
University of Massachusetts - Amherst
ScholarWorks@UMass Amherst

Masters Theses May 2014 - current Dissertations and Theses

2016

Intent Recognition Of Rotation Versus Translation
Movements In Human-Robot Collaborative
Manipulation Tasks
Vinh Q. Nguyen Mr.
vinhnguyen@umass.edu

Follow this and additional works at: http://scholarworks.umass.edu/masters_theses_2

Part of the Computer-Aided Engineering and Design Commons, and the Robotics Commons

This Open Access Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been
accepted for inclusion in Masters Theses May 2014 - current by an authorized administrator of ScholarWorks@UMass Amherst. For more information,
please contact scholarworks@library.umass.edu.

Recommended Citation
Nguyen, Vinh Q. Mr., "Intent Recognition Of Rotation Versus Translation Movements In Human-Robot Collaborative Manipulation
Tasks" (2016). Masters Theses May 2014 - current. 439.
http://scholarworks.umass.edu/masters_theses_2/439

http://scholarworks.umass.edu?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/etds?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/masters_theses_2?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/297?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarworks.umass.edu/masters_theses_2/439?utm_source=scholarworks.umass.edu%2Fmasters_theses_2%2F439&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@library.umass.edu


  

Intent recognition of rotation versus translation movements in human-robot 

collaborative manipulation tasks 

 

A Thesis Presented 

 

by 

 

Vinh Quang Nguyen 

 

Submitted to the Graduate School of the 

University of Massachusetts Amherst in partial fulfillment 

of the requirements for the degree of 

 

MASTER OF SCIENCE IN MECHANICAL ENGINEERING 

 

September 2016 

Mechanical and Industrial Engineering 

 

 



  

 

Intent recognition of rotation versus translation movements in human-robot 

collaborative manipulation tasks 

 

A Thesis Presented 

by 

Vinh Quang Nguyen 

 

 

 

Approved as to style and content by: 

 _________________________________________  

Frank C. Sup IV, Chair 

 _________________________________________  

Joydeep Biswas 

 _________________________________________  

Kourosh Danai 

 ______________________________________  

Sundar Krishnamurty, Department head 

Mechanical and Industrial Engineering 



 

iii 
 

ACKNOWLEDGMENTS 

I would like to give a big thanks to my thesis advisor, Prof. Frank Sup, who guided me with his patience, 

motivation, and dedication. Also, I would like to thank my lab-mates and friends, especially Qiandong 

Nie, for all their help in this project.  

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



 

iv 
 

ABSTRACT 

INTENT RECOGNITION OF ROTATION VERSUS TRANSLATION MOVEMENTS IN HUMAN-ROBOT 

COLLABORATIVE MANIPULATION TASKS 

SEPTEMBER 2016 

VINH QUANG NGUYEN 

B.S.E.E., HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY, HANOI, VIETNAM 

M.S.M.E., UNIVERSITY OF MASSACHUSETTS, AMHERST, USA 

Directed by: Professor Frank C. Sup IV 

The goal of this thesis is to enable a robot to actively collaborate with a person to move an object in an 

efficient, smooth and robust manner. For a robot to actively assist a person it is key that the robot 

recognizes the actions or phases of a collaborative tasks. This requires the robot to have the ability to 

estimate a person’s movement intent. A hurdle in collaboratively moving an object is determining 

whether the partner is trying to rotate or translate the object (the rotation versus translation problem). 

In this thesis, Hidden Markov Models (HMM) are used to recognize human intent of rotation or translation 

in real-time. Based on this recognition, an appropriate impedance control mode is selected to assist the 

person. The approach is tested on a seven degree-of-freedom industrial robot, KUKA LBR iiwa 14 R820, 

working with a human partner during manipulation tasks. Results show the HMMs can estimate human 

intent with accuracy of 87.5% by using only haptic data recorded from the robot. Integrated with 

impedance control, the robot is able to collaborate smoothly and efficiently with a person during the 

manipulation tasks. The HMMs are compared with a switching function based approach that uses 

interaction force magnitudes to recognize rotation versus translation. The results show that HMMs can 

predict correctly when fast rotation or slow translation is desired, whereas the switching function based 

on force magnitudes performs poorly. 
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CHAPTER 1 

INTRODUCTION 

1.1 Project overview 

There has been increasing demand for robots to collaborate with humans, in which robots and 

humans share the same tasks and workspaces. A critical requirement is making the robots to interact 

safely and compliantly with humans in performing manipulation tasks. When position or force control 

alone cannot satisfy the above requirement due to interaction between the robot and the environment, 

a standard approach is impedance control (Al-jarrah & Zheng, 1997)(Lawitzky, Mortl, & Hirche, 2010). 

Impedance control enables a robot to react compliantly while stabilizing an object so that a person can 

relay direction intent and move it freely using less effort as depicted in the scenario in Figure 1. 

 

Figure 1: A human robot cooperative manipulation task 
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However, impedance control alone cannot fulfil the task of manipulating object when the person 

is unable to apply large torque to rotate the object (Arai, Takubo, Hayashibara, & Tanie, 2000). This can 

happen when the person holds the object with one hand or the object is significant long. The force applied 

by the person is mainly perpendicular to the object (Arai et al., 2000). In this scenario, both rotation and 

translation intent cause the object to rotate and translate at the same time, which makes the 

manipulation tasks difficult to achieve. The key is how a robot is able to distinguish whether the person is 

trying to rotate the object or translate it laterally, so that it can react appropriately. 

There are two ways to address this problem. One is  to apply additional constraints to the mobility 

of the robot or the interpretation of sensor data to get an unequivocal interpretation of the measured 

data; the other is to estimate the human partner’s movement intention and then react appropriately 

(Yigit, Burghart, & Worn, 2004). An example of the former approach is virtual non-holonomic constraints 

(Arai et al., 2000). When moving an object like a wheelbarrow any forces perpendicular to the object are 

interpreted as rotation and only translation along the object’s length direction is allowed. Although this 

approach showed that the object can be moved to any position, it requires the operator to combine a 

series of actions in order to perform a movement and is not suitable when working in a restricted working 

space (Wojtara et al., 2009). Another example is to use additional sensors to get an unequivocal 

interpretation. In (Wojtara et al., 2009), the rotation is interpreted by the torque around the person’s 

gripping point; therefore an additional force sensor between the person’s handle and the object is 

needed. Typically, this is not possible or desired to require additional sensing between the user and the 

object. 

The second method tries to switch between rotation and translation mode based on the 

estimation of the person’s intention. In early work, Yokoyama et al. [2003] proposed a voice recognition 

for switching which was operated by allowing a person to verbally direct a robot to change from rotation 

to translation mode. For this approach, an advanced speech and language recognition was required and 
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the communication interface significantly reduces the interaction speed. In addition to verbal cues, haptic 

feedback plays the most important role in collaborative manipulation (Feth, Groten, Peer, Hirche, & Buss, 

2009). Therefore, some research used haptic data to make the transition between two modes (rotation 

and translation) automatic. Dumora et al. [2013] tried to solve a the problem of intent recognition base 

on haptic and position data using a naïve Bayes classifier which is a supervised learning algorithm. 

However, an additional force and torque sensor was used between the handle where the human grasped 

the object and the object itself. It measured the torque applied on the object. In the real world, this is not 

possible configuration.  

Another example for solving the rotation and translation problem by mode switching is in 

(Karayiannidis, Smith, & Kragic, 2014). The authors use force direction and magnitude to switch between 

two modes using switching functions using preselected thresholds. While this approach is straight forward 

to implement, it has some limitations. First, using force direction condition has problems with chattering 

as the number of mode switching is several hundred times during a simple semicircular motion. Second, 

better performance is found when adjusting the force magnitude; however, this has a problem in the case 

of fast rotations and slow translations. When fast rotation is desired, the force magnitude is above the 

switching threshold and the controller will infer as translation mode. Similarly, in slow translation, force 

magnitude is below the switching threshold so the controller is likely to infer the rotation mode. 

In summary, the previous works tried to address the problem by either adding constraints into 

the mobility of the robot or using additional torque sensor at the person’s gripping point. There has been 

only one research tried to solve the problem without adding constraints and only use haptic data from 

robot’s sensors (Karayiannidis et al., 2014). However, it has the problem when fast rotation or slow 

translation is desired. Also, a point to notice in previously mentioned works is that the algorithms are 

based on the static conditions. Only the instantaneous data at the current state are used and considered 

for recognition of the users’ intent. However, it would be more natural and potentially successful to use 
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dynamics analyses with time series data (Takeda, Kosuge, & Hirata, 2005). There are several methods 

which can be used with time series data such as Hidden Markov Models, Dynamic Time Warping, 

Recurrent Neural Network. In (Takeda et al., 2005), results showed Hidden Markov Models outperformed 

Neural Network in the case of intent recognition when working with haptic data. Also, in those methods, 

Hidden Markov Models have been widely and successfully used for speech recognition, gesture 

recognition, and intent recognition. For this reason, this project evaluates HMMs working with time series 

data for intent recognition of the rotation versus translation problem.  

1.2 Research Objective 

In this thesis, Hidden Markov Models (HMMs) are used to solve the problem of recognizing 

collaborative rotation versus translation movements during the person holding the object with one hand. 

