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Chapter 1

Introduction

One of the main goals of the research of ultrarelativistic heavy ion collisions
is to study the thermodynamics of the strongly interacting matter. The
fundamental constituents of the strongly interacting matter are quarks and
gluons, and the theory describing their interactions is Quantum Chromo-
dynamics (QCD). At low density and temperature the degrees of freedom
of the QCD matter are hadrons, bound states of quarks and gluons. Cur-
rently there are hundreds of known hadronic states [1]. When the density or
temperature increases, the transition from the hadronic state to the Quark-
Gluon Plasma (QGP), where the degrees of freedom are quarks and gluons,
is expected to happen [2].

Theoretically the most direct and rigorous information on the properties
of the QCD matter is obtained from numerical lattice simulations of QCD.
These simulations indicate that, at low baryon density, the transition from
the Hadron Resonance Gas (HRG) to the QGP happens at a temperature
150 − 190 MeV [3]. Experimentally the properties of matter can be best
accessed in ultrarelativistic heavy ion collisions [4]. In these collisions a
large number of particles is produced in a small space-time region, giving
rise to a large energy density. At high enough collision energies,

√
s & 20

GeV, the matter initially produced is expected to be in the form of QGP [5].
This state then cools down and the transition back to the HRG occurs. In
contrast to the lattice calculations, which provide information on the static
properties of the QCD matter, the system formed in a heavy ion collision is
a highly dynamical one. Therefore, a good phenomenological understanding
of the dynamics is required in order to extract the properties of the QCD
matter from the data provided by the heavy ion experiments.

In a microscopical approach the dynamics of the QCD matter is de-
scribed directly by calculating individual quark and gluon interactions [6, 7].
Although the high-energy interactions of quarks and gluons, e.g. in proton-
proton collisions, can be described directly by QCD, using perturbative tech-
niques (pQCD), these methods become unreliable at the thermal energies
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which need to be considered in heavy ion collisions. Especially, in the micro-
scopical modeling it is hard to correctly describe the transition from quarks
and gluons to the hadronic degrees of freedom when the QGP turns into the
HRG as the matter cools down.

A different view to the dynamics is provided by hydrodynamical mod-
els [8, 9, 10, 11]. In these models the treatment of the dynamics is not based
on individual particle interactions. Instead, the matter is described as a con-
tinuous fluid in or close to a local thermal equilibrium, and the dynamical
properties of the matter are given by its Equation of State (EoS). The expan-
sion dynamics can then be described in terms of differential equations, which
express the local conservation of energy and momentum. The hydrodynam-
ical approach is considerably simpler than the microscopical modeling, and
because it is based on the assumption of thermal equilibrium, it is directly
connected to the thermodynamical properties of the system. Therefore, it
can provide complementary information on the dynamics of the strongly
interacting matter.

The key input to the hydrodynamical models, besides the EoS, are the
initial energy and net-baryon densities. The initial state cannot be given by
the hydrodynamical models themselves, as the initial particle production in
nucleus-nucleus collisions is clearly a non-equilibrium process that cannot
be treated with an assumption of a thermal equilibrium alone. Therefore
the initial state must be obtained from somewhere else. One way to use
the hydrodynamical models is to fit the parametrization of the initial state
and the other model parameters to the available experimental data, and
in this way get constraints on the possible initial state [12, 13]. Another
possibility is to use an initial state which is calculated from either the QCD
theory or from a model extracted from the known properties of QCD [14, 15].
Once the calculations are made in a closed framework, then also controlled
predictions for higher collision energies can be made. This is the approach
used here.

The system formed in an ultrarelativistic heavy ion collision is strongly
expanding and has a finite size and lifetime. In the experiments at the Rel-
ativistic Heavy Ion Collider (RHIC) only O(1000) final state particles are
detected in the central rapidity unit. Obviously the system is still not a
macroscopic system with O(1023) particles. Therefore it is not clear to what
extent the assumption of the local thermal equilibrium holds. However,
currently there are several measured low-pT observables in nucleus-nucleus
collisions at RHIC [16, 17, 18, 19], that are consistent with the predictions
of the perfect-fluid (nonviscous) hydrodynamical models [20, 21, 22]. In
particular, the consistency of the measured elliptic flow with the hydrody-
namical calculations has been argued to point to fast thermalization [23]
and low viscosity [24] of the matter formed in these collisions. Recently,
also dissipative effects have been considered in the hydrodynamical calcula-
tions [25, 26, 27, 28, 29, 30, 31, 32]. These results also point towards a low
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viscosity of the QCD matter.
The heavy ion program at the Large Hadron Collider (LHC) at CERN

will provide an even better environment than RHIC to study the detailed
properties of the QCD matter. With the larger collision energy, the system
produced in Pb + Pb collisions at the LHC is expected to have clearly larger
initial energy density and temperature than at RHIC. Therefore, also the
lifetime of the QGP phase is expected to be significantly longer. With the
larger number of particles and the longer lifetime of the system, also the
use of the hydrodynamical models should be better justified at the LHC
than at RHIC. Hydrodynamical behavior at the LHC has been discussed in
Refs. [II, IV, 33, 34, 35, 36, 37, 38, 39, 40], using different initializations and
different estimates for the charged hadron multiplicity, which can be found
in Refs. [40, 41].

This thesis consists of four original research papers [I], [II], [III] and [IV],
and the introductory and summary part presented below. The hydrodynam-
ical equations and the EoS are presented in Chap. 2. The numerical method
which is used for solving the hydrodynamical equations, is introduced in
Chap. 3. The Cooper-Frye decoupling procedure, resonance decays and dif-
ferent decoupling conditions are discussed in Chap. 4. The initialization
of the hydrodynamical calculations using the EKRT model [14] is briefly
summarized in Chap. 5. The main results of this thesis regarding the hy-
drodynamical evolution, hadron spectra and elliptic flow at RHIC and the
LHC are discussed in Chaps. 6 and 7. Finally, conclusions and outlook are
given in Chap. 8.
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Chapter 2

Hydrodynamical models

In contrast to microscopical models (see e.g. Ref. [42]), where the dynamics
of a many-particle system is described through the detailed properties of
particle interactions, hydrodynamical models describe such a system as a
continuous fluid with properties given through a few macroscopic quantities
like the EoS and dissipative coefficients for viscosity and heat conductivity.
These parameters can in principle be derived from a given microscopical
theory of particle interactions. However, in a phenomenological approach
the parameters can also be inferred from experimental data. The main ad-
vantage of the hydrodynamical model is its simplicity: it is based on the
assumption that the system is close to thermodynamical equilibrium, thus
particle interactions need not to be explicitly specified. One of the main
goals in the heavy ion research is to gain information on the thermodynam-
ical properties of the QCD matter. In thermal equilibrium the properties of
the matter are given by its EoS, which is a direct input to the hydrodynam-
ical model. In this sense hydrodynamics is a natural framework to study
thermodynamics of a dynamical system.

The basic equations describing the hydrodynamical evolution are the
local conservation laws of energy and momentum, together with the conser-
vation laws of additional conserved quantities like the net-baryon number.
The state of the matter is given by the energy-momentum tensor T µν , which
is a symmetric 4× 4 tensor, and the charge currents jµ

i . In the general case
T µν has 10 and each jµ

i 4 independent components. Local conservation laws
in the covariant form are given by [43]

∂µT µν = 0, (2.1)

∂µjµ
i = 0. (2.2)

If the conserved charges are restricted to the net-baryon number, we have
5 equations for 14 independent quantities. Obviously the system has to be
restricted further in order to get a closed set of equations. One possibility
to obtain more insight on the structure of T µν and jµ

B is to make a tensor
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decomposition with respect to an arbitrary time-like 4-vector uµ, normalized
as u2 = 1. For this purpose we define a projection operator ∆µν with the
following properties:

∆µν = gµν − uµuν , ∆µνuµ = 0, ∆µα∆ ν
α = ∆µν , (2.3)

where the metric tensor is given by gµν = diag(1,−1,−1,−1). The decom-
position of the net-baryon current reads then [44]

jµ
B = nBuµ + νµ, (2.4)

where
nB = uµjµ

B . (2.5)

The component orthogonal to uµ is given by

νµ = ∆µνjB,ν . (2.6)

Similarly, the tensor T µν can be decomposed as

T µν = ǫ uµuν − p ∆µν + qµuν + qνuµ + πµν , (2.7)

where

ǫ = uµT µνuν , (2.8)

p = −1

3
∆µνT µν , (2.9)

qµ = ∆µαTαβuβ, (2.10)

πµν =

[

1

2

(

∆µ
α∆ν

β + ∆µ
β∆ν

α

)

− 1

3
∆µν∆αβ

]

Tαβ. (2.11)

The physical interpretation of the different terms can be obtained by
choosing uµ to be the fluid 4-velocity. With this choice, two mechanisms for
the transport of the energy, momentum and baryon number can be identified:
convection, transport parallel to uµ and diffusion, transport orthogonal to
uµ. The frame where uµ = γ(1,v) = (1,0), where γ is the Lorentz gamma
factor, is called the local rest frame (LRF). The energy and net-baryon
densities in the LRF are given by ε and nB, respectively. The term νµ

describes the diffusion of the net-baryon number orthogonal to the fluid
velocity. Similarly, qµ describes the diffusion of energy and πµν the diffusion
of momentum. These two terms are related to the heat conductivity and the
viscosity of the system. The isotropic momentum transfer rate is given by
p. In thermal equilibrium p coincides with the thermodynamical pressure,
and it is usually called isotropic pressure even if the system is not in thermal
equilibrium.

In a general case the fluid velocity is not unique, but it can be associated
with, e.g. any conserved charge in the system. For the systems discussed
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here, the conserved quantities are the net-baryon number, energy and mo-
mentum. Different choices lead to different fluid velocities. If uµ is defined
as

uµ =
jµ
B√

jB · jB
, (2.12)

the fluid velocity is chosen in the direction of the total flux of the net-
baryon number. With this choice there is, by definition, no net baryon flux
orthogonal to uµ and νµ = 0. Another choice would be to choose uµ in the
direction of the energy flux, which would lead to vanishing heat conduction,
i.e. to qµ = 0.

In the kinetic theory the energy-momentum tensor can be written as a
function of a single-particle momentum distribution function f(x, p) [45]:

T µν(x) =

∫

d3p

p0
pµpνf(x, p). (2.13)

An assumption that greatly simplifies the form of the energy-momentum
tensor is that of local thermal equilibrium, i.e. f(x, p) is given by the Bose-
Einstein or Fermi-Dirac distribution functions:

f(p) =
1

(2π)3
1

e(p·u−µ)/T ± 1
. (2.14)

For this choice the x-dependence in T µν is through the flow velocity uµ(x),
the temperature T (x) and the chemical potential µ(x). Thus the energy-
momentum tensor can only be of the form

T µν(x) = A(x)uµ(x)uν(x) + B(x)∆µν(x), (2.15)

where the coefficients A(x) and B(x) can depend only on scalar quantities.
In particular, the energy-momentum tensor does not depend on the gradients
of the hydrodynamical variables. Comparing this form with the general
decomposition, Eq. (2.7), we see that in local thermal equilibrium T µν is
given by

T µν(x) = [ε(x) + p(x)] uµ(x)uν(x) − p(x)gµν , (2.16)

where ε is the local energy density and p is the pressure given by Eq. (2.9). In
thermal equilibrium the kinetic pressure coincides with the thermodynamic
pressure and is given by the EoS. With the same assumptions the form of
the net-baryon current is

jµ
B(x) = nB(x)uµ(x), (2.17)

where nB(x) is the local net-baryon density. The theory described by the
conservation laws with energy-momentum tensor of the form (2.16) and the
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conserved current of the form (2.17) is called perfect-fluid hydrodynamics.
From Eq. (2.16) it can be shown that the fluid velocity is given by

vi =
T 0i

T 00 + p
. (2.18)

Therefore the choice of the flow velocity in the perfect-fluid hydrodynamics
is unique. The perfect-fluid hydrodynamics is nondissipative, i.e. there is
no heat conductivity, viscosity or baryon diffusion. In thermal equilibrium
the entropy density s is given by

s =
ε + p − µBnB

T
, (2.19)

where µB is the baryon chemical potential. In nondissipative hydrodynamics
there is no entropy production, i.e. the entropy is conserved:

∂µ(suµ) = 0. (2.20)

The conservation law of the entropy is not an additional equation to be
solved, but a direct consequence of the assumption of local thermal equilib-
rium and of the conservation laws (2.1) and (2.2).

In relativistic hydrodynamics the energy density and the net-baryon den-
sity are frame dependent. In the perfect-fluid hydrodynamics, the connec-
tion between the tensor components T 0µ in an arbitrary frame and the
energy density in the LRF is given by

ε = T 00 −
∑

i

(

T 0i
)2 1

T 00 + p(ε, nB)
, (2.21)

and the connection between j0
B and nB is simply

nB = j0
B/γ. (2.22)

Even if the system is not in local thermal equilibrium, but close to it,
thermal quantities are still useful. In that case the function f(x, p) can de-
pend also on gradients of hydrodynamical variables (see e.g. [44]) and T µν

would not be given by the form (2.16) anymore, but also other terms in
the decompositions (2.4) and (2.7) would be nonzero. Thus T µν would have
more independent variables and additional relations would be needed to
close the system. This procedure leads to dissipative hydrodynamics, i.e. a
relativistic generalization of the Navier-Stokes equations [43, 46, 47, 48, 49].
For dissipative hydrodynamics, entropy would be increasing during the evo-
lution, and Eq. (2.20) would not hold, anymore. These equations, however,
are not discussed further in this work, but we always assume perfect-fluid
hydrodynamics.

