boundary conditions for p + 1 spacetime coordinates, and Dirichlet boundary conditions for the
remaining D − p− 1 coordinates. The endpoints are then free to move in the p+ 1 directions with
Neumann boundary conditions, and are fixed in the remaining directions (the string itself is still of
course free to move in all of spacetime).

The p+ 1 dimensional volume in which the string endpoints are constrained to lie on is called a
D-brane, D for Dirichlet and brane as a generalization of the word membrane. At first sight it seems
that the choice of Dirichlet boundary conditions introduces an unphysical and arbitrary object, and
that we should simply stick to Neumann boundary conditions. It was however shown in [16] (where
they also coin the term D-brane) that the D-brane actually arises from the toroidal compactification
of an open string theory. They showed that the compactified theory is a theory of closed strings in
the bulk and open strings with endpoints constrained on the brane. The closed strings interact with
the brane, so it is indeed a dynamical object, instead of an arbitrary choice of boundary conditions.

The other kind of brane in string theory is known as the p-brane. These are essentially solutions
to the low-energy supergravity approximation of string theory which have a singularity extended in
p space dimensions. A 0-brane is a conventional black hole. A 1-brane is the string, the 2-brane is
an object with a singularity that is a 2 dimensional membrane, and so on. A p-brane may have a
charge related to a p+ 1 -form gauge potential of the supergravity approximation. If the charge is
equal to the mass of the brane, it is called an extremal brane, and in this case the event horizon
surrounding the singularity becomes degenerate with the singularity itself. [15]

It turns out that p-branes which have a charge from the Ramond-Ramond sector of string
theory are actually the same objects as D-branes. They are therefore usually termed Dp-branes, to
emphasize the equivalence. [17, 18, 19].

We will now calculate explicitly the Dp-brane solution from the supergravity approximation of
type IIB superstring theory.

4.4 Finding the Dp-brane solution

We start from the action of type IIB supergravity theory. This is given by [12]:

S = −s 1
16πG10

∫
d10x

√
|g|

(
e−2φ(R+ 4gµν∂µφ∂νφ)− 1

2

∑
n

1
n!
F 2
n + . . .

)
, (4.4)

where φ is the dilaton field, Fn are the RR sector field strengths, s is the signature (-1 for Minkowski).
The dots represent omitted NS-NS sector field strength tensors and fermionic fields, which we will
not be concerned with. This truncation is consistent in the sense that solutions of the equations of
motion for this action are also solutions to the equations of motion for the full action [20]. For the
IIB string theory, there are only field strengths with n odd. In order to make calculations easier, we
carry out a conformal transformation to the Einstein frame, which may be defined by requiring that
the metric contains a pure Einstein-Hilbert -term

√
|g|R (the issue of the physical significance of

such transformations is discussed for example in [21]). The conformal transformation which takes
Eq. (4.4) to the Einstein frame is

gµν → e−
1
2
φgµν . (4.5)

The Einstein frame action is then [12]

S = − s

2κ2
D

∫
dDx
√
g{R− 1

2
gµν∂µφ∂νφ−

1
2

∑
n

1
n!
eanφF 2

n}. (4.6)

We will show that this action has a classical solution of the form expected for a Dp -brane,
and specifically study the D3 -brane metric in more detail. It is generally expected that the these
solutions extend to a solution of the full string theory, with order α′ corrections [20].
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4.4.1 Equations of Motion

To obtain the classical equations of motion, we use the Palatini method, which essentially amounts
to treating the metric and the connection as independent variables. The Palatini method works
in the Einstein frame, since the Einstein-Hilbert -term appears in the action without directly
coupling to any fields. This saves us the trouble of breaking down the Ricci scalar in Eq. (4.6) to its
representation in terms of the metric, which would involve a large amount of terms.

In terms of the metric and the connection, Eq. (4.6) becomes

S = − s

2κ2
D

∫
dDx
√
g{gµν

(
∂ρΓρµν − ∂νΓρµρ + ΓρλρΓ

λ
µν − ΓρλνΓλµρ

)
− 1

2
gµν∂µφ∂νφ

− 1
2n!

eanφgµ1ν1gµ2ν2 · · · gµnνnFµ1µ2···µnFν1ν2···νn}, (4.7)

where we have, for simplicity, considered the case where only one Fn is non-zero. Varying this with
respect to the metric gives

δS

δgαβ
= − s

2κ2
D

∫
dDx{

(
−1

2
gαβg

µν + δµαδ
ν
β

)
Rρµρν −

1
2
∂αφ∂βφ

− 1
2n!

eanφ(F ν2ν3···νn
α Fβν2ν3···νn + F ν1 ν3···νn

α Fν1βν3···νn + · · ·

+ F
ν1ν2···νn−1

αFν1ν2···νn−1β) +
1

2n!
eanφ

1
2
gαβF

2
n +

1
4
gαβ∂

µφ∂µφ}
√
gδgαβ. (4.8)

The terms involving the components of Fn can be combined to give nF ν2ν3···νn
α Fβν2ν3···νn using the

total antisymmetry of the two-form Fn. The classical solution is obtained by setting the term in
curly braces to zero. Contracting the α and β indices on the resulting equation, we find the Ricci
scalar to be

R =
1
2
∂ρφ∂ρφ+

1
2n!

eanφ
2n−D
2−D

F 2
n . (4.9)

Substituting this back to the equation (and renaming indices for convenience) gives the final form
of the first equation of motion:

Rµν =
1
2
∂µφ∂νφ+

1
2n!

eanφ(nFµµ2µ3···µnFνµ2µ3···µn − δµν
n− 1
D − 2

F 2
n). (4.10)

The second equation of motion is obtained by varying Eq. (4.7) with respect to φ. This leads to
the equation

1
√
g
∂µ(
√
ggµν∂νφ) =

an
2n!

eanφF 2
n . (4.11)

For the Fn variation, we must remember that since it is a field-strength n-form, the dynamical
variable is not Fn itself but an n − 1 -form tensor potential Aµ2µ3···µn such that F = dA, or in
components Fµ1µ2···µn = 1

(n−1)!∂µ1Aµ2µ3···µn . This gives

∂µ(
√
geanφFµν1ν2···νn) = 0. (4.12)

Finally the variation with respect to the Christoffel symbols gives no new information, but only
restores the standard relation between the metric tensor and the metric connection. For a derivation,
see for example [22].
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4.4.2 The brane solution

Now that we have the equations of motion, we may start looking for solutions. The types of solutions
we want are such that the geometry has a Poincaré symmetry in p+ 1 -directions corresponding to
a brane with p spacelike dimensions and a timelike dimension, a radial direction, and a spherical
symmetry in the remaining D − p− 1 dimensions. A diagonal metric satisfying these symmetries is

ds2 = sB2dt2 + C2
p∑
i=1

(dxi)2 + F 2dr2 +G2r2dΩ2
d−1, (4.13)

with all coefficients depending only on r, where dΩ2
d−1 is the metric of the unit sphere Sd−1, with

the metric matrix γ = diag(1, sinφ1, sinφ1 sinφ2, · · · , sinφ1 sinφ2 · · · sinφd−2). The coordinates are
then xi and t for the brane and ya for the directions transverse to the brane. We also use the set
(r, φ1, · · · , φd−1) with r2 =

∑d
a=1(ya)2 and φk being the angular coordinates on the surface of the

(d−1)-dimensional sphere. The total dimension of the space is then D = p+ 1 +d, and s determines
the sign of the timelike dimension and therefore whether we are dealing with a Lorentzian or a
Euclidean manifold. We also require that the metric tends to flat as r →∞, or equivalently that all
the coefficients tend to 1 on that limit.

In order to find a solution, we take the ansatz where all the coefficients of a metric are of the form
Eq. (4.13) and all the fields are functions of the radial coordinate r only (the geometric variables of
course may also depend on the angular coordinates on the unit sphere), and in addition the electric
field tensor Fn is of the form

Fti1i2···ipr = εi1i2···ipk(r), (4.14)

and therefore obviously n = p + 2. The indices t and r here mean that the specific index must
be the one referring to the t or r coordinate respectively. Indices ik mean that the corresponding
index must be one of those referring to the on-brane coordinates xi, and ε is the covariant fully
antisymmetric rank-p tensor. Due to the antisymmetry of Fn it is fully defined by Eq. (4.14).

We can now write the equation of motion for Fn, Eq. (4.12), in a more explicit form. Raising all
the indices of F with the inverse metric gives

F ti1i2···ipr = gtµ0gi1µ2 · · · gipµpgrµp+1Fµ1···µp+1 = gttgi1j1 · · · gipjpgrrεj1j2···jpk(r)

=
s

B2C2pF 2
ε̃i1i2···ipk(r), (4.15)

where the indices jk go through the brane coordinates xi, and ε̃i1i2···ip denotes an object which is
numerically exactly the same as εi1i2···ip , but with upper indices for notational clarity 8. Note that
it is then not a rank-p contravariant tensor (which is why we write it with a tilde).

