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Abstract

The goal of this work is to calculate with two different methods the high
energy limit of the tree-level differential cross section for a bremsstrahlung
process where a quark scatters from an external Coulomb field and emits
a gluon. The cross section is first calculated using ”ordinary” perturbative
quantum chromodynamics with the external field being that of a lepton. The
matrix element for the scattering is constructed from the two related Feyn-
man diagrams and the calculation of the cross section then proceeds straight-
forwardly with the methods taught in any basic particle physics course. The
high energy limit is given by selecting only the terms in the matrix element
that have the highest power of the center of mass momentum.

Second, the process is calculated in light cone perturbation theory. The
method used in this work closely follows that of Bjorken, Kogut and Soper’s
QED calculation [4]. The interacting initial and final states are expanded
into series of Fock states with the aid of light cone wave functions and the
amplitude is calculated using ”old-fashioned” Hamiltonian perturbation the-
ory. The high energy limit is present with the choice of light-cone coordinates
and in the eikonal approximation for the scattering.
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Tiivistelmä

Tämän työn tavoitteena on laskea kahdella tavalla puutason differentiaali-
sen vaikutusalan korkeaenergiaraja jarrutussäteilyprosessille, jossa kvarkki
siroaa ulkoisesta Coulombin kentästä ja emittoi gluonin. Ensin vaikutusa-
la lasketaan käyttämällä ”tavallista”perturbatiivista kvanttiväridynamiikkaa
tapauksessa, jossa ulkoista kenttää vastaa sironta leptonista. Sirontaan liit-
tyvä matriisielementti rakennetaan prosessiin liittyvistä kahdesta Feynmanin
diagrammista, ja differentiaalisen vaikutusalan laskeminen tästä on suora-
viivaista tavallisen hiukkasfysiikan alkeiskurssin tiedoilla. Korkeaenergiaraja
saadaan poimimalla matriisielementistä vain voimakkaimmin massakeskipis-
teliikeemäärästä riippuvat termit.

Toiseksi prosessi lasketaan valokartioperturbaatioteorian avulla. Tässä työssä
käytetty menetelmä noudattelee pitkälti Bjorkenin, Kogutin ja Soperin vas-
taavaa QED-laskua [4]. Prosessin vuorovaikuttavat alku- ja lopputilat ke-
hitetään valokartioaaltofunktioden avulla sarjoiksi Fockin avaruuden tiloja
ja amplitudi lasketaan ”vanhanaikaisilla”hamiltonilaisen perturbaatioteorian
keinoilla. Korkeaenergiaraja on luontevasti näkyvissä valokartiokoordinaatis-
ton valinnassa ja sironnan eikonaaliapproksimaatiossa.
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1 Introduction

Because of the curious behaviour of the strong coupling, perturbative quan-
tum chromodynamics only gives meaningful results at very high energies.
Therefore various ultrarelativistic approximations are part and parcel of most
perturbative QCD calculations. Quantizing the field theory on the light-cone
rather than at equal time leads to a natural high momentum limit for the
theory and exhibits many useful traits that simplify some calculations signif-
icantly.

In practice this means selecting a particular system of coordinates and ap-
plying the methods of Hamiltonian perturbation theory. This framework,
originally coined by Dirac as the front form of Hamiltonian dynamics [1], has
since been reintroduced under many different names such as light-cone quan-
tization, light-front quantization, null-plane quantization [2] or light-cone
perturbation theory, all effectively reiterating the same ideas. This thesis
shall refer to it as light-cone perturbation theory, or LCPT for short.

A very useful feature of LCPT is that the ground state of the free theory is
also the ground state in the interacting theory. LCPT, being ’old-fashioned’
or Hamiltonian in nature, is particularly useful for the analysis of (hadronic)
bound states, whereas the now ubiquitous action based method excels in the
calculation of cross sections [2].

The objective of this thesis is to go through the calculation of a tree-level high
energy bremsstrahlung scattering cross section for a process that involves a
high energy quark scattering off an electromagnetic Coulomb potential and
emitting a gluon (see figure 1). The final state quark and gluon, while taken
to be on mass shell as external particles, would of course quickly undergo

q q

g

Figure 1: A diagrammatic representation of the scattering process.
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Figure 2: Parton model deep inelastic scattering at leading order.

hadronization due to color confinement, whereas the incoming quark should
be thought of as a parton within an existing hadron.

The process has an obvious connection to the experimentally significant pro-
cess of Deep Inelastic Scattering (DIS), where a high energy lepton probes
a hadron with a virtual photon (see figure 2). The bremsstrahlung process
is one of the so-called real emission corrections that need to be considered
alongside with the loop diagrams when calculating the next-to-leading-order
amplitudes for DIS.

The DIS experiments were performed in the 1960s and 70s at the Stanford
Linear Accelerator Center (SLAC). The electrons, when fired at hydrogen
targets, exhibited primarily hard scatterings from the protons and in most
cases shattered the target producing a shower of outgoing hadrons. This led
James Bjorken and Richard Feynman to the discovery of the parton model:
the proton should be considered a loosely bound collection of constituent
fermions that carry electric charge and other electrically neutral particles
that hold the proton together.

It was also discovered that the structure of the proton looked almost com-
pletely independent of the energy it was probed at, i.e. that the partons
would essentially not be able to interact with each other during the short
time scales of the deep inelastic regime. This property came to be known
as Bjorken scaling. While this behaviour is simple and elegant, it proved
difficult to reconcile with established quantum field theory in the 70s. The
partons would have to exhibit asymptotic freedom, while there was no way
for any known type of theory to have such a property. The answer was given
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by ’t Hooft, Politzer, Gross and Wilczek with their discovery of non-Abelian
gauge theory. Generalizing the concept of local gauge invariance beyond that
of the simple local phase rotation symmetry of QED to permit any kind of
continuous symmetry gave rise to Yang-Mills theory and modern quantum
chromodynamics.

