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Abstract 

The continental shelf offshore of NW Ireland is an area where marine geological and chronological data 

pertaining to the advance and retreat of the last British-Irish Ice Sheet (BIIS) remains sparse and therefore ice 

sheet limits are poorly constrained. This is important because well constrained and well dated ice sheet limits 

are critical to developing accurate ice sheet models representative of the dynamics of the BIIS. The aim of this 

study is to reconstruct the timing, extent and nature of the last ice sheet advance and retreat across the NW 

Ireland continental shelf through the sedimentological analysis and radiocarbon dating of marine sediment 

cores. 

A transect of thirteen cores from offshore of Donegal Bay, NW Ireland provide direct evidence for extensive 

glaciation of the continental shelf. Sedimentological and chronological evidence from the cores indicates that 

the ice sheet extended to the shelf edge at the last glacial maximum (LGM) and that subsequent retreat from this 

shelf edge position was underway by 23,700 cal. yr BP. Initial retreat from the shelf edge was rapid and 

associated with a large calving event. Retreat across the mid shelf was slow and punctuated by the formation of 

a series of moraines. The ice sheet was likely a grounded tidewater margin in which meltwater contributed 

strongly to both retreat and glacimarine sedimentation. The ice sheet had attained an inner shelf position, 

inshore of a prominent moraine in Donegal Bay (the ‘Donegal Bay Moraine’), before 17,800 cal. yr BP, and 

therefore in contrast to previous work, it is inferred that this moraine pre-dates the Killard Point Stadial. 

Foraminiferal analysis from two cores (CE-08-003 and CE-08-010) shows the presence of a range of 

glacimarine taxa associated with ice sheet retreat across the shelf followed by the appearance of warmer Atlantic 

water taxa later in the cores. Collectively this suggests that ocean forcing did not drive initial retreat from the 

shelf and it emphasises the role of meltwater during deglaciation of the NW shelf.  
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Introduction 

1.1 Introduction 

The extent and dynamics of the British-Irish Ice Sheet (BIIS) have been the focus of scientific research for 

over a century with particular emphasis on understanding and reconstructing the extent of the ice sheet 

during the Last Glacial Maximum (LGM) and its subsequent retreat (e.g., Hull, 1891; Charlesworth, 1924; 

Stephens and Synge, 1965; Bowen et al. 2002; Ballantyne et al. 2007; Scourse et al. 2009; C. Clark et al. 

2012; Chiverrell et al. 2013). However in some areas, such as offshore of northwest Ireland (Fig. 1), LGM 

ice sheet limits remain poorly constrained and therefore controversial. The majority of the research 

surrounding the LGM limit of the last BIIS has been based on terrestrial data (e.g., Bowen et al. 2002; 

McCabe et al. 2007; Greenwood & Clark 2009). In NW Ireland there have been many attempts within the 

literature to constrain the glacial events of Donegal, however chronological data remain sparse (Benetti et 

al. 2010; Ballantyne et al. 2007). This underscores the need to establish a well constrained chronology for 

the BIIS in the Donegal region. 

The BIIS had an extensive marine margin which has been confirmed by the large suites of moraines that 

have been identified on the continental shelf surrounding Britain and Ireland (Bradwell et al. 2008; Benetti 

et al. 2010; Dunlop et al., 2010; Ó Cofaigh et al. 2012). With developments in marine geophysics (e.g., the 

now routine application of multibeam swath bathymetry to map landforms on continental shelves) the 

imaging and interpretation of seafloor geomorphology has been significantly advanced (e.g. Dowdeswell & 

Ó Cofaigh 2002). Access to marine geophysical data has formerly been limited or fragmentary (Ó Cofaigh 

et al. 2012). However, due to projects such as the Irish National Sea Bed survey, high quality marine 

geophysical data has been collected from much of Ireland’s coastal waters and this data is now publically 

accessible. By examining the multibeam swath bathymetry data collected through the Irish National Sea 

Bed survey, we now have direct evidence that ice extended onto the continental shelf offshore of NW 

Ireland and developed a large moraine complex (Ó Cofaigh et al. 2012; Fig. 2). However, this moraine 

complex is undated and it is important that such geomorphological interpretations are ground truthed using 

sedimentological data and that such data are then dated to constrain ice sheet history temporally. 
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This research aims to provide dating control in order to resolve conflicting reconstructions of the ice sheet 

at the LGM on the NW Irish shelf. It is essential to have well defined, well-dated limits for the BIIS at the 

LGM for the development of accurate ice sheet models (Chiverrell & Thomas 2010). In addition to this, 

establishing the nature of the BIIS and the dynamics of its NW margin will enable the study to further our 

understanding of the ice sheets possible impact(s) on the thermohaline circulation due to its North Atlantic 

location (Ó Cofaigh et al. 2012).   

 

Fig. 1. Location map showing the study area (From Ó Cofaigh et al., 2012). 
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1.2 Aim and research questions 

The aim of this thesis is to reconstruct the timing, extent and nature of the last advance and retreat of the 

British-Irish Ice Sheet (BIIS) on the continental shelf offshore of NW Ireland from marine sediment cores 

(Fig. 2). 

Research questions 

1. What was the extent of the ice sheet offshore of NW Ireland at the LGM? 

2. What is the nature of the sedimentary record of ice sheet advance and retreat across the shelf? 

3. What was the timing and rate of deglaciation across the continental shelf? 

4. Are there linkages between the response of the last ice sheet off NW Ireland and wider North 

Atlantic climate and oceanographic forcing during the last cold stage, in particular during 

deglaciation? 

1.3 Study area 

This research is focussed on the NW Ireland continental shelf and encompasses an area of 30,000 km2 

(between 55° 40’ and 54° 18’ N, and 7° 50’ and 11° 4’ W) (Fig. 1 and Fig. 2). This area was formerly under 

the NW sector of the BIIS and was drained by the Donegal Bay Ice Stream at the LGM (Sacchetti et al. 

2012b). The local terrestrial topography is dominated by uplands reaching over 500 m.a.s.l which are 

northeast-southwest trending, and characteristically composed of Dalradian pelites, pasmmites and schists, 

whereas, the lowlands are dominated by Carboniferous limestones and shales (Fig. 3; George & Oswald 

1957; Ballantyne et al. 2007). 

The geomorphology of the study area has been heavily influenced by Late Quaternary glaciation which has 

shaped the landscape and accounts for the superficial deposits around the area (McCabe 1993). At the LGM 

ice was centred on the Donegal highlands and would have fed the ice streams that extended on to the 

continental shelf (Knight & McCabe 1997). From the mouth of Donegal Bay the continental shelf extends 

80 km to the shelf edge (Fig. 2) with the shelf break at 120 m water depth.  
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Chapter Two 

Synopsis of the conflicting views on the BIIS extent during the LGM in NW Ireland. 

2.1 Introduction 

Defining the limits of the BIIS has been a focus of scientific research for over a century (e.g. Hull, 1891; 

Charlesworth, 1924; Stephens and Synge, 1965; Bowen et al. 2002; Ballantyne et al. 2007). NW Ireland is 

one particular region over which there has been considerable debate, particularly with respect to the extent 

of the last glaciation. It has recently been established that the BIIS was a very dynamic ice sheet with 

numerous ice-margin fluctuations (Ballantyne et al. 2007; McCabe et al. 2007). This differs to the 

traditional reconstructions which favoured a monotonic ice sheet recession (Mitchell et al. 1973). However, 

there remains a fundamental question as to the extent of the ice sheet in NW Ireland at the LGM. Numerous 

theories have been proposed over the years, with some authors supporting a land-terminating ice sheet 

(Synge and Stephens 1965), whereas others have supported an offshore LGM ice sheet extent with either an 

extensive continental shelf edge position ( Ó  Cofaigh et al. 2012) or a more restricted inner shelf position 

(McCabe et al. 2007).  

 Establishing the precise timing of the LGM is fundamental when discussing the extent of the BIIS 

during the LGM. The LGM is defined here as the last global glacial maximum when eustatic sea level was 

at a minimum. However, various dates have been proposed for this such as Mix et al. (2001) 23-19kyr BP, 

whereas more recently Clark et al. (2009) propose a period of 26.5-19kyr BP based on relative sea level 

data from various sites. The Clark et al. (2009) chronology for the LGM (26.5-19kyr BP) is adopted here.    

 

2.2 Early studies prior to 1980 

The majority of the early research literature (1860-1930) of the Irish sector of the BIIS at the LGM, 

supported a land terminating ice sheet margin. For example Hull (1891) regarded Bloody Foreland as the 

northern limit of ice sheet advance (Fig. 4). This theory was adopted and revised by Synge and Stephens 

(1965) who proposed that the ice sheet terminated between Lough Foyle-Bloody Foreland (LF-BF line) 

(Fig. 4). This line runs along the northwest coast of Ireland and was identified by the presence of drumlins, 

‘kame moraines’ and kettle holes. This ice limit has been incorporated into subsequent reconstructions of 

the BIIS (e.g. Bowen et al. 1986; Boulton et al., 1991). Conversely, Charlesworth (1924) suggested that the 

BIIS extended offshore onto the continental shelf during the LGM.  He also proposed that the retreat from 
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the shelf was slow and was punctuated by the construction of moraines with no subsequent re-advance. 

After analysing areal patterns of glacial erosion Synge (1978) revised previous interpretations in support of 

an ice advance onto the continental shelf during the LGM. Charlesworth (1973) suggested that instead of 

the LF-BF line representing the LGM ice limit it could alternatively represent a post-LGM re-advance limit. 

This interpretation has been supported by subsequent studies such as that of Warren (1992).  
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2.3 Terrestrial investigations from 1980 

Many studies have incorporated the Stephens and Synge (1965) or Synge (1969) mapped ice limits into 

their reconstructions. Bowen et al. (1986) proposed a predominantly land-terminating ice sheet at the LGM, 

with the northward limit defined by the LF-BF line. McCabe et al. (1998) also incorporated the original ice 

sheet limit proposed by Stephens and Synge (1965) as the ice limit during the Killard Point Stadial (ca 15.6 

kyr BP). The Killard Point Stadial correlates with Heinrich event 1 (ca. 14 14C kyr BP or 16.5 cal kyr BP) 

and has been suggested to be associated with an extensive ice sheet re-advance in Ireland and Britain at that 

time (McCabe et al. 1998). On the basis of a compilation of cosmogenic surface exposure dates, amino acid 

geochronology and AMS 14C dates, Bowen et al. (2002) proposed that the NW sector of the BIIS was most 

extensive prior to the LGM , reaching a maximum extent on the NW shelf at ca 37 36Cl kyr BP, and was  

subsequently more restricted during the LGM. They suggested that during the LGM the BIIS was 

positioned between the ‘Donegal Bay’ moraine (the prominent ridge at the mouth of Donegal Bay, as 

referred to by Ó Cofaigh et al. 2012) and the outer shelf (Fig. 5).  This interpretation has been supported by 

McCabe et al. (2007) who propose that the NW sector of the BIIS was extensive ~20 kyrs prior to the LGM, 

but that the ice sheet was actually less extensive during the LGM itself being confined to Donegal Bay until 

at least 19 cal kyr BP.  

  A number of subsequent studies have supported a shelf edge position pre-LGM such as (J. Clark et 

al. 2012). These authors have proposed that the NW sector of the BIIS extended to the shelf edge between 

27-28 cal kyr BP (Fig. 6), i.e., prior to the global LGM and held a shelf edge position until ~24 kyr BP (C. 

Clark et al. 2012; J. Clark et al. 2012).  

Ballantyne et al. (2007) reconstructed the Donegal ice dome during the LGM based on cosmogenic 

surface exposure dating and trimline mapping. On the basis of four cosmogenic 10Be exposure ages (18.6 ± 

1.4 to 15.9 ± 1.0 k yr) from 3 glacially transported boulders and ice moulded bedrock, they proposed that 

the BIIS extended at least 20 km offshore during the LGM. Based on glacial geomorphological mapping 

Greenwood & Clark (2009) also propose an extensive ice sheet that extended through Donegal Bay out onto 

the continental shelf during the LGM.   
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Fig. 6. Map of the proposed ice sheet limits pre-LGM ~27 kyr (From C. Clark 
et al. 2012). 
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2.4 Timing of ice sheet retreat 

There are numerous studies that propose a range of dates for the retreat of the BIIS offshore of NW Ireland. 

Dates such as 26 kyr BP (C. Clark et al. 2012), 25 kyr BP (Bowen et al. 2002) and 23 kyr BP (J. Clark et al. 

2012) have been suggested for initial retreat from the ice sheet’s shelf edge position. Subsequent retreat to 

the inner shelf was slow, as confirmed by the suite of moraines that are present on the inner shelf. McCabe 

(1986) and McCabe & Clark (2003) propose glacimarine deposition occurred between ~16.0 kyr BP and 

~15.0 kyr BP on the inner shelf and that North Donegal (Corvish, Fig. 7) was deglaciated before Donegal 

Bay (Belderg, Fig, 7). They state that after retreat the margin remained within inner Donegal Bay as a 

tidewater ice margin before undergoing a re-advance during the Killard Point Stadial (15 -14 kyr BP) 

(McCabe & Clark 2003), whereas C. Clark et al. (2012) suggest that the ice sheet did not undergo a 

subsequent re-advance but remained close to the present coastline (17 kyr BP). It has been stipulated that a 

rise in sea level triggered the destabilisation of the ice sheet (C. Clark et al. 2012). McCabe & Clark (2003) 

suggest that the deglaciation of the Irish Sea Basin due to the warming of the North Atlantic Ocean would 

have raised sea levels and destabilised the marine terminating ice margin offshore of Donegal.  
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2.5 Recent marine geophysical investigations  2002-2012 

The majority of these previous studies were based on terrestrial sampling and, as a result, provide relatively 

little direct information for ice sheet advance and retreat on the NW continental shelf. This clearly 

illustrates the importance of incorporating offshore data from marine geology and geophysics in the 

reconstruction of marine-terminating ice sheet margins. Marine sediment cores from both continental shelf 

and continental slope positions have been very useful in constraining the presence of ice sheets on 

continental shelves. Wilson & Austin (2002) studied marine sediment cores extracted from the Barra Fan. 