With the observation that √
g = BCpF (Gr)d−1

√
|γ|, (4.16)

where |γ| is the determinant of the metric on the unit sphere, the equation of motion for Fn gives

∂r

( s

BCpF
(Gr)d−1eaφk(r)

)
= 0, (4.17)

which leads to
k(r) = se−aφBCpF

Q

(Gr)d−1
(4.18)

where Q is a constant of integration.
8We do not apply the Einstein summation convention to pairs of indices that are both superscript or both subscript.
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We will later need the results

F 2
n = n!Ft12···prF

t12···pr = n!se−2aφ Q2

(Gr)2(d−1)
(4.19)

and

Fµξ2ξ3···ξnFνξ2ξ3···ξn = (n− 1)!se−2aφδµν
Q2

(Gr)2(d−1)
, (4.20)

when µ, ν ∈ {t, 1, 2, · · · , p, r} and else 0.
In order to work out the equations of motion for the metric, we need to compute the Ricci tensor.

We will do this in the vielbein formalism. Since the metric is of the diagonal form

ds2 = s(A0)2(dz0)2 +
D−1∑
µ=1

(Aµ)2(dzµ)2 (4.21)

where {zµ} = {t, xi, r, φk}, we can write the vielbein as

eaµ = Aµ, (4.22)

with Aµ = (B, C, · · · , C︸ ︷︷ ︸
p components

, F,Gr,Gr sinφ1, Gr sinφ1 sinφ2, · · · , Gr sinφ1 sinφ2 · · · sinφd−2). We de-

note flat indices by Latin letters or Greek letters with an overbar. Then the metric tensor is

gµν = ηabe
a
µe
b
ν = ηµνAµAν , no summation over µ, ν on the r.h.s. (4.23)

We denote the inverse vielbein by Eµa = Aµ = 1
Aµ

.
Now the spin connection can be derived from the requirements that it is compatible with the

metric and torsion free [23]:

ωab = −ωba (4.24)
T a = dea + ωab ∧ eb = 0. (4.25)

The wedge product of two 1-forms is a ∧ b = aµdx
µ ∧ bνdxν = 1

2(aµbν − aνbµ)dxµ ∧ dxν , where the
dxµ are basis 1-forms. The wedge product of basis 1-forms dxµ, dxν is a basis 2-form dxµ ∧ dxν =
−dxν ∧ dxµ. The exterior derivative of a 1-form is da = ∂µaνdx

µ ∧ dxν . Using Eq. (4.25), we have

0 = ∂µe
a
νdx

µ ∧ dxν +
1
2

(ωabµe
b
ν − ωabνebµ)dxµ ∧ dxν . (4.26)

Since the vielbein is diagonal, only the ν = a term of the first sum survives. Picking a term with a
fixed a and a given component of the 2-form gives (note that due to the antisymmetry of the basis
2-forms, two terms of the µ, ν sum always contribute to the single 2-form component, canceling the
1/2 in front of the wedge product)

∂µAa + ωaaµAa − ωaµ̄aAµ = 0

⇒ ωaµ̄a =
1
Aµ

∂µAa. (4.27)

The index µ appearing on the left with an overbar and on the right without an overbar means that
the same index must appear on both sides of the equation, but on the left it is a flat index and on
the right it is a curved index (which is made flat by the factor 1

Aµ
, which is the inverse vielbein Eµµ̄).
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We will follow this convention throughout this section. Via the metricity condition (we have to set
this explicitly, since we already used it in deriving Eq. (4.27))

ωµ̄aa = − 1
Aµ

∂µAa. (4.28)

Since the vielbein only depends on r and the angular coordinates on the sphere, the non-zero
components are

ωar̄a = −ωr̄aa =
1
F
∂rAa and

ωφ̄l
φkφl

= −ωφ̄k
φlφl

=
1
Aφk

∂φkAφl =
cosφk
sinφk

Aφl
Aφk

when l > k, 0 otherwise. (4.29)

The curvature 2-form is

Rab = dωab + ωac ∧ ωcb = Rabµνdx
µ ∧ dxν . (4.30)

In order to extract the Ricci tensor from here, we need to make the µ index flat with the vielbein.
We also flatten the index ν (In the following, the µ sum is denoted explicitly since it involves an
extra subscript index, whereas the Einstein summation convention still applies to the c sum. We
will follow a similar convention systematically.):

Raν̄ = Rµ̄aµ̄ν̄ =
∑
µ

1
AµAν

(∂µωµaν − ∂νωµaµ + ωµcµω
c
aν − ωµcνωcaµ). (4.31)

It is easy to see here that the Ricci tensor is diagonal, so we only need to consider the ν̄ = a terms.
In addition, the ν 6= r, φk terms are independent of the ωφlφkφl components of the spin connection,
and we have

Rν̄ν̄ =
1
Aν

− 1
F
∂r

1
F
∂rAν +

∑
µ 6=r

1
Aµ

1
F
∂rAµ

(
− 1
F
∂rAν

)
+

1
F 2

(∂rAν)2


=

1
F 2

− F

Aν
∂r
Aν
F
∂r logAν −

∑
µ 6=r

(∂r logAµ)(∂r logAν) + (∂r logAν)2


= − 1

F 2

(logAν)′′ + (log(F−1
∏
µ6=r

Aµ))′(logAν)′


= − 1

F 2

(
(logAν)′′ + (log(frd−1))′(logAν)′

)
, (4.32)

with prime denoting a partial derivative with respect to r, and f defined as

frd−1 ≡ BCpF−1(Gr)d−1. (4.33)

Note how the φk dependencies cancel in the logarithmic derivatives.
When ν = r, different terms contribute and the result is

Rr̄r̄ = − 1
F 2

(
(log(Ffrd−1))′′ + ((logB)′)2 − (logF )′(log(Ffrd−1))′

+p((logC)′)2 + (d− 1)((logGr)′)2
)
. (4.34)
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The ν = φl components gain terms of the same form as Eq. (4.32), and additionally the φk
derivatives now contribute the extra terms∑

k

1
AφlAφk

(
∂φkω

φk
φlφl
− ∂φlω

φk
φlφk

+ ωφkφcφkω
φc
φlφl
− ωφkφcφlω

φc
φlφk

)
=

d−1∑
k=l+1

1
AφlAφk

(
∂φk

cosφk
sinφk

Aφl
Aφk

− ∂φl
cosφl
sinφl

Aφk
Aφl

+
l−1∑
c=1

cos2 φc

sin2 φc

AφkAφl
A2
φc

)
+

l−1∑
c=1

1
A2
φl

cos2 φc

sin2 φc

A2
φl

A2
φc

=
1

G2r2

 l−1∑
k=1

1− (d− 2− k) cos2 φk
sin2 φk

sin2 φ1 sin2 φ2 · · · sin2 φk−1
+

d− 1− l
sin2 φ1 sin2 φ2 · · · sin2 φl−1

 . (4.35)

The term in brackets equals d− 2. This is easily seen for l = 1 (the sine product is 1 for l = 1, and
the sum is empty), and if the claim holds for the l:th term, then

l−1∑
k=1

1− (d− 2− k) cos2 φk
sin2 φk

sin2 φ1 sin2 φ2 · · · sin2 φk−1
= d− 2− d− 1− l

sin2 φ1 sin2 φ2 · · · sin2 φl−1

⇒
(l+1)−1∑
k=1

1− (d− 2− k) cos2 φk
sin2 φk

sin2 φ1 sin2 φ2 · · · sin2 φk−1
+

d− 1− (l + 1)
sin2 φ1 sin2 φ2 · · · sin2 φ(l+1)−1

=
l−1∑
k=1

1− (d− 2− k) cos2 φk
sin2 φk

sin2 φ1 sin2 φ2 · · · sin2 φk−1
+

1− (d− 2− l) cos2 φl
sin2 φl

sin2 φ1 sin2 φ2 · · · sin2 φl−1
+

d− 2− l
sin2 φ1 sin2 φ2 · · · sin2 φl

= d− 2 (4.36)

and therefore it holds for all l ≥ 1.
Combining all this and raising the first index gives the final form of the components of the Ricci

tensor.

