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Department of Physics

March 2017





Abstract

Experimentally determined Deep Inelastic Scattering structure functions have

been successfully described at small Bjorken-x using the dipole picture of the

scattering and leading order light cone perturbation theory. It is of interest whether

this description can be bettered by studying higher order perturbation theory

effects.

To improve the description, this work derives corrections to the Deep Inelastic

Scattering cross sections and structure functions at next-to-leading order in light

cone perturbation theory. To do this the framework of quantum field theory on the

light cone is introduced along with necessities of perturbation theory on the light

cone and the dipole picture of the scattering. The derived next-to-leading order

cross section result has a soft divergence that is regulated with a cut-off, which

then yields access to numerically evaluable cross sections and structure functions.

The next-to-leading order corrections are evaluated numerically and compared

to established leading order results. It is found that while the regularization works,

the divergence is over-subtracted leading to inviably large corrections to the leading

result. This leads to the next-to-leading order cross section and structure function

results becoming negative at high photon virtualities, which is unphysical. This

result shows that a more careful approach to the regularization is needed.
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Tiivistelmä

Syvän epäelastisen sironnan kokeellisia tuloksia on kuvattu onnistuneesti pie-

nillä Bjorkenin x:n arvoilla käyttämällä sironnan dipolimallia ja johtavan kerta-

luvun valokartiohäiriöteoriaa. On tärkeää selvittää, paraneeko teorian kuvaavuus

tutkimalla vaikutuksia korkeampien kertalukujen häiriöteoriasta.

Mittaustulosten kuvauksen parantamiseksi tässä työssä johdetaan korjauksia

johtavan kertaluvun vaikutusalaan ja rakennefunktioihin häiriöteorian toisessa ker-

taluvussa. Tämän toteuttamiseksi esitellään tarvittavassa määrin valokartiokvant-

tikenttäteoria, pienen Bjorken-x sironnan dipolimalli ja häiriöteoriaa. Johdettu toi-

sen kertaluvun vaikutusalala sisältää pehmeän divergenssin prosessin sisältämien

sisäisten gluonien takia. Tämä divergenssi katkaisu-reguloidaan, mistä saadaan

äärelliset numeerisesti laskettavat vaikutusalat ja rakennefunktiot.

Johdetut toisen kertaluvun korjaukset evaluoidaan numeerisesti ja verrataan

tunnettuihin johtavan kertaluvun tuloksiin. Regularisaatio havaitaan toimivaksi,

mutta katkaisu ei poista dirvergenssiä täysin ideaalisella tavalla, mikä johtaa koh-

tuuttoman suuriin toisen kertaluvun korjauksiin. Tämän seurauksena toisen kerta-

luvun vaikutusala ja rakennefunktio tuloksista tulee negatiivisia korkeilla fotonin

virtualiteeteilla, mikä on epäfysikaalista. Tämä tulos kertoo, että regularisaatioon

tarvitaan huolellisempi lähtestymistapa.
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Chapter 1

Introduction

Ever since the discovery of the electron in the experiments by W. Crookes, A.

Schuster, and J.J. Thomson in the late 19th century and the discovery of the proton

by E. Rutherford in 1917, particle collision experiments have become an essential

tool in particle and high energy physics. These experiments are an important

cornerstone of modern physics as they make it possible to probe the fundamental

dynamics of the elementary particles that constitute matter and radiation.

Important discoveries made in particle collision experiments in the last cen-

tury include the discovery of the neutron in 1930s which led to the discovery of

previously unknown fundamental forces, the weak force and the nuclear force, and

the internal structure of nucleons. Driven by both theorists and experimentalists

in the latter half of the 20th century a framework was developed that describes

these particles and their interactions, nowadays known as the Standard Model.

It has been incredibly successful in describing the strong, weak and electromag-

netic forces along with successful predictions for the existence of particles such as

the heavier bottom and top quarks found in 1977 and 1995, respectively, and the

recently discovered Higgs Boson.

This Thesis is concerned with recent theoretical advancements in the under-

standing of a specific particle collision process called the Deep Inelastic Scattering

(DIS). It is a relatively new process to study, being first tried in the 1960s and

1970s when it provided the first compelling evidence for the existence of quarks

at the Standford Linear Accelerator Center (SLAC) in 1968. In Deep Inelastic
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Scattering a high energy lepton, often an electron, is scattered of a hadronic tar-

get, e.g. a proton. ”Deep” in the name refers to the high energy of the probing

lepton – at high energy the de Broglie wavelength of the probe is smaller that

the size of the target making it possible to resolve internal features of the hadron.

”Inelastic” is in the name to specify that kinetic energy is transferred in the inter-

action, which would not happen in an elastic collision. Lastly, ”scattering” is the

general name for a physical process where a traveling particle is forced to deviate

from its trajectory in a collision.

As a high energy process Deep Inelastic Scattering is well suited for the per-

turbative approach often used by theorists in particle physics. Commonly quantum

chromodynamics (QCD) phenomena are studied perturbatively in the infinite mo-

mentum frame (IMF), which leads to the collinear factorization scheme and parton

picture. However, Deep Inelastic Scattering can be studied in an alternative frame,

the light cone frame, which leads to the dipole picture. The theory built in this

framework is perturbative as well but it is structured in a different way than the

perturbative QCD in the IMF. The DIS process has been calculated in leading

order (LO) in this light cone perturbation theory [1] with quite successful descrip-

tion of the data from e.g. the Hadron-Electron Ring Accelerator (HERA) at the

Deutsches Elektronen-Synchrotron (DESY).

We want to study the higher order perturbative effects to test the perturbation

theory against experimental data. Additionally, consistency of the theory is desired

so if a problem requires higher order perturbations for better description, it is good

to cross check whether the extension to higher orders of the perturbation theory

works for other problems. This leads us to study the next-to-leading order (NLO)

corrections to the Deep Inelastic Scattering in the light cone perturbation theory,

which is the topic of this Thesis.

In more technical terms the goal of this work is to compute next-to-leading

order corrections to the quark dipole model [2] of Deep Inelastic Scattering at

small Bjorken x, i.e. at very high collision energies. Due to the high energy scale

the lepton-hadron scattering factorizes into an emission of a virtual photon by

the lepton and an interaction between a virtual photon and the hadron, which at

leading order occurs via the photon fluctuating into a quark-antiquark pair. At

the next-to-leading order the process contains internal gluons and gluon loops in
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addition to the quark dipole.

The body matter of this Thesis has the following structure. In Chapter 2 the

Deep Inelastic Scattering, especially in the dipole picture, is introduced, along with

select details about the perturbation theory that are necessary for the calculation.

In Chapter 3 the theoretical calculations for the NLO corrections are carried out

following [3], and the results are then studied numerically in Chapter 4.
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Units and notation

The unit system used in this Thesis is the system of natural units commonly

used in high energy physics. In this system the speed of light, reduced Planck’s

constant and Boltzmann constant are set to unity: c = h̄ = kB = 1. This leads

to the simplification of many relations between units and in fact is convenient to

express mass, time, and length either in energy or reciprocal energy dimensions:

[length]−1 = [time]−1 = [mass] = [energy] = GeV.

When converting to and from SI units one then needs the relations:

1 eV = 11600 K = 1.60×10−19 J = 5.07×106 m−1 = 1.52×1015 s−1 = 1.78×10−36 kg,

or sometimes more conveniently

1 GeV = 5.0677 fm−1.

Notation-wise, four-vectors will be denoted by plain characters, such as x for

position. Two dimensional vectors will be used to describe quantities such as

particle positions and momenta in the transverse plane with respect to the beam

and they will be denoted by bold characters, such as x.
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Chapter 2

Deep Inelastic Scattering in

dipole picture

An important physical process in experimental high energy physics is the Deep

Inelastic Scattering. It enables testing of the theoretical approach of perturbative

quantum chromodynamics through experiment and it yields a way to study the

internal structure of hadrons through the parton distribution functions that can be

found from the total lepton-hadron cross section. Deep inelastic scattering played

a key part in the discovery quarks. Prior to the DIS experiments done at Stanford

Linear Accelerator Center there was no substantial compelling experimental evid-

ence for the reality of quarks and they were thought of as a mathematical tool by

many.

In DIS a lepton scatters inelastically off a hadron or a nucleus breaking the

target into other particles, depicted in Fig. 2.1. The interaction between the

lepton and target is mediated by a virtual photon emitted by the lepton. Quantum

Electrodynamics (QED) yields us a good understanding of this emission process

and so the interesting and challenging part of DIS is the scattering of the virtual

photon off the hadron or nucleus. Leptons are the probe of choice here due to

the simplicity of the virtual photon emission from the lepton. The challenges

in DIS arise from the virtual photon-hadron scattering due to the nature of the

target. In a laboratory frame where the hadron, or the target nucleus composed

of hadrons, has a large momentum the parton model applies and the target is
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Figure 2.1: Schematic of the lepton-proton deep inelastic scattering. The scattering is mediated
by a virtual photon.

composed of valence quarks, sea quarks, and gluons, whose dynamics are described

by Quantum Chromodynamics (QCD), and hence is markedly more complex entity

that the pointlike leptons. The frame in this picture of DIS is called the infinite

momentum frame.

For a quantifiable discussion of the scattering we will need to define some

Lorentz invariant kinematic variables. In the case of a proton target we set:

W 2 := (P + q)2 (2.1)

Q2 := −q2 = −(k − k′)2 (2.2)

x :=
Q2

2P · q =
Q2

Q2 +W 2 −m2
. (2.3)

Here, as shown in Fig. 2.1, P, k, k′, q are the four-momenta of the target, incom-

ing lepton, outgoing lepton and virtual photon, respectively. The variable W 2

describes the center of mass system total energy of the photon-proton scatter-

ing. In the case of the virtual photon that is off-shell, i.e. its four-momentum

squared is non-zero, the amount it differs from zero is called its virtuality, denoted

by Q2. Lastly the third variable is the so-called Bjorken x. In the infinite mo-

mentum frame it corresponds to the fractional momentum carried the parton that

the photon scatters from, with respect to the total momentum of the target.

In this work we will be studying DIS at small x in a regime where scattering

off multiple partons is important, and the above parton picture is problematic.

Additionally, since small x requires a large momentum from the photon, it can
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be useful to describe the scattering in a frame that is traveling at the speed of

light, where then the target has a small momentum. This calls for a suitable

replacement for the parton picture, which is the dipole picture, and a formulation

of the quantum field theory that works in such a frame.

2.1 DIS at small x: the Color Glass Condensate

and the Dipole Picture

At small x in the infinite momentum frame at very high energies the target proton

becomes highly Lorentz-contracted in the forward direction, i.e. a ”pancake”. In

this kinematic regime the partons of the target have comparatively large-x and

and as such become color sources by emitting soft, i.e. small-x, gluons, which

go on emitting more soft gluons. This leads to a picture of the target where it

consists essentially of high density small-x gluon matter. This is the Color Glass

Condensate (CGC) model [4, 5] in which the hadronic matter is modeled as a semi-

classical color field that consists of classical color sources radiating soft gluons [2].

Now let us study the scattering of a virtual photon from this CGC color field

in the target proton’s rest frame. Since the target is a color field that does not

contain any electrical charge, the incoming virtual photon cannot see the target

by itself. It turns out that in this regime the lifetime of a fluctuation of the

photon into a quark-antiquark pair is significant in comparison to the target’s size

[2]. This leads to the dipole picture of DIS where in the dominating process the

photon scatters from the color field by fluctuating into a quark-antiquark color

dipole that interacts with the color field.

It is assumed that the quarks or the dipole scatter from the color field inde-

pendently, during which the quark’s transverse position can vary very little. The

amount the position can change is ∆xT ∼ RkT/E, where R is the longitudinal size

of the target, kT the change in transverse momentum obtained in the scattering,

and E is the target rest frame energy of the quark dipole. One arrives at this

approximation by considering the transverse distance ∆xT the quark travels over

the longitudinal size of the target R after it is deflected by a small angle θ as it

hits the target. This yields ∆xT ∼ θR and from kinematics one gets θ ∼ kT/E,
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(a) LO (b) NLO

Figure 2.2: Simple schematics of the virtual photon-proton scattering. The second diagram
shows one of the many possible NLO scattering processes.

yielding the above result. By calculating the Lorentz invariants (2.1) – (2.3) in the

target rest frame, it is easy to see that at small x the energy of the dipole E ∼ 1/x

is much larger than any other momentum scale in the problem. This means that

at small x the transverse positions of the quarks are virtually unchanged, which

justifies the approximation that the quark transverse position does not change in

the scattering process. This is called the eikonal approximation and in other words

it just assumes that the path of the quark through the color field is a straight line.

With the eikonal approximation the only effect the quarks undergo in the scat-

tering off the color field is a color precession by a Wilson line [5], which will be

quantified in Section 3.4. Lastly, after the dipole has scattered, it recombines into

the end product of the scattering. The product considered here is a photon since

we are calculating the cross section using the optical theorem which states that the

total cross section of the photon-proton scattering is proportional to the forward

elastic photon-proton scattering amplitude.

Since the path of the quark in the scattering process is a straight line, a con-

venient way to parametrize the problem is to use the longitudinal momenta and

the positions of the particles in the transverse plane to describe the state. This will

be called the mixed-space representation. We will see in Section 2.3 that our initial

perturbation theory expansion will yield the incoming state wavefunction in mo-

mentum space and so we will need to concern ourselves with Fourier transforming

the expansion result into this mixed space.

So, to summarize, at small x the deep inelastic scattering proceeds as follows.

The lepton emits the virtual photon that then fluctuates into a quark-antiquark
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pair. This color dipole then scatters elastically from the target and recombines

into a photon. This leading order scattering is shown schematically in Fig. 2.2a

and a contribution to the scattering process at next-to-leading order is shown in

Fig. 2.2b.

