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Abstract

Perturbative QCD predictions that are truncated at fixed order have an un-

physical dependence on the renormalisation procedure. We investigate two

methods of avoiding scale and scheme dependence in QCD predictions of phys-

ical observables: the Effective Charges (ECH) method and the Principle of

Minimal Sensitivity (PMS).

The ECH method is used to avoid the renormalisation scale and scheme de-

pendence of fixed-order predictions of event shape moments. Values of αs(MZ)

are extracted from e+e− data using both ECH and the physical scale method

in the MS scheme. The ECH method at NLO is found to perform better than

standard MS perturbation theory (MS PT) when applied to means of event

shapes. However ECH at NNLO functions less well than at NLO, and the ECH

method also fails to describe data for higher moments of event shapes. Padé

Approximant methods are used to estimate missing higher orders in the per-

turbative expansions, a technique that works especially well for MS PT applied

to the higher moments. We also examine the effect of adding non-perturbative

power corrections to the perturbative approximations. It is found that power

corrections are insufficient to counteract the undesirable behaviour of ECH at

NNLO.

The PMS method is used to provide predictions of the bb̄ and tt̄ total cross-

sections at the Tevatron and the LHC. Hadronic cross-sections depend on the

factorisation scale as well as the renormalisation scale. PMS is applied by

searching for stationary points on the cross-section surface in the space of the

two scales. The PMS method predicts substantially larger bb̄ cross-sections

than using standard diagonal scale choices. For tt̄ production, however, there

is very little difference observed between the two methods. Both produce

predictions that are in good agreement with the current experimental data.
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Preface

The quantum field theory of Quantum Chromodynamics (QCD) has made

many successful predictions regarding the behaviour of the strong force [2, 3].

QCD is a renormalisable SU(3) gauge theory which describes colour interac-

tions between quarks and gluons. The non-Abelian nature of QCD results

in the gauge bosons of the theory carrying colour, leading to the effects of

asymptotic freedom and confinement [2, 4]. Since QCD possesses the prop-

erty of asymptotic freedom, the strength of the coupling interaction decreases

at large energies. This allows perturbation theory, with an expansion in the

coupling, to be applied at sufficiently high energies.

When QCD is renormalised, an unphysical scale, µR, is introduced. Renor-

malised predictions of physical observables have an unphysical dependence on

this renormalisation scale, and on the renormalisation scheme (RS) used, when

the perturbative expansion is truncated. The standard method of accounting

for this is to work in the MS renormalisation scheme and to set µR equal to

some physical scale related to the observable, such as the centre-of-mass en-

ergy of e+e− collisions [3, 5]. The renormalisation scale is then varied by a

factor of two around this choice to provide an estimate of the theoretical un-

certainty [3,5,6]. The choices of µR and the range of its variation are arbitrary

and can lead to theoretical uncertainties that are greater than the experimen-

tal uncertainties involved. In this thesis we examine two different ways of
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avoiding or reducing this unphysical scale dependence: the Effective Charges

(ECH) method and the Principle of Minimal Sensitivity (PMS).

The ECH technique [7–15] starts from a β-function type equation,

analagous to that for the strong coupling constant, which consists of an ex-

pansion in terms of the observable itself. The perturbative coefficients in this

expansion are renormalisation scheme invariant and so predictions obtained

from this equation are also scheme-independent. The β-function equation for

the observable is integrated, resulting in an integration constant that is related

to ΛQCD, the characteristic scale of QCD [2, 3, 5]. Once ΛQCD is determined

αs(MZ) can be extracted using the QCD β-function equation.

The PMS approach [16] is to choose the renormalisation scheme parameters

such that the truncated fixed-order prediction of an observable is locally invari-

ant to the RS. This invariance reflects the behaviour of the full all-orders result

which is independent of the RS. PMS can be easily extended to cross-sections

at hadronic colliders, which require parton distribution functions (PDFs) to

describe the structure of the incoming hadrons. Cross-sections of hadronic col-

lisions can be factorised into a PDF part and a partonic cross-section, and a

factorisation scale, M , is introduced to define the split between the two parts.

In this case, the PMS method is applied by looking for a stationary point on

the cross-section surface in M and µR space.

In this thesis we begin by briefly introducing QCD, renormalisation and

scheme dependence in Chapter 1. The QCD β-function and its solutions are

also outlined.

In Chapters 2 and 3 we derive the Effective Charges method and use it to

extract αs(MZ) from e+e− event shape moment data. The data used come from

LEP (DELPHI, OPAL and L3) and PETRA (JADE) e+e− collisions [17–22].

ECH is also used to provide predictions to the data. In both cases ECH is
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compared with the standard scale choice in MS perturbation theory (MS PT).

Padé Approximant methods are used to provide an estimate of missing higher

orders in the perturbative expansions in Section 3.4. The effect of adding

non-perturbative power corrections to ECH and MS PT is also considered in

Section 3.5. The PMS predictions of the event shape moments are examined

in Chapter 4.

We move on, in Chapter 5, to consider heavy quark cross-sections at

hadronic colliders. PMS predictions for the bb̄ total cross-section at the Teva-

tron are given in Section 5.2. The tt̄ total cross-section is also analysed, using

PMS, at both the Tevatron and the LHC.

Finally, our conclusions are given in Chapter 6.
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Chapter 1

An Introduction to QCD

Quantum Chromodynamics (QCD) is the quantum field theory that describes

the strong interactions between quarks. It is a non-Abelian SU(3) gauge theory.

The gauge bosons of QCD are gluons which, because of the non-Abelian nature

of the theory, are self-interacting.

In the next section we briefly introduce the QCD Lagrangian. We then

go on to discuss renormalisation in Section 1.2 and renormalisation scheme

dependence in Section 1.3.

The sections in this chapter follow the material in Refs. [2, 4, 5] closely.

Ref. [23] also provides a useful introduction to the subject, and Ref. [24] gives

a comprehensive mathematical discussion of field theory.

1.1 QCD Lagrangian

The Lagrangian of QCD can be separated into three parts:

LQCD = Lclass. + Lgauge + Lghost. (1.1.1)



An Introduction to QCD

Lclass., the classical Lagrangian density, contains the kinetic terms for the fields,

and the mass term for the quarks:

Lclass. = −1

4
FA
αβF

αβ
A +

Nf
∑

a,b=1

q̄a(i /D −m)abqb, (1.1.2)

where the indices (a, b) run over the quark flavours, (A,B) run over the gluon

colours, and (α, β) are space-time indices. /D = Dµγ
µ is the covariant derivative

dotted with the gamma matrices, which have the anti-commutation relation

{γα, γβ} = 2gαβ. The covariant derivative is given by:

(Dα)ab = ∂αδab + igs(t
CAC

α )ab ,

(Dα)AB = ∂αδab + igs(T
CAC

α )AB , (1.1.3)

where the former definition acts on the quark fields, using the tA generators

of SU(3) in the fundamental representation, and the latter on the gluon fields,

with the TA generators in the adjoint representation. The generators have the

following commutation relations:

[tA, tB] = ifABCtC , (1.1.4)

where fABC are the structure constants of SU(3). The TA generators follow

the same Lie algebra, and are given by (TA)BC = −ifABC . By convention the

generators are normalised by:

Tr tAtB = TRδ
AB =

1

2
δAB. (1.1.5)
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An Introduction to QCD

The generators obey the following identities:

∑

A

tAabt
A
bc = CF δac =

N2 − 1

2N
δac , (1.1.6)

TrTCTD =
∑

A,B

fABCfABD = CAδ
CD = NδCD, (1.1.7)

where N is the number of colours.

qa are the quark fields and have mass m. FA
αβ is the field strength tensor,

defined by:

FA
αβ = ∂αA

A
β − ∂βA

A
α − gsf

ABCAB
αA

C
β , (1.1.8)

where the indices (A,B) run over the 8 colour degrees of freedom of the gluon

fields and gs is the strength of the coupling interaction. Note that in QCD it

is frequently convenient to consider the quantity:

αs ≡
gs

2

4π
, (1.1.9)

instead of gs.

The third term in (1.1.8) is not present in quantum electrodynamics (QED)

and is a consequence of the non-Abelian nature of QCD. It results in gluon

self-interactions, which in turn contribute to the effects of asymptotic freedom

and infra-red slavery.

Lclass. is invariant under local gauge transformations, where the fields trans-
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An Introduction to QCD

form in the following way:

qa(x) → q′a(x) = exp(it · θ(x))abqb(x) ,

Dα,abqb(x) → D′
α,abq

′
b(x) ≡ exp(it · θ(x))abDα,bcqc(x) ,

t · Aα → t · A′
α = exp(it · θ(x)) t · Aα exp(−it · θ(x))

+
i

gs
(∂µexp(it · θ(x))) exp(−it · θ(x)) ,

t · Fαβ → t · F ′
αβ = exp(it · θ(x)) t · Fαβ exp(−it · θ(x)) , (1.1.10)

where t ·Aα ≡
∑

A tAAA
α and the colour indices have been dropped in the last

two equations for clarity.

Before reading off the Feynman rules it is necessary to fix the gauge. For co-

variant gauges ∂αAα = 0, so we can add the following term to the Lagrangian:

Lgauge = − 1

2λ
(∂αAA

α )
2. (1.1.11)

Although Lgauge explicitly breaks gauge invariance, physical quantities will be

independent of the gauge fixing parameter λ and the particular gauge chosen.

The decision of which gauge to work in is usually driven by convenience of

calculation.

Finally, in non-Abelian theories it is necessary to add ghosts. These are

scalar fields that obey Fermi statistics. They cancel unphysical degrees of

freedom that would otherwise propagate in gluon loops. The ghost term that

needs to be added to the Lagrangian is:

Lghost = ∂αη
A†(Dα

ABη
B). (1.1.12)

13



An Introduction to QCD

1.1.1 Feynman rules

The Feynman rules are obtained from the action: S = i
∫

LQCD d4x. It is

not possible to invert for the gluon propagator without adding a gauge-fixing

term to the Lagrangian. Only the gluon propagator is gauge-dependent. The

Feynman rules for QCD in a covariant gauge are given in Fig. 1.1.

1.2 Renormalisation

In Fig. 1.1 we have identified gs as the strength of the coupling between a

quark and a gluon, and related m with the quark propagator. However, there

will also be higher order loop corrections to these quantities, such as the ones

in Fig. 1.2. There is no upper limit on the momenta which run in these

loops and so they are UV divergent. Any quantities, including those which

are physical observables, calculated with these loop corrections will be infinite.

The parameters in the original Lagrangian can therefore not be the physical

mass and coupling. In order to obtain finite predictions the parameters in the

Lagrangian must be related to their physically observable counterparts. This

is done by redefining, or renormalising, the quark mass, coupling, and fields to

remove any infinities.

Before renormalising, we have to identify the divergences that are present.

This is done by using a regularisation method. One such method is to introduce

a cut-off, µR, on the momenta in the loops. Another technique, which is

more generally used due to its preservation of gauge and Lorentz invariance, is

dimensional regularisation [4, 24, 25]. Calculations are performed in d = 4− ǫ

dimensions. The terms in the Lagrangian have to be altered slightly when

working in d dimensions: the coupling gs has to be multiplied by µ
2−d/2
R , where

µR is a mass scale. This keeps gs dimensionless in d dimensions. An arbitrary

14



An Introduction to QCD

a, i b, j
p

δab
i

(/p−m+ iǫ)ji

A,α B, β
p

δAB

(

−gαβ + (1− λ)
pαpβ

p2 + iǫ

)

i

p2 + iǫ

A B
p

δAB i

(p2 + iǫ)

A,α

B, β

C, γ

p

q

r

−gsf
ABC [ (p− q)γgαβ + (q − r)αgβγ

+(r − p)βgγα ]

(with p+ q + r = 0)

A,α

B, β C, γ

D, δ

−ig2sf
XACfXBD

[

gαβgγδ − gαδgβγ
]

−ig2sf
XADfXBC

[

gαβgγδ − gαγgβδ
]

−ig2sf
XABfXCD

[

gαγgβδ − gαδgβγ
]

b, i

A, α

c, j

−igs(t
A)cb(γ

α)ji

B

A,α

C

q

gsf
ABCqα

Figure 1.1: Feynman rules for QCD. Quarks are represented by solid lines,
gluons by curly lines and ghosts by dotted lines. The gluon propagator is
given in a covariant gauge with gauge fixing parameter λ.

dimensionful scale has been introduced by dimensional regularisation, as in

the case of a cut-off applied to the momentum in the loop.

In this scheme, loops are found to contribute 1/ǫ poles. Once the poles in ǫ

have been identified they can be subtracted off or absorbed into multiplicative

constants, called wave function renormalisation constants, in the renormali-

15



An Introduction to QCD

Figure 1.2: Higher order loop corrections to the quark propagator and the
quark gluon vertex.

sation procedure. In addition to absorbing the infinite 1/ǫ pole, some finite

terms can also be removed. The exact finite terms to be included are specified

by the renormalisation scheme, along with the choice of µR. Once the poles in

ǫ are absorbed the limit ǫ → 0 can safely be taken, and the result is a finite

calculation in d = 4 dimensions.

We can now identify renormalised masses, couplings and fields as those in

the original ‘bare’ Lagrangian multiplied by combinations of the infinite wave

function renormalisation constants. The infinities in the bare quantities and

the renormalisation constants cancel to give finite ‘physical’ values.

An alternative view of renormalisation is that of the method of counter-

terms. Instead of considering the original parameters to be infinite, they are

16



An Introduction to QCD

associated with the finite, physical masses and couplings. The fact that the

Lagrangian does not yield finite quantities when calculating objects such as

Green’s functions and cross-sections is remedied by adding additional ‘counter-

terms’ which cancel the infinite parts. The ‘bare’ Lagrangian, containing in-

finite bare parameters, consists of the original Lagrangian plus the counter-

terms. These two views of renormalisation are equivalent, and both lead to

a definition of renormalised quantities where UV divergences from loops are

cancelled by infinite coefficients (the wave function renormalisation constants).

To illustrate the above discussion, consider the example of the self-energy

of the quark propagator to one loop, as drawn in the top left hand corner of

Fig. 1.2. Applying the Feynman rules from Fig. 1.1 to this diagram, and

working in the Feynman gauge so that λ = 1, gives:

−iΣab(p) = −g2sµ
4−d

∫

ddk

(2π)d
γµ

1

/p− /k −m
γν

gµν

k2
(tA)ac(tA)cb , (1.2.1)

where we have dropped the iǫ convention and the i, j subscripts from Fig. 1.1

for clarity. As stated above, when working in d dimensions it is necessary

to introduce the extra multiplicative factor of µ2−d/2 to keep the coupling

dimensionless. The integral is over the internal loop momentum, and the lack

of an upper limit is the cause of the UV divergence. Performing the integration

gives:

Σab(p) =

(

g2s
8π2ǫ

(−/p+ 4m) + finite

)

(tAtA)ab . (1.2.2)

Working in d = 4− ǫ dimensions has isolated the UV divergence in the form of

the pole in ǫ. The additional non-divergent terms are represented by ‘finite’.

17



An Introduction to QCD

The value of (tAtA)ab in SU(3) is given by (1.1.6), and leads to:

Σab(p) =
4

3
δab
(

g2s
8π2ǫ

(−/p+ 4m) + finite

)

=
g2s
6π2ǫ

(−/p+ 4m)δab + finite . (1.2.3)

Extra counter-terms are needed in the Lagrangian to cancel the pole in ǫ, of

the form:

LCT =
∑

q̄a(iB/∂ − A)abqb , (1.2.4)

where B and A are chosen to give a finite Σab (at one loop). This gives the

requirement:

g2s
6π2ǫ

(−/p+ 4m)δab + (A− B/p)δ
ab = finite , (1.2.5)

and so, neglecting the finite terms:

A = −2mg2s
3π2ǫ

and B = − g2s
6π2ǫ

. (1.2.6)

Neglecting the finite terms and only subtracting off the poles is equivalent to

working in the minimal subtraction (MS) scheme — for more information see

Section 1.3.

The ‘bare’ Lagrangian, which consists of the original L and the counter-

terms given in (1.2.4), is given by:

LB =
∑

q̄a(i(1 + B)/∂ − (m+ A))abqb

=
∑

(qB)a(i/∂ −mB)ab(qB)b . (1.2.7)

The subscript B in these equations refers to the fact that they are bare quan-

tities and should not be confused with an index over the colour degrees of

freedom. In the second line of (1.2.7), the counter-terms have been absorbed

18



An Introduction to QCD

into a redefinition of the quark wave function and the mass. The new, renor-

malised, bare quark wave function is defined as:

(qB)a =
√

Z2qa , (1.2.8)

with Z2 = 1 + B = 1 − g2s/6π
2ǫ, the quark wave function renormalisation

constant.

The bare mass is defined as:

mB =
1

Z2

(m+ A)

= m

(

1− 2g2s
3π2ǫ

)(

1− g2s
6π2ǫ

)−1

= m

(

1− 2g2s
3π2ǫ

)(

1 +
g2s
6π2ǫ

+O(g4s)

)

= m

(

1− g2s
2π2ǫ

+O(g4s)

)

= m+ δm . (1.2.9)

The infinities that arose in calculations using the original Lagrangian are can-

celled, at the one loop level, by the infinite multiplicative factor Z2 and the

δm term in the bare mass.

A similar process can be applied to the gluon propagator — which is mod-

ified by gluon, quark and ghost loops — and the quark-gluon vertex. This

will result in a renormalised, bare gluon wave function and coupling. The UV

divergences in physical observables, caused by the presence of loops, will be

cancelled to O(g4s). This procedure can be repeated at higher orders of pertur-

bation theory to remove divergences caused by the presence of larger numbers

of loops. QCD is a renormalisable theory and so the parameters of the theory

can be renormalised at all orders of perturbation theory.
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An Introduction to QCD

1.2.1 Renormalisation Group Equation

The previous section described how to move between bare, unphysical, diver-

gent fields, couplings, and masses and renormalised, physically observable ones

through the use of multiplicative, infinite coefficients. When renormalising

these quantities an arbitrary mass scale was introduced: the renormalisation

scale, µR. This scale was introduced as a mathematical convenience during the

process of dimensional regularisation and is unphysical. The bare quantities

are independent of µR, but the renormalised quantities and the renormalisation

constants do have a dependence on the unphysical scale µR. In other words,

the bare quantities are invariant under transformations of the renormalisation

group: µR → µ′
R.

Predictions of more complicated quantities, such as Green’s functions, can

be renormalised by combining the wave function renormalisation constants in

appropriate ways. This will, again, lead to a bare quantity that is equal to

a renormalised prediction multiplied by some combination of renormalisation

constants. For example, consider the bare n-point Green’s function, G
(n)
B , for a

general theory with coupling g, and fields with mass m that are renormalised

by a wave function renormalisation constant
√
Z. G

(n)
B can be related to the

renormalised Green’s function, G(n), in the following way:

G
(n)
B (xi, gB,mB) = Zn/2G(n)(xi, g(µR),m(µR)) , (1.2.10)

where the product of
√
Z constants renormalises the wave functions contained

in G
(n)
B , and i runs from 1 to n.

Bare quantities are independent of the arbitrary scale µR, so:

µR
d

dµR

G
(n)
B (xi, gB,mB) = µR

d

dµR

(

Zn/2G(n)(xi, g(µR),m(µR))
)

= 0 . (1.2.11)
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An Introduction to QCD

Using the chain rule this can be written as:

(

µR
∂

∂µR

+ µR
∂g

∂µR

∂

∂g
+ µR

∂m

∂µR

∂

∂m

+
n√
Z
µR

∂
√
Z

∂µR

)

G(n)(xi, g(µR),m(µR)) = 0 . (1.2.12)

Defining the following quantities:

β(g) = µR
∂g

∂µR

, (1.2.13)

βm = µR
∂m

∂µR

, (1.2.14)

γ =
µR√
Z

∂
√
Z

∂µR

, (1.2.15)

we can write (1.2.12) as:

(

µR
∂

∂µR

+ β(g)
∂

∂g
+ βm

∂

∂m
+ nγ

)

G(n)(xi, g(µR),m(µR)) = 0 . (1.2.16)

This is known as the Callan-Symanzik equation, or the Renormalisation Group

Equation (RGE). β(g) is known as the β-function and describes the running

of the coupling with the scale µR, and γ is the anomalous dimension of the

renormalised fields.

For the specific case of QCD, there will be two nγ terms: one for the gluon

fields present in G(n) and one for the quarks. There is one other additional

term that appears in the RGE for QCD, which describes the variation of the

gauge fixing parameter, λ, with µR. The full QCD Callan-Symanzik equation

is therefore:

(

µR
∂

∂µR

+β(gs)
∂

∂gs
+ βm

∂

∂m
+ nqγq + ngγg + βλ

∂

∂λ

)

G(n)(xi, gs,m, λ) = 0 ,

(1.2.17)
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where βλ = µR
∂λ

∂µR

, and nq + ng = n.

1.2.2 The QCD β-function

In the previous section, the function β(gs) was introduced in (1.2.13) to de-

scribe how the coupling varies, or runs, with the renormalisation scale. From

now on we will consider the quantity αs, as defined in (1.1.9), instead of gs.

