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ABSTRACT 

FINITE ELEMENT ANALYSIS OF A FEMUR TO DECONSTRUCT THE 

DESIGN PARADOX OF BONE CURVATURE 
 

SEPTEMBER 2012 

SAMEER JADE 

 B.S.M.E, UNIVERSITY OF PUNE, INDIA 

M.S.M.E, UNIVERSITY OF MASSACHUSETTS AMHERST 

Directed by: Professor Ian R. Grosse 

 

The femur is the longest limb bone found in humans. Almost all the long limb bones found in 

terrestrial mammals, including the femur studied herein, have been observed to be loaded in 

bending and are curved longitudinally. The curvature in these long bones increases the bending 

stress developed in the bone, potentially reducing the bone’s load carrying capacity, i.e. its 

mechanical strength. Therefore, bone curvature poses a paradox in terms of the mechanical 

function of long limb bones. The aim of this study is to investigate and explain the role of 

longitudinal bone curvature in the design of long bones. In particular, it has been hypothesized 

that curvature of long bones results in a trade-off between the bone’s mechanical strength and its 

bending predictability.   This thesis employs finite element analysis of human femora to address 

this issue. Simplified human femora with different curvatures were modeled and analyzed using 

ANSYS Workbench finite element analysis software. The results obtained are compared between 

different curvatures including a straight bone. We examined how the bone curvature affects the 

bending predictability and load carrying capacity of bones. Results were post processed to yield 
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probability density functions (PDFs) for circumferential location of maximum equivalent stress 

for various bone curvatures to assess the bending predictability of bones. To validate our 

findings on the geometrically simplified ANSYS Workbench femur models, a digitally 

reconstructed femur model from a CT scan of a real human femur was employed. For this model 

we performed finite element analysis in the FEA tool, Strand7, executing multiple simulations 

for different load cases. The results from the CT scanned femur model and those from the CAD 

femur model were then compared. We found general agreement in trends but some quantitative 

differences most likely due to the geometric differences between the digitally reconstructed 

femur model and the simplified CAD models. As postulated by others, our results support the 

hypothesis that the bone curvature is a tradeoff between the bone strength and its bending 

predictability.  Bone curvature increases bending predictability at the expense of load carrying 

capacity. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Introduction 
 

This study is focused on the femora of mammals. The femur is the longest and the largest bone 

found in the human body. The femur is also called the thigh bone. It connects to the pelvis at the 

proximal end to form the hip joint and to the tibia at the distal end to form the knee joint. The 

femur in the body takes the largest percentage of the weight of the body. The shaft of the femur 

is cylindrical with approximately circular cross section shape and is found to possess a 

longitudinal bon eccentricity or shape eccentricity [1-3], as can be seen in Fig. 1 and Fig. 4.         

 

Figure 1. A human femur [4] 

 

 It is important to note here that various authors [3, 5, 6] in the past have used the term 

bone curvature to define what we call bone eccentricity in this study. Curvature is 

mathematically defined as the reciprocal of the radius of curvature. Therefore, in this study we 
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redefine what others have called bone curvature [3, 5, 6] as bone eccentricity in order to be 

mathematically more accurate. The mathematical relationship between a true bone curvature, c  

and its radius of curvature, cR  with the shape eccentricity, se  is as follows. 

                                        

2 241

8

s
c

s

e L
R

c e


 

                                                               

(1)   

  

  

where, L  is the length of the bone. By dimensionalizing equation (1) using L , equation (1) can 

be re-written as, 

                                                                         

24( ) 1
1

8( )

s

c

s

e
R L

eL cL

L



 

                                                        

(2) 

 To better understand the relationship between the radius of curvature of bone, true bone 

curvature and its shape eccentricity, we plotted the radius of curvature of bone and bone’s true 

curvature against the shape eccentricity of the bone using equation (2). 

 

Figure 2.Rc/L and cL plotted against es/L. 
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 The curve of  vs. c sR e

L L
 shows that the radius of curvature of the bone is inversely 

proportional to the shape eccentricity of the bone. And the curve of  vs. se
cL

L
shows that the true 

bone curvature increases monotonically with the shape eccentricity. Also, for the range of shape 

eccentricity considered, the relationship between shape eccentricity and true bone curvature is 

nearly perfectly linear. 

 The bones’ shape eccentricity is defined as the perpendicular distance taken from the 

center of the line joining the centers of the bone cross sections at the proximal and distal ends to 

the point mid way on the neutral axis of the bone. This shape eccentricity makes the axial force 

acting on the bone produce a bending moment about the mid-shaft [3]. 

 There are two main parts involved in this study; firstly, to find how the bone curvature 

affects the bone’s mechanical strength, and secondly to find how the bone curvature affects it’s 

bending predictability. A bone’s mechanical strength is defined as the largest load that can be 

supported elastically by the bone. Bending predictability is defined as the probability of the bone 

to bend in a certain direction or the predictability of pattern of stresses in a bone. 

1.2Background 
 

One of the earliest discussions on the mechanical significance of curvature of long bones of 

mammals was carried out by John Bertram and Andrew Biewener in their research paper, “Bone 

curvature: sacrificing strength for load predictability” [5]. The authors here questioned the role of 

bone curvature in the design of the long bones of mammals. The authors noted that a straight 

bone should be most efficient in design because of the maximum mechanical strength of a 

straight bone. For a given load bending generates much higher stresses in the bones than pure 
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axial compression, since in bending the external surface is subjected to high stresses [5]. As a 

result, the bones that are subjected to bending have lower mechanical strengths than the bones 

subjected to pure axial compression. In spite of this, the long limb bones in mammals have been 

found to be predominantly loaded in bending [1, 7].  Mechanical strength here refers to the bones’ 

load carrying capacity which is its ability to withstand loads elastically. Material strength means 

the bones’ ability to resist permanent deformation and cracking. Material strength is a part of 

mechanical strength. It has also been studied that in the limb bones of mammals, the largest 

proportion of total strain and total stress is due to the bending moment rather than the axial force 

[1]. Hence there is a paradox in the design of the bone. The bending moment in the bones is 

produced by the eccentric loading due to the dynamic loading environment that the bone is 

subjected to and secondly because of the longitudinal curvature present in the bone [3]. A 

dynamic loading environment refers to the loads that act on long bones resulting from motions 

including walking, running, jumping, climbing stairs etc. Biewener had theorized that in case of 

tibia and ulna bones the bone curvature causes an increase in the overall stress in the bone. 

However, Biewener also said that the curvature present in femur attempts to reduce the total 

bending that the bone is subjected to by counteracting the bending moment produced by the 

eccentric axial forces [8]. This was supported by Frost, who hypothesized that the curvatures in 

long bones are present mostly to decrease the overall bending stress in the bones [9]. 

Nonetheless, many studies have suggested that the longitudinal bone curvature increases the total 

bending stress developed in the bones [1, 3, 7]. One of the possibilities in this could be that the 

relation between the long limb bone shapes and their overall bending or mechanics is somewhat 

different for different bones [10]. 
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It has been postulated by Lanyon that the longitudinal bone curvature in long bones may be 

present to generate a certain minimum level of strain in the bone, essential for healthy 

functioning of bones or for the convenience of good packing of the surrounding muscles [8]. 

However these hypotheses were not backed with sufficient data[10]. 

A lot of attention has been given to the effect of longitudinal bone curvature present in the 

mammal limb bones to the bone strength and the contribution of bending to the total stress 

generated [1, 6, 7]. However, not much research has been done to understand how the longitudinal 

bone curvature affects the bending predictability of the bones. Bending predictability is defined 

as the probability of the bone to bend in a certain direction or the predictability of pattern of 

stresses in a bone.  

For structures like long limb bones of mammals that are exposed to variable dynamic loads 

and unpredictable loading environment, it is very improbable to be subjected to pure axial loads. 