Thus, we are left with 5 equations and 6 unknowns. Therefore, an EoS
in the form p = p(ε, nB) is enough to close the system. Once the initial state
is given, the hydrodynamical equations (2.1) and (2.2) can be solved.
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2.1 Perfect-fluid hydrodynamics

The conservation laws (2.1) and (2.2) can be written in the perfect-fluid
hydrodynamics in Cartesian coordinates as:

∂tT
tt = −∂x(ṽxT tt) − ∂y(ṽyT

tt) − ∂z(ṽzT
tt),

∂tT
tx = −∂x(vxT tx) − ∂y(vyT

tx) − ∂z(vzT
tx) − ∂xp,

∂tT
ty = −∂x(vxT ty) − ∂y(vyT

ty) − ∂z(vzT
ty) − ∂yp,

∂tT
tz = −∂x(vxT tz) − ∂y(vyT

tz) − ∂z(vzT
tz) − ∂zp,

∂tj
t = −∂x(vxjt) − ∂y(vyj

t) − ∂z(vzj
t),

(2.23)

where the velocity ṽi, appearing in the first equation, is defined as

ṽi =
T ti

T tt
. (2.24)

In the other four equations the velocity vi is given by Eq. (2.18). In ultra-
relativistic heavy ion collisions the system forms in a state of a very strong
longitudinal expansion. For such systems more convenient coordinates are
the light-cone coordinates, defined as

τ =
√

t2 − z2, (2.25)

η =
1

2
ln

(

t + z

t − z

)

, (2.26)

where τ is the longitudinal proper time and η is the space-time rapidity. The
longitudinal proper time is the time in the coordinate system that starts at
(z = 0, t = 0) with a constant velocity vz and reaches the point z at time t,
i.e. moves with a velocity vz = z

t . In this coordinate system the conservation
laws take the form [50]:

∂τT ττ = −∂x(ṽxT ττ ) − ∂y(ṽyT
ττ ) − ∂η(ṽηT

ττ ) − 1

τ
T ττ − τvηṽηT

ττ − 1

τ
p,

∂τT
τx = −∂x(vxT τx) − ∂y(vyT

τx) − ∂η(vηT
τx) − 1

τ
T τx − ∂xp,

∂τT
τy = −∂x(vxT τy) − ∂y(vyT

τy) − ∂η(vηT
τy) − 1

τ
T τy − ∂yp,

∂τT
τη = −∂x(vxT τη) − ∂y(vyT

τη) − ∂η(vηT
τη) − 3

τ
T τη − 1

τ2
∂ηp,

∂τ jτ = −∂x(vxjτ ) − ∂y(vyj
τ ) − ∂η(vηj

τ ) − 1

τ
jτ .

(2.27)

The equations can be further simplified by assuming boost invariance [9]
along the z-direction with a longitudinal flow velocity vz = z/t, which cor-
responds to vη = 0. With this choice, all hydrodynamical variables become
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independent of η and the conservation laws are [23]:

∂τT ττ = −∂x(ṽxT ττ ) − ∂y(ṽyT
ττ ) − 1

τ
(T ττ + p) ,

∂τT
τx = −∂x(vxT τx) − ∂y(vyT

τx) − 1

τ
T τx − ∂xp,

∂τT
τy = −∂x(vxT τy) − ∂y(vyT

τy) − 1

τ
T τy − ∂yp,

∂τ jτ = −∂x(vxjτ ) − ∂y(vyj
τ ) − 1

τ
jτ .

(2.28)

In this approximation the original (3+1)-dimensional problem reduces to a
(2+1)-dimensional one. A drawback of the simplification is that the model
cannot work very far from η ∼ 0, i.e. in the region where contributions
from the longitudinal boundary of the system are expected to be signifi-
cant. Formally the approximation of boost invariance corresponds to an
infinite-energy collision, where the system is produced at (t, z) = (0, 0) and
longitudinal flow velocity approaches the speed of light when the light-cone
is approached. Obviously this cannot be exactly true in a realistic heavy ion
collision, but can be considered to be a good approximation near η ∼ 0 in
nuclear collisions at RHIC and the LHC [51, 52].

Central (impact parameter b = 0) collisions are symmetric w.r.t. the
azimuthal angle φ. For these collisions, it is convenient to write the hydro-
dynamic equations in cylindrical coordinates

x = r cos φ, (2.29)

y = r sin φ. (2.30)

In the symmetric case, the equations become independent of φ, and the
conservation laws can be written in the following (1+1)-dimensional form
[53, 54]:

∂τT
ττ = −∂r(ṽrT

ττ ) − 1

r
T τr − 1

τ
(T ττ + p) ,

∂τT
τr = −∂r(vrT

τr) − 1

r
T τr − 1

τ
T τr − ∂rp,

∂τ j
τ = −∂r(vrj

τ ) − 1

r
jτ − 1

τ
jτ .

(2.31)

The hydrodynamical models we consider in this work are given by Eqs. (2.28)
and (2.31). As mentioned above, to close the system of equations, an EoS
has to be given.

2.2 Equation of State

In the perfect-fluid hydrodynamics all microscopic properties of the matter
are embedded into the EoS. At low temperatures, the QCD excitations are
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hadrons and at high temperatures quarks and gluons. The transition tem-
perature Tc from Hadron Resonance Gas (HRG) to Quark-Gluon Plasma
(QGP) is obtained from the lattice-QCD calculations and is in the range
Tc ∼ 150 − 190 MeV at µB = 0 [3]. In this work a phenomenological
EoS [12], described below, is used.

2.2.1 Thermodynamics

In statistical physics all thermodynamical quantities are derived from the
partition function. A convenient framework for this is the grand canonical
ensemble, where the external restrictions are given by the temperature T ,
volume V and chemical potential µ. The grand canonical partition function
ZG is defined as

ZG =
∑

{Nr}

exp β(µN − ENr), (2.32)

where β = 1/T . The sum is taken over all possible microstates {Nr} of the
system, where N is the number of particles in the microstate r and ENr is
the energy of the microstate. The partition function gives the probability
p{Nr} of the microstate when temperature, volume and chemical potentials
are fixed,

p{Nr} =
1

ZG
exp [β(µN − ENr)] . (2.33)

The grand canonical potential is defined as

ΩG(T, V, µ) = −T lnZG. (2.34)

All thermodynamic quantities can be calculated once ΩG(T, V, µ) or ZG is
known. From the thermodynamical identities one obtains

ΩG(T, V, µ) = −pV, (2.35)

i.e. if the pressure of the system is known as a function of T , V and µ, the
complete thermodynamics of the system is known.

With the generalization to several chemical potentials, entropy density s,
pressure p and particle densities ni can be obtained by partial differentiation
of the partition function:

s =
1

V

∂T lnZG

∂T
, (2.36)

p = T
∂ lnZG

∂V
, (2.37)

ni =
T

V

∂ lnZG

∂µi
. (2.38)

Another useful identity is

s =
ε + p −∑i µini

T
, (2.39)
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where ε is the energy density.
For a mixture of noninteracting particles the logarithm of the partition

function can be written as a sum of logarithms of the single-particle partition
functions:

lnZG =
∑

i

lnZi, (2.40)

where Zi is the partition function of particle type i. For noninteracting
fermions and bosons the logarithm of the single-particle partition function
can be calculated from the definition (2.32), by replacing the sum with an

integral,
∑

Nr →∑

N

∫ d3p

(2π)3
. This gives the well-known result

lnZi =
giV

T

∫

d3p

(2π)3
1

eβ(Ei−µi) ± 1
, (2.41)

where gi is the degeneracy factor and µi the chemical potential of the par-

ticle. The energy of the particle is Ei =
√

p2 + m2
i , when the interactions

between the particles can be neglected. The plus sign is for fermions and
the minus sign for bosons. From the above results we obtain:

p(T, {µi}) =
∑

i

gi

∫

d3p

(2π)3
p2

3Ei

1

eβ(Ei−µi) ± 1
, (2.42)

n(T, {µi}) =
∑

i

gi

∫

d3p

(2π)3
1

eβ(Ei−µi) ± 1
, (2.43)

ε(T, {µi}) =
∑

i

gi

∫

d3p

(2π)3
Ei

eβ(Ei−µi) ± 1
, (2.44)

where the sums are over all particle species included in the EoS.
In this work, we consider two charges, net-baryon number and strangeness,

which both are conserved in strong interactions. Strangeness is not con-
served in weak interactions, but since the lifetimes of the systems formed in
heavy ion collisions are short compared with typical weak-interaction reac-
tion times, strangeness can also be taken as a conserved charge. Since both
charges are now conserved in particle reactions, the chemical potential of
particle i can be written as

µi = BiµB + SiµS, (2.45)

where Bi is the baryon number and Si the strangeness of the particle i.
Because the strangeness of colliding nuclei is zero and there is not enough
time to create strangeness through weak interactions during the evolution,
the net-strangeness can be assumed to be zero during the whole evolution.
The strangeness chemical potential is obtained by requiring net-strangeness
to be zero also locally, i.e. the net-strangeness density nS = 0. Due to this
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condition µS becomes a function of T and µB and is not an independent
variable anymore. The net-baryon density can be written as a function of
T and chemical potentials as

nB(T, {µi}) =
∑

i

Bigi

∫

d3p

(2π)3
1

eβ(E−µi) ± 1
, (2.46)

where the sum is over all particle species and µi is given by Eq. (2.45).
For massless particles the integrals (2.42), (2.44) and (2.46) can be car-

ried out analytically, with the results

pq + pq̄ = gq

(

7π2

360
T 4 +

1

12
µ2

qT
2 +

1

24π2
µ4

q

)

,

pg = gg
π2

90
T 4,

ε = 3
∑

q,q̄

(pq + pq̄) + 3pg,

nB =
∑

q

(

1

3
µqT

2 +
1

3π2
µ3

q

)

,

(2.47)

where the subscript q stands for quarks (fermions) and g for gluons (bosons).
The chemical potential of u and d quarks is

µu,d =
1

3
µB , (2.48)

and the chemical potential of the s quark is zero, because of the strangeness
neutrality.

The QGP phase is described by a simple Bag model [55]

p = pth − B, (2.49)

ε = εth + B, (2.50)

where the Bag constant B describes the vacuum energy density and pth

and εth are given by Eqs. (2.47). The Bag constant makes sure that the
QGP phase is the stable phase at high temperatures. Adding all degrees of
freedom, i.e. 8 colors for gluons and 3 colors and Nf flavors of quarks, with
2 spin states for each particle, the EoS for the QGP can be written as

p =
(32 + 21Nf )π2

180
T 4 +

1

9
µ2

BT 2 +
1

192π2
µ4

B − B, (2.51)

ε = 3p + 4B, (2.52)

nB =
2

9
µBT 2 +

2

81π2
µ3

B . (2.53)
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For massive particles the integrals (2.42), (2.44) and (2.46) cannot be
carried out analytically, but if µi < mi they can be written as a series of
Bessel functions. For a hadron resonance gas (HRG) this gives

p =
∑

i

gi

2π2
m2

i T
2

∞
∑

n=1

(∓1)n+1

n2
enµi/T K2(n

mi

T
), (2.54)

ε = 3p +
∑

i

gi

2π2
m3

i T
∞
∑

n=1

(∓1)n+1

n
enµi/T K1(n

mi

T
), (2.55)

nB =
∑

i

Bigi

2π2
m2

i T

∞
∑

n=1

(∓1)n+1

n
enµi/T K2(n

mi

T
), (2.56)

where the sums are over all hadronic states included in the EoS. The minus
sign is for fermions and the plus sign for bosons. Numerically these series
are a much faster way to calculate the integrals than the direct numerical
integration.

The natural variables in hydrodynamics are the energy density and the
net-baryon density rather than the temperature and the chemical potentials.
Therefore a convenient form of the EoS is given by

p = p (ε, nB),

T = T (ε, nB),

µB = µB(ε, nB),

µS = µS(ε, nB).

(2.57)

To obtain this form of the EoS, the expressions (2.51)-(2.56) need to be
inverted numerically.