Perurbative QCD deals with free quark and gluons, and their scatterings are
usually readily modelled with the tools of regular perturbation theory. In the
context of DIS, however, the quarks are not free, but part of a bound state,
the proton. Accurately modelling DIS thus requires a different approach and
a different physical picture of the process. There are many possible solutions
to the problem, and one of them is given by LCPT.

The motivation behind this thesis is trying to understand the connection
between two fundamentally different descriptions of the same process: regular
pQCD and LCPT. To that end, instead of analysing the complete DIS cross
section, we focus on just the bremsstrahlung process. The cross section is first
calculated using the more familiar action-derived, or Lagrangian, Feynman
diagram method, and then again using the tools of LCPT.

The process involves a quark scattering in an external electromagnetic
Coulomb field. When calculating the cross section with the Feynman di-
agram method the external field is replaced by a lepton. In the high energy
limit the lepton ends up looking just like a source for the external Coulomb
field. The LCPT method, on the other hand, deals with the external field
by explicitly adding it in the equation of motion for the quark [4].

A very novel feature in the LCPT calculation is the use of so-called light-cone
wave functions when describing the interacting states. The initial (quark)
and final (quark-gluon) states are decomposed into a series of Fock states, i.e.
states with fixed numbers of particles, the weight of each term being given by
a corresponding wave function describing the amplitude for the interacting
hadron state to fluctuate into that particular combination of particles [5]. For
the leading order result only two terms in these series need to be considered
and the wave functions themselves are only evaluated to leading order.

The structure of the thesis is as follows. In section 2 the cross section is calcu-
lated in the more familiar method, constructing the matrix element from the
Feynman diagrams and performing the high energy approximations. Section
3 covers the corresponding LCPT calculation starting from a brief introduc-
tion to the basic conventions and ideas. Section 4 outlines the application
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Figure 3: The two leading order Feynman diagrams. The symbols p,
p′, k, ∆, ∆′, P and P ′ label the momenta, i, j and k are quark color
indices, a is the gluon color index and α, µ and ν are the Lorentz
indices related to the vertices.

of these ideas and methods to scatterings with color charged targets and the
additional complications involved. In section 5 the results are discussed and
a few thoughts are given to the application of these ideas and techniques in
current research.

2 Calculation using normal Feynman rules

2.1 The matrix element

The process can be thought of as the large momentum 2 to 3 scattering of a
quark off a lepton while emitting a gluon. Since the lepton does not couple
with gluons, at tree-level there are only two contributing Feynman diagrams,
represented by figures 3a and 3b. The matrix element corresponding to the
first figure is

iMI = ū(p′)(igγα(T a
ij))ϵ

∗
α(k)

i /∆

∆2 + iϵ
(ieQγµ)u(p)

−igµν
q2

ū(P ′)(−ieγν)u(P )

= i
gQe2T a

ij

q2(∆2 + iϵ)
ϵ∗α(k)ū(p

′)γα /∆γµu(p)ū(P ′)γµu(P ), (1)
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where the quark is taken to be massless, m is the mass of the lepton and Q
is the electric charge of the quark. The second diagram gives similarly

iMII = i
gQe2T a

ij

q2(∆′2 + iϵ)
ϵ∗α(k)ū(p

′)γµ /∆′γαu(p)ū(P ′)γµu(P ). (2)

From four-momentum conservation it follows that ∆ = p′ + k, ∆′ = p − k
and P ′ = p+ P − p′ − k.

The squared and spin sum-averaged matrix element is thus

|M|
2
=

1

2

1

2

1

3

g2Q2e4

q4
C

[
1

(∆2)2
Qµν

1 +
1

∆2∆′2Q
µν
2

+
1

∆2∆′2Q
µν
3 +

1

(∆′2)2
Qµν

4

]
Lµν , (3)

where C is the color factor

C = T a
ij(T

a
ij)

∗ = T a
ijT

a
ji = Tr[T aT a] =

1

2
δaa = 4, (4)

Lµν is the lepton trace

Lµν = Tr
[
(/P +m)γµ( /P

′ +m)γν
]
= 4

[
PµP

′
ν + PνP

′
µ + (4m2 − (P · P ′))gµν

]
(5)

and the Qµν
i ’s are the four quark traces

Qµν
1 = −Tr

[
/pγ

µ /∆γα /p′γα /∆γ
ν
]

Qµν
2 = −Tr

[
/pγ

α /∆′γµ /p′γν /∆′γα
]

Qµν
3 = −Tr

[
/pγ

µ /∆γα /p′γν /∆′γα
]

Qµν
4 = −Tr

[
/pγ

α /∆′γµ /p′γα /∆γ
ν
]
. (6)

Note that the iϵ’s in the denominators have been suppressed in equation (3)
for clarity of notation. They will not be needed anyway.

