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Abstract

In this thesis, we discuss the observational consequences of extra dimensions on

cosmological phenomena. We begin with an overview of extra dimensions, from the

initial ideas of Kaluza and Klein to the more recent concept of braneworld models and

in particular review the cosmological aspects of the DGP braneworld model, which can

produce late time acceleration. We then go on to consider the asymmetric brane model,

comparing its cosmology to the standard concordance and DGP models and showing

how the asymmetric model can be considered a one-parameter extension of the DGP

model over a range of relevant physical scales. Using type Ia supernovae data and the

cosmic microwave background shift parameter, the effect of this new parameter on the

expansion history of the universe is considered. We then turn our attention to cosmic

string loops, which emit bursts of gravitational radiation, produced by cusps and kinks

on the loops. We investigate the kinematic effect extra dimensions will have on these

gravitational wave bursts and find that the effects of the additional dimensions are more

pronounced for cusps than for kinks: cusps are rounded off and their probability of

formation is reduced, however, the probability of kink formation is unchanged. Finally,

we recompute the gravitational wave bursts taking the various factors into account and

look at the implications of this recalculation for the LIGO and LISA gravitational wave

detectors, find that both signals, and in particular the cusp signal, have a potentially

significant damping, and consider the implications for the detection of extra dimensions.
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Chapter 1

Introduction

At the present point in time, the universe is extremely well described by the concordance

model of cosmology, the ΛCDM model, which accounts for most of the increasingly

precise cosmological measurements being made today, for instance the cosmic microwave

background (CMB), [4, 5], type Ia supernovae (SneIa), [6, 7, 8, 9, 10, 11], and large scale

structure surveys (LSS), [12, 13]. However, ∼ 72%, [4], of the contents of the universe

are unaccounted for in the ΛCDM model. This contribution to the overall energy density

is commonly thought to be some negative pressure fluid or ‘dark energy’ necessitated by

the present observed accelerated expansion of the universe, [6, 7, 8]. Furthermore we find

that ∼ 24% of the remaining (matter) content is not the usual baryonic matter which

makes up everything we see around us, but is instead unknown (and invisible) ‘dark

matter’. While there are plenty of dark matter candidates, the lightest supersymmetric

particle (LSP), axions, or sterile neutrinos, [14], to name but a few, there is still little

consensus on its exact form. However, with the prospect of advances being made by

the LHC in constraining supersymmetry and other beyond the standard model (BSM)

theories, along with present direct detection experiments such as DAMA, [15], CDMS,

[16], XENON, [17] and COGENT, [18] and the results from the bullet cluster, [19], it is

hoped that dark matter will become more tightly constrained in the near future.

More poorly understood, however, is the remaining ∼ 72% made up of dark energy.

The concordance model of cosmology takes it to be vacuum energy in the form of a

small positive cosmological constant, Λ, but a difference of ∼ 120 orders of magnitude

is found to exist between observations and the theoretical expectation. In consequence,

many alternative theories have been developed in order to explain the phenomena ob-

served in our universe, despite the obvious success of the ΛCDM model in describing the

experimental data. These alternative models can be split into distinct groups: those that

1
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modify the matter content of the universe (e.g. quintessence, [20]), those that modify its

geometry, such as f(R) theories, [21, 22, 23], MOND, [24, 25], and extra dimensional

models of gravity (e.g. braneworld models) and finally models that take a purely phe-

nomenological approach, such as the Cardassian, [26], and Hobbit, [27], models which

modify the Friedmann equation of motion for the universe.

The notion that extra dimensions exist in our universe and could have an effect on

what we see around us, is not a new idea in physics: Kaluza first advocated the exis-

tence of a fifth dimension in order to unify the gravitational and electromagnetic forces

in 1921. The idea has gained more widespread popularity in recent years with the advent

of string theory, [28], where the one dimensional strings, which replace point particles

as the most elementary ‘building blocks’, are found to live naturally in 10 dimensions.

However, the world we observe around us seems only to have 3 spatial dimensions and we

must therefore find some way to hide any extra dimensions in a theory. One of the most

common ways of doing this is via the mechanism of compactification, which compact-

ifies the extra dimensions on very small (and hence unobservable) scales, as suggested

originally by Klein, [29]. More recently, another method of hiding extra dimensions has

been suggested, through confinement. These models, known as braneworld models, as-

sume that our four dimensional (4D) universe is confined on a sheet or ‘brane’ embedded

in a higher dimensional bulk spacetime, allowing much larger, or indeed infinite extra

dimensions to exist.

1.1 Kaluza Klein compactification

Kaluza, [30], considered the vacuum Einstein equations in 5 dimensions in order to

obtain the 4D gravity and electromagnetism equations, in such a way that 4D matter

could be considered a manifestation of a pure higher dimensional geometry. The 5D

vacuum Einstein equations can be obtained from a 5D version of the usual Einstein-

Hilbert action:

S = − 1

16πG(5)

∫

√

−g(5)R(5) d4x dy , (1.1)

where xa = (xµ, y), R(5) and g
(5)
µν are the 5D Ricci scalar and metric and G(5) is the 5D

analogue of Newton’s gravitational constant, while the 5D metric can be written in the
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form, [31]:

g
(5)
ab = φ−1/3





gαβ + κ2φAαAβ κφAα

κφAβ φ



 . (1.2)

Using this metric in the action (1.1) along with the condition that all derivatives with

respect to the fifth coordinate, y, vanish, (this is known as Kaluza’s cylinder condition,

which removed the need to account for the lack of an observed extra dimension), the

action becomes

S = −
∫

d4x
√−g

(

R

16πG
+

1

4
φFαβF

αβ +
1

6κ2φ2
∂αφ ∂

αφ

)

, (1.3)

which yields 4D gravity and electromagnetism along with a scalar field φ, where Fαβ =

∂αAβ − ∂βAα, κ ≡ 4
√
πG and G ≡ G(5)/

∫

dy is the 4D gravitational constant.

However, assuming the cylinder condition in order to get rid of derivatives with

respect to y is an unsatisfactory method of dealing with the extra dimension. In 1926,

Klein, [29], conceived of a mechanism which would hide the extra dimension in a realistic

manner, while still retaining the remarkable results Kaluza had achieved. He considered

the extra dimension to have a circular (S1) topology so that any quantity f(xµ, y) =

f(xµ, y+2πr), where r was the radius of the circle (i.e. the ‘size’ of the extra dimension).

This periodic dependence on the extra dimension meant that the fields gµν , Aµ and φ

could all be Fourier expanded in y:

φ(xµ, y) =
∑

n

φn(xµ)einy/R . (1.4)

If the fields then satisfied the 5D massless wave equation, �
(5)φ = 0, the Fourier modes

φn(xµ) were found to satisfy

�φn =
(n

r

)2

φn , (1.5)

where the righthand side could be looked on as an effective mass term: m2
n = (n/r)2.

Klein then noted that if the size of the extra dimension was extremely small, the masses

of even the lowest Fourier modes would be too heavy to be seen and so the only observed

quantities would be the zero modes, removing the dependence on the extra dimensions

and replicating Kaluza’s cylinder condition. Present limits from high energy colliders,
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[32], (due to the fact that no Kaluza-Klein particles have been observed), place an upper

bound on r of ∼ 10−18 m.

However, compactification is not the only possible method of hiding extra dimensions.

Braneworld models are models which demand that our 4D universe lives on a sheet or

‘brane’ embedded in a higher dimensional spacetime in which only gravity is allowed to

propagate. This allows the extra dimensions to be of much larger size. As the remaining

fundamental forces are confined to the brane, it is unsurprising that the effects of higher

dimensions are not observed.

One of the first models to explore these braneworlds was the large extra dimension

(LED) model of Arkani-Hamed, Dimopoulos and Dvali (ADD), who originally proposed

the idea to solve the gauge hierarchy problem in particle physics, [33, 34, 35].

1.2 Large extra dimensions

The hierarchy problem in fundamental physics describes the disparity between two

fundamental scales: the electroweak scale (mEW ∼ 103 GeV) and the Planck scale

(mpl ∼ 1019 GeV). While electroweak interactions have been probed at distances ∼ m−1
EW ,

[32], gravity is only well tested down to sub-mm scales, nowhere near the 10−33 cm cor-

responding to m−1
pl , [36, 37, 38], and the treatment of mpl as a fundamental scale requires

that we assume gravity remains unmodified over the ∼ 30 orders of magnitude in be-

tween. In an attempt to overcome the hierarchy problem, Arkani-Hamed, Dimopoulos

and Dvali, [33, 34, 35], proposed that in fact there was only one fundamental mass scale,

the electroweak scale, and the observed size of mpl arose from the existence of n compact

extra spatial dimensions of radius ∼ R.

If we consider two test masses m1 and m2 placed within a distance r of each other in

4 + n dimensions, the force they feel will depend on their relative distance compared to

the size of the extra dimensions, R. If r ≪ R, the masses will see all 4 + n dimensions

and will feel a force given by the (4 + n) dimensional generalisation of Newton’s law:

F (r) ∼ m1m2

Mn+2
pl(4+n)r

n+2
, (1.6)

where we take Mpl(4+n) to be the fundamental mass scale of the full higher dimensional

theory. If on the other hand r ≫ R, the masses cannot see the extra dimensions and
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this time the force law is found to be, [33, 34]:

F (r) ∼ m1m2

Mn+2
pl(4+n)R

nr2
, (1.7)

and the more usual 4D 1/r2 dependence is obtained. If we now compare the latter

result to the usual 4 dimensional force, m1m2/m
2
plr

2, we can obtain an expression for

the effective 4D Planck mass as, [33]:

m2
pl = Mn+2

pl(4+n)R
n . (1.8)

Following [33] in setting Mpl(4+n) ∼ mEW , as the one fundamental scale in this theory

but taking mpl ∼ 10−19 GeV, eqn. (1.8) yields

Rn ∼ m2
pl

m2+n
EW

∼ 1032 TeV2

m2+n
EW

, (1.9)

and so,

R ∼ 10
32

n

(

1TeV

mEW

)1+ 2

n

TeV−1 (1.10)

∼ 10(32/n)−17 cm

(

1TeV

mEW

)1+ 2

n

.

The case of one extra dimension (n = 1) has already been ruled out, as R ∼ 1013 m

would imply that deviations from Newtonian gravity would have been observed on solar

system scales for this to be true. However any n ≥ 2 is still a possibility, although

recent results, [36, 38], suggest that n = 2 (i.e. R ∼ 10−3 m) could also be ruled out.

Nonetheless, n > 2 extra dimensions are still allowed by the current constraints.

As mentioned at the beginning of this section, unlike gravity, the standard model

(SM) gauge forces (the electroweak and strong forces) have been accurately measured

down to the electroweak scale, [32]. Therefore, in order to be compatible with the size of

the extra dimensions as derived in eqn. (1.10), the SM forces cannot propagate freely in

the extra dimensions, but must be confined to a 4 dimensional submanifold, or ‘brane’,

in the higher dimensional spacetime. The small size of mpl is then explained by the large

size of the extra dimensions compared to the weak scale, so that effective 4D gravity is

weakly coupled, [33]. This large difference between the size of the extra dimensions and

the weak scale led to alternative ideas being proposed: models which contained large
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extra dimensions which did not necessarily need to be compactified, such as the warped

extra dimensions model of Randall and Sundrum.

1.3 The Randall Sundrum model

Not long after the emergence of the ADD model, Randall and Sundrum (RS) proposed an

alternative method of tackling the hierarchy problem, [39, 40]. They maintained that in

postulating the existence of only one fundamental scale in their extradimensional theory,

ADD had simply shifted the hierarchy problem: it was now necessary to explain why the

size of the (compactified) extra dimensions was so much greater than the fundamental

scale in the theory rather than explaining the discrepancy between the weak and Planck

scales. As an alternative to the ADD setup, where the full spacetime could be factorised

as a product of a 4D spacetime with a compactified n dimensional space, [33], they

suggested a model with just one extra dimension and a non-factorisable metric of the

form

ds2 = a(y)2ηµνdx
µdxν + dy2 . (1.11)

The coordinates are given by xa = (xµ, y), where xµ are the usual 4D coordinates and y

represents the extra dimension; a(y) is known as the warp factor and is usually a rapidly

varying function of the extra dimension multiplying the 4D metric, [39, 41]. The use

of the warp factor in the metric can result in the creation of a large hierarchy without

requiring the size of the extra dimension to be large with respect to the fundamental

scale. As in the ADD model, 4D subspaces are known as ‘branes’, while the full higher

dimensional spacetime is known as the ‘bulk’.

1.3.1 RS I

In their original paper, [39], RS took a finite interval of the extra dimension of size y =

rc φ, where −π ≤ φ ≤ π and rc can be thought of as a ‘compactification radius’ relating

φ to the proper distance in the extra dimension, (even though the extra dimension is not

in fact compactified). They furthermore took φ to be periodic and imposed an orbifold

(Z2) symmetry condition, (x, φ) = (x,−φ), so that the metric was in fact completely

specified by values in the range 0 ≤ φ ≤ π. The extent of the extra dimension was then
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bounded by two 3-branes (i.e. 4D subspaces, as in ADD) situated at the orbifold fixed

points, φ = 0, π.

The action for this setup is given by, [39]:

S =

∫

d4x

∫ π

π

dφ
√
−G(−Λ + 2M3R)

+

∫

d4x
√−gvis(Lvis − Vvis) +

∫

d4x
√−ghid(Lhid − Vhid) , (1.12)

where L is the matter Lagrangian and V the vacuum energy (or tension) of each 3-brane,

Λ is the bulk cosmological constant (i.e. the cosmological constant of the 5D spacetime),

M is the 5 dimensional fundamental mass scale, GMN is the 5D metric and the 4D

projected metrics on each brane are given by

gvis
µν (xµ) ≡ Gµν(x

µ, φ = π), ghid
µν (xµ) ≡ Gµν(x

µ, φ = 0) . (1.13)

RS then chose a metric ansatz respecting 4D Poincaré invariance in the xµ directions:

ds2 = e−2σ(φ)ηµνdx
µdxν + r2

cdφ
2 . (1.14)

Using this metric with the equations of motion coming from eqn. (1.12), they found that

the bulk and boundary vacuum energies had to be related by a single scale for a solution

to be valid:

Vhid = −Vvis = 24M3k, Λ = −24M3k2 , (1.15)

where k, the bulk curvature, is of order the Planck scale, [39]. They thus obtained a

metric of the form

ds2 = e−2krc|φ|ηµνdx
µdxν + r2

cdφ
2 , (1.16)

which decays from the brane situated at φ = 0 to the φ = π brane. We can also see

from eqn. (1.15) that the bulk cosmological constant, Λ, is negative, and so the bulk

spacetime must be AdS5 - 5D anti de Sitter - where an anti de Sitter spacetime is a

spacetime with a constant negative curvature.

As we discussed in the previous section, gravity has been well tested down to sub-mm

scales, [37, 36, 38], without any deviations from the expected results. RS therefore took

rc to be small and considered the effective 4 dimensional theory. They found that, while
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the 4D effective Planck mass is only weakly dependent on rc, [39]:

m2
pl =

M3

k
(1 − e−2krcπ) , (1.17)

the SM masses on the φ = π brane are given by

m = e−krcπm0 , (1.18)

which can produce TeV scale physical masses from fundamental mass parameters of order

the Planck scale without requiring krc to be very large, i.e. without a large hierarchy

between the ‘compactification radius’ and the fundamental scale. This result led to the

two branes being labelled as in the action (1.12): the SM fields with TeV scale masses

on the φ = π brane were said to be living on the visible brane, while the fundamental

mass parameters were said to belong on the hidden brane at φ = 0.

However, if we look at eqn. (1.15), we can see that the visible brane on which our

SM fields live has a negative tension. In [42], Shiromizu, Maeda and Sasaki derived

the effective 4D Einstein equations for the brane, defining the 4D Newtonian constant,

GN , in terms of the 4D brane tension λ. However, they found that the presence of a

negative tension brane (i.e. λ < 0) led to an ambiguity between the vacuum and matter

energy densities, making it impossible to define the gravitational constant. Furthermore,

a negative brane tension would result in GN < 0. In [43], it was realised that the

presence of a negative tension brane would lead to the equations of motion derived from

the braneworld model changing sign relative to the standard cosmological equations.

This would cause the universe to collapse on a timescale of a few thousand years if it

possessed an energy density, ρ, and pressure, p, related by the standard equation of state,

p = wρ, for any w < 1
3
. The radiation era would therefore be well-behaved as in standard

cosmology, but a matter (or dark energy) dominated phase would collapse, an occurrence

which could be only be averted by the use of non-standard big-bang nucleosynthesis, or

modification of the RS I model. For these reasons, the RS I model which suggests that

we live on a negative tension brane, cannot be a physical model of our universe.

1.3.2 RS II

In [40], Randall and Sundrum considered a one brane version of the above model. The

initial setup was as in the RS I model, but the locations of the hidden and visible branes
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were reversed, so that our universe was situated on a positive tension brane, and the

brane situated at φ = π could be removed from the physical setup by taking it to infinity.

It is easy to see that the expression derived for the 4D effective Planck mass in the RS

I model, eqn. (1.17), is still well defined even if we take rc to infinity. However, due to

the exchange of the branes, while this theory can now model a physical universe (as the

SM fields live on a positive tension brane), it no longer solves the hierarchy problem, as

the warp factor is simply 1 on the y = 0 (visible) brane.

This infinite extra dimension meant that the model gave rise to a continuum of

Kaluza-Klein (KK) excitations rather than the discrete spectrum of the RS I model,

[44]. These were studied by considering the linearised tensor perturbations about the

metric, hµν(x, y), and separating the 4D and extra dimensional components, writing

h(x, y) = ψ(y)eip·x, where p2 = m2. RS found that the spectrum contained a single

normalisable bound state mode corresponding to the massless 4D graviton wavefunction,

and a continuum of massive states, [40], and computed the non-relativistic gravitational

potential between two particles, m1 and m2, separated by a distance r to be, [40]:

V (r) = GN
m1m2

r

(

1 +
1

k2r2

)

. (1.19)

We can clearly see that this is the 4D Newtonian potential with a correction term added.

Since as before, the bulk curvature term is of order the Planck scale, the correction to

the potential is highly suppressed. RS therefore found that despite the addition of an

infinite extra dimension, the model could still produce an effective 4D theory of gravity,

arising from the inclusion of the warp factor in the metric, which effectively ‘trapped’

the gravitational force close to the brane.

1.4 Thesis outline

As we have said, one of the present motivations for studying modified models of grav-

ity is explaining the apparent late time acceleration of our universe and it makes sense

therefore to consider phenomena at cosmological distances (of order today’s horizon size

H−1
0 ), where we are once more entering a region where gravity has not been well tested.

However, all of the extra dimensional models discussed above modify gravity on ex-

tremely small scales, evading the experimental bounds of [36, 37, 38], while reproducing

Einstein gravity on large scales.
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In chapter 2 we will therefore review the well-known braneworld model of Dvali,

Gabadadze and Porrati (DGP), [45], which can produce modifications of gravity at

large distances. We concentrate in particular on the cosmological equations derived

from this model. In chapter 3, we consider the observational effects of a relative of the

DGP model: the asymmetric brane model, [46, 47]. This model allows the bulk mass

scale and cosmological constant to vary from one side of the brane to the other, which

can result in a widening of the DGP parameter space. We explore the cosmological

consequences of this increase in the parameter space.