2.2.2 Hadron resonance gas

The equation of state for the HRG as a function of ε and nB is obtained by
solving numerically T , µB and µS from the following group of equations

ε = ε(T, µB , µS),

nB = nB(T, µB , µS),

nS = nS(T, µB , µS) = 0,

(2.58)

where ε is given by Eq. (2.55) and nB by Eq. (2.56). The strangeness density
is calculated in the same way as nB , but replacing the baryon number Bi

with the strangeness Si of the particle. The HRG considered here and in
the papers [I, II, III, IV] includes all hadronic states listed by the Particle
Data Group [56] up to the mass 2 GeV. Although the HRG is described
as a noninteracting gas of hadrons, the main part of attractive interactions
can be thought to be taken into account by the inclusion, in addition to
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Figure 2.1: The number density of pions (π±, π0), kaons (K±, K0, K
0

), nucleons
(p, p̄, n, n̄) and of all hadrons in the HRG as a function of temperature. The HRG
here includes all hadronic states with m < 2 GeV.

the stable hadrons, also of all short-living hadronic resonance states. In
Ref. [57] it has been shown that the pressure and the energy density of the
interacting pion gas can be well described by the noninteracting pion plus ρ
meson gas. Also the lattice QCD results below the critical temperature can
be interpreted in terms of a hadron resonance gas [58]. Based on this, hadron
plus hadron resonance gas can be thought to give a simple description of
the strongly interacting gas of stable hadrons, where stable hadrons include
weakly decaying hadrons.

The number of hadronic states increases rapidly with increasing mass:
there are only 20 hadronic states up to protons and neutrons (m ∼ 940
MeV), but the total number of hadronic states, with mass ≤ 2 GeV, included
into the HRG is over 300. The density of hadrons is strongly increasing with
increasing temperature, as can be seen in Fig. 2.1, which shows the pion,
kaon and nucleon density together with the total hadron density as a func-
tion of temperature. The density of heavier particles increases faster than
that of pions. Therefore the relative contribution from the heavy states in-
creases strongly with temperature. The relative abundances of pions kaons
and nucleons are plotted in Fig. 2.2. At the temperatures T . 140 MeV
the lightest hadron, the pion, is clearly the dominant component, but as the
temperature increases the heavier states become more important. In con-
trast to the pions, none of the heavier hadrons ever become clearly dominant.
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Figure 2.2: Relative abundance of pions, kaons and nucleons in the HRG as a
function of temperature. The uppermost curve shows the relative abundance of all
hadrons with mass less than or equal to the nucleon mass.

Even the second lightest hadrons, the kaons, contribute at most ∼ 15% and
nucleons never more than ∼ 4% to the total density. Figure 2.2 also shows
the total number density of hadron states from pions to nucleons relative
to the density of all hadrons. These hadrons dominate the HRG up to a
temperature T ∼ 200 MeV, but at temperatures & 150 MeV the heavier
states do still have a significant contribution to the total hadron density.

Another illustrative quantity is the number of hadrons per unit entropy.
Since the entropy is conserved in the perfect-fluid hydrodynamics, a con-
stant nh/s would indicate a conserved number of hadrons for the hadron
species h. Figure 2.3 shows these ratios for different hadrons in the HRG.
Hydrodynamical evolution in heavy ion collisions starts from high tempera-
tures and during the evolution the matter expands and temperature drops.
Changes in the ratios indicate that to keep the system in thermodynamical
equilibrium, there must be fast enough particle-number-changing reactions.
From the figure we can see that the equilibrium number of light particles,
pions and kaons, increases during the evolution, while e.g. the number of
nucleons decreases below T ∼ 200 MeV. The total number of hadrons heav-
ier than the nucleons decreases even faster. Thus, in this construction heavy
particles annihilate and decay during the evolution and the energy from the
heavy states is fed down to the light hadrons, pions and kaons. The number
of kaons starts to drop and pions begin to dominate the density of the HRG
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Figure 2.3: Number of particles per unit entropy n/s in the HRG as a function of
temperature. Also n/s for pions in the HRG and pion gas are shown.

at T ∼ 140 MeV. Eventually at very low temperatures also the number of
pions starts to drop due to the pion mass. The total number of hadrons
is more insensitive to the temperature, but it is nevertheless changing by
∼ 50 % from T ∼ 200 MeV to T ∼ 100 MeV. In the construction of the
HRG, full kinetic and chemical equilibrium was assumed, i.e. the only con-
served charges were the baryon and strangeness numbers. The changes in
the chemical composition of the HRG described above are specific to the
choice of particle states included in the HRG and to the assumption of full
kinetic and chemical equilibrium. For example in the expanding gas con-
sisting only of pions, the number of pions is decreasing at all temperatures,
as can be seen from the uppermost curve in Fig. 2.3.

The hadronic system formed in heavy ion collisions has both a finite size
and a finite lifetime, and many hadronic reactions have time scales compa-
rable to the lifetime of the system. It is not at all clear that the reactions
can maintain thermodynamic equilibrium in the finite, rapidly expanding
system. There are several reasons why non-equilibrium effects can be con-
sidered to be important. Obviously the hydrodynamical evolution has to
end eventually when the system becomes so dilute that its hadrons cannot
interact anymore. Typically, in the hydrodynamical models, this break-up
happens when T = 100 − 150 MeV. Since the cross-sections for particle-
number changing reactions are typically smaller than the cross-sections for
the elastic scatterings, the chemical composition of the HRG is expected
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to freeze even before the hydrodynamical evolution ends [59, 60]. Also the
interaction rates are different for different types of hadrons, and correspond-
ingly the deviations from equilibrium can be expected to be different for each
hadron type. A detailed treatment of the reactions in the HRG would require
an EoS that depends not only on the temperature and baryon number, but
also on the off-equilibrium chemical abundances of different hadrons. The
EoS should then be solved simultaneously with the hydrodynamical equa-
tions. An EoS with the separate chemical and kinetic freeze-outs has been
used in Refs. [61, 62, 63]. The chemical reactions in the HRG, within the
hydrodynamical framework have been studied in Ref. [64]. However, the
EoS does not depend dynamically on the chemical composition of the HRG
in that work.

The final decoupling of the thermal system to free hadrons clearly in-
volves non-equilibrium processes, and thus it cannot be consistently treated
within the equilibrium framework. Typically, the freeze-out is modelled as
an instantaneous transition from a thermal system to free hadrons, such
that the hadrons maintain their momentum distributions which they had
just before the transition. Fully microscopic treatment of the HRG dynam-
ics, such as in the hydro + hadron cascade models [65, 66, 67, 68, 69], have
the advantage that the freeze-out can be modelled consistently. These mod-
els are, however, much more complex than the thermal treatment presented
here, and require a detailed knowledge of the hadronic reactions, many of
which are poorly known. Also, at the moment, these models include only
2-particle scatterings. From Fig. 2.1 we see that the density of the HRG
is ∼ 1 fm−3 at T ∼ 200 MeV, and at such high densities the hadrons are
already overlapping with each other, and multiparticle interactions become
significant. The maximum density of the HRG depends, obviously, on the
transition temperature to the QGP. Especially if this temperature is very
high, thermal modelling will be useful as a complementary tool for the HRG
dynamics, even if the microscopical models are available. Thermal mod-
els give also the full-equilibrium baseline results, with which the effects of
different non-equilibrium processes can be compared.

2.2.3 QCD Equation of state

A complete EoS for the strongly interacting matter is obtained here by
combining the HRG EoS, given by Eqs. (2.58), and the QGP EoS, given
by Eqs. (2.51), (2.52) and (2.53), by using the Maxwell construction. From
Eq. (2.35) one sees that a thermodynamical equilibrium state is the one with
the highest pressure. Coexistence of two different phases at the temperature
T and the chemical potential µB requires the pressures in both phases to be
the same,

pHRG(Tc, µB) = pQGP(Tc, µB). (2.59)

18



0.00

5.00

10.00

15.00

20.00

25.00

 50  100  150  200  250

s/
T

3 , 3
p/

T
4  (

µ B
 =

 0
)

T [MeV]

3p/T4

s/T3 

Figure 2.4: Pressure and entropy density as a function of temperature in the Bag
model QGP + HRG EoS constructed here.

The phase transition temperature Tc(µB) is obtained from the phase coexis-
tence condition. The value of Tc obviously depends on the choice of the Bag
constant B in the QGP EoS. The Bag constant is chosen such that Tc is con-
sistent with the lattice QCD results, at µB = 0. In this work Tc = 165 MeV
is used in all calculations. This procedure leads always to first order phase
transition. Although the lattice QCD simulations suggest the transition to
be a smooth cross-over at vanishing net-baryon number, the difference in
hydrodynamics between the EoS here, with a first order phase transition,
and a smooth but rapid cross-over such as in Ref. [70] is not very large.
Indeed, the order of the phase transition has been shown to have only small
effects on the transverse momentum spectra of hadrons and the elliptic flow
of pions in the hydrodynamical model [71], especially when the decoupling
temperature is kept as a free parameter. For quantities that are more sen-
sitive to the detailed space-time evolution of the matter, a more detailed
EoS should be considered. Actually a first order phase transition proceeds
through nucleation and phase separation, but no macroscopic phase sepa-
ration is present in the construction used here. This would require, e.g. a
spinodal decomposition of the mixed phase [72]. In the construction used
here, all hydrodynamical Fourier modes are either propagating or static,
i.e. there are no exponentially growing unstable modes.

The resulting entropy density and pressure, as a function of temperature
at µB = 0, are shown in Fig. 2.4, scaled by the powers of temperature as
indicated in the figure. The phase transition is visible as a discontinuity in
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Figure 2.5: Pressure and temperature as a function of energy density in the Bag
model QGP + HRG EoS.

the derivative of the pressure curve and as a sudden jump in the entropy
density at Tc. The discontinuity in the entropy density indicates a sudden
increase in the number of degrees of freedom in the matter. Although there
are ∼ 300 different hadronic states in the HRG, the effective number of
degrees of freedom in the QGP is still considerably higher. Most of the
hadronic states are strongly suppressed at these temperatures due to their
large mass. In Fig. 2.5 the pressure and the temperature are shown as a
function of the energy density at µB = 0. The phase transition is seen as
the constant pressure and temperature region. The latent heat of the tran-
sition can be read off from the figure as the width of the constant pressure
(or temperature) region. In the hydrodynamical simulations collective flow
is generated by the pressure gradients. Therefore the region of constant
pressure, or slowly varying pressure in the case of a rapid cross-over transi-
tion, will have important effects on the hydrodynamical simulations, e.g. in
suppressing the elliptic flow.

To solve the hydrodynamical equations, only the pressure as a function
of the energy and baryon density is needed. One does not need to know the
temperature or the degrees of freedom in the system. Thus it is not necessary
to have a complete EoS in order to get information on the hydrodynamical
behavior of the system. However, the treatment of the freeze-out requires
knowledge about the degrees of freedom and for that information also the
temperature and the chemical potentials are needed.

Although the model for the EoS considered here has several simplifi-
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cations, it still catches the main properties of the QCD EoS: The correct
degrees of freedom at low temperatures and QGP phase at the high temper-
atures, with the square of the speed of sound approaching c2

s = 1/3 when T
increases. Also the Bag constant is chosen to be compatible with the critical
temperature given by the lattice QCD simulations. These requirements are
already restricting the EoS significantly.
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Chapter 3

Numerical methods in

hydrodynamics

Solving the hydrodynamical equations is a subject of its own and the calcu-
lational methods are still under active development. The method for solving
Eqs. (2.28) and (2.31) which is used in this work, is introduced in this chap-
ter. This method is called FCT–SHASTA [73, 74], where FCT stands for
Flux Corrected Transport and SHASTA corresponds to SHArp and Smooth
Transport Algorithm. The applicability of the method in the modeling of
ultrarelativistic heavy ion collisions has been studied in Refs. [75, 76].

Typically a high-order accuracy in discretizing the transport equations
is required to describe the evolution of hydrodynamic variables correctly.
However, in the presence of large gradients, such as shock waves, high-order
schemes can lead to strong dispersion of different Fourier modes, which in
turn can cause unphysical ripples in the numerical solution and eventually
invalidate the whole solution. On the other hand, this dispersion is not
present in low-order schemes, but instead strong numerical diffusion can
smooth out all structures from the solution and as such low-order schemes
are not appropriate methods to be used for finding the solution in the whole
space-time region. In the SHASTA algorithm this is solved by using a high-
order method as long as it is not introducing any additional structures com-
pared to the low-order method. When these structures tend to form, a
combination of the low- and the high-order schemes is used in such a way
that new structures will not form. In practice the low-order scheme is con-
structed in such a way that the explicit form of the numerical diffusion can
be identified. High-order accuracy is then achieved by removing numerical
diffusion from the low-order solution as much as possible, without forming
new structures. The explicit form of this procedure for one and two spatial
dimensions is given below.
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3.1 SHASTA in one dimension

The SHASTA algorithm belongs to the class of finite-volume algorithms,
where spatial derivatives are not discretized directly, but the solution is
based on an explicit convection of the physical quantity from one cell to
another. These kinds of methods explicitly conserve the quantities whose
time evolution we wish to solve. The differential form of the conservation
equation for a quantity ρ in one spatial dimension is given by

∂tρ(x, t) + ∂x (vxρ(x, t)) = C, (3.1)

where vx is the local flow velocity of ρ and C includes possible source terms.
When C = 0 this equation expresses the local conservation of the quantity

R =

∫

V
dxρ(x, t). (3.2)

The integral form of the same conservation law for a cell with a volume V
and a boundary S is given by

d

dt

∫

V
ρdV +

∫

S
n̂ · FdS =

∫

V
CdV, (3.3)

where n̂ is the unit normal vector of the surface S and F is the flux density
of the quantity R through the surface.

