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SUMMARY

Interactions between the neural and musculoskeletal systems are a prerequisite for

the production of robust movement. In spite of this, the neural control and musculoskeletal

structure underlying biological movements are typically studied independently, with little

attention paid to how changes in one may affect the other. Understanding these interactions

may be critical to improving current rehabilitation technologies and therapy methods. As an

example, balance disorders are multifactorial in nature and identifying whether biomechan-

ical or neural changes are the source of instability remains an unanswered question.

This thesis presents a combined experimental and modeling approach to understand neu-

ral and biomechanical interactions governing human balance control. A simple four-bar

linkage model with delayed feedback was developed to investigate frontal-plane standing

balance. Using methods from time-delay systems, evidence from this model suggests that

biomechanical structure is important for behavioral function and shows that neural control

and biomechanical structure co-vary for stable human balance. Predictions from the model

were tested experimentally to dissociate the effects of inertia and postural configuration on

balance. In addition, stability radius, a robust control method, was applied to solve the diffi-

cult problem of comparing the relative performance between neuromechanical systems that

differ in parameter values and predicted a common mechanism to explain changes in neural

control across biomechanical contexts.

In the future, the analytical tools and simulation methods developed herein can be gen-

eralized to investigate changes in neuromechanical interactions of various deficits in biome-

chanics (ACL rupture, amputation) and neural control (Parkinson’s disease, stroke). Further-

more, this approach can be used to explain how neural control and biomechanical structure

relate to the diversity of animal form and function, as well as suggest biomimetic control

policies for robotics.

xii



CHAPTER I

INTRODUCTION

In order to move and balance in every-day life requires stable interaction between the neu-

ral, muscular and skeletal systems of our bodies. However, little is known about how these

systems interact to stabilize the body in the presence of perturbations. A goal of this thesis

was to quantify the changes in stability under different neuromechanical interactions. Thus,

in the context of this thesis, stability is defined as the ability to maintain desired motion and

balance after a disturbance and the study of the combined neural, muscular, and skeletal

systems will be defined as neuromechanics (Figure 1.1).

Neuromechanical interactions offer a potentially vast number of redundant strategies for

stable behavior; however, the inherent constraints of muscle properties, skeletal geometry

and neural conduction delays likely impose trade-offs in selecting a particular neural strat-

egy or postural configuration to achieve stability. Experimental evidence suggests that the

relative contribution of each system is adjusted depending on the task and environment. For

example, observations of human reaching tasks show that the nervous system selects arm

postures tuned to stabilize in the direction of the perturbations presented [135]. Also, the

nervous system likely adjusts neural feedback to stabilize imposed changes in configuration,

as muscle responses to translational perturbations in standing balance are observed to de-

crease as stance width increases [39]. While current models have contributed much to our

understanding of sagittal plane stability, they do not allow for an integrative analysis of the

relative contributions of body configuration, feedback gains and neural delay on postural sta-

bility. The goal of this thesis was to develop a simple predictive model of human balance

1



and test predictions experimentally to investigate the changes required in the ner-

vous and musculoskeletal systems to compensate for postural reconfiguration and

neural delay.

To better understand both healthy and neurologically-impaired subjects, this research

developed a model validated by experimental data to quantify the interactions and contri-

butions of nervous and musculoskeletal systems to the stability of human standing balance.

These results may be useful in developing quantitative measures of standing stability and

help to explain the consequences of various neuromusculoskeletal deficits. The combined use

of modeling, experimentation, and analysis provide a framework that could be used to diag-

nose motor control deficits, develop improved prostheses and aid in the engineering of legged

robots.

BiomechanicalNeural

Skeletal
structure

Neural
control

Neural
sensing

Muscular
actuation

Perturbation

Desired
State

Body state

Delay

Neuromechanics

Figure 1.1: Neuromechanics is the study of the three sub-systems needed to produce move-
ment in humans. The skeleton – to provide structure, Musculature – to provide actuation
of the skeleton, and the nervous system – to provide sensing and control of the muscles.
Biomechanics is the field of study pertaining to the musculoskeletal systems and study of
the neural components (motor, sensory, perception, etc.) are the purview of neuroscience.
Neuromechanics is the term used to describe the integrated study of biomechanics and neu-
ral control.

2



1.1 Background

To understand the movements people make, how they walk, hold a toothbrush or hit a home-

run, requires an understanding of the underlying biomechanics and neural control. Knowl-

edge of how these systems interact could offer insight into how to improve performance for

a particular movement or how to compensate for deficiencies in muscular, skeletal or neural

areas. However, neural control and biomechanics are unavoidably intertwined, making it

difficult to identify the contributions of each system to a particular motion by external obser-

vation alone. It is not well understood what relative contributions the musculoskeletal and

neural systems make to standing balance or how these systems interact to produce stable

behavior. The goal of this research is to separate the contributions of the biomechanics and

neural control to human movement by using both computational models and experiments

with carefully designed protocols.

1.1.1 How can neuromechanical interactions be modeled?

To begin, we may consider the interaction of the neuromechanics contributing to a behavior

as a feedback loop (Figure 1.1). This suggests a classical control scheme that divides the

neuromechanical dynamics into components that are to be controlled (plant) and those that

are added to achieve a desired behavior (controller). In this simplified model, we describe

the biomechanics (muscles and skeleton) as the plant, which is regulated by neural elements

(neural control and sensation) that define the control. Here we specify neural feedback de-

fined as the components of body state (joint kinematics, body orientation, etc.) that are pos-

sible to be sensed through proprioceptive, visual, vestibular, etc. sensory modalities [56].

Through integration along the neural axis this information is transformed into appropriate

motor commands [48, 99]. This is represented in Figure 1.1 as a comparison with a desired

neural state and the error is scaled with neural gains, which is ultimately the input into the

muscular dynamics that actuate the skeleton to produce an output behavior [114, 101].

However, in neuromechanical systems both the plant and control can potentially change

independently and concurrently in order to achieve a desired behavior. For example, subjects

have been observed to choose arm configurations that increase stability along directions of
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environmental instability [135] and the center-of-mass has been observed to be tightly reg-

ulated in standing under a variety of postures [39, 132] and perturbations [49] as well as in

locomotion over different surface conditions [28] where changes in posture were accompanied

with changes in muscle activity that likely reflected changes in neural control [49, 39, 132].

Furthermore, neuromechanical systems tend to leverage the intrinsic biomechanical char-

acteristics suitable for a desired behavior. Evidence of the importance of biomechanics in

neural control is exemplified by passive dynamic walkers [79], resonance of feeding appa-

ratus in aplysia [154] and multi-leg interaction in cockroaches running over rough terrain

[118]. Therefore, the instantaneous state of the neuromechanical system can be set (posture,

muscle state, neural sensitivity) in a feedforward manner to alter the dynamics, which in

balance the neural component is termed postural set [49, 101]. The ability to change the

dynamics of the neuromechanics a priori is especially important when considering that all

neural signals are accompanied with non-negligible delay [48, 56]. Thus, the sensorimotor

transformation (the round trip of neural sensation to motor command) is limited in how it

may be able to actively correct the system in response to a perturbation.

Therefore, for the purposes of this thesis, it will be assumed that feedforward mecha-

nisms that set the configuration of the skeleton, sensitivity of the neural sensorimotor trans-

formation and muscle state are slow relative to perturbed responses. This assumption is ex-

tended such that each neuromechanical component may be updated prior to a perturbation,

but then held constant during a response. Neural feedback is then the ideal information

about the body state and neural feedback gain is the scaled response of the sensorimotor

transformation that produces muscle activation. Changes in muscle properties and skeletal

configuration are then part of the postural set. This type of modeling allows for predictive

modeling of sensorimotor integration [138, 99, 35], postural control [59, 65, 69] and learn-

ing [113, 130]. More complex modeling schemes may be required when feedforward control

mechanisms must be modeled concurrently with feedback control, such as in understanding

reaching tasks[131, 129].
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1.1.2 Why is standing balance a good paradigm for studying neuromechanical in-
teractions?

The biomechanical and neural mechanisms required for standing balance are likely the fun-

damental prerequisites for all locomotor behavior [82]. Furthermore, understanding stand-

ing balance has significant clinical impact, as the leading cause of injury and death in the US

elderly is complications resulting from falls [15]. Increased morbidity caused from falls in

the elderly is likely due, in part, to deterioration of standing balance. Since standing balance

is a relatively steady-state behavior it is the best paradigm for observing responses to pertur-

bations as a method for probing the underlying mechanisms of balance [128, 82]. Due to the

inherent delay of neural feedback, it is possible to apply discrete translational perturbations

that result in an initial response solely due to biomechanics followed by a reflexive response

and an automatic postural response (APR) [48]. This allows a temporal separation to observe

responses first from solely biomechanics and then the whole body.

1.1.3 Why is delay in feedback a significant variable to investigate?

Physiological delays are significant during postural control and can limit the range of feed-

back gains that generate stability. Active responses in muscles that restore the body center-

of-mass occur at a latency of about 100 ms, and the resulting musculoskeletal forces are

further delayed by 50 ms due to the time course associated with muscle force production and

transmission [48]. As a result of this delay, the maximum magnitude of sensorimotor feed-

back gain is limited, with longer latencies reducing the set of feasible gains [75, 100]. De-

layed feedback models of posture have been used to identify the complex stable boundaries of

anterior-posterior balance [75, 99, 138, 87, 82]. Furthermore, delayed feedback models have

been used to describe the entire time-course of muscle activity during sagittal plane postural

responses in both cats and humans [69, 145]. However, how changes in delay affect stability

and interact with stance width is unknown.

Modeling dynamic systems with delay impose additional technical challenges for analy-

sis and computation of resulting behavior. Introducing a delay into an ordinary differential
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equation results in a class of equations termed delay differential equations (DDE) [117]. Clas-

sification of DDEs is done based on whether the delay occurs in derivatives less than the order

of the system (retarded system) or in derivatives equal to (neutral) or higher (advanced) than

the highest non-delayed derivative [86]. Further classification of DDEs may be defined based

on whether the delay is itself state-dependent, distributed across states or lumped into a sin-

gle value [142]. Within the scope of this thesis, a single lumped delay in a retarded form will

be explored. The technical challenges that this will introduce are the requirement of spec-

ifying a delay history in addition to traditional initial conditions. Furthermore, dynamical

analysis of the system will show that an infinite number of eigenvalues exist for this class of

DDE. Luckily, this is not insurmountable for retarded DDEs, as only a finite number of eigen-

values will exist to the right of any vertical cut of the complex plane [86]. These eigenvalues

can also be readily solved for numerically using a variety of techniques [27, 152].

1.1.4 Is lumped neuromuscular control a useful approximation?

Lumped neuromuscular control trades attribution of components of neural control to phys-

iological structures for qualitative insight and analytical simplicity. To develop a neuro-

mechanical model that can be derived analytically requires vast simplifications of the neuro-

muscular control. Muscle physiology and its relationship to the nervous and skeletal systems

is complex [156]. Muscle force is considered to be dependent on the level of neural activation,

length of the muscle and the rate of contraction [40]. Even simple muscle models, such as the

Hill-type [148], rely on nonlinear functions to specify the resultant output force of the muscle

based on its biomechanical and neural state. However, some of the nonlinear behavior of

muscle as an isolated force actuator may be offset by short-latency neural pathways that re-

sult in “linearized” behavior [90]. Therefore, the most rudimentary assumption of muscular

force output may be to assume a linearized form from a Taylor series expansion of a nonlinear

function, F(x, ẋ,u) that is dependent on muscle length, x, contraction velocity, ẋ, and neural

activation, u:

F(x, ẋ,u)≈ F(xo, ẋo,uo)+ ∂F
∂x
∆x+ ∂F

∂ẋ
∆ẋ+ ∂F

∂u
∆u (1.1)
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Next, an assumption must be made on the form of the neural control that activates the

muscle. The evidence of long-latency feedback responses in postural control suggest delay, τ

is important and previous modeling efforts have had success with phenomenological neural

control models that are based on proportional (kp), derivative (kv) feedback of body position

information [35, 66, 83, 99, 139]. This does not suggest that this is the underlying form of

neural control, rather it is merely a good fit that qualitatively gives insight into changes

in control. Another assumption may be made that moment-arms, R, for muscles are roughly

constant for a particular posture; this appears to be the case for ad/abduction of large muscles

spanning the hip [108]. With these assumptions a model of joint torque can be stated:

T ((x(t), ẋ(t))≈ R

kx(t)+bẋ(t)︸ ︷︷ ︸
muscular

+kpx(t−τ)+kv ẋ(t−τ)︸ ︷︷ ︸
neural

 (1.2)

While drastically simplified from the actual physiology, this model of the neuromuscular sys-

tem provides model parameters that can be varied independently of inertial and geometric

parameters that may be more directly measured from subject anthropometrics. Finally, this

simplification of neuromuscular control has proven to be very useful to understand changes

in sensorimotor control [138, 99, 35]. While this does not give insight into the individual

components of neuromuscular control that might change (muscle spindle sensitivity, synap-

tic weighting, etc) changes in lumped parameters are useful for identifying and predicting

changes in overall behavior. For example, changes in this form of control have been used to

predict deficiencies in various sensory modalities in standing balance [138, 99]. These quali-

tative changes can then be used to inform finer grained, complex models using the template-

anchor philosophy [31].