We then switch focus and consider the early universe consequences of braneworld-

type models in string theory. These models can produce inflation in the early universe

through a mechanism known as brane inflation, [48, 49], where an attractive potential

between two branes allows slow-roll inflation to take place; this cuts off before the branes

collide and annihilate, reheating the universe. Cosmic strings, topological defects which

possess features that can produce large bursts of gravitational radiation, can be produced

as a byproduct of the brane inflation mechanism, possibly giving rise to a network of

cosmic strings throughout the universe. We give a brief review of cosmic strings and

the calculation of gravitational radiation from cusps on cosmic string loops, [50, 51],

in chapter 4, before going on to consider the effect extra dimensions could have on the

gravitational wave bursts produced by cusps in chapter 5 and kinks in chapter 6. Finally,

we conclude in chapter 7.



Chapter 2

The DGP model

2.1 Introduction

The modified gravity model of Dvali, Gabadadze and Porrati (DGP), [45], is a five di-

mensional theory, thus possessing one extra dimension (although the model has been

extended to D > 5 dimensions, [52, 53]). It was one of the first braneworld models to

consider the effects of extra dimensions which were not constrained by either compacti-

fication or warping. Unlike the ADD and RS models, the DGP model modifies gravity

at cosmological (rather than sub-mm) distances, where the crossover between Einstein

gravity and the modified theory is set by the fundamental mass scales in the model.

A number of other models have also explored the possibility of modifying gravity on

large scales, [54, 55, 56], in particular the GRS model, [57, 58], the stealth model of

Charmousis, Gregory and Padilla, [59] and the asymmetric brane model, [46, 47].

The DGP model was originally introduced as a mechanism to produce 4D Newtonian

gravity on the brane in a model with infinite extra dimensions, [45]. However, it has

excited considerable interest among cosmologists, as it can produce late time acceleration

without the aid of dark energy. Indeed extensive tests of the model with observational

data, [60, 61, 62, 63, 64, 65, 66], have been performed, which show that while it is not

as good a fit to the data as the concordance model, it is nonetheless acceptable.

11
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2.2 DGP cosmology

2.2.1 Model setup

We are interested in the production of late time acceleration without a cosmological

constant and therefore wish to look at the cosmology of the model. The DGP model

consists of a tensionless 3-brane embedded in a 5D Minkowski spacetime with a Z2

symmetry around the brane. We write the action in the form

S = Sbulk + Sbrane . (2.1)

Following the method used in [67] and [68], (although a different definition of the fun-

damental mass scales means some factors of 2 have changed), the bulk action can be

written as

Sbulk = M3

∫

M

d5x
√

−g(5)(R(5) − 2Λ) + 2M3

∫

brane

d4x
√−γK . (2.2)

This setup includes the Gibbons-Hawking boundary term containing the extrinsic cur-

vature, a term which did not appear in the RS action, (1.12). It arises due to a subtlety

in the manner in which the gravitational action can be written: whether we consider the

brane to be a genuine zero-thickness object acting as a boundary between two space-

times, or as a zero-thickness approximation of a finite width domain wall as is the case

in early braneworld models, [69, 70, 71]; these two approaches have long been found to

be equivalent, [72]. In using this form of the action, we consider the brane as a common

boundary between two spacetimes, M1 and M2, which because of the Z2 symmetry of

the DGP model, are in fact identical. The full spacetime, M = M1 ∪M2.

In the action (2.2), g
(5)
ab and R(5) represent the 5D metric and Ricci scalar respectively,

while M is the 5D fundamental mass scale and Λ is a bulk cosmological constant. The

factor of γ in the second term of (2.2) is related to the induced metric on the brane

given by

γab = gab − nanb , (2.3)
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where na is the unit normal to the brane in Mi pointing out of Mi
1, while the extrinsic

curvature of the brane is

Kab = γc
aγ

d
b∇(cnd) , (2.4)

where Kab = K
(1)
ab = K

(2)
ab .

The brane action is given by

Sbrane =

∫

brane

d4x

(

m2
pl

2

√−γR+ Lmatter

)

. (2.5)

Lm represents the matter Lagrangian, γµν and R, the 4D induced metric and corre-

sponding (brane) intrinsic curvature, while mpl is the 4D fundamental mass scale.

The bulk equations of motion are found from the bulk action to be the 5D Einstein

equations:

R
(5)
ab − 1

2
R(5)gab = −Λgab , (2.6)

while the brane equations of motion, found from the Israel conditions, [72], are given by

M3Kab +
m2

pl

2
(Rab −

1

6
Rγab) =

1

2

(

Tab −
1

3
Tγab

)

, (2.7)

obtained by varying (2.1) with respect to the induced brane metric, γab ; the energy

momentum tensor for the additional matter on the brane is

Tab = − 2√−γ
∂Lm

∂γab
. (2.8)

We now wish to consider the cosmological implications of the model. In order to

study this, since we have Einstein gravity in the bulk, we know that each (identical)

bulk is completely specified by the AdS-Schwarzschild metric, [74]:

−h(r)dt2 +
dr2

h(r)
+ r2dx2

κ , (2.9)

1This convention for the normal vectors, na, is the opposite to that used in [67], [68]: see [73].
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where

h(r) = r2k2 + κ− µ

r2
. (2.10)

The k2 term is a general bulk curvature term (related to Λ), while κ encodes the brane

curvature and µ is the mass of a bulk black hole.

In order to construct the brane, we glue two copies of the solution in the bulk space-

time together, where the brane will form the common boundary situated at r = a(τ).

Then, the boundary, ∂M = ∂M1 = ∂M2, is given by the section (t(τ), a(τ), xµ) of the

bulk metric (2.9), where τ is the proper time of an observer comoving with the boundary,

so that

−h(a)ṫ2 +
ȧ2

h(a)
= −1 , (2.11)

where the differentiation is with respect to τ . The unit normal to ∂M is now given by

na = ǫ(−ȧ(τ), ṫ(τ), 0) , (2.12)

where ǫ = ±1. If ǫ = 1, the bulk spacetime, M, corresponds to a(τ) < a <∞, while for

ǫ = −1, M corresponds to 0 ≤ a < a(τ), [67]. The induced metric on ∂M is that of a

FRW universe,

ds2 = −dτ 2 + a2dx2
κ , (2.13)

while the induced Ricci tensor and scalar, evaluated using this metric, are found to be

Rij =

(

ä

a
+ 2
( ȧ

a

)2

+ 2
κ

a2

)

γij (2.14)

and

R = 6

(

ä

a
+
( ȧ

a

)2

+
κ

a2

)

. (2.15)
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We define the Hubble parameter as H = ȧ
a

on the boundary and introduce a homo-

geneous, isotropic fluid on the brane, whose energy momentum tensor is, [46]:

Tab = (ρ+ p)τaτb + pγab , (2.16)

with energy density ρ, pressure p and τa, the velocity of a comoving observer (which in

M is τa = (ṫ(τ), ȧ(τ), 0)); we can now evaluate the spatial components of (2.7) and find

M3Kij +
m2

pl

2
(Rab −

1

6
Rγab) =

1

2

(

Tij −
1

3
Tγij

)

=⇒ M3h

a
ṫγij +

m2
pl

2
(Rab −

1

6
Rγab) =

1

2

(

Tij −
1

3
Tγij

)

. (2.17)

Using eqn. (2.16), the velocity τa and eqn. (2.3) to calculate the induced metric compo-

nents, we find the spatial components of the energy momentum tensor to be

Tij = pγij , (2.18)

while the trace is given by

T = gabTab = −ρ+ 3p , (2.19)

and therefore using eqns. (2.14) and (2.15) for the induced intrinsic curvature terms, the

spatial components of the Israel equation become

M3h

a
ṫγij +

m2
pl

2

(

( ȧ

a

)2

+
κ

a2

)

γij =
ρ

6
γij , (2.20)

which if we use eqn. (2.11) to substitute for ṫ gives

m2
pl

2

(

H2 +
k

a2

)

− ǫM3
5

√

H2 +
h

a2
=
ρ

6
. (2.21)

Finally, if we substitute for h(a) using (2.10), the modified DGP Friedmann equation is

ρ = 3m2
pl

(

H2 +
κ

a2

)

− 6M3ǫ

√

H2 + k2 +
κ

a2
− µ

a4
. (2.22)
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2.2.2 Model regimes

We now wish to consider the cosmological evolution of this model using the expressions

calculated in the previous section. We rewrite eqn. (2.22), setting the bulk curvature,

k = 0, along with the cosmological constant, since as mentioned earlier, the model setup

assumes a 5D Minkowski bulk spacetime. We neglect the black hole mass term, µ, also.

The equation then becomes

ρ = 3m2
pl

(

H2 +
κ

a2

)

− 6M3ǫ

√

H2 +
κ

a2
. (2.23)

Looking at this equation, it is easy to see that the usual 4D Friedmann equation (derived

from General Relativity),

ρ = 3m2
plH

2 , (2.24)

is recovered whenever the square root term on the RHS is subdominant. This occurs if

√

H2 +
κ

a2
≫ 2ǫ

M3

m2
pl

, (2.25)

or, if the spatial curvature terms are neglected, [75]:

H−1 ≪ m2
pl

2M3
≡ rDGP . (2.26)

If, on the other hand, the square root is the dominant term on the RHS, we can write

the Friedmann equation as

H2 +
κ

a2
≃ ρ2

36M6
, (2.27)

and we say that the model has entered the fully 5D regime.

The scale rDGP , defined in eqn. (2.26), is known as the crossover scale between the

4D and 5D regimes of the model: for distances smaller than rDGP , 4D cosmology is

recovered, while at distances large compared to rDGP , the extra dimension has an effect

and must be taken into account. Dvali, Gabadadze and Porrati, [45], obtained this

scale when considering the potential mediated by a (5D) scalar field on the 4D brane

worldvolume, finding V ∼ 1/r below this distance and V ∼ 1/r2 at larger distances.

Setting the size of rDGP is extremely important, as it is the change in the behaviour of
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the model around this scale which allows us to keep well-tested (4D) results from General

Relativity while attempting to explain large distance effects with the extra dimension.

For this reason, rDGP is generally chosen to be of order the current horizon size.

Along with the effects of the crossover scale, the behaviour of the modified Friedmann

equation (2.22) is heavily dependent on the value of the parameter ǫ. The scale factor,

a, diverges at late times on the brane, [75], (i.e. the times in which we are interested)

and so we neglect the spatial curvature term. We first consider the case where ǫ = −1

and allow the energy density ρ→ 0 in order to study the vacuum solutions of the model.

It is easily seen if we rewrite eqn. (2.23) as

√

H2 +
κ

a2
= −M

3

m2
pl

+

√

ρ

3m2
pl

+
M6

m4
pl

, (2.28)

that H → 0 as ρ→ 0, the usual Minkowski vacuum. Since we are allowing ρ→ 0, there

will be a point where it is small in comparison with M6/m2
pl and we can expand the

square root, obtaining eqn. (2.27). The ǫ = −1 branch of the solution thus results in a

transition to the full 5D regime at late times.

The ǫ = 1 branch on the other hand, exhibits markedly different behaviour. If we

consider eqn. (2.28) with ǫ = 1 we find, letting ρ → 0, that instead of H → 0 it has a

minimum value of, [75]:

Hself =
2M3

m2
pl

. (2.29)

Therefore at late times, as ρ becomes small, this branch of the solution will not enter

the full 5D regime unlike the ǫ = −1 case, but will have a transition from the usual 4D

equation to an inflationary solution where H ∼ Hself .

The DGP model is thus able to follow a period of radiation and matter dominated

cosmology, expressed in the 4D regime of the generalised Friedmann equation, by a

period of late time acceleration without the aid of a cosmological constant term, provided

we choose the ǫ = 1 or self-accelerating branch of the model. This self-acceleration arises

due to the inclusion of the intrinsic curvature of the brane in the action (2.5), which

behaves as a negative cosmological constant on the brane, causing acceleration, [75].

The ǫ = −1 solution (known as the FRW branch), mimics the evolution of the usual

FRW cosmology of the ΛCDM model in producing late time acceleration only with the

inclusion of vacuum energy on the brane and is therefore not usually considered further if
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an alternative to dark energy is sought. However, since the crossover scale must be tuned

to match observations, we have not managed to remove the tuning problem entirely.

The self-accelerating solution of the DGP model can be rewritten in terms of cosmo-

logical densities as, [76]:

H2(z) = H2
0

{

Ωk(1 + z)2 +

(

√

ΩrDGP
+
√

ΩrDGP
+ Ωi(1 + z)3(1+wi)

)2
}

, (2.30)

where there is an implicit sum over the (usual) contributions to the energy density with

equations of state pi = wiρi, the other contributions are defined as

Ωk ≡ −k
H2

0a
2
, ΩrDGP

≡ 1

4r2
DGPH

2
0

, (2.31)

where ΩrDGP
is an effective cosmological density related to the crossover scale, and the

normalisation condition becomes

Ωk = 1 −
(

√

ΩrDGP
+
√

ΩrDGP
+ Ωm

)2

, (2.32)

where in this case we have ignored the radiation component, which will be negligible at

late times.

2.3 Observational tests of the DGP model

The fact that the DGP model could explain the late time acceleration of the universe

without a cosmological constant, combined with a relatively simple modified Friedmann

equation (2.22) encoding its cosmological evolution, has ensured that it has become

one of the most popular and widely studied modified gravity alternatives to the ΛCDM

model. As well as providing a mechanism for late time acceleration, the DGP model

does not have a large number of new parameters. Indeed it has the same number of

parameters as ΛCDM, simply replacing the cosmological constant term, ΩΛ, with a

term ΩrDGP
, related to the crossover scale as defined in eqn. (2.30), which is analogous

to the cosmological density terms. A number of authors, [60, 61, 62, 63, 77], have

compared the DGP model to the available observational data, primarily various type

Ia supernova data sets, CMB anisotropy data from WMAP (through the CMB shift

parameter R) and the baryon acoustic oscillation peak obtained from the SDSS survey.



The DGP model 19

The unprecedented success of the ΛCDM model is not that it can fit one data set, but

that it can simultaneously satisfy multiple sets of data at different redshifts. If the DGP

model is to be a serious challenger to the concordance model, then it must do at least

as well at this aspect.

Type Ia supernovae are relatively reliable standard candles and their magnitude-

redshift relation is the most easily satisfied of the above tests. This relation relies on

the luminosity distance, dL, the distance at which an object would lie based on its

luminosity:

dL(z) =
(1 + z)

H0

√

|Ωk|
S
(

√

|Ωk|
∫ z

0

dz′

E(z′)

)

, (2.33)

where S(X) = (X, sinX, sinhX) for a flat, closed or open universe respectively, E =

H/H0 and H(z) is the Hubble parameter whose current value is denoted as H0; the

magnitudes are then calculated using µ = 5 Log10dL(z).

Another obvious test involves the WMAP observations of the CMB anisotropies,

[4, 78, 79, 80]. This is not a simple task in a modified gravity model such as DGP, whose

linear density perturbations are not well understood, [65]. Deffayet et al. looked at the

CMB anisotropies in [81], but changed the background equation of motion only (using

the modified Friedmann equation (2.22) calculated above), leaving the 4D perturbations

in place. However, they state that this is not particularly well justified for large scales

(late times), where the effect of the extra dimension begins to be felt.

Instead, we consider the CMB shift parameter, [82], which encodes much of the infor-

mation about the CMB without the need for model perturbations. The shift parameter

R(z∗) =

√
Ωm

√

|Ωk|
S
(

√

|Ωk|
∫ z∗

0

dz′

E(z′)

)

, (2.34)

is related to the position of the first acoustic peak in the temperature anisotropy spec-

trum, which is in turn related to the angular diameter distance to and the comoving size

of the sound horizon at the last scattering surface; the function S(x) is defined as for

the luminosity distance and z∗ is the redshift at decoupling. It is measured by WMAP,

[4, 83], and is a relatively model independent quantity, as it does not depend on H0,

[66, 62]; it is therefore typically used to constrain dark energy models, [83]. Some pitfalls

of using this parameter rather than the full CMB dataset have been discussed in [65].
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The final primary observation usually considered is the baryon acoustic oscillation

(BAO) peak measured from the SDSS survey, [84, 85]. However, while analyses including

this distance measure have been performed, doubts have been raised over how appropri-

ate it is to use as a constraint on models which do not behave as constant equation of

state dark energy, such as braneworld models, [86, 63, 87]. The data from SDSS used

to find the BAO measurement were analysed using a fiducial ΛCDM model where they

were compressed to give a constraint at a single redshift and a single scaling relation was

used for the best fit; this is found to be accurate to within a few percent for ΛCDM-type

models, [84]. However, the DGP model (and other modified gravity models without

constant w evolution) could evolve in a very different manner and it is possible that the

errors in applying this measurement could be much more significant, [86, 62].

The overall results of these investigations suggest that in general, the ΛCDM model

is still a better fit to the data than DGP, although in many cases DGP is almost as

good a fit and is certainly not ruled out definitively. However, one point to note is the

significant tension between datasets, particularly for the flat DGP model. While this

is improved somewhat by the addition of curvature to the modified gravity model, as

[60] points out, there is the added complication of tension between the CMB constraint

on Ωmh
2 and the Hubble Key Project value for h, [88], (H0 = 100h km s−1 Mpc−1).

Nonetheless, despite these difficulties, the DGP model is still a viable option from an

observational viewpoint.

Finally we note that that the DGP model can be rewritten in the form of a quintessence

or dark energy model with an effective equation of state dependent on redshift. These

two models cannot be distinguished using the methods just outlined above. Instead, the

quantity δ = δρm/ρm, known as the growth function, [89, 90], which behaves differently

in modified gravity and dark energy models, must be studied in order to distinguish

between them. However this will not be discussed further.

2.4 Problems with the DGP model

Ever since the appearance of the DGP model as a theory of modified gravity, it has

become increasingly clear that, while the cosmological results are promising (as discussed

in the previous section), there are serious underlying issues with the model, in particular

with the self-accelerating branch of the solution. Any or all of these problems would

render the model fundamentally flawed as a realistic model of the universe.
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The most well-known issue with the self-accelerating branch of the DGP model is

the existence of ghosts. Ghosts are states with a wrong sign kinetic term and violate

unitarity, which can lead to catastrophic consequences if they couple to normal matter.

They were originally thought not to be present in the DGP model (unlike the earlier

GRS model, [57, 58]). Indeed it is true to say that the normal branch of the DGP

solution is ghost free. Unfortunately the self-accelerating branch is not.

