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Biostratigraphic constraints on megathrust earthquake 

deformation history in south central Chile 

Ed Garrett 

 
A lack of comprehensive understanding of the seismic hazards associated with a subduction zone 

can lead to inadequate anticipation of earthquakes and tsunami magnitudes. Four hundred and 

fifty years of Chilean historical documents record the effects of numerous great earthquakes; 

however, with recurrence intervals between the largest megathrust earthquakes approaching 300 

years, seismic hazard assessment requires longer chronologies. This thesis seeks to verify and 

extend historical records in south central Chile using a relative sea-level approach to 

palaeoseismology, developed in Alaska and the Pacific Northwest. 

 

Quantitative, diatom-based approaches to relative sea-level reconstruction are successful in 

reconstructing the magnitude of coseismic deformation during recent, well documented Chilean 

earthquakes. Disparities between my estimates and independent data highlight the possibility of 

shaking-induced sediment consolidation of tidal marshes. Following this encouraging confirmation 

of the approach, I quantify land-level changes in longer sedimentary records from the centre of 

the 1960 rupture zone. Here, laterally extensive marsh soils abruptly overlain by low intertidal 

sediments attest to the occurrence of four megathrust earthquakes. Field sites preserve evidence 

of the 1960 and 1575 earthquakes and Bayesian age-depth modelling constrains the timing of two 

predecessors to 1270 to 1410 and 1050 to 1200. The sediments and biostratigraphy lack evidence 

for the historically documented 1737 and 1837 earthquakes. The distribution of documented 

effects of these ruptures and the new palaeoseismic data presented in this thesis suggests these 

earthquakes were smaller in magnitude and located in the southern portion of the 1960 rupture 

segment, as other authors have previously inferred.  

 

Coastal sediments record relative sea-level changes reflecting both the earthquake deformation 

cycle and non-seismic processes. The 1000 year record of net relative sea-level rise implied by the 

new records presented here differs from the mid to late Holocene relative sea-level fall inferred 

from previous field studies and modelling approaches.  
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1. Framework 

 

 

 

1.1 Introduction 

 

More than a third of the world’s coastlines lie adjacent to active plate boundaries, where 

earthquakes and their consequent tsunamis constitute major hazards to a substantial proportion 

of the global population (Bernard et al., 2006; McGranahan et al., 2007; Bryant, 2008). Long 

aseismic intervals mean that coastal populations may be unfamiliar with the hazards posed by 

major earthquakes and, consequently, unaware of appropriate approaches to reducing 

vulnerability or increasing probability of survival. Their inherent unpredictability and ability to 

reach destructive capabilities within seconds of first sensation means major earthquakes are 

highly problematic for policy makers and the general public to contend with (Huppert and Sparks, 

2006; Sieh, 2006). 

 

Although several different kinds of fault nucleate earthquakes, subduction zones produce the 

most powerful, termed megathrust earthquakes. These interplate earthquakes result from the 

sudden release of strain accumulated during the subduction of one plate beneath an overriding 

plate. Twenty-first century examples include the Sunda megathrust series that began in 2004 with 

the moment magnitude (Mw) 9.1 Sumatra-Andaman earthquake (Briggs et al., 2006; Meltzner et 

al., 2006; Subarya et al., 2006) and the 2011 Mw 9.0 Tōhoku (Japan) earthquake (Ozawa et al., 

2011; Simmons et al., 2011). The lack of comprehensive knowledge of the seismic hazards 

associated with these plate boundaries resulted in inadequate anticipation of the magnitude of 

the ensuing earthquakes and tsunamis (Stein and Okal, 2011). Subsequent field investigations in 

Japan and around the Indian Ocean have revealed evidence for predecessors unknown or 

underestimated from historical records (Jankaew et al., 2008; Sawai et al., 2012).  

 

The potential for the Chilean subduction zone to produce very large earthquakes is well known. In 

May 1960, south central Chile experienced the largest earthquake of the 20th century, the Mw 9.5 

Valdivia earthquake. Fifty years later, the 2010 Mw 8.8 Maule earthquake struck the area 

immediately to the north of the 1960 rupture. The 1960 and 2010 events were not without 

historical precedent, with documentary records commencing in the 16th century indicating that 

the Chilean subduction zone has generated numerous great earthquakes (Lomnitz, 1970). 

However, with return periods for the largest earthquakes potentially approaching 300 years (Stein 

et al., 1986; Barrientos and Ward, 1990; Cisternas et al., 2005), accurate assessment of the 
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seismic hazard requires longer records. This thesis seeks to extend the seismic catalogue for south 

central Chile by identifying sedimentary evidence for earthquakes in coastal environments.  

 

1.2 Coastal palaeoseismology: rationale 

 

A particular branch of palaeoseismology aims to investigate seismic processes primarily through 

the identification and analysis of sedimentological and morphological evidence for past relative 

sea-level change (McCalpin and Carver, 2009). The sea-level approach, developed over the last 

three decades primarily in subduction zone settings in the Pacific Northwest (Atwater, 1987; Long 

and Shennan, 1994; Nelson et al., 1996; 2006) and Alaska (Combellick, 1991; Shennan et al., 1999; 

Hamilton and Shennan, 2005a; b), has been used to extend historical records in these locations 

and along other active margins around the world (e.g. Sawai et al., 2002; Cisternas et al., 2005; 

Hayward et al., 2006; Dura et al., 2011). 

 

1.2.1 Relative sea-level change 

 

On long timescales (>103 years) relative sea-level changes are driven by mechanisms relating to 

the volume, mass and distribution of water stored in oceans and deformation of the earth’s 

surface (Clark et al., 1978; Mitrovica and Peltier, 1991; Mitrovica and Milne, 2002). On tectonically 

active coastlines, tectonic land-level changes may impose a characteristic signal on top of other 

long-term trends (Bourgeois, 2006; Nelson, 2007). Following Shennan and Horton (2002) and 

Shennan et al. (2012), the following equation expresses the components of relative sea-level 

change: 

      (   )       (   )       (   )        (   )         (   )         (   )         

(Equation 1.1) 

Where: 

     (   ) = change in relative sea level at a given time ( ) and location ( ) 

     (   ) = the time and space-dependant eustatic function (originally expressed as 

time-dependent only) 

     (   ) = the total isostatic effect of glacial rebound processes, including both 

glacio-isostatic and hydro-isostatic load contributions 

      (   ) = the tectonic effect 

       (   ) = the total effect of local processes, including tidal regime changes and 

post-deposition sediment consolidation 

       (   ) = the sum of unspecified factors, either not quantified or not thought of. 
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The sea-level approach to palaeoseismology aims to identify sedimentary evidence for relative 

sea-level changes (     (   )) resulting from tectonic land surface deformation, the       (   ) 

term of equation 1.1. The influence of the other forcing mechanisms complicates coastal relative 

sea-level records; however, disentangling changes relating to the different processes enables the 

use of coastal sedimentary records to provide evidence for both tectonic deformation and 

aseismic relative sea-level changes (cf. Bookhagen et al., 2006; Barlow et al., 2012). 

 

1.2.2 Elastic deformation modelling and the earthquake deformation cycle 

 

Coastlines adjacent to subduction zones may rapidly uplift or subside during earthquakes 

(coseismic deformation) and may more gradually deform between ruptures (interseismic 

deformation). A simple elastic dislocation model provides a first approximation of the spatial 

pattern of vertical deformation through a single cycle (Hyndman and Wang, 1993). During 

interseismic strain accumulation, the subducting oceanic plate and overriding continental plate 

remain seismogenically locked (figure 1.1a). The seaward edge of the upper plate moves 

downwards, with crustal shortening resulting in uplift in locations further removed from the fault 

(figure 1.1a). Once cumulative plate convergence exceeds the frictional strength of the fault, 

strain suddenly releases, with rapid consequential land-level readjustments. Uplift (relative sea-

level fall) characterises the seawards edge of the upper plate, while the previously uplifted area 

rapidly subsides (relative sea-level rise) (figure 1.1b).  

 

An axis of no coseismic elevation change separates areas of uplift and subsidence. The location of 

this hingeline and the exact pattern of uplift and subsidence are dependent on a number of 

factors, including the fault profile, the width of the locked area and the distribution of coseismic 

slip (Hyndman and Wang, 1995; Barrientos, 1996). The growth of anticlines and synclines as well 

as slip on additional crustal faults at the time of plate-boundary rupture may also increase the 

complexity of the deformation pattern (Nelson et al., 1996; Clague, 1997; Wang et al., 2007; 

Melnick et al., 2012b).  

 

The earthquake deformation cycle expresses the repeated succession of land uplift and 

subsidence resulting from strain accumulation and release (Savage and Prescott, 1978; Savage, 

1983; Thatcher, 1984; Shennan et al., 1999). Instrumental records have yet to recorded entire 

cycles and the complete sequence has been inferred through the compilation of geodetic 

observations of deformation associated with multiple subduction megathrust settings, in 

particular Japan and Alaska (e.g. Thatcher, 1984; Cohen and Freymueller, 2004). Two further 

stages may supplement the two-part cycle of interseismic and coseismic displacements: 
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postseismic and preseismic deformation, both at rates exceeding the interseismic readjustment 

rate (figure 1.2). Several decades of deformation at rates exceeding 20mm yr-1 followed the 1964 

Alaskan earthquake (Savage and Plafker, 1991). Creep propagating along a downdip extension of 

the ruptured fault or viscoelastic readjustments of the lower lithosphere and upper 

asthenosphere may explain the rapidity of postseismic deformation (Barrientos et al., 1992; 

Piersanti, 1999). On the bases of microfossil analyses, Shennan et al. (1999) and Hawkes et al. 

(2005) suggest decimetre-scale preseismic deformation preceded a number of earthquakes in 

Alaska and Oregon. While Dragert et al. (2001) suggests this could relate to slip during slow 

earthquakes at deeper fault depths, there is a notable absence of evidence for coastal subsidence 

during slow slip events and a lack of consistent support for deformation before historical and 

recent great earthquakes (Bourgeois, 2006; Roeloffs, 2006). 

 

The distance between the fault interface and the coastline is crucial to the pattern of relative sea-

level changes recorded over the course of the earthquake deformation cycle (Barrientos, 1996). In 

locations to the seaward side of the axis of no coseismic displacement, relative sea-level fall will 

characterise interseismic periods, with a sudden relative sea-level rise recorded during 

megathrust earthquakes (figure 1.2a). Conversely, on the landward side of the axis of no 

displacement, coastal sites will experience gradual relative sea-level fall, with coseismic events 

marked by rapid relative sea-level rise (figure 1.2b). The pattern of relative sea-level change 

recorded in coastal locations over the course of a deformation cycle consists of the inverse of the 

tectonically driven land-level changes (figure 1.3a) in addition to any long-term aseismic trends in 

relative sea level resulting from isostatic, eustatic or local processes (figure 1.3b).  

 

1.2.3 Tidal marshes as palaeoseismic recorders 

 

Subduction megathrust earthquakes may submerge organic marsh soils in coastal locations into 

the intertidal zone (figure 1.4a). At this lower elevation, ensuing interseismic sedimentation will 

be minerogenic in character, resulting in the formation of an organic – minerogenic couplet. 

Tsunami deposited sediments may mantle the buried soil horizon if the earthquake is 

tsunamigenic (not shown in figure 1.4). This characteristic coseismic subsidence stratigraphy 

(figure 1.4b) occurs in many active margin settings, including Cascadia (Atwater, 1987; Long and 

Shennan, 1994; Nelson et al., 1996), Alaska (Shennan et al., 1999; Atwater et al., 2001; Zong et al., 

2003) and Indonesia (Dura et al., 2011; Grand Pre et al., 2012).  

 

If the fault location, geometry and slip conspire to produce an axis of no coseismic displacement 

landwards of the coastline, coseismic deformation will result in sea-level fall and a different 
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sedimentary sequence will arise. Organic rich peats abruptly overlying intertidal muds in eastern 

Hokkaido reflect coseismic uplift events along the southwestern Kuril subduction zone (Sawai, 

2001; Sawai et al., 2002). Uplifted coastal landforms and biota may also indicate coseismic 

relative sea-level fall (Darwin, 1839; Bookhagen et al., 2006; Shennan et al., 2009; Farías et al., 

2010). 

 

While observations following 20th century earthquakes provide evidence for the seismic origin of 

some sedimentary couplets (Shennan et al., 1999; Cisternas et al., 2000), their presence along 

passive continental margins suggests that other processes can give rise to similar stratigraphies 

(Fletcher et al., 1993; Allen, 1997; Wilson et al., 2001). For instance, the lateral migration of tidal 

channels, short-lived inundation events, such as storm surges, and estuarine reconfiguration 

resulting from barrier breaching may all produce interbedded sequences of organic and 

minerogenic sediment (Long and Innes, 1993; Allen, 1997, 2000; Witter et al., 2001; Long et al., 

2006; Switzer and Jones, 2008; Williams, 2009). The identification of couplets alone cannot, 

therefore, provide unequivocal evidence for coseismic land-level changes and the possible 

influence of other sedimentological, hydrographic and oceanographic processes must be 

assessed. For coseismically subsiding coastlines, Nelson et al. (1996) provide five criteria for the 

differentiation between couplets formed by seismic and non-seismic processes:  

 Suddenness of submergence 

 Amount of submergence 

 Lateral extent of organic – minerogenic couplets 

 Synchroneity of submergence at widely spaced sites 

 Coincidence of tsunami deposits 

Nelson et al. (1996) suggests the presence of laterally extensive buried soils, with sharp upper 

contacts, potentially with the flattened stems and leaves of herbaceous marsh plants still rooted 

in growth-position, can identify coseismic subsidence (see also Atwater and Yamaguchi, 1991; 

Combellick, 1991; Cisternas et al., 2005). Comparison of inferred pre and post-deformation 

elevations will suggest decimetre to metre scale relative sea-level changes over the shortest 

possible time-periods (Atwater, 1987; Clarke and Carver, 1992; Hamilton and Shennan, 2005a). 

Radiometric approaches will be unable to differentiate between the timing of submergence at 

multiple sites (Atwater et al., 1991). Although dependant on favourable conditions for 

preservation, thin, discontinuous, upward fining sand sheets may provide evidence for coincident 

tsunami deposition (Witter et al., 2003; Goff et al., 2010).  
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While early attempts to quantify the magnitude of coseismic subsidence relied on sediments and 

plant macrofossils (e.g. Atwater, 1987; Atwater and Yamaguchi, 1991; Atwater, 1992), subsequent 

microfossil-based approaches offer much higher levels of precision (Darienzo et al., 1994; 

Guilbault et al., 1995; Shennan et al., 1996). Transfer function methods, employing knowledge of 

the modern distribution of microfossil assemblages to reconstruct past changes in marsh 

elevation, have the potential to systematically quantify coseismic deformation, with decimetre-

scale error terms (Zong et al., 2003; Hamilton and Shennan, 2005a, b; Hayward et al., 2006). 

 

1.3 The Chilean subduction zone 

 

The 22nd May 1960 Valdivia earthquake was and still is the largest earthquake since the inception 

of modern seismic recording. The Mw 9.5 event unlocked almost 1000 km of the fault that conveys 

the Nazca plate beneath South America (figure 1.5; Plafker and Savage, 1970; Cifuentes, 1989; 

Barrientos and Ward, 1990). The ensuing tsunami resulted in extensive damage in Hawaii, Japan 

and other locations across the Pacific (Cox and Mink, 1963; Keys, 1963; Sievers et al., 1963). 

Partially overlapping with the 1960 rupture zone, but principally releasing strain along a 500 km 

section immediately to the north, the 27th February 2010 Mw 8.8 Maule earthquake also caused 

extensive damage in Chile and a smaller, although still trans-Pacific tsunami (Farías et al., 2010; 

Fritz et al., 2011; Moreno et al., 2012).  

 

The 1960, 2010 and numerous other historically documented and instrumentally recorded 

earthquakes (Lomnitz, 1970; Kelleher, 1972; Comte et al., 1986) suggest along-strike 

segmentation of the subduction zone (discussed further in section 2.2.2). This thesis focuses 

primarily on the Valdivia seismic segment, defined by the rupture zone of the 1960 earthquake 

(figure 1.5). Here, 450 years of historical records include four great earthquakes with a recurrence 

interval averaging 128 years (Lomnitz, 1970). Palaeoseismic data from a site in the centre of the 

Valdivia segment suggests a longer recurrence interval, exceeding twice the duration of the 

historical average (Cisternas et al., 2005). Assessment of the magnitude of past earthquakes in the 

Valdivia segment and consequently the seismic hazard in Chile and across the Pacific requires 

further palaeoseismic records to corroborate evidence from previous historical and stratigraphic 

studies.  
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1.4 Hypotheses and research objectives 

 

This thesis sets out to test the central research hypothesis: 

Coastal sediments preserve evidence for late Holocene earthquakes and relative sea level change 

in south central Chile 

Testing of this hypothesis assists not only in developing improved chronologies of late Holocene 

earthquake occurrence, but also in constraining the poorly understood relative sea-level history of 

the western margin of South America. To approach this hypothesis, I investigate three 

contributing hypotheses: 

1. Palaeoseismic evidence records historically documented megathrust earthquakes 

2. Differences between historical and palaeoseismic records reflect coseismic deformation 

patterns 

3. Evidence for relative sea-level change reflects both the earthquake deformation cycle and 

non-seismic processes 

 

I define a set of objectives which outline the progression of this research: 

 Characterise modern intertidal diatom distributions in south central Chilean tidal marshes 

 Develop transfer function models for the purpose of reconstructing palaeomarsh surface 

elevation from fossil marsh sediments 

 Test the performance of the approach by reconstructing coseismic deformation 

associated with recent, well documented Chilean earthquakes 

 Interrogate coastal sediments in the Valdivia seismic segment for evidence of past 

earthquakes 

 Reconstruct coseismic deformation associated with palaeoearthquakes 

 Constrain the timing of palaeoearthquakes using a radiometric approach and compare 

inferred ages with historical records and other palaeoseismic investigations 

 Investigate relative sea-level changes occurring over the course of multiple earthquake 

deformation cycles 

 

1.5 Statement of collaboration  
 

A NERC Urgency Grant (ref. I00503X/I, Sediment Signatures of the 2010 Chile Mw 8.8 Earthquake) 

to Professor Ian Shennan and Dr Sarah Woodroffe supported a rapid assessment of sediments 

deposited by the 2010 tsunami and subsequent postseismic accumulations. A survey in August 
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2010 recovered sediment blocks from three sites around the boundary between the 2010 and 

1960 earthquakes: Río Andalién, Tubul and Río Tirua. Garrett et al. (accepted) describes the 

findings of this project, including insights into tsunami biostratigraphy and postseismic 

sedimentation. A copy of this publication is included as appendix 1.1. Chapter five of this thesis 

uses the new biostratigraphic records produced by the Sediment Signatures project to test the 

performance of the diatom-based coseismic deformation reconstruction approach.  

 

1.6 Key terms 

 

This thesis uses a range of terms from the sea level and palaeoseismic communities. To avoid 

ambiguity, I define certain key terms: 

 

Displacement (also uplift, subsidence) is the vertical component of tectonic deformation, 

typically measured in metres.  

Palaeomarsh surface elevation (PMSE) is the estimated elevation within a tidal marsh that a 

sample accumulated at. This thesis estimates PMSE from diatom assemblages, and expresses 

estimates in metres above mean sea level, accompanied by a one sigma error term.  

Soil refers to organic-rich high intertidal or freshwater marsh deposits and is preferred to the 

term peat to maintain consistency with palaeoseismic convention (cf. Atwater, 1987; Nelson et 

al., 1996). The term buried soil denotes an organic deposit formed at the surface of a former 

marsh and subsequently covered by sediments of lower organic content.  

Early, mid and late Holocene, following Walker et al. (2012), I adopt 8200 ka BP as the boundary 

between the early and the mid Holocene and 4200 ka BP as the boundary between the mid and 

the late Holocene. 

 

1.7 Summary and thesis outline 

 

Coastal palaeoseismology supplements and extends historical records of earthquake occurrence, 

leading to greater understanding of the seismic hazards associated with a particular subduction 

zone. I apply a method based on identifying stratigraphic and microfossil evidence for rapid 

changes in relative sea level to investigate evidence for past earthquakes in the Valdivia seismic 

segment of the Chilean subduction zone. This thesis tests whether tidal marshes are faithful 

palaeoseismic recorders through the development of new stratigraphic records and comparisons 
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with historical and other palaeoseismic records. Chapter two discusses the physical geography of 

the study area and introduces the specific field sites. Chapter three provides the field, laboratory, 

dating and statistical methodology implemented to test the hypotheses. Chapter four is 

concerned with the first two objectives, characterising modern diatom distributions and 

developing transfer functions. Chapter five tests the performance of the reconstruction approach 

using evidence for recent, well documented earthquakes. Chapter six investigates longer 

sedimentary records of earthquakes, presenting and discussing stratigraphic, microfossil and 

chronological data. Chapter seven discusses the three contributing hypotheses and makes 

suggestions for future research directions.  
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2. Study area 

 

 

 

2.1 Introduction 

 

This chapter introduces the physical geography of south central Chile and describes the sites used 

to test the hypotheses set out in chapter one. Section 2.2 discusses the tectonic setting, late 

Quaternary glacial history and consequential relative sea-level changes along the Chilean 

coastline. Section 2.3 introduces the field sites in south central Chile, divided into two groups: 

contemporary intertidal marshes and sites analysed for evidence for multiple earthquakes over 

the late Holocene.  

 

2.2 Physical geography of the Chilean convergent margin 

 

The Chilean mainland extends through 38 degrees of latitude, more than 4000 km, from the 

northern border with Peru at the Arica Bend to Cape Horn in the south (figure 2.1). The country is 

rarely more than 200 km in width, with the Pacific Ocean and the Andes forming the western and 

eastern margins.  

 

2.2.1 Tectonic setting 

 

A convergent margin runs approximately parallel with the coastline of western South America for 

a length of 7500 km, from Colombia in the north to Tierra del Fuego in the south (figure 2.2). The 

margin marks the subduction of the Nazca and Antarctic plates beneath continental South 

America. The subduction zone terminates in the north in a transform fault between the Nazca and 

Panamanian plates and in the south at the transition to an oceanic convergent margin between 

the Antarctic and Scotia plates (figure 2.2). A triple junction marks the subduction of an actively 

spreading ridge between the Nazca and Antarctic plates beneath South America at approximately 

46°S. The section of the convergent margin between the marked coastal inflection of the Arica 

Bend near the Peru – Chile border and the Chile triple junction (hereafter referred to as the 

Chilean subduction zone) is characterised by plate convergence averaging 60 – 80 mm yr-1, with 

the movement of the Nazca Plate approximately 13° north of east (DeMets et al., 1990; Somoza, 

1998; Angermann et al., 1999). This reflects a substantial slowdown over the last 20ma from a 
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rate of approximately 120 mm yr-1 (Somoza, 1998). South of the triple junction the Antarctic and 

South American plates converge at a rate of approximately 20 mm yr-1. 

 

The South American convergent margin displays substantial along-strike variability in the angle of 

dip of the descending plate (Barazangi and Isacks, 1976; Cahill and Isacks, 1992; Tassara et al., 

2006). Beneath Ecuador, northern Chile and south central to southern Chile the descending plate 

dips steeply at angles of between 25° and 30°. Central Peru and north central Chile are 

characterised by flat slab subduction. After a steep initial descent until the 100 km depth contour, 

dip angles in these areas reduce to approximately 10° and the Nazca plate travels horizontally for 

several hundred kilometres before resuming its downward descent (Gutscher et al., 2000; 

Anderson et al., 2007).  

 

The descending Nazca plate exhibits a number of aseismic ridges and lithospheric transform faults 

or fracture zones. The Carnegie, Nazca, Iquique and Juan Fernandez ridges subduct beneath 

Ecuador, southern Peru, northern Chile and central Chile respectively. The fracture zones, 

emanating from the Nazca-Antarctic plate boundary subduct beneath Chile between 37°30’S and 

49°S (figure 2.3). Aseismic ridges and fracture zones may act as both asperities and barriers to 

earthquake rupture propagation (Barrientos and Ward, 1990; Bilek, 2010; Sparkes et al., 2010). 

 

The Andes form the most striking feature of the western margin of the overriding South American 

plate. This 7000 km long mountain chain formed, and continues to form, by crustal thickening, 

volcanism, sediment accretion and strike-slip faulting due to plate convergence (Cobbold et al., 

2007). Corresponding with the along-strike variation in dip angle, the configuration of the Andes 

chain displays latitudinal variability. North of 28°S the Andes are comprised of a coastal cordillera, 

a central depression, a precordillera and a main cordillera; the central Chilean flat-slab region 

lacks the central depression and south of 34°S (including the area of interest to this project) the 

chain consists of a coastal cordillera and a main cordillera, separated by a central depression 

(Cembrano et al., 2007). Also corresponding with the zones of steep subduction, three sections of 

the Andean chain support volcanoes, which are notably absent in north central Chile (Stern et al., 

2007).  

 

Two important upper plate fault systems lie parallel to the convergent margin: the Atacama Fault 

Zone of the northern Chilean coastal cordillera and the Liquiñe-Ofqui Fault Zone of the main 

cordillera of southern and south central Chile. The latter is primarily a dextral intra-arc transform 

fault, defining the eastern edge of the Chiloé crustal sliver (figure 2.3) (Cembrano et al., 1996; 

Moreno et al., 2008; Rehak et al., 2008). Oblique subduction of the Nazca plate results in the 
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margin-parallel movement of this detached section of continental crust (Wang et al., 2007). The 

buttressing effect of the Arauco-Nahuelbuta block restricts the northwards displacement of the 

sliver (figure 2.3). Oblique thrusting along the Lanalhue fault and folding and crustal thickening, as 

evidenced by the uplift of the Arauco peninsula, accommodates the strain (Beck et al., 1993; 

Melnick et al., 2006; Moreno et al., 2008). 

 

Earthquakes along the Chilean margin are associated with three distinct seismogenic zones 

(Barrientos, 2007):  

 tensional and compressional events within the descending plate at depths of 70 – 100 km 

 interplate thrust events with shallow epicentres (0 – 50 km) 

 shallow upper plate seismicity (0 – 20 km) restricted to a few areas of the main cordillera 

Interplate megathrust events, with foci located in the coastal region, have provided the largest 

historical magnitudes, including the largest event since the inception of modern seismic 

recording, the Mw 9.5 Valdivia earthquake (Plafker and Savage, 1970; Cifuentes, 1989; Barrientos 

and Ward, 1990). At least seven further Chilean events since the start of the 20th century have 

exceeded magnitude 8. Smaller intraplate events have also caused major damage; the 1939 

Chillán earthquake, which resulted from normal faulting along a near vertical fault plane at depth 

within the descending Nazca plate resulted in 25,000 fatalities (Beck et al., 1998). Instrumentally 

recorded shallow upper plate earthquakes in the main cordillera have not exceeded magnitude 7 

or produced identifiable coastal deformation (Barrientos, 2007). 

 

2.2.2 Historical records of earthquake occurrence 

 

Historical records of megathrust earthquakes and their tsunamis (summarised by Berninghausen, 

1962; Lomnitz et al., 1970; Kelleher, 1972; Beck et al., 1998; Campos et al., 2002; Cisternas et al., 

2005; Cisternas et al., 2012) suggest along-strike segmentation of the subduction zone. The 

southern sector of the convergent margin, from approximately 35°S to the triple junction at 46°S, 

divides into two segments, each displaying different recurrence intervals, rupture lengths and 

earthquake magnitudes (figure 2.4). This thesis focuses on the Valdivia seismic segment, defined 

by the rupture zone of the 1960 Valdivia earthquake. Chapter 5 also incorporates evidence from 

the 2010 Maule earthquake, which ruptured the Concepción segment immediately to the north of 

the Valdivia segment. 

 

The 1960 earthquake ruptured 1000 km of plate interface from the Arauco Peninsula in the north 

to the Taitao Peninsula in the south. Slip on the fault reached 40 m, resulting in a moment 

magnitude of 9.5 (Cifuentes, 1989; Linde and Silver, 1989; Barrientos and Ward, 1990). A coastal 
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downwarp of up to 2.4 ± 0.4 m, flanked by two upwarps characterised the coseismic deformation 

(Wright and Mella, 1963; Plafker and Savage, 1970; Villalobos, 2011). A 100 km wide offshore belt 

was uplifted by up to 5.7 ± 0.2 m (Plafker and Savage, 1970), causing a trans-Pacific tsunami that 

caused extensive damage in Chile and Hawaii (Atwater et al., 1999). Historical records attest to 

the occurrence of preceding megathrust earthquakes in 1837, 1737 and 1575 (Lomnitz, 1970; 

Cisternas et al., 2005).  

 

The Concepción seismic segment extends northwards from the Arauco Peninsula to a more 

ambiguous northern boundary (figure 2.4). Historical rupture distributions inferred by Melnick et 

al. (2006) and Barrientos (2007) suggest a location in the vicinity of the coastal towns of Pichilemu 

(34.4°S) and Constitución (35.3°S), giving a segment length of between 300 and 400 km. Major 

ruptures occurred in 1570, 1657, 1751, 1835, 1928 (Darwin, 1839; FitzRoy, 1839; Kelleher, 1972; 

Beck et al., 1998; Campos et al., 2002; Melnick et al., 2006) and most recently on 27th February 

2010 (Farías et al., 2010; Lay et al., 2010; Vigny et al., 2011). The rupture zone of the 2010 Maule 

earthquake was 500 km in length, with slip of up to 16 m contributing to a moment magnitude of 

8.8 (Moreno et al., 2012).  

 

The causes of segmentation of subduction zones remain equivocal, with subduction of lower plate 

bathymetric anomalies, trench sediment thickness and upper plate discontinuities among a 

number of potentially influential factors (Kelleher and McCann, 1976; Ruff, 1989; Melnick et al., 

2009; Bilek, 2010; Sparkes et al., 2010). The northern boundary of the 1960 rupture and, 

therefore, the Valdivia segment may correspond with the edge of the detached Chiloé sliver 

(figure 2.3) (Wang et al., 2007; Melnick et al., 2008; Moreno et al., 2008), while the southern 

boundary is marked by either the subduction of an active spreading ridge at the Chile Triple 

Junction or a nearby fracture zone (Barrientos and Ward, 1990). 

 

2.2.3 Glacial history 

 

At the maximum extent of the last (Llanquihue) glaciation, the Patagonian Ice Sheet extended 

along the crest of the Andes from 38°S to 56°S (figure 2.5) (Caldenius, 1932; Denton et al., 1999; 

Hulton et al., 2002; Glasser et al., 2008). The Los Lagos region experienced an alpine style 

glaciation, with topographic constraint on ice extent, while the Patagonian region to the south 

was characterised by a more extensive ice-sheet style glaciation (e.g. Caldenius, 1932; Hulton et 

al., 2002). Piedmont glaciers originating in the main cordillera flowed into the central depression, 

including into lakes Puyehue, Rupanco and Llanquihue in the Los Lagos region and into the marine 

basins of Seno Reloncaví, Golfo de Ancud and Golfo de Corcovado between Isla de Chiloé and the 
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mainland (figure 2.5). Well-preserved moraine systems and outwash plains indicate that the 

Castro piedmont lobe overran the southern half of Isla de Chiloé, however northern Chiloé and 

the coastline of the Los Lagos region remained ice-free (Heusser and Flint, 1977; Denton et al., 

1999; Hulton et al., 2002; García, 2012).  

 

In response to climatic amelioration, the Patagonian piedmont glaciers rapidly retreated after 

17500 – 17150 ka BP (Denton et al., 1999; McCulloch et al., 2000). In the northern sector, glaciers 

withdrew to within 10 km of their main cordilleran sources within 2000 years (Heusser, 1990; 

Denton et al., 1999). Modelling approaches concur, suggesting that the ice sheet lost over 80 % of 

its Last Glacial Maximum (LGM) volume over the same period (Hulton et al., 2002). Relative 

warmth characterised the period from 13500 to 4000 ka BP (Heusser and Streeter, 1980; Rabassa 

and Clapperton, 1990). Vegetation reconstructions in the Los Lagos region suggest temperatures 

peaked 2 °C above modern values (Heusser, 1974; Clapperton, 1990). Subsequent cooling and an 

increase in precipitation resulted in Neoglacial icefield expansion (Mercer, 1970; Aniya, 1996; 

Glasser at al., 2004; Bertrand et al., 2012). Based on constraining the timing of advances of 

various glaciers surrounding the Northern and Southern Patagonian icefields, Mercer (1968, 1970) 

and Aniya (1995, 1996) each propose a number of Neoglacial advances. While the advances may 

not be synchronous between the two studies, both chronologies may be valid as they record the 

advance and retreat of different outlet glaciers (Glasser et al., 2004). Together, however, they 

suggest a period of renewed late Holocene glacial activity following the relative warmth of the 

early to mid Holocene.  

 

The modern extent of Patagonian ice cover is limited to three main areas: the North and South 

Patagonian Icefields and the smaller, discontinuous icefields of the Cordillera Darwin (figure 2.1). 

Together they cover an area exceeding 17000 km2 (Aniya, 1996; Rignot et al., 2003). Glasser et al. 

(2011) estimate total losses of 103 ± 20.7 km3 from the North Patagonian Icefield since the 

Holocene peak in 1870 and 503 ± 101.1 km3 from the South Patagonian Icefield since 1650. 

Together, the contribution to sea level rise from the two icefields since has averaged 

0.0052 ± 0.0008 mm/year since 1870 (Glasser et al., 2011), substantially less than the 

0.042 ± 0.002 mm/year to 0.105 ± 0.011 mm/year inferred for the last few decades of the 20th 

century (Rignot et al., 2003).  

 

2.2.4 Post last glacial maximum relative sea-level change 

 

The transition from glacial to interglacial conditions has dominated relative sea-level changes over 

the last 20 kyr. During this time, the global melting of icesheets has resulted in a 120 to 125 m rise 
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in sea level (Fairbanks, 1989; Chappell and Polach, 1991; Flemming et al., 1998; Hanebuth et al., 

2000). This rise was not, however, spatially uniform and other factors, particularly glacio-isostatic 

adjustment (GIA), have contributed to a high degree of spatial variability. GIA-induced relative 

sea-level changes have been greatest in the former centres of glaciation, where rebound 

following deglaciation -as resulted in substantial relative sea-level fall. With increasing distance 

from the formerly glaciated centres, eustatic rises become dominant over GIA-induced falls in 

relative sea level (Clark et al., 1978; Pirazzoli, 1991).  