1.1.5 What is stability and how can we measure it?

Behaviorally, stable standing balance is a complicated set of behaviors that result in main-

taining the center-of-mass roughly above the base of support (stable) as opposed to behaviors

resulting in steps or falls (unstable). Clinical measures of balance such as the Berg Balance

Scale, Brunel Balance Assessment and Romberg Test use a mixture of self-reporting and clin-

ician graded performance of specific motor tasks. These clinical tests are largely qualitative
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and more precise measures of balance are needed to quantify progress of treatments. More

accurate quantification of stability may be found by linking behavioral stability to mathe-

matical models that have precise definitions of stability.

Ordinary differential equations can be assembled that approximate neuromechanical sys-

tems using rigid body dynamics for skeletal and environmental physics with state-dependent

differential equations for muscle force and neural sensing and actuation. Behavioral stability

is then connected to the mathematical description of the physics by relating the consistency

of the behavior to mathematical “attractors” that model maintaining, or returning to, the

original behavior in response to some perturbation. If the model is unable to return to the

initial behavior after perturbation, the model is considered destabilized. If the model is pre-

dictive, this mathematical instability will also be observed as a change in behavior of the

subject being modeled. As an example, a shove to a standing person might initiate a transi-

tion from standing to stepping (behavioral instability), which may be observed in a model as

a system departing from an equilibrium (mathematical instability).

Mathematical models of human behavior that result in complex nonlinear equations can

be analyzed using an array of tools from dynamical systems theory that allow characteri-

zation of system behavior based on local information. In the case that these equations are

linear, the classical method for determining stability is to use the eigenvalues of the charac-

teristic equation[123]. The eigenvalues are the exponential constants that define the time

evolution of the system behavior. Eigenvalues with positive real part are considered un-

stable, because as time advances the eventual behavior of the system will tend to depart

from equilibrium. Thus, asymptotic stability of a linear system is defined by all eigenvalues

having strictly negative real part. Similarly, this definition of asymptotic stability may be ex-

tended to the class of non-linear ODEs with Lyapunov’s Indirect Method, which states that

the eigenvalues of the linearized system about an equilibrium point describe the system’s

stability if the eigenvalues are not identically zero [58]. Many more techniques exist. Some

attempt to solve for a general region (region of attraction) where the dynamical system is

bounded based on some input [32, 58, 77, 125, 73], others for special cases of dynamical sys-

tems [33, 85, 117, 142] and still others based on a measure of system sensitivity [44, 74, 102].
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Application of these techniques to neuromechanical systems have produced useful results

that connect observed behavior to mathematical modeling [14, 7, 141, 121, 25].

However, a common definition of stability has not been agreed upon. Models of human

balance have been used to quantify the limits of stability through measures of joint torque

[95], relative motion between center-of-mass and center-of-pressure kinematics [93, 94], time

series trajectories [121, 25] and feedback gain [100, 75, 82, 138]. In order to interpret the

stability of measured dynamics of human standing balance requires a model and a metric, to

investigate the effects of neural and biomechanical changes, such as neural delay and stance

width. Unfortunately, classical stability analysis tools, such as gain margin [26], cannot

be used to compare behavior across neuromechanical conditions where both biomechanics

(plant) and neural control (controller) change during a task. Therefore, to overcome these

challenges and quantify the stability of standing balance across different conditions we in-

troduce the technique of stability radius [44, 102], an approach that builds upon eigenvalue

analysis as a compact representation of dynamical behavior.

1.1.6 Why is studying frontal plane motion important?

Examining stance width in the frontal plane offers a tractable way to control for changes in

postural configuration in order to examine the effects of postural configuration on standing

balance. Changes in postural configuration affect the dynamics of the body and likely ne-

cessitate changes in neural control to perform a movement. The nervous system may select

specific postural configurations to reduce the neural demand for a task. For example, sub-

jects have been observed to choose arm configurations that increase stability along directions

of environmental instability [135]. The selection of a postural configuration may also reduce

energy expenditure or sensitivity to noise [111]. Although this evidence demonstrates the

importance of neuromechanical interactions in understanding motor control, little is known

about the individual contributions and interplay between biomechanical and neural compo-

nents that are required for stable posture. Furthermore, few models exist to explore the

influence of postural configuration and feedback delay on stable balance in the frontal plane

[109, 36].
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Consistent with our intuitions about standing balance control, wider stance widths are

often considered to provide increased mechanical stability [148], but little quantitative evi-

dence exists to support these suppositions. The preferred stance width in healthy individuals

is approximately equal to hip width [110, 80]. However, in uncertain conditions, like riding

on a moving train, we often adopt a wider stance. In healthy subjects, muscle activation

decreases in response to the same external perturbation when standing with wider stance,

while center-of-mass displacement stays roughly the same [132, 39]. This has been suggested

to be due to increased reliance on passive stability mechanisms and a reduction in neural

control [39]. However, these observations cannot be used to dissociate the contributions of

biomechanical and neural systems to stability during these behaviors.

Focusing on frontal plane is of particular interest as stability in the medial-lateral di-

rection is markedly decreased in the elderly [72, 81], cerebellar ataxia [4] and Parkinson’s

disease [24]. Evidence from patients with neural deficits suggests that increasing stance

width alone may not be stabilizing. Patients with Parkinson’s disease who suffer from high

postural instability exhibit deficits in appropriate scaling of postural feedback gains [60] and

tend to choose a narrower stance – roughly half as wide as matched healthy controls [47]. To

better understand both healthy and neurologically-impaired subjects, a frontal plane model

with delayed feedback is necessary to quantify the neuromechanical interactions underlying

stable balance control across postural configurations.

1.2 A four-bar linkage as a model of frontal-plane standing

Standing upright in the frontal-plane naturally lends itself to being modeled by a closed chain

mechanism fondly referred to as the four-bar linkage. The ad/abduction movement of the be-

havior is accomplished primarily by hip and ankle joints; the knee remains practically locked.

Furthermore, it is the next level of sophistication over inverted pendulum models [149] and

allows for an intuitive way to account for changes in stance width. The four-bar linkage is

the simplest possible planar mechanism with a single-degree-of-freedom that employs only

pinned joints. However, this reduced simplicity has limitations; perhaps most importantly
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Figure 1.2: Specification of dimensions and angles of four-bar linkage used to model frontal-
plane standing balance. O marks the origin for the inertial frame. A and C mark the center-
of-mass of the leg links and B is the COM of the torso link. The ground (distance S) defines
the fourth link.

that it does not account for independent movement of the upper-body. This may be unaccept-

able if modeling responses to rotational perturbations [36]. To orient the reader to this model

of frontal-plane standing balance the basic kinematics and kinetics are presented for the spe-

cial case of the parallelogram four-bar linkage where two-links are of equal length (Figure

1.2). This section should be used to familiarize the reader with the dynamics of the system,

but care should be taken if the reader wishes to implement these equations in simulation as

small typographical errors (read incorrect signs, etc.) can lead to catastrophically incorrect

results. Therefore, the reader is encouraged to pursue other texts for detailed analyses [92]

and it is suggested to leverage existing software packages (AutoLev, Maple, Matlab, etc) to

aid in developing the equations of motion.

1.2.1 Symbols

The equations that follow utilize the dot notation to symbolize differentiation with respect

to time, q̇A = d
dt qA(t), and the explicit dependence on time is omitted, e.g. qA(t) is written

as just qA. Parameters are designated primarily as upper-case roman characters. Time-

varying coordinates and variables are primarily designated as lower-case roman and greek

characters. Bold-face is used to designate vectors and for simplicity these are assumed to be
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defined in R2. Moments and inertia dyads are written as scalar quantities with the implicit

assumption that they are defined in coordinates perpendicular to the plane of motion, i.e i×j.

COM center-of-mass

S stance width

W hip width

L leg length

LCOM length from ankle to center-of-mass of leg

HCOM vertical distance from hip center to center-of-mass of torso segment

qA relative ankle angle

qB relative hip angle

qC relative hip angle

α absolute leg angle

β absolute torso angle

γ absolute leg angle

rA position vector from origin to COM of link A (leg)

rB position vector from origin to COM of link B (torso)

rC position vector from origin to COM of link C (leg)

Mleg mass of leg about its COM (links A and C)

Mtrunk mass of trunk about its COM (link B)

I leg inertia of leg about its COM (links A and C)

I trunk inertia of trunk about its COM (link B)

T (q, q̇) total kinetic energy of the system

V (q) total potential energy of the system

L (q, q̇) Lagrangian or difference in kinetic and potential energy

I (q) generalized system inertia of linkage

Q (q, q̇) generalized centripetal and coriolis forces

G (q) generalized conservative and gravitational forces

1.2.2 Kinematics

1.2.2.1 Position

The absolute angles, those with reference to the inertial frame, can be found by solving a vec-

tor loop equation, which are written in exponential form for compactness with aid of Euler’s

identity (e jθ = cosθ+ j sinθ):

Le jα+We jβ = S+Le jγ (1.3)
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Solving the vector loop equation in terms of angle α gives trigonometric relations for the

remaining absolute angles:

β= 2arctan

−cB ±
√

c2
B −4cD cF

2cD

 (1.4)

γ= 2arctan

−cB ±
√

c2
B −4cA cC

2cA

 (1.5)

The simplifying terms for Eqs. 1.4 and 1.5 are provided below with common terms col-

lected and reduced:

c1 = S
L

(1.6a)

c2 = 2L2 +S2 −W2

2L2 (1.6b)

c3 = S
W

(1.6c)

c4 = −S2 −W2

2LW
(1.6d)

cA = c2 + (1− c1)cosα− c1 (1.6e)

cB =−2sinα (1.6f)

cC = c2 − (1+ c1)cosα+ c1 (1.6g)

cD = c4 + (1+ c3)cosα− c1 (1.6h)

cE = c4 − (1− c3)cosα+ c1 (1.6i)

It is important to note that the arctangent function has singular points and is often nu-

merically implemented only over −π/2 to π/2. Adequate evaluation may require interjecting

numerical noise or heuristic checks to avoid the singularities if using these equations directly.

The relative angles, those with respect to the previous link, can be written in terms of the
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absolute angles:

qA =α (1.7a)

qB =β−α (1.7b)

qC = γ−β (1.7c)

Next, the positions to the COM of each link are given in the inertial frame using the

definitions specified from the absolute angles:

rA = LCOM cosαi+
LCOM sinαj

(1.8)

rB = (
Lcosα+ W

2 cosβ−HCOM sinβ
)
i+(

Lsinα+ W
2 sinβ+HCOM cosβ

)
j

(1.9)

rC = (
LCOM cosγ+S

)
i+(

LCOM sinγ
)
j

(1.10)

1.2.2.2 Velocity

The angular velocities with respect to the inertial frame can also be solved by taking the

derivative of Eq. 1.3 and in a similar fashion the angular velocity for the driven angles can

be found by solving the vector velocity loop equation:

jLα̇e jα+ jWβ̇e jβ = jLγ̇e jγ (1.11)

The driven angular velocities are then given below in terms of the driving angle, α̇, which

must be solved using Eqs. 1.4 and 1.5 from above.

β̇= L
W

sin
(
γ−α)

sin
(
β−γ) α̇ (1.12)

γ̇= sin
(
β−α)

sin
(
β−γ) α̇ (1.13)
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The relative velocities are then just the derivatives of the relative angular positions (Eq.