Ghosts appear in the 4D perturbation spectrum (tensor and scalar modes) of the self-

accelerating branch whether or not tension is included in the model. The action (2.1) is

generalised by the addition of a tension term σ to the 4D integral and the background

metric is given by, [67]

ds2 = a2(y)(dy2 + γ̄µνdx
µdxν) , (2.35)

where

γ̄µνdx
µdxν = −dt2 + e2Htdx2 , (2.36)

and the warp factor, a(y) = exp(ǫHy), where ǫ = ±1. Perturbing this background metric

and splitting the fluctuations, hµν , into their scalar, vector and tensor components, it

was found that the perturbation spectrum of the DGP accelerating branch consists of

a continuum of massive states and 2 discrete modes with smaller masses, [67, 91]: the

spin-0 (scalar) perturbation withm2 = 2H2 and the helicity-0 state of the spin-2 (tensor)

perturbation. This last mode has a mass in the range 0 < m2 < 2H2, which was found

to be forbidden by Higuchi, [92], as it yields a state with a negative norm, and so is in

fact a ghost. This is the case when the DGP brane is given a positive tension, whereas

the negative tension brane has a scalar ghost, [67, 93]. If the brane is tensionless (the

standard DGP setup) then these modes mix and the model yet again contains a ghost,

[67]. However, the authors of the model argue that the inclusion of strong coupling in

the model could solve the ghost problem, [94, 95].

If interactions in a model become strongly coupled at some energy scale, perturbation

theory breaks down above this scale and the predictivity of the model is lost. In order

for the model to be of any use, the ultraviolet (UV) completion of the theory is needed

so that calculations can be moved beyond the perturbative level. A number of authors

have found that strong interactions occur at very low energy scales in the DGP model,

[96, 97, 98]. Luty, Porrati and Rattazzi, [96] found this scale (in terms of wavelength
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rather than energy) to be

λ3 ∼
(r2

DGP

m2
pl

)1/3

. (2.37)

If rDGP is of order the current horizon size (in order to explain present late time accel-

eration), then this length scale is of order 1000 km and the model is strongly coupled at

distances below this scale. As yet, the high energy (UV) behaviour of the DGP model

is unknown.

However, even if we allow for UV completion of the model and presume this solves the

problem of ghosts on the self-accelerating branch as proposed in [94, 95], there are still

issues in the model which are not purely a result of perturbation theory. Some of these

problems, for instance, pressure singularities at a finite radius, tunnelling instabilities

and issues with black holes in the bulk, are discussed further in [68].

2.5 Conclusions

As we have seen, the DGP model, [45], can produce cosmological evolution which admits

the possibility of late time acceleration without the use of dark energy or a cosmological

constant, primarily through the inclusion of an induced intrinsic curvature term in the

action (2.5). This self-accelerating branch of the solution has been found to fit obser-

vational data reasonably well, although there is more tension between the various data

sets than is the case with the standard concordance model. However, the appearance

of ghosts in the perturbative spectrum, and, even if they were eventually found to be

caused by the lack of a UV-complete model, the existence of other more intransigent

instabilities, has cast doubts on the ability of the model to realistically represent the

universe. In this case, it would seem sensible to consider other similar braneworld mod-

els which can produce late time acceleration (e.g. [59, 46, 47]) and using these, perform

the same extensive tests and analysis as have been done in the case of the DGP model.

In this way it is possible that the same self-accelerating effects could provide an answer

to the question of late time acceleration, while possibly mitigating some of the problems

encountered by the DGP model. Even if these models are also found to contain similar

problems, the broadening of the focus to include braneworld models which produce large

scale modifications of gravity outside of the DGP model can only be of benefit.



Chapter 3

The cosmology of asymmetric brane

modified gravity

3.1 Introduction

As we have seen in the last chapter, the DGP model offers a plausible and (cosmo-

logically) simple alternative to the concordance model in attempting to explain late

time acceleration, but suffers from a number of serious problems which rule it out as

a realistic model of the universe. We therefore wish to consider the behaviour of other

braneworld models which could offer alternatives to ΛCDM: in particular, we consider

the asymmetric brane model of Padilla, [46, 47].

The asymmetric (AC) model has more in common with the Randall Sundrum rather

than the DGP model in its setup, consisting of a 3-brane with non-zero tension acting

as a boundary between two bulk anti de Sitter (AdS) spacetimes, while lacking the char-

acteristic brane induced curvature term of the DGP model. It relaxes the Z2 symmetry

around the brane possessed by the DGP and RS models, but is still able to produce

infrared modifications of gravity. The main implication of relaxing this symmetry is an

increase in the parameter space of the model: the cosmological constant and Planck

masses can vary from one side of the brane to the other. This allows more freedom in

the AC metric’s warp factor, a(y), allowing large scale modifications of gravity which,

as we have discussed in chapter 1, are not present in the RS model. The asymmetric

model also possesses a strong hierarchy between the Planck masses and the AdS cur-

vature scales on each side of the brane. If on one side of the brane, the Planck mass

and cosmological constant are large, it leads to a localising effect on braneworld gravity

23
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(similar to that in the RS model). If on the other hand, the cosmological constant and

the Planck mass are both taken to be small, the opposite effect is achieved and gravity

is modified in the infrared, [99]. Choosing appropriate scales, it is therefore possible

to have an effectively 4D regime giving way to 5D behaviour at very large scales in a

similar manner to the DGP model.

In this chapter, we explore the cosmology of the asymmetric model, focusing in

particular on the type Ia supernova data, [100, 9, 10], and the expansion parameters

from WMAP, [78, 83], tests which have already been performed for the DGP model. We

first show how the AC model can be viewed as a one parameter extension of the DGP

model over a wide range of scales. We then explore the effect of this additional parameter

on the expansion history of the universe, comparing in particular with the DGP model.

We finally discuss the effect of this parameter on the observational constraints.

3.2 Asymmetric braneworld models

We begin by reviewing the asymmetric model, [47], and deriving the cosmological equa-

tions. The action can be written as a combination of a bulk and brane action as in

chapter 2, where the ‘bulk’ action contains the gravitational field dynamics, and is given

by the Einstein-Hilbert and Gibbons-Hawking terms:

Sbulk =
∑

i=1,2

M3
i

∫

Mi

d5x
√−g(R− 2Λi) + 2M3

i

∫

brane

d4x
√−γK(i) . (3.1)

Here, gab is the bulk metric with corresponding Ricci scalar, R and the sum ensures that

the bulk spacetimes on either side of the brane are included. The metric induced on the

brane is given as before by eqn. (2.3), while the extrinsic curvature is given by eqn. (2.4).

The brane action for the AC model is written as

Sbrane =

∫

brane

d4x(−σ√−γ + Lmatter) , (3.2)

where σ is the brane tension and Lmatter describes the matter content on the brane.

Again we have written the action in a form which includes the Gibbons-Hawking

boundary term containing the extrinsic curvature, as we did in the last chapter. Due to

the asymmetric nature of the AC model, the boundary approach, typified by the inclusion

of this term, is a somewhat more natural method of representing the model than the
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δ-function used to denote a purely mathematical boundary, making the equations of

motion easier to obtain.

The equations of motion for each bulk are given by the 5D Einstein equations (2.6)

used in the last chapter, while the brane equations of motion are found once again from

the Israel conditions, [72], and in this model are given by

2〈M3Kab〉 −
σ

6
γab =

1

2

(

Tab −
1

3
Tγab

)

, (3.3)

obtained by varying the AC action with respect to the induced brane metric, γab, where

〈Z〉 = (Z1 + Z2)/2 and ∆Z = Z1 − Z2 for a quantity Zi differing across the brane1. We

use the same expression for the energy momentum tensor of the additional matter on

the brane, eqn. (2.8).

The background metric, ḡab, is found by solving the equations of motion with Tab = 0,

and may be written as

ds2 = ḡabdx
adxb = a2(y)ηµνdx

µdxν + dy2 , (3.4)

where xa = (xµ, y), the brane is situated at y = 0, and a(y) is the warp factor. The bulk

equations of motion (2.6) can be solved to give

(a′

a

)2

= −Λ

6
,

a′′

a
= −Λ

6
, (3.5)

thus, the warp factor has the general form

ai(y) = e−θiki|y| , (3.6)

where θi = ±1, the subscript i = 1, 2 refers to the two sides of the brane (i = 1 being

y < 0), and Λi = −6k2
i defines the AdS curvature scale on each side.

If we now consider the 00 component of the brane equations of motion (3.3) (again

with Tab = 0) and the metric (3.4), we find

K00 = a′a , (3.7)

1The appearance of the average of the extrinsic curvature, 〈Kab〉, rather than the more usual ∆Kab

in eqn. (3.3) is a result of the manner in which the unit normal to the brane is defined, [73], as
mentioned in the last chapter.
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which imposes a condition on the brane tension:

2〈M3θk〉 =
σ

6
. (3.8)

Three separate cases of this model were considered in [47] for different θi values (see

figure 3.1): (i) the Randall Sundrum (RS) case, θ1 = θ2 = 1, (ii) the inverse Randall

Sundrum (IRS) case, θ2 = θ1 = −1, and (iii) the mixed case, where θ1 = −θ2 = 1.

If θ1 corresponds to the lefthand side of the brane (y < 0) and θ2 corresponds to the

righthand side of the brane (y > 0), then the RS case has the warp factor decaying away

from the brane on both sides, while the inverse RS case has the warp factor growing on

both sides. In the mixed case, the warp factor decays away from the brane on the left,

whilst growing on the right. As explained in detail in [47, 99], (see also the discussion

below about the scales where the model exhibits 4D behaviour), whereas 4 dimensional

Einstein gravity cannot be reproduced at any scale in the inverse RS case, it can be

achieved in the RS and mixed cases, along with infrared modifications. However, only

the mixed case will approach a de Sitter state at late times, leading to exponential

late time acceleration without an effective cosmological constant, [46], (as we discussed

in chapter 1, the RS II model produces effectively 4D gravity despite the presence of

an infinite extra dimension). Therefore, only the mixed case where θ1 = −θ2 = 1 is

considered from now on.

Turning to cosmological solutions, since we have Einstein gravity in the bulk, as in

the DGP model, we know that once again, the bulk is completely specified by the AdS-

Schwarzschild metric specified by eqns. (2.9) and (2.10), [74]. For simplicity, we will take

the case where there is no black hole in either bulk, µi = 0.

Following the same procedure as in chapter 2, the brane is constructed by glueing a

solution in M1 to a solution in M2, where the brane will form the common boundary.

Then, in Mi, the boundary ∂Mi is given by the section (ti(τ), ai(τ), xµ) of the bulk

metric (2.9), where τ is the proper time of an observer comoving with the boundary and

eqn. (2.11) applies as before, while the outward pointing unit normal in each spacetime

is still given by eqn. (2.12). We evaluate the spatial components of (3.3) in the same

manner as we did in chapter 2, (though without the inclusion of the intrinsic curvature

terms now), and find

2
〈

M3h

a
ṫγij

〉

− σ

6
γij =

1

2

(

Tij −
1

3
Tγij

)

. (3.9)
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y

aHyL

(a) The RS case: θ1 = θ2 = 1

y

aHyL

(b) The IRS case: θ1 = θ2 = −1

y

aHyL

(c) The mixed case: θ1 = −θ2 = 1

Figure 3.1: Representation of the 3 combinations of warp factor allowed in the asymmetric
brane model
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Finally, taking account of the extra brane tension term in the AC model, we substitute

for σ using (3.8), and h(a) using (2.10) with µi = 0, and find that the modified Friedmann

equation for the mixed case is

ρ = 6

[

M3
1

(

√

H2 +
κ

a2
+ k2

1 − k1

)

−M3
2

(

√

H2 +
κ

a2
+ k2

2 − k2

)

]

. (3.10)

As we said at the beginning of the chapter, the AC model can produce 4D behaviour

at certain scales, before gravity is modified in the infrared, producing 5D behaviour. We

would like to know the range of scales over which these behaviours are obtained. We

therefore follow the method of [47] and consider the linearised equations of motion. If we

write the perturbed metric as gab = ḡab + hab and work in Gaussian normal coordinates

(hµz = hzz = 0) and the transverse-traceless (TT) gauge (∂νh
ν
µ = hµ

µ = 0), the linearised

bulk equations of motion (2.6) are given by

[

∂2

a2
+

∂2

∂z2
− 4k2

]

hµν(x, y) = 0 . (3.11)

However, as explained in [44], the presence of matter on the brane causes it to bend,

leading to problems in applying the Israel equations. Therefore a gauge transformation

that yields new coordinates, which are also Gaussian normal, and positions the brane

at y = 0 is needed, [47]:

y → y − f(x), xµ → xµ −Qµ(x) +
θ

2k
(1 − a−2)∂µf , (3.12)

where f(x) and Qµ(x) are bulk quantities which can vary on either side of the brane.

The metric perturbation can be recalculated in terms of these new coordinates using

hab = 2∇(aξb), where xa → xa + ξa, and is found to be

hnew
µν = hµν(x, y) + 2a2Q(µ,ν) + k−2(1 − a2)∂µ∂νF + 2F ḡµν , (3.13)

where F = θfk and hnew
µν is the perturbation in the new coordinates. The linearised

Israel equations can also be written in this coordinate system, varying eqn. (3.3) and

using eqn. (3.8) to give

∆[M3h′µν(x, 0)] − σ

3
hbr

µν = Σµν(x) , (3.14)



The cosmology of asymmetric brane modified gravity 29

where

Σµν(x) = Tµν −
1

3
Tηµν + 4

〈

M3θ

k

〉

∂µ∂νF . (3.15)

hbr
µν is the perturbation of the metric on the brane in the original coordinates, while a

prime denotes differentiation with respect to the extra dimension.

If we now transform the linearised equations into momentum space (a tilde repre-

senting a Fourier transformed quantity), the general solution to the bulk equations of

motion (3.11) is

h̃µν(p, y) = Aµν(p)I2

(

p

ak

)

+Bµν(p)K2

(

p

ak

)

, (3.16)

where I2 and K2 are modified Bessel functions of order n and Aµν and Bµν are unknown

functions independent of the extra dimension; we also require that h̃µν → 0 as |y| → ∞.

For the three different cases of this model (RS, IRS and mixed), this results in the

solution being written as

h̃µν(p, y) =
C2(p/ak)

C2(p/k)
h̃br

µν , (3.17)

where we have used the properties of the modified Bessel functions, [101]:

I2(z) → 0, K2(z) → ∞ as z → 0 (3.18)

I2(z) → ∞, K2(z) → 0 as z → ∞ , (3.19)

(for some arbitrary z), to find that

C2 =







K2 for RS case

I2 for IRS case ,
(3.20)

and C
(1)
2 = K2, C

(2)
2 = I2 for the mixed case. If we insert this solution, (3.16), into the

Fourier transform of the linearised Israel equation (3.14), we find the solution for the

(Fourier transformed) brane metric as, [47]:

h̃µν =
Σ̃µν(p)

R(p)
, (3.21)
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where

R(p) = −2p

〈

M3θ
C1(p/k)

C2(p/k)

〉

, (3.22)

and we have used another property of Bessel functions, [101]:

zI ′2(z) + 2I2(z) = zI1(z) zK ′
2(z) + 2K2(z) = −zK1(z) . (3.23)

C2 is given by eqn. (3.20) as before and in a similar manner,

C1 =







−K1 for RS case

I1 for IRS case ,
(3.24)

with C
(1)
1 = −K1, C

(2)
1 = I1 for the mixed case. If we now consider the brane metric in

the new coordinates (which can be found by setting y = 0 in eqn. (3.13)) and transform

it to momentum space:

h̃br(new)
µν = h̃br

µν + 2ip(µQ̃ν) + 2F̃ ηµν (3.25)

we can rewrite it using eqn. (3.21), provided we choose our gauge term, Q̃µ(p), to cancel

the pµpν term arising from Σ̃µν . We also note that F̃ is related to the transformed

energy momentum tensor, T̃ , which follows from the fact that Σµ
µ = 0 due to the metric

perturbation being traceless, and finally obtain

h̃br
µν =

1

R(p)

[

T̃µν −
1

3
T̃ ηµν

]

− 1

6αp2
T̃ ηµν , (3.26)

where

α =

〈

M3θ

k

〉

. (3.27)

In order to find the scales at which the AC model exhibits 4D behaviour, we compare

eqn. (3.26) to its 4D counterpart, [47]:

h̃µν =
1

m2
plp

2

[

T̃µν −
1

2
T̃ ηµν

]

. (3.28)

Comparing these two equations, we can see that for a 4D regime to exist, we require

R(p) ∼ αp2 and α = m2
pl. On calculating R(p) (using Bessel function approximations
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for small and large arguments) for the RS and IRS cases, the IRS case is found never to

produce Einstein gravity, as it is never proportional to p2, whereas the RS case can in

certain regimes, [47]. For the mixed case (on which we are concentrating), we can see

that

R(p) = p

[

M3
1

K1(p/k1)

K2(p/k1)
+M3

2

I1(p/k2)

I2(p/k2)

]

. (3.29)

Introducing a new length scale, which can be seen as an analogue of the DGP crossover

scale,

rc =
M3

1

M3
2 k1

, (3.30)

Padilla, [47], found that

R(p) ∼



















M3
2 p for k2 ≪ p≪ 1/rc

1
2

M3
1

k1
p2 for 1/rc ≪ p≪ k1

M3
1 p for p≫ k1 .

(3.31)

Returning to coordinate space, we therefore find the range of scales over which gravity

is four dimensional (i.e. where R ∼ p2) to be

k−1
1 ≪ r ≪ rc , (3.32)

which clearly requires M1 ≫ M2. For this model to be phenomenologically viable, this

range of scales must be appropriate. Since we are looking at rc as representing the scale

at which late time acceleration sets in and gravity is modified, we expect the crossover

scale to be of order the current horizon size, rc ∼ H−1
0 , much as we discussed in chapter

2 for the DGP crossover scale, rDGP . On the other hand, as mentioned in chapter 1,

table-top tests of General Relativity, [36, 37], have confirmed its validity down to sub-

mm scales, which fixes our largest frequency scale, k1 (the UV cut-off of the theory), so

that k−1
1 ∼ 0.1 mm. These constraints give us a large hierarchy of scales, and, as already

noted, require a large hierarchy in the parameters.

It is interesting to see these scales emerge from an analysis of the Friedmann equation

(3.10). Obviously (3.10) looks nothing like the standard Friedmann equation, and so

can only reduce to such in certain asymptotic limits. Setting κ = 0 for simplicity, and
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using

√
H2 + k2 ≃







k + H2

2k
for H ≪ k

H for H ≫ k ,
(3.33)

we see that we can only get the H2 behaviour required if k1 ≫ k2, and we take H ≪ k1.

In this regime, the Friedmann equation can be written as

ρ ≃ 3
M3

1

k1

H2 − 6M3
2

(
√

H2 + k2
2 − k2

)

. (3.34)

We therefore see the existence of an accelerating vacuum whenever

H2
A = 4k1

M3
2

M3
1

(

k1
M3

2

M3
1

− k2

)

> 0 . (3.35)

We can also read off the 4D Planck mass by comparing with the standard 4D Friedmann

equation, (2.24):

m2
pl ≃

M3
1

k1
> 0 . (3.36)

This agrees with the expression derived in [47], and also with a direct computation of

the propagator, (see appendix A of [1]).