Rt̄t̄ = − s

F 2

(
(logB)′′ + (log(frd−1))′(logB)′

)
Rīī = − 1

F 2

(
(logC)′′ + (log(frd−1))′(logC)′

)
Rr̄r̄ = − 1

F 2

(
(log(Ffrd−1))′′ + ((logB)′)2 − (logF )′(log(Ffrd−1))′

+p((logC)′)2 + (d− 1)((logGr)′)2
)

Rᾱᾱ = − 1
F 2

(
(logGr)′′ + (log(frd−1))′(logGr)′ − (d− 2)

F 2

G2r2

)
(4.37)

Converting the indices in Eq. (4.9) to flat gives

Raa = eaµE
µ
aR

µ
µ = δaµR

µ
µ, (4.38)

since the vielbein is diagonal. Then, using Eq. (4.9), Eq. (4.37), Eq. (4.19) and Eq. (4.20) we get
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the equations

− s

F 2

(
(logB)′′ + (log(frd−1))′(logB)′

)
= s(d− 2)

K2

F 2
, (4.39)

− 1
F 2

(
(logC)′′ + (log(frd−1))′(logC)′

)
= s(d− 2)

K2

F 2
, (4.40)

− 1
F 2

(
(log(Ffrd−1))′′ + ((logB)′)2 − (logF )′(log(Ffrd−1))′

+p((logC)′)2 + (d− 1)((logGr)′)2
)

= s(d− 2)
K2

F 2

+
1

2F
(φ′)2 (4.41)

− 1
F 2

(
(logGr)′′ + (log(frd−1))′(logGr)′ − (d− 2)

F 2

G2r2

)
= s(p+ 1)

K2

F 2
, (4.42)

φ′′ + φ′(log(frd−1))′ = ans(D − 2)K2 (4.43)

where

K2 =
1

2(D − 2)
e−anφ

Q2

(Gr)2(d−1)
F 2. (4.44)

We will not attempt to find a general solution to these equations, but will instead specifically
look for a brane solution of the desired form. We start with the ansatz

log
(
Bs

C

)
= cB log f, log

(
F

G

)
= cF log f, (4.45)

where cB and cF are to be determined. This, combined with Eq. (4.39) amd Eq. (4.40), leads to(
log

Bs

C

)′′
+
(

log
Bs

C

)′
(log(frd−1))′ = cB

(
(log f)′′ + (log f)

[
(log f)′ +

d− 1
r

])
= cB

(
f ′′

f
+
f ′(d− 1)

fr

)
= 0

⇒ f ′′ + f ′
d− 1
r

= 0. (4.46)

This has the family of solutions

f =
C1

rd−2
+ C2, (4.47)

where C1 and C2 are constants of integration. Since we demand that f → 1 as r → ∞, we pick
C2 = 1, and write the solution as

f = 1−
(r0

r

)d−2
. (4.48)

Let us further write
g ≡ Cp+1Gd−2 = f

CF

BG
= f1−(cB−cF ), (4.49)

and then, using Eq. (4.40) and Eq. (4.42)

(logCp+1)′′ + (logCp+1)′(log(frd−1))′

+(log(Gr)d−2)′′ + (log(Gr)d−2)′(log frd− 1)′ − (d− 2)2 F 2

G2r2

= (log g)′′ + (log g)′(log frd−1)′ +
d− 2
r

[
(log f)′ +

d− 2
r

(
1− F 2

G2

)]
= 0. (4.50)
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A solution is given by g ≡ 1 or equivalently cB − cF = 1, which leads to
(

1−
(
r0
r

)d−2
)2cF+1

= 1
and therefore cF = −1/2, cB = 1/2.

Using this on Eq. (4.45) allows us to re-write the F 2/G2 term in Eq. (4.42) in terms of f , which
gives

(logG)′′ + (logG)′(log frd−1)′ = s(p+ 1)K2. (4.51)

Adding this to Eq. (4.43), multiplied with factors to cancel the right hand side, leads to

(an logG− p+ 1
D − 2

φ)′′ + (an logG− p+ 1
D − 2

φ)′(logfrd−1)′ = 0

and therefore
φ = logG

D−2
p+1

an . (4.52)

Now we can reduce Eq. (4.51) to a function of G only, which gives us a differential equation for G:

G′′

G
− (G′)2

G2
+
G′

Gr

[
d− 1−

(
r0
r

)d−2

1−
(
r0
r

)d−2

]
= s

(p+ 1)Q2

2(D − 2)r2(d−1)
(

1−
(
r0
r

)d−2
)G− 2∆

p+1 , (4.53)

where ∆ = (d− 2)(p+ 1)− 1
2(D − 2)a2

n. We take the ansatz

G =

(
1 +

(
h

r

)d−2
)A

= HA, H ≡ 1 +
(
h

r

)d−2

(4.54)

with A and h to be determined. After some computation this gives

A =
p+ 1

∆
(4.55)

h2(d−2) + rd−2
0 hd−2 = −s ∆Q2

2(d− 2)2(D − 2)
(4.56)

and therefore

G = H
p+1
∆ =

(
1 +

(
h

r

)d−2
) p+1

∆

. (4.57)

With the relations we have established, we now know all other components of the metric except C.
This can be solved by adding Eq. (4.40) and Eq. (4.51), multiplied with factors such that the right
hand side is eliminated, to yield (as one solution, which we choose here)

CG
d−2
p+1 = 1. (4.58)

Then the final metric is

ds2 = H−2 d−2
∆

(
sfdt2 +

p∑
i=1

(dxi)2

)
+H2 p+1

∆ (f−1dr2 + r2dΩ2
d−1). (4.59)
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4.4.3 The extremal D3 -brane

The charge Q, which appeared as a constant of integration in Eq. (4.18), is related to the number
N of coincident branes by [12]

Q = Ngs
(2π`s)4

Ω5
= 16Ngs`4sπ, (4.60)

where `s is the string length and Ω5 is the volume of the 5-d unit sphere.
The D = 10, p = 3 case is the D3 -brane solution. The compactification sphere then has

dimension d = 6. Setting r0 = 0 is the extremal solution, and the metric becomes

a5 = 0, f = 1, ∆ = (p+ 1)(d− 2) = 16,

hd−2 =
(
Q2

16

)1/2

=
Q

4
,

H = 1 +
Q

4r4

ds2 =
(

1 +
Q

4r4

)−1/2

(sdt2 +
3∑
i=1

(dxi)2) +
(

1 +
Q

4r4

)1/2

(dr2 + r2dΩ2
5) (4.61)

Let us then define the variable U = r/`2s, and go to the limit where r → 0 and `2s → 0 in such a
way that U becomes the meaningful variable. Then Eq. (4.61) goes to

ds2 =
(

4Ngsπ
`4sU

4

)−1/2

(sdt2 +
3∑
i=1

(dxi)2) +
(

4Ngsπ
`4sU

4

)1/2

(`4sdU
2 + U2`4sdΩ2

5)

= `2s

(
U2

L2
d~x2

4 +
L2

U2
dU2 + L2dΩ2

5

)
, (4.62)

with L2 =
√

4Ngsπ and d~x2
4 is the Euclidean or Minkowski metric, as determined by s. Rescaling to

remove the singular `2s and multiplying by L2 brings the metric to a form which is clearly a direct
product of a 5-sphere and the AdS5 metric Eq. (3.23), both with radius L2:

ds2 =
L4

U2
dU2 + U2d~x2

4 + L4dΩ2
5. (4.63)

4.4.4 The non-extremal D3 brane

If we take r0 6= 0, we have a non-extremal D3 brane. We can then go to the near-horizon limit
and let r0 → 0 in such a way that r0/r remains meaningful. Writing this in terms of U and a new
parameter U0 replacing r0, the metric becomes

ds2 =
L4

U2
(1− U4

0

U4
)−1dU2 + U2

[
s

(
1− U4

0

U4

)
dt2 + d~x2

3

]
+ L4dΩ2

5. (4.64)

This is the metric of a black hole in AdS5 × S5, with the event horizon at U = U0. This event
horizon originates of course as the event horizon of the black p-brane.

4.5 Branes and gauge theory

On a stack of N branes on top of each other, an open string going from one brane back to itself
or another brane on the stack has two indices from 1 . . . N determining the starting and ending
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branes. Such indices related to the ends of open strings are called Chan-Paton factors. The quantum
states corresponding to such open strings must carry the corresponding indices, and therefore
become N ×N matrices. It turns out that these are U(N) matrices, corresponding to a local gauge
symmetry. The U(1) part factorizes out for most purposes, leaving an SU(N) symmetry. [14]

The SU(N) degrees of freedom on an extremal D3 brane generate, in the low energy approxi-
mation, an N = 4 super Yang-Mills field theory. While an exact proof is beyond the scope of this
discussion, it is already suggestive that if we take the N = 1 supersymmetric gauge theory, which
must exist in the bulk as a part of the supergravity theory, and dimensionally reduce it to take
place on the brane, we end up with the N = 4 SYM, as seen in section 2.4.