This is because the off-axis loading on the bone and the bone curvature causes some bending in 

the bone[5]. Therefore, the bone curvature assists the bone to be loaded in bending. This feature 

in the long limb bones subjected to loads in variable directions could give mammals a 

mechanical advantage of improved bending predictability which restricts the range of bending 

direction of the bones. On the other hand, a straight bone subjected to loads in variable directions 

will have no restriction on the range of its bending direction and hence will have no bending 

predictability [5]. A possible advantage of bending predictability is that it enables the mammals to 

increase their bone’s material strength non-uniformly based on where the maximum probability 

of maximum stress occurs. However, we have no evidence to support this at this point. 
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1.3Past Analytical Work 
 

The paradox of the bone curvature was initially researched by Bertram & Biewener when they 

introduced the concepts, ‘bending predictability’ and ‘load carrying capacity’ to be important 

design features of long limb bones. Therefore, the effects of both these features on the design of 

bones were studied to check whether there existed a tradeoff between these two design features.  

The load carrying capacity of a structure is the ability of the structure to elastically 

support a load. For curved bones Bertram & Biewener defined its load carrying capacity in a 

relative context- the maximum load that can be supported elastically by a curved bone relative to 

the maximum load that can be supported by a straight bone of the same material strength. 

Further, they assumed the load to be applied in the axial direction at a point which is in the plane 

of curvature of the bone. An expression of load carrying capacity in terms of radius of bone cross 

section and the curvature of bone was derived. Another assumption made by the authors in their 

derivation of [5] is that the bone has a circular, solid cross section. Fig 5 shows the geometry of 

the bone used for the derivation. 

 

Figure 3.  A straight bone 
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Assuming F to be the maximum load supported by a straight bone, the total “normal” 

stress generated in the bone is given by the normal stress due to force acting normal to the 

section plus the normal stress due to bending: 

 

                                                               
max

( )F M c

A I
  

                                                                      

(3) 

 

 

where M is the bending moment given by FR, R is the radius of bone cross section, c is the 

perpendicular distance to the neutral axis from outermost fiber of the column, A is the cross 

sectional area given by πR
2
 for a circle and I is the second moment of inertia given by πR

4
/4 for a 

circle.  

Note that Eq.(3) assumes that the normal stress due to axial load and the normal stress 

due to bending are of the same sign, and the sense of maximum stress as compression or tension 

is not accounted for in Eq. (3). Thus, for an axial load that results in compression, then the 

compressive bending stress is added to the axial normal stress to obtain the maximum normal 

stress. Using the appropriate relationships for the terms shown in Eq. (3) for a solid round 

section, one gets:  

 

                                      
max 2

4

( )( )

( )
4

F F R R

R
R

  


                                                                

(4) 

 

Now a bone which is curved longitudinally is considered. Let f be the load acting in line 

with the curvature of the bone as shown in Fig 4. Fig 4 shows the side view of a symmetrical half 

bone. The total stress produced by load ‘f’ on the curved bone is calculated. 
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Figure 4. A curved bone with symmetrical half length showing shape and load eccentricity 

  

 The total stress is given by Equation (3) again but now the bending moment M is given by 

Lfe , Le is the load eccentricity given by SR e  and Se  is the shape eccentricity as shown in Fig 4. 

All other parameters are same as before. Therefore, we get: 

  

                                                                

max 2
4

( )( )

( )
4

sf R e Rf

R
R


  



                                                            

(5) 

 

Note that our notation and terminology are different than that presented by Bertram & Biewener. 

Bertram & Biewener used the term bone curvature (c) to refer to what we designate here as 

shape eccentricity. In analytical geometry, curvature (c) is mathematically defined as the inverse 

of the radius of curvature (Rc). Further Bertram & Biewener do not define the load eccentricity, 

which is important for determining the bending moment induced by the axial load. 

Now, by equating the two expressions of total stresses, we get the ‘relative load carrying 

capacity’, RLCC which is given by ‘f/F’ in terms of curvature. 



9 

 

                                         
(5)

(5) 4( )s

f
RLCC

eF

R

 


                                                            

(6) 

 

 

Next, we derived an expression for relative load carrying capacity (RLCC) of a hollow 

bone to compare its results with those of the solid bone. Following the same procedure but with a 

hollow cross section, we obtain an expression for load carrying capacity, RLCC as: 

 

                                                     

2 2

1 2

2 2

1 2 1

(5 )

(5 4 )s

R Rf
RLCC

F R R R e


 

 
                                                                

(7) 

 

where R1 is the outer radius and R2 is the inner radius of the bone cross section. The mean 

dimensions of R1and cortical bone thickness were obtained from [11] and [12].  

The authors in [11] obtained femoral measurements from 72 intact human adult femora of 

a contemporary Central Anatolian population. The femora were obtained from the teaching 

skeletal collections at the Anatomy Department of the Medical School, University of Selçuk. 

This gave R1 = 13.375 mm and R2 = 6.325 mm [11]. 

Various values of RLCC were calculated for different h/R values and then RLCC was plotted 

against /Se R  (see Figure 5). 

Table 1. Values of RLCC formulated for different normalized eccentricity values 

Bone eccentricity, eS /R Relative Load carrying capacity, RLCC 

  Solid bone Hollow bone 

0 1 1 

0.6 0.6756757 0.685189412 

0.9 0.5813953 0.592004732 

1.2 0.5102041 0.52113165 

1.5 0.4545455 0.46541368 

1.8 0.4098361 0.42045932 

2.1 0.3731343 0.383424321 

2.4 0.3424658 0.352385424 

2.7 0.3164557 0.325995494 
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Figure 5. RLCC plotted against es/R [5] 

 It can be seen from Fig. 5 that the relative load carrying capacity is maximum at zero 

curvature i.e. for a straight column, and it reduces monotonically with increasing shape 

eccentricity. Hence shape eccentricity reduces the relative load carrying capacity of the bone. 

Also, we can observe no substantial difference for the RLCC between solid and hollow bones.  

Bertram & Biewener in their study have the point load applied all around the circumference with 

the position of load defined by angle α as shown in Fig. 6, and the location of maximum bending 

stress is defined by angle  . 

Now, for evaluating bending predictability, firstly the angles ‘α’ and ‘ ’ have to be 

defined. Alpha (α) was defined as the location of the external point load acting on the bone’s 

circumference measured from the plane of curvature as shown in Fig 6. Phi ( ) denotes the 

location of the maximum stress on the bone.  is measured from the plane of curvature to the 

line joining the point of load application to the center of midsection as shown in Fig. 6.  is 
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measured at midsection because bending will cause maximum stresses at the midsection of the 

bone.  

 

Figure 6. Peripheral point load model showing a) A straight bone with a point load acting 

at an angle α. b) A curved bone with a longitudinal bone eccentricity denoted as ‘c’ and 

load acting at an angle α and direction of bending denoted by angle Φ. In fig (b), the circle 

on the right corresponds to the top section of the bone and the circle on the left corresponds 

to the mid section of the bone. [5] 

In Fig 6 given by [5], the shape eccentricity is denoted as ‘C’. However, in this study we 

denote shape eccentricity as Se , as shown in Fig 3.  is evaluated by applying basic trigonometry, 

and is given by the relation: 

                                                         
1 ( sin )

tan
( cos )s

R

R e









                                             

(8) 

 

Note: The expression for   was incorrect in Bertram & Bieweners’ paper [5]. Therefore the 

following graphs are evaluated from the corrected expression and therefore are different from 

those in the referred paper. 
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The expression of   for a hollow bone remains the same as that for a solid bone as 

shown in Eq. (8). Therefore the bending predictability computed in the following section is same 

for a solid and a hollow bone. Using the relation,   was calculated for various α values ranging 

from 0-180 degrees and for various shape eccentricity ( Se ) values and plotted (see Fig. 7). 

 

Figure 7. Phi vs. Alpha (For solid and hollow cross section) 

It can be observed from the graph above that as the shape eccentricity raises, the range of 

  decreases. Also, we note that for a straight bone ( Se  =0), the range of  is equal to the range 

of α. Bertram & Biewener introduced the term relative variability ( rV ) in order to normalize the 

range of   as given by: 

                                                      
 

 
r

range
V

range






                                                                 

(9) 

 

where range  = maximum   – minimum   and range α = maximum α – minimum α. 
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As the shape eccentricity increases, the range of   reduces and therefore the relative 

variability( rV ) reduces. As the relative variability decreases, the bending predictability ( bP )also 

increases. The authors defined bending predictability as given by: 

                                                        1b rP V 
                                                                   

(10) 

 

Bending predictability ( bP ) can be loosely interpreted as the probability of the bone to 

bend in a certain direction or the predictability of pattern of stresses in a bone [5]. Bending 

predictability( bP )is plotted against Se  normalized with R to analyze the behavior of bending 

predictability with change in shape eccentricity. 