The leading order result for the polarized cross section of this scattering is well

known and has an especially handy form, for the virtual photon splitting process

and the quark dipole scattering process factorize into their own terms [6]:

σγ∗T,L =
∑
f

∫
d2r

∫ 1

0

dz
∣∣Ψγ∗→qq̄

T,L (x, z, f)
∣∣2σqq̄(r), (2.4)

where T and L denote the virtual photon’s transverse and longitudinal polariz-

ations, respectively. Here the first factor of the integrand is the squared wave

function of the photon splitting, which describes the role of the splitting in the

scattering in its entirety and the second factor is the so-called dipole cross sec-

tion, describing the scattering the quark dipole from the target. Thus the photon

splitting, a well understood QED process, and the complicated strong interaction

factorize neatly. The convenience of this factorization is the fact that if one can

solve for the dipole cross section, one can apply the result in other problems that

factorize similarly. Proposed other applications of this factorization include dif-

fractive structure functions [1], deeply virtual Compton scattering, and exclusive

vector meson production [7].

The theoretical part of this thesis is essentially the derivation of a generaliza-

tion of the leading order result (2.4) up to next-to-leading order in perturbation

theory, following the method used in [3]. This goes roughly as follows: Taking

the results of the Light Cone Quantum Field theory and perturbation theory, dis-

cussed in Sections 2.2 and 2.3, we can calculate the wavefunction of the splitting

of the incoming photon up to next-to-leading order in perturbation theory. With

this splitting wavefunction
∣∣γ∗T,L〉 then we then can calculate the polarized cross

sections roughly as σ ∼
〈
γ∗T,L

∣∣ 1− ŜE ∣∣γ∗T,L〉 with the optical theorem and eikonal

approximation which are discussed in quantified terms in Sections 2.3 and 3.4,

respectively. In the numerical part of this work the calculated cross sections are

evaluated and analyzed in Section 4.
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2.2 Light Cone Quantum Chromodynamics

The perturbative QCD calculations of this work are carried out using the Light

Cone Perturbation Theory (LCPT), where the Lorentz frame of the system is

chosen to have velocity v = 1, as we can’t do a Lorentz boost from a regular frame

to get there. The properties of this formalism necessary for our calculations are

introduced in this section. Much of this follows the comprehensive review article

on the topic by S.J. Brodsky et al. [8], however a more pedagogical introduction

to the topic can be found in the textbook [2].

Let x = (x0, x1, x2, x3) be a 4-vector of the regular instant quantum field theory

and gµν the standard Minkowski metric of special relativity

gµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

. (2.5)

The light cone 4-vector is then defined as x = (x+, x1, x2, x−), where x+ :=
1√
2
(x0 + x3) is called the light cone time and x− := 1√

2
(x0 − x3). The metric

in the new frame becomes

gµν =


0 0 0 1

0 −1 0 0

0 0 −1 0

1 0 0 0

 . (2.6)

An inner product in these coordinates is then x · y := gµνx
µyν = x+y− + x−y+ −

x1y1 − x2y2.

In this coordinate system a 4-momentum is p = (p+, p1, p2, p−). The fourth

component p− is called the light cone energy as it contracts with the light cone

time x+ in the inner product and p+ is the forward momentum. As we have

m2 = p2, we can solve the light cone energy

p− =
m2 + p2

T

2p+
=

p2
T

2p+
, (2.7)
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where the second equality holds for massless particles and pT = (p1, p2) is the

transverse momentum. Let us further define the fractional longitudinal momentum

z = k+

q+
for our intermediate particles, where k+ and q+ are the light cone longitud-

inal momentum of the the intermediary particle and incoming photon respectively.

To quantize the field theory, we will need the parton Fock state creation and

annihilation operators of the theory. They are b†, b for quarks, d†, d for anti-quarks,

a†, a for gluons and a†γ, aγ for the photon. Their creation and annihilation operators

commute or anti-commute in the following way:

(2.8)

{
b(x′, k′

+
, h′, A′, f ′), b†(x, k+, h, A, f)

}
=
{
d(x′, k′

+
, h′, A′, f ′), d†(x, k+, h, A, f)

}
= (2π)32k+δ

(
k+ − k′+

)
δ(2)(x− x′)δh,h′δA,A′δf,f ′

[
a(x′, k′

+
, λ′, a′), a†(x, k+, λ, a)

]
=(2π)32k+δ

(
k+ − k′+

)
δ(2)(x− x′)δλ,λ′δa,a′ . (2.9)

Here x is the transverse coordinate of the particle, k+ forward light-cone mo-

mentum, h, λ helicities for fermions and photons respectively, f flavor and A, a

the fundamental and adjoint color indices respectively. One gets these commuta-

tion relations from the similarly normalized momentum space relations with the

Fourier transform relation:

b†
(
k+,x

)
=

∫
d2k

2π
e−ik·xb†

(
k+,k

)
, (2.10)

which has the inverse transformation relation

b†
(
k+,k

)
=

∫
d2x

2π
eik·xb†

(
k+,x

)
. (2.11)

Antiquark and gluon operators have similar transformation relations as the quark

creation operator b† written out above. These Fourier transformations use the

symmetric 1D normalization of (2π)−1/2 which then in 2D yields the above nor-

malization. With the above Fock state parton operators we can write the canonical
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decompositions of the free fields for a fermion Ψ and a gauge field A:

ΨαAf (x) =
∑
h

∫
dp+d2pT
2p+(2π)3

(
b(q, h, A, f)uα(p, h)e−ip·x + d†(q, h, A, f)vα(p, h)e+ip·x),

(2.12)

Aaµ(x) =
∑
λ

∫
dp+d2pT
2p+(2π)3

(
a(q, λ, a)εµ(p, λ)e−ip·x + a†(q, λ, a)ε∗µ(p, λ)e+ip·x).

(2.13)

The normalization factor of the free fields above differs from the one used in [8]

due to the choice of the anti-commutator normalization.

Lastly one needs the interaction terms of the light-cone Hamiltonian to calcu-

late the vertex rules used in Sections 3.1 and 3.2. The QED interaction part of

the Hamiltonian is [8]

P−QED = e

∫
dx−d2xT Ψ̄ /AΨ +

e2

2

∫
dx−d2xT Ψ̄γ+Ψ

1

(i∂+)2 Ψ̄γ+Ψ (2.14)

+
e2

2

∫
dx−d2xT Ψ̄ /A

γ+

i∂+
/AΨ, (2.15)

where the Feynman slash notation /A := Aµγ
µ was used. Here the first term

describes an interaction of the form γff̄ and the latter two interactions of the

type fff̄ f̄ and ff̄γγ. Out of these interaction types we will only need to be

concerned with the first one which we will run into when the virtual photon splits

into a quark and an antiquark.

For the QCD interaction term it is convenient to make the following definitions:

jνa(x) := Ψ̄γνT aΨ,

χνa(x) := fabc∂νAµbA
c
µ,

Jνa (x) := jνa(x) + χνa(x),

Bµν
a := fabcAµbA

ν
c ,

where T a are the generators and fabc are the structure constants of the su(3)

group. With these definitions the QCD interaction term of the Hamiltonian can
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be written as [8]:

P−QCD = g

∫
dx−d2xTJ

µ
aA

a
µ

+
g2

4

∫
dx−d2xT B

µν
a B

a
µν

+
g2

2

∫
dx−d2xT J

+
a

1

(i∂+)2J
+
a

+
g2

2

∫
dx−d2xT Ψ̄γµT aAaµ

γ+

i∂+

(
γνT bAbνΨ

)
. (2.16)

Here the first term describes the interaction gqq̄ which we will need for the vertex

rule of the gluon emission which will take place in some of the possible next-to-

leading order diagrams. The rest of the terms describe the gluon self-interactions

ggg and gggg along with multiple instantaneous fork interactions of the type ggqq̄,

which we will not need in this work. Here by fork interaction we are referring to

the interactions where the parton number changes instantaneously by two, such

as the ones shown in the Figs. 3.2c and 3.2d. For the vertex rule for these two

interactions, we will need a mixed QED/QCD Hamiltonian term term that leads

to the fork interaction γqq̄g that is relevant in this scattering problem at next-to-

leading order accuracy.
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2.3 Perturbation theory on the light cone

In this section we present the necessities of perturbation theory on the light cone

that we need to be able to calculate the cross sections. We will want to expand

the wavefunction of the incoming photon in the Fock state basis for free on-shell

partons at the instant of the collision with the target x+ = 0. In order to describe

the evolution of the state, we will need the full Hamiltonian on the light cone:

P− = T + P−int = T + U , (2.17)

where T is the free part and the interaction part from above was renamed for

convenience. In the interaction picture the light cone time evolution of operators

is generated by T ; for the interaction operator U the time evolution can be written

as

UI(x+) = eiT x
+UI(0)e−iT x

+

. (2.18)

Then with this we can express the time evolution of a quantum state |iI〉 from a

time x1 to x2 with the time ordered exponential operator:

∣∣iI(x+
2 )
〉

= P exp

(
−i
∫ x+2

x+1

dx+UI(x+)

)∣∣iI(x+
1 )
〉
. (2.19)

We want to express this time evolution as an expansion in terms of a Fock state

basis, that will be the parton Fock states. Our incoming virtual photon is an

asymptotic state
∣∣iI(x+

1 → −∞)
〉

and we want the scattering product state at

collision instant to coincide with the Heisenberg picture:
∣∣iI(x+

2 = 0)
〉

= |iH〉. To

do the expansion we must first write out the time ordered exponential:

(2.20)

P exp

(
−i
∫ x+2

x+1

dx+UI(x+)

)

=
∞∑
n=0

(−i)n
n!

∫ x+

x+0

dx+
1 dx

+
2 · · · dx+

n T̂
[
UI(x+

1 ) · · · UI(x+
n )
]

=
∞∑
n=0

(−i)n
∫ x+

x+0

dx+
1

∫ x+1

x+0

dx+
2 · · ·

∫ x+n−1

x+0

dx+
nUI(x+

1 ) · · · UI(x+
n ),
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where T̂ is the time ordering operator and the time ordering was undone at the

second equality. Now plugging the expanded time ordered exponential (2.20) into

the state evolution (2.19) and inserting the completeness relation of the Fock basis∑
F |F〉 〈F| = 1 before, after, and in between the interaction operators we get

(2.21)
|iH〉 =

[
∞∑
n=0

(−i)n
∑
Fn

· · ·
∑
F0

∫ 0

−∞
dx+

1

∫ x+1

−∞
dx+

2 · · ·
∫ x+n−1

−∞
dx+

n |Fn〉 〈Fn|

UI(x+
1 ) |Fn−1〉 〈Fn−1| · · · |F1〉 〈F1| UI(x+

n ) |F0〉 〈F0|
]
|iI(−∞)〉 .

Now only thing remaining is to compute the nested integrals. However, these

are not convergent as is in our asymptotic model and we must assume that the

perturbation takes place adiabatically slowly:

UI(x+
n )→ UI(x+

n )eεx
+
n ,

where ε > 0.

Let us resolve these nested integrals by making a helpful iteration. First we

look at the innermost integration of a term of order n, neglecting the summations

over the basis for now:∫ x+n−1

−∞
dx+

n 〈F1| UI(x+
n ) |F0〉 =

∫ x+n−1

−∞
dx+

n 〈F1| eiT x
+
nUI(0)e−iT x

+
n eεx

+
n |F0〉

= 〈F1| UI(0) |F0〉
∫ x+n−1

−∞
dx+

n e
i(TF1−TF0−iε)x

+
n

= 〈F1| UI(0) |F0〉
1

i(TF1 − TF0 − iε)
ei(TF1−TF0−iε)x

+
n−1 ,

(2.22)

where TFi is the eigenvalue of T on |Fi〉 and the integral converged at the lower

limit thanks to the adiabatic weight. Plugging this back into (2.21) and repeating

15



this self-similar recursive integration process n times in the nth term one gets

(2.23)

|iH〉 =
∞∑
n=0

(−i)n
∑
Fn

· · ·
∑
F0

|Fn〉
1

i(TFn − TF0 − iε)
〈Fn| UI(0) |Fn−1〉

× · · · × 1

i(TF1 − TF0 − iε)
〈F1| UI(0) |F0〉 〈F0|iI(−∞)〉

=
∑
F0

〈F0|iI(−∞)〉
[
|F0〉+

∞∑
n=1

∑
Fn

· · ·
∑
F1

|Fn〉
1

(TF0 − TFn + iε)

〈Fn| UI(0) |Fn−1〉
1

(TF0 − TFn−1 + iε)
〈Fn−1| UI(0) |Fn−2〉

× · · · × 〈F2| UI(0) |F1〉
1

(TF0 − TF1 + iε)
〈F1| UI(0) |F0〉

]
,

which finally is the result we can use.

The Fock basis used here is in momentum-space where T is diagonal, which it

would not be in the mixed-space where we would like to represent the scattering

amplitudes for the calculation of the cross sections. Therefore for our use case we

must Fourier transform the momentum-space parton operators into mixed-space

representation via the relation (2.11).