HMMs have been used for human intent recognition based on the analysis of speech, visual, and haptic 

data (Huang, 1992) (Starner, 1995) (Chen, Fu, & Huang, 2003)(N Stefanov, Peer, & Buss, 2010) (Wang, 

Peer, & Buss, 2009)(Kucukyilmaz, Sezgin, & Basdogan, 2013). However, there is no research can be found 

using this approach to solve the rotation versus translation problem in a human-robot collaborative 

manipulation task. In this project, the robot will distinguish a person’s intent of trying to rotate or translate 

an object collaboratively using HMMs. Different from most of previous works, in this project, the person 

holds the object with only one hand and only haptic data from the robot’s side is used. That means there 

is not an additional force and torque sensor at the person’s grasp point. After recognition, the robot will 

then actively contribute to the task. Impedance control is chosen for safe and compliant interaction 

purpose. An experiment with an industrial robot (KUKA LBR iiwa 14 R820) working with a person in moving 

a weighted wooden bar is conducted. The results shows the proposed method enables communication of 

intent from the human to the robot. For comparison, the proposed method is baselined against switching 

function method based on force magnitude (Karayiannidis et al., 2014).  
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1.3 Thesis organizations 

This thesis is divided into five chapters. This first chapter introduces the motivations and scope of the 

project. The second chapter reviews the relevant background on human-robot collaboration in 

manipulation tasks, impedance control, and intent recognition using HMM. Also discussed in this chapter 

are related examples of applications of impedance control and HMM in human-robot collaboration. The 

third and fourth chapter presents the proposed method and the experimental results. The fifth chapter 

presents a discussion of the results. Finally, the last chapter summaries conclusions of this project and 

opens more ideas for future works and development.  
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CHAPTER 2 

BACKGROUND 

2.1 Prior works: The rotation versus translation problem 

An early work on the rotation versus translation problem by Yokoyama et al. used a human interface 

based on voice instruction to help the users instruct the robot to move “Right”, “Left”, “Clockwise”, 

“Anticlockwise” (Yokoyama et al., 2003). For this approach, an advanced speech and language recognition 

is required. In addition, the communication interface significantly reduces the interaction speed. In 

addition to verbal cues, haptic feedback plays the most important role in collaborative manipulation (Feth 

et al., 2009). Some works implemented different approaches with haptic data to have the robot 

automatically switch between rotation and translation modes. This section reviews relevant works which 

used haptic data to solve the rotation versus translation problem in collaborative manipulation tasks.  

In (Wojtara et al., 2009), the authors implemented the partner-that-follows algorithm, in which the 

torque information is used to control the rotation mode, and the displacement information is used to 

control the translation mode. In this case, the robot is the follower and the human is the leader.  

 

(a)      (b) 

Figure 2: Coordinate system of object and object holding frame (Wojtara et al., 2009) 
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Two coordinate systems were put at gripping point of robot ( P ) and gripping point of the human 

( H ) (Figure 2). In this work, instead of separating the rotation and translation modes, the robots move 

passively with the haptic interaction from the person. The control law for velocity in x  direction Pxv  and 

velocity in z direction Pzv was based on position information: 

cos

sin

Px x

Pz z

d
v c c

dt

d
v c c

dt





 

 

 

 

                                                                    (1) 

, ,x zc c c  are constant control parameters that were chosen manually according to satisfy the user’s 

feeling; ,   are angles around ,H Hz y  axes. The control law for the force in y direction is 

Py yR yR Hz

dy
f d m

dt
                                                                         (2) 

With yRd  is the damping constant, yRm  is the mass constant of impedance control. Experiments were 

carried out with three subjects moving the object from one position and placing it exactly in the target 

position. The result of implementing the partner-that-follows algorithm showed high precise in placing 

the object.  

Dumora et al. tried to solve a similar problem of intent recognition base on haptic and position 

data (Dumora, Geffard, Bidard, Aspragathos, & Fraisse, 2013). A naïve Bayes classifier which is a 

supervised learning algorithm based on Bayes’ theorem was chosen. If there are m  overall possible 

intentions  1 2, ,..., mC C C C  , and n  haptic measured  1

1 ,..., n

nF F f F f    , then the prediction of 

intentions is based on the probability: 
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1

1

1
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Pr( | )

Pr( )

n
i

n k i k
i i

k i n
i i

i
i

C C F f C C
C C F f

F f







  
  



                                   (3) 

The method consists of two steps. In the training step: using the dataset, the posterior probability 

1

Pr( | )
n

i

k i
i

C C F f


  of each data point belong to each class was estimated by estimating the 

parameters of the likelihood 
1

Pr( | )
n

i

i k
i

F f C C


  and the prior probability Pr( )kC C . The next step 

is the prediction step, in which the class 
*C  is chosen as the result if it has the largest posterior probability 

higher than a confidence level  . 

 

 

 

Figure 3: Experimental apparatus and drawn motions (Dumora et al., 2013) 

The method was evaluated with experiments human robot collaboratively moving a bar (Figure 

3). The experiments used a 6 axis force/torque sensor at wrist of robot arm and a second force/torque 

sensor at user’s handle. The haptic features were the force along X-axis xF  , the torque along Z-axis zM  

and the displacement of the user’s handle in Y-axis yX . These values are expressed at the person’s 
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grasping point. Four different classes of motion were tested: YT  - pure lateral translation, XT  - forward and 

backward translation, OR  rotation of the object around the user’s gripping point, AR  - rotation of the 

object around the robot’s gripping point (Figure 3). The results showed 92.8 % success rate using a 

confidence level 0.75  , and 97% when 0.9  .  

One noticeable point in the two above works (Wojtara et al., 2009) and (Dumora et al., 2013) is 

that, a second force-torque sensor was placed between user’s handle and the object, which was able to 

obtain a good measurement of the torque along Z-axis, Hz at the person’s gripping point. This is not the 

case in real world scenarios where there is no sensor between the handle and object. The scenario without 

this sensor is shown in (Figure 4) and investigated in (Karayiannidis et al., 2014). 

 

Figure 4: Joint manipulation of an object by a robot and a person (Karayiannidis et al., 2014) 

In their research, a person grasps the object with one hand which significantly limits the amount 

of torque a person can apply directly to the object. In addition, there was no direct measurement of force-

torque at the contact point between the person and the object. In such a scenario, the previous methods 

rely on the torque measurements on the object to infer rotation or translation modes and are no longer 
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suitable. To solve the problem of rotation versus translation, the authors used the information of direction 

and magnitude of applied force which is measured at the robot’s end-effector to switch between two 

modes. The first condition is based on the angle  between the human force direction d and the virtual 

stick direction l . When the angle 0   the object will rotate, otherwise the system will switch to the 

translation mode (Figure 5a-b). 

 

  

        (a)         (b)      (c)    (d) 

Figure 5: Switching based on the force direction (a, b, c), switching function base on magnitude of 

torque (d) (Karayiannidis et al., 2014) 

To reduce chattering, a smooth transition function was used to replace the sharp transition (red 

line in Figure 5b). Furthermore, to avoid switching due to force measurement noise, a relay term was 

added to the switching function (Figure 5c). The second condition is based on magnitude of applied force 

with a delay switching function (Figure 5d). Experiments were carried out with human and robot jointly 

held a 30 cm long wooden object to follow different paths (circular rotational motion, circular translational 

motion, straight-line translational motion). The results showed the robot was able to trigger switching 

conditions to select either rotation or translation mode. Better performance is when using force 



 

11 
 

magnitude condition as the number of mode switching are much less than using force direction. However, 

the performance using force magnitude may be questionable in the case of fast rotations and slow 

translations. When fast rotation is desired, the force magnitude is above the switching threshold and the 

controller will infer as translation mode. Similarly, in slow translation, force magnitude is below the 

switching threshold so the controller is likely to infer the rotation mode.  

In summary, the previous works tried to address the problem by either constraining the mobility 

of the robot or using an additional torque sensor at the person’s gripping point. There has been only one 

attempt at solving the problem without adding constraints and only using data from the sensors on the 

robot (Karayiannidis et al., 2014). However, it has problems detecting fast rotations or slow translations. 

Also, a significant issue with the previous works is that they only used instantaneous data from the current 

state to recognize the user’s intent. However, it would be more natural and possibly more successful to 

use dynamics analyses with time series data (Takeda et al., 2005). There are several methods which can 

be used with time series data such as: Hidden Markov Models, Dynamic Time Warping, and Recurrent 

Neural Network. In (Takeda et al., 2005), results showed HMMs outperformed Neural Networks in the 

case of intent prediction when using force and torque data. Also, in those methods, HMMs have been 

successfully used for speech recognition, gesture recognition, and intent recognition. For these reasons, 

this project evaluates HMMs working with time series data for intent recognition of the rotation versus 

translation problem.  

2.2 Hidden Markov Model 

Hidden Markov Model (HMM) is a double stochastic process, one underlying Markovian stochastic 

process being not directly observable, but can only be observed through another stochastic process with 

a certain probabilistic of observation (Juang, 1986). HMM has been used successfully in speech 



 

12 
 

recognition (Huang et al., 1990) (Huang, 1992), visual recognition (Starner, 1995) (Chen et al., 2003), intent 

recognition based on haptic data (Takeda et al., 2005) (Wang et al., 2009) (N Stefanov et al., 2010). 

Hidden Markov Model was derived from Markov chains theory which has been known since the 

1980’s (Juang, 1986). In real world process, as having a sequence of observation symbols which can be 

discrete (outcomes of coin tossing experiment, human name, etc.) or continuous (speech samples, 

temperature of a day, etc.), the problem is how to build a signal model that is able to explain and 

characterize the observed symbols. Hidden Markov Model tries to treat this problem under a probabilistic 

or statistical framework.  