 

Figure 8. Bending predictability vs. shape eccentricity (For solid and hollow cross section) 

It can be observed from Fig. 8 that the bending predictability of the bone increases with 

increase in shape eccentricity. With both the results of load carrying capacity and bending 

predictability, it was concluded that the shape eccentricity was a trade-off between bone strength 

and bending predictability. Although these results give us an idea of how the shape eccentricity 

of the bone affects the bone strength and bending predictability, we find some areas which may 

need better analysis. While evaluating the load carrying capacity, the authors assumed the load to 
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be only acting in line with the curvature of the bone i.e. for α=0 deg and therefore did not 

consider different locations of the load while evaluating RLCC.  

Also, the bending predictability is evaluated based on the ranges of angle  and is a loose 

interpretation of the probability density function that reflects the longitudinal plane of bending. 

Therefore, it may not be a mathematically accurate picture of the probability density function for 

the angle   for different shape eccentricities, separately. Bertram & Biewener’s bending 

predictability does not tell us on which longitudinal plane the bone is most likely to bend for a 

particular shape eccentricity and range of α values and how that location changes for different 

shape eccentricities. A more informative representation would be realized by developing 

probability density function graphs for various Se  values depicting the frequency of occurrence 

of  for each Se value. 

Moreover, all the results have been obtained analytically using analytical mechanics applicable 

for simple geometry. In order to validate the results obtained by [5]in the context of more 

realistic bone structures, we employed finite element analysis, FEA in the following chapter to 

revisit the study of Bertram and Biewener.  

1.4 FEA in Physical Anthropology and Comparative Biology 
 

Finite element method (FEM), also called finite element analysis (FEA) is a part of computer-

aided engineering (CAE) which is basically employing computer software’s for solving 

engineering tasks. FEA is a numerical method which is used for evaluating stress, strain and 

deformation of complex structures. It does that by converting a complex geometry into a mesh of 

finite elements with simpler geometries which are connected to each other by nodes. Then, the 

real life conditions on the structure are simulated upon the 3 D model by applying appropriate 

boundary conditions, loading conditions and material properties. The accuracy of the solution 
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can be increased by making the mesh finer; although, even with a very fine mesh, there remains 

a slight approximation in the solution. FEA overcomes the limitations of the theoretical and 

experimental methods using strain gauges, load test machines, mechanical simulators etc[13-15, 

15-19].   

 Finite element modeling and analysis is a technologically advanced method which is 

becoming widely used in anthropology and comparative biology to study the relationship 

between form and mechanical function of biological structures [20, 21]. A substantial amount of 

research been done in this field of applying FEA to physical anthropology and comparative 

biology [22-42]. FEA has been used in a very wide area of biology ranging from performing 

analysis in exoskeletons, orbital mechanics, hip joints, cardiovascular biomechanics, skulls, 

bones, biting force of teeth and ligaments to name a few [21, 26, 29, 30, 42-48]. In cases where 

the experimental or in vivo measurements are not possible or inaccurate, FEA has helped in 

analyzing and answering questions in functional morphology for example- predicting bite forces 

in mammals, material behavior of bones and teeth in mammals etc [24, 30]. FEA therefore helps 

in creating a link between biology and mechanics.  FEA is used often in the field of biology for 

addressing questions regarding the form-function relationships, morphology and evolution of 

various organisms[20]. Finite element analysis method overcomes the limitations of theoretical 

and experimental approaches by reducing complex geometries into a mesh of finite elements 

with simpler geometries. The experimental and theoretical methods using strain gauges, load test 

machines, mechanical simulators etc work well with simple structures but they have their 

limitations when the structure is complex which is usually true for biological structures like 

bones[13, 20, 49]. Also the dynamic loading that the biological structures are subjected to, adds 
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up to the complexity of their analysis. Therefore, finite element analysis has become a very 

popular method for carrying out different studies in evolutionary biomechanics. 

In this study, we employ FEA method to study the form function relationship in a femur. 

Form function relationship is based on the principle of form follows function which says that the 

shape of an object or a structure should essentially be based upon its intended function or 

requirement[50]. 
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CHAPTER 2 

 

MATERIALS AND METHODS 

2.1Finite element modeling & analysis 
 

2.1.1 Finite element modeling 

 
 

 
Figure 9. Initial bone model 

 

We used ANSYS® Workbench™ v 13.1
1
 for the 3D modeling and analysis of the femur. We 

modeled the human femur as a curved hollow cylinder with circular cross section in ANSYS 

Workbench Design Modeler. The bone was modeled with the bone axis along the Z axis. The 

radius of curvature of the bone and the location of the load were parameterized since we wanted 

to study the behavior of bone for different locations of the load and for different values of bone 

eccentricities. For the initial model, the entire bone length was modeled with one end fixed 

supported while on the other end, a peripheral point load was applied as shown in Fig. 9. The 

point load was applied on the circumference of the bone to account for the misalignment 

                                                           
1
ANSYS Workbench

®
 is a product of ANSYS, Inc., Canonsburg, PA. 
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between the load and the bone neutral axis. The average human male weight is around 86 

kilograms. Therefore, assuming that half of this load acts on a femur, a load of nearly 450 N was 

applied on the model. The location of the load is a random variable and therefore can act at any 

point along its circumference. To address that, the point of application of force was marked using 

the ‘split at select’ command in ANSYS Design Modeler which made the point of application of 

load controllable and the location of load was parameterized from 0 to 180 degrees. But since the 

bone is symmetric along its length or z axis, modeling only a symmetrical half of the bone along 

the length with appropriate symmetric boundary conditions will give the same effect as with the 

full length bone. This reduced the number of elements of the model and thus increased the 

computational speed. Hence, a new bone was modeled with only half the length as shown in Fig. 

10. The different stages of bone modeling are shown in Fig. 10. 
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Figure 10. Different stages of bone modeling 

 

In this model, one symmetrical half of the bone about the x axis was divided in 36 equal 

sections of 5 degrees each as shown in Fig.10. This was done to enable application of a surface 

load on any of those 36 patches independently and therefore the location of the load was 

parameterized between 0 – 180 degrees as shown in Fig 11 in discrete 5 degree increments.  The 

patches were made using the ‘Add material’ and ‘Add frozen’ options alternately available in the 

sweep operations in the ANSYS Workbench Design Modeler. The radius of curvature was also 

parameterized in order to perform simulations for different bone eccentricities.  

Dimensions used for the finite element model were obtained from [11, 12, 51]. For the 

bone cross section radius and length [11], the authors obtained femoral measurements from 72 

intact human adult femora of a contemporary Central Anatolian population. For the cortical 

thickness value [12], the authors obtained the data of adult human specimens between 20 and 79 

years. And, for the radii of curvature of the bone [51], the authors obtained the radii of curvature 

from 14 human femora. 
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Table 2. Bone dimensions used for modeling[11, 12, 51] 

Dimension Value, mm 

Bone cross section radius 13.375 

Cortical thickness 7.05 

Maximum length 422.5 

Radii of curvature 689-1885 

 

Then we imported the model into the ANSYS Workbench Mechanical module to perform 

finite element analysis. Here, we applied boundary and loading conditions to the bone before 

performing simulations. To account for the symmetry, symmetric boundary conditions were 

applied in the form of three displacement points on the top and the bottom sections in order to 

constrain their displacement. 

 

Top face                                                                             Bottom face 

Figure 11. The figure on left side shows the bones’ top face with 2 displacement points and 

load applied and the figure on right side shows the bottom face with displacement applied 

on the face 

One displacement was applied on the entire bottom face which is the mid section of the 

actual bone as shown in Fig. 11 in order to constrain its displacement along z direction. The other 
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two displacement points were applied on two points on the top face of the bone shown in Fig. 11. 

These were to constrain the sliding of the bone in x and y directions. 

2.1.2 Material properties 
 

The mechanical properties of bones vary according to age, species, anatomical site etc. The outer 

hard and dense part of the bone is called the cortical bone. Elastic isotropic cortical bone values 

were used in this study from [52]. Table 3 shows the values of material properties used.  