1.7c) and can be written in terms of the absolute angular velocities as:

q̇A = α̇ (1.14a)

q̇B = β̇− α̇ (1.14b)

q̇C = γ̇− β̇ (1.14c)

The velocities of the COM for each link are given in the inertial frame by taking the

derivatives of the position vectors (Eq. 1.8):

ṙA = −LCOMα̇sinαi+
LCOMα̇cosαj

(1.15)

ṙB = (−Lα̇sinα− (W
2 sinβ+HCOM cosβ

)
β̇
)
i+(

Lα̇cosα+ (W
2 cosβ−HCOM sinβ

)
β̇
)
j

(1.16)

ṙC = −(
LCOM γ̇sinγ

)
i+(

LCOM γ̇cosγ
)
j

(1.17)

1.2.2.3 Acceleration

Finally, the angular acceleration of the driven angles can be solved for using the solutions

from the angular position (Eqs. 1.4 and 1.5) and velocity (Eqs. 1.12 and 1.13) from above and

writing the final loop equation as the derivative of the velocity loop equation (Eq. 1.11):

(
jα̈− α̇2)

Le jα+ (
jβ̈− β̇2)

We jβ = (
jγ̈− γ̇2)

Le jγ (1.18)

The angular accelerations are given below in terms of simplified variables:

β̈= cW cX − cU cZ

cU cY − cV cX
(1.19)

γ̈= cW cY − cV cZ

cU cY − cV cX
(1.20)
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The simplified terms used in the equations above are given below:

cU = Lsinγ (1.21a)

cV =W sinβ (1.21b)

cW = Lα̈sinα+Lα̇2 cosα+Wβ̇2 cosβ−Lγ̇2 cosγ (1.21c)

cX = Lcosγ (1.21d)

cY =W cosβ (1.21e)

cZ = Lα̈cosα−Lα̇2 sinα−Wβ̇2 sinβ+Lγ̇2 sinγ (1.21f)

For completeness, the accelerations of the COM for each link are given in the inertial

frame by taking the derivatives of the velocity vectors (Eq. 1.15):

r̈A = −LCOM
(
α̈sinα+ α̇2 cosα

)
i+

LCOM
(
α̈cosα− α̇2 sinα

)
j

(1.22)

r̈B = (−L
(
α̈sinα+ α̇2 cosα

)− (W
2 sinβ+HCOM cosβ

)
β̈− (W

2 cosβ−HCOM sinβ
)
β̇2)

i+(
L

(
α̈cosα− α̇2 sinα

)+ (W
2 cosβ−HCOM sinβ

)
β̈− (W

2 sinβ+HCOM cosβ
)
β̇2)

j+
(1.23)

r̈C = −LCOM
(
γ̈sinγ+ γ̇2 cosγ

)
i+

LCOM
(
γ̈cosγ− γ̇2 sinγ

)
j

(1.24)

1.2.3 Kinetics

It may be useful to investigate joint reactions in order to determine the validity of the model

for approximating standing balance. Since the model is pinned at the feet, it is helpful to

monitor the pinned reactions. In reality, a human subject will take a step or at least lift

up their feet, so if these reactions switch sign, or pull up, then the model is no longer ap-

proximating the physics of the behavior. Using conservation of linear momentum (Newton’s

equations) and angular momentum (Euler’s equations), we can formulate a series of equa-

tions that will reveal the joint reactions for the linkage (Figure 1.3). With the assumption
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Figure 1.3: Free-body diagram for the four-bar linkage. Torques, Ta and Tb, are shown as
the internal joint torques generated by neuromuscular control.

that all kinematics are known as well as the joint torques, the 8 equations below (3 vector

linear momentum equations, 2 scalar angular momentum equations) can be rearranged as

desired to solve for any of the 8 unknown joint reactions:

Mlegr̈A = (Rox +Rax)i+ (
Roy +Ray −mleg g

)
j (1.25a)

Mtrunkr̈B = (−Rax −Rbx)i+ (−Ray −Rby −mtrunk g
)
j (1.25b)

Mlegr̈C = (Rbx +Rnx)i+ (
Rby +Rny −mleg g

)
j (1.25c)

I legα̈= (RoxLCOM −Rax (L−LCOM))sinα+ (
Ray (L−LCOM)−RoyLCOM)

)
cosα+Ta

(1.25d)

I legγ̈= (RnxLCOM −Rbx (L−LCOM))sinγ+ (
Rby (L−LCOM)−RnyLCOM)

)
cosγ+Tb

(1.25e)

1.2.4 Dynamics

The unforced equations of motion for the four-bar linkage can be determined using the kine-

matics (Section 1.2.2), the free-body diagram (Figure 1.3), and principles of linear and an-

gular momentum or work and energy. The model was originally formulated using Kane’s

method [57]. In this primer the equations of motion are derived using an Euler-Lagrange

formulation for clarity without any loss in usefulness or functional changes.
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As a point of clarification, it is important to reiterate that the four-bar linkage has only a

single degree-of-freedom. Therefore, for the sake of this derivation the generalized coordinate

will be assumed to be qA. Also, for convenience of notation the time dependence of this

coordinate will be assumed implicit, qA = qA(t). Furthermore, it is important to note that

α = qA and that the absolute angles β and γ are to be interpreted as functions of qA, e.g.

β=β (qA).

1.2.4.1 Potential energy

In this section, the potential energy is quantified for each individual source and summed.

Without any additional energy-storage elements, such as springs, or additional conservative

body forces, gravity is the only source of potential energy. Therefore, the potential energy

may be written as the sum of gravitational potential energy from each of the separate links.

Using the form M gh, where the height, h, can be determined from the position to the COM

(Eq. 1.8), the total potential energy can be written as a function in terms of qA:

V (qA)= Mleg grA · j+Mtrunk grB · j+Mleg grC · j (1.26)

1.2.4.2 Kinetic energy

In this section, the kinetic energy is quantified for each individual source and summed. The

total kinetic energy for each link is a sum of the translational, 1
2 M|ṙ|2, and angular, 1

2 I q̇2,

kinetic energy. Using the definitions of linear and angular velocity (Section 1.2.2) the sum of

the kinetic energy from each link can be written as a function in terms of qA and q̇A:

T (qA, q̇A)= 1
2

(
Mleg|rA|2 + I leg q̇2

A +Mtrunk|rB|2 + I trunk q̇2
B +Mleg|rC|2 + I leg q̇2

C
)

(1.27)

1.2.4.3 Euler-Lagrange and the equations of motion

Having identified sources of potential and kinetic energy it is now possible to formulate the

Lagrangian (Eq. 1.28), which gives a nice form to insert into the Euler equation (Eq. 1.29)

and solve to apply the “least-action principle” to generate equations of motion.

L (qA, q̇A)= T (qA, q̇A)−V (qA) (1.28)
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d
dt

(
∂L (qA, q̇A)

∂q̇A

)
− ∂L (qA, q̇A)

∂qA
= 0 (1.29)

I digress for a moment to point out how very impressive the Euler-Lagrange result is; if

you have a second, check out its derivation from variational calculus principles. This gives

an elegant statement that within a conservative system the trajectories that result in an

extremum for the Lagrangian are the solutions of the Euler equation. This is mechanics

formulated as an optimization problem!

The potential and kinetic energy can be readily dropped into these equations and a sin-

gle scalar equation for the equation of motion can be solved by performing the necessary

derivatives.

1.2.4.4 Components of the equation of motion and their meaning

Individual components of the Euler-Lagrange equation can be uncovered that are useful for

understanding how changes in parameters might affect behavior. The first expansion of the

Euler-Lagrange equation (Eq. 1.29) is achieved by using the chain-rule on the time deriva-

tive. Below are the steps to expand the leading term of the Euler-Lagrange equation, where

for compactness L = L (qA, q̇A):

d
dt

(
∂L
∂q̇A

)
= ∂

∂qA

∂qA

∂t

(
∂L
∂q̇A

)
+ ∂

∂q̇A

∂q̇A

∂t

(
∂L
∂q̇A

)
+ ∂

∂t

(
∂L
∂q̇A

)
(1.30a)

= ∂

∂qA

(
∂L
∂q̇A

)
q̇A + ∂

∂q̇A

(
∂L
∂q̇A

)
q̈A +0 (1.30b)

Then equation 1.29 is rewritten in a form that allows for identifying components that can be

attributed to inertial, coriolis/centripetal, and gravitational forces:

(
∂2L (qA, q̇A)
∂q̇A∂q̇A

)
q̈A +

(
∂2L (qA, q̇A)
∂qA∂q̇A

)
q̇A − ∂L (qA, q̇A)

∂qA
= 0 (1.31)

With one last step the Euler-Lagrangian is expanded again by inserting Eq. 1.28 into Eq.

1.31 and some components are removed due to their partial derivatives vanishing and the

remainder results in the final set of components:

(
∂2T (qA, q̇A)
∂q̇A∂q̇A

)
q̈A +

(
∂2T (qA, q̇A)
∂qA∂q̇A

)
q̇A − ∂T (qA, q̇A)

∂qA
+ ∂V (qA)

∂qA
= 0 (1.32)
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This equation can be compared to the form of equations of motion that have inertial, I(q),

coriolis/centripetal, Q(q, q̇), and gravitational forces, G(q).

I(q)q̈+Q(q, q̇)+G(q)= 0 (1.33)

From this final expansion (Eq. 1.32) the linear term with respect to the generalized acceler-

ation, q̈A, is isolated and named as the generalized inertia of the system:

I (qA)=
(
∂2T (qA, q̇A)
∂q̇A∂q̇A

)
(1.34)

The generalized inertia gives a measure of the distribution of the mass of the linkage and

gives some intuition as to how readily the linkage will move when acted upon by an ex-

ternal force. Generalized inertia is closely related to traditional methods of determining

second-moments of inertia when computing angular momentum; however, instead of com-

puting moments of distribution of mass about a point the generalized inertia is derived from

the momenta directly. In the case of a purely rotational system with a fixed axis of rotation

the second-moment of inertia about that point will be identical to the generalized inertia.

Intuition of how generalized inertia changes with four-bar configuration and motion is not

necessarily intuitive. Figure 1.4) illustrates that for four-bar linkage parameters that ap-

proximate human subjects the majority of the change occurs as stance width changes, but

within a stance width inertia is relatively constant across physiologically observed motion.

Next, terms having quadratic generalized velocity are identified and are lumped together

as the generalized centripetal and coriolis forces:

Q (qA, q̇A)=
(
∂2T (qA, q̇A)
∂qA∂q̇A

)
q̇A − ∂T (qA, q̇A)

∂qA
(1.35)

These components are complex and can have significant effects when velocities are large;

conversely, when velocities are small these terms are negligible and will vanish altogether if

the equations of motion are linearized.

Finally, the remaining term associated only with the potential energy is defined as the

generalized conservative or gravitational force:

G (qA)= ∂V (qA)
∂qA

(1.36)
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Figure 1.4: Generalized inertia changes most over stance width and less with changes in
kinematics. The plots give the change in inertia over a range of linkage motion for a human
sized four-bar (mass = 70 kg, height = 1.8 m). Shaded area marks the largest observed
changes for that variable. Kinematic variables are zeroed with respect to their starting value
for each particular stance width in the symmetric configuration.

This component is particularly useful for analysis of stability of the system and if the partial

of this quantity with respect to the generalized coordinate is positive the conservative field

are known to be destabilizing.

Linearization of all three of these components was performed and the results can be found

in Appendix A.

1.3 Organization and summary of work

The organization of this thesis was built around three areas of neuromechical interaction

in human standing balance: stance width, neural delay and neural feedback. The primary

goal of the chapters herein was to provide evidence of how changes in biomechanics and/or

neural control can affect balance responses and to lay the framework for quantifying how

these interactions may affect stability. The secondary goal was to develop an analytic model

of frontal plane standing balance (Appendix A) and develop procedures to quantify stability

of neuromechanical systems (Chapter 4).

Each chapter, for the most part, is capable of standing alone; however, if a primer is

needed it may be worthwhile to investigate the methods described in chapter 2 and the cor-

responding appendix A, which provide the explanation of the four-bar linkage model with
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delayed feedback that is referenced throughout the rest of the work. The scope of the work

pertains to three basic aims, which are described below with how pertinent chapters support

the respective aim:

• Aim 1 Predict changes to stability due to changes in stance width, feedback gains,

and delays. The central hypothesis was that a constant level of stability could be main-

tained by either changes in stance width or neural feedback to compensate for altered

biomechanical or neural parameters.

– Chapter 2 Model results predict that delayed feedback gain must increase as

stance width decreases in order to maintain stability.

– Chapter 3 As a corollary, simulations predicted that changes in neural control

could be compensated by changes in stance width to produce similar torque re-

sponses.

– Chapter 5 Model predictions of center-of-mass motion show that both postural

set and delayed neural feedback change with altered stance width.

• Aim 2 Quantify trade-offs in stability of standing balance from changes in neuro-

mechanical interactions. This aim’s hypothesis was that the responses from balance

behaviors are the result of neuromechanical factors that coordinate to produce a simi-

lar level of stability across a variety of biomechanical contexts.

– Chapter 2 Analytic measures of gain margin were predictive of feedback gains

within a stance width that correlated with perturbation magnitude that induced

experimentally observed stepping behavior.

– Chapter 4 Stability radius allowed quantifying stability in a model across biome-

chanical contexts and showed similar stability could be achieved across stance

widths by decreasing feedback gain as stance width increased.

– Chapter 5 Simulated center-of-mass motion with feedback gains selected with

similar stability across stance width matched experimental observations.
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• Aim 3 Compare neuromechanical interactions across biomechanical contexts. Similar

to the hypothesis of Aim 2, here it was hypothesized that changes in neural feedback

accompany differences in biomechanical context in order to maintain similar CoM be-

havior.

– Chapter 3 Stance width decreased with age, but performance in time to peak

torque was similar, which required increased feedback gain in the older subjects.

– Chapter 4 Feedback gains selected with similar stability radius resulted in similar

performance across stance widths.