The cores identified an increase in sediment delivery to the Barra Fan shortly after 30 kyr, indicating that 

the BIIS had extended to the shelf edge. This supports the analysis of deep sea sediment cores by Scourse et 

al. (2009) who studied IRD on the NE Atlantic continental slope. They record ice sheet growth after 29 cal 

kyr BP and as a consequence they concluded that the BIIS must have had a marine calving margin near the 

shelf edge for IRD to be present in the sediment cores. This suggests the BIIS reached its maximum extent 

before the globally defined LGM.  

 Essential to the reconstruction of ice sheet limits on the continental shelf is the analysis of marine 

geophysical data. The Irish Government implemented an extensive campaign to survey Ireland’s territorial 

waters from 1999. Since then, the Geological Survey of Ireland and the Irish Marine Institute have 

coordinated the Irish National Seabed Survey (INSS) and the Integrated Mapping for the Sustainable 

Development of Ireland’s Marine Resource (INFOMAR) programmes. These programmes have involved 

the acquisition of multibeam swath bathymetry, backscatter and sub-bottom acoustic profiler data.  This 

data is freely available to the science community and consequently offers an unrivalled opportunity to study 

the offshore ice limits.  

A number of recent publications have used this resource to interpret the continental shelf 

geomorphology and thus infer ice sheet dynamics of the BIIS (e.g. Dunlop et al. 2010; Benetti et al. 2010; 

Ó Cofaigh et al. 2012; Sacchetti et al. 2012a; Sacchetti et al. 2012b). These publications have investigated 

the Malin Shelf, the continental shelf offshore of NW Ireland and also the deep water geomorphology of the 

Rockall Bank, Rockall Trough and the continental slope (Fig. 8) with the aim to gain a more comprehensive 

understanding of the BIIS and provide an offshore context to the terrestrial studies that have dominated the 

literature in this region. 
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 Benetti et al. (2010) mapped a series of end and recessional moraines on the continental shelf 

offshore of NW Ireland. Drumlins are located on the north eastern sector of the study area and record a 

north westerly flow of ice. Benetti et al. (2010) also interpret a series of iceberg scours distal to the 

outermost shelf moraine. These scours have an east to west orientation in the northern part of the study area, 

whereas the iceberg scours located in the southern part of the study area have a northeast to southwest 

orientation, which has been attributed to a change in the direction of the palaeocurrent. Other notable glacial 

geomorphological features identified within the study area include the gully and canyon systems located on 

the upper continental slope. In accordance with Sacchetti et al. (2012b) the authors also propose that the 

location of these features correlate with the BIIS presence at the shelf edge or nearby on the outermost 

shelf.  This study provides evidence that confirms the presence of the BIIS on the continental shelf. 

Ó Cofaigh et al. (2012) used marine geophysical data to investigate the glacial features on the 

continental shelf off the northwest coast of Ireland. The research identified arcuate moraines on the shelf 

documenting former ice margin positions (Fig. 5). These moraines provide evidence for a grounded ice 

sheet that extended over 80km from the mouth of Donegal Bay. Although Ó Cofaigh et al. (2012) did not 

report any dating, they did use dated marine stratigraphic records from other regional studies on the north 

west margin (Scourse et al. 2009) to propose a provisional chronology for ice sheet advance and retreat 

from the shelf edge. They suggested that the ice sheet extended to the shelf edge between 29-27 cal kyr BP 

and remained at the shelf edge until about 24 cal kyr BP after which it then underwent recession. Ó Cofaigh 

et al. (2012) infer that the retreat of the BIIS from the continental shelf was slow and episodic as illustrated 

by the closely spaced nested arcuate moraines present on the continental shelf (Donegal moraines). Iceberg 

scour marks are identified distal to the outermost moraines, indicating initial retreat was linked to a large 

calving event (which could have been driven by a rise in sea level). The study also discusses the 

interpretation of the Donegal Bay moraine. J. Clark et al. (2012) suggested that the Donegal Bay moraine 

represents the ice sheet limit during the Killard Pont Stadial, whereas Ó Cofaigh et al. (2012) propose an 

alternative explanation that the moraine could be recessional, formed as the BIIS retreated from its outer 

shelf position.  Ó Cofaigh et al. (2012) provide unequivocal evidence for extensive glaciation on the 

continental shelf offshore of northwest Ireland. The study demonstrates that the NW sector of the BIIS held 

an extensive shelf edge position pre-LGM, which is in agreement with numerous publications (e.g. Bowen 

et al. 2002; Wilson & Austin 2002; McCabe et al. 2007; Scourse et al. 2009; C. Clark et al. 2012; J. Clark et 



17 

 

al. 2012) . The authors also suggest that initial retreat of the ice sheet from the shelf edge commenced after 

24 kyr BP, which is similar to the ~23 kyr BP retreat from the Barra fan proposed by J. Clark et al. (2012). 

The chronology of ice sheet advance and retreat on the continental shelf, however, is still poorly 

constrained and requires further chronological controls. 

Sacchetti et al. (2012a) and (2012b) investigated the deep water geomorphology of Rockall bank, 

Rockall Trough and the continental slope utilising multibeam bathymetric and backscatter data (Fig. 8). The 

authors identify iceberg scours located on the eastern part of Rockall Bank and identify them as icebergs 

that were calved from the Irish sector of the BIIS. Sacchetti et al. (2012a) claims that these icebergs were 

calved after ~46 kyr BP from the grounded ice sheet near the shelf edge offshore of Donegal. Sacchetti et 

al. (2012b) also identify well developed canyon systems located in front of the large arcuate moraines 

identified near the shelf edge offshore of Donegal (Fig. 9). The canyon systems distal to the Donegal Bay 

moraines are very mature and illustrate a high level of complexity. The maturity exhibited by these canyon 

systems suggest that the BIIS was in close proximity to the shelf edge and held this marginal position for a 

considerable period of time during the LGM. 
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2.6 Summary 

As illustrated by the review above, there are conflicting interpretations of the timing and extent of the last 

BIIS in NW Ireland at, and following, the LGM. Central to this uncertainty has been the complete absence 

of any direct sedimentologcial and chronological data from the adjacent continental shelf. Although there is 

direct geomorphological evidence for a grounded ice sheet on the shelf offshore of NW Ireland (Benetti et 

al. 2010; Dunlop et al. 2010; Ó Cofaigh et al. 2012) this evidence is undated. This project is therefore 

fundamental to resolving the debate that surrounds the LGM limit(s) of the BIIS offshore of Northwest 

Ireland. Dating of the marine sediment cores will contribute to providing a chronology of ice sheet advance 

and retreat on the continental shelf, which will assist in determining the extent of the BIIS offshore of NW 

Ireland during the LGM. Analysis of the sediment cores will provide essential data for understanding the 

pattern of ice sheet advance and retreat across the shelf. It has been stated that the BIIS was a very dynamic 

ice sheet (McCabe et al. 2007) and retreat was episodic with many still stands and minor re-advances (Ó 

Cofaigh et al. 2012). These interpretations will be tested through the description, interpretation and dating 

of the various lithofacies identified throughout the cores that are the subject of this thesis from the NW shelf 

offshore of Donegal Bay.  It has also been suggested that initial ice sheet retreat was triggered by rising sea 

level, and it has been proposed that ice sheet break-up coincided with Heinrich Event 2 (~24 cal kyr BP) 

(Bradwell et al. 2008; Ó Cofaigh et al. 2012). This proposal will be examined through the analysis of the 

benthic foraminifera within the sediment cores, thus identifying the impact of the North Atlantic climate 

and oceanographic forcing on the break-up of the BIIS. 
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Chapter 3-Methods 

3.1 Introduction 

This chapter details the methods used to address the research questions discussed in Chapter 1. Here I 

describe core site selection, the methods used to investigate core sedimentology, the proxies used to 

reconstruct ice sheet dynamics and the dating methods employed to develop a chronology for the retreat of 

the BIIS from the NW continental shelf.  

The marine sediment cores were collected from the continental shelf offshore of NW Ireland on the RV 

Celtic Explorer in July 2008. The aim of the cruise was to reconstruct the behaviour of the British Irish Ice 

Sheet during the last glaciation. Long and short sediment cores were collected by using a gravity corer and a 

vibrocorer. 

3.2 Core site selection 

The cores were extracted across the continental shelf offshore NW Ireland from the mouth of the Donegal 

Bay to the shelf edge. The cores form a transect across a series of arcuate moraines on the continental shelf 

identified from marine geophysical data (Ó Cofaigh et al. 2012). These moraines mark the extent of the 

former lobate margin of the BIIS on the shelf. Cores were extracted from the moraine crest and within the 

inter-moraine troughs in order to constrain the timing of deglaciation (Fig. 10) and to determine their 

associated core lithostratigraphy and sedimentology. Following collection, the cores were stored 

horizontally +3°C at Durham University and the University of Ulster, Coleraine. 

Thirteen cores from the transect were examined for the purpose of this study (Fig. 10 and Table 1). Physical 

analysis of the cores comprised a multi-proxy approach to characterise the sediment facies, and thus 

establish the depositional environment as well as to identify the suitable horizons and material within the 

cores for dating. 
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Core name 

LOCATION 
       Latitude                        Longitude 
          (°N)                                 (°W) 

 
Water depth 

(m) 

 
Recovery 

(m) 

CE_08-003 54.6415 -8.9324 88 m 5.12 

CE_08-004 54.6601 -9.0260 82 m 2.75 

CE_08-005 54.6679 -9.0414 67.2m 6.9 

CE_08-008 54.7869 -9.3348 90m 3.22 

CE_08-009 54.7891 -9.3428 90m 0.74 

CE_08-010 54.8316 -9.4233 97 m 5.78 

CE_08-011 54.8370 -9.4332 95m 1.39 

CE_08-015 54.8403 -9.6179 99 m 2.78 

CE_08-017 54.8926 -9.6872 122 m 1.3 

CE_08-018 54.9822 -9.9172 122.3m 1 

CE_08-025 55.3532 -9.2366 100.3m 0.58 

CE_08-031 55.2436 -9.3785 113m 137.5 

CE_08-033 55.1288 -9.4019 110m 268.7 

Table 1. Details of the investigated cores. 
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Table 2. Lithofacies identified in cores from the continental shelf offshore of northwest Ireland (after Evans and Benn, 
2004). 

3.3 Core sedimentology 

The 13 cores were split and logged from core sections and x-rays in order to characterise the stratigraphy 

and lithofacies. Lithofacies were logged using a modified version of Eyles et al. (1983) lithofacies coding 

(See Table 2).  Information was recorded on sediment texture, lithology, colour, grain size, sedimentary 

structures, sorting and bed contacts in order to assign lithofacies which were subsequently used in 

determining their genesis and associated depositional environment (i.e subglacial, ice proximal, ice distal or 

postglacial) (Evans and Benn 2004; Ó Cofaigh et al. 2005; Hogan et al. 2010a; Kilfeather et al. 2011; Ó 

Cofaigh et al. 2013).   

Lithofacies Description  

Dmm Diamict, matrix supported and massive  
Gms Gravel, matrix supported and massive 
Gm Gravel, clast supported and massive 
Gfu Gravel, upward fining (normal grading) 
Sm Sand, massive 
Sh Sand, very fine to very coarse, with laminae 
Suf Sand, upward fining 
Fm Mud, massive 
Fl Mud, fine lamination often with minor fine sand 
 

Grain size and sedimentary structures are important for both the classification and interpretation of 

lithofacies. The presence of massive diamictons within the cores could indicate a subglacial till, a debris 

flow deposit, iceberg rafted sediment or iceberg turbate (Dowdeswell & Elverhöi 2002; Dowdeswell et al. 

2004; Ó Cofaigh et al. 2005; Kilfeather et al. 2011) whereas  massive mud can be attributed to the vertical 

accretion of suspended sediments in a distal glacimarine environment (Hogan et al. 2010a). A deglacial 

sequence in a shelf core will be recognised by a sequence of till overlain by a glacimarine deposit which can 

be identified due their laminated nature such as those discussed by Ó Cofaigh & Dowdeswell (2001). 

Identifying the facies that indicate full glacial conditions overlain by deglacial sediments will be important 

to constrain the timing of deglaciation.  

Identifying unconformities or breaks in a sequence will help interpret the stratigraphic record. The absence 

of certain lithofacies or an ‘overstep’ in the record will reveal information about the nature of deglaciation. 

An overstep is produced when a section of an older sequence is removed by erosion from a younger series, 

and therefore produces a discordance or ‘break’ within the sequence (Park, 1997). The absence of deglacial 
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sediments within the cores could indicate a rapid retreat of the margin (Ó Cofaigh et al. 1999; Ó Cofaigh 

and Evans, 2007) or the removal of the deglacial sequence by current reworking (Anderson et al. 1984; 

Evans et al. 2005)  

The internal structure, sorting of grain sizes, lithofacies bed contacts and the presence or absence of ice 

rafted debris (IRD) in the cores can also be used to investigate the depositional environment. The internal 

structure of the lithofacies could be matrix or clast-supported. The presence of a clast supported gravel 

within a core could indicate the winnowing of fine grained sediments by bottom currents (Anderson et al. 