The quark traces are traces of eight gamma matrices. Using the well known
properties

γαγ
µγα = −2γµ (7)

and
γαγ

µγνγργα = −2γργνγµ (8)
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the number of gamma matrices reduces to six in each trace:

Qµν
1 = 2Tr

[
/pγ

µ /∆/p′ /∆γν
]

Qµν
2 = 2Tr

[
/p /∆

′γµ /p′γν /∆′]
Qµν

3 = 2Tr
[
/∆γµ/p/p

′γν /∆′]
Qµν

4 = 2Tr
[
/p/p

′γµ /∆′ /∆γν
]
. (9)

The generic six-gamma trace can be straightforwardly, if tediously, evaluated
using the Clifford algebra,{

γα, γβ
}
= γαγβ + γβγα = 2gαβ, (10)

and the usual properties of traces, yielding

Tr
[
γαγβγγγδγϵγζ

]
= 4

[
gαβ

(
gγδgϵζ − gγϵgδζ + gγζgδϵ

)
− gαγ

(
gβδgϵζ

−gβϵgδζ + gβζgδϵ
)
+ gαδ

(
gβζgγϵ − gβϵgγζ + gβγgϵζ

)
− gαϵ

(
gβζgγδ

−gβδgγζ + gβγgδζ
)
+ gαζ

(
gβϵgγδ − gβδgγϵ + gβγgδϵ

)]
. (11)

Applying this to our traces we get

Qµν
1 =16(k · p′) [pµkν + pνkµ − (k · p)gµν ]

Qµν
2 =16(k · p) [p′µkν + p′νkµ − (k · p′)gµν ]

Qµν
3 =16[(p · p′)(gµν [(k · p)− (k · p′) + (p · p′)] + kµp′ν) + pµ[pν(k · p′)

− (kν + p′ν)(p · p′)]− p′µ[p′ν(k · p) + pν [(k · p)− (k · p′) + (p · p′)]]]
Qµν

4 =16[(p · p′)(gµν [(k · p)− (k · p′) + (p · p′)]− kµpν) + p′µ[p′ν(k · p).
+ (pν − kν)(p · p′)] + pµ[pν(k · p′)− p′ν [(k · p)− (k · p′) + (p · p′)]]].

(12)

After contracting the traces and performing some simplifying algebra, one
gets the still somewhat daunting result

|M|
2
= −1

2

1

2

1

3
g2Q2e4C

1

(k · p)(k · p′)((k · p)− (k · p′) + (p · p′))2
8

[
(k · p)2[

(k · p) +m2 − (p · P ) + (P · p′)
]
− 2(k · p)

[
(k · P )

(
(p · P )− (p · p′)

)
−

(p · p′)
(
m2 − (p · P ) + (P · p′)

)
+ (P · p′)

(
(p · P ) + (P · p′)

)]
+ (k · p′)2[

(k · P ) +m2 − (p · P ) + (P · p′)
]
+ 2(k · p′)

[
− (p · p′)

(
(k · P ) +m2

9



+ (P · p′)
)
− (k · P )(P · p′) + (p · P )

(
(p · p′) + (P · p′)

)
+ (p · P )2

]
+ 2(p · p′)

[
(k · P )

(
− (p · P ) + (p · p′) + (P · p′)

)
+ (p · p′)

(
m2 − (p · P )

+ (P · p′)
)
− 2(p · P )(P · p′)

]]
. (13)

2.2 The high-energy limit

Next we are tasked with examining the high energy behaviour of this expres-
sion. We are interested specifically in the scattering where the analogue to
the Mandelstam s of 2 to 2 scattering, the invariant S = (p + P )2, is large
and the product p · P in particular is very large. In this limit S ≈ 2p · P .

We know that P − P ′ = p′ + k − p. Taking the dot product with P on both
sides gives P 2 − P ′ · P = p′ · P + k · P − p · P . Because we are interested
specifically in the limit where p · P is very large, this leads to

p · P ≈ p′ · P + k · P. (14)

We can then write 2p · P = S, 2P · p′ = (1 − z)S and 2P · k = zS. Using
these the high energy matrix element simplifies to

|M|
2
≈ −1

3
g2Q2e4

8

(k · p)(k · p′)((k · p)− (k · p′) + (p · p′))2

[
− 2(k · p)

×
[
(k · P )(p · P ) + (P · p′)

(
(p · P ) + (P · p′)

)]
+ 2(k · p′)

[
− (k · P )

× (P · p′) + (p · P )
(
(P · p′)

)
+ (p · P )2

]
+ 2(p · p′)

[
(k · P )

(
− (p · P )

+ (P · p′)
)
− 2(p · P )(P · p′)

]]
=

4

3
g2Q2e4

S2(z2 − 2z + 2)

(k · p)(k · p′)((k · p)− (k · p′) + (p · p′))
. (15)

Note that all dependence on the lepton mass m has disappeared at this limit.

In the following we will be using the so-called light-cone variables: for any
four-vector v̄ = (v0, v1, v2, v3) we can define the vector in light-cone coordi-

nates as v̄ = (v+, v−, v1, v2) with v+ = 2−
1
2 (v0 + v3) and v− = 2−

1
2 (v0 − v3).

The transverse components v1 and v2 are usually collectively referred to as
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v̄⊥. The dot product is given by the metric

gµν = Cα
µ ĝαβ(C

−1)βν =


0 1 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

 . (16)

The expression in (15) is still independent of frame. Fixing the frame such
that the incoming quark has a large momentum in the positive z direction
and the lepton has large momentum in the negative z-direction is equivalent
to the quark having large p+ and small p−, and the lepton in turn having
large P− and small P+. In such a frame equation (14) leads to p+ = k++p′+

and allows us to also write k+ = zp+ and p′+ = (1− z)p+. In this frame the
expression for the squared matrix element of equation (15) simplifies to

|M|
2
≈ 32

3
g2Q2e4

S2(z2 − 2z + 2)(1− z)z2

k2⊥q
2
⊥(k⊥ − zq⊥)2

. (17)

2.3 The differential cross-section

The differential cross-section for a process with two particles in the initial
state and three in the final state is well known:

dσ =
|M|2

2
√
λ(S, 0,m2)

(2π)4δ(4)(p+ P − p′ − k − P ′)δ(p′2)δ(k2)δ(P ′2 −m2)