– Chapter 5 Using different conditions of body mass it was shown that similarity in

CoM motion required delayed neural feedback to scale with both body mass and

stance width, or inertia of the subject.

The thesis also has components of modeling, experimentation, and analysis that are

spread throughout the various chapters. If the reader is more interested in the modeling

aspects chapter 2 and the appendix A develop the four-bar linkage model of frontal plane

balance. The model is probed in detail for how parameters of stance width, feedback gain

and feedback delay effect torque generation in chapter 3. The effects of these parameters on

center-of-mass motion of the model are explored in chapter 5.

Experimental study tie-ins are found in most of the chapters. Most of the populations

consist of healthy, college-aged volunteers, but the protocols are different. Thus, a particular

chapter may be of more interest based on the experiments performed. Chapter 2 utilized a

subset of trials collected by Julia Choi from healthy college-aged students where the stance

widths were specified at 10, 19, and 32 cm with perturbations specified at 12 cm, 35 cm/s,

and 0.45 g. Chapter 3 used data collected in part by Kyla Ross for a Tai Chi study that

included individuals across a range of ages, 23-62 years, with subjects selecting their own

preferred stance width and perturbations specified at 12 cm, 35 cm/s, and 0.5 g. The final

chapter 5 used data specifically collected for the study from healthy, college-aged volunteers

that included a variety of stance widths (10 cm, 30 cm, self-selected), perturbations (high

and low relative to 24 cm, 15 cm/s, 0.1 g), and weight conditions (unweighted and +20% body
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mass).

Analysis and development of tools for quantifying stability of neuromechanical systems

was also a large part of this thesis. Chapter 2 and the corresponding appendix A review how

boundaries of stability can be found using Nyquist stability criteria for delayed systems. This

chapter also shows how gain and phase margin can be calculated for the delayed feedback

four-bar linkage system. Chapter 4 is the most critical chapter for quantifying stability of

neuromechanical systems and gives a review of the stability radius technique, which gives a

robust measure of relative stability. This chapter also provides a basic primer for applying the

stability radius to delay systems. Application of the stability radius method for quantifying

the parameters of frontal plane standing balance is provided as a proof of concept in appendix

B.

In short, the message of the following chapters is that biomechanics and neural control

covary to produce stable behavior. These chapters were written with the bias that neither

neural control nor biomechanics alone are capable of explaining motor behavior. Therefore,

I hope that this thesis provides some evidence that even the simple maneuver of increasing

one’s stance width is accompanied with sophisticated changes in neural control along with

the obvious change in skeletal geometry and changes in muscle operating properties. This

thought is expanded and future directions are suggested in the concluding chapter.
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CHAPTER II

NEUROMECHANICAL FACTORS THAT AFFECT THE STABILITY OF

STANDING BALANCE

2.1 Introduction

If you are standing do you feel more stable with your feet close together or spread apart?

Changes in postural configuration affect the dynamics of the body and likely necessitate

changes in neural control to perform a movement. Changes in stance width in a simple

robotic model of standing balance control were found to be destabilizing without coordinated

adjustments in physiologically-inspired delayed feedback control gains for moderate pertur-

bations [109]. The nervous system likely selects specific postural configurations to reduce

the neural demand for a task. For example, subjects have been observed to choose arm con-

figurations that increase stability along directions of environmental instability [135]. The

selection of a postural configuration may also reduce energy expenditure or sensitivity to

noise [111]. Although this evidence demonstrates the importance of neuromechanical inter-

actions in understanding motor control, little is known about the individual contributions

and interplay between biomechanical and neural components that are required for stable

posture and movement.

Consistent with our intuitions about standing balance control, wider stance widths are of-

ten considered to provide increased mechanical stability (Winter 1995), but little quantitative

evidence exists to support these suppositions. The preferred stance width in healthy individ-

uals is approximately equal to hip width [110, 80]. However, in uncertain conditions, like rid-

ing on a moving train, we often adopt a wider stance. In healthy subjects, muscle activation

decreases in response to the same external perturbation when standing with wider stance,
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while the body’s center-of-mass displacement stays roughly the same across different stance

widths [39, 132]. This has been suggested to be due to increased reliance on passive stability

mechanisms and a reduction in neural control [39]. However, these observations cannot be

used to dissociate the contributions of biomechanical and neural systems to stability during

these behaviors. Evidence from patients with neural deficits suggests that increasing stance

width alone may not be stabilizing. Patients with Parkinson’s disease who suffer from high

postural instability exhibit deficits in appropriate scaling of postural feedback gains [60] and

tend to choose a narrower stance - roughly half as wide as matched healthy controls [47]. To

better understand both healthy and neurologically-impaired subjects, a frontal plane model

with delayed feedback is necessary to quantify the neuromechanical interactions underlying

stable balance control across postural configurations.

Physiological delays are significant during postural control and can limit the range of

feedback gains that generate stability; however, the consequences for how balance is con-

trolled in the frontal plane is not known. Active responses in muscles that restore the body

center-of-mass occur at a latency of about 100 ms, and the resulting musculoskeletal forces

are further delayed by 50 ms due to the time course associated with muscle force production

and transmission [48]. As a result of this delay, the maximum magnitude of sensorimotor

feedback gain is limited, with longer latencies reducing the set of feasible gains [75, 100]. De-

layed feedback models of posture have been used to identify the complex stable boundaries of

anterior-posterior balance [75, 99, 138, 87, 83]. Furthermore, delayed feedback models have

been used to describe the entire time-course of muscle activity during sagittal plane postu-

ral responses in both cats and humans [69, 145]. However, feedback control of frontal plane

balance has received little attention, and may be more dramatically influenced by postural

configuration [36, 109].

We hypothesized that changing stance width during standing balance control alters the

neuromechanical interactions, necessitating appropriate adjustments of neural feedback gains

to maintain stability. We performed analytic and computational analysis on a simple frontal-

plane model to examine how delayed feedback control of standing balance must change as

a function of stance width. In our model, we examined the mechanical stability of the body
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alone, and as stabilized by delayed feedback control. We also considered foot lift-off con-

straints and the effect of perturbation size on the robustness of stability during balance con-

trol. Our results showed that many different feedback gains produce stable behavior for each

stance width. However, stable balance was not possible with a single feedback gain across

all stance widths. This suggests that reduction of muscle activity in wide stance is not due

to increased biomechanical stability in wide stance. Rather, increased sensitivity of body mo-

tion to joint torque production may necessitate that the nervous system appropriately tune

feedback gains according to the biomechanical context.

2.2 Methods

We developed a model of frontal plane balance to investigate the effects of postural config-

uration and delayed feedback control on stability to perturbations as stance width changed.

We first quantified biomechanical properties and the stability of the model in the absence

of feedback control as stance width changed. To investigate how postural configuration in-

fluenced the effect of feedback information during perturbations, we identified a relationship

between hip angle and center-of-mass motion to a generalized coordinate (ankle angle). Next,

the stability of the model under delayed feedback control was analyzed subject to different

combinations of configuration, feedback gains and delay. Further, we determined how foot

lift-off constraints and perturbation magnitude further reduced the feasible range of delayed

feedback gains. Finally, we compared model predictions with recorded frontal plane motion

in human experiments. Details about the model are provided in Appendix A and summarized

here.

2.2.1 Frontal plane model of balance

In order to simulate and analyze frontal plane motion of an adult human we modeled the

body segments as a four-bar linkage and the neural control as delayed position and velocity

feedback. The linkage consisted of four segments corresponding to the ground, two legs

and the torso connected by pin joints in a closed chain (Figure 2.1). Inertial and geometric

properties were based on average anthropometric data for an adult male of height 1.8 m

and weight 70 kg (Appendix A: Table A.1) (Winter 2003). The leg segments were a lumped
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Figure 2.1: Frontal plane model of human balance control. Frontal plane motion of the
body was modeled as a four-bar linkage. Two bars represent the legs, the third the torso and
the fourth bar is the ground. Perturbations are applied as ground translations. Important
parameters of the model are the hip width, W ; stance width, S; hip torque, TH ; and the ankle
angle, qA.

representation of the shank and thigh with a locked knee and pin joints for the ankle and hip.

The torso segment included head, arms (folded across the chest), trunk, and pelvis and was

attached to the leg segments by pin joints at the hips. The ground segment was considered

immobile and its length was used to specify the stance width of the model.

The equations of motion for the four-bar linkage were derived using a symbolic dynamics

package (AutoLev 4.1, OnLine Dynamics, Inc) and matched those found in engineering texts

[92]. The nonlinear equations of motion had one mechanical degree-of-freedom, which was

specified by a generalized coordinate defined by the angle between the ground and the left leg,

i.e. the ankle angle. Muscular force was modeled as a lumped term and applied with constant

moment arms as torque about each hip joint. Perturbations to the model were included in

the equations of motion as a time-varying acceleration to the inertial frame.

Hip torque was generated as delayed feedback with fixed gains on position and velocity.

Feedback was dependent on either hip joint or center-of-mass horizontal excursion. Analy-

sis of the model was done using hip joint feedback unless stated otherwise. The delay was
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selected to be a single lumped value of 150 ms to account for neural transmission from sensa-

tion to actuation (100 ms) and mechanical actuation (50 ms) as observed from the automatic

postural response [48].

The perturbation applied to the four-bar linkage was applied as an inertial acceleration of

the ground that matched platform translations from experimental ramp-and-hold protocols.

The acceleration profile consisted of two Gaussian pulses with opposite directions, each 40 ms

wide, spaced 500 ms apart and having amplitudes ranging from 0.1-0.5 times earth gravity

(g). This perturbation resulted in a zero starting velocity, a constant velocity movement phase

and finally ending at rest.

In addition we performed numerical simulation of the equations of motion in Matlab.

Integration was performed with the explicit trapezoidal rule with a step size of 1 ms and a

total simulation time of 6 s. Initial conditions and state history were assumed to be zero. The

perturbation was introduced as previously described. Center-of-mass trajectories and ground

reaction forces were then recorded.

2.2.2 Biomechanical stability analysis

We identified stance width dependent changes in the biomechanical properties of the model

as quantified by the inertia, gravitational moment, sensitivity of the center-of-mass motion

to joint torque, and the stability of the model, as defined by the eventual return of the model

to an equilibrium position after a perturbation. The equilibrium position of the model was

defined by the symmetrical configuration (Figure 2.1) where all external forces were stati-

cally balanced, the center-of-mass was mid-way between the ankle joints and the hip angles

were equal. Inertia, gravitational moment and joint torque was determined by linearizing

the uncontrolled equations of motion with respect to the generalized coordinate and plotting

them as functions of stance ratio (stance width divided by hip width). The anthropometric

properties of an average adult male human were used for the plots (Appendix A: Table A.1)

[148].

Inertia is a measure of an object’s resistance to a change in motion, and was used as
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an indicator of whether acceleration of the body would result in large motions (small iner-

tia) or small motions (large inertia). Linearized inertia was calculated from the non-linear

equations of motion resulting in a configuration dependent term (see Appendix A: Eq. A.7).

The linearized inertia was used to quantify the magnitude of center-of-mass motion from

accelerations induced by perturbations and joint torques.

Although gravity is constant, it presents a destabilizing perturbation that is configura-

tion dependent and is mathematically equivalent to a negative, or destabilizing, stiffness. A

large magnitude of the linearized gravitational stiffness would result in a large destabilizing

perturbation for a small deviation from the equilibrium configuration. The linearized gravi-

tational stiffness was also represented as a configuration dependent lumped parameter (see

Appendix A: Eq. A.8).

The sensitivity of the joint torque quantified the efficiency of transmitting torque at the

hip to motion of the center-of-mass. This relationship was calculated by employing the law of

power continuity, which states that the product of torque and angular velocity must be con-

served throughout a linkage (Norton 2001). The amplification or attenuation of the effective

torque due to changes in stance width was used to determine the efficiency of that config-

uration. Effective torque on the center-of-mass due to torque applied at the hip joints was

written as a configuration dependent term for the entire four-bar linkage (see Appendix A:

Eq. A.9).

To investigate differences between center-of-mass and joint angle as possible feedback

variables, linear relations were calculated between hip angle, center-of-mass horizontal ex-

cursion and the generalized coordinate (ankle angle). Ratios from the linearized equations of

motion were calculated that transformed a small increment in either hip angle or center-of-

mass horizontal excursion into an increment in the generalized coordinate. These ratios were

plotted as functions of stance ratio (stance width-to-hip width) using average anthropometric

values (Appendix A: Table A.1).
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2.2.3 Delayed feedback stability analysis

To determine the stability of delayed feedback on the biomechanical system the hip joint

feedback gains were compared across different delays, stance widths and perturbations. The

stability of the hip joint feedback gains was found by solving the non-linear equations of mo-

tion for the critically stable boundaries. These boundaries were defined mathematically by

the feedback gain values that resulted in solutions to the characteristic equation having zero

real part. Behaviorally, this boundary divided gains resulting in falls (unstable) from those

that returned the center-of-mass to the equilibrium position (stable). Since the characteristic

equation for the delayed system resulted in an infinite number of solutions, numerical tech-

niques were utilized to solve for a finite number of eigenvalues and to check the analytic sta-

bility boundaries using custom Matlab routines and the DDE-BIFTOOL delayed-differential

equation toolbox [27].