It is also interesting to consider what are the consequences of letting the brane be non-extremal.
In such a case, according to the Bekenstein-Hawking conjecture, there must be a temperature related
to the horizon. As a matter of fact, this temperature indeed becomes the temperature of the field
theory. We will return to this several times in later sections.
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5 The Maldacena duality

In the previous section we saw that the low energy theory describing the interactions of the ends
of open strings bound on a stack of N D3 branes is the N = 4 super Yang-Mills theory with the
gauge group SU(N). Since the energy of a string is coarsely proportional to string length, we see
that low-energy means short strings that do not venture far from the brane. On the other hand, we
saw that spacetime geometry near the brane is that of an AdS5 × S5. So it seems that as long as
the geometry is anti de Sitter, the open strings bound to the branes form a SYM theory. What
if the space is made to have an AdS5 geometry throughout, not just near the brane? This idea,
combined with the fact that type IIB string theory on an AdS5 × S5, with the S5 compactified, has
a set of symmetries that is isomorphic to those of the N = 4 SYM theory, leads to the Maldacena
conjecture [1, 2, 3]:

Type IIB string theory on an AdS5 × S5 background with N units of five-form flux through
the sphere S5, is exactly equivalent, or dual, to the N = 4 super Yang-Mills theory on a four
dimensional flat Minkowski space, with the gauge group SU(N). The identification between the
two theories is defined by the equation

〈exp
∫
φ0O〉SYM = Z[φ(~x, 0) = φ0(~x)]String, (5.1)

where O is an operator of the SYM, the expectation value on the left is with respect to the SYM
action, z is the radial coordinate such that the boundary is at z = 0, ~x represents the rest of the
coordinates and therefore also parametrizes the boundary (for example in the fashion described
in section 3.3), φ(~x, z) is a field of the string theory that is dual to the operator O, φ0(~x) is an
arbitrary prescribed field on the boundary and Z[φ(~x, 0) = φ0(~x)]String is the partition function
of the string theory, with the constraint that the field φ must tend to φ0 on the boundary. The
relation between the couplings of the theories is

gs = g2
YM , L4 = 4πgsNα′2, (5.2)

where gs is the string coupling constant, gYM is the Yang-Mills coupling, N is the rank of the gauge
group SU(N) or the quantized amount of 5-form flux on the S5, α′ = 1

2πT = l2/2 where l is the
zero-mode length of the string and T is the string tension, and finally L2 is the radius of both the
S5 and the AdS5.

This prescription allows us to find the expectation values of the operator O from the string theory
partition function by taking functional derivatives with respect to φ0 on both sides of Eq. (5.1). The
φ0 field acts as a source term on field theory side, such that each functional derivative brings down
a factor of O. Setting the φ0 field to zero in the end then recovers the operator expectation value:

〈O(~x1) . . .O(~xn)〉 =
[

δ

δφ0(~x1)
. . .

δ

δφ0(~xn)

∫
dX exp(

∫
φ0O) exp(i

∫
LSYM(X))

] ∣∣∣
φ0=0

=

 δ

δφ0(~x1)
. . .

δ

δφ0(~xn)

∫
G

dY exp(SString(Y ))

 ∣∣∣
φ0=0

, (5.3)

where G = {φ(~x, z)| lim
z→0

φ(~x, z) = φ0(~x)} is the set of functions over which the integrations range
and dX and dY stand for functional integration over all fields of the SYM and string theories,
respectively. Notice that the functional derivative on the right is with respect to a variable that
defines the integration domain, which may not be so easy to define generally. Practical calculations
involve the classical approximation, though, and in this case the functional integral reduces to
picking out the solution that minimizes the action, so one may simply solve the classical problem
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for a general φ0 and then take the functional derivative as usual. Also one or both of the integrals
may be divergent in the general case, but this is to be expected since a QFT usually requires
renormalization. If the conjecture holds true, then renormalization on one side should somehow
define the renormalization on the other side. This is addressed in [24].

Notice that in this formulation, the D3 brane that inspired the conjecture has been entirely left
out. The SYM theory lives on the boundary of the AdS5 space, which contains no branes at all.
Only the geometry near the brane has been taken as an ingredient of the duality.

The part left to define in order to make concrete calculations is the correspondence between
operators on the SYM side and fields on the string side (or AdS side, which we will use as a more
generic term once we start approximating the string theory with various low-energy descriptions).
Right away we see that the fields and their corresponding operators must have conjugate quantum
numbers in order to form singlets for the functional integral. Especially the product of the scaling
dimensions of the boundary field φ0 and the boundary operator O must be d− 1, so that the action
is invariant with respect to scaling.

5.1 Comparing symmetries

The first evidence for the Maldacena conjecture comes from the symmetries of the two theories. First
of all, both have the same conformal symmetry, since the SYM lives natively on four dimensional
Minkowski space, and is a conformal theory, whereas the boundary of AdS5 has only a conformal
structure (as opposed to having a complete metric structure) as we have shown in section 3.4, and
therefore any theory defined on the boundary must have four dimensional conformal symmetry.
The string theory also has extra dimensions that form an S5, which gives it an SO(6) symmetry.
The corresponding symmetry on the SYM side is the SU(4) ∼ SO(6) R-symmetry rotating the
supercharges. Finally both theories have 16 unbroken supersymmetries (the background metric
breaks half of the 32 supersymmetries of the string theory). These groups combine to a SU(2, 2|4)
supergroup on both sides.

5.2 The large N and large ’t Hooft coupling limits

From Eq. (5.2) we see that the ’t Hooft coupling is

λ = gsN. (5.4)

Now the limit with λ constant and N →∞ corresponds to gs → 0. Therefore on this limit only the
first term in a loop expansion of string theory survives and we have a classical string theory. On
the other side we have the large N limit of the full quantum SYM theory. On this limit the duality
is between a classical string theory and a fully quantum mechanical field theory!

We also see from Eq. (5.2) that

λ =
L4

4πα′2
, (5.5)

and hence that the strong ’t Hooft coupling limit λ→∞ with the radius L kept constant corresponds
to the small α′ limit on the string theory side. Since the masses of the string theory non-ground
state excitations are proportional to α′, this is the massless limit of string theory, which is the
corresponding supergravity theory.

Combining both of these limits gives us a method to calculate observables in the large N and
strong coupling regime of the N = 4 SYM theory by solving problems in classical supergravity.
Since the strong coupling limit of field theories has previously been accessible only to numerical
lattice calculations, this is a very powerful result.
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Fig. 1 is a schematical depiction of various limits of the string theory with respect to the variables
of its dual field theory.

We can also conjecture the duality on any of these limits individually. One can then consider if
any of the following conjectures are true:

1. N = 4 SYM is dual to Type IIB string theory on AdS5 × S5.

2. The large ’t Hooft coupling limit of N = 4 SYM is dual to Type IIB supergravity on AdS5×S5.

3. The large N limit of N = 4 SYM is dual to classical Type IIB string theory on AdS5 × S5.

4. The simultaneous large N and large ’t Hooft coupling limit of N = 4 SYM is dual to classical
Type IIB supergravity on AdS5 × S5.

As we have established, conjecture 1 implies all the rest and conjectures 2 and 3 together imply 4.
Except for symmetry arguments, most direct evidence in favour of the duality is actually evidence
only for conjecture 4. This is because that is the only limit where explicit calculations have been
made.

0
0

∞

∞

Classical string

N

Classical
supergravity

Supergravity

λ
Figure 1: A schematic on the various limits of the string theory dual to the N = 4 super Yang-Mills
with respect to SYM parameters.

5.3 The classical supergravity limit

On the supergravity limit, the action on the right hand side of Eq. (5.1) is that of type IIB
supergravity. If we go at the same time to the classical limit, the functional integral picks out the
classical solution only, which is the one that minimizes the action. We have then

〈exp(
∫
Oφ0)〉 = exp i

∫
LSugra(φ(φ0)), (5.6)

where φ(φ0) is the classical supergravity solution expressed as a function of the boundary field φ0.
In general, finding the classical solution with arbitrary boundary conditions is still a formidable

task. We will instead attempt at first to find a solution to the simpler problem of free fields in the
AdS5 background with the given boundary conditions. Since the equation of motion for a free field
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is linear, it can be written in the general form Dxφ(x) = 0, where Dx is a linear differential operator
acting on the coordinates x = (~x, z) and φ(x) is the field. If we then have a function K(~y, ~x, z) such
that

DxK(~y, ~x, z) = 0, when z 6= 0,
lim
z→0

K(~y, ~x, z) = δ(~x− ~y),

we can construct a solution with the boundary values φ0(~y) by decomposing it as

φ(x) =
∫

d~y φ0(~y)K(~y, ~x, z) (5.7)

so that
lim
z→0

φ(~x, z) =
∫

d~y φ0(~y) lim
z→0

K(~y, ~x, z) =
∫

d~y φ0(~y)δ(~y − ~x) = φ0(~x) (5.8)

and
Dxφ(~x, z) = Dx

∫
d~y φ0(~y)K(~y, ~x, z) =

∫
d~y φ0(~y)DxK(~y, ~x, z) = 0. (5.9)

This is of course just the familiar method of Greens functions, except now with the twist that the
inhomogenic term is defined on the boundary instead of the bulk space.