× d4p′

(2π)3
d4k

(2π)3
d4P ′

(2π)3

≈ |M|2

2S
(2π)4δ(4)(p+ P − p′ − k − P ′)

dp′+d2p′⊥
2p′+(2π)3

dk+d2k⊥
2k+(2π)3

dP ′−d2P ′
⊥

2P ′−(2π)3

=
|M|2

2S
(2π)δ(p+ + P+ − p′+ − k+ − P ′+)

dp′+d2p′⊥
2p′+(2π)3

dk+d2k⊥
2k+(2π)3

× 1

2(p− + P− − p′− − k−)

≈ |M|2

2S
(2π)δ(p+ − p′+ − k+)

dp′+d2p′⊥
2p′+(2π)3

dk+d2k⊥
2k+(2π)3

1

2P−

≈ |M|2

2S2
(2π)δ(p+ − p′+ − k+)p+

dp′+d2p′⊥
2p′+(2π)3

dk+d2k⊥
2k+(2π)3

(18)
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where λ(x, y, z) ≡ x2 + y2 + z2 − 2xy − 2xz − 2yz and P− ≈ S
2p+

.

Inserting the squared matrix element from (17) we get the final result for the
differential cross-section:

dσ =
16

3
g2Q2e4

z2(1− z)(z2 − 2z + 2)

k2⊥q
2
⊥(k⊥ − zq⊥)2

p+(2π)

× δ(p+ − p′+ − k+)
dp′+d2p′⊥
2p′+(2π)3

dk+d2k⊥
2k+(2π)3

. (19)

3 Light-cone perturbation theory calculation

3.1 Basic concepts and notation

We mostly follow the conventions of Kogut and Soper [3, 4]. We will be work-
ing with the light-cone variables defined in section 2.2, i.e. the coordinates
related to the standard frame by

xµ = Cµ
ν x̂

ν , (20)

where x̂ν are the coordinates in the old frame and

Cµ
ν =


1√
2

0 0 1√
2

1√
2

0 0 − 1√
2

0 1 0 0
0 0 1 0

 . (21)

Momenta in LCPT are always on-shell [5], i.e. k2 = 2k+k− − k2⊥ = m2 for
any particle with momentum k and mass m, and thus only three components
of the four-vector are independent:

kµ =
(
k+, k−, k̄⊥

)
=

(
k+,

k̄2⊥ +m2

2k+
, k̄⊥

)
. (22)

For the gluon polarization vectors we adopt the Bjorken–Drell convention and
work in the light-cone gauge A+ = 0. With the requirement of transversality
[6], kµϵ

µ(k, λ) = 0, the polarization vectors are

ϵµ(k, λ) =

(
0,
ϵ̄⊥(λ) · k̄⊥

k+
, ϵ̄⊥(λ)

)
(23)
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with the transverse polarization vectors

ϵ̄⊥(λ) = ϵ̄⊥(±1) =
−1√
2
(±1, i) . (24)

The transverse vectors satisfy∑
λ

ϵ∗⊥i(λ)ϵ⊥j(λ) = δij. (25)

To quantize the theory on the light-cone we postulate the (anti-)commutation
relations{

a(p, s, f), a†(p′, s′, f ′)
}
= 2p+(2π)3δ(p+ − p′+)δ(2)(p̄⊥ − p̄′⊥)δ

ss′δff
′

(26)[
b(k, λ, c), b†(k′, λ′, c′)

]
= 2k+(2π)3δ(k+ − k′+)δ(2)(k̄⊥ − k̄′⊥)δ

λλ′
δcc

′
(27)

for fermionic and bosonic operators a and b, and define general multi-particle
Fock states with nq quarks and ng gluons as

|nq, pi, si;ng, kj, λj⟩ =
nq∏
i=0

a†(pi, si)

ng∏
j=0

b†(kj, λj) |0⟩ , (28)

where |0⟩ is the vacuum. Thus the Fock states are normalized as

⟨q(p′, s′)|q(p, s)⟩ = 2p+(2π)3δ(p+ − p′+)δ(2)(p̄⊥ − p̄′⊥)δ
ss′ . (29)

We should also define the field operator ψ in the Fourier basis:

ψ(x) =

∫
dp+d2p⊥
(2π)32p+

∑
s

(
e−ip·xaspu

s(p) + eip·xbs†p v
s(p)

)
. (30)

The equal-x+ anticommutation relations satisfied by the field operator com-
ponents are

{ψa(x), ψ
†
b(y)} = δabδ(x

− − y−)δ(2)(x⊥ − y⊥). (31)

Note that we are postulating the anticommutation relations at equal light-
cone time. This is fundamentally different from the usual equal time
(anti)commutation relations.
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p p̃′

˜k

Figure 4: A diagrammatic representation of the light-cone wave func-
tion for a quark splitting into a quark-gluon pair. The dashed line
indicates an intermediate state that is implied to undergo further in-
teractions.

3.2 Light-cone wave functions and the Fock state ex-
pansions of interacting states

Following the conventions of [5] the light-cone wave function for a quark
splitting into a quark-gluon-pair is

Ψq→qg(p→ p̃′, k̃) = gū(p̃′)/ϵ∗(k̃)(taij)u(p)
1

2p+
1

p− − p̃′− − k̃−
. (32)

The light-cone Fock state expansion for the interacting quark state to first
order is

|q(p)⟩ = |q(p)⟩0 +
∫

dΩ1Ψq→qg(p→ p̃′, k̃)
∣∣∣q(p̃′)g(k̃)⟩

0
, (33)

where the phase-space integral is∫
dΩ1 = 2p+(2π)3

∫ ∑
λ,a

dk̃+d2k̃⊥

2k̃+(2π)3

∑
σ,α,f

dp̃′+d2p̃′⊥
2p̃′+(2π)3

δ(p+ − k̃+ − p̃′+)

× δ2(p⊥ − k̃⊥ − p̃′⊥). (34)

Also required is the expansion of the interacting quark-gluon state |q(p′)q(k)⟩:

|q(p′)g(k)⟩ = |q(p′)g(k)⟩0 +
∫

dΩ2Ψqg→q(p
′, k → p̃) |q(p̃)⟩0 , (35)

14



Table 1: Matrix elements borrowed from Lepage and Brodsky[7], mod-
ified for our Kogut-Soper conventions and massless quarks. Here ϵ12 =
−ϵ21 = 1 and ϵ11 = ϵ22 = 0, and p⊥×p′⊥ = pi⊥ϵ

ijp′⊥
j = p1⊥p

′
⊥
2−p2⊥p

′
⊥
1.