Once the perturbative state is known in mixed space one gets the scattering

cross section by optical theorem

(2.24)σγT,L[A] =
1

2πq+δ(q′+ − q+)
Re
(
NLO

〈
γ∗T,L

∣∣ 1− ŜE ∣∣γ∗T,L〉NLO),
where ŜE is the eikonal scattering operator [3].
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Chapter 3

From photon splitting amplitudes

to computable cross sections

The general structure of the theoretical calculations done in this chapter consist

of three main parts. First we start from the perturbation theory discussed in

Section 2.3 and calculate the splitting amplitude of the virtual photon in leading

and next-to-leading order, which is done in Sections 3.1 and 3.2, respectively. To

do this one starts by writing the momentum-space Fock basis expansion (2.23) for

the virtual photon to either LO or NLO and then Fourier transforming this into

mixed-space. With these wavefunctions one can then calculate the cross sections

which is done in Section 3.4. Lastly, the cross sections will have divergences which

are regulated in Section 3.5. This chapter follows the work done in [3].

3.1 Virtual photon splitting at leading order

Let us first briefly go through the leading order perturbation theory calculation

to get a grasp on the procedure. In the leading order there is only one diagram

relevant to the process, shown in Fig. 3.1.

At the leading order of the perturbative expansion (2.23) the photon splitting

amplitude is

|γ∗〉
LO

=
∑

qq̄ states

〈qq̄| ˆUI(0) |γ∗〉
∆k−

|qq̄〉 , (3.1)

17



q+, Q2, λ

k0 or x0, k
+
0 , . . .

k1 or x1, k
+
1 , . . .

Figure 3.1: The leading order diagram for the photon splitting into the quark-antiquark dipole.

where Û is the interaction operator of the theory, ∆k− is the difference in light

cone energy between the initial and final states, and the sum is taken to be over

all the possible quark-antiquark configurations. To calculate this, we need the the

vertex rules for the photon splitting, that are derived from the QED interaction

Hamiltonian (2.14) discussed in Section 2.2. This derivation of the vertex rules

has been done in [3] and is a bit more involved than in covariant quantum field

theory where the leptonic tensor factorizes out straightforwardly. This is because

in the light cone formalism there are no virtual particles or longitudinally polarized

photons.

First, let the incoming photon have longitudinal momentum q+, virtuality Q2

and polarization λ and the final state quark and antiquark have the indices 0 and

1 respectively, so that the annihilation and creation operators have the following

arguments:

aγ := aγ(q
+, Q2, λ)

b := b(k+
0 ,k0, h0, A0, f)

d := d(k+
1 ,k1, h1, A1, f),

where hi are the helicities, Ai the colors and f the flavor of the particles. Further-

more, let us denote the interaction operator of the theory at x+ = 0 by V̂ := ÛI(0).

The vertex rules, derived in [3], for the photon splitting to a quark and an

antiquark depend on the polarization of the photon – for the transversely polarized

18



photon we have:

〈0| dbV̂ a†γ |0〉 = (2π)3δ
(
k+

0 + k+
1 − q+

)
δ(k0 + k1 − q)eef0δf0,f1δA0,A1δh0,−h1

×
√

4k+
0 k

+
1 ελ ·

[
q

q+
−
(

1 + 2h0λ

2

)
k1

k+
1

−
(

1− 2h0λ

2

)
k0

k+
0

]
,

(3.2)

and for the longitudinal photon we have an effective vertex rule:

〈0| dbV̂ a†γ |0〉 = (2π)3δ
(
k+

0 + k+
1 − q+

)
δ(k0 + k1 − q)eef0δf0,f1δA0,A1δh0,−h1

×
√

4k+
0 k

+
1

Q

q+
, (3.3)

where in addition to the longitudinal and transverse momenta we have the para-

meters f for quark flavor, A for color and h for helicity.

In the light cone formalism the dipole production can happen via two distinct

routes: either the lepton emits a transverse photon which then fluctuates into the

quark dipole or the dipole is produced in an instantaneous lepton to lepton, quark

and antiquark interaction where the leptonic and quark currents Coulomb interact

directly. The former process is obviously associated with the former vertex rule

above whereas the latter is interpreted to be mediated by a longitudinal photon,

yielding the latter effective vertex rule. This is discussed in better detail in [3].

Lastly, we need to understand what is actually meant by the sum over the final

states: each quark has some transverse and longitudinal momenta, in addition to

the relevant discrete quantum numbers: helicity, color and flavor. This means that

the sum over end states implies integrations over the momenta with appropriate

normalization and sums over the quantum numbers, i.e.

∑
qq̄ states

 
∑

h0,A0,f0

∑
h1,A1,f1

∫
dk+

0

2π2k+
0

∫
d2k0

(2π)2

∫
dk+

1

2π2k+
1

∫
d2k1

(2π)2
. (3.4)

With the above considerations we can write out the splitting amplitude (3.1),
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which becomes for the transverse polarization:

∣∣γ∗T (q+, Q2)
〉
LO

=
∑

h0,A0,f0

∑
h1,A1,f1

∫
dk+

0

2π2k+
0

∫
d2k0

(2π)2

∫
dk+

1

2π2k+
1

∫
d2k1

(2π)2

× (2π)3δ
(
k+

0 + k+
1 − q+

)
δ(k0 + k1 − q)eef0δf0,f1δA0,A1δh0,−h1

×
√

4k+
0 k

+
1 ελ ·

[
q

q+
−
(

1 + 2h0λ

2

)
k1

k+
1

−
(

1− 2h0λ

2

)
k0

k+
0

]
× 1

∆k−
b†(k+

0 , ..)d
†(k+

1 , ..) |0〉

=
e

2 · 2π

∫
dz0√
z0

∫
dz1√
z1

δ(z0 + z1 − 1)

∫
d2k0

(2π)2

∑
h0

[z1 − z0 − 2h0λ]

× ελ · k0

z0z1Q2 + k2
0

×
∑
f0

ef0
∑
A0

b†(k+
0 , ..)d

†(k+
1 , ..) |0〉 ,

(3.5)

where we needed the following relations stemming from the kinematics of the

system, q = 0:

∆k− = − Q2

2q+
− k−0 − k−1 = − 1

2q+z0z1

(
z0z1Q

2 + k2
0

)
and [

q

q+
−
(

1 + 2h0λ

2

)
k1

k+
1

−
(

1− 2h0λ

2

)
k0

k+
0

]
=

k0

2q+z0z1

[z0 − z1 + 2h0λ].

In a similar vein we get for the longitudinal photon splitting the amplitude

(3.6)
|γ∗L〉LO = − e

2π

∫
dz0√
z0

∫
dz1√
z1

δ(z0 + z1 − 1)

∫
d2k0

(2π)2

× z0z1Q
2

z0z1Q2 + k2
0

×
∑
f0

ef0
∑
h0,A0

b†(k+
0 , ..)d

†(k+
1 , ..) |0〉 .

We need the amplitude in the mixed-space of particle positions and fractional mo-

menta in order to apply the eikonal approximation, so next the above amplitudes

must the Fourier transformed from momentum-space into the mixed-space. For
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this we need the operator Fourier transformation relation (2.11) and two integra-

tion formulae that can be found in [3]:∫
d2k

2π

eik·x

Q2 + k2
kµ = i

xµ

|x|QK1(Q|x|) (3.7)∫
d2k

2π

eik·x

Q2 + k2
= K0(Q|x|), (3.8)

where K0(x) and K1(x) are modified Bessel functions of the second kind. Carrying

out the Fourier transform the wavefunctions of either polarization of the photon

get a shared structure:

F
∣∣γ∗T,L〉LO =

e

2

∫ ∫
dz0√
z0

dz1√
z1

δ(z0 + z1 − 1)

∫ ∫
d2x0

(2π)2

d2x1

(2π)2

×
∑
h0

ΦLO
T,L(Q2,x0,x1, z0, z1, (h0, λ)

∑
f

ef×
∑
A0

b†(k+
0 , ..)d

†(k+
1 , ..) |0〉 ,

(3.9)

where the polarization dependent factors are

ΦLO
T (Q2,x0,x1, z0, z1, h0, λ) = i[z1 − z0 − 2h0λ]

ελ · x01

|x01|2
·Q
√
z0z1x2

01K1

(
Q
√
z0z1x2

01

)
(3.10)

ΦLO
L (Q2,x0,x1, z0, z1) = −2z0z1QK0

(
Q
√
z0z1x2

01

)
. (3.11)

The result for the splitting wavefunction (3.9), along with (3.10) and (3.11), match

the results calculated in [9] when one neglects the quark masses and takes into

account the different normalization and notation.

It turns out in Section 3.4 that in order to calculate the photon cross sections,

we will need the above factors, (3.10) and (3.11), squared and summed over the

relevant set of quantum numbers, which is the helicity of the quark h0 in the

longitudinal case and the helicity and the photon polarization λ in the transverse

case. The so-called impact factors are defined as

ILOL (Q2,x0,x1, z0, z1) :=
1

2

∑
h0

∣∣ΦLO
L (Q2,x0,x1, z0, z1)

∣∣2 (3.12)
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ILOT (Q2,x0,x1, z0, z1) :=
1

4

∑
h0,λ

∣∣ΦLO
T (Q2,x0,x1, z0, z1, h0, λ)

∣∣2, (3.13)

where the prefactors contain an additional factor of 1/2 by convention, as in [3],

in addition to the 1/2 in the transverse case arising from the averaging over the

photon polarizations λ = ±1. Applying the impact factors with this convention

at the cross section phase then includes a corresponding scaling by two. As the

splitting amplitude of the longitudinally polarized photon is independent of the

quark helicity the impact factor simply becomes

ILOL (Q2,x0,x1, z0, z1) = 4z0z1Q
2K0(Q

√
z0z1x01)

2
. (3.14)

For the transverse polarization of the photon the functional structure of the cross

section will turn out to be more complex and we’ll need to know that the polariz-

ation vector ελ satisfies a relation∑
λ∈{−1,1}

εi∗λ ε
j
λ = δij, (3.15)

with which we can compute that∑
h0,λ

[z1 − z0 − 2h0λ]2(ε∗λ · x01)(ελ · x01) = 4
(
z2

0 + z2
1

)
x2

01,

which yields us the result

ILOT (Q2,x0,x1, z0, z1) =
(
z2

0 + z2
1

)
z0z1Q

2K1(Q
√
z0z1x01)

2
. (3.16)

The results (3.14) and (3.16) will be needed in the Section 3.4 where we will

calculate the cross section of the photon-color field scattering.

Above we saw the outline how the photon splitting amplitude is calculated in

the leading order using light cone quantum field theory. In the next section we

will head right into the main work of this thesis, where we will go through the

calculation in next-to-leading order accuracy.
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3.2 Virtual photon splitting at next-to-leading

order

In this section the next-to-leading order wavefunction of the virtual photon fluc-

tuating into a quark-antiquark-gluon state is calculated. This is carried out by

starting from the second order in the perturbative expansion (2.23) and calculat-

ing the NLO wavefunction for the quark-antiquark-gluon qq̄g production which is

then Fourier transformed into mixed space.

The qq̄g production from the initial virtual photon can take place via four

different processes, shown in Fig. 3.2. Just like in LO, both a transverse and

longitudinal photon can first decay into the quark-antiquark pair in a QED pro-

cess and then either one of the quarks then emits the gluon. Alternatively, the

transverse photon can decay in an instantaneous QED/QCD process straight into

the qq̄g triplet. The former case then has the intermediate state of a quark and

an antiquark whereas the latter does not.

Similarly to the LO case, let the incoming photon have longitudinal momentum

q+, virtuality Q2 and polarization λ and the final state quark, antiquark, and gluon

have the indices 0, 1, and 2, respectively, so that the annihilation and creation

operators have the following arguments:

aγ := aγ(q
+, Q2, λ)

b := b(k+
0 ,k0, h0, A0, f)

d := d(k+
1 ,k1, h1, A1, f)

a := a(k+
2 ,k2, λ2, a),

(3.17)

where hi are the helicities, Ai, a the colors and f the flavor of the particles. Ad-

ditionally for the states that have an intermediate quark or antiquark, we will

give the intermediate particle’s arguments the indices i and j, for a quark and an

antiquark respectively, to differentiate them from their final state counterparts.

Lastly denote the interaction operator of the theory at x+ = 0 by V̂ := ÛI(0).

Then by writing out the perturbative expansion (2.23) up to the second order the
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γ∗
T/L

0 i 2

(a)

γ∗
T/L

0 j 2

(b)

γ∗
T

0 2

(c)

γ∗
T

0 2

(d)

Figure 3.2: The four possible real process diagrams to be considered in the next-to-leading
order calculation. In figures (a) and (b) the virtual photon first splits in a QED process into
the quark-antiquark pair after which either of the quarks emits a gluon. In figures (c) and (d)
the quark-anti-quark-gluon end state is reached at once in an instantaneous QED/QCD process.
The diagrams are ordered horizontally in light cone time x+, the initial state x+ = −∞ being on
the left edge of each diagram and the interaction instant x+ = 0 being on the right. The dashed
lines denote Fock states in the diagrams relevant for the calculation. Initial and final states are
denoted by 0 and 2, respectively, and in figures (a) and (b) the intermediate states before the
gluon emission are denoted by i and j for the quark and antiquark emission cases, respectively.
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wavefunction of the splitting can then be written as

∣∣γ∗(q+, Q2)
〉
qq̄g

=
∑

qq̄g,(qq̄)l

|qq̄g〉 〈qq̄g| V̂ |qq̄〉l l〈qq̄|V̂ |γ
∗〉

∆k−02∆k−0l
+
∑
qq̄g

|qq̄g〉 〈qq̄g| V̂ |γ
∗〉

∆k−02

=
∑
qq̄g

b†d†a† |0〉
∆k−02

∑
q̃

〈0| abV̂ b̃†i |0〉 〈0| db̃iV̂ a†γ |0〉
∆k−0i

+
∑

˜̄q

〈0| adV̂ d̃†j |0〉 〈0| d̃jbV̂ a†γ |0〉
∆k−0j

+ 〈0| adbV̂ a†γ |0〉

 .
(3.18)

The denominators ∆k−kl are the energy differences between the states k and l.