 

Substantial spatial variations are apparent in mid and late Holocene relative sea level changes 

(Pirazzoli, 1991). Milne et al. (2005) summarise evidence for former sea levels over the last six to 

ten thousand years from the Atlantic coast of South America and the Caribbean. While sites in 

Jamaica and Venezuela exhibit continual relative sea-level rises until the present day, records 

from Suriname, Brazil and southernmost South America suggest falling relative sea level from a 

highstand above present sea level (Milne et al., 2005 and references therein). This mid Holocene 

highstand and the subsequent relative sea-level fall reflect ongoing GIA processes, particularly 

equatorial ocean syphoning and continental levering due to local hydro-isostatic loading (Clark et 

al., 1978; Mitrovica and Peltier, 1991; Mitrovica and Milne, 2002).  

 

Peltier’s (2004) ICE5G (VM2) model suggests highstands above present and falling late Holocene 

relative sea level also characterise the Pacific coast of South America (figure 2.6). The elevation of 

this highstand exhibits latitudinal variation, increasing from less than two metres in northern Chile 

to over ten metres close to the former centre of the LGM Patagonian Icefield. GIA uplift rates in 

other plate subduction settings, however, suggest the rheological parameters employed by the 

VM2 earth model are not appropriate in this setting (James et al., 2000; Larsen et al., 2005). 

Chapter seven further investigates the implications of a low viscosity asthenosphere on relative 

sea-level change. Short-term deformation associated with great earthquakes and longer-term 

deformation resulting from movement on upper plate faults complicates the pattern of relative 

sea-level change along the Chilean coast. While field evidence supports mid Holocene sea levels 

above present (Isla et al., 2012), the relative contributions of tectonic uplift and GIA are difficult 

to disentangle for each location.  

 

North of 25°S, evidence for Holocene sea levels above present occurs at Caleta Michilla (22°43’S; 

figure 2.6), where Leonard and Wehmiller (1991) identified a terrace approximately five metres 

above the modern tidal platform. The elevation of the terrace implies at least some contribution 

from tectonic uplift to emergence, as ongoing GIA processes would be insufficient alone to 

account for the elevation (Leonard and Wehmiller, 1991). Tectonic uplift of the Coquimbo block 
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and recent movement on the Puerto Aldea Fault may explain the elevation of a series of mid 

Holocene palaeobeach and estuarine deposits at Los Choros (29°15’S) (Castro and Bignardello, 

2005), Bahía Herradura (29°58’S) (Radtke, 1989) and Bahía Tongoy (30°15’S) (Ota and Paskoff, 

1993). At Algarrobo (33°22’S), elevated sediments indicative of shallow marine conditions suggest 

a post highstand sea-level fall of not less than 3.8 m (Encinas et al., 2006). At least 21 exposed 

beach berms on Isla Santa Maria (37°02’S) indicate both uplift and tilting of the island over the 

late Holocene (Bookhagen et al., 2006). The uppermost berms lie approximately eight metres 

above present mean sea level and reflect upper plate thrust faulting in addition to GIA-induced 

relative sea level fall (Melnick et al., 2006). Thrust faulting is also the inferred cause for the 38 m 

relative sea-level fall on Isla Mocha (38°22’S) over the last 6000 years (Kaizuka et al., 1973; Nelson 

and Manley, 1992). At the archaeological site of Chan-Chan (39°30’S), a beach berm eight metres 

above present mean sea level may indicate the maximum Holocene sea level in this area (Pino 

and Navarro, 2005). Less than fifty kilometres to the south, at Isla Mancera (39°53’S), Villalobos 

Silva (2005) identified a terrace 3.9 m above modern sea level as reflecting the highstand 

elevation. Raised intertidal deposits around the Maullín estuary (41°35’S) suggest net emergence 

has prevailed over at least the last 5000 years (Atwater et al., 1992), however the presence of 

organic soils below the current elevation of organic deposition (Cisternas et al., 2005) suggests a 

period of more recent relative sea-level rise. While Hervé and Ota (1993) identify rapid uplift of 

sites in Fiordo Reloncavi (41°30’S), Bahía Hualaihue (42°02’S) and south of Castro on Isla de Chiloé 

(42°30’S), the indicative meaning of their sea level indicators in not clear, the elevation errors are 

large and some samples may be reworked or originate from midden deposits that are frequent in 

this area (Bird, 1938). At Chepu (42°03’S), northwest Isla de Chiloé, organic material within a 

terrace 5 m above present sea level yielded a mid Holocene radiocarbon age (Radtke, 1989). 

South of Isla de Chiloé on Isla Guafo (43°36’S), evidence for marine deposition on a presently 

forested coastal plain implies net late Holocene sea-level fall (Melnick et al., 2010).  

 

Due to its high degree of inaccessibility, no Holocene relative sea level records currently exist for 

the section of Chilean coastline between 43°40’S and 53°35’S (figure 2.6). Around the Strait of 

Magellan, low terraces suggest Holocene sea levels higher than present (Porter et al., 1984). At 

Puerto del Hambre (53°35’S), a marine diatom and foraminifera-bearing clay suggests a highstand 

at least 3.5 m above present (Porter et al., 1984; McCulloch and Davies, 2001). McCulloch and 

Bentley (1998) and Bentley and McCulloch (2005) highlight substantial changes in the elevation of 

the site due to postglacial fault reactivation; however, the majority of this movement may have 

occurred before the deposition of the marine layer. Emergent beaches at Peninsula Gusano and 

Punta Piedra Buena in the Beagle Channel (54°55’S) both imply a similar elevation for the 

highstand (Porter et al., 1984). Rabassa et al. (1986) and Gordillo et al. (1992), however, report 
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raised beaches up to ten metres above present mean sea level within the Beagle Channel, 

reflecting the importance of local faulting.  

 

In summary, field evidence from the Chilean coastline, particularly between 29°S to 42°S and from 

southern Patagonia supports the occurrence of Holocene sea levels above present. The extent to 

which the elevation of the highstand reflects processes related to GIA, rather than local or 

regional-scale tectonics varies from site to site and is generally unknown. Further GIA modelling 

approaches may assist by providing a correction tailored to the best estimates of the rheology 

underlying western South America.  

 

The implications of falling late Holocene relative sea level may be considerable for the 

preservation of sedimentary evidence for earthquakes in coastal environments. Based on the 

dating of palaeoseismic evidence in Indonesia, Dura et al. (2011) and Grand Pre et al. (2012) 

suggest rising relative sea level provides accommodation space and promotes preservation, while 

stratigraphic evidence for earthquakes is unlikely to be preserved during periods of relative sea-

level fall. Nelson et al. (2009) evoked falling relative sea level and consequent subaerial erosion 

for the lack of palaeoseismic evidence in the Valdivia estuary, south central Chile (39°52’S). 

Similarly, sea-level fall may explain the lack of late Holocene intertidal and tsunami deposition at 

Quintero (32°48’S) in central Chile (Dura et al., 2012). As mentioned above, however, the 

presence of buried soils at Maullín highlights the potential for preservation of recent evidence in 

the Valdivia seismic segment.  

  

2.2.5 Coastal processes 

 

The Chilean coastline subdivides into three principal zones. North of 41°30’S the central 

depression lies above sea level and the coastline is situated to the west of the coastal cordillera. 

The exposed coastline promotes the formation of actively eroding cliffs and high-energy beaches 

and constrains low energy sedimentary environments to estuarine settings. Along-shore sediment 

transport results in the formation of sand spits which deflect rivers northwards, as seen at Río 

Mataquito (35°S), and bars, which result in perched water surfaces, such as at Bucalemu 

(34°38’S). Between 41°30’S and 46°30’S the central depression lies beneath sea level and the 

coastal range forms a series of islands, with the largest, Isla de Chiloé, in the north separated from 

the numerous islands of the Chonos Archipelago by the Boca del Guafo. The islands provide 

shelter and low energy sedimentary environments, including tidal marshes, fringe many of the 

small bays and estuaries of this region. South of the Taitao Peninsula (46°30’S), the central 
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depression in absent and the main cordillera is fronted by a large number of islands, separated by 

deep fjords and fjord-like channels.  

 

The northern, central and south central Chilean coastline is predominantly micro- to mesotidal, 

with tidal ranges largely in the region of 1.5 to 2.0 m (Aiken, 2008). While the outer coast of the 

archipelagos maintains this range, the semi-enclosed waters of the southern Chilean fjords 

feature tidal amplification. This is greatest at Puerto Montt, northwest of Isla de Chiloé, where the 

tidal range is approximately 7 m (Fierro, 2008). Less than 100 km to the west, close to the modern 

and fossil sites introduced in section 2.3, the tidal range is typically in the region of 2.0 m (Fierro, 

2008; IOC, 2012).  

 

2.2.6 Climate and vegetation 

 

Contemporary climatic variations reflect Chile’s elongated shape and varied topography. 

Following Fernandez et al. (2000), the coastline divides into four climatic zones: 

  

1) An arid or hyperarid coastal zone extends from 18°S to 27°S. Certain areas have no 

historically documented rainfall. The Köppen climate classification system classes the area 

as BWk, indicating a desert climate with at least one month averaging below 0 °C (Peel et 

al., 2007). 

2) From 27° S to 32° S, the coast is semiarid, with winter rainfall and dry summers leading to 

a Köppen classification of Csb (Peel et al., 2007).  

3) The coastline from 32°S to 42°S is temperate and oceanic, with increasing rainfall totals 

and decreasing seasonality in precipitation to the south (Köppen classification of Csb or 

Cfb (Peel et al., 2007)).  

4) The archipelagos and fjord systems from 42°S to 56°S are oceanic in climate, with high 

rainfall totals evenly distributed throughout the year. The Köppen classification of Cfb or 

Cfc reflects the prevalence of rainfall, with ET classifications at high altitudes and south of 

54°S suggesting tundra climates (Peel et al., 2007).  

 

The periodic climatic phenomenon El Niño brings increased rainfall and milder winters to the 

Chilean coast and may also increase sea levels by over 0.1 m in northern Chile and Peru (Enfield, 

1989). 

 

Linked to the latitudinal variation in climate, Chilean vegetation shows a high degree of zonation. 

Between 36°S and 43°S, the region of interest to this thesis, deciduous woodland and broadleaf 
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coniferous temperate rainforests occupy the littoral zone and the coastal cordillera (Goodspeed, 

1945; Chester, 2008). Deforestation following Spanish settlement in the 16th century has 

converted much of lowland Chiloé into farmland. Chapter four describes the intertidal vegetation 

of this region.  

 

2.3 Field sites 

 

This section describes the location of the field sites that provide evidence to approach the 

hypotheses set out in chapter one. Section 2.3.1 focuses on the sites required for the 

characterisation of modern tidal marshes and development of transfer functions. Section 2.3.2 

describes the locations of the Sediment Signatures project sites employed in this thesis to test the 

performance of the deformation reconstruction approach (see also Garrett et al., accepted; 

appendix 1.1). Section 2.3.3 describes the sites investigated for long records of earthquake 

occurrence and relative sea level change.  

 

2.3.1 Contemporary tidal marshes 

 

The modern tidal marsh sites are located on Isla de Chiloé in the centre of the 1960 rupture zone 

and approximately 350 km south of the southern limit of the 2010 rupture (figure 2.7a, b). Glacial 

deposits mantle the lower lying eastern half of the island, while Palaeozoic metamorphic rocks 

characterise the higher relief of the west (Watters and Flemming, 1972). In the northwest of 

Chiloé, numerous sheltered bays and inlets allow low energy sedimentation and tidal marsh 

formation. The modern tidal marshes sampled in this thesis lie within Bahía Quetalmahue (figure 

2.7c), in close proximity to the long record sites (figure 2.7b, c; section 2.3.3).  

 

Estero Guillingo 

 

The 2011 field season provided modern samples from Estero Guillingo, a small, bifurcated estuary 

in the northwest of Bahía Quetalmahue (figure 2.7c). Here, two small unnamed streams drain two 

adjacent catchments, each approximately 7 km2 in area. Vegetated tidal marshes in the two 

branches of the estuary occupy a total area of approximately 0.1 km2. I collected samples from a 

single transect of approximately 100 m in length from the western bank of the western branch 

(figure 2.8). Chapter three discusses the sampling methods used to recover modern and fossil 

samples. The site lies 3.5 km northeast of the principal long record site at Chucalen (section 2.3.3).  
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Puente Quilo 

 

Modern sampling in 2012 focused on a small tidal marsh (approximately 0.01 km2 vegetated area) 

close to the mouth of the Río Quilo in the southwest of Bahía Quetalmahue (figure 2.7c). The 

name Puente Quilo reflects the site lying immediately adjacent to a bridge over the Río Quilo. The 

river drains a small tidal inlet, referred to by Bartsch-Winkler and Schmoll (1993) as Estero 

Quetalmahue. The inlet occupies an area of approximately 2 km2 and drains several small 

streams. A 100 m long modern sampling transect from the marsh at the mouth of the inlet (figure 

2.9) provided samples for further analyses (chapter 4).  

 

2.3.2 Sediment Signatures project sites 

 

Río Andalién 

 

The site at Río Andalién lies within the sheltered, north-facing Bahía Concepción, immediately 

west of the town of Penco and close to the Talcahuano – Concepción conurbation (figure 2.10). 

Broad, low-lying floodplains and tidal marshes associated with the Andalién and San Pedro rivers 

lie behind a modern beach berm. The Sediment Signatures project investigated two transects 

from the eastern edge of the embayment, alongside the Río Andalién, and retrieved a monolith 

from a marsh front exposure (figure 2.10d).  

 

Estimates of coseismic movement in 2010 indicate uplift exceeding 0.5 m at Talcahuano and the 

Tumbes Peninsula, eight kilometres to the west of the sampling site (Farías et al., 2010; Fritz et al., 

2011; Melnick et al., 2012; figure 2.10) and marginal subsidence at Concepción to the south 

(Vigny et al., 2011). Watermarks in Talcahuano and Penco suggest 2010 tsunami flow depths of 

between 4 and 7 m (Fritz et al., 2011) and a maximum inundation distance across the low lying 

tidal marshes of 2.6 km (Morton et al., 2011; figure 2.10). Comparison of pre- and post-

earthquake Google Earth imagery does not reveal substantial geomorphological changes (figures 

2.10c, d). The erosional backwash scours found by Morton et al. (2011) closer to Talcahuano are 

notably absent from the sampling site.  

 

Tide gauge data from Talcahuano indicate that the 1960 tsunami reached heights of 3 m within 

Bahía de Concepción (Sievers et al., 1963). Plafker and Savage (1970) suggested marginal uplift in 

1960 based on tidal observations at a location to the west of Talcahuano (figure 2.10).  
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Tubul 

 

The Tubul and Raqui rivers drain a substantial sheltered tidal and freshwater marsh on the 

northern edge of the Arauco Peninsula (figure 2.11). The Sediment Signatures project provided a 

monolith from the edge of a tidal channel of the Río Raqui adjacent to the eastern edge of the 

marsh complex (figure 2.11d).  

 

Estimates of coseismic movement in 2010 indicate uplift at the site of between 1 and 2 m (Farías 

et al., 2010, Fritz et al., 2011; Melnick et al., 2012; figure 2.11). Google Earth imagery reveals 

substantial geomorphological changes resulting from the rapid relative sea-level fall, including the 

possible change from an ebb tide delta to a flood tide delta (figure 2.11c,d). In January 2012, I 

observed pioneer vegetation communities colonising extensive previously unvegetated areas 

alongside tidal channels throughout the estuary and post-earthquake Google Earth imagery also 

highlights the development of vegetation behind an uplifted beach berm to the north of the river 

mouth (figure 2.11d). 

 

Fritz et al. (2011) estimates 2010 tsunami flow depths of over 5 m at Tubul in 2010. 

Corresponding flow depths in 1960 are unknown. Plafker and Savage (1970) concluded that there 

was no vertical land-level change, based on tidal observations.  

 

Río Tirua 

 

The Río Tirua meanders through a low-lying coastal plain, characterised by tidal and freshwater 

marsh environments (figure 2.12). The Sediment Signatures project investigated a transect from 

one to two kilometres inland from the coast and recovered a core from close to the landward end 

of this transect (figure 2.12d).  

 

Intertidal mussels and bleached corraline algae from the headland at the mouth of the river 

indicate coseismic uplift of between 0.5 and 1 m in 2010 (Farías et al., 2010; Melnick et al., 2012; 

figure 2.12d). Comparison of pre- and post-earthquake Google Earth imagery does not suggest 

significant morphological changes resulting from uplift (figures 2.12c, d), but does highlight 

shaking or tsunami-induced damage to seaward end of the sea-wall on the northern bank of the 

river. While tsunami runup reached 20 m on the exposed rocky shoreline to the southwest, 

heights closer to the mouth of the Río Tirua were approximately half as large (Bahlburg and 

Spiske, 2012; Fritz et al., 2011; Vargas et al., 2011). 

 

Plafker and Savage (1970) estimated slight subsidence of the rocky headland at the mouth of the 

river in 1960 (figure 2.12). Tsunami runup on Isla Mocha, 30 km offshore from the mouth, 
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exceeded 15 m in 1960 (Sievers et al., 1963), but the wave height as it approached the mainland 

in this sector is unknown. By way of comparison, runup during 2010 exceeded 20 m on Isla Mocha 

(Fritz et al., 2011); however the difference may result from the different approach directions of 

the two tsunamis. 

 

2.3.3 Late Holocene sites 

 

Like the modern tidal marsh sites, the fossil sites lie in the centre of the 1960 rupture zone (figure 

2.7a, b). Evidence from the three sites described in this section is required to test the central 

hypothesis of this thesis; Coastal sediments preserve evidence for late Holocene earthquakes and 

relative sea level change in south central Chile and also the contributing hypotheses set out in 

chapter one.  

 

Chucalen 

 

High intertidal and freshwater marshes fringe the western margin of Bahía Quetalmahue, 

between the contemporary marsh sampling sites at Estero Guillingo and Puente Quilo (figure 

2.13). The marsh front is actively eroding, with a metre high cliff separating the vegetated marsh 

from the tidal flat (figure 2.13c). The tidal marsh gives way to freshwater marsh and pasture at 

higher elevations. At the site of Chucalen, named for the closest small hamlet on the road 

between Puente Quilo and the Lacui Peninsula, a low terrace (approximately 2 m above mean sea 

level) separates the marsh from drier areas. A coring transect and natural exposures provided 

access to the stratigraphy (sampling approach described further in chapter three). To the south of 

the sampled area of marsh, an eroded mudstone platform outcrops (visible in figure 2.13c). Holes 

bored by the mollusc Pholas chiloensis give the platform a heavily pitted surface.  

 

Chucalen, along with the other late Holocene sites at Maullín and Cocotue, lies to the south of the 

area influenced by the 2010 earthquake and tsunami. Witnesses to the 1960 tsunami suggest that 

a series of three waves resulted in runup exceeding 15 m on exposed headlands on the northern 

edge of the Lacui Peninsula, with 5 m waves striking Ancud, decreasing to 1.5 m in Bahía 

Quetalmahue (Sievers et al., 1963). Bartsh-Winkler and Schmoll (1993), however, suggested 

waves of several times this magnitude may have entered the Quetalmahue estuary across the 

isthmus that joins the Lacui Peninsula, close to my sampling area. 

 

Based on the pre- and post-earthquake lower growth limits of terrestrial vegetation, Plafker and 

Savage (1970) estimated subsidence of 1.0 ± 0.2 m approximately 1 km south of Chucalen. 
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Vegetation limits suggested greater subsidence of 1.5 to 1.8 m to the east along the southern 

edge of Bahía Quetalmahue (figure 2.13b).  

 

Maullín 

 

Cisternas et al. (2005) worked extensively on the intertidal and freshwater lowlands on the 

southern side of the Maullín estuary, opposite the town of Maullín (figure 2.14). The location lies 

approximately 8 km inland from the mouth of the large estuary. The coastal lowlands feature a 

number of faint beach ridges and terraces, identified by Atwater et al. (1992) as resulting from net 

late Holocene emergence. An abandoned sea cliff and a Pleistocene terrace approximately 15 m 

above present limits the landward extent of the coastal lowlands (Cisternas et al., 2005; figure 

2.14). The findings of Cisternas et al. (2005), discussed further in chapter six, suggest the 

sediments overlying the younger terraces record evidence for multiple late Holocene tsunamis 

and coincident deformation. I revisited Maullín in January 2012 with Marco Cisternas to obtain a 

new biostratigraphic record for the site. Our visit focussed on the area at the seaward end of 

Cisternas et al.’s (2005) main transect (figure 2.14c). 

 

Estimates by local residents and using the lower growth limits of vegetation placed the magnitude 

of subsidence in 1960 close to the site at Maullín at 1.5 to 1.7 m (Plafker and Savage, 1970; figure 

2.14b). Of the eight tsunami waves recorded in the estuary, the highest reached 14 m (Seivers et 

al., 1963; Cisternas et al., 2000).  

 

Cocotue 

 

Cisternas et al. (2007) suggest that the exposed site of Cocotue, on the western side of the 

isthmus that joins the Lacui Peninsula to the rest of Chiloé, also records evidence for past 

tsunamis, in addition to shaking-induced mass movements (figure 2.15). Here, a narrow terrace 

(10 m to 50 m in width, 3 m above mean sea level) lies behind the modern high-energy beach 

(figure 2.15b). A 40 m high former sea cliff, cut into Pleistocene glacial outwash (Marco Cisternas, 

pers. com., 2012), abruptly limits the landward extent of the terrace. A small river, Río Pudeyi, 

flows from northeast to southwest along the back of the beach, contributing to the erosion of the 

terrace in the northern part of the site. Southwest of the point where Río Pudeyi joins the sea, 

vegetation is actively colonizing the beach below the terrace (figure 2.15c).  

 

Due to sparsely populated nature of the coastline at Cocotue, no data are available on the 

magnitude of subsidence in 1960. The site lies marginally to the west of Chucalen and 
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extrapolating the estimates of Plafker and Savage (1970) suggests subsidence at the site 

exceeding 1 m. Given the reported effects of the tsunami in other areas of northern Chiloé, 

including the substantially better sheltered Bahía Quetalmahue, it can be assumed that the 

tsunami was very large at Cocotue.  

 

2.4 Summary 

 

The subduction of the Nazca plate beneath South America causes several types of earthquake, of 

which large magnitude subduction megathrust events are the most damaging. Historical records 

of the shaking, deformation and coincident tsunamis associated with these events suggest along-

strike segmentation of the subduction zone. This thesis primarily focuses on the sedimentary 

record of earthquakes in the Valdivia seismic segment, the 1000 km long section that ruptured 

during the 1960 Valdivia earthquake. Chile’s glacial history contributes to an uncertain and 

possibly complex relative sea-level history. Falling mid to late Holocene relative sea levels, as 

predicted by modelling studies and identified from field evidence, are not conducive to the 

preservation of sedimentary evidence for earthquakes. Previously identified sites in the centre of 

the Valdivia segment, however, suggest that certain locations may record centennial to millennial 

length sedimentary records. I focus on three possible fossil sites, including a previously 

unreported site at Chucalen and additional sites at Maullín and Cocotue. The two modern 

marshes of Puente Quilo and Estero Guillingo lie close to the fossil sites and provide the samples 

required to characterise the modern intertidal marsh environment. Three further sites 

investigated by the Sediment Signatures project enable testing of the coseismic deformation 

reconstruction approach.  
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3. Approach 
 

 

3.1 Introduction 

 

This chapter details the methods used to fulfil the objectives set out in chapter one. Section 3.2 

discusses field methods, including sediment sampling and the derivation of tidal levels for each of 

the field sites described in chapter two. Section 3.3 outlines the laboratory methods used to 

analyse modern and fossil marsh sediments. Section 3.4 and 3.5 detail the chronostratigraphic 

and statistical methods used to derive estimates of the age and elevation of past environments.  

 

3.2 Field methods 

 

3.2.1 Modern marsh sediments 

 

Investigating evidence for past changes in tidal marsh systems starts with understanding the 

modern characteristics of those systems. Assuming uniformitarianism, the spatial variation in 

contemporary marsh environments serves as an analogy for temporal changes in the fossil 

environment.  

 

Field seasons in April 2011 and January 2012 provided the opportunity to collect modern 

sediment samples from the marshes at Estero Guillingo and Puente Quilo respectively. A single 

transect at each site, ranging from the tidal mudflat to the limit of intertidal vegetation, provided 

samples at regular vertical intervals (5 cm). Transects aimed for areas incorporating all of the 

recognised vegetation zones and avoided features which might suggest erosion, such as cliffs at 

the seaward edge of the vegetated marsh. The number of samples per transect depended on the 

elevation of the marsh to upland transition and the accessibility of the tidal flat; Puente Quilo 

yielded 50 samples and Estero Guillingo 46. At each point along the transect I removed a 

10 x 10 x 1 cm sample, which was then stored in cool, dark conditions and refrigerated on 

returning to the UK. Samples of this thickness average seasonal blooms in diatom assemblages, 

while minimising relative sea-level changes over the course of the accumulation of the sample. 

The potential for rapid postseismic deformation currently precludes the use of modern samples 

from transects in the rupture zone of the 2010 earthquake.  
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3.2.2 Fossil marsh stratigraphy  

 

Exposures, hand-dug pits and gouge cores allowed investigation of the stratigraphy of the fossil 

sites at Chucalen, Maullín and Cocotue. The Troels-Smith (1955) scheme for the classification of 

the physical components of sediments provided a consistent framework for in-field sediment 

description. During the April 2011 field season, I collected representative sediment monoliths 

from a cleaned exposure at Chucalen. Sampling of exposures in January 2012 provided monoliths 

characteristic of the stratigraphy at Maullín and Cocotue. The monolith approach, unlike the 

majority of coring methods, ensures that sediments are not vertically compacted during sampling. 

Cleaning and flattening of the exposure reduced the probability of contamination from marine 

water infiltration and minimised errors associated with sample depth measuring resulting from an 

angled exposure face. Overlaps between closely spaced monoliths ensured the recovery of an 

uninterrupted sedimentary sequence. The nature of the sediments made monolith tins 

unnecessary, thus avoiding further disturbance of the sediments; instead, I cut blocks of sediment 

using a knife and immediately wrapped them in plastic for transport and storage. Garrett et al. 

(accepted) describes the recovery of the monolith and core samples used for investigation of the 

1960 and 2010 earthquakes (appendix 1.1).  

 

3.2.3 Surveying and tidal measurements  

 

To establish the elevation of each surface sample and every exposure, pit or core top, I levelled 

the difference in elevation from a site-specific temporary benchmark using a Leica automatic level 

or a Leica differential GPS system with a Smart Rover. In the absence of maintained geodetic 

benchmarks, a variety of tidal measurements established the elevation of the temporary 

benchmarks with respect to local mean sea level and, subsequently, the elevation of each modern 

or fossil sample. Levelling transects consistently closed with errors of less than 0.05 m.  

 

To account for the difference in tidal range at the different modern and fossil sites, I convert the 

elevations of all modern samples into a standardised water level index (SWLI). Quantitative 

diatom transfer functions (described in section 3.5.3) use SWLI as the environmental variable and 

yield palaeomarsh surface estimates for fossil samples in SWLI units. Following Hamilton and 

Shennan (2005a), I calculate the SWLI for each sample using the equation:  

 

      
   (       )

          
         (Equation 3.1) 
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Where: 

SWLIn = Standardised water level index for sample n 

hn = Elevation of sample n (metres) 

hMSL = Mean sea level elevation (metres) 

hMHHW  = Mean higher high water elevation (metres) 

 

Rearranging equation 3.1, incorporating the appropriate levels for mean sea level and mean 

higher high water (MHHW) at the fossil site of interest, converts SWLI units into estimates of 

marsh surface elevation above mean sea level in metres.  

 

Sample elevation and tide levels for the modern transects 

 

The modern marsh transects at Puente Quilo and Estero Guillingo lie approximately 15 km to the 

west of the Ancud permanent tide gauge (figure 2.7). This gauge provides tidal observations, 

mainly at two minute intervals, between June 2008 and May 2012 (IOC, 2012). Having first 

screened the data to remove outlying samples, I derived figures for mean sea level and mean 

higher high water. The latter is the average of the highest tidal observations in each tidal cycle 

throughout the four year record. During sampling at Puente Quilo during the 2012 field season, Dr 

Rob Wesson of the United States Geological Survey deployed a temporary ultrasound tide gauge 

to record tidal fluctuations. This gauge provided high frequency observations (recordings every 

eight seconds) for 28 hours (figure 3.1). Cleaning this data removes outliers and corrects for 

variations in temperature. Variations in pressure and humidity make negligible differences to the 

observations. Comparison with observations from the Ancud permanent tide gauge for the same 

period highlights differences between tidal amplitudes at Ancud and Puente Quilo (figure 3.1). 

The close proximity of the permanent and temporary tide gauges suggests this is likely to reflect 

tidal amplification in the enclosed Bahía Quetalmahue, rather than resulting from variations in 

atmospheric pressure. I apply a scaling factor of 1.08 to fit the Ancud data to the Puente Quilo 

data and use this to derive mean higher high water at Puente Quilo (table 3.1).  

 

Low tide falls below the safely accessible area of tidal flat at Estero Guillingo, limiting tidal 

observations to the top of the tidal cycle. I relate the elevation of the temporary benchmark at 

Estero Guillingo to mean sea level by comparing 36 tidal observations over two successive high 

tides with coincident tidal observations from Ancud, scaled for Puente Quilo. This approach relies 

on the assumption that the elevations of mean sea level and mean higher high water do not 

change between Puente Quilo and Estero Guillingo (table 3.1). Less than five kilometres separates 
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the sites, which also lie at similar distances from the mouth of the bay, suggesting that if any 

discrepancy exists, it is unlikely to be substantial.   

 

Nelson et al. (2009) levelled the elevation of the Valdivia transect samples to mean sea level. The 

Corral tide gauge, located at the mouth of the Valdivia estuary, provides high frequency tidal 

observations (IOC, 2012). As tidal amplitude diminishes up-estuary, I scale the Corral tide gauge 

data using Admiralty (2004) data on tide levels at Corral and Valdivia to provide estimates of 

mean higher high water at Río Angachilla and Isla del Rey (table 3.1).  

 

Sample elevation and tide levels for the fossil sites 

 

Chucalen lies two kilometres northwest of Puente Quilo; accordingly, I also use the Puente Quilo 

estimates of mean higher high water and mean sea level for the fossil site (table 3.1). Two 

independent measures of the elevation of the cores and exposures – levelling observations of 

high tides at Chucalen and levelling from the Puente Quilo tide gauge to Chucalen – provided 

values that diverge by 0.05 m.  

 

At Maullín, scaling of the Ancud tide gauge record by the difference between Admiralty (2004) 

tide levels at Ancud and Maullín provides estimates of mean higher high water and mean sea level 

(table 3.1). The marsh front is relatively uniform in elevation and, based on Cisternas et al. (2005), 

the top of the sampled exposure is at 1.0 ± 0.2 m above mean sea level.  

 

Rob Wesson’s ultrasound tide gauge provided tidal observations and estimates of mean higher 

high water and mean sea level for Cocotue (table 3.1). A levelling circuit related the elevation of 

the sampled exposure to the tide gauge.  

 

Tide gauges, either in their original or a scaled form, provide tidal parameters for the Sediment 

Signatures sites (Garrett et al., accepted). Río Andalién uses the difference between mean sea 

level and mean higher high water from a multiannual, high frequency time series from the nearby 

tide gauge at Talcahuano (IOC, 2012). Tubul uses levels from the Lebu tide gauge time series (IOC, 

2012), scaled to account for the increase in the difference between MSL and MHHW to the north 

of Lebu suggested by Admiralty (2004) tide levels at Lebu and Coronel. Río Tirua uses levels from 

the Lebu tide gauge time series, scaled to account for the increase in the difference between MSL 

and MHHW to the south of Lebu suggested by Admiralty (2004) tide levels at Lebu and Caleta La 

Hacienda.  
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For locations close to permanent tide gauges, I estimate errors associated with the difference 

between mean sea level and mean higher high water to be ± 0.05 m. For sites without tide 

gauges, I estimate this error to be ± 0.1 m.  

  

3.3 Laboratory methods 

 

The first purpose of laboratory methods is to characterise modern marsh environments. Particle 

size analysis and loss on ignition provide data on the variation in grain sizes and the proportion of 

organic content respectively. Diatom analysis establishes the modern distribution of diatoms 

across the intertidal zone. An understanding of the contemporary environment, combined with 

laboratory analyses of core or monolith particle size distributions, organic content and diatom 

assemblages then facilitates initial assessments of the changes in marsh surface elevation 

recorded by fossil sequences. Further statistical approaches (discussed in section 3.5) use the 

relationship between modern diatoms and elevation to quantify past changes.  

 

3.3.1 Particle size analysis  

 

Following the addition of hydrogen peroxide to remove organic matter and sodium 

hexametaphosphate as a dispersant, laser diffraction using a Beckman coulter LS 13 320 with 

aqueous liquid module provided particle size distributions. I present percentage data summarised 

into three categories: sand (2 mm to 62.5 μm), silt (62.5 – 3.9 μm) and clay (3.9 – 0.061 μm).  