Let’s take an example of a stochastic process (Figure 6): Urns and Balls (Rabiner, 1989). In this 

example, there are n  urns. Each urn has a large number of color balls, and there are m  possible colors. 

Now, a person will randomly choose an urn and then randomly pick a ball from that urn. They record the 

color of the ball and then returns the ball back to the urn. They keep doing this to form a sequence of 

colors of balls they picked {Green, Green, Blue,Red,....,Blue}O  . In this example, each urn could be 

modeled as one state, so there are n  states and described by a set of states 1 2{ , ,..., }nS s s s . There are 

m  possible output symbols which are colors of balls. The probabilities that the person moved from urn
thi  

to the urn 
thj are described by transition probability ija  . Here, the probability of changing from a state is  

at time t  to another state js  only depends of the current state is . This is the Markov property. The 

probabilities a color is picked when the person stopped at one urn are described by the output symbol 

probabilities ( )jb k  (with 1,2,...,k m ).  
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Figure 6: Urns and Ball example (Rabiner, 1989) 

Now, the process can be model with a Hidden Markov Model. Given a set of states 1 2{ , ,..., }nS s s s , 

the initial state distribution { }i   the set of output symbols 1 2{ , ,..., }mV v v v  , there are two set of 

probabilities need to consider: a transition probability and output probability distribution (Juang, 1986). 

The transition probability { }ijA a defines the probability of a new state
j

S  is entered given a current 

state is  . The output probability distribution { ( )}jB b k  for the case discrete output defines the 

condition probability of emitting output symbol kv  given the current state
j

S . An example of a Hidden 

Markov Model with three states is shown in Figure 7. 
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Figure 7: Example of Hidden Markov Model 

  A complete parameter set of a discrete output symbol HMM can be expressed as: 

( , , )A B                                                                                (4) 

Symbols Meaning 

1 2{ , ,..., }nS s s s  Set of n  states. 

1 2{ , ,..., }mV v v v  Set of m  output symbols. 

{ }kO o  discrete set of possible symbol observations 

{ }ijA a , Pr( | )ij j ia S S    State transition probability distribution 

{ ( )}jB b k , ( ) Pr( | )j k jb k v S  Observation symbol probability distribution 

{ }i  , Pr(i iS   is the first state )  Initial state distribution 

Table 1: Meaning of symbols in HMMs 

In the case of continuous output x , the observation symbol probability distribution is replaced by

 ( )jB b x , where ( )jb x  is now the probability density. 

1

( ) ( , , )
M

j jm jm jm

m

b c U


 x x  
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where x is the vector modeled; jmc  is the mixture coefficient for thm  mixture in state j ;   is usually 

chosen as Gaussian density function; jm  is the mean vector and jmU  is the covariance of thm  mixture 

component in state j . 

Given a HMM form, there are three basic problems of interest that need to be solved for the model to be 

useful in the real world applications (Juang, 1986): 

1. Given the model ( , , )A B   and the observation sequence 1 2{ , ,..., }TO o o o , compute the 

probability of observation sequence Pr( , )O   . 

2. Given the model ( , , )A B  and the observation sequence 1 2{ , ,..., }TO o o o , how to find an 

optimal state sequence 1 2{ , ,..., }TS s s s which can generate the observation sequence in some 

meaningful sense. 

3. Given some observation sequences, how to adjust the model parameters of ( , , )A B   

The first problem is the evaluation problem, it is useful to determine which model best matches the 

observations. To solving this problem, forward-backward procedure is implemented. The second problem 

tries to uncover the hidden state sequence or states (e.g. the intention state of human, the object in 

picture, etc.), namely finding the “optimal” state sequences associated with the given observation 

sequence. A technique for finding this best state sequence based on dynamic programming methods is 

called Virterbi algorithm.  In the third problem, the model parameters are optimized so that it can best 

describe how the observation sequence is generated. It is the training process for the model. For this 

problem, an iterative procedure, Baum-Welch method is implemented. 

To use HMM for human intent recognition, research has used haptic data for the model. (N 

Stefanov et al., 2010) analyzed the interaction force signals from human hand to detect intent of 

transporting or positioning an object. The authors proposed a method of extracting online and event 



 

16 
 

based features from data. For training the model, 30 training datasets are used for each phase of intent 

to be detected. The accuracy of overall predicting is 70.73 %, 96.35% for the positioning task and 59.6% 

for transportation task. The lower accuracy in transportation tasks was explained by similar human 

behavior and thus observed patterns in positioning and transportation tasks when assistance was 

provided. The results also showed that the HMM enabled a very fast recognition when using haptic data 

(Figure 8). 

 

Figure 8: Results for intent recognition using HMMs (N Stefanov et al., 2010) 

Takeda et al. used HMMs for the robot which danced with a person to predict the next dance step 

intended by the person (Takeda et al., 2005). For each dance step, a time series data with a length effectiveT  

of force/torque applied by the human dancer is used. This data series are latter discretized with a time 

segment T . With the proposed system, the robot successfully estimated the next dance step of human 

intent. The result showed higher accuracy using HMMs comparing to using a neural network model.  These 

above works show that using just measured haptic data, HMMs are able to estimate very well and fast 

the person’s intentions. Yet, this approach has not been applied to the rotation versus translation problem 

in collaborative manipulation tasks. Therefore, this thesis focuses on solving the intent recognition 

problem during human robot collaborative tasks using HMMs. After the intents are recognized, the robot 
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need to react appropriately in a compliant and safe way. For this requirement, impedance control is 

implemented. 

2.3 Impedance control 

In human-robot interaction, it is expected that a manipulator should be able to adapt to the physical 

changes in the environment while still keeping the desired motion. In other words, the controller needs 

to control its motion (such as following trajectory – position control) and in addition modulate it in 

response to a disturbance from the environment. Position or force control alone cannot satisfy the above 

requirements. The reason is the interaction between manipulator and environment affects the controlled 

variables. The resulting error impacts performance or may cause the system to become unstable (Buerger 

& Hogan, 2007). Another approach known as disturbance rejection considers the environment’s dynamics 

as disturbances. The performance of this approach depends on bounding the disturbances force. 

However, in this case the interaction force may be very large or even exceed the robot’s nominal capacity. 

Therefore, this approach does not seem promising.  

Another approach is to model the environment as an uncertain part of the robot and use robust 

control. In the robust control approach, the system uses a controller that is able to work with changes of 

parameters of the system within a range. During interaction with the environment the range of 

parameters may be too large and this type of controller might sacrifice performance too much. Thus, 

treating interaction as a robustness problem is not suitable (N Hogan & Buerger, 2005). Adaptive control 

is able to expand the range of uncertainty for which performance specification can be achieved. In 

adaptive control, one needs to do online estimation of the uncertain parameters then applies a controller 

that guarantees some desired behavior of the system. A limitation of this approach is that the estimation 

procedure requires excitation of the system dynamics which may not be desired. Also,  for systems with 

possibly fast varying parameters, adaptive control is not applicable (Yi & Zhang, 2001). Therefore, adaptive 
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control is not promising for the case of interaction control. Another reason that makes independent 

control of force and motion not good is that because the environment can impose kinematic constraint 

or dynamic constraint. For example, when the manipulator contacts a rigid surface, this is a kinematic 

constraint. In this case, a motion controller cannot work. Similarly, force control alone cannot work if 

there is not contact between the manipulator and the environment. 

Impedance control was developed to overcome these issues (Neville Hogan, 1985). The idea is to treat 

the environment as admittance and the manipulator as an impedance. It is derived from the postulate, “it 

is impossible to devise a controller which will cause a physical system to present an apparent behavior to 

its environment which is distinguishable from that of a purely physical system”. Thus, a controlled system 

is considered an equivalent physical system. Now, the manipulator and the environment create two 

physical systems, in which the instantaneous power flow between them is defined as the product of two 

conjugate variables: an effort and flow. Examples of effort could be force or voltage, while flow could be 

velocity or current. The environment usually contains inertias or kinematic constraints which accepts 

effort as an input and yields flow as an output – thus is considered admittance; meanwhile, the 

manipulator accepts flow as input and yields effort as the output – thus is considered impedance. 

Different from force or position control, impedance control does not try to regulate force or position, 

instead it regulates the relationship between effort and flow (force and velocity in this thesis) (Figure 9). 

The nodic impedance defines the desired interaction dynamics or the relationship between effort and 

flow. This relationship is usually described by a function of three parameters: mass m , damping b  and 

stiffness k . 

0 0 0( ) ( ) ( )F k V V b V V m V V           (5) 

The virtual trajectory 0V  is similar to a reference trajectory of motion control, but there is no assumption 

that the dynamic of virtual trajectory must be slower than the servo dynamic.  In addition, the virtual 
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trajectory need not to be realizable. For example, it need not to be confined to manipulator’s workspace 

(Hogan, 2011). 