As denoted in Fig. 3.2 the states have the following indices: 0 for initial, 2 for

final, i for the intermediary quark and j for the intermediate antiquark state. The

total energy of a state l is denoted as k−l(tot). With this convention the energy

denominators become:

∆k−0i := k−0(tot) − k−i(tot) = − Q2

2q+
− k−1 − k−i

∆k−0j := k−0(tot) − k−j(tot) = − Q2

2q+
− k−0 − k−j

∆k−02 := k−0(tot) − k−2(tot) = − Q2

2q+
− k−2 − k−1 − k−0 ,

where now on the rightmost side the energies are those the constituent particles

of the state with the naming convention set in (3.17). Defining the fractional

momentum zl := k+
l /q

+ and using the fact that the longitudinal and transverse

momenta are preserved individually, i.e. q+ = k+
1 + k+

i and 0 = q = k1 + ki, we

can write

∆k−0i = − 1

2q+

1

z1(1− z1)

(
z1(1− z1)Q2 − k2

1

)
(3.19)

∆k−02 = − 1

2q+

(
Q2 +

k2
0

z0

+
k2

1

z1

+
k2

2

z2

)
, (3.20)

and similarly for the intermediate antiquark.

To calculate the qq̄g production amplitude (3.18), we need the vertex rules (3.2)
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and (3.3) like in the leading order, the instantaneous QED/QCD production for a

transverse photon and gluon emission from either the quark or the antiquark. The

rules can be found in [3]. The instantaneous production vertex for the transverse

photon is

〈0| adbV̂ a†γ |0〉 = (2π)3δ
(
k+

0 + k+
1 + k+

2 − q+
)
δ(k0 + k1 + k2 − q)eef0δf0,f1δh0,−h1

× g(T a)A0A1

√
4k+

0 k
+
1 δλ,λ2

[
δλ,−2h0

q+ − k+
1

− δλ,2h0
q+ − k+

0

]
, (3.21)

and the vertex rule for the gluon emission from the quark is:

〈0| abV̂ b†i |0〉 = (2π)3δ
(
k+

0 + k+
2 − k+

i

)
δ(k0 + k2 − ki)δfi,f0δhi,h0g(T a)A0Ai

×
√

4k+
i k

+
0 ελ2 ·

[
k2

k+
2

−
(

1 + 2h0λ2

2

)
k0

k+
0

−
(

1− 2h0λ2

2

)
ki
k+
i

]
, (3.22)

and from the antiquark:

〈0| adV̂ d†j |0〉 = (−1)(2π)3δ
(
k+

1 + k+
2 − k+

j

)
δ(k1 + k2 − kj)δfj ,f1δhj ,h1g(T a)AjA1

×
√

4k+
j k

+
1 ελ2 ·

[
k2

k+
2

−
(

1 + 2h0λ2

2

)
k1

k+
1

−
(

1− 2h0λ2

2

)
kj
k+
j

]
. (3.23)

In equation (3.18) the formal sum over all possible qq̄g end states entails a

summation over the number of partons of each type present in the Fock state and

for each parton there is a sum over its quantum numbers and integrations over its

phase space, i.e. analogously to the LO case we saw previously with the addition

of a gluon in the final state:

∑
qq̄g states

 
∑

h0,A0,f0

∑
h1,A1,f1

∑
λ2,a

∫
dk+

0

2π2k+
0

∫
d2k0

(2π)2

∫
dk+

1

2π2k+
1

∫
d2k1

(2π)2

∫
dk+

2

2π2k+
2

∫
d2k2

(2π)2
.

(3.24)
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Writing out the state sums using (3.24) and inserting the vertex rules (3.2),

(3.22), (3.23), (3.21), and energy denominators (3.19),(3.20) into the equation

(3.18) we get for the transverse photon wavefunction:

∣∣γ∗T (q+, Q2)
〉
qq̄g

=
∑

h0,h1,λ,
A0,Ai,a,f0,f1

∫ ∫
dk+

0

2π2k+
0

d2k0

(2π)2

∫ ∫
dk+

1

2π2k+
1

d2k1

(2π)2

∫ ∫
dk+

2

2π2k+
2

d2k2

(2π)2

×
{ ∑
hi,Ai,fi

∫ ∫
dk+

i

2π2k+
i

d2ki

(2π)2

(2π)3δ
(
k+

0 + k+
2 − k+

i

)
δ(k0 + k2 − ki)δfi,f0

− 1
2q+

1
z1(1−z1)

(z1(1− z1)Q2 − k2
1)

× δhi,h0g(T a)A0Ai

√
4k+

i k
+
0 ελ2 ·

[
k2

k+
2

−
(

1 + 2h0λ2

2

)
k0

k+
0

−
(

1− 2h0λ2

2

)
ki
k+
i

]
× (2π)3δ

(
k+
i + k+

1 − q+
)
δ(ki + k1 − q)eefiδfi,f1δAi,A1δhi,−h1

√
4k+

i k
+
1

× ελ ·
[
q

q+
−
(

1 + 2h0λ

2

)
k1

k+
1

−
(

1− 2h0λ

2

)
ki
k+
i

]
+ (−1)

∑
hj ,Aj ,fj

∫ ∫
dk+

j

2π2k+
j

d2kj

(2π)2

(2π)3δ
(
k+

1 + k+
2 − k+

j

)
δ(k1 + k2 − kj)δf1,fj

− 1
2q+

1
z0(1−z0)

(z0(1− z0)Q2 − k2
0)

× δhj ,h1g(T a)AjA1

√
4k+

0 k
+
j ελ2 ·

[
k2

k+
2

−
(

1 + 2hjλ2

2

)
k1

k+
1

−
(

1− 2hjλ2

2

)
kj
k+
j

]
× (2π)3δ

(
k+

0 + k+
j − q+

)
δ(k0 + kj − q)eef0δfj ,f0δA0,Ajδh0,−hj

√
4k+

0 k
+
j

× ελ ·
[
q

q+
−
(

1 + 2h0λ

2

)
kj
k+
j

−
(

1− 2h0λ

2

)
k0

k+
0

]
+ (2π)3δ

(
k+

0 + k+
1 + k+

2 − q+
)
δ(k0 + k1 + k2 − q)eef0δf0,f1δh0,−h1

× g(T a)A0A1

√
4k+

0 k
+
1 δλ,λ2

[
δλ,−2h0

q+ − k+
1

− δλ,2h0
q+ − k+

0

]}
(−2q+)b†d†a† |0〉(
Q2 +

k2
0

z0
+

k2
1

z1
+

k2
2

z2

) .
Carrying out the integrations over the internal momenta, summing over the free

quantum numbers and doing a change of integration variable k+
i → zi, we get
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(3.25)
∣∣γ∗T (q+, Q2)

〉
qq̄g

= (−1)
eg

2(2π)2

∑
h0,λ2

∫ ∫ ∫
dz0√
z0

dz1√
z1

dz2

z2

δ(z0 + z1 + z2 − 1)

∫ ∫ ∫
d2k0

(2π)2

d2k1

(2π)2

d2k2

(2π)2

×
{

(ελ · k1)[1− 2z1 + 2h0λ]

z1(1− z1)Q2 + k2
1

1− z1

1− z1 − z2

[
1− z2

1− z1

(
1− 2h0λ2

2

)]
ε∗λ2 ·

[
k2

z2

+
k1

1− z1

]
− (ελ · k0)[1− 2z+ − 2h0λ]

z0(1− z0)Q2 + k2
0

1− z0

1− z0 − z2

[
1− z2

1− z0

(
1 + 2h0λ2

2

)]
ε∗λ2 ·

[
k2

z2

+
k0

1− z0

]
+ δλ,λ2

[
δλ,−2h0

1− z1

− δλ,2h0
1− z0

]}
× (2π)2δ(k0 + k1 + k2)

Q2 +
k2
0

z0
+

k2
1

z1
+

k2
2

z2

×
∑
f

ef
∑

a,A0,A1

(T a)A0A1
b†d†a† |0〉 ,

where now due to the conservations imposed by the delta structure, the quarks

have opposing helicities:

b†d†a† |0〉 = b†
(
k+

0 ,k0, h0, A0, f
)
d†
(
k+

1 ,k1,−h0, A1, f
)
a†
(
k+

2 ,k2, λ2, a
)
|0〉 .

Via a similar calculation we get for the longitudinally polarized photon, using

its specific vertex rule (3.3):∣∣γ∗L(q+, Q2)
〉
qq̄g

=
egQ

(2π)2

∑
h0,λ2

∫ ∫ ∫
dz0√
z0

dz1√
z1

dz2

z2

δ(z0 + z1 + z2 − 1)

∫ ∫ ∫
d2k0

(2π)2

d2k1

(2π)2

d2k2

(2π)2

×

z1(1− z1)2

1− z1 − z2

[
1− z2

1− z1

(
1− 2h0λ2

2

)] ε∗λ2 · [k2

z2
+ k1

1−z1

]
z1(1− z1)Q2 + k2

1

− z0(1− z0)2

1− z0 − z2

[
1− z2

1− z0

(
1 + 2h0λ2

2

)] ε∗λ2 · [k2

z2
+ k0

1−z0

]
z0(1− z0)Q2 + k2

0


× (2π)2δ(k0 + k1 + k2)

Q2 +
k2
0

z0
+

k2
1

z1
+

k2
2

z2

×
∑
f

ef
∑

a,A0,A1

(T a)A0A1
b†d†a† |0〉 ,

(3.26)

where there are only two terms due to the absence of the instantaneous splitting.

From both equations (3.25) and (3.26) one can see that the quark to gluon and

28



antiquark to gluon emissions have a relative sign difference and thus they cancel

each other out at low gluon transverse momentum limit, as they should.

Next we’ll Fourier transform the results (3.25) and (3.26) into mixed space

of the fractional momenta and particle positions – (z0, z1, z2,x0,x1,x2). To do

this, we need the operator Fourier transformation relation (2.11) and a couple of

integration formulae. Define xij := xi − xj and∫
dZ :=

∫ ∫ ∫
dz0√
z0

dz1√
z1

dz2

z2

δ(z0 + z1 + z2 − 1).

With these definitions the necessary integration formulae are [3]:

∫ ∫
d2k1

2π

d2k2

2π

ei(k1·x10+k2·x20)kµ1

(
kν2
z2

+
kν1

1−z1

)
(z1(1− z1)Q2 + k2

1)
(
Q2 + (k1+k2)2

1−z1−z2 +
k2
1

z1
+

k2
2

z2

)
= −z1(1− z1 − z2)

(
xµ10 −

z2

1− z1

xµ20

)
xν20

|x20|2
QXK1(QX)

X2
(3.27)∫ ∫

d2k1

2π

d2k2

2π

ei(k1·x10+k2·x20)(
Q2 + (k1+k2)2

1−z1−z2 +
k2
1

z1
+

k2
2

z2

)
= z2z1(1− z1 − z2)

QXK1(QX)

X2
(3.28)∫ ∫

d2k1

2π

d2k2

2π

ei(k1·x10+k2·x20)
(
kν2
z2

+
kν1

1−z1

)
(z1(1− z1)Q2 + k2

1)
(
Q2 + (k1+k2)2

1−z1−z2 +
k2
1

z1
+

k2
2

z2

)
= i

1− z1 − z2

1− z1

xν20

|x20|2
K0(QX). (3.29)

Here K0 and K1 are the 0th and 1st modified Bessel functions of the second kind

and X is shorthand for

X = z1(1− z − 1)

(
x10 −

z2

1− z1

x20

)2

+
z2(1− z1 − z2)

1− z1

|x20|2

= z0(1− z − 0)

(
x01 −

z2

1− z0

x21

)2

+
z2(1− z0 − z2)

1− z0

|x21|2

= z0z1|x10|2 + z0z2|x20|2 + z1z2|x21|2,
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where the equalities hold when the momentum fraction conservation z0+z1+z2 = 1

holds. These integration relations, in addition to the relations (3.7) and (3.8)

needed in the LO calculation, can be derived by using the Schwinger representation

for the denominators.

Substituting the Fourier relation (2.11) into the phase space amplitude (3.25)

we get with the above formulae for the Fourier transform

(3.30)F
∣∣γ∗T (q+, Q2)

〉
qq̄g

= (−1)
eg

2(2π)2

∑
h0,λ2

∫
dZ

2∏
i=0

(∫
d2ki

(2π)2

)(∫
d2xi
2π

)
ei(k0·x0+k1·x1+k2·x2)

×
{

(ελ · k1)[1− 2z1 + 2h0λ]

z1(1− z1)Q2 + k2
1

1− z1

1− z1 − z2

[
1− z2

1− z1

(
1− 2h0λ2

2

)]
ε∗λ2 ·

[
k2

z2

+
k1

1− z1

]
− (ελ · k0)[1− 2z+ − 2h0λ]

z0(1− z0)Q2 + k2
0

1− z0

1− z0 − z2

[
1− z2

1− z0

(
1 + 2h0λ2

2

)]
ε∗λ2 ·

[
k2

z2

+
k0

1− z0

]

+ δλ,λ2

[
δλ,−2h0

1− z1

− δλ,2h0
1− z0

]}
× (2π)2δ(k0 + k1 + k2)

Q2 +
k2
0

z0
+

k2
1

z1
+

k2
2

z2

×
∑
f

ef
∑

a,A0,A1

(T a)A0A1
b†d†a† |0〉

where integrating first over d2k0 in the first and third terms and over d2k1 in the

second term, renders the equation into a form where we can take advantage of the

Fourier integrals given, ultimately yielding

F
∣∣γ∗T,L(q+, Q2)

〉
qq̄g

=
eg

4π

∑
h0,λ2

∫ ∫ ∫
dz0√
z0

dz1√
z1

dz2

z2

δ(z0 + z1 + z2 − 1)

∫ ∫ ∫
d2x0

(2π)2

d2x1

(2π)2

d2x2

(2π)2

× ΦT,L(z0, z1, z2,x0,x1,x2, h0, λ2, λ)

×
∑
f

ef
∑

a,A0,A1

(T a)A0A1
b†(x0)d†(x1)a†(x2) |0〉 ,

(3.31)
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where we have for the transverse polarization

ΦT (z0, z1, z2,x0,x1,x2, h0, λ2, λ) =
QXK1(QX)

X2
× (3.32){

z1(1− z1)[1− 2z1 + 2h0λ]

[
1− z2

1− z1

(
1− 2h0λ2

2

)]
ελ ·
[
x10

z2

1− z1

x20

]
ε∗λ2 · x20

|x20|2

− z0(1− z0)[1− 2z0 − 2h0λ]

[
1− z2

1− z0

(
1 + 2h0λ2

2

)]
ελ ·
[
x01

z2

1− z0

x21

]
ε∗λ2 · x21

|x21|2

− z0z1z2δλ,λ2

[
δλ,−2h0

1− z1

− δλ,2h0
1− z0

]}
.