Table 3. Material properties[52] 

Property Value 

Young’s modulus E (MPa) 17000 

Poisson’s ration ν 0.33 

 

where E is the Young’s modulus and ν is the Poisson’s ratio. 

2.1.3 CT Scanned femur model 
 

After performing the analysis with remote forces on the femur CAD model, we compared those 

results in order to validate them. Therefore, as the last part of this study, we performed a study 

on a CT scanned model
2
 of a real human femur and compared the results with the results from 

the previous section. The model was imported as a NASTRAN file and it was then saved in 

Strand7 software
3
 as a st7 file. The model has 238,775 nodes and 1,271,957 4-noded tetrahedral 

bricks. This femur model consisted of a cortical shell along the bones’ diaphysis and two 

trabeculae or cancellous parts in the proximal and the distal ends (epiphysis). The material 

properties of this model are as follows, 

                                                           
2
 The CT Scanned model of human femur was built and provided by Kelli Tamvada, doctoral candidate at the 

Department of Anthropology, University of Albany, NY and Professor David S. Strait, Associate professor of 

Anthropology, University of Albany (SUNY), NY. 

 
3
 Strand7® is a product of Strand7 Pty Ltd, University of Sydney and the University of New South Wales, Australia.  
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Table 4. Material properties 

  Cortical Cancellous 

Young’s modulus E (MPa) 20,000 749 

Poisson’s ration ν 0.3 0.3 

 

Load analysis similar to the previous chapter was performed here. The orientation of the load is 

explained in Fig. 12 and Fig. 13 with angles β and γ defined. Angle β ranged from 0 to 30 

degrees with increment of 2 degrees.  

 

 

Figure 12. 3D view of the CT scanned femur model showing force orientation with angles 

Beta and Gamma defined as shown. 



23 

 

 
 

Figure 13. 2D anterior and top views of the CT scanned femur model in Strand7 with 

angles Beta and Gamma indicated. 

 

For boundary conditions, displacement points were applied on the bottom face of the bone with 

displacement in x, y and z directions constrained as shown in Fig. 14. 

 

Figure 14. Displacement points applied on the bottom face of the bone. The displacement 

points applied are circled above. 
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We then evaluated the critical dimensions of the CT Scanned femur model. For 

evaluating the radius of curvature, we used the normalized curvature moment arm (NCMA) or 

the included angle method [53, 54].  

 
Figure 15. Landmarks and distances indicated in a phalanx (finger bone) for measuring the 

curvature [53]. 

In this method, the curve of the bone is assumed to be a part of the circumference of a 

circle as shown in Fig. 15. Based on the included angle Ɵ and applying geometric relations, 

radius of curvature was evaluated. 

2.2Analytical analysis 
 

For the analytical analysis part, we re-evaluated the analytical results based on our CAD femur 

model’s geometry and loading conditions. The results obtained were compared with the results 

that we obtained from finite element analysis of the CAD femur model. In our analytical model 

we assumed the bone to be hollow and the load to be acting on surface patches similar to the 

CAD model. Since we apply the load on surface patches, the load effectively acts as a point load 

on the centroid of the surface patch as shown in Fig. 16. 
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Figure 16. Top face of the bone showing the dimension,    

Fig. 17 shows the top view of the top section and the mid-section of the bone.  
 

 

Figure 17. Top view of the top section and the mid section of the bone 

where ‘ ’ is the distance from the centroid of the surface patch to the center of the cross section 

as shown in Fig. 17.Using this model, bending predictability and relative load carrying capacity 

were calculated. 
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CHAPTER 3 

 

FEA ANALYSIS OF A CAD FEMUR MODEL 

3.1 Direct load analysis using the CAD femur model 
 

In this section, we analyzed the CAD model that we built in ANSYS Workbench shown in 

chapter 2. We performed simulations to calculate the bending predictability, relative load 

carrying capacity and probability density functions in order to compare our results with the 

results obtained analytically by Bertram and Biewener and also with the analytical results that we 

calculate in the further sections. 

3.1.1 Bending predictability by FEA results 
 

After modeling the femora, we ran various simulations for locations (α) of the load on all the 36 

patches ranging from 0-180 degrees as shown in Fig 11. This was repeated for all five shape 

curvature (eS) values of the bone and also for a straight bone. A total of over 200 simulations 

were run with each simulation providing the magnitude and location ( ) of maximum von Mises 

stress. The value of  was measured from the plane of curvature of the bone as shown in Fig 18. 

In this study, we calculated all   values manually. However, later we also developed an APDL 

code which can be used to automatically calculate  and also parameterize   to include it in the 

table of design points in ANSYS workbench. The APDL code to calculate   is given in 

APPENDIX E. 
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Figure 18. Orientation of Φ 

 

We thus got a set of ( )i i   values for each shape eccentricity value. The various sets of ( )i i   

values are plotted as points as shown in Fig 20. Fourth degree polynomial curves were then fitted 

to each set of i  versus i  values as shown in Fig 19. Here, i=1,2…..36 for the 36 sections of the 

bone face where the load is applied. The polynomial equations along with their R
2
 values are 

provided in  
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APPENDIX . 

 

                                    Von-Mises stress                                                         Normal stress about z-axis 

Figure 19. Von-Mises (VM) and Normal stress distribution in the FE models of the femur 

under loading.  Maximum stress distribution region can be observed near the mid section 

of the bone and close to the plane of curvature 

 

 

Figure 20.Phi vs. Alpha (with ANSYS results). This figure shows various sets of φi versus αi 

values fitted with fourth degree polynomials as shown in  
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APPENDIX  along with the R
2
 values 

As it can be seen from Fig 20, as the shape eccentricity ( Se ) of the bone increases the 

range of   reduces. Now using the range of   from the fourth order polynomials, we evaluated 

the relative variability and then the bending predictability by following the procedure used for 

analytical results. Bending predictability was plotted against shape eccentricity as shown in Fig. 

21. 

 

Figure 21. Bending predictability vs. Shape eccentricity (with ANSYS results) 

0 

0.2 

0.4 

0.6 

0.8 

1 

0 1 2 3 

P
b
 

es /R 

Bending predictabilty 

Analytical 

ANSYS 



30 

It can be observed from Fig. 21 that there is a close resemblance in the nature of the ANSYS 

values obtained with the analytical curve.  

3.1.2 Relative load carrying capacity by FEA results 
 

From the simulations performed, we obtained the magnitude of maximum equivalent stress for 

different locations (α) of the load for different bone eccentricities. Here equivalent stress is being 

used instead of normal stress. This is because our task of locating the points of maximum stress 

is three dimensional and equivalent stress fully describes the stress state since it includes six 

independent stress components. Also, the equivalent stress is a good predictor for bone failure 

[55]. In the past analytical work discussed earlier, the authors calculated the RLCC assuming the 

load to be only acting in line with the curvature of the bone i.e. for α=0 deg and therefore did not 

consider different locations of the load while evaluating RLCC.  

From the maximum stress calculated for different α values, we evaluated the relative load 

carrying capacity considering the different values of α. The relative load carrying capacity was 

calculated as follows: 

                                        
max

max

( )

( )

straight

curved

RLCC





                                                            

(11) 

 
 

where max( )straight  is the maximum equivalent stress in a straight bone and max( )curved  is the 

maximum equivalent stress in a curved bone. 
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Maximum stress at mid-section Stress concentration region at the load location 

Figure 22. Maximum Von-Mises stress occurring at the mid section and stress 

concentration region at the load location 

The maximum stress occurred at the mid-section of the bone as expected, ignoring the 

stress concentration region around the point of application of load as shown in Fig. 22.RLCC 

was calculated and plotted against bone eccentricity for different load locations (α). 

 

Figure 23. RLCC plotted against es/R for different locations of load 
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Figure 24.Surface plot of RLCC vs. Alpha vs. es/R. It can be observed that the lowest 

RLCC occurs when eS is maximum and α=0 deg and RLCC increases with increase in α 

and with decrease in eS. 