In the finite-volume approach, the space is divided into discrete cells
where density and other variables are known at the node points, typically
at the center of the cell. The SHASTA algorithm is divided into a transport
part and a flux correction part. In the first stage of the transport part the
originally piecewise constant distribution of the matter is approximated by
piecewise linear distribution, as shown in Fig. 3.1. After this, each node
point is moved by an amount vi∆t, where vi is the velocity of the matter at
the node point (see Fig. 3.2). Between the node points the density is scaled
in such a way that the total amount of matter is conserved i.e. density is
multiplied by ∆x/∆x′, where ∆x is the original distance between the node
points and ∆x′ is the new distance. The new distribution of the matter is
then divided into original cells to obtain a new piecewise-constant matter
distribution shown in Fig. 3.3. This procedure leads to an expression for the
updated density [73]:

ρ̄n+1
j =

1

2
Q2

−(ρn
j−1 − ρn

j ) +
1

2
Q2

+(ρn
j+1 − ρn

j ) + (Q+ + Q−)ρn
j ,

Q± =
1/2 ∓ ǫj

1 ± (vj±1 − vj)
∆t
∆x

,

ǫj = vj
∆t

∆x
.

(3.4)
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Figure 3.2: The SHASTA transport stage 2

This algorithm clearly requires that

|ǫj | =

∣

∣

∣

∣

vj
∆t

∆x

∣

∣

∣

∣

<
1

2
, (3.5)

otherwise the node point would be moved out from the cell in Fig. 3.2. Going
from a piecewise-constant profile in Fig. 3.1 to a piecewise-linear distribution
introduces strong numerical diffusion of the matter from cell to cell. The
advantage of the algorithm is that an explicit form of the diffusion can be
obtained. From Eq. (3.4) by using a constant velocity vi = v one gets

ρ̄n+1
j = ρn

j +
ǫ

2
(ρn

j−1 − ρn
j+1) +

(

1

8
+

ǫ2

2

)

(

ρn
j+1 − 2ρn

j + ρn
j−1

)

, (3.6)

which includes a strong velocity-independent diffusion part. If the numerical
diffusion is removed from the low-order solution, we get effectively a high-
order solution. However, as explained above, this can lead to unphysical
ripples in the solution. The main idea in the SHASTA algorithm is to remove
the numerical diffusion as much as possible without generating extra ripples
in the density distribution. In practice this is done by requiring that no
new minima or maxima form when the diffusion is removed. If the updated
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density after the transport stage is denoted as ρ̃n+1
j , the final density after

the time-step is
ρn+1

j = ρ̃n+1
j − Ac

j + Ac
j−1, (3.7)

where Ac
j ’s are the antidiffusion fluxes. From Eq. (3.6) the numerical diffu-

sion flux Aj is

Aj = η
(

ρn+1
j+1 − ρn+1

j

)

, (3.8)

where η is the antidiffusion coefficient. The velocity-independent part of the
flux is given by η = 1/8. In practice this value leads to unstable solutions.
Therefore η is left as a free parameter. To prevent new minima or maxima,
the antidiffusion flux is defined as

Ac
j = sign(Ai)max(0,min(Ai−1sign(Ai+1), η|Ai+1|, Ai+2sign(Ai+1))). (3.9)

These fluxes are used in Eq. (3.6) to get the full solution of the transport part
of Eq. (3.1). Source terms C are added to this solution. This is the form of
the SHASTA algorithm which is used to solve the cylindrically symmetric,
boost-invariant hydrodynamical Eqs. (2.31). A cylindrical geometry could
also be embedded into the transport algorithm [77, 78], but this is not done
here. Instead, the additional terms in Eqs. (2.31) arising from the cylindrical
geometry are taken into account as source terms.

3.2 Two-dimensional flux limiter

Two-dimensional transport in the Cartesian coordinates is calculated by ap-
plying the one-dimensional algorithm (3.4) separately in both the x and y
directions. The one-dimensional form of the flux limiter algorithm intro-
duced above could be used in a similar way separately in both directions,
but it would not prevent the occurrence of all possible new minimas or
maximas at the antidiffusion stage. For this reason, a new flux limiter for
multidimensional transport problems, which takes both dimensions simul-
taneously into account, was introduced by Zalesak [74]. In two dimensions
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the antidiffusion fluxes are defined as

Ai+1/2,j = η(ρ̃n+1
i+1,j − ρ̃n+1

i,j ), (3.10)

where ρ̃ is the density after the transport stage without source terms. The
next step is to define ρmin

i,j and ρmax
i,j in such a way that when ρmin

i,j < ρi,j <
ρmax

i,j new minima or maxima are not created. In the Zalesak algorithm these
minimum and maximum densities are defined as

ρa
i,j = max(ρn

i,j, ρ̄
n+1
i,j ),

ρmax
i,j = max(ρa

i−1,j , ρ
a
i,j, ρ

a
i+1,j , ρ

a
i,j−1, ρ

a
i,j+1),

ρb
i,j = min(ρn

i,j , ρ̄
n+1
i,j ),

ρmin
i,j = min(ρb

i−1,j , ρ
b
i,j, ρ

b
i+1,j , ρ

b
i,j−1, ρ

b
i,j+1),

(3.11)

where ρn is the density in the previous time-step and ρ̄n+1 is the density after
the transport stage and the inclusion of pressure gradient terms. According
to Zalesak, the antidiffusion flux into the directions of pressure gradients
will enhance the minima and maxima. Therefore the first step in the flux
limiting procedure is to set the antidiffusion flux to zero in such directions:

Ai+1/2,j = 0, if Ai+1/2,j(ρ̄
n+1
i+1,j − ρ̄n+1

i,j ) < 0

and either Ai+1/2,j(ρ̄
n+1
i+2,j − ρ̄n+1

i+1,j) < 0

or Ai+1/2,j(ρ̄
n+1
i,j − ρ̄n+1

i−1,j) < 0,

Ai,j+1/2 = 0, if Ai,j+1/2(ρ̄
n+1
i,j+1 − ρ̄n+1

i,j ) < 0

and either Ai,j+1/2(ρ̄
n+1
i,j+2 − ρ̄n+1

i,j+1) < 0

or Ai,j+1/2(ρ̄
n+1
i,j − ρ̄n+1

i,j−1) < 0,

(3.12)

where A’s are calculated according to Eq. (3.10), i.e. without the pressure
gradient terms, and ρ̄’s include the pressure terms. For the flux limiting
algorithm the following quantities are defined

P+
i,j =

∑

(all flux into the cell (i, j))

= max(0, Ai−1/2,j) − min(0, Ai+1/2,j) + max(0, Ai,j−1/2) − min(Ai,j+1/2),

O+
i,j = ρmax

i,j − ρ̄n+1
i,j ,

R+
i,j =

{

min(1, O+
i,j/P

+
i,j , if P+

i,j > 0

0 if P+
i,j = 0

,

P−
i,j =

∑

(all flux out from the cell (i, j))

= max(0, Ai+1/2,j) − min(0, Ai−1/2,j) + max(0, Ai,j+1/2) − min(Ai,j−1/2),

O−
i,j = ρ̄n+1

i,j − ρmin
i,j ,

R−
i,j =

{

min(1, O−
i,j/P

−
i,j , if P−

i,j > 0

0 if P−
i,j = 0

.

(3.13)
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The flux limiting is then imposed according to

Ci+1/2,j =

{

min(R+
i+1,j, R

−
i,j), if Ai+1/2,j > 0

min(R+
i,j, R

−
i+1,j), if Ai+1/2,j < 0

,

Ci,j+1/2 =

{

min(R+
i,j+1, R

−
i,j), if Ai,j+1/2 > 0

min(R+
i,j, R

−
i,j+1), if Ai,j+1/2 < 0

,

(3.14)

and the final antidiffusion fluxes after the flux limiting procedure are

Ac
i+1/2,j = Ci+1/2,jAi+1/2,j ,

Ac
i,j+1/2 = Ci,j+1/2Ai,j+1/2.

(3.15)

Finally the updated density is written as

ρn+1
i,j = ρ̄n+1

i,j − (Ac
i+1/2,j − Ac

i−1/2,j + Ac
i,j+1/2 − Ac

i,j−1/2). (3.16)

This procedure is still explicitly conservative. Any additional source terms
are added to the density afterwards.

After the time-step we get new updated values for the tensor components
T 00 and T 0i. In relativistic hydrodynamics we still need to solve the local
energy density separately, since the EoS is given as a function of ε and nB,
and not as a function of the tensor components. The local energy density is
solved from

ε = T 00 − (T 0i)2

T 00 + p(ε, nB)
. (3.17)

For a simple EoS p = c2
sε, where cs is a constant velocity of sound, this can

be solved analytically, but in a general case some iterative procedure, such
as Newton’s method, is needed. Once ε is solved, the pressure is obtained
from the EoS, and the flow velocity is calculated from

vi =
T 0i

T 00 + p
. (3.18)

The algorithm described above leads to a high-order accuracy in the
spatial discretization. Second-order accuracy in the time discretization is
achieved by calculating first the half time-step values from ti to ti + ∆t/2
by applying the SHASTA algorithm above. The complete time-step from ti
to ti + ∆t is then taken by using the calculated half time-step values for the
pressure and velocity in the algorithm.
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Chapter 4

Decoupling and resonance

decays

In the hydrodynamical modeling of ultrarelativistic heavy ion collisions, one
of the problems is how to end the time-evolution of the system. Obviously
the hydrodynamical evolution in a finite-size, strongly expanding system
cannot continue forever. Eventually the system becomes so dilute that the
particles cease to interact and therefore the system cannot stay in thermody-
namical equilibrium, but becomes a system of free particles. Hydrodynam-
ical models alone cannot predict when the system is going to decouple, but
some additional knowledge of microscopical properties of the particle inter-
actions is needed. Even if we knew when the decoupling is going to happen,
it is still not an easy task to model the freeze-out process. In reality the
freeze-out happens in a finite space-time region, i.e. it is not expected to be
an instantaneous process. The whole process is a non-equilibrium process
and the final free-particle distributions will most likely have some sensitivity
to the details of the freeze-out mechanism.

In this work, however, we simply take the freeze-out to be an instanta-
neous process, in which free particles are emitted from a sharp boundary
in space-time. The freeze-out can still happen at different times at differ-
ent parts of the system, but locally the decoupling is always instantaneous.
Typically the freeze-out boundary is obtained by specifying, e.g. the freeze-
out temperature, i.e. from the hydrodynamical solution we search for a
T (τ, x, y) = Tdec boundary and calculate the particle emission from this
boundary. This is the approach in Refs [I, II, IV]. We studied in Ref. [III]
a more dynamical freeze-out condition, i.e. the freeze-out boundary is ob-
tained from the condition [79, 80, 81, 82, 83, 84]

θ = cΓ, (4.1)

where θ is the local expansion rate obtained from the hydrodynamical cal-
culation and Γ is the local scattering rate of the particles. The constant c is
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determined from experimental data, but it should be of order 1. Both ways
of modeling the freeze-out are discussed below.

4.1 The Cooper-Frye decoupling

Regardless of whether the decoupling condition is specified by a constant
Tdec or a constant c in the expression (4.1), we still need to model the
particle emission from the decoupling boundary. In this work the model-
ing is according to the Cooper-Frye procedure [85], where the momentum
distributions of particles are given by the thermal distribution and parti-
cle emission is obtained by counting the number of particles crossing the
freeze-out boundary.

The decoupling boundary itself is a three-dimensional hypersurface in the
four-dimensional Minkowski space. The surface elements of the decoupling
surface in the boost-invariant hydrodynamical calculation are given by1

dσµ = −[±]

(

cosh η,− ∂τ

∂x′
,− ∂τ

∂y′
,− sinh η

)

τdηdx′dy′, (4.2)

where [±] is defined as

[±] = Sign

(

∂T

∂τ

)

. (4.3)

This definition states that the normal vector of the surface is chosen in the
direction of decreasing temperature. The particle 4-current is given by

jµ(x) =

∫

d3p
pµ

E
f(x, p), (4.4)

where f(x, p) is the momentum distribution function of the particle, given in
this case by the Fermi-Dirac or Bose-Einstein equilibrium distribution func-
tions. The number of particles crossing the boundary σ can be calculated
from

N =

∫

σ
jµdσµ =

∫

σ
d3pf(x, p)

pµ

E
dσµ, (4.5)

where the integral is over the decoupling boundary σ. Using this expression
and the equilibrium distribution functions the Cooper-Frye integral for the
particle momentum spectrum becomes

E
dN

d3p
=

∫

σ

1

(2π)3
pµdσµ

e(u·p−µ)/T ± 1
, (4.6)

where u is the fluid 4-velocity, µ is the chemical potential and T is the
temperature. Thus, from the hydrodynamical evolution we must be able to
determine the boundary σ itself and u, µ and T on the boundary.