With a similar calculation we get for the longitudinal polarization case the same

structure (3.31) as for the transverse case, which was already denoted there, with

ΦL(z0, z1, z2,x0,x1,x2, h0, λ2, λ) = 2iQK0(QX)× (3.33){
z1(1− z1)

[
1− z2

1− z1

(
1− 2h0λ2

2

)]
ε∗λ2 · x20

|x20|2

−z0(1− z0)

[
1− z2

1− z0

(
1 + 2h0λ2

2

)]
ε∗λ2 · x21

|x21|2
}
.

Now with the photon splitting amplitudes in the mixed-space, i.e. the result

(3.31) with the polarization dependent pieces (3.32) and (3.33), we still need to

handle the NLO qq̄ contribution before we can move on to compute the cross

section.
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3.3 Virtual contribution problems

We now have calculated one of the two next-to-leading order contributions to

the virtual photon splitting wavefunction, namely the loopless contribution. The

remaining pieces are the one-loop interactions with the target. In these processes

the virtual photon splits into a quark-antiquark-gluon triplet either instantly or

in two steps and the internal gluon is reabsorbed before the interaction instant

by either of the quarks, forming a loop. There are nine such diagrams which are

shown in Fig. 3.3. Every diagram is relevant for a transversely polarized virtual

photon whereas only the first five, Figs. 3.3a – 3.3e, are to be considered for a

longitudinally polarized photon due to the instantaneous vertex in the remaining

diagrams that is forbidden for a longitudinal virtual photon.

An explicit calculation of the one-loop diagrams is a cumbersome task, so the

article [3], that much of this study follows, tried to work their way past it with an

argument based on unitarity and normalization. The idea was to deduce a relation

between the LO and the two NLO contributions qq̄ and qq̄g from a truncated Fock

state expansion of the full photon wavefunction by imposing that the normaliza-

tions of the LO and NLO wavefunctions are the same so that probability would

be conserved. However, it has since been realized that the workaround is flawed

[10]. The issue is a bit subtle so let us look at this in better detail to give an

idea where the problem lies. We start from the Fock expansion of the full photon

wavefunction:

(3.34)

|γ(q, λ)〉 =
√
Zγ

[
a†γ |0〉+

∑
F6=γ

Ψγ→F |F〉
]

=
√
Zγ

[
a†γ |0〉+

∑
F=ll̄

Ψγ→l0 l̄1b
†
l,0d
†
l,1 |0〉

+
∑
F=qq̄

Ψγ→q0q̄1b
†
0d
†
1 |0〉+

∑
F=qq̄g

Ψγ→q0q̄1g2b
†
0d
†
1a
†
2 |0〉+ . . . ,

]
where the expansion was truncated after NLO relevant particle compositions and

the arguments of the particle operators were left implicit, in the same vein as was

done with the loopless diagram calculation. The full state is normalized as

(3.35)〈γ(q′, λ′)|γ(q, λ)〉 = 2q+(2π)3δ(3)(q′ − q)δλ′,λ,
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Figure 3.3: The nine possible virtual process diagrams to be considered in the next-to-leading
order calculation. In figures (a)–(e) the virtual photon first splits in a QED process into the
quark-antiquark pair after which either of the quarks emits a gluon that is then absorbed else-
where. In figures (f)–(i) the photon splits at once into a quark-antiquark-gluon state in an
instantaneous QED/QCD process after which the gluon is absorbed. In the latter four diagrams
only a transverse photon is allowed to take a part in the instantaneous vertex. The diagrams are
ordered horizontally in light cone time x+, the initial state x+ = −∞ being on the left edge of
each diagram and the interaction instant x+ = 0 being on the right.
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where the definition

q :=
(
q+, qT

)
has been made. Using this and the orthogonality of the Fock space basis, we can

calculate the square of the modulus of either side in (3.34) to get, after moving

the pure photon state to the left side, a unitarity relation:

2q+(2π)3δ(3)(q′ − q)δλ′,λ
1− Zγ
Zγ

=
∑
F=ll̄

(
Ψγ′→l0 l̄1

)†
Ψγ→l0 l̄1 +

∑
F=qq̄

(Ψγ′→q0q̄1)
†Ψγ→q0q̄1

+
∑
F=qq̄g

(Ψγ′→q0q̄1g2)
†Ψγ→q0q̄1g2

+O
(
αemα

2
s

)
+O

(
α2
em

)
.

(3.36)

In this expansion, on the right hand side the first term cannot have a contribution

of the order αemαs so when we specifically compare the NLO terms that are of

the order αemαs we can ignore the lepton-lepton contribution in its entirety, and

similarly the remaining terms that are of higher order. We get

2q+(2π)3δ(3)(q′ − q)δλ′,λ
(

1− Zγ
Zγ

)
αemαs

=

(∑
F=qq̄

(Ψγ′→q0q̄1)
†Ψγ→q0q̄1

)
αemαs

+

( ∑
F=qq̄g

(Ψγ′→q0q̄1g2)
†Ψγ→q0q̄1g2

)
αemαs

.

(3.37)

Now the NLO qq̄ contribution is inferred from the relation

LO

〈
γ∗T,L

∣∣γ∗T,L〉LO =
NLO

〈
γ∗T,L

∣∣γ∗T,L〉NLO =
qq̄

〈
γ∗T,L

∣∣γ∗T,L〉qq̄ +
qq̄g

〈
γ∗T,L

∣∣γ∗T,L〉qq̄g
using the known LO and qq̄g results. However, this implicitly assumes that the

left hand side in Fourier transformed mixed-space counterpart of (3.37) vanishes.

This is the breaking point for the approach, since the normalization factor on the

l.h.s. receives a finite correction in the order αemαs and hence does not vanish at

that specific order. Thus the unitarity relation cannot be used to deduce the qq̄

contribution from the two directly calculated results.
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The one-loop corrections have both UV and soft divergences. Due to the UV

divergence they have to be renormalized using something else than a cut-off, which

has been done with dimensional regularization [10]. This UV divergence must

cancel with a UV divergence in the qq̄g contribution when the contributions are

combined. The soft divergence on the other hand is similar to the one in the

loopless NLO contribution, so one might also try a cut-off regularization similarly

as will be done in Section 3.5 here.

These explicit loop calculations are out of the scope for this work and so we

will be mindful of the details mentioned above and use the result from [3] in the

numerical examinations done in this work. In Section 3.4 we will write the result

in a way that when the loop calculation results are done and verified they are easy

to implement as a modular addition to the work done here. The verification and

implementation of the full one-loop result is one of the two significant undertakings

that is left to be done beyond this work.
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3.4 Photon cross sections

In this section we will calculate the polarized cross sections for a virtual photon

scattering from a gluon field using the LO and NLO results of Sections 3.1 and

3.2. The optical theorem (2.24) states that the polarized cross section is

(3.38)σγT,L[A] =
1

2πq+δ(q′+ − q+)
Re
(
NLO

〈
γ∗T,L

∣∣ 1− ŜE ∣∣γ∗T,L〉NLO).
To simplify this we will require that both the LO and NLO states have the same

normalization:

(3.39)
LO

〈
γ∗T,L

∣∣γ∗T,L〉LO =
NLO

〈
γ∗T,L

∣∣γ∗T,L〉NLO =
qq̄

〈
γ∗T,L

∣∣γ∗T,L〉qq̄ +
qq̄g

〈
γ∗T,L

∣∣γ∗T,L〉qq̄g
and the facts that in the eikonal approximation the scattering matrix element for

the colorless projectile is real and it does not affect the parton composition of the

state, i.e. that taking the real part is redundant and that the particle composition

of the dipole is left untouched in the scattering. With these we can then break the

cross section into separate parts:

σγT,L[A]

=
1

2πδ
(
q′+

q+
− 1
)[

NLO

〈
γ∗T,L

∣∣γ∗T,L〉NLO − NLO

〈
γ∗T,L

∣∣ ŜE ∣∣γ∗T,L〉NLO]
=

1

2πδ
(
q′+

q+
− 1
)[

LO

〈
γ∗T,L

∣∣γ∗T,L〉LO − qq̄

〈
γ∗T,L

∣∣ ŜE ∣∣γ∗T,L〉qq̄ − qq̄g

〈
γ∗T,L

∣∣ ŜE ∣∣γ∗T,L〉qq̄g],
(3.40)

where the first term is the leading order dominating contribution, the second is

the NLO qq̄ contribution from the virtual graphs with closed gluon loops and

the third is the other NLO contribution from the quark antiquark gluon graphs.

As discussed in Section 3.3, we will calculate the NLO cross section using the

directly calculated qq̄g contribution of the real graphs and the place holder virtual

contribution from [3].

Let us calculate first the leading order dominating contribution of the cross

section. For this we need the Fourier transformed LO splitting amplitude (3.9)

calculated in Section 3.1. Writing out the scalar overlap of the LO initial and final

36



states we get

(3.41)
LO

〈
γ∗(T ),L(q

′+)
∣∣∣γ∗(T ),L(q+)

〉
LO

=
e2

4

∫ 1

0

∫ 1

0

dz′0√
z′0

dz′1√
z′1
δ(z′0 + z′1 − 1)

×
∫ 1

0

∫ 1

0

dz0√
z0

dz1√
z1

δ(z0 + z1 − 1)

∫
d2x′0
(2π)2

∫
d2x′1
(2π)2

∫
d2x0

(2π)2

∫
d2x1

(2π)2

×

∑
h′0

ΦLO
(T ),L(x′0, ..)

†

[∑
h0

ΦLO
(T ),L(x0, ..)

]
×
∑
f,f ′

efef ′

×
∑
A0,A′0

〈0| d(x′1,−h′0..)b(x′0, h′0, ..)b†(x0, h0, ..)d
†(x1,−h0, ..) |0〉 .

To evaluate the matrix element, we need the fermion anticommutation relations

(2.8); after two anticommutations and two annihilated vacuums we get

〈0| d(x′1, ..)b(x
′
0, ..)b

†(x0, ..)d
†(x1, ..) |0〉 = (2π)622k+

0 k
+
1 δ
(
k+

0 − k
′+
0

)
δ
(
k+

1 − k
′+
1

)
× δ(2)(x0 − x′0)δ(2)(x1 − x′1)

× δh0,h′0δ−h0,−h′0δA0,A′0δA0,A′0δf0,f
′
0δf0,f

′
0 .

(3.42)

We see that the sums over quark flavors and colors separate and that the integrals

over the initial transverse positions are trivial. For the less obvious color sum

factor we get

(3.43)

∑
A0,A′0

δA0,A′0δA0,A′0 =
∑
A′0

δA
′
0,A
′
0

= Nc.

The momentum deltas need to be written in terms of the fractional momenta:

(3.44)δ
(
k+
i − k

′+
i

)
=

1

q+
δ

(
z+
i − z

′+
i

q
′+

q+

)
.

Plugging these into (3.41) and simplifying after integrating over z0, z1,x0,x1 we

get

LO

〈
γ∗(T ),L(q

′+)
∣∣∣γ∗(T ),L(q+)

〉
LO

=
e2

4

Nc2
2

(2π)2

∑
f

e2
f

∫ 1

0

∫ 1

0

dz′0dz
′
1

q
′+

q+
δ(z′0 + z′1 − 1)

×δ
(
q
′+

q+
(z′0 + z′1)− 1

)∫
d2x′0

∫
d2x′1

∑
h′0

[
ΦLO

(T ),L(x′0, z
′
0, ..)

†
ΦLO

(T ),L

(
x′0,

q
′+

q+
z′0, ..

)]
.

(3.45)
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Integrating over z′0 to get rid of one of the fractional momentum deltas we get

(3.46)
LO

〈
γ∗(T ),L(q

′+)
∣∣∣γ∗(T ),L(q+)

〉
LO

=
e2

4

Nc2
2

(2π)2

∑
f

e2
f

∫ 1

0

dz′1
q
′+

q+
δ

(
q
′+

q+
− 1

)

×
∫
d2x′0

∫
d2x′1

∑
h′0

[
ΦLO

(T ),L(x′0, z
′
0, ..)

†
ΦLO

(T ),L

(
x′0,

q
′+

q+
z′0, ..

)]
.