1984), conversely, a matrix supported normal graded gravel could indicate a mass flow deposit 

(Dowdeswell et al. 1994). Sorting is an important parameter when trying to determine how to classify the 

sediment and therefore infer its depositional environment. Well sorted sediment implies that the deposition 

of the lithofacies was associated with water, whereas a poorly sorted sediment implies the chaotic 

deposition of sediment (i.e. a diamicton is a poorly sorted sediment; Evans and Benn, 2004).  

The bed contacts between lithofacies characterise the transition between various depositional environments 

such as erosional, gradational, conformable, deformed or faulted (Eyles et al. 1983; Evans and Benn, 2004). 

An erosional bed contact can indicate an abrupt change or a hiatus in the depositional environment (Evans 

and Benn, 2004). Gradational or conformable bed contacts are classified as non-erosive contacts usually 

associated with a passive process such as suspension settling (Ó Cofaigh & Dowdeswell 2001). In contrast, 

deformed or faulted bed contacts usually result from deformation post deposition (Evans and Benn, 2004).  

The presence of IRD within sediment cores reveals information about the nature of ice sheet retreat. IRD 

can be identified within a core through a multitude of techniques such as wet sieving (Haapaniemi et al. 

2010) or using x-rays (cf. Grobe 1987). This study used x-rays, shear strength data and bed contacts to 

determine IRD. IRD grains can be identified within cores by counting grains >2 mm in x-rays (cf. Grobe 

1987). IRD diamict can be differentiated from glacial till because of its lower shear strength and the 

presence of gravel or coarse sand lenses which result from the overturning of an iceberg (Dowdeswell et al. 

(1994). Analysis of the bed contacts, sorting and IRD in this study will determine the nature of retreat and 

whether initial retreat was associated with a large calving event at the shelf edge as proposed by Benetti et 

al. (2010) and Ó Cofaigh et al. (2012). 
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3.4 Shear strength 

Shear strength tests have been used in many studies to help identify and distinguish between subglacial 

sediments and glacimarine deposits (Kilfeather et al. 2011). For the purpose of this study, shear strength 

will be used to aid classification of the lithofacies and to support interpretations established through other 

sediment characteristics. Shear strength measurements using a torvane were taken for cores CE-08-008, CE-

08-010, CE-08-011 and CE-08-033 at 10cm intervals. Where the core lithofacies were more complex, 

smaller intervals were used to ensure characterisation of the shear strength of all of the lithofacies. Shear 

strength can be a very useful tool for identifying and classifying till. High shear strength values associated 

with a diamict lithofacies are likely to reflect the loading and compaction of grounded glacier ice (Evans & 

Pudsey 2002; Evans et al. 2005), whereas lower shear strength values can be associated with softer till 

which display lower shear strength values because of its higher porosity (Ó Cofaigh et al. 2007).     

3.5 Magnetic susceptibility and gamma density 

Magnetic susceptibility and gamma density are useful parameters that are often used to aid stratigraphic 

correlation between cores and for the detection of ice-rafted debris (Kilfeather et al. 2011). Magnetic 

susceptibility and gamma density have also been used by some authors as a mechanism to identify 

subglacial till (Heroy & Anderson 2007).  

Nine of the thirteen cores were analysed using a Geotek multi-sensor core logger (MSCL). These cores 

were chosen because they displayed glacial and deglacial sediments and were a suitable length (more than 1 

metre). The split cores were cleaned using a microscope slide and covered with cling film in order to reduce 

the effect of surface roughness which will affect how the probe rests on the core and therefore effects the 

measurements obtained. Attenuated gamma counts (Gamma density) and magnetic susceptibility were 

measured. Magnetic susceptibility was measured using a Bartington MS2E point sensor with a down core 

resolution of 0.5cm. 

3.6 14C dating 

Radiocarbon dating is the most common type of dating technique used in marine sediment cores on 

continental shelves. Dates are determined by accelerator mass spectrometry (AMS), this project will use 

foraminifera and marine shells to obtain 14C dates. These samples are vital in order to constrain the timing 

of ice sheet retreat from the continental shelf. The sedimentological and physical properties of the cores will 
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be utilised to identify the most appropriate locations to obtain 14C dates in order to determine the timing of 

deglaciation. The optimum location for constraining the timing of ice sheet retreat would be to date the 

material that occupies the transition from a subglacial to an ice proximal glacimarine environment (McCabe 

& Clark 2003).  

A total of nine samples (shell and foraminifera) were sampled for radiocarbon dating; four samples from 

core CE_03-003, two samples from core CE-08-004, and one sample from cores CE-08-010, CE-08-015 

and CE-08-018. Samples were extracted from the lowermost part of the deglacial facies which had 

sufficient quantities of foraminifera or where shells were present. Sampling for foraminifera involved 

obtaining on average 50 ml of sediment (extraction avoiding the core edges). The sediment was 

subsequently wet sieved and the coarser fraction >63µm was analysed for foraminifera. The samples were 

processed and dated at the NERC radiocarbon facility (East Kilbride) and the Keck C Cycle AMS Lab at 

the University of California, Irvine. Radiocarbon ages were calibrated to calendar years using CALIB v7.0 

software in conjunction with MARINE 13 calibration data set. The samples were corrected for a 400 yr 

reservoir age (Reimer, 2013) with a delta R value of 53. Radiocarbon dating is a widely used dating 

technique however uncertainties arise from variation in the marine reservoir effect ‘MRE’. A marine 

reservoir effect of 400 is used because North Atlantic 14C ages are ~400 years older than atmospheric 

carbon. However, recent research has shown that during periods of reduced AMOC the MRE would have 

been altered due to changes in ocean circulation (Austin et al. 1995). To reduce associated uncertainties 

marine samples are routinely corrected (Reimer, 2013). 

 

3.7 Biological analysis 

3.71 Foraminifera abundances 

Micropalaeontological analysis is a powerful tool in the study of Quaternary stratigraphy, 

palaeoceanography and palaeoclimatic reconstruction (Peck et al. 2006; Kilfeather et al. 2011; Jennings et 

al. 2014). Micropalaentological analysis can comprise analysing ostracods, chironomidae and foraminifera. 

Foraminifera are used for palaeo reconstructions particularly palaeooceanography because their present day 

distribution is closely related to sea-surface temperatures, and therefore analysis of their fossil assemblages, 

allows the reconstruction of past sea surface temperature (Peck et al. 2006). As a consequence, 

foraminiferal analysis has been used to investigate deglacial chronologies on high-latitude continental 
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shelves and oceanographic evolution (e.g. Lloyd et al. 2005; Jennings et al. 2006; Pudsey et al. 2006; Peck 

et al. 2007; Kilfeather et al. 2011; Jennings et al. 2014). Foraminiferal studies can analyse both benthic and 

planktonic species, however this project will focus on the analysis of benthic foraminifera due to their 

abundance on the continental shelf offshore of northwest Ireland. 

The study of benthic foraminifera assemblages in the marine sediment cores will allow inferences to be 

made about the changes in water mass properties through time (e.g. temperature and salinity through time). 

This will enable the project to investigate whether there are linkages between the response of the BIIS to the 

wider North Atlantic climate and oceanographic forcing particularly during deglaciation (research question 

4). The examination of the foraminifera identified within the cores will also assist with the classification of 

the facies whether they are ice proximal or ice distal and therefore help determine the pattern of retreat 

across the shelf.  

3.7.2 Sampling 

Foraminifera samples were prepared by extracting a 6ml of sediment at 16cm intervals for CE-08_003 and 

CE-08_010. The samples were soaked overnight to disaggregate and subsequently sieved at 500 µm and 63 

µm, with residues being placed in the oven to dry overnight. The samples were picked dry from the coarser 

fraction >63µm using a microscope, with a target of 300 foraminifera (where abundance were sufficient). 

Foraminifera identification followed (Feyling-Hanssen, 1972) and Olausson (1982). Once identified the 

foraminifera were then converted to a percentage and represented on a foraminiferal assemblage chart using 

C2 software for later analysis (Lloyd 2006).  
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Chapter 4- Results and Interpretation 

4.1 Introduction 

This chapter presents the results of the core analysis outlined in Chapter 3. The chapter has five aims: 1) to 

highlight the dates obtained from the radiocarbon analysis; 2) to describe the sedimentological 

characteristics of each core and identify the lithofacies based on sediment logging from core section and x-

rays, as well as measurements of shear strength, gamma density, and magnetic susceptibility;  3) to identify 

the lithofacies associations  (LFAs)  across the transect of cores investigated;  4) to investigate the benthic 

foraminiferal assemblages from selected sections of two cores; and 5) to interpret the LFAs based on the 

data presented in order to understand their genesis and depositional environment(s).  

4.2 Chronology 

Six AMS radiocarbon dates were obtained on samples of shells and foraminifera from cores CE-08-003, 

CE-08-004, CE-08-010, CE-08-015 and CE-08-018. The calibrated and raw radiocarbon ages are displayed 

in Table 3. These radiocarbon dates have been corrected for isotopic fractionation and the marine reservoir 

effect. A marine reservoir effect of 400 years has been used (Reimer 2013) with a delta R value of 53, 

which correlates to the date of the local living shells at 347 years (http://calib.qub.ac.uk/marine). Dates were 

calibrated using CALIB v7.0 software. These calibrated radiocarbon dates have been plotted alongside the 

cores in which they were derived from in Fig. 11.  
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4.3 Core Sedimentology - Description 

The cores are described along a transect starting with core CE-08-003 nearest the coast, working out 

towards the shelf edge (Fig.11). Based on sediment characteristics of all thirteen cores studied a total of 

nine lithofacies have been identified (Table 2). Figures 12 and 13 display x-ray images of these lithofacies. 

 

 

Fig. 12. X-rays of various lithofacies. A) Dmm  with a few large clasts dispersed throughout (CE-08-011; 
39-78 cm) B) Dmm with a clast rich layer (CE-08-010; 455-479 cm) C) Fl and Fm lithofacies and a few 
shells (CE-08-003; 442-472 cm) D) Fm lithofacies (CE-08-003; 150-190 cm) E) Suf and Sm lithofacies  
with a high abundance of shelly material (CE-08-033; 0-30 cm).  

Fig. 13. X-rays of various lithofacies. A) Gms with a few large clasts (CE-08-010; 278-322 cm) B) Sm 
and a few shells (CE-08-015; 240-278 cm) C) Sh ,Sm lithofacies and a shell (CE-08-003;  353-393 cm) D)  
Fl and bioturbated Fm with a few scattered pebbles (CE-08-010; 415-455 cm) E) Dmm with numerous 
clasts dispersed throughout but one particular large outsized clast (CE-08-008; 226-264 cm).  
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4.3.1 Core CE-08-003 

This core was extracted from layered sediment inshore of a moraine (Fig.11). The core consists of eight 

mud and sand lithofacies (Fig. 14).  The base of the core (512-443.5 cm) is dominated by laminated mud 

(Lithofacies Fl, Table 2) comprising grey soft mud with faint laminae and numerous inclusions of sand. 

These sandy inclusions increase in abundance up-core and contain whole single shell valves and fragments. 

Two single shell valves were sampled from this lithofacies (at 477 and 466 cm) for radiocarbon dating (see 

section 4:2). The two single shell valves sampled yielded dates of 12649 cal yr. BP and 12565 cal yr. BP  

respectively (Table 3, SUERC-47516 and SUERC-47515). The laminated muds also contain foraminifera 

(described in section 4:4) a sample of which were collected from 499-493 cm for the purpose of 

radiocarbon dating, yielding a date of 12763 cal yr. BP (Table 3, UCIAMS-133550). There is a gradational 

upwards transition to the overlying lithofacies of massive sand (Sm, Table 2) (443.5-425 cm). The massive 

sand ranges in texture from a medium grained (443.5-441 cm), to more muddy (441-436 cm), before 

increasing in coarseness again from 436-430 cm and then becoming fine-sand in its upper 5 cm (430-425 

cm). The massive sand is overlain gradationally by laminated mud (Fl, 425-374 cm). This lithofacies 

consists of grey, fairly stiff, silty clay mud, with inclusions of sand. Laminae are fine-grained and horizontal 

and overall the lithofacies has a mottled appearance. A cluster of shell fragments were sampled for the 

purpose of radiocarbon dating at 390-387 cm depth, and dated 12170 cal yr. BP (Table 3, SUERC-47514). 

The contact between the laminated mud and the overlying laminated sand (374-293 cm) is gradational. The 

laminated sand (Sh, Table 2) is fine grained and contains a high proportion of shell fragments. The 

laminated sand is in turn overlain gradationally by normally graded sand (293-234 cm) (Suf, Table 2). The 

upwards fining of this lithofacies is accompanied by a lightening in the colour of the sand (lighter brown).  

The upper 211 cm of the core consists of three distinct lithofacies. From 211-116 cm the core comprises a 

grey massive mud (Fm, Table 2). The mud is fairly stiff and contains small shell fragments throughout. 

There is a sharp transition to the overlying laminated sand (Sh) (116-40 cm). This sand is fine grained, 

displays some crude bedding, and shell fragments are common from 116-102 cm depth. The upper 

lithofacies (27-0 cm) is a massive, fine grained and well sorted sand (Sm).  