5.3.1 Massless scalar fields

The simplest case is that of a free massless scalar field. In a background with the metric gµν , the
equation of motion is

DµD
µφ(x) =

1
√
g
∂µ (
√
g∂µφ(x)) = 0. (5.10)

If we pick the Poincaré coordinates as defined in Eq. (3.24), denoting ξ0 = z, ~ξ = ~x, the metric
tensor becomes gµν = 1

z2 ηµν , g = 1
z2d , gµν = z2ηµν . The easiest way to derive the propagator is to

use symmetries. The conformal Minkowski space on the boundary of AdS5 is compactified by a
single point P at infinity, so we may first look for the propagator which produces a delta function
on that point. The propagator cannot depend on the ~x coordinate due to translation invariance, so
Eq. (5.10) reduces to

d
dz

1
zd−2

d
dz
K(z) = 0. (5.11)

The ansatz K(z) = czα then leads to α(α+ 1− d) = 0. The solution α = 0 is constant and cannot
have a delta function singularity at infinity. The propagator for this special case is then

K(∞, ~x, z) = czd−1, (5.12)

where c is a normalization constant. The conformal invariance of the boundary theory allows us to
find the propagator with a delta function at the origin. The mapping

z 7→ z

x2
, ~x 7→ ~x

x2
(5.13)

where x2 = z2 + ~x2, induces the mapping

~x 7→ ~x

(z2 + ~x2)2
(5.14)

on the boundary, which is a conformal transformation and also maps the point at infinity to the
origin (here we enforced the condition that u = 1/z = 1 to fix the coordinates on the boundary, as
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in section 3.3). It is also an isometry of AdSd. Let a, b ∈ TxAdSd and x′ = x/x2. Then the tangent
vectors transform as

a′µ =
∂x′µ

∂xν
aν =

aµx2 − 2x · axµ

x4
(5.15)

and, denoting aµbνηµν = a · b, their inner product becomes

g′µνa
′µb′ν =

1
(z/x2)2

(
a · b x4

x8

)
=

1
z2
a · b = gµνa

µbν . (5.16)

In the embedding space, this corresponds to the reflection y0 7→ y0, yα 7→ yα, yn 7→ −yn, as can be
seen by solving for the y coordinates in terms of the set (z, ~x) and the AdSd condition Eq. (3.21).

Applying the transformation to Eq. (5.12) gives

K(0, ~x, z) = c
zd−1

(z2 + ~x2)d−1
(5.17)

That this satisfies the Laplace equation in the bulk can be verified by direct calculation. The delta
function property can be seen as follows: when ~x 6= 0, the propagator clearly converges to zero as
z → 0. On the other hand, the integral over the coordinates ~x is independent of z, since∫

dd−1~x
zd−1

(z2 + ~x2)d−1
=
∫

dd−1~x′zd−1 zd−1

(z2 + z2~x′2)d−1
=
∫

dd−1~x′
1

(1 + ~x′2)d−1
=

1
c
, (5.18)

where the last equality defines the normalization constant c introduced above. Therefore the integral
over any set including the point ~x = 0 goes to 1/c as z goes to zero, so the propagator indeed
becomes a delta function at this limit. Now an application of translation invariance on the boundary
gives the full propagator:

K(~y, ~x, z) = c
zd−1

(z2 + (~x− ~y)2)d−1
(5.19)

and the classical solution is

φ(x) = c

∫
d~yφ0(~y)

zd−1

(z2 + (~x− ~y)2)d−1
. (5.20)

We now have enough data to form the n-point functions of the operator corresponding to the
scalar field. The scalar action is

I(φ0) = −1
2

∫
ddx
√
g∂µφ∂

µφ = −1
2

∫
ddx {∂µ (

√
gφ∂µφ)− φ∂µ(

√
g∂µφ)} . (5.21)

The last term vanishes by the equation of motion. The total derivative term becomes a surface
integral, which is non-zero at the boundary z → 0. Setting z = ε for now to suppress divergences,
we have

I(φ0) = −1
2

∫
z=ε

d~x z−d+2φ(~x, z)∂zφ(~x, z). (5.22)

Evaluating the derivative of φ and using the fact that z is small, so that we may pick only the terms
proportional to the highest power of z, gives

lim
z→0

∂zφ(~x, z) = c(d− 1)zd−2

∫
dd−1~y φ0(~y)

1
(~x− ~y)2d−2

. (5.23)

The φ(~x, z) term in the action becomes simply φ0(~x) on the limit z → 0, and the action becomes

I(φ0) = −c(d− 1)
2

∫
dd−1~x dd−1~y

φ0(~x)φ0(~y)
(~x− ~y)2(d−1)

, (5.24)
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which is non-singular, so we have taken the limit z → 0. Inserting this into the master formula then
gives

〈O(~x′)O(~y′)〉 =
[

δ

δφ0(~x′)
δ

δφ0(~x′)
exp

(
c(d− 1)

2

∫
dd−1~x dd−1~y

φ0(~x)φ0(~y)
(~x− ~y)2(d−1)

)] ∣∣∣
φ0=0

=
c(d− 1)

(~x′ − ~y′)2(d−1)
. (5.25)

This is exactly the result for the 2-point function of a conformal operator of scaling dimension d− 1,
which is fixed in the field theory side by conformal invariance [11]. As expected, the propagator
derived by a classical calculation is indeed characteristic of a quantum theory.

The 3-point function is zero, but the 4-point function is

〈O(~x′)O(~y′)O(~z′)O(~w′)〉 = c2(d− 1)2

(
1

(~z′ − ~x′)2(d−1)

1
(~y′ − ~w′)2(d−1)

+
1

(~y′ − ~x′)2(d−1)

1
(~z′ − ~w′)2(d−1)

+
1

(~z′ − ~y′)2(d−1)

1
(~x′ − ~w′)2(d−1)

)
, (5.26)

which is simply the 4-point function of a free field theory, as expected.

5.3.2 Massless abelian gauge fields

We will now compute the propagator for a massless abelian gauge field Aµ with the equation of
motion

1
√
g
∂µ(
√
gFµν) = 0, (5.27)

where
Fµν = ∂µAν − ∂νAµ (5.28)

as usual. In this section Greek indices go through the full set {z, ~x}, with 0 being the z –component,
and Latin indices run over components of ~x. The gauge field actually defines a 1-form A = Aµdx

µ

in d dimensions. The boundary limit of the 1-form must be a 1-form in d− 1 dimensions, which
means that the radial component proportional to dz must vanish. We are then looking for a set of
gauge propagators Ki(~y, ~x, z) such that

lim
z→0

Ki(~y, ~x, z) = δ(~x− ~y)dxi, (5.29)

that is, the propagator must tend to a delta function on the ith component and to zero on all
other components. We use again the trick of constructing first the propagator where the delta is at
infinity, and argue that it must again be independent of other components than z:

Ki(∞, ~x, z) = f(z)dxi. (5.30)

Notice that the index of K denotes the component of the boundary field that we want to be non-zero.
This function must satisfy Eq. (5.27). We calculate

F0i = ∂zf(z) = f ′(z),
√
gF 0i = z4−df ′(z),

∂z(
√
gF 0i) = (4− d)z3−df ′(z) + z4−df ′′(z) = 0. (5.31)
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Clearly if f(z) = zα, then both terms in Eq. (5.31) are of the same power, which gives a constraint
on α. We have

α(α+ 3− d)z2−d+α = 0⇒ α = d− 3
Ki(∞, ~x, z) = zd−3dxi. (5.32)

Application of the same inversion as in the previous section gives the propagator to the origin of
the boundary:

xµ 7→ xµ

z2 + ~x2

⇒ Ki(0, ~x, z) =
(

xi

z2 + ~x2

)d−3

d
(

xi

z2 + ~x2

)
=

zd−3xi

(z2 + ~x2)d−3
d
(

1
z2 + ~x2

)
+

zd−3

(z2 + ~x2)d−2
dxi

= d
(

zd−3xi

(z2 + ~x2)d−2

)
− d(zd−3xi)

(z2 + ~x2)d−2

− zd−3xi

(z2 + ~x2)
d
(

1
(z2 + ~x2)d−3

)
+

zd−3

(z2 + ~x2)d−2
dxi

= d
(

zd−3xi

(z2 + ~x2)d−2

)
− d(zd−3xi)

(z2 + ~x2)d−2

−d− 3
d− 2

zd−3xid
(

1
(z2 + ~x2)d−2

)
+

zd−3

(z2 + ~x2)d−2
dxi

=
1

d− 2
d
(

zd−3xi

(z2 + ~x2)d−2

)
− 1
d− 2

d(zd−3xi)
(z2 + ~x2)d−2

+
zd−3

(z2 + ~x2)d−2
dxi

=
1

d− 2
d
(

zd−3xi

(z2 + ~x2)d−2

)
+
d− 3
d− 2

1
(z2 + ~x2)d−2

(
−zd−4xidz + zd−3dxi

)
.