To quantify the relative stability between different stable feedback gain values, a fre-

quency domain analysis of the linearized equations of motion was performed. The measures

of gain margin and phase margin were used to identify robustness and system performance

to perturbation magnitude. Gain margin is defined as the loop gain measured when the exci-

tation frequency causes a -180◦ phase difference between input and output. This was used to

quantify the perturbation magnitude the model could withstand, where a large gain margin

inferred the model was stable against a large perturbation. Phase margin is defined as the

phase difference from -180◦ measured when the excitation frequency results in a loop gain

of 1. Similarly, a large phase margin was inferred to mean the model was stable for a large

perturbation.

To model physiological boundaries of stability, numerical simulations were used to iden-

tify hip joint feedback gains that produced feet-on-ground behavior. Simulations were per-

formed in a grid-wise manner across stance-ratios 0.5-2.0, all stable feedback gains and per-

turbation magnitude 0.1-0.5 g. The ground reaction forces were calculated for each simula-

tion and used to determine if foot lift-off could occur. If ground reaction forces changed in sign

during simulation, the associated parameters were classified as producing foot lift-off behav-

ior. For each perturbation magnitude and stance width the hip joint feedback gains producing
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feet-on-ground behavior were identified, and the boundary of these gains was plotted.

2.2.4 Experimental comparisons

In order to compare simulated and experimental results, body segment kinematics and ground

reaction forces were collected from healthy human subjects during platform perturbations.

All protocols were approved by the Georgia Tech and Emory University Institutional Review

Boards and conformed to the Declaration of Helsinki. Five subjects (3 male, 2 female, 20.6

± 1.8 years of age) were recruited. Subjects stood with arms crossed and their feet spaced

at three fixed distances of 10, 19 and 32 cm. Each foot was located on an individual cali-

brated force plate (AMTI, Watertown, MA) that recorded all six reaction forces and moments.

Subjects were instructed to stand upright and to maintain balance during perturbations, but

were not given information about time of perturbation onset. Perturbations were adminis-

tered with a custom platform (Factory Automation Systems, Atlanta, GA) with position and

acceleration of the platform recorded. At each stance width, subjects received 10 ramp-and-

hold platform perturbations in the medial-lateral direction with the platform moving to the

subject’s left. The perturbations had an overall movement distance of 12 cm, a plateau ve-

locity of 35 cm/s and a peak acceleration of 0.45 g. Subjects could not predict perturbation

onsets because inter-trial intervals were varied between 5-15 s.

Subject kinematics were captured with a custom 26-marker set that included head-arms-

trunk, thigh, shank, and foot segments using a motion capture system (Vicon, Oxford, UK)

utilizing 8 cameras. Motion capture was sampled at 120 Hz and platform kinematics at 1080

Hz. Platform kinematics were low-pass filtered at 30 Hz (third-order zero-lag Butterworth

filter) and combined with motion capture kinematics to produce relative position, velocity and

acceleration of the markers with respect to the platform. The relative motion of the markers

and a proportional model of human mass were used to calculate center-of-mass position,

velocity and acceleration for each subject [148].

Simulated center-of-mass position was fit to experimental data through optimization of

the feedback gains for the non-linear equations-of-motion. Fits were calculated for two feed-

back rules, one using hip angle and the other center-of-mass excursion. Each experimental
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trial was fit using the subject’s measured mass, height, stance width and perturbation accel-

eration profile. For a given subject and stance width, model parameters were fixed and only

feedback gain values were allowed to vary. This resulted in a total of 300 fits: 2 feedback rules

by 10 perturbations by 3 stance widths by 5 subjects. Optimization to solve for the feedback

gains utilized a cost function defined by the difference between simulated and experimental

center-of-mass trajectories with penalties on absolute (weight of 1) and sum-squared error

(weight of 10).

2.3 Results

2.3.1 Mechanical stability decreased with increasing stance width

2.3.1.1 Inertia decreased with increasing stance width

The linearized inertia about the equilibrium configuration was found to decrease as stance

width increased within the physiological range (Figure 2.2A). The combined inertia of the

body and legs was configuration dependent, changing with stance width and joint angle.

Changes to stance width had the most effect on the apparent inertia of the body segment.

Increasing stance width resulted in decreased inertia. Therefore, the same amount of applied

torque produced at wide stance resulted in greater center-of-mass motion then when applied

at narrow stance.

2.3.1.2 Gravitational stiffness remained constant with changing stance width

The destabilizing effect of gravity remained nearly constant across the physiological range of

stance (Figure 2.2B). In general the gravitational stiffness was found to have a minimum

near the stance ratio of 1 and increased to a maximum as stance width approached the

singular configuration. The destabilizing effect of gravity therefore remained nearly constant

for physiological stance ratios of 0.8-2.0.

2.3.1.3 Hip torque was more effective at wider stance

For constant torque at the hip, the effective torque on the center-of-mass increased as stance

width increased. The amplification of the hip joint torque was found to quadratically increase

with stance width. As stance width increased the same input torque produced a greater total
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Figure 2.2: Changes in biomechanical properties of the body as stance width increased. For
a nominal human (70 kg, 1.8 m) as stance width increased A) inertia decreased B) gravita-
tional “stiffness” stayed roughly the same C) hip torque leverage increased and D) hip angle
sensitivity to ankle angle changes increased (center-of-mass sensitivity decreased slightly),
which all resulted in decreased biomechanical stability. Shaded regions mark physiological
stance ratios.

torque on the motion of the four-bar linkage (Figure 2.2C). In other words, torque applied at

the hip had more leverage on the center of mass at wider stances.

2.3.1.4 Model without delayed feedback was unstable across stance widths

The four-bar linkage without torque feedback was found to be unstable for all physiological

stance widths. Stability decreased as stance width increased due to decreasing inertia while

the destabilizing gravitational stiffness remained constant. In order to stabilize the mechani-

cal system with delayed feedback both position and velocity were required. Position feedback

was required to counteract destabilizing gravitational stiffness and velocity feedback was

required to produce a damped response.

2.3.1.5 Center-of-mass and joint angle feedback scale linearly across stance widths

The effect of a small change in the generalized coordinate (ankle angle) on the hip angle or

center-of-mass excursion changed proportionally with different stance widths (Figure 2.2D).
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The hip angle became more sensitive to changes in ankle angle as stance width increased.

Conversely, the center-of-mass excursion decreased in sensitivity to changes in ankle angle

with increasing stance width. Center-of-mass excursion was more sensitive to changes in

ankle angle than hip angle for stance ratios (S/W) less than 0.8 and hip angle was more

sensitive to changes in ankle angle at wider stances. Furthermore, sensitivity to changes

in ankle angle varied much less for center-of-mass excursion compared to hip angle over

the physiological range. A small perturbation to the overall body angle resulted in larger

excursion of the hip angle at wide stances. The linear relationships to the generalized co-

ordinate predicted the non-linear feedback gains on center-of-mass excursion from hip joint

angle feedback gains very closely.

2.3.2 Stable feedback gain boundaries decreased with increasing stance width

2.3.2.1 Stable delayed feedback gains have upper and lower bounds

The stable limits for the delayed feedback gains produced D-shaped boundaries associated

with functional instabilities (Figure 2.3A). The boundaries were determined as a paramet-

ric solution to the characteristic equation (Appendix A: Eq. A.12). The left-hand boundary

(Appendix A: Eq. A.13) represented a lower limit on delayed position feedback gain, kp. The

functional consequence of this limit corresponded to the delayed position feedback gain (kp)

being unable to counteract the destabilizing gravitational stiffness. The right-hand bound-

ary (Appendix A: Eq. A.14) restricted both position and velocity feedback gains. This upper

boundary was a consequence of the feedback delay and functionally represented instability

due to over-correction. Finally, an upper limit on the length of delay was found, 429 ms for an

average human at preferred stance, for which there were no feedback gain values that were

stable (Appendix A: Eq. A.15).

2.3.2.2 Stable gain space decreased with increasing stance width

The set of stable delayed position and velocity hip joint feedback gains was found to decrease

as stance width increased (Figure 2.3A). The maximum and minimum values of stable feed-

back gain were found to decrease as stance width increased. Specifically, narrow stance width

(S/W=0.8) was found to have 98% more gain space area than the wide stance width (S/W=2.0).

35



0 500 1000 1500 2000 2500 3000

200

400

600

800

1000

Position gain (kp)

Ve
lo

ci
ty

 g
ai

n 
(k

v)

A B

C
en

te
r-

of
-m

as
s 

ex
cu

rs
io

n 
[c

m
]

C

0.5 1 1.5 20

1000

4000

6000

Po
si

tio
n 

ga
in

 (k
p)

Stance ratio (S/W)

–30

0

30

2.5 s

Figure 2.3: Regions of stable feedback gains across stance widths demonstrated that a fixed
set of gains was not stable across different stance widths. A) Shaded areas represent stable
position and velocity feedback gain values for a nominal human (70 kg, 1.8 m) with stance
ratios of 0.8 (dotted), 1.0 (thin) and 1.2 (thick). B) Center-of-mass trajectories resulting from
a 0.4 g perturbation for each stance-ratio using the same gain value, marked as a white star
in gain space. C) Stable position feedback gain values across all physiological stance widths.

High gain values that were stable for narrow stance were unstable for wide stance. Stable

gain regions did not completely overlap for different stance widths. However, even when

overlap did occur, the simulated center-of-mass trajectories for the same gain across stance

widths varied considerably (Figure 2.3B). Similar results were found when center-of-mass

excursion feedback was used; however, more overlap was observed in the stable gain regions

across stance widths.

2.3.3 Ground contact reduced set of stable feedback gains

2.3.3.1 Ground contact constraint produced more physiological center-of-mass trajectories

Center-of-mass trajectories associated with hip joint feedback gains limited by the feet-on-

ground condition matched more closely with experimentally observed trajectories. High sta-

ble feedback gains produced center-of-mass trajectories that were highly oscillatory in the

model (Figure 2.4). These did not match experimental observations of human motion that

show near critically damped center-of-mass trajectories when subjected to a platform per-

turbation. Limiting stable feedback gains to those that produced feet-on-ground behavior
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resulted in more physiological looking trajectories and removed highly oscillatory center-of-

mass responses.

2.3.3.2 Stable gain space decreased as perturbation magnitude increased

Restricting stable hip joint feedback gains to those that produced simulations with feet-on-

ground behavior when the model was subjected to a finite perturbation resulted in a reduc-

tion in the stable boundaries. Infinitesimally small perturbations resulted in feet-on-ground

behavior for all feedback gain values determined from the analytic stable boundaries. How-

ever, as perturbation acceleration magnitude increased the set of stable gains associated with

feet-on-ground behavior was reduced (Figure 2.4A). The gain space area of feet-on-ground be-

havior for a perturbation acceleration of 0.45 g and S/W=1.0 was reduced by 96%.
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2.3.3.3 Gain margin predicted simulated foot lift-off threshold

Similar foot lift-off thresholds were predicted from full nonlinear simulations as well as from

the gain margin of the linearized system (Figure 2.5A). From simulations, the right-hand sta-

bility boundary associated with delayed feedback and feet-on-ground behavior decreased in

size as perturbation magnitude increased, while the left-hand boundary remained constant.

As perturbation magnitude increased, this boundary decreased until no feedback gains were

stable. The analytic measure of gain margin was found to increase as feedback gain decreased

to the lower limits of position and velocity (Figure 2.5A). A gain margin greater than 6 times

the perturbation magnitude was capable of predicting stable feet-on-ground responses. The

phase margin increased as position feedback decreased and velocity feedback was near the

middle of its range (Figure 2.5B). Gain and phase margin were found to be identical for both

hip joint and center-of-mass excursion feedback.
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2.3.3.4 Experimental feedback gain decreased as stance width increased

The full nonlinear simulated center-of-mass trajectories fit using hip feedback gains matched

the experimental trajectories with an average root-mean-square error of 8.00± 2.82 mm (r2

= 0.97± 0.02) across all subjects and trials (Figure 2.6). The position and velocity feedback

gains necessary to fit the center-of-mass trajectories were found to both decrease as stance

width increased (Figure 2.7A and 2.7B). The fits using center-of-mass excursion feedback re-

sulted in nearly identical fits to those calculated using hip joint feedback, and these gains

were related closely by a fixed configuration dependent ratio. Feedback gains were found to

scale proportionally together with stance width at a ratio where position gain was approxi-

mately 3.6 times velocity gain, see slope of line in Figure 2.7C. Finally, the fitted feedback

gains were found to have a gain margin larger than 1.5 (Figure 2.8).
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2.4 Discussion

The seemingly simple act of increasing one’s stance width requires that the nervous system

appropriately alter delayed sensorimotor feedback gains due to the reduced torque required

for stability at wider stance widths. Contrary to intuition, biomechanical stability decreases

at wider stances due to the reduction in rotational inertia, while the destabilizing gravita-

tional moment remains nearly constant. Without neuromuscular involvement, a wide stance

is less stable than a narrow stance. The changes in the biomechanical properties of the body

result in increased leverage and sensitivity of center-of-mass motion to changes in hip torque

at wide stance. Maintaining the same center-of-mass motion in response to perturbations

requires less hip torque at wide stance than at narrow stance. This prediction is consistent

with observations that muscle activity from postural responses decreases with increasing

stance width [132, 39]. However, in order to achieve appropriate levels of stabilizing torque

with delayed sensorimotor feedback, a decrease in gain is required as stance width increases.