 

 

Figure 9: Desired interaction relationship (Hogan, 2011) 

Hogan proposed a simple approach to implement impedance control. Consider a multi degree-of-

freedom manipulator, a simple impedance controller is follow: 

   int( ) ( ) ( ) act   M θ θ C θ,θ D θ T T                                                       (6) 

Where M  is the inertia matrix, θ  is the vector of joint angles, C  is the inertia coupling torques matrix 

(due to Coriolis/ centrifugal accelerations), D  is the vector of dissipative torques due to friction, actT is 

the vector of actuated torques, intT is the vector of environment torques. If the manipulator behaves like 

a spring with a stiffness jK  and a damper jB , then the control law is: 

( ) ( ) ( )act j 0 j 0T θ,θ = K θ -θ +B θ -θ                                                        (7) 
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With 0θ and 
0θ are desired trajectory and velocity. Combining (6) and (7), the equation for impedance 

control: 

     int( ) ( ) ( )     j j j 0 jM θ θ C θ,θ D θ B θ K θ K θ +B θ T                             (8) 

The stiffness and damping matrices jK and jB result in stiffness and damping at the end-effector of the 

manipulator, but they vary with the changes in the position of the robot. Therefore, to have stiffness k   

and damping b at the end effector, a transformation from joint space to end-effector space is needed.  

The position and velocity of end-effector ( )x L θ , ( )x J θ θ  . The control law is as follows: 

0 0 0 0( , , ) ( ( ( )) ( ( ) )T k b actT x x θ,θ = J x L θ + x J θ θ                               (9) 

In this approach, the controller does not use force or torque feedbacks and, thus, does not require 

a force-torque sensor. The controller will well behave if the manipulator’s inertia and friction are relatively 

small. With considerable friction and/or inertia, the above simple impedance control technique may not 

provide good performance as the controller does not compensate for these physical impedances. A 

solution for this is to use force feedback that minimizes the deviation of the actual end-effector force from 

the desired value (Buerger & Hogan, 2007). So far, impedance control is widely used in the field of 

robotics, especially in human-robot interaction, control of prosthesis and exoskeleton, or robots which 

interact with the environment. In the field of human-robot interaction, impedance control is usually used 

to make the robots have compliant interaction with human. This is important to enable safe, natural and 

stable between both the human and robot when sharing the same workspace.  

Impedance control has been used on robots to help humans during an object manipulation task. 

Lawitzky et al. combined different effort sharing policies with a hierarchical impedance based motion 

control framework for human-robot collaboration in moving object task (Lawitzky et al., 2010). At lower 
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levels, the robot generates force based on the effort sharing policy. At higher levels, a closed loop 

impedance control scheme modifies the force references for tolerance towards unexpected human 

behavior. Experiment results proved human force inputs decrease by more than 50% in the direction of 

effort sharing when maximizing the robot’s effort. The tracking performance also improved in the 

direction of effort sharing when increasing the robot’s effort. 

In (Gribovskaya, Kheddar, & Billard, 2011), authors proposed an adaptive impedance controller 

that was able to compensate for non-modeled effect. The system’s performance was evaluated in 

controlled situations using physical simulation of a pair of planar robot in which one robot played as the 

leader and the other was the follower. The simulation results showed the system was stable and able to 

continuously adapt to the incoming force.  

In (Yokoyama et al., 2003), authors applied an impedance controller based on force sensing for a 

humanoid robot HRP-2P. The experiments were carried out with the robot working cooperatively with a 

person to move a panel from loading zone to some other places. By using impedance control, the 

transmitted force on the robot by the human is absorbed smoothly, hence avoiding jerks created to tip 

over the robot.  

In (Rozo et al., 2013) a KUKA light-weight 7 degree-of-freedom robot and a person collaboratively 

in a table assembling task. The robot’s role is to hold a table when a person screws the four legs to it. The 

robot is controlled by impedance control with the impedance parameters are learned via a second 

person’s demonstration. After learning, the task can be reproduced by a single user with the help of the 

robot.  

In above examples, impedance control plays important role to make the robot react compliantly 

and robustly with humans and environments. However, impedance control alone cannot fulfil the 

manipulating task when human and robot collaborate in moving a long object (Arai et al., 2000). 
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Figure 10: Collaborative manipulation with long object (Arai et al., 2000) 

Consider a case when a person and a robot jointly hold a long wooden bar. The person holds the object 

of mass M  at point H , and the robot holds at point R  (Figure 10). As the object moves in a horizontal 

plane, the object’s movement is described by: 
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An impedance behavior comprising of mass m  and viscous friction b  will be described by 
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Here r   is very small when the sampling frequency is high enough, so the kinematic relationship 

between the center of mass C  and the robot gripping point R : 
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Replace Equations (11) and (12) into (10) results in: 
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The motion in x  - axis corresponds directly with the xhf  . Meanwhile, the normal acceleration ry  and 

angular acceleration   are coupled. With the case of long object, it is hard to apply a large torque at the 

end of the object, so here h  is assumed to be equal to zero.  Now, motion of the object in rotation and 

translation is given by equations (Arai et al., 2000): 
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Both the person’s intention of either rotation or translation the object cause the torque around z  axis at 

the robot’s gripping point R , this leads to sideslip of the object and complicates the manipulation (Arai et 

al., 2000). There are two principal ways to address this problem: first is applying additional constraints to 

the mobility of the robot or the interpretation of sensor data to get an unequivocal interpretation of the 

measure data, second is to estimating the human partner’s intent of movement then react according to 

(Yigit et al., 2004). An example of the former was a virtual non-holonomic constraints proposed in (Arai et 

al., 2000). In the movement of an object like a wheelbarrow any forces perpendicular to the object are 

interpreted as rotation and only translation along the x  axis is allowed. Although this approach has shown 
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to be able to move the object to any position, it would require the operator to combine a series of motion 

in order to perform a single movement. Also, it is not suitable in cases of a restricted workspace (Wojtara 

et al., 2009). Therefore, in this thesis the approach of a human intent recognition during collaborative 

manipulation is the focus.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

25 
 

CHAPTER 3 

METHOD 

This thesis focuses on human-robot collaboration of manipulation object task where a person and a 

robot jointly move an object. The robot is holding the object, a weighted board, and the person grasps 

the other end of the object with one hand (Figure 11). The desired path trajectory is not provided to the 

robot and the robot is not aware in advance whether the person intends to rotate or translate the object. 

The robot will rely on forces and torques measured by the robot at the gripping point of the robot to 

predict the person’s intended motion in real-time. HMMs are trained with a measured dataset and then 

are used for the robot to estimate the person’s intent of rotation or translation the object (details in 

section 3.1). After that, the robot will move to follow the person’s intention. An impedance controller is 

implemented to the robot for safe and compliant interactions. 

 

Figure 11: Human-robot collaboration in manipulation an object 

3.1 Robot testbed 

For the experiments, a KUKA LBR iiwa 14 R820 robotic arm is used (Figure 11). This is a light weight, 

7 degree-of-freedom robot arm with a rated load of 14 kg and a total weight of 29.6 kg. It is the latest 
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version of KUKA lightweight robot with high precision position and torque sensors and can be operated in 

both position control and impedance control modes. In addition, the robot arm also has joint toque 

sensors at every joint which enable the user to calculate the external force and torque at the end-effector 

point.  

KUKA Lbr iiwa 14 R820 system consists of four main parts (Figure 12). The manipulator is about 

1.3 m long and 29.9 kg heavy, has 7 revolute joints driven by brushless motors. The controller operates 

with KUKA Sunrise.OS which separates the operator control and programming of the robot system. The 

SmartPAD allows simple manual movements, starting robot applications, activating the safety 

configuration, jogging, teaching frames, polling inputs. Robot applications are programmed in Java 

language with KUKA Sunrise.Workbench software (Figure 13) in a development computer. 

 

Figure 12: KUKA Lbr iiwa system: 1 - Development computer; 2 - KUKA Sunrise Cabinet robot controller; 

3 - Manipulator; 4 - KUKA smartPAD control panel (Os & Workbench, 2014) 
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Figure 13: User interface Sunrise.Workbench. 1-Menu bar; 2-Toolbars; 3-Editer area; 4-Perspective 

selection; 5-Package Explorer view; 6-Application data and Object template views; 7-Tasks and Javadoc 

views; 8-Properties view (Os & Workbench, 2014) 

Designed to work with people, the robot has safety options including joint torque limit, which is 

used for safety of the project. The joint torque safety interface permits monitoring joint torques to ensure 

the external torque will not exceed the limit that may cause injury to the person. The main force the robot 

can exert is the twist about the Z axis. Therefore, the external torque safety is limited to 25Nm. With this 

value, in the worst scenario, the robot can only exert a force F = T/L = 25/0.571 = 43.78 N to the person 

(T: torque limit, L: length of the object). In addition, the maximum end-effector velocity is limited to 1500 

mm/s in this project. For physical gripping the object, a simple coupler which helps the robot grip an end 

of the bar is designed. The coupler uses magnets so that it can easily detach from the robot by a vertical 

force (Figure 14) 
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Figure 14: Coupler to connector board to robotic end effector 

3.2 Impedance control of robotic arm 

KUKA LBR iiwa has a KUKA Sunrise.Connectivity SmartServo interface which allows to set new end 

points of the robot’s end effector cyclically during the runtime of the robot motion (Figure 16). Using this 

interface, the robot’s end effector can be programed to move to new positions every a specific period of 

time. This is appropriate for implementing impedance control. The positions of the end effector will be 

updated at frequency of 100 Hz. In this project, the robotic arm is constrained to operate in the horizontal 

plane (Figure 15).  