As we said in section 3.1, we would like to compare (3.34) with the cosmological

equations from the DGP model discussed in chapter 2. If we assume the model is flat

or has very small non-zero curvature, the DGP brane cosmological equations (2.23) can

be rewritten as

ρ = 3m2
plH

2 − 6ǫM3H . (3.37)

The choice of sign in the linear Hubble term is due to the choice of which part of the

bulk is kept: the minus sign (ǫ = 1), corresponding to the exterior being kept, is the self-

accelerating branch as before, which has late time cosmological acceleration as discussed

in chapter 2. The crossover scale rDGP is defined as in eqn. (2.26).
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To compare the asymmetric and DGP models, note that if we take H ≫ k2, then we

may approximate the second bracket in (3.34), and obtain

ρ ≃ 3
M3

1

k1
H2 − 6M3

2H , (3.38)

which is of course (3.37) after suitable substitution.

Over a large range of scales therefore, AC cosmology can be viewed as a generalisation

of DGP cosmology. To parameterise this in a simple way for our analysis, we set

α =
k1

H0

M3
2

M3
1

β =
k2

H0

E =
H

H0

, (3.39)

where H0 is the current value of the Hubble parameter. (3.10) then becomes:

ρ = 3m2
plH

2
0

[

E2 +
κ

a2H2
0

− 2α

(
√

E2 +
κ

a2H2
0

+ β2 − β

)]

. (3.40)

Here, α = (2H0rDGP )−1 is essentially the same as the DGP crossover scale, (2.26), and

β is the new parameter coming from the asymmetric physics. It is precisely the effect of

this new parameter which we seek to explore.

3.3 Asymmetric cosmology

In order to explore the effects of the AC model, it is useful to rewrite the Friedmann

equation in an Einstein form by solving (3.40) for E = H/H0:

E(z)2 = Ωk(1 + z)2 + Ωi(1 + z)3(1+wi) + 2α(α− β) + 2α
√

(α− β)2 + Ωi(1 + z)3(1+wi) .

(3.41)

Here, an implicit sum over the various contributions to the energy density with equations

of state pi = wiρi is understood and Ωk = −κ/a2
0H

2
0 as before. Note that the + root

of the quadratic is required to get the correct Ω → 0 limit of the Israel equations. We

can now readily compare the AC model with ΛCDM and DGP, which are implicitly

contained in (3.41): α = 0 and we include an ΩΛ for ΛCDM, and β = 0 for DGP

(see eqn. (2.30), using α2 = ΩrDGP
). Since the DGP model has been carefully analysed

with cosmological expansion data (see chapter 2 and references therein), here we focus

qualitatively on the additional features the β term brings relative to DGP.
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The aim of gravitationally driven late time acceleration is to avoid using a cosmo-

logical constant, (ΩΛ), therefore evaluating (3.41) at the current time gives a constraint

between the model parameters α, β and the current matter and curvature densities:

Ωm = 1 − Ωk − 2α(
√

1 − Ωk + β2 − β) , (3.42)

(ignoring the relatively insignificant radiation component). This means that once Ωm

and Ωk are fixed, the asymmetric cosmology forms a one parameter family of solutions

(note that DGP is entirely constrained by fixing Ωm and Ωk: see eqn. (2.32)). From

(3.39), we see that both α and β are positive, and in addition self-acceleration requires

β < α from (3.35). Thus our additional parametric degree of freedom in the asymmetric

model has a fairly limited range.

The modified Friedmann equation (3.41) shows clearly the effect of β over the range

[0, α]. As already noted, β = 0 corresponds to the DGP model, with α2 = ΩrDGP
in

the usual notation of encoding the DGP crossover scale as an effective DGP Ω contri-

bution. The other limit, β = α, corresponds to an n = 1/2 Cardassian model, [26], or

alternatively, a dark energy fluid with (constant) equation of state w = −1/2.

As with DGP, relaxing the constraint of flatness leads to a wider range of parameter

choice:

(1 − Ωk − Ωm)

2
√

Ωm

≥ α ≥ (1 − Ωk − Ωm)

2
√

1 − Ωk

, (3.43)

and the cosmological models now form a three parameter family, which can be labelled

using {Ωm,Ωk, α
2} (or by trading one of the Ω parameters for β). In order to more readily

compare with DGP results, we will use the former parameterisation, and compare results

in the {Ωm, α
2} plane (recall α2 = ΩrDGP

in DGP) either for various fixed β values with

Ωk varying, or fixed Ωk values with β varying. In spite of the enlarged parameter space,

the asymmetric cosmology turns out to be under more cosmological tension than DGP.

A nice way to encode this information is to consider the effective dark energy which

is the difference between the square of the Hubble parameter and the matter content,

[102, 103, 104]:

ΩDE(z) = 2α(α− β) + 2α
√

(α− β)2 + Ωi(1 + z)3(1+wi) , (3.44)
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where we have taken Ωk = 0 for simplicity. The effective dark energy pressure is then

the discrepancy between the Einstein pressure and the actual pressure. The pressure is

calculated using, [103]:

p =
H2

4πG
(q − 1

2
) , (3.45)

where the deceleration parameter q is given by

q =
H ′(z)

H(z)
(1 + z) − 1 . (3.46)

For the full asymmetric model, using eqn. (3.41), we calculate the pressure to be

pASY

3m2
plH

2
0

= (1 + wi)Ωi(1 + z)3(1+wi) +
α(1 + wi)Ωi(1 + z)3(1+wi)

√

(α− β)2 + Ωi(1 + z)3(1+wi)
− E(z)2 , (3.47)

while the Einstein pressure is found to be

pE

3m2
plH

2
0

= (1 + wi)Ωi(1 + z)3(1+wi) − Ωi(1 + z)3(1+wi) ; (3.48)

taking the difference between them, the effective dark energy pressure is

ΠDE(z) = −α
[

2(α− β) +
2(α− β)2 + (1 − wi)Ωi(1 + z)3(1+wi)

√

(α− β)2 + Ωi(1 + z)3(1+wi)

]

. (3.49)

If we now use (3.44) and (3.49), we can find an effective equation of state,

wDE(z) = −1 +
(1 + wi)Ωi(1 + z)3(1+wi)

2[(α− β)
√

(α− β)2 + Ωi(1 + z)3(1+wi) + (α− β)2 + Ωi(1 + z)3(1+wi)]
.

(3.50)

This shows how the equation of state always has w ≥ −1 for α ≥ β, and thus the model

can never enter a phantom regime. We also see how for β > 0, w is raised from its DGP

(β = 0) value (see figure 3.2). Overall therefore, we expect that expansion data will

favour a lower Ωm, offsetting the increased value of w, in both DGP and AC models.

In order to see this explicitly, we look qualitatively at the effect of the AC model

compared to DGP on various tests of the cosmological expansion history at the different

epochs discussed in chapter 2, concentrating on type Ia supernovae, [100, 9, 10] and the

cosmic microwave background, [78, 83].
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Figure 3.2: Variation of the effective dark energy equation of state taking Ωm = 0.25. The
values of α run from the minimum allowed (β = 0, the DGP value) in purple, to
the maximum value, α = β, shown in red. These clearly show how increasing β
neutralises acceleration in asymmetric cosmology.

We first look at the type Ia supernovae redshift-luminosity relation based on the

luminosity distance, dL, which is given by eqn. (2.33), as discussed in chapter 2. Since

the Hubble parameter is higher in AC cosmologies (at fixed Ωm) and increases with

increasing β, (2.33) shows that this results in a lessening of the luminosity distance and

hence a lower magnitude. Figure 3.3 demonstrates this with a direct redshift-magnitude

plot.

A more conventional visualisation of the effect of the AC model is given by plotting

the preferred regions of {Ωm, α
2} parameter space at different values of Ωk, β. Figure

3.4 shows the projection on the {Ωm, α
2} plane at fixed β and fixed Ωk values respec-

tively: α2 is plotted against Ωm as this more readily compares with the ΩrDGP
parameter

conventionally used in the analysis of DGP models. We calculate an expression for χ2

using the ESSENCE supernova dataset, [100, 9, 10], containing 192 datapoints:

χ2
red =

1

192

∑ (µobs − 5Log10dL(z) − 43.3)2

µ2
err

(3.51)
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Figure 3.3: Plot of magnitude vs. redshift for (from top to bottom curve) ΛCDM (green),
DGP (blue) and the AC model (with α = 0.702, β = 0.702) (red), along with
the ESSENCE supernova redshift data. Ωm = 0.27.
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where we calculate dL(z) from (2.33), using (3.41) for E(z). The contours plotted in

figure 3.4 are then 1σ contours, found using χ2
min + ∆χ2, where ∆χ2 is a standard value

and we minimise (3.51) over the model parameters α and Ωm.

The lefthand figure indicates how the preferred region of parameter space reacts to

the β parameter (two values, β = 0, α/2 are shown), and the righthand figure how

the parameter space reacts to Ωk for general β. In each case the figure shows that α

increases in response to increasing β, and although the effect on Ωm is less marked, it

decreases slightly. Inspection of (3.41) shows why this is so. In effect, fitting the data

is accomplished by keeping E(z) relatively unchanged. If we increase β, we can see

that this can be mostly counterbalanced by an increase in α, with possible sub-leading

changes in the other parameters. It is interesting to note that the projection at fixed

Ωk is relatively insensitive to that value of Ωk, as can be seen from the large overlap

between the bands, despite the rather large value of Ωk chosen for clarity of the plot.

The flat universe band is much broader than the Ωk = 0.1 band because the effect of

the geometry (via the sinh function in the luminosity distance (2.33)) tends to magnify

any variations in the comoving distance due to variations in the parameters.

It is clearly not difficult to reproduce the supernova redshift-luminosity relation in

isolation, particularly if the possibility of an open universe is included. However, as

already discussed, the real tension for DGP (and even more so for the asymmetric model)

is in combining the supernova constraints with the constraints from other cosmological

data, [62, 60, 61].

The CMB shift parameter, as in chapter 2, is given by

R(z∗) =

√
ΩmH0

c
(1 + z∗)DA(z∗) =

√
Ωm

√

|Ωk|
S
(

√

|Ωk|
∫ z∗

0

dz′

E(z′)

)

(3.52)

where z∗ = 1090.51±0.95 is the redshift at decoupling, [78], (and c has been temporarily

reintroduced for reference). The problem with lowering Ωm now becomes more apparent.

While we can ensure that the comoving distance is maintained by dropping Ωm, the shift

parameter is also lowered by this process. Indeed, flat DGP requires Ωm ≃ 0.35 to match

the WMAP 5 year value R = 1.71 ± 0.02, [78, 83]. However, one feature revealed by

the β parameter is that for sufficiently large Ωk (or small Ωm), the angular diameter

actually increases sufficiently with decreasing Ωm to outweigh this effect, and the shift

parameter thus increases with decreasing Ωm.
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Figure 3.4: An illustration of the constraints on parameter space due to the supernova data.
1σ contours are plotted in all cases. On the left, two fixed values of β are shown:
β = 0 is the solid contour, and β = α/2 the dashed contour (the separate lines
indicate Ωk = 0 for each β value). In the righthand figure, β now varies freely
and the bands indicate two fixed values of Ωk: the dashed contour, Ωk = 0.1,
and the solid contour Ωk = 0. The upper and lower bounding values of β are
also shown.
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In order to compare the shift parameter constraint on the AC model to the situation

with the DGP model, [62, 60, 61], we allow for open, flat and closed cosmologies, and

test the parameter space compatible with the given shift parameter using the stated

WMAP range above. Figure 3.5 shows allowed regions of {Ωm, α
2} parameter space

projecting onto fixed β and fixed Ωk subspaces.

The lefthand figure in figure 3.5 shows three different β values ranging from the

DGP to the Cardassian limit. These show that as β is increased, preferred values of

Ωm become higher. The righthand figure shows three different Ωk values. We chose

three indicative values of Ωk, the flat universe, Ωk = 0.03 (the best fit value for the

open DGP model according to the analysis of Song, Sawicki and Hu in [60]) and 0.06 to

illustrate the appearance of a minimum in the allowed region. The minimum appears

because decreasing Ωm decreases E(z) over the redshift range, which, together with the

magnifying effect of the sinh function, overwhelms the decrease in the prefactor of the

shift parameter and results in an overall increase of R∗. In this plot, the limiting values

of β are shown, and increasing β corresponds to moving roughly diagonally upwards

across the plot. Once again, this indicates that the preferred value of Ωm generally

increases as β is increased.

We can now see how even just these two constraints on parameter space are prob-

lematic by combining them, since increasing β tends to prefer a decreased Ωm to fit the

supernova data, yet an increased Ωm to fit the CMB shift parameter. Increasing Ωk in

general causes the two ranges for Ωm and α to move together, but unfortunately this

pushes Ωm to an unacceptably small value. In figure 3.6 we combine the plots, and

include for reference an indication of the constraint coming from the baryon acoustic

oscillation peak detected by the SDSS survey, [84, 85]. This is usually represented as a

dimensionless constant

A = DV (z1)

√
ΩmH0

cz1
=

√
Ωm

E(z1)1/3

[

1

z1
√

|Ωk|
S
(

√

|Ωk|
∫ z1

0

dz′

E(z′)

)

]2/3

= 0.469 ± 0.017 ,

(3.53)

where z1 = 0.35, and DV is the geometric average dilation scale, [84, 85]. As mentioned

in chapter 2, there is some debate as to whether this measure should be used for models

which do not behave as a constant equation of state dark energy, [86, 63, 87], and in

particular where growth of perturbations may differ significantly from the Einstein case.

The perturbation theory as presented in appendix A of [1] indicates that the AC model is

much the same as DGP, and we do not propose to add to this debate here. Nonetheless,
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Figure 3.5: A depiction of the region of asymmetric cosmology parameter space consistent
with the shift parameter. On the left, Ωk varies freely, and three fixed values of
β are shown: β = 0, or the DGP limit, is the lowest (blue) band, the green band
an intermediate value of β, and the grey band the maximal value of β. The solid
lines indicate Ωk = 0. On the right, β now varies freely and the bands indicate
three fixed values of Ωk: the lightest band on the right is a flat universe, the
middle dark band is Ωk = 0.03, and the left hand (cyan) band is Ωk = 0.06, with
the bounding values of β indicated in each case. The allowed regions in the plots
are obtained using WMAP 5 year values.
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Figure 3.6: A look at the combined effect on the parameter space of asymmetric cosmology
fixing Ωk (0, 0.03, and 0.06 respectively) and allowing β to vary between its two
limits as indicated. The dark (blue) band shows the shift parameter preferred
range of Ωm and α2, the lighter (grey) band from the supernova data, and the
lightest (pink) band that from the BAO constraint.

we include this band of parameter space as it is indicative of how serious a problem

structure formation presents. We do not however use it to constrain our parameters.

For example, in the Ωk = 0, 0.03 plots, the BAO strip suggests that while these models

might be a significantly poorer fit to the data than ΛCDM, structure formation is not a

particular problem; the main issue in these plots is the way the other bands respond to

increasing β.

Figure 3.6 shows explicitly the problem of increasing β on the parameter space. For

Ωk = 0, 0.03, increasing β causes the allowed regions of parameter space to diverge.
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For the relatively large value of Ωk = 0.06, the supernova and shift parameter regions

do overlap, centred around α2 ∼ 0.28, Ωm ∼ 0.13 (with β ∼ 0.4α). However, even

ignoring the discrepancy with the BAO strip (which is severe) this overlap occurs at

an unacceptably low value of Ωm. WMAP constrains Ωmh
2 = 0.1326 ± 0.0063, [78],

meanwhile the Hubble Key Project finds h = 0.72 ± 0.08, [88]. Therefore, taking the

largest allowable value of Ωm as indicated in the final plot of figure 3.6, Ωm ≃ 0.17,

requires a h value of 0.86 − 0.9, well above the Hubble Key Project range.

Thus our results show that increasing β increases the tension in fitting the data

relative to the DGP model. In spite of the enlarged parameter space, the asymmet-

ric cosmology turns out to be under more cosmological tension. This is because for a

given matter content, (3.41) shows that the Hubble parameter increases with redshift

more rapidly than in DGP (which itself is more rapid than ΛCDM) as the β parameter

increases. This means that for a given Ωm, the comoving distance out to a particu-

lar redshift is lower in asymmetric gravity than DGP, which is correspondingly lower

than ΛCDM. Unfortunately, this means that AC cosmologies are therefore not a good

description of our universe.

3.4 Conclusions

In this chapter, we have examined the asymmetric brane model, [46, 47], a braneworld

theory of modified gravity, with a view to exploring how well it can explain the late

time acceleration of the universe. Above a Hubble distance of order 1 mm, the effective

evolution of this model is a one-parameter generalisation of the DGP model and the ad-

ditional parameter is found to impede the expansion of the universe, lowering it relative

to DGP. As such, it turns out that the asymmetric model has more problems fitting the

cosmological expansion data than DGP. In addition, recent work on ghosts in the stealth

model, [73], suggests that any model with a self-accelerating branch in its solution will

contain ghosts. This description encompasses the AC model and unfortunately it seems

that, like DGP, pure AC models are not viable cosmological models for late time accel-

eration. Nonetheless, as we stated earlier, the analysis is a valuable exercise in checking

the behaviour of all possible modified gravity models available in order to either identify

or rule out alternatives to ΛCDM.



Chapter 4

Cosmic strings and gravitational

wave bursts

4.1 Introduction

In the rest of this thesis, we turn our attention from the late time behaviour to one of

the early universe consequences of braneworld models - cosmic strings - and consider the

effects that extra dimensions can have on them.

It has been realised in recent decades that phase transitions could occur in the early

universe, as they do in condensed matter systems, resulting in the formation of topo-

logical defects, which could still be in existence today, [105]. Topological defects are a

generic prediction of grand unification theories: theories which predict the unification

of the strong and electroweak forces at very high energy scales (the SM and Minimal

Supersymmetric Standard Model (MSSM) suggest that this occurs at ∼ 1016 GeV,

[106]). The different forces we observe today, along with the well-known standard model

gauge group, SU(3) × SU(2) × U(1), then appear when the original gauge symmetry

is broken as the early universe cools with expansion. If they exist, topological defects

could provide an invaluable method of studying the behaviour of the very early universe.

Unfortunately energies at this scale are far beyond those accessible by (even the most

energetic) accelerator experiments today, however their possible effects on astrophysical

phenomena could provide an alternative testing ground.

The formation of the various types of topological defect - domain walls, cosmic strings,

monopoles and other hybrid structures - depends on the structure of the vacuum man-

ifold, [107]. However it has been found, [105], that the existence of domain walls or

44
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monopoles would be cosmologically disastrous for our universe, as the topological de-

fects come to dominate at late times. A network of cosmic strings, on the other hand,

has been shown to be cosmologically benign, [108]. The majority of research into the

astrophysical and cosmological effects of topological defects has therefore concentrated

on cosmic strings.