 

3.3.2 Organic content 

 

Following Dean (1974), I define the organic content of a sample as the percentage weight lost on 

ignition (%LOI). Subsamples dried at 105°C for a minimum of 18 hours before being ashed at 

550°C for 4 hours. Loss on ignition expresses the weight lost during ashing as a percentage of dry 

weight; I assume this to be proportional to the organic content of the sample (Dean, 1974; Hieri et 

al., 2001).  
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3.3.3 Diatom analysis 

 

Background to the use of diatoms in relative sea level studies 

 

Diatoms, unicellular algae in the class Bacillariophyceae, inhabit freshwater, intertidal and marine 

environments. Their value as indicators of sea level stems from the great diversity of species 

found in restricted, elevation-controlled niches in intertidal environments (e.g. Nelson and 

Kashima, 1993; Sherrod, 1999; Zong and Horton, 1999; Sawai et al., 2004; Hamilton and Shennan, 

2005b; Horton et al., 2006; Woodroffe and Long, 2009). Flooding duration and covariables such as 

salinity, particle size, pH, nutrient supply and vegetation play a central role in determining diatom 

distributions (Whiting and McIntire, 1985; Gehrels et al., 2001; Patterson et al., 2005; Roe et al., 

2009). Consequently, different elevations across a modern tidal marsh support different diatom 

assemblages. Changes in assemblages in sequences of fossil samples can, therefore, provide 

indications of changing relative sea level over time (e.g. Zong, 1997; Sawai, 2001; Hamilton and 

Shennan, 2005a; Long et al., 2010). In section 3.5, I discuss how statistical approaches use diatom 

assemblages to provide quantitative reconstructions of past marsh surface elevations.  

 

Diatoms, unlike foraminifera, another microfossil widely used in relative sea-level investigations 

(e.g. Scott and Medioli, 1978; Horton and Edwards, 2006), are not subject to problems of 

infaunality due to the majority of species relying on light for photosynthesis (cf. Duchemin et al., 

2005). Furthermore, diatoms are highly abundant and well preserved in fossil sediments due to 

their siliceous cell walls. I assume evolution in morphology or habitat preference is negligible over 

the short time interval of interest.  

 

Methodology for preparation and counting 

 

Processing of subsamples for diatom counting followed the standard procedures of the 

laboratories of the Department of Geography, Durham University. Following the addition of 

hydrogen peroxide to remove organic material and disaggregate diatom chains into individual 

frustules, I mounted slides using Naphrax and counted diatom valves using a Leica DM LB2 

microscope with an oil-immersion lens at a magnification of x1000. Minimum counts of 250 valves 

per sample ensure confidence intervals for taxon proportions are within acceptable limits (Fatela 

and Taborda, 2002; Woodroffe, 2006). Identifications follow Rivera and Valdebenito (1979), 

Hartley et al. (1996), Siqueiros-Beltrones and López-Fuerte (2006), Cremer et al. (2007), Horton et 

al. (2011) and digital reference collections held by Durham University, The University of Colorado 
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(2010, 2012) and The Academy of Natural Sciences of Drexel University (2012). Use of the World 

Register of Marine Species (Appeltans et al., 2012) ensures up-to-date nomenclature.  

 

I use C2 version 1.7.2 (Juggins, 2011) to draw assemblage diagrams. As salinity is not the primary 

environmental variable of interest, assemblage diagrams presented here do not split diatoms into 

traditional halobian classes (Hemphill-Haley, 1993), but rather into elevation categories defined 

by species optima calculated during transfer function development (section 3.5.3). 

 

3.4 Chronological methods 

 

Radiometric dating methods contribute to achieving objectives relating to constraining the timing 

of palaeoearthquakes and comparing the timing of stratigraphically defined earthquakes with 

historical records. A well constrained chronology also assists in determining rates of relative sea-

level change. I primarily apply Accelerator Mass Spectrometry (AMS) radiocarbon dating, but also 

discuss a relative caesium-137 (137Cs) concentration approach as a method for quickly establishing 

whether certain deposits relate to the 1960 earthquake and tsunami.  

 

3.4.1 Radiocarbon dating 

 

AMS radiocarbon dating uses the radioactive decay of an isotope of carbon to provide age 

estimates for carbon-bearing materials (Bowman, 1990; Walker, 2005; Hua, 2009). Carbon exists 

primarily in two stable isotopes, 12C and 13C. Interaction between cosmic rays and nitrogen-14 in 

the lower stratosphere and upper troposphere produces a third, radioactive isotope, 14C. Carbon 

dioxide molecules incorporating 14C atoms disperse throughout the atmosphere and enter 

terrestrial carbon cycles through photosynthesis. 14C decays, losing a beta particle and returning 

to stable 14N. Continued atmospheric production of 14C from 14N counters the constant decay and 

terrestrial organisms remain in isotopic equilibrium with the atmosphere through photosynthesis 

or ingestion of plant material. The death of the organism halts this replenishment; isolation from 

the 14C source enables decay, unsupported by photosynthesis. The relative number of 14C atoms 

in a sample therefore reflects the time elapsed since death. 

 

To provide a chronology for the sampled sediments at Chucalen, I use AMS radiocarbon dating to 

provide age estimations for a stratigraphically ordered series of samples. A Natural Environment 

Research Council (NERC) radiocarbon allocation (allocation number 1581.0911) provided 16 

closely spaced dates. At the time of writing, December 2012, the NERC Radiocarbon Facility has 
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reported results for 15 of these samples. Rather than solely dating material from the uppermost 

parts of buried soils to limit the timing of coseismic subsidence (cf. Cisternas et al., 2005), I 

develop a full profile of dates from organic-bearing layers in a single exposure at Chucalen. This 

approach allows the development of age-depth models, which may better constrain the timing of 

subsidence and also allow age estimation for all depths within the sequence.  

 

In an attempt to minimise the chance of selecting younger intrusive roots or more substantial 

reworked material I aimed to sample horizontally bedded above ground parts of herbaceous 

plants, including seeds (cf. Nelson, 1992; Marshall et al., 2007). Sample preparation followed the 

standard procedures of the NERC Radiocarbon Facility. Samples were digested in 1M hydrogen 

chloride at 80°C for 30 minutes, washed free from mineral acid with deionised water, then 

digested in 0.2 M potassium hydroxide at 80°C for 20 minutes. The residue was rinsed free of 

alkali, digested in 1 M hydrogen chloride at 80°C for one hour, then rinsed free of acid, dried and 

homogenised. The total carbon in a known weight of the pre-treated sample was recovered as 

carbon dioxide by heating with copper oxide in a sealed quartz tube. Iron/zinc reduction 

converted the gas to graphite. While I anticipated preparation of multiple graphite targets, the 

low abundance of suitable macrofossils enabled only single targets and standard rather than high 

analytical precision. 

 

By convention, laboratories report radiocarbon ages in radiocarbon years before present, where 

present is AD 1950 (Hua, 2009). The terms percentage of modern carbon (pMC) or fraction (F) of 

modern carbon express the radiocarbon ages of samples postdating 1950 (Stuiver and Polach, 

1977; Reimer et al., 2004). The variability in past atmospheric 14C resulting from solar variability 

and anthropogenic input necessitates calibration of radiocarbon dates into calendar years. 

Calibration curves, predominantly based on tree ring measurements, provide a method for this 

conversion. For the majority a samples, I employ the southern hemisphere specific curve SHCal04 

(McCormac et al., 2004).  

 

The advent of sustained atmospheric nuclear weapons testing in the early 1950s dramatically 

increased atmospheric 14C (Reimer et al., 2004). Year-to-year differences in the post-1955 period 

can be substantial, facilitating determinations with precision of a few months to a few years. For 

samples exceeding 100 pMC, I employ the post-bomb atmospheric southern hemisphere curve of 

Hua and Barbetti (2004).  

 

P_sequence models (Bronk Ramsay, 2008, 2009a) in OxCal v.4.1 (Bronk-Ramsey, 1995) use 

Bayesian reasoning to develop age-depth models. The approach uses prior information on the 
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stratigraphic position and ordering of samples to constrain posterior age distributions. Unlike 

Sequence models (Bronk Ramsay, 1995), P_sequence models can provide interpolated age range 

estimates for any given depth within a sequence. When combined with elevation estimates from 

diatom data (section 3.5), this enables investigation of rates of change over time. As substantial 

changes in sedimentation rate may accompany the abrupt lithological changes that signify 

coseismic deformation, I allow the model a high degree of flexibility in this respect, assigning a k 

value of 100 (Bronk-Ramsey, 2008).  

 

3.4.2 Caesium-137 

 

Caesium-137 (137Cs) is a short-lived radionuclide detectable in the environment since the 

beginning of atmospheric nuclear weapons testing (Walker, 2005). The occurrence of elevated 

concentrations implies deposition after the early 1950s. Predominantly northern hemisphere test 

sites resulted in low, but identifiable 137Cs fallout in the southern hemisphere (Schuller et al., 

1993, 2002; Arnaud et al., 2006). I compare concentrations in samples immediately underlying 

selected tsunami deposits with background concentrations to identify which relate to deposition 

in 1960. This approach assumes that 137Cs remains immobile in the sediment column, a 

prerequisite that may not be met in tidal marsh settings (Morris et al., 2000; Harvey et al., 2007). 

Rapid changes in concentration in closely spaced samples indicate this is not an issue in the 

locations investigated in this thesis.  

 

The preparation and analysis of samples for gamma spectroscopy followed the standard methods 

of the Department of Geography, Durham University. Freeze-drying and ball milling homogenised 

centimetre thick sediment samples. Material was then transferred to plastic tubes, compacted 

and weighed. The departments Ortec ‘p’ type germanium gamma ray spectrometers measured 

gamma ray energies, providing total 137Cs activity measured in Becquerels (Bq).  

 

3.5 Statistical analysis 

 

3.5.1 Zonation of modern datasets 

 

I use two complimentary methods to assess the zonation of contemporary diatom datasets: 

stratigraphically unconstrained CONISS (CONstrained Incremental Sum of Squares) and 

unconstrained ordination. CONISS, an agglomerative cluster analysis technique performed in Tilia 

v.1.7.16 (Grimm, 2011), provides a statistical basis for identification of groups of similar samples 
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in contemporary data. The resulting dendrogram links samples based on the similarity of their 

assemblages. Ordination methods, including Detrended Correspondence Analysis (DCA; Hill and 

Gauch, 1980), extract new principal axes to describe the major trends in multidimentsional data 

(Birks, 1995; Legendre and Legendre, 1998; Lepš and Šmilauer, 2003). In doing so, unconstrained 

ordination highlights groupings of samples, complementing cluster analysis (Kovach, 1995). The 

proximity of samples on DCA sample plots reflects the similarity between their species 

compositions; samples that plot close together are more similar than those that plot further 

apart. Investigation of the vertical distribution of clusters identified from visual assessment of 

CONISS dedrograms and DCA sample plots may highlight elevation-dependent zonation of the 

modern dataset.  

 

3.5.2 Ordination 

 

Ordination serves two purposes. In its unconstrained form, it may assist in the identification of 

clustering within a dataset (discussed above). When constrained by an environmental variable or 

variables, ordination quantifies the rate of species turnover along a gradient of interest and 

assesses the proportion of the variability in the modern diatom data that known variables explain 

(Birks, 1995; ter Braak, 1996). Use of the software CANOCO v.4.55 (ter Braak and Šmilauer, 2003) 

enabled ordination, in both unconstrained and constrained forms.  

 

High rates of species turnover, identified when the gradient of the first Detrended Canonical 

Correspondence Analysis (DCCA) axis exceeds two standard deviation units, suggest species are 

best modelled using unimodal rather than linear response curves (Birks, 1995). This choice 

informs both the type of constrained ordination methods required for investigation of the 

dependence of diatom data on measured environmental variables and the most appropriate class 

of transfer function models (section 3.5.3).  

 

Once the rate of species turnover has identified the most appropriate constrained ordination 

approach, the unimodal method, DCCA, or its linear equivalent, Redundancy Analysis, may 

provide information on the proportion of the variability in the modern dataset attributable to 

known environmental variables. As elevation is the variable of interest to this investigation, the 

proportion of the variability in modern diatom assemblages explained by SWLI is of particular 

relevance. If other known environmental factors, particularly those that do not covary with 

elevation, explain a larger proportion of the modern variability, diatoms may not provide 

meaningful indications of past relative sea level.  
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3.5.3 Transfer function development  

 

Transfer functions use regression to express an environmental parameter as a function of a 

modern training set of biological data (Imbrie and Kipp, 1971; Birks, 1995, 1998). Subsequent 

calibration calculates quantitative estimates of the environmental parameter of interest from 

fossil biological data (figure 3.2). Microfossil-based transfer function – calibration approaches 

have provided estimates of the magnitude of coseismic deformation in the Pacific Northwest 

(Guilbault et al., 1995; Hughes et al., 2002; Hawkes et al., 2005, 2010), Alaska (Zong et al., 2003; 

Hamilton and Shennan, 2005a, b), Japan (Sawai et al., 2004) and New Zealand (Hayward et al., 

2006), as well as quantifying aseismic relative sea level changes in a diverse range of locations 

(e.g. Horton et al., 2000; Edwards et al., 2004; Leorri et al., 2008; Woodroffe and Long, 2009; 

Kemp et al., 2011).  

 

As discussed in section 3.3.3, diatoms assemblages are highly zoned with respect to the elevation 

gradient in intertidal environments (Nelson and Kashima., 1993; Sherrod, 1999; Zong and Horton, 

1999). After applying the approaches outlined in section 3.5.2 to determine the elevational 

control on diatoms in south central Chilean marshes, I develop transfer functions with elevation 

as the environmental variable.  

 

Transfer functions may use either linear or unimodal approaches to model species’ responses to 

the environment. As with ordination, high rates of species turnover along the environmental 

gradient of interest imply unimodal models will best represent the response (figure 3.2b) (Birks, 

1995). DCCA first axes lengths exceeding the cutoff of two standard deviation units are typical 

where samples are from a long environmental gradient and the variable influences the chosen 

microfossil group. Following this test, I employ the unimodal method weighted averaging partial 

least squares regression (WA-PLS; ter Braak and Juggins, 1993; ter Braak et al., 1993) in C2 version 

1.7.2 (Juggins, 2011), to reconstruct marsh elevation from fossil samples.  

 

The first component of WA-PLS uses an abundance weighted average of the SWLI values of every 

sample in which a particular species occurs to assign a species coefficient (ter Braak and Juggins, 

1993). These species coefficients are essentially estimations of the optimum value along the 

elevation gradient for each species. Subsequent WA-PLS components update these species 

coefficients to improve the fit between the observed and predicted sample elevations using 

weighted averages of the residual elevation values (ter Braak and Juggins, 1993). WA-PLS offers 

benefits over simple Weighted Averaging regression (WA; ter Braak, 1987); it is less susceptible to 

edge effects, overestimation of species optima at low elevations and underestimation at high 
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elevations, and uses residual structure in the species data to further improve estimates of species 

optima (Birks, 1995, 1998). Through the inclusion of additional components, WA-PLS may better 

represent the true nature of the dataset, where factors other than the primary variable of interest 

influence the distribution of species (ter Braak and Juggins, 1993; ter Braak et al., 1993).  

 

I assess the performance of transfer function models in terms of root-mean square error of 

prediction (RMSEP) and squared correlation (r2) of observed versus estimated values (figure 3.2c). 

Bootstrapping, a method of resampling the dataset to produce pseudoreplicate training sets, is 

favoured over jack-knifing as the preferred method of cross-validation as it provides sample-

specific errors for each fossil sample and is less prone to bias (Birks, 1995; Manly and Chotkowski, 

2006). The choice of component depends upon the prediction statistics, with the lowest 

component that provides an acceptable model selected (Horton and Edwards, 2005). RMSEP 

provides a measure of the precision of the transfer function; alongside this, I also discuss 

predictive power, by which I mean the range of environments that the modern training set 

encompasses.  

 

3.5.4 Assessing reconstruction performance 

 

Whether statistically or ecologically sound, the calibration of biological data using a transfer 

function model will always produce a result (Birks, 1998). Consequently, further analysis is 

required to determine the reliability of the result. The primary consideration must always be 

whether the result makes ecological sense given the assemblage data. This may be assessed 

simply through visual appraisal of the diatom data alongside the transfer function reconstruction. 

Statistical techniques may supplement this approach, providing a more rigorous basis for 

assessing reconstruction performance. 

 

The modern analogue technique in C2 v.1.7.2 (Juggins, 2011) provides minimum dissimilarity 

coefficients (MinDC), measures of the similarity between each fossil sample and samples in the 

modern training set (Birks et al., 1990; Simpson, 2007). Lower values indicate greater similarity 

with the samples in the modern training set. MinDC thresholds, based on the dissimilarity 

between samples in the modern training set, distinguish whether fossil samples have ‘good’, 

‘close’ or ‘poor’ modern analogues (Birks, 1995; Horton, 1997; Hamilton and Shennan, 2005a; 

Woodroffe, 2009; Watcham et al., 2012). While other investigations have employed a wide range 

of threshold values, following Watcham et al. (2012) I use the 5th percentile of the modern 

dissimilarity values as the threshold between ‘good’ and ‘close’ modern analogues and the 20th 

percentile as the cut-off for a ‘poor’ modern analogue.  
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Other statistical approaches to comparing the similarity between modern and fossil assemblages 

are available. Birks (1998) proposes analogue statistics, based on identifying the proportions of 

taxa in fossil assemblages absent or poorly represented in modern samples. While this approach 

may supplement MinDC, the lack of accepted thresholds precludes its use as more than just a 

relative measure. Similarly, constrained ordination in a mutual ordination space (Woodroffe, 

2009) lacks defined thresholds and is not applied in this thesis.  

 

Where available, comparison of transfer function reconstructions with independent data, for 

example from tide gauges or GPS, provides a second measure of reconstruction performance (e.g. 

Gehrels et al., 2005; Kemp et al., 2009, 2011; Garrett et al., accepted). This approach is central to 

the third objective: test the performance of the approach by reconstructing coseismic deformation 

associated with recent, well documented Chilean earthquakes. Close correspondence with recent 

independent data is an encouraging sign of performance; however, this measure alone does not 

imply that the transfer function is successful throughout the sampled sequence (cf. Kemp et al., 

2009, 2011).  

 

3.5.5 Estimating the magnitude of coseismic deformation 

 

The difference between their inferred elevations provides an estimate of the magnitude of 

elevation change between two fossil samples: 

 

                      (Equation 3.2) 

 

Where:  

Dc   = coseismic deformation estimate, in metres 

Epost and Epre  = post-deformation and pre-deformation elevation estimates, in metres. 

 

The resulting deformation value is negative for subsidence and positive for uplift. Following 

Preuss (1979), I define the error associated with this change as: 

 

          √(          )
  (           )

     (Equation 3.3) 
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Where:  

Dc error = coseismic subsidence error, in metres 

Epre error and Epost error       = sample specific standard errors provided by the transfer function 

 

3.5.6 Quantifying relative sea level change 

 

The conversion of palaeomarsh surface elevation estimates into relative sea-level estimates 

requires the field elevation of each sample. Equation 3.4 defines relative sea level as: 

 

                    (Equation 3.4) 

 

Where: 

RSLn = Relative sea level estimate for sample n 

FEn = Field elevation of sample n (metres above mean sea level) 

PMSEn = Palaeomarsh surface elevation (metres above mean sea level) 

 

As the calculation of relative sea level incorporates the field elevation, the error associated with 

the estimate correspondingly increases. While I assume the transfer function sample specific error 

is sufficient to encompass errors relating to the estimation of PMSE and the distance between 

samples within a sequence, additional sources of error influence the field elevation of a sample. I 

define the relative sea-level error estimate as: 

 

          √(          )  (        )     (Equation 3.5) 

 

Where:  

RSL error = error associated with a relative sea level estimate 

PMSE error  = sample specific standard errors provided by the transfer function 

FE error        = error in estimating the field elevation of the sample 

 

Errors in estimating the field elevation of a sample derive from the inaccuracies of relating the 

core or exposure top to tidal levels and relating the sample depth to the core top. The magnitude 

of this error is larger at Maullín than at Chucalen due to uncertainties over the elevation of the 

marsh front exposure.  
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3.6 Summary 

 

This chapter has described the methods used to fulfil the objectives set out in chapter one. 

Modern marsh sampling at Puente Quilo and Estero Guillingo enables characterisation of 

contemporary intertidal diatom distributions and the development of transfer functions for the 

purpose of reconstructing former marsh surface elevations. Visual appraisal, a statistical approach 

and comparison of coseismic deformation reconstructions for the 1960 and 2010 earthquakes 

with independent data allows assessment of transfer function reconstruction performance. 

Stratigraphic surveys using cores, pits and exposures allow interrogation of coastal sediments for 

evidence of past earthquakes. Collection of representative monoliths and cores enables further 

lithological, biostratigraphic and chronological analyses. Calibration of diatom assemblages 

provides estimates of coseismic deformation associated with palaeoearthquakes. Radiometric 

dating methods constrain the timing of coseismic deformation and allow comparison with 

historical records and other palaeoseismic investigations.  
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4. Results: modern Chilean intertidal marshes 

 

 

 

4.1 Introduction 
 

Reconstructing past changes in intertidal environments requires a comprehensive understanding 

of modern tidal marshes. Spatial variations in modern marshes, and the corresponding 

environmental controls, provide analogues for temporal changes. This chapter discusses the 

vertical zonation of flora, organic content and particle size in the tidal marshes of northern Isla de 

Chiloé. Cluster analysis and ordination relate the zonation of diatom assemblages to 

environmental factors including elevation, a parameter that covaries with other factors including 

frequency and duration of tidal inundation, salinity and pH. After establishing the link between 

diatoms and elevation, I develop transfer function models for the purpose of reconstructing 

marsh surface elevations from fossil diatom assemblage data. 

 

4.2 Tidal marsh characteristics 

 

4.2.1 Vegetation 

 

Chilean intertidal marshes feature vertical zonation of vascular plants (San Martin et al., 1992; 

Jennings et al., 1995). I identify three intertidal floral zones at both Puente Quilo and Estero 

Guillingo, bounded at their lower extent by unvegetated tidal flat and by freshwater scrub at their 

upper limit (figure 4.1a, b, table 4.1). While vascular plants are absent, the Puente Quilo tidal flat 

plays host to commercial gathering of the red algae Gracilaria chilensis. Both sites feature eroded 

vegetated marsh fronts; however, where uneroded, the lower limit of vegetation occurs around 

0.75 m above mean sea level at both locations. The total vertical range of low, mid and high 

marsh vegetation is larger at Estero Guillingo than at Puente Quilo (figure 4.2a); an unexpected 

result given the close proximity of the two sites and the assumed tidal range invariance. The 

discrepancy might reflect the influence of other factors such as variability in livestock grazing, 

substrate and moisture levels, or could suggest a larger tidal range and lower mean sea level at 

Estero Guillingo. In the absence of high frequency data for the entire tidal cycle for Estero 

Guillingo, I elect to assume that non-elevation related factors influence the variation in the 

elevation of the transition to freshwater scrub.  
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4.2.2 Organic content and particle size 

 

The organic content of samples from Puente Quilo and Estero Guillingo increases with increasing 

elevation (figure 4.2b). Loss on ignition values vary from < 10 % on the tidal flats to over 70 % in 

the high marsh environments, with the transition from low to high organic content occurring in 

the mid marsh vegetation zone at both sites.  

 

Sand-sized particles dominate the majority of Puente Quilo samples, with two peaks in silt-sized 

particles around mean sea level and above mean higher high water (figure 4.2c). The Estero 

Guillingo sediments are typically more silt and clay-rich, with some sandier elevations between 

mean sea level and mean higher high water. Inter-site variability in sedimentological parameters 

reflects differences in exposure to wave energy, fluvial input and sediment supply. This work does 

not quantify intra-site variability in particle size and organic content for a given elevation; 

however, this is likely in tidal marsh situations, particularly due to the presence of tidal creeks. 

 

4.3 Modern intertidal diatoms 
 

Ninety-six modern samples from Puente Quilo and Estero Guillingo contain 149 identified diatom 

species from 57 genera and seven unidentified taxa (appendix 4.1 on the attached CD). Eighty-

four species are found in both transects and 25 species equal or exceed 10 % in one or more 

sample (figure 4.3). 

 

The defining features of the combined Chiloé dataset are the presence of low turnover, low 

diversity assemblages below mean higher high water (sub-MHHW) and more variable, species-

rich assemblages at higher elevations (supra-MHHW). While some living diatoms may occupy 

small vertical ranges due to varying tolerances to salinity, duration and frequency tidal flooding, 

substrate and other elevation-correlated factors (Vos and de Wolf, 1993; Zong and Horton, 1998; 

Sherrod, 1999), similar low elevation uniformity is also reported in other datasets, for example 

from northern Japan (Sawai, 2001), British Columbia (Roe et al., 2009) and Greenland (Woodroffe 

and Long, 2009). The broad elevation tolerances of certain taxa may reflect cosmopolitan 

distributions; however reworking and redistribution of diatom valves may also contribute to 

uniform low elevation assemblages (Sherrod, 1999; Sawai, 2001). While some investigations try to 

remove the effects of reworking by separating an assumed allochthonous component (e.g. 

Szkornik, 2007), no attempt is made here as this mixture of local and allochthonous valves will 

also occur in fossil sediments (Zong, 1997). 
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Figure 4.4 compares the most common diatom species at Puente Quilo and Estero Guillingo with 

the distribution of diatoms in samples from two transects from Río Angachilla and Isla del Rey in 

the Valdivia Estuary (Nelson et al., 2009). I have updated the species names used in the Valdivia 

dataset and cross-referenced each species with my identifications to ensure consistency in 

taxonomic subdivision and nomenclature. The 32 samples of the modified Valdivia dataset include 

88 species from 54 genera (appendix 4.2 on the attached CD). Fifty species occur in both the 

Valdivia and Chiloé datasets. The Valdivia assemblages show less vertical zonation, however the 

majority of Valdivia samples are from below MHHW, with few samples from the elevations that 

show the clearest zonation in the Chiloé transects. There is little overlap between the dominant 

species in the Valdivia and Chiloé datasets, suggesting that elevation is not the sole control on 

diatom distributions at a regional scale.  

 

4.4 Relating diatom distributions to elevation 
 

Visual inspection of the species data suggests zonation along the elevation gradient. Multivariate 

techniques, including cluster analysis and ordination, can further detect and describe this 

zonation. Unconstrained cluster analysis is an agglomerative method, progressively adding the 

most similar samples together to form clusters on a dendrogram. The unconstrained ordination 

method Detrended Correspondence Analysis (DCA) represents samples in a multidimensional 

space, where similar samples cluster together and dissimilar apart. A constrained form of 

ordination, Detrended Canonical Correspondence Analysis (DCCA) assesses the independent 

contributions of the measured environmental variables to explaining species distributions. I 

present results for multivariate analyses of a Chiloé dataset, consisting of the samples from the 

two Chiloé transects and a Regional dataset, which also includes the Valdivia samples from Nelson 

et al. (2009).  

 

4.4.1 Elevation-dependent zonation in the Chiloé dataset 

 

Cluster analysis of the Chiloé dataset identifies seven clusters at a total sum of squares cutoff of 

two (figure 4.5a). The vertical distribution of samples within these clusters supports the 

identification of vertical zonation from visual assessment of the assemblage data (figure 4.5b). 

Four of the clusters occupy small vertical ranges above MHHW, with the remaining three clusters 

sharing broader ranges at lower elevations. The dendrogram and a DCA sample plot (figure 4.5c) 

highlight the dissimilarity between samples from the two sites. Only one cluster contains samples 

from both transects and the two sites occupy discrete areas of the DCA sample plot, suggesting 
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systematic differences between their respective assemblages. While diatoms display zonation 

along the elevation gradient, site-specific factors are clearly also important.  

 

Constrained ordination methods can further investigate the relative contributions of elevation 

and other factors in explaining diatom distributions in the Chiloé dataset. When constrained by 

SWLI, the gradient of the first Detrended Canonical Correspondence Analysis (DCCA) axis 

approximates the rate of species turnover with respect to elevation. The gradient length of the 

first axis (3.06) exceeds 2.0 standard deviation units, again highlighting a high rate of species 

turnover along the elevation gradient. This supports the use of unimodal rather than linear 

constrained ordination methods and I use DCCA rather than linear equivalents, such as 

Redundancy Analysis, to assess the dependence of diatom assemblages on recorded 

environmental variables (ter Braak et al., 1993; ter Braak and Juggins, 1993; Birks, 1995, 1998).  

 

Together, elevation, loss on ignition and particle size explain 32.5 % of the variability in the Chiloé 

dataset (figure 4.6a). Elevation (SWLI) explains 12.8 % of the total explained variation 

(figure 4.6b). Table 4.2 compares this result with published constrained ordination results for 

similar diatom-based tidal marsh studies; the proportion of the variability in the Chiloé dataset 

explained by elevation is within the expected range.  

 

A biplot of samples and environmental variables (figure 4.7) reinforces the dependence of particle 

size and loss on ignition on elevation; the vectors for all of the variables align with axis 1. The 

covariance between the variables results in similar contributions to the explained variance 

(figure 4.6b). No variables strongly correlate with axis 2 of the DCCA biplot, suggesting the 

importance of unknown variables in controlling species distributions. The distribution of samples 

from the two transects, particularly those with high axis 1 scores, suggests that this factor may 

relate to the difference between assemblages at the two sites. 

 

Together, the multivariate methods of cluster analysis, unconstrained and constrained ordination 

indicate elevation-dependent zonation of the diatom assemblages from Estero Guillingo and 

Chucalen. Consequently, transfer functions may provide an appropriate approach for 

reconstructing marsh surface elevation. Palaeoenvironmental reconstructions must assume that 

the covariance of other controlling environmental factors with elevation has remained constant 

over time (Birks, 1995). 
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4.4.2 Elevation-dependent zonation in the Regional dataset 

 

The 128 sample Regional dataset divides into six clusters at a total sum of squares cut-off of four 

(figure 4.8a). The clusters show a degree of vertical zonation, with clusters R2, R3 and R6 

occupying small vertical ranges below mean sea level, between mean sea level and MHHW and 

above MHHW respectively (figure 4.8b). The other three clusters, which contain the majority of 

the Valdivia samples and the tidal flat samples from the Chiloé dataset, occupy broader elevation 

ranges. The dendrogram and a DCA sample plot (figure 4.8c) highlight the dissimilarity between 

the four transects. Two of the six clusters contain samples from more than one transect and there 

is no mixing between the Chiloé and Valdivia samples. The four sites occupy mutually exclusive 

areas of the DCA sample plot, again suggesting considerable site-based differences between the 

diatom assemblages.  

 

The lack of particle size and loss on ignition data for the Valdivia samples precludes the 

application of DCCA, constrained by multiple environmental variables, to the Regional dataset. 

DCCA, constrained by SWLI, suggests that elevation explains 7.2 % of the variation in the dataset. 

This percentage is in line with other investigations (table 4.2) and suggests that the vertical 

control on diatom assemblages at a regional scale is still strong enough for transfer function 

development.  

 

4.5 Transfer function development 
 

DCCA axis 1 gradient lengths for the Chiloé dataset (3.06) and Regional dataset (2.57) exceed 

2.0 standard deviation units, indicating a high rate of species turnover along the elevation 

gradient. Consequently, I use a unimodal approach and develop transfer functions using Weighted 

Averaging Partial Least Squares regression (WA-PLS; ter Braak and Juggins, 1993; ter Braak et al., 

1993). 

 

4.5.1 Selecting samples and variables 

 

Decisions relating to the samples or sites to include in a modern training set revolve around the 

trade-off between precision, the magnitude of the vertical error, and predictive power, the range 

of available modern analogues for fossil environments (Horton and Edwards, 2005; Woodroffe 

and Long, 2010; Wilson and Lamb, 2012). Local training sets with few samples from a single 

location may produce precise estimates with tightly constrained sample-specific errors, but closer 

modern analogues for fossil samples may be found when larger, multi-site regional training sets 
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are used (Watcham et al., 2012). By incorporating samples from multiple sites, the variation in 

diatom assemblages not related to elevation increases and precision correspondingly declines. 

Woodroffe and Long (2010) suggest that in marshes on the west coast of Greenland, the variation 

in non-tidal range factors (organic content, wind and wave processes) may lead to a stretching of 

the ecological zonation, resulting in a decrease in the precision of regional models, without 

necessarily providing an increase in predictive power. Such variation is likely to affect Chilean tidal 

marshes too; the stretching of the vegetation zonation at Estero Guillingo compared to Puente 

Quilo (figure 4.2) may reflect this. Diatom taxa, however, suggest more than a stretching of marsh 

zonation at the Chiloé sites, with different species dominant in each transect (figure 4.3). 

Furthermore, as I am developing transfer function models for the purpose of reconstructing 

changes in marsh surface elevation over periods of hundreds to thousands of years, the possibility 

of encountering assemblages more closely resembling spatially distant samples cannot be 

discounted (Watcham et al., 2012). I develop a Chiloé model, incorporating the 96 samples from 

the Chiloé transects and, in an attempt to characterise a greater range of environments that may 

be encountered in the fossil record, I also develop a Regional model, which includes the 32 

additional samples from Valdivia.  

 

Various authors support removing outlying samples which do not closely conform to the expected 

distribution (e.g. Jones and Juggins, 1995; Horton and Edwards, 2006; Woodroffe, 2009; Long et 

al., 2012). The inability of transfer function models to estimate the marsh surface elevation of 

these samples may result from environmental factors other than elevation driving the species 

compositions (Birks et al., 1990). Variation related to factors other than elevation will, however, 

also be a feature of fossil datasets and the removal of these samples during transfer function 

development may result in overly precise error estimates. Consequently, I choose not to develop 

artificially pruned models. While some authors endorse removing minor species (e.g. Sawai et al., 

2004; Hassan et al., 2009; Zong et al., 2010), Birks (1998) argues that they contribute coherent 

information to the model and, accordingly, I do not remove any species.  

 

4.5.2 Chiloé transfer function model development 

 

The Chiloé transfer function model struggles to predict low marsh surface elevations at the first 

component (figure 4.9). Samples from Puente Quilo with observed elevations below MHHW share 

predicted SWLI values of between 110 and 130; those from below observed values of 250 SWLI 

units at Estero Guillingo have predicted elevations between 135 and 165 SWLI units. The 

substantial structure seen in the plot of observed against residual SWLI arises from the 

dominance of a few key species in low intertidal assemblages at each site (figure 4.3). The first 
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component uses a weighted average of the abundances of each species to assign species 

coefficients. As the distributions of these taxa do not conform to simple unimodal distributions, 

their coefficients are placed in the centre of the sampled ranges and, consequently, predicted 

values centre on these elevations. The stratification between the two sites also reflects the 

difference in sampled elevations and the elevation of the transition from the homogenous low 

elevation assemblage to the more highly zoned high elevation assemblages at each site. 