Matrix element Value

ūσ′ (p′)√
p′+

γ+ uσ(p)√
p+

2δσσ′

ūσ′ (p′)√
p′+

γ− uσ(p)√
p+

δσσ′
1

p+p′+
(p⊥ · p′⊥ − iσp⊥ × p′⊥)

ūσ′ (p′)√
p′+

γi⊥
uσ(p)√

p+
δσσ′

(
p′i⊥−iσϵijp′j⊥

p′+
+

pi⊥+iσϵijpj⊥
p+

)

where the phase-space integral is now∫
dΩ2 = 2(p′++k+)(2π)3

∫ ∑
σ,α,f

dp̃+d2p̃⊥
2p̃+(2π)3

δ(k++p′+− p̃+)δ(2)(k⊥+p′⊥− p̃⊥).

(36)
Obviously the integral over the phase-space of a single particle yields little
else besides momentum conservation.

The quark-gluon state (35) must be orthogonal to the quark state of equation
(33) and it follows that

Ψqg→q(p
′, k → p) = −Ψ†

q→qg(p→ p′, k). (37)

In order to calculate Ψq→qg the matrix elements for ū(p′, s′)/ϵ∗(k, λ)u(p, s) are
needed. These can be calculated from explicit expressions for the spinors,
γ-matrices and polarization vectors and are also commonly found tabulated

in the literature. The matrix elements for
ūσ′ (p′)√

p′+
γµ uσ(p)√

p+
are listed in table 1.

With some algebra these can be reworked into

ūσ′(p′)/ϵ∗(k, λ)uσ(p) =
2ϵ∗⊥(λ) · (k⊥ − zp⊥)

z
√
1− z

(δσ,λ + δσ,−λ(1− z)) . (38)

In direct contrast with the Feynman diagram method, these matrix elements
contains explicit information on the helicity structure of the process. From
the δσσ′ ’s we see that the quark helicity cannot be flipped, and the reworked
matrix element (38) explicitly distinguishes between the cases where the
quark and gluon have same or opposite helicity.
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3.3 The differential cross section in terms of the tran-
sition amplitude

Following in the footsteps of Bjorken, Kogut and Soper [4], the differential
cross-section is

dσ =
1

2p+
d2p′⊥dp

′+

(2π)32p′+
d2k⊥dk

+

(2π)32k+
(2π)δ(p+ − p′+ − k+) |⟨q(p′)g(k)| T |q(p)⟩|2 ,

(39)
where the transition amplitude is defined by

⟨q(p′)g(k)|U(∞, 0)[F−1]U(0,−∞) |q(p)⟩
= (2π)δ(p+ − p′+ − k+) ⟨q(p′)g(k)| T |q(p)⟩ , (40)

and the operator F describing the interaction with the classical field is given
by

F = exp

(
−i

∫
dx+dx−dx⊥eQA+(x

+, 0, x⊥)ψ
†(0, x−, x⊥)ψ(0, x

−, x⊥)

)
.

(41)
We are interested in the particular case of scattering off a Coulomb potential

A0(x
+, 0, x⊥) =

1

4π

e√
z2 + x2⊥

=
1

4π

e√
1
2
(x+)2 + x2⊥

, (42)

or more specifically

A+(x
+, 0, x⊥) =

1√
2
A0(x

+, 0, x⊥) =
1√
2

1

4π

e√
z2 + x2⊥

=
1√
2

1

4π

e√
1
2
(x+)2 + x2⊥

. (43)

We must first evaluate the left-hand side of equation (40). We do this by
first plugging in the Fock state expansions (33) and (35)

⟨q(p′)g(k)|U(∞, 0)[F− 1]U(0,−∞) |q(p)⟩ = (⟨q(p′)g(k)|0

+

∫
dΩ2Ψ

†
qg→q(p

′, k → p̃) ⟨q(p̃)|0
)
[F− 1] (|q(p)⟩0

+

∫
dΩ1Ψq→qg(p→ p̃′, k̃)

∣∣∣q(p̃′)g(k̃)⟩
0

)
. (44)

Next we should study how the operator F acts on these Fock states.
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3.4 Action of the operator F on Fock states

The action of the operator F, defined in equation (41), on a Fock state turns
out to be simple. Since F is invariant under boosts in the x− direction, it
must commute with the momentum operator p+ [4]. Assuming that |0⟩ is
the only Fock state with zero momentum, we get

F |0⟩ = |0⟩ (45)

because 0 = Fp+ |0⟩ = p+ (F |0⟩) = p+ |0⟩.