If we consider the simplest model of spontaneous symmetry breaking, the Goldstone

model, [105, 109, 110], we can write down a Lagrangian of the form

L = (∂µφ
†)(∂µφ) − 1

4
λ(φ†φ− η2)2 , (4.1)

where λ and η are positive constants and φ is a complex scalar field. This Lagrangian

is invariant under a global U(1) transformation:

φ(x) → eiαφ(x) . (4.2)

The last term in eqn. (4.1) is the potential, V (φ), whose minima, it can easily be seen,

lie on a circle of radius |φ| = η, meaning that the vacuum state of the theory can be

written as a non-zero expectation value:

〈0|φ|0〉 = ηeiθ , (4.3)

where θ is an arbitrary phase. If we now consider the effect of the U(1) transformation

on the phase, we find that θ → θ + α: while the Lagrangian is invariant, the vacuum

state is not and we say that the symmetry is spontaneously broken. The values the field

φ takes at different points in the vacuum are independent of each other if the regions

are separated by a distance greater than some correlation length, ξ, [107, 111]. As the

field cannot travel faster than the speed of light, this correlation length will always be

smaller than the horizon, [105].

A cosmic string is formed if the vacuum manifold is not simply connected, i.e. it

contains holes around which loops can get trapped. As the path of a closed loop is

traced out in physical space, it is possible for the field, φ, to wrap around the hole

formed by the minima of the potential in the vacuum. As the field wraps around the

hole in the vacuum manifold, it develops a non-trivial winding, since the phase jumps in

value (e.g. from 0 to 2π) when the field completes a a full turn of the hole in the manifold.

This phase jump can only be continuously resolved if the field takes the value of φ = 0,

which is situated at the top of the potential, V . This state is therefore energetically
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disfavoured and so the winding of the string will remain. The structure ‘trapped’ inside

this winding is a cosmic string. These strings must be infinite or form closed loops,

[109], as it is otherwise possible to continuously resolve the winding, causing the defect

to collapse.

Cosmic strings have a finite width, typically comparable to the Compton wavelength

of a particle whose mass is of the order of the symmetry breaking scale. In the case of

the GUT scale this corresponds to a thickness of ∼ 10−29 cm, [112, 113]. Given that this

distance is so much smaller than astrophysical or cosmological scales, it is acceptable to

view cosmic strings as idealised zero-width objects. In this case, the action of the cosmic

string can be approximated using the Nambu-Goto action, [114]:

S = −µ
∫

d2σ
√
γ . (4.4)

Strings which intersect each other (or themselves) intercommute, or exchange partners

rather than passing through one another and classical strings which intersect almost

always intercommute, [115, 116, 117]. This process leads to the formation of cosmic

string loops in the case of a self-intersection, as a portion of the string is cut off.

Cosmic strings loops were originally studied in the context of structure formation

and loops were thought to be ideal seeds for galactic formation, [118, 119, 120, 121].

Cosmic strings were also considered as a possible candidate to source the temperature

fluctuations observed in the cosmic microwave background (CMB). They were ruled out

as the primary source of the fluctuations, as the angular power spectrum of the cosmic

strings was found to be rather featureless, most notably lacking the distinctive series of

acoustic peaks observed by the WMAP experiment at small angular scales, [122, 123],

however, it is still possible that they could contribute at a subdominant level, [124].

Nevertheless, while these original motivations have not stood the test of time, cosmic

strings are still of interest today, as they could provide possible explanations of various

astrophysical phenomena such as gamma-ray bursts, [125, 126, 127], and high energy

cosmic rays, [128, 129], while straight strings produce a conical deficit in spacetime,

which can lead to gravitational lensing, [112, 130, 131]. Finally, cosmic string loops emit

gravitational waves as they oscillate under their own tension, losing energy at a rate of

Ė ∼ ΓGµ2 , (4.5)



Cosmic strings and gravitational wave bursts 47

found using the quadrupole formula, [132], where µ is the string tension, G is Newton’s

gravitational constant and Γ is a constant of proportionality. The production of cosmic

string loops through intercommutation fragments straight strings, and the decay of these

loops following their formation is an important energy loss mechanism for a network of

cosmic strings, diluting the density of strings in the network, thus preventing strings from

coming to dominate the universe, [119, 115]. We focus on this gravitational radiation

from cosmic string loops for the rest of the chapter.

Gravitational waves, [133], are an important prediction of General Relativity which

can be thought of as ‘ripples’ in the geometry of spacetime, propagating at the speed of

light. However, despite significant efforts and various experiments and detectors, they

have yet to be observed. The main reason for the lack of direct detections so far is that

the deformation of objects due to the passage of a gravitational wave from a distant

source (as any promising source is likely to be) is expected to be extremely small. The

usual method of computing the expected amplitude of a wave from such a source uses

the linearised form of the Einstein equations, which take the form

�h̄µν = −16πGTµν , (4.6)

where hµν is the metric perturbation generated by the source, h̄µν ≡ hµν − 1
2
hηµν is

the trace-reversed metric perturbation and the harmonic gauge (∂ν h̄µν = 0) is used.

Indeed the only indirect evidence for the existence of gravitational waves comes from

the observations of a binary pulsar discovered by Hulse and Taylor, [134, 135], in 1974,

where it was found that the changes in the pulsar rotation period agreed with the

predictions made by Einstein for energy being lost to gravitational radiation. Pulsar

timing experiments are ongoing today, allowing for the possibility that extremely low

(nHz) frequency gravitational waves will be detected, [136, 137].

The main focus for the direct detection of gravitational waves is on experiments

using interferometric methods. The current interferometer experiments searching for a

gravitational wave signal are Virgo, [138, 139], in Italy, GEO 600, [140, 141], in Germany

and LIGO (the Laser Interferometer Gravitational-Wave Observatory), [142], in the US.

In these experiments, a laser beam is split and passed into two orthogonal arms, where

it travels back and forth a number of times, reflecting off mirrors suspended at either

end of each arm, before being recombined. Any variation in the path length arising from

changes in the distances between the mirrors due to perturbations from gravitational

waves, corresponds to a shift in the relative phase of the beams, which can be used to
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measure the amplitude of the gravitational waves. A number of science runs have taken

place at all of these detectors (indeed LIGO has performed searches for gravitational

wave bursts from cosmic strings, [143]), but as yet, no gravitational wave has been

observed. The frequency sensitivity of all ground-based interferometers is constrained by

a number of factors. In particular, the lowest frequency cutoff (of ∼ 10 Hz) is determined

by environmental noise. For this reason, a space-based interferometer mission, known

as LISA, [144], (the Laser Interferometer Space Antenna) is also planned, which it is

hoped will be sensitive to gravitational waves at lower frequencies.

However, interferometers are not the only detectors where it is hoped gravitational

radiation will be discovered. Another class of experiments hoping to perform a direct

detection of gravitational waves are resonant or bar detectors, [145]. These experiments

were the original way in which attempts at detecting gravitational waves were carried

out and were pioneered by Weber, [146, 147]. They look for deviations from a resonant

frequency of vibration of a metal bar which would occur if the bar were to be deformed

by a gravitational wave. While they have less flexibility than interferometers, being

able to detect disturbances around their resonant frequency only, they do have the

advantage of being able to run in a more continuous manner without detector upgrades.

Finally, the recent papers of Cruise et al., [148, 149], describe a prototype experiment

for detecting very high frequency gravitational radiation based on interactions between

electromagnetic and gravitational waves.

While all cosmic string loops emit gravitational radiation as they oscillate, there are

two cases in which the radiation emitted has a peculiarly strong and distinctive signal.

Cosmic string cusps and kinks are phenomena which will always appear when cosmic

string loops are considered. A cusp is formed when a point on the loop is moving at

the speed of light, while kinks arise from a discontinuity in the tangent vector to the

loop which occurs at any string intercommutation. The details of their formation cause

cusps and kinks to emit high frequency, highly directed bursts of gravitational radiation

which produce an easily recognisable signal. These gravitational waves bursts (GWB’s)

have been discussed in detail in the papers of Damour and Vilenkin, [50, 150, 51]. In the

rest of this chapter, we review the formation of cosmic string cusps and the calculation

of the cusp gravitational wave burst signal performed by Damour and Vilenkin, [50], in

anticipation of the inclusion of extra dimensions.
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4.2 String motion and cusps

In order to consider cosmic string loops in higher dimensions, we begin by briefly review-

ing the kinematics of cosmic strings in 4 spacetime dimensions, deriving the general form

of a string solution and showing how cusps are generic. This formulation was largely

developed by Kibble and Turok, [151, 121], and is the standard method for finding loop

trajectories.

Cosmic strings are usually studied using a worldsheet formalism, where the world-

sheet is the 2D manifold traced out by the string loop as it moves through the usual

4D spacetime. Let Xµ(σA) be the spacetime coordinates of the string worldsheet, where

σA = {τ, σ} are intrinsic coordinates on the worldsheet: τ is the worldsheet time co-

ordinate and σ represents motion along the string. For the closed loops considered in

this chapter, σ ∈ [0, L], where L is the length of the loop. The induced metric on the

worldsheet appearing in the Nambu-Goto action, (4.4), is then:

γAB =
∂Xµ

∂σA

∂Xν

∂σB
gµν , (4.7)

where gµν is the spacetime metric. The action (4.4) is therefore proportional to the area

of the string worldsheet, where the constant of proportionality µ, is the tension, or mass

per unit length of the string, as in eqn. (4.5). Note that cosmic strings have a tension

along their length equal to their energy density.

Because we are dealing with a two dimensional metric, we can always choose a gauge

in which γ is conformally flat:

ẊµX ′νgµν = 0 (4.8)
(

ẊµẊν +X ′µX ′ν
)

gµν = 0 , (4.9)

where a dot denotes ∂/∂τ and a prime ∂/∂σ. Kibble and Turok then chose the spacetime

coordinates to coincide with the centre of mass frame of the string, and the worldsheet

time coordinate to correspond with the spacetime time (temporal gauge). Thus writing

Xµ = (τ, r(τ, σ)), we have:

ṙ · r′ = 0 (4.10)

ṙ2 + r′2 = 1 (4.11)

r̈ − r′′ = 0 , (4.12)
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where the first two equations correspond to the gauge constraints, and the final equa-

tion is the wave equation of motion for the string. It is conventional to use lightcone

coordinates:

σ± = τ ± σ , (4.13)

in which the solutions to the equation of motion (4.12) take the form of left and right

moving waves, conventionally written in the form

r =
1

2
[a(σ−) + b(σ+)] , (4.14)

where the gauge conditions constrain a′ and b′ to lie on a unit sphere, commonly dubbed

the ‘Kibble-Turok’ sphere:

a′2 = b′2 = 1 . (4.15)

Notice that while the periodicity of a and b is L, the periodicity of the actual motion

of the string is L/2, since r(σ + L/2, τ + L/2) = r(σ, τ).

There is an additional constraint that must be satisfied by both a′ and b′, for consis-

tency with the facts that the loop is closed, and that we are in the centre of mass frame.

The former condition requires that r(τ, 0) = r(τ, L), hence

∫ L

0

r′dσ =

∫ L

0

(b′ − a′) dσ = 0 . (4.16)

The latter condition requires the average momentum integrated along the string to

vanish, i.e. :

∫ L

0

ṙ dσ =

∫ L

0

(b′ + a′) dσ = 0 , (4.17)

thus

∫ L

0

b′ dσ =

∫ L

0

a′ dσ = 0 . (4.18)

Hence a′ and b′ follow trajectories on a unit sphere with zero weight – their average

position is the origin. Since they both define curves on a two dimensional manifold

which must cover both halves of the sphere equally, they will in general cross. Inserting
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the expression for r into the intrinsic metric, (4.7), gives:

γAB =
1

2
(1 − a′.b′)ηAB , (4.19)

thus when a′ and b′ are collinear, the metric becomes degenerate and a point of the

worldsheet instantaneously reaches the speed of light. Strictly speaking the mass con-

centration on the string is infinite at this point, however as it has zero area the total

energy is finite. However, since the vicinity of this point is highly relativistic, this rapidly

moving part of the worldsheet will have high momentum, and hence we expect some sig-

nificant gravitational interaction. Due to the extreme behaviour of the worldsheet at

these points, there has been some question as to whether the Nambu action (4.4) is still

valid near cusps. This issue was discussed in appendix A of [3], where the use of the

uncorrected Nambu action, eqn. (4.4), is justified with the use of a lower bound on the

lightcone coordinates: σmin ∼ (wL)1/2, where w is the string width. Due to the size of

the string width, this quantity is small enough that the cusp is very well approximated

by the uncorrected action. Cusps are thus transient but powerful events; moreover, they

are generic on string trajectories (notwithstanding the effect of small scale structure,

[152]). We now turn to a summary of the gravitational effects of cusps.

4.3 Gravitational waves from cusps

It is worth reviewing the Damour-Vilenkin argument, [50], as the derivation of the

gravitational wave signal is quite involved and lengthy. Damour and Vilenkin (DV)

first computed the linearised metric perturbation arising from a single cusp event on

a cosmic string loop of length L in flat spacetime. The waveform of the cusp was

found to have a power law behaviour of f−4/3 (or f−1/3 in their logarithmic Fourier

representation) at large frequencies, f , of the gravitational wave. They then used this

flat spacetime waveform to infer the cosmological waveform behaviour in the geometric

optics limit, thus deriving a gravitational wave amplitude of a single cusp event which

decays quite strongly with redshift. Finally, by considering a one scale model for the

string network, they computed an event rate for observing cusp GWB’s which increased

rapidly with redshift z. By choosing a physically reasonable event rate, and picking

a fiducial experimentally motivated (detector based) frequency, they determined the

typical redshift contributing to the GWB and calculated the amplitude of the cusp

signal, presenting the results as a function of Gµ.
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In order to present an analytic argument, DV introduced various interpolating func-

tions in redshift space, and approximated at various stages the exact expressions in the

waveform. As we review their argument, we will keep these exact expressions until the

final stage of the calculation. When, in the next chapter, we add in the effect of the

extra dimensions, we will first follow the same method as DV, introducing the same

interpolating functions so that a direct comparison can be made. For interest however,

we will also include an exact numerical redshift integration.

The first step is to calculate the gravitational wave sourced by a cosmic string loop in

flat spacetime, which requires us to solve the linearised Einstein equations (4.6), whose

solution in the far field approximation is given by

h̄µν ≃ 4G

r

∑

ω

e−iω(t−r)Tµν(k, ω) , (4.20)

where Tµν(k, ω) is the Fourier transformed energy momentum tensors.

The energy momentum of the cosmic string is

T µν = µ

∫

d2σ(ẊµẊν −X ′µX ′ν)δ(4)(xµ −Xµ(σ, τ)) , (4.21)

which means the gravitational wave is determined by the Fourier transform

T µν(k, ω) =
µ

TL

∫ TL

0

dτ

∫ L

0

dσẊ
(µ
+ Ẋ

ν)
− e

− i

2
(k·X++k·X−) , (4.22)

where Xµ
+ = (σ+,b(σ+)), Xµ

− = (σ−, a(σ−)), and a dot now denotes a derivative with

respect to the argument of Xµ
±; kµ = 4πm

L
(1,n) = mωL(1,n) is the null wave vector.

Here, ωL is the frequency of the fundamental mode of the string loop.

A cusp corresponds to a lining up of the momenta of the left and right moving modes

on the string loop: Ẋµ
+ = Ẋµ

− = ℓµ = (1,n′). Choosing the coordinate origins, we may

write

Xµ
±(σ±) = ℓµσ± +

1

2
Ẍµ

0±σ
2
± +

1

6
Ẍ̇ µ

0±σ
3
± , (4.23)

where the subscript 0 refers to evaluation at σ± = 0. Now, defining the angle between

kµ and ℓµ as θ, which is assumed to be small, and writing dµ = kµ − ℓµ = (0,d) (where
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|d| ≃ θ), and using the gauge conditions, we have:

kµX
µ
− = mωL

[

−1

2
θ2 σ− +

1

2
n · a′′ σ2

− − 1

6

(

a′′2 − d · a′′′
)

σ3
−

]

, (4.24)

together with a similar expression involving b and σ+. In the last bracket, the d · a′′′

term is subdominant, being of order O(θ|a′′|2).

The two integrals in the energy momentum therefore take the form:

Iµ =

∫

[kµ − dµ + Ẍµσ] exp

[

−imωL

12
(−3θ2σ + 3θ|Ẍ|σ2 cos β − |Ẍ|2σ3)

]

, (4.25)

where β is the angle between d and a′′. As Damour and Vilenkin pointed out, the first

kµ term is a pure gauge, however, when dµ 6= 0, it cannot be gauged away, as the product

kµdµ 6= 0, but the trace reversed h̄µν must be tracefree. However, since correcting for

this term simply introduces a subdominant term with the same waveform as the main

part of the perturbation, like DV, we simply focus on the main part of the integral and

compute the main contribution to the waveform. Thus, rewriting

u =
(mωL

12
Ẍ2
)1/3

σ , ε =

(

mωL

12Ẍ

)1/3

θ , (4.26)

the relevant part of the integral becomes

I =

(

12

mωLẌ2

)2/3

Ẍ

∫

du(u− ε) exp
[

i
(

(u− ε)3 + ε3 + 3εu2(1 − cosβ)
)]

. (4.27)

For ε≪ 1, this integral is well approximated by the ε = 0 value:

Iµ
± =

(

12

mωLẌ
2
±

)2/3
i√
3

Γ

(

2

3

)

Ẍµ
± , (4.28)

and for ε > 1, the integral rapidly tends to zero due to the oscillatory behaviour of the

term proportional to (1 − cosβ). Thus DV obtain the logarithmic cusp waveform:

hcusp(f, θ) ∼ GµL2/3

r|f |1/3
H [θm − θ] , (4.29)



Cosmic strings and gravitational wave bursts 54

where H is the Heaviside step function, and θm is the critical value of θ for which the

integral drops to zero:

θm =

(

12Ẍ

mωL

)1/3

≃
(

2

Lf

)1/3

, (4.30)

using Ẍ ∼ 2π/L, and f = mωL/2π.

To transform this to the cosmological setting, one essentially replaces f with (1+z)f ,

where z is the redshift at the time of emission of the cusp GWB, and we must replace

r by the physical distance

a0r = a0

∫ t0

te

dt

a
=

∫ z

0

dz

H
= (1 + z)DA(z) , (4.31)

where DA(z) is the angular diameter distance at redshift z.

Damour and Vilenkin next use the one scale model of a string network, which assumes

the network can be characterised by a single length scale, [153], by writing

L ∼ αt , nL(t) ∼ 1/(αt3) , (4.32)

for the length and number density of the string network at cosmological time t. Here α ∼
ΓGµ is a numerically determined constant, [154, 132, 155, 156, 157, 158, 159], presumed

to represent the rate of energy loss from string loops via gravitational radiation. As in

DV, we will take Γ ∼ 50, however, see [160, 161, 162] for more recent work and discussion

on this issue.

Finally, DV estimate the rate of GWB’s observed around frequency f coming from

the spacetime volume in redshift interval dz:

dṄ ∼ ν(z)

(1 + z)

πθ2
m(z)DA(z)2

(1 + z)H(z)
dz , (4.33)

where the first factor of (1 + z) comes from the redshift of time between emission and

observation, ν(z) is the number of cusp events per unit spacetime volume, and the final

part is the measure of the spacetime volume within the beaming cone at redshift z,
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where the beaming cone angle at redshift z is simply given by

θm(z) =

(

2

(1 + z)fL(z)

)1/3

. (4.34)

The number of cusp events is given by

ν ∼ C nL

PTL

∼ 2C
Pα2t4

, (4.35)

where C is the average number of cusps per loop period, TL = L/2 ∼ αt/2, and P is the

reconnection probability of the strings. As we observed at the beginning of this chapter,

classical strings almost always commute, thus in four spacetime dimensions, P ∼ 1.