Using the photon momentum delta to set the ratio q
′+/q+ to unity elsewhere we

get the final result:

(3.47)
LO

〈
γ∗(T ),L(q

′+)
∣∣∣γ∗(T ),L(q+)

〉
LO

= 2π
2αemNc

(2π)2
δ

(
q
′+

q+
− 1

)∑
f

e2
f

×
∫ 1

0

dz1

∫
d2x0

∫
d2x1

∑
h0

∣∣ΦLO
(T ),L(x0,x1, 1− z1, z1, h0, (λ))

∣∣2,
where the superfluous primes of the integration variables were dropped and the

unsimplified prefactor was left so that the cancellations when evaluating the cross

section itself will be obvious.

Let us compute next the real graph contribution. Taking the mixed space result

(3.31) we get using the introduced shorthand notation

qq̄g

〈
γ∗(T ),L

∣∣ ŜE ∣∣γ∗(T ),L

〉
qq̄g

=
( eg

4π

)2 ∑
h0,λ2,(λ)

∑
h′0,λ

′
2,(λ

′)

∫ ∫
dZdZ ′

2∏
i=0

(∫
d2xi
2π

∫
d2x′i
2π

)
× Φ∗(T ),L(z′0, . . . )Φ(T ),L(z0, . . . )

×
∑
f

ef
∑
f ′

ef ′

 ∑
a′,A′0,A

′
1

(
T a
′
)
A′0A

′
1

† ∑
a,A0,A1

(T a)A0A1

× 〈0| a(x′2)d(x′1)b(x′0) ŜE b
†(x0)d†(x1)a†(x2) |0〉 .

(3.48)

To evaluate this, we need the creation and annihilation operator anticommutation

relations (2.8) and (2.9) for the partons in the dipole and the fact that the eikonal

scattering operator ŜE acts by rotating the colors of the Fock state’s partons by a
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Wilson line defined along the parton’s trajectory through the target [3, 5]:

ŜE b†(x0, A0)d†(x1, A1)a†(x2, a) |0〉
=
∑

B0,B1,b

[U(x0)]B0A0

[
U †(x1)

]
A1B1

[V (x2)]bab
†(x0, B0)d†(x1, B1)a†(x2, b) |0〉

=:W (x0, B0, . . . ) b
†(x0, B0)d†(x1, B1)a†(x2, b) |0〉 ,

(3.49)

where the fundamental and adjoint Wilson lines are respectively defined as path

ordered exponentials for a classical shockwave A [5]:

U(x) := U [A] (x) := P exp

[
ig

∫
dx+T aA−a (x+,x, 0)

]
V (x) := V [A] (x) := P exp

[
ig

∫
dx+ taA−a (x+,x, 0)

]
,

where T a and ta are the generators of su(3) in fundamental and adjoint represent-

ations, respectively. With these we can calculate the inner product and one gets

after three rounds of anticommutation and annihilation the result

(3.50)

〈0| a(x′2)d(x′1)b(x′0) ŜE b
†(x0)d†(x1)a†(x2) |0〉

=W(x0, B0, . . . )(2π)923k+
0 k

+
1 k

+
2

(
2∏
i=0

δ
(
k+
i − k

′+
i

)
δ(2)(xi − x′i)

)
× δh0,h′0δB0,A′0

δf,f ′0δ−h0,h′1δB1,A′1
δf,f ′1δλ2,λ′δb,a′ 〈0|0〉 .

Now the color factors in (3.48) can be separated using the result above, yielding∑
A0,A1,a,
A′0,A

′
1,a
′

B0,B1,b

[U(x0)]B0A0

[
U †(x1)

]
A1B1

[V (x2)]ba

(
T a
′
)†
A′0A

′
1

(T a)A0A1
δB0,A′0

δB1,A′1
δb,a′

=
∑
a,b

[V (x2)]ba tr
[
U(x0)T aU †(x1)T b

]
.

To calculate this, we need to know that the adjoint Wilson line V (x) can be written

element-wise as a trace:

[V (x)]ba = 2 tr
[
U(x)T aU †(x)T b

]
(3.51)

and the generator sum rule∑
a

T aABT
b
CD =

1

2

(
δA,DδB,C −

1

Nc

δA,BδC,D

)
. (3.52)
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Let us also define

Sij :=
1

Nc

tr
[
U(xi)U

†(xj)
]

(3.53)

With these we get∑
a,b

[V (x2)]ba tr
[
U(x0)T aU †(x1)T b

]
=
N2
c

2

[
S02S21 −

1

N2
c

S01

]
=: C, (3.54)

where, in addition to the relations (3.51), (3.52) and (3.53), the unitarity of the

Wilson lines and the fact that S22 = 1 were used.

Now we can plug the color factor (3.54) along with the rest of the inner product

(3.50) back into (3.48) to get

qq̄g

〈
γ∗(T ),L

∣∣ ŜE ∣∣γ∗(T ),L

〉
qq̄g

=
( eg

4π

)2 ∑
h0,λ2,(λ)

∑
h′0,λ

′
2,(λ

′)

∫ ∫
dZdZ ′

2∏
i=0

(∫
d2xi
(2π)2

∫
d2x′i
(2π)2

)

×Φ∗(T ),L(z′0, . . . )Φ(T ),L(z0, . . . )×C
∑
f

ef
∑
f ′

ef ′× (2π)923z0z1z2δ

(
z0 − z′0

q
′+

q+

)

× δ
(
z1 − z′1

q
′+

q+

)
δ

(
z2 − z′2

q
′+

q+

)
δ(2)(x0 − x′0)δ(2)(x1 − x′1)δ(2)(x2 − x′2)

× δh0,h′0δf0,f ′0δf1,f ′1δλ2,λ′ .
(3.55)

Summing over the primed quantum numbers and integrating over the primed po-

sitions and primeless momentum fractions yields

qq̄g

〈
γ∗(T ),L

∣∣ ŜE ∣∣γ∗(T ),L

〉
qq̄g

=
( eg

4π

)2

23(2π)3
∑

h0,λ2,(λ)

∫ 1

0

∫ 1

0

∫ 1

0

dz′0dz
′
1

dz′2
z′2

q
′+

q+
δ

(
q
′+

q+
(z′0 + z′1 + z′2)− 1

)

× δ(z′0 + z′1 + z′2 − 1)
2∏
i=0

(∫
d2xi
(2π)2

)
Φ∗(T ),L(z′0,x0, . . . )Φ(T ),L(z′0

q
′+

q+
,x0, . . . )

× C
∑
f

e2
f

(3.56)
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Lastly integrating over z′0, and writing the constants using the fine structure con-

stant αem = e2/4π and ᾱ := Ncg
2/4π2, we get

(3.57)

qq̄g

〈
γ∗(T ),L

∣∣ ŜE ∣∣γ∗(T ),L

〉
qq̄g

= 2πδ

(
q
′+

q+
− 1

)
2αemᾱNc

(2π)2

∑
f

e2
f

∫ 1

0

dz1

∫ 1−z1

0

dz2

z2

×
∫ ∫ ∫

d2x0d
2x1

d2x2

2π

[
S02S21 −

1

N2
c

S01

]
×

∑
h0,λ2,(λ)

∣∣Φ(T ),L(x0, x1, x2, 1− z1 − z2, z1, z2, h0, λ2, (λ))
∣∣2,

where we dropped the primes from the remaining momentum fractions. Note the

new integration limit for z2 which is due to the fact that a delta set z0 = 1−z1−z2

and hence 1− z1 − z2 ∈ [0, 1].

Lastly we need to calculate the NLO impact factors

Iqq̄gL (x0, x1, x2, 1− z1 − z2, z1, z2) :=
1

2

∑
h0,λ2

|ΦL(x0, x1, x2, 1− z1 − z2, z1, z2, h0, λ2)|2

(3.58)

Iqq̄gT (x0, x1, x2, 1− z1 − z2, z1, z2) :=
1

4

∑
h0,λ2,λ

|ΦT (x0, x1, x2, 1− z1 − z2, z1, z2, h0, λ2, λ)|2,

(3.59)

for which we have to square the amplitudes (3.32) and (3.33). Just as with the LO

impact factors (3.14) and (3.16) these definitions have the additional factor of 1/2

and only the transverse polarization case has an actual average over the incoming

state. For the polarization sums we will need the relations∑
λ

εi∗λ ε
j
λ = δij∑

λ

λεi∗λ ε
j
λ = iεij

which directly imply ∑
λ

(ε∗λ · x)(ελ · y) = x · y (3.60)∑
λ

λ(ε∗λ · x)(ελ · y) = iεijxiyj =: ix ∧ y, (3.61)
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where in the last equality the wedge product was defined.

Noting that linear terms in helicity h0 cancel out when the helicity sum is car-

ried out, and remembering that h0 = ±1/2, λ = ±1, we can get the intermediate

results ∑
h0

[
1− z2

1− z

(
1± 2h0λ2

2

)]2

= 1 +

(
1− z2

1− z

)
=: 2P

(
z2

1− z

)
and∑
h0

[
1− z2

1− z1

(
1− 2h0λ2

2

)][
1− z2

1− z0

(
1 + 2h0λ2

2

)]
= 2

(
1− 1

2

z2

1− z1

− 1

2

z2

1− z0

)
.

Using these, we get for the simpler longitudinal impact factor

(3.62)Iqq̄gL (x0,x1,x2, z0, z1, z2)

=
1

2

∑
h0,λ2

(−4i2)Q2K2
0(QX)

{
z2

1(1− z1)2

[
1− z2

1− z1

(
1− 2h0λ2

2

)]2 ε∗λ2 · x20

|x20|2
ελ2 · x20

|x20|2

+ z2
0(1− z0)2

[
1− z2

1− z0

(
1 + 2h0λ2

2

)]2 ε∗λ2 · x21

|x21|2
ελ2 · x21

|x21|2
− z0z1(1

− z0)(1− z1)

[
1− z2

1− z1

(
1− 2h0λ2

2

)][
1− z2

1− z0

(
1 + 2h0λ2

2

)]

×
{
ελ2 · x20

|x20|2
ε∗λ2 · x21

|x21|2
+
ε∗λ2 · x20

|x20|2
ελ2 · x21

|x21|2
}}

= 4Q2K2
0(QX)

z2
1(1− z1)2

P
(

z2
1−z1

)
|x20|2

+ z2
0(1− z0)2

P
(

z2
1−z0

)
|x21|2

− 2z0z1(1− z0)(1− z1)

[
1− 1

2

(
z2

1− z1

+
z2

1− z0

)]
x20 · x21

|x20|2|x21|2


Squaring the transverse amplitude (3.32) is a similar, however more cumber-

some operation. We’ll need some intermediate results: the following helicity sums

∑
h0

[1− 2z ± 2h0λ]2
[
1− z2

1− z

(
1∓ 2h0λ2

2

)]2

= 4
[
z2 + (1− z)2

]
P

(
z2

1− z

)
,
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∑
h0,λ2,λ

δλ,λ2

[
δλ,−2h0

(1− z1)2
+

δλ,2h0
(1− z0)2

]
= 2

[
1

(1− z1)2
+

1

(1− z0)2

]
,

and∑
h0

[1− 2z1 + 2h0λ][1− 2z0 − 2h0λ]

[
1− z2

1− z1

(
1− 2h0λ2

2

)][
1− z2

1− z0

(
1 + 2h0λ2

2

)]
= −4[z1(1− z0) + z0(1− z1)]

(
1− 1

2

(
z2

1− z1

+
z2

1− z0

))
+ 2λλ2

z2(z1 − z0)2

(1− z1)(1− z0)
.

In the interference term of the two delayed gluon emissions one sees the following

polarization sums

∑
λ,λ2

{(
ε∗λ ·X10

20

)(
ελ ·X01

21

)(
ε∗λ2 ·

x21

|x21|

)(
ελ2 ·

x20

|x20|

)
+ h.c.

}
= 2
(
X10

20 ·X01
21

) x20 · x21

|x20|2|x21|2

and ∑
λ,λ2

λλ2

{(
ε∗λ ·X10

20

)(
ελ ·X01

21

)(
ε∗λ2 ·

x21

|x21|

)(
ελ2 ·

x20

|x20|

)
+ h.c.

}
=

−2z2

(1− z1)(1− z0)

(x20 ∧ x21)2

|x20|2|x21|2
,

where the shorthand X ij
mn := xij − z2

1−zixmn was defined. And lastly for the inter-

ference terms between a delayed and instant emission∑
λ,h0

[1− 2z1 + 2h0λ]

[
1− z2

1− z1

(
1− 2h0λ2

2

)]
δλ,λ2

[
δλ,−2h0

1− z1

− δλ,2h0
1− z0

]
= −

(
2z1z0

(1− z1)2
+

2(1− z1)

1− z0

)
and ∑

λ,h0

[1− 2z0 − 2h0λ]

[
1− z2

1− z0

(
1 + 2h0λ2

2

)]
δλ,λ2

[
δλ,−2h0

1− z1

− δλ,2h0
1− z0

]
=

(
2(1− z0)

1− z1

+
2z1z0

(1− z0)2

)
.
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With these intermediate results one can simplify the squared amplitude (3.32) to

get

Iqq̄gT (x0,x1,x2, z0, z1, z2)

=

[
QXK1(QX)

X2

]2

z2
1(1− z1)2

[
z2

1 + (1− z1)2
]P( z2

1−z1

)
|x20|2

(
x10 −

z2

1− z1

x20

)2

+ z2
0(1− z0)2

[
z2

0 + (1− z0)2
]P( z2

1−z0

)
|x21|2

(
x01 −

z2

1− z0

x21

)2

+
z2

0z
2
1z

2
2

2

[
1

(1− z1)2
+

1

(1− z0)2

]

+ 2z1(1− z1)z0(1− z0)[z1(1− z0) + z0(1− z1)]

[
1− 1

2

(
z2

1− z1

+
z2

1− z0

)]

×
(
x10 −

1

(1− z1)2
x20

)
·
(
x01 −

1

(1− z0)2
x21

)
x20 · x21

|x20|2|x21|2

+ z0z1z
2
2

(z1 − z0)2

(1− z1)(1− z0)

(x20 ∧ x21)2

|x20|2|x21|2

+ z0z
2
1z2

[
z1z0

1− z1

+
(1− z1)2

1− z0

](
x10 −

1

(1− z1)2
x20

)
· x20

|x20|2

+ z2
0z1z2

[
(1− z0)2

1− z1

+
z1z0

1− z0

](
x01 −

1

(1− z0)2
x21

)
· x21

|x21|2

 ,

(3.63)

where the first and second terms are the squares of the two delayed emission

graphs, the third is the square of the instant graphs, the fourth and fifth are from

the interference of the delayed graphs and the last two are from the interferences

between the delayed and instant emissions.