In QCD the perturbative expansion of β(αs) is given by:

∂αs

∂ lnµR

≡ β(αs) = − b

π
α2
s

(

1 + c
αs

π
+

∞
∑

n=2

cn

(αs

π

)n
)

. (1.2.18)

The first two coefficients:

b =
33−2nf

6
and c =

153− 19nf

12b
(1.2.19)

are universal, and nf is the number of light flavours. The higher cn are scheme-

dependent coefficients. For example, c2 in the MS scheme is given by [2, 3]:

cMS
2 =

77139− 15099nf + 325n2
f

1728b
. (1.2.20)

The β-function coefficients are known up to c3 in the MS scheme [26,27]:

cMS
3 =

3564ζ3 +
149753

6
− (6508

27
ζ3 +

1078361
162

)nf + (6472
81

ζ3 +
50065
162

)n2
f +

1093
729

n3
f

128b
,

(1.2.21)

where ζ is the Riemann zeta-function and ζ3 ≈ 1.202.

For convenience, in this thesis we shall generally use the quantity a = αs/π.

Note that, since b > 0 for nf ≤ 16, the β-function for QCD is negative.

This is the opposite of QED, where bQED is negative and β(gQED) > 0. This

results in the QED coupling getting larger at higher energies (larger µR) and
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smaller at low energies. This can be explained physically by observing that the

QED charge is smaller at large distances due to the shielding effect of vacuum

polarisation. At higher energies, or shorter distances, this screening effect is

penetrated and the observed charge increases.

In QCD the case is more complicated, since the gauge bosons also carry

colour charge (unlike photons in QED which are neutral). This results in the

sign of b changing, and hence the QCD coupling decreases with increasing

energy. This phenomenon is known as asymptotic freedom. Since the coupling

is small at sufficiently high energies, it is possible to use perturbation theory

in this region.

At low energies the coupling becomes large, an effect known as infrared (IR)

slavery. In regions of low energy, perturbation theory breaks down and non-

perturbative effects become more important. IR slavery is manifested as the

confinement of quarks and gluons — only colour singlet states can propagate

over large distances. At high energies quarks and gluons behave more like free

particles.

1.2.3 Solutions of the running coupling equation

At leading order (LO) the QCD β-function is:

∂a(1)

∂ lnµR

= −b(a(1))2, (1.2.22)

where the (1) superscript on a indicates that this is the one-loop coupling

constant. This can be easily integrated to give a solution for the one-loop

running coupling constant:

a(1)(µR) =
1

b ln
µR

Λ̃

. (1.2.23)

23



An Introduction to QCD

Λ̃ is related to ΛQCD, the characteristic scale of QCD. ΛQCD represents the

energy where the coupling becomes large, and hence the region where pertur-

bation theory breaks down. In this thesis we have considered a Lagrangian

that contains a mass term for the quark fields. It would be possible to ne-

glect these terms, however, and repeat the treatment for massless QCD. In

this case renormalisation still introduces a massive scale, ΛQCD, despite there

being no massive scales present in the original Lagrangian. This process is

known as dimensional transmutation, and ΛQCD is therefore called the dimen-

sional transmutation parameter [2,5,28]. The tilde on Λ reflects the particular

definition used in this thesis.1 Λ̃ can be related to the standard definition of

ΛQCD using:

ΛQCD =

(

2c

b

)c/b

Λ̃ . (1.2.24)

ΛQCD is a scheme dependent quantity, but it is possible to move between Λ’s

in different schemes exactly, as long as the NLO coefficients in both schemes

are known — for more details see the discussion in Section 2.1 below (2.1.19).

At next-to-leading order (NLO) the QCD β-function gains an extra term:

∂a(2)

∂ lnµR

= −b
(

a(2)
)2 (

1 + ca(2)
)

, (1.2.25)

where we are now looking at the two-loop coupling constant, hence the (2)

1The exact definition of Λ depends on the way the β function is integrated, and specifi-
cally how the infinite integration constant is defined — see Section 2.1 for a further discus-
sion.

24



An Introduction to QCD

superscript. Integrating this equation gives:

b ln
µR

Λ̃
=

∫ a

∞

dx
−1

x2(1 + cx)

=

∫ a

∞

dx

[

− 1

x2
+

c

x
− c2

1 + cx

]

=

[

1

x
+ c ln x− c ln(1 + cx)

]a

∞

=
1

a
+ c ln

(

ca

1 + ca

)

, (1.2.26)

where we have used asymptotic freedom as a boundary condition.2 Equation

(1.2.26) can be inverted analytically:

a(2)(µR) =
−1

c [1 +W (z)]
, (1.2.27)

where W is the Lambert W -function [29], defined by W (z) exp(W (z)) = z,

and z is given by:

z = − exp

[

−
(

1 +
b

c
ln

µR

Λ̃

)]

(1.2.28)

The W−1 branch should be used to ensure asymptotic freedom [30].

Solving the next-to-NLO (NNLO) QCD β-function for the three-loop cou-

pling constant can not be done analytically. However, it is possible to relate

the coupling at NNLO to an expansion in powers of a(2) as follows:

a(3)(µR) = a(2)(µR) + c2
(

a(2)(µR)
)3

+ . . . . (1.2.29)

Using this power expansion for the higher order coupling avoids the need to

solve transcendental equations. The approximation using the first two terms is

2The introduction of an integration constant is required to implement this boundary
condition and to cancel singularities at x = 0 in the integrand. This treatment is shown
explicitly in the context of the Effective Charges method in Section 2.1.
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valid to NNLO. Higher order couplings can be approximated by adding higher

order terms. For example the next-to-NNLO (N3LO) QCD coupling can be

approximated by:

a(4)(µR) = a(2)(µR) + c2
(

a(2)(µR)
)3

+
c3
2

(

a(2)(µR)
)4

+ . . . . (1.2.30)

As we shall see in the next section, at each new order of perturbation theory

the renormalisation scheme is labelled by an extra coefficient from the QCD

β-function equation. Therefore, in moving from the NNLO coupling to the

N3LO coupling a term involving c3 appears.

1.3 Renormalisation Scheme Dependence

As discussed in Section 1.2, the process of renormalisation introduces an arbi-

trary scale, µR. There is also another choice to be made: which, if any, finite

terms are to be absorbed along with the poles in ǫ by the renormalisation con-

stants. These two choices, the selection of a µR and of a prescription for the

exact term absorbed, together specify the renormalisation scheme (RS). The

minimal subtraction (MS) scheme specifies that only the ǫ poles should be ab-

sorbed. The commonly used modified minimal subtraction (MS) scheme also

absorbs a finite term : (ln 4π + γE), where γE is the Euler gamma constant.

A dimensionless, physical, IR and collinear safe observable, dependent on

a single energy scale Q, can be expanded in perturbation theory in terms of

the coupling, a = αs/π:

O = a(1 + p1a+ p2a
2 + . . .+ pna

n + . . .) . (1.3.1)

At nth order of perturbation theory the RS dependence of O(n) is given by the
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set of parameters {τ, c2, . . . , cn−1} [16], where:

τ = b ln(µR/Λ̃) , (1.3.2)

and O(n) is (1.3.1) truncated beyond the O(an) term.

In order to see that the RS dependence is given solely by {τ, c2, . . . , cn−1}

we follow the argument given by Stevenson in Ref. [16]. First, consider the

observable O at nth order of perturbation theory in two different schemes,

O
(n)
RS1 and O

(n)
RS2. These quantities have an expansion of the form given in

(1.3.1) terminated at an, with couplings aRS1 and aRS2 respectively. Similarly

the perturbative coefficients will vary between the schemes: pRS1
n and pRS2

n .

The approximations O
(n)
RS1 and O

(n)
RS2 agree with the full expansion O to an+1

order:

O = O
(n)
RS1 +O(an+1)

= O
(n)
RS2 +O(an+1) . (1.3.3)

O
(n)
RS1 and O

(n)
RS2 therefore differ by O(an+1). This is known as the self-

consistency of perturbation theory and can be written as:

∂O(n)

∂(RS)
= O(an+1) . (1.3.4)

As stated above, the RS in this equation can be specified by {τ, c2, . . .} only.

If this were not the case, and there was an additional parameter η that con-

tributed to the RS and was independent of {τ, c2, . . .}, then the observable

O(n) (in either scheme) would depend on η in the following way:

∂O(n)

∂η
=

n−1
∑

i=1

∂pi
∂η

(a(n))i+1 . (1.3.5)
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This only agrees with the self-consistency requirement in (1.3.4) if:

∂pi
∂η

= 0 for i = 1, . . . , n− 1 , (1.3.6)

and so the truncated approximation O(n) cannot depend on η. We conclude

that the RS dependence of O(n) is given solely by {τ, c2, . . . , cn−1}.

1.3.1 Physical scale choice

As seen in the previous section, a truncated expansion of a generic QCD observ-

able depends on the RS through the parameters {τ, c2, . . . , cn−1}. We therefore

have to choose the values of these parameters before we make a calculation in

fixed order perturbation theory. A standard approach is to use the MS scheme

(or some alternate RS) and to set µR = Q where Q is a physical scale that the

observable depends on, such as the centre of mass energy in e+e− collisions.

Equation (1.3.1) then becomes:

O = a(Q)(1 + pMS
1 (µR = Q)a(Q) + . . .+ pMS

n (µR = Q)a(Q)n + . . .) . (1.3.7)

At leading order the β function for the coupling is given by (1.2.22). In

Section 1.2.3 we integrated this equation between an arbitrary µR and ΛQCD,

where the coupling tends to ∞. Now consider the same equation integrated

between µR and an energy Q:

− 1

a(µR)
+

1

a(Q)
= b ln

µR

Q
. (1.3.8)
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Rearranging this for a(Q) gives:

a(Q) =
a(µR)

1 + b ln

(

µR

Q

)

a(µR)

(1.3.9)

= a(µR)

(

1− b ln

(

µR

Q

)

a(µR) +

(

b ln

(

µR

Q

))2

a(µR)
2 + . . .

)

.

(1.3.10)

We see that an expansion of a(Q) involves logs of µR/Q. Setting µR = Q (or

close to Q) causes the logs to disappear (or to be small). Choosing a µR that

is far from Q will guarantee large truncation errors, although the reverse is not

necessarily true. This is the rationale behind choosing the physical scale [5].

As an estimate of the effect of RS dependence in missing higher orders µR is

then often varied between 0.5Q and 2Q, or some similar range of values, to

give a theoretical renormalisation scale error.

This procedure is highly arbitrary and can result in theoretical uncertainties

that are larger than the experimental uncertainties on the physical observables

involved. In the remainder of this thesis we examine two alternative methods

which attempt to minimise the RS dependence of QCD predictions: the Ef-

fective Charges (ECH) method in Chapter 2, and the Principle of Minimal

Sensitivity (PMS) in Chapter 4.
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Chapter 2

The Effective Charges method

Following on from our discussion of RS dependence and the physical scale

method we shall now look at the Effective Charges (ECH) method. This

method integrates up a β-function type equation for the observable that is

analogous to the running equation for the strong coupling constant. The

resulting integration constant is related to ΛQCD, the characteristic scale of

QCD [2, 3, 5]. Once determined this universal parameter of QCD can be used

to evaluate αs(MZ) using the QCD β-function equation, as outlined in Section

1.2.3. As we shall see, ECH gives predictions that are RS invariant. There is no

unphysical dependence on µR and therefore no need to estimate a theoretical

uncertainty to account for this dependence.

In Section 2.1 we introduce the ECH method and give a brief outline of

its derivation. We then discuss the data on event shape moments from e+e−

colliders in Section 2.2, which we go on to analyse using the ECH method in

the next chapter.



The Effective Charges method

2.1 Derivation of the ECH method

In this section we shall derive the ECH method [7–16]1 and show how it can be

used to extract ΛMS, ΛQCD in the MS scheme, and hence the strong coupling

constant.2 We shall start from the principle of dimensional analysis [28]. Con-

sider a dimensionless QCD observable which depends on a single energy scale,

R(Q). Since the observable is dimensionless we have to introduce another,

dimensionful, quantity Λ:

R(Q) = f

(

Λ

Q

)

, (2.1.1)

where f is some function of Λ and the physical scale Q. We will assume

massless quarks; the extension to the case with non-zero quark mass has been

considered in Refs [12,14]. The parameter Λ must therefore be related to ΛQCD,

the dimensional transmutation scale of QCD, introduced in Section 1.2.3. We

want to extract Λ, and to do this we must invert (2.1.1). To find the inverse

function f−1 we shall start by looking at the derivative of R(Q) with respect

to Q:

dR(Q)

dQ
≡ ρ(R(Q))

Q
. (2.1.2)

We have again used dimensional analysis to determine the form of (2.1.2). The

expression can be rewritten as:

dR(Q)

d lnQ
≡ ρ(R(Q)). (2.1.3)

To solve (2.1.3) we need to know something about R(Q). We shall take the

form of its perturbative expansion to be:

R(Q) = a(1 + r1a+ r2a
2 + . . . ), (2.1.4)

1The description of ECH in this Chapter is based closely on that given in Ref. [9]
2ΛQCD and αs can be related using the equations in Section 1.2.3.
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where a ≡ αs(µR)/π and µR is the renormalisation scale. For any observable

of this type, i.e. one that depends on only a single energy scale, we can always

ensure that the perturbative expansion takes the form of (2.1.4) by applying

an appropriate scaling and, if necessary, raising to a power. This step therefore

results in no loss of generality.

An observable with an expansion of the form of (2.1.4) is known as an

effective charge [15, 31] as it has a running equation like the strong coupling

does. The running coupling equation for αs was introduced in Section 1.2.2.

We can derive the analogous expression for the effective charge by setting

µR = Q in (2.1.4) and differentiating with respect to lnQ. If we also invert

(2.1.4) to get an expression for a(R) and substitute in we find that:

dR(Q)

d lnQ
≡ ρ(R(Q)) = −bR2(1 + cR+

∞
∑

n=2

ρnRn) , (2.1.5)

where b and c are the first two universal coefficients from (1.2.18). The ρn

are specific to the observable R(Q); they are RS invariant and Q-independent

combinations of coefficients from (2.1.4) and (1.2.18). For example:

ρ2 = r2 + c2 − r1c− r21. (2.1.6)

More details of this step are given in Appendix A.

We now integrate (2.1.5) to give:

ln
Q

ΛR

=

∫ R(Q)

0

dx

ρ(x)
+ κ. (2.1.7)

This step has introduced an integration constant that we have split into two

parts: ln ΛR and κ. The constant ΛR is a finite dimensionful scale specific to

the observable R. κ is an infinite constant needed to implement the boundary
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condition of aymptotic freedom,3 i.e. the requirement that R(Q) → 0 as

Q → ∞, and which must cancel the singularities in 1/ρ(x) at x = 0. Once this

requirement is met there is still some freedom to choose the exact form of κ.

Consider a κ of the form:

κ =

∫ Γ

0

dx

bx2(1 + cx+∆)

≃
∫ Γ

0

dx

bx2
(1− cx−∆) . (2.1.8)

The first two terms in (2.1.8) will cancel the singularities at x = 0 in:

1

ρ(x)
= − 1

bx2(1 + cx+ ρ2x2 + . . .)

= −
(

1

bx2
− c

bx
− ρ2

b
− . . .

)

. (2.1.9)

The only restriction on ∆, therefore, is that ∆/x2 is finite as x → 0. This is

achieved by setting ∆ = 0. A convenient choice for Γ is ∞, which gives:

κ =

∫ ∞

0

dx

bx2(1 + cx)
. (2.1.10)

Any variation in the choices of ∆ and Γ, and the definition of κ, can be

absorbed into the definition of ΛR.

Adding in this explicit form for κ we can now rewrite (2.1.7) as:

b ln
Q

ΛR

=

∫ ∞

R(Q)

dx

x2(1 + cx)
+

∫ R(Q)

0

dx

[

b

ρ(x)
+

1

x2(1 + cx)

]

= F(R) + G(R).

(2.1.11)

The integration in κ has been split into two parts: from 0 to R(Q) and from

3Note that this treatment is analogous to that required for integration of the β-function
in Section 1.2.3. In order to obtain the equivalent method for the coupling, replace ΛR with
Λ̃, Q with µR, R(Q) with αs(µR) and ρ(x) with β(x).
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R(Q) to ∞. Integrating up the first term on the right-hand side gives:

F(R) =
1

R + c ln

[

cR
1 + cR

]

. (2.1.12)

The form of the second integral, G(R), depends on the order at which ρ(x) is

truncated. For example, at NLO we have ρ(x) = −bx2(1 + cx) which cancels

with the 1
x2(1+cx)

term to give G(R) = 0. At NNLO we have:

G(R) =

∫ R(Q)

0

dx

[ −1

x2(1 + cx+ ρ2x2)
+

1

x2(1 + cx)

]

=

∫ R(Q)

0

dx
ρ2

(1 + cx)(1 + cx+ ρ2x2)
. (2.1.13)

This integration has an analytic result with three different forms, depending

on the relative sizes of the coefficients c and ρ2:

(i) 4ρ2 > c2; ∆ ≡
√

4ρ2 − c2,

G(R) =
c

2
ln

∣

∣

∣

∣

(1 + cR)2

1 + cR+ ρ2R2

∣

∣

∣

∣

+
2ρ2 − c2

∆

[

arctan

[

2ρ2R+ c

∆

]

− arctan

[

c

∆

]]

,

(ii) 4ρ2 < c2; ∆ ≡
√

c2 − 4ρ2,

G(R) =
c

2
ln

∣

∣

∣

∣

(1 + cR)2

1 + cR+ ρ2R2

∣

∣

∣

∣

+
2ρ2 − c2

2∆

[

ln

∣

∣

∣

∣

2ρ2R+ c−∆

2ρ2R+ c+∆

∣

∣

∣

∣

+ ln

∣

∣

∣

∣

c+∆

c−∆

∣

∣

∣

∣

]

,

(iii) 4ρ2 = c2;

G(R) =
c

2
ln

∣

∣

∣

∣

(1 + cR)2

1 + cR+ ρ2R2

∣

∣

∣

∣

+ (c2 − 2ρ2)

[

1

2ρ2R+ c
− 1

c

]

. (2.1.14)

We now rearrange for ΛR in (2.1.11):

ΛR = QF(R)G(R), (2.1.15)
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where

F(R) = exp

(

−F(R)

b

)

= e−1/bR

(

1 +
1

cR

)c/b

, (2.1.16)

and

G(R) = exp (−G(R)/b) . (2.1.17)

ΛR is a scheme independent quantity associated with the specific effective

charge in question. It can be related to the universal quantity Λ̃MS using:

Λ̃MS = ΛR e−r/b, (2.1.18)

where r ≡ rMS
1 (µR = Q). The tilde in (2.1.18) indicates that this definition is

slightly different from the standard one for ΛMS (ΛQCD in the MS scheme). This

is due to our choice of κ and, to regain the standard definition of ΛMS [32,33],

we have to shift κ by c ln(b/2c), as in (1.2.24), resulting in the relation:

ΛMS =

(

2c

b

)c/b

Λ̃MS

=

(

2c

b

)c/b

QF(R)G(R)e−r/b. (2.1.19)

Note that all scheme dependence in ΛMS is contained in the exponential factor

e−r/b. Although ΛMS is a scheme dependent quantity it is possible to relate Λ’s

in different schemes exactly, providing that the NLO coefficients are known in

both schemes. To move between Λ’s in different schemes we note that, from

(2.1.18), Λ̃MS e
r/b = ΛR. Since ΛR is scheme invariant we can equate the left-

hand side of this expression in two different schemes. For instance, for Λ in

the MS scheme and Λ in the MS scheme the relation is:

ΛMS = exp

{

rMS − rMS

b

}

ΛMS, (2.1.20)
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where rMS and rMS are the NLO coefficients in the MS and MS schemes re-

spectively.

From ΛMS we can find αs(MZ) using the equations in Section 1.2.3, repli-

cated here for ease of reference:

a =
−1

c

[

1 +W

(

− exp

[

−
(

1 +
b

c
ln

MZ

Λ̃MS

)])] , (2.1.21)

αs(MZ) =















πa for NLO

π(a+ c2a
3) for NNLO,

(2.1.22)

where W is the Lambert W -function [29]. The coupling a in (2.1.21) is the

MS coupling corresponding to a two-loop (NLO) β-function solution, with

the β-function coefficients c2 and higher set to zero. This can be related to

the coupling at NNLO, which has a non-zero c2 but vanishing higher order

coefficients, by an expansion in powers of a — see the bottom line of (2.1.22)

and (1.2.29) in Section 1.2.3.

2.2 Event Shape Observables

Event shape observables give information about the topology of an event, and

are designed to be IR- and collinear-safe. They are good observables to use

to study αs since they start at O(αs) in perturbation theory. In this thesis

we analyse e+e− event shape moments. The nth moment of an event shape

observable, y, is given by [6, 34, 35]:

〈yn〉 = 1

σhad

∫ ymax

0

yn
dσ

dy
dy, (2.2.1)
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where ymax is the greatest value of the event shape that is kinematically allowed,

dσ

dy
is the differential cross-section, and σhad is the hadronic cross-section.

〈yn〉 has the following perturbative expansion [6, 34]:

〈yn〉 =
(

αs(µR)

2π

)

Ay,n +

(

αs(µR)

2π

)2(

By,n +Ay,n b ln
µ2
R

Q2

)

+

(

αs(µR)

2π

)3(

Cy,n + 2By,n b ln
µ2
R

Q2
+Ay,n

(

b2 ln2 µ
2
R

Q2
+ 2bc ln

µ2
R

Q2

))

+ . . . , (2.2.2)

where the b and c are coefficients from the running coupling equation (1.2.18),

and Ay,n, By,n and Cy,n are perturbative coefficients that are specific to the

event shape moment. The NNLO perturbative coefficients (Cy,n) for several

event shapes have recently been calculated [34,36,37].