Therefore, feedback gains that are stable for a narrow stance width are unstable for a wide

stance width (Figure 2.3A). Thus, to maintain postural stability, the nervous system must

rapidly adjust the magnitude of feedback gains appropriate for a selected postural configura-

tion.

2.4.1 Implications of delayed feedback, stance width and foot lift-off for balance
control

Our model demonstrates that neural strategies for human postural control are constrained

by physiological delays associated with the transmission of sensory and motor signals. Neuro-

mechanical delays in healthy humans are relatively long, typically 150 ms for postural re-

sponses, which constrain the rapidity that neural feedback systems can affect body dynamics

[48]. Delays result in upper bounds for feedback gains, as large gain magnitudes lead to

instability [120]. Furthermore, as delays increase, the upper boundary and the set of stable

feedback gains decreases [116, 109, 100, 75]. The inclusion of delay in postural control mod-

els is thus necessary to appropriately predict the set of stable feedback gains for standing

balance control [99, 82, 75, 138]. In contrast, feedback models that omit physiological time
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delays [95, 65] would not identify the upper limits for feedback gains. The lack of an up-

per limit on allowable feedback gains could lead to the incorrect conclusion that a single set

of gains would be sufficient for stability across different stance widths. Furthermore, H.S.

Black’s original concept of high-gain negative feedback may produce the unintended conse-

quence that the control completely masks the underlying system dynamics [8]. In contrast,

biological systems tend to leverage the intrinsic biomechanical characteristics suitable for a

desired behavior. Evidence of the importance of biomechanics in neural control is exemplified

by passive dynamic walkers [79], resonance of feeding apparatus in aplysia [154] and multi-

leg interaction in cockroaches running over rough terrain [118]. Neglecting neural delay

allows the application of high gain feedback that is likely non-physiological and may result

in incorrect interpretations of closed loop stability.

The set of feasible feedback gains are further constrained by the functional limits of foot

lift-off. Utilizing a foot lift-off criterion is important when identifying functional limits of

stability. Many studies utilize an inverted pendulum to model postural control, as the second

order dynamics and gravitational instability capture the characteristics of observed center-of-

mass motion [150, 99, 94, 82, 75, 70, 69]. However, the simplicity of the inverted pendulum

lacks straightforward methods for implementing realistic ground contact and determining

the effects of configuration. Pendulum models alone may overestimate stability boundaries

for a specific perturbation magnitude. Pai and Patton have addressed foot lift-off in sagittal

plane models by imposing limitations on the amount of allowable torque at the base joint

[93, 94]. Foot lift-off in our four-bar linkage model utilizes the dynamics of the body and

the nonlinear ground contact force, regardless of a subject’s strength. Using the four-bar

linkage model may allow decoupling of muscle strength and skeletal dynamics effects for

both sagittal and frontal plane studies. The four-bar linkage model could be readily adapted

to sagittal plane analyses by setting the hip and stance width to the length of the foot.

Foot lift-off for a specified perturbation to the model can be estimated by an analytic

measure of relative stability, gain margin. Relative stability allows for comparing stability

under different conditions, which has been accomplished with numerical methods in previ-

ous research [97]. Calculation of the gain margin does not require computationally costly
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simulations to quantify relative stability. Gain margin is a distance from the critically stable

gain. For symmetric initial conditions, the gain margin for a set of feedback gains matches

favorably with the stepping boundaries found through forward simulations of the four-bar

linkage. Feedback gains with a higher gain margin can withstand larger perturbations.

Feedback gains with common gain margin across stance widths lie on a line (Figure 2.8).

This suggests that position and velocity feedback gains can be scaled by a single parameter

as stance width changes to maintain similar body dynamics. This may be a general principle

of neural control for balance, as sagittal plane models also show proportional scaling of po-

sition and velocity feedback gains due to sensory re-weighting [99]. Furthermore, feedback

gains fit to experimental data show that, despite changes in feedback gain magnitudes, in-

dividuals utilize feedback gains with a common gain margin across stance widths. Common

gain margin across stance widths suggests neural feedback control is modulated to maintain

a consistent level of stability, which may explain the consistency of center-of-mass trajectories

across stance widths [39].

2.4.2 Modeling assumptions and limitations

The relative stability of feedback gains would increase with the addition of passive, non-

delayed stiffness and damping, but would not alter the primary result that delayed feedback

gains must decrease as stance width increases. Without explicit intrinsic stiffness elements,

our model is unable to identify stability conferred by muscle co-contraction when fit to exper-

imental data [30]. Since non-delayed stiffness and damping produce a stabilizing effect [46],

our model may result in a conservative estimate of delayed feedback gains. However, the

relative contribution of non-delayed components to the stability of standing balance is likely

small. Seminal work on ankle stiffness in seated subjects performing dorsi-plantar flexion re-

ported values of 1.75 N-m/deg (100 N-m/rad) during passive behavior and up to 17.5 N-m/deg

(1000 N-m/rad) during active behavior [144]. The order of magnitude difference between pas-

sive and active stiffness has also been reported in postural tasks. Specifically, sagittal plane

models of postural control have demonstrated that non-delayed feedback is ten times smaller

than delayed feedback during standing: 1.6 N-m/deg (92 N-m/rad) versus 16.9 N-m/deg (968
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N-m/rad), respectively [70, 99]. Adding physiological quantities of non-delayed stiffness and

damping to our model only slightly increased the set of possible stable delayed feedback gains

(Figure 2.9A, lightest shaded area). Moreover, increasing non-delayed stiffness and damp-

ing by 10-fold greater than physiological amounts still resulted in the sets of stable delayed

feedback gains decreasing as stance width increased (Figure 2.9B). Therefore, the addition

of non-delayed elements does not alter the fundamental finding that delayed feedback gain

must decrease as stance width increases, although passive elements may relax the amount

of delayed feedback modulation required for stability [128]. Furthermore, the inclusion of

non-delayed feedback adds redundancy in the fitting of kinematic trajectories. When fit-

ting two delayed feedback gains to match experimental center-of-mass trajectories only a

single solution was found. However, multiple, divergent solutions were found to produce

equivalent center-of-mass trajectories when non-delayed feedback components were added
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(Figure 2.9C). Thus, it is not possible to distinguish the delayed and non-delayed stiffness

components with our current methodologies. Muscle activity or independent measures of

non-delayed stiffness and damping may be required to quantify these separate contributions.

Non-delayed stiffness and damping are likely important factors to consider when analyzing

pathological populations where muscle tone and muscle co-contraction are increased [23],

which may emphasize the role of non-delayed feedback and reduce the contribution of de-

layed feedback for maintaining stability [14].

The single degree-of-freedom nature of the four-bar linkage model leads to the result that

torque applied at either of the ankles or hips can be equivalently represented as a torque

at the hip. Therefore, the actions of the modeled hip torque could be equally achieved by

a distribution of torques at the hip and ankle joints. Our model demonstrates that frontal

plane inertia decreases as stance width increases, requiring that the magnitude of torque

applied at any joint must also decrease to produce the same center-of-mass motion (Figure

2.9A). Accordingly, activity in muscles producing torque at the hip and ankle is observed to

scale with stance width in response to medio-lateral perturbations [39, 132]. It is likely that

a large proportion of torque is produced at the hip as frontal plane peak hip torque (90 N-

m) [10, 19] is significantly greater than peak ankle torque (25 N-m) [55, 62]. While peak

torque is not necessarily representative of the proportion of torque produced at each joint for

standing balance in sagittal perturbations [66], hip torque is further favored in frontal plane

balance control because leverage effects scale hip torque proportionally with stance width

but do not scale ankle torque.

Our model accounts for a majority of the center-of-mass kinematics, and may be improved

by including additional degrees of freedom. By adjusting position and velocity feedback gains,

center-of-mass kinematics from nonlinear simulations match experimental observations with

only slight over-shoot of the maximum center-of-mass excursion (Figure 2.6). This overshoot

is more pronounced in wider stances, which may be due to an inability in the model to predict

correct phasing between upper and lower body movement [36]. These deviations in center-

of-mass kinematics are small and the model corroborates experimental observations of peak

center-of-mass excursion remaining constant across stance widths [39]. Previous modeling
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studies suggest that feedback control of human muscle activity may rely on an estimate of

body center-of-mass motion, rather than local joint feedback [146, 145]. This is consistent

with neurophysiological evidence of global variables being encoded by the nervous system

[11]. Remarkably, center-of-mass kinematics reproduced with either center-of-mass and joint

feedback control were similar even though these two feedback signals are not linearly related.

The similarity in kinematic output precludes using system identification to distinguish be-

tween these strategies in the four-bar linkage model. We predict that a model with flexible

knees and upper-body would allow decoupling of the ankle and hip joints and potentially

reveal differences in stability between center-of-mass and joint feedback control.

2.4.3 Model-based interpretation of stance width adaptation

Despite the relative simplicity of our model, it provides new insight into the interdependence

between neural and biomechanical stability during balance control. The healthy nervous

system may exploit different combinations of feedback gain and posture configurations to

flexibly achieve balance. Choosing a wider stance width necessitates reduced torque and

may be advantageous when muscle torque generation is a limiting factor. Due to increased

leverage, wide stance may reduce the torque requirement during a perturbation response.

However, the benefits of wide stance are countered by a reduction in maneuverability and

an increase in static metabolic cost, which suggests why healthy individuals only select wide

stance in unstable conditions. Further, our model suggests that the increase in sensorimotor

delay associated with aging [151] should result in decreased feedback gains [2] and smaller

feasible feedback gains for maintaining stability at wide stances. Another possible compen-

sation to increased delay may be to decrease stance width, which has been observed in elderly

populations [80, 124].

Changes in postural stability during and following pregnancy may be explained by our

model if long-term adaptation of neural feedback to changes is slow compared to biomechan-

ical changes in postural configuration. During pregnancy, stance width increases gradually

and frontal plane sway remains consistent. However, shortly after delivery, preferred stance
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width returns to pre-pregnancy width and frontal plane sway increases [54]. We hypothe-

size that the set-point for sensorimotor feedback gains adapt slowly to the increasing stance

width over the course of pregnancy. The decrease in stability postpartum may be due to using

low feedback gains appropriate for wide stance at the preferred stance width, generating a

transient aftereffect [112] of instability while the neural gains must readapt to the preferred

configuration.

The adoption of a narrow stance in Parkinson’s patients may be a compensatory strat-

egy for the inflexibility in adapting to the biomechanical context of movement. Damage to

the basal ganglia may impair the ability to modify postural muscle responses in response

to changing postural configurations. Parkinson’s subjects can maintain balance to postural

perturbation when standing, but persist in activating leg muscle when subsequently seated

[50]. Similarly, the muscle activity evoked during standing balance perturbation responses

are not modulated with stance width in Parkinson subjects [24]. These observations can be

interpreted as an inability to adjust feedback gains associated with changing biomechanical

constraints [60]. Moreover, Parkinson subjects have characteristically stiff joint responses to

perturbations [47]. Stiffening may be the result of increased feedback gains, which our model

suggests are less stable in wide stance. Thus, patients with Parkinson’s disease may select

narrow stance to compensate for inflexible high gains, even though it may require greater

muscle activity.

Predictions from our model should be interpreted as system level phenomena and finer

grained analysis should “anchor” our “template” in a more detailed model [31]. Our model

does not speak to the physiological location of where sensorimotor feedback gain changes

occur. However, others have shown that sensorimotor feedback pathways for balance control

involve the brainstem [21, 71] with cortical influences [53]. Intrinsic muscular or neural

properties may also contribute to sensorimotor gain changes. For example, muscle torque

production can be affected by moment arms [155], muscle length [51] or motoneuron gain [52]

due to changes in configuration. Observations of muscle co-contraction in many neurological

populations [9, 23] may be explained by expanding our model to include passive stiffness

to quantify the contribution of co-contraction to postural balance stability. Predictions from
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this model may be used to guide future experimental research about motor variability, motor

adaptation, energetic efficiency and functional stability of standing balance.