Acting on the general Fock state |nq, ng⟩ of equation (28) we can transport
the operator F past all the creation operators until it it acts on the vacuum:

F |nq, ng⟩ = F

nq∏
i=0

a†(pi, si)

ng∏
j=0

b†(kj, λj) |0⟩

=

nq∏
i=0

[
Fa†(pi, si)F

−1
] ng∏
j=0

[
Fb†(kj, λj)F

−1
]
F |0⟩

=

nq∏
i=0

[
Fa†(pi, si)F

−1
] ng∏
j=0

[
Fb†(kj, λj)F

−1
]
|0⟩ . (46)

Next we need to evaluate Fa†(pi, si)F
−1 and Fb†(kj, λj)F

−1. Using the series
expansion of F and the anticommutator (31), we find that

Fψ†(0, x−, x⊥)F
−1 = ψ†(0, x−, x⊥)e

−ieQ
∫
dx+A+(x+,0,x⊥). (47)

Fourier transforming both sides of the equation and applying the convolution
theorem gives

Fa†(p+, p⊥; s)F
−1 =

∫
d2p̃⊥
(2π)2

a†(p+, p̃⊥; s)F (p̃⊥ − p⊥), (48)

where

F (p⊥) =

∫
d2x⊥e

−ip⊥·x⊥e−ieQ
∫
dx+A+(x+,0,x⊥). (49)

This is a transverse Fourier transformation of a Wilson line.

By similar means it is straightforward to see that the operator has no effect
on the gluon creation operator:

Fb†(k, λ, c)F−1 = b†(k, λ, c). (50)
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Applying equations (46), (48) and (50) to equation (44) can now tackle the
actual scattering. Explicitly:

F |q(p)⟩0 = Fa†(p) |0⟩ = Fa†(p)F−1 |0⟩ =
∫

d2p̃⊥
(2π)2

a†(p+, p̃⊥)F (p̃⊥ − p⊥) |0⟩

=

∫
d2p̃⊥
(2π)2

F (p̃⊥ − p⊥)
∣∣q(p+, p̃⊥)⟩ (51)

and

F |q(p′)g(k)⟩0 = Fa†(p′)F−1Fb†(k)F−1 |0⟩

=

∫
d2p̃⊥
(2π)2

a†(p′+, p̃⊥)F (p̃⊥ − p′⊥)b
†(k) |0⟩

=

∫
d2p̃⊥
(2π)2

F (p̃⊥ − p′⊥)
∣∣q(p′+, p̃⊥)g(k)⟩ . (52)

Applying our new insight to equation (44) we get

⟨q(p′)g(k)|U(∞, 0)[F− 1]U(0,−∞) |q(p)⟩

=

∫
dΩ1Ψq→qg(p→ p̃′, k̃) ⟨q(p′)g(k)|F

∣∣∣q(p̃′)g(k̃)⟩
0

−
∫

dΩ2Ψq→qg(p̃→ p′, k) ⟨q(p̃)|F |q(p)⟩0

−
∫

dΩ1Ψq→qg(p→ p̃′, k̃)
⟨
q(p′)g(k)

∣∣∣q(p̃′)g(k̃)⟩
0

+

∫
dΩ2Ψq→qg(p̃→ p′, k) ⟨q(p̃)|q(p)⟩0

=2p+(2π)δ(k+ + p′+ − p+)
[
F (p′⊥ − p⊥ + k⊥)− (2π)2δ2(p⊥ − k⊥ − p′⊥)

]
× [Ψq→qg(p→ (p− k), k)−Ψq→qg((p

′ + k) → p′, k)] . (53)

Referring back to equation (32), the wave functions with these particular
momenta as arguments are

Ψq→qg(p→ (p− k), k) = gū(p− k)/ϵ∗(k)(taij)u(p)
z(z − 1)

(zp⊥ − k⊥)2
(54)

and

Ψq→qg((p
′+ k) → p′, k) = gū(p′)/ϵ∗(k)(taij)u(p

′+ k)
z(z − 1)

(z(k⊥ + p′⊥)− k⊥)2
, (55)
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Figure 5: The two light-cone time orderings for the process at tree-
level. The light-cone time flows from left to right and the black dots
represent scatterings from the external field.

where we have used the on-shell condition (22), and the notation p′+ =
(1− z)p+, k+ = zp+.

The transition amplitude related to cross-sections as defined by equation (40)
is thus

⟨q(p′)g(k)| T |q(p)⟩ = 2p+
[
F (p′⊥ − p⊥ + k⊥)− (2π)2δ2(p⊥ − k⊥ − p′⊥)

]
× gz(z − 1)

[
ū(p− k)/ϵ∗(k)(taij)u(p)

(zp⊥ − k⊥)2
−
ū(p′)/ϵ∗(k)(taij)u(p

′ + k)

(z(k⊥ + p′⊥)− k⊥)2

]
. (56)

The terms in this expression can be visually represented as the diagrams in
figures 5a and 5b.

3.5 The perturbative expansion of the distribution F

To evaluate the cross-section perturbatively, we expand the distribution F :

F (p⊥) =

∫
d2x⊥e

−ip⊥·x⊥e−ieQ
∫
dx+A+(x+,0,x⊥)

≈
∫

d2x⊥e
−ip⊥·x⊥

(
1− ieQ

∫
dx+A+(x

+, 0, x⊥)

)
= (2π)2δ2(p⊥)− ieQ

∫
d2x⊥e

−ip⊥·x⊥

∫
dx+

1√
2

1

4π

e√
1
2
(x+)2 + x2⊥

.

(57)
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To calculate the integrals one needs to employ a couple of tricks. Firstly,
the integral as such is divergent and needs to be regularized. This is com-
monly done by introducing an exponentially damping factor e−λr, turning
the Coulomb potential into a Yukawa potential. This can be interpreted as
giving the photon a positive mass. The correct result is recovered by taking
the limit λ→ 0 after the integration.

Secondly, the transverse Fourier transformation can be a bit of a pain to
dive into straight away. It’s much easier to consider the full 3-dimensional
Fourier transformation and take one momentum component to zero at the
end, leading to the same result.