 

Figure 15: Coordinate system for impedance control 
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Figure 16: Servo motion in application context. 1-create a new smart servo motion; 2-activate the servo 

motion; 3-get the run time; 4-set new end points cyclically; 5-end the servo motion (Kuka Sunrise 

Connectivity, 2014) 

A xyzR coordinate system is attached to the end-effector of the robot so that: the X axis is parallel 

to the object, R  is the robot’s gripping point. The robot can provide the forces xF  , yF  and torque zT around 

the vertical axis which is perpendicular to the xy plane. These values are also described in the end-

effector coordinate system xyzR . For compliant interaction, the impedance parameters are assigned 

respective to the end-effector frame ( xyzR ), not in the fixed absolute frame ( xyzB ) (Figure 17). So that 

these parameters are independent of the position of the end effector of the robot.  
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Figure 17: Coordinate systems on the robot 

A impedance control law for the movement of the end effector of the robot with mass and viscous 

friction behavior will be set as follows (Arai et al., 2000): 

x x x

y y y

z

F m x b x

F m y b y

T i c 

 

 

 

                                                                             (15) 

where xm , xb , ym  , yb  are mass and friction coefficients in x  axis and y  axis, i  and c are moment inertia 

and friction coefficient around R . Although the spring factor (stiffness) is usually included in impedance 

control model, here it is omitted because the effect of the spring factor makes the manipulation task 

difficult to execute (Ikeura & Inooka, 1995). The acceleration of robot’s end effector is: 

( ) /

( ) /

( ) /

x x x

y y y

z

x F b x m

y F b y m

T c i 

 

 

 

                                                                    (16) 



 

31 
 

The values of these coefficients are chosen to be as small as possible so that the object can move freely. 

The external force and torque at the end-effector of the robot are not measured directly. They are 

calculated through from the measured torques at each joint resulting in some errors and noise. 

Considering these errors, the impedance parameters cannot be chosen too small in order to keep the 

system stable (Table 2).  

Parameters Value 

( )xm kg  0.5 

( / )xb kg s  2.0 

( )ym kg  0.5 

( / )yb kg s  2.0 

2( . )i kg m  0.08 

2( . / )c kg m s  0.5 

     Table 2: Impedance parameters 

 

Figure 18: Dead-zone function 

To distinguish the error due to measurement and calculation versus force exerted by the person, a dead 

zone function is used before the forces and torques are fed into control Equation (16). The value of a  is 

chosen to be equal to 3 for xF  and yF (Figure 18) because without applying external force into the robot 
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these values range about from -3 to 3 N. As the torque zT  directly depends on measured torque at joint 

A7 of the robot (as shown in Figure 12), this value is more accurate. Therefore, a dead zone function is 

not needed for zT . The position reference of the end effector of the robot is obtained by integrating 

Equation (16) with a sample time of 10 milliseconds using Euler method.  
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According to Equation (16) the translation is controlled through yF , and the rotation is controlled 

through zT . In translation mode, the rotation is compressed by setting 0zT  ; and in rotation mode, yF is 

set equal to zero to avoid translation.  

3.3 Using HMMs to for intent recognition 

To integrate HMMs in KUKA system which is programmed by JAVA language, a HMMs library Jahmm 

0.6.1 – written in Java by Jean-Marc Francois and Willem V. Onsem was adopted. This library implements 

the Viterbi, Forward-Backward, Baum-Welch and K-Means algorithms for ergodic HMM model. The 

HMMs program is ran as a background task on the KUKA system. In KUKA system, background tasks are 

used to perform actions in the background and are parallel to a running robot application. Several 
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background tasks can run in parallel and independently to each other (Os & Workbench, 2014). There are 

two types of background tasks: 

 Cyclic background tasks which executed cyclically 

 And non-cyclic background tasks which executed only once 

The cyclic task is used for running online intent recognition task. The HMMs and switching function run in 

background to provide the recognition results which then are used by the impedance control program 

running as the main robot application. 

In this project, ergodic HMM models are chosen. Figure 19 shows an example of an ergodic three 

state HMM model, in which all transitions between each states are non-zero. The observations are 

continuous signal. Although it is possible to quantize the signals for the use of discrete HMMs, it would be 

advantageous to use HMMs with continuous observation densities (Rabiner, 1989). The data inputs are 

the torque in z  axis ( zT  ), torque in y  axis ( yT ) and the force in x - axis xF  (Figure 20). HMMs with 

multivariate Gaussian observation are used with each observation is a vector x : 
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x       (20) 

The frequency of collecting data which is also the frequency of running HMMs for online intent recognition 

is 25 Hz. This frequency is high in comparison to human hand’s motion’s frequency which is up to 5 Hz 

(Flanagan & Johansson, 2002) (Samur, 2012). The combination of a series of observation vector over time 

creates an observation sequence.  

1 2{ , ,..., }nO  x x x      (21) 
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The observation output probability density matrix  ( )jB b x is form by multivariate Gaussian density

( )jb x  (with 1,2...,j N  ): 

   11 1
( ) exp

2(2 ) | |
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j j j
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b


 
    

 
x x μ Σ x μ

Σ
   (22) 

where  

k

j Rμ : mean vector of probability density of state
thj   

k k

j R Σ  : covariance matrix of probability density of state
thj      

k : dimension of observation vector x  ( 3k   in this case) 

 

Figure 19: Example of an ergodic three state HMM model 



 

35 
 

 

Figure 20: Force and torque signals at the robot’s end-effector 

The initialization for HMMs parameters before training are found using K-mean cluster algorithm. 

First, the K-mean algorithm with the centroid distance will separate all observation vectors in the training 

data set into N data clusters ( N  is the number of states in HMMs). The observation output probability 

densities’ (Opdf ) parameters are found by fitting the data clusters. For example, mean and covariance 

of jOpdf  are found by fitting the data cluster
thj . To initialize the state transition probability matrix

{ }ijA a , all observation vectors in sequences are classified into each data clusters and given the state 

number according to their clusters they are belong to. Then numbers of transitions from the state i  to 

the state j  are counted. Finally, those numbers are normalize to get the values of ija . The initial state 

probability matrix { }i  is found by the similar method. First, all first observation vectors in each 

sequences of training data set are classified. The state numbers are given for each of first observation 

vectors according to the data clusters they belong to. The number of states appear as first state in 

sequences are counted, then are normalized to get i . 



 

36 
 

3.3.1 Using two HMMs with data collected in only impedance control 

During manipulation, the person has two basic intents: rotation or translation. Therefore, a HMM for 

each of the intent modes is needed: R  for rotation and T  for translation. Figure 21 shows the scheme 

of the intent recognition which includes feature extraction and intent classification.  

 

Figure 21: Intent recognition scheme 

For collecting data for training the HMMs offline, the robot is controlled with relatively low 

impedance control in horizontal plane and a high stiffness is set in vertical direction so that the robot can 

leverage the mass of the object. The data of force xF , yF , zF and torque xT , yT , zT at the gripping point of 

the robot (Figure 22) is collected at sample period of 40 milliseconds for each intent mode.  

 

Figure 22: Coordinate system at the robot’s gripping point (R) 
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Although it is common that the data is normalized before feeding into HMMs, in this project the 

force and torque data is not normalized because the input signals’ ranges are relatively the same. For 

training the HMMs, 90 data sequences were collected for each intent mode (Figure 23). 60 data sets are 

used for training the HMMs and 30 data sets are used for evaluating the models.  

  

Figure 23: Examples of translation and rotation sequences 

The length of sequences will be the number of data points in the sequences. For number of states, 

in general, there is no theoretical method for determining the number of states of HMMs (Rabiner, 1989). 

One may think of Bayesian information criterion (BIC). However, BIC only works well for optimizing a single 

HMMs with respect to computational effort, it is not in the case several HMMs work together (Nikolay 

Stefanov, Passenberg, Peer, & Buss, 2013). Therefore, in this project, the number of states of HMMs is 

considered through the accuracies on testing data sets.  

For online recognition, the observation sequences are extracted from real-time data. That means 

a new observation sequence is formed at each sample time of 40 milliseconds (frequency of 25 Hz) and 

then passed into the trained HMMs. This sample time is high in comparison to human hand’s motion’s 

frequency which is up to 5Hz (Flanagan & Johansson, 2002) (Samur, 2012). The HMM model with higher 

likelihood will define the intent mode of the subject. The output of the problem 1 will be the likelihood 
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that model ( , , )A B   generates the observation sequence 1 2{ , ,..., }TO o o o . Because this value 

could be very small, it is more convenient to use logarithmic scale ( | )LL O  . 

( | ) ln( ( | ))LL O p O         (23) 

That means the translation mode is true if ( , ) ( , )T RLL O LL O  . The similar holds for rotation mode. 

  

Figure 24: Intent estimation using two HMMs 

3.3.2 Using two HMMs and four HMMs with data collected in separate modes 

When using two HMMs as mentioned above, the training data is collected when the robot ran only in 

impedance control and without switching modes. Later the trained HMMs are used for recognizing the 

person’s intent then switching mode according to the intent. Because the training data and working data 

are at different conditions, the performance may decrease. This problem can be solved by collecting data 

in separate modes. First, a person intents do rotation and translation actions while the robot is running in 

rotation mode. The data for translation intent and rotation intent is collected. Latter, the person intents 

do rotation and translation actions while the robot is running in translation mode. The data for translation 

intent and rotation intent is collected. 90 sequences are extracted for each intent in while the robot is 

running in rotation mode. Similarly, 90 sequences are extracted for each intent in while the robot is 

running in translation mode. Two-thirds of these sequences are used for training and one third are used 

for testing to determine the appropriate HMM model. The observation sequence is extracted online, then 
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passed into the HMMs. The data is used for trained two HMMs ( R and T ). The intent recognition result 

is determined by comparison of the two likelihoods (Figure 24). 