2.4.4 Is wide stance more stable?

Conventional wisdom suggests that wide stance is more stable, as intuition is to widen one’s

stance width when situations become more challenging. Our model demonstrates that the in-

crease in stance width allows for larger center-of-mass excursions before a step is necessary.

Furthermore, mechanical leverage at the hip is increased, allowing greater torque gener-

ation about the center of mass. A wider stance thus lessens the muscular effort required

for balance control, improving the stability of the subject in the presence of a perturbation.

However, our results demonstrate that this increase in functional stability is only possible

when accompanied by appropriately scaled delayed neural feedback. The same mechanical

effects that allow for reduced effort and larger responses to perturbations in wide stance also

increase the inherent instability of the musculoskeletal system and limit the set of feasible

stable feedback gains at wide stance. Thus, an impaired nervous system may not be able to

exploit the intuitive benefits of wide stance due to increased neural delay, improper context-

dependent modulation or increased sensorimotor noise. The perception of increased stability

at wide stance is not simply due to changes in the biomechanics of the body, but predicated

on the requisite flexibility of neural mechanisms controlling balance.
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CHAPTER III

NEUROMECHANICAL FACTORS THAT AFFECT THE TIMING OF

BALANCE RESPONSES

3.1 Introduction

Although medial-lateral stability in balance is reduced with age, the underlying mechanisms

of the instability are not well understood. Changes in stability are likely the cause of in-

creased fall risk and this has a drastic effect on quality of life, as the leading cause of morbid-

ity for elderly adults in the USA is from falls [15]. It has been suggested that the mechanisms

for decreased stability in the elderly is due to changes in posture and deficits to neural con-

trol. Delays associated with muscle responses to perturbations and time to peak joint torque

have been shown to increase as individuals age [20, 151, 153]. Furthermore, it is observed

that elderly subjects, particularly those prone to fall, stand with stance width decreased by

9% [124, 80]. However, it is unclear how changes in neural delay, feedback gain and stance

width are interrelated and contribute to reduced postural stability.

Physiological delays are significant during postural control and can limit the range of

feedback gains that generate stability. In healthy young individuals, active responses in

muscles that restore the body center-of-mass occur at a latency of about 100 ms, and the

resulting musculoskeletal forces are further delayed by 50 ms due to the time course asso-

ciated with muscle force production and transmission [48]. This substantial delay has been

suggested to lengthen in elderly populations during perturbations to anterior/posterior bal-

ance where peak torque generation was delayed (up to 20 ms) due to prolonged neural delays

that led to increased latency of muscular responses [2, 151, 153]. These subtle changes in
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delay may have significant consequences on stability since delay limits the maximum mag-

nitude of sensorimotor feedback gain, with longer latencies reducing the set of feasible gains

[75, 100].

Changes in postural configuration may also affect stability, and may be driven by changes

in neural feedback gains. Previously, we have shown that covariation between stance width

and feedback gains is necessary for stable standing balance [7]. Decreased stance width, as

observed in elderly populations, requires increased neural feedback gains. Neural feedback

gains from model fits to data from rotation perturbations were greater by 30% in older subject

groups, but the time to peak torque was not explored [16]. Also, increased feedback gain may

be limited by lengthened neural delays, thus imposing limitations on the generation of joint

torque and stability of standing balance.

Therefore, to investigate the possible mechanisms leading to reduced medial-lateral sta-

bility from possible effects caused by aging, we tested how neural delay, feedback gains and

stance width alter time to peak torque in a frontal-plane model of standing balance [7]. We

hypothesized that, in addition to neural delay and feedback gains, stance width can affect

time to peak torque. We predicted that feedback delay, stance width, and feedback gains can

each affect the time to peak torque and effects of one factor on time to peak torque can be

compensated by the remaining factors.

3.2 Methods

3.2.1 Model predictions

A previously developed model of frontal plane stability was used to model the medial-lateral

center-of-mass response to step changes in hip torque (see Appendix A) [7]. The dynamics

of medial-lateral stance were modeled by a four-bar linkage with delayed feedback having

nominal anthropometric parameters based on a human subject with height of 1.8 m and

mass of 70 kg. The hip width and stance width were set equal at a distance of 24 cm. The

neural feedback control was set with a delay of 120 ms and the feedback gains were set at

673 N-m/rad for position and 224 N-m/rad/s for velocity.

The response to an external perturbation was used to quantify the effects of delay, stance
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width and feedback gain on the time to peak torque. The perturbation was applied as a

square pulse of external torque applied to the hip (1 kN-m for 5 ms). This perturbation was

selected to approximate the CoM acceleration observed from a standard platform translation

[7, 145], while providing an analytically simple input for the mode.

The response to the perturbation was quantified by the time between perturbation onset

and the time to reach peak hip torque. Responses were simulated for multiple conditions

where one parameter was varied while all other parameters of the model were held at their

nominal values. Feedback delay was varied over the range of 80 to 160 ms in 2 ms intervals.

Stance width was varied over stance ratios (stance width/hip width) of 0.9 to 1.1 in incre-

ments of 0.01. Feedback gains for position were varied over the range of 600 to 900 N-m/rad

for position and 160 to 280 N-m/rad/s for velocity in increments of 5 N-m/rad and 2 N-m/rad/s,

respectively.

3.2.2 Pilot data and model fits

In order to compare simulated and experimental results, body segment kinematics were

collected from healthy human subjects during platform perturbations. All protocols were

approved by the Georgia Tech and Emory University Institutional Review Boards and con-

formed to the Declaration of Helsinki. Thirteen subjects (7 male, 6 female, 23-62 years of

age) were recruited. Groups were divided into older and younger categories at 40 years of

age and narrow and wide categories at a stance ratio of 1.0.

Subjects stood with arms crossed and their feet spaced at the subjects’ own self selected

distance. Each foot was located on an individual calibrated force plate (AMTI, Watertown,

MA) that recorded all six reaction forces and moments. Subjects were instructed to stand

upright and to maintain balance during perturbations, but were not given information about

time of perturbation onset. Perturbations were administered with a custom platform (Factory

Automation Systems, Atlanta, GA) with position and acceleration of the platform recorded.

Subjects received 5 ramp-and-hold platform perturbations in the medial-lateral direction

with the platform moving to the subject’s left or right. The perturbations had an overall

movement distance of 12 cm, a plateau velocity of 35 cm/s and a peak acceleration of 0.5 g.
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Subject kinematics were captured with a custom 26-marker set that included head-arms-

trunk, thigh, shank, and foot segments using a motion capture system (Vicon, Oxford, UK)

utilizing 8 cameras. Motion capture was sampled at 120 Hz and platform kinematics at 1080

Hz. Platform kinematics were low-pass filtered at 30 Hz (third-order zero-lag Butterworth

filter) and combined with motion capture kinematics to produce relative position, velocity and

acceleration of the markers with respect to the platform. The relative motion of the markers

and a proportional model of human mass were used to calculate center-of-mass position,

velocity and acceleration for each subject [148].

Using the model, simulated center-of-mass position was fit to experimental data through

optimization of the feedback gains for the non-linear equations-of-motion. Each experimen-

tal trial was fit using the subject’s measured mass, height, stance width and perturbation

acceleration profile. For a given subject and stance width, model parameters were fixed and

only feedback gain values were allowed to vary. Optimization to solve for the feedback gains

utilized a cost function defined by the difference between simulated and experimental center-

of-mass trajectories with penalties on the sum of absolute (weight of 1) and sum-squared

error (weight of 10).

3.3 Results

3.3.1 Model predictions

3.3.1.1 Increased feedback delay lengthens time to peak torque

Increasing the delay in feedback resulted in a multiplicative increase in time to peak torque

(Figure 3.1). Increasing feedback delay by 6 ms caused a lengthening of 20 ms in time to

peak torque. Increasing delay also caused an increase in the magnitude of peak torque of

approximately 2% for each additional 10 ms. Furthermore, increasing the delay limited the

maximum feedback gain magnitude and the maximum stance width for stable behavior. The

multiplicative increase in time predicted that any increase in feedback delay would result in

a two-fold increase in additional time to peak torque.
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Figure 3.1: Increased feedback delay increase increased the time to peak torque. A) In-
creased magnitude and time to peak torque are shown in the torque response. B) Shaded
region shows range of time course in previous detailed view. C) Time to peak torque scales
linearly with increased feedback delay at a ratio of roughly two.

3.3.1.2 Decreased stance width lengthens time to peak torque

Changes in stance width affected both leverage and inertia of the model (chapter 2: Fig-

ure 2.2), which caused significant changes to torque responses [7]. Decreasing the stance

width by 0.5 cm caused a lengthening of 20 ms in time to peak torque and a decrease in the

magnitude of peak torque (Figure 3.2). Conversely, increasing the stance width increased the

magnitude of peak torque and decreased the time to peak torque up to a minimum time that

was twice the feedback delay. Increasing stance width also limited the maximum feedback

gain for stable behavior. It was predicted that the most significant effect to time to peak

torque would be caused by a decrease in stance width.

3.3.1.3 Increased position feedback gain lengthens time to peak torque

Increasing delayed position feedback gain by 50 N-m/rad caused a lengthening of 20 ms in

time to peak torque and a decrease in the magnitude of peak torque (Figure 3.3). In addition,

increasing the delayed position feedback gain resulted in a longer settling time for the torque

response. Furthermore, it was found that position feedback gain can only compensate for a

feedback delay increase of 30 ms. It was predicted that increases in position feedback gain

would result in lengthened time to peak torque with larger magnitude.
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Figure 3.2: Decreased stance width increased the time to peak torque. A) Increased mag-
nitude and time to peak torque are shown in the torque response. B) Shaded region shows
range of time course in previous detailed view. C) Decreasing stance width resulted in in-
creased time to peak torque, but increasing stance width had little affect on time to peak
torque.

3.3.1.4 Decreased velocity feedback gain lengthens time to peak torque

Decreasing delayed velocity feedback gain by 10 N-m/rad/s caused a lengthening of 20 ms

in time to peak torque and a decrease in the magnitude of peak torque (Figure 3.4). Time

to peak torque could be decreased by increasing velocity feedback up to a minimum time

that was twice the feedback delay. Increasing velocity feedback gain also resulted in much

smoother torque responses with greater oscillation and longer settling times. It was predicted

that increases in velocity feedback gain would decrease the time to peak torque, but increase

the magnitude of the response.

3.3.2 Experimental observations

3.3.2.1 Differences in stance width and time to peak torque were observed across age

Subjects’ had a varied range of possible stance widths ranging from less than hip width to

slightly wider than shoulder width (Figure 3.5A). On average, older subjects selected a nar-

rower stance width (S/W = 1.05±0.21) in comparison to the younger cohort (S/W = 1.44±0.18).

Also, older subjects reached peak torque faster with an average time to peak torque of

459±166 ms in comparison to the younger group that took 687±192 ms (Figure 3.5B).
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3.3.2.2 Differences in fit feedback gains were observed across age

Corresponding to the variation in stance width, the feedback gains fit to the subjects center-

of-mass trajectories were also varied within and across subjects. Feedback gains for the

older subjects were found to have larger magnitude where the average position feedback gain

604±215 N-m/rad was greater than 358±146 N-m/rad and the average velocity feedback gain

147±53 N-m/rad/s was greater than 69±33 N-m/rad/s.

3.3.2.3 Time to peak torque was longer for wide stance width subjects

There was a large variation in time to peak torque within and across stance widths indicating

stance width was not the sole contribution to changes in time to peak torque. Older subjects

had a trend towards shorter time to peak torque (Figure 3.7A). Also, time to peak torque was

in general shorter for narrow stance widths (S/W ≤ 1.0) at 473±156 ms over wider stance

widths (S/W > 1.0) at 565±221 ms. This was the opposite trend predicted from the model

(Figure 3.2C).
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40 years (filled circles) tended to select a narrower stance. B) Time to peak torque was found
to be faster in many of the subjects in the older age group.

3.3.2.4 Differences in feedback gain across age were best explained by changes in stance
width

Across age, average position feedback gain was higher for narrow (783±161 N-m/rad) than

for wide (408±147 N-m/rad) stance widths (Figure 3.7B). The increased position feedback

across stance width alone did not explain decreased time to peak torque at narrow stance

(Figure 3.7A) based on the model prediction (Figure 3.3C).
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Similarly, average velocity feedback gain was higher across age for narrow (183±35 N-

m/rad/s) than for wide (93±47 N-m/rad/s) stance widths (Figure 3.7C). The increased velocity

feedback across stance width was consistent with decreased time to peak torque at narrow

stance (Figure 3.7A) based on the model prediction (Figure 3.4C).

3.4 Discussion

Our model shows that increases in time to peak torque are not necessarily indicative of in-

creased neural delay. Time to peak torque can be increased through many model param-

eters: lengthened neural delay, narrowed stance width, increased position feedback, or de-

creased velocity feedback (Table 3.1). Furthermore, interactions of these parameters may

allow for many combinations of parameters to achieve similar time to peak torque. As a case

in point, lengthening the neural delay, which has been reported to be destabilizing through

over-correction [7, 100, 75], caused both an increase in time to peak torque and an increase in

peak torque magnitude, which is reported for elderly subjects [2, 151, 153]. The destabilizing

influence of a longer neural delay could be compensated by either increasing velocity feed-

back without changing stance width, or narrowing stance width without changing feedback

gains.