In order to apply the ECH method to an event shape moment, we must first

rearrange (2.2.2) to get it into the form of an effective charge as given in (2.1.4).

To do this we divide through by Ay,n and, remembering that a ≡ αs(µR)/π,

put in appropriate factors of two:

R(Q) =
2〈yn〉
Ay,n

= a

(

1 +
By,n

2Ay,n

a+
Cy,n

4Ay,n

a2 + . . .

)

. (2.2.3)

For clarity we have taken µR = Q. Comparing this with (2.1.4) we see that

r1 =
By,n

2Ay,n

and r2 =
Cy,n

4Ay,n

. (2.2.4)

In this thesis we examine the first three moments of five different event

shape observables: one minus the thrust (1 − T ) [38, 39], the C-parameter

(C) [40, 41], the wide and total jet broadenings (BW and BT ) [42, 43], and

the three-to-two jet transition parameter in the Durham algorithm (Y3) [44].
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In addition, we analyse the mean (1st moment) of the heavy jet mass in the

E-scheme (ρE = (M2
h/s)E) [35, 45].

Definitions of these event shape observables are as follows:

• Thrust, T :

T = max

∑

i |pi · nT |
∑

i |pi|
, (2.2.5)

where pi are the final state particle momenta and nT is a unit vector

in the direction of the thrust axis. The thrust axis is determined by

maximising T . Thrust varies between 1, for back-to-back events, and

1/2, for isotropic events. It is conventional to use the quantity 1 − T ,

which is 0 in the two-jet limit, to be consistent with other event shape

observables.

• C-parameter, C:

C = 3(λ1λ2 + λ2λ3 + λ3λ1) , (2.2.6)

where λi are eigenvalues of the linear momentum tensor:

θmn =

∑

i p
m
i p

n
i /|pi|

∑

i |pi|
,

with m,n running over the components of pi.

• Wide jet broadening, BW : jet broadening is defined by splitting events

into two hemispheres (Ha,Hb) using a plane perpendicular to nT . The

broadening in each hemisphere is then:

Bx =

∑

pi∈Hx
|pi × nT |

2
∑

pi∈Hx
|pi|

, (2.2.7)

where x runs over the hemispheres a and b. BW is the larger of the two

broadenings, i.e. BW = max(Ba, Bb).
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The Effective Charges method

• Total jet broadening, BT :

BT = Ba + Bb , (2.2.8)

with Ba and Bb defined as for the wide jet broadening.

• Three-to-two jet transition parameter in the Durham algorithm, Y3: the

value of the jet measure yij at which an event changes from being classi-

fied as a three-jet event to a two-jet one. In the Durham algorithm the

jet measure is defined as:

yDij =
2min(E2

i , E
2
j )(1− cos θij)

E2
vis

, (2.2.9)

where Ei are the energies of the final state hadrons, θij is the angle

between them, and Evis =
∑

i Ei.

• Heavy jet mass in the E-scheme, ρE: events are divided into two hemi-

spheres, as for the broadening observables, and the invariant mass of

each is calculated. The heavy jet mass is the larger of the two masses

normalised to Evis:

ρ = max
M2

x

E2
vis

= max
1

E2
vis





∑

pk∈Hx

pk





2

. (2.2.10)

The use of the E-scheme corrects for the effect of hadron masses. In the

E-scheme the four-momentum p = (p, E) is replaced by (p̂E, E) where

p̂ is a unit vector in the p-direction. The definition of ρ in the E-scheme

is identical to (2.2.10) for massless hadrons.

The data come from various LEP experiments including OPAL [17, 19],

DELPHI [20,21] and L3 [22]. Some low energy JADE (PETRA) data are also
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included [18,19]. The data cover a range of energies from 14.0 to 206.6 GeV.

All observables are corrected for b and c quark decays using HERWIG++

simulations [46, 47]. Samples of 106 events were run with Nf = 3 (only light

quarks) and also with Nf = 5 (with b and c quarks). The event shape moment

was calculated in both of these cases and a ratio of the two quantities was

taken to give a correction factor. This was done for each energy. The data

in this thesis have been multiplied by the appropriate correction factors. The

correction factors for the means (n = 1 moments) are shown in Fig. 2.1. Plots

of the correction factors for the higher moments can be found in Appendix B.

Similar trends are seen in the n = 2 and 3 moments, although the deviation

of the correction factors from 1 tends to get larger at low energies for higher

moments. These corrections have been compared with those calculated by the

DELPHI collaboration in Fig. 3 of Ref. [35]. The factors in Fig. 2.1 show

the same energy dependence as in Ref. [35], although our correction factors

deviate further from 1 at low energies. This is because we have corrected for

c decays as well as b decays. When only b decays are taken into consideration

the corrections we calculated using HERWIG++ agree well with those that

the DELPHI collaboration calculated using PYTHIA 6.1.
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Figure 2.1: Heavy quark mass correction factors for the event shape means.
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Chapter 3

Applying the ECH method to

data

In the previous chapter we introduced the Effective Charges method, along

with describing the e+e− event shape moment data. We now proceed to apply

ECH to the data in order to extract αs. The results are compared with the

standard MS method in Section 3.1. In Section 3.2 we use the ECH method to

give a prediction of the data. We discuss the results obtained in Section 3.3.

We move on, in the remaining sections, to look at the ECH method used

in conjunction with a Padé Approximant (Section 3.4) and non-perturbative

power corrections (Sections 3.5 and 3.6).

The DELPHI collaboration performed a similar study [35], applying the

ECH method and standard MS perturbation theory (MS PT) at NLO to event

shape means. We replicate this analysis, and also extend the work to NNLO,

using the NNLO perturbative coefficients for event shape moments calculated

by Gehrmann-De Ridder et al. in Ref. [34]. In a further extension of the DEL-

PHI collaboration’s analysis, we study some higher moments of event shape

observables (see Section 2.2 for details). As in Ref. [35] we also add power cor-



Applying the ECH method to data

rections to these perturbative models to determine whether the estimation of

αs(MZ) is improved. We use the dispersive power correction model, outlined

in Refs. [6, 48, 49], and also a simple power correction model [35, 50].

The results in this chapter, with the exception of those in Section 3.4, are

published in Ref. [1].

3.1 Finding Λ̃MS and αs(MZ) from data

Now that we have corrected data in the form of an effective charge (see

Section 2.2) we can use the ECH method to extract αs(MZ). For every event

shape moment, and at each energy, a value of Λ̃MS is obtained using (2.1.15)

and (2.1.18). An overall value of Λ̃MS is then found by performing a weighted

average over all the energies for a specific event shape moment. The corre-

sponding values of αs(MZ) are calculated from the averages using (2.1.21) and

(2.1.22). This is done at both NLO and NNLO.

Table 3.1 shows the weighted averages of Λ̃MS obtained from the means

and the corresponding values of αs(MZ). These results are also plotted in the

top two panels of Fig. 3.1.

For comparison, Λ̃MS and αs(MZ) are also extracted from the event shape

means using MS perturbation theory (MS PT), by setting µR = Q in equa-

tion (2.2.2) and fitting to data. The results are shown in Table 3.2 and the

bottom half of Fig. 3.1. The first uncertainty on the MS PT results is the

experimental uncertainty combined in quadrature with the uncertainties from

the perturbative coefficients By,n and Cy,n [34]. These small uncertainties arise

from the numerical integration of the perturbative coefficients associated with

the differential cross-section dσ
dy

in equation (2.2.1). The second is a theoretical

scale uncertainty obtained by varying µR between µR = 0.5Q and µR = 2Q.
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Observable Λ̃MS [MeV] αs(MZ) Λ̃MS [MeV] αs(MZ)

NLO NNLO

〈1− T 〉 262± 4 0.1193± 0.0003 319± 6 0.1233± 0.0004

〈C〉 269± 4 0.1198± 0.0003 300± 5 0.1221± 0.0003

〈BW 〉 326± 3 0.1234± 0.0002 312± 4 0.1229± 0.0003

〈BT 〉 265± 2 0.1196± 0.0002 337± 5 0.1244± 0.0003

〈Y3〉 176± 5 0.1126± 0.0004 211± 7 0.1157± 0.0006

〈ρE〉 268± 5 0.1198± 0.0003 289± 7 0.1214± 0.0004

Table 3.1: Weighted averages for Λ̃MS and the corresponding values of αs(MZ)
for the means using the ECH method. The uncertainties are a combination of
those from experiment and the perturbative coefficients (see Section 3.1).

The largest difference between the calculations using the central value of µR

and the upper and lower variations is taken as the uncertainty. The error

bars in Fig. 3.1 represent the combined experimental and perturbative coef-

ficient uncertainty and the theoretical scale uncertainty added in quadrature.

In contrast, the uncertainty on the ECH results is just the combined exper-

imental and perturbative coefficient uncertainty. Results for the n = 2 mo-

ments are shown in Tables 3.3–3.4 and Fig. 3.2, and for the n = 3 moments

in Tables 3.5–3.6 and Fig. 3.3.

3.2 Predicting event shape moments from a

fixed value of αs(MZ)

Another way to implement the ECH method is to work backwards from a fixed

value of αs(MZ) to get an approximation to the data. In this section we fix

αs(MZ) at the result extracted from next-to-NNLO (N3LO) calculations on

Z-decays [51]: αs(MZ) = 0.1190 ± 0.0026. This value is close to the world
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Observable Λ̃MS [MeV] αs(MZ) χ2/dof

NLO

〈1− T 〉 646± 9 ± 279 0.1385± 0.0003± 0.0107 52.3/47

〈C〉 597± 7 ± 247 0.1365± 0.0003± 0.0099 45.7/41

〈BW 〉 336± 3 ± 105 0.1241± 0.0002± 0.0062 39.5/47

〈BT 〉 429± 3 ± 147 0.1291± 0.0001± 0.0073 69.7/47

〈Y3〉 268± 5 ± 81 0.1197± 0.0003± 0.0056 61.5/32

〈ρE〉 340± 6 ± 90 0.1243± 0.0004± 0.0053 11.5/14

NNLO

〈1− T 〉 396± 7 ± 77 0.1277± 0.0004± 0.0041 51.1/47

〈C〉 378± 6 ± 69 0.1267± 0.0003± 0.0038 44.3/41

〈BW 〉 317± 12± 13 0.1232± 0.0007± 0.0008 37.8/47

〈BT 〉 347± 9 ± 36 0.1250± 0.0005± 0.0021 78.1/47

〈Y3〉 228± 5 ± 18 0.1171± 0.0004± 0.0014 65.1/32

〈ρE〉 295± 7 ± 21 0.1218± 0.0005± 0.0014 11.5/14

Table 3.2: Λ̃MS and αs(MZ) for the means using MS PT. The first error is
experimental and the second is theoretical.

average value of αs(MZ) = 0.1184 ± 0.0031 reported in Ref. [52]. The N3LO

Z-decay value of αs(MZ) corresponds to Λ̃MS = 254 MeV. We can then find

ΛR using (2.1.18) and hence R(Q) by inverting (2.1.15). At NLO, where

G(R) = 1, this can be done analytically:

RNLO(Q) =
−1

c

[

1 +W

(

− exp

[

−
(

1 +
b

c
ln

Q

ΛR

)])] . (3.2.1)

Note that if we rewrite ΛR in terms of Λ̃MS using (2.1.18) and compare it

with (2.1.21) we find that RNLO(Q) = αs(µECH)/π. The particular choice of

MS renormalisation scale of µR = µECH = e−r/b Q is equivalent to the ECH
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Figure 3.1: Scatter plots showing the values of αs(MZ) obtained from the
means of the event shapes using the ECH method (top two panels) and MS
PT (bottom two panels). The dotted lines show the value of the coupling
obtained from N3LO calculations on Z-decays: αs(MZ) = 0.1190. The solid
lines show the unweighted average for the NLO and NNLO cases.

scheme. This ECH scale corresponds to absorbing radiative corrections into

the definition of the coupling.

An NLO ECH approximation to data is then given by 〈yn〉NLO=
Ay,n

2
RNLO,

using (2.2.3). At NNLO it is not possible to invert (2.1.15) analytically and

so this is done numerically using Mathematica 7.0 [53].

The NLO and NNLO ECH approximations are shown against the data in
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Observable Λ̃MS [MeV] αs(MZ) Λ̃MS [MeV] αs(MZ)

NLO NNLO

〈(1− T )2〉 130 ± 4 0.1079± 0.0005 438±22 0.1298± 0.0011

〈C2〉 123 ± 3 0.1071± 0.0004 466±30 0.1312± 0.0014

〈B2
W 〉 166 ± 5 0.1116± 0.0005 203± 7 0.1151± 0.0006

〈B2
T 〉 0.05± 0.02 0.0520± 0.0017 287±34 0.1213± 0.0023

〈Y 2
3 〉 32 ± 13 0.0905± 0.0041 38 ±16 0.0924± 0.0045

Table 3.3: Λ̃MS and αs(MZ) for the n = 2 moments using the ECH method.

Observable Λ̃MS [MeV] αs(MZ) χ2/dof

NLO

〈(1− T )2〉 1047± 30± 607 0.1515± 0.0008± 0.0172 23.6/32

〈C2〉 1048± 29± 609 0.1516± 0.0008± 0.0173 28.3/26

〈B2
W 〉 245 ± 9 ± 76 0.1181± 0.0007± 0.0055 22.5/32

〈B2
T 〉 775 ± 15± 490 0.1431± 0.0005± 0.0167 26.9/32

〈Y 2
3 〉 184 ± 29± 63 0.1132± 0.0026± 0.0056 45.5/17

NNLO

〈(1− T )2〉 467 ± 13± 147 0.1312± 0.0006± 0.0070 23.1/32

〈C2〉 469 ± 13± 147 0.1313± 0.0006± 0.0070 26.4/26

〈B2
W 〉 207 ± 8 ± 19 0.1154± 0.0006± 0.0015 22.5/32

〈B2
T 〉 370 ± 7 ± 110 0.1263± 0.0004± 0.0061 26.2/32

〈Y 2
3 〉 147 ± 23± 16 0.1099± 0.0024± 0.0017 46.9/17

Table 3.4: Λ̃MS and αs(MZ) for the n = 2 moments using MS PT. The first
error is experimental and the second is theoretical.

Figs 3.4-3.9. For comparison the MS PT predictions are also shown. These

are obtained by running the coupling from the fixed αs(MZ) over a range of

energies, using (2.1.21) and (2.1.22) with Λ̃MS = 254 MeV, at NLO or NNLO

as appropriate. The data are then approximated using (2.2.2).
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Figure 3.2: Scatter plots showing the values of αs(MZ) obtained from the
n = 2 moments of the event shapes using the ECH method (top two panels)
and MS PT (bottom two panels). The solid and dotted lines are as in Fig 3.1.

Observable Λ̃MS [MeV] αs(MZ) Λ̃MS [MeV] αs(MZ)

NLO NNLO

〈(1− T )3〉 90 ± 5 0.1027± 0.0007 647±37 0.1389± 0.0014

〈C3〉 73 ± 3 0.0999± 0.0006 344±57 0.1248± 0.0033

〈B3
W 〉 117± 6 0.1063± 0.0007 152± 7 0.1104± 0.0007

〈B3
T 〉 7.5 ± 0.5 0.0776± 0.0005 49 ± 8 0.0953± 0.0018

〈Y 3
3 〉 0.6 ± 1.4 0.0620± 0.0122 0.6 ±1.6 0.0624± 0.0131

Table 3.5: Λ̃MS and αs(MZ) for the n = 3 moments using the ECH method
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Observable Λ̃MS [MeV] αs(MZ) χ2/dof

NLO

〈(1− T )3〉 1249± 35± 780 0.1570± 0.0009± 0.0200 7.4/17

〈C3〉 1316± 33± 844 0.1587± 0.0008± 0.0210 9.4/17

〈B3
W 〉 177 ± 10± 56 0.1126± 0.0009± 0.0051 8.2/17

〈B3
T 〉 976 ± 21± 692 0.1495± 0.0006± 0.0205 9.1/17

〈Y 3
3 〉 163 ± 40± 55 0.1113± 0.0039± 0.0053 67.2/17

NNLO

〈(1− T )3〉 493 ± 14± 176 0.1324± 0.0006± 0.0081 7.2/17

〈C3〉 526 ± 14± 191 0.1340± 0.0006± 0.0084 10.0/17

〈B3
W 〉 151 ± 8 ± 13 0.1103± 0.0008± 0.0013 8.5/17

〈B3
T 〉 400 ± 9 ± 141 0.1279± 0.0005± 0.0074 9.7/17

〈Y 3
3 〉 135 ± 33± 13 0.1086± 0.0037± 0.0015 68.5/17

Table 3.6: Λ̃MS and αs(MZ) for the n = 3 moments using MS PT. The first
error is experimental and the second is theoretical.

It should be noted that when ECH is applied at NLO to the higher moments

of 1−T , C, and BT , some imaginary values are obtained as predictions of the

observables at (generally) low energies. In the case of 〈(1−T )2〉 and 〈C2〉 this

is only for energies of less than 15 GeV. For 〈(1− T )3〉 there are problematic

results up to energies of ∼ 25 GeV, and results for 〈C3〉 are well behaved above

∼ 35 GeV. BT is the worst behaved variable, with imaginary predictions up

to Q ∼ 60 GeV for the 2nd moment, and across the whole energy range for

n = 3. This behaviour is discussed further in Section 3.3.1.

3.3 Commentary on the results

The values of αs(MZ) extracted using the ECH method in Section 3.1 agree

well with those found by the DELPHI collaboration in Ref. [35]. They are well
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Figure 3.3: Scatter plots showing the values of αs(MZ) obtained from the
n = 3 moments of the event shapes using the ECH method (top two panels)
and MS PT (bottom two panels). The solid and dotted lines are as in Fig 3.1.

grouped, as can be seen in Fig. 3.1 (top left panel); the values for BW and

Y3 are slight outliers. The average for NLO ECH agrees very well with the

N3LO Z-decay calculation value [51]. The average for the MS perturbation

theory (MS PT) calculation at NLO (bottom left panel) sits further from the

N3LO calculation, and the scatter of the central values is larger than for ECH

at NLO. The numerical values of αs(MZ) are given in Tables 3.1 and 3.2.

We also demonstrated, in Section 3.2, how the ECH method can be inverted

to give an approximation to data. Figs. 3.4–3.9 show that the data for the
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Figure 3.4: ECH and MS PT approximations to data at NLO and NNLO for
〈(1− T )n〉, with n = 1, 2, 3 from top to bottom.
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Figure 3.5: ECH and MS PT approximations to data at NLO and NNLO for
〈Cn〉, with n = 1, 2, 3 from top to bottom.
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Figure 3.6: ECH and MS PT approximations to data at NLO and NNLO for
〈Bn

W 〉, with n = 1, 2, 3 from top to bottom.
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Figure 3.7: ECH and MS PT approximations to data at NLO and NNLO for
〈Bn

T 〉, with n = 1, 2, 3 from top to bottom.
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Figure 3.8: ECH and MS PT approximations to data at NLO and NNLO for
〈Y n

3 〉, with n = 1, 2, 3 from top to bottom.
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Figure 3.9: ECH and MS PT approximations to data at NLO and NNLO for
〈ρE〉.

means are best described by the NLO ECH curves, which lie closer to data

than both the NLO and NNLO MS PT curves. The exceptions to this are

〈BW 〉, for which all the perturbative techniques give a very similar description

of the data, and 〈Y3〉, where the MS PT at NLO curve describes the data best.

However the ECH method at NLO works less well for higher moments.

This is particularly the case for 〈(1 − T )n〉, 〈Cn〉 and 〈Bn
T 〉 with n = 2, 3, as

can be seen in the bottom two panels of Figs. 3.4, 3.5 and 3.7.1 MS PT also

does not do a good job at describing the higher moment data.

ECH at NNLO describes the data less well than ECH at NLO, as shown

in Section 3.2. The exception to this observation is 〈Y3〉, in Fig. 3.8, for which

the NNLO ECH curve lies closer to the data than that for NLO ECH. Also,

there is very little difference between any of the curves for 〈BW 〉. The NNLO

ECH curves tend to give a description of the means that is similar to or better

than the MS PT curves. For the higher moments ECH at NNLO is again often

1There are some energies where ECH at NLO predicts unphysical imaginary values for
these observables — this is discussed in the next subsection.
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very similar to the MS PT curves, although it sometimes fails to describe the

behaviour of the low energy data as well as MS PT does (e.g. 〈C2〉 in Fig. 3.5).

In the top right panel of Fig. 3.1, we see that the values of αs(MZ) are still

fairly well grouped when extracted using ECH at NNLO, with 〈Y3〉 remaining

an outlier, but that the average has moved away from the N3LO result. MS

PT at NNLO, shown in the bottom right panel, is seen to have improved

from the MS PT at NLO case: there are smaller errors due to a reduced scale

dependence at higher order, the grouping is improved and the average is closer

to the N3LO calculation. In the higher moment plots (Figs. 3.2 and 3.3) the

grouping in the ECH method gets worse whereas the improvement seen going

from NLO to NNLO in MS PT continues to hold.

These results confirm the success of NLO ECH in providing an accurate

description of event shape means, as was noted in the analysis of Ref. [35].