Because of separate modes, two HMMs in rotation mode (
_T inR and

_R inR ) can be used when the 

robot is in rotation mode, two HMMs in translation mode ( _T inT  and _R inT ) can be used when the robot 

is in translation mode. In this case, the training data for two HMMs in rotation mode are collected as the 

person tries to do rotation and translation actions while the robot is running in rotation mode. Similarly, 

the training data for two HMMs in translation mode are collected as the person tries to do rotation and 

translation actions while the robot is running in translation mode.  

 

Figure 25: Intent estimation diagram using four HMMs 
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The observation sequence is extracted online, then passed into the HMMs in rotation mode (

_T inR and
_R inR ) if the current mode is rotation. Likewise, the sequence is passed into the HMMs in 

translation mode ( _T inT  and _R inT ) if the current mode is translation. The intent recognition results are 

determined by comparison of the two likelihoods. With this approach, chattering can happen when the 

two HMMs in rotation (
_T inR and

_R inR ) give the result as translation intent, and the in next time step 

two HMMs in translation (
_T inT  and

_R inT ) give the result as rotation intent. This is solved by a switch 

block in which the system only switches when there is an agreement in results between the two pairs of 

HMMs. For example, the system is currently in rotation mode, two HMMs in rotation will do the 

recognition and give the result as translation intent. That means the next data sequence will be fed into 

two HMMs in translation. The system only switches into translation if the two HMMs in translation also 

give the results as translation (Figure 26). For better explanation, the abbreviation for these methods are 

described in Table 3. 

 

Figure 26: Switch block 

 



 

41 
 

Abbreviation Meaning 

2HMMs_OnlyImp Two HMMs with data collected in only impedance control. 

2HMMs_RotTra Two HMMs with data collected in separated modes. 

4HMMs Four HMMs with data collected in separated modes. 

SwitchFunc Switching function based on force magnitude.  

Table 3: Abbreviation of different methods 

3.4 Switching function based on force magnitude  

In (Karayiannidis et al., 2014), authors proposed a method to map human’s intent of rotation versus 

translation based on force magnitude F . For movements in horizontal plane, force magnitude is 

calculated: 

2 2

x yF f f       (24) 

The rotation is defined when force magnitude is under a threshold, and translation is when the 

magnitude is beyond the threshold. The intuition of this idea is that the person is likely to reduce the 

forces to allow a switch from translation to rotation mode; and while in rotation mode, the person must 

increase the force to switch to transltion mode. A hysterisis f  is introduced to avoid unintended 

switching chattering due to inaccurate operation or noisy measurements (Figure 27). Although in 

(Karayiannidis et al., 2014), the values of threshold 0f  and hysteresis f are determined empirically, in 

this project, these values are determined through the mean and deviation of recorded interaction force’s 

magnitude so that the switching funtion can give a fair rotation and translation region.  

f        (25) 
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0
2

f


        (26) 

Where  is the mean and is the deviation. 

 

Figure 27: Switching function based on force magnitude 

3.5 Experimental protocol 

In the experiment, a weighted wood board (571 x 89 x 50 millimeters, 2.0 kg) is chosen as the object 

for the collaborative manipulation tasks (Figure 28). A male person (178cm, 70 kg) is asked to hold the 

end of the object with one hand as they find comfortable. This prevents the person from applying a large 

torque at the gripping point. For collecting training data for HMMs, the person was asked to do rotation 

and translation movements. The interaction forces and torques were recorded and then separated into 

the sequences as described in section 3.3.  

To evaluate the method, the person was asked to do some trials first and then move the object follow 

task TRANSLATION - a straight line with translation motion, ROTATION - circular with rotation motion, and 

COMBINED - translation followed by rotation and vice versus. In the TRANSLATION task, the person tried 

to translate the object from a starting position to another position. Because the robot’s position is fixed, 

and the robot’s also try to keep the height of object fixed in manipulation tasks, the distance of translation 
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is limited. In this case, the straight line for translation is 60 cm length. In the ROTATION task, the person 

rotates the object around the robot’s gripping point 180°. In the COMBINED task, the path is a 

combination of a straight line of 60 cm length and a circular of 135°. The person was ask to do translation 

movement following the straight line and rotation movement following the circular. The switching 

between rotation and translation is continuous without stopping. Moving following the paths, they can 

walk following the object which is similar in real case of collaborative manipulations. For each case, the 

person held the object with their right hand and moved the object in one direction. After the path is 

finished, the person stops for one to three seconds and switches into the opposite direction by holding 

the object by their left hand and moving following the paths (Figure 28). In each direction, the person 

moved the object 5 times.  

  

Figure 28: Human and robot jointly hold the object when moving in two directions 

One problem of recognizing using switching function is that the system cannot correctly detect 

when fast rotation or slow translation is desired. For the comparison, testing with fast rotation and slow 

translation is conducted. The person is asked to do the ROTATION task – circular with rotation at a fast 

speed (that means the person need to apply a larger force to the object), and do the TRANSLATION task 

– straight line with translation in slow speed (that means the person need to apply less force to the object). 

The robot is set to rotation mode during ROTATION task and translation mode during TRANSLATION task 

so that the predictions of all methods (HMMs and switching function) are compared.  
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During collaborative tasks, the number of switches is important. A reduced number of switches 

will result in a task done more smoothly. Therefore, the number of switches between two modes is 

counted in each trial. In the TRANSLATION and ROTATION tasks the number of switches is ideally zero 

because the person only intends to do translation or rotation. In the COMBINED task in which both 

rotation and translation are involved the number of switches is ideally one. In addition, the accuracy of 

the prediction is calculated as the ratio between number of correct predictions correctn  and total number 

of predictions N . This value can also described by the correct prediction time correctt  divided by the total 

executed timeT  as the prediction frequency is fixed. 

100% 100%correct correctn t
Accuracy

N T
        (27) 
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CHAPTER 4 

RESULTS 

The experiment is set up as described in section 3.5. For each method, ROTATION task is done first, 

then followed by TRANSLATION and COMBINED tasks. Figure 29 – Figure 32 show examples of each task. 

Figure 29 shows an example of the TRANSLATION task using four HMMs method (4HMMs) in which the 

object is moved with intent to translate. The prediction is indicated by values: 0 – translation, 1 – rotation. 

At the beginning, due to the delay of prediction, there was an error which caused the object to rotate a 

little. The system latter detected the person’s intent as translation. At very end, the person tried to rotate 

the object back to make it align with the desired stopping position.  That makes the robot switch into 

rotation mode. The number of mode switches is twice in this case.  Figure 30 shows an example of circular 

path following with rotation (task R) in which the object is rotated
0

180 . As the system predicted correctly 

in this case, the object rotated and the robot’s gripping point did not move. For the COMBINED task, Figure 

31 shows the object was translated then rotated about the robot gripping point.  At the beginning, there 

was a small error due to delay of the system in prediction, then the translation intent was predicted. At 

the end of the straight line segment, the person switched into rotation. 

 

Figure 29: Example of translation movement using 4HMMs 
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Figure 30: Example of rotation movement using 4HMMs 

 

Figure 31: Example of translation followed by rotation using 4HMMs 

4.1 Using two HMMs with data in only impedance control (2HMMs_OnlyImp) 

In order to determine the appropriate model for HMMs, different models with different number of 

states are considered. Table 4 shows the accuracies on the testing data sets when using HMMs with 

different number of states (2, 3, 4, 5 states) and different sequence lengths (10, 15, 20, 25, 30, 35 data 



 

47 
 

points). As the accuracy of model with two states and length of 25 points is fairly high with least number 

of states, this model is used in this case. Table 5 - Table 7 show the data for 10 trials for ROTATION, 

TRANSLATION and COMBINED tasks. The abbreviation “No. of switching” means number of switching, 

“Avg.” means average values. The accuracy of task ROTATION is 84.7%, task TRANSLATION is 78.1%, task 

COMBINED is 73.1% and overall accuracy is 78.7%.  

No. of States\length 10 15 20 25 30 35 

2 88.3 90.0 95.0 96.7 96.7 96.7 

3 90.0 93.3 93.3 95.0 95.0 95.0 

4 88.3 88.3 95.0 95.0 95.0 95.0 

5 86.6 91.6 96.7 95.0 95.0 95.0 

 Table 4: Accuracy of predictions with different number of states and sequence lengths 

Evaluation\Trial  1 2 3 4 5 6 7 8 9 10 Avg. 

No. of switching 2 1 4 5 5 2 1 0 3 2 2.50 

Run time (second) 8.20 8.32 9.72 9.88 8.84 8.12 8.04 8.00 8.80 9.52 8.74 

Duration of Prediction Error 

(second) 

0.24 0.92 2.520 3.680 1.320 0.88 0.92 0 1.84 1.60 1.39 

Table 5: Results task ROTATION using 2HMMs_OnlyImp 

Evaluation\Trial  1 2 3 4 5 6 7 8 9 10 Avg. 

No. of switching 10 3 4 2 6 2 6 4 6 2 4.50 

Run time (second) 11.08 6.04 8.40 6.40 10.40 6.64 9.00 7.44 8.16 9.20 8.28 

Duration of Prediction Error 

(second) 

3.48 0.96 1.48 1.20 3.32 1.72 2.32 1.00 1.44 1.88 1.88 

Table 6: Results task TRANSLATION using 2HMMs_OnlyImp 

Evaluation\Trial  1 2 3 4 5 6 7 8 9 10 Avg. 