Armed with these little tricks one gets

− ie2Q

∫
d2x⊥dx

+e−ip⊥·x⊥
1√
2

1

4π

1√
1
2
(x+)2 + x2⊥

regularization−−−−−−−→ −ie2Q
√
2

4
√
2π

∫
d2x⊥dze

−ip·x e
−λ
√

z2+x2
⊥√

z2 + x2⊥

=
−ie2Q
4π

∞∫
0

dr

π∫
0

dϕ

2π∫
0

dθe−ipr cosϕ e
−λr

r
r2 sinϕ = −ie2Q 1

p2 + λ2

λ→0−−→ −ie2Q 1

p2
=

−ie2Q
p2⊥

. (58)

3.6 Final result for the differential cross section

Equation (56) now reads

⟨q(p′)g(k)| T |q(p)⟩ = −i2p+ e
2Q

q2⊥
gz(z − 1)

[
ū(p− k)/ϵ∗(k)(taij)u(p)

(zp⊥ − k⊥)2

−
ū(p′)/ϵ∗(k)(taij)u(p

′ + k)

(z(k⊥ + p′⊥)− k⊥)2

]
=

−2ie2Qgp+z(z − 1)

(p′⊥ + k⊥ − p⊥)2

[
ū(p− k)/ϵ∗(k)(taij)u(p)

(zp⊥ − k⊥)2
−
ū(p′)/ϵ∗(k)(taij)u(p

′ + k)

(z(k⊥ + p′⊥)− k⊥)2

]
=

−2ie2Q(taij)gp
+z(z − 1)

q2⊥

[
ū(p− k)/ϵ∗(k)u(p)

(zp⊥ − k⊥)2
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− ū(p+ q − k)/ϵ∗(k)u(p+ q)

(z(p⊥ + q⊥)− k⊥)2

]
, (59)

where q⊥ = p′⊥ − p⊥ + k⊥ is the transverse momentum transferred from the
external field. With the matrix elements from (38) this becomes

⟨q(p′)g(k)| T |q(p)⟩ =
−4ie2Q(taij)gp

+z(z − 1)

z
√
1− zq2⊥

δσ,σ′(δσ,λ + (1− z)δσ,−λ)

×
[
ϵ∗⊥(λ) · (k⊥ − zp⊥)

(zp⊥ − k⊥)2
− ϵ∗⊥(λ) · (k⊥ − z(p′⊥ + k⊥))

(z(k⊥ + p′⊥)− k⊥)2

]
=

4ie2Q(taij)gp
+
√
1− z

q2⊥
δσ,σ′(δσ,λ + (1− z)δσ,−λ)

[
ϵ∗⊥(λ) · (k⊥ − zp⊥)

(zp⊥ − k⊥)2

−ϵ
∗
⊥(λ) · (k⊥ − z(p′⊥ + k⊥))

(z(k⊥ + p′⊥)− k⊥)2

]
. (60)

We are free to choose the frame such that the incoming quark is moving
along the z-direction, i.e. it has zero transverse momentum p⊥ = 0. In this
frame the amplitude looks like

⟨q(p′)g(k)| T |q(p)⟩ =
4ie2Q(taij)gp

+
√
1− z

q2⊥
δσ,σ′(δσ,λ + (1− z)δσ,−λ)

×
[
ϵ∗⊥(λ) · k⊥

k2⊥
− ϵ∗⊥(λ) · (k⊥ − zq⊥)

(k⊥ − zq⊥)2

]
. (61)

We then have to square the amplitude and sum and average over the helicities
and colors of the final and initial state, respectively:

1

2

1

3

∑
σ,σ′,λ

| ⟨q(p′)g(k)| T |q(p)⟩ |2 = 1

2

1

3

∑
σ,σ′,λ

16e4g2Q2(p+)2(1− z)

q4⊥
(taij)(t

a
ij)

∗δσ,σ′

(δσ,λ + (1− z)2δσ,−λ)

[
ϵ∗⊥i(λ)ϵ⊥k(λ)k⊥ik⊥k

k4⊥
− ϵ∗⊥i(λ)ϵ⊥l(λ)k⊥i(k⊥ − zq⊥)l

k2⊥(k⊥ − zq⊥)2

−
ϵ∗⊥j(λ)ϵ⊥k(λ)(k⊥ − zq⊥)jk⊥k

k2⊥(k⊥ − zq⊥)2
+
ϵ∗⊥j(λ)ϵ⊥l(λ)(k⊥ − zq⊥)j(k⊥ − zq⊥)l

(k⊥ − zq⊥)4

]
.

(62)
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The color factor is, again, just (taij)(t
a
ij)

∗ = (taij)(t
a
ji) = Tr[tata] = 4. Using

this and the property (25) we get

1

2

1

3

∑
σ,σ′,λ

| ⟨q(p′)g(k)| T |q(p)⟩ |2 = 32e4g2Q2(p+)2(1− z)

3q4⊥
(1 + (1− z)2)

×
[
k2⊥
k4⊥

− 2k⊥ · (k⊥ − zq⊥)

k2⊥(k⊥ − zq⊥)2
+

(k⊥ − zq⊥)
2

(k⊥ − zq⊥)4

]
=

32e4g2Q2(p+)2(1− z)

3q4⊥
(1 + (1− z)2)

[
1

k2⊥
− 2k⊥ · (k⊥ − zq⊥)

k2⊥(k⊥ − zq⊥)2

+
1

(k⊥ − zq⊥)2

]
=

32e4g2Q2(p+)2(1− z)

3q4⊥
(1 + (1− z)2)

z2q2⊥
k2⊥(k⊥ − zq⊥)2

. (63)

The final result for the differential cross section (39) is thus

dσ =
1

2p+
d2p′⊥dp

′+

(2π)32p′+
d2k⊥dk

+

(2π)32k+
(2π)δ(p+ − p′+ − k+)

32e4g2Q2(p+)2(1− z)

3q4⊥

× (1 + (1− z)2)
z2q2⊥

k2⊥(k⊥ − zq⊥)2

=
16e4g2Q2

3

d2p′⊥dp
′+

(2π)32p′+
d2k⊥dk

+

(2π)32k+
(2π)

× δ(p+ − p′+ − k+)
z2(1− z)(1 + (1− z)2)p+

q2⊥k
2
⊥(k⊥ − zq⊥)2

. (64)

We see that this agrees with the result obtained in (19).