 

It can be seen from Fig. 23 that for various α values, the increase in shape eccentricity ( Se

) causes the relative load carrying capacity (RLCC) to reduce. However, when α becomes much 

larger; at around 120 degrees and higher, the RLCC is found to be greater for small Se  values 

than for a straight bone followed by decrease in RLCC for further increase in α. This can be 

observed in Fig. 23 and Fig. 24. This behavior can be attributed to the reduction in the moment 

arm caused by large α values which results in lowering of overall bending in the bone. Also, it 

was observed that at any given shape eccentricity ( Se ), the RLCC increases with increase in α. In 

other words, a curved bone is least strong when the load is applied in the plane of curvature (α = 

0 degrees). The plane of curvature in a femur is perpendicular to the femoral neck. Moving the 
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load off of the bone’s plane of curvature reduces the eccentricity of the load and therefore 

increases the bone’s RLCC.  

3.1.3 Probability density functions of phi,   

 

The bending predictability graphs gave us a visual idea of how with the change in the bone 

eccentricity, the bending predictability changes. However, the bending predictability was 

evaluated based on the ranges of angle   which does not address the frequency of occurrence of 

where maximum stress occurs due to randomness in the load location. Therefore, we attempted 

to get a mathematically more accurate bending probability with better visualization of the effect 

of various bone eccentricities separately. As the bone is subjected to dynamic loading, we 

assumed the location of the load, α to be a random variable between 0 and 180 and distributed 

uniformly. With the location of load randomized, we planned to get various   values using the 

4
th

 order polynomials generated earlier shown in  
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APPENDIX . Then using the   values, we could generate probability density function (PDF) 

graphs for different shape eccentricities. We used R programming language
4
 for generating the 

PDF graphs. R is an open source software language and environment for statistical computing 

and graphics. For generating a PDF curve for a bone, we firstly generated 100,000 random α 

values between 0 and 180, using the runif function in R statistical language. We check the 

uniformity of the generated α values by generating a histogram of α values and confirmed its 

uniformity. We then took the fourth order polynomial equation of   vs. α that we got earlier and 

using the 100,000 random α values we generated 100,000   values. With these   values, we 

generated a histogram of over 100 bins using the hist function in R statistical language. Now we 

calculated the x and y coordinates for the PDF. For the x coordinates we calculated the bin width 

and for every consecutive x coordinate, kept adding the bin width to it. For y coordinates, we 

calculated the frequency values from the histogram. Then, we divided each frequency value by 

the sample size (100,000) to get probability and then divided the probability by the bin width to 

get probability density. The x and y coordinates were then plotted to get the probability density 

function graphs. This, procedure was repeated for five shape eccentricities to get five PDF 

graphs shown in Fig. 25. 

 

                                                           
4
 R

®
is a product of R Development Core Team, University of Auckland, New Zealand. 
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Figure 25. Probability density function curves of ‘Φ’ for (a) es=2.4R, (b) es=2R, (c) es=1.7R, 

(d) es=1.4R, (e) es=R 

 

It can be observed from the probability density function graphs, as the bones’ shape 

eccentricity increases the range of   become narrower and the maximum probability density 

gets concentrated to smaller ranges of . Hence we can say, with increase in bone eccentricity 

(and bone curvature) the bending direction of the bone becomes more predictable. In other 

words, the probability of the bone to bend in a certain direction increases with the increase in 

bone eccentricity. A summary of Fig. 25 can be shown in Table 5. We can observe in Table 5 

that as the bone gets more curved, the most expected location for the bone to bend gets closer to 

the plane of curvature. 

Table 5.Summary of PDF’s. 

es Range of Φ, deg E (Φ), deg 

1R 50.4906587 31.05 
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1.4R 32.98830003 25.94 

1.7R 26.72878143 17.19 

2R 22.30729035 14.45 

2.4R 18.25435467 11.28 

 

3.2Remote force analysis 
  

In the previous sections, we validated the results of Bertram and Biewener [5] and then also 

evaluated a more comprehensive probability density function graphs for a range of shape 

eccentricities of femur. However, the loading on a femur is more complicated than simple 

normal loads as demonstrated earlier. Therefore, in this section a more realistic loading is applied 

to the femur CAD model. Here, we applied remote loads to simulate the joint reaction force 

acting on the femur head which is not part of the CAD model. In ANSYS Workbench 

Mechanical, remote force feature allows us to apply a force on a point, edge or face with the 

origin of force anywhere in the space by specifying the x, y, z coordinates of the force in space. 

The location of the force origin in space was calculated using geometry provided in [11] as 

shown in Fig. 26 and applying trigonometry and geometric relations. 

 

Figure 26. Femur geometry [16, 17] used to find force origin for remote force application. 
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 After calculating the force origins, remote forces were applied at various locations in an 

arc shaped path, as shown in Fig. 27. This was done for different bone shape eccentricities. For 

each bone eccentricity and load location, a simulation was carried out and the location of 

maximum von Mises stress was evaluated. Fig. 27 shows the load path that was followed. 

 

Figure 27.Remote force acting at various locations on the femur CAD model. Note that in 

the above figure, each arrow represents a separate load case. 

The orientation of the force was calculated based on the angles β and γ as shown in Fig. 28. The 

expressions for force components evaluated based on angles β and γ are as follows. 

 

   

                                                             
sin sinxF F   

                                               (12)
 

   

                                                                            
cosyF F  

                                                 (13)
 

                     

                                                         
sin coszF F   

                                                     (14)
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Figure 28.3D orientation of the force acting on the femur. JRF (Joint Reaction Force) 

makes angle β in the medial lateral plane and angle Ф with the anterior posterior plane. 

This is the back view of a left femur. [56] 

 As shown in Fig. 28, β is the angle that the force makes in the medial-lateral plane with 

the longitudinal axis or the y axis and γ is the angle that the force makes in the x-z plane with the 

z axis. Angle γ is not very significant and was therefore kept constant at 3 degrees. Angle β was 

varied from 0 to 30 degrees in steps of 2 degress. The location of maximum stress,  was 

evaluated for different β values and this was repeated for different bone’s shape eccentricities 

(es/R) from 0.8R to 2.4R. The table with   values evaluated for different β and es/R values is 

shown in APPENDIX D. 
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Figure 29.Surface plot of Ф vs. β vs. es/R. It can be observed, Ф reduces with increase in β 

and es/R. 

 

After performing simulations for various values of β and es/R, the   values evaluated 

were plotted against β and es/R. As it can observed from the surface plot in Fig. 29, with the 

increase in β and increase in es/R,   reduces. This further shows that the range of   reduces 

with the increase in both the es/R as well as β. Then, from this surface plot, we generated a 

quadratic equation of   in terms of β and es/R. Using the quadratic equation we evaluated 

probability density function for   using R language. We first generated 100,000random β values 

between 0 and 30 using the rtnorm command in R, which generates random variables within a 

truncated range which are normally distributed. Then we generated 100,000 random es/R values 

between 0.8 and 2.4 using the runif command which has the same function as that of rtnorm 

except that the resulting data is uniformly distributed. We selected uniform distribution for es/R 

because we assumed equal probabitlity of es/R occuring anywhere in that range. Also, a 

truncated normal distribution was selected for β with the mean value equal to 13 deg because we 

wanted β to be in the range of 0-30 deg and with the highest probability of β at 13 deg, based on 
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[57]. The truncated part is to limit the range to 0-30 deg. The values of β and es/R obtained were 

then substituted in the quadratic equation to obtain 100,000 values of  . Using the   values 

obtained, we generated a histogram and then a probability density function graph (see Fig. 30) 

following the same procedure as explained in the previous chapter. 

 

Figure 30. Probability density function curve of Ф 

From Fig. 30, we can see that the maximum frequency of occurrence for   is roughly in the 

range 20-28 degrees. Using the PDF of  , the mean or expected value of   was calculated using 

the formulae,   
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 
                                                 (15)

 

Using the limits as min( ) and max( ) in the above expression and solving we found 

[ ] 20degE   

Now, we generated the probability density function graphs for each bone shape eccentricity 

using the same procedure as explained in section 3.1. For generating the PDF’s, the  vs values 

generated (See APPENDIX D) were fit with fourth ordered polynomial functions and the 
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polynomial functions were used to generate the PDF’s. The fourth ordered polynomials 

generated are given in APPENDIX F. 