There is generally no need to add a non-perturbative power correction. How-

ever, for MS PT at NLO additional power corrections are often necessary;

these can be obtained using a dispersive model of power corrections [6,48,49].

In Section 3.6, we will discuss the results of fits using this dispersive model. A

new feature of these fits is that the ECH method is used in conjunction with

the dispersive power corrections.

Before exploring power correction models, we attempt to explain why the

ECH method at NNLO does not provide a good description of the data, even

for event shape means. We also try to motivate why NLO ECH does not

give an accurate description of the higher moments. We do this by studying

the relative sizes of terms in the asymptotic series expansion of ρ(R), and

examining the size of ΛR for the variables, as shown in the next section.
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3.3.1 Terms in the expansion of ρ(R) and the size of ΛR

values

In order to attempt to explain the results in Sections 3.1 and 3.2, we now look

at the expansions ρ(R). From Section 2.1 we have:

ρ(R) ≡ dR(Q)

d lnQ
= −bR2(1 + cR+ ρ2R2 + . . . ). (3.3.1)

Perturbative expansions in QCD and other quantum field theories are expected

to be asymptotic series, with an n! growth of coefficients in nth order pertur-

bation theory. This divergent large-order behaviour arises from renormalon

diagrams involving chains of vacuum polarisation bubbles in QED (for a re-

view see Ref. [54]). The large-order behaviour of the ρ(R) function for the

inclusive QCD Re+e− ratio has been investigated using renormalon techniques

in Ref. [55], and has been shown to be an asymptotic series.

A series that is asymptotic to a function, F (a), has the following property

(see Ref. [56] for a discussion of asymptotic series):

F (a) ≈
∞
∑

n=0

fna
n if

∣

∣

∣

∣

∣

F (a)−
N
∑

n=0

fna
n

∣

∣

∣

∣

∣

≤
∣

∣fN+1a
N+1
∣

∣ , (3.3.2)

where ≈ indicates that the series
∑

fna
n is asymptotic to the function F (a).

An important feature of (3.3.2) is that the error associated with terminating

the series at a particular point (after N terms) is bounded by the size of the

first term neglected (the (N +1)th term in this case). To get the best approxi-

mation to F (a) we therefore want to terminate the series just before the term

of smallest absolute magnitude. This is a very important property of asymp-

totic series; although they are divergent, with zero radius of convergence, one

can still obtain accurate approximations by truncating them after a suitable
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Observable n cR
(NLO)

ρ2R2

(NNLO)
Order at which series
should be terminated

〈(1− T )n〉 1 0.078 −0.049 NLO

2 0.105 −0.323 LO

3 0.119 −0.575 LO

〈Cn〉 1 0.076 −0.030 NLO

2 0.106 −0.376 LO

3 0.123 −0.912 LO

〈Bn
W 〉 1 0.045 0.004 NLO

2 0.057 −0.031 NLO

3 0.055 −0.039 NLO

〈Bn
T 〉 1 0.066 −0.060 NLO

2 0.111 −1.803 LO

3 0.140 −5.715 LO

〈Y n
3 〉 1 0.058 −0.042 NLO

2 0.060 −0.049 NLO

3 0.060 −0.053 NLO

〈ρnE〉 1 0.059 −0.015 NLO

Table 3.7: Size of terms in ρ(R)
−bR2

number of terms.

In Table 3.7 we show the relative sizes of the known terms in ρ(R)
−bR2 for the

event shape moments: cR, the NLO term, and ρ2R2, the NNLO term. These

numbers are calculated using data from the MZ peak. The leading order (LO)

term in ρ(R)
−bR2 , 1, is universal. The last column indicates the order at which the

series should be terminated based on the relative magnitudes of the currently

known terms. Note that, where ρ2R2 is the smallest term, it is not possible

to say definitively whether the series should be terminated at NLO or NNLO

without knowing the size of the N3LO term.

59



Applying the ECH method to data

This information can help explain the results discussed in Section 3.3. For

example, the expansions for the higher moments of 1−T , C and BT all suggest

that it is best to terminate the series at leading order. The energy dependence

of R(Q) is controlled by the RS invariant dimensionful constant ΛR of (2.1.18)

which involves the NLO coefficient rMS
1 (µR = Q). This implies that LO trun-

cation is not physically meaningful. Therefore using perturbation theory with

this type of expansion, where the observable itself is used as the expansion

parameter, is inappropriate for these event shape moments. As discussed pre-

viously, it can be seen that applying the ECH method to the higher moments

of these observables does not work well. However, in some instances (e.g.

〈(1 − T )2〉 in Fig. 3.4) the ECH method at NLO appears to be converging

with the data at high energies. This implies that we are examining data below

the perturbative regime of the method for these variables, but that if we go

to sufficiently high energies the ECH method may be found to describe the

data again. As Q increases R(Q) decreases; for a suitably high energy the

NLO truncation will therefore represent the optimal number of terms, and

will successfully describe the data. Of course this is of theoretical rather than

practical interest, since we do not have data at indefinitely large energies.

The expansions for all other variables in Table 3.7 suggest that it is prefer-

able to terminate at NLO. As discussed in Section 3.3, it appears that the

ECH method generally works better at NLO than at NNLO, although a firm

conclusion cannot be made in these cases since we have no information on the

size of the N3LO term. We can also see that the higher moments of BW and

Y3 do not display the same undesirable behaviour as higher moments of the

other variables: see the bottom two panels of Figs. 3.6 and 3.8.

We also examine the size of ΛR for each variable. The values of ΛR, shown
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in Table 3.8, are calculated from a fixed value of αs(MZ) = 0.1190 2 and

(2.1.18), which when inverted gives ΛR = e−r/b Λ̃MS. From (2.1.11) we see that

R(Q) has a Landau pole when Q = ΛR, and will formally diverge there [2].

From Table 3.8, the ΛR values for the n = 1 moments are a few GeV. Therefore

the data we are using are at energies considerably higher than the Landau pole

and the ECH method should work well. For the higher moments, the values of

ΛR increase. We are therefore analysing data in a region of Q which contains

the Landau pole, and the perturbative ECH method will not function properly

until we have data at much larger energies. This is the same conclusion that

we reached by studying the magnitudes of terms in the ρ(R) series. The 〈Bn
W 〉

and 〈Y n
3 〉 moments for n = 2, 3 are an exception, with small values of ΛR.

As stated above, the ECH method performs better for these higher moments

compared with the other observables.

These values of ΛR also explain the unphysical imaginary predictions seen

at some energies for the higher moments of 1−T , C and BT in Section 3.2. In

ECH at NLO imaginary predictions are produced for energies that are lower

than the Landau pole — for example, at Q < 15 GeV for 〈(1 − T )2〉, where

ΛR is ∼ 15 GeV, and across the whole energy region studied for 〈B3
T 〉, where

ΛR is almost 400 GeV. This is because Q/ΛR is less than 1, and therefore the

argument of the Lambert-W function in (3.2.1) is less than −1/e. Below this

value of z, W−1(z) gives imaginary values. This behaviour is not seen in ECH

at NNLO, although this method still does not give good predictions in the

region outside of the perturbative regime.

2or Λ̃MS = 254 MeV,
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n 〈(1− T )n〉 〈Cn〉 〈Bn
W 〉 〈Bn

T 〉 〈Y n
3 〉 〈ρnE〉

1 3 3 0.1 2 1 1

2 14 15 1.1 58 2 -

3 27 34 1.2 384 1 -

Table 3.8: Values of ΛR in GeV

3.4 Padé approximants

In this section we apply the ECH method in conjunction with Padé approx-

imant methods. We start by introducing Padé approximants and describing

how they can be used, and then use the methods together to give a prediction

of event shape moment data in Section 3.4.2.

A Padé Approximant consists of a ratio of two polynomials [29, 57–60]. A

power series, S:

S = S0 + S1x+ S2x
2 + . . .+ SN+MxN+M + . . . (3.4.1)

has a Padé approximant defined as:

[N/M ] =
a0 + a1x+ . . .+ aNx

N

1 + b1x+ . . .+ bMxM
, (3.4.2)

where the coefficients an and bn are chosen such that [N/M ] approximates the

series S up to a term of order xN+M+1:

[N/M ] = S +O(xN+M+1). (3.4.3)

The Padé approximant (PA) can either be used to estimate the coefficient of

the next term in the power series, SN+M+1, or as an estimate of the total sum
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of S. We describe this latter case as using the Padé Sum (PS).

We briefly note two properties of PAs:

1. The [N / N] diagonal Padé approximants will converge if the series they

represent is a Stieltjes series — for a proof and more details of Stieltjes

series see Ref. [56].

2. Diagonal PAs to R(Q) are RS invariant in the ’t Hooft scheme

c2 = c3 = . . . = 0 and with the coefficient c also set to zero [11].

3.4.1 Using Padé Approximants to estimate ρ3

In this section we show how to get an estimate for ρ3 in (3.3.1). We start by

rewriting the expression for ρ(R) in the form of S in (3.4.1):

−ρ(R)

bR2
= 1 + cR+ ρ2R2 + ρ3R3 + . . . . (3.4.4)

We know the coefficients in the series up to ρ2 and we want to use the PA

methods outlined above to get an estimate of ρ3. Comparing with (3.4.1) we

see that N + M = 2. We can therefore construct two PAs: [0/2] and [1/1].

The PA [2/0] will be equivalent to −ρ(R)
bR2 and will not give any additional

information. The [0/2] PA is:

[0/2] =
a0

1 + b1R+ b2R2
. (3.4.5)

When we set this equal to the right hand side of (3.4.4) and multiply up by

1 + b1R+ b2R2 we get:

a0 = 1+ (b1 + c)R+ (b2 + ρ2 + b1c)R2 + (b1ρ2 + cb2 + ρ3)R3 +O(R4). (3.4.6)
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Comparing coefficients we find that a0 = 1, b1 = −c and b2 = c2 − ρ2, which

means that the full expression for the PA is:

[0/2] =
1

1− cR+ (c2 − ρ2)R2
. (3.4.7)

We also see from the R3 term in (3.4.6) that ρ3 = 2cρ2 − c3.

Constructing the [1/1] PA and proceeding in a similar fashion we find that:

[1/1] =
a0 + a1R
1 + b1R

=
1 +

(

c2−ρ2
c

)

R
1− ρ2

c
R (3.4.8)

and that ρ3 = ρ22/c.

We now have two estimates of ρ3 from the two PAs [0/2] and [1/1]. The

ρ3R3 terms as calculated from the PA estimations of ρ3 are shown in Table 3.9.

The [1/1] PA displays better behaviour than [0/2] in the sense that for those

variables where ρ2R2 > cR it predicts ρ3R3 > ρ2R2. The [0/2] PA, on the

other hand, predicts that the ρ3R3 term gets smaller again, which is not be-

haviour that would be expected from an asymptotic series. For this reason we

shall concentrate on the [1/1] PA from now on.

3.4.2 Using the Padé Sum

In this subsection we use the [1/1] PA to approximate the entire series −ρ/bR2.

Instead of using the PA to predict the value of one higher order coefficient,

ρ3, we use it as a Padé Sum (PS) to provide an approximation to the re-

summed quantity. We extend the analysis performed in Section 3.2 to us-

ing the ECH method with the [1/1] PS for ρ(R), as given in (3.4.8). As

before αs(MZ) is fixed at the result extracted from N3LO calculations on

Z-decays [51], αs(MZ) = 0.1190 ± 0.0026, corresponding to Λ̃MS = 254 MeV.
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Observable n cR
(NLO)

ρ2R2

(NNLO)
ρ3R3

(N3LO
approx.

from [0/2]
PA)

ρ3R3

(N3LO
approx.

from [1/1]
PA)

〈(1− T )n〉 1 0.078 −0.049 −0.008 0.031

2 0.105 −0.323 −0.069 0.992

3 0.119 −0.575 −0.139 2.766

〈Cn〉 1 0.076 −0.030 −0.005 0.012

2 0.106 −0.376 −0.081 1.338

3 0.123 −0.912 −0.226 6.769

〈Bn

W
〉 1 0.045 0.004 0.0003 0.0003

2 0.057 −0.031 −0.004 0.017

3 0.055 −0.039 −0.004 0.027

〈Bn

T
〉 1 0.066 −0.060 −0.008 0.056

2 0.111 −1.803 −0.403 29.182

3 0.140 −5.715 −1.599 233.842

〈Y n
3 〉 1 0.058 −0.042 −0.005 0.030

2 0.060 −0.049 −0.006 0.039

3 0.060 −0.053 −0.007 0.048

〈ρn
E
〉 1 0.059 −0.015 −0.002 0.004

Table 3.9: Size of terms in ρ(R)
−bR2 , including estimates of ρ3R3 obtained from

[0/2] and [1/1] PAs.

Again, we want to invert (2.1.15) to get an approximation to the data. To do

this we need to find a new expression for G(R) which replaces ρ(R) with the
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[1/1] PS:

G(R) =

∫ R(Q)

0

dx

[

b

ρ(x)
+

1

x2(1 + cx)

]

=

∫ R(Q)

0

dx



− 1− ρ2
c
x

x2
(

1 +
(

c2−ρ2
c

)

x
) +

1

x2(1 + cx)





=

∫ R(Q)

0

dx
ρ2

(1 + cx)
(

1 +
(

c2−ρ2
c

)

x
)

= c ln

[

c (1 + cR)

c+ (c 2 − ρ2)R

]

. (3.4.9)

Putting this together with the expression for F(R) gives:

b ln
Q

ΛR

=
1

R + c ln

[

cR
1 + cR

]

+ c ln

[

c (1 + cR)

c+ (c 2 − ρ2)R

]

=
1

R + c ln

[

cR
1 + (c− ρ2/c)R

]

. (3.4.10)

This expression is inverted numerically to give R, and an approximation to

data is obtained using 〈yn〉= Ay,n

2
R, from (2.2.3).

It is also possible to apply Padé Approximant methods to standard MS

perturbation theory. We can approximate the series in (2.2.2), truncated at

NNLO and with µR set equal to Q:

〈yn〉 =
(

αs(Q)

2π

)

Ay,n +

(

αs(Q)

2π

)2

By,n +

(

αs(Q)

2π

)3

Cy,n, (3.4.11)

with its [1/1] PS:

〈yn〉 =
(

αs(Q)

2π

)

[1/1] +O(αs(Q)4)

=

(

αs(Q)

2π

) Ay,n +
1

By,n

(

B2

y,n − Cy,nAy,n

)

αs(Q)
2π

1− Cy,n

By,n

αs(Q)
2π

+O(αs(Q)4). (3.4.12)
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(3.4.12) gives a second PS approximation to the event shape data. We

plot it, alongside the PS ECH approximation and the NLO ECH and NNLO

MS predictions to data, in Figs. 3.10-3.15. The NLO ECH and NNLO MS

predictions were chosen as they were found in Section 3.2 and Ref. [1] to be

the best approximations to data for the respective methods.

From Figs. 3.10-3.15, we can see that ECH at NLO still generally gives the

best approximation to the data for the means (with the exceptions noted in

Section 3.3). For the higher moments both ECH and MS give good predictions

when combined with the PS, often substantially better than when using ECH

or MS alone. MS with the PS generally slightly outperforms the ECH method

with the PS. This is especially the case for the higher moments of 〈BT 〉.

As in Section 3.2, for some higher moments there are imaginary predictions

at certain energies. However, the situation is vastly improved when using the

PS. For both 1 − T and C the higher moment n = 2, 3 are free of unphysical

imaginary predictions across the energy range studied. 〈B2
T 〉 only has imagi-

nary values at the very lowest energies of Q ∼ 10 GeV, and the 3rd moment of

BT gives real predictions above ∼ 60 GeV. Equation (3.4.10) has a very similar

structure to the fundamental equation for ECH at NLO which is why these

imaginary values can still occur. Using ECH with the PS appears to increase

the region where perturbation theory can be applied successfully.

When a PS is added to standard MS PT the scale uncertainty, which is

calculated by varying µR between 0.5Q and 2Q, is found to be considerably

smaller than that at NNLO. To illustrate this we plot MS PT predictions, along

with their scale variations, at NLO, NNLO and with a PS for 〈(1 − T )n〉 in

Fig. 3.16. This behaviour suggests that the Padé Sum is estimating the missing

higher orders effectively, thus removing most of the residual RS dependence.
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Figure 3.10: ECH at NLO and with PS and MS PT approximation to data at
NNLO and with PS for 〈(1− T )n〉, with n = 1, 2, 3 from top to bottom.
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Figure 3.11: ECH at NLO and with PS and MS PT approximation to data at
NNLO and with PS for 〈Cn〉, with n = 1, 2, 3 from top to bottom.
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Figure 3.12: ECH at NLO and with PS and MS PT approximation to data at
NNLO and with PS for 〈Bn

W 〉, with n = 1, 2, 3 from top to bottom.
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Figure 3.13: ECH at NLO and with PS and MS PT approximation to data at
NNLO and with PS for 〈Bn

T 〉, with n = 1, 2, 3 from top to bottom.
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Figure 3.14: ECH at NLO and with PS and MS PT approximation to data at
NNLO and with PS for 〈Y n

3 〉, with n = 1, 2, 3 from top to bottom.
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Figure 3.15: ECH at NLO and with PS and MS PT approximations to data
at NNLO and with PS for 〈ρE〉.
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Figure 3.16: MS PT approximations to data at NLO, NNLO and with PS,
along with the scale variation in each case, for 〈(1−T )n〉, with n = 1, 2, 3 from
top to bottom.
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3.5 Non-perturbative power corrections

In this section we use the ECH and standard MS methods in conjunction

with two different non-perturbative power correction models. The first is a

dispersive model, which is outlined in Subsection 3.5.1, and the second is a

simple power correction model, described in Subsection 3.5.2.

3.5.1 Dispersive power corrections

In this subsection we use the ECH method in combination with a dispersive

model for power corrections [6, 48, 49]. Hadronisation corrections for event

shape moments are expected to be additive [6, 34]:

〈yn〉 = 〈yn〉pt + 〈yn〉np, (3.5.1)

where 〈yn〉pt is the perturbative part of the event shape moment and 〈yn〉np is

the non-perturbative part.

The dispersive model for power corrections accounts for non-perturbative

behaviour at low energies by replacing the strong coupling constant with an

effective coupling, αeff, below an IR cutoff scale, µI. This is done in such a way

that the integral of the effective coupling up to µI is finite:

1

µI

∫ µI

0

dQαeff(Q
2) = α0(µI). (3.5.2)

The effective coupling is related to the strong coupling through a dispersion

relation [61,62]:

αs(k) = k2

∫ ∞

0

dm2 αeff(m
2)

(m2 + k2)2
. (3.5.3)

Introducing an effective coupling in this way leads to a shift in the distributions
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of the event shapes [6]:

dσ

dy
(y) =

dσpt

dy
(y − ayP ) , (3.5.4)

where the ay are numerical factors that depend on the event shape in ques-

tion [6]. Their values are given in Table 3.10. This in turn leads to the following

contribution to the event shape moments [6]:

〈yn〉 =
∫ ymax−ayP

−ayP

dy (y + ayP )n
1

σhad

dσpt

dy
(y)

≈
∫ ymax

0

dy (y + ayP )n
1

σhad

dσpt

dy
(y) , (3.5.5)

and for the event shape means the non-perturbative contribution is therefore

of the form:

〈y〉np = ayP. (3.5.6)

Note that since aY 3
= 0 there are no dispersive power corrections for 〈Y n

3 〉.

The form of P at NNLO [6,63] is:

P =
4CF

π2
M
(

α0 −
[

αs(µR) +
b

π

(

1 + ln
µR

µI

+
K

2b

)

α2
s(µR)

+

(

4bc

(

1 + ln
µR

µI

+
L

4bc

)

+ 8b2
(

1 + ln
µR

µI

+
K

2b

)

+ 4b2 ln
µR

µI

(

ln
µR

µI

+
K

b

))

α3
s(µR)

4π2

])

µI

Q
, (3.5.7)
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where CF = N2−1
2N

(with N = 3 being the number of colours), and:

K =

(

67

18
− π2

6

)

CA − 5

9
NF ,

L = C2
A

(

245

24
− 67

9

π2

6
+

11

6
ζ3 +

11

5

(π2

6

)2
)

+ CFNF

(

−55

24
+ 2ζ3

)

+ CANF

(

−209

108
+

10

9

π2

6
− 7

3
ζ3

)

− 1

27
N2

F ,

where CA = N and NF is the number of quark flavours. The first term in P

is the contribution to the low energy region from the effective coupling, and is

proportional to 1/Q. The terms in the square brackets in P subtract off the

perturbative contribution in the region below µI to avoid double counting [63].

M is the Milan factor, a two-loop enhancement factor [64]. M is universal for

observables with this type of 1/Q power correction. Given the energy range of

the data used in this thesis, the number of active quark flavours is 5. The form

of P at NLO (P (NLO)) is the same as P in (3.5.7) except that the α3
s term in

the square brackets is omitted [64].