The first term on the final line is a pure gauge term, which we transform away. Using translation
invariance and dropping the constant factor, the final propagator is

Ki(~y, ~x, z) =
zd−3dxi − zd−4(xi − yi)dz

(z2 + (~x− ~y)2)d−2
(5.33)

and a general 1-form gauge field A0(~x) = ai(~x)dxi on the boundary is then generated by

A0(~x) =
∫

d~y ai(~y)
zd−3dxi − zd−4(xi − yi)dz

(z2 + (~x− ~y)2)d−2
. (5.34)

The action is

S =
∫

AdSd

F ∧ ∗F =
∫

AdSd

dA ∧ ∗F =
∫

AdSd

d(A ∧ ∗F )−
∫

AdSd

F ∧ d ∗ F =
∫

∂AdSd

A ∧ ∗F, (5.35)

where we used the equation of motion in the form language, d ∗ F = 0. The unit normal to the
boundary in our choice of coordinates is nµ = (−z, 0, . . . , 0). Since, on the boundary, the 1-form A
does not have a component in the z –direction, and the unit normal has a non–zero component only
in the z –direction, a little index gymnastics reveals that the action becomes

S =
∫

d~x AiF0in
0. (5.36)
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The field strength tensor is

F0i =
∫

d~y
[
ai(~y)

(d− 3)zd−4

(z2 + (~x− ~y)2)d−2
− ai(~y)

2(d− 2)zd−2

(z2 + (~x− ~y)2)d−1

+ai(~y)
zd−4

(z2 + (~x− ~y)2)d−2
− aj(~y)

2(d− 2)(xj − yj)(xi − yi)zd−4

(z2 + (~x− ~y)2)d−1

]
=

∫
d~y
[
ai(~y)

(d− 2)zd−4

(z2 + (~x− ~y)2)d−2
− ai(~y)

2(d− 2)zd−2

(z2 + (~x− ~y)2)d−1

−aj(~y)
2(d− 2)(xj − yj)(xi − yi)zd−4

(z2 + (~x− ~y)2)d−1

]
. (5.37)

Inserting this, the square root of the metric determinant and the gauge field A with the gµνthat
raises its index, and taking z → 0 gives

S ∝
∫

d~x d~y
∑
i,j

ai(~x)aj(~y)
[

δij

(~x− ~y)2d−4
− 2(xi − yi)(xj − yj)

(~x− ~y)2d−2

]
. (5.38)

Both the ai and aj have a lower index even though they are summed over because we used the gµν

to cancel a z2.
Exponentiating and taking two functional derivatives gives the two-point function for the

corresponding operator J i(~x), which is a conserved current:

〈J i(~x)J j(~y)〉 =
δij

(~x− ~y)2d−4
− 2(xi − yi)(xj − yj)

(~x− ~y)2d−2
. (5.39)

The current conservation is easily demonstrated:

∂i〈J i(~x)J j(~y)〉 = −2(d− 2)(xj − yj)
(~x− ~y)2d−2

−2d(xj − yj)(~x− ~y)2 − 4(d− 1)(xi − yi)(xi − yi)(xj − yj)
(~x− ~y)2d−4

= 0. (5.40)

Since we are still dealing with a free theory, the higher n-point functions are naturally zero for
odd n and the usual combinations of the 2-point function for even n.

5.3.3 Massive fields

In the case of massive fields, the conformal invariance of the boundary becomes apparent. In
deriving the propagator, the equation of motion now has a mass term on the right side, so that the
analog of Eq. (5.11) is solved by

K(∞, ~x, z) = czd−1+λ± , (5.41)

where λ± are solutions of λ(d− 1 + λ) = m2,

λ+ =
1
2

(−(d− 1) +
√

(d− 1)2 + 4m2), λ− =
1
2

(−(d− 1)−
√

(d− 1)2 + 4m2). (5.42)

Out of these only the solution corresponding to λ+ tends to infinity at z →∞. The same procedures
as in the massless case then lead to the propagator

K(~y, ~x, z) = c
zd−1+λ+

(z2 + (~x− ~y)2)d−1+λ+
. (5.43)
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Unfortunately, this does not tend to a delta function on the boundary. On the other hand, if the
numerator were zd−1+2λ+ , it would. If we extract this term, we find that

lim
z→0

z−λ+c

∫
d~y

zd−1+2λ+

(z2 + (~x− ~y)2)d−1+λ+
φ0(~y) = lim

z→0
z−λ+φ0(~x). (5.44)

The vanishing z−λ+ term is a consequence of the divergence of the metric at the boundary. A
conformal rescaling while approaching the boundary allows us to recover a finite value for the field
φ0, but since the rescaling can be chosen in any way that gives a first order zero on the boundary,
this means that we cannot actually specify the boundary field as a function. The field φ0 must
instead be specified as a conformal density of weight −λ+. In order for the action to be invariant,
the operator O coupling φ0 must have conformal weight d− 1 + λ+.

This is explicitly verified by calculating the 2-point function for O, which proceeds in exactly
the same way as in section 5.3.1. The result is

〈O(~x′)O(~y′)〉 =
1

(~x′ − ~y′)2(d−1+λ+)
, (5.45)

which is exactly the 2-point function for a conformal operator of weight λ+, which is fixed by
conformal invariance on the field theory side.

Similarily, the conformal weight of an operator coupling to a p-form field can be shown to be
d− 1 + λ+ − p.

5.4 Interactions and Witten diagrams

Figure 2: A Witten diagram representing the 3-point function of an abelian gauge field. The circle
represents the conformal one-point compactified boundary of AdS, and the interior of the circle is
the bulk space.

So far our calculations have only dealt with free fields of the bulk theory, which of course yield
free fields on the boundary. The more interesting case of interactions can be addressed in the very
same way as in an ordinary field theory, by expanding the exponential of the interaction part of the
action in a power series. This then generates vertex rules and propagators analogously to Feynman
graphs, with the major exception that external particles propagate to and from the boundary of the
AdS spacetime. Bulk-to-bulk propagators and all vertices are those of the bulk theory. The resulting
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expansions may be graphically depicted as Witten diagrams, see Fig. 2. Quantum corrections to
the classical supergravity approximation may be calculated by adding loops to the diagrams. This
generates 1

N corrections to the boundary theory.

5.5 Finite temperature and the AdS black hole

The most obvious modification to the duality is to consider different backgrounds in the bulk. A
simple alternative choice is to take a space which is asymptotically AdS5 which conserves the
conformal symmetry of the boundary, but that has a black hole in the bulk. The simplest black
hole configuration has the metric

ds2 =
L2

z2

−(1− z4

z4
0

)dt2 + d~x2 +
dz2

1− z4

z4
0

 . (5.46)

It turns out that this metric induces a finite temperature on the field theory side. The temperature
is defined by going to periodic Euclidean time and determining the period β such that the metric
is free of singularities. Such a period is β = πz0. By standard finite temperature field theory
arguments, this corresponds to the temperature T = 1/β = 1

πz0
[25].

The coordinate transform z 7→ L2/r leads to the other commonly used form of the metric

ds2 =
r2

L2

(
−
(

1− r4
0

r4

)
dt2 + d~x2

)
+
L2

r2

(
1− r4

0

r4

)−1

dr2, (5.47)

where the horizon radius r0 = L2

z0
. The relationship between temperature and horizon radius in

these coordinates is then T = r0
πL2 . This form of the metric is the same as the near-brane form of

the brane solution we developed in section 4.4.
Most of the interesting results in AdS/CFT are actually calculations in this finite temperature

formalism.
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6 Applications of the duality

In this section we will review, with varying degrees of detail, some applications of the AdS/CFT
duality and related dualities. This list is simply a choice of a few topics that are interesting and
suitable for inclusion here, and is far from complete.

Many of the applications do not actually directly use the prescription given in the previous
section, but instead rely on general arguments about the behaviour of fields in the bulk coupling to
operators on the boundary.

6.1 The stress-energy tensor

The field coupling to the stress-energy tensor of the SYM is the metric tensor of the AdS -space.
While the stress-energy tensor could be evaluated directly by the master formula Eq. (5.1), it is
easier to derive it from the more general holographic renormalization formalism presented in [24].

We compute the stress-energy tensor of the finite temperature N = 4 SYM. The field dual to
the stress-energy tensor in the supergravity side of the duality is the metric tensor. The first step is
to convert the metric to the Graham-Fefferman coordinate system

ds2 =
1
z2

(dr2 + gµνdx
µdxν) (6.1)

which isolates the singularity on the boundary, and also shows explicitly the representative metric
gµν (of the conformal class of metrics on the boundary) induced by this specific form of the metric
in the bulk [26]. The metric Eq. (5.46) can be brought to this form by the transformation [27]

z =
w√

1 + w4

4z4
0

. (6.2)

Since we are interested in the finite temperature case, we take the signature to be Euclidean, and
have

ds2 =
L2

w2

dz2 +
(1− w4

4z4
0
)2

1 + w4

4z4
0

dt2 + (1 +
w4

4z4
0

)d~x2

 . (6.3)

The expectation value of the boundary stress-energy tensor is then given by [24, 28]

〈Tij〉 =
L3

4πG5

[
g(4)ij −

1
8
g(0)ij

(
(Tr g(2))

2 − Tr g2
(2)

)
− 1

2
(g2

(2))ij +
1
4
g(4)ijTr g(2)

]
, (6.4)

where g(n) is the term with n derivatives in the Taylor expansion of the boundary metric gµν , and
G5 is the five-dimensional Newton’s constant. Expanding the non-radial part of Eq. (6.3) gives

gµνdx
µdxν = (1− 3w4

4z4
0

)dt2 + (1 +
w4

4z4
0

)d~x2 +O(
w8

z8
0

). (6.5)

The ten dimensional coupling constant in terms of the string theory parameters in AdS5×S5 is
[29]

16πG10 = (2π)7α′4g2
s =

8L8π5

N2
. (6.6)

We can relate this to the five-dimensional Newton’s constant by writing the ten dimensional
gravitational action and using the fact that the S5 part factorizes:

1
16πG10

∫
d10x
√
G =

1
16πG10

∫
d5x
√
g

∫
d5y
√
γ =

L5π3

16πG10

∫
d5x
√
g =

1
16πG5

∫
d5x
√
g. (6.7)
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This gives the factor in front of Eq. (6.4) as

L3

G5
=

2N2

π
. (6.8)

Working out the factors for the spatial components gives

Txx =
L3

4πG5

1
4z4

0

=
N2

2π2

π4T 4

4
=
N2π2T 4

8
. (6.9)

The time-like component has an extra factor of three, and the stress-energy tensor becomes

〈Tµν〉 =


−3N2π2T 4

8 0 0 0
0 N2π2T 4

8 0 0
0 0 N2π2T 4

8 0
0 0 0 N2π2T 4

8

 . (6.10)

This result is consistent with the fact that the boundary theory is conformal: the stress-energy
tensor is traceless.