4 Scattering off a color charged target

The scattering with the external field was found to be simple with the quark
picking up an eikonal phase factor from the Wilson line. This approach is
also useful in describing scatterings from other kinds of targets. For example,
a dilute hadron scattering off a dense target can be described by substituting
the external field with a Color Glass Condensate, a semi-classical gluon field,
describing the small-x partons in the target [8, 9].
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Figure 6: The bremsstrahlung process with a Color Glass Condensate
target.

(a) (b) (c)

(d) (e)

Figure 7: Graphs contributing to the bremsstrahlung process with a
strongly interacting target.

A calculation with a color charged target will be complicated by the fact that
the external gluon can now also be emitted from the target or the virtual
gluon, leading to a larger number of graphs to be considered (see figure 7).
Note, however, that diagrams 7b and 7c are suppressed in the high energy
limit by the fermionic propagator from the target, for they bring in factors
of (zS)−1. In LCPT the remaining diagrams correspond to the (light-cone)
time-ordered diagrams of figure 8 with only the third diagram 8c notably
differing from the electromagnetic case in 5.

The non-Abelian nature of the gluon field also complicates the external scat-
tering. If the gluon is emitted before the interaction with the target, it will
also interact with the color field picking up an adjoint representation Wilson
line (contrast, for example, with equation (50)). Since each adjoint Wil-
son line can be represented as a product of two fundamental representation
Wilson lines, this leads to the presence of expectation values of products
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Figure 8: The leading order time-ordered diagrams for a quark-gluon
dipole scattering off a color field.

of up to six non-Abelian Wilson lines in the expression for the differential
cross-section [9].

Finally no exact, first principles based form for the small-x color field in
the target is known, so the standard procedure is to assume a Gaussian
distribution of color sources within the target. The gauge field and the
charge density are related by the two-dimensional Poisson equation. The
gauge field is thus related to the two-dimensional massless propagator, an IR
divergent quantity [9].

5 Concluding remarks

The results obtained in (19) and (64) are the same. This is perhaps not a
trivial observation given the differences in methods used and also the funda-
mentally different ways of describing the external field. We see that, at very
high energy, the target lepton looks just like a Coulomb field emitted by a
stationary point charge.

Calculating higher order corrections to the cross-section is straightforward.
The LCPT method allows for independent corrections in multiple areas of
the calculation. The Fock state decompositions (33) and (35) can include
more terms thus making the intermediate state scattering with the external
field more complex. The light-cone wave functions (32) can be evaluated to
higher orders giving a better description of each particular splitting ampli-
tude. Finally, the eikonal Wilson line in (49) describing the scattering with
the Coulomb field can be expanded beyond first order, giving the amplitudes
for multiple photon scatterings.
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As stated earlier, the light-cone method is at its best when calculating bound
states. We have demonstrated that it is also not only usable for the calcula-
tion of cross-sections, but that it also offers additional insight into the helicity
structure of the process, details easily lost when using the Lagrangian frame-
work. At the cost of more work, the actual physics of the process is perhaps
more apparent when using light-cone perturbation theory.

25



References

[1] Dirac, P. A. M. Forms of Relativistic Dynamics. Reviews of Modern
Physics Volume 21, Number 3, 1949.

[2] Brodsky, Stanley J., Pauli, Hans-Christian, Pinsky, Stephen S. Quan-
tum Chromodynamics and Other Field Theories on the Light Cone.
arXiv:hep-ph/9705477

[3] Kogut, John B. and Soper, Davison E. Quantum Electrodynamics in the
Infinite-Momentum Frame. Physical Review D Volume 1, Number 10,
1970.

[4] Bjorken, James D., Kogut, John B. and Soper, Davison E. Quantum
Electrodynamics at Infinite Momentum: Scattering from an External
Field. Physical Review D Volume 3, Number 6, 1971.

[5] Kovchegov, Yuri V. and Levin, Eugene Quantum Chromodynamics
at High Energy. Cambridge monographs on particle physics, nuclear
physics and cosmology, 2012.

[6] Pauli, Hans-Christian A Compendium of Light-Cone Quantization.
arXiv:hep-ph/0103106v1, 2001.

[7] Lepage, G. Peter and Brodsky, Stanley J. Exclusive processes in pertur-
bative quantum chromodynamics. Physical Review D Volume 22, Num-
ber 9, 1980.

[8] Iancu, Edmond, Venugopalan, Raju The Color Glass Condensate and
High Energy Scattering in QCD. arXiv:hep-ph/0303204

[9] Marquet, Cyrille Forward inclusive dijet production and azimuthal cor-
relations in pA collisions. Nucl.Phys.A796:41-60,2007 arXiv:0708.0231
[hep-ph]

26


	Introduction
	Calculation using normal Feynman rules
	The matrix element
	The high-energy limit
	The differential cross-section

	Light-cone perturbation theory calculation
	Basic concepts and notation
	Light-cone wave functions and the Fock state expansions of interacting states
	The differential cross section in terms of the transition amplitude
	Action of the operator F on Fock states
	The perturbative expansion of the distribution F
	Final result for the differential cross section

	Scattering off a color charged target
	Concluding remarks