This core displays a general upwards decrease in magnetic susceptibility values (Fig. 14). At the base of the 

core average values are ~40 x10-5 SI, whereas from 320-230 cm average values decrease to ~30 x10-5 SI 

and subsequently at the top of the core values average below 10 x10-5 SI. Gamma density, however, is fairly 
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uniform with average values ~2 gm/cc. There is a gradual increase in gamma density from the base of the 

core to the top. Spurious values and fluctuations can result from uneven core surface. A few dips in gamma 

density values correspond to gaps in the core (Fig. 14). Shear strength was not tested because of the absence 

of diamict in the core. Foraminifera samples were also collected for the purpose of abundance analysis, 1 

cm samples were collected every 16 cm from 510 cm to 425 cm, with an additional two samples at 179 cm 

and 102 cm. This analysis will be outlined in section 4:4 (see below). 

  



 

F
ig

. 
1

4
. S

ed
im

en
to

lo
gy

, m
ag

ne
ti

c 
su

sc
ep

ti
bi

li
ty

 a
nd

 g
am

m
a 

de
ns

it
y 

of
 c

or
e 

C
E

-0
8-

00
3.

 C
or

e 
lo

g,
 c

al
ib

ra
te

d 
14

C
 d

at
es

 a
nd

 a
ss

oc
ia

te
d 

se
di

m
en

ta
ti

on
 r

at
es

 

an
d 

L
F

A
s 

ar
e 

sh
ow

n 
on

 th
e 

le
ft

.  

34 



35 

 

4.3.2 Core CE-08-004 

This core was extracted from inshore of a moraine (Fig. 11). It contains five lithofacies (Fig. 15). The base 

of the core (275-239 cm) consists of laminated and consolidated clayey silty mud (Fl) with sandy 

inclusions. There is dark mottling throughout, and the mud displays some crude bedding. Foraminifera were 

sampled from 273-264 cm depth from the laminated mud for the purpose of radiocarbon dating and yielded 

a date of 17797 cal yr. BP (Table 3, SUERC-47522). The basal laminated mud is overlain by a massive, 

matrix-supported, granule gravel from 236-218 cm (Gms, Table 2). The gravel has a sandy matrix and the 

matrix is particularly common from 223-218 cm. The contact with the overlying massive sand (Sm, 218-

199 cm) is sharp. The sand is dark grey, fine grained and very well sorted. There is a band of lighter 

coloured sand at 211-209 cm depth. A shell fragment was sampled from 217 cm depth in the massive sand 

for radiocarbon dating and yielded a date of 12933 cal yr. BP (Table 3, SUERC-47517).  The massive sand 

is in turn overlain sharply by a poorly-sorted, matrix-supported pebble gravel with a sandy matrix (Gms, 

199-134 cm). The lower half of the lithofacies is darker than the upper half and there is a gradational 

change to the overlying massive sand which caps the core (Sm, 134-0 cm).  This capping sand is well sorted 

and fairly coarse-grained. There are distinct variations in the colour of the massive sand throughout; in 

general it becomes gradually darker up core. The sand contains two bands of clasts each 2-3 cm thick with 

~1cm clasts at 134-131 cm and 105-103 cm respectively. From 131-105 cm it is light brown, becoming 

brown at 103-33 cm and changing to dark brown from 32-12cm. There is a band of fairly coarse grained 

orange sand from 33-32 cm and this reappears at 12-0 cm.   

The core shows a general decrease upwards in magnetic susceptibility (Fig. 15). The base of the core is 

characterised by relatively high values, 20-30 x10-5 SI from 275-238 cm which coincides with the laminated 

mud. However, values are reduced to significantly lower levels (below 15 x10-5 SI) from 238 cm upwards 

which correlates with the presence of gravel and sand lithofacies. The gamma density data can be split into 

five phases. The base of the core (Phase 1 275-239 cm) is characterised by fairly uniform gamma density 

values with little variation. Phase 2 (239-236 cm) shows significant fluctuations in gamma density however 

this corresponds to the gap in the core. Phase 3 (236-134 cm) displays more variation within the values 

(1.5-2.2 gm/cc) which corresponds to the presence of gravel within the core, however this variation 

becomes less pronounced up core and there is a general decrease in gamma density. Within phase 4 (134-33 

cm) values do not display too much variation however there is a general decrease. Phase 5 (33-0 cm) is 
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marked by a pronounced increase in gamma density to values ~2.0 gm/cc. (Fig. 15). Shear strength was not 

tested in this core because diamict is absent.  
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4.3.3 Core CE-08-005 

This core was extracted from a moraine crest

lithofacies (67.5-58 cm) is a massive

transition into the overlying 

(Gfu, 58-14cm). The normally graded gravel has

supported granule gravel with a gradational upper bed contact 

of poorly sorted, massive sand (

density data was not obta

and thus magnetic susceptibility and gamma density data would 

not measured because of the absence of diamict.

Fig. 16. Sedimentology of core CE
LFAs. 

This core was extracted from a moraine crest (Fig. 11). It contains four lithofacies 

cm) is a massive, clast-supported cobble gravel (Gm, Table 2

to the overlying normally-graded clast supported gravel with sub-angular to sub

normally graded gravel has a gradational transition in turn

supported granule gravel with a gradational upper bed contact (Gm, 14-8 cm). The 

massive sand (Sm, 8-0 cm) containing small granules.  Magnetic susceptibility and gamma 

density data was not obtained for this core, because the majority of the core consisted of

and thus magnetic susceptibility and gamma density data would not provide useful data

because of the absence of diamict. 

Sedimentology of core CE-08-005, with the core log and associated 

38 

contains four lithofacies (Fig. 16). The lowermost 

Table 2). It has a gradational 

angular to sub-rounded clasts 

in turn into structureless, clast 

8 cm). The core is capped by 8 cm 

Magnetic susceptibility and gamma 

consisted of gravel (59.5 cm), 

not provide useful data. Shear strength was 

 

005, with the core log and associated 
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4.3.4 Core CE-08-008 

This core was extracted from inshore of a moraine (Fig. 11). The core consists of a series of diamict and 

gravel lithofacies (Fig. 17). The lowermost lithofacies (326-116 cm) is a brown, massive diamict (Dmm, 

Table 2) there is a lag at the base of this lithofacies. From 326-253 cm depth the diamict is very stiff (shear 

strength values from 110.3 kg/cm2 to values exceeding 200 kg/cm2) but above this, from 253-226 cm, it is 

markedly less consolidated (shear strength values ranging from 73 kg/cm2 to 144 kg/cm2). This transition is 

gradual. The diamict contains numerous large clasts throughout, up to (an exceptionally large clast) a 

maximum of 11 cm in length. From 226-116 cm depth the diamict is fairly stiff, although it is not as 

consolidated as the lowermost diamict lithofacies within the core. This is confirmed by the shear strength 

measurements from the diamict which range from 196 kg/cm2 to 58 kg/cm2. 

The diamict is overlain by matrix-supported, poorly sorted, pebbly gravel (Gms, 116-78 cm). The contact 

between the diamict and the gravel is sharp and it is marked by a downward intrusion of small clasts from 

the gravel into the diamict (120-116 cm). The gravel has a clayey mud matrix. There is a gradational 

transition to the overlying clast-supported pebble gravel (Gm, 78-0 cm).  From 26-0 cm the gravel is a well 

sorted granule gravel and contains some shell fragments. However, from 6-0 cm it has a fine matrix of sand.  

At the base of the core there is a lag in the diamict lithofacies which resulted in high magnetic susceptibility 

and gamma density values. For the purpose of analysing trends these values will be excluded. The base of 

the core to 116 cm, the magnetic susceptibility values are highly variable (ranging from 0.8 to 49.8x10-5 SI) 

which coincides with the diamict lithofacies. There is a drop in values from 240-234 cm which correlates to 

the large clast identified in the core which would have disrupted the magnetic susceptibility probe from 

taking a measurement. From 116–0 cm the magnetic susceptibility is very variable (ranging from 1 to 49 

x10-5 SI) and shows a general increase up core. (Fig. 17). Gamma density values average ~2 gm/cc from the 

base of the core to 129 cm, however from 240-234 cm there is a rise in values which corresponds to the 

large clast within the core. Fluctuations in gamma density (1.4-2.3 gm/cc)  from 129-70 cm corresponds to 

the Gms lithofacies. The gamma density values from 70-0 cm become less variable ~1.9 gm/cc  (Fig. 17). 
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4.3.5 Core CE-08-009 

This core was extracted from a moraine crest (Fig. 11). The core consists of three gravel lithofacies (Fig. 

18). The lowermost is a matrix-supported, pebble gravel (Gms). The gravel is massive, poorly sorted, and 

has a muddy matrix. The matrix-supported gravel is overlain by an upward fining pebble gravel from 66-56 

cm depth (Gfu, Table 2). Clasts within this normally graded gravel are coated in mud. The uppermost 

lithofacies in the core (56-0 cm) is a shell ‘hash’ (a loose accumulation of shells both whole and broken, 

(CMECS, 2014)) and granule gravel that is clast supported and structureless. This core was not analysed for 

magnetic susceptibility and gamma density data because the majority of the core consisted solely of gravel 

and thus magnetic susceptibility and gamma density data would not provide useful data. Shear strength was 

also not tested in this core because diamict is absent. 

 

Fig. 18. Sedimentology for core CE-08-009, with the core log and associated 
LFAs. 
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4.3.6 Core CE-08-010 

This core was extracted from a trough between moraine ridges (Fig. 11). It consists of a range of diamict, 

mud, sand and gravel lithofacies (Fig. 19). The lowermost lithofacies is a massive, matrix-supported, stiff 

brown diamict (Dmm, 578-505 cm). The diamict displays shear strength values of 76-48 kg/cm2 from 572- 

534 cm (Fig. 19), whereas above 534 cm depth, the diamict is softer with shear strength values ranging 

from 48-31 kg/cm2 (Fig. 19). Although the diamict is predominantly massive, there is a curved band of 

massive sand and silt with shell fragments from 546-541 cm. This could, however, be due to deformation 

from the coring process.  From 521-505 cm the diamict is also noticeably sandier.   

Overlying the diamict from 505-492.5 cm depth is an olive grey, soft massive mud with shear strength 

ranging from 24 kg/cm2 to 17 kg/cm2 (Fig. 19) which is overlain sharply in turn by a brown diamict (492.5-

461 cm). This diamict is massive and fairly stiff. It is markedly sandy at its base but sand content appears to 

decrease upwards. There is a band of clasts, sand and shell fragments at 472-468.5 cm. Shear strength 

ranges from 24-36 kg/cm2 (Fig. 19). The diamict is overlain by a massive mud (461-452 cm). The mud is a 

structureless, soft olive grey clayey silty mud. The massive mud is overlain by laminated mud (450-373 cm) 

and the two lithofacies are separated by a sharp 2 cm thick band of fine grained sand with a few 2mm clasts 

(452-450 cm). The laminated mud consists of soft clayey silty mud and it contains sandy inclusions which 

increase up core in abundance as well as laminae of coarse sand. The sandy inclusions dominate the left 

hand side of the core and are massive in structure. From 452cm to 278cm shear strength values are very low 

which corresponds to the mud, sand and gravel lithofacies (<5 kg/cm2); values do increase briefly between 

278 and 230cm (ranging from 1.9 kg/cm2 to15 kg/cm2) however, towards the top of the core values do not 

exceed 0.5 kg/cm2 (Fig. 19). 

From 373-340 cm the core changes from a massive, fairly well-sorted sand (Sm), to a soft laminated mud 

(Fl) with a few 1 mm clasts to a massive mud (Fm) which displays an upward increase in sand. The massive 

mud is overlain by 40 cm of matrix-supported gravel (Gms, 340-300 cm). The gravel has a muddy matrix 

and contains numerous shell fragments. It also contains sandy inclusions from 312-300 cm which dominate 

the left hand side of the core and are massive in structure. From 300-229 cm depth the core consists of olive 

grey, soft massive mud (Fm) with numerous sandy inclusions particularly towards the base. There is a sharp 

concave transition into overlying massive sand (Sm, 229-208 cm). The sand is well sorted and contains 

numerous 3 mm clasts and shell fragments; it is overlain by a massive mud (Fm, 208-205 cm). The lower 
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boundary of this mud is mixed with coarse sand. From 205-191 cm the massive mud transitions to 

laminated mud (Fl). From 191-183 cm depth there is a gap in the core material. However, the next 

lithofacies is a massive mud (Fm) from 183-167 cm. This massive mud is sandy in its lower part from 183-

176 cm. It has a sharp, concave, upper bed contact which could have resulted from the coring process. It is 

overlain in turn by massive sand (Sm, 167-164 cm), and fine-grained laminated sand (Sh, 164-155 cm). The 

laminated mud (Fl, 155- 149 cm) is olive grey and displays laminae of darker sand. It is overlain sharply by 

poorly-sorted, massive matrix-supported pebble gravel (Gms, 149-134 cm) with a muddy matrix. This 

grades upwards into a clast-supported pebble gravel (Gm, 134-87 cm) and then matrix-supported granule 

gravel (Gms, 45-14 cm). The latter is intermixed with granular sand and there are some shell fragments 

present. The core is capped by 14 cm of granular sand (Sm).   

The magnetic susceptibility data displays many peaks and troughs although the majority of the core has 

magnetic susceptibility values below 50 x10-5 SI (Fig. 19). From 578-464 cm (Dmm and mud units) the 

results show considerable variability with values reaching 60 x10-5 SI, although the average magnetic 

susceptibility is 13.3 x10-5 SI. From 464-358 cm the magnetic susceptibility values are lower and show less 

variability which corresponds to the mud and sand lithofacies. From 358-298 cm magnetic susceptibility is 

very variable with a few peaks in these data; this variability corresponds to the Gms lithofacies. From 298-

151 cm the mud and sand lithofacies have an average magnetic susceptibility of 8.4 x10-5 SI. Magnetic 

susceptibility data for the top of the core is characterised by high variability corresponding to the gravel 

lithofacies excluding the top 14 cm which shows a steady decline in values in relation to the massive sand. 