The numerical factor in the components of the tensor is interesting. In the weak coupling limit,
the ideal gas approximation to the pressure is

Txx = p(T ) = (gB +
7
8
gF )

π2

90
T 4 = (8 + 7)(N2 − 1)

π2

90
T 4 =

π2(N2 − 1)T 4

6
, (6.11)

where gB and gF are the number of bosonic and fermionic degrees of freedom, respectively. There
are six scalars and two vectors in the bosonic sector, and four fermions with four antifermions, all
multiplied by the number of degrees of freedom N2−1 coming from the adjoint representation of the
gauge group. In the large-N limit this expression has a factor of 3/4 difference to the gravitational
result. This shows that the strong coupling (to which the classical approximation of the AdS5

supergravity is dual to) correction to the stress-energy tensor is simply 3/4. The same factor also
relates the energy density Ttt in the weak and strong coupling limits, which obviously must hold
already in order to ensure the tracelesness of the energy momentum tensor.

6.2 Entropy

According to the Bekenstein-Hawking -conjecture, the entropy of a black hole is A
4GN

, where A is
the area of the event horizon [30]. In context of the AdS/CFT duality, the entropy thus associated
to the finite-temperature AdS5 black hole should then be same as that of the field theory, since if
they indeed are dual they surely must have the same number of fundamental degrees of freedom.
The entropy becomes [27]

SBH =
A

4G5
=
z−3

0 V3N
2

4 · π2
=
π2

2
N2V3T

3. (6.12)

The entropy of a free, weakly coupled N = 4 SYM plasma is

SYM =
2π2

3
N2V3T

3, (6.13)

which again differs by the same factor 3/4 as the pressure and energy density.
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6.3 Shear viscosity

The shear viscosity of hot SYM plasma can be related hydrodynamically to the stress-energy tensor
in the local rest frame. We consider the rest frame as the one where the three-momentum density
locally disappears, Ti0 = 0. Then the stress-energy tensor can be written as9 [32, 31]

Tij = −δijp+ η

(
∂iuj + ∂jui −

2
3
δij∂

kuk

)
+ ζδij∂

kuk,

T00 = −ε = −3p. (6.14)

Here ζ is the bulk viscosity, η is the shear viscosity, p is the pressure and ui is the local flow
three-velocity. In a conformal field theory, the stress-energy tensor must be traceless, tr Tµν =
ε− 3p− 3ζ∂kuk = 0, so ζ = 0.

The shear viscosity η is given by the Kubo formula [32, 31]:

η = lim
ω→0

1
2ω

∫
dtdxeiωt〈[Txy(t, x), Txy(0, 0)]〉 = lim

ω→0

1
2ωi

[GA(ω)−GR(ω)] . (6.15)

On the other hand, the absorption cross-section of gravitons on the supergravity (large ’t Hooft
coupling) limit by a black three-brane is known to be related to the stress energy tensor on the
brane. The connection is [33, 34]

σ(ω) =
8πG10

ω

∫
dtdxeiωt〈[Txy(t, x), Txy(0, 0)]〉. (6.16)

Therefore the shear viscosity is η = 1
16πG10

σ(0) (the value of σ(0) is of course defined as a limit).
The graviton absorption cross section on the ω → 0 classical gravity limit is simply the area of the
black hole horizon [31],

σ(0) =
π3L8

z3
0

. (6.17)

Using Eq. (6.6) we can then work out

L8 =
κ2N2

4π5
, (6.18)

where κ2 = 8πG10, and

η =
π3L8

2κ2z3
0

=
πN2T 3

8
. (6.19)

Dividing this by the entropy density s = S/V3 = π2N2T 3

2 gives the famous result

η

s
=

1
4π
. (6.20)

A more general method for deriving this result and many other coefficients from the background
metric of a gravitational dual of a theory is presented in [35] and [36, 37], where it is also shown that
the ratio η/s = 1/4π holds for all for all theories with a gravity dual in the large N , large λ limit, and
more generally it is conjectured, based on string theoretical arguments, that it is a lower limit for all
relativistic quantum field theories with a zero chemical potential [36]. Experiments at RHIC suggest
that the ratio is quite close to this in the strongly coupled quark gluon plasma generated at the
collisions, and it has even been suggested that the RHIC experiments may violate this conjectured
bound, although the results are not yet conclusive [38]. In addition, the N = 2 Sp(2) gauge theory

9There is a difference in sign here compared to [31], because of our opposing sign convention for the metric, which
also inverts the sign of the stress-energy tensor.

43



in four dimensions, which has an AdS5 dual, has a negative curvature squared correction to the
supergravity result, thus violating the bound [39]. In [40] it is shown that maintaining causality in a
similar Gauss-Bonnet theory requires a new bound η/s ≥ 16

25
1

4π . It is also suggested that some more
subtle effect may cause the theory to break causality already when η/s < 1

4π , thus reinstantiating
the original viscosity bound.

6.4 AdS/QCD

In addition to the somewhat rigorous AdS5 ×S5/ N = 4 SYM -duality, various phenomenological
models proposing a holographic gravity dual for realistic QCD have been put forward. In order
to approach QCD from a gravity dual viewpoint, one must break much of the symmetries of the
original Maldacena scenario. This means breaking supersymmetry, conformality, introducing fields
in the fundamental representation of the gauge group in addition to the adjoint fields in the N = 4
SYM and introducing confinement. [41]

An alternative approach is the so-called ’bottom-up’ approach where one picks a convenient five
dimensional background metric and chooses a field content such that, when interpreted as a gravity
dual to a four dimensional gauge theory by applying the master formula Eq. (5.1), some desired
features of QCD are reproduced. [41]

6.4.1 Adding quarks

In the standard AdS/CFT scenario, all the particles are in the adjoint representation of the gauge
group. This is understood in the brane interpretation of the duality, where the particle content of
the SYM theory consists of various ways that open strings can end on the stack on N branes. Since
each end of the string can end on any of the N branes, each particle has two indices 1..N , and
therefore lives in the adjoint representation.

In order to remove the other index, so that we can put a particle in the fundamental representation,
we have to put one end of the string to somewhere not on the D3 brane. A number of technical
requirements are also involved, so that the simplest method turns out to be adding a D7 brane,
which we will call a flavor brane, in the AdS5×S5 background, where the open strings can end. The
D7 brane extends in the dimensions that the D3 brane does and in four more, such that the radial
dimension is a part of the brane and that the S5 part is broken to an S4 (the slice enveloped in the
D7 brane) and an S2 (the part which is not contained in the D7). Adding more than one, say Nf , D7
branes, gives the string an index 1..NF which corresponds to having several quark flavors. In order
to keep strings extending from the stack of D7 branes back to itself from forming a SU(Nf ) gauge
theory, those modes must be decoupled. The coupling constant for them is λ′ = λ(2πls)4Nf/N ,
which goes to zero when N >> Nf . Here ls is the string length. [42]

Decoupling the D7 branes in this way is equivalent to ignoring the effects of the brane on itself
and the surrounding geometry, so this is called the probe brane approximation. On the field theory
side this corresponds to ignoring quark loops, or the so called quenched approximation. Steps have
been taken to move beyond the probe approximation. [41]

We can give mass to the quarks by letting the D7 and D3 branes have some separation in the
two dimensions orthogonal to both, since then there is a minimum length for the string between the
flavor branes and the D3 gauge branes, so that the rest-energy of a quark will be the energy of the
ground state of a string stretched between the branes.