1The derivation of the two-dimensional Cooper-Frye formula is here based on the notes

by P.V. Ruuskanen.
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Usually the momentum spectra are given as a function of transverse
momentum pT and rapidity y, defined as

y =
1

2
ln

(

E + pz

E − pz

)

. (4.7)

With this definition, the particle energy E and the longitudinal momentum
pz are given by

E = mT cosh y, (4.8)

pz = mT sinh y, (4.9)

where transverse mass is mT =
√

m2 + p2
T . Thus the 4-momentum can be

written as
pµ = (mT cosh y,pT ,mT sinh y) , (4.10)

and the invariant spectrum as

E
dN

d3p
=

dN

dyd2pT
. (4.11)

In a longitudinally boost-invariant system, the fluid 4-velocity can be written
in terms of the space-time rapidity η as

uµ = γT (cosh η,vT , sinh η) , (4.12)

where vT is the transverse velocity and the transverse gamma factor is

γT =
1

√

1 − v2
T

. (4.13)

Using these in the Cooper-Frye formula and writing the momentum distri-
bution as a geometrical series,

1

ex ± 1
=

e−x

1 ± e−x
= e−x

∞
∑

n=0

(±)ne−nx, (4.14)

the integral can be written as

dN

dyd2pT
=

1

(2π)3

∞
∑

n=1

(±1)n
∫

σ
[±]τdx′dy′enµ/T exp

(

nγT
vT · pT

T

)

∫

dη exp
(

−nγT
mT

T
cosh(η − y)

)

(

mT cosh(η − y) − px′

∂τ

∂x′
− py′

∂τ

∂y′

)

.

(4.15)
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Because vT and T are independent of η, the η-integration can be carried
out and the Cooper-Frye formula takes the form

dN

dyd2pT
=

1

(2π)3

∞
∑

n=1

(±1)n
∫

σ
[±]τdx′dy′enµ/T exp

(

nγT
vT · pT

T

)

[

mT K1

(

nγT
mT

T

)

−
(

px′

∂τ

∂x′
+ py′

∂τ

∂y′

)

K0

(

nγT
mT

T

)

]

,

(4.16)

where Ki’s are the modified Bessel functions of the second kind. The re-
maining two-dimensional surface integral has to be done numerically. The
integration can be performed by using the result dx′(∂τ/∂x′) = dτ , which
holds on the boundary. Thus, the second term can be expressed as an in-
tegral over y′ and τ . Correspondingly, the third term can be written as an
integral over x′ and τ . In the integral dx′dy′ is always positive. The sign of
the integration element must be determined by calculating [±] explicitly.

For cylindrically symmetric systems, i.e. for central nucleus-nucleus col-
lisions the formula (4.16) can still be simplified by writing it in cylindrical
coordinates and performing the φ-integral. The result is the Cooper-Frye
formula [54]

dN

dyd2pT
=

1

2π2

∫

σ
τr

∞
∑

n=1

(±1)n+1

enµ/T (mT I0(
n

T
pT sinh yr)K1(

n

T
mT cosh yr)dr

−pT I1(
n

T
pT sinh yr)K0(

n

T
mT cosh yr)dτ),

(4.17)

where the transverse rapidity is defined as

yr =
1

2
ln

(

1 + vr

1 − vr

)

, (4.18)

and Ii’s are the modified Bessel functions of the first kind. All signs are
correct when the integration is started from (r = 0, τmax), see e.g. the de-
coupling surfaces in Chap. 6.

4.2 Resonance decays

For consistency, the Cooper-Frye integrals have to be calculated for all par-
ticles included in the EoS. Most of these particles are, however, unstable
and decay through strong or electromagnetic interactions, hence these par-
ticles are not directly detectable. To compare the calculated results with
the experimental data, these decays have to be considered. There are ∼ 300
different particle states included in the HRG, and each can have several dif-
ferent decay channels. In this work we limit the study to 2- and 3-particle
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decays. The decays are calculated by assuming isotropic distribution of
decay products in the rest frame of the decaying particle. Transverse mo-
mentum distribution of the decay products is obtained by folding the known
momentum spectrum of the unstable particle with the single-particle decay
distribution, and taking the integral over the allowed phase space [86, 87].
The single-particle decay distribution from a 2-particle decay is given by

dN =
dΓ

Γ
, (4.19)

where dΓ is the differential decay width of the particle,

dΓ =
d3p1

2E1

d3p2

2E2

g(M2)

2E
δ4(p − p1 − p1), (4.20)

where E, p, and M are the energy, 4-momentum and mass of the decay-
ing particle, and Ei and pi are the energy and 4-momentum of the decay
products and g(M2) is the squared matrix element for the decay, which is
assumed to depend only on the mass of the particle. The decay rate Γ is
obtained by integrating over the phase space of the decay products,

Γ =
g(M2)

2E

∫

d3p1

2E1

d3p2

2E2
δ4(p − p1 − p1). (4.21)

The momentum spectra of the decay product 1 is obtained from these ex-
pressions as

E1
dN

d3p1
=

M

4πp∗12E2
δ(E − E1 − E2), (4.22)

with p2 = p − p1 and E2 =
√

m2
2 + p2

2. In the equation p∗12, the cm
momentum of decay particles, is defined as

p∗12 =

√

(m̃2)2 − 4M2m2
1

2M
, (4.23)

where
m̃2 = M2 + m2

1 − m2
2. (4.24)

The momentum distribution of decay product 1 can be written as

E1
dN

d3p1
=

∫

d3p

E
E

dN

d3p

M

4πp∗12E2
δ(E − E1 − E2), (4.25)

where E dN
d3p

is the known distribution of the decaying particle. Equation (4.25)
can be written as an integral over the transverse mass and rapidity,

E1
dN

d3p1
=

b12M

4πp∗12

∫ ỹmax

−ỹmax

dỹ
√

m2
1T cosh2 ỹ − p2

1T

∫ M+

T

M−

T

MT dMT
√

(

M+
T − MT

) (

MT − M−
T

)

[

dN

dY dp2
T dφ

|φ=φ1−θ +
dN

dY dp2
T dφ

|φ=φ1+θ

]

p2
T

=M2
T
−M2,Y =y1−ỹ

,

(4.26)

32



where b12 is the branching ratio of the decay channel and θ is defined as

cos θ = − 1

2p1T pT

(

m̃2 − 2MT m1T cosh(Y − y1)
)

. (4.27)

The integration limits for the MT integral are calculated from

M±
T =

m̃2m1T cosh ỹ ± p1T

√
D

2(m2
1T cosh2 ỹ − p2

1T )
, (4.28)

where
D = (m̃2)2 − 4M2(m2

1T cosh2 ỹ − p2
1T ). (4.29)

The limit ỹmax for the rapidity integral is given by

ỹmax = arcosh





√

(m̃2)2 − 4M2p2
1T

2Mm1T



 . (4.30)

A three-particle decay can be reduced to a two-particle decay for the decay
product we wish to calculate by treating the remaining two particles as a
single particle with an invariant mass m23 integrated over the kinematically
allowed phase-space. This procedure gives the decay distribution for the
particle 1 in the three-particle decay as follows

E1
dN

d3p1
=

b12M
2

πQ

∫ M−m1

m2+m3

dm23

√

(m2
23 + m2

2 − m2
3)

2 − 4m2
23m

2
2

m23

∫ ỹmax

−ỹmax

dỹ
√

m2
1T cosh2 ỹ − p2

1T

∫ M+

T

M−

T

MT dMT
√

(

M+
T − MT

) (

MT − M−
T

)

[

dN

dY dp2
T dφ

|φ=φ1−θ +
dN

dY dp2
T dφ

|φ=φ1+θ

]

p2
T

=M2
T
−M2,Y =y1−ỹ

,

(4.31)

where the integration limits are the same as for the two-particle decays, but
m2 is replaced by the invariant mass m23. The normalization constant Q is
calculated from

Q =

∫ c

b

dx

x

√
a − x

√
b − x

√
x − c

√
x − d, (4.32)

where

a = (M + m1)
2, b = (M − m1)

2, (4.33)

c = (m2 + m3)
2, d = (m2 − m3)

2. (4.34)
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4.3 Dynamical decoupling condition

In the article [III] of this thesis we have studied also a more dynamical
freeze-out condition. Instead of performing the freeze-out from a constant-
temperature boundary, keeping the freeze-out temperature Tdec as a free
parameter, the decoupling boundary is determined from the following dy-
namical condition

θ(x, t) = cΓπ(T (x, t)), (4.35)

where θ is the local expansion rate of the matter and Γπ is the pion scattering
rate. The constant c is a free parameter determined from the available
experimental data.

As discussed in the previous chapters, hydrodynamical modeling is based
on the assumption of local thermal equilibrium. Physically, one expects this
assumption to be valid when all the relevant microscopical time scales are
much shorter than the macroscopical time scales. The macroscopical time
scale of expansion is locally given by the expansion scalar θ = ∂µuµ, which
gives the relative expansion rate of a volume of a fluid element, V̇ /V [82].
Once the hydrodynamical solution is known, the local expansion rate can
be easily calculated from the expression

θ = ∂µuµ =
∂γr

∂τ
+

γr

τ
+

∂(γrvr)

∂r
+

γrvr

r
. (4.36)

The microscopical timescale is given by the interaction rate of the particles in
the HRG. The dominant component in the HRG are pions, whose decoupling
we are here primarily interested in. The scattering rate of pion can be
approximated as

Γπ =
∑

X

nXσπX(T ), (4.37)

where nX is the density of particle species X and σπX(T ) is the average
cross section for πX interaction at the temperature T . The sum is over
all particle species in the HRG. The pion scattering rate is proportional
to the density of thermal target particles, and because pions are the most
abundant component in the HRG, ππ scattering is the dominant scattering
channel that keeps the system in equilibrium. As suggested in Ref. [III], the
thermally averaged ππ scattering cross section can be parametrized as

σππ(T ) = σ0 +
C T 2

(T − T0)2 + (∆/2)2
, (4.38)

where σ0 = 0.60 fm2, C = 0.78 fm2, T0 = 105 MeV and ∆ = 170 MeV, which
reproduces the result in Ref. [88] for the T < Tc temperature range, relevant
for the decoupling. The pion scattering rate can thus be approximated as

Γπ ≃ nπ(T )σππ(T ), (4.39)
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where nπ(T ) is the thermal density of pions with mass mπ ∼ 140 MeV. Also
other particles contribute to the scattering rate, but these can be thought to
be effectively included in the constant c in Eq. (4.35). The contribution from
the other particles to the pion scattering rate can be estimated to be much
smaller than that from the ππ interactions: e.g. at T = 150 MeV the pion-
nucleon contribution compared to that from ππ scatterings is approximately

nN

nπ

σπN

σππ
∼ 1

15

30mb

20mb
∼ 1

10
∼ 10%. (4.40)

Although the πN cross section is quite large, the density of nucleons is much
smaller than that of pions, resulting in a contribution to the pion scattering
rate of only ∼ 10% compared with that from ππ scattering.

The situation would, of course, reverse if we were to study the micro-
scopic decoupling dynamics of nucleons. In that case the scattering rate of
nucleons would be proportional to the pion density ΓN ∼ nπσπN + · · · . This
would lead to a much larger scattering rate per nucleon than per pion [81].
Obviously the condition (4.35) above for pions cannot be applied for the
other hadrons as such, but a different condition for each hadron species
should be constructed. This is not, however, discussed here further, but we
consider the dynamical freeze-out condition only for pions.
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Chapter 5

Initial state for the

hydrodynamical evolution

In the boost-invariant, perfect-fluid hydrodynamics the initial energy density
and the net-baryon density in the transverse plane have to be obtained from
outside. A large fraction of the work presented in this thesis is based on the
initial state calculated from the EKRT model [14], which applies to central
collisions. Our extension to noncentral collisions is based on the optical
Glauber model, see e.g. Refs. [89, 90].

5.1 The Glauber model

The optical Glauber model for nucleus-nucleus collisions is based on the
assumption that each nucleon travels along straight-line trajectories and it
is also assumed that the cross section for each nucleon-nucleon collision re-
mains unchanged, even if the nucleons have already collided. In the Glauber
model, the total cross section for an A + B collisions is given by

σAB =

∫

d2b

(

1 −
(

1 − σNNTAB(b)

AB

)AB
)

≃
∫

d2b
(

1 − e−σNN TAB(b)
)

,

(5.1)
where σNN is the cross section for inelastic nucleon-nucleon collisions, b is
the impact parameter and TAB is the standard nuclear overlap function,
defined as

TAB(b) =

∫

d2r TA(r + b/2)TB(r − b/2), (5.2)

with TA(r) denoting the nuclear thickness function, which is an integral over
the longitudinal coordinate z of the nuclear density function,

TA(r) =

∫

dz ρA(r, z). (5.3)
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In this work the nuclear density is parametrized with the Woods-Saxon
profile

ρA(r, z) =
ρ0

exp
(

r−RA

d

)

+ 1
, (5.4)

with d = 0.54 fm and ρ0 = 0.17 fm−3. The nuclear radius RA is calculated
from the expression

RA = 1.12 A1/3 − 0.86 A−1/3. (5.5)

In the Glauber model the transverse density of binary nucleon-nucleon col-
lisions is given by

nBC(r,b) = σNNTA(r + b/2)TB(r− b/2). (5.6)

The number density of the nucleons participating in the nuclear collision,
the wounded nucleon transverse density, is given by

nWN (r,b) = TA(r + b/2)

[

1 −
(

1 − σNN
TB(r − b/2)

B

)B
]

+ TB(r− b/2)

[

1 −
(

1 − σNN
TA(r + b/2)

A

)A
]

.