No. of switching 2 4 6 11 6 16 4 10 7 10 7.6 

Run time (second) 7.64 10.36 8.88 16.32 8.76 16.68 7.88 20.16 8.84 13.12 11.86 

Duration of Prediction Error 

(second) 

0.40 3.48 2.36 7.72 2.52 4.72 1.08 7.40 3.00 1.96 3.46 

Table 7: Results task COMBINED using 2HMM_OnlyImp 
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4.2 Using two HMMs with data collected in separated modes (2HMMs_RotTra) 

First, the number of states in HMM models is determined via the accuracies on the testing data set. 

As 5 state HMMs has highest accuracy (Table 8), this model is used. Table 9, Table 10, Table 11 show the 

data of ten trials for task ROTATION, TRANSLATION, and COMBINED using HMMs with data collected in 

rotation and translation mode. The accuracy of test ROTATION is 92.9 %, test TRANSLATION is 81.6 %, and 

test COMBINED is 88.0%, and 87.5% for all 3 tests. 

Number of states Accuracy (%) 

2 93.3 

3 93.3 

4 93.3 

5 95.8 

6 95.0 

7 95.0 

Table 8: Accuracy when using HMMs with different number of states 

Evaluation\Trial  1 2 3 4 5 6 7 8 9 10 Avg. 

No. of switching 3 3 1 2 1 2 1 2 3 0 1.8 

Run Time (second) 9.44 9.68 7.68 7.84 8.24 8.16 7.76 8.00 8.72 7.48 8.3 

Duration of Prediction Error 

(second) 

1.72 0.44 0.44 0.04 0.96 0.68 0.28 0.44 1.16 0 0.62 

Table 9: Results of task ROTATION with 2HMMs_RotTra  

Evaluation\Trial  1 2 3 4 5 6 7 8 9 10 Avg. 

No. of switching 1 2 6 3 4 1 3 5 1 3 2.9 

Run time (second) 6.28 6.60 7.32 8.40 7.80 6.64 6.92 9.04 6.44 8.60 7.40 

Duration of Prediction Error 

(second) 

0.08 1.08 1.92 1.60 2.44 0.72 1.20 2.84 0.76 1.56 1.42 

Table 10: Results of task TRANSLATION with 2HMMs_RotTra 
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Evaluation\Trial  1 2 3 4 5 6 7 8 9 10 Avg. 

No. of switching 1 2 3 4 4 4 4 8 5 6 4.1 

Run time (second) 7.44 11.04 6.92 10.60 7.96 11.76 8.12 13.60 7.76 16.68 10.18 

Duration of Prediction Error 

(second) 

0.28 0.76 0.80 0.96 1.64 1.76 1.44 1.40 1.08 1.92 1.20 

Table 11: Results of task COMBINED with 2HMMs_RotTra 

4.3 Using four HMMs with data collected in separated modes (4HMMs) 

First, the number of states for HMMs is determined through the accuracies on the extracted testing 

data set. Two state and three state HMMs in rotation mode and 3 state HMMs in translation mode have 

the highest accuracy (Table 12). For simplification, three state models are used for all HMMs. The accuracy 

of test ROTATION is 92.0 %; test TRANSLATION is 80.6 % and test COMBINED is 88.1%, and 86.9% for all 3 

tests. 

No. of States\Cases HMMs in Rotation mode HMMs in Translation mode 

2 98.3 93.3 

3 98.3 96.7 

4 95.0 95.0 

5 95.0 95.0 

Table 12: Accuracy when using HMMs with different number of states 

Evaluation\Trial 1 2 3 4 5 6 7 8 9 10 Avg. 

No. of switching 0 2 0 4 1 1 2 0 0 2 1.2 

Run time (second) 7.96 10.04 8.24 10.28 8.80 9.52 11.32 8.72 8.48 9.16 9.25 

Duration of Prediction Error 

(second)  

0 1.92 0 2.04 0.2 2.72 0 0 0 0.96 0.78 

Table 13: Results task ROTATION using 4HMMs 
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Evaluation\Trial 1 2 3 4 5 6 7 8 9 10 Avg. 

No. of switching 2 2 2 2 4 2 2 2 4 1 2.3 

Run time (second) 6.04 7.04 10.84 7.64 7.20 8.08 7.88 8.00 7.92 7.08 7.77 

Duration of Prediction Error 

(second)  

0.36 1.36 4.76 1.6 1.04 1.8 1.16 1.48 1.8 0.76 1.61 

Table 14: Results task TRANSLATION using 4HMMs 

Evaluation\Trial 1 2 3 4 5 6 7 8 9 10 Avg. 

No. of switching 2 4 3 3 4 4 4 2 3 1 3.0 

Run time (second) 7.84 12.56 9.4 12.16 8.6 12.52 9.24 11.56 8.44 8.36 10.07 

Duration of Prediction Error 

(second)  

0.40 2.84 1.76 1.64 1.84 1.84 0.68 0.80 0.44 0.32 1.26 

Table 15: Results task COMBINED using 4HMMs 

4.4 Switching function based on force magnitude 

The switching function’s parameters are determized through the mean and deviation of interaction 

force magnitudes. As the mean of interaction force magnitudes is 9.13  and deviation is 5.33  , 

the hysteresis is chosen to be equal to the deviation: 5.33f  , and the threshold 0 6.47f   (Equation 

25, 26) 

Evaluation\Trial 1 2 3 4 5 6 7 8 9 10 Avg. 

No. of switching 0 0 0 0 0 0 0 0 0 0 0 

Run time (second) 12.36 10.60 12.12 11.36 11.8 11.04 11.80 11.16 12.08 11.04 11.54 

Duration of Prediction Error 

(second)  

0 0 0 0 0 0 0 0 0 0 0 

Table 16: Results task ROTATION using SwitchFunc 

Evaluation\Trial  1 2 3 4 5 6 7 8 9 10 Avg. 

No. of switching 2 2 2 2 2 2 2 2 2 2 2 

Run time (second) 6.80 7.36 6.44 7.16 5.80 6.72 5.32 5.80 5.32 5.68 6.24 

Duration of Prediction Error 

(second) 

0.68 0.60 0.56 1.00 0.72 1.04 0.64 0.72 0.64 0.72 0.73 

Table 17: Results task TRANSLATION using SwitchFunc 
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Evaluation\Trial  1 2 3 4 5 6 7 8 9 10 Avg. 

No. of switching 2 2 4 2 2 2 2 2 2 2 2.2 

Run time (second) 8.84 12.92 9.52 10.76 8.40 11.88 7.92 11.28 7.88 10.32 9.93 

Duration of Prediction Error 

(second) 

0.36 0.52 1.32 0.60 0.48 0.36 0.64 0.52 0.52 0.76 0.68 

Table 18: Results task COMBINED using SwitchFunc 

In test ROTATION (Table 16), it is understandable that the number of switching is zero. As the person 

try to do rotation slowly, the predictions are all correct as rotation. In test TRANSLATION, at the beginning 

of each trial, the robot always stays in rotation mode as the force magnitude is small. Therefore, when 

the person exerts a force to move the object, the force magnitude increases to reach the threshold and 

leads to a switch from rotation to translation. At the end of each trial, the person decreases the applied 

force that causes another switch from translation to rotation. Therefore the number of mode switches is 

two (Table 17). In test COMBINED which involved both translation and rotation actions, the number of 

switches slightly increases (Table 18). The reason is that during the translation segment, although the 

person intended to translate the object, it takes a period of time for them to increase the applied force to 

reach the threshold of the translation region in the switching function. The accuracy for test ROTATION is 

100%, for test TRANSLATION is 88.2%, for test COMBINED is 93.7 % and overall accuracy is 93.9%. Table 

19 Table 20 shows the summary of number of switches and the accuracy with different methods. The 

results shows that the numbers of switches significantly decrease with 2HMMs_RotTra and 4HMMs 

methods in comparison to 2HMMs_OnlyImp method ( 0.05p  ). In addition, the accuracy with 

2HMMs_RotTra and 4HMMs methods are significantly better than the accuracy with 2HMMs_OnlyImp 

method ( 0.05p  ). And the accuracy of SwitchFunc method are significant better than all other methods 

( 0.05p  ).  
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Methods Number of mode switches 

ROTATION TRANSLATION COMBINED Overall 

Mean Deviation Mean Deviation Mean  Deviation Mean Deviation 

2HMMs_OnlyImp 2.50 1.72 4.50 2.55 7.60 4.17 4.87 3.59 

2HMMs_RotTra 1.80 1.03 2.90 1.73 4.10 1.97 2.93 1.84 

4HMMs 1.20 1.32 2.30 0.95 3.00 1.05 2.17 1.31 

SwitchFunc 0.00 0.00 2.00 0.00 2.20 0.63 1.40 1.07 

Table 19: Number of mode switching with different methods 

 

Methods Accuracy (%) 

ROTATION TRANSLATION COMBINED Overall 

Mean Deviation Mean Deviation Mean  Deviation Mean Deviation 

2HMMs_OnlyImp 84.8 10.9 78.1 6.5 73.1 12.5 78.7 11.0 

2HMMs_RotTra 92.9 5.8 81.6 9.4 88.0 5.0 87.5 8.2 

4HMMs 92.0 10.8 80.6 10.1 88.1 7.2 86.9 10.3 

SwitchFunc 100 0 88.2 2.3 93.7 3.1 93.9 5.3 

Table 20: Accuracy of predictions with different methods 

4.5 Fast rotation and slow translations 

The switching function based on force magnitude is proposed in (Karayiannidis et al., 2014). A 

disadvantage of this approach is that the person has trouble successfully completing a fast rotation or 

slow translation. In the above tests, the person chose his speed of doing actions by himself. The average 

speeds of rotation and translation are calculated based on data in ROTATION and TRANSLATION tasks 

(Table 21). When fast rotation is desired, the force magnitude is above the switching threshold and the 

controller will infer this as translation mode. Similarly, in slow translation, force magnitude is below the 

switching threshold so the controller is likely to infer as rotation mode.  