Lastly we need to work around the lack of the correct loop diagram contribu-
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tion. As a place holder (p.h.) we will use the result from [3]:

qq̄

〈
γ∗(T ),L

(
q
′+
)∣∣∣ ŜE ∣∣∣γ∗(T ),L

(
q+
)〉p.h.

qq̄

= 2πδ

(
q
′+

q+
− 1

)
2Ncαem
(2π)2

∑
f

e2
f

∫
dx0

∫
dx1

∫ 1

0

dz1S01[A]

{
ILOT,L(x0,x1, z0, z1)

−
(

1− 1

N2
c

)
ᾱ

∫ 1−z1

0

dz2

z2

∫
d2x2

2π
Iqq̄gT,L(x0,x1,x2, z0, z1, z2)

}
.

(3.64)

We write the true qq̄ result into a correction term to (3.64):

qq̄

〈
γ∗(T ),L

(
q
′+
)∣∣∣ ŜE ∣∣∣γ∗(T ),L

(
q+
)〉

qq̄

=
qq̄

〈
γ∗(T ),L

(
q
′+
)∣∣∣ ŜE ∣∣∣γ∗(T ),L

(
q+
)〉p.h.

qq̄

−
qq̄

〈
γ∗(T ),L

(
q
′+
)∣∣∣ ŜE ∣∣∣γ∗(T ),L

(
q+
)〉p.h.

qq̄
+

qq̄

〈
γ∗(T ),L

(
q
′+
)∣∣∣ ŜE ∣∣∣γ∗(T ),L

(
q+
)〉

qq̄

=:
qq̄

〈
γ∗(T ),L

(
q
′+
)∣∣∣ ŜE ∣∣∣γ∗(T ),L

(
q+
)〉p.h.

qq̄
+ ∆qq̄, (3.65)

where a name ∆qq̄ was defined for the correction term. We will denote the impact

factors associated with the correction term ∆qq̄ by Iqq̄T,L.

Now we can combine the LO and real NLO contributions (3.47) and (3.57),

and the placeholder virtual pieces (3.64) and (3.65), in the equation (3.40) and

simplify to get the cross section:

σγT,L[A] = 2
2Ncαem
(2π)2

∑
f

e2
f

∫
d2x0

∫
d2x1

∫ 1

0

dz1 (3.66)

×
{

[1− S01[A]]ILOT,L(x0,x1, 1− z1, z1)− S01[A]Iqq̄T,L(x0,x1, z1)

+ ᾱ

∫
d2x2

2π

∫ 1−z1

0

dz2

z2

[S01[A]− S02[A]S21[A]] Iqq̄gT,L(x0,x1,x2, z0, z1, z2)

}
,

where the additional factor of two comes from the choice of the impact factor

definitions. Without the introduced correction term this is the same result as in

[3]. The fact that the term inversely proportional to N−2
c cancels between the real
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and virtual contributions is not a coincidence as the virtual part was derived using

the LO and real NLO results.

The result (3.66) is now the generalization of the leading order dipole factor-

ization that was discussed in Chapter 2. The leading order qq̄ scattering term

neatly gets a correction due to the existence of the internal loops at this order and

additionally there is now a scattering term where instead of the single dipole scat-

tering there is now the qq̄g triplet scattering represented by two dipoles. Also at

this order the QED/QCD photon splittings and the QCD scattering are factorized

into separate terms just like at leading order.

Note where the so far unknown Iqq̄ correction term was written in (3.66) as it

uses some information about the scattering process specific to the NLO qq̄ process.

Firstly, this process will have the same Wilson line structure as the LO scattering

since the gluon in the internal loop does not take part in the scattering and thus

only the quark and antiquark will go through the color rotation by the Wilson

line. Hence it is written alongside the leading order impact factor. Secondly, in

the computation of the impact factor the gluon loop is integrated over so the result

can with the constraining conservation of momentum only depend on one of the

fractional quark momenta, and the quark positions x0 and x1. Lastly, by vertex

considerations, the NLO qq̄ contribution will contain terms of the order of αem and

αemαs so in this notation the impact factor-like term Iqq̄T,L will contain a section

proportional to αs, unlike the LO and qq̄g impact factors. The NLO qq̄ light cone

wavefunction relevant to this has been calculated in [10] where the result agrees

with these deductions.

The reader might have noticed that the integrals over the NLO impact factors

are not wholly convergent as there are singularities as x2 → x0, x2 → x1 and

z2 → 0 in the qq̄g impact factor. This was not brought up as it turned out that in

the evaluation of the cross section the integrals get introduced additional kernels

in the form of the dipole correlators Sij, which behave in a fortunate way due to

color transparency:

1− Sij[A] ∝ |xi − xj|2, as xj → xi, (3.67)

which nicely nullifies the divergent singularities at the limits where the emitted
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gluon is arbitrarily close to one of the quarks. In other words the color transparency

states that at the soft gluon emission limit, the qg or q̄g pairs behave as color

dipoles with small radii whose interaction cross section is proportional to the dipole

size squared, which counteracts the soft gluon divergence in the photon splitting

amplitude. We are then left with the unregulated logarithmic z2 divergence in the

qq̄g contribution that we will look at in the next section.

Note that the NLO qq̄ contribution written in the form in (3.66) does not have

this soft z2 divergence and so it does not affect the discussion of the next section.

This can be said a priori since the process has been calculated at z2 → 0 limit

in the derivation of the Balitsky-Kovchegov equation [11] and the result agrees

with the soft divergence part obtained here. Thus the soft divergence in the

loop calculations can be done in the same fashion as is done in the next chapter

leading to the same result as here. In other words the qq̄ contribution contains the

same divergence that we regulate here and no further divergence. This deduction

relies on the fact that the calculations done in [11] do not rely on a state unitarity

argument and since the divergence is the same, the mistake done with the unitarity

argument in [3] does not change the behavior on the z2 → 0 limit.
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3.5 Regularization of the NLO cross section soft

divergence

We have now calculated the polarized cross sections (3.66), but they are divergent

as z2 → 0, which we need to resolve. This so-called rapidity divergence of the

polarized cross sections stems from the photon splitting amplitudes calculated in

Section 3.2 which are logarithmically divergent in z2.

One way to handle this is to consider all gluons in the system parallel to the

incoming photon as part of the projectile and all antiparallel ones as part of the

target [12]. One can then introduce a cut-off k+
f in k+

2 , such that the emitted gluons

taken into consideration have their momentum bound from below by a non-zero

quantity.

The existence of such a cut-off seems reasonable as the interaction takes a finite

time and one can see that an emitted gluon with arbitrarily small momentum

in the frame does not have a sufficient lifetime to interact with the target [13].

Another way to look at this is to consider the rapidity of the emitted gluon, which

is proportional to log (1/z2), which implies that the soft gluon has high negative

rapidity. In the soft limit z2 → 0 the rapidity then goes to −∞ and the emitted

gluon becomes collinear with the target which has rapidity near −∞ [14]. Hence

it is appropriate to absorb the soft gluon into the target according to its movement

direction. It is also to be expected that this cut-off is scale dependent. Thus we

have for the limits zf ≤ z2 ≤ 1 − z1 for the gluon fractional momentum, where

zf := k+
f /q

+.

So we begin the regularization by setting the lower integration limit of z2 in

(3.66) to zf , and introduce the following term:

∆Iqq̄gT,L(x0,x1,x2, z0, z1, z2) :=Iqq̄gT,L(x0,x1,x2, z0, z1, z2)

−Iqq̄gT,L(x0,x1,x2, z0, z1, 0). (3.68)

Looking at the equations (3.62) and (3.63) one sees immediately that they simplify

quite a bit at z2 = 0 and in fact one gets

Iqq̄gT,L(x0,x1,x2, z0, z1, 0) =
x2

01

x2
02x

2
21

ILOT,L(x0,x1, z0, z1). (3.69)

Lastly before we can continue, we must take care of the Color Glass Condensate
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(CGC) model averaging over the target gluon field A. This means that we neglect

the quantum mechanical fluctuations in the properties of the target color field A
and study the average behavior of the system in the scattering. In practice this is

done by replacing the dipole correlators Sij with their implicit expectation values

for a given cut-off:

Sij[A]→ 〈Sij〉zf ,

where the subscript zf denotes that the expectation value is a function of the cut-

off, which it certainly is as the cut-off dictates how many additional particles we

associate with the target.

With these we can write the cross sections (3.66), neglecting the virtual qq̄

contribution term, as

σγT,L = 2
2Ncαem
(2π)2

∑
f

e2
f

∫
d2x0

∫
d2x1

∫ 1

0

dz1 ×
{[

1− 〈S01〉zf
]
ILOT,L(x0,x1, 1− z1, z1)

+ ᾱ

∫
d2x2

2π

∫ 1−z1

zf

dz2

z2

〈S01 − S02S21〉zf ∆Iqq̄gT,L(x0,x1,x2, 1− z1, z1, z2)

+ ᾱ

∫
d2x2

2π

∫ 1−z1

zf

dz2

z2

〈S01 − S02S21〉zf
x2

01

x2
02x

2
21

ILOT,L(x0,x1, 1− z1, z1)

}
,

where now the last line’s integrand is z2 independent and the logarithmic integral

can be performed to get, after a rearrangement

σγT,L = 2
2Ncαem
(2π)2

∑
f

e2
f

∫
d2x0

∫
d2x1

∫ 1

0

dz1

{[
1− 〈S01〉zf (3.70)

+ ᾱ log

(
1− z1

zf

)∫
d2x2

2π

x2
01

x2
02x

2
21

〈S01 − S02S21〉zf
]
ILOT,L(x0,x1, 1− z1, z1)

+ ᾱ

∫
d2x2

2π

∫ 1−z1

zf

dz2

z2

〈S01 − S02S21〉zf ∆Iqq̄gT,L(x0,x1,x2, 1− z1, z1, z2)

}
.

Here we are still left with a cross section that depends explicitly on the cut-off,

which certainly cannot stand. Should this be a workable regularization, we must

arrive at a result that is independent of the choice of cut-off, i.e.

∂

∂zf
σγT,L

(
q+, Q2

)
= 0.
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However, the cross section (3.70) depends on the logarithm of the cut-off, so we’ll

get a more convenient result when we impose the equivalent requirement that

∂

∂ log zf
σγT,L

(
q+, Q2

)
= 0.

Applying this condition to equation (3.70) we get

0 =
∂

∂ log zf

{
ILOT,L(x0,x1, 1− z1, z1) (3.71)

×
[
1− 〈S01〉zf + ᾱ log

(
1− z1

zf

)∫
d2x2

2π

x2
01

x2
02x

2
21

〈S01 − S02S21〉zf
]}

+
∂

∂ log zf
ᾱ

∫
d2x2

2π

∫ 1−z1

zf

dz2

z2

〈S01 − S02S21〉zf∆Iqq̄gT,L(x0,x1,x2, 1− z1, z1, z2).

This is satisfied to the first order in ᾱ when one sets

(3.72)
∂

∂ log zf
〈S01〉zf = ᾱ

∫
d2x2

2π

x2
01

x2
02x

2
21

〈S02S21 − S01〉zf ,

which is an evolution equation of the quark-antiquark dipole correlator. This

choice causes the remaining contributions to 〈S01〉zf in the equation (3.71) become

at least of degree ᾱ2 or higher.

With the evolution equation (3.72) we can renormalize the cross section by

absorbing the cut-off dependence into the evolution equation and defining a regu-

larized dipole correlator:

〈S01〉r := 〈S01〉zf + ᾱ log zf

∫
d2x2

2π

x2
01

x2
02x

2
21

(
〈S02S21 − S01〉zf

)
(3.73)

≈ 〈S01〉zf + ᾱ log zf

∫
d2x2

2π

x2
01

x2
02x

2
21

(
〈S02〉zf 〈S21〉zf − 〈S01〉zf

)
, (3.74)

where in the approximation the correlations between the dipoles were neglected,

i.e. 〈S02S21〉zf ≈ 〈S02〉zf 〈S21〉zf . With this we can finally write the regularized

cross section

σγT,L = 2
2Ncαem
(2π)2

∑
f

e2
f

∫
d2x0

∫
d2x1

∫ 1

0

dz1

{[
1− 〈S01〉r (3.75)
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+ ᾱ log (1− z1)

∫
d2x2

2π

x2
01

x2
02x

2
21

(〈S01〉r − 〈S02〉r〈S21〉r)
]
ILOT,L(x0,x1, 1− z1, z1)

+ ᾱ

∫
d2x2

2π

∫ 1−z1

0

dz2

z2

(〈S01〉r − 〈S02〉r〈S21〉r) ∆Iqq̄gT,L(x0,x1,x2, 1− z1, z1, z2)

}
,

where the error we make when substituting the regularized dipole correlator (3.74)

is of the order of ᾱ2, i.e. a NNLO contribution, so we may neglect it here. Since

the divergence is now regulated the lower limit of the gluon fractional momentum

integral was set back to zero.