Gamma density results for the core display numerous peaks and troughs (Fig. 19). The gamma density data 

shows a general decline in gamma density up core. The base of the core displays a steady increase in 

gamma density with values reaching 6.8 gm/cc. There is a drop in values from an average of 4.5 gm/cc at 

the base of the core to an average of 3.1 gm/cc for the rest of the core.  

This core was also sampled for foraminifera from the Dmm lithofacies at 478-471 cm for the purpose of 

radiocarbon dating. The sample yielded a date of 15190 cal yr. BP (Table 3, UCIAMS-133551). 

Foraminifera were also sampled for abundance analysis from 516-259 cm which encompasses the diamict 

and various mud and sand lithofacies. The foraminifera data are discussed below in section 4:4. 
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4.3.7 Core CE-08-011 

This core was extracted from the crest of a moraine (Fig. 11). It consists of a vertical sequence of diamict, 

gravel and sand although the majority of the core is diamict (Fig. 20). From 139-22 cm depth the core is 

composed of a very stiff brown diamict (Dmm). From the base of the core to 42cm the majority of shear 

strength values exceed 100 kg/cm2 and on four occasions values exceed 200 kg/cm2. There is a decrease in 

the shear strength from 42cm to the top of the core with values falling to 31 kg/cm2 (Fig. 20).  The diamict 

contains patches of clayey silty mud. There is a gradational boundary between the diamict and the overlying 

pebble gravel (Gm, 22-11 cm) which is a poorly sorted, clast-supported and contains numerous shell 

fragments. The uppermost lithofacies (11-0 cm) is well sorted, massive sand (Sm) that ranges in texture 

from granular to fine grained.  

The magnetic susceptibility results for the core are quite variable and display numerous peaks and troughs. 

The majority of values range from 0-30 x10-5 SI.  The Dmm lithofacies (139-24 cm) has an average 

magnetic susceptibility of 20 x10-5 SI, whereas from 24-0 cm the core has an average of 7.3 x10-5 SI (sand 

and gravel lithofacies).  The average gamma density value for the Dmm lithofacies (139-24 cm) is 2.9 

gm/cc. There is a trough in the dataset from 126-116 cm this could be explained by the lag in core and an 

additional trough at 43 cm which correlates to the end of the core section. The average gamma density for 

the sand and gravel lithofacies from 24-0 cm is 2.7 gm/cc. There is more variability in gamma density in the 

sand and gravel lithofacies. 
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4.3.8 Core CE-08-015 

This core was extracted from an inter-moraine trough (Fig. 11). It consists of a variety of sand, gravel and 

mud lithofacies (Fig. 21). The lowermost lithofacies is massive sand (Sm, 278-200 cm). The sand is well 

sorted, fairly coarse grained and contains numerous shells and inclusions of darker sand. From 218-200 cm 

there is an intrusion of ~2 mm black pebbly massive gravel along the left hand side of the core. The 

intrusion has a gradational bounding contact. A cluster of shells from 275-272 cm were sampled for 

radiocarbon dating and provided a date of 13888 cal yr. BP (Table 3, SUERC-47518). There is a 

gradational transition upwards into an overlying 10 cm thick bed of matrix-supported granule gravel (Gms). 

This gravel is poorly sorted and there is a high occurrence of ~2mm black clasts. The next lithofacies is a 

clast supported, well sorted granule gravel (Gm, 173.5-167 cm) that is overlain sharply in turn by well 

sorted, massive sand (Sm, 167-165 cm). The overlying lithofacies is a clast supported gravel (Gm, 165-112 

cm). From 165-148 cm a well sorted, clast supported granule gravel dominates, which is preceded by a clast 

supported pebble gravel from 148-112 cm. This clast supported pebble gravel contains numerous shells 

from 148-137.5 cm and from 137.5-119 and a few of the clasts are surrounded by a sandy matrix. This 

sandy matrix becomes more noticeable from 119-112 cm. The overlying lithofacies is a massive silty clay 

mud (Fm, 112-110 cm) which is overlain by a matrix-supported gravel (Gms, 110-102 cm) with a sandy 

matrix. The subsequent lithofacies is a clast supported, poorly sorted, granule gravel (Gm, 110-102 cm) 

which is overlain sharply by olive green, massive sandy mud (Fm, 102-101 cm). This sandy mud grades up 

core into 4 cm thick lithofacies of laminated sand (Sh). The uppermost lithofacies in this core is a massive 

sand (Sm, 97-20 cm). From 97-90 cm the sand is brown, fine grained and very well sorted. The sand grades 

into a well sorted light brown massive sand from 90-79.5 cm. There is a gap in the core between 79.5-72.5 

cm. From 72.5-20 cm the massive sand is brown and fairly coarse grained. It also displays some inclusions 

of darker brown coarse grained sand. There is also a gap in the core from 20-0 cm. From the base of the 

core to 191 cm the magnetic susceptibility is quite variable reaching values of 57 x10-5 SI.  Data between 

191-175 cm is below zero and therefore omitted from analysis, these data points coincide with the gap in 

the core. From 175 cm upwards, magnetic susceptibility rarely exceeds 40 x10-5 SI excluding a few 

erroneous data points where values exceed 200 x10-5 SI. There is a general decrease in magnetic 

susceptibility from 175-91 cm with values descending below zero from 91-72.5 cm (there is gap in the core 

from 79.5-72.5 cm). This core displays an overall decrease in gamma density up core (Fig. 21). From 276 

cm to 191 cm gamma density values average ~3.6 gm/cc. There is a drop in values from 192-177 cm which 
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corresponds to the gap in the core. From 177-82 cm there is a general increase in gamma density, with 

another significant drop in values from 79-72 cm (due to a gap in the core). There is minimal variability in 

gamma density from 72- 20 cm with average values ~2 gm/cc. Shear strength was not tested in this core 

because of the absence of diamict.  
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4.3.9 Core CE-08-017 

This core was extracted from the crest of a moraine (Fig. 11). It consists of a range of gravel and sand 

lithofacies (Fig. 22). The lowermost lithofacies (130-89 cm) is a clast-supported, massive gravel (Gm). 

From 130-109 cm the gravel is a structureless cobble gravel with numerous rounded clasts. It grades 

upwards into clast-supported, poorly-sorted pebble gravel from 109-89 cm depth. Clasts are sub-rounded to 

sub-angular and numerous shell fragments are present. It is overlain in turn by normally graded, well-

sorted, clast-support pebble gravel (Gfu, 89-30 cm). The upward fining coincides with an increase in sand 

within the gravel.  The normally graded gravel is overlain gradationally by 6 cm of matrix-supported pebble 

gravel (Gms) with numerous shell fragments. The core is capped by 24 cm of massive sand (Sm), which is 

poorly sorted, fairly coarse which becomes progressively lighter in colour up core. The sand contains a 1 

cm band of darker, coarser sand with some granule gravel. This core was not analysed for magnetic 

susceptibility and gamma density data because the majority of the core was gravel lithofacies and thus 

magnetic susceptibility and gamma density data would not provide useful data. Shear strength was not 

tested in this core because of the absence of diamict. 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.10 Core CE-08-018 

This core was extracted from 

and mud (Fig. 23). The lowermost lithofacies

100-70 cm). There is dark mottling at the base of the 

matrix-supported, well sorted

fragments. The core is capped

(Fm, 62-60 cm). The massive mud is ver

massive sand is initially fine grained (64

shell fragments. The sand

prominence of clay-silty mud. 

Fig. 22. Sedimentology of core CE

 

This core was extracted from directly inbound of the shelf edge moraine (Fig. 1

The lowermost lithofacies is a fine-grained, well sorted and faintly 

70 cm). There is dark mottling at the base of the sand. Overlying the sand there is a sharp transition to 

sorted gravel (Gms, 70-64 cm) with occasional single shell valves and shell 

core is capped (64-0 cm) by massive sand (Sm), which contains an interbed of 

The massive mud is very soft and has a gradational upper and lower bed c

massive sand is initially fine grained (64-62 cm), but from 60-50 cm the sand contains 

The sand is variable in colour; from 50-37 cm the sand is orange and cont

silty mud. There is a sharp transition to poorly sorted granular sand, with numerous 

Sedimentology of core CE-08-017 and associated LFAs.
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11). It consists of sand, gravel 

grained, well sorted and faintly laminated sand (Sh, 

there is a sharp transition to a 

with occasional single shell valves and shell 

contains an interbed of massive mud 

soft and has a gradational upper and lower bed contact. The 

0 cm the sand contains small pebbles and 

he sand is orange and contains a high 

There is a sharp transition to poorly sorted granular sand, with numerous 

017 and associated LFAs. 



52 

 

shells (37-0 cm). From 37-24 cm the granular sand is dark brown, however, from 24-0 cm the sand becomes 

much lighter in colour (sandy beige) than the underlying dark brown massive sand.    

This core displays variable magnetic susceptibility values. From the base of the core to 37 cm the values 

average 23 x10-5 SI, with fluctuations between 10 and 55 x10-5 SI (Fig. 23).  From 37 cm there is a drop in 

values ~2 x10-5 SI, There is a notable spike in the data at 70 cm (97.6 x10-5 SI), this data point coincides 

with a shift to the Gms lithofacies, however it is classified at a spurious data point.  Gamma density values 

average 2.2 gm/cc throughout the core. There is little variation in the values except from above 31 cm 

where there is a little more variation but only by 0.3 gm/cc (Fig. 11). Shear strength was not tested in this 

core because of the absence of diamict. Foraminifera were sampled from the core catcher (which bottomed 

out in laminated sand) for radiocarbon dating and provided a date of 23742 cal yr. BP (Table 3, UCIAMS-

133552). 
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 4.3.11 Core CE-08-025 

This core was extracted from the 

and sand (Fig. 24).  The lowermost lithofacies is

49 cm). From 65-60 cm t

is ~5 mm. From 60-55 cm t

underlying gravel (~15mm), whereas the clasts from

other massive clast- supported gravel

24 cm). This lithofacies consists of a pebble gravel

Between 38-27 cm depth the gravel is markedly sandy. 

grained and well sorted sand 

right hand side of the core there is an incursion of 

bounding contact. This may have occurred as a result of the coring process.

This core was not analysed for magnetic susceptibility and gamma density

the core was composed of 

provide useful data. Due to the

 

 

 

 

 

 

 

 

 

Fig. 24. Sedimentology of core CE

 

re was extracted from the crest of the outermost (shelf edge) moraine (Fig.

The lowermost lithofacies is inversely graded, clast-supported

the gravel is fairly sorted, although clasts are coated in mud

55 cm the clasts are well sorted, sub-angular to sub-rounded and larger than the 

(~15mm), whereas the clasts from 55-49 cm are significantly larger (~4.5cm) than the 

supported gravel units.  The overlying lithofacies is an upwards fining 

This lithofacies consists of a pebble gravel that fines upwards gradationally

cm depth the gravel is markedly sandy. The core is capped by 24 cm of massive, fine 

grained and well sorted sand (Sm) with occasional granules in the upper 13 cm. 

right hand side of the core there is an incursion of matrix–supported, granule gravel

his may have occurred as a result of the coring process. 

This core was not analysed for magnetic susceptibility and gamma density values

composed of gravel and thus magnetic susceptibility and gamma density data would not 

Due to the absence of diamict shear strength measurements were not carried out

Sedimentology of core CE-08-025 and associated LFAs.
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Fig. 11). It consists of gravel 

supported pebble gravel (Gm, 65-

clasts are coated in mud and average clast size 

rounded and larger than the 

significantly larger (~4.5cm) than the 

n upwards fining gravel (Guf, 49-

that fines upwards gradationally into a granule gravel. 

core is capped by 24 cm of massive, fine 

with occasional granules in the upper 13 cm.  From 22-13 cm along the 

granule gravel (Gms) with a sharp 

values because the majority of 

gravel and thus magnetic susceptibility and gamma density data would not 

shear strength measurements were not carried out. 

025 and associated LFAs. 
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4.3.12 Core CE-08-031 

This core was extracted from the bathymetric low area behind the outermost moraine (Fig. 11). It consists 

of a range of gravel and sand lithofacies (Fig. 25) the lowermost of which is a sandy mix of shell hash and 

small pebbles (Sm, 136-131 cm). It is overlain gradationally by a normally graded pebble gravel (Gm, 131-

89 cm) which is clast supported and poorly sorted. The gravel contains occasional shells (single valves) and 

shell fragments and has an average clast size of ~40mm, although from 97-89 cm there is less shelly 

material present and clast sizes are smaller (~12 mm). The gravel is overlain by a thick bed of massive sand 

(Sm) from 89-0 cm depth. The base of this massive sand is characterised by a coarse textured dark beige 

sand (89-57 cm).  There is a convoluted but sharp contact separating this darker unit from the overlying 

massive sand which is markedly lighter in colour. This sand consists of a mixture of coarse sand and shell 

hash (81-39 cm). From 39-0 cm the massive sand is light brown in colour, very well sorted, fine grained 

and contains a prominent lamination of lighter sand at 8-7 cm depth.   