 

 

 

Figure 31.Probability density function curves of ‘Φ’ using remote forces for (a) es=2.4R, (b) 

es=2R, (c) es=1.7R, (d) es=1.4R, (e) es=R 

A summary of Fig. 31 is shown in Table 6. We can observe in Table 6 that as the bone 

gets more curved, the most expected location for the bone to bend gets closer to the plane of 

curvature and the range of   gets smaller. 
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Table 6.Summary of PDF’s based on remote forces. 

es/R Range of Φ, deg E (Φ), deg 

1 63 19.52 

1.4 54.45 16.83 

1.7 51.48 14.71 

2 49.5 12.69 

2.4 39.56 8.5007 

 

Now, in order to validate these results, in chapter 5 we analyzed a CT scanned model of a real 

human femur. 
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CHAPTER 4 

 

COMPARISON WITH THE ANALYTICAL MODEL 

4.1 Validation of Euler Bernoulli Beam Theory 
 

The study by Bertram & Biewener was entirely carried out analytically using elementary 

mechanics. For load carrying capacity they used the ‘Euler Bernoulli beam theory’. Euler 

Bernoulli beam theory or commonly known as the beam theory is a simplification of the linear 

isotropic theory of elasticity, and it can be used to calculate the relative load carrying capacity 

and deflection of beams.  A beam can be defined as a structural element or a bar that is capable 

of taking loads and withstanding the load by resisting bending. The load acting could be an 

external load or the beam’s self weight. Based on the type of support, two common types of 

beams are simply supported beam and cantilever beam. A simply supported beam is a beam 

which is freely supported at both ends. A cantilever beam is a beam which is rigidly supported at 

one end such that it cannot rotate about that end and freely supported at the other end. In case of 

curved beams, a modified Euler-Bernoulli theory has been developed for more accurate values of 

stress. This is because in the case of bending loading in curved beams, the neutral axis shifts 

inward towards the concave surface by an amount s due to the different lengths of fibers on the 

inner and outer parts of the beam as shown in Fig.32. Therefore the neutral axis and the 

centroidal axis of the section are not one in the same, as is the case for straight beams. 
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Figure 32. Curved beam under bending load. See text for definition of terms. 

 However, when the dimensions of the beam cross section are small compared to the 

radius of curvature of the longitudinal axis, the Euler-Bernoulli beam theory is relatively 

accurate [58, 59]. To confirm this we evaluated the ‘Curvature Factor, K’. The curvature factor is 

defined as the multiplying factor by which the bending stress values in a straight beam are 

multiplied to obtain the bending stresses in a curved beam of the same section. Curvature factor, 

K is given by:  
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sAR


                                                             

(16) 
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(17) 

   

where Ki is the curvature factor for the inner or concave surface, Ko is the curvature factor for the 

outer or convex surface, I is the area moment of inertia, s is the shift of the neutral axis, A is the 

cross sectional area, Ri is the distance from the center of curvature to the inner surface and Ro is 

the distance from center of curvature to the outer surface [59]. 
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In a curved beam bending stresses are larger in the inner or concave surface and smaller 

on the outer or convex surface compared to a straight beam of the same section and under the 

same bending moment. Hence, Ki is greater than one and Ko is less than one. Per Figure 32 the 

shift, s is equal to Rc – Rn, where Rc is the distance from the center of curvature to the centroid of 

the section (i.e. the bone’s radius of curvature) and Rn is the radius that locates the neutral axis 

given by: [58, 59]

 

 

                                        
2 22 ( )

n

c c
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R R R
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(18) 

 

where R is the radius of bone cross section. The derivation for the expression of Rn shown in Eq. 

(18) is given in APPENDIX A. The area moment of inertia (I) for a circular cross-section is 

given by: 
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 Here we considered the bone to be solid instead of hollow to compare to the study 

performed by Bertram & Biewener [5] where they considered the bone to be solid. Curvature 

factors were then calculated for various values of radius of curvature Rc (see Table 7). We used 

the Rc values from [51] where the author obtained those values from 14 human femora. Value of 

R used is the mean value which is obtained from femoral measurements of 72 human femora in 

[11].  
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Table 7. Curvature factor (K) calculated for the inner and outer surfaces of a curved beam 

R=13.375 mm 
   Rc,mm Rc/ R Ki Ko 

655.0223214 48.97363 1.020738 0.979887 

758.7760417 56.73092 1.017864 0.982602 

905.03125 67.66589 1.014945 0.985383 

1125.664063 84.1618 1.011989 0.988223 

1495.052083 111.7796 1.009007 0.991113 

1674.97021 125.2314 1.008034 0.992062 

1722.90625 128.8154 1.007809 0.992282 

2236.328125 167.2021 1.006008 0.994046 

4465.15625 333.8435 1.003004 0.997013 

 

Curvature factor, K was then plotted against Rc / R as shown in Fig 33.  

 

 

Figure 33.  Ki and Ko vs. Rc / R 

It can be observed from Table 7 that the values of Rc / R are very high, varying between 

48 and 333 indicating very large radius of curvature values compared to the bone cross section. 

Also, it can be seen from the graph that the Curvature Factor, K remains almost constant close to 

1. Hence, we can say that due to the large values of radii of curvature of the bone relative to the 

radius of the bone’s cross section, the curvature effect is negligible and straight beam theory may 

be used with minimal error. The reader is cautioned that this curvature effect is a geometric 
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stress concentration effect and should not be confused with other effects of bone curvature. For 

example, an axial load that acts at the centroid of the end of a curved long bone will produce a 

bending moment on other cross sections of the curved bone, and thus bending stresses exist on 

these sections that normally would not be present in a straight beam axially loaded.  

4.2 Analytical evaluation of bending predictability and relative load carrying 

capacity 
 

In order to compare the data obtained from ANSYS results, we re-evaluated the analytical results 

considering the load application as per our ANSYS model. We assumed the bone to be hollow 

and the load to be acting on surface patches as shown in Fig 34.  

 

Figure 34. Top face of the bone showing the dimension,   

 

Since we apply the load on surface patches, the load effectively acts as a point load on the 

centroid of the surface patch as shown in Fig. 34. Fig. 35 shows the top view of the top section 

and the mid-section of the bone. By applying trigonometry in Fig. 35, we get the following 

expression for : 



48 

                                                                        

1 ( sin )
tan

( cos )s

r

r e









                                                          (20) 

 

 

Figure 35. Top view of the top section and the mid section of the bone 

where ‘ ’ is the distance from the centroid of the surface patch to the center of the cross section. 

Again   was calculated for various α values and this is repeated for different bone eccentricities. 

The values of  were then plotted against the values of α for various shape eccentricities (eS) of 

the bone. 
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Figure 36. Phi vs. Alpha (Re-evaluated) 

Calculating the range of   from the above graph, we evaluated the relative variability (Vr) and 

from relative variability we evaluated the bending predictability using the definition of bending 

predictability given by Bertram & Biewener and discussed earlier in section (1.3).  

 

Figure 37. Bending predictability vs. Bone eccentricity 

 

 It can be observed from Fig. 37 that there is a very close similarity between the ANSYS 

and the re evaluated analytical bending predictability pattern. Then we compared the relative 
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load carrying capacity (RLCC) evaluated analytically and by ANSYS. Note that the RLCC 

compared here is for  = 0 degree. 

 

Figure 38. Comparison of RLCC vs. Shape eccentricity for ANSYS and Analytical method 

 There was also a very close similarity between the pattern of RLCC evaluated from 

ANSYS and analytically as shown in Fig. 38. In order to explain the increase in RLCC above 1 

in some cases of the FEA results (see Fig.23 and Fig.24), we computed the RLCC analytically by 

first formulating RLCC in terms of es and α as follows, 
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where 
I

c
 is the section modulus given by

4 4( )

4

iR R

R

 
, F is the force, A  is the cross sectional 

area given by 2 2( )iR R  , R  is the outer radius, iR  is the inner radius, sM  is the moment in a 

straight bone given by Fr , M  is the moment in a curved bone given by mFL , r  and mL  are the 

centroid distance and the moment arm respectively as shown in Fig. 39.  