For BW and BT there are additional corrections to P , due to quark recoil

complications: there is a small mismatch between the quark axis and the

thrust axis, caused by perturbative gluon radiation, that these observables

are sensitive to [61]. At NLO this results in additional contributions to the

non-perturbative parts of BW and BT of [61]:

P
(NLO)
BW

= P (NLO)





π
√

8CF α̂s

(

1 + Kα̂s

2π

)

+
3

4
− b

6CF

+ η0



 , (3.5.8)

P
(NLO)
BT

= P (NLO)





π
√

4CF α̂s

(

1 + Kα̂s

2π

)

+
3

4
− b

3CF

+ η0



 , (3.5.9)

where α̂s(µR) ≡ αs(e
−3/4µR) and η0 = −0.6137. The corrections to P for BW
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and BT at NNLO have not been explicitly calculated yet but the potentially

dominant terms are approximated by [6]:

PBW
= P









π
√

8CF α̂s

(

1 + Kα̂s

2π
+ Lα̂2

s

4π2

)

+
3

4
− b

6CF

+ η0









, (3.5.10)

PBT
= P









π
√

4CF α̂s

(

1 + Kα̂s

2π
+ Lα̂2

s

4π2

)

+
3

4
− b

3CF

+ η0









. (3.5.11)

In this section we use the forms in (3.5.1) and (3.5.6) to predict the form of

the data and then perform simultaneous fits for αs(MZ) and α0. The parameter

α0 is expected to be universal. For 〈y〉pt we use the ECH prediction at NLO and

NNLO (see Section 3.2). In order to facilitate inversion of (2.1.15) at NNLO

we use Padé Approximant (PA) methods [29, 57–60], which were described in

Section 3.4. We do this by writing (2.1.5) at NNLO as x2 multiplied by a [1/1]

PA:

ρ(x) = −bx2

(

1 + (c− ρ2
c
)x

1− (ρ2
c
)x

+O(x3)

)

. (3.5.12)

We can then integrate and invert analytically to get:

RNNLO(Q) =
−1

c
[

1− ρ2
c2

+W
(

− exp
[

−
(

1− ρ2
c2

+ b
c
ln Q

ΛR

)])] . (3.5.13)

In the expressions for the power correction term, µR is set to µECH = e−r/b Q

(see the discussion below (3.2.1)) when the ECH perturbative part is used.

The IR cutoff should be chosen such that ΛQCD ≪ µI ≪ Q. We therefore

take µI to be 2 GeV. Since the fits for αs and α0 have a dependency on the

choice of cutoff, we vary µI between 1 and 3 GeV to assess the extent of the

dependency. The variation in the fits is used to assign a theoretical uncertainty.
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Event shape 1− T C BW BT Y3 ρE

ay 2 3π 1/2 1 0 1

Table 3.10: The ay coefficients for different event shapes

Central value Upper value Lower value

µI [GeV] 2 3 1

M 1.49 1.788 (+20 %) 1.192 (−20 %)

µR [GeV] Q 2Q Q/2

Table 3.11: Variation of µI, M and µR

This is in keeping with the method used in Ref. [6]. The Milan factor is known

at two-loop order to be M = 1.49 ± 20%, so M is also varied around this

central value. The central, upper and lower values of µI and M are shown

in Table 3.11. When the effect of the upward and downward variation result

in uneven differences the larger of the two is taken to contribute towards the

theoretical uncertainty. The individual differences from the variation of µI and

M are added together in quadrature to give the theoretical uncertainty.

Since it was found in the previous sections that generally higher moments

work less well than the n = 1 moments, we confine ourselves to analysing the

means in this part of the thesis. The results of the dual fits for means at NLO

and NNLO are shown in Table 3.12. The first uncertainty is the combined

experimental and perturbative coefficient uncertainty, and the second is the

theoretical uncertainty (estimated by varying µI and M). These results are

plotted in Fig. 3.17. We also perform fits using the MS PT prediction at NLO

and NNLO. These results are shown in Table 3.13 and Fig. 3.18. In these

cases µR is varied (around a central value of µR = Q), as well as µI and M, to

find the theoretical uncertainty (see Table 3.11).
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Observable αs(MZ) α0 χ2/dof

NLO

〈1− T 〉 0.1144± 0.0007± 0.0028 0.436± 0.011± 0.006 52.6/46

〈C〉 0.1133± 0.0006± 0.0031 0.423± 0.006± 0.010 58.5/40

〈BW 〉 0.1192± 0.0006± 0.0014 0.307± 0.014± 0.011 41.4/46

〈BT 〉 0.1188± 0.0010± 0.0038 0.312± 0.027± 0.053 59.8/46

〈ρE〉 0.1163± 0.0055± 0.0010 0.342± 0.136± 0.012 11.6/13

NNLO

〈1− T 〉 0.1142± 0.0006± 0.0017 0.584± 0.010± 0.027 58.3/46

〈C〉 0.1130± 0.0005± 0.0019 0.539± 0.008± 0.026 67.0/40

〈BW 〉 0.1184± 0.0007± 0.0014 0.392± 0.014± 0.013 43.1/46

〈BT 〉 0.1184± 0.0008± 0.0028 0.537± 0.020± 0.008 67.2/46

〈ρE〉 0.1168± 0.0054± 0.0010 0.449± 0.114± 0.017 11.6/13

Table 3.12: Fits for αs(MZ) and α0 using ECH and dispersive power corrections
at NLO and NNLO.

In analogy to Section 3.2, we also perform fits for α0 while keeping αs(MZ)

fixed at 0.1190. This is done for both ECH and standard MS PT at NLO and

NNLO, and the results are shown in Tables 3.14–3.15 and Figs. 3.19–3.20.

3.5.2 Simple power corrections

For comparison we now use a second model for non-perturbative corrections:

a simple power correction [35,50]. For the ECH method this is done by adding

a c1/Q power correction (with c1 a constant) to the perturbative expansion of

R given in (2.1.4). This results in an altered form for the ρ(R) function as

follows:

ρ(R) = −bR2(1 + cR+ ρ2R2 + . . . ) + κ0R−c/be−1/(bR). (3.5.14)
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Observable αs(MZ) α0 χ2/dof

NLO

〈1− T 〉 0.1302± 0.0010± 0.0088 0.382± 0.012± 0.012 49.7/46

〈C〉 0.1274± 0.0008± 0.0085 0.364± 0.007± 0.013 48.5/40

〈BW 〉 0.1191± 0.0007± 0.0021 0.346± 0.015± 0.126 42.7/46

〈BT 〉 0.1252± 0.0008± 0.0060 0.312± 0.013± 0.005 64.3/46

〈ρE〉 0.1200± 0.0060± 0.0042 0.323± 0.138± 0.018 11.5/13

NNLO

〈1− T 〉 0.1216± 0.0009± 0.0038 0.427± 0.011± 0.020 49.5/46

〈C〉 0.1197± 0.0007± 0.0039 0.412± 0.007± 0.022 47.9/40

〈BW 〉 0.1179± 0.0007± 0.0017 0.429± 0.015± 0.045 44.3/46

〈BT 〉 0.1212± 0.0008± 0.0029 0.385± 0.012± 0.038 65.1/46

〈ρE〉 0.1178± 0.0056± 0.0014 0.389± 0.127± 0.033 11.6/13

Table 3.13: Fits for αs(MZ) and α0 using MS PT and dispersive power correc-
tions at NLO and NNLO.

Observable α0

NLO χ2 / dof NNLO χ2/dof

〈1− T 〉 0.377± 0.007± 0.003 101 / 47 0.557± 0.013± 0.019 166/47

〈C〉 0.375± 0.007± 0.004 209 / 41 0.524± 0.013± 0.013 373/41

〈BW 〉 0.318± 0.005± 0.028 42.0 / 47 0.382± 0.014± 0.025 43.9/47

〈BT 〉 0.314± 0.003± 0.007 59.8 / 47 0.526± 0.017± 0.036 67.9/47

〈ρE〉 0.282± 0.010± 0.008 11.8 / 14 0.404± 0.015± 0.017 11.8/14

Table 3.14: Single fits for α0, with αs(MZ) = 0.1190 held fixed, for ECH and
dispersive power corrections at NLO and NNLO.

This modified form of ρ(R) is then substituted into (2.1.11), with the per-

turbative part truncated at NLO or NNLO, and a fit to data is performed to

extract ΛR (and hence αs(MZ)) and κ0.

A corresponding power correction can be added to an NLO or NNLO MS
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Figure 3.17: Scatter plots of αs(MZ) and α0 from fits of ECH and dispersive
power corrections for the means at NLO (top two panels) and NNLO (bottom
two panels). The dotted lines on the αs(MZ) plots show the value of the cou-
pling obtained from N3LO calculations. The solid lines show the unweighted
averages.

perturbative model using:

〈yn〉 =
(

αs(µR)

2π

)

Ay,n +

(

αs(µR)

2π

)2

By,n +

(

αs(µR)

2π

)3

Cy,n + . . .

− κ0e
r/b

(

b

2

) c
b ΛMS

Q
. (3.5.15)
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Figure 3.18: Scatter plots of αs(MZ) and α0 from fits of MS PT and dispersive
power corrections at NLO (top two panels) and NNLO (bottom two panels).
The solid and dotted lines are as in Fig. 3.17.

In this model it is not expected that the fits will yield a universal value of

κ0. Each particular observable will have a different value of κ0, unlike the

dispersive model where the power correction parameter α0 is expected to be

universal. The results are shown in Tables 3.16–3.17 and Figs. 3.21–3.22.
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Observable α0

NLO χ2 / dof NNLO χ2/dof

〈1− T 〉 0.505± 0.010± 0.088 186 / 47 0.457± 0.006± 0.043 59.9/47

〈C〉 0.433± 0.007± 0.063 199 / 41 0.418± 0.005± 0.028 49.6/41

〈BW 〉 0.354± 0.005± 0.154 43.0 / 47 0.409± 0.016± 0.041 46.8/47

〈BT 〉 0.413± 0.004± 0.071 168 / 47 0.419± 0.010± 0.039 79.9/47

〈ρE〉 0.352± 0.010± 0.089 11.6 / 14 0.363± 0.012± 0.025 11.6/14

Table 3.15: Single fits for α0, with αs(MZ) = 0.1190 held fixed, for MS PT
and dispersive power corrections at NLO and NNLO.

Observable αs(MZ) κ0 χ2/dof

NLO

〈1− T 〉 0.1230± 0.0008 −0.039± 0.008 51.3/46

〈C〉 0.1230± 0.0006 −0.036± 0.006 43.7/40

〈BW 〉 0.1225± 0.0005 0.084± 0.038 34.2/46

〈BT 〉 0.1225± 0.0004 −0.054± 0.008 60.7/46

〈Y3〉 0.1222± 0.0021 −0.237± 0.045 31.2/31

〈ρE〉 0.1184± 0.0052 0.047± 0.181 11.4/13

NNLO

〈1− T 〉 0.1253± 0.0009 −0.016± 0.009 50.7/46

〈C〉 0.1247± 0.0008 −0.022± 0.008 43.7/40

〈BW 〉 0.1224± 0.0006 0.077± 0.038 34.3/46

〈BT 〉 0.1269± 0.0010 −0.020± 0.010 61.5/46

〈Y3〉 0.1261± 0.0024 −0.204± 0.045 31.2/31

〈ρE〉 0.1196± 0.0053 0.063± 0.179 11.4/13

Table 3.16: Fits for αs(MZ) and κ0 using ECH and simple power corrections
at NLO and NNLO.

3.6 Commentary on power correction fits

In Section 3.5 we examine the effect of adding a dispersive power correction to

the perturbative model. In Fig. 3.17 it is seen that the values of αs(MZ) and
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Figure 3.19: Scatter plots for single α0 fits for ECH and dispersive power
corrections at NLO and NNLO.
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Figure 3.20: Scatter plots for single α0 fits for MS PT and dispersive power
corrections at NLO and NNLO. The solid lines are unweighted averages.

α0 extracted from 〈BW 〉, 〈BT 〉 and 〈ρE〉 using ECH plus a dispersive power

correction at NLO agree well with each other. The results for 〈1 − T 〉 and

〈C〉 are somewhat discrepant. The values of αs(MZ) for the other three event

shapes are not considerably changed from those extracted using pure ECH.

This implies that only very small power corrections are required for ECH at
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Observable αs(MZ) κ0 χ2/dof

NLO

〈1− T 〉 0.1374± 0.0013± 0.0085 −0.006± 0.008± 0.012 51.5/46

〈C〉 0.1357± 0.0009± 0.0079 −0.026± 0.028± 0.057 44.7/40

〈BW 〉 0.1228± 0.0005± 0.0035 −0.286± 0.119± 0.314 34.6/46

〈BT 〉 0.1305± 0.0006± 0.0063 0.042± 0.016± 0.051 61.5/46

〈Y3〉 0.1260± 0.0012± 0.0054 0.060± 0.008± 0.022 31.6/31

〈ρE〉 0.1218± 0.0062± 0.0041 −0.097± 0.276± 0.016 11.4/13

NNLO

〈1− T 〉 0.1279± 0.0011± 0.0025 0.002± 0.012± 0.020 51.1/46

〈C〉 0.1270± 0.0008± 0.0023 0.018± 0.042± 0.088 44.1/40

〈BW 〉 0.1223± 0.0007± 0.0003 −0.238± 0.129± 0.122 34.7/46

〈BT 〉 0.1269± 0.0007± 0.0013 0.075± 0.020± 0.033 61.1/46

〈Y3〉 0.1235± 0.0012± 0.0011 0.074± 0.009± 0.010 31.6/31

〈ρE〉 0.1199± 0.0060± 0.0008 −0.089± 0.307± 0.016 11.4/13

Table 3.17: Fits for αs(MZ) and κ0 using MS PT and simple power corrections
at NLO and NNLO.

NLO for these observables. At NNLO the extracted values of αs(MZ) do not

change substantially, but the fitted values of α0 become larger. The fits for

〈1− T 〉 and 〈C〉 are still not consistent with those from the other observables.

The reduced χ2 values3 for the fits generally get further from 1 when going

from NLO to NNLO, indicating that the quality of the fits decreases.

For NLO MS PT plus a dispersive power correction, shown in Fig. 3.18,

the error bars are generally larger than for the corresponding ECH fits. This

is because it is necessary to vary µR, in addition to the Milan factor and the

IR cutoff scale, when calculating the theoretical uncertainties. At NNLO these

uncertainties get smaller, as expected, and furthermore the agreement between

values of αs(MZ) and α0 improves. There is no substantial change in the χ2

values between the NLO and NNLO fits for MS PT. The description of the

3Reduced χ2 values are χ2 divided by the number of degrees of freedom.
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Figure 3.21: Scatter plots of αs(MZ) and κ0 from fits of ECH and simple power
corrections for the means at NLO (top two panels) and NNLO (bottom two
panels). The dotted lines on the αs(MZ) plots show the value of the coupling
obtained from N3LO calculations. The solid lines are unweighted averages.

data by MS PT plus dispersive power corrections is generally better than the

corresponding ECH fits, as can be seen from the χ2 values in Tables 3.12 and

3.13.

In Fig. 3.19, when αs(MZ) is held fixed and only α0 fitted for, good agree-

ment is found for ECH at NLO. There is now less discrepancy between 〈1−T 〉

and 〈C〉 and the other three observables. However the χ2 values for these two
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Figure 3.22: Scatter plots of αs(MZ) and κ0 from fits of MS PT and simple
power corrections for the means at NLO (top two panels) and NNLO (bottom
two panels). The dotted and solid lines are as in Fig. 3.21.

fits are very large compared with the number of degrees of freedom, indicating

a poor quality of fit. At NNLO the results are more scattered and the values

of α0 required are larger. Again, the reduced χ2 values for the NNLO fits are

generally worse than those for the NLO fits.

For NLO MS PT, in Fig. 3.20, there is good agreement in α0 but the error

bars are large. As before the uncertainties decrease at NNLO, as do the reduced
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χ2 values. From the χ2 values in Tables 3.14 and 3.15 we see that at NLO the

quality of the fits using the ECH method is comparable with or better than

those using MS PT. At NNLO MS PT describes the data for 〈1− T 〉 and 〈C〉

much better than the ECH method.

In Fig. 3.21 in Section 3.5.2, when the simple power correction model is

added to ECH at NLO, very good agreement is found between the extracted

values of αs(MZ). The fits for κ0 are generally close to zero, again showing that

NLO ECH does not require large power corrections; this is an observation that

was also made in the DELPHI analysis [35]. Slight differences in our fit results

from the DELPHI collaboration’s paper are most probably due to differences

in the data analysed and the fitting programs used. Compared with the results

for pure ECH from Fig. 3.1 we see that adding a simple power correction brings

the values of αs(MZ) extracted from the outliers 〈BW 〉 and 〈Y3〉 into better

agreement, but also increases the unweighted average of αs(MZ). At NNLO

the grouping is less good and the average of αs(MZ) is increased even further.

The fitted values of κ0 when using MS PT, shown in Fig. 3.22, are also

generally close to zero. The corresponding values of αs(MZ) have therefore

not altered substantially from when pure MS PT (see Fig. 3.1) is used. The

values of χ2 for the ECH method and MS PT are very similar, implying that

the descriptions of each observable given by the two methods are comparable.
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Chapter 4

The Principle of Minimal

Sensitivity

We now turn our attention to another method that attempts to deal with

unphysical RS dependence: the Principle of Minimal Sensitivity (PMS) [16].

This method tries to find values of {τ, c2, . . .}1 where the variable being studied

is locally insensitive (or minimally sensitive) to the renormalisation scheme.

The minimal sensitivity of this point replicates the behaviour at all orders, as

a complete description of a physical observable should be RS-independent. We

describe the PMS method in Section 4.1, and apply it to give predictions of

e+e− event shape moment data in Section 4.2. The results are compared with

those obtained from the ECH method and data at MZ . In the next chapter

we go on to apply the Principle of Minimal Sensitivity numerically to hadronic

observables.

1These parameters label the renormalisation scheme — see Section 1.3.



The Principle of Minimal Sensitivity

4.1 The PMS method

In this section we describe the Principle of Minimal Sensitivity and how it can

be applied. The description of PMS is based closely on that given in Ref. [16].

As stated before, a perturbative expansion that is truncated at a given or-

der will generally be renormalisation scheme dependent. The rationale behind

PMS states that, at any given order, one should find an optimum expansion

that is locally insensitive to the parameters of the renormalisation scheme.

This replicates the behaviour of the all orders result, which should not vary

with the renormalisation scheme (RS) since this is merely an arbitrary math-

ematical tool: physical observables should be scheme independent quantities.

The requirement of independence to the RS can be written symbolically as:

∂O

∂(RS)

∣

∣

∣

∣

Opt. RS

= 0, (4.1.1)

where O is an observable and Opt. RS denotes the optimum renormalisa-

tion scheme that gives no scheme dependence in the truncated perturbative

expansion of O [16].

The RS can be labelled by {τ, c2, c3, . . .} [16], where τ = b ln µ

Λ̃
and c2, c3, . . .

are higher coefficients in the β-function equation (1.2.18), as demonstrated in

Section 1.3. The number of cn coefficients required to define the RS depends

on the order of perturbation theory. At NLO the RS is defined solely by τ . At

O(an+1) the RS is labelled by {τ, c2, . . . , cn}.

The self-consistency of perturbation theory states that approximations of

O, to ith order, in different renormalisation schemes must agree to O(ai+1).

This can be written as:

∂O(i)

∂(RS)
= O(ai+1), (4.1.2)
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where the (i) denotes that the observable is expanded up to orders of ai.

In the next two sub-sections we outline the PMS method at NLO and

NNLO.

4.1.1 PMS at NLO

Consider an observable with an expansion like that of the effective charges

considered in Section 2.1. At second order:

R(2) = a(τ)(1 + r1a(τ)), (4.1.3)

where the superscript (2) denotes that we are considering the expansion of R

up to O(a2). We want to find R(2)
opt = R(2)(τopt) such that:

∂R(2)

∂τ

∣

∣

∣

∣

τ=τopt

= 0. (4.1.4)

Differentiating (4.1.3) with respect to τ gives:

∂R(2)

∂τ
= −a2(1 + ca)(1 + 2r1a) +

∂r1
∂τ

a2, (4.1.5)

where we have substituted in the NLO β-function, from (1.2.18) in Section 2.1,

noting that
∂a

∂τ
=

1

b

∂a

∂ lnµ
.

Using the self consistency of perturbation theory, as shown in (4.1.2), the

terms of O(a2) in the above equation must cancel. This gives us:

∂r1
∂τ

= 1. (4.1.6)

Integrating this equation and rearranging for the constant of integration, which
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we shall call X1, gives:

X1 = τ − r1. (4.1.7)

X1 is a scheme invariant, Q-dependent, quantity. The Q-dependence of X1 is

obtained from that of r1 [9]2:

r1 = b ln
µR

Λ̃
− b ln

Q

ΛR

, (4.1.8)

and the definition of τ in (1.3.2). Putting them together gives:

X1 = b ln
Q

ΛR

, (4.1.9)

and so this scheme invariant quantity is related to that of the ECH method,

ΛR.

We want to find the value of τ for which the right hand side of (4.1.5) is

zero:

2 c r1(τopt) a(τopt) + 2r1(τopt) + c = 0 (4.1.10)

To condense expressions such as this we now adopt the notation of Ref. [16],

where τopt = τ̄ , r1(τ̄) = r̄1 and a(τ̄) = ā. Rewriting (4.1.10) in the new

notation, and rearranging for r̄1, gives:

r̄1 =
−c

2(1 + cā)
. (4.1.11)

We now just need to find ā. We can do this by substituting r̄1 = τ̄ −X1 in

to (4.1.10):

2(τ̄ −X1)(cā+ 1) + c = 0, (4.1.12)

2This equation is obtained by rearranging (2.1.18), and then generalising to the case
where µR 6= Q.
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and using:

τ =
1

a
+ c ln

(

ca

1 + ca

)

. (4.1.13)

This equation is obtained by integrating the NLO β-function equation, as

described in Section 1.2.3. Putting this expression for τ into (4.1.12) gives:

1

ā
+ c ln

(

cā

1 + cā

)

+
c

2(1 + cā)
= X1, (4.1.14)

which can be solved numerically for ā.