This core displays very low magnetic susceptibility values (Fig. 25). From the base of the core to 82.5 cm 

the results display readings below ~1 x10-5 SI. The values become more amplified from 84-0 cm with 

values reaching ~30 x10-5 SI, however values do become very low between 52-40 cm.. Gamma density 

values are also variable ranging from 1.5 to 2.6 gm/cc (Fig. 25). From 136-91 cm the gamma density is very 

variable and fluctuates from 1.6-2.6 gm/cc, this corresponds to the clast supported gravel. Gamma density 

values from 91-39 cm remain relatively high (~2.2 gm/cc), although from 39-0 cm values drop to ~2.0 

gm/cc. . Shear strength was not measured in this core because of the absence of diamict. 
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4.3.13 Core CE-08-033 

This core was extracted from ~9 km inshore of the outermost moraine (Fig. 11). It consists of three 

lithofacies (Fig. 26). The lowermost lithofacies is a brown, very stiff massive diamict (Dmm, 265-48 cm). It 

is characterised by shear strength values that typically exceed 150 kg/cm2, and occasionally exceed 200 

kg/cm2 (Fig. 26).  The upper 12 cm of the diamict is less consolidated as shown by a dramatic decrease in 

shear strength ranging from 78 kg/cm2 to 53 kg/cm2. The diamict is overlain by normally graded, granular 

sand (Suf) from 48-26 cm depth. This Suf is a poorly sorted granular sand with a few large clasts and 

numerous single shell valves and fragments. The top 26 cm of the core is a massive, very well sorted, fine-

grained sand.  

This core shows considerable variability in its magnetic susceptibility measurements, however, the majority 

of the values are below 30 x10-5 SI (Fig. 26). From 265-58 cm the core shows oscillating magnetic 

susceptibility values which coincides with the diamict lithofacies. This diamict lithofacies has an average 

magnetic susceptibility ~13 x10-5 SI. From 58-0 cm the amplitude of these oscillations decreases. The sandy 

lithofacies (Sm and Suf) have an average magnetic susceptibility of 6.6 x10-5 SI. Gamma density 

measurements throughout the core remain consistent around 2.2 gm/cc, with only minor fluctuations (Fig. 

26). However the graph does illustrate a peak between 68-49 cm. 
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4.4 Foraminifera abundance analysis 

Cores CE-08-003 and CE-08-010 were both analysed to identify the foraminiferal assemblages present. 

Core CE-08-003 (Fig. 27) displays glacimarine indicator species at all depths sampled such as Cassidulina 

reneforme, Elphidium excavatum forma clavata, Elphidium excavatum and elphdium spp. C. reneforme, 

was a very common species located throughout all depths but particularly between 510-425 cm where their 

abundance exceeded 41%. The remaining glacimarine species also display significant abundance between 

510-425 cm in comparision to the Atlantic and temperate species (Fig. 27). The percentage of Atlantic and 

temperate species are very low from depths of 510-459 cm, although Elphidium magellanicum, Rosalina 

spp and Cibicides lobatulus do have percentages ranging up to 5%. There is a marked difference from 442-

425 cm where Atlantic and temperate species increase in abundance such as Pyrgo williamsoni, Rosalina 

spp, Triloculina trihedral, Cyclogyra spp and E. magellanicum.  Glacimarine species decrease dramatically 

to less than 10% between 180-163 cm depth, whereas all Atlantic and temperate species show an increase in 

abundance excluding P. williamsoni, T. trihedral, Cyclogyra spp and Nonion obiculare. The foraminferal 

abundance chart also displays data relating to the abundance of molluscs. Although this was not within the 

original aim of the research, molluscs occurred in such a high percentage in the upper two samples (180 and 

163 cm) that they are included.  

Foraminifera abundance data for Core CE-08-010 (Fig. 28) shows glacimarine indicator species at all 

depths such as C.reneforme, E. excavatum forma clavata, E. excavatum and Elphidium spp. C.reneforme 

was a very common species with a high abundance, exceeding 46% at all depths excluding the 448 cm 

sample. Atlantic and temperate water species abundance is low in comparison to the glacimarine indicators. 

However, at depths of 499 and 448 cm the percentage of Atlantic and temperate water species do increase. 

At 499 cm the percentage of Bolvina spp, T. trihedral, Rosalina spp and Globulina spp all increase. 

Additionally at 448 cm the majority of Atlantic and temperate water species also increase in abundance 

(excluding Globulina spp), whereas the C. reneforme decreases to 5%. However, it must be noted that at 

both 499 and 448 cm the overall sample size is much smaller due to lack of foraminifera at these depths. 

Abundance of all Atlantic and temperate water species is very low at 276 cm (excluding C. lobatulus).  
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4.5 Lithofacies Associations 

Nine lithofacies have been identified from the cores analysed (Table 2). These lithofacies were grouped into 

four lithofacies associations (LFAs) based on their physical similarities, physical properties, foraminifera 

assemblages and the contacts between the individual lithofacies (Fig. 29) 

4.5.1 LFA 1: Brown diamict and mud association 

LFA 1 was observed in cores CE-08-008, CE-08-010, CE-08-011 and CE-08-033. LFA 1 comprises a 

brown, massive, matrix-supported, over-consolidated diamict (Dmm) which is the basal unit within all four 

cores. It is characterised by very high shear strength values (>200 kg/cm2) which decrease upwards.  In core 

CE-08-010 this stiff diamict is overlain by a softer diamict. The softer diamict contains inclusions of sand 

which increase vertically upwards. LFA1 was sampled for foraminfera for the purpose of radiocarbon 

dating (15190 cal yr BP (UCIAMS-133551)) and abundance analysis (Fig. 28). Samples from the diamict at 

516, 482 and 465 cm, are associated with the softer Dmm and a high percentage of glacimarine indicator 

species and low percentages of Atlantic and temperate water species (as discussed in section 4.4). The 

magnetic susceptibility of this LFA is highly variable possibly as a result from the variable grain sizes and 

differing grain provenance. The gamma density for this LFA is ~2.8 gm/cc but also displays some 

variability especially within core CE-08-010.  

4.5.2 LFA 2: Mud and sand association 

LFA 2 (Fm, Fl, Sm, Sh, Suf) was observed cores CE-08-003, CE-08-004, CE-08-010, CE-08-015, CE-08-

018 and CE-08-033. LFA 2 comprises massive sand, massive mud, laminated sand, laminated mud and 

normally graded sand. Although LFA 2 is dominated by laminated lithofacies, the massive mud lithofacies 

that are present in the majority of the cores are quite thick, ranging from 30-99 cm. LFA 2 was also sampled 

for foraminifera in cores CE-08-003 and CE-08-010 for the purpose of abundance analysis (Figs. 27 and 

28). The foraminifera associated with this LFA are dominated by glacimarine indicator species as illustrated 

by Fig. 27 and 28. In core CE-08-010 this LFA is characterised by low foraminifera counts (excluding 

samples from 431-459 cm) and a subtle increase in Atlantic and temperate water species. The upper sample 

depths of 179 and 102 cm from core CE-08-003 are also dominated by Atlantic and temperate water species 

and additionally Pteropods. This LFA was heavily sampled for the purpose of radiocarbon dating from core 

CE-08-003, CE-08-004 and CE-08-018. The core catcher from the outer shelf (CE-08-018) was dated to 
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23742 cal yr. BP (UCIAMS-133552), the laminated mud in core CE-08-004 was dated to 17797 cal yr. BP 

(SUERC-47522)and the dates obtained for core CE-08-003 provide a minima for ice sheet retreat (12763 to 

12170 cal yr. BP). This LFA is also associated with high sedimentation rates (ranging from 1.3 m – 1.9 m 

kyr -1) which were calculated using the radiocarbon dates and presented in Fig. 14.  

4.5.3 LFA 3: Sand and gravel association 

LFA 3 (Sm, Gm and Gms) was observed in cores CE-08-004, CE-08-010, CE-08-015 and CE-08-018. LFA 

3 is characterised by poorly-sorted, massive units of sand as well as matrix-supported and clast-supported 

gravels. These lithofacies have been grouped together because they are usually small units that are 

underlain and overlain by interbeds of massive mud. The transitions between the lithofacies are gradational 

and they are not as coarse grained as the overlying LFA4.  No foraminifera were sampled from this LFA. 

Core CE-08-004 and CE-08-015 were sampled for the purpose of radiocarbon dating. LFA 3 in core CE-08-

004 was dated to 12933 cal yr. BP (SUERC-47517) and in core CE-08-015 the LFA was dated to 13888 cal 

yr. BP (SUERC-47518).  

4.5.4 LFA 4: Sand and gravel association 

LFA 4 (Sm, Gm, Gms and Gfu) was observed in all cores except from core CE-08-003, CE-08-015 and CE-

08-033. LFA 4 consists of massive gravel and sand lithofacies with occasional normally graded gravel 

(Gfu).  The massive sand has been placed into this association because it is more coarse grained than the 

other massive sands that are associated with LFA2 and LFA 3. No foraminifera were sampled from this 

LFA. 
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4.6 Core Sedimentology - Interpretation 

4.6.1 LFA 1: Brown diamict and mud association 

LFA 1 was observed at the base of cores CE-08-008, CE-08-010, CE-08-011 and CE-08-033. The brown 

diamict of this LFA is characterised by a massive structure, abundant matrix and typically very high shear 

strength values. This is interpreted as supporting a subglacial origin for the diamict (J.M. van der Meer 

1993; Ó Cofaigh et al. 2005; Evans et al. 2006; Pudsey et al. 2006; Ó Cofaigh et al. 2007; Hogan et al. 

2010b). In addition, the absence of lenses of gravel or coarse sand within the diamict does not support an 

ice rafted debris origin, and the lack of bedding and grading suggests that it is not a mass flow deposit 

(Dowdeswell et al. 1994). The high shear strengths that characterise the diamict are likely related to the 

loading and compaction by grounded glacier ice (Evans & Pudsey 2002; Evans et al. 2005). This LFA is 

therefore interpreted as a subglacial traction till (hybrid till) produced by an array of processes in the 

traction zone (Evans et al. 2006).  However, the overlying softer diamict in core CE-08-010 is interpreted as 

deglacial sediment due to the high sand content which increases up core, lower shear strength and high 

abundance of glacimarine foraminifera (e.g C. reneforme) (Figs. 19 & 28). This interpretation is also 

supported by the massive mud (LFA 2) that separates the diamict lithofacies (Polyak & Solheim 1994; Ó 

Cofaigh et al. 2005). The presence of such massive marine muds can indicate ice proximal glacimarine 

conditions with high sedimentation rates from sediment-rich meltwater plumes, or alternatively, deposition 

in an ice distal setting by sediment settling through the water column (Boulton 1990; Cowan et al. 1999; 

Evans et al. 2005). As a consequence, the softer diamict within core CE-08-010 is interpreted here as an ice 

rafted diamict due to its massive nature, gradational contacts, poor sorting and large number of clasts which 

lack a common orientation (at least based on visual assessment from the x-radiographs) and sandy lenses 

(Domack and Lawson, 1985; Dowdeswell et al. 1994; Cowan et al. 1997; Ó Cofaigh et al. 2001). This 

deglacial sediment was dated from core CE-08-010 (15190 cal yr. BP) and provides a date that constrains 

the timing of deglaciation. From 534 to 505 cm (within core CE-08-010) this softer diamict consists of 

stacked beds and has an erosive basal contact with a graded zone at the top suggesting that subsequent to its 

emplacement the ice rafted diamict was remobilised and resedimented by mass flow processes (Kurtz & 

Anderson 1979; Ó Cofaigh et al. 2001). The mass flow most likely can be attributed to an intermediate 

strength cohesive debris flow because it is encased in mud and is less than 1 metre in thickness (Talling 

2013).  
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The foraminifera abundance analysis focused on the transition between the diamict, the massive mud 

interbed and the overlying diamict (Fig. 28). The foraminifera that dominated this transition were 

glacimarine species (e.g C. reneforme and E. excavatum forma clavata) as discussed in section 4:4. The 

abundance of C. reneforme is high within the diamict and the massive mud interbed (LFA 2) which 

indicates a proximal glacimarine setting. However, the massive mud interbed also displays an increase in 

the percentage of Atlantic water and temperate species. This influx of warmer temperature foraminifera 

species could indicate that warm water was driving ice sheet retreat. However, the foraminifera counts were 

very low in this mud interbed, which could be a result of high meltwater and sediment flux as a result of a 

retreating ice margin and as a consequence this could bias the assemblage identified (Lloyd 2006;Kilfeather 

et al. 2011).  

4.6.2 LFA 2: Mud and sand association 

This LFA comprises Fm, Fl, Sm, Sh and Suf lithofacies but is dominated by laminated sediments.  LFA 2 is 

dominated by glacimarine foraminifera species such as C. reniforme and E. excavatum forma clavata.  

Within core CE-08-003 there is a progressive decrease in glacimarine species up core and a corresponding  

increase in Atlantic and temperate water species (such as Rosalina spp and C. lobatulus). The large 

proportion of Pteropods within samples from 180-163 cm indicates an open marine environment. Core CE-

08-010 (Fig. 28) does not display such a clear transition from glacimarine to more temperate species. In this 

core the glacimarine taxa dominate the samples up to a depth of 258cm, which indicates that the ice sheet 

was still in fairly close proximity (Lloyd 2006). The majority of foraminifera samples were extracted from 

the laminated sediments that dominate this LFA. Laminated sediments can be formed as a result of 

suspension settling from turbid meltwater plumes (Cowan et al. 1999), deposition from turbidity currents 

(Gilbert et al. 1998), or from contour current activity  (Howe  and Pudsey, 1999). Ó Cofaigh & Dowdeswell 

(2001) distinguish the genesis of laminated sediments through the identification of sedimentary structures, 

thickness, texture and sorting, contacts, fauna and stratigraphic relationships. The laminated sediments of 

LFA2 are interpreted as having formed from a combination of turbidity currents and suspension settling 

from meltwater plumes. This interpretation is supported by their graded nature, their variability in texture 

and thickness, their sharp lower boundaries, and their grain (Anderson et al. 1984; Cowan et al. 1999). The 

homogeneous mud that occurs above these laminated sediments could have been deposited at the end of a 

turbidity current flow (Cowan et al. 1999).  This evidence, in conjunction with the high sediment rates 
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supports an ice proximal interpretation for this LFA which has also been established through the 

foraminifera analysis. LFA 2 also contains massive mud and sand lithofacies which can indicate a waning 

of the meltwater influx to the core sites, high rates of sedimentation or high rates of biotubation (Elverhøi et 

al. 1989; Evans et al. 2005). As a consequence this LFA has been interpreted as an ice proximal glacimarine 

deposit and thus the dates obtained from LFA 2 can be used to infer the timing of deglaciation across the 

shelf. 