Successive components update these species coefficients to provide a greater level of fit between 

observed and residual marsh surface elevations (table 4.3, figure 4.9). I choose the third 

component model as it provides a linear distribution of observed against predicted values (figure 

4.9), the highest r2 value and a RMSEP improvement of at least 5 % over the first and second 

component models.  

 

The removal of all tidal flat samples could provide a vegetated marsh model with a more linear fit 

between observed and predicted values and a lower RMSEP. The considerable shortening of the 

elevation gradient would, however, result in a model incapable of reconstructing large magnitude 

changes in palaeomarsh surface elevation. While Hamilton and Shennan (2005b) successfully use 

such high precision models, their application requires independent lithological data to constrain 

the depositional elevation. This approach relies on minimal downward root penetration 

(Woodroffe and Long, 2009) and substantial interseismic sedimentation, prerequisites not met by 

Chilean fossil records. 

 

4.5.3 Regional transfer function model development 

 

The Regional model (figure 4.10) also struggles to predict low marsh surface elevations at the first 

component due to the homogeneity of low elevation assemblages (figure 4.4). The third 

component successfully integrates the data from the four transects and provides a model with a 

linear distribution of observed against predicted values. Each component provides a RMSEP 

improvement of at least 5 % over previous components and an increase in r2. The ratio of the 

prediction error to the total sampled range suggests similar performance for the Chiloé and 

Regional models (table 4.3).  

 

Sample number 46 from Puente Quilo remains a notable outlier in the third component plot 

(figure 4.10), with a predicted elevation more than 100 SWLI units below its observed elevation. 

This results from the sample containing a much higher proportion of Navicula atomus than other 

samples of similar elevation. I do not remove this or any other sample to ensure a realistic 

assessment of reconstruction errors. 
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4.5.4 Implications of model choice on estimated species optima 

 

Figure 4.11 presents the species coefficients used in the first three components of the Chiloé and 

Regional transfer function models. Species coefficients used in the first component of WA-PLS lie 

relatively evenly throughout the elevation gradient, with few coefficients below or above the 

sampled range. The first component, essentially a modified form of Weighted Averaging (WA; ter 

Braak, 1987), is susceptible to edge effects, the overestimation of species optima at low 

elevations and underestimation at high elevations (Birks, 1995; Birks et al., 2010). With the 

addition of further components, species coefficients stretch over a greater range of elevation 

values. By using residual structure in the species data, additional WA-PLS components may better 

represent the true species distributions (Birks, 1995; 1998). The majority of first component 

coefficients that lie below MSL update to elevations below the lowest sampled elevation, with a 

few species lowered by over 500 SWLI units at the third component. The upper end of the 

elevation gradient does not see such a substantial stretching, although component 2 and 3 

coefficients are generally higher than component 1 coefficients above MHHW. For the dominant 

modern species in both the Chiloé and Regional training sets, species coefficients generally lie 

within the sampled elevation range and are relatively consistent between components (figure 

4.12). 

 

Updating species coefficients during the process of improving the fit between observed and 

predicted marsh surface elevations inevitably leads to certain coefficients, particularly those of 

infrequently occurring species, being moved drastically beyond their observed modern 

distributions. As part of the development of their Small Tolerances model, Woodroffe and Long 

(2009) remove species with coefficients outside their sampling range. Coefficients beyond the 

ends of the sampled gradient are, however, to be expected; it is highly unlikely that the modern 

training sets incorporate the full distributions of all species.  

 

4.6 Summary 
 

The modern tidal marshes of northern Isla de Chiloé are characterised by vertical zonation of 

vascular plants, sediments and diatom assemblages (figures 4.1, 4.2, 4.3). Transects at Puente 

Quilo and Estero Guillingo are both characterised by low diversity assemblages below MHHW and 

more variable, species-rich assemblages at higher elevations. Cluster analysis and ordination 

support zonation along the elevation gradient for both a Chiloé dataset containing the Chiloé 

samples and a Regional dataset, which includes samples from the Valdivia estuary (Nelson et al., 

2009). The proportion of explained modern diatom variability in both datasets is comparable with 
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other tidal marsh diatom studies (figure 4.6, table 4.2). Weighted averaging partial least squares 

regression provides Chiloé and Regional transfer function models for the reconstruction of marsh 

surface elevation (figures 4.9, 4.10, table 4.3). Three component models have the highest r2 

values, linear distributions of observed against predicted values and acceptable levels of 

precision.  
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5. Reconstructing coseismic deformation: the 1960 

and 2010 earthquakes 
 

 

 

5.1 Introduction 

 

Substantial coseismic deformation accompanied the 1960 Mw 9.5 and the 2010 Mw 8.8 

earthquakes (Plafker and Savage, 1970; Delouis et al., 2010; Melnick et al., 2012a). This chapter 

tests whether the diatom transfer function approach can faithfully reconstruct the magnitude and 

direction of coseismic land-level movements from tidal marshes sequences.  

 

As stated in chapter one, the Sediment Signatures of the 2010 Chile Mw 8.8 Earthquake project 

(NERC Urgency Grant I00503X/I) supported a rapid assessment of sediments deposited by the 

2010 tsunami and subsequent postseismic accumulations. The survey in August 2010 recovered 

sediment blocks from three sites around the boundary between the 2010 and 1960 earthquakes: 

Río Andalién, Tubul and Río Tirua. Recognition of recently deposited sand sheets and older sand 

layers guided subsequent diatom analyses, which Dr Emma Watcham undertook. Garrett et al. 

(accepted) describes the findings of this project, including insights into tsunami biostratigraphy 

and postseismic sedimentation (appendix 1.1). This chapter uses the transfer functions developed 

in chapter four to calibrate the Sediment Signatures biostratigraphic records and produce 

estimates of coseismic deformation.  

 

5.2 The 2010 Maule earthquake 

 

Due to post-2010 sedimentary hiatuses at Río Mataquito and Río Tirua, reconstructions of land-

level change for the 2010 earthquake are limited to two of the Sediment Signatures sites, Río 

Andalién and Tubul (figure 5.1). 

 

5.2.1 Río Andalién  

 

Lithology 

 

At Río Andalién, the 2010 tsunami deposit forms a normally graded, largely continuous sand 

sheet, abruptly overlying highly organic and well-vegetated tidal marsh sediments (Garrett et al., 
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accepted). In August 2010, the sand sheet remained visible at the surface in many areas, but close 

to the marsh front a layer of silty clay, not exceeding 20 mm, had buried the sand. A monolith 

from close to the marsh front provided samples for diatom analysis. 

 

Biostratigraphy and palaeomarsh surface elevation reconstruction 

 

Diatom assemblages in the upper part of the Río Andalién monolith contain 93 identified and one 

unidentified species. Of these, 71 also occur in the modern dataset and six exceed 10 % in one or 

more fossil sample (figure 5.2). Assemblages suggest intertidal marsh surface elevations for both 

pre- and post-tsunami sediments. The preseismic assemblage consists of species found both 

below and above mean higher high water (sub- and supra-MHHW) in the modern marsh 

environment. The post-tsunami deposit displays a slight increase in sub-MHHW species at the 

expense of supra-MHHW species, suggesting a fall in marsh surface elevation.  

 

Quantitative reconstructions support a fall in marsh surface elevation (figure 5.3). The Regional 

model suggests a higher pre-tsunami marsh elevation than the Chiloé model and, consequently a 

larger magnitude fall in marsh elevation. Comparison of the sample immediately preceding the 

tsunami with the most recently deposited sample provides estimates of elevation fall of around 

0.5 m to 0.75 m (table 5.1). Section 5.4 discusses the reliability of the reconstructions and the 

favoured model for each site.  

 

5.2.2 Tubul  

 

Lithology  

 

The Sediment Signatures project did not detect any sand layers at or below the marsh surface at 

Tubul that might relate to tsunami deposition (Garrett et al., accepted). Tidal marsh sediment 

biostratigraphy may, however, record coseismic deformation in the absence of any tsunami 

deposit. Accordingly, the Sediment Signatures project recovered a silt and clay-rich monolith from 

a tidal channel to provide sediments for diatom analysis.  

 

Biostratigraphy and palaeomarsh surface elevation reconstruction 

 

Diatom assemblages in the Tubul monolith contain 65 identified and no unidentified species. Of 

these, 51 also occur in the modern dataset and eight exceed 10 % in one or more fossil sample 

(figure 5.4). Although the monolith shows no change in sediment lithology, diatom analysis 
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reveals a substantial change in assemblages. In the uppermost 5 mm an assemblage dominated 

by Nitzschia fonticola, a supra-MHHW species, supplants the preceding predominantly sub-

MHHW assemblage (figure 5.4). This change suggests a rapid rise in marsh surface elevation. 

 

Quantitative reconstructions corroborate the direction of change inferred from a visual 

assessment of the diatom assemblages (figure 5.5). The Chiloé and Regional models both indicate 

an increase in marsh surface elevation exceeding 0.5 m (table 5.1). 

 

5.3 The 1960 Valdivia earthquake 

 

Marsh surface elevation reconstructions for the 1960 earthquake are possible at three sites: Río 

Andalién and Río Tirua, both sampled during the Sediment Signatures project, and an additional 

site at Chucalen, northern Isla de Chiloé. The sites of Río Andalién and Río Tirua lie in the northern 

half of the 1960 rupture zone, the former situated close to the northernmost limit of possible 

displacements (figure 5.1). The Sediment Signatures project did not locate pre-2010 sand layers to 

guide sampling at Tubul. Sediments from Chucalen, which lies in the centre of the 1960 rupture 

area, include several minerogenic layers which may attest to tsunami deposition. In this chapter, I 

discuss sediments relating to the 1960 earthquake only and detail the full site stratigraphy in 

chapter 6. 

 

5.3.1 Río Andalién 

 

Lithology and chronology 

 

A laterally continuous sand sheet lies 20 cm below the present surface at Río Andalién (Garrett et 

al., accepted). In the recovered monolith, above background caesium-137 (137Cs) concentrations 

in sediments immediately underlying the sand layer indicate deposition no earlier than the 

beginning of atmospheric nuclear testing in 1952 (table 5.2). The similarities with the 2010 

deposit, particularly the lateral extent and the abrupt lower contact, suggest a tsunami rather 

than a fluvial flood or storm surge (Garrett et al., accepted). Possible candidates include tsunamis 

resulting from the 1960 Valdivia earthquake and the 1964 Alaskan earthquake. The Alaskan 

tsunami coincided with a rising tide in south central Chile, but crested less than 0.75 m above sea 

level at the time of arrival at Talcahuano, the closest tide gauge at less than ten kilometres to the 

west of Río Andalién (Wilson and Tørum, 1968). The greater magnitude of the 1960 tsunami, 
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which resulted in flow depths of five metres in Talcahuano (Fritz et al., 2011) supports the Chilean 

event as the source of the sand layer.  

 

Biostratigraphy and palaeomarsh surface elevation reconstruction 

 

Diatom assemblages in the lower part of the Río Andalién monolith contain 70 identified and one 

unidentified species. Of these, 55 also occur in the modern dataset and six exceed 10 % in one or 

more fossil sample (figure 5.6). Assemblages indicate intertidal sedimentation before and after 

the tsunami deposit. A decline in sub-MHHW species matches an increase in two species not 

characterised in the modern dataset, Navicula hamiltonii and Tryblionella navicularis (figure 5.6). 

Both species may indicate marsh surface elevations below MHHW, with the former an epiphyte 

on intertidal seaweeds (Totti et al., 2009) and the latter a mesohalobous tidal flat species 

(Metcalfe et al., 2000).  

 

Reconstructed palaeomarsh surface elevations generally lie between 0.75 m and 1.0 m above 

mean sea level. The Chiloé and Regional models do not suggest a large change in marsh elevation, 

with extensively overlapping error ranges before and after the tsunami deposit (figure 5.7). When 

corrected for the small amount of tsunami sediment accumulation, both models suggest marginal 

uplift (table 5.1).  

 

5.3.2 Río Tirua 

 

Lithology and chronology 

 

A second sand unit forms a widespread and largely continuous stratigraphic layer below the 2010 

tsunami deposit at Río Tirua (Garrett et al., accepted). The contact with underlying marsh 

sediments is abrupt. Comparisons with Ely et al. (2010), the testimony of local residents and 

elevated 137Cs concentrations in a recovered core (table 5.2) link the sand layer to the tsunami 

following the 1960 earthquake. 

 

Biostratigraphy and palaeomarsh surface elevation reconstruction 

 

Diatom assemblages from the Río Tirua core contain 72 identified and no unidentified species. Of 

these, 61 also occur in the modern dataset and seven exceed 10 % in one or more fossil sample 

(figure 5.8). Supra-MHHW species characterise the diatom assemblages from the organic 

sediments below and above the sand layer. The presence of Nitzschia fonticola and Navicula 
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phyllepta probably indicates a high intertidal setting, rather than a supratidal marsh surface 

elevation throughout the sampling interval.  

 

The transfer function reconstructions suggest deposition between 2 m and 2.5 m above mean sea 

level (figure 5.9). While the Regional model provides more variable post-tsunami marsh elevation 

estimates than the Chiloé model, neither model suggests a change in elevation exceeding the 

error term (table 5.1).  

 

5.3.3 Chucalen 

 

Lithology and chronology 

 

An extensive sand sheet outcrops in marsh front exposures along the western margin of Bahía 

Quetalmahue. The abrupt nature of the lower contact, the presence of flattened vegetation and 

the coincidence of subsidence (discussed below) suggests deposition of the sand layer during a 

tsunami. Comparisons with preliminary investigations by Bartsch-Winkler and Schmoll (1993), 

137Cs concentrations (table 5.2) and statements from local residents correlate the deposit with the 

1960 tsunami. 

 

Biostratigraphy and palaeomarsh surface elevation reconstruction 

 

Diatom assemblages from the Chucalen monolith contain 103 identified and two unidentified 

species. Of these, 96 also occur in the modern dataset and 12 exceed 10 % in one or more fossil 

sample (figure 5.10). A major change in diatom assemblages accompanies the tsunami deposit. 

Supra-MHHW species characterise the soil beneath the tsunami deposit. Sediments immediately 

overlying the sand layer from 36 cm to 38.5 cm contain a mixed assemblage incorporating both 

sub- and supra-MHHW components. Sub-MHHW species abruptly supplant this assemblage and 

dominate above 36 cm depth (figure 5.10).  

 

Quantitative reconstructions suggest a pre-tsunami marsh surface elevation between 1.5 m and 

2.0 m above mean sea level (figure 5.11). The reconstructions, in particular those from the Chiloé 

model, display a fall in elevation of approximately 0.2 m immediately preceding the abrupt 

contact with the tsunami deposit. While Hawkes et al. (2005) and Shennan and Hamilton (2006) 

evoke preseismic subsidence for several identified falls in palaeomarsh surface elevation in North 

America, downward mixing of diatom valves from the overlying tsunami deposit could also result 

in a similar pattern of modelled elevation change. Table 5.1 presents estimates of the total fall in 
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marsh surface elevation from the highest pre-tsunami elevation to the lowest post-tsunami 

elevation. The samples immediately overlying the tsunami provide varying elevation estimates 

(figure 5.11) and diatom assemblages appear to stabilise above these samples (figure 5.10).  

 

5.4 Assessment of reconstruction performance 

 

Although the Regional training set includes samples from four transects in two locations and from 

modern environments ranging from unvegetated tidal flat below mean sea level to above the 

highest limits of tidal inundation, many of the fossil samples do not have a ‘good’ or ‘close’ 

modern analogue (figures 5.3, 5.5, 5.7, 5.9, 5.11). This is particularly the case with Río Andalién 

and Río Tirua, where all samples have ‘poor’ modern analogues. The lack of modern analogues is 

a limitation of the current study and highlights the need for larger training sets, preferably from a 

more spatially diverse range of sites. The modern samples are from locations several hundred 

kilometres to the south of the Sediment Signatures sites and there may be a latitudinal control on 

diatom assemblages that I am currently unable to assess. Ongoing postseismic deformation and 

the lack of substantial sedimentation preclude the collection and use of samples from sites within 

the 2010 rupture zone and further investigations should focus on the northern half of the 1960 

rupture zone. 

 

A map of the location of the ten closest modern analogues for each fossil sample (figure 5.12) 

suggests that the majority of fossil samples share the greatest similarity with the modern samples 

from Isla de Chiloé. None of the closest modern analogues for fossil samples from Río Andalién or 

Tubul come from the Valdivia transects. This suggests the Regional model offers little or no 

increase in predictive power over the Chiloé model. Nevertheless, as the fossil sites (excluding 

Chucalen) lie several hundred kilometres away from the modern transects, the Regional model 

may better represent the true distributions of diatom taxa over this spatial scale, incorporating 

greater variation resulting from factors not related to elevation. Consequently, estimates derived 

from application of the larger training set are appropriate for Río Andalién, Tubul and Río Tirua. 

The close proximity of Chucalen to the transects of the Chiloé model and the dominance of these 

modern transects in an analysis of the location of the closest modern analogues (figure 5.12) 

supports the use of the Chiloé model at the southernmost site.  
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5.5 Comparison with independent estimates of deformation 

 

The diatom-based estimates of palaeomarsh surface elevation change compare favourably with 

published estimates of coseismic land-level change in 2010 and 1960 (figure 5.13, table 5.3), 

suggesting that tidal marshes sequences can faithfully record the magnitude and direction of 

coseismic land-level movements. While some authors use positive comparisons with tide gauge 

data as justification for accepting the robustness of transfer function reconstructions (e.g. Gehrels 

et al., 2005; Kemp et al., 2009, 2011), I note the lack of statistically ‘good’ modern analogues in 

this investigation. For the Sediment Signatures sites, the percentage of fossil species also 

occurring in the modern dataset is high, ranging from 75 % to 85 % and rising to 91 % for 

Chucalen. However, a scatter plot (figure 5.14) highlights a number of species with high fossil and 

low modern maximum abundances. While the modern dataset provides good coverage of the 

species found in the fossil environment, it is the differences in abundances that result in the lack 

of ‘good’ modern analogues. Further modern samples need to locate higher modern abundances 

of important fossil species to ensure reconstructions fulfil statistical criteria as well as 

comparisons with independent data.  

 

 The transfer function underestimates 2010 uplift at Tubul and, to a lesser degree, overestimates 

subsidence at Río Andalién (figure 5.13). GPS vectors and benchmark relevelling provide the 

published estimates of 2010 coseismic deformation at these sites (table 5.3). Ground shaking and 

dewatering leading to consolidation of tidal marsh sediments could, therefore, be one factor 

contributing to the difference. Such shaking-induced consolidation occurred during the Alaskan 

earthquakes of 1964 and 1899 (Plafker, 1969; Plafker and Thatcher, 2008) and could lead to a bias 

in deformation estimates based on tidal marsh sediments. Estimates from both the transfer 

function approach and from Plafker and Savage (1970) for deformation in 1960 may also 

incorporate some local sediment consolidation. Postseismic deformation before sediment 

accumulation presents an alternative hypothesis for the slight offset for the 2010 earthquake 

(figure 5.13). This would require rapid postseismic subsidence at both sites. Postseismic 

movements in the six months between the 2010 earthquake and the Sediment Signatures field 

season were small, however; estimated at < 15 mm close to Río Andalién and < 50 mm elsewhere 

along the rupture zone (Baez et al., 2010). Nevertheless, post-2010 sedimentary hiatuses at Río 

Tirua and Río Mataquito (Garrett et al., accepted) highlight the possibility for estimates of 

coseismic land motions based on sediment biostratigraphy to include both coseismic and some 

postseismic movements. In fossil sequences it may be very difficult to identify the duration of any 

hiatus. 
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5.6 Summary 

  

The diatom-based palaeomarsh surface elevation reconstruction method is successful in matching 

independent estimates of coseismic land-level change. I infer 2010 marsh elevation fall at Río 

Andalién and marsh elevation rise at Tubul, corresponding to subsidence and uplift respectively. 

The offset between these reconstructions and published estimates may relate to coseismic marsh 

sediment consolidation. Quantitative reconstructions suggest stability at Río Andalién and Río 

Tirua in 1960 and marsh elevation fall at Chucalen, reflecting coseismic subsidence. The fidelity 

with which these test sites record the magnitude and direction of coseismic movements supports 

the use of diatoms to quantify deformation during previous great earthquakes in south central 

Chile. The absence of post-2010 sedimentation at Río Tirua and Río Mataquito serves as a 

reminder of the possibility of hiatuses biasing coseismic deformation estimates. The lack of ‘good’ 

modern analogues for fossil samples also remains a limitation of this study and I advocate the 

need for larger modern training sets from a wider range of sites. 
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6. Late Holocene records of earthquake occurrence 
 

 

6.1 Introduction 

 

This chapter presents evidence to test the hypothesis that coastal marshes preserve evidence for 

coseismic deformation and tsunamis over the late Holocene. Section 6.2 describes the lithology, 

biostratigraphy and chronology of the previously unreported site at Chucalen. Section 6.3 

interprets these lines of evidence, in part through the application of the transfer function 

developed in chapter four and tested in chapter five. Sections 6.4 and 6.5 present and then 

interpret new biostratigraphic data from the previously reported site at Maullín (Cisternas et al., 

2005). Sections 6.6 and 6.7 focus on new biostratigraphic data from another documented site at 

Cocotue (Cisternas et al., 2007; in prep). I discuss the limitations of the biostratigraphic approach 

to estimating coseismic deformation in section 6.8.  

 

6.2 Chucalen: results 

 

6.2.1 Lithology 

 

Tidal marshes fringe the western margin of Bahía Quetalmahue, northern Isla de Chiloé (figure 

6.1). Actively eroding cliffs truncate the marshes, revealing 0.5 m to 1.5 m high natural exposures. 

These exposures display a stratigraphy characterised by four abrupt transitions from organic to 

minerogenic deposition (figure 6.2). Marsh front exposures reveal the lateral extent of these 

organic – minerogenic couplets, which are continuous and largely uninterrupted for hundreds of 

metres. A transect of gouge cores maps the couplets as they rise across the tidal and freshwater 

marsh at Chucalen (figure 6.3). I refer to the four soils buried beneath minerogenic sediments as 

soils A, B, C and D, with A the uppermost and D the lowermost. Chapter five correlated soil A with 

the pre-1960 tidal marsh and the overlying minerogenic unit with the tsunami resulting from the 

1960 earthquake.  

 

Soils A, B, C and D outcrop in an exposure at the seaward end of the Chucalen transect (figures 

6.2c, 6.4). Here, the soils are mid to dark brown and display varying levels of organic content 

(figure 6.4). Soils A and D are highly organic in the sampled exposure (> 50 % loss on ignition), 

with soil B only marginally more organic than the overlying minerogenic units. This soil is darker 
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and more organic at higher elevations, including in core CH11/28 (figure 6.3). Soil A contains 

abundant recognizable herbaceous plant material, including rhizomes. The remains of woody 

plants and large tree stumps occur in soil A at elevations not more than 0.5 m above the elevation 

of the soil in the sampled exposure (figure 6.5a). Soils B, C and D contain fewer recognizable plant 

fragments. Inorganic components of the soils vary in particle size, with soils C and D finer grained 

than soils A and B (figure 6.4).  

 

The minerogenic units overlying each buried soil are light grey-brown or, in the case of the 

deposit overlying soil A, mid grey in colour. They contain little identifiable organic matter, save for 

roots that have penetrated downwards from overlying sediments. Loss on ignition values do not 

exceed 10 % (figure 6.4). Sand-sized particles are dominant, with the units overlying soils C and D 

finer grained than those overlying soils A and B. 

 

The boundaries between the organic soils and the overlying minerogenic units are abrupt. While 

herbaceous plants are flattened and encased by the minerogenic deposit at the top of soil A, the 

upper margins of soils B, C and D do not feature vegetation flattening and show signs of mixing in 

the exposure. While still displaying easily distinguished upper boundaries, these soils feature 

numerous small inclusions of the overlying minerogenic deposits (figure 6.5b). I encountered 

intact upper contacts with no evidence for mixing for soils B and D elsewhere in the Chucalen tidal 

marsh, however the minerogenic inclusions are a ubiquitous feature of soil C. With the exception 

of the distinct upper boundary of the minerogenic unit overlying soil A, the transitions from 

minerogenic to organic sedimentation are diffuse in all exposures and cores (figure 6.2). 

 

The recent marsh sediments are organic, with frequent in situ roots and rhizomes of Juncus spp. 

and Scirpus californicus. Larger woody plants and their detrital and in-situ remains only occur 

above the terrace which lies at approximately 2 m above mean sea level. Here, the dominant 

woody species are typically shrubs, including Berberis spp. and Myrtaceae spp.. The minerogenic 

component of the recent marsh sediment is typically sandy, with abundant thin (a few grains to 

2 mm), discontinuous sand laminae in the uppermost 20 cm (figure 6.4). The frequency of these 

laminae rapidly decreases within a few metres of the marsh front and deposits a few metres 

inland are typically silt-rich. Similar thin sand layers do not occur within any of the buried soils.  

 

6.2.2 Biostratigraphy 

 

Diatom assemblages in samples from the marsh front exposure and core CH11/28 contain species 

indicative of intertidal environments. Of the 139 identified and four unidentified taxa, 117 also 
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occur in the modern training set, 110 appear in more than one fossil sample and 21 exceed 10 % 

of the total diatom assemblage in one or more fossil sample (figures 6.6, 6.7). Appendices 6.1 and 

6.2 (on the attached CD) list the percentage abundances of all species in the exposure and core 

CH11/28 respectively. Sub-MHHW species occur throughout the sampled exposure, with peaks in 

supra-MHHW species coinciding with buried soils A, C and D (figure 6.6). Eunotia spp. and 

Pinnularia appendiculata, the main supra-MHHW species found in soil A, occur at higher modern 

elevations than Diploneis ovalis and Karayevia oblongella, the supra-MHHW species in soils C and 

D. Sub-MHHW species dominate samples from soil B and, while similar species occur in the 

overlying minerogenic unit, the boundary does feature abrupt transitions in several of the less 

abundant supra-MHHW species.  

 

In core CH11/28, a shift from predominantly supra-MHHW species to a more mixed assemblage 

accompanies the transition from organic to minerogenic sedimentation at the top of buried soil B 

(figure 6.7).  

 

6.2.3 Chronology 

 

Fifteen AMS radiocarbon samples provide a chronology for the Chucalen exposure (table 6.1). 

Calibrated ages indicate the sampled exposure represents approximately the last 1000 years of 

sediment accumulation.  

 

Visual inspection of calibrated age ranges highlights several discrepancies, where samples have 

younger ages that their stratigraphic position and the age of adjacent samples would suggest 

(figure 6.8). Downward root penetration and misidentification of root material as above ground 

plant matter provides a possible explanation for the offset. Despite lying 29 cm below the present 

surface, comparison of sample CH11/R1 with data from Graven et al. (2012) suggests a calibrated 

age of 2004 – 2005 (Pauline Gulliver, NERC Radiocarbon Facility, pers. com., 2012). Both samples 

CH11/R5 and CH11/R6 have calibrated ages in the mid to late 1950s, however sample CH11/R6 is 

younger than the overlying sample CH11/R5. I elect to remove sample CH11/R6 and favour 

sample CH11/R5, which is from flattened and still rooted vegetation lying immediately beneath a 

minerogenic unit, as this is more likely to consist of in situ, above ground plant material. The 

calibrated age of sample CH11/R8 is similar to that of CH11/R6 and younger than CH11/R7 and 

CH11/R5. Likewise, sample CH11/R15 provides calibration solutions younger than samples 

CH11/R14 and CH11/R13, which lie above it (figure 6.8). I remove samples CH11/R1, CH11/R6, 

CH11/R8 and CH11/R15 before commencing age-depth model development.  
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The remaining samples above 50 cm all display percentages of modern carbon exceeding 100 % 

(table 6.1). Calibration of these samples using the post-bomb atmospheric southern hemisphere 

14C curve (Hua and Barbetti, 2004) provides multiple possible age ranges for three of the four 

samples. Stratigraphic ordering can resolve two of these to single solutions (figure 6.9). Samples 

CH11/R3 and CH11/R2 must lie on the falling limb of the curve, supporting rejection of the older 

age ranges in table 6.1. Sample CH11/R4 may lie on either the rising or falling limb, while CH11/R5 

provides a single calibration solution (figure 6.9; table 6.1).  

 

Bayesian age modelling in OxCal v.4.1 (Bronk Ramsey, 1995) employs the preferred calibration 

solutions for the four accepted post-bomb dates and the remaining seven pre-bomb dates to 

produce an age-depth model for the Chucalen exposure (table 6.2; figure 6.10). I set boundaries 

at each abrupt lithological change to provide the model with flexibility to vary the deposition rate. 

The model has an overall agreement index (a measure of the similarity between prior and 

posterior age distributions) of 54.1 (table 6.2), less than the threshold of 60 proposed by Bronk 

Ramsey (2009b). Agreement indices for the individual samples (table 6.2) highlight that this arises 

from the dissimilarity between distributions for the lowermost sample, CH11/R16. Outlier analysis 

in OxCal, however, does not suggest that there is a statistical basis for removing this sample (table 

6.2) and, in the absence of other criteria for rejection (c.f. Bronk Ramsey, 2009b), I elect to keep 

sample CH11/R16 in the model.  

 

The general form of the age-depth model (figure 6.10) indicates substantial variability in the 

sedimentation rate. Between the minerogenic unit overlying buried soil D (89 cm depth) and the 

top of soil A (44.5 cm depth), the sedimentation rate averages approximately 0.5 mm yr-1. Above 

buried soil A, this rate increases by an order of magnitude. The bottom of the sequence may also 

exhibit a faster rate of sediment accumulation; however I require further radiocarbon dates from 

below soil D to confirm this.  

 

The model provides two sigma age ranges for the four abrupt transitions from organic to 

minerogenic sedimentation (table 6.2). The inferred timing of the boundary at the top of buried 

soil A, 1951 to 1967, supports the 137Cs data presented in chapter five. Elevated 137Cs 

concentrations in buried soil A (table 5.2) imply deposition no earlier than the commencement of 

atmospheric nuclear testing in the early 1950s. The rejection of the sample from the top of buried 

soil B, CH11/R8, combined with multiple calibration solutions for adjacent samples resulting from 

plateaux in the calibration curve, produces a two sigma age range of more than 400 years for the 

second boundary (table 6.2; figure 6.10). This is the part of the sequence with the poorest age 

control and the abrupt contact could lie anywhere between the 16th and 20th centuries. The age-
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depth model provides a greater level of constraint on the timing of the burial of soils C and D 

(table 6.2; figure 6.10). The model places each abrupt contact within age ranges of approximately 

150 years, commencing in 1270 and 1050 respectively.  

 

6.3 Chucalen: evidence for multiple great earthquakes? 

 

Sequences of organic intertidal soils interbedded with minerogenic units may reflect successive 

earthquake deformation cycles (e.g. Atwater, 1987; Darienzo and Peterson, 1990; Shennan et al., 

1996; Sawai et al., 2002; Hamilton and Shennan, 2005a, b), however a range of other 

sedimentologic, hydrographic, oceanographic and atmospheric processes can give rise to similar 

stratigraphies (Long and Shennan, 1994; Nelson et al., 1996; Witter et al., 2001). In this section I 

use criteria set out by Nelson et al. (1996) to identify whether the evidence from Chucalen is 

consistent with the repeated coseismic deformation hypothesis.  

 

6.3.1 Suddenness of submergence 

 

Near instantaneous decimetre to metre-scale coseismic subsidence produces abrupt changes in 

lithology (Atwater, 1987; Darienzo and Peterson, 1990; Long and Shennan, 1994; Nelson et al., 

1996). Conversely, interseismic and aseismic processes generate gradual contacts, reflecting 

slower rates of change. While some mixing is evident at the surface of buried soils B, C and D, all 

of the buried soils at Chucalen display identifiably abrupt upper contacts and transitions from 

organic to minerogenic sedimentation (figures 6.2, 6.3, 6.4), supporting repeated sudden falls in 

marsh surface elevation. Abrupt changes in particle size and organic content (figure 6.4) and in 

diatom assemblages (figures 6.6, 6.7) further support the suddenness of these falls, including for 

soil A (chapter five). Intervening minerogenic to organic contacts are visibly more gradual 

(figure 6.2), with slower rates of change in organic matter, particle size and diatom assemblages, 

implying more gradual rates of marsh surface elevation change. The nature of the stratigraphic 

boundaries at Chucalen is consistent with repeated earthquake deformation cycles, incorporating 

phases of sudden coseismic subsidence and gradual interseismic uplift (c.f. Long and Shennan, 

1994; Nelson et al., 1996; Shennan et al., 1999).  

 

Coseismic subsidence can promote rapid sedimentation; Atwater et al. (2001) identified 

minerogenic units exceeding one metre in thickness and tidal rhythmites deposited after the 1964 

Alaskan earthquake. Accordingly, rapid sedimentation following an abrupt organic to minerogenic 

contact may suggest coseismic subsidence. The minerogenic layers at Chucalen are, however, 
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substantially thinner than those found in Alaska, implying low sedimentation rates. Reinhardt et 

al. (2010) found that post-1960 sedimentation rates in the Río Cruces, south central Chile, were 

less than postseismic accumulation rates in Alaska. Low Chilean sedimentation rates, even after 

known coseismic subsidence, may reflect lower sediment availability and the microtidal nature of 

the Chilean coastline. The lack of rapid sedimentation, therefore, does not discount the possibility 

of coseismic subsidence. 

 

6.3.2 Lateral extent of organic – minerogenic couplets 

 

Regional scale coseismic subsidence forms organic – minerogenic couplets wherever the 

magnitude of subsidence is sufficient to cause a change in depositionary regime. Coseismic 

subsidence generated couplets are, therefore, laterally extensive and are not constrained to small 

areas of a marsh or, indeed, to single marshes within a region (Darienzo et al., 1994; Nelson et al., 

1996). Tidal marshes in aseismic locations may also record transitions from organic to 

minerogenic sedimentation that do not relate to any local tectonic mechanism. The lateral 

migration of tidal channels may produce couplets; however these are typically of limited lateral 

extent (Allen, 1997, 2000; Shennan et al., 1998). Barrier breaching and short-lived inundation 

events such as tsunamis and storm surges may generate more extensive couplets (e.g. Long and 

Innes, 1993; Witter et al., 2001; Long et al., 2006; Switzer and Jones, 2008; Williams, 2009), which 

may be more difficult to distinguish from coseismic deformation based on lateral extent alone.  