Now that we have ā and r̄1 (from (4.1.11)) we can put them together to

get an optimum, renormalisation scale independent, formulation of R:

R(2)
opt = ā (1 + r̄1ā) . (4.1.15)

4.1.2 PMS at NNLO

We now consider PMS at NNLO, with the observable R terminated at O(a3):

R(3) = a(1 + r1a+ r2a
2). (4.1.16)

At NNLO the RS is defined by τ and c2. The PMS point is therefore determined

by the following two equations:

∂R(3)

∂τ

∣

∣

∣

∣

τ=τ̄

= 0 and
∂R(3)

dc2

∣

∣

∣

∣

c2=c̄2

= 0. (4.1.17)

To derive PMS at NNLO we will need the β-function equation to NNLO:

∂a

∂τ
= −a2(1 + ca+ c2a

2), (4.1.18)
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and the equivalent expression for c2:

∂a

∂c2
= a2(1 + ca+ c2a

2)

∫ a

0

dx

(1 + cx+ c2x2)2
. (4.1.19)

Differentiating R(3) with respect to τ and c2 and substituting in the equa-

tions above gives:

∂R(3)

∂τ
= −a2(1 + ca+ c2a

2)(1 + 2r1a+ 3r2a
2) + a2

∂r1
∂τ

+ a3
∂r2
∂τ

, (4.1.20)

∂R(3)

∂c2
= a2(1 + ca+ c2a

2)

∫ a

0

dx

(1 + cx+ c2x2)2
(1 + 2r1a+ 3r2a

2)

+ a2
∂r1
∂c2

+ a3
∂r2
∂c2

. (4.1.21)

We can again use the requirement of self-consistency of perturbation theory

to cancel the O(a2) and O(a3) terms. From (4.1.20) we have:

∂r1
∂τ

= 1, and
∂r2
∂τ

= c+ 2r1. (4.1.22)

For (4.1.21) we first have to Taylor expand the integrand:

∫ a

0

1

(1 + cx+ c2x2)2
≈
∫ a

0

(1− 2cx+ . . .) = a− ca2 + . . . . (4.1.23)

The self-consistency of perturbation theory therefore requires that:

∂r1
∂c2

= 0, and
∂r2
∂c2

= −1. (4.1.24)

The two equations referring to r1 integrate up to give (4.1.7) again. The

two involving r2 can also be integrated to give a second RS invariant quantity.
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First we rewrite
∂r2
∂τ

as:

∂r2
∂τ

=
∂r1
∂τ

∂r2
∂r1

=
∂r2
∂r1

= c+ 2r1 . (4.1.25)

This then integrates up to:

r2 = cr1 + r21 + f(c2) + const. , (4.1.26)

where const. is the integration constant. f is a function of c2 and its form can

be determined from the other partial differential equation,
∂r2
∂c2

. Putting this

together, and calling the RS invariant integration constant X2, gives:

X2 = r2 + c2 − r21 − r1c. (4.1.27)

Note thatX2 is exactly the same as the coefficient ρ2 from the Effective Charges

Method (see (2.1.6)). At higher orders the Xn quantities remain closely related

to the ρn coefficients of the ECH method, although they are only identical for

n = 2. For example, X3 = ρ3/2 and X4 = ρ4/3 + cρ3/6 + 2ρ2 [65].

At NNLO we want to find the quantites τ̄ and c̄2 for which (4.1.20) and

(4.1.21) are zero:

(c̄2 + 3r̄2 + 2cr̄1) + (2c̄2r̄1 + 3cr̄2)ā+ 3c̄2r̄2ā
2 = 0, (4.1.28)

∫ ā

0

dx

(1 + cx+ c̄2x2)2

=
ā

(1 + (c+ 2r̄1)ā+ (c̄2 + 3r̄2 + 2cr̄1)ā2 + (2c̄2r̄1 + 3cr̄2)ā3 + 3c̄2r̄2ā4)

=
ā

1 + (c+ 2r̄1)ā
. (4.1.29)

where we have used (4.1.28) to simplify the denominator in (4.1.29). We can
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obtain expressions for r̄1 and r̄2 from (4.1.7) and (4.1.27):

r̄1 = τ̄ −X1

=
1

ā
+ c ln

(

cā

1 + cā

)

+ c̄2

∫ ā

0

dx

(1 + cx)(1 + cx+ c̄2x2)
−X1, (4.1.30)

r̄2 = X2 − c̄2 + (τ̄ −X1)
2 + (τ̄ −X1)c, (4.1.31)

where the NNLO version of (4.1.13) is used for τ̄ .3

Now that we have expressions for r̄1 and r̄2 we can solve the simultaneous

equations (4.1.28) and (4.1.29) for c̄2 and ā numerically. Substituting these into

(4.1.30) and (4.1.31) the optimum observable at NNLO can be constructed [16]:

R(3)
opt = ā(1 + r̄1ā+ r̄2ā

2). (4.1.32)

4.2 PMS applied to event shape moments

In this section we use the PMS method in order to predict to event shape mo-

ments from e+e− collisions. PMS is implemented at both NLO and NNLO and

the results are shown in Tables 4.1 and 4.2. As in Section 3.2 the predictions

are obtained from a fixed value of αs(MZ) = 0.1190. From the corresponding

value of Λ̃MS, τ
(MS) is calculated as:

τ (MS) = b ln
MZ

Λ̃MS

, (4.2.1)

where µR = Q since we are working in the MS scheme, and we consider the

energy MZ .
4 The RS independent quantity X1 is then calculated from τ and

3See (2.1.11) in Section 2.1 for analogous expressions containing R and ρ2 instead of a
and c2.

4τ , and hence X1, is Q-dependent, but we restrict ourselves to examining Q = MZ in
this analysis. PMS could easily be extended to give predictions at other energies.
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r1 in the MS scheme:

X1 = τ (MS) − r
(MS)
1 . (4.2.2)

Similarly, for the NNLO case, X2 can be found from the MS coefficients r1, r2

and c2 from (4.1.27).5

For PMS at NLO, once X1 has been found, ā can be extracted numeri-

cally from (4.1.14). The optimal prediction for the event shape can then be

constructed from (4.1.11) and (4.1.15).

At NNLO, ā and c2 from (4.1.28) and (4.1.29) are simultaneously extracted.

These values are used along with (4.1.32) to give a PMS prediction of the event

shape at Q = MZ .

For comparison, experimental data at 91.3 GeV and the ECH prediction

of the event shape at MZ are also shown in both tables. It can be seen that

the PMS and ECH predictions are very similar, and that at NLO they are also

close to the experimental data. The predictions are generally not as close to

the data at NNLO.

For 〈B3
T 〉 at NLO, unlike the other observables, it is not possible to extract

ā at Q = MZ . ā can be extracted at a higher energy, but when the coupling is

run down toMZ an imaginary value for ā is obtained. This is because the value

for ΛMS that corresponds to the ā extracted is larger than MZ . Trying to run

the coupling down to MZ involves moving out of the perturbative regime, and

hence results in an unrealistic value. A PMS prediction for 〈B3
T 〉 is therefore

not included in Table 4.1. This is also the case for some variables and energies

for the ECH method at NLO, as discussed in Sections 3.2 and 3.3.1.

5The two invariants X1 and X2 could be calculated from coefficients in any scheme, but
it is convenient to use the MS scheme since many calculations are performed in this RS.

98



The Principle of Minimal Sensitivity

Observable n αs(MZ) 〈y〉 × 102 〈y〉exp × 102 〈y〉ECH × 102

〈(1− T )n〉 1 0.202 6.51 6.55± 0.07 6.50

2 0.340 0.97 0.79± 0.01 0.96

3 0.488 0.21 0.141± 0.003 0.21

〈Cn〉 1 0.193 25.5 25.9± 0.2 25.5

2 0.351 12.7 10.2± 0.2 12.7

3 0.590 9.16 5.3± 0.1 9.07

〈Bn
W 〉 1 0.112 7.07 7.24± 0.07 7.07

2 0.159 0.83 0.76± 0.01 0.82

3 0.161 0.12 0.104± 0.002 0.12

〈Bn
T 〉 1 0.169 10.6 10.58± 0.07 10.6

2 1.14 5.17 1.49± 0.02 5.02

3 - - 0.263± 0.004 -

〈Y n
3 〉 1 0.162 2.23 2.05± 0.05 2.23

2 0.170 0.21 0.194± 0.005 0.21

3 0.168 0.03 0.030± 0.001 0.03

〈ρnE〉 1 0.149 4.86 4.95± 0.03 4.85

Table 4.1: Results for applying PMS at NLO to e+e− event shape moments.
Values of αs at the stationary point are shown alongside a prediction for the
effective charge at MZ , 〈y〉. Experimental values of the effective charge at MZ

and predictions using ECH at NLO are also shown for comparison.
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Observable n αs(MZ) c2 〈y〉 × 102 〈y〉exp × 102 〈y〉ECH × 102

〈(1− T )n〉 1 0.185 -19.6 6.20 6.55± 0.07 6.21

2 0.226 -72.3 0.69 0.79± 0.01 0.70

3 0.232 -100 0.11 0.141± 0.003 0.12

〈Cn〉 1 0.179 -12.8 24.8 25.9± 0.2 24.8

2 0.223 -82.8 8.64 10.2± 0.2 8.76

3 0.232 -149 4.43 5.3± 0.1 3.77

〈Bn
W 〉 1 0.110 4.58 7.09 7.24± 0.07 7.09

2 0.148 -23.8 0.80 0.76± 0.01 0.80

3 0.148 -31.0 0.11 0.104± 0.002 0.11

〈Bn
T 〉 1 0.154 -34.1 10.0 10.58± 0.07 10.0

2 0.145 -360 0.81 1.49± 0.02 0.86

3 0.110 -736 0.09 0.263± 0.004 0.10

〈Y n
3 〉 1 0.151 -30.5 2.13 2.05± 0.05 2.13

2 0.154 -32.6 0.20 0.194± 0.005 0.20

3 0.154 -36.5 0.03 0.030± 0.001 0.03

〈ρnE〉 1 0.145 -10.1 4.79 4.95± 0.03 4.79

Table 4.2: Results for applying PMS at NNLO to e+e− event shape moments.
Values of αs and c2 at the stationary point are shown alongside a prediction
for the effective charge at MZ , 〈y〉. Experimental values of the effective charge
at MZ and predictions using ECH at NNLO are also shown for comparison.
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Chapter 5

Applying PMS to hadronic

observables

In the previous chapter the Principle of Minimal Sensitivity was introduced,

and applied analytically to produce predictions for event shape moments. It

was found to give results that are very similar to those obtained from the ECH

method, despite the two methods being motivated by different philosophies

and resulting in different master equations.

We now proceed to apply PMS to hadronic observables. Physical observ-

ables at hadron colliders are generally more complicated than those measured

at e+e− colliders, since parton distribution functions (PDFs) are needed to

describe the incoming hadrons. This results in an additional scale, the fac-

torisation scale M , that needs to be taken into account in addition to the

renormalisation scale and scheme. PMS can no longer be applied analytically

to observables of this type, but it is possible to look for a stationary point

on the surface of the observable in M–µR space. A stationary point on this

surface is locally invariant with respect to M and µR, which satisfies the PMS

philosophy.



Applying PMS to hadronic observables

In Section 5.1 we describe in more detail the application of PMS to hadronic

observables. The results obtained from applying PMS to heavy quark cross-

sections at the Tevatron and the LHC are given in Sections 5.2 and 5.3.

Section 5.4 contains a discussion of the results from this chapter and those

from Section 4.2 from the end of Chapter 4.

5.1 PMS for processes involving hadrons

We have so far considered applying PMS to observables that depend only

on the renormalisation scheme. An example of this type is the event shape

moments measured at e+e− colliders. In this part of the thesis we apply PMS

to various Tevatron and LHC cross-sections, including the bb̄ total cross-section

at the Tevatron, and the tt̄ total cross-section at the Tevatron and the LHC.

Predictions of observables with hadrons in the initial state are more com-

plicated than those from e+e− collisions as they depend on parton distribution

functions (PDFs) [2, 3]. The PDFs are needed to describe the internal struc-

ture of the incoming hadrons and are essentially non-perturbative in nature.

Long- and short-distance contributions are separated out into the PDFs and

the hard partonic cross-section respectively. PDFs are not calculable in per-

turbative QCD, although their evolution with M is, and have to be extracted

from experimental data.

There are low energy divergences that arise when a quark or gluon is emit-

ted colinearly to an incoming parton. These initial state IR singularities are

dealt with in a similar fashion to the way in which we renormalised UV diver-

gences in Section 1.2 — they are absorbed into a redefinition of the PDFs [2].

This procedure introduces an arbitrary, unphysical factorisation scale, M ,

which is analogous to µR. A factorisation scheme is also needed to specify
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the exact contributions that are absorbed by the PDFs. The MS scheme is

frequently used.

A generic total cross-section from a hadronic collision can be written as:

σ(S) =
∑

i,j

∫

dx1dx2F
A
i (x1,M)FB

j (x2,M) σ̂(ŝ,M), (5.1.1)

where
√
S is the centre of mass energy, FA

i is the PDF for parton i from hadron

A, x1 and x2 are the fractions of momentum carried by each parton, and M

is the factorisation scale. σ̂ is the partonic cross-section which depends on the

fraction of the centre of mass energy ŝ = x1x2S. Since σ̂ contains only short

distance physics after factorisation, and at short distances (or high energies)

the strong coupling constant will be small, perturbation theory can be used to

expand the partonic cross-section. At fixed order σ̂ will also have a dependence

on µR. The M dependence of the PDFs will cancel with that of σ̂ at all orders.

The scales µR and M are often set equal to each other when performing

calculations [2], but their physical origins are very different. M is related to

singularities at low energy, and µR regulates high energy divergences. Setting

them equal to each other is therefore not physically motivated. When we apply

PMS to hadronic cross-sections we keep M and µR separate.

Applying PMS to observables of this type involves numerically solving for

the values of M and µR at which the cross-section, σ(M,µR), is locally invariant

with respect to these two observables. This corresponds to a stationary point

of the surface of σ in M and µR space. It is not possible to find the stationary

points analytically as we do not have an explicit expression for the PDFs.

As stated above, the procedure of factorisation is to some extent arbitrary

and a scheme is required to specify what finite pieces are absorbed along with

the singularity. Beyond LO, results are dependent on the factorisation scheme
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used and in order to perform a full PMS analysis of the cross-section we should

take this into account too. However, finding a stationary point while varying

three different parameters would be considerably harder, so in this analysis we

restrict ourselves to considering the two scales M and µR.

There is no guarantee that there is a unique stationary point, or indeed

any stationary point at all, on a given surface [16]. At leading order (LO) the

cross-section is generally monotonic in µR and there is therefore no stationary

point [66]. At NLO however there is often a saddle point observed at some

values of M and µR, as shown for the bb̄ total cross-section in Ref. [66].

In this thesis we have looked for stationary points with respect to M and

µR for two different observables:

1. bb̄ total cross-section at the Tevatron,

2. tt̄ total cross-section at the Tevatron and the LHC.

In both these cases MCFM [67–69] was used to calculate the cross-sections.

For the total tt̄ cross-section, the Top++ program [70] was also used. The

saddle points were found by minimising the function:1

f =
1

2

(

∂σ

∂ lnM

)2

+
1

2

(

∂σ

∂ lnµR

)2

. (5.1.2)

Note that, in this thesis, the terms stationary points and saddle points are

often used interchangeably as in general the stationary points on the cross-

section surface are saddle points. However the gradients in f are squared so

that all stationary points will be found by minimising this function, including

minima and maxima.

1In practice the gradients in this equation were often normalised to the cross-section —
see Section C.3 in Appendix C.
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5.1.1 Algorithms for finding stationary points

MCFM uses a Monte-Carlo integrator which requires several thousand event

generations to produce cross-sections with sufficiently low statistical errors.

We generally run with 4000 events for total cross-sections. This takes about

4 minutes per MCFM calculation and it is clearly desirable to make as few

function calls to MCFM as possible. We therefore wrote our own algorithm,

implemented in Python [71], based on a secant Levenberg-Marquadt algorithm

with BFGS updates [72, 73].

The Levenberg-Marquadt algorithm is a hybrid method combining the

method of steepest descent and the Gauss-Newton method [72, 73]. There

is a damping parameter that governs how much of each method to use. When

the damping parameter is large a small step is taken in the direction of steep-

est descent. As the stationary point is approached the damping parameter

becomes smaller and the step taken approaches the Gauss-Newton direction.

This, in general, provides better convergence close to the stationary point.

The advantage of using a secant method is that the Jacobian does not

have to be found at every step. The Jacobian for the initial starting point,

or an approximation to it, is provided at the start and this is then updated

during each iteration. There are various ways of doing this: we chose to use a

BFGS (Broyen-Fletcher-Goldfarb-Shanno) update as this preserves any initial

symmetry in the matrix [73]. This property is useful since our Jacobian will

contain second order derivatives, given that f in (5.1.2) is already a function of

derivatives. The commutativity of partial derivatives means that the Jacobian

will be symmetric.

The details of the algorithm and the BFGS update are given in Appendix C.

Occasionally a built-in Python algorithm was used as a cross-check on the

results obtained from our program.
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5.2 Results for the total bb̄ cross-section

An initial study, used to develop and check our algorithm, was performed to

identify the stationary points of the total bb̄ cross-section surface. The cross-

sections were calculated at NLO for pp̄ collisions at energies from 62 GeV to

1.96 TeV. These energies are used by Chýla in Ref. [66], and this reference

serves as a cross-check for our results. We have used more recent PDFs than

Chýla however, and it is therefore interesting to determine whether the cross-

sections obtained vary significantly as a result of this.

In Fig. 5.1 the total cross-section surface at 630 GeV is plotted against M

and µR at both LO and NLO. It can be seen that at LO there is no stationary

point in the range of M and µR studied. At NLO, however, there is a saddle

point at M ∼ 15 GeV and µR ∼ 1 GeV.

Fig. 5.2 demonstrates how the saddle point moves with
√
S. The optimal

values of M and µR according to the PMS method are generally far from the

standard diagonal choice of M = µR = mb. For comparison, the cross-section

calculated using the PMS choices of scale is plotted against the standard di-

agonal choice in Fig. 5.3. We also plot the ratio of the PMS cross-section

(i.e. the cross-section at the stationary point) to the diagonal cross-section in

Fig. 5.4. RPMS is defined as:

RPMS =
σ(M,µR)

σ(M = µR = mb)
, (5.2.1)

where M and µR are the values of M and µR at the stationary point. R1/2 and

R2 are also shown, as in Fig. 7 of Ref. [66], where these quantities are defined
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as:

R1/2 =
σ(M = µR = 0.5mb)

σ(M = µR = mb)
, (5.2.2)

R2 =
σ(M = µR = 2mb)

σ(M = µR = mb)
. (5.2.3)

The data for these plots have been calculated using mb = 4.75 GeV and the

2008 set of NLO MSTW PDFs [74]. The value of mb was chosen to match that

used in the MSTW PDF set. We include Figs. 5.2–5.4 for ease of comparison

with Chýla’s results in Ref. [66]. Generally we find that our results are similar

to those in Ref. [66]. There are some differences however, which are probably

due to our use of more recent PDFs and value of mb. The differences include

generally larger values of the NLO cross-section and a larger ratio RPMS.

Fig. 5.2 shows that the PMS scales move in a highly non-diagonal fash-

ion. As the collision energy increases, the factorisation scale tends to higher

values, while the renormalisation scale remains around 1-2 GeV. The PMS

cross-section is consistently larger than that predicted by fixed order pertur-

bation theory using diagonal scales, as seen in Fig. 5.3.

From Fig. 5.4 we see that at the Tevatron energy 1.96 TeV the cross-

section as calculated using PMS is almost a factor of two larger than that

from standard MS perturbation theory using diagonal scale choices: 129 µb

compared with 72 µb. There have been discrepancies between QCD predictions

and experimental data for bb̄ differential cross-sections at the Tevatron [75,76].

While the latest theoretical predictions do agree well with Run II CDF data [77,

78], it is necessary to use a next-to-leading log resummation in addition to a

fixed-order NLO calculation, and improved b-fragmentation models. There are

also still inconsistencies between the experimental measurements [76, 79]. As

mentioned in Section 5.1, there is no physical motivation for setting M = µR
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Figure 5.1: Total bb̄ cross-section surface plotted against factorisation and
renormalisation scale, calculated at 630 GeV at the Tevatron. The LO cross-
section is shown on the left and the NLO cross-section on the right.
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Figure 5.2: M and µR at the saddle point are plotted over a range of collision
energies.

and alternative scale setting procedures should be considered along with the

other improvements to the QCD predictions discussed in e.g. Ref. [75].
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Figure 5.4: Ratio of PMS cross-section to standard MS cross-section plotted
against energy. Also shown is the scale variation in the standard cross-section
when varying M and µR by a factor of two.