4.6.3 LFA 3: Sand and gravel association 

LFA 3 is a transitional lithofacies association. It demonstrates a shift from laminated to massive sediments 

and more gravelly lithofacies (Sm, Gm and Gms). The presence of massive and poorly sorted sediments 

points to the decreasing influence of meltwater and an increasingly ice distal environment (Stevens 1990). 

The poor sorting, overall lack of grading and lamination suggests a hemipelagic environment (Hillenbrand 

et al. 2005). The muddy gravels identified are interpreted as ice rafted debris due to their gradational 

contacts and lack of bedding or normal grading that would indicate deposition from mass flow (Dowdeswell 

et al. 1994), whereas the clast supported gravels are interpreted as a product of debris flows, due to their 

inversely graded nature (cf, Shanmugam 2000). The material that comprises these debris flows most likely 

originated from the base of the ice sheet during a standstill whilst undergoing overall retreat (Ottesen & 

Dowdeswell 2006). These mass flows could have been triggered through the movement of the ice sheet to 

an increasingly distal position, which would have destabilised the material (Salvi et al. 2006).  The 

radiocarbon dates from this LFA were obtained from the mid shelf (core CE-08-015) and the inner shelf 

(core CE-08-004). The dates indicate that the ice sheet had significantly retreated from the mid shelf before 

13888 cal yr. BP and from the inner shelf before 12933 cal yr. BP.  

4.6.4 LFA 4: Sand and gravel association 

LFA 4 comprises a series of typically poorly-sorted, sandy and gravelly facies that are predominantly 

massive but also include some graded sediments (Sm, Gm, Gms and Gfu). Stratigraphically LFA 4 forms 

the uppermost LFA in the cores and because of this a first order interpretation it represents deposition after 

ice sheet retreat. Massive and graded gravels can result from a number of different processes in the marine 

environment including sediment gravity flows or bottom current activity (Anderson et al. 1984). In the case 

of LFA4, the gravels are inferred to originate from a combination of both processes due to their normal 

grading (indicative of sediment gravity flows) and the dominance of clast supported gravel within the LFA 
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indicates the winnowing of finer grained material from bottom currents (Anderson et al. 1984; Evans et al. 

2005). The high occurrence of shelly, coarse grained sand and gravel can be attributed to a lag deposit from 

current activity (Dowdeswell et al. 1998; Howe et al. 2001; Howe et al. 2006). LFA 4 directly overlies 

LFA1 with an erosional contact in three of the cores (cores CE-08-008, CE-08-011 and CE-08-033), and 

implies that the intervening deglacial sediments have been removed by bottom current activity which 

reworked the shelf sediments (Ó Cofaigh et al. 2001; Hogan et al. 2010b).  

 

4.7 Summary 

This chapter has presented the results obtained from the analyses performed on thirteen marine sediment 

cores from the northwest Irish shelf. Four lithofacies associations (LFAs) are identified within the cores; 

LFA1 (Brown diamict and mud association); LFA 2 (Mud and sand association); LFA 3 (Sand and gravel 

association) and LFA 4 (Sand and gravel association). These LFAs have been interpreted as representing a 

subglacial (LFA 1), ice proximal (LFA 2), ice distal (LFA 3) and postglacial (LFA 4) depositional 

environment based on the cores sedimentology, physical properties and foraminifera assemblages. The 

presence of subglacial till in one of the outer shelf cores (CE-08-033) confirms that the BIIS had an 

extensive continental shelf position with initial retreat underway by ~23800 cal kyr BP (14C dates from 

core CE-08-018), ice proximal glacimarine deposits located on the mid shelf could verify a slow ice sheet 

retreat across the mid shelf accompanied by the suite of nested moraines. Radiocarbon dates from inner 

shelf core (CE-08-003 and CE-08-004) indicate deglaciation of the inner shelf commenced before c. 17,800 

cal. yr BP. The implications of these results for the nature and extent of the BIIS on the continental shelf 

offshore of northwest Ireland are discussed in chapter 5. 
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Chapter  5 - Discussion 

5.1 The sedimentary record of ice sheet advance and retreat on the NW continental shelf 

Analysis of the marine sediment cores from Donegal Bay and the adjoining shelf offshore of NW Ireland 

has identified lithofacies associated with both ice sheet advance (e.g. subglacial till) and retreat (e.g. 

glacimarine sediments) across the continental shelf. Four LFAs have been identified and interpreted; LFA 

1) subglacial; LFA 2) ice proximal; LFA 3) ice distal and LFA 4) postglacial (see Chapter 4 above).  

 

 

 

The continental shelf offshore of NW Ireland is characterised by a large moraine complex (Fig. 30) with 

iceberg ploughmarks distal to the shelf edge moraine (Ó Cofaigh et al. 2012). It has been proposed that 

these moraines record the extension of the ice sheet to the shelf edge pre-LGM and its subsequent slow and 

punctuated retreat (Ó Cofaigh et al. 2012).  The presence of subglacial till in core CE-08-033 (Fig. 26 and 

30) confirms the flow of grounded ice to the shelf edge during the LGM. An LGM age for this deposit has 

been assigned on the basis of the dates from the overlying glacimarine sediments (see section 4:2), in 

Fig, 30. Location map showing cores collected during cruise CE-08 of the Celtic Explorer from the 
NW Irish continental shelf, the prominent arcuate moraines (blue shading) including the Donegal 
Bay moraine and three of the obtained from radiocarbon dating in this study. 
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conjunction with wider evidence in the form of IRD from the Barra Fan that suggest a shelf edge position 

for the BIIS offshore of NW Ireland during the LGM (Wilson & Austin 2002). The overlying glacimarine 

sediments identified within the cores, document ice sheet retreat across the shelf. Cores sampled from the 

outer shelf are dominated by postglacial deposits related to bottom current activity and contain less than 50 

cm of ice proximal glacimarine material, where present (cores 18, 25, 31 and 33; Figs. 23, 24, 25 and 26). 

The absence of ice proximal glacimarine sediments might suggest rapid retreat and an abrupt change to an 

ice distal environment (Hogan et al. 2010a; Jennings et al. 2014). However, because of the location of these 

cores from the outer shelf and the typically thick package of postglacial bottom current deposits that overlie 

the glacimarine sediments, it is possible that at least part of the deglacial sequence has been removed by 

current reworking (Anderson et al. 1984; Evans et al. 2005). Iceberg ploughmarks are present distal to the 

shelf edge moraine, which indicates that initial retreat was associated with ice sheet break up by a large 

calving event (Ó Cofaigh et al. 2012). Therefore initial retreat from the ice sheet’s shelf edge position may 

have been rapid and associated with a calving event. 

The nature of ice sheet retreat across the mid shelf contrasts with that of the outer shelf. Sediment cores 

from the mid-shelf (cores 8, 9, 10, 11, 15 and 17; Figs. 17, 18, 19, 20, 21 and 22) record ice proximal 

sedimentation (LFA 2) which are overlain by transitional sediments (LFA 3). The glacimarine sediments 

relate to three main processes: 1) tubidity currents and debris flows; 2) suspension settling from turbid 

meltwater plumes; and 3) the rainout of IRD. The thick ice proximal glacimarine facies point to slow ice 

sheet retreat across the mid shelf. This interpretation is supported by the numerous moraines identified on 

the mid shelf between the locations of cores CE-08-017 to CE-08-008 (Fig. 30). The laminated nature of the 

glacimarine sediments indicates that meltwater was a significant contributor to sedimentation (Polyak & 

Solheim 1994; Hogan et al. 2010a; Jennings et al. 2014). Two of the marine sediment cores (CE-08-011 and 

CE-08-008) consist solely of LFA 1 (subglacial deposits) and LFA 4 (postglacial deposits). In these 

instances the deglacial sediments are inferred to have been eroded by bottom currents (Anderson et al. 

1984; Evans et al. 2005).  The presence of ice proximal glacimarine sediments above the LFA 3 transitional 

lithofacies in Cores CE-08-010 (Fig. 19) and CE-08-015 (Fig. 21) suggests some possible minor oscillations 

of the ice sheet margin during overall deglaciation, which is confirmed by the strong glacimarine 

foraminifera signal at 276 cm in core CE-08-010 (Fig. 28) and the moraine sequence on the shelf (cf. 

Ballantyne et al. 2007; McCabe et al. 2007; Bradwell et al. 2008; C. Clark et al. 2012; Ó Cofaigh et al. 

2012). 
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The sedimentary record of the inner shelf is characterised by the transition from ice proximal (LFA 2) to ice 

distal (LFA3) glacimarine deposition and subsequent post glacial bottom current activity (LFA 4) (Cores 3, 

4 and 5; Figs. 14, 15 and 16). Core CE-08-005 was extracted from the Donegal Bay moraine (Fig. 29) and 

consists solely of postglacial bottom current deposits. Cores CE-08-003 and CE-08-004 were extracted 

from inshore of the Donegal Bay moraine (Fig. 30), these cores record ice proximal glacimarine deposition. 

The thick beds of glacimarine sediments in core CE-08-003 indicate high sedimentation rates which are 

common in tidewater environments (Kilfeather et al. 2011).  

The sediments recovered in cores from the shelf offshore of NW Ireland contain a range of glacimarine 

lithofacies but importantly they include laminated and massive muds related to meltwater deposition 

(Polyak & Solheim 1994). This emphasises the role of meltwater delivery and sedimentation during retreat 

of the last ice sheet across the shelf in this region and contrasts with deglacial sequences of glacimarine 

sediments described from Antarctica, where glacimarine deposits reflect minimal meltwater derived 

lithofacies and are largely dominated by coarse grained lithofacies (Evans et al. 2005). The ice sheet on the 

NW shelf was therefore likely a tidewater margin in which meltwater contributed strongly to both retreat 

and sedimentation (cf. Mackiewicz et al. 1984; Dowdeswell et al. 1994; 1998). 

 

The sedimentary record indicates that the ice sheet was grounded at the shelf edge offshore of NW Ireland. 

Initial retreat from the shelf edge was rapid, followed by a slow retreat across the mid shelf. This is in 

contrast to the reconstruction of  C. Clark et al. (2012) who propose a slow rate of ice loss during retreat 

from the shelf edge. 

 

5.2 Timing and nature of ice sheet retreat 

Previous reconstructions of the extent of the BIIS on the continental shelf during the LGM have largely 

been inferred from terrestrial evidence (e.g., Ballantyne et al. 2007; Greenwood & Clark 2009) or from the 

analysis of deep sea sediment cores (Wilson & Austin 2002; Scourse et al. 2009). These reconstructions 

range from an extensive pre-LGM ice sheet at the shelf edge (J. Clark et al. 2012) to a more restricted LGM 

ice sheet that was confined to a position between the Donegal Bay moraine (Fig. 30) and the shelf edge 

(McCabe et al. 2007), to an ice sheet that extended through Donegal Bay onto the continental shelf during 

the LGM (Ballantyne et al. 2007; Greenwood & Clark 2009). The radiocarbon dates obtained in this study 
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from benthic foraminifera and shells within the cores from the continental shelf (see Chapter 4) are the first 

to directly constrain the timing of deglaciation from the shelf edge. These dates are used to test the validity 

of the C. Clark et al. (2012) reconstruction for NW Ireland (Fig. 31). 

The analysis of geophysical data by Ó Cofaigh et al. (2012) and the core sedimentological analysis from 

this study have presented strong evidence that the last ice sheet was grounded to the shelf edge offshore of 

NW Ireland. However crucial to determining the timing of this advance to the shelf edge and subsequent ice 

sheet retreat is stratigraphically well-constrained, dated marine sediment cores. The date obtained from core 

CE-08-018 (which is located directly inboard of the shelf edge moraine, see Fig. 30) indicates that 

deglaciation from the shelf edge commenced prior to c. 23,700 cal. yr BP. This date is supported by the 

analysis of IRD records from deep sea cores along this margin, which proposed that the ice sheet remained 

at the shelf edge until 24 cal kyr BP and then underwent retreat at 23 cal kyr BP (Wilson & Austin 2002; 

Scourse et al. 2009).   

Radiocarbon dates obtained from glacimarine sediments in cores from the mid shelf indicate that retreat had 

occurred before 15,190 cal. yr BP (core CE-08-010, Fig. 30).  This corresponds to the dates that have 

previously been suggested by several previous studies such as McCabe (1986) and McCabe & Clark (2003) 

for retreat from the mid shelf. However these dates are minima for ice sheet retreat due to the older dates 

obtained from glacimarine sediments in cores from the inner shelf (see below). On this basis, retreat from 

the mid shelf had occurred before c. 17,800 cal. yr BP and therefore much earlier than proposed by McCabe 

(1986) and McCabe & Clark (2003).  