 

The four organic – minerogenic couplets at Chucalen are laterally extensive, outcropping for 

hundreds of metres in marsh front exposures on the southwestern margin of Bahía Quetalmahue 

(figures 6.2, 6.3). Reconnaissance surveys of the stratigraphy at the modern transect site of Estero 

Guillingo in the northwest of the bay suggest the couplets may be even more widely distributed. 

The lateral extent is consistent with the coseismic submergence hypothesis. Local processes, 

including tidal channel migration, cannot explain such widespread couplets. The size and 

morphology of the bay and the location of the site do not favour a barrier development and 

breaching interpretation. The lateral extent of couplets cannot rule out short duration inundation 

events; tsunamis from distant sources and storm surges are capable of depositing minerogenic 

units over the area investigated here. I discuss evidence for tsunami deposition in the following 

section.  
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6.3.3 Coincidence of tsunami deposits 

 

Identification of tsunami deposits concurrent with subsidence strengthens the argument for an 

earthquake deformation cycle interpretation of interbedded tidal marsh sequences (Atwater, 

1987; Nelson et al., 1996; Cochran et al., 2005; Sawai et al., 2009). The 1960 and 2010 tsunamis 

provide analogues for tsunami deposition in Chilean intertidal environments. These events left 

centimetre to decimetre thick, landward thinning sand sheets across coastal marshes (Cisternas et 

al., 2000; Horton et al., 2011; Morton et al., 2011; Garrett et al., accepted). The fragmentary 

nature of the deposits, however, highlights that the absence of sand sheets does not rule out 

coseismic subsidence or tsunami occurrence.  

 

Chapter five correlated an extensive sand sheet outcropping in the Chucalen marsh front 

exposures with a tsunami. The abrupt lower and upper contacts to the deposit overlying soil A, 

the presence of flattened vegetation and the coincidence of rapid submergence (sections 5.3.3,  

6.3.1) are consistent with this interpretation. While tsunamis are not the only possible source of 

sand sheets in tidal marshes, I discount other causes in this instance. Aeolian transport from 

nearby beaches and dunes is unlikely to have occurred at such a rate as to flatten vegetation. The 

lack of rivers or streams close to the site rules out a fluvial source. Furthermore, while storm 

surges may deposit widespread sand sheets in coastal locations (e.g. Williams, 2009), the 

sheltered location at Chucalen appears to limit storm deposits to < 2 mm thick sand laminae 

extending only a few metres onto the vegetated marsh (figure 6.4). As at the Sediment Signatures 

sites further to the north, the diatom assemblage in the proposed tsunami deposit at Chucalen is 

mixed rather than marine, consisting of both sub- and supra-MHHW species (Garrett et al., 

accepted).  

 

Following Cisternas et al. (2005), I use evidence for bioturbation to distinguish between tsunami 

sediments and tidal flat deposition for the minerogenic units overlying soils B, C and D. The 

minerogenic inclusions in the top of these soils are similar to infilled holes created by intertidal 

burrowing organisms, including worms and crabs, on modern tidal flats in Bahía Quetalmahue and 

at Maullín (Cisternas et al., 2005). Tsunami deposits that blanket marsh soils reduce or prevent 

bioturbation. Evidence for bioturbation suggests tsunami deposits do not cover soils B, C and D in 

the sampled exposure. The lack of flattened vegetation at the interface further supports this 

hypothesis. While the minerogenic unit overlying soil A has a well-defined upper boundary, the 

gradual transitions from minerogenic to organic sedimentation for the lower units suggests a 

more prolonged perturbation of the depositionary regime. I conclude that tidal flat sediments 

rather than tsunami deposits overlie soils B, C and D in the exposure. The occurrence of abrupt 
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contacts without signs of mixing elsewhere at Chucalen suggests tsunami deposition did occur at 

the time of the burial of soils B and D. Coincident tsunamis are consistent with the coseismic 

submergence hypothesis.  

 

As tidal flat deposits overlie buried soils B, C and D in the sampled exposure, quantitative 

estimates of the magnitude of submergence must compare the inferred elevations of each soil 

with the immediately overlying minerogenic sediments. Estimates for the magnitude of 

submergence associated with the burial of soil A, as presented in chapter five, must compare the 

elevations below and above the inferred tsunami deposit.  

 

6.3.4 Amount of submergence 

 

Coseismic deformation and coseismic sediment consolidation are capable of causing abrupt, 

lasting, metre-scale rises in relative sea level (Nelson et al., 1996); consequently the magnitude of 

submergence provides perhaps the most important discriminator between seismic and aseismic 

causes of couplet formation (Shennan et al., 1998).  

 

Figure 6.11 presents reconstructions of palaeomarsh surface elevation resulting from calibration 

of the diatom assemblage data in figure 6.6 using the Chiloé and Regional transfer function 

models. Figure 6.12 similarly calibrates the diatom data from core CH11/28. Palaeomarsh surface 

elevations lie between 0.5 m and 2 m above mean sea level. There is no long-term trend to the 

reconstructions from the marsh front exposure, with predicted marsh surface elevations from 

samples 30 cm and 95 cm below the modern marsh surface sharing overlapping error ranges. 

With the exception of soil B, the buried soils display consistently higher predicted elevations than 

the intervening minerogenic deposits. The Chiloé and Regional model predictions diverge by less 

than 0.3 m, with the largest differences arising from the former model employing a lower species 

coefficient for the most abundant sub-MHHW species, in particular Pseudostaurosira perminuta. 

 

Quantitative reconstructions place soil A at a palaeomarsh surface elevation almost two metres 

above mean sea level (figure 6.11). This is consistent with the occurrence of tree stumps in 

marginally higher marsh front exposures (figure 6.5a) and the modern limit of woody vegetation 

at approximately two metres above mean sea level. The Chiloé and Regional models assign marsh 

elevations between 0.5 m and 1.5 m above mean sea level to diatom assemblages following the 

inferred tsunami (figure 6.11). Chapter five assigned a quantitative estimate of -1.15 ± 0.43 m. The 

magnitude of submergence is consistent with coseismic subsidence (Nelson et al., 1996) and, as 
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noted in the preceding chapter, closely corresponds with Plafker and Savage’s (1970) estimate of 

subsidence in 1960.  

 

No larger-than-error change in estimated marsh elevation accompanies the abrupt contact at the 

top of soil B in the exposure; predicted elevations for the soil are as low as in the overlying 

minerogenic unit (figure 6.11). Similarly, quantitative reconstructions for core CH11/28 do not 

indicate substantial submergence (figure 6.12), despite the increase in sub-MHHW diatom species 

(figure 6.7). I provide estimates of submergence in table 6.3, but highlight that sample specific 

error terms encompass a large range of possible estimates and all fossil samples lack ‘good’ 

modern analogues (discussed further in section 6.8). Submergence appears to coincide with the 

burial of soil B, however, at present, uncertainty over the magnitude of submergence means that 

reconstructions cannot conclusively falsify an aseismic hypothesis for the formation of this 

couplet.  

 

Quantitative reconstructions place both soils C and D at approximately 1.5 m above mean sea 

level (figure 6.11). Subsequent palaeomarsh surface elevations for the overlying minerogenic 

sediments imply submergence in the region of one metre associated with the burial of each soil 

(table 6.3). While the lack of ‘good’ modern analogues for any of the fossil soils remains 

problematic, the submergence estimates make ecological sense, given the distribution of the 

dominant species in the modern environment. The Chiloé and Regional model outputs both 

feature declines in elevation immediately preceding the change in lithology at the top of soils C 

and D. The bioturbated nature of the upper margins of these soils may result in mixed diatom 

assemblages and underestimates of marsh surface elevations. Submergence for each these 

couplets may consequently exceed one metre; a value entirely consistent with the coseismic 

deformation hypothesis.  

 

6.3.5 Synchroneity of submergence at widely spaced sites 

 

Synchronous burial of organic soils at sites spaced along a subduction zone implies a regional 

mechanism for submergence (Atwater et al., 1991; Nelson et al., 1995, 1996, 2006). Processes 

controlling the depositionary regime at a single site or estuary are less likely to have occurred at 

the same time in multiple, widely distributed locations. Synchroneity is, however, difficult to 

identify, with single earthquakes indistinguishable from closely temporally spaced smaller 

ruptures due to the limitations in the precision of radiometric and other dating techniques 

(Nelson et al., 1996). At present, evidence for submergence along the Chilean subduction zone is 

highly limited, with few sites for age comparison. Here, I compare the modelled timing of the four 
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abrupt contacts with limiting dates from Maullín, 45 km to the northeast (Cisternas et al., 2005). 

More detailed discussion of possible synchroneity requires additional sites, further high precision 

radiocarbon determinations and, where appropriate locations exist, dendrochronological 

approaches (cf. Atwater et al., 2005; Cisternas et al., 2005).  

 

The testimony of local residents and elevated 137Cs concentrations in buried soil A suggest 

submergence correlates with the 1960 earthquake. Furthermore, the radiocarbon age-depth 

model limits the abrupt contact to between 1951 and 1967 (table 6.2; figure 6.10). A single 

radiocarbon date from Cisternas et al. (2005) indicates submergence of the uppermost buried soil 

at Maullín after the mid 17th century (figure 6.13). Based on local testimony, these authors also 

correlate buried soil A at Maullín with the pre-1960 earthquake marsh horizon.  

 

The Chucalen age-depth model (figure 6.10) places the timing of burial of soil B between 1520 and 

1946 (table 6.2). A pooled mean of three dates at Maullín provides a calibrated range of 1450 to 

1616 to limit the oldest possible timing for submergence for the second buried soil at this site 

(Cisternas et al., 2005). While establishing synchroneity in the timing of submergence at the two 

sites requires further analyses, the dates presented here are not inconsistent with the hypothesis 

of synchroneity (figure 6.13).  

 

The age-depth model (figure 6.10) places the timing of the abrupt contact between soil C and the 

overlying minerogenic unit at Chucalen at 1270 to 1410 (figure 6.13). At Maullín, calibration of the 

pooled mean of samples underlying the third buried soil provides an age range of 1280 to 1387 

(Cisternas et al., 2005), entirely within the modelled range at Chucalen. Dates from the two sites 

do not weaken the hypothesis of synchroneity (figure 6.13).  

 

At Chucalen, minerogenic deposits buried soil D between 1050 and 1200 (table 6.2; figure 6.13). A 

single date from a plant rooted in the fourth buried soil and encased in sand at Maullín provides 

an oldest limiting date of 1021 to 1181 (Cisternas et al., 2005), largely overlapping with the 

Chucalen modelled range. While the calibrated age ranges at both sites remain sizeable, I do not 

find any evidence suggesting asynchronous submergence of soils A, B, C and D at Chucalen and 

Maullín.  

 

6.3.6 Summary: Chucalen records evidence for multiple great earthquakes 

 

Repeated earthquake deformation cycles, comprising phases of gradual interseismic uplift 

separating four rapid coseismic subsidence events, best explain the lithological and 
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biostratigraphic data at Chucalen. As section 6.3.5 indicates, the precision of the radiocarbon 

approach is insufficient to confirm synchroneity of submergence at Chucalen and Maullín. 

Nevertheless, the lack of evidence for asynchronous submergence, the analogue of deformation 

and tsunami inundation in 1960 and the close proximity of Chucalen and Maullín favour the 

contention that the two sites record the same megathrust earthquakes.  

 

6.4 Maullín: results 

 

Using lithological and biostratigraphic evidence, Cisternas et al. (2005) identify up to eight 

tsunamis accompanied by coseismic subsidence at Maullín (figure 6.1). Until now, the magnitude 

of submergence associated with each of these deposits has remained unknown. Here, I present 

new biostratigraphic evidence to test the hypothesis that the site records evidence for repeated 

great earthquakes characterised by submergence exceeding 0.5 m.  

 

6.4.1 Lithology and chronology 

 

Cisternas et al. (2005) report eight buried organic soils or black humic sands, interbedded with 

fine to medium well-sorted sand at Maullín. The authors map the youngest four of these organic 

deposits as they rise across tidal marsh and freshwater lowlands to a low terrace approximately 

0.4 km inland (figure 6.14a). Older buried organic deposits lie above the terrace. In a new 

exposure at the seaward end of Cisternas et al.’s (2005) main transect, sampled in January 2012, 

four organic soils outcrop within a metre of the modern marsh surface (figure 6.14b). Following 

Cisternas et al. (2005), I refer to the buried soils, from youngest to oldest, as A, B, C and D.  

 

Soils A to D lie interbedded with light to mid grey silty sand. The unit overlying soil A is coarser 

grained than those overlying soils B, C and D and exhibits normal grading. Each buried soil displays 

a well-defined upper contact, although soils B, C and D show signs of mixing. Soil C in particular 

exhibits numerous inclusions of the over or underlying minerogenic deposits throughout its 

profile. This mottled appearance is a ubiquitous feature of soil C in all areas below the terrace 

(Cisternas et al., 2005). With the exception of the unit overlying soil A, the boundaries between 

each minerogenic deposit and the overlying soils are diffuse. The contact between the uppermost 

minerogenic unit and the recent marsh sediment is well defined.  
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Cisternas et al. (2005) use plant macrofossils from the upper margin of each buried organic unit 

for radiocarbon dating. Individual or pooled samples provide oldest limiting dates for each 

transition to minerogenic sedimentation (figure 6.15). 

 

6.4.2 A new biostratigraphic record 

 

Assemblages from the new marsh front exposure contain intertidal diatom species. Of the 105 

identified and two unidentified taxa, 98 also occur in the modern training set, 95 appear in more 

than one fossil sample and 13 exceed 10 % of the total diatom assemblage in one or more fossil 

sample (figure 6.16).  

 

As at Chucalen, sub-MHHW species occur throughout the sampled exposure, with peaks in supra-

MHHW species coinciding with buried soils A, C and D. Soil B does not display a higher proportion 

of supra-MHHW species than the overlying minerogenic unit. At approximately 10 %, soil A 

contains a lower proportion of sub-MHHW species than soils C and D, where sub-MHHW species 

contribute between 30 % and 50 %.  

 

6.5 Maullín: corroboration of previous interpretations? 

 

Cisternas et al. (2005) interpret laterally extensive buried soils with abrupt upper contacts as 

evidence for coseismic submergence and concurrent tsunami deposition at Maullín. Based on the 

testimony of eyewitnesses, the authors correlate the uppermost sand sheet with the 1960 

tsunami. The possible synchroneity in the timing of the burial of the four soils at Maullín and 

Chucalen (discussed in section 6.3.5) does not oppose an interpretation of coseismic deformation 

and tsunami inundation for any of the four Maullín couplets.  

 

6.5.1 Tsunami deposition 

 

While Cisternas et al. (2005) infer tsunamis concurrent with the burial of all of the four soils 

investigated here; the new marsh front exposure provides evidence for a tsunami overlying soil A 

only. The upper margin of this soil features an abrupt contact, with no evidence for mixing (figure 

6.14b). The minerogenic unit flattens and encases herbaceous plants still rooted in the underlying 

soil. Unlike the lower minerogenic units, the uppermost deposit also exhibits an abrupt rather 

than a gradual upper contact. Diatom assemblages associated from the proposed tsunami deposit 
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contain higher percentages of sub-MHHW species than both the underlying and overlying 

minerogenic units.  

 

Using the criterion set out by Cisternas et al. (2005), sand inclusions within soils B, C and D 

suggest bioturbation and tidal flat sedimentation rather than tsunami deposition for the lower 

three minerogenic units in the exposure. Cisternas et al. (2005) identified abrupt contacts with no 

evidence for mixing associated with soils A, B and D in nearby marsh front location, suggesting 

tsunami deposition in other areas. As at Chucalen, the absence of tsunami deposits in one 

location is unsurprising; such deposits are typically thin and fragmentary in Chilean marshes (Ely 

et al., 2010; Morton et al., 2011; Garrett et al., accepted). The presence of abrupt contacts with 

no evidence for mixing in Cisternas et al.’s (2005) main transect supports tsunami occurrence and 

strengthens the case the site recording evidence for multiple episodes of coseismic deformation. 

 

Recognition of the absence of tsunami deposits overlying soils B, C and D in the exposure sampled 

in 2012 guides the sampling approach for estimating the magnitude of submergence. Quantitative 

estimates for soils B, C and D must compare the inferred elevations of the soils with immediately 

overlying minerogenic sediments. Estimates for the magnitude of submergence associated with 

the uppermost couplet must compare the elevations below and above the inferred tsunami 

deposit.  

 

6.5.2 Amount of submergence 

 

Cisternas et al. (2005) analyse diatoms from the buried soils only; quantitative reconstructions 

based on their data will, therefore, underestimate the magnitude of coseismic subsidence. For 

instance, the authors did not sample minerogenic sediments immediately overlying soil C, despite 

suggesting that bioturbation indicated tidal flat rather than tsunami deposition in their sampled 

exposure. Calibration of the new biostratigraphic record provides quantitative reconstructions of 

palaeomarsh surface elevation for the Maullín exposure (figure 6.17). Estimated palaeomarsh 

surface elevations for the sediments immediately overlying the uppermost minerogenic unit are 

between 1.0 m and 1.5 m lower than predictions for soil A (table 6.4). These values agree well 

with coseismic subsidence estimates for 1960 of -1.5 ± 0.4 m and -1.7 ± 0.4 m from Plafker and 

Savage (1970).  

 

The estimated elevation of soil B is closer to the elevations of the minerogenic units than the 

elevations of the other buried soils (figure 6.17). Despite the stratigraphy suggesting a fall in 

marsh surface elevation, reconstructions indicate subsidence of less than the one sigma error 
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term (table 6.4). While Cisternas et al. (2005) inferred, but did not quantify subsidence from 

diatom assemblages; reconstructions from the new exposure cannot falsify an aseismic 

hypothesis for the burial of soil B. 

 

Quantitative reconstructions suggest soils C and D accumulated at similar elevations to soil A 

(figure 6.16). Both soils exhibit a fall in palaeomarsh surface elevation before the organic – 

minerogenic contact, perhaps related to the inclusions resulting from bioturbation. The estimated 

elevations of the overlying minerogenic units imply submergence of approximately 1.0 to 1.5 m 

for both soils (table 6.4); consistent with the coseismic subsidence hypothesis. All samples at 

Maullín lack ‘good’ modern analogues, however the direction and magnitude of the submergence 

associated with each soil is consistent with the stratigraphy and the modern distributions of the 

dominant fossil species.  

 

6.6 Cocotue: results 

 

Cisternas et al. (2007, in prep.) interpret a sequence buried organic silty sands, interbedded with 

sands of low organic content and isolated fans of poorly sorted gravel as evidence for tsunamis 

and earthquake triggered debris flows at Cocotue (figure 6.1). In this section I present a new 

biostratigraphic record to investigate whether the site records evidence for submergence.  

 

6.6.1 Lithology and chronology  

 

A narrow terrace fringes an uplifted sea cliff cut into Pleistocene glacial outwash at Cocotue 

(Bartsch-Winkler and Schmoll, 1993; Cisternas et al., 2007). The seaward edge of the terrace lies 

at an elevation of approximately 3 m above mean sea level. In a new exposure, five buried mid 

brown organic silty sands (labelled A to E from the youngest to the oldest) lie interbedded with 

very light grey inorganic sands (figure 6.18). The upper boundary of each buried organic deposit is 

abrupt, with no evidence for mixing. Radiocarbon dates suggest burial of organic deposits A, C, D 

and E at similar times to the burial of soils A, B, C and D at Maullín (Cisternas et al., 2007, in prep.). 

The burial of organic deposit B lies between that of deposits A and C, with further dating currently 

ongoing (Marco Cisternas, pers. comm., 2012).  
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6.6.2 A new biostratigraphic record 

 

Of the 106 identified and one unidentified species in the Cocotue exposure, 91 also occur in the 

modern training set, 81 appear in more than one fossil sample and 18 exceed 10 % of the total 

diatom assemblage in one or more fossil sample (figure 6.19). Assemblages from the proposed 

tsunami deposits typically consist of species from the highest modern intertidal elevations. Supra-

MHHW species dominate organic deposits C, D and E and the overlying minerogenic deposits. 

Organic deposits A and B exhibit greater proportions of sub-MHHW species, alongside increased 

abundances of species not characterised in the modern training sets (figure 6.19).  

 

6.7 Cocotue: corroboration of previous interpretations? 

 

6.7.1 Tsunami deposition 

 

While the Sediment Signatures project highlighted recent tsunami deposits with mixed 

assemblages of diatoms from different elevations (Garrett et al., accepted), the minerogenic 

deposits at Cocotue show very low abundances of sub-MHHW species (figure 6.19). This could 

suggest a non-marine source for the sand sheets, or could reflect post-depositional alterations to 

originally marine-sourced diatom assemblages. If tsunamis rework and deposit materials from 

offshore, nearshore or beach locations that are characterised by low abundances or are devoid of 

any diatoms, subsequent ponding and infiltration of freshwater could result in a freshwater 

diatom assemblage in a tsunami deposit. Such ponding is visible in aerial photographs taken the 

year after the 1960 earthquake (Marco Cisternas, pers. comm., 2012). Therefore, diatom 

assemblages neither confirm nor refute a tsunami source for the sand layers. 

 

6.7.2 Amount of submergence 

 

Throughout the whole of the sampled exposure, the Cocotue diatom assemblages suggest 

deposition at or above the highest sampled elevations of the modern training set. Quantitative 

reconstructions support this assertion, with Chiloé model estimates of palaeomarsh surface 

elevation for every sample lying between 1.5 m and 2.0 m above mean sea level (figure 6.20). The 

occurrence of Achnanthidium minutissimum and Navicula atomus at low elevations in the Valdivia 

modern samples leads to a divergence between the Chiloé and Regional models towards the top 

of the Cocotue exposure (figure 6.20). These species are absent from or only found in samples 
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from above MHHW in the Chiloé training set. Their occurrence below MHHW in the Valdivia 

transects dictates their sub-MHHW categorization. 

 

The invariance in the Chiloé model reconstructions is unsurprising, given the top of the exposure 

lies three metres above mean sea level. The reconstructions, therefore, do not equate to stability 

in the elevation of the site, but rather suggests that the exposure has remained above the 

influence of tides throughout its accumulation. While the transfer function cannot estimate the 

submergence associated with the proposed tsunamis, the supra-MHHW assemblages provide 

constraints on the longer-term relative sea-level history of the site. At no point during the 

deposition of the samples investigated has the marsh surface been within the tidal range.  

 

Quantitative estimates of coseismic deformation at Cocotue require samples with lower 

palaeomarsh surface elevations. Exposures at elevations closer to modern mean sea level may 

provide such samples, however erosion of the marsh may prevent the development of a record 

from this site.  

 

6.8 Limitations of the quantitative biostratigraphic approach 

 

Qualitative interpretations of diatom assemblages and stratigraphy support quantitative 

estimates of submergence associated with the buried soils at Chucalen and Maullín. As 

highlighted in chapter five, some relative sea level studies use favourable comparisons with 

independent data, such as nearby tide gauges, as confirmation of reconstruction performance 

(e.g. Gehrels et al., 2005; Kemp et al., 2009, 2011). Where independent estimates of coseismic 

deformation are available, including for the 1960 earthquake at Chucalen and Maullín, transfer 

functions provide comparable results. Hamilton and Shennan (2005b) and Watcham et al. (2012) 

advocate additional independent statistical testing of the goodness of fit between modern and 

fossil samples. No fossil sample from Chucalen, Maullín, Cocotue or the Sediment Signatures sites 

(chapter five) has a ‘good’ modern analogue in the Regional training set. Consequently, while the 

quantitative reconstructions make ecological sense, I adopt a cautionary approach and await a 

more comprehensive modern dataset for reanalysis of fossil assemblages.  

 

The Regional training set typically provides fewer ‘poor’ modern analogues than the Chiloé 

dataset; however this reflects the increase in the percentile thresholds with a more diverse 

modern dataset giving greater knowledge of the population diversity, rather than a greater level 

of similarity with the fossil assemblages. The diversity in south central Chilean diatom 

assemblages is clearly larger than can be characterised by the 128 available modern samples. A 
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map of the location of the ten closest modern analogues for each fossil sample (figure 6.21) 

suggests that including the Valdivia modern samples does little to increase the predictive power 

of the transfer function for sites in northern Chiloé and the adjacent mainland. None of the 

closest analogues for the Maullín samples are located in the Valdivia transects, while only 0.5 % of 

analogues for the Chucalen samples not from the Chiloé transects. While this favours the 

application of the Chiloé transfer function model over the Regional model, such a selection is, at 

present, unnecessary due to the dissimilarity between the modern and fossil assemblages.  

 

6.9 Summary 

 

At Chucalen, the lateral extent of buried soils, repeated abrupt submergence, coincident tsunami 

deposits and possible synchroneity with the timing of the burial of soils at Maullín leaves the 

coseismic deformation hypothesis intact. This chapter supports the assertion that Chilean tidal 

marshes preserve evidence for multiple earthquake deformation cycles. A P_sequence age-depth 

model constrains the timing of the inferred predecessors of the 1960 earthquake to 1520 to 1946, 

1270 to 1410 and 1050 to 1200. While quantitative reconstructions of metre-scale land-level 

change make ecological sense, the requirement for ‘good’ modern analogues currently remains 

unfulfilled and I need further modern samples to capture the diversity of south central Chilean 

intertidal diatoms. The close correspondence between transfer function derived reconstructions 

and published estimates of deformation in 1960 at Chucalen and Maullín is encouraging. Due to 

its elevation, the Cocotue exposure cannot constrain the magnitude of coseismic deformation; 

however, the site may help to constrain the long-term relative sea-level history of northern Isla de 

Chiloé.  
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7. Discussion and conclusions 
 

 

 

7.1 Introduction 

 

The foremost aim of this thesis is to establish whether coastal sediments preserve evidence for 

late Holocene earthquakes and relative sea level change in south central Chile. Chapter five 

established that south central Chilean tidal marshes preserve evidence for the 1960 and 2010 

megathrust earthquakes. Evidence presented in chapter six strongly supports the assertion that 

Chucalen and Maullín also preserve evidence for predecessors to the 1960 earthquake. Chapter 

one outlined three additional contributory hypotheses: 

 

1. Palaeoseismic evidence records historically documented megathrust earthquakes 

2. Differences between historical and palaeoseismic records reflect coseismic deformation 

patterns 

3. Evidence for relative sea-level change reflects both the earthquake deformation cycle and 

non-seismic processes 

 

 This chapter considers evidence from chapters five and six in relation to these hypotheses. 

Section 7.2 discusses hypothesis one, relating modelled palaeoearthquake timing to historical 

records. Section 7.3 investigates the spatial distribution of evidence from this and other studies to 

examine discrepancies between sedimentary and historical records. Section 7.4 converts 

palaeomarsh surface elevation data into estimates of relative sea level, discussing changes over 

time within a framework of previous Chilean sea level investigations and possible causal 

mechanisms. Section 7.5 summarises the findings of the thesis and outlines future directions for 

development. 

 

7.2 Hypothesis 1: Coastal palaeoseismic evidence records historically 

documented megathrust earthquakes 

 

While the precision of the radiocarbon approach is insufficient to confirm synchroneity of 

submergence at Chucalen and Maullín, chapter six concluded that repeated megathrust 

earthquakes are the best explanation for the stratigraphies of both sites. P_sequence age-depth 

modelling (section 6.2.3) constrains the timing of three predecessors to the 1960 earthquake to 
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1520 to 1946, 1270 to 1410 and 1050 to 1200 (figure 7.1). I refer to the proposed earthquakes 

using the same letters as for the buried soils that they relate to, i.e. earthquake A for the abrupt 

submergence and burial of soil A, earthquake B for soil B and so on. 

 

At Chucalen, radiocarbon samples with narrow calibration solutions (section 6.3.5) and 137Cs 

concentrations (section 5.3.3) establish the correspondence between the sedimentologically 

defined earthquake A and the 1960 event. Diatom-derived reconstructions of coseismic 

deformation show good agreement with Plafker and Savage’s (1970) estimates of -1.0 ± 0.2 m at 

Chucalen and -1.5 ± 0.4 m for Maullín (sections 6.3.4 and 6.5.2). 

 

Modelled two sigma age ranges for earthquake B overlap with three major historical earthquakes 

in 1575, 1737 and 1837 (figure 7.1). The radiocarbon evidence presented in this study cannot 

distinguish between these possibilities. Cisternas et al. (2005), however, present 

dendrochronological and supporting documentary data suggesting that trees near Maullín killed 

by submergence into the intertidal zone in 1960 had survived both the 1737 and 1837 

earthquakes. On this basis, the authors attribute earthquake B to 1575. While radiocarbon data 

cannot rule out earthquake B representing different historical earthquakes at Chucalen and 

Maullín, the implied absence of evidence for the 1575 earthquake at Chucalen would be difficult 

to explain. If interseismic sedimentation was insubstantial, the occurrence of a second earthquake 

(i.e. 1837) shortly after a first earthquake (i.e. 1575) could result in the overprinting of evidence 

for two subsidence events. The interseismic sedimentation rates inferred from the age-depth 

model (section 6.2.3), however, suggest subsidence events with more than a few decades 

between them would be separated in the sedimentary record. Furthermore, at Río Andalién and 

Río Tirua, the stratigraphic separation of the 2010 and 1960 earthquakes and consequent 

tsunamis suggests that closely temporally spaced ruptures can be discerned (chapter five; Garrett 

et al., accepted).  

 

The absence of evidence for the 1737 and, particularly, the 1837 earthquakes in the sedimentary 

records from Chucalen and Maullín is notable. Historical records for 1837 imply shaking over an 

extensive area, from the northern limit of the 1960 rupture area to the southern limit of Spanish 

occupation (and therefore documentary records), 70 km south of Chucalen (Lomnitz, 1970; 

Cisternas et al., 2005). The accompanying tsunami inundated flat land in northern Chiloé to a 

distance of 900 m, but caused little damage (Lomnitz, 1970). The tsunami crested over 5 metres 

high in Hawaii, causing extensive damage to Hilo, before inundating low lying coastal areas of 

Japan between Ōfunato and Sendai (Lomnitz, 1970; Lander and Lockridge, 1989; Atwater et al., 

2005). Despite these records, the lithology and biostratigraphy for the period between the 1575 
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and 1960 earthquakes at Chucalen and Maullín show no evidence for tsunami inundation or land 

level change (figures 6.2, 6.6, 6.11). Section 7.3 discusses possible causes for the lack of 

stratigraphic evidence for the 1737 and 1837 earthquakes. 

 

Historical accounts of Chilean earthquakes began in the early 16th century and the 1575 

earthquake is the earliest documented in the Valdivia seismic segment (Lomnitz et al., 1970). 

Earthquakes C and D predate historical records in Chile and approximately double the length of 

the seismic catalogue for the Valdivia segment. The P_sequence model for Chucalen and limiting 

dates from Maullín place earthquake C between 1270 and 1410 AD. Modelled and limiting dates 

suggest earthquake D occurred between 1050 and 1200. Further pre- and post-earthquake 

radiocarbon samples, dendrochronological approaches and documentary records of tsunami 

occurrence in Japan could further constrain the timing of these events (cf. Atwater et al., 2005).  

 

7.3 Hypothesis 2: Differences between historical and palaeoseismic 

records reflect coseismic deformation patterns 

 

While the four historically documented megathrust earthquakes have an average recurrence 

interval of 128 years, sediments from Chucalen suggest a longer interval, averaging approximately 

280 years (figure 7.1). This discrepancy both highlights that coastal sediments in south central 

Chile underrepresent the frequency of major earthquakes and also suggests variability in the 

characteristics of the historical events. The cumulative fault slip from four 1960-sized earthquakes 

far exceeds the slip predicted by the plate convergence rate (Stein et al., 1986; Barrientos and 

Ward, 1990). Estimated average slip in 1960 was approximately 20 m, with possible maxima of 

40 m (Plafker and Savage, 1970; Kanamori and Cipar, 1974; Barrientos and Ward, 1990), 

substantially more than the seven to ten metres that 128 years of plate convergence accounts for 

(DeMets et al., 1990; Somoza, 1998; Angermann et al., 1999).  

 

Figure 7.2 summarises evidence from historical records and palaeoseismic investigations at sites 

within the Valdivia segment. Evidence for the 1575 earthquake is widespread, with shaking, 

deformation and tsunami inundation reported from the northern limit of the 1960 rupture zone 

to central Chiloé (Berninghausen, 1962; Lomnitz, 1970; Cisternas et al., 2005). The lack of Spanish 

colonial outposts south of 43°S accounts for the absence of evidence from the southern portion of 

the Valdivia segment. In addition to the stratigraphic evidence for 1575 subsidence at Maullín and 

Chucalen, concurrent uplift could account for soil formation on Isla Guafo (43°36’S) (Melnick, 

2010). Turbiditic deposition in Reloncaví fjord (42°S) may also attest to the effects of the same 

earthquake (Chapron et al., 2006). The distribution and nature of the evidence for the 1575 
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earthquake suggest a similar rupture to the 1960 earthquake (Lomnitz, 1970; Cisternas et al., 

2005). 

 

Evidence for the 1737 earthquake is greatly restricted in comparison to the earlier event, with 

only isolated accounts of damage in Valdivia (39°52’S; figure 7.2) and Chiloé (Lomnitz, 1970). 

Growth suppression of trees in the Nahuel Huapi national park, Argentina (41°S) suggests 

increased substrate instability associated with intense shaking (Kitzberger et al., 1995). The lack of 

deformation along the populated northern half of the Valdivia segment and possible large 

aftershocks felt on Isla Wager (48°S, not shown on figure 7.2), south of the Chile triple junction 

(46°S) (Byron, 1768), suggest a rupture zone south of Chiloé (red dashed ellipse in figure 7.2). This 

interpretation is consistent with the absence of stratigraphic evidence at Chucalen and Maullín. 