(5.7)

The integrals of nWN(r,b) and nBC(r,b) over the transverse plane,
∫

d2r,
give the number of participants Npart(b) = NWN(b) and the number of
binary collisions NBC(b), respectively.

5.2 The EKRT model

The EKRT model developed in [14] is a model for the initial particle produc-
tion in central ultrarelativistic A+A collisions. It is based on the assumption
that the low-pT particle production is controlled by the saturation among
the produced gluons. When the particle production starts, the high-pT par-
ticles are formed before the low-pT particles. The high-pT particles start to
fill the transverse area, πR2

A, of the collision zone and eventually at some pT

the whole transverse plane is filled with the produced gluons. Subsequently,
non-linearities predicted by QCD, gluon fusions, are expected to become im-
portant. When this happens the particle production saturates, i.e. further
growth of particle production is strongly inhibited. The key quantity in the
EKRT model is the number of gluons, NAA(A,

√
s,∆y, p0), produced with

pT ≥ p0 into a rapidity window ∆y, which obviously depends on the colli-
sion energy

√
sNN and the nuclear mass number A. As long as p0 ≫ ΛQCD

the number of gluons produced can be calculated from collinearly factorized
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perturbative QCD. The saturation condition for central A+A collisions can
be written as [14]

NAA(A,
√

s,∆y, p0)
π

p2
0

= cπR2
A, (5.8)

where π/p2
0 is the transverse area occupied by each produced gluon. The

constant of proportionality is set to c = 1. This condition determines the
saturation momentum p0 = psat(A,

√
s). Once psat is determined, the total

number of particles, Nf of type f , produced into the rapidity window ∆y,
can be estimated as the number of particles with pT ≥ psat alone,

Nf (A, p0,∆y,
√

s) = TAA(0)σ〈Nf 〉∆y,p0
, (5.9)

where σ〈Nf 〉∆y,p0
/σNN is the number of particles with pT ≥ psat, produced

per binary nucleon-nucleon collision. The total transverse energy of the
produced minijets is

Ef
T (A, p0,∆y,

√
s) = TAA(0)σ〈Ef

T 〉∆y,p0
, (5.10)

where σ〈Ef
T 〉∆y,p0

/σNN is the transverse energy produced per binary colli-
sion, see [II]. The initial energy density at the time of formation, τ0 = 1/psat,
can be estimated from the transverse energy produced in ∆y as

ε(τ0, r) =
dE

dV
≈ dET

τ0dηd2r
= TA(r)TA(r)

σ〈ET 〉∆y,p0

τ0∆y
, (5.11)

where the volume element reads dV = dzd2r = τ0dηd2r ≃ τ0∆yd2r. The
model also gives an estimate for the net-baryon density as

nB(τ0, r) =
dNB−B

τ0dηd2r
= TA(r)TA(r)

σ〈NB−B〉∆y,p0

τ0∆y
, (5.12)

where NB−B is calculated from the number of quarks and anti-quarks pro-
duced in ∆y [II].

The pQCD particle production in the transverse plane is clearly propor-
tional to the density of binary collisions nBC(r,b) when there is only one
scale psat which is the same in the whole nuclear overlap region. In principle
psat is different in different transverse locations and this would modify the
matter distribution [91, 92]. However, in this work we do not apply a local
saturation condition, but all the results are based on the average saturation
momentum psat given by Eq. (5.8). The uncertainty resulting from the ini-
tial distribution of the matter is estimated by considering also initial profiles
which are proportional to the wounded nucleon density nWN(r,b), keeping
the same initial entropy as with the profile determined from Eq. (5.11). The
EKRT model requires that psat ≫ ΛQCD, i.e. that QCD perturbation theory
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must be applicable. In practice, this limits the use of the EKRT model to
central or nearly central collisions. For noncentral collisions further assump-
tions and modeling are needed.

Hydrodynamical modeling requires that the matter is close to local ther-
mal equilibrium throughout the evolution. According to the EKRT model
the production time of the initial state is τ0 = 1/psat. To apply this initial
state directly to the hydrodynamical models, an assumption of immediate
thermalization is needed, i.e. it is assumed that the energy density given
by Eq. (5.11) is the thermal energy density with thermodynamical pressure
and temperature.

In this work two collision systems are studied. First the model is tested
in the

√
sNN = 130 and 200 GeV Au + Au collisions at RHIC, and then

the predictions for the
√

sNN = 5.5 TeV Pb + Pb collisions at the LHC are
given. The initial state parameters for the two collision systems are given
in Table 5.1.

RHIC LHC√
sNN [GeV] 200 5500

τ0 [fm] 0.17 0.097
σ〈ET 〉 [GeV mb] 83.6 468

σ〈NB−B〉 [mb] 0.520 0.106
σNN [mb] 42 60

Table 5.1: The initial-state parameters for Au + Au collisions at RHIC and Pb +
Pb at the LHC.

5.3 Noncentral collisions

Once the initial state in central nuclear collisions is obtained from the EKRT
model, the centrality dependence of the initial state is modeled by two
Glauber model limits. The initial energy density and net-baryon density
are either assumed to be proportional to the density of binary collisions or
to the density of wounded nucleons in the transverse plane, i.e. the energy
density as a function of the impact parameter is constructed as

εBC(r,b) = CBC nBC(r,b), (5.13)

εWN (r,b) = CWN nWN(r,b), (5.14)

and similarly for the net-baryon density. In both cases the proportionality
constant C is fixed in b = 0 collisions from the EKRT model in such a way
that the initial entropy dS/dη is the same as predicted by Eq. (5.11). The
initial time in non-central collisions is taken to be the same as in central
collisions. These two limits correspond to the eBC and eWN models in
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Ref. [13]. The resulting initial states for the Au + Au collisions at RHIC are
shown in Fig. 5.1 and for the Pb + Pb collisions at the LHC in Fig. 5.2 for
selected centralities. These figures show the energy density profiles in the x-
and y-directions. The impact parameter is chosen to be in the x-direction.
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Figure 5.1: The transverse profiles of the initial energy density from the eBC and
eWN initializations in

√
sNN = 200 GeV Au + Au collisions at RHIC for different

centralities. The energy density is shown in the x- and y-directions.

There are two main differences between the centrality dependence of the
eBC and eWN models. First, the total entropy, and therefore also the final
hadron multiplicity, falls faster with increasing b in the eBC initialization
than in the eWN initialization. This is shown in Fig. 5.3, where the centrality
dependence of the number of binary collisions and of wounded nucleons, both
normalized to unity at b = 0 fm, are plotted. The second difference is that
the eBC initialization results in much stronger energy density gradients, and
thus also in stronger transverse pressure gradients in the transverse plane
than the eWN initialization, as can be seen in Figs. 5.1 and 5.2. Since the
pressure gradients are the driving force for the hydrodynamical evolution,
the transverse flow develops faster with the eBC than with the eWN initial
profile.

It should be emphasized that we are not trying to find a detailed fit
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Figure 5.2: The transverse profiles of the initial energy density from the eBC and
eWN initializations in

√
sNN = 5500 GeV Pb + Pb collisions at the LHC.

to the RHIC data. Instead we will show that towards peripheral collisions
the measured final hadron transverse momentum spectra fall between the
results obtained with the two chosen centrality dependences, and take the
difference between them to represent the uncertainty in the extrapolation
to the LHC energies. The centrality dependence of hadron multiplicity at
RHIC could be fitted e.g. by taking a linear combination of the eBC and
eWN initialization [13]. Alternatively one could use impact parameter de-
pendent proportionality constants in Eqs. (5.13) and (5.14), like done, e.g. in
Refs. [63, 71]. However, these fit parameters can change from RHIC to the
LHC and an uncertainty in the extrapolation would remain anyway.

5.4 Centrality selection

The impact parameter is not a directly observable quantity, thus determining
the centrality of the collision requires further modeling. The standard way
to determine the centrality is through the Glauber model, in which the
nuclear collisions can be divided into different centrality classes ci according
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RHIC LHC
centrality % b [fm] Npart b [fm] Npart

0-5 2.24 347 2.31 374
5-10 4.09 289 4.23 315
10-15 5.30 242 5.47 264
15-20 6.27 202 6.48 221
20-30 7.49 153 7.74 168
30-40 8.87 102 9.17 112
40-60 10.6 50.8 10.9 56.7
60-70 12.1 19.6 12.5 21.2
70-80 13.0 9.13 13.4 9.65

Table 5.2: The average values of impact parameters and the average numbers
of participants in selected centrality classes from the optical Glauber model in√

sNN = 200 GeV Au+Au collisions at RHIC and in
√

sNN = 5500 GeV Pb+Pb
collisions at the LHC.

to their contribution to the total cross section. For instance, the most central
collision class c0 can be defined to be those central collisions that contribute
5% to the total A + A cross section,

0.05 =
1

σAA

∫ b1

0
d2b

dσAA

d2b
, (5.15)
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which in turn determines the impact parameter range [0, b1] that corresponds
to the most central class. Other centrality classes can then be defined accord-
ingly, e.g. the next centrality class can be defined to correspond to 5− 15%
of the total cross section:

0.10 =
1

σAA

∫ b2

b1

d2b
dσAA

d2b
, (5.16)

which defines the b range [b1, b2] that corresponds to this centrality class.
Experimentally the same procedure can be implemented through some ap-
propriate quantity which on the average decreases monotonically as a func-
tion of increasing b, like the total multiplicity or the total transverse energy
produced in the collision. For each centrality class we can define the averages
〈b〉 and 〈NWN 〉 as weighted averages:

〈b〉 =
1

σci

∫ bi+1

bi

d2b b
dσAA

d2b
, (5.17)

〈NWN〉 =
1

σci

∫ bi+1

bi

d2bNWN (b)
dσAA

d2b
, (5.18)

where

σci
=

∫ bi+1

bi

d2b
dσAA

d2b
. (5.19)

The average impact parameters and the average number of participants are
shown in Table 5.2 for selected centrality classes. In practice, the hydro-
dynamical evolution of collisions in a given centrality class is calculated by
using a fixed impact parameter given by Eq. (5.17).
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Chapter 6

Hydrodynamical flow and

hadron spectra

The space-time evolution of the matter and hadron spectra in different
collision systems is obtained from the hydrodynamical model presented in
Chaps 2, 4 and 5. The hydrodynamical evolution itself is not directly observ-
able, and therefore it is important to understand the correlations between
the hadron spectra and the hydrodynamical flow. The key observables ob-
tained from the model are the total hadron multiplicity, which is dictated
by the initial entropy, and the transverse momentum spectra of the hadrons,
which in turn depend sensitively on the hydrodynamical flow field generated
during the evolution.

In the boost-invariant approximation the pT spectra are independent of
rapidity. The variables we consider are the transverse momentum pT and
the azimuthal angle φ. In central collisions the initial state is azimuthally
symmetric and therefore the spectra calculated from the model are also in-
dependent of φ. On the other hand, the initial state in non-central collisions
is non-symmetric, and the pT spectra become φ dependent.

Instead of giving the azimuthal dependence of the spectra explicitly in
terms of φ, the dependence is usually quantified by the Fourier decomposi-
tion of the spectra [93],

dN(b)

dydp2
T dφ

=
dN(b)

dydp2
T

[1 + 2v1(y, pT ; b) cos φ + 2v2(y, pT ; b) cos(2φ) + · · · ] .
(6.1)

The rapidity and transverse momentum dependent Fourier coefficients are
given by

vn(y, pT ; b) ≡
(

dN

dydp2
T

)−1 ∫ π

−π
dφ cos(nφ)

dN(b)

dydp2
T dφ

, (6.2)

where b is the average impact parameter corresponding to a given centrality
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class. Similarly, the pT -integrated coefficients vn are given by

vn(y; b) ≡
(

dN(b)

dy

)−1 ∫ π

−π
dφ cos(nφ)

dN(b)

dydφ
. (6.3)

In the boost-invariant approximation the coefficients vn are rapidity inde-
pendent. A non-zero v2 is usually called elliptic flow, since it is a result from
an azimuthally anisotropic flow field in hydrodynamical models.

6.1 Hadron multiplicity

The total number of hadrons produced in the perfect-fluid hydrodynamical
model depends on the following four quantities:

• the initial entropy density dS/dη,

• the degrees of freedom in the HRG,

• the decoupling temperature,

• the resonance decays.

The perfect-fluid hydrodynamics conserves entropy, therefore the final ob-
served multiplicity depends on the number of hadrons per unit entropy nh/s
at the freeze-out. For massless particles this ratio is different for bosons and
fermions, but it is independent of temperature. In such a case the multi-
plicity would be uniquely determined from the initial entropy. For massive
particles, however, this ratio is not constant anymore, but depends on the
temperature and the mass of the particle. Thus, during the hydrodynamical
evolution of the HRG, hadron number is not conserved. However, when the
decoupling temperature is fixed, the multiplicity is uniquely determined by
the initial entropy.