The particle content of the theory will that of the N = 4 SYM plus Nf fundamental N = 2
hypermultiplets. Therefore the total supersymmetry of the theory is broken to N = 2. [42]
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6.4.2 Confinement

Since conformal theories cannot contain an energy scale, they cannot have a mass gap and therefore
are not confining. In the context of the AdS/CFT duality this can also be calculated directly by
considering the energy of two strings hung from the boundary towards the bulk AdS space. It turns
out that the minimum of energy is reached when the two strings connect in the bulk, and the energy
of that configuration relative to one where the strings stretch separately to infinity (one has to
consider the difference here, since either energy alone is infinite) is

E = −
4π2(2g2

YMN)1/2

Γ(1/4)4L
(6.21)

where L is the separation of the string endpoints on the boundary (quarks in field theory terms).
The inverse proportionality, which was actually guaranteed by conformal symmetry, shows that the
quarks tend to separate further, and are therefore indeed never confined. As the quark separation
increases, the string dips deeper in to the bulk. [43]

Since the conformal symmetry of the boundary is generated from the AdS geometry, it is the
geometry that needs to be modified to confine quarks. By inserting a block into the space at some
finite z, we can make the energy increase as the separation increases. Consider, for simplicity, a
hard wall at z = z0 (i.e. some feature of the geometry such that the string configuration minimizing
the world sheet area never dips below z0). Once the quark separation becomes large enough that the
string touches the wall it no longer has any choice but to extend along it, and since the geometry
along slices of constant z is flat (as can be seen from the metric Eq. (3.24)), the energy as a function
of quark separation must increase proportionally to the length L′ of the section of string lying on
the wall. [43, 41]

Of course the hard wall scenario is only the simplest choice, and there are several physically
more plausible methods that generate confinement, since the only essential requirement is that the
geometry is modified such that at quark separation beyond some limit the energy increases as the
separation increases.

When finite temperature is applied by including a black hole in the bulk, deconfinement appears
naturally once temperature becomes high enough that the black hole horizon crosses the wall that is
causing the confinement. Once the wall is behind the horizon, the ends of the two strings stretching
from the brane are sucked in to the black hole before they can reach the wall, and cannot therefore
join, making the theory deconfined.

6.4.3 The bottom-up approach

Another way to approach the problem of finding a holographic dual to QCD, instead of trying to
deform the AdS/CFT scenario, is to start with known features of QCD and attempt to construct a
five-dimensional theory that reproduces those features in its dual. This tends to produce a more
phenomenological result than the stringy approach, but on the other hand, some surprisingly good
fits to QCD parameters have been found. For illustration, we will very briefly describe one such
model, taken from [44].

The background is taken to be the standard AdS5 space:

ds2 = r2d~x2 +
dr2

r2
, (6.22)

where ~x is the four dimensional coordinate, and r is the fifth coordinate, which is interpreted as an
energy scale. This metric is conformally invariant, and in order to break the invariance a hard wall
is imposed at r = r0.
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The field content in the field theory side is taken to be the left- and right handed currents
q̄Lγ

µtaqL and q̄RγµtaqR corresponding to the chiral flavor symmetry and the chiral order parameter
q̄αRq

β
L. The AdS duals acting as sources for these operators are the fields AaLµ, AaRµ and (2/z)Xαβ,

respectively. The A fields are vector gauge fields transforming in the fundamental representation of
the chiral symmetry group, and Xαβ transforms under the adjoint representation of SU(Nf )L on
one of its indices and under the adjoint of SU(Nf )R on the other index. The action of the theory is

S =

∞∫
r0

d5x
√
−gTr

{
|DX|2 + 3|X|2 − 1

4g5
(F 2

L + F 2
R)
}
, (6.23)

where DµX = ∂µX − iALµX + iXARµ is the covariant derivative, FL and FR are the field strength
tensors of AL and AR, respectively, and g5 is the five dimensional gauge coupling, which is considered
a free parameter of the model.

Applying the AdS/CFT style recipe then gives the expectation values of the operators and any
desired combinations of them, which allows extraction of several QCD observables. The model
overall has three free parameters, the hard wall position z0, the expectation value of the quark
condensate and the quark mass (the latter two parameters come from determining the boundary
conditions of the X field). The gauge coupling g5 is determined by matching the value of the vector
current.

Any three observables can be made to match by fitting the free parameters to them. Any further
observables will then be predictions of the model. The first column of table 1 shows the results of
fitting the pion and rho masses and the pion decay width, and then calculating four more observables.
The second column shows the results of finding the overall best fit for the seven observables.

Observable Measured [MeV] AdS A [MeV] AdS B [MeV]
mπ 139.6±0.00049 139.6∗ 141
mρ 775.8±0.5 775.8∗ 832
ma1 1230±40 1363 1220
fπ 92.4±0.35 92.4∗ 84.0
F

1/2
ρ 345±8 329 353
F

1/2
a1 433±13 486 440
gφππ 6.03±0.07 4.48 5.29

Table 1: Several meson variables from the AdS/QCD model described in the text. AdS A is the
best fit to the starred observables, whereas AdS B is the best fit to all seven.[44]

The fit results are surprisingly good considering the simple starting point of the model and the
fact that three QCD operators were rather arbitrarily chosen while the rest were completely ignored.
This suggests that the idea of QCD being dual to a five dimensional theory in a deformed anti De
Sitter spacetime indeed captures some essential features of QCD.

9The peculiar expression 139.6± 0.0004 comes from the results column of the table in the original text [44]. The
error limit which is much smaller than the least significant digit of the measured value apparently serves the purpose
of denoting that the measured value is coarsely 139.6, but that it is actually known to an error margin of 0.0004.
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7 Discussion

The calculations and symmetry comparisons presented in section 5 give some basic justification for
the Maldacena duality. Due to these and many more successful tests, the duality in its original form,
as a duality between the N = 4 SYM and type IIB string theory on an AdS5 × S5 background, is
nowadays considered by experts as almost surely true, even though an exact proof is still lacking.
Current research focuses on deriving further results from the duality, and especially on searching for
less symmetric gravity duals which would be closer to QCD.

The primary application of the duality has been in understanding strongly coupled gauge theories.
Several phenomenological models have produced surprisingly accurate values for QCD parameters.
Another success for the duality has been the derivation of hydrodynamic transport coefficients from
the finite temperature formalism, and even some contact with experiment has been made, as values
of shear viscosity measured in the RHIC collider have been found to be near the AdS/CFT -derived
lower limit.

The generally accepted interpretation for gauge/gravity dualities at the moment is that they
are merely convenient mathematical tools for calculating variables in the strongly coupled non-
perturbative regime of gauge theories. This is a very natural interpretation when gauge/gravity
dualities are used to calculate observables in QCD, since in this case there is no exact duality, and
therefore one cannot make very fundamental interpretations based on these approximate relations.

On a more speculative note, consider the consequences if a precise duality would be found and
proven between a string theory and QCD. The interpretation that quarks and gluons are actually
endpoints of open strings on a brane or a system of branes (or on the conformal infinity of an
anti de Sitter spacetime) on which we would then live on would be indistinguishable from the four
dimensional field theory point particle interpretation in the context of QCD alone. In this case
one of these interpretations might eventually become favoured on basis of cosmological results or
perhaps by a direct observation of extra dimensions in a collider. In general as long as there is no
duality between the whole Standard Model plus gravity and a string theory (which is unlikely, since
no known gauge/string duality has gravity on the field theory side), it is possible to experimentally
distinguish a situation where reality is described by QCD plus the rest of the Standard Model,
and the duality between QCD and a string theory is just a fortunate mathematical curiosity, from
the situation where the observable universe is indeed a system of branes embedded in a higher
dimensional spacetime. The latter scenario could even give a whole new meaning to the term
“brane cosmology”: experimentally probing other branes in the bulk spacetime, for example by
observing gravitons (in practice, gravitational waves) arriving or scattering from distant branes or
other objects in the bulk! Of course all this is wildly speculative.

We do have reason to look forward to the near future too, though. Several predictions have been
made, based on various AdS/QCD models, of effects that might be observable in the LHC. Many of
these predictions compare AdS/QCD as a calculational technique to perturbative QCD or lattice
QCD, but a few of them are based on general arguments applying to any theories which have a
gravity dual. Therefore LHC results contradicting predictions of the latter type have a chance to
prove that QCD indeed has no exact gravity dual. On the other hand, observation of large extra
dimensions and gravitational phenomenon in the TeV -scale could lend considerable support to
stringy brane scenarios.
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A Notation

A.1 Differential geometry

We work with the mostly plus metric, that is, ηµν = (−1,+1, . . . ,+1), and contract the the first and
third indices of the Riemann tensor to form the Ricci tensor, that is, Rµν= Rαµαν . From section 3.2
onward, somewhat unconventionally ηµν = (s,+1, . . . ,+1) where s = ±1, so we can mostly handle
a Euclidean and a Minkowski space at the same time.

A.2 Spinors and supersymmetry

When working with spinors in the Weyl representation, undotted Greek indices transform in the
(1

2 , 0) representation of the Poincaré group, while the dotted indices transform in the conjugate
representation (0, 1

2). Undotted indices are raised by the matrix

εαβ =
(

0 −1
1 0

)
(A.1)

while dotted indices are lowered by

εα̇β̇ =
(

0 1
−1 0

)
. (A.2)

These matrices may be derived from the charge conjugation properties of Weyl spinors [7]. The
lowering of undotted indices and raising of dotted indices follow from these, since raising and then
lowering an index must amount to the identity transformation.

Capital Latin indices, usually I and J , label the independent supersymmetry generators, and
Ndenotes the number of these generators.
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