The final step of the DV argument is to integrate (4.33) to find the rate

Ṅ =

∫ z∗

0

dṄ

d ln z
d ln z ∼ dṄ(z∗)

d ln z
, (4.36)

and then substituting in a fiducial frequency and desired rate to find the redshift which

dominates the signal. Evaluating the gravitational wave at this redshift and frequency

then gives the amplitude (see appendix A for details of the interpolation method).

We have reviewed the formation and some features of cosmic strings in this chapter,

particularly the production of gravitational wave bursts from cusps on cosmic string

loops. In the next chapter, we consider the formation of higher dimensional cosmic

strings and revisit the Damour-Vilenkin argument, concentrating on the effect additional

dimensions could have on the GWB signal coming from cosmic string cusps.



Chapter 5

Gravitational wave bursts from

cosmic string cusps in extra

dimensions

5.1 Introduction

If we consider strings in extra dimensions, the natural assumption to make is that we

are talking about string theory, a theory motivated by the search for a consistent theory

of quantum gravity and which can unify gravity with the other fundamental forces, [28].

As mentioned briefly in chapter 1, in string theory, point particles are replaced with

one dimensional strings, which live naturally in 10 dimensions and can take the form of

closed loops or open segments with endpoints.

It is usually thought that these fundamental strings are microscopic in size - of order

the Planck length - and thus possess a tension of order the Planck scale, if the theory

is to explain quantum gravity, [28]; their direct detection is thus far beyond the reach

of current experiments. If this is the case, we will not be able to observe these strings

as cosmic strings, since it is not possible to stretch them to the necessary astrophysical

sizes, [163]. However, it is possible that in models with large or warped extra dimensions

(discussed in chapter 1), the tension of the string is reduced and observable ‘fundamental’

cosmic strings - F-strings - could be formed in these models, [164, 165].

String theories can also contain higher dimensional objects known as D-branes, [166]:

surfaces on which open strings can end. These represent a wonderful opportunity to

embed the phenomenological ADD model, [33, 34], discussed in section 1.2, in a string

56
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theory setting, [48], where the open strings attached to the D-branes are thought to

encode the SM gauge forces, while gravity is related to closed string loops which can

propagate throughout the full higher dimensional spacetime, [35]. One possible early

universe consequence of this embedding is the creation of (higher dimensional) cosmic

strings via a mechanism known as brane inflation, [48, 49, 167]. As the name suggests,

the main purpose of this mechanism is the production of inflation - an important part

of the present early universe paradigm, [168, 169] - in these stringy models.

The brane inflation scenario associates the inflationary potential with an attractive

potential between a brane and anti-brane, related to the inter-brane separation in the

extra dimensions, [48]. This potential has been found to be relatively flat at large

distances, [48], (due to weak brane-brane interactions), allowing slow roll inflation to

take place before a critical inter-brane separation is reached, at which point the potential

becomes steep, the slow roll conditions break down and inflation ends when the branes

collide and annihilate, reheating the universe in the process, [167, 170]. Tachyonic fields

can be created as inflation ends, [171, 172], which then roll down their potential, forming

defects; it has been shown that the only defects copiously produced will be cosmic strings,

[167, 171, 170, 173]. In this setting, the cosmic strings are thought of as Dp-branes, with

p− 1 dimensions compactified, [167, 172], and are thus usually known as D-strings. In

the rest of this chapter, we will explore how the formation of cusps is affected when

considered in the context of these higher dimensional cosmic strings.

In order to compute the gravitational waveform of the cusp GWB with extra di-

mensions, there are several features we need to consider. First, there is the motion of

the string in the extra dimensions, as pointed out by Avgoustidis and Shellard, [174],

which causes the strings to appear to slow down in our noncompact space dimensions.

The existence of extra dimensions also has an impact on the reconnection probability

resulting in the reconnection probability of strings formed in higher dimensional theories

being reduced when compared to classical strings, as strings which appear to meet in 3

dimensions could be missing each other in the extra dimensions, [165]. This leads to an

enhancement of the number density of loops in the string network, [150, 167, 175], how-

ever, more detailed simulations indicate that this result may be modified, [176]. Next,

there is the impact of this motion on the formation of cusps: as we will see, the effect of

extra degrees of freedom allows the left and right moving modes to misalign in momen-

tum space, thus avoiding an exact cusp in a similar way to avoiding intercommutation.

Finally, there is the gravitational aspect of the extra dimensions. Since these strings are

formed in brane inflation scenarios, we will assume that the flux stabilisation procedure
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that prevents dangerous cosmological moduli evolution also prevents the strings from

exciting internal degrees of freedom. Thus, we can use the normal 4D gravitational

propagator in calculating the gravitational radiation from a cusp.

5.2 Wave form in extra dimensions

5.2.1 String kinematics with extra dimensions

We begin with an overview of string solutions in 4+n dimensions. As with 4 dimensions,

these can be expressed in the Kibble-Turok notation

R =
1

2
[A(σ−) + B(σ+)] , (5.1)

where we use upper case to denote the full (3+n) dimensional spatial vectors, and lower

case the noncompact dimensions. As before, |A′|2 = |B′|2 = 1, hence A′ and B′ trace

out closed curves on a unit S2+n. Unlike in 3 space dimensions, where two curves on

an S2 will generically cross, these curves will generically miss each other. This means

that the probability of an exact cusp with extra dimensions is precisely zero. However,

from the calculation of the GWB waveform (see eqn. (4.29)), it is clear that the power is

radiated not exclusively from the cusp, but from a region in which the extrinsic curvature

of the worldsheet is significant (we will see shortly how the beaming cone opening angle

defines this).

We therefore generalise the exact cusp to a ‘near cusp event’ (NCE) for which

|A′ −B′| = 2∆ , (5.2)

where ∆ ≪ 1 is a parameter measuring how close to an exact cusp (EC) we are. We

can visualise the near cusp event as a rounded cusp, as indicated in figure 5.1.

In order to estimate the probability of near cusp formation, we first assume an

even measure in parameter space (we will discuss alternative possibilities later). Each

loop carries left and right moving waves of harmonics of the fundamental frequency

mode 2π/L, the wave vectors of which are constrained by the gauge restriction (4.15).

These can be represented in terms of the rotation group SO(n+ 3), [177], and thus the

parameter space of the loop is simply parameterised by a set of angles.
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Figure 5.1: A sketch of a near cusp event as opposed to an exact cusp. The rounding of the
cusp is indicated, as is the narrowing of the beaming cone.

We estimate the probability of NCE’s as g(∆)q, where q is the codimension in pa-

rameter space of the subspace formed by loops which contain exact cusps, and g is a

function which relates a shift in a parameter to a change in |A′ − B′|. q can be readily

computed from the condition for a cusp:

A′ = B′ . (5.3)

This is a set of n + 3 equations, however, as |A′| = |B′| = 1, this results in n + 2

constraints. Of these, two are used to fix the values of σ± at the cusp, hence n constraints

in parameter space remain. Thus, the codimension of the exact cusp space is precisely

the number of extra dimensions q = n. Explicit loop solutions with one extra dimension

were modelled in order to determine the form of the function g, [3]; this was found to

be g(∆) = g0∆, where g0 ≃ 1.

The outcome of our analysis is therefore that the number of NCE’s with |A′−B′|min ≤
2∆ in a generic loop is N (∆) ≃ ∆n (since all loops have |A′ − B′| ≤ 2 at all points on

their trajectory). This argument of course simply refers to the cusps in the full higher

dimensional loop motion, and not those loops which are close to our 3 dimensional loops;

it also makes no reference to any warping of any of the spacetime dimensions. In addition,
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it assumes an exact Nambu description, i.e. an exactly zero width string. The strings

will in general have finite width, and we expect that should the string width become

a significant fraction of the internal dimension size, then the motion in the internal

dimension will be irrelevant. Note however, that because these strings are basically

classical objects, there is no quantisation of the motion in the internal directions.

5.2.2 The gravitational waveform

We now compute the waveform for a NCE with parameter ∆. The main difference

between the EC and the NCE is that the velocity Ẋµ = (1, (a′ +b′)/2) is now no longer

necessarily null, and that the individual left and right moving velocities need not be

aligned. In other words, in evaluating the integral (4.25), we no longer have “ε = 0”,

since there are additional phase terms coming from the misalignment of a′ and b′, as

well as from the fact that Ẋµ
± is no longer null.

Define

δ =
1

2
(a′ − b′) (5.4)

n′ =
(a′ + b′)

|a′ + b′| , (5.5)

to be the separation vector of a′ and b′ at the NCE, and the direction vector of the

NCE respectively. Then writing A′ = (a′,a), B′ = (b′, b), shows that |a′|2 = 1 − a2,

and |b′|2 = 1− b2 (with a = |a | etc.). A quick check of (4.23), (4.24) then indicates that

the gravitational integral (4.25) will be damped unless a, b ≪ 1. While modelling with

compact extra dimensions indicates no particular restrictions on the parameter space,

the expectation is that either warping of extra dimensions, or some other kinematic

consequence of cosmological expansion, will lead to the trajectories being somehow close

to the four dimensional behaviour (although [178] indicates this may not be the case).

We will therefore take a, b ≪ 1 from now on. Under these assumptions, expansion of δ

and n′ gives generically that a2 ∼ b2 = O(∆2) = O(δ). Thus in orders of magnitude

a′ =
1

2
|a′ + b′|n′ + δ ≃

(

1 − ∆2

2

)

n′ + δ (5.6)

b′ =
1

2
|a′ + b′|n′ − δ ≃

(

1 − ∆2

2

)

n′ − δ . (5.7)
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Finally, estimating n′.a′′ ∼ n′.b′′ = O(∆)|Ẍ| we find (making the same approximations

as DV) the expression

kµX
µ
− = −1

2
(θ2 + ∆2) σ− +

1

2
(θ + ∆) |Ẍ| σ2

− − 1

6
Ẍ2 σ3

− , (5.8)

with a similar expression involving X+ and σ+.

Thus we find that the waveform of the NCE is the same as that of the EC, with the

proviso that the cone opening angle is now decreased to

θ∆ = θm − ∆ ≃
(

2

Lf

)1/3

− ∆ , (5.9)

i.e. the (logarithmic) NCE waveform is

hNCE ∼ GµL2/3

r|f |1/3
H [θ∆ − θ] . (5.10)

Notice that (5.9) provides a high frequency cutoff to the waveform,

f∆ = 1/(∆3TL) , (5.11)

therefore our long frequency ‘tail’ to the waveform is curtailed at some (high) ∆-

dependent frequency. However, what is more relevant cosmologically is the combination

of the impact of this cutoff of the beaming cone area and the effect of the lowering of

the number of NCE’s.

Cosmologically, we need to calculate the GWB event rate, Ṅ , for near cusp events,

however, for a general network there will be a range of NCE’s with different ∆ values,

up to and including the cutoff value when the GWB beaming cone closes off. We clearly

need to integrate over these options to obtain the net effect of all possible NCE’s. We

therefore write

dṄNCE

dzd∆
∼ C(∆)nL(z)

PTL(z)

π (θm(z) − ∆)2DA(z)2

(1 + z)2H(z)
, (5.12)

where C(∆) is the local probability density of NCE’s for the network. In four spacetime

dimensions, a loop with continuous momentum functions always has a cusp, which would

correspond to C(∆) = δ(∆) in an integration of (5.12) (where δ(∆) is now the Dirac

δ-function). For extra dimensions, assuming that the loops are spread evenly in the
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parameter space of solutions, we get

C(∆) = N ′(∆) = n∆n−1 , (5.13)

and hence the ∆ integral yields

∫ θm

0

C(∆) (θm(z) − ∆)2 d∆ =
2θm(z)n+2

(n + 1)(n+ 2)
, (5.14)

where the integral is saturated by θm < 1. Note that for the fiducial frequency f ∼ 150

Hz, corresponding to the LIGO experiment, θm ∼ 10−4 → 10−2 as Gµ ∼ 10−6 → 10−12

respectively (the analogous LISA values are θm ∼ 10−3 → 10−1), and since θm varies as

(1 + z)1/6, it remains small until extremely high redshifts
(

(1 + zrec)
1/6 ≃ 3

)

.

Gathering together these different effects, we therefore arrive at the expression for

the GWB rate:

dṄNCE

dz
=

2θm(z)n+2

(n+ 1)(n+ 2)

nL(z)

PTL(z)

πDA(z)2

(1 + z)2H(z)
. (5.15)

Figures 5.2 and 5.3 show the gravitational wave amplitudes for the cosmic string

cusp bursts for the characteristic frequencies of the LIGO and LISA detectors, in the

form presented by DV, [150], for varying values of n. The plots are presented first by

calculating the amplitude in exactly the way DV did, by using interpolating functions

(appendix A), and also neglecting ΩΛ. However, the dotted data curves also show

an exact redshift integration, keeping the precise values of the angular diameter and

cosmological time for the concordance cosmology (Ωr = 4.6 × 10−5, Ωm = 0.28, ΩΛ =

1 − Ωm − Ωr) and integrating out numerically in redshift space for different values of

Gµ.

An alternative way of presenting the GWB information is to instead compute the

expected detection rate of events with amplitudes greater than (or equal to) a given

amplitude. As explained in the papers of Siemens et al., [179, 180], the one scale model

used by DV, in which all loops are taken to have essentially the same length, (4.32), does

not capture the full dynamical range of the cosmic string network which will have loops,

in theory, at all scales. They therefore recomputed the rate in order to take into account

the dependence not only on redshift, but also on length scales, which they encoded in
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Figure 5.2: Log log plots of the gravitational wave amplitude of bursts as a function of
α for the LIGO frequency f = 150 Hz, and a detection rate of 1 per year.
The lines (solid or dotted/dashed) represent the graphs obtained using the DV
interpolating functions, allowing for a direct comparison with [150]. The sets of
individual dots correspond to the exact numerical redshift integrations, where we
used the exact functions t(z), DA(z), for the concordance cosmology. The plots
are colour coded, from the black, DV result at the top, through red (dot-dash)
for n = 1, purple (dashed) for n = 3, and blue (dotted) for n = 6 and all have
an intercommutation probability of P = 10−3.
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Figure 5.3: A similar plot to figure 5.2, but for the LISA frequency, f = 3.9 mHz. Again the
lines represent the graphs obtained using the DV interpolating functions, while
the sets of individual dots correspond to the exact numerical integrations. The
same colour coding as the previous plot applies.

the amplitude of the cusp waveform, A, found by considering

hcusp = A|f |−1/3 , (5.16)

(in the logarithmic representation of DV), and comparing with (4.29), or in the extra

dimensional case, (5.10), resulting in a rate per redshift interval dz and amplitude in-

terval, dA, rather than the rate per redshift interval obtained by DV. However, on using

the one scale model, (4.32), where amplitudes are directly associated with redshifts, the

amplitude dependence is effectively integrated out and the generalised expression found

in [179] reduces to (4.33), the expression used by DV and hence to (5.15) in the extra

dimensional case. The results in [179] are therefore presented as a rate plot against the

string parameter α, calculated by integrating dṄ out to redshift values corresponding

to the chosen amplitude (we use their value of A = 10−21s−1/3 only) at various values of

α:

ϕ
2/3
t (z)

(1 + z)1/3ϕr(z)
=

50AH
−1/3
0

α5/3
, (5.17)
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Figure 5.4: A similar plot to that of figure 5.2 (LIGO), but in this case showing the expected
rate at an amplitude of 10−21s−1/3, using the method of [179]. The plots are
colour coded as in figure 5.2 except in this case the thick solid lines are now the
numerical integration results. From top to bottom: the 3D P = 10−3 result,
and the extra dimension plots with n = 1, n = 3, and n = 6 respectively. The
horizontal black line indicates a rate of one event per year.

where α ∼ 50Gµ as usual, and ϕt, ϕr are either the DV interpolating functions, or are

related to the exact functions t(z), DA(z) (c.f. appendix A and [179]). This equation

relating the redshift and amplitude is easily found from the expression for the cusp

waveform derived in [50].

Figures 5.4 and 5.5 show the rates calculated for the 3D and extra dimensional cases

using this alternative approach for both the LIGO and LISA frequencies.

5.3 Discussion

It is clear on examining our results in the previous section, that the motion of the

string in the extra dimensions has a significant impact on gravitational emission from

cusps. That extra dimensions should have an effect is not unreasonable, since they can be

viewed as additional degrees of freedom living on the string , [181, 182, 183], for example,

superconducting cosmic strings, [184], can be represented as a dimensional reduction of

standard five dimensional KK theory, [181, 182, 183]. For these cosmic strings, the

currents round off cusps in much the same way as we have described here, [185], and
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Figure 5.5: A similar plot to that of figure 5.3 (LISA), but in this case showing the expected
rate at an amplitude of 10−21s−1/3, using the method of [179]. The plots are
colour coded as in figure 5.3 and again the thick solid lines are the numerical
integration results. From top to bottom: the 3D P = 10−3 result, and the extra
dimension plots with n = 1, n = 3, and n = 6 respectively. The horizontal black
line again indicates a rate of one event per year.

also alter the balance between the energy and tension of the string, [186], which has a

clear gravitational impact. This naturally raises the concern that we may not be able

to distinguish between extra fields living on a cosmic string, and extra dimensions in

which the string is moving. This would certainly be the case if one was observing a

string and a single GWB. However, our calculation was for the expected signal from a

cosmological network of strings, which depends not only on the GWB waveform, but also

on the properties of the network. Superconducting string networks have not been as well

explored as those of standard cosmic strings, [187, 188], with the main focus being on

the different physics induced by the long range electromagnetic interactions. However,

as superconducting strings have similar intercommutation properties to standard cosmic

strings, [189], it is likely that the network is more similar to the usual cosmic strings

than that of the cosmic superstrings. Thus, while the individual GWB waveforms will be

similar, the expected rates and signals we have calculated for the cosmological networks

are indeed specific to extra dimensions.

It is perhaps a little surprising that the effect of extra dimensions can be so dramatic.

We therefore now examine our assumptions carefully, raising below a series of critiques

together with a discussion of their validity and resolution.
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The basic reason for the suppression of the signal is the distribution over the near cusp

parameter ∆. In the previous section, we used a uniform distribution in solution space,

however we would expect the allowed parameter space of the string to be constrained in

some way by the presence of compact extra dimensions. Since these strings form from

the collision of a brane and anti-brane, it seems likely that they have significant initial

momentum in the extra dimensions, thus we see no reason to curtail our solution space

in this way. The main objection to having total freedom of the internal modes is that by

wrapping back and forth across the extra dimension(s) the string has more opportunity

to self intersect, thus curtailing the additional freedom in that direction.