We now have arrived at regularized polarized cross sections that do not diverge.

However, before we can move on to evaluate these cross sections we still need to

answer an unresolved question – how do we get the dipole correlator 〈Sij〉 from the

equation (3.72), or otherwise. Finding the answer to this question is the purpose

of the next section.

3.6 Solutions for the quark dipole correlator 〈Sij〉

The last piece we need to be able to compute the cross sections are the dipole

correlators 〈Sij〉 and 〈SijSjk〉 that encode the interactions of a quark-antiquark

pair and two pairs, respectively. The non-perturbative dense soft gluon section

of the system described by the CGC model was woven into these dipole correlat-

ors by using the eikonal scattering approximation, which essentially gave us that

the dipole correlators stem from the Wilson lines of the quarks, which were path

ordered integrals in the gluon field. However, in light of the work done in the regu-

larization Section 3.5, instead of studying the dipole correlators in this fine detail,

we can use the dynamical consistency equations that we found to solve the dipole

correlators. Via these evolution equations we can simultaneously get a description

of the quark-antiquark dipole interactions and regulate the soft divergence.

The first consistency equation found in the previous section is the evolution

equation (3.72):

∂

∂ log zf
〈S01〉zf = ᾱ

∫
d2x2

2π

x2
01

x2
02x

2
21

〈S02S21 − S01〉zf ,
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which is a part of the full JIMWLK evolution equation for the whole probability

density. From the JIMWLK equation one could solve for correlators of Sij of

arbitrary order [5]. This is our first opportunity to try to solve the dipole correlator

which would need to be done numerically as it has resisted analytical solution

efforts. However, as this is not a closed equation, solving it numerically is a

challenging task and while it has been done [15–17], implementing it here is out

of scope.

At the limit of large Nc the higher order moments between the two coupled

dipole correlators, representing pairwise interactions in the quark-antiquark-gluon

set, die off decoupling the equation (3.72) into a closed equation for the single

quark-antiquark correlator known as the Balitsky–Kovchegov (BK) equation:

∂

∂ log zf
〈S01〉zf = ᾱ

∫
d2x2

2π

x2
01

x2
02x

2
21

(
〈S02〉zf 〈S21〉zf − 〈S01〉zf

)
.

The numerical solution of the BK equation has been studied extensively [18–26],

and it has turned out [15, 17] that as an approximation the BK equation is a

surprisingly good at capturing the dynamics described by the JIMWLK equation.

In the study [17] by Kovchegov et al. they found that the relative disagreement

between the JIMWLK and BK equations was two orders of magnitude smaller

that one would expect by a simple 1/Nc expansion approximation: the difference

was found to be around 0.1% instead of 1/N2
c ≈ 11%. The relative ease of use and

the quality of the approximation of the BK equation has led to its popularity over

the JIMWLK equation. In recent years work has been done towards an NLO BK

equation [27–31]. The regularized cross sections (3.75) were already written using

the BK equation since we neglected the correlations in equation (3.74).

Neither of the evolution equations discussed above are simple to implement

numerically, especially so with the JIMWLK equation. Prior to the advancements

made on the numerical solution of either of the equations, a fairly good phenomen-

ological model was found by Golec-Biernat and Wüsthoff [32] that described DIS

data fairly well at the time at small x: x ≤ 10−2 [33]. To get some initial qualitative

results for the NLO corrections, in this work we opt to use the phenomenological

model found by Golec-Biernat and Wüsthoff (GBW) for the dipole cross section.
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In the GBW model the dipole cross section is

SGBW (r) = σ0e
−r2Q2

s/4, (3.76)

where the scale Qs is x dependent: Qs(x)2 = Q0(x0/x)λ and where σ0, x0 and λ

are fit parameters. To apply this we need to understand where the fit parameter

σ0 arises. This is connected to a seemingly superfluous planar integration that is

left over after the change of integration variables done in Section 4. Specifically

the integration over the parameter b = (x1 + x2)/2. In the choice of the GBW

dipole cross section we have neglected the finite size of the target, and we need to

additionally at least introduce a simple step function to give a crude description

of the size of the target:

2

∫
d2bS(r,b) ≈ S(r) · 2

∫
target

d2b ≡ SGBW (r) =: S(r),

where at the triple bar the quantity is identified as the GBW dipole cross section,

which then is renamed at the last equality.

We now have the last piece required for the computation of the regularized

polarized cross sections (3.75) so we may continue into a numerical study in Section

4 to see what kind of contribution these next-to-leading order corrections yield to

the leading order results.
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Chapter 4

Numerical evaluation of the

next-to-leading order cross

sections and DIS structure

functions

In this chapter the procedure to evaluate the cross sections is elaborated on. This

entails transforming the integral to a slightly more manageable form by paramet-

erizing the integrand by the dimensions of the dipole-gluon system and modeling

of the dipole correlators 〈S01〉 and 〈S01−S20S21〉 with the GBW model discussed in

the Section 3.6. Lastly we will need to implement some form of the QCD running

coupling for αs.

First the re-parameterization of the integrand, which only depends on the relat-

ive distances between the particles, not on the positions of the particles themselves.

Considering this, a good choice turns out to be:

r := x0 − x1,

b :=
x0 + x1

2
,

z := x2 − b.

Geometrically these variables represent the size of the quark-antiquark dipole, the
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average position of the quark-antiquark system and the distance of the gluon from

this ’center’ of the dipole, respectively. The Jacobian determinant of this change

of variables is nicely unity.

With this change of variables and the application of the GBW dipole cross

section model (3.76) from the Section 3.6, the cross section (3.75) becomes

σγT,L(q+, Q2) = 2
2Ncαem
(2π)2

σ0

∑
f

e2
f

∫
d2r

∫ 1

0

dz1

{[
1− S(r) + ᾱ log (1− z1)

(4.1)

×
∫
d2z

2π

r2(
r
2
− z
)2( r

2
+ z
)2

(
S(r)− S

(r
2
− z
)
S
(r

2
+ z
))]
ILOT,L(r, 1− z1, z1)

+ ᾱ

∫
d2z

2π

∫ 1−z1

0

dz2

z2

(
S(r)− S

(r
2
− z
)
S
(r

2
+ z
))

∆Iqq̄gT,L(r, z, z1, z2)

}
.

Three models of varying complexity of the QCD running coupling were used:

αs = 0.2,

αs(Q
2) =

12π

(33− 2Nf ) log
(

Q2

Λ2
QCD

) ,
αs(x

2
01,x

2
20,x

2
21) = αs

(
Q2 =

4e−2γE

min(x2
01,x

2
20,x

2
21)

)
.

(4.2)

The first, constant coupling, only gives a rough relative scaling for the LO and

NLO contributions that is in the rough ballpark for the Q2 range we are interested

in, and was used as a simple reference point for the other models. The second

running is the familiar one-loop result one gets by the method of the QCD β

function [34, 35] and the third one is a phenomenological model trying to capture

the significance of the dipole sizes during the scattering [33]. The motivation of

this third model is that one usually expects in QCD that the hardest scale, i.e.

now the smallest dipole, determines the running coupling in effect. Accordingly,

the third model is called the smallest dipole prescription [33], and will be denoted

as αs,min in the figures of this chapter. The parameter C2 of the third model used

in [33] was set to e−2γE as was suggested in [36]. Additionally, the constant and

one-loop couplings will be denoted by αs,C and αs(Q
2), respectively.
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(a) Longitudinal. (b) Transverse.

Figure 4.1: Contributions of the two NLO terms shown separately for both longitudinally and
transversly polarized cross section results. A constant αs was used here.

With the polarized cross sections (4.1) we can also evaluate the DIS structure

functions FL and F2 ≡ FL + FT :

FT,L
(
q+, Q2

)
=

Q2

(2π)2αem
σγT,L

(
q+, Q2

)
. (4.3)

The numerical evaluation of the cross section (4.1) was executed using Math-

ematica with the multidimensional integration library Cuba [37]. The Cuba lib-

rary was used as the built-in numerical integration methods of Mathematica, both

deterministic and Monte Carlo methods, proved incapable in the integration. Im-

portance sampling of the integrand turned out to be crucial so the Monte Carlo

methods ’Vegas’ and ’Suave’ of Cuba, that implement this, were suitable.

The cross sections were evaluated at a constant q+ ∝ x−1 = x−1
0 with Q2

varying between 1 − 100 GeV2. The fit parameters were set to the GBW results

[32] so that σ0 = 23.03 mb and Qs(x0) = Q0 = 1 GeV at x0 = 3.04 · 10−4. Results

for the cross sections are shown in Fig. 4.2, where the calculated NLO contribution

is compared to the LO result using the running coupling models (4.2). Results for

the DIS structure functions are shown in Fig. 4.3 with a similar comparison.

The sensibility of the leading order results for the cross sections and structure

functions shown in Figs. 4.2 and 4.3 were verified by a comparison with the cross

section and DIS structure function results in [32]. The magnitude was found to be

correct, although a one-to-one correspondence is not to be expected as the results

in [32] are plotted with fixed invariant mass W slices, whereas here they are plotted
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(a) Longitudinal. (b) Transverse.

(c) Total cross section results.

Figure 4.2: Cross section results. Leading order results for longitudinal, transverse and total
cross sections are shown with the computed NLO contributions with the three different QCD
running coupling models.

(a) (b)

Figure 4.3: Structure function results.
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with a fixed x. This leads to the differing Q2 dependence as x = Q2/(W 2 +Q2).

Figures 4.1 and 4.2 demonstrate that the regularization did in fact work in

making the NLO contributions finite. Past this, one immediately notices that

the magnitudes of the computed NLO corrections are too large leading to large

contributions to the LO results and even making the NLO cross sections, and thus

the NLO structure functions, negative around 2−10 GeV2. This unphysical result

was an expected shortcoming of the simple cut-off regularization implemented.

A possible solution to a similar problem has been worked on in [38], where by

implementing the factorization scale as dependent on the transverse momentum

of the scattering product particle they are able to make the negative contribution

at large momenta arbitrarily small. Fixing this problematic behavior is on the

roadmap beyond this work.

From Figs. 4.1a and 4.1b one sees that for both of the polarizations the NLO

contributions from both ∆INLO = ∆Iqq̄g and log(1− z1) terms are negative, the

latter being somewhat smaller in magnitude. Interestingly neither of the contri-

butions is strongly dependent on Q2 in this region. Figures 4.2a and 4.2b show

for both polarizations how the magnitude of the NLO contribution is strongly af-

fected by the choice of the running coupling at low Q2. For the transverse case

the non-trivial running couplings lead to significantly smaller NLO cross sections

in comparison to the LO cross section, meaning that the NLO contributions are

unreasonably large in the whole Q2 range. A similar conclusion follows for the

longitudinal polarization result as well even if the effect is slightly less dramatic

at low Q2. Even though the magnitudes of the NLO cross section corrections de-

crease towards zero at high Q2, this does not happen as quickly as the decrease

of the LO result. This discrepancy is magnified in the structure function results

shown in Fig. 4.3 where the NLO structure functions diverge from the LO result

at Q2 & 5 GeV2.
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Chapter 5

Conclusions

The theoretical results derived in this work consist of partial next-to-leading order

corrections to the polarized cross sections of virtual photon scattering from a clas-

sical color field. These were calculated using the light cone field theory starting

from a parton Fock space expansion of the incoming photon state to get a per-

turbative result for the incoming virtual photon wavefunction. This calculation

was done for the known leading order process γ → qq̄ and for the loopless NLO

processes γ → gqq̄. Fourier transforming these wavefunctions into mixed space we

got the results (3.9) along with (3.11) and (3.10) for the LO processes and (3.31)

with (3.33) and (3.32) for the NLO processes. With these we were then able to

use the eikonal approximation for the scattering process and the optical theorem

to finally get the NLO cross sections (3.66), along with (3.14), (3.16), (3.62), and

(3.63). Lastly it was necessary to regulate a soft divergence in the cross sections

that was handled using a cut-off and subtracting the divergence into the dipole

evolution prescription, yielding a convergent result (3.75). Lastly the result was

rewritten using the impact parameter (4.1) to facilitate the numerical study.

The calculated NLO corrections are partial as in next-to-leading order there are

non-trivial contributions to the quark-antiquark component of the photon splitting

wavefunction due to several possible diagrams with internal gluon loops. Calcula-

tion of these diagrams is more involved than the quark-antiquark-gluon diagrams

done here as they require more intricate regularization, and so were out of scope

for this work. The NLO cross section result was written in a way that the loop
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diagram contribution would be straightforward to include once is has been calcu-

lated.

In the numerical study done the derived next-to-leading order cross sections

were evaluated and compared to established leading order results. The leading

order results evaluated here were found to match earlier results. For the NLO con-

tribution results the cut-off regularization used was found to be effective in elim-

inating the divergence. However, the regularization method is too crude and as a

result the NLO contribution is over-subtracted into the evolution equation, caus-

ing the resulting next-to-leading order contributions become negative and large in

magnitude. This in turn causes the next-to-leading order cross sections to become

negative at high virtualities of the photon, which is unphysical. A more careful

approach to the regularization is needed.

The full next-to-leading order result of the virtual photon scattering was out

of scope for this work. To get the complete NLO result, two main tasks need to

be done: firstly one needs to do the loop diagram calculations to get the full NLO

wavefunction of the virtual photon and secondly it will be necessary to implement

the dipole correlator solution via an evolution equation solver that takes NLO

effects into account, a NLO BK equation solver for instance. With these issues

resolved it should be possible to compare these theoretical results to experimental

data to see if the agreement of the theory and data is improved at NLO with

massless quarks.
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