The lack of any reports of a tsunami following the 1737 earthquake may reflect the location of the 

rupture with respect to populated areas or the faulting mechanism not resulting in a large 

tsunami.  

 

As summarised in section 7.2, a large trans-Pacific tsunami accompanied the 1837 earthquake 

(Lomnitz, 1970; Lander and Lockridge, 1989; Atwater et al., 2005). Evidence for the tsunami along 

the coast of Chile is not, however, as extensive as for the 1575 and 1960 tsunamis (figure 7.2), 

with no reports of extensive damage (Lomnitz, 1970; Cisternas et al., 2005). As with the 1737 

earthquake, a lack of deformation in the populated areas north of Chiloé suggests the rupture 

zone was not the same as in 1575 or 1960. Reed et al. (1988) proposes 15 m of slip on a 750 km 

fault from Valdivia (39°52’S) to the Chile triple junction (46°S) (blue dashed ellipse in figure 7.2). 

This would account for subsidence inferred from historical accounts from close to the southern 

terminus (Darwin, 1851; Reed et al., 1988) and to the east of northern Chiloé (Cisternas et al., 

2005). The rupture would also be consistent with intense shaking inferred from tree growth 

suppression in Nahuel Huapi (41°S) (Kitzberger et al., 1995). The lack of evidence for subsidence 

at Chucalen and Maullín suggests little deformation occurred in region of northern Chiloé and 

could limit the northward extent of Reed et al.’s (1988) proposed rupture zone. A smaller rupture 

length, perhaps involving reduced slip on a 500 km fault from the northern Chiloé to the Chile 

triple junction (red dashed ellipse in figure 7.2), might also better match the plate convergence 

budget (cf. Stein et al., 1986; Barrientos and Ward, 1990).  

 

Documentary and palaeoseismic data supports substantial variability between earthquakes. While 

the 1575 and 1960 earthquakes share similarities, several lines of evidence suggest the 

intervening earthquakes were located to the south of Chiloé, ruptured smaller areas of the plate 

interface and did not generate tsunamis as damaging as the 1575 and 1960 events. In the absence 
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of further documentary records or coastal sites containing evidence for the earthquakes, 

speculation remains over the precise rupture locations, lengths, magnitudes and effects of the 

1737 and 1837 ruptures.  

 

7.4 Hypothesis 3: Evidence for relative sea-level change reflects both the 

earthquake deformation cycle and non-seismic processes 

 

7.4.1 Relative sea level at Chucalen and Maullín  

 

The presence of buried organic marsh soils below the elevation of contemporary soil formation 

indicates relative sea-level rise at both Chucalen and Maullín. By taking away palaeomarsh surface 

elevation estimates from the field elevation of each fossil sample (equation 3.4), the Chucalen and 

Maullín data provide quantitative estimates of changing relative sea level over time (figure 7.3). 

The P_sequence model (section 6.2.3) provides two sigma age ranges for each sample at 

Chucalen. At Maullín, samples from the top of each buried soil use dates from Cisternas et al. 

(2005). Vertical errors represent the cumulative error associated with sample specific transfer 

function error (± 1 standard error), core top elevation and sample depth (section 3.5.6).  

 

The two relative sea level curves suggest between 0.5 m and 1.5 m of sea level rise over the last 

1000 years, superimposed with four earthquake deformation cycles (figure 7.3). If the magnitudes 

of deformation resulting from interseismic strain accumulation and coseismic strain release are 

equal, the elevation of successive buried soils provides an estimate of the rate of non-seismic 

relative sea level change. The rates for each site, 0.31 mm/yr at Chucalen and 0.36 mm/yr at 

Maullín, are indistinguishable from one another given the magnitude of the age and elevation 

errors.  

 

7.4.2 Mid to Late Holocene relative sea level change in south central Chile 

 

Figure 7.4 displays the Chucalen and Maullín reconstructions alongside former relative sea levels 

inferred from locations close to Maullín (Atwater et al., 1992). I discard a single point from 

Atwater et al. (1992) located below present sea level due to the likelihood of compaction, as 

noted by the original authors. I also exclude samples from the mainland adjacent to Chiloé (Herve 

and Ota, 1993) due to their proximity to the Liquiñe-Ofqui Fault Zone (section 2.2.1), uncertain 

indicative meanings or the possibility of reworking of older material.  
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Together, data from Chucalen and the wider Maullín area suggest that the rising relative sea level 

seen over the last 1000 years is not the dominant mid to late Holocene trend (figure 7.4). Tidal 

marsh sediments above their contemporary depositional elevations suggest net emergence over 

the last 2000 to 5000 years. Bartsch-Winkler and Schmoll (1993) provide evidence from Chiloé of 

abandoned marine terraces, sea cliffs and stacks, in addition to shell and foraminifera-bearing low 

intertidal or subtidal deposits above their modern depositional elevations. While their origin and 

age is as yet unconfirmed, coarse sands underlying the intertidal sequence at Chucalen may also 

indicate a low intertidal or subtidal environment, again implying net emergence over a timescale 

exceeding the last 1000 years. The lack of marine influence in diatom assemblages at Cocotue 

indicates relative sea level did not exceed 3 m above mean sea level over the past millennium and 

was probably less than 2 m above present at 1000 AD. While large age and altitude errors 

currently limit the precision of the sea level curve (figure 7.4b), some speculation is possible on 

the driving mechanisms for the change from to late Holocene relative sea level fall to recent 

relative sea-level rise.  

 

Mid Holocene highstands above present are a common feature of southern hemisphere mid-

latitude coastlines (e.g. Isla, 1989; Schellmann and Radtke, 2003; Sloss et al., 2005; Woodroffe 

and Horton, 2005; Lessa and Masselink, 2006). Raised marine deposits also imply mid-Holocene 

sea levels above present in central Chile (Pino and Navarro, 2005; Encinas et al., 2006; Isla et al., 

2012) and southern Chile (Porter et al., 1984; Isla, 1989; Gordillo et al., 1992; McCulloch and 

Davies, 2001). The subsequent mid to late Holocene relative sea level fall results from ocean 

syphoning following collapse of northern hemisphere forebulges and continental levering through 

ocean loading (Clark et al., 1978; Mitrovica and Peltier, 1991; Mitrovica and Milne, 2002). For a 

location close to the sites presented in this study, Peltier’s (2004) ICE5G (VM2) model predicts a 

highstand approximately 8 m above present at 8 ka BP (figure 7.4a). While falling sea level 

following a highstand fits with the emergence identified by Atwater et al. (1992), the modelled 

rate of sea level fall exceeds the rate inferred from the data (figure 7.4b). Furthermore, the model 

does not incorporate any period of rising relative sea level after 8 ka BP that could match the rise 

implied by the presence of buried soils at Chucalen and Maullín. Studies in subduction zone 

settings have identified very rapid post Little Ice Age rebound, which implies a low viscosity 

asthenosphere (James et al., 2000; Ivins and James, 2002; Rignot et al., 2003; Larsen et al., 2005; 

Dietrich et al., 2010; Barlow et al., 2012). Such a low viscosity layer is not included in ICE5G’s VM2 

earth model, which is tuned for continental settings. Rapid viscoelastic response associated with 

lower viscosity could result in an earlier diminution of the post Last Glacial Maximum isostatic 

signal in south central Chile and a late Holocene relative sea-level curve closer to those modelled 

for north central Chile (figures 2.6; 7.4). If the long wavelength isostatic contribution to relative 
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sea-level change concluded by the mid Holocene, other shorter-term factors could explain the 

late Holocene relative sea level rise.  

 

Following the comparative warmth of the early Holocene (Heusser and Streeter, 1980; Rabassa 

and Clapperton, 1990), the two Patagonian icefields underwent several phases of expansion in the 

mid to late Holocene (Mercer, 1970; Aniya, 1996; Glasser at al., 2004; Bertrand et al., 2012). 

These Neoglacial advances (figure 7.4c), culminating in the Little Ice Age, resulted in depression of 

the crust matched by recent and ongoing crustal rebound following deglaciation (Dietrich et al., 

2010). While models of deformation do not extend to the location of this study (Ivins and James, 

2002; Dietrich et al., 2010), Chucalen and Maullín may lie within a Neoglacial forebulge. The build-

up of such a forebulge would contribute to continued mid Holocene relative sea-level fall, while 

the subsequent collapse could contribute to the recent relative sea-level rise (figure 7.4b).  

 

Eustatic, local and tectonic factors may have assisted the postulated forebulge collapse and 

increased the magnitude of relative sea-level rise. Kemp et al. (2011) infer a eustatic contribution 

of approximately 0.4 m over the last 1000 years. This is not, however, a globally applicable figure 

and the contribution to south central Chilean relative sea level over the last 1000 years is likely to 

be less, particularly if Antarctic melting resulted in a decreased gravitational anomaly and 

migration of the ocean geoid to lower latitudes (Lambeck, 2002; Whitehouse et al., 2012).  

 

Autocompaction results in the lowering of sea level index points from their original depositional 

altitudes (Allen, 2000; Edwards, 2006; Long et al., 2006; Horton and Shennan, 2009; Brain et al., 

2012). While the sediment sequences at Maullín and Chucalen are typically only around 1 m thick 

and, in certain locations, rest on uncompactable bedrock, the presence of highly organic buried 

soils could magnify the recent rise in relative sea level.  

 

Finally, the assumption of no net tectonic deformation over multiple earthquake cycles may be 

incorrect. Towards the northern end of the Valdivia seismic segment at Isla Mocha, Nelson and 

Manley (1992) infer a 38 m relative sea level fall over the mid to late Holocene. The extremely 

rapid uplift rate may reflect interseismic uplift from aseismic slip on upper plate thrust faults in 

addition to coseismic uplift (Nelson and Manley, 1992). Similarly, Melnick et al. (2006) evoke 

thrust faulting to explain the rapid uplift and tilting of Isla Santa Maria at the northern limit of the 

1960 rupture zone. While Chucalen and Maullín sit on the Chiloé block, a 1000 km long sliver 

detached from stable South America (Cembrano et al., 1996), uplift of the Arauco Peninsula (37°S) 

appears to accommodate the northward movement of this block (Wang et al., 2007; Moreno et 



81 
 

al., 2008) and Neogene movements on thrust faults have not influenced northern Chiloé (Muñoz 

et al., 1999).  

 

7.5 Conclusions 

 

This section reviews the principal findings of the thesis in relation to the objectives outlined in 

chapter 1 and presents recommendations for future palaeoseismic research in south central Chile. 

En route to testing the primary research hypothesis, Coastal sediments preserve evidence for late 

Holocene earthquakes and relative sea level change in south central Chile, this thesis aimed to 

fulfil a series of objectives: 

 

 Characterise modern intertidal diatom distributions in south central Chilean tidal marshes 

 Develop transfer function models for the purpose of reconstructing palaeomarsh surface 

elevation from fossil marsh sediments 

 Test the performance of the approach by reconstructing coseismic deformation 

associated with recent, well documented Chilean earthquakes 

 Interrogate coastal sediments in the Valdivia seismic segment for evidence of past 

earthquakes 

 Reconstruct coseismic deformation associated with palaeoearthquakes 

 Constrain the timing of palaeoearthquakes using a radiometric approach and compare 

inferred ages with historical records and other palaeoseismic investigations 

 Investigate relative sea-level changes occurring over the course of multiple earthquake 

deformation cycles 

 

7.5.1 Summary of findings 

 
Characterise modern intertidal diatom distributions in south central Chilean tidal marshes 

 

Chapter four presents data from two new tidal marsh sites, Puente Quilo and Estero Guillingo. 

Transects at both sites are characterised by low diversity assemblages below mean higher high 

water and more variable, species-rich assemblages at higher elevations. The substantial variation 

in contemporary diatoms suggests their suitability as indicators of different elevation-controlled 

environments. Constrained ordination of both the Chiloé dataset, consisting of the two new sites 

and a larger Regional dataset, also incorporating samples from the Valdivia estuary (Nelson et al., 
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2009), suggests elevation and covarying environmental factors explain a considerable portion of 

the diatom variability.  

 

Develop transfer function models for the purpose of reconstructing palaeomarsh surface 

elevation from fossil marsh sediments  

 

Weighted averaging partial least squares regression provides Chiloé and Regional transfer 

function models for the purpose of reconstructing marsh surface elevation. Three component 

models have the highest r2 values, linear distributions of observed against predicted values and 

acceptable levels of precision. The training set is the largest currently available for south central 

Chile and can provide a foundation for future palaeoseismic and relative sea-level investigations. 

 

Test the performance of the approach by reconstructing coseismic deformation associated with 

recent, well documented Chilean earthquakes 

 

Chapter five employs the transfer functions developed in chapter four to reconstruct coseismic 

deformation associated with the 2010 and 1960 earthquakes. The method is successful in 

matching independent estimates of land-level change in uplifting, stable and subsiding regions. 

The small offset between diatom-based reconstructions and published estimates may relate to 

coseismic marsh sediment consolidation. Despite the lack of ‘good’ modern analogues for fossil 

samples, the fidelity with which the test sites record the magnitude and direction of deformation 

supports the use of diatoms to quantify deformation during previous great earthquakes in south 

central Chile.  

 

Interrogate coastal sediments in the Valdivia seismic segment for evidence of past earthquakes 

 

Laterally extensive buried soils with abrupt upper contacts, coincident tsunami deposits and 

evidence for rapid and substantial marsh surface elevation change suggest sediments at Chucalen 

record evidence for repeated earthquake deformation cycles (chapter six). A new biostratigraphic 

record for Maullín provides support for submergence associated with tsunami deposits identified 

by Cisternas et al. (2005). Due to its supratidal elevation, Cocotue cannot provide evidence for 

coseismic deformation. While the freshwater diatom assemblages are unexpected in tsunami 

deposits, this finding does not precipitate the rejection of the hypothesis of tsunami occurrence. 
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Reconstruct coseismic deformation associated with palaeoearthquakes 

 

Diatom assemblages suggest metre-scale changes in palaeomarsh surface elevation accompany 

most abrupt transitions from organic buried soils to minerogenic deposits at both Chucalen and 

Maullín. Submergence appears to coincide with buried soil B, however uncertainty over the 

magnitude of submergence means that reconstructions cannot yet conclusively falsify an aseismic 

hypothesis for the formation of this couplet. While the requirement for ‘good’ modern analogues 

currently remains unfulfilled, quantitative reconstructions of land-level change make ecological 

sense. The close correspondence between transfer function derived reconstructions and 

published estimates of deformation in 1960 at Chucalen and Maullín is also encouraging. 

 

Constrain the timing of palaeoearthquakes using a radiometric approach and compare inferred 

ages with historical records and other palaeoseismic investigations 

 

A P_sequence age model constrains the timing of the inferred predecessors of the 1960 

earthquake at Chucalen to 1520 to 1946, 1270 to 1410 and 1050 to 1200. These ages closely 

correspond with limiting dates for tsunami deposition and subsidence at Maullín (Cisternas et al., 

2005) suggesting a high probability of synchroneity. Radiocarbon data, combined with 

dendroecological approaches at Maullín (Cisternas et al., 2005), indicate that the four 

earthquakes do not correspond to the four historically documented megathrust earthquakes of 

the past 450 years. Instead, the 1000 year long record only incorporates the 1960 and 1575 

earthquakes, with no evidence for the intervening 1737 and 1837 events. Combination of the 

evidence presented here with historical records implies the absent earthquakes were smaller and 

occupied rupture zones south of Chiloé.  

 

Investigate relative sea-level changes occurring over the course of multiple earthquake 

deformation cycles 

 

The presence of palaeoseismic records in south central Chile implies rising relative sea levels over 

the last 1000 years. While stacks of repeated organic – minerogenic couplets are unlikely to form 

during periods of relative sea-level fall, field and modelling studies suggest that emergence 

characterises much of the mid to late Holocene. Initial speculation links the recent relative sea-

level rise to early diminution of post Last Glacial Maximum glacio-isostatic uplift and possibly the 

formation and collapse of a Little Ice Age forebulge. The complex interplay between eustatic, 

tectonic and local factors may also contribute. Net emergence over timescales exceeding the last 

1000 years may prevent the formation of longer palaeoseismic records.  
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7.5.2 Recommended future research directions 

 

Modern diatom distributions 

 

While transfer reconstructions made ecological sense and match independent estimates of 

deformation, the lack of ‘good’ modern analogues for fossil assemblages suggests the modern 

diatom dataset does not yet adequately reflect the variability in south central Chilean 

assemblages. Future work should expand the database, collecting further modern samples from 

additional marsh sites.  

 

Locating the 1737 and 1837 earthquakes 

 

The 1737 and 1837 earthquakes are notable by their absence in the Chucalen and Maullín 

records. If 1960-style ruptures reflect the culmination of longer cycles involving smaller 

intervening earthquakes, future research must also place emphasis on understanding these 

smaller ruptures. At present, palaeoseismic records may only incorporate the largest south 

central Chilean earthquakes. While substantially smaller, the mid-cycle earthquakes may still 

exceed magnitude 7.5 to 8.5. The damaging trans-Pacific tsunami of 1837 highlights that events of 

this size may still be highly destructive. Future work should focus on finding the sedimentary 

signatures of these events in their likely source regions, namely areas south of Chiloé.  

 

Modelling earthquake magnitude 

 

Studies by Leonard et al. (2004, 2010) and Hawkes et al. (2011) demonstrate the potential for 

comparison of microfossil-derived estimates of coseismic subsidence with predictions from elastic 

dislocation models. Further refinement of the coseismic deformation reconstruction approach 

may enable dislocation modelling for Chilean megathrust earthquakes, constrained by diatom-

based estimates of deformation.  

 

Modelling relative sea level change along tectonically active margins 

 

The Holocene relative sea-level history of the Chilean coastline remains poorly understood. Data 

presented in this thesis highlight discrepancies between glacio-isostatic adjustment models and 

field evidence. Future research should focus on obtaining high quality relative sea-level datasets 

to constrain new earth models. Such an approach would further assist in disentangling the 

multifarious contributions to relative sea-level change.  
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modern species coefficients derived from the Regional WA-PLS transfer function model.
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Figure 7.3: One thousand years of relative sea-level change at a. Chucalen and b. Maullín. 

Coloured boxes reflect age and elevation errors, black lines follow centre points of boxes 

and indicate the coseismic deformation events. Ages derived from P_sequence age 

modelling (section 6.2.3) for Chucalen and from radiocarbon dates from Cisternas et al. 

(2005) for Maullín. Vertical errors represent the cumulative error associated with sample 

specific transfer function error, core top elevation and sample depth (section 3.5.6). ..... 187 

file:///E:/Chile/PhD/Thesis/Corrected%20figures.docx%23_Toc353786258
file:///E:/Chile/PhD/Thesis/Corrected%20figures.docx%23_Toc353786258
file:///E:/Chile/PhD/Thesis/Corrected%20figures.docx%23_Toc353786259
file:///E:/Chile/PhD/Thesis/Corrected%20figures.docx%23_Toc353786259
file:///E:/Chile/PhD/Thesis/Corrected%20figures.docx%23_Toc353786259
file:///E:/Chile/PhD/Thesis/Corrected%20figures.docx%23_Toc353786259
file:///E:/Chile/PhD/Thesis/Corrected%20figures.docx%23_Toc353786259
file:///E:/Chile/PhD/Thesis/Corrected%20figures.docx%23_Toc353786259
file:///E:/Chile/PhD/Thesis/Corrected%20figures.docx%23_Toc353786259


113 
 

Figure 7.4: Relative sea-level change at Chucalen and Maullín in a mid to late Holocene 

context. a. ICE5G (VM2) modelled relative sea level change from 21ka BP to present for 

73°45’W 41°45’S (Peltier, 2004; data provided by Pippa Whitehouse, pers. com., 2012); b. 

relative sea level curve for northern Chiloé and the adjacent mainland (Atwater et al., 

1992; Cisternas et al., 2005; this study) with ICE5G modelled curves for south central and 

north central Chile; c. reconstructed Patagonian Neoglacial oscillations using two 

chronologies proposed by Ivins and James (2002), based in orange on Mercer (1970) and 

in blue on Aniya (1995). ...................................................................................................... 188 
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1. Framework: figures and tables 

 

 

 

 

 

 
 

Figure 1.1: A simple graphical model of a subduction megathrust during a. interseismic strain 

accumulation and b. coseismic strain release, with c. the hypothetical cross-section of coseismic 

displacement of the continental plate (after Nelson et al., 1996). The vertical scales are highly 

exaggerated, with vertical movements in the order of ± 5 m over horizontal distances of 

100 to 400 km. 
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Figure 1.2: Graphical representation of land-level change over the course of two earthquake 

deformation cycles of consistent return period and deformation magnitude. a. location seaward 

of the axis of null coseismic displacement; b. location landward of the axis of null coseismic 

displacement (after Bourgeois, 2006). Black lines indicate accepted tripartite sequence; additional 

purple lines show hypothesised preseismic deformation (after Shennan and Hamilton, 2006). 

 

 

 

 

 

 

 

 
 

Figure 1.3: The components of relative sea-level change over the course of two successive 

earthquake cycles of different return period and deformation magnitude for a hypothetical 

location in the region of interseismic uplift, coseismic subsidence and aseismic sea-level rise 

(modified from Nelson, 2007). a. tectonic component; b. the sum of all aseismic processes, 

including isostatic, eustatic and local changes; c. the resulting relative sea-level record over time.  
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Figure 1.4: Coastal sedimentation in response to tectonic deformation. a. Schematic model of 

sedimentation over the course of two earthquake cycles (following Benson et al., 2001). The thick 

black line shows the land level-change over time. Subsidence during earthquakes 1 and 2 lower 

organic soils to the elevation of tidal flat sedimentation, forming an organic – minerogenic 

couplet. b. a core or exposure (marked at the right hand side of (a)) provides sediments and 

diatom assemblages which record the occurrence of earthquakes 1 and 2. The use of transfer 

functions to calibrate diatom assemblages can provide reconstructions of land level change over 

time.  
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Figure 1.5: Location of the rupture zones of the 1960 Valdivia and the 2010 Maule earthquakes 

(after Plafker and Savage, 1970; Moreno et al., 2012). The Valdivia seismic segment is defined by 

the extent of the 1960 earthquake.  
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2. Study area: figures and tables 

 

 

 

 

 

 
 

Figure 2.1: South America, including locations mentioned in the text. Dashed line indicates the 

Chilean border. Basemap from GeoMapApp (Ryan et al., 2009).  
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Figure 2.2: Tectonic setting of the Chilean subduction zone. Pa: Panamanian plate, NA: North 

Andes plate. Plate motions following DeMets et al. (1990); Somoza (1998) and Angermann et al. 

(1999). 
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Figure 2.3: Fracture zones and upper plate fault systems within the area of interest to this thesis 

(following Cembrano et al., 1996; 2007; Melnick et al., 2006). The inset map highlights the area of 

Chile mapped in the main figure. ANB: Arauco-Nahuelbuta block, LOFZ: Liquiñe-Ofqui Fault Zone 

to LOFZ, FZ: fracture zone, CTJ: Chile Triple Junction.  
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Figure 2.4: Historical subduction megathrust earthquakes along the Chilean subduction zone 

(compiled from Lomnitz, 1970; Kelleher, 1972; Beck et al., 1998; Campos et al., 2002; Cisternas et 

al., 2005). Less well constrained rupture zones indicated by dashed lines; the dotted line marks 

the location of 1939 intraplate event. The mechanism responsible for 1647 rupture is debated 

and, while mapped here as an interplate event, it may have been an Andean intraplate event 

(Lomnitz, 1970). 
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Figure 2.5: The limits of the Patagonian Icesheet at the last glacial maximum and the distribution 

of existing icefields (Hulton et al., 2002). The dashed box shows the area mapped in figures 2.3, 

2.4, 2.7 etc.  
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Figure 2.6: ICE5G (Peltier, 2004) simulation of relative sea-level change over the last 21 ka at 10 

sites along the Chilean coastline (coloured circles in inset map). Data provided by Pippa 

Whitehouse (pers. com., 2012). The inset map also includes the locations of the previously 

documented field sites mentioned in the text, with the dashed box highlighting the area mapped 

in figures 2.3, 2.4, 2.7 etc. 
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Figure 2.7: The location of the modern marsh transects at Puente Quilo and Estero Guillingo and 

the long record sites at Maullín, Chucalen and Cocotue. a. South central Chile including the 

location of the 1960 and 2010 ruptures (following Plafker and Savage, 1970; Moreno et al., 2012); 

b. Isla de Chiloé and the adjacent mainland, including the site identified by Cisternas et al. (2005) 

at Maullín; c. the modern marsh sites (coloured squares) and fossil sites (white circles) 

surrounding Bahía Quetalmahue, northwest Isla de Chiloé.  
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Figure 2.8: The setting of the modern marsh site at Estero Guillingo. a. Northwestern Isla de 

Chiloé, including the location of b. the site at Estero Guillingo (Google Earth image from 

September 2009). c. Photograph of the western branch of Estero Guillingo, looking southeast 

towards the confluence with the eastern branch of the estuary and the entrance to Bahía 

Quetalmahue. For scale, the sampled area of marsh is approximately 200 m from the 

photographer and the boat on the right is approximately 3 m in length. 
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Figure 2.9: The setting of the modern marsh site at Puente Quilo. a. Northwestern Isla de Chiloé, 

including the location of b. the site at Puente Quilo (Google Earth image from March 2012).           

c. Panorama of Puente Quilo, looking south from the bridge over the Río Quilo. The tidal marsh 

lies on the east bank of the river, in the centre and left of the photo. For scale, the sampled area 

of marsh is approximately 200 m from the photographer and the boat in the lower left is 

approximately 4 m in length.  
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Figure 2.10: The location of the Sediment Signatures project site at Río Andalién, a. with respect 

to the 2010 and 1960 rupture zones; b. Bahía Concepción and the Tumbes Peninsula, including 

the 2010 tsunami inundation limit (red dashed line) and locations of published deformation 

estimates for 2010 and 1960 (coloured triangles; Δ indicates uplift, ∇ indicates subsidence); c., d. 

Google Earth images of the mouth of Río Andalién from before and after the February 2010 

Maule earthquake, including the location of the Sediment Signatures project coring transect (red 

lines) and the sampled monolith (red circle). The state of the tide in each image is unknown. 
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Figure 2.11: The location of the Sediment Signatures project site at Tubul, a. with respect to the 

2010 and 1960 rupture zones; b. the Arauco Peninsula, including the locations of published 

deformation estimates for 2010 (coloured triangles; Δ indicates uplift, ∇ indicates subsidence); c., 

d. Google Earth images of Tubul from before and after the February 2010 Maule earthquake, 

including the location of the Sediment Signatures project coring transect (red line) and the 

sampled monolith (red circle). The state of the tide in each image is unknown. 
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Figure 2.12: The location of the Sediment Signatures project site at Río Tirua, a. with respect to 

the 2010 and 1960 rupture zones; b. the coastline adjacent to Río Tirua, including the locations of 

published deformation estimates for 2010 and 1960 (coloured triangles; Δ indicates uplift, ∇ 

indicates subsidence); c., d. Google Earth images of Río Tirua from before and after the February 

2010 Maule earthquake, including the location of the Sediment Signatures project coring transect 

(red line) and the sampled core (red circle). The state of the tide in each image is unknown.  
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Figure 2.13: The setting of the site at Chucalen. a. Northwestern Isla de Chiloé, including the 

location of 1960 deformation estimates (yellow triangles; Plafker and Savage, 1970) and b. the 

site at Chucalen (Google Earth image from September 2009). c. Photograph of the ~1 m high cliff 

separating the vegetated marsh from the tidal flat (or in this instance, a mudstone platform) on 

the western margin of Bahía Quetalmahue. The sampled marsh at Chucalen lies approximately 

150 m to the northeast of the area in this photo. The red and white shovel handle is 50 cm in 

length. Photograph courtesy of Rob Wesson. 
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Figure 2.14: The setting of the site at Maullín, a. with respect to the 1960 and 2010 rupture zones. 

b. The Maullín estuary, including the location of 1960 deformation estimates (yellow triangles; 

Plafker and Savage, 1970); c. the site (Google Earth image from December 2005) including the 

location of Cisternas et al.’s (2005) sampling transects and the exposure discussed in this thesis; d. 

photograph of the site looking west from the abandoned sea cliff.  
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Figure 2.15: The setting of the site at Cocotue. a. Northwestern Isla de Chiloé, including the 

location of 1960 deformation estimates (yellow triangles; Plafker and Savage, 1970) and b. the 

site at Cocotue (Google Earth image from October 2010). c. Photograph of the narrow terrace 

situated between a highly eroded former sea cliff cut into Pleistocene glacial outwash and the 

beach at Cocotue. The exposed face of the terrace is approximately 1.5 m in height.  
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3. Approach: figures and tables 
 

 

 

 

 

 

 
 

Figure 3.1: Comparison of tides surveyed at Puente Quilo using a portable ultrasound tide gauge 

(data supplied by Rob Wesson, 2012) and tidal observations from the gauge at Ancud (IOC, 2012). 

Mean higher high water elevations derived for Ancud from a four year time series and for Puente 

Quilo by scaling the Ancud data.  
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Site 
Difference between  

MSL and MHHW (m) 

Modern transects  

Puente Quilo 1.02 

Estero Guillingo 1.02 

Río Angachilla 0.80 

Isla del Rey 0.73 

Fossil sites  

Chucalen 1.02 

Maullín 1.05 

Cocotue 1.00 

Río Andalién* 0.72 

Tubul* 1.16 

Río Tirua* 1.24 

 
Table 3.1: Tidal inputs for derivation of standardised water level index values for the modern 

transects and the back-calculation of standardised water level index values into metres above 

mean sea level for the fossil sites and the Sediment Signatures project sites (*).  
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Figure 3.2: A graphical representation of the transfer function process. a. I characterise the 

distribution of modern diatoms in a transect across a contemporary tidal marsh; b. the transfer 

function assigns a unimodal curve to model the distribution of each species along the elevation 

gradient; c. a scatter plot of observed and estimated marsh surface elevations displays the 

performance of the model; d. a core or exposure provides fossil diatom assemblages; e. fossil 

assemblages are calibrated using the transfer function to produce estimates of marsh surface 

elevation, including a sample specific error.  
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4. Results: modern Chilean intertidal marshes: 

figures and tables 

 

 

 

 

 
 

Figure 4.1: Modern intertidal marsh zonation at a. Puente Quilo and b. Estero Guillingo. Numbers 

refer to vegetation zones listed in table 4.1.  
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Vegetation zone Dominant plant species 

5 (freshwater scrub) 

Drimys winteri 

Myrtaceae sp. 

Ulex europaeus 

Berberis darwinii 

Berberis microphylla 

Luma apiculata 

Gunnera tinctoria 

Blechnum chilense 

4 (high marsh) 

Bromus sp.  

Lotus uliginosus  

Rumex cuneifolius 

3 (mid marsh) 

Spartina densiflora 

Juncus balticus 

Scirpus californicus 

Carex sp. 

Holcus lanatus 

2 (low marsh) 

Triglochin sp. 

Selliera radicans 

Sarcocornia fruticosa 

Eleocharis macrostachya 

Carex sp. 

Holcus lanatus  

Cotula coronopifolia 

1 (tidal flat) Gracilaria chilensis 

 

Table 4.1: Summary of the dominant plants in the Isla de Chiloé tidal marsh vegetation zones.  
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Figure 4.2: Puente Quilo (PQ) and Estero Guillingo (EG) intertidal zonation in a. vegetation zones 

(numbers refer to zones listed in table 4.1); b. particle size; c. organic content, as estimated by 

percentage loss on ignition (%LOI). 
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Figure 4.3: Modern diatom distributions (species exceeding 10 %) against elevation (m above MSL) at Puente Quilo and Estero Guillingo. Estero Guillingo sample 

elevations offset by +0.025 m to avoid overlaying Puente Quilo samples.  
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Figure 4.4: Modern diatom distributions (species exceeding 10 %) against elevation (Standardised Water Level Index) in the Chiloé transects (Puente Quilo and Estero 
Guillingo transects) and the Valdivia transects (Río Angachilla and Isla del Rey transects, Nelson et al., 2009). Estero Guillingo sample elevations offset by +2.5 SWLI units 
to avoid overlaying Puente Quilo samples.  
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Figure 4.5: Multivariate analysis of the Chiloé modern diatom dataset. a. Unconstrained cluster 

analysis dendrogram (incremental sum of squares, Euclidean distance, un-weighted, no data 

transformation or standardisation). b. Elevation (SWLI) ranges of the clusters defined by cluster 

analysis. Coloured outlines indicate clusters that consist entirely of samples from a single site, 

black outlines indicate clusters incorporating samples from more than one transect. c. Detrended 

Correspondence Analysis sample plot. Ovals surround clusters defined by cluster analysis.  
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Figure 4.6: Pie charts showing the variation in the Chiloé dataset divided into a. explained and 

unexplained sectors derived from DCCA and b. the individual contributions of the environmental 

variables as percentages of the total explained variation.  

 

 

 

 

Dataset 

Number 

of 

samples 

Variance 

explained by all 

known 

variables (%) 

Variance 

explained by 

elevation (%) 

Elevation as 

percentage of total 

explained variance 

(%)* 

Reference 

 Chiloé  96 32.5 10.7 12.8 This study 

Regional, 

south central 

Chile 

128 - 7.2 100† This study 

British Isles 88 21.6 8.6 23.3 
Zong and Horton 

(1999) 

Hokkaido, 

Japan 
78 20.2 4.5 15.1 

Sawai et al. 

(2004) 

Ho Bugt, 

western 

Denmark 

40 37.9 27.9 24 
Szkornik et al. 

(2006) 

British 

Columbia, 

Canada 

48 39.1 6.7 7.98 Roe et al. (2009) 

Alaska 272 - 2.7 100† 
Watcham et al. 

(2012) 

Scotland 215 - 3.6 100† 
Barlow et al. 

(submitted) 

 

Table 4.2: Comparison of ordination results from the Chiloé and Regional datasets with published 

results from diatom-based tidal marsh studies in selected locations worldwide.  

* Includes autocorrelation between variables.  