The effect of self intersections on the extra dimensions was modelled in [3]. It was

found that the introduction of an additional dimension resulted in the measure of the

solution set allowing for self intersections becoming zero as it did in the case of exact

cusp formation: once again, the argument used is a parametric one. A string will self

intersect if

A(τ − σ) + B(τ + σ) = A(τ − σ′) + B(τ + σ′) (5.18)

for some τ, σ, σ′. Thus, there are three dynamical variables and 3 + n constraints. In

3D, it is therefore possible to satisfy these constraints simultaneously and we see how

the subspace of self intersecting loops can be of nonzero measure in parameter space.

With extra dimensions however, satisfying (5.18) necessarily requires a constraint on

parameter space, hence the subspace with self intersections will be of lower dimension.

Even compactifying the extra dimensions does not change this argument, unless we take

into account the finite width of the string. Essentially, if we take the string to have zero

width, then it can easily miss itself even when winding back and forth across the extra

dimensions many times. However, with finite width, the self intersection probability

now becomes nonzero, and of order O(w/R)n (where w is the string width, and R the

size of the extra dimension). This therefore suggests that we introduce this ratio in a

finite width correction to the GWB measure.

As we mentioned during our initial discussion, warping of the extra dimensions could

also provide some significant dynamical effect. The results of Avgoustidis, [178], indi-

cate that warping is not as dramatic a trapping force as intially suspected, however, any

confinement of strings could be significant, and a detailed modelling of this effect is nec-

essary. For now, we model a restriction in the extra dimensional motion by a restriction

in ∆. Instead of allowing ∆ to range over the full unit interval, we restrict ∆ ∈ [0,∆0].
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Thus we must renormalise C:

N (∆0) =

∫ ∆0

0

C(∆)d∆ = 1 ⇒ C(∆) =
n

∆n
0

∆n−1 , (5.19)

and the relevant ∆ integral (5.14) becomes

∫ min{∆0,θm}

0

C(∆) (θm(z) − ∆)2 d∆ = θm(z)2Fn

[

θm

∆0

]

, (5.20)

where

Fn[x] =
2xn

(n+ 1)(n+ 2)
H [1 − x] +

(

1 − 2n

(n + 1)x
+

n

(n+ 2)x2

)

H [x− 1] . (5.21)

A reasonable value for ∆0 might be to use the one parameter ratio that does impact on

the loop families and motion: the ratio of string width to the size of the extra dimension.

The Nambu action is only a good approximation when the width of the string is small

compared to scales of physical interest. This is rarely a problem in cosmology, as the

string width is set by the inflationary scale, and the size of the universe rapidly becomes

large. As far as the extra dimensions are concerned however, these are stabilised at a

couple of orders of magnitude above the string scale, hence while the Nambu action is

a good approximation, we might expect some corrections to show up due to parameter

restriction from self intersection or excessive winding as already discussed. We therefore

expect this parameter to be related to the probability of intercommutation, which can be

viewed as arising because of the strings ‘missing’ each other in the internal dimensions.

To test this alternate expression, we took values of ∆0 = 0.1, 0.01, 0.001, and 10−4.

These values were motivated by a limiting sensible ratio w/R, and the value of P . From

(5.20), we see that the effect of ∆0 is to cut off the integral as θm grows. For θm < ∆0,

the dependence of the rate on θm(z) remains that of the previous section, however, as θm

grows, the functional dependence shifts towards the θm(z)2 form of the 3D result. From

the expression for θm(z), (4.34), we see that this is proportional to (Gµ)−1/3, hence the

rates converge to the 3D value sooner for smaller Gµ.

Figure 5.6 shows the effect of the ∆0 parameter on the event rate at an amplitude

cutoff of 10−21s−1/3 and frequency f = 150 Hz for ∆0 ranging from 10−1 − 10−4 as

indicated. Note that once we use this more complicated expression (5.20), the use of

the interpolating function approximation becomes too unwieldy, and the rates had to be

calculated by direct integration. Figure 5.7 shows the effect of the rate on the number
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Figure 5.6: A plot of the dependence of the rate on ∆0 with the number of extra dimensions
fixed at three for f = 150 Hz (LIGO). From top to bottom, the solid black line
indicates the 3D result, ∆0 = 10−4 in dashed green, ∆0 = 10−3 in dot-dash red,
∆0 = 10−2 in dashed purple, and ∆0 = 10−1 in dotted blue respectively. The
horizontal black line indicates a rate of one event per year.
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Figure 5.7: A recomputation of the rate plot at f = 150 Hz (LIGO) with the new nearcusp
measure (5.20) fixing ∆0 = 10−3, and allowing n to vary. From top to bottom,
n = 0, 1, 3 and 6 respectively. The horizontal black line indicates a rate of one
event per year.

of extra dimensions, fixing ∆0 = 10−3 and allowing n to vary as indicated for the LIGO

detector. Here we see that for all n the plots converge on the 3D result at α ∼ 10−11

but for α ∼ 10−8 for example, the rate drops by roughly an order of magnitude per

dimension. However, as we can see from the LISA plots (figures 5.8, 5.9), the value

at which the plots converge on the 3D value is frequency dependent: in figure 5.9, the

plots converge at α ∼ 10−8 and the drop with the number of extra dimensions is much

less significant. Nevertheless, a positive detection therefore could potentially tell us the

number of extra dimensions.

We briefly mention frequencies outside the LIGO and LISA cases from the point of

view of the methods discussed in this chapter. As we have noticed, the GWB amplitudes

are frequency dependent and on checking the high (100 MHz) frequencies discussed by

Cruise, [148, 149], the amplitude was found to be low enough that a cusp signal of

this frequency would not be observed even before the extra damping effect of the extra

dimensions was taken into account. Finally in the case of nHz frequencies (which are in-

vestigated using pulsar timing experiments as mentioned earlier), an order of magnitude

calculation of θm, eqn. (4.34), found that for α ∼ 10−9, θm is of order unity. This re-
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Figure 5.8: A plot of the dependence of the rate on ∆0 with the number of extra dimensions
fixed at three for f = 3.9 mHz (LISA). From top to bottom, the large dashed
black line indicates the 3D result, ∆0 = 10−4 in dashed green (coincident with
the black line), ∆0 = 10−3 in dot-dash red, ∆0 = 10−2 in dashed purple and
∆0 = 10−1 in dotted blue respectively. As before, the horizontal black line
indicates a rate of one event per year.
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Figure 5.9: A recomputation of the rate plot with the new nearcusp measure (5.20) at f = 3.9
mHz (LISA), fixing ∆0 = 10−3 and varying n as before. The colour coding is
done as for figure 5.7 and ∆0 = 10−3 as before. As always, the horizontal black
line indicates a rate of one event per year.
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sults in the approximation of the integral in eqn. (4.27) breaking down in the parameter

region in which we are interested, invalidating the method at these frequencies.

To sum up: in this chapter we have discussed the effect that motion in extra dimen-

sions has on the computation of the gravitational wave burst signal from cusp events

on cosmic string loops. We find a significant effect, even after taking into account fi-

nite width effects and the size of the extra dimension. However we have also seen from

the comparison of LIGO and LISA results, that the frequency at which the GWB is

observed is an important factor. While further work is required to get better control

of the approximations being used, it does seem that motion in internal dimensions is

important. Finally, if the string tension lies in an appropriate (albeit frequency depen-

dent) range then the possibility arises that a positive detection by gravitational radiation

would not only confirm the general brane inflation scenario, but could provide a means

of determining the number of (effective) extra dimensions.



Chapter 6

Gravitational wave bursts from

kinks in extra dimensions

6.1 Introduction

As we have seen in the previous chapter, the existence of extra dimensions has a signif-

icant effect on the gravitational wave bursts emitted by cusps on cosmic string loops.

Contrary to previous expectations, [167, 150, 172], the gravitational radiation is not

enhanced by the lowering of the intercommutation probability in extra dimensions, but

is in fact suppressed by other competing factors. In this chapter we consider kinks - the

other main source of gravitational wave bursts from cosmic string loops - and the effect

of extra dimensions on the GWB signal they produce.

Kinks are formed when there is a discontinuity in the tangent vector to the string,

which occurs whenever the string intercommutes and reconnects, as the segments on

either side of the crossing point will have different velocities, [190, 191, 192, 193]; they

are thought to be ubiquitous on cosmic strings. Cosmic string loops possess kinks, not

only because they are formed by self-intersections, but also because kinks could already

be present on the segment of string cut off to form the loop, [194, 192, 193]. Unlike cusps,

which only occur at certain points on string loops and are therefore transient events,

kinks can persist on strings and travel around a cosmic string loop as it oscillates, [190,

191]. However, they can be smoothed out, (or in the case of an infinite string, removed

via loop formation), which can occur as a result of stretching due to the expansion of

the universe, or through the backreaction of gravitational radiation, [190, 157, 193].

73
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Returning to the Kibble-Turok formalism reviewed in section 4.2, [151, 121], we recall

that the solution to the string equation of motion is given by Xµ = (τ, r(τ, σ)), where

r is written as in eqn. (4.14) and the vectors a′ and b′ are constrained by the gauge

conditions, (4.10) and (4.11), to lie on a unit sphere (see eqn. (4.15)). Kinks, unlike

cusps, which occur whenever the vectors a′ and b′ intersect, form when one of a′, b′

or one of their derivatives has a discontinuity. As well as being ubiquitous on cosmic

strings, kinks can also prevent the formation of cusps on cosmic string loops, even in 3D

(where, as we showed in chapter 4 they are generic), as a discontinuity on either a′ or

b′ allows the curves to miss each other if they were to otherwise intersect at that point.

Kinks, like cusps, emit bursts of gravitational radiation whose signal was calculated

in the 3D case by Damour and Vilenkin, [50], in a similar manner to cusp GWB’s and the

kink signal was found to be the weaker of the two. However, given that kinks can prevent

cusp formation, it is possible that if the number of kinks increases, the number of cusps

correspondingly shrinks and the GWB’s emitted from kinks could become important

despite their smaller size. Because of this, as well as the significant reduction in cusp

formation in higher dimensional theories, it is important that the effects of the extra

dimensions on kink GWB’s are explored.

6.2 Kinks in 3D

We begin with a review of the method used by Damour and Vilenkin, [50], to calculate

the kink GWB in 3D, highlighting in particular the differences with the cusp calculation

reviewed in chapter 4. In order to obtain the gravitational waveform of the kink GWB,

we begin, as before, with the linearised Einstein equations (4.6), whose solution in the

far field approximation is given as before by eqn. (4.20). As we continue to use the

Nambu action, the energy momentum tensor of the string is that used in [50], whose

Fourier transform can be factorised as

T µν(k, ω) =
µ

L

∫ L

0

dσ+

∫ L

0

dσ−Ẋ
(µ
+ Ẋ

ν)
− e

− i

2
(k·X++k·X−) , (6.1)

where once again we write Xµ
+ = (σ+,b(σ+)), Xµ

− = (σ−, a(σ−)), a dot denotes a

derivative with respect to the argument of Xµ
±, kµ = 4πm

L
(1,n) = mωL(1,n) is the null

wave vector and ωL is the frequency of the fundamental mode of the string loop as in

chapter 4.
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To calculate the energy momentum for the kink, we require a discontinuity in one of

the integrals

Iµ
± =

∫ L

0

dσ±Ẋ
µ
±e

− i

2
k·X± , (6.2)

while the other must contain a saddle point (or near saddle point) k · Ẋ = 0 in order to

prevent the waveform (4.20) from decaying too rapidly; as discussed in [50], high mode

numbers m of the frequency, ωm = mωL, only contribute to the GWB component of the

gravitational wave emission from string loops because of the slower rate of decay of the

integrals (6.2) as m→ ∞, which occurs only if they contain either a saddle point in the

phase φ = k · X, or a discontinuity in Ẋ. We choose the discontinuity to be on the a′

curve and thus contained in the I− integral.

The saddle point integral, I+, is computed as in chapter 4, but where we now take

the direction vector ℓµ = Ẋµ
+ = (1,n′) to be parallel to some direction of the curve b′,

rather than an intersection of the curves as happens for the cusp. We define the angle

between kµ and ℓµ to be θ, which, as in the case of the cusp, is assumed to be small,

and write as before, dµ = kµ − ℓµ = (0,d) (where |d| ≃ θ). Then, as in section 4.3, we

find that

Iµ
+ =

∫

[kµ − dµ + Ẍµ
+σ+] exp

[

−imωL

12
(−3θ2σ+ + 3θ|Ẍ+|σ2

+ cosβ − |Ẍ+|2σ3
+)

]

dσ+ .

(6.3)

The I− integral containing the discontinuity, however, requires a slightly different ap-

proach. We follow [50] and take Ẋµ
− to have a discontinuity at σ− = σdisc

− whilst assuming

that Ẋµ
− jumps from Ẋµ

−(σdisc
− − 0) = nµ

1 to Ẋµ
−(σdisc

− + 0) = nµ
2 , where nµ

1 and nµ
2 are

both null vectors.

We write the integral as

Iµ
− =

∫ σdisc
−

−ǫ

σ0

dσ−Ẋ
µe−

i

2
(k·X++k·X−) +

∫ σdisc
−

+ǫ

σdisc
−

−ǫ

dσ−Ẋ
µe−

i

2
(k·X++k·X−)

+

∫ σ0+L

σdisc
−

+ǫ

dσ−Ẋ
µe−

i

2
(k·X++k·X−) , (6.4)

where ǫ is an arbitrary small parameter, introduced to separate out the discontinuity

from the rest of the integral (i.e. the middle term of (6.4)), which will be allowed to go

to zero at the end of the calculation. The first and third terms then cover the remainder
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of the integration range on either side of the discontinuity. We note that these terms

in (6.4) now no longer contain the discontinuity, which has been localised to the middle

term of the expression, and will not have a saddle point, except in the special cases

where the wavevector kµ is parallel or close to nµ
1 or nµ

2 . If k is parallel, or close to

(i.e. within an angle θ of) either of these null vectors, it follows that the wavevector falls

within the beaming cone of a cusp, as we saw in chapter 4. This results in a ‘cusp-like’

contribution being added to the waveform, which would be expected to dominate the

kink contribution coming from the second null vector, in the vicinity of the intersection.

However, as we wish to explore the behaviour of a generic kink, we assume that we are

not dealing with one of these special cases. It thus follows that neither the first nor

third term in eqn. (6.4) fulfils the conditions necessary to slow their decay and they can

therefore be neglected when the high frequency modes contributing to the kink GWB

are considered: eqn. (6.4) can therefore be evaluated as

Iµ
− =

∫ σdisc
−

+ǫ

σdisc
−

−ǫ

dσ−Ẋ
µe−

i

2
(k·X++k·X−) (6.5)

=

∫ σdisc
−

σdisc
−

−ǫ

dσ−Ẋ
µe−

i

2
(k·X++k·X−) +

∫ σdisc
−

+ǫ

σdisc
−

dσ−Ẋ
µe−

i

2
(k·X++k·X−) .

The leading order terms then become

Iµ
− ≃

∫ σdisc
−

σdisc
−

−ǫ

nµ
1e

−
imωL

2
k̂·n1σ− −

∫ σdisc
−

σdisc
−

+ǫ

nµ
2e

−
imωL

2
k̂·n2σ− (6.6)

= nµ
1

(

− 2

imωLk · n1

)

e−
imωL

2
k·n1σ−

∣

∣

∣

∣

σdisc
−

σdisc
−

−ǫ

− nµ
2

(

− 2

imωLk̂ · n2

)

e−
imωL

2
k̂·n2σ−

∣

∣

∣

∣

σdisc
−

σdisc
−

+ǫ

,

and we find that

I− ≃ 2i

mωL

(

nµ
1

k̂ · n1

− nµ
2

k̂ · n2

)

, (6.7)

where k̂ = (1,n), so that mωLk̂
µ = kµ.

If we now consider the combination of I
(µ
+ I

ν)
− which appears in the waveform,

I
(µ
+ I

ν)
− ∼

[
∫

[k(µ − d(µ + Ẍ
(µ
+ σ+]e−

imωL

12
(−3θ2σ++3θ|Ẍ+|σ2

+
cos β−|Ẍ+|2σ3

+
)dσ+

]

∗
[

2i

mωL

(

n
ν)
1

k · n1

− n
ν)
2

k · n2

)]

, (6.8)
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it is easy to see that the first kµ term can once again be gauged using, [50]:

h′µν = hµν + kµξν + kνξµ − ηµν(kξ) . (6.9)

Reparameterising using eqn. (4.26), we find that

T µν ∼
(

12

mωLẌ
2
+

)2/3
2i

mωL

Ẍ
(µ
+

∫

du(u− ε)ei((u−ε)3+ε3+3εu2(1−cos β))
(

n
ν)
1

k̂ · n1

− n
ν)
2

k̂ · n2

)

,

(6.10)

where the solution to the I+ integral is as in [50] and eqn. (4.27). The waveform is then

related to the I± integrals as, [50]:

hµν(f) =
2Gµ|f |
r

I
(µ
+ I

ν)
− , (6.11)

yielding the logarithmic kink waveform, [50]:

hkink(f, θ) ∼ GµL1/3

r|f |2/3
H [θm − θ] . (6.12)

In a similar manner to the cusp calculation, the waveform (6.12) is transformed to

a cosmological setting by replacing f by (1 + z)f , where z is now the redshift at the

time of emission of the kink burst, and r by the physical distance (4.31). Using the one

scale model, (4.32), as before, the rate of GWB’s from kinks observed in the spacetime

volume in redshift interval dz around a frequency f can be calculated from

dṄk =
2νk(z)

1 + z

πθmDA(z)2

(1 + z)H(z)
dz , (6.13)

where the number of kink events on a loop νk is analogous to (4.35), with the average

number of cusps C replaced by the average number of kinks K. The main contrast with

the cusp rate (4.33) is in the dependence on the angle θm, eqn. (4.30), the critical value

of the angle for which the integral I+ drops to zero. Due to the mobile and persistent

nature of a kink on a string loop, the emission is not beamed in a cone like the cusp, but

is instead radiated in a one dimensional ‘fan-like’ set of directions, [50], which arise from

the occurrence of saddle points; the inclusion of the angle θm, so that the observation

direction is slightly offset from the direction of the emission, results in the 1D ‘line’ of

emission from the kink being widened so that a strip is swept out on the surface of
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the unit sphere and the volume factor becomes θm/2, [195]. The amplitude of the kink

GWB’s is then calculated from the rate, found from (6.13), in the same way as the cusp

case.

6.3 Kinks in higher dimensions

We have seen in the previous chapter, how one of the main differences in looking at

cusps in extra dimensions is the fundamental change in behaviour of 2D curves moving

on the surface of a 2 + n-sphere rather than a 2-sphere, which results in intersections,

which had been generic, becoming extremely rare. A kink, however, does not require the

curves to intersect, nor will the appearance of the discontinuity depend on the number

of dimensions in which the string moves; kink formation will thus be unaffected by the

inclusion of extra dimensions.