Figure 32  shows the cases of fast rotation (left) and slow translation (right). In the fast rotation, most 

of predictions with the switching function are wrong as translation (values are 0), while predictions with 

using HMMs are correct as rotation (values are 1).  Similarly in the slow translation case, while predictions 
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based on switching function are wrong as rotation, most of predictions with HMMs are correct as 

translation. When fast rotations or slow translations are required, the HMMs methods still perform well, 

while the switching function based on force magnitude perform poorly (Table 23, Table 24). The results 

shows that HMMs methods perform significantly better than the switching function in fast rotation and 

slow translation ( 0.05p  ). 

 

Figure 32: Fast rotation and slow translation 

Tasks Self-selected speeds Fast Rotation Slow Translations 

Mean Deviation Mean Deviation Mean Deviation 

Rotation (rad/s) 0.34 0.05 0.76 0.04 x x 

Translation (cm/s) 15.83 1.73 x x 7.42 0.58 

Table 21: Self-selected speeds and fast rotation/ slow translation speed 

 

 

Methods Accuracy (%) 

Fast Rotation Slow Translation Overall 

Mean Deviation Mean Deviation Mean Deviation 

2HMMs_OnlyImp 90.4 12.9 43.3 23.7 67.0 30.4 

2HMMs_RotTra 93.7 4.7 62.9 14.5 78.3 19.0 
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4HMMs 92.9 8.6 69.7 20.1 81.3 19.2 

SwitchFunc 10.7 4.0 2.0 4.5 6.4 6.0 

Table 22: Accuracies in fast rotation and slow translation tasks 

Evaluation\Trial  1 2 3 4 5 6 7 8 9 10 Avg. 

Run time (second) 4.32 4.12 3.92 4.16 3.72 4.16 3.84 4.12 3.88 3.92 4.02 

Duration 

of 

Prediction 

Error 

(second) 

2HMMs_OnlyImp 0.48 1.52 0.00 1.08 0.00 0.60 0.28 0.00 0.00 0.00 0.40 

2HMMs_RotTra 0.56 0.00 0.32 0.00 0.36 0.20 0.32 0.00 0.36 0.36 0.25 

4HMMs 0.00 0.48 0.00 0.24 0.00 0.96 0.00 0.52 0.00 0.68 0.29 

SwitchFunc 3.40 3.84 3.52 3.72 3.40 3.76 3.48 3.60 3.52 3.60 3.58 

Table 23: Results when fast rotation is required  

Evaluation\Trial  1 2 3 4 5 6 7 8 9 10 Avg. 

Run time (second) 7.00 9.12 7.60 7.80 6.96 7.84 6.72 8.80 6.92 8.12 7.69 

Duration 

of 

Prediction 

Error 

(second) 

2HMMs_OnlyImp 1.44 6.56 4.28 5.44 3.64 5.20 1.72 8.76 4.52 3.04 4.36 

2HMMs_RotTra 2.24 4.24 4.04 3.48 3.36 1.28 2.40 2.68 3.60 0.96 2.83 

4HMMs 2.56 0.20 3.32 2.16 3.00 0.32 2.16 2.92 4.72 1.00 2.23 

SwitchFunc 7.00 9.12 7.60 7.80 6.24 7.84 6.72 8.80 6.92 7.24 7.53 

Table 24: Results when slow translation is required  
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CHAPTER 5 

DISCUSSION 

Chapter 4 presented the results of testing with three manipulation tasks using four methods. For 

comparison, bar graphs of number of switching time and accuracy of different methods: two HMMs with 

data collected in only impedance control (2HMMs_onlyImp), two HMMs with data collected in different 

defined intent mode (2HMMs_RotTra), four HMMs with data collected in different defined intent mode 

(4HMMs), and switching function based on force magnitude (SwitchFunc) are used (Figure 33, Figure 34). 

The bar graphs show means i  with the range of one deviation i ( i i  ) for the accuracy and number 

of switches of each method. 

 

Figure 33: Number of switching mode with different methods. Error bars represent   deviation of 

number of switches across trials. Stars indicate significance of 0.05p     
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Figure 34: Comparision of accuracies of recognition using different methods. Error bars represent   

deviation of accuracy across trials. Stars indicate significance of 0.05p     

A notice point is that the number of mode switching tend to be inversely proportional to the 

accuracies (Figure 33, Figure 34). This is understandable because when the accuracy is low, the system 

will make more wrong predictions and the number of switches will increase. In task COMBINED, as the 

path is longer and involves both translation and rotation, the number of switches is higher in comparison 

to task ROTATION and TRANSLATE.  The accuracy of HMMs using data collected during impedance control 

only is significantly lowest ( 0.05p  ) (Figure 34). This is because the training data was collected when 

the robot ran without defining rotation and translation. Later the trained HMMs are used for recognizing 

the person’s intent and switching mode. The behavior of the robot now depends on the intent mode, 

which is different from when running in only impedance control without switching mode. Therefore, the 

performance of recognition decreases. The methods using data collected in each mode of rotation and 

translation solved the above problem, so that the accuracies of 2HMMs_RotTra and 4HMMs methods are 

higher and there are less switches. The average of accuracy of 2HMMs_RotTra method is slightly higher 



 

57 
 

than 4HMMs method. However, there is no statistical significance between these methods. The switching 

function based on force magnitude has highest accuracy and least number of switches ( 0.05p  ) (Figure 

33, Figure 34).  

With the swiching function, the person figured out how translation and rotation switches work 

and performed well in the tests as there was no restriction on speed of movement for each test. However, 

when specific requirements of fast rotation or slow translation were required, the switching function 

based on force magnitude performed poorly while HMMs methods still worked well (Figure 35). This is 

because rather than using only force magnitude information, HMMs used the combination of different 

signals with both magnitudes and signs which may also contains different informations like magnitude 

and direction. In addition, the person’s movement is better described in time series data which HMMs 

methods work well with rather than only instantaneous data. The average accuracy of HMMs methods in 

fast rotation and slow translation is lower than the tests at self-selected speeds (Figure 34), the reason 

may be HMMs are trained with data at self-selected speed and may be optimized to work at this speed. 

Then, when these special cases occur, accuracy decreases.  
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Figure 35: Accuracy in fast rotation and slow translation. Error bars represent   deviation of accuracy 

across trials. Stars indicate significance of 0.05p     
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CHAPTER 6 

CONCLUSION AND FUTURE WORKS 

This project has shown that using HMMs can be used for intent recognition of rotation versus 

translation problem. Using only data from the interaction forces and torques at the robot’s end effector, 

the HMMs were 87.5% accurate in estimating the person’s intent. Using the underlying impedance 

controller, the robot worked smoothly with a person holding the object with one hand in the collaborative 

manipulation tasks. In this project, the collaborative manipulation tasks are accomplished without using 

extra force and torque sensors as in in most of prior works (Dumora et al., 2013)(Wojtara et al., 2009).  

For comparison, the project also implemented the switching based function on force magnitude as 

proposed in (Karayiannidis et al., 2014). Although the accuracy was higher when using force magnitude 

as switching criterion at self-selected speeds ( 0.05p  ), HMMs outperformed the switching function in 

fast rotations and slow translations ( 0.05p  ).  

First, this project used a single user and future works with the experimental tests of more people 

could be conducted to give the better assessment of the method. Second, some future works could 

improve the accuracies of HMMs for intent recognition. In this project, the force and torque data used as 

inputs of HMMs are only raw data, so one may look into further methods of extracting features from these 

data before feeding into HMMs. In addition, the external force data is calculated through the robot 

positions and the torque sensors at every joint. If only one of these sensors has an error, the data may 

contains error, which may decrease the performance of HMMs. Therefore, an improvement would be a 

use of a multiple degree of freedom force and torque sensors attached to the robot’s end-effector, so 

that external force and torque can be measured directly. Third, in this project, HMMs is used for 

classification of rotation about the robot gripping point and translation laterally in horizontal plane. Future 

works could implement HMMs for more intents in 3D space manipulation to make the collaboration 
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completed such as lifting up or down, rotating about the person gripping points, rotating around circular 

with different diameters. The robot in future works rather than only stands at a fixed position, can be able 

to move around so that the paths of manipulation are not limited. Finally, an improvement for this project 

would be implementing the robot with assistant mode. In this project’s concept, the robot plays the main 

role as a follower in cooperation and the user always play the leader role and needs to apply a certain 

force to move the object. A future concept in which the robot is able to play the role of leader during a 

move could be applied. Once the robot detects the human partner’s movement intent, it can move in 

advance so that the person does not need to keep applying the force to the object. The person then only 

needs to exert force when they want to switch the moving paths from rotation to translation or vice versa.  
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APPENDIX 

LINKS FOR UPLOADED FILES 

The KUKA program of this project is uploaded at https://github.com/vinhqnguyen/Kuka-Lbr-

iiwa-collaboration-using-HMMs- , and the HMM library witen in Java - Jahmm library can be downloaded 

at https://code.google.com/archive/p/jahmm/ 
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