5.3 Results for the total tt̄ cross-section

In this section the analysis of bb̄ pair production is extended to look at the

total top quark pair production cross-section. Some example surfaces, for the

NLO tt̄ total cross-section at the Tevatron at 1.96 TeV and for the LHC at
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7 TeV, are shown in the left-hand panels of Figs. 5.5 and 5.6. As for the

bb̄ cross-section, the secant Levenberg-Marquadt algorithm is used to find the

stationary point on these surfaces, with the cross-sections provided by MCFM.

In addition, the program Top++ [70] is used to calculate the cross-section. The

stationary point for the NLO surface was again found and compared with the

MCFM results. Top++ is also used to look at the preliminary NNLO results

calculated by Czakon and Mitov [80]. For more details see Section 5.3.2.

5.3.1 MCFM results

At the Tevatron energy 1.96 TeV a saddle point was found at M ∼ 110 GeV

and µR ∼ 84 GeV. This corresponds to a cross-section of 7.20 ± 0.01 pb,

where the error is statistical and comes from the numerical integration in

MCFM. The standard cross-section, calculated by setting M = µR = mt, is

6.86± 0.01± 0.75 pb. The first error is statistical and the second is obtained

by varying the scales between 2mt andmt/2, with the larger difference from the

central value taken as the theoretical error. Using the PMS method therefore

gives a cross-section that is about 5% larger than the standard method does,

which is well within the theoretical error on the latter value.

A saddle point for the surface created by cross-sections at 7 TeV at the

LHC was found at M ∼ 63 GeV and µR ∼ 41 GeV, at a cross-section of

176.5±0.3 pb. Again, the error is statistical. The cross-section using diagonal

scales is 150.5± 0.2± 19.6 pb. In this case, therefore, using the PMS method

results in an increase of ∼17% which is larger than the upper scale variation

of the diagonal scale.

For 14 TeV, a stationary point was found atM ∼ 80 GeV and µR ∼ 27GeV.

This gives a cross-section of 1024± 2 pb, compared with the diagonal value of

842±1±98 pb. Using PMS for this energy gives an increase of 22% compared
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with the diagonal scale choice, almost a 2σ discrepancy.

For all three energies, the PMS scales are found to be far from the diagonal

choice of M = µR = mt. The increase in cross-section predicted by PMS

method for the LHC energies is larger than the scale variation on the standard

cross-section prediction.

All these results are calculated using CT10 PDFs [81] and a top mass of

172.9 GeV.

These cross-sections can be compared to experimental results from the

Tevatron and the LHC. At 1.96 TeV, D0 measures top quark pair production

to be 7.56+0.63
−0.56pb, and CDF obtain 7.50 ± 0.48 pb [82]. These results assume

a top mass of 172.5 GeV. However, the dependence on the mass is found to

be less than the theoretical errors involved [82]. At 7 TeV at the LHC the

total tt̄ cross-section is measured by ATLAS as 179 ± 12 pb and by CMS

as 164± 14 pb [82]. Both the standard diagonal scale choice and the PMS

cross-section agree with these experimental results. However, the PMS cross-

sections are closer to the central values of the experimental results than the

standard scale choice.

5.3.2 Top++ results

In addition to using MCFM to calculate the tt̄ total cross-section, we also

used Top++ [70]. This program uses analytical methods rather than a Monte

Carlo approach. It also includes some preliminary NNLO results; an exact

fixed order NNLO calculation for the qq̄ → tt̄+X, qq → tt̄+X, qq̄′ → tt̄+X

and qq′ → tt̄+X channels [80], and an approximation to the NNLO result for

gg → tt̄ + X [83]. The qq̄ channel is dominant at the Tevatron. At the time

of writing, the authors of Top++ are working on calculating the remaining

channels exactly.
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Figure 5.5: Total tt̄ cross-section surface, calculated at 1.96 TeV at the Teva-
tron, plotted against factorisation and renormalisation scale. The NLO cross-
section is shown on the left and NNLO on the right.
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Figure 5.6: Total tt̄ cross-section surface, calculated at 7 TeV at the LHC,
plotted against factorisation and renormalisation scale. The NLO cross-section
is shown on the left and NNLO on the right.

We used Top++ to provide a fixed order NLO calculation and compared

the saddle points found with those obtained using MCFM. Since Top++ does

not employ Monte Carlo methods each individual calculation takes less time to

perform than when using MCFM. It was therefore possible to use a Levenberg-

Marquadt algorithm, where the Jacobian is calculated explicity for each step of
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the iteration, instead of using the secant approach as outlined in Appendix C.

A comparison of the results obtained from MCFM and Top++ is given in

Table 5.1. As expected both methods of calculation give very similar results.

A built-in Python function using a Nelder-Mead simplex algorithm [84] was

also used in conjunction with Top++ as a further validation of the results,

and found stationary points in similar regions as the Levenberg-Marquadt

algorithm. The Nelder-Mead algorithm was not generally used with MCFM

as it tends to require a larger number of function calls, rendering it inefficient

given the greater run time for MCFM. However, when used in conjunction

with Top++ it was found to be less sensitive to starting guesses for M and µR

than the Levenberg-Marquadt algorithm, and has therefore been used for the

remainder of this section.

In order to assess the effect of the choice of PDF set on our results we

repeated the process of finding the stationary point using MSTW 2008 NLO

PDFs. The stationary points are shown in Table 5.2, alongside the original

CT10 results for ease of comparison. The saddle points were generally found

to be in the same region, with the exception of the LHC energy 7 TeV where

M increased by about 20 GeV and µR decreased by 5 GeV. However, even

in this case the cross-section at the saddle point only changes by 7%. For

the Tevatron at 1.96 TeV, the PMS cross-sections given by the two different

PDF sets agree to within 1%. Although the stationary points at 14 TeV agree

to within 1 GeV, the cross-section differs again by about 7%. The effect of

changing these PDF sets on the NLO results is therefore seen to be negligible

in the case of the Tevatron energy, and less than 10% for the LHC energies.

We also used Top++ to provide approximate NNLO results. At NNLO

the RS can be defined by {τ, c2}, where τ is a function of µR, as discussed in

Section 1.3. However, for hadronic observables it is also necessary to consider

113



Applying PMS to hadronic observables

MCFM Top++
√
S [TeV] M [GeV] µR [GeV] σ(M,µR) [pb] M [GeV] µR [GeV] σ(M,µR) [pb]

1.96 110 84 7.20 110 84 7.18

7 63 41 177 63 41 177

14 80 27 1020 85 27 1020

Table 5.1: Comparison of stationary points found using MCFM and Top++
at NLO. CT10 PDFs are used in both cases, with mt = 172.9 GeV.

CT10 MSTW
√
S [TeV] M [GeV] µR [GeV] σ(M,µR) [pb] M [GeV] µR [GeV] σ(M,µR) [pb]

1.96 110 84 7.18 110 83 7.12

7 63 41 177 64 42 188

14 85 27 1020 86 28 1090

Table 5.2: Comparison of stationary points found using CT10 and MSTW
2008 NLO PDFs with Top++ at NLO and mt = 172.9 GeV.

the factorisation scale. In this analysis we therefore only examine the variation

of the cross-section with M and µR, as in the NLO case.

Example surfaces are shown in the right-hand panels of Figs. 5.5 and

5.6. The NNLO surfaces are generally a little flatter than at NLO, especially

for large M and µR, as would be expected from adding an extra order of

perturbation theory. The stationary points of these surfaces are given in Table

5.3. The results were calculated using both CT10 and MSTW 2008 NNLO

PDF sets, with mt = 172.9 GeV. As with the NLO results, the effect on the

stationary point of the PDF set is generally small. The largest change in this

case is for the Tevatron energy, with the cross-section using CT10 PDFs about

5% larger than that using MSTW PDFs.

Comparing the NLO and NNLO results, we see that at 1.96 TeV the sta-

tionary point moves to a much higher M and lower µR. This results in a
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CT10 MSTW
√
S [TeV] M [GeV] µR [GeV] σ(M,µR) [pb] M [GeV] µR [GeV] σ(M,µR) [pb]

1.96 440 26 7.94 420 24 7.59

7 120 64 168 120 64 168

14 130 64 933 130 64 936

Table 5.3: Comparison of stationary points found using CT10 and MSTW
2008 NNLO PDFs with Top++ at NNLO and mt = 172.9 GeV.

∼ 10% increase on the cross-section prediction at NLO. At the LHC at 7 TeV

the saddle point moves to higher M and µR, producing a 10% decrease in PMS

cross-section compared with NLO. A similar trend is seen at 14 TeV, with a

slightly larger decrease of ∼ 15%.

In addition to studying the effect of PDF set on the PMS results the vari-

ation with respect to top quark mass was also considered. The analysis was

repeated for MSTW PDFs using mt = 172.5 GeV and mt = 174.5 GeV. These

values were chosen as they are the upper and lower limits of the PDG value of

the top mass as obtained from direct measurements: mt = 173.5±1.0 GeV [85].

The results are shown in Table 5.4. The stationary points are generally found

to be in the same place for both values of the top mass, with the exception of

NNLO PMS at the Tevatron and NLO PMS at 7 TeV. The cross-sections at

the PMS point for mt = 172.5 GeV are 1–2% larger than 172.9 GeV, and 5–7%

larger than with mt = 174.5 GeV. Even for NNLO PMS at 1.96 TeV, where

M is almost 100 GeV greater at the lower top mass than for 172.9 GeV, the

cross-section at the saddle point is still only ∼ 7% larger. This implies that the

saddle point covers a moderately large range of the factorisation scale. This is

confirmed by calculating σNNLO(M = 510, µR = 26) with mt = 172.9 GeV at

1.96 TeV, which is found to be the same as σNNLO(M = 420, µR = 24) to the

precision quoted. Similarly, σNNLO(M = 510, µR = 26) with mt = 174.5 GeV
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mt = 174.5 GeV mt = 172.5 GeV
√
S [TeV] M [GeV] µR [GeV] σ(M,µR) [pb] M [GeV] µR [GeV] σ(M,µR) [pb]

NLO

1.96 110 84 6.77 110 82 7.21

7 85 37 180 64 42 191

14 85 28 1040 86 28 1100

NNLO

1.96 460 26 7.21 510 26 7.69

7 120 65 160 120 64 170

14 130 64 897 130 64 946

Table 5.4: Comparison of stationary points found using mt = 174.5 GeV and
mt = 172.5 GeV with Top++ at NLO and NNLO with MSTW PDFs.

agrees with that quoted for M = 460, µR = 26. The same conclusions can be

drawn for the NLO case at the LHC energy 7 TeV. Changing the top mass

is therefore found to affect the cross-section only, and not the position of the

saddle point. Altering mt by 2 GeV alters the cross-sections by less than 7 %,

comparable with the PDF variation between the MSTW and CT10 sets.

The NNLO PMS results can be compared with the cross-sections obtained

using the standard diagonal scale choice of M = µR = mt = 172.9 GeV.

For the Tevatron at 1.96 TeV this gives σ(M = µR = mt) = 7.09 ± 0.31

pb. For the LHC at 7 and 14 TeV, the standard cross-sections are 163 ± 4

pb and 902 ± 31 pb respectively. The errors are obtained from varying the

scale between 0.5 and 2 mt. These calculations use MSTW NNLO PDFs. The

PMS cross-sections vary from these standard cross-sections by ∼ 7% in the

case of the Tevatron, which is slightly larger than the scale variation on the

standard cross-section. The difference decreases to only 3–4% at the LHC.

This is less than the variation between using CT10 and MSTW PDFs. The

slight differences between the PMS method and the standard scale choices is
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CT10 MSTW CT10 MSTW

σdiag [pb] (σPMS − σdiag)/σdiag · 100 [%]
√
S [TeV] NLO

1.96 6.83± 0.75 6.77± 0.75 5.1 5.2

7 150 ± 20 160 ± 21 18 18

14 842 ± 98 894 ± 108 21 22

NNLO

1.96 7.42± 0.33 7.09± 0.31 7.0 7.1

7 163 ± 4 163 ± 4 3.1 3.1

14 898 ± 31 902 ± 31 3.9 3.8

Table 5.5: Comparison of cross-sections obtained using the diagonal scale
choices of M = µR = mt found using mt = 172.9 GeV with Top++ at NLO
and NNLO with CT10 and MSTW PDFs. At NLO, MSTW NLO PDFs were
used and at NNLO, MSTW NNLO PDFs were used. In the two right-hand
columns we show the percentage difference between the PMS and diagonal
scale choice cross-sections.

therefore seen to lessen at NNLO.

In order to allow the reader to fully compare the diagonal scale choices

against PMS at NLO and NNLO with both PDF sets we have summarised

the cross-sections obtained at M = µR = 172.9 GeV in Table 5.5. These

results were all calculated using Top++. On the right-hand side of Table 5.5

are the percentage differences between the cross-sections obtained using the

PMS and physical scale methods. The two PDF sets give consistently larger

cross-sections in the PMS method. The difference between the two methods

at the LHC is considerably smaller at NNLO than at NLO.

Finally, as a visual summary, in Figs. 5.7–5.9 we have plotted the cross-

sections given by the PMS method and the standard MS method against ex-

perimental data where it is available. Cross-section predictions at NLO and

NNLO are both shown. For each of the four theoretical cases, three points are
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plotted: one for the MSTW PDFs, one for the CT10 PDFs, and one an average

of the two. The experimental data point is an average of the two values at

each energy — 7.53±0.63 pb for the Tevatron and 172±14 pb for the LHC —

with the larger uncertainty taken in each case. The uncertainties on the PMS

cross-sections are formed of a “PDF” uncertainty and a top mass uncertainty

combined in quadrature. The PDF uncertainty is simply the difference be-

tween the MSTW and CT10 results in each case, and it should be noted that

this may well be an underestimation since only two PDF sets were examined.

The top mass uncertainty is calculated by subtracting σ(mt = 174.5GeV) and

σ(mt = 172.5GeV) from σ(mt = 172.9GeV), with the larger difference taken

as the uncertainty.2 The error bars on the diagonal scale choice cross-sections

include the PDF and top mass uncertainties, along with the scale variation

uncertainty.

5.4 Commentary on PMS results

In the previous few sections we applied the PMS method in two different ways.

In Section 4.2, PMS was applied analytically at NLO and NNLO to e+e− event

shape moments. The resulting predictions for the moments at MZ agree very

closely with those given by the ECH method, as calculated in Section 3.2. At

NLO both these predictions are close to the experimental data for the means

at MZ . For the higher moments the predictions are not as close, a trend that

was noted in Chapter 2. At NNLO the PMS and ECH methods again agree

very closely, and the predictions produced are not as good as those at NLO.

The similarity between PMS and the Fastest Apparent Convergence (FAC)

2In practice this means taking σ(mt = 174.5GeV) − σ(mt = 172.9GeV) as the uncer-
tainty. Since the mass was varied only in conjunction with MSTW PDFs for the PMS
method (see Table 5.4), the mass uncertainty calculated from these results was applied to
both the MSTW and CT10 predictions.
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Figure 5.7: A comparison of the cross-sections predicted by the PMS method
and the diagonal scale choice for the Tevatron at 1.96 TeV. The cluster of
points at A show the PMS at NLO results with MSTW NLO and CT10 PDFs
and the average of the two. B contains the same for PMS at NNLO, using
MSTW NNLO PDFs. C and D are standard MS results at NLO and NNLO
respectively. An average of the experimental data is shown at E.

method, which is equivalent to ECH at NLO, has been noted in Refs. [57,58].

The PMS point was also observed to be close to the predictions of ECH by

Chýla in Ref. [66]. Note that at NLO, where c2 = c3 = . . . = 0, and with c set

equal to zero in addition the ECH and PMS methods are exactly the same.

This can be seen by setting c = 0 in (4.1.14) and (2.1.12), and remembering

that RNLO = αs(µECH)/π as discussed in Section 3.2.

This good agreement between the PMS and ECH methods was motivation

for applying PMS to hadronic observables. Because these quantities involve

two scales — the renormalisation scale, µR, and the factorisation scale, M —

it is not possible to use the ECH method. There are logs involving both scales

and it is not (currently) known how to separate out the µR and M dependency

in order to achieve an expansion such as in (2.1.5).

The first hadronic observable studied was the total bb̄ cross-section at the

Tevatron. PMS was applied numerically at NLO to find the values of M and
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Figure 5.8: A comparison of the cross-sections predicted by the PMS method
and the diagonal scale choice for the LHC at 7 TeV. The labels A to E are
defined in Fig. 5.7.
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Figure 5.9: A comparison of the cross-sections predicted by the PMS method
and the diagonal scale choice for the LHC at 14 TeV. The labels A to D are
defined in Fig. 5.7. There are no experimental data for this energy.

µR at the stationary point on the cross-section surface. The M and µR values

that mark the saddle points are seen to move in a highly non-diagonal way in

Fig. 5.2. The PMS predictions for the cross-section are generally much larger

than those given by the physical scale choice. For example, at the Tevatron
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energy of 1.96 TeV the PMS cross-section is almost a factor of two larger than

when using the standard diagonal scale choice. In Fig. 5.4 it can be seen that

the PMS prediction generally lies outside of the scale variation on the standard

MS result. At ∼ 400 GeV the PMS cross-section is over 3 times larger than

the central MS prediction.

We also examined the tt̄ total cross-section at both the LHC and the Teva-

tron. MCFM was used to study the NLO cross-section. At the Tevatron at

1.96 TeV the PMS cross-section and the physical scale cross-section agree to

within the scale variation on the latter value. Both predictions agree with the

experimental data. At the LHC energies σPMS is a little larger than the upper

scale variation given by M = µR = mt. The predictions at 7 TeV again both

agree with the experimental data to within the errors. At the energies where

experimental data is available σPMS is slightly closer to the central values of

the data than the diagonal cross-section when using CT10 PDFs.

These results were replicated using cross-sections calculated with Top++

in Section 5.3.2. The effect of using another PDF set, MSTW 2008 at NLO

and NNLO, was examined. Similar results were found as for the CT10 PDFs,

with the cross-sections generally being around 7% larger for both methods at

LHC energies. This results in the PMS cross-section no longer being closer to

the central experimental value than the standard MS result.

Similar results were found when using different methods of calculating the

cross-section (MCFM and Top++), and when using different algorithms (Se-

cant Levenberg-Marquadt and a Nelder-Mead algorithm) at a variety of ener-

gies at the Tevatron and the LHC, indicating robustness of the PMS method.

The variation when changing between the CT10 and MSTW PDF sets was

found to be small, although since the predictions from the PMS and diagonal

scale choice methods were similar the PDF uncertainty is large enough to make

121



Applying PMS to hadronic observables

it difficult to distinguish between the two sets of results. Similar effects were

seen when varying the top mass, although interestingly only the cross-section

seems to vary with mt, in general, and not the position of the saddle point.

The two methods are therefore found to give equally good predictions given

the uncertainties involved.

Top++ was also used to give preliminary NNLO cross-sections. As in the

NLO case, the PMS and diagonal scale predictions are very similar, and close

to the experimental data. Both methods are therefore found to perform well

for this observable. One interesting point, however, is that the percentage

difference between the two methods at LHC energies is significantly lower at

NNLO than at NLO. The opposite trend is seen at 1.96 TeV but the differences

in this case are smaller. One explanation for the difference between the two

methods decreasing at NNLO could be that Top++ only includes an approxi-

mation to the gg channel at NNLO, which is the dominant channel at the LHC.

However, it could also just be a reflection of the decreased scale uncertainty

moving from NLO to NNLO. The agreement between the PMS and standard

MS cross-sections, despite σPMS being calculated at non-diagonal scales, sug-

gests that the surface is fairly flat and therefore that the scale uncertainty is

small.

One possible extension to this work is to apply the PMS method to the top

forward-backward asymmetry at the Tevatron, where there is currently a 2–3σ

discrepancy between QCD predictions and experimental data [86–88]. Prelim-

inary work carried out by the author suggests that there is no saddle-point in

the asymmetry, as calculated from NLO QCD cross-sections, however. This

may be because the effect of the top forward-backward asymmetry only ap-

pears at NLO in the cross-section, so it is in fact a LO result for the asymmetry.
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To see this we define the top asymmetry as:

AFB =
σNLO(ytt̄t > 0)− σNLO(ytt̄t < 0)

σNLO(ytt̄t > 0) + σNLO(ytt̄t < 0)
, (5.4.1)

where ytt̄t is the rapidity of the top-quark in the tt̄ rest frame. Expanding this

in terms of αs gives [87]:

AFB =
α3
sN1 + α4

sN2 +O(α5
s)

α2
sD0 + α3

sD1 + α4
sD2 +O(α5

s)
(5.4.2)

=
αs

D0

(

N1 +

(

N2 −
N1D1

D0

)

αs + . . .

)

. (5.4.3)

The coefficients D0, N1 and D1 are known at NLO, but N2 is not. We do not

fully know the coefficient at O(α2
s) in AFB, and therefore do not have a full

NLO calculation for the asymmetry. As can be seen in the left hand side of

Fig. 5.1, LO surfaces for the heavy quark cross-section appear to not have

a stationary point. The incomplete NLO result for AFB might also not have

a saddle point, or have a saddle point in a misleading position. In this case,

the NNLO cross-sections will be necessary to apply PMS to the asymmetry

surface. This cannot be implemented using Top++ as it gives only total cross-

sections and not the differential cross-sections that are necessary to calculate

the asymmetry. If NNLO results for the differential cross-section in bins of

rapidity become available, and there is still a discrepancy between theory and

experiment, it would be interesting to apply PMS to the asymmetry surface.