This is not to say that the presence of extra dimensions will have no effect on the

GWB’s emitted by kinks. As was the case in the previous chapter, (and [150, 167,

175]), motion in higher dimensions affects the intercommutation probability of strings,

reducing it, as strings miss each other in the extra dimensions, which in turn affects the

network density and leads to an enhancement of the kink amplitude. Furthermore, the

inclusion of the saddle point integral, I+, affects the kink GWB as it did the cusp, as

we demonstrated in chapter 5, showing how the inclusion of higher dimensions and the

definition of the near cusp event brought about a decrease in the radiation cone of the

cusp, (eqns. (5.8)-(5.10)). While eqn. (5.2) has no relevance for kink formation in the

extra dimensions, the higher dimensional vector B′ can still be written in terms of its

3D and extra dimensional components, B′ = (b′, b), so that we may write |b′|2 = 1− b2,

as before. As we discussed in section 5.2.2, the saddle point integrals - in this case, I+

only - will damp too quickly unless we take the extra dimensional component, b ≪ 1.

Combining this with the estimation of n′.b′′ = O(b)|Ẍ|, in a similar manner to the

approach used in chapter 5, we find that the exponent of I+ can now be written as

kµX
µ
+ = −1

2
(θ2 + b2) σ+ +

1

2
(θ + b) |Ẍ+| σ2

+ − 1

6
Ẍ2

+ σ
3
+ , (6.14)

and we find once again that the angle θm narrows as a result of the inclusion of extra

dimensions, thus affecting the kink GWB signal. We can therefore see that, as in the

cusp case, the extra dimensional (logarithmic) kink waveform is the same as the 3D
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waveform, eqn. (6.12), with a reduced beaming angle:

hkink(f, θ) ∼ GµL1/3

r|f |2/3
H [θb − θ] , (6.15)

where

θb = θm − b ≃
(

2

Lf

)1/3

− b . (6.16)

As always, we wish to calculate the event rate of these higher dimensional kink

GWB’s occurring on a string network. Unlike the case of cusps discussed in chapter

5, since the mechanism which produces kinks is unchanged by the inclusion of extra

dimensions, we assume that the average number of kinks in a loop, K, is unchanged

and will not depend on the number of extra dimensions, (unlike eqn. (5.13)). However,

as before, the string network will possess kinks with a range of different θb values; we

therefore write

dṄk

dz db
∼ 2KnL(z)

PTL(z)

π (θm(z) − b)DA(z)2

(1 + z)2H(z)
. (6.17)

Integrating over b thus yields

∫ θm

0

(θm − b) =
θ2

m

2
, (6.18)

and we can write our kink GWB rate as

dṄk

dz
∼ Kθ2

mnL(z)

PTL(z)

πDA(z)2

(1 + z)2H(z)
. (6.19)

Figures 6.1 and 6.2 show the 3D gravitational wave amplitude for the cosmic string

kink burst calculated by DV, [50], along with our higher dimensional result, for the char-

acteristic frequencies of the LIGO and LISA gravitational wave detectors. We present

the amplitudes as in the previous chapter: calculated using the DV interpolating func-

tions (see appendix A) and neglecting ΩΛ, while also including the results of an exact

numerical integration performed for the concordance cosmology (Ωr = 4.6×10−5, Ωm =

0.28, ΩΛ = 1 − Ωm − Ωr).

In figures 6.3 and 6.4 the alternative method of Siemens et al., [179], is used, and

we present our results from the kink GWB’s in terms of an expected detection rate
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Figure 6.1: Log log plots of gravitational wave amplitudes of bursts as a function of α for
f = 150 Hz (LIGO) and a detection rate of 1 per year. From top to bottom:
the DV kink, (black, solid) and the extra dimensional kink, (red, dashed). Both
have an intercommutation probability of P = 10−3. The sets of individual dots
correspond to the exact numerical redshift integrations as before.
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Figure 6.2: Log log plots of gravitational wave amplitudes of bursts as a function of α for
f = 3.9 mHz (LISA) and a detection rate of 1 per year. From top to bottom:
the DV kink, (black, solid) and the extra dimensional kink, (red, dashed). Both
have an intercommutation probability of P = 10−3. The sets of individual dots
correspond to the exact numerical redshift integrations as before.
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Figure 6.3: A similar plot to that of figure 6.1 (LIGO) but in this case showing the expected
rate at an amplitude of 10−21 s−1/3, using the method of [179].The plots are
colour coded as before, except in this case, the thick solid lines are now the
numerical integration results. From top to bottom: the DV kink, (black, solid)
and the extra dimensional kink, (red, dashed). Both have an intercommutation
probability of P = 10−3. The horizontal black line indicates a rate of one event
per year.

at a given amplitude. In this case, the amplitude of the kink waveform is found by

comparison with

hkink = A|f |−2/3 , (6.20)

so that the redshift values used for the integration at various values of Gµ are found

from

ϕ
1/3
t (z)

(1 + z)2/3ϕr(z)
=

50AH
−2/3
0

α4/3
, (6.21)

where we once again use A = 10−21 s−1/3 (c.f. Siemens et al., [179]), α ∼ 50Gµ and ϕt,

ϕr are either the DV interpolating functions or related to the exact functions t(z), DA(z)

as before. Figures 6.5 and 6.6 show the DV and extra dimensional kink amplitudes along

with the 3D cusp result from [50] for comparison purposes.
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Figure 6.4: A similar plot to that of figure 6.2 (LISA) but in this case showing the expected
rate at an amplitude of 10−21 s−1/3, using the method of [179].The plots are
colour coded as before, except in this case, the thick solid lines are now the
numerical integration results. From top to bottom: the DV kink, (black, solid)
and the extra dimensional kink, (red, dashed). Both have an intercommutation
probability of P = 10−3. The horizontal black line indicates a rate of one event
per year.

6.4 Discussion

Once again, we find that the motion of the string in higher dimensions has a noticeable

effect on the GWB signal produced by kinks on the string loop, suppressing it with

respect to the usual 3D signal, as we found previously on calculating the cusp signal.

There is one striking difference, however, with the cusp calculation performed in the last

chapter, namely that the suppression of the kink signal does not depend on the number

of extra dimensions in which the string is moving.

Although, as observed by Damour and Vilenkin, [50], (and can be seen in figures

6.5 and 6.6), the 3D kink signal is at least an order of magnitude lower than the cusp

signal in the case of both frequencies studied before the extra dimensions are taken

into account, and would be unlikely to be observed by LIGO, though the LISA signal

is more promising. The more ubiquitous nature of kinks on a string loop in extra

dimensions when compared to cusps or NCE’s, makes the kink amplitude an important

signal, particularly if the number of extra dimensions is large. However, when taken

in conjunction with the extra dimensional cusp results, the kink amplitude adds an
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Figure 6.5: Log log plots of gravitational wave amplitudes of bursts as a function of α for
f = 150 Hz (LIGO) and a detection rate of 1 per year. From top to bottom, the
DV cusp, (black, solid), the DV kink, (red, dotdashed) and the extra dimensional
kink, (purple, dashed). All have an intercommutation probability of P = 10−3.
The sets of individual dots correspond to the exact numerical redshift integrations
as before.
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Figure 6.6: Log log plots of gravitational wave amplitudes of bursts as a function of α for
f = 3.9 mHz (LISA) and a detection rate of 1 per year. From top to bottom, the
DV cusp, (black, solid), the DV kink, (red, dotdashed) and the extra dimensional
kink, (purple, dashed). All have an intercommutation probability of P = 10−3.
The sets of individual dots correspond to the exact numerical redshift integrations
as before.
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Figure 6.7: Log log plots of gravitational wave amplitudes of bursts as a function of α for
f = 150 Hz (LIGO) on the left and f = 3.9 mHz (LISA) on the right with a
detection rate of 1 per year. From top to bottom, the DV cusp, (black, solid), the
DV kink, (red, dotdashed), the extra dimensional kink, (purple, dashed) and the
extra dimensional cusp with n = 6, (blue, dotted). All have an intercommutation
probability of P = 10−3. The sets of individual dots correspond to the exact
numerical redshift integrations as before.

element of ambiguity to the conclusions drawn in the last chapter, as the kink signal sits

in between the n = 1 and n = 3 cusp amplitudes,

Nevertheless, if we look at the cusp and kink amplitudes in figures 6.1, 5.2 (or the

LISA equivalents), we can see that the effect of including increasing numbers of extra

dimensions is to shift the maximum of the amplitude to smaller values of α. However it

is also evident that the maximum of the 3D kink amplitude occurs at a larger value of

α than the corresponding cusp maximum before being shifted and so it is possible that

the position of this maximum could allow us to distinguish between cusps and kinks.

Furthermore, if the cusp in fact has a modified measure as in eqn. (5.20), which could

occur if any restriction is placed on the extra dimensions, the change in the dependence

of the rate on the critical angle θm from θ2
m to θn+2

m could be used as a distinguishing

feature, as the probability of kink formation will not be affected by any restrictions of

the string motion in the extra dimensions.

In summary, we find that the gravitational wave burst signal from kinks on cosmic

string loops are affected by the motion of the string in extra dimensions, producing

a noticeable reduction in the signal despite the reduced intercommutation probability.

Although the kink signal is weaker than that of the cusp, its independence of the number

of extra dimensions, n, could lead to it being important, particularly if n is large and

the detection of such a signal would be a valuable step in confirming the general brane

inflation scenario. We note as before, that these effects are dependent on the frequency
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at which they are observed; it is evident, (particularly from the rate plots figures 6.3

and 6.4), that there is a much better chance of observing a kink signal at LISA rather

than LIGO. We finally observe, as in the cusp case, that the approximation used in this

method to find the waveform, (i.e. that θm ≪ 1), breaks down at nHz frequencies, where

the angle θm ∼ O(1) and the integral I+ → 0 rapidly.



Chapter 7

Conclusions

The emergence of extra dimensions as a mechanism to modify more standard gravita-

tional models has a historical precedent from the time of Kaluza. Whether introduced

for phenomenological reasons or in anticipation of string theory, the addition of extra

dimensions to a theoretical framework is becoming more widespread, and it is therefore

worth examining their observational consequences. In this thesis we considered the ob-

servable effects extra dimensions could have on various aspects of cosmology: in chapter

3 we considered the asymmetric brane model, [46, 47], and its cosmological implications,

while the effects on gravitational wave bursts from cosmic string cusps and kinks were

considered in chapters 5 and 6.

We began by discussing braneworlds, which confine the standard model forces to a

four dimensional surface, while allowing gravity to propagate in all dimensions; these

models can produce both short and long range modifications of gravity. In particular, the

large scale modifications have been thought of as a possible method of inducing late time

acceleration in the universe without the use of a cosmological constant. This has been

most widely studied in the context of the DGP model. However, underlying problems

with this model prompted us to consider whether an alternative model could replicate

the promising results of the DGP model, while avoiding its problems. The cosmological

equations derived from the asymmetric brane model, which can produce long range

modifications of gravity, were also shown to reduce to the standard 4D results over a

range of scales, which can be chosen appropriately to satisfy observational constraints.

To facilitate comparisons with the DGP model, we showed how the asymmetric equations

of motion could be viewed as a generalisation of the DGP cosmological equations and

reparameterised in order to express the asymmetric contribution in terms of a single

new parameter. We then investigated the qualitative effect of this new parameter with
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type Ia supernovae and the cosmic microwave background. Baryon acoustic oscillation

(BAO) data were included simply for reference and we did not add to the debate on the

suitability of this quantity for models with non-standard evolution. We found that the

inclusion of the new parameter worsened agreement with the data, as different datasets

had opposing effects on the parameter space. Furthermore, it was shown, [73], that the

asymmetric model contains ghosts and so, both phenomenologically and fundamentally,

the model was ruled out as a sensible alternative to the concordance cosmology.

We then changed direction slightly to consider the consequences of extra dimensions

in the early universe, in particular studying the behaviour of cosmic string loops in higher

dimensional models. Cosmic strings are topological defects formed by phase transitions

in the early universe; higher dimensional cosmic strings can also arise in models of brane

inflation, [48, 49, 167], where the attractive potential between a brane and anti-brane

can produce slow roll inflation. If these cosmic strings self intersect, they can create

loops due to the intercommutation properties of the string. It was shown by Damour

and Vilenkin that features of these string loops, known as cusps and kinks, can produce

high frequency beamed bursts of gravitational radiation, which could provide a highly

distinctive signal for gravitational wave detectors. We investigated the effect on cusps

and kinks and the gravitational wave bursts they emit if the string moves in a higher

dimensional spacetime. Cusp formation was found to be substantially affected by the

inclusion of extra dimensions, the main reason being the gauge conditions, which require

the string solutions to move on the surface of a (2 + n)-sphere. As the string curves

are two dimensional and cusp formation requires the left and right moving halves of the

string to intersect, the inclusion of any extra dimensions changes a cusp from a generic

event to a very rare occurrence. In consequence, we introduced the concept of a near

cusp event, where a cusp is almost formed, and found that these events can still produce

gravitational wave bursts. The distribution of near cusp events was shown to play a

part in altering the extra dimensional signal and we discussed the possible effects of

warping and other methods of restricting the extra dimensions. We also discussed how

these events and their distribution resulted in a suppression of the signal dependent on

the number of extra dimensions, despite an enhancement effect from a decrease in the

intercommutation probability. These alterations in the cusp amplitude could lead to

predictions for the number of extra dimensions (although unlikely due to the frequency

dependence and the narrow range of α values where the signals would be distinct).

Next we considered the analogous effects on gravitational radiation emitted from

kinks. We found that the presence of extra dimensions also leads to a suppression of the
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kink signal, however, the effect is not as pronounced as in the case of cusps. As kinks are

formed as a result of the discontinuity in the tangent vector to the string, which occurs

whenever there is an intercommutation, whether between two strings or as a result of

a self intersection, their formation is not affected by the movement of the string loops

in higher dimensions. In particular, this means the probability of kink formation does

not change with the addition of higher dimensions, unlike cusps, and we found that the

suppression of the kink signal was not dependent on the number of extra dimensions.

We have shown that higher dimensional models can have an impact on cosmological

observations. While our results have not produced evidence of a ‘smoking gun’ for extra

dimensions, we have seen some intriguing hints and can be assured that further study

of the effects arising from extra dimensions will be rewarding. At a time when the

LHC is beginning to probe higher energy scales and increasing numbers of experiments

are mapping our universe (Planck, Herschel, LIGO, planned LISA etc.), these extra

dimensional effects, if observed, could offer an unparallelled insight into the fundamental

nature of the universe.



Appendix A

The Damour-Vilenkin interpolating

functions

Damour and Vilenkin, [50], used interpolating functions of redshift for the time

t(z) =

∫ ∞

z

dz′

(1 + z′)H(z′)
, (A.1)

the physical distance

a0r = a0

∫ z

0

dz′

H(z′)
, (A.2)

related to the angular diameter distance, DA(z), and the volume element

dV (z) =
4πr2

(1 + z)3H(z)
dz , (A.3)

where the Hubble parameter for a flat universe is given by

H(z) = H0( Ωm(1 + z)3 + Ωr(1 + z)4 + ΩΛ)1/2 . (A.4)

These interpolating functions are given by, [50, 179]:

t(z) = t0(1 + z)−3/2(1 + z/zeq)
−1/2 (A.5)

a0r(z) = t0
z

(1 + z)
(A.6)

dV (z) = t30102z2(1 + z)−13/2(1 + z/zeq)
−1/2 . (A.7)
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If we substitute these expressions into eqn. (4.33) (taking an extra factor of z into account

because of the logarithmic derivative in eqn. (4.36)), we find, neglecting factors of 2 and

using the interpolating functions along with eqn. (4.34) for θm,

Ṅ ∼ 102CP−1t−1
0 α−8/3(ft0)

−2/3z3(1 + z)−7/6(1 + z/zeq)
11/6 . (A.8)

If we then rewrite this as

Ṅ ∼ 102CP−1t−1
0 α−8/3(ft0)

−2/3y , (A.9)

where

y = z3(1 + z)−7/6(1 + z/zeq)
11/6 , (A.10)

then rearranging eqn. (A.9) yields

y = 10−2(ṄP/C)t0α
8/3(ft0)

2/3 . (A.11)

In order to rewrite the redshift in terms of this new quantity y, we consider eqn. (A.10)

in 3 redshift regimes, z < 1, 1 < z < zeq and z > zeq, and approximate:

z < 1 : y ∼ z3 =⇒ z ∼ y1/3 (A.12)

1 < z < zeq : y ∼ z3z−7/6 =⇒ z ∼ y6/11 (A.13)

z > zeq : y ∼ z3z−7/6z11/6z−11/6
eq =⇒ z ∼ y3/11yeq , (A.14)

where yeq ≡ z
11/6
eq . We reassemble the expression for z in the same way and find

z ∼ y1/3(1 + y)6/11−1/3(1 + y/yeq)
3/11−6/11

=⇒ z ∼ y1/3(1 + y)7/33(1 + y/yeq)
−3/11 . (A.15)

If we now recall the expression for the amplitude of a single cusp, eqn. (4.29), and rewrite

it using the interpolating functions (with the use of the one scale model (4.32)), we find

hcusp ∼ Gµα2/3(ft0)
−1/3z−1(1 + z)−1/3(1 + z/zeq)

−1/3 . (A.16)
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Expanding this expression in the 3 redshift regions used above and replacing each one

with the appropriate expression in terms of y,

z < 1 =⇒ h ∼ z−1 ∼ y−1/3 (A.17)

1 < z, zeq =⇒ h ∼ z−1z−1/3 ∼ y−24/33 (A.18)

z > zeq =⇒ h ∼ z−1z−1/3z−1/3 ∼ y−5/11 , (A.19)

which when reassembled as before and combined with eqn. (A.11) yield an expression

for the amplitude of cusps produced in a string network with a rate of Ṅ :

hcusp ∼ Gµα2/3(ft0)
−1/3y−1/3(1 + y)−13/33(1 + y/yeq)

3/11 . (A.20)

This method (and the same interpolating functions (A.5), (A.6) and (A.7)) can also

be used to find the interpolating function expression for the amplitude in the extra

dimensional case:

hcusp
ed ∼ Gµα2/3(ft0)

−1/3y−1/3(1 + y)(−13+n)/(33+3n)(1 + y/yeq)
3/(11+n) , (A.21)

where in this case, we use eqn. (5.15) for the rate, finding that

yed = 10−2(ṄP/C)(n+ 1)(n+ 2)t0α
(8+n)/3(ft0)

(2+n)/3 , (A.22)

and yeq ≡ z
(11+n)/6
eq .

In the case of the kinks, as we saw in chapter 6, the dependence of the rate -

eqns. (6.13), (6.19) - on the angle θm changes, however, we can still use the above

method to derive the interpolating formalism. The 3D kink rate is found to be, [50]:

hkink ∼ Gµα1/3(ft0)
−2/3y−1/3(1 + y)−11/30(1 + y/yeq)

3/10 , (A.23)

where

ykink = 10−2(ṄP/K)t0α
7/3(ft0)

1/3 , (A.24)

and yeq ≡ z
5/3
eq , while the extra dimensional expression for the kink GWB amplitude is

given by

hkink
ed ∼ Gµα1/3(ft0)

−2/3y−1/3(1 + y)−10/33(1 + y/yeq)
3/11 , (A.25)
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where

ykink
ed = 0.02(ṄP/K)t0α

8/3(ft0)
2/3 , (A.26)

and yeq ≡ z
11/6
eq .
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