Radiocarbon dates obtained from cores CE-08-003 and CE-08-004 indicate deglaciation of the inner shelf 

before c. 17,800 cal. yr BP (Fig. 30). The Donegal Bay moraine (core CE-08-005) has previously been 

referred to as the marine continuation of the LF-BF line (see chapter 2). The Bloody Foreland moraine was 

dated in Northern Donegal by Clark et al. (2009) to 19.3 ±1.2 kyr. This date was obtained by using 10Be 

surface exposure ages from granitic erractics deposited on the Bloody Foreland moraine. Therefore the 

Donegal Bay moraine could also be assigned to a similar age. Either way the date from core CE-08-004 

(this study) indicates ice sheet retreat from the Donegal Bay moraine by c. 17,800 cal. yr BP. Hence this 

rules out the possibility of the Donegal Bay moraine being of Killard Point Stadial age (15.6 kyr BP) as 

proposed by McCabe et al. (2005). The Donegal Bay moraine could be interpreted as either a re-advance or 

a longer still stand during retreat. The former interpretation is preferred due to the re-appearance of LFA 2 
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(proximal glacimarine sediments) above LFA 3 (distal glacimarine sediments) in core CE-08-010 which 

corresponds to an increase in glacimarine foraminifera indicator species (C. reneforme) at 276 cm. 

Evidence for a re-advance between ca. 24 kyr BP and 18 kyr BP has been documented elsewhere on the 

BIIS margin by Bradwell et al. (2008). 

The radiocarbon dates from the marine sediment cores presented in this study are the first direct 

chronological constraints on the timing of retreat of the BIIS from the shelf edge offshore of NW Ireland. 

Initial retreat was underway by ~23800 cal kyr BP, this retreat was rapid and associated with a large calving 

event. This was followed by slow and punctuated retreat across the mid shelf to the inner shelf (Core CE-

08-004). The ice sheet experienced a stillstand or re-advance to the Donegal Bay moraine sometime 

between >17800-19300 kyr BP with final retreat from the moraine to the inner shelf taking place before c. 

17,800 cal. yr BP. The dates and associated core stratigraphy provide the first unequivocal evidence that 

during the LGM the BIIS extended to the shelf edge offshore of NW Ireland.  This study has established 

that the ice sheet had retreated to the inner shelf before c. 17,800 cal. yr BP, consistent with the 

reconstruction of C. Clark et al. (2012) which proposed that the ice sheet was close to the present coastline 

~17 kyr BP.   

5.3 Wider implications 

Establishing a chronology and retreat pattern for the last ice sheet offshore of NW Ireland has implications 

for current models and understanding of the dynamics of the BIIS. A comparison of the results of this study 

with the pattern of retreat proposed by C. Clark et al. (2012) indicates that there are some discrepancies 

(Fig. 30). Incorporating the dates obtained from this study would require an inward shifting of the 

isochrones offshore of NW Ireland towards the coast (excluding the 27 and 25 kyr isochrones). Retreat into 

Donegal Bay had occurred by 17.8 cal kyr BP and thus much earlier although at a slower rate (~12 m/yr) 

than their reconstruction suggests (17.5 m/yr). This alteration would modify the retreat rates that C. Clark et 

al. (2012) proposes for this ice stream and consequently highlights the importance of incorporating marine 

chronologies into ice sheet reconstructions.  
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The foraminifera fauna identified in this study also provide insights into the reconstruction of ice sheet 

retreat and associated depositional environments on the continental shelf. The foraminifera identified are 

mainly glacimarine species (e.g C. reneforme and E. excavatum forma clavata, Fig. 27 and 28). Hence a 

glacilacustrine interpretation for the deglacial subaqueous sediments in the cores can be ruled out. The 

sediments identified on the continental shelf are glacimarine and are likely associated with retreat of a 

grounded tidewater margin across the shelf (see above).  The glacimarine foraminifera also indicate that 

deglaciation occurred in a cold but meltwater dominated environment (Kaplan 1999; Jennings et al. 2014). 

It has been proposed that an influx of warmer Atlantic water instigated the retreat of the BIIS from the 

continental shelf offshore of NW Ireland as shown by the rise in SST in a core from Rockall Trough (Knutz 

et al. 2007). However, the foraminifera from core CE-08-010 from the mid shelf do not show a significant 

increase in warmer Atlantic taxa (Fig. 28). Glacimarine foraminifera such as C. reneforme and E. 

excavatum forma clavata are present at high percentages across all depths sampled. There is evidence for an 

influx of warmer water species such as Rosalina spp in core CE-08-003 from the inner shelf but this influx 

occurred after c. 12,600 cal. yr BP as indicated by the date from 466 cm (core CE-08-003) by which time 

the ice sheet margin may have been terrestrially based according to C. Clark et al. (2012). As a consequence 

it would appear that warmer Atlantic water did not drive ice sheet retreat across the shelf in this region. 

However, the meltwater derived lithofacies are common in the cores from the continental shelf, indicating 

that meltwater was a major contributor to ice wastage. The high volumes of meltwater could have disrupted 

the influence of the insurgence of warmer Atlantic water (Lloyd et al. 2005).  

Sea level rise has been proposed as the main driver for collapse of the BIIS (McCabe & Clark 2003). 

Abrupt sea level rise associated with Heinrich event 2 (c. 24 kyr BP; Bond & Lotti 1995; Peck et al. 2007) 

and the collapse of the Laurentide Ice sheet could have destabilised the marine terminating margins of the 

BIIS ensuing a rapid break up associated with a large calving event (Bradwell et al. 2008; Chiverrell et al. 

2013). Based on the results from this study, retreat from the shelf edge offshore of NW Ireland commenced 

prior to c. 23,700 cal. yr BP. This date corresponds to Heinrich event 2 and the eustatic jumps generated by 

discharge of the LIS during Heinrich events (Haapaniemi et al. 2010). Thus it is proposed that the BIIS 

margin offshore of NW Ireland initiated deglaciation as a result of abrupt relative sea level rise. The 

ploughmarks documented by Ó Cofaigh et al. (2012) distal to the outer shelf moraine, in conjunction with 

the sedimentary record presented here, provides evidence to suggest initial ice sheet collapse was associated 

with a large calving event. Ice sheet destabilisation would have resulted in large scale reorganisation of the 
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ice lobes draining the BIIS which is confirmed by the extensive suite of moraines that span the continental 

shelf from south west Ireland to the Shetlands (Bradwell et al. 2008; Ó Cofaigh et al. 2012). 

 

The dates and analysis of the marine sediment cores from offshore of NW Ireland has implications for the 

use of numerical models (Hubbard et al. 2009). Alterations in ice sheet extent and timing of retreat would 

affect the thickness of the ice sheet, the isostatic loading and the associated sea level history (Chiverrell & 

Thomas 2010). Well defined and well dated limits are crucial for verifying glaciological models that have 

been constructed. This study highlights the importance of incorporating constrained ice sheet limits to help 

improve the accuracy of numerical models reconstructing the dimensions of the BIIS. 
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Chapter 6-Conclusion 

 

6.1 Introduction 

In Chapter 1 the overall aim of this study was defined as: 

To reconstruct the timing, extent and nature of the last advance and retreat of the British-Irish Ice Sheet 

(BIIS) on the continental shelf offshore of NW Ireland from marine sediment cores. 

To address this aim a series of research questions were proposed: 

1. What was the extent of the ice sheet offshore of NW Ireland at the LGM? 

2. What is the nature of the sedimentary record of ice sheet advance and retreat across the shelf? 

3. What was the timing and rate of deglaciation across the continental shelf? 

4. Are there linkages between the response of the last ice sheet off NW Ireland and wider North 

Atlantic climate and oceanographic forcing during the last cold stage, in particular during 

deglaciation? 

6.2 Main findings 

6.2.1 BIIS extended to the shelf edge during the LGM 

A transect of 13 cores from offshore of Donegal Bay NW Ireland provide direct evidence for extensive 

glaciation of the continental shelf.  Sedimentological evidence from the cores indicate the presence of a 

grounded ice sheet at the shelf edge with subglacial till in one of the outer shelf cores (core CE-08-033). 

This interpretation is supported by the large moraine identified at the shelf edge by Ó Cofaigh et al. (2012). 

Chronological evidence from core CE-08-018 indicates that retreat was underway from the shelf edge by 

23,700 cal. yr BP. Hence the ice sheet was present at the shelf edge during the LGM. 

6.2.2 Initial retreat from the shelf edge was rapid and associated with a large calving event 

Cores from the outer shelf do not contain thick sequences of glacimarine material, and this is interpreted as 

reflecting rapid ice sheet retreat from the shelf edge probably combined with at least the partial removal of 

such sediments by current reworking. Iceberg plougmarks distal to the shelf edge moraine indicate that 

initial retreat from the shelf edge was associated with a large calving event. 
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6.2.3 Mid shelf and inner shelf cores indicate the slow retreat of a tidewater ice margin 

The presence of thick beds of laminated glacimarine sediments produced by meltwater deposition in cores 

from the mid shelf point to the slow retreat of a grounded tidewater margin. The abundance of glacimarine 

foraminifera in these glacimarine deposits also supports a tidewater margin interpretation for the ice sheet. 

Meltwater was a significant contributor to retreat of the ice sheet and to sedimentation on the continental 

shelf. The reappearance of ice proximal glacimarine lithofacies and glacimarine foraminifera above the 

transitional LFA 3 in core CE-08-010 and CE-08-015 suggests minor oscillations of the ice margin during 

retreat. The inner shelf cores (CE-8-003 and CE-08-004) record ice proximal glacimarine deposition with 

high sedimentation rates which are again consistent with a tidewater glacimarine environment. 

6.2.4 The ice sheet had retreated to inner Donegal Bay by c.17,800 cal. yr BP 

Radiocarbon dates obtained from core CE-08-004 indicate ice sheet retreat from the Donegal Bay moraine 

had occurred by c. 17,800 cal. yr BP. In contrast to previous work (e.g. McCabe et al. 2005), it is inferred 

on the basis of this date that the moraine pre-dates the Killard Point Stadial (15.6 kyr BP). The Donegal Bay 

moraine could be interpreted as either marking a re-advance or a longer still stand during retreat which 

would have taken place sometime between >17,800-19,300 kyr BP. 

6.2.5 The drivers of ice sheet retreat are still unclear 

The formainifera data indicate that at least initial ice sheet retreat across the shelf was not associated with 

the incursion of warmer Atlantic water. Rather the glacimarine indicator species and associated laminated 

glacimarine sediments point to the importance of meltwater during retreat. The timing of initial retreat from 

the shelf edge coincides with Heinrich event 2 (as indicated by the date of 23.7 cal kyr BP from the outer 

shelf core) and was associated with a large iceberg calving event. Hence it is possible that sea level rise 

associated with H2 (Chiverell et al. 2013) could have triggered initial retreat but this is still speculative. 

6.3 Recommendations for future research 

6.3.1 Improving core chronologies for the continental shelf 

A recommendation for future research would be to try and constrain the timing of deglacation from the BIIS 

shelf edge position offshore of NW Ireland by dating a glacimarine deposit overlying a subglacial till. The 
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cores analysed in this study did not recover a complete subglacial to ice proximal glacimarine sequence on 

the outer shelf. 

6.3.2 Improve our understanding on the forcing behind ice sheet collapse 

A higher resolution study of foraminifera abundance from cores near to the shelf edge is necessary to 

ascertain whether there is a clear insurgence of warmer Atlantic water and therefore an increase in Atlantic 

and temperate foraminifera taxa.  

6.3.3 Reconstructing the dynamics of the BIIS 

This study was the first to analyse marine sediment cores within this sector of the BIIS. As a result, there is 

huge potential to expand this research across the BIIS continental shelves to effectively constrain LGM ice 

sheet limits and the BIIS pattern of retreat. This will help to develop a robust ice sheet model for the 

collapse of the BIIS, which will enable a greater understanding of the various controls and feedback 

processes that govern ice sheet retreat.  
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Appendix 1: Foraminifera taxonomic list

Astronium spp  
Bolivina (Brasilina) spp 
Cassidulina laevigata 
Cassidulina reniforme 
Cibicides lobatulus 
Cyclogyra spp 
Dentalina spp 
Elphidium excavatum 
Elphidium excavatum forma clavata 
Elphidium magellanicum 
Elphidium margeratasium    
Elpdium spp 
Fissurina spp 
Glabratella milletti 
Globulina spp 
Lagena spp   
Millionella 
Nonion labradoricum 

Nonion obiculare 
Nonionella turgida 
Nonion spp 
Ooalina mello 
Parafissurina spp 
Pyrgo williamsoni 
Pyrgo spp 
Quinqueloculina agglutinate 
Quinqueloculina seiminulum   
Quinquequoculina spp     
Reophax spp    
Rosalina spp 
Triloculina trihedral     
Virgulina spp 
Molluscs 
Pteropod  
Molluscs spp  
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162-163 13 5 5 3 0 1 5 40 0 0 4 2 4 7 0 1 3 
179-180 11 5 2 7 0 0 2 29 0 0 3 0 4 7 0 0 8 
424-425 124 23 9 45 0 8 1 3 8 0 11 0 3 0 0 0 0 
441-442 126 29 10 34 1 9 0 0 1 0 9 0 2 0 0 3 0 
458-459 183 46 3 7 0 5 0 5 0 0 15 0 2 0 0 1 0 
475-476 170 32 7 40 0 3 0 9 2 0 4 0 3 0 2 3 0 
492-493 196 30 9 10 0 3 0 8 0 0 14 0 2 0 0 0 0 
509-510 167 53 13 13 0 10 0 1 2 0 14 1 0 0 0 0 0 

Appendix 2: Foraminifera counts of core CE-08-003 
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Appendix 4: Foraminifera counts of core CE-08-010 
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Appendix 5: Foraminifera counts of core CE-08-010 continued 