In theory the PMS method can be applied numerically to any observable

with a scale dependence. Practically, however, it would be challenging to apply

the method to more than two scales. In addition, as finding stationary points

is a reasonably time consuming procedure, it would be sensible to only con-

sider PMS in cases where there is a large discrepancy between experiment and

123



Applying PMS to hadronic observables

perturbative QCD predictions, or where scale variation from missing higher

orders appears to be a problem.
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Chapter 6

Conclusions

In this thesis we have examined two methods of combating the unphysical

renormalisation scheme dependence seen in truncated perturbative expansions

of physical observables: the Effective Charges (ECH) method and the Principle

of Minimal Sensitivity (PMS). The ECH technique is to integrate up a β-

function type equation that has an expansion in terms of the observable itself,

resulting in scheme independent predictions. The PMS approach uses scales

at which the observable is locally invariant to the renormalisation scheme.

In Chapter 3 the ECH method was used to extract values of αs(MZ) from

e+e− event shape moment data, and also to provide predictions of the data. At

NLO and applied to the event shape means, ECH was found to work very well.

It extracts values of αs(MZ) that are in good agreement between the different

event shapes, as also observed in Ref. [35]. The predictions of ECH at NLO

for data of event shape means also show good agreement with experimental

data over a wide range of energies.

We had anticipated that applying the ECH method at NLO to higher mo-

ments of event shapes would result in similarly good agreement with data,

and that extending the analysis to NNLO would improve on the NLO results.
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However, for some higher moments it does not provide such good predictions

and the previously good agreement with data for the means deteriorates when

the NNLO corrections are added to the ECH method. An explanation of these

observations was given in Section 3.3.1. By examining the ΛR parameter for

the observables it is seen that the data on higher moments are generally at

energies below the perturbative regime. There is a Landau pole at Q = ΛR at

which the integrated β-function equation diverges and so it is not appropriate

to apply the ECH method to these moments at the energies studied. The

terms in the asymptotic series ρ(R) suggest that for the higher moments the

optimum expansion would involve truncating the series at LO, again indicat-

ing that the ECH method will not be effective for these variables. The energy

dependence of R(Q) is controlled by the RS invariant dimensionful constant

ΛR of (2.1.18) which involves the NLO perturbative coefficient rMS
1 (µR = Q).

This implies that leading order truncation is not physically meaningful. The

asymptotic series also indicate that NLO may be the optimum order of trun-

cation for the means, although without calculating the next term in the ex-

pansion this cannot be definitively stated. However, the good agreement of

the NLO ECH predictions with the experimental data for the means supports

this interpretation.

In conclusion, the ECH method is very successful for certain physical ob-

servables. There is an optimum order of expansion at which the method works

well, and this is seen to be surprisingly small for e+e− event shape moment

data. Although the RS independent predictions of ECH can be very effective,

care needs to be taken that the observable in question is within the perturba-

tive regime for the ECH method.

Using a Padé Sum (PS) of the ρ(R) expansion in the Effective Charges

method is found to improve the predictions of the higher moments that were
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previously problematic, although it does not perform as well as pure NLO

ECH for the means. The MS prediction at NNLO is improved by the use of

a PS, and some of the predictions for the n = 2, 3 moments are particularly

good. MS with a PS generally outperforms the equivalent ECH combination

for the higher moments. The scale uncertainty for MS PT with the PS is very

small, as shown in Fig. 3.16, and considerably less than that for MS at NNLO.

Approximating the missing higher orders in ρ(R) of the MS perturbative ex-

pansion with a PS is therefore seen to be highly effective, especially for the

n = 2, 3 moments of 〈(1− T )n〉, 〈Cn〉 and 〈Bn
T 〉.

The success of adding a PS to standard MS perturbation theory indicates

that this is a useful method which should be considered for use in other ap-

propriate situations. The potential for the application of Padé Approximant

methods to QCD has also been noted in e.g. Refs. [58,59,89]. The addition of

a PS to MS PT could be applied to hadronic cross-sections. The predictions

might, as for the event shape moments, be less dependent on µR than MS PT

at NNLO. However, there would be residual M -dependence, so it is not clear

that MS with a PS would be as effective in these cases.

Possible non-perturbative effects were investigated using the dispersive

model of Refs. [6, 48, 49], which has been widely used in other analyses of

event shapes, and a simple power correction model used in Ref [35]. When

performing fits for NLO ECH plus dispersive power corrections, we find con-

sistent values of αs(MZ) and α0, except for the observables 〈1 − T 〉 and 〈C〉.

This is an improvement on the fit results gained from NLO MS PT plus power

corrections. However ECH at NNLO again performs less well than the MS

PT counterpart. ECH at NLO gives good agreement in αs(MZ) when simple

power corrections were added. Generally only small values of κ0 are required,

as expected since pure ECH at NLO gives good predictions across the energy
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range studied. We conclude that adding power corrections does not improve

the performance of the ECH method at NNLO, and that non-perturbative

power corrections are not required by ECH to describe the means at NLO.

In Chapter 4 it is seen that the PMS method gives very similar predictions

for event shape moment data to those obtained using ECH. This applies at

both NLO and NNLO. Both methods are motivated by the aim of avoiding RS

dependence in predictions of physical observables, but the derivations are dif-

ferent so it is interesting that they produce such similar results. The similarity

between PMS and ECH has been noted before in e.g. Refs. [57, 58, 66].

When applied to bb̄ production, PMS is found to predict substantially

larger total cross-sections than using the standard diagonal scale choices of

M = µR = mb. At the Tevatron at 1.96 TeV the PMS prediction is larger by

a factor of two: 129 µb compared with 72 µb. For tt̄ production there is very

little difference observed between the two methods. Both produce predictions

that are in good agreement with the experimental data to within the errors.

However, even for tt̄ production the PMS scales are found to be far from the

diagonal scale choice. The standard way of setting the scales could, therefore,

be giving a larger theoretical uncertainty than is necessary. When making

fixed order QCD predictions the scales are frequently clamped together and

then varied by a factor of two, to provide an estimate of the RS dependence of

the missing higher orders. However, simply using a different scale choice could

dramatically reduce this error and change the prediction obtained.

We conclude that, although the ECH method is not suitable for all variables

and the PMS method predicts only a small difference for the tt̄ total cross-

section, it is still interesting to look at methods which improve fixed order

perturbation theory and decrease RS dependence without the need for non-

perturbative corrections.
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Appendix A

More details of the ECH

method

In this appendix we give more details of the derivation of (2.1.5) in Section

2.1. We start by differentiating the definition of an effective charge:

R(Q) = a(1 + r1a+ r2a
2 + . . . ) , (A.0.1)

with respect to lnQ, while setting µR = Q, which gives:

dR(Q)

d lnQ
= ρ(R(Q)) =

∂a

∂ lnQ
(1 + 2r1a+ 3r2a

2 + . . .)

= β(a)(1 + 2r1a+ 3r2a
2 + . . .) , (A.0.2)

β(a) is given in (1.2.18) and can be substituted in to give:

ρ(R(Q)) = −ba2(1 + ca+ c2a
2 + . . .)(1 + 2r1a+ 3r2a

2 + . . .)

= −ba2(1 + (c+ 2r1)a+ (c2 + 3r2 + 2cr1)a
2 + . . .) . (A.0.3)

The next step is to invert (A.0.1) to get a perturbative expansion for a in
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terms of R(Q). We assume that the expansion is of the form:

a(R) = R(1 + A1R+ A2R2 + . . .) , (A.0.4)

and then substitute in for R and compare terms in orders of a to find the

coefficients An:

a(R) = a(1 + r1a+ r2a
2 + . . .)(1 + A1a(1 + r1a+ . . .) + A2a

2(1 + . . .) + . . .)

= a(1 + r1a+ r2a
2 + . . .)(1 + A1a+ (A1r1 + A2)a

2 + . . .)

= a(1 + (A1 + r1)a+ (r2 + 2A1r1 + A2)a
2 + . . .) . (A.0.5)

Comparing coefficients gives:

A1 = −r1

A2 = −r2 − 2A1r1

= 2r21 − r2 , (A.0.6)

and so the expansion of a in terms of R(Q) is:

a(R) = R(1− r1R+ (2r21 − r2)R2 + . . .) . (A.0.7)

Substituting (A.0.7) into (A.0.3), and keeping the coefficients in (A.0.7) as
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An until the last line for clarity, gives:

ρ(R(Q)) = −bR2[1 + 2A1R+ (2A2 +A2
1)R2 + . . .]

× [1 + (c+ 2r1)R(1 +A1R+ . . .) + (c2 + 3r2 + 2cr1)R2(1 + . . .) + . . .]

= −bR2[1 + 2A1R+ (2A2 +A2
1)R2 + . . .]

× [1 + (c+ 2r1)R+ (cA1 + 2A1r1 + c2 + 3r2 + 2cr1)R2 + . . .]

= −bR2[1 + (2A1 + c+ 2r1)R+ (2A2 +A2
1 + cA1 + 2A1r1 + c2 + 3r2

+ 2cr1 + 2cA1 + 4A1r1)R2 + . . .]

= −bR2[1 + cR+ (r2 + c2 − r1c− r21)R2 + . . .] . (A.0.8)

Comparing this with (2.1.5) we see that:

ρ2 = r2 + c2 − r1c− r21 . (A.0.9)

If higher orders ofR are included the form of the higher coefficients in ρ(R(Q))

can be found. For example:

ρ3 = −6r1r2 + 4r31 + 2r3 + c3 − 2r1c2 + r21c . (A.0.10)

The ρn coefficients are manifestly RS invariant since both dR/d lnQ and

R(Q) are physical observables. We can explicitly show the RS-independence

of ρ2 by differentiating with respect to τ and c2, the two parameters that define

the RS at NNLO. Differentiating with respect to τ gives:

∂ρ2
∂τ

=
∂r2
∂τ

− c
∂r1
∂τ

− 2r1
∂r1
∂τ

. (A.0.11)

In Section 4.1 we derive expressions for ∂r2
∂RS

and ∂r1
∂RS

using the self-consistency
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of perturbation theory. We substitute them in here to give:

∂ρ2
∂τ

= (c+ 2r1)− c− 2r1 = 0 . (A.0.12)

Similarly, differentiating with respect to c2 and using the self-consistency con-

ditions gives:

∂ρ2
∂c2

=
∂r2
∂c2

+ 1− c
∂r1
∂c2

− 2r1
∂r1
∂c2

(A.0.13)

= −1 + 1 = 0 , (A.0.14)

and we see that ρ2 is indeed RS-invariant.
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Appendix B

Correction factors for n = 2, 3

event shape moments

The data of event shape moments used in this thesis are corrected for b and

c quark decays. The correction factors were calculated using HERWIG++

simulations [46, 47]. Samples of 106 events were run with Nf = 3 (only light

quarks) and also with Nf = 5 (with b and c quarks). The event shape moment

was calculated in both of these cases and a ratio of the two quantities was

taken to give a correction factor. This was done for each energy. The data

were then multiplied by the appropriate correction factors. The correction

factors for the means are shown in the main body of the text in Fig. 2.1. The

correction factors for the higher moments (n = 2 and 3) are shown in Figs.

B.1 and B.2.
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Figure B.1: Heavy quark mass correction factors for the n = 2 event shape
moments.
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Figure B.2: Heavy quark mass correction factors for the n = 3 event shape
moments.
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Appendix C

Saddle-point finding algorithm

This appendix describes the algorithm that was used in Chapter 4 to find the

stationary points of surfaces. We start by describing the Levenberg-Marquadt

algorithm in Section C.1, and then explain how this is adapted to a Secant

Levenberg-Marquadt approach which uses a BFGS update in Section C.2.

More details of the parameters used in the algorithm are given in Section

C.3. Further details of the algorithms which were used as the basis of our

program can be found in Refs. [72, 73].

C.1 Levenberg-Marquadt algorithm

The Levenberg-Marquadt algorithm uses a damping method to move in a

direction that is a mixture of a Gauss-Newton and a steepest descent step.

It can be used to find a minimum of a function in a non-linear least squares

problem. Consider a function, F , of the form:

F (x) =
1

2

m
∑

i=1

(fi(x))
2 =

1

2
f(x)Tf(x) , (C.1.1)



Saddle-point finding algorithm

where x is an n-dimensional vector. In the case of finding a saddle point on

a 2D surface, x has length 2 and contains the co-ordinates of a point on the

surface. The aim of the algorithm is to find the position of the minimum of

F , x∗.

The principal equation to determine the step taken in the Levenberg-

Marquadt algorithm is:

(J(x)TJ(x) + µI)hLM = −J(x)Tf(x) , (C.1.2)

where J is the Jacobian, µ ≥ 0 is the damping parameter which varies through-

out the algorithm (see below), and hLM is the Levenberg-Marquadt step. The

Jacobian is defined as:

(J(x))ij =
∂fi
∂xj

. (C.1.3)

When the damping parameter is large, and x is far from the minimum, a

short step is taken in the steepest descent direction:

hLM ≃ −JTf

µ
= −∇F (x)

µ
. (C.1.4)

When the algorithm is close to x∗, µ decreases and the step approaches the

Gauss-Newton direction:

hLM ≃ −JTf

JTJ
. (C.1.5)

This is also a descent direction but improves the convergence from linear to

nearly quadratic, provided that F (x∗) is zero or nearly zero.

Initially µ is chosen to be:

µ = τ ·maxi
(

(J(x0)
TJ(x0))ii

)

, (C.1.6)
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where x0 is the starting point for the algorithm, and τ is chosen by the user.

Generally τ should be chosen to be small (∼ 10−6) if x0 is thought to be close

to x∗, and larger (10−3 or 1) otherwise [72]. At the beginning of the algorithm

a parameter ν, which is used in the updating mechanism for µ, is assigned a

starting value of 2.

For each iteration of the algorithm the step is determined by solving (C.1.2).

A new x is then defined as:

xnew = x+ hLM . (C.1.7)

The function F is then evaluated at xnew. If the new value, F (xnew), is smaller

than F (x) the step is accepted, i.e. x is now assigned the value of xnew and

the Jacobian and f(x) are recalculated.

The value of µ is also updated and in order to do this the following quantity,

known as the ‘gain ratio’, is calculated:

ρ =
F (x)− F (xnew)

L(0)− L(hLM)
, (C.1.8)

where L is a linear model of F, where f(x+ hLM) is Taylor expanded to first

order:

F (x+ hLM) =
1

2
f(x+hLM)

Tf(x+ hLM)

≃ L(hLM) =
1

2
(f(x) + J(x)hLM)

T(f(x) + J(x)hLM)

= F (x) + hLM
TJ(x)Tf(x) +

1

2
hLM

TJ(x)TJ(x)hLM .

(C.1.9)
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From this we see that L(0) = F (x). The denominator of (C.1.8) is therefore:

L(0)− L(hLM) = −hLM
TJ(x)Tf(x)− 1

2
hLM

TJ(x)TJ(x)hLM

=
1

2
hLM

T(µhLM − J(x)Tf(x)) , (C.1.10)

where we have used (C.1.2) in the final step.

The gain ratio compares the difference in F over the step taken to the

difference in the linear model of F . If ρ is large L(hLM) is likely to be a

good approximation to F (x+ hLM). The Gauss-Newton method minimises

the linear model, so that:

L′(hGN) = JTf + JTJhGN = 0 . (C.1.11)

Therefore in the case of ρ being large µ should be decreased to give a next

step in the Levenberg-Marquadt algorithm that is close to hGN. Alternatively,

if ρ is small then the linear model is a poor approximation and µ should be

increased. The next step hLM will then be closer to that of steepest descent and

the step length will also be decreased. µ is therefore updated in the following

way:

µ = µ ·max

(

1

3
, 1− (2ρ− 1)3

)

. (C.1.12)

If F (xnew) > F (x), x is not updated to xnew and no new Jacobian or f(x)

is calculated. µ is increased to µ · ν so that the next step will be closer to that

of steepest descent. ν is also increased to 2ν. The next time a step is accepted

ν is set back to 2.

The algorithm is terminated by either one of two criteria. The first is if

F (x) falls below a certain value, Fmin, in which case the minimum is deemed

to have been found and the current value of x marks its position. The exact
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value that F (x) has to reach is decided upon by the user and will depend on

the function to be minimised. The second criterion terminates the algorithm,

without having found the minimum of F , if the step length falls below a small

value:

||hLM|| ≤ ǫ(||x||+ ǫ) , (C.1.13)

where ǫ is again chosen by the user.

C.2 Secant Levenberg-Marquadt algorithm

with a BFGS update

We now explain how the Levenberg-Marquadt algorithm, outlined in the pre-

vious section, is adapted to become a secant method. As we are using MCFM

(or Top++) to obtain cross-sections it is not possible to calculate the gradients

with respect to M and µR analytically. Instead, we replace the Jacobian with

a matrix B whose elements contain numerical derivatives. In this thesis we

generally use central difference gradients:

∂f

∂x
≃ f(x+ δ)− f(x− δ)

2δ
, (C.2.1)

rather than forward difference gradients. Although this requires more function

calls — 4 evaluations of f for gradients in 2 directions rather than 3 for forward

difference derivatives — it results in a more accurate estimation of the gradient.

Calculating numerical gradients requires many function calls for each x

so it is desirable to find a way to update B for a new value of x instead of

explicitly calculating it every time. A generalised secant method satisfies the

condition:

f(x) = f(xnew) +Bnew(x− xnew) . (C.2.2)
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This set of equations is underdetermined, and so there is some freedom to

choose a method of updating B in each iteration. In this thesis we have

chosen to use a BFGS (Broyden, Fletcher, Goldfarb, Shanno) update, which

preserves symmetry and positive definiteness in the original matrix B0. The

BFGS update states that B at xnew = x+ h is given by:

B(xnew) = B(x) +
yyT

yTh
− (B(x)h)(B(x)h)T

hTB(x)h
, (C.2.3)

where y = f(xnew)− f(x).

The BFGS update is usually used to update a Hessian matrix in quasi-

Newton methods.1 However, when looking for saddle points the function we

minimise is:

F (x) =
1

2

(

(

∂σ

∂ lnM

)2

+

(

∂σ

∂ lnµR

)2
)

, (C.2.4)

where x = (lnM, lnµR)
T. In the notation of (C.1.1):

f(x) =

(

∂σ

∂ lnM
,

∂σ

∂ lnµR

)T

. (C.2.5)

Therefore the Jacobian in (C.1.3) is:

J(x) =















∂2σ

∂(lnM)2
∂2σ

∂ lnµR∂ lnM

∂2σ

∂ lnM∂ lnµR

∂2σ

∂(lnµR)2















, (C.2.6)

which has the form of a Hessian. It is symmetric due to the commutativity of

partial derivatives and the BFGS update will preserve this.

In summary, the BFGS update reduces the number of function calls we

1Quasi-Newton algorithms look for solutions of H(x)h = −F
′(x), with H replaced with

a numerical approximation that is updated by a secant method.
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have to make per iteration. f(x) has to be calculated at each step, but the

approximation to J(x), given by B, only has to be found once at the start of

the algorithm. After this B is updated using (C.2.3).

C.3 Parameters used in the algorithm

In this section we give details of the parameters we used in our algorithm.

When calculating the central difference gradients, as defined in (C.2.1), a δ of

0.05 was generally used. Occasionally different values of δ were used but 0.05

was found to work most consistently.

For the bb̄ total cross-section the algorithm was run at a large range of

energies. It was therefore found convenient to consider derivatives with respect

to lnM and lnµR as defined in (C.2.4), and in addition to normalise the

gradients to a cross-section, i.e.:

F (x) =
1

2

(

(

1

σ(M,µR)

∂σ

∂ lnM

)2

+

(

1

σ(M,µR)

∂σ

∂ lnµR

)2
)

. (C.3.1)

This enables a value of Fmin, below which a stationary point is deemed to

have been found, to be chosen that can be consistently applied across a range

of energies where the cross-section varies by orders of magnitude. For the bb̄

analysis a value of Fmin = 10−5 was chosen. For a few energies a smaller value

of Fmin was also applied to check that the stationary points found in both cases

agreed.

Because the cross-sections calculated by MCFM have a statistical uncer-

tainty associated with them the surface generated is uneven. The algorithm

was therefore found to be fairly sensitive to the starting values ofM and µR. At

the lowest energy for the bb̄ total cross-section starting values of M = µR = 2

GeV and (M = 3, µR = 2) GeV were both found to give a stationary point.
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For the next energy up, M and µR from the previous energy were generally

used as the starting values. At higher energies, where the differences between

the energies considered increased, it was sometimes necessary to choose differ-

ent starting points before a stationary point was located. It was also noted

that if a stationary point was not located for a particular starting choice it

could sometimes be found by changing the value of τ used.

For the tt̄ total cross-section the algorithm was found to be much less

sensitive to the starting values chosen. For example, at 1.96 TeV starting

values of (M = 150, µR = 50) GeV, (M = mt, µR = 60) GeV, (M = 1100,

µR = 30) GeV and M = µR = mt were all found to give a stationary point at

∼ (110, 84) GeV. Since fewer energies were examined for this observable, Fmin

was chosen to be 10−6. When using Top++ there is no statistical uncertainty

and so the stationary points were generally found, using a built-in Nelder

Mead algorithm in Python, to have an F even smaller than this. As for the bb̄

cross-section the gradients with respect to lnM and lnµR were normalised to

a cross-section.
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