† Elevation is the only known environmental variable. 
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Figure 4.7: Detrended Canonical Correspondence Analysis biplot of samples and environmental 

variables from the Chiloé dataset. Each arrow points in the direction of the steepest increase in an 

environmental variable; samples can be perpendicularly projected onto each arrow to 

approximate their environmental variable value.  
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Figure 4.8: Multivariate analysis of the Regional modern diatom dataset. a. Unconstrained cluster 
analysis dendrogram (incremental sum of squares, Euclidean distance, un-weighted, no data 
transformation or standardisation). b. Elevation (SWLI) ranges of the clusters defined by cluster 
analysis. Coloured outlines indicate clusters that consist entirely of samples from a single site, 
black outlines indicate clusters incorporating samples from more than one transect. c. Detrended 
Correspondence Analysis sample plot. Ellipses surround clusters defined by cluster analysis.  
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Figure 4.9: Observed vs. predicted (left hand side) and observed vs. residual (right hand side) plots 

for the first three components of the Chiloé transfer function model (96 samples from Puente 

Quilo and Estero Guillingo). Transfer function models are developed in C2 (Juggins, 2011) using 

WA-PLS regression (ter Braak and Juggins, 1993; ter Braak et al., 1993). 
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Transfer function 
model 

Number of 
samples 

WA-PLS 
component 

R2
boot 

RMSEP 
(SWLI) 

RSMEP as 
percentage of 

sampled range (%) 

Chiloé  96 1 0.60 44.96 17.0 

 

 2 0.72 39.05 14.8 

 

 3 0.85 29.46 11.1 

Regional 128 1 0.53 50.45 18.2 

 

 2 0.67 44.18 15.9 

 

 3 0.77 37.56 13.5 

 

Table 4.3: Summary of WA-PLS transfer function model performance. RMSEP: Root Mean Square 

Error of Prediction. No species or environmental variable transformation is applied and 

bootstrapping (1000 permutations) is used for cross validation. I chose to employ the third 

component of the Regional model, incorporating all of the available samples from the four 

transects at Chiloé (Puente Quilo and Estero Guillingo) and Valdivia (Río Angachilla and Isla del 

Rey), as it provides a significant increase in performance over the first and second components. 

The Regional model allows a more appropriate assessment of reconstruction precision and a 

larger range of potential modern analogues than the local model. 
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Figure 4.10: Observed vs. predicted (left hand side) and observed vs. residual (right hand side) 

plots for the first three components of the Regional transfer function model (128 samples from 

Puente Quilo, Estero Guillingo, Río Angachilla and Isla del Rey). Transfer function models are 

developed in C2 (Juggins, 2011) using WA-PLS regression (ter Braak and Juggins, 1993; ter Braak et 

al., 1993).  
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Figure 4.11: Comparison of first, second and third component species coefficients and bootstrapped errors (vertical bars) for all species included in a. the Chiloé model 

and b. the Regional model. Species coefficients are plotted relative to tidal levels, with the grey box indicating the sampled elevation range.  
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Figure 4.12: Comparison of first, second and third component species coefficients and bootstrapped errors (vertical bars) for species exceeding 10 % in a. the Chiloé 

model and b. the Regional model. Missing coefficients for the Chiloé plot indicate species not encountered in this training set. Species are ordered by the Regional model 

component 1 species coefficients. Species coefficients are plotted relative to tidal levels, the grey box indicates the sampled elevation range. 
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5. Reconstructing coseismic deformation: the 1960 

and 2010 earthquakes: figures and tables 
 

 

 

 

 
 

Figure 5.1: Earthquake rupture zones and vertical land level changes in 1960 (main figure, after 

Plafker and Savage, 1970) and 2010 (inset, after Moreno et al., 2012) and the location of the sites 

and places mentioned in the text. 1: Río Andalién, 2: Tubul, 3: Río Tirua, 4: Chucalen, RM: Río 

Mataquito, CON: Constitution, AP: Arauco Peninsula, VAL: Valdivia. 
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Figure 5.2: Río Andalién 2010. Fossil diatom assemblages (species exceeding 10% only) from the 

uppermost 6 cm of the sediment monolith. Assemblage summary based on modern species 

coefficients derived from the Regional WA-PLS transfer function model. Dr Emma Watcham 

counted all diatoms from Río Andalién as part of the Sediment Signatures project. 
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Figure 5.3: Río Andalién 2010. Palaeomarsh surface elevation reconstructions for the uppermost 

6 cm of the sediment monolith using the Chiloé and Regional transfer function models. The 

graphs for the individual models show the sample specific standard errors. The modern analogue 

graphs on the right hand side summarise whether fossil samples have good (G), close (C) or poor 

(P) modern analogues in each model. I use the 5th percentile of the modern dissimilarity values as 

the threshold for a good modern analogue and the 20th percentile as the division between close 

and poor modern analogues. 

 

 

 

 

Site Earthquake 

Palaeomarsh surface 

elevation change (m ± 1σ) 

Chiloé Regional 

Río  

Andalién 

2010 -0.43 ± 0.43 -0.75 ± 0.43 

1960 0.10 ± 0.40 0.11 ± 0.45 

Tubul 2010 0.60 ± 0.53 0.64 ± 0.67 

Río Tirua 1960 0.08 ± 0.60 -0.14 ± 0.72 

Chucalen 1960 -1.15 ± 0.43 -1.09 ± 0.53 

 

Table 5.1: Comparison of palaeomarsh surface elevation change estimates using the Chiloé and 

Regional transfer function models (elevation rise is positive, elevation fall is negative). All 

estimates are corrected for sedimentation. The lack of post-tsunami sedimentation prevents a 

2010 estimate for Río Tirua; Chucalen lies over 300 km to the south of displacements in 2010.   
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Figure 5.4: Tubul 2010. Fossil diatom assemblages (species exceeding 10% only) from the 

sediment monolith. Assemblage summary based on modern species coefficients derived from the 

Regional WA-PLS transfer function model. Dr Emma Watcham counted all diatoms from Tubul as 

part of the Sediment Signatures project.  

 

 

 

 
 

Figure 5.5: Tubul 2010. Palaeomarsh surface elevation reconstructions for the sediment monolith 

using the Chiloé and Regional transfer function models. The graphs for the individual models show 

the sample specific standard errors. The modern analogue graphs on the right hand side 

summarise whether fossil samples have good (G), close (C) or poor (P) modern analogues in each 

model. I use the 5th percentile of the modern dissimilarity values as the threshold for a good 

modern analogue and the 20th percentile as the division between close and poor modern 

analogues. 
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Site Core ID Sample depth (cm) 
Cs-137 Error  (1σ) 

Notes 
(mBq g

-1
) (mBq g

-1
) 

Río Andalién RA10/M1/2 20 – 21 4.50 1.88 
Immediately beneath 

minerogenic layer 

  26 – 27 0.87 0.73 Background level 

Río Tirua TR10/M1/1 38 – 39 8.13 1.24 
Immediately beneath 

minerogenic layer 

  44 – 45 0.87 0.73 Background level 

Chucalen CH11/M1/1 45 – 45.5 9.74 1.87 
Immediately beneath 

minerogenic layer 

  52 – 53 0.81 0.91 Background level 

 

Table 5.2: Summary of caesium-137 concentrations in samples from the three sites with possible 

evidence for the 1960 earthquake and tsunami.  
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Figure 5.6: Río Andalién 1960. Fossil diatom assemblages (species exceeding 10% only) from the 

sediment monolith. Assemblage summary based on modern species coefficients derived from the 

Regional WA-PLS transfer function model. Dr Emma Watcham counted all diatoms from Río 

Andalién as part of the Sediment Signatures project.  

 

 

 
 

Figure 5.7: Río Andalién 1960. Palaeomarsh surface elevation reconstructions for the sediment 

monolith using the Chiloé and Regional transfer function models. The graphs for the individual 

models show the sample specific standard errors. The modern analogue graphs on the right hand 

side summarise whether fossil samples have good (G), close (C) or poor (P) modern analogues in 

each model. I use the 5th percentile of the modern dissimilarity values as the threshold for a good 

modern analogue and the 20th percentile as the division between close and poor modern 

analogues. 
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Figure 5.8: Tirua 1960. Fossil diatom assemblages (species exceeding 10% only) from the core. 

Assemblage summary based on modern species coefficients derived from the Regional WA-PLS 

transfer function model. 
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Figure 5.9: Tirua 1960. Palaeomarsh surface elevation reconstructions for the core using the 

Chiloé and Regional transfer function models. The graphs for the individual models show the 

sample specific standard errors. The modern analogue graphs on the right hand side summarise 

whether fossil samples have good (G), close (C) or poor (P) modern analogues in each model. I use 

the 5th percentile of the modern dissimilarity values as the threshold for a good modern analogue 

and the 20th percentile as the division between close and poor modern analogues. 
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Figure 5.10: Chucalen 1960. Fossil diatom assemblages (species exceeding 10% only) from the sediment monolith. Assemblage summary based on 

modern species coefficients derived from the Regional WA-PLS transfer function model.  
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Figure 5.11: Chucalen 1960. Palaeomarsh surface elevation reconstructions for the sediment 

monolith using the Chiloé and Regional transfer function models. The graphs for the individual 

models show the sample specific standard errors. The modern analogue graphs on the right hand 

side summarise whether fossil samples have good (G), close (C) or poor (P) modern analogues in 

each model. I use the 5th percentile of the modern dissimilarity values as the threshold for a good 

modern analogue and the 20th percentile as the division between close and poor modern 

analogues. 
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Figure 5.12: Map of south central Chile with pie charts representing the location of the 10 closest 

modern analogues for pre- and post-tsunami samples, a. relating to the 2010 earthquake at Río 

Andalién (6 samples) and Tubul (8 samples) and b. relating to the 1960 earthquake at Río Andalién 

(6 samples), Río Tirua (6 samples) and Chucalen (16 samples).  
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Figure 5.13: Comparison of transfer function derived estimates of palaeomarsh surface elevation 

change with independent estimates of coseismic deformation for 1960 and 2010 at Río Mataquito 

(1), Tubul (2), Río Tirua (3) and Chucalen (4). Diagonal line is the 1:1 line, not a best-fit regression 

line. For 1960 I compare my estimates with Plafker and Savage’s (1970) sampling locations 1, 9 

and 45 and for 2010 I compare with the continuous GPS station at Concepción (Vigny et al., 2011) 

and benchmark relevelling at Tubul (Melnick et al., 2012a).  

 

 

 

 

Site Earthquake 

Palaeomarsh 

surface elevation 

rise (m ± 1σ) 

Published 

coseismic    

uplift (m ± 1σ) 

Reference 

 

Río  

Andalién 

2010 -0.75 ± 0.43 -0.035 ± 0.009 Vigny et al. (2011)  

1960 0.11 ± 0.45 0.30 ± 0.40 Plafker and Savage (1970)  

Tubul 2010 0.64 ± 0.67 1.49 ± 0.07 Melnick et al. (2012)  

Río Tirua 1960 -0.14 ± 0.72 -0.20 ± 0.40 Plafker and Savage (1970)  

Chucalen 1960 -1.15 ± 0.43 -1.00 ± 0.20 Plafker and Savage (1970)  

 

Table 5.3: Comparison of transfer function palaeomarsh surface elevation change reconstructions 

with published estimates of coseismic deformation during the 1960 and 2010 earthquakes. See 

table 5.1 for comparison of all transfer function model reconstructions. At Tubul, the absence of 

sand layers to guide sampling prevents a reconstruction for 1960. The lack of post-tsunami 

sedimentation prevents an estimate of 2010 deformation at Río Tirua. Chucalen lies over 300 km 

to the south of the displacements in 2010. 
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Figure 5.14: Scatter plot of maximum modern against maximum fossil abundances of all species 

occurring at the 2010 and 1960 sites. The black ellipse highlights species that further modern 

samples need to locate to ensure reconstructions fulfil statistical criteria.  
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6. Late Holocene records of earthquake occurrence: 

figures and tables 
 

 

 

 

 

 

 
 

  

Figure 6.1: Location of the fossil marsh sites. a. The 

rupture zones of the 2010 and 1960 earthquakes            

b. northern Isla de Chiloé and the adjacent mainland 

displaying the sites and locations referred to in this 

chapter. BQ: Bahía Quetalmahue.  

 



164 
 

 
 

Figure 6.2: Photographs of selected cleaned marsh front exposures at Chucalen. Labels A to D 

denote the buried soils. Scale bar divisions are 10cm in length. Photograph (a) courtesy of Rob 

Wesson.



165 
 

 
 

Figure 6.3: Stratigraphy of the coring transect at Chucalen. 
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Figure 6.4: Stratigraphy of the sampled marsh front exposure at Chucalen. a. photograph and sketch of the sampled exposure, b. loss on ignition (LOI) and particle size 

distributions.  
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Figure 6.5: Photographs displaying the variability in the form of the upper boundary of the buried 

soils. a. tree stump rooted in buried soil A (photograph courtesy of Rob Wesson, scale bar 

divisions 10cm), b. minerogenic inclusions in the upper margin of soil C in a recovered monolith 

(ruler divisions in centimetres).  
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Figure 6.6: Caption on following page 
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Figure 6.6 (previous page): Summary of diatom assemblages from the Chucalen marsh front exposure (species exceeding 10 %). Labels A to D denote the buried soils. 

Species classified as sub- or supra-MHHW based on modern species coefficients derived from the Regional WA-PLS transfer function model. Figure 5.10 also shows levels 

above 48.5 cm.  

 

 

 
 

Figure 6.7: Summary of diatom assemblages from the upper contact of buried soil B in core CH11/28 at Chucalen (species exceeding 10 %). Species classified as sub- or 

supra-MHHW based on modern species coefficients derived from the Regional WA-PLS transfer function model.  
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Lab code Sample code Depth (cm) 
Radiocarbon age 

(years BP ± 1σ) 
F

14
C ± 1σ 

Calibrated age ranges (2σ years AD) 

Minimum Maximum Probability (%) 

SUERC-39263 CH11/R1 29 - 29.5 modern 
1
 1.0646 ± 0.0065 2004 2006  

SUERC-39264 CH11/R2 32 - 32.5 modern 
2
 1.2056 ± 0.0076 

1960* 

1963* 

1984 

1960* 

1963* 

1988 

31.7 

1.2 

62.5 

SUERC-39265 CH11/R3 35 - 35.5 modern 
2
 1.4537 ± 0.0092 

1963* 

1972 

1964* 

1973 

6.5 

88.9 

SUERC-39266 CH11/R4 38 - 38.5 modern 
2
 1.5337 ± 0.0097 

1964 

1968 

1964 

1970 

4.1 

91.3 

SUERC-39269 CH11/R5 45 - 45.5 modern 
2
 1.0159 ± 0.0064 1954 1958 95.4 

SUERC-41189 CH11/R6 49 - 49.5 modern 
2
 1.0964 ± 0.0048 

1958 

1997 

1958 

>2001 

2.0 

93.4 

SUERC-41190 CH11/R7 52 - 53 234 ± 35 
3
  

1636 

1721 

1837 

1867 

1926 

1705 

1810 

1856 

1879 

1953 

30.4 

60.3 

0.9 

1.3 

2.5 

SUERC-43050 CH11/R8 60 - 61 modern 
3
 1.1042 ± 0.0052 

1958 

1996 

1959 

2000 

2.6 

92.8 

SUERC-43051 CH11/R9 63 - 64 285 ± 38 
3
  

1505 

1616 

1734 

1589 

1678 

1800 

25.5 

45.5 

24.4 

SUERC-43052 CH11/R10 66 - 67 427 ± 38 
3
  

1441 

1537 

1519 

1626 

59.3 

36.1 

SUERC-41191 CH11/R11 76 - 77 713 ± 35 
3
  

1278 

1338 

1328 

1391 

47.5 

47.9 

SUERC-41187 CH11/R13 82 - 82.5 950 ± 35 
3
  1041 1210 95.4 

SUERC-39270 CH11/R14 89 - 89.5 979 ± 51 
3
  1020 1210 95.4 

SUERC-40031 CH11/R15 92 - 92.5 680 ± 37 
3
  1290 1396 95.4 

SUERC-40032 CH11/R16 95 - 95.5 881 ± 37 
3
  

1053 

1150 

1063 

1274 

1.6 

93.8 
 

Table 6.1: Radiocarbon dates from 

Chucalen. Dates are reported as 14C 

years BP and calibrated to 2σ age 

ranges in years AD using 
1 comparison with data from Graven 

et al. (2012), 2 the post-bomb 

atmospheric southern hemisphere 

curve (Hua and Barbetti, 2004) and 
3 SHCal04 (McCormac et al., 2004) in 

a P_sequence deposition model 

(Bronk Ramsey, 2009a) developed in 

OxCal 4.1 (Bronk Ramsey, 1995), 

with a k value of 100 and depths in 

metres. At the time of writing (Dec. 

2012), results for a sample at 79-

80cm are not available. * Ranges 

rejected as F14C values and 

stratigraphic order indicate they 

must lie on the falling limb of the 

bomb spike (figure 6.9). 
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Figure 6.8: Calibrated age ranges for the Chucalen exposure radiocarbon samples. The red bars 

indicate the dates with calibration solutions younger than their stratigraphic position and the age 

of adjacent samples would suggest. Blue bars indicate the 11 samples used in the development of 

the age-depth model. 

 

 

 

 

 

 
 

Figure 6.9: Chucalen bomb spike samples, a. plotted as F14C against depth below the marsh 

surface and b. fitted to the post-bomb atmospheric southern hemisphere 14C curve (black line) of 

Hua and Barbetti (2004). Sample CH11/R5 must lie on the rising limb, sample CH11/R4 may lie on 

either the rising or the falling limb and samples CH11/R3 and CH11/R2 must lie on the falling limb. 
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Laboratory 

code 

Sample 

code 

Central 

depth 

(cm) 

Radiocarbon 

age (years BP 

± 1σ) 

F
14

C ± 1σ 

Calibrated age ranges 

(2σ years AD) 

P_sequence modelled 

calibrated age (2σ years AD) 

Posterior 

probability 

of being an 

outlier 

Agreement 

index 
Minimum Maximum Minimum Maximum 

Chucalen radiocarbon samples                Aoverall = 54.1 

SUERC-39264 CH11/R2 32.25 modern 
1
 1.2056 ± 0.0076 1982 1990 1974 1989 0.07 80.8 

SUERC-39265 CH11/R3 35.25 modern 
1
 1.4537 ± 0.0092 1971 1973 1970 1974 0.02 77.2 

SUERC-39266 CH11/R4 38.25 modern 
1
 1.5337 ± 0.0097 1961 1973 1964 1971 0.01 116.6 

SUERC-39269 CH11/R5 45.25 modern 
1
 1.0159 ± 0.0064 1952 1960 1951 1959 0.02 102.3 

SUERC-41190 CH11/R7 52.5 234 ± 35 
2
  1636 1953 1664 1952 0.04 100.3 

SUERC-43051 CH11/R9 63.5 285 ± 38 
2
  1505 1800 1495 1676 0.03 83.8 

SUERC-43052 CH11/R10 66.5 427 ± 38 
2
  1441 1626 1446 1621 0.03 107.7 

SUERC-41191 CH11/R11 76.5 713 ± 35 
2
  1278 1391 1271 1389 0.04 98.2 

SUERC-41187 CH11/R13 82.5 950 ± 35 
2
  1041 1210 1135 1264 0.07 76.4 

SUERC-39270 CH11/R14 89.25 979 ± 51 
2
  1020 1210 1049 1200 0.03 109 

SUERC-40032 CH11/R16 95.25 881 ± 37 
2
  1053 1274 1014 1207 0.10 21.6 

           

Interpolated ages for abrupt contacts      

 A 44.5     1951 1967   

 B 60     1520 1946   

 C 76     1270 1410   

 D 89     1050 1200   

 

Table 6.2: Radiocarbon dates used in the development of age-depth models for the Chucalen exposure and posterior age ranges for the four abrupt contacts. Dates are 

reported as 14C years BP and calibrated to 2σ age ranges in years AD using 1 the post-bomb atmospheric southern hemisphere 14C curve (Hua and Barbetti, 2004) and 
2 SHCal04 (McCormac et al., 2004) in a P_sequence deposition model (Bronk Ramsey, 2009a) in OxCal 4.1 (Bronk Ramsey, 1995), with a k value of 100 and depths in 

metres. Outlier analysis provides the posterior probability of each sample being an outlier; prior probabilities set to 0.05; posterior probabilities exceeding 0.4 

considered to be significant outliers. The agreement index indicates samples with dissimilar prior and posterior distributions; indices below 60 suggest a poor level of fit. 

Two sigma posterior age ranges for the four abrupt contacts are rounded to the nearest 10 years for all pre-1900 ages.  
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Figure 6.10: P_sequence age-depth model for the Chucalen exposure based on radiocarbon dates 

in table 6.2. Post-bomb samples are calibrated using the post-bomb atmospheric southern 

hemisphere 14C curve (Hua and Barbetti, 2004) and entered into OxCal v.4.1 (Bronk Ramsey, 1995) 

as C_Dates to make use of the unique solutions inferred from matching samples to the rising and 

falling limbs of the calibration curve (figure 6.9). Pre-bomb samples are calibrated using SHCal04 

(McCormac et al., 2004).  
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Figure 6.11: Palaeomarsh surface elevation 

reconstructions for the sampled exposure at 

Chucalen using the Chiloé and Regional 

transfer function models. The individual 

model graphs display sample specific standard 

errors. The modern analogue columns 

summarise whether fossil samples have good 

(G), close (C) or poor (P) modern analogues in 

each model. I use the 5th percentile of the 

modern dissimilarity values as the threshold 

for a good modern analogue and the 20th 

percentile as the division between close and 

poor modern analogues.  
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Figure 6.12: Palaeomarsh surface elevation reconstructions for the transition from organic to minerogenic sedimentation at the top of soil B in core CH11/28 at 

Chucalen. Reconstructions use the Chiloé and Regional transfer function models. The individual model graphs display sample specific standard errors. The modern 

analogue columns summarise whether fossil samples have good (G), close (C) or poor (P) modern analogues in each model. I use the 5th percentile of the modern 

dissimilarity values as the threshold for a good modern analogue and the 20th percentile as the division between close and poor modern analogues.  
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Submergence 

burying soil 

Magnitude of change (m ± 1σ) 

Chiloé model Regional model 

A -1.15 ± 0.43 -1.09 ± 0.53 

B (exposure) 

B (core CH11/28) 

-0.34 ± 0.44 

-0.16 ± 0.58 

-0.32 ± 0.54 

-0.48 ± 0.65 

C -0.97 ± 0.57 -0.92 ± 0.63 

D -0.59 ± 0.47 -0.94 ± 0.57 

 

Table 6.3: Submergence estimates for the four buried soils at Chucalen, based on the Chiloé and 

Regional transfer function models. All estimates are corrected for sedimentation. 

 

 

 

 

 
 

Figure 6.13: Comparison of posterior probability density functions and two sigma age ranges 

(coloured bars) constraining the timing of submergence events at Chucalen (derived from the age 

model in figure 6.10) with pooled age ranges constraining the oldest possible timing for tsunami 

occurrence at Maullín (Cisternas et al., 2005). Numbers on Maullín curves indicate the number of 

dates pooled to provide the calibration solution. 
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Figure 6.14: Lithology at Maullín. a. cross section of Cisternas et al.’s (2005) main trench transect 

below a low terrace approximately 0.4 km inland from the marsh front; b. photograph and sketch 

of the marsh front exposure sampled in 2012. 
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Figure 6.15: Summary of Cisternas et al.’s (2005) radiocarbon determinations from Maullín. 

Coloured probability distributions signify the samples or pooled samples that provide limiting 

dates for the burial of each soil. Samples combined before calibration using the R_Combine 

function in OxCal v.4.1 (Bronk Ramsay, 1995). All samples calibrated using SHCal04 (McCormac et 

al., 2004). Horizontal lines indicate two sigma age ranges, which are given in numbers next to 

each limiting date. Cisternas et al. (2005) exclude sample Beta-191254 as it lies seven standard 

deviations from the pooled mean for soil C.  
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Figure 6.16: Summary of diatom assemblages from the Maullín marsh 

front exposure (species exceeding 10 %). Labels A to D denote the 

buried soils. Species classified as sub- or supra-MHHW based on modern 

species coefficients derived from the Regional WA-PLS transfer function 

model. 
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Figure 6.17: Palaeomarsh surface elevation 

reconstructions for the sampled exposure at Maullín 

using the Chiloé and Regional transfer function 

models. The individual model graphs display sample 

specific standard errors. The modern analogue 

columns summarise whether fossil samples have good 

(G), close (C) or poor (P) modern analogues in each 

model. I use the 5th percentile of the modern 

dissimilarity values as the threshold for a good 

modern analogue and the 20th percentile as the 

division between close and poor modern analogues. 
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Submergence 

burying soil 

Magnitude of change (m ± 1σ) 

Chiloé model Regional model 

A -1.35 ± 0.45 -1.29 ± 0.57 

B -0.29 ± 0.44 -0.19 ± 0.54 

C -1.35 ± 0.46 -1.09 ± 0.56 

D -1.18 ± 0.45 -1.39 ± 0.55 

 

Table 6.4: Submergence estimates for the four buried soils at Maullín, based on the Chiloé and 

Regional transfer function models. All estimates are corrected for sedimentation. 

 

 

 
 

Figure 6.18: Lithostratigraphy of the sampled exposure at Cocotue. Mean sea level lies 

approximately two metres below the base of the exposed section.  
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Figure 6.19: Summary of diatom 

assemblages from the Cocotue exposure 

(species exceeding 10 %). Labels A to E 

denote the buried soils. I recovered 

separate monoliths for each buried soil 

from a four metre wide exposure, 

resulting in a degree of overlap in depth 

below the modern marsh surface. 

Species classified as below or above 

MHHW based on modern species 

coefficients derived from the Regional 

WA-PLS transfer function model. 
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Figure 6.20: Palaeomarsh surface elevation 

reconstructions for the sampled exposure at Cocotue 

using the Chiloé and Regional transfer function 

models. The individual model graphs display sample 

specific standard errors. The modern analogue 

columns summarise whether fossil samples have good 

(G), close (C) or poor (P) modern analogues in each 

model. I use the 5th percentile of the modern 

dissimilarity values as the threshold for a good 

modern analogue and the 20th percentile as the 

division between close and poor modern analogues. 
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Figure 6.21: Map showing the location of the 10 closest modern analogues for fossil samples from 

Chucalen (75 samples), Maullín (32 samples) and Cocotue (31 samples). Map B shows the Valdivia 

estuary, including the location of the Isla del Rey and Río Angachilla transects (Nelson et al., 2009) 

and map C shows northern Isla de Chiloé and the adjacent mainland, including the location of the 

modern transects at Puente Quilo and Estero Guillingo and the fossil sites at Chucalen, Maullín 

and Cocotue. The data are expressed as percentages, with the pie diameter proportional to the 

number of samples at each site. 
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7. Discussion and conclusions: figures and tables 
 

 

 

 

 

 

 
 

Figure 7.1: Comparison of the timing of earthquakes inferred from coastal stratigraphic records 

with the four historically documented south central Chilean megathrust earthquakes. a: Posterior 

probability distributions for the four submergence events at Chucalen derived from the age-depth 

model in figure 6.10, b: limiting oldest probability distributions for the four most recent 

submergence events at Maullín, based on individual or pooled dates from figure 6.15 (Cisternas et 

al., 2005), c. summary of historical evidence (after Berninghausen, 1962; Lomnitz, 1970, 2004; 

Reed et al., 1988; Cisternas et al., 2005). Numbers on Maullín probability distributions refer to the 

number of radiocarbon dates pooled.  
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Figure 7.2: Summary of historical and palaeoseismic evidence for Valdivia segment earthquakes 

over the last 1000 years. Historical records summarised by Heck (1947), Berninghausen (1962); 

Lomnitz (1970), Reed et al. (1988) and Cisternas et al. (2005); stratigraphic and biostratigraphic 

evidence from Cisternas et al. (2005, 2007), Nelson et al. (2009) Ely et al. (2010), Melnick (2010), 

Garrett et al. (accepted) and this study; lake records from Bertrand et al. (2008), Moernaut et al. 

(2007), Chapron et al. (2006); dendroecological change from Kitzberger et al. (2005); marine 

turbidites from Chapron et al. (2006). The black dashed line highlights 1960 rupture zone (after 

Plafker and Savage, 1970); the blue dashed ellipse encompasses a 750 km hypothesised rupture 

zone (following Reed et al., 1988); the red ellipse illustrates a 500 km rupture hypothesised by this 

thesis. The grey shaded box indicates the area south of central Chiloé with no permanent 

historical population and consequently few documentary records.  
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Figure 7.3: One thousand years of relative sea-level change at a. Chucalen and b. Maullín. 

Coloured boxes reflect age and elevation errors, black lines follow centre points of boxes and 

indicate the coseismic deformation events. Ages derived from P_sequence age modelling (section 

6.2.3) for Chucalen and from radiocarbon dates from Cisternas et al. (2005) for Maullín. Vertical 

errors represent the cumulative error associated with sample specific transfer function error, core 

top elevation and sample depth (section 3.5.6). 
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Figure 7.4: Relative sea-level change at Chucalen and Maullín in a mid to late Holocene context. 

a. ICE5G (VM2) modelled relative sea level change from 21ka BP to present for 73°45’W 41°45’S 

(Peltier, 2004; data provided by Pippa Whitehouse, pers. com., 2012); b. relative sea level curve 

for northern Chiloé and the adjacent mainland (Atwater et al., 1992; Cisternas et al., 2005; this 

study) with ICE5G modelled curves for south central and north central Chile; c. reconstructed 

Patagonian Neoglacial oscillations using two chronologies proposed by Ivins and James (2002), 

based in orange on Mercer (1970) and in blue on Aniya (1995).  

  



189 
 

Appendix 1.1 
 

 

 

 

 

 

The following paper has been accepted for publication in Quaternary Science Reviews (April 

2013). 

 

 

 

Reconstructing paleoseismic deformation, 1: modern analogues from the 1960 and 2010 Chilean 

great earthquakes 

 

E. Garrett a , I. Shennan a *, E.P. Watcham a, b and S.A. Woodroffe a  

 

a Durham University, Sea Level Research Unit, Department of Geography, South Road, Durham, 

DH1 3LE, UK 
b Current address: Northumbria University, School of the Built and Natural Environment, Ellison 

Building, Newcastle-upon-Tyne, NE1 8ST, UK 

*Corresponding author: email: edmund.garrett@durham.ac.uk, Tel: +44 (0)191 334 1954 

 

Abstract 

 

The 1960 and 2010 Chilean great earthquakes provide modern analogues for the sedimentary 

signatures of the largest megathrust events and their accompanying tsunamis. This paper 

presents lithological and diatom assemblage data from five sites and provides key insights for the 

development of longer earthquake chronologies, essential for assessing the seismic hazards 

associated with a subduction zone. We find that the 1960 and 2010 tsunami deposits are 

fragmentary, variable and have no unique, diagnostic diatom assemblage. Where rapid post-

seismic sedimentation occurs, our diatom-based transfer function model gives estimates of 

coseismic deformation that agree with independent estimates of land-level change. Sedimentary 

hiatuses at two sites following the 2010 earthquake suggest that the magnitude of coseismic 

deformation may be underestimated in fossil records. Where sediment accumulation allows, 

criteria for distinguishing between seismic and non-seismic stratigraphies based on evidence for 

the largest plate boundary earthquakes are corroborated by the lesser magnitude earthquake of 

2010. The key to reconstructing earthquake characteristics, such as rupture magnitude and 

differences between plate-boundary and upper plate sources, depends on applying explicit 

stratigraphic assessment criteria at multiple sites in order to identify the spatial pattern of 

deformation associated with each earthquake.  

 

 

Keywords: 1960 Valdivia earthquake; 2010 Maule earthquake; earthquake reconstruction; 

tsunami; diatoms 
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1. Introduction 

 

The Chilean megathrust creates great earthquakes exceeding moment magnitude (Mw) 8, 

including the greatest magnitude ever recorded, the 1960 Mw 9.5 rupture of the Valdivia segment, 

and the Mw 8.8 Maule earthquake of 27th February 2010. These earthquakes are characterised by 

intense, long duration shaking, significant land surface deformation, generation of near-field 

tsunamis along the Chilean coast and may spawn destructive trans-Pacific tsunamis. Paleoseismic 

research at other subduction zones suggests historical and instrumental records may be too short 

to adequately assess the recurrence of the greatest magnitude seismic hazards, a factor 

contributing to inadequate anticipation of the 2004 Sumatra-Andaman and 2011 Tohoku 

megathrust earthquakes (Stein & Okal, 2011). Records kept by Spanish settlers and visiting 

Europeans indicate four megathrust earthquakes in the Valdivia segment over the last 500 years 

but current paleoseismic evidence records only some of these. Using evidence from tidal marshes, 

Cisternas et al. (2005) propose a 300-year recurrence interval between the largest ruptures, with 

the megathrust remaining partly loaded with accumulated plate motion through smaller 

intervening earthquakes. Differences between the historical and paleoseismic evidence may 

reflect variations in the size of the rupture zones of megathrust earthquakes; alternatively, 

interseismic land uplift may lead to low sediment accumulation or erosion of tidal marshes so the 

sediments record only a partial chronology of great earthquakes. Given the range of processes 

that may control the preservation of paleoseismic evidence (McCalpin and Carver, 2009), we 

require correlation of evidence from multiple sites in order to reconstruct the dimensions of land 

surface deformation and therefore estimate the extent of the segment rupture for each event 

(Nelson et al., 1996; Atwater and Hemphill-Haley, 1997; Atwater et al., 2005). Analysis of the 

sedimentary record of the 1960 and 2010 earthquakes provides potential modern analogues for 

building century to millennial scale paleoseismic records for different segments of the Chilean 

megathrust. 