 

Figure 39. Top view of the top section and mid section of the bone showing the moment 

arm, Lm 

 

Expression for r  is: 
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And mL  is given by 

 
2 2( sin ) ( cos )s

m

er r
L R

R R R
     (24) 

 



52 

 The derivations for  r and Lm are given in APPENDIX B. Upon substituting relevant 

quantities into Eq.Error! Reference source not found., the following complex expression is 

obtained for the relative load carrying capacity RLCC: 
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 After computing RLCC mathematically for various es/R and α values, we plotted RLCC 

against es/R as shown in Fig. 40. We then compared the RLCC vs. es/R results obtained 

mathematically from those obtained from ANSYS results earlier. 

 

Figure 40. RLCC vs shape eccentricity from Analytical and ANSYS results 

We can observe from Fig. 40 that the pattern of RLCC obtained from ANSYS results 

including the increase of RLCC above 1 in some cases are virtually identical to those obtained 

analytically for various α values. When α becomes much larger; at around 120 degrees and 

higher, the RLCC is found to be greater for small Se  values than for a straight bone followed by 
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decrease in RLCC for further increase in α. This behavior can be attributed to the reduction in 

the moment arm caused by large α values which results in lowering of overall bending in the 

bone. Overall, a very good correspondence was observed between the results obtained by 

Bertram &Biewener study and the results obtained from our ANSYS workbench model analysis. 
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CHAPTER 5 

 

COMPARISON OF CAD AND CT SCANNED FEMUR MODEL 

5.1 CT scanned femur analysis 
 

After performing the analysis with remote forces on the femur CAD model, we wanted to 

compare those results to the results from a CT scanned model of a real human femur. We 

performed a study on a CT scanned model
5
 of a real human femur to validate them. We 

evaluated the critical dimensions of the CT Scanned femur model. For evaluating the radius of 

curvature, we used the normalized curvature moment arm (NCMA) or the included angle method 

[53, 54]. In this method, the curve of the bone is assumed to be a part of the circumference of a 

circle. Based on the included angle Ɵ and applying geometric relations, radius of curvature was 

evaluated. 

 
Figure 41. Landmarks and distances indicated in a phalanx (finger bone) for measuring the 

curvature [53]. 

                                                           
5
 The CT Scanned model of human femur was built and provided by Kelli Tamvada, doctoral candidate at the 

Department of Anthropology, University of Albany, NY and Professor David S. Strait, Associate professor of 

Anthropology, University of Albany (SUNY), NY. 
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Continuing the included angle method, the length, shape eccentricity and load eccentricity of the 

bone were calculated in Geomagic studio software
6
 using the measuring tool present in 

Geomagic studio as shown in Fig. 42. 

 
 

Figure 42. Side view of the CT scanned femur model in Geomagic studio for measuring 

dimensions. 

 

The dimensions calculated from Geomagic studio and the included angle method were as shown 

in Table 8. 

Table 8. Dimensions of the CT scanned femur model. 

Dimension Value, mm 

Length, L 426.53 

Radius, R 13.08 

Shape eccentricity, es 17.68 (=1.35R) 

Load eccentricity, el 30.77 

Radius of curvature, Rc 754.28 

 

 

 

                                                           
6
Geomagic Studio

®
 is a product of Geomagic, Research Triangle Park, NC. 
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Figure 43. 3D view of the CT scanned femur model showing force orientation with angles 

Beta and Gamma defined as shown. 

 Figure 43 indicates the orientation of angle β and angle γ that defines the direction of load 

F.As the shape eccentricity of the femur is equal to 1.35R, the results obtained from this model 

were compared with the results obtained from the CAD femur model with shape eccentricity 

equal to 1.35R.  The loads were applied on the femur head with the orientation of the load as 

shown in Fig. 43. Angle β was allowed to range from 0 to 30 degrees with increment of 2 

degrees. For boundary conditions, displacement points were applied on the bottom face of the 

bone with displacement in x, y and z directions constrained as shown in Fig. 44. 
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Figure 44. Displacement points applied on the bottom face of the bone. The displacement 

points applied are circled above. 

 

Below, the stresses in the mid-section of the CAD model and the CT scanned femur 

model are compared for different β values. From Fig. 45, we can observe a good similarity in the 

pattern of shift of the location of maximum von Mises stress as β changes in the two models. In 

both the models, as β increases, the location of maximum stress moves in a similar pattern. 

However, there is a near constant difference in the locations of maximum stresses in the two 

models for all β values. This can be attributed to the axisymmetric sectional shape of the real 

bone. 
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Figure 45. Von Mises stress distribution in the mid section of the CAD femur model and CT 

scanned femur model for different β values. 

 

 Simulations were carried out for differentβ values and various   values were evaluated 

for the different cases. A comparison of the   values obtained from the two models is shown in 

Table 9 and Fig. 46. 
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Table 9. Phi values evaluated for different beta values for the two models. 



(deg) 

 , CT Scanned model 

(deg) 

 , CAD model 

(deg) 

0 83.49 40 

2 79.23 37.5 

4 75.76 35 

6 68.98 32.5 

8 60.89 30 

10 38.52 27.5 

12 26.69 25 

14 4.82 20 

16 -2 17.5 

18 -8.5 12.5 

20 -12.19 10 

22 -76.008 5 

24 -79.75 0 

26 -81.99 -5 

28 -86.008 -7.5 

30 -89 -12.5 

 

  

 As it can be seen from the values and the graph below, the pattern of   is similar in both 

the models. However, there is a difference in the magnitude of the values of the two models 

which can be accounted due to the shape difference in the two models. This is because in one 

hand the CAD model is a simplified femur without a femur head and also with half the actual 

length of the bone and on the other hand the CT scanned model is the model of a real femur. 

Also, it can be noticed from the graph that there is sudden drop in   value at β~20 degrees. This 

is believed to be due to the shape of the bone.  
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Figure 46. Variation of phi with beta for the CAD model and the CT scanned model. It can 

be seen that for both the models, phi reduces with increases in beta. 

 

 These points of β and   obtained were then fitted with quadratic polynomials which 

were further used to generate probability density functions of   for both the models. β was 

randomized between 0 and 30 degrees and then   values were calculated to generate histograms 

and then PDF graphs (Figures 47-48), similar to the method used previously in this study.  
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Figure 47.Probability density function graph of phi for the CT Scanned model. 

 

 

Figure 48.Probability density function graph of phi for the CAD model. 

 

Using the PDF of   and the limits of min( ) and max( )  the most expected value of   was 

calculated using Eq. 15 for both the femur models: 
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 Comparing Fig. 47 and Fig. 48, we can observe that the pattern of PDF ( ) in both the 

models is very similar. This supports the result obtained from remote force analysis performed 

on the CAD model previously. 
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CHAPTER 6 

 

RESULTS DISCUSSION 

 

The first part of the results included the analytical results that we got after re-evaluating Bertram 

& Bieweners’ analytical model as explained in Section 4.2. Results showed that shape 

eccentricity improved the bending predictability and reduced the relative load carrying capacity 

(see Fig.37 and Fig.38) for a load angle of  = 0 degrees. In the second part, a CAD model was 

built in ANSYS Workbench Design Modeler. The results from the CAD model supported the 

results obtained earlier from the analytical model that the shape eccentricity improves the 

bending predictability at the cost of the bones’ relative load carrying capacity (RLCC). However 

the CAD results also showed that the relative load carrying capacity at certain cases improves 

(see Fig.40). This happened for  equal and greater than 120 degrees and for small shape 

eccentricity values. This can be attributed to the reduction in the moment arm resulted due to 

large   values which then causes the lowering of overall bending in the bone. Therefore, as 

opposed to the analytical model which only showed the behavior of RLCC at 0 degree  , the 

CAD model results showed us how the RLCC behaves for different values of  from 0 to 180 

degrees. This behavior was then validated by computing an expression of RLCC in terms of 

and se . A comparison of the RLCC showed a strong agreement as shown in Fig.40. Results at this 

point indicated that longitudinal bone curvature present in a femur increases its bending 

predictability and reduces its relative load carrying capacity. Therefore bone curvature is a trade-

off between bending predictability and bone strength.  

 In the next part, we calculated probability density functions (PDF) of   for various shape 

eccentricities. The PDF graphs showed that as the shape eccentricity increased, the range of   
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and the most expected value of   kept reducing and moved closer to the plane of bone curvature 

(see Fig.25). Therefore, the probability density function graphs proved to be a good method to 

estimate the most likely locations for bending in bones of varying curvature.  