On the other hand, the ratio nh/s determines only the multiplicity of
thermally emitted hadrons (see the Cooper-Frye integrals in Chap. 4). Most
of the particles included in the HRG are unstable and will decay before they
are observed. It turns out that for the pions the sum of thermal pions
plus pions from the decays of unstable particles remains constant within
10% independent of the freeze-out temperature [I]. In this sense the pion
number is conserved in the hydrodynamical evolution. This is clearly a
property of the hadron mass-spectrum and decay channels rather than a
thermodynamical property of the HRG, and it holds only for pions. In
summary, if the HRG EoS is used, the final pion multiplicity is determined
from the initial state alone whereas, for other, more massive hadrons the
multiplicity depends strongly on the decoupling temperature.
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6.2 Slopes of the transverse momentum spectra

In a static medium in thermodynamical equilibrium, the transverse momen-
tum spectra are given by the Fermi-Dirac and Bose-Einstein distribution
functions. At pT ≫ m these distribution functions behave as e−pT /T . If
there is no transverse flow, the slopes of the spectra are determined by the
temperature alone. However, during the hydrodynamical evolution a strong
transverse flow is generated and this affects the slopes. In the presence of the
transverse hydrodynamical flow, at η = 0, uµ = γ(1,vT , vz) = γ(1,vT , 0)
the high-pT spectra behave approximately as

e−u·p/T = e−pT /Teff , (6.4)

where Teff is defined as

Teff = T

√

1 + vT

1 − vT
. (6.5)

When the matter decouples, different transverse flow velocities occur at
different regions on the decoupling surface. Therefore, vT in Eq. (6.5) is
an effective flow velocity. If the decoupling is chosen to happen at a fixed
temperature T = Tdec, then a decrease in decoupling temperature leads to
a longer lifetime of the hydrodynamical system, which in turn leads to a
larger transverse flow on the lower-temperature decoupling surface. This is
illustrated in Fig. 6.1, where the left-hand side shows the phase boundaries
and two isotherms, T = 150 MeV and T = 120 MeV, and the right-hand side
shows the transverse velocity along the isotherms from the hydrodynamical
simulation of central Au + Au collision at RHIC. Also the flowlines starting
from r = 0, 1, . . . , 7 fm are shown in the figure. If the flow velocity increases
at the same time as the temperature decreases, the net effect on the effective
temperature depends on how vT changes as a function of the decoupling
temperature. For the EoS considered here, with the full kinetic and chemical
equilibrium, it turns out that the increase in vT wins over the decrease
in temperature [I]. This can be seen in Fig. 6.2, which shows the pion,
kaon and proton spectra from the hydrodynamical calculation illustrated in
Fig. 6.1. As can be seen, the slopes of the pT spectra depend strongly on
the decoupling temperature.

Another property of the slopes of the pT spectra is that at low pT the
slopes depend on the hadron mass. In the hydrodynamical system the flow
velocity is common for all hadrons. Therefore heavier particles pick up more
momentum from the flow field than the lighter ones. This leads to flatter
spectra for the heavier particles, as can also be seen in Fig. 6.2.

6.3 Elliptic flow

In non-central collisions the initial state is azimuthally anisotropic in the
transverse plane, as can be seen in Figs. 5.1 and 5.2. This anisotropy and
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Figure 6.1: Left: The phase boundaries and two isotherms, T = 150 MeV and
T = 120 MeV, in 0−5 % most central Au+Au collisions at RHIC. Also the flowlines
starting from r = 0, 1, . . . , 7 fm are shown. Right: Transverse velocity as a function
of τ , along the mixed phase-HRG boundary and along the two isotherms shown in
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its time-evolution can be quantified by the spatial eccentricity defined as
[23]

εx ≡ 〈y2 − x2〉
〈y2 + x2〉 ≡

∫

dxdy ǫ(x, y, τ)(y2 − x2)
∫

dxdy ǫ(x, y, τ)(y2 + x2)
, (6.6)

where the integral is over the transverse plane and the energy density ǫ
is used as a weighting factor. A spatially anisotropic distribution of the
matter leads to anisotropic pressure gradients. Since the pressure gradients
are the driving force for the hydrodynamic evolution, anisotropic pressure
gradients will generate an anisotropic transverse flow field. A convenient
way to characterize the anisotropy of the flow is through the momentum
space eccentricity, which can be defined as [23]

εp ≡
∫

dxdy (T xx − T yy)
∫

dxdy (T xx + T yy)
, (6.7)

where T ii are the components of the energy-momentum tensor. A non-zero
εp at the end of the hydrodynamical evolution converts to a non-zero v2

extracted from the hadron spectra. A nice feature of this definition of εp is
that it is, at the end of the time-evolution, approximately twice the final pT -
integrated v2 of pions [23]. The pressure gradients will generate transverse
flow, regardless whether they are asymmetric or not. The average transverse
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flow can be defined as [23]

〈vT 〉 ≡
〈γvT 〉
〈γ〉 ≡

∫

dxdy ǫ(x, y, τ)γvT (x, y, t)
∫

dxdy ǫ(x, y, τ)γ
, (6.8)

where the γ factor is used as an additional weight.
Initially both εp and 〈vT 〉 are always assumed to be zero, but in non-

central collisions εx is not. The sign convention is chosen such that an
initially positive εx leads to a positive εp, which in turn converts to a posi-
tive v2. Figures 6.3 and 6.4 show the time evolution of the three quantities,
defined above, for three different centralities at RHIC and the LHC, respec-
tively. In addition, the phase boundaries and the T = 150 MeV isotherm
are shown for each centrality.

The initially positive εx starts to decrease when the generated asym-
metric flow field tends to drive the system towards azimuthally symmetric
distribution of the matter. Thus the driving force for the increase of the el-
liptic flow is strongest during the early stages of the evolution. The spatial
eccentricity will eventually go to zero and even to negative values. When
the driving force disappears, εp saturates. Thus the elliptic flow measures
the pressure in the early stages of the evolution [94], and the elliptic flow
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coefficients measured at RHIC have been argued to point towards early ther-
malization of the QGP [23]. However, at some point of the evolution the
phase transition from the QGP to the HRG takes place. The EoS we use
has a first order phase transition, with a mixed phase between these phases.
During the mixed phase the pressure is practically constant.1 Therefore,
all pressure gradients vanish and transverse flow stops increasing. Thus the
amount of elliptic flow generated during the time-evolution is not limited
only by εx, but it also depends on the lifetime of the QGP phase. At the
collision energies studied here most of the matter is in mixed phase or in
the HRG before the spatial eccentricity goes to zero, and the main factor
limiting the amount of elliptic flow is the lifetime of the QGP phase (see
Figs. 6.3 and 6.4). Although the initial spatial eccentricities are similar at
the LHC and RHIC, the lifetime of the QGP phase is longer at the LHC.
Therefore also εp at the end of the evolution is much larger than at RHIC.

One way to quantify how much initial spatial eccentricity is converted
to the momentum space eccentricity is to plot v2/εx, where v2 is the pT -
integrated elliptic flow coefficient of pions as a function of the number of
participants for different decoupling temperatures. This is shown in Fig. 6.5
for both the RHIC and LHC collision energies. As can be seen, at RHIC
there is still sensitivity on the decoupling temperature, indicating that not
all spatial asymmetries have disappeared before the matter enters the HRG.
In contrast, at the LHC the ratio is almost independent of the temperature,
except for the very peripheral collisions. This indicates that at the LHC the
pT -integrated v2 is less sensitive to the details of the HRG dynamics than
at RHIC.

1The pressure is strictly constant during the phase transition only at µB = 0, but since

both at RHIC and the LHC the baryon density is small the pressure remains practically

constant also at finite baryon densities considered here.
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for the RHIC Au + Au collisions (upper) and for the LHC Pb + Pb collisions (lower)
as function of the number of participants. Four different decoupling temperatures
are considered.
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Chapter 7

Hadron spectra and elliptic

flow at RHIC and the LHC

This chapter briefly summarizes the results for the hadron spectra and ellip-
tic flow coefficients obtained from the model and compares them with data
for the

√
sNN = 200 GeV Au + Au collisions at RHIC. Also our predic-

tions for the
√

sNN = 5500 GeV Pb + Pb collisions at the LHC are shown.
The calculations here include both thermally emitted hadrons and hadrons
from the strong and electromagnetic decays of unstable states. The hadron
multiplicities and hadron spectra in the most central Au + Au collisions at
RHIC at

√
sNN = 130 and 200 GeV are discussed in Refs. [I] and [II]. The

predictions for the same observables for the most central collisions at the
LHC are given in Ref. [II]. Decoupling conditions at RHIC and the LHC
are studied in Ref. [III]. Non-central nuclear collisions, and elliptic flow in
particular, are discussed in Ref. [IV] both at RHIC and the LHC.

7.1 Hadron spectra at RHIC

The transverse momentum spectra of pions for different centralities and ini-
tializations at RHIC are shown and compared with the PHENIX data [95] in
Fig. 7.1. For the eBC initialization the decoupling temperature Tdec = 150
MeV and for the eWN initialization Tdec = 140 MeV reproduces the data
equally well in the low-pT region. In central and mid-peripheral collisions
both initializations give similar results, but the calculations start to separate
in more peripheral collisions. This is expected, since the different initializa-
tions give a different centrality dependence for the total multiplicity, as was
shown in Fig. 5.3. In peripheral collisions, the eBC initial state leads to
a much lower multiplicity than the eWN initial state. Similar agreement
with the data and calculations is obtained for kaons, as is shown in Fig. 7.2,
where the calculations are compared with the PHENIX data [95].

The agreement with the data is not as good for protons, as can be seen
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Figure 7.1: The pT spectra of positive pions for
√

sNN = 200 GeV Au + Au
collisions at RHIC compared with the PHENIX data [95]. The solid (dashed) lines
are for the eBC (eWN) initialization. The centrality classes are indicated in the
figure and the spectra are scaled downwards by increasing powers of 10.

in Fig. 7.3 where the calculations are compared with the PHENIX data [95].
With the eBC initialization and Tdec = 150 MeV the normalizations of the
spectra are quite good, but the pT slopes are not reproduced. For the eWN
initialization also the normalization is below the measured values. A lower
decoupling temperature would improve the agreement of the slopes, but the
normalization would then fail completely. Also the calculated pion spectra
would then overshoot the data. As discussed in the context of the HRG EoS
in Chap. 2, the chemical freeze-out is expected to happen before the kinetic
freeze-out, leading to the conservation of, e.g. the number of nucleons and
anti-nucleons. Also when discussing the dynamical decoupling condition
in Chap. 4, it was anticipated that the pions and protons are expected to
decouple at different times. Thus it is not necessarily a good approximation
to assume the same decoupling condition for all hadron species. These
details in the HRG dynamics and decoupling are not, however, considered in
this study where we focus on the bulk properties of the strongly interacting
matter.
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positive kaons. The data is from the
PHENIX Collaboration [95].
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protons. The data is from the PHENIX
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7.2 Elliptic flow at RHIC

Figure 7.4 shows the pT -integrated v2 of charged hadrons as a function of the
number of participants compared with the PHOBOS data [96]. The agree-
ment with the data at Npart ∼ 100 − 300 is quite good. However, for the
most central collisions the model results lie clearly below the data. This is a
typical feature in other hydrodynamical models as well, and it is usually as-
sociated with the fluctuations in the geometry of the initial state [97], which
are expected to have the strongest effect on v2 in most central collisions.
The same behavior can be seen in Fig. 7.5, which shows the differential
elliptic flow v2(pT ) of charged hadrons for different centrality classes with
the PHENIX [98] and STAR [99] data. In the most central collision class
v2(pT ) is clearly below the data, while the other centrality classes are fairly
well reproduced in the low-pT region, the data lying well between the results
from the two chosen initializations. The difference between the elliptic flow
coefficients from the eBC and eWN initializations is quite large. The eBC
initialization gives a significantly larger elliptic flow than the eWN initializa-
tion for central and mid-peripheral collisions. This is caused by the stronger
pressure gradients in the eBC initial state. At very peripheral collisions the
situation is reversed. The reason for this is that the lifetime of the QGP
in the eBC case drops faster, as a function of increasing impact parameter,
than in the eWN case. Therefore, the QGP lifetime is clearly larger with
the eWN than with the eBC initial state in the very peripheral collisions,
and there is less time for elliptic flow to develop in the eBC case.
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The minimum bias v2(pT ) is defined as [100, 101]

vm.bias
2 (y, pT ) ≡

∫

d2bv2(y, pT ; b) dN(b)
dydp2

T

∫

d2b dN(b)
dydp2

T

. (7.1)

This is shown for positive pions in Fig. 7.6 together with the PHENIX [98]
and STAR [99] data, for positive kaons in Fig. 7.7 with the PHENIX [98]
data and for protons in Fig. 7.8 together with the PHENIX [98, 102] and
STAR [99] data. For both pions and kaons the RHIC calculations reproduce
the data well up to pT ∼ 1.5 GeV. Also the uncertainty from the different
initializations is smaller in minimum bias v2(pT ) than for each centrality
class separately. Even though, as discussed above, the eBC initialization
generates more elliptic flow for central and mid-peripheral collisions than
the eWN initial state, the reverse situation for more peripheral collisions
leads to partial cancellation when v2(pT ) is integrated over all centrality
classes.