 

Following both the 1960 and 2010 earthquakes, measurements of the displacement of coastal 

landforms and biotic environments, such as shore platforms and intertidal encrusting molluscs, 

provided the first quantitative maps of coseismic land uplift and subsidence, essential for 

constraining models of slip distribution (Plafker and Savage, 1970; Moreno et al., 2009; Farías et 

al., 2010; Lorito et al., 2011; Vargas et al., 2011; Melnick et al., 2012). Such records can be 

fragmentary in both space and time and sedimentary records from tidal marshes can significantly 

enhance the paleoseismic record of both the coseismic deformation and changes through 

complete earthquake deformation cycles (Hamilton and Shennan, 2005). In this paper we aim to 

develop quantitative reconstructions of relative land surface deformation during the 1960 and 

2010 earthquakes based on lithostratigraphy and diatom assemblages from five sites. We 

compare our results with other estimates of coseismic deformation and use our findings to test 

the applicability of criteria developed in studies of the Cascadia subduction zone to differentiate 

between sedimentary evidence of relative land- and sea-level changes of seismic and non seismic 

origins (Nelson et al., 1996). The Cascadia studies, from Atwater’s (1987) seminal paper onwards, 

made comparisons with the 1960 Chilean earthquake and the 1964 Mw 9.2 earthquake in Alaska. 

Nelson et al. (1996) suggested their criteria would apply to magnitude 8+ earthquakes and the 

2010 Mw 8.8 Maule earthquake provides the opportunity to directly test them. Finally, we assess 

the application and limitations of stratigraphic and microfossil approaches for developing 

Holocene records of multiple earthquake deformation cycles in Chile. 
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2. Study area and methods 

 

In August 2010, six months after the 27th February Maule earthquake, we completed field 

investigations of tidal marshes at five sites, which we number from north to south for ease of 

reference (Fig. 1). Sites 1 and 2 lie in the 2010 segment, sites 3 and 4 in the area where the 1960 

and 2010 segments overlap, and site 5 is near the centre of the 1960 segment. The spatial pattern 

of deformation varies longitudinally within each rupture zone, with distance from the trench 

controlling the zones of coseismic uplift and subsidence (Fig. 1). We targeted tidal marshes as 

they may preserve evidence of land-level changes and tsunami inundation in their sediment 

stratigraphy (Atwater, 1987; Cisternas et al., 2005; Hamilton and Shennan, 2005). We employed 

transects of pits and short cores across marshes and adjacent coastal lowlands to assess the type, 

continuity and extent of 2010 tsunami deposition and the lateral extent and net accretion of 

sediments laid down since the earthquake. Any sub-surface sand layers were also documented 

and we use local testimony, comparison with other studies and caesium-137 (137Cs) 

concentrations to suggest which relate to tsunami deposition following the 1960 earthquake. 

 

We selected cores from each transect for further laboratory analyses, including diatom 

assemblages and grain size variations, to reconstruct relative sea-level changes and to assess the 

composition of tsunami deposits. Laboratory preparation of diatoms followed standard methods 

(Palmer and Abbott, 1986) with a minimum of 250 diatom valves counted per sample. Diatoms 

live at the sediment surface (epipelic or epipsammic), attached to vegetation (epiphytic) or in the 

water column (planktonic) and respond to variations in their environment, including salinity and 

frequency of tidal inundation (e.g. Vos and de Wolf, 1993). Diatoms may provide information on 

the depositional environment and source of sediments to a coastal area, for example they can be 

used to distinguish tsunami deposits from other sediments and help identify the source of 

tsunami lain sand (Dawson et al., 1996; Dawson, 2007; Hemphill-Haley, 1996; Horton et al., 2011).  

 

Diatom assemblages can also provide estimates of coseismic land movement with decimetre 

precision (e.g. Shennan et al., 1996; Hamilton and Shennan, 2005; Zong et al., 2003). We estimate 

coseismic deformation for each site by comparing the diatom assemblages from sediments 

deposited before and after the earthquake with the modern distribution of diatoms at two tidal 

marshes in northern Isla de Chiloé, site 5, and data collected by Nelson et al. (2009). We use 

modern diatom samples collected in 2010 from site 5 only as it was not affected by elevation 

change or tsunami inundation in 2010. To account for variations in tidal ranges between sites, we 

convert the elevation of each modern sample to a standardized water level index (SWLI), whereby 

a SWLI value of 100 represents mean sea level and 200 represents mean higher high water 

(Hamilton and Shennan, 2005). We define:    

      

    n   
     n   S  

    W   S 

             (1) 

 

Where: 

SWLIn is the standardised water level index for sample n 

hn is the elevation of sample n 

hMSL is Mean Sea Level at the site 

hMHHW is Mean Higher High Water at the site 
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We follow the transfer function approach outlined by Hamilton and Shennan (2005), first using 

detrended canonical correspondence analysis (DCCA) to determine the requirement for a 

unimodal method, then developing a transfer function model that can produce reconstructions of 

marsh surface elevations, with error terms, from fossil diatom sequences (Software: C2 version 

1.7.2, Juggins, 2011). Estimates of coseismic deformation compare pre- and post-earthquake 

marsh surface elevations, accounting for the thickness of any tsunami deposit. We define the 

uncertainty for each estimate of coseismic deformation: 

       

          √  P E            P ST               (2) 

 

Where: 

CD error is the 1σ error of the coseismic deformation estimate  

EPRE error and EPOST error are the sample specific standard errors for samples preceding and 

following the deformation event respectively. 

 

3. Transfer function model development 

 

The modern training set comprises 96 samples collected in 2010 and 32 collected by Nelson et al. 

(2009) in 1989 (supplementary table A.1). DCCA confirms a unimodal relationship between 

modern diatom distributions and elevation (environmental gradient >2 standard deviations, Birks, 

1995) and we use weighted averaging partial least squares regression (WA-PLS) with 

bootstrapping cross-validation (ter Braak and Juggins, 1993; Birks, 1995). We chose the three-

component model over one and two-component models, as it has the highest r2 value, a more 

linear distribution of observed against predicted values and a RMSEP improvement of at least 5 % 

with the addition of each extra component (Fig. 2). Increased precision can be obtained by 

reducing the range of sampled elevations; however we currently have no independent measure 

to select a model using a narrower elevation range, as applied in Alaska where the data set is 

more than twice the size (Hamilton and Shennan, 2005). 

 

Given the distance between sites and their different environmental conditions, we may not 

expect the modern training set to fully reflect the range of diatom assemblages and environments 

that exist in fossil samples, even though the number of samples exceeds the minimum required to 

give sample-specific error terms in WA-PLS. We use an analogue measure, modern analogue 

technique (MAT) to quantify the similarity between each fossil sample and the modern training 

set using a squared chord distance dissimilarity method (Birks, 1995). We use the 5th percentile of 

the dissimilarity values for the modern samples as the threshold between a ‘good’ and ‘close’ 

modern analogues for each fossil sample and the 20th percentile as the cut-off for a ‘poor’ 

modern analogue. 

 

4. Results and reconstructions of deformation 

  

4.1 Site 1: Río Mataquito 

 

The site lies within the 2010 segment and north of the 1960 segment (Fig. 1). The Río Mataquito is 

deflected northwards by an 8 km long supratidal sand spit at its confluence with the Pacific. The 

spit was largely submerged following coseismic deformation in 2010 or eroded by the ensuing 

tsunami which crested 11 m above tide level (Fig. 3; Vargas et al., 2011). Our transect of short 
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cores from a tidal marsh close to the pre-earthquake river mouth shows the 2010 tsunami deposit 

to be of variable thickness. The grey sand sheet exceeds 0.4 m in thickness close to the river 

channel, and thins in a landward direction (Fig. 4). The lower contact is abrupt, with occasional 

above ground parts of terrestrial plants preserved immediately beneath and within the sand, 

pointing in the direction of flow as they were flattened by tsunami inundation. The deposit is 

normally graded and is both coarser grained and less organic than the underlying tidal marsh 

sediments. 

 

Diatom assemblages from the tsunami deposit are characterised by epipelic and epipsammic taxa, 

with a significant minority, ~ 30 %, of planktonic forms (Fig. 5). Almost 65 % of the tsunami 

assemblage is characterised by diatom species identified by the transfer function model as 

reflecting environments above mean higher high water. A further 25 % of the assemblage consists 

of species not encountered in the modern tidal marshes, with the remaining 10 % corresponding 

to species indicative of environments below mean higher high water.  

 

Despite an increase in accommodation space resulting from the reported coseismic subsidence, 

(Vargas et al., 2011; Vigny et al., 2011), we do not record any post-tsunami sediment 

accumulation in the six month interval between the earthquake and field sampling and, therefore, 

no estimate of coseismic deformation is possible using the diatom-based transfer function.  

 

4.2 Site 2: Río Andalién 

 

The site lies within the 2010 segment and immediately north of the 1960 segment (Fig. 1). Tidal 

marshes occupy the broad north-facing embayment of the Bahía de Concepción between 

Talcahuano and Penco. Estimates of coseismic movement in 2010 indicate uplift to the west (Fritz 

et al., 2011) and subsidence to the south (Vigny et al., 2011). Watermarks in Talcahuano and 

Penco indicate 2010 tsunami flow depths of between 4 and 7 m (Fritz et al., 2011) and a 

maximum inundation distance across the low lying tidal marshes of 2.6 km (Morton et al., 2011). 

We investigated two transects from the eastern edge of the embayment, alongside the Río 

Andalién (Fig. 2).  

 

2010 earthquake and tsunami 

The 2010 tsunami deposit is a largely continuous sand sheet with occasional rounded mud rip-up 

clasts. The normally graded deposit is generally less than 0.1 m thick and both transects exhibit 

landward thinning (Fig. 4). The lower boundary is abrupt, however vegetation was generally found 

to have remained in growth position, rather than having been flattened beneath the sand layer. 

Diatoms that live attached to sediment account for more than 75 % of the 2010 tsunami 

assemblage (Fig. 5). The summary assemblages (Fig. 6a) show that the tsunami deposit has a 

greater proportion of species indicative of lower elevations than the underlying tidal marsh 

sediment, reflecting net sediment transport from the lower intertidal and perhaps subtidal zone 

during the tsunami. 

 

Six months after the earthquake, postseismic sediment accumulation had reached a maximum of 

20 mm. Pre- and post-tsunami diatom assemblages indicate subsidence of 0.75 ± 0.43 m (Fig. 6a), 

but we note the poor modern analogues and discuss this further in section 5.3.  

 

1960 earthquake and tsunami 
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A second sand layer occurs approximately 0.2 m below the present ground surface (Fig. 4). 

Comparison of the colour, grain size and nature of the lower contact with the 2010 tsunami 

deposit suggests that this lower sand layer was also deposited by a tsunami. Numerous significant 

tsunamis have struck the coast of central Chile, including major events in 1960, 1835, 1751, 1730, 

1657, 1575 and 1570 (Cisternas et al., 2005; Lomnitz, 2004). Tide gauge data from Talcahuano 

indicate that the 1960 tsunami reached heights of 3 m within Bahía de Concepción (Sievers et al., 

1963). Comparable tide gauge measurements of the 2010 tsunami were approximately 0.65 m 

lower, suggesting that the 1960 tsunami was also of sufficient size to erode, transport and deposit 

intertidal sediments within the bay. We find elevated 137Cs concentrations immediately below the 

sand layer; this indicates deposition no earlier than the beginning of atmospheric nuclear testing 

in 1952, suggesting that the sand layer was deposited in 1960.  

 

Diatom assemblages from this deposit are highly mixed, with epiphytic species and those that live 

attached to sediment contributing the majority of the assemblage (Fig. 5). Planktonic species are 

rare, accounting for less than 5 % of the assemblage. Species indicative of elevation classes above 

and below mean higher high water occur approximately equally (Fig. 7a), giving no clear 

indication of predominant sediment source.  

 

Pre- and post-tsunami diatom assemblages are generally similar, with the largest changes in 

species that are not characterised by our modern assemblage data (Fig. 7a). Quantitative 

reconstructions indicate uplift of 0.11 ± 0.45 m, again noting the poor modern analogue 

classifications.  

 

4.3 Site 3: Tubul 

 

Tubul lies in the area where the 2010 and 1960 segments overlap (Fig. 1). The Tubul and Raqui 

rivers drain a substantial sheltered tidal and freshwater marsh on the northern edge of the 

Arauco Peninsula (Fig. 1, 3). Estimates of coseismic movement in 2010 indicate uplift of between 

1 and 2 m (e.g. Farías et al., 2010, Melnick et al., 2012). Our coring transects ranged from 

intertidal mud and sand flat to freshwater marsh above the influence of tides. 

 

2010 earthquake and tsunami 

Despite tsunami flow depths estimated at over 5 m (Fritz et al., 2011), we did not observe a 

surficial or subsurface tsunami deposit at any location on our transects. This may reflect local 

effects of coseismic uplift reducing the potential tsunami inundation distance inland and the 

position of our sampling area with respect to the open coast. 

 

Although we noted no change in sediment lithology in the field, laboratory analysis of the 

uppermost 5 mm of the recovered sediment profile shows a significant change in diatom 

assemblage (Fig. 6b). Our reconstruction indicates coseismic uplift of 0.64 ± 0.67 m, with close 

modern analogues for the pre-earthquake samples.  

 

4.4 Site 4: Río Tirua 

 

The Río Tirua meanders through a low-lying coastal plain, characterised by tidal and freshwater 

marsh environments. The site is close to the southern limit of surface deformation in 2010 and 
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within the 1960 segment (Fig. 1). Intertidal mussels indicate coseismic uplift of between 0.5 and 

1 m in 2010 (Melnick et al., 2012). Our transect lies ~ 1 km from the open coast (Fig. 3). 

 

2010 earthquake and tsunami 

While tsunami runup reached 20 m on the exposed rocky shoreline to the southwest, heights 

closer to the river mouth were approximately half as large (Bahlburg and Spiske, 2012; Fritz et al., 

2011; Vargas et al., 2011). The 2010 tsunami deposited a grey sand layer which we traced along 

the incised banks of the Río Tirua. The deposit exceeds 0.1 m in thickness and thins upstream and, 

more rapidly, away from the river channel (Fig. 4). The lower contact is abrupt, with frequent 

flattened stems below and encased within the base of the deposit.  

 

The tsunami diatom assemblage is predominately composed of species that live attached to 

sediment, with some epiphytic forms (Fig. 5). Taxa favouring the lower elevations of the modern 

transects contribute 25 to 45 % of the assemblage, with species not found in the modern marshes 

providing a further 30 % (Fig. 6c).  

 

There was no identifiable postseismic sedimentation six months after the 2010 earthquake. 

Tsunami-lain sand was still visible at the surface in January 2012, almost two years after the 

earthquake. No estimate of coseismic deformation is possible using the diatom-based transfer 

function.  

 

1960 earthquake and tsunami 

We observed a second sand layer, analogous to that deposited by the 2010 tsunami, at a depth 

varying between 0.1 and 0.4 m alongside the Río Tirua. The contact with underlying marsh 

sediments is abrupt. Elevated 137Cs concentrations in the buried marsh surface and the testimony 

of local residents who experienced the event suggest that this layer relates to the tsunami 

associated with the 1960 earthquake. Tsunami runup on Isla Mocha, 30 km offshore from the 

mouth of the Río Tirua, exceeded 15 m (Sievers et al., 1963), but the wave height as it approached 

the mainland in this sector is unknown. By way of comparison, runup during 2010 exceeded 20 m 

on Isla Mocha (Fritz et al., 2011); however the difference may result from the different approach 

directions of the two tsunamis. The 1960 tsunami deposit is generally thinner and more 

fragmented than the 2010 deposit (Fig.4), as we also noted for site 2, Río Andalién.  

 

The 1960 sand layer is characterised by a higher proportion of epiphytic and planktonic species 

than the 2010 deposit, although epipelic and epipsammic species still contribute more than half 

of the total assemblage (Fig. 5). Species indicative of elevations above mean higher high water are 

dominant in most of the tsunami samples; however a peak in the abundance of one species 

results in almost 50 % of one sample consisting of diatoms of unknown elevation preference (Fig. 

7b).  

 

Pre- and post-tsunami diatom assemblages are generally similar; however there are no close 

modern analogues for any of the samples. Our marsh surface reconstructions are 

indistinguishable from zero, 0.03 ± 0.72 m (Fig 7b).  

 

 

 

 



196 
 

4.5 Site 5: Chucalen 

 

On the north west of Isla de Chiloé, tidal marshes line the western fringe of Bahía Quetalmahue, 

sheltered from the Pacific Ocean by the Lacui Peninsula (Fig. 1). This region is close to the centre 

of the 1960 segment and ~ 400 km south of the 2010 segment. There was no tsunami recorded 

here in 2010. 

 

1960 earthquake and tsunami 

At Chucalen we traced a grey sandy deposit through a 100 m long transect at depths of between 

0.1 and 0.35 m below the present marsh surface (Fig. 4). The normally graded deposit decreases 

in thickness with increasing elevation and distance from the marsh front. The contact with the 

underlying marsh sediments is abrupt. Through comparison with preliminary investigations by 

Bartsch-Winkler and Schmoll (1993), 137Cs concentrations and statements from local residents, we 

correlate this deposit with the 1960 tsunami. Witnesses suggest that a series of three waves 

resulted in runup exceeding 15 m on exposed headlands on the northern edge of the Lacui 

Peninsula, with 5 m waves striking Ancud, decreasing to 1.5 m in Bahía Quetalmahue (Sievers et 

al., 1963). Bartsh-Winkler and Schmoll (1993), however, suggested waves of several times this 

magnitude may have entered the Quetalmahue estuary across the isthmus that joins the Lacui 

Peninsula, close to our sampling area. 

 

Diatoms that live attached to sediment account for almost three quarters of the tsunami deposit 

assemblage at Chucalen, with diatoms of unknown life form making up the second largest 

component (Fig. 5). When classified by modern distribution, the tsunami deposit exhibits a 

greater proportion of species indicative of lower elevations than those from the underlying tidal 

marsh sediment (Fig. 7c). 

 

Diatom assemblages in sediments immediately above and below the tsunami deposit show a 

change from species characteristic of the highest elevations of modern tidal marshes to taxa more 

tolerant of regular tidal inundation (Fig. 7c). Paleomarsh surface elevation reconstructions 

indicate land subsidence of 1.12 ± 0.53 m. 

 

5. Discussion 

 

5.1 Tsunami deposition 

 

The tidal marshes investigated here demonstrate a variable and fragmentary record of tsunamis 

associated with two great earthquakes in 1960 and 2010. We found no 2010 tsunami deposit at 

one of the four marshes adjacent to the rupture zone. Where present, it is composed of more 

than 85 % sand and abruptly overlies finer grained, more organic tidal marsh sediments, 

frequently preserving flattened but still rooted terrestrial plants at their contact. Flattened 

vegetation assists in determining tsunami flow direction (e.g. Morton et al., 2011). The extent and 

continuity of the deposit is highly variable. At Río Mataquito, site 1, the sand layer reaches a 

maximum of 0.40 m in thickness, however accumulations of 0.05 to 0.15 m are more common 

both at this site, and at the other sites investigated. Comparable 2010 tsunami deposit 

thicknesses are reported by Horton et al. (2011) and Morton et al. (2011). At our sites the 2010 

deposit fines in a landward direction, reflecting decreasing sediment transport as the wave train 
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moved inland. We attribute further along-transect variability in the thickness of the deposit to 

variable vegetation cover and pre-tsunami surface topography (Morton et al., 2007).  

 

The 1960 tsunami deposit is preserved as a continuous stratigraphic layer only at Chucalen, site 5, 

in the central part of the rupture segment. Towards the northern limit of the 1960 segment it is 

absent from site 3, Tubul and fragmented at site 4, Río Tirua. It is present, though fragmented at 

site 2, Río Andalién, just north of the segment boundary, and we did not encounter any buried 

sand layers at site 1. Where present, the deposit is similar to the 2010 tsunami layer: sand-rich 

and abruptly overlying organic tidal marsh sediment. The thin and fragmentary nature of the 

deposit, despite the significant size of the 1960 tsunami, may indicate postseismic erosion prior to 

burial and encasement into the sediment record. 

 

Diatom assemblages from tsunami sand layers vary both between different sites for the same 

tsunami and between different tsunamis at the same site. There is no unique tsunami diatom 

assemblage. Rather, the assemblage reflects the local sediment source, with mixed assemblages 

of different salinity preferences, different life forms and different habitats. Diatom assemblages 

are likely to be mixed as tsunamis inundate inland areas and erode, transport and redeposit 

marine, inter-tidal and non-marine sediments. Similar mixed assemblages including freshwater, 

brackish and marine species are observed in tsunami deposits at Pichilemu, central Chile, 

reported by Horton et al. (2011), and are consistent with observations in modern and 

paleotsunami deposits elsewhere (Hemphill-Haley, 1996; Atwater and Hemphill-Haley, 1997; 

Tuttle et al., 2004; Dawson, 2007; Sawai et al., 2008).  

 

5.2 Estimating coseismic land-level change 

 

Transfer function models provide estimates of coseismic land surface deformation for two of the 

five sites in 2010 and three sites in 1960. The lack of post-earthquake sedimentation or the 

absence of a 1960 tsunami deposit to guide our sampling approach precludes the quantification 

of deformation at the remaining sites. Despite our reservations based on the lack of good modern 

analogues, our reconstructions compare favourably with published estimates of coseismic land-

level change (Fig. 8). This confirms the potential of using diatom-based transfer function models 

to quantify coseismic movement from previous great earthquakes in this region. The apparent 

offset for the 2010 data (Fig.8) may be the effect of the lack of good modern analogues, but it 

may also reflect the different measures of coseismic subsidence. The GPS and benchmark 

relevelling data relate to the vertical movement of rock surfaces, whereas marsh sediments may 

undergo additional local scale subsidence due to ground shaking and dewatering leading to 

sediment consolidation. This was observed at numerous locations in Alaska during the 1964 Mw 

9.2 earthquake (Plafker, 1969) and the Mw 8.1 and 8.2 earthquakes in 1899 (Plafker and Thatcher, 

2008). The estimates by Plafker and Savage (1970) for coseismic motions in 1960 may also 

incorporate some local sediment consolidation, for example their estimate from close to our site 

5 based on comparison of the lower growth limit of pre- and post-earthquake vegetation. 

 

5.3 Limitations and improvement of quantitative reconstructions of relative land- and sea-level 

change 

 

Although the current modern training set includes samples from four transects in two locations 

and from modern environments ranging from unvegetated tidal flat below mean sea level to 
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above the highest limits of tidal inundation, many of the fossil samples do not have a ‘good’ or 

‘close’ modern analogue. While this is, in part, a result of our selected percentile thresholds that 

are stricter than those used in some other studies, the apparent dissimilarity between modern 

and fossil diatom assemblages remains a cause for concern. We highlight this lack of modern 

analogues as a limitation of the current study and advocate the need for larger training sets, 

preferably from a wide range of sites. The modern samples are from locations well to the south of 

sites 1 to 4 and there may be a spatial control on diatom assemblages that we are currently 

unable to assess. Ongoing postseismic deformation and the lack of significant sedimentation 

preclude the collection and use of samples from sites within the 2010 rupture zone and further 

investigations should focus on the northern half of the 1960 rupture zone.  

 

Accurate estimates of the magnitude of coseismic deformation depend on the recommencement 

of sediment accumulation before significant postseismic deformation has occurred. The four 

marshes in the 2010 rupture zone showed variable responses six months after the earthquake. At 

site 1, no postseismic sedimentation followed coseismic subsidence and tsunami deposition. Up 

to 20 mm of sedimentation followed coseismic subsidence and tsunami deposition at site 2. At 

site 3, up to 5 mm of sedimentation followed coseismic uplift and no tsunami sedimentation and 

by early 2012, vegetated marsh was developing on previously unvegetated tidal flat. At site 4, no 

postseismic sedimentation had occurred almost two years after coseismic uplift and tsunami 

sedimentation in 2010. These post-seismic accumulation rates are several orders of magnitude 

less than after the 1964 Alaskan earthquake (Atwater et al., 2001) and closer to estimates from 

the channels of the Cruces river following the 1960 Chilean earthquake (Reinhardt et al., 2010). 

Postseismic vertical movements in the six months following the Maule 2010 earthquake were 

small, estimated from GPS data at < 15 mm at Concepción and < 50 mm elsewhere along the 

rupture zone (Baez et al., 2010). Consequently, postseismic movements are unlikely to 

significantly affect estimates of coseismic land motions based on sediment biostratigraphy at sites 

2 and 3. At sites with a sedimentary hiatus, coseismic deformation estimates will include both 

coseismic and some postseismic movements, resulting in potential underestimation of the 

coseismic movement. In fossil sequences it can be very difficult to identify the duration of any 

hiatus. Radiocarbon dated samples either side of the stratigraphic boundary will give maximum 

and minimum ages and may identify a large hiatus (e.g. Carver and Plafker, 2008), while 

reconstructions for the same episode from multiple locations on the same marsh also help (e.g. 

Shennan and Hamilton, 2006). 

 

5.4 A test of the criteria to differentiate between sedimentary evidence of seismic and non-

seismic relative land- and sea-level changes  

 

Based on observations of sedimentary responses to the largest plate boundary earthquakes and 

similar stratigraphies found in tectonically stable locations, Nelson et al. (1996) propose a series 

of criteria for differentiating between evidence for seismic and non-seismic relative land- and sea-

level changes. Atwater and Hemphill-Haley (1997) apply the same criteria alongside geophysical 

approaches and structural geology to discuss the differences between plate-boundary and upper-

plate sources for the earthquakes, the sizes of the earthquakes, the dimensions of plate-boundary 

ruptures and the trade-off between size and frequency. Both of these papers point to differences 

between Mw 7.5 or 8.0 earthquakes and great earthquakes, Mw 8+. The 2010 earthquake provides 

an opportunity to test the criteria on a smaller plate-boundary rupture than the 1960 Chilean 

Mw 9.5 and 1964 Alaskan Mw 9.2 earthquakes. 
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The key criteria outlined by Nelson et al. (1996) are: lateral extent of peat-mud couplets with 

sharp upper contacts, suddenness of subsidence, amount of subsidence, synchroneity of 

subsidence with other sites and, for some locations, presence of tsunami sediments. Although 

these criteria were developed for areas undergoing coseismic subsidence, they are equally 

applicable to identifying coseismic uplift (Shennan et al., 2009). Section 5.1, above, demonstrates 

the variable pattern of tsunami deposition, but confirms that, where present, it is a valuable line 

of evidence and may occur in either uplifted or subsided locations. Our work on the 2010 

earthquake deposits suggests that, in south central Chile, sedimentary hiatuses and low rates of 

sedimentation may temporarily postpone the formation of the characteristic subsidence 

stratigraphy (section 5.2), but the burial and preservation of the 1960 deposits shows that any 

hiatus is brief in the context of multiple earthquake cycles. Our diatom-based reconstructions of 

relative land/sea-level change are promising, but require a greater range of modern samples in 

order to provide better modern analogues and greater confidence in the elevation estimates and 

associated error terms. Nelson et al. (1996) and Atwater and Hemphill-Haley (1997) draw 

attention to a lower limit of resolution for identifying coseismic deformation; approximately 0.5 

m. Our estimates, section 5.2, currently do not suggest any finer resolution. Comparison of the 

marsh sediment sequences for the 2010 and 1960 earthquakes suggests that they produce similar 

stratigraphic records and that the key to reconstructing earthquake characteristics, such as the 

rupture magnitude and differences between plate-boundary and upper-plate sources, depends on 

applying the stratigraphic criteria at multiple sites in order to identify the spatial pattern of 

deformation associated with each earthquake.  

 

5.5 Implications for reconstructing Holocene megathrust earthquake rupture zones 

 

Precise estimates of coseismic deformation are required from multiple sites to constrain models 

of the location, dimensions and slip distribution of megathrust earthquakes (Atwater and 

Hemphill-Haley, 1997; Atwater et al., 2005). To date, elastic deformation models of the 1960 and 

2010 earthquakes have been constrained by GPS vectors and measurements of displaced coastal 

landforms and biotic environments (e.g. Plafker and Savage, 1970; Moreno et al., 2009; Farías et 

al., 2010; Lorito et al., 2011). Further development of the diatom-based transfer function 

approach detailed here provides an additional viable method for validating models of these 

earthquakes, with the added benefit of applicability to older ruptures. Databases of coseismic 

deformation index points, each characterised by a vertical deformation estimate with an 

associated error term and spatial and chronological attributes, may be used to assist estimation of 

the magnitude of historical and prehistoric earthquakes. Such databases have already been 

successfully employed to constrain the magnitude of past great earthquakes in Cascadia (Atwater 

and Hemphill-Haley, 1997; Leonard et al., 2004; 2010; Hawkes et al., 2011). The development of 

this approach along the Chilean subduction zone may allow further investigation of the variability 

in rupture mode in the 1960 segment (Cisternas et al., 2005) and confirm or refute the 

permanence of the Arauco Peninsula as a segment boundary over multiple seismic cycles.  

 

Differentiation between the closely temporally spaced rupture of two adjacent segments and a 

single, multi-segment rupture may prove crucial to interpreting evidence for the largest Holocene 

megathrust earthquakes (Atwater and Hemphill-Haley, 1997; Atwater et al., 2005; Shennan, 2009; 

Shennan et al., 2009). While radiocarbon dating alone may be insufficient to distinguish between 

single and multi-segment ruptures, the work presented here establishes the stratigraphic 
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separation of two closely timed earthquakes in locations close to a seismic segment boundary. 

We suggest that detailed marsh surface elevation reconstructions from boundary locations, 

combined with precise dating approaches, should form an integral part of establishing the long-

term history of the seismic hazards associated with the Chilean subduction zone.  

 

6. Conclusions 

 

The 1960 and 2010 Chilean great earthquakes provide critical modern analogues for sedimentary 

processes during seismic cycles at plate boundaries. The major conclusions of this work are: 

 

1) Deposits from the 1960 and 2010 tsunamis are fragmentary, variable and have no unique, 

diagnostic diatom assemblage. 

2) Our transfer function method provides estimates of coseismic land surface deformation 

for two sites in 2010 and three sites in 1960. Reconstructions agree with independent 

estimates, confirming the potential for our approach to be used to quantify coseismic 

deformation for previous great earthquakes in south central Chile. 

3) Sedimentary hiatuses at two sites following the 2010 earthquake indicate that the 

magnitude of coseismic deformation may be underestimated in fossil records. 

4) A lack of close modern analogues for fossil diatom assemblages remains a limitation of 

the current study and we advocate the need for larger training sets, preferably from a 

wide range of sites. 

5) Where sediment accumulation allows, criteria for distinguishing between seismic and 

non-seismic stratigraphies developed from evidence for the largest plate boundary 

earthquakes (Nelson et al., 1996; Atwater and Hemphill-Haley, 1997) are corroborated by 

the lesser magnitude earthquake of 2010.  
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Figure 1: Tectonic setting of the Chilean subduction zone and the location of the field sites in 

relation to the 2010 and 1960 rupture zones. Vertical land surface deformation in 1960 (main 

figure) and 2010 (inset) from Plafker and Savage (1970) and Vargas et al. (2011) respectively. Site 

1: Río Mataquito; site 2: Río Andalién; site 3: Tubul; site 4: Río Tirua; site 5: Northern Isla de 

Chiloé, including Chucalen and the modern transects at Estero Guillingo and Puente Quilo. 
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Figure 2: Scatter plot of observed against predicted elevation values for the four transects 

included in the WA-PLS component 3 transfer function model. Valdivia AC: samples collected from 

a fan bordering Río Angachilla; Valdivia transect DR: samples collected from Isla del Rey (Nelson et 

al., 2009). 
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Figure 3: Comparison of pre and post 2010 Maule earthquake Google Earth imagery for sites 1 – 

4. Red lines indicate August 2010 sampling transects.  
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Figure 4: Thickness, extent and continuity of the 2010 and 1960 tsunami deposits at Río 

Mataquito, Río Andalién, Río Tirua and Chucalen. We could not locate 2010 tsunami deposits at 

site 3, Tubul, or site 5, Chucalen. The 1960 tsunami deposit was not identified at site 1, Río 

Mataquito, or site 3, Tubul. Tsunami deposits may extend further inland than the sampled 

locations; we did not sample to the limit of inundation. Sampling commenced 1 km inland from 

the coastline at site 4, Río Tirua, due to the location of tidal marshes at this site. Note the change 

in y-axis scale.  
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Figure 5: Diatom assemblages of the 2010 and 1960 tsunami deposits, summarised by life form 

(following Denys, 1991; Stoermer, 1980; Van Dam et al., 1994; Vos and de Wolf, 1993, 1988). 

Epipelic and epipsammic species are grouped as “attached to sediment". We do not report any 

tsunami deposit from site 3, Tubul. 
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Figure 6: 2010 diatom assemblages and paleomarsh surface elevation reconstructions at A: site 2, 

Río Andalién and B: site 3, Tubul. Due to a lack of post-earthquake sedimentation, reconstructions 

are not possible for site 1, Río Mataquito, and site 4, Río Tirua. Assemblage summary based on 

modern species coefficients derived from the WA-PLS transfer function model. We use the 

distance to the closest modern analogue from the modern analogue technique in C2 (Juggins, 

2011) to assess the similarity between modern and fossil assemblages.  
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Figure 7: 1960 diatom assemblages and paleomarsh surface elevation reconstructions at A: site 2, 

Río Andalién; B: site 4, Río Tirua and C: site 5, Chucalen. No pre-2010 tsunami deposits were 

identified at site 1, Río Mataquito, or site 3, Tubul. Assemblage summary based on modern 

species coefficients derived from the WA-PLS transfer function model. We use the distance to the 

closest modern analogue from the modern analogue technique in C2 (Juggins, 2011) to assess the 

similarity between modern and fossil assemblages.  
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Figure 8: Comparison of transfer function model estimates of coseismic deformation with 

published estimates of vertical coseismic deformation in 1960 and 2010 at Río Mataquito (2), 

Tubul (3), Río Tirua (4) and Chucalen (5). Diagonal line is the 1:1 line, not a best-fit regression line. 

Due to hiatuses or the absence of tsunami deposits, we cannot estimate deformation at sites 1 

and 3 for 1960 and at sites 1, 4 and 5 for 2010. For 1960 we compare our estimates with Plafker 

and Savage’s (1970) sampling locations 1, 9 and 45 and for 2010 we compare with the continuous 

GPS station at Concepción (Vigny et al., 2011) and benchmark relevelling at Tubul (Melnick et al., 

2012). 

 