 In the last part, we compared the results obtained from performing remote force analysis 

on the CAD model and analysis on the CT scanned femur model. On comparing the results, we 

found a good agreement between the patterns of maximum von Mises stress. As   increased, the 

location of maximum von Mises stress moved closer to the plane of bone curvature. This pattern 

was observed in both the models (see Fig. 45). However in the CT scanned model, when   

exceeded 20 degrees, the location of   was found to take sudden jump (see Table 9 and Fig. 46). 

This could be because of the bone’s steep and straight profile in that region as shown in Fig. 49.  

 

Figure 49. Section of the CT scanned femur model. The circled part shows the steep region 

in the cross section. 

 Also, the PDF of   was plotted for both the models and a similar pattern was observed 

there too i.e. the range of   was narrowed in both the cases (see Fig. 47 and Fig. 48). The most 

expected value of   for the CAD model and the CT scanned model were evaluated to be 20.63 

degrees and 13.03 degrees respectively. 
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CHAPTER 7 

 

FUTURE WORK 

The probability density function (PDF) graphs for   that we generated are based on the 

assumption that α is uniformly distributed between 0 and 180 degrees. Therefore a study can be 

done to generate PDF graphs for   by taking α to be normally distributed and check how the 

probability distribution for   changes. We could also find data regarding how the thickness of 

the femur and/or its material strength changes circumferentially and longitudinally. For example, 

the reduction in the bone’s load carrying capacity (assuming uniform material strength) due to 

bone curvature may be compensated by increased bone material strength in locations where 

bending stresses are mostly likely to be maximum based on bending predictability analysis.   

 Also, our work has not considered how the bone curvature effects the kinematics and 

kinetics of locomotion. Therefore, a study can be performed to check the kinematics and kinetics 

by considering the joints and muscle and also check how the stability of the knee joint is affected 

by bone curvature. 
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APPENDIX A 

DERIVATION OF RADIUS OF NEUTRAL AXIS (Rn)

 

Figure 50. Curved beam in bending 

 Figure 50 shows a curved beam subjected to a moment. The moment causes the plane cd 

shown in the figure to rotate by an angle d  to a new position c’d’. The plane cd rotates about 

the neutral axis. Now, consider the small fiber at a radius, ‘r’ which is shaded in the figure. The 

strain on this fiber is: [59] 
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Equilibrium of the beam requires: 
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Now, summing the product of normal stress and the area elements over the total area: 
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Now, for a circular cross section[58], 

                                                                         

2 22 ( )c c

A

dA
R R R
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Therefore using Eq. (31) in Eq. (30), 
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APPENDIX B 

DERIVATION OF RADIUS OF CENTROIDAL DISTANCE ( r ) 

 

Figure 51. Centroidal distance calculated for the part ABCD. 

 
 In this part we calculate the centroidal distance for the part ABCD. ABCD is the 

subtraction of the sectors OBC and OAD. Consider the shaded strip with thickness dr. The 

centroidal distance r  is given by [60]: 

  

                                                       
1

r rdA
A

 
                                                                 

(33) 

    

In our case, dA is the area of the shaded strip and A is the area of part ABCD given by:   

                                                 
2 2( )

2
i

d
A R R


 

                                                              

(34) 

  

 

                                                                                   dA rd dr                                                                   (35) 

Substituting A  and dA in r , we get:  
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APPENDIX C 

DERIVATION OF MOMENT ARM ( mL ) 

 

 

Figure 52. Top view of the top section and mid section of the bone showing the moment 

arm, Lm 

Moment arm mL was calculated using Pythagoras theorem in triangle ABC as shown in Figure 52. 

From triangle BCD, we got: 

                                                                             sinBC r                                                                      (37) 

  

                                                                              cosCD r                                                                     (38) 

   

Also,  

                                                      sAD e
                                                                             

(39) 

   

From triangle ABC, 

2 2 2( ) ( ) ( )AB BC AC   

2 2 2( ) ( sin ) ( )mL r AD DC    
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Using Eq.(37), Eq.(38) and Eq.(39) 

2 2 2( ) ( sin ) ( cos )m sL r e r     

2 2( sin ) ( cos )m sL r e r     

Normalizing r  using R , 

   

                             
2 2( sin ) ( cos )s

m

er r
L R

R R R
   

                                                     

(40) 
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APPENDIX D 

 
FOURTH ORDER POLYNOMIAL EQUATIONS GENERATED FOR FITTING φ VS. α FOR 

VARIOUS SHAPE ECCENTRICITIES (eS) 

 

es/ R Polynomial equation R2 

1 
φ = -6E-07 α4 + 0.0002 α3 - 0.0147 α2 + 0.8858 α - 

2.7008  
0.9793 

1.4 
φ = -2E-07 α4 + 4E-05 α3 - 0.0036 α2 + 0.4492 α - 

0.1625  
0.9866 

1.7 
φ = -6E-08 α4 + 8E-07 α3 + 0.0002 α2 + 0.2893 α + 

0.1546  
0.9681 

2 
φ = -3E-08 α4 - 4E-06 α3 + 0.0001 α2 + 0.2768 α - 

0.3588  
0.9729 

2.4 
φ = 1E-08φ4 - 1E-05 α3 + 0.0006 α2 + 0.2458 α - 

0.6511  
0.9621 
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APPENDIX E 

 
Φ VALUES EVALUATED AGAINST β AND es/R FOR THE CAD FEMUR MODEL 

 

  es/R 0.8 1 1.35 1.4 1.7 2 2.4 

β Φ               

0 
 

47.5 45 40 40 37.5 35 30 

2   45 42.5 37.5 37.5 35 32.5 27.5 

4 
 

42.5 40 35 35 32.5 30 27.5 

6   40 37.5 32.5 32.5 30 27.5 25 

8 
 

37.5 35 30 30 27.5 25 22.5 

10   35 30 27.5 27.5 25 22.5 20 

12 
 

30 27.5 25 25 20 17.5 17.5 

14   27.5 25 20 20 17.5 15 12.5 

16 
 

22.5 20 17.5 17.5 15 12.5 10 

18   17.5 15 12.5 12.5 12.5 10 7.5 

20 
 

12.5 10 10 7.5 7.5 5 5 

22   7.5 5 5 5 2.5 0 0 

24 
 

2.5 0 0 0 0 -2.5 -2.5 

26   -5 -5 -5 -5 -5 -5 -5 

28 
 

-10 -10 -7.5 -7.5 -7.5 -7.5 -7.5 

30   -15 -15 -12.5 -12.5 -12.5 -12.5 -12.5 
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APPENDIX F 

APDL CODE TO CALCULATE ANGLE   

 

!   Commands inserted into this file will be executed immediately after the Ansys /POST1 

command. 

 

!   Active UNIT system in Workbench when this object was created:  Metric (mm, kg, N, s, 

mV, mA) with temperature units of C 

 

SET,LAST 

 

cmsel,s,sel_face 

 

NSORT,S,EQV,0,1,sel_face 

 

*GET,my_n_seqv_max,SORT,0,IMAX 

 

my_nx=nx(my_n_seqv_max) 

my_ny=ny(my_n_seqv_max) 

my_nz=nz(my_n_seqv_max) 

 

my_Phi=(atan(my_ny/my_nx))*(180/3.14) 
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APPENDIX G 

 

FOURTH ORDER POLYNOMIAL EQUATIONS GENERATED FOR FITTING φ VS. β FOR 

VARIOUS SHAPE ECCENTRICITIES (eS) 

 

es/ R Polynomial equation R2 

1 φ = 6E-05β4 - 0.0033β3 + 0.0187β2 - 1.2927β + 45.04 0.9994 

1.4 φ = 6E-05β4 - 0.0031β3 + 0.0185β2 - 1.1977β + 39.861 0.9988 

1.7 φ = 2E-05β4 - 0.0011β3 - 0.0012β2 - 1.2177β + 37.5 0.9982 

2 φ = 1E-05β4 - 0.0002β3 - 0.0214β2 - 1.0884β + 34.878 0.9974 

2.4 φ = -6E-05β4 + 0.0044β3 - 0.1205β2 - 0.1525β + 29.408 0.9975 
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