As was the case with the proton pT spectra, the agreement with the min-
imum bias v2(pT ) is not as good for protons, which calls for a more detailed
treatment of the HRG dynamics and the freeze-out. A lower decoupling
temperature would also improve the agreement with the proton v2(pT ), but
as mentioned before the pion spectra and the number of protons would not
be reproduced anymore. We also note that v2(pT ) for heavier hadrons is be-
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low the values for lighter hadrons at fixed pT , although the pT -integrated v2

is larger for heavier hadrons. This can be understood as a result of stronger
influence of transverse flow on the pT of more massive particles [103].
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Figure 7.5: The charged hadron v2(pT ) for different centrality classes for
√

sNN =
200 GeV Au + Au collisions at RHIC (thin lines) and

√
sNN = 5500 GeV Pb +

Pb collisions at the LHC (thick lines). The centrality classes are indicated in the
figure. The data is from the PHENIX [98] and STAR [99] collaborations.
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7.3 LHC predictions

In spite of the problems with the v2 results, which are mainly understood,
the overall agreement of our model with the RHIC data is quite good for
the pion pT spectra in particular. Thus the model provides a good basis to
extend the calculations to the LHC. In the framework presented here, once
the EoS is fixed and the EKRT model is used to compute the initial energy
and net-baryon densities, essentially the only freedom left is the choice of
the decoupling temperature. At RHIC the freeze-out temperature is fixed
by comparing the calculated spectra with the data. In the article [III] of
this thesis, the dynamical decoupling condition, discussed in Chap. 4, was
studied for central collisions. The advantage of this kind of a condition is
that it is based on the microscopical scattering rates, and that it depends
only on the local conditions of the matter. Therefore, once fixed at one col-
lision system, the decoupling condition is not expected to change between
the different systems. Although the freeze-out does not happen at a fixed
temperature when the dynamical condition is used [III, 81, 82, 83], it is still
possible to find an effective decoupling temperature that on the average de-
scribes the decoupling correctly [III]. What we found was that this effective
decoupling temperature was essentially unchanged from RHIC to the LHC.

Figure 7.9 shows the pion spectra for the same centrality classes as shown
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in Fig. 7.1, for the LHC initial states discussed in Chap. 5. As the decoupling
temperature is not expected to change from RHIC to the LHC, Tdec = 150
MeV is used for the eBC initialization and Tdec = 140 MeV in the eWN case.
As at RHIC also at the LHC both initializations give similar pT spectra for
central and mid-peripheral collisions, but start to differ for more peripheral
centrality classes. The larger initial energy density leads to a longer lifetime
of the system and therefore also much more transverse flow is generated
during the hydrodynamical evolution. This is seen as clearly flatter spectra
at the LHC than at RHIC.

The predictions for the pT -integrated v2 are shown in Fig. 7.4 together
with the RHIC results. The longer lifetime of the QGP phase at the LHC
than at RHIC leads also to a larger elliptic flow. The coefficient v2 is quite
sensitive to the chosen initialization already at RHIC, but the sensitivity
is even larger at the LHC. However, the lower limit of v2 predicted by the
eWN initialization remains above the RHIC calculations and RHIC data.

The results for the minimum bias v2(pT ) of pions is shown in Fig. 7.6, for
kaons in Fig. 7.7 and for protons in Fig. 7.8. Although the pT -integrated v2

is predicted to be clearly above the RHIC results, the situation is not as clear
for the pT -dependent elliptic flow coefficients. For both pions and kaons the
upper limit given by the eBC initial state is clearly above the RHIC data
and calculations at pT . 2 GeV, but on the other hand, the lower limits
given by the eWN initialization are very close to the RHIC results and even
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below them for kaons. The situation remains the same for each centrality
class, as seen in Fig. 7.5. The upper limit is clearly above the RHIC results
when pT . 1.5 GeV, but the lower limit goes below them.

Interestingly, for protons both LHC limits are below the RHIC calcula-
tions. The model cannot satisfactorily reproduce the proton spectra or the
proton elliptic flow at RHIC. However, if the effects not included here go
in the same direction at RHIC and the LHC, we would expect from these
results that the values of v2(pT ) at the LHC are below those at RHIC.
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Figure 7.9: The prediction for the pT spectra of positive pions for
√

sNN =
5500 GeV Pb + Pb collisions at the LHC. The solid (dashed) lines are for the
eBC (eWN) initialization. The centrality classes are indicated in the figure and the
spectra are scaled downwards by increasing powers of 10.

Finally, it should be emphasized that, as discussed in [II], we expect
that the pions from jet fragmentation start to dominate particle production
over the hydrodynamical spectra at higher pT at the LHC than at RHIC.
Therefore we predict that the measured pT spectra and v2(pT ) should follow
the hydrodynamical results higher in pT at the LHC.
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Chapter 8

Conclusions and Outlook

We have studied the space-time evolution of the dense strongly interact-
ing matter formed in central and non-central ultrarelativistic heavy ion
collisions at RHIC and at the LHC. The evolution of the particle system
was treated using a boost-invariant, relativistic perfect-fluid hydrodynamical
model. Hadron spectra from the hydrodynamical solution were calculated
using the Cooper-Frye procedure and also the hadron decay contributions
were included.

The essential inputs to the hydrodynamical model are the initial energy
density, the initial net-baryon density and the EoS. A phenomenological
EoS with the HRG phase described as a gas of noninteracting hadrons and
hadron resonances and with the QGP phase described by a Bag model EoS
of massless quarks and gluons, was used. The QCD phase transition temper-
ature was fixed to Tc = 165 MeV, a value consistent with the lattice QCD
results. The initial densities for the central nucleus-nucleus collisions were
obtained from the EKRT minijet + saturation model [14]. The centrality
dependence of the initialization was modeled by using the optical Glauber
model.

In [I] the hydrodynamical model was applied for the 5 % most central√
sNN = 130 GeV Au + Au collisions at RHIC. It was found that a good

agreement with the RHIC data is obtained with the decoupling temperature
Tdec = 150 MeV. The temperature dependence of the slopes of transverse
momentum spectra for different EoS’s was also studied.

In [II], where an extensive comparison with RHIC data at
√

sNN = 130
GeV and

√
sNN = 200 GeV was carried out, a similar agreement with the

RHIC data in the central
√

sNN = 200 GeV Au + Au collisions was found.
Also our predictions for the central

√
sNN = 5500 GeV Pb + Pb collisions

at the LHC were given in this paper. The initial density profiles used in
these studies correspond to the eBC model discussed in this thesis.

In [III] the dynamical decoupling condition was studied and used to
constrain the freeze-out condition of pions in central heavy ion collisions at
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RHIC and at the LHC. It was concluded that within the approximations
used, the effective decoupling temperature remains almost unchanged from
RHIC to the LHC. Also the eWN initialization was found to give equal
agreement with the eBC initialization when Tdec = 140 MeV was used.

In [IV] the hydrodynamical results were generalized to non-central colli-
sions, by the use of the optical Glauber model. The hydrodynamical model
was shown to give, at different centralities, a reasonably good description
of the hadron pT spectra and elliptic flow at

√
sNN = 200 GeV Au + Au

collisions at RHIC and the corresponding predictions for
√

sNN = 5500 GeV
Pb + Pb collisions at the LHC were given. The uncertainties in the extrap-
olation of the results to the LHC were studied by using both the eWN and
eBC initializations. Also the effects of the multiplicity on the elliptic flow
coefficients were studied.

The EKRT model is uniquely defined once the proportionality constant c
in the saturation condition Eq. (5.8) is fixed in one nucleus-nucleus collision
system (one A, one

√
sNN ). It can then be used to calculate the initial

conditions for any central A+A collision. With the choice c = 1 the EKRT +
hydrodynamical model correctly predicted the charged hadron multiplicities
for central Au + Au collisions at RHIC at

√
sNN = 56, 130 and 200 GeV [33].

The advantage of this closed framework is that it can be straightforwardly
extended to the LHC energies.

The uncertainties in the initial transverse distribution of energy density
were studied by using the binary collision (eWN) and wounded nucleon
(eWN) profiles. Normalization of the wounded nucleon profile was fixed to
give the same initial entropy as in the binary profile embedded in the EKRT
model. Even though it is straightforward to extend the EKRT model to
different energies, this is not the case for an extension to non-central nuclear
collisions. Therefore, the centrality dependence was modeled by the optical
Glauber model by using the eBC and eWN initializations.

Both initializations give similar transverse momentum spectra for pi-
ons and kaons in central and mid-peripheral collisions, provided that the
decoupling condition is tuned accordingly. The calculations reproduce the
RHIC data in central collisions up to pT ∼ 2 − 3 GeV. For more peripheral
collisions the agreement with the data does not extend as high in pT . In
mid-peripheral collisions the agreement is reasonably good up to pT ∼ 1.5
GeV. The centrality dependence of the eBC and eWN models is different.
When fixed to give the same spectra in central collisions, they start to dif-
fer towards more peripheral collisions: the eBC model gives systematically
smaller hadron multiplicities than the eWN model. The initial conditions
at RHIC could be improved, e.g. by using a linear combination of the eWN
and eBC models such that the centrality dependence at RHIC would be re-
produced [13]. However, the coefficients in the linear combination fitted at
RHIC could be energy and centrality dependent and would not give a correct
centrality dependence at the LHC. For this reason no such fine-tuning of the
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initial state is imposed here. Instead, the difference in the two initializations
used is taken to represent the uncertainty in the extrapolation from RHIC
to the LHC.

As mentioned already above, the agreement between the RHIC data and
the calculated pT spectra of pions and kaons is quite good for pT . 2 − 3
GeV in central and pT . 1.5 GeV in peripheral collisions. Also the elliptic
flow coefficients are in reasonable agreement with the data for pT . 1.5
GeV in mid-peripheral collisions. The only place where the data lie clearly
outside the limits given by the two initializations is the elliptic flow for the
most central collisions, for which the data are above the model prediction.
This, however, can be understood to be a result of the fluctuations in the
geometry of the initial state [97], which are not included in our model.

For the most peripheral nuclear collisions considered the pT spectra of
pions and kaons are still well within the uncertainty limits. However, the
difference between the limits also grows quite large in these collisions. While
the pT -integrated v2 is still well reproduced, the differential v2(pT ) starts to
deviate from the data already at quite low pT values. It is clear that the
hydrodynamical modeling cannot be expected to work for very small sys-
tems, thus it is not suprising to see the deviations from the hydrodynamical
behavior in very peripheral nuclear collisions.

Although the transverse momentum spectra and elliptic flow of pions and
kaons are quite well reproduced at RHIC, the same is not true for protons.
The normalization of the computed proton spectra is quite good with the
eBC initialization, with Tdec = 150 MeV, but the eWN initialization, with
Tdec = 140 MeV, gives too few protons. The slopes of the proton spectra
are not given correctly by either one of the initial states. Also too large
v2(pT ) values are obtained. This could perhaps be improved by using a more
detailed model for the HRG dynamics and for the decoupling of hadrons.

The uncertainty in the transverse momentum spectra, originating from
the initial transverse profiles is very similar at the LHC as at RHIC. The
pT -integrated v2 is predicted to be clearly larger at the LHC than at RHIC,
but also the uncertainty from the initial transverse profiles is larger. This
is due to the longer lifetime of the QGP at the LHC: not only the elliptic
flow, but also the difference between the elliptic flow resulting from the two
initializations has more time to grow. In contrast, the effects of the HRG
dynamics to the integrated v2 are anticipated to be smaller at the LHC, since
the azimuthal anisotropy of the pressure gradients have almost vanished in
the HRG at the LHC. The differential v2(pT ) is not expected to change very
much from RHIC to the LHC, but still it is found to be more sensitive to
the initial state at the LHC. The same is true for the minimum bias v2(pT )
and for each centrality class separately. Also the effects of the multiplicity
on the elliptic flow were studied in Ref. [IV]. It was found that the pT -
integrated v2 is quite sensitive to the multiplicity, but v2(pT ) has a much
weaker dependence.
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In general a good simultaneous agreement of the low-pT pion and pro-
ton observables can be obtained with the hybrid models [65, 66, 67, 68, 69].
In these models the QGP is described by hydrodynamical models, but the
HRG is described by microscopical hadron cascade models. It would be in-
teresting to see whether the full microscopic treatment of the HRG dynamics
is necessary, or could a similar agreement with the data be obtained from
the hydrodynamical modeling alone by considering separate chemical de-
coupling, and different dynamical kinetic freeze-out conditions for different
hadron species. In the future also an improved EoS should be considered,
by using the lattice QCD and lattice QCD inspired results for the QGP, in-
stead of the simplified Bag model version with a first order phase transition.
In addition to the non-equilibrium effects in the HRG, also the viscosity in
the QGP phase is expected to play a role in a detailed understanding of the
whole time-evolution of the strongly interacting system.

There are other effects which need to be included in hydrodynamical
models for more detailed description of the pT spectra. In addition to the
non-equilibrium effects mentioned above, in the transition region from the
hydrodynamic to pQCD regime, coalescence models [104, 105] should be
combined with hydrodynamics. However, for the bulk of produced particles,
the low-pT pions and kaons, the full equilibrium model is in a good enough
agreement with the RHIC data to give confidence to make baseline, full
equilibrium, predictions for the same observables at the LHC.
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