Compensating interaction between biomechanical factors like stance width and neural
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gains. A) Older subjects (filled circles) did not necessarily have longer time to peak torque,
but subjects with wider stance width did. B) Position and C) velocity feedback decreased as
stance width increased across age.

factors like neural feedback control may afford consistent behavior when either the biome-

chanics or nervous system is compromised. Our pilot data highlighted a perplexing phe-

nomenon, corroborating observations in literature [124, 80], that the average stance width

of decreases as subjects age. Why would an individual select narrowed stance width, which

was predicted to increase the time to peak torque (Figure 3.1)? Interestingly our pilot ex-

perimental data showed that older subjects actually responded with a shorter time to peak

torque (Figure 3.5B) despite an observed decrease in stance width; however, this was also

Table 3.1: Summary of parameter effects on time to peak torque.

Increasing parameter Effect on time to peak torque
Feedback delay ↑ increased
Stance width ↓ decreased

Position feedback ↑ increased
Velocity feedback ↓ decreased
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associated with increased velocity feedback (Figure 3.6B). Our previous work has shown that

to maintain stability in frontal plane standing balance, stable feedback gain boundaries in-

crease as stance width decreases [7]. Decreasing stance width may allow for larger velocity

feedback gains that decrease time to peak torque while maintaining stability. Larger veloc-

ity feedback gains that significantly shorten time to peak torque may then justify the delay

resulting from decreased stance width. Therefore, to maintain stability in the presence of

lengthened neural delay, elderly subjects may reduce stance width and increase feedback

gains as a compensatory strategy.

Time to peak torque is likely an important measure of postural performance, but it may

be limited by stability considerations. Thus, the variety of stance width and feedback gain

combinations observed in our pilot data may be due to trade-offs between performance and

stability. Due to the possible complex interaction between neural and biomechanical factors,

this raises interesting questions pertaining to previous results that suggest the electrome-

chanical delay is lengthened as we age [20, 151, 153]. The changes in observed lengthening of

electromechanical delay may be further confused with contraindications of reduced strength

and changes in muscle physiology. These differences are important to isolate as they may

suggest directions of rehabilitation for patients who are at risk of falling. In some cases,

muscle strengthening may be useful while in others changes in posture may be most use-

ful. Furthermore, training for performance may be at odds with maximizing the stability of

a particular individual. This study proposes that performance, time to peak torque, can be

attained by compensatory trade-offs in neural and biomechanical factors; however, changes

in stability were not addressed. Since the pilot data does not suggest significant differences

in performance, but shows trends in differences of biomechanical and neural factors it sug-

gests that it may be important to investigate possible changes in stability introduced by these

alterations in neuromechanics with age.
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CHAPTER IV

STABILITY RADIUS AS A METHOD TO COMPARE NEUROMECHANICAL

SYSTEMS

4.1 Introduction

Biological systems are composed of many complex, interacting components and as Aristotle

remarked over two millennia ago “. . . the whole is something beside the parts.” Even with so-

phisticated computational models, behaviors resulting from such interactions are difficult to

analyze and compare using tools from classical control theory that divide a system’s dynamics

into components that are to be controlled (plant) and those that are added to achieve a de-

sired behavior (controller). For example, neuromechanical models of human movement con-

tain redundant biomechanical and inherently delayed neural feedback control components

that can change concurrently in order to achieve a desired behavior. Unfortunately, classical

stability analysis tools, such as gain margin[26], cannot be used to compare behavior across

neuromechanical conditions where both biomechanics (plant) and neural control (controller)

change during a task. To overcome these challenges we introduce the technique of stabil-

ity radius, an approach that builds upon eigenvalue analysis as a compact representation of

dynamical behavior.

The technique of stability radius is useful for identifying different sets of parameter val-

ues that can produce similar behaviors, or quantifying the sensitivity of a system’s stability

to parameter changes. The mathematical theory is derived from the fields of pseudospectral

analysis [44, 134] and robust control [41, 74]. Initially developed for linear time invariant sys-

tems, it has been expanded to systems with feedback delays [142, 84, 85]. Many techniques

for stability analysis, such as Lyapunov’s indirect method, utilize eigenvalues to classify the
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stability of dynamical behavior. However, the eigenvalues by themselves do not indicate sen-

sitivity of stability to perturbations, modeling errors or parameter changes. Furthermore, it

may be difficult to calculate eigenvalues for some systems, e.g. delayed systems having an

infinite number of eigenvalues. Instead of using eigenvalues directly to characterize stability,

the stability radius gives a scalar measure of the smallest change to any system parameter

that would result in instability. This provides a single measure to compare stability of one

system against itself as parameters change, as well as against entirely different systems.

Stability radius can also be used to test the sensitivity of system stability to model parame-

ters. This single number can be used to classify a system’s dynamical behavior on a relative

scale of stability and to predict system responses across different modeling conditions.

Given these characteristics, stability radius may be well suited to quantify changes in sta-

bility due to changes in biomechanical and neural feedback parameters in neuromechanical

systems. Neuromechanical systems in different biomechanical contexts can achieve similar

motor performance by altering biomechanical configuration, neural strategy, or both [127].

Experiments in the upper extremity suggest that changes in biomechanical configuration

and neural control are the result of a neural strategy to maximize stability in the presence

of a disturbance [111, 135, 103]. Here, our application of the stability radius to the control

of frontal-plane balance control is motivated by the experimental observation that subjects

respond to support surface translations in the frontal-plane with nearly identical center-of-

mass motion regardless of their stance width [39]; however, muscle activity is observed to

decrease as stance width increases, demonstrating a concurrent change in neural control

[39, 133, 132]. We propose that the similar behavior observed across stance widths during

standing balance may be the result of a neural strategy to select feedback gains that max-

imize stability for a given stance width. Previously, we developed a model of frontal-plane

balance that demonstrated increasing stance width necessitates decreasing delayed feedback

gains to maintain stability [7]. However, using classical stability analysis we were not able

to compare stability across biomechanical contexts and could not quantify the contribution of

neural versus biomechanical parameters in achieving a given behavior. This was because tra-

ditional tools to compare stability, such as gain margin, are formulated based on the premise
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that the stability of the plant, or musculoskeletal system in our case, is fixed and only alter-

ations to control affect stability.

Here we present the theoretical background and context to introduce the stability radius

technique for a linearized system with and without delays. Next, we apply this technique to

our frontal-plane model of balance control [7] to illustrate its utility in characterizing changes

in stability from different delayed feedback gains (controller parameters) and stance widths

(plant parameters). We use stability radius to identify feedback gains that produce either

maximum stability or similar performance across stance widths, i.e. postural configurations.

We show that model feedback parameters that have the same stability radius across postural

configurations also produce similar trajectories in simulations. The stability radius therefore

predicts how neural control and biomechanical parameters interact to produce a desired be-

havior.

4.2 Theory

We introduce stability radius as a robust measure of the sensitivity of a system’s asymptotic

stability to parameter changes. Starting with the linearized equations of motion we provide

a brief overview of how to identify the characteristic equation and the eigenvalues for non-

delayed and delayed systems. Next, we introduce ε-pseudospectra as a method to analyze the

sensitivity of eigenvalues to parameter changes. Finally, we connect the concepts of stability

and ε-pseudospectra to give a definition of stability radius.

4.2.1 Characteristic equation

Here we show how to generate a characteristic equation for a large class of ordinary differen-

tial equations (ODEs) with delays. We start our discussion assuming the dynamic equations

are linear and first-order. This can be achieved for nonlinear systems by linearizing the ODE

about an equilibrium point using Taylor-series expansion and converting higher-order linear

ODEs into a system of first-order ODEs [123]. We first show how to generate the character-

istic equation for a linear system of first-order ODEs without delays and then expand this to

delayed systems of the retarded type.

A system of linear, constant-coefficient, first-order ODEs can be described with a system
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matrix, A, and state vector, x.
d
dt

x (t)+Ax (t)= 0 (4.1)

The deterministic solution for this system is a matrix exponential (4.2), which can be evalu-

ated by writing the system as (4.3) where the new matrices are the result of the eigenvalue

decomposition, A=UΛU−1.

x (t)= eAtx0 (4.2)

x (t)=UeΛtU−1x0 (4.3)

The matrix, Λ, is a diagonal matrix whose elements are the eigenvalues of the matrix, A, and

are found algebraically by solving for the roots of the characteristic equation (4.4) [123].

det(A−λI)= 0 (4.4)

A similar method can be applied to linear, constant-coefficient, delayed differential equa-

tions (DDE) of the retarded type (4.5) written in the form where the terms collected in matrix,

Ak, are associated with the k-th delay, τk.

d
dt

x (t)+A0x (t)+
∑
k=1

Akx (t−τk)= 0 (4.5)

The characteristic equation for the delayed system (4.6) now includes exponential terms

[117]. The addition of transcendental functions results in an infinite number of solutions to

this characteristic equation [152]; therefore, DDEs of this form will have an infinite number

of eigenvalues.

det

(
A0 +

∑
k=1

Ake−τkλ−λI
)
= 0 (4.6)

4.2.2 System stability

Eigenvalues are critical descriptors of a dynamical system’s stability. We first give an overview

of the definition of eigenvalues of a matrix, show how this leads to a characteristic equation

and then define asymptotic stability.
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The eigenvalues of a system are the set of complex values, λ ∈ C, for a matrix, A ∈ Cn×n,

associated with eigenvectors, v ∈Cn 6= 0, that satisfy (4.7).

Av=λv (4.7)

After rewriting (4.7) we require that solutions for eigenvalues and eigenvectors non-

trivially satisfy the following relation.

(A−λI)v= 0 (4.8)

For (4.8) to hold and satisfy v 6= 0, then the resulting matrix of (A−λI) must be singular.

In other words, if the inverse existed (i.e. the matrix was non-singular) then v = 0, which

violates the definition of the eigenvector. Thus, to ensure that the matrix is singular its

determinant must be zero. This leads to the characteristic equation for a matrix, which is

identical in form to the characteristic equation of an ODE (4.4).

det(A−λI)= 0 (4.9)

In linear ODEs, with or without delays, eigenvalues are the exponential constants that

define the time evolution of the system behavior. Eigenvalues with positive real part are

considered unstable, because as time advances the eventual behavior of the system will tend

to depart from equilibrium. Thus, asymptotic stability of a linear system is defined by all

eigenvalues having strictly negative real part. Similarly, this definition of asymptotic stabil-

ity may be extended to the class of non-linear ODEs with Lyapunov’s Indirect Method, which

states that the eigenvalues of the linearized system about an equilibrium point describe the

system’s stability if the eigenvalues are not identically zero [58].

4.2.3 ε-pseudospectra

Here we define ε-pseudospectra and show its relationship to eigenvalues. We give equations

for calculating ε-pseudospectra and then describe how this gives a measure of sensitivity of

eigenvalues to parameter changes.

The sensitivity of an eigenvalue to parameter change can be found by comparing eigen-

values of the original system to new eigenvalues calculated from a system with altered pa-

rameters. For a specified magnitude of parameter change there are a set of new eigenvalues,
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which are displaced by some amount compared to the eigenvalues of the original system. This

set of new eigenvalues (4.10) is the ε-pseudospectra for a corresponding set of parameter per-

turbations, E ∈Cn×n, whose magnitude is less than a specified value, ε. Thus, the distribution

of ε-pseudospectra about the eigenvalue give a measure of sensitivity to a specified amount

of parameter change.

z ∈ eig(A+E) with ‖E‖ < ε (4.10)

An alternate definition, to avoid calculating eigenvalues directly, is to use the knowledge

that the ε-pseudospectra are the perturbed eigenvalues, z = λ+δ. First, consider the defini-

tion of the new eigenvalues, with normalized eigenvectors, |v| = 1.

(A+E)v= zv (4.11)

Next, the parameter perturbation matrix is defined as, E= suv∗, with s < ε and |u| = 1. Then,

we introduce the resolvent (4.12) of the matrix, A, at a value, z ∈C [134].

R (z)= (A− zI)−1 (4.12)

Note that the resolvent evaluated at the eigenvalues of A will produce a singular matrix hav-

ing a norm with infinite magnitude. Furthermore, the norm of the resolvent evaluated away

from the eigenvalues will, by definition, be non-singular and finite. Using these definitions

equation (4.11) can be rewritten as (4.12) in terms of the resolvent and the definition of the

parameter perturbation.

zv−Av=Ev (4.13a)

− (A− zI)v= suv∗v (4.13b)

−s−1 (A− zI)−1 (A− zI)v= s−1 (A− zI)−1 su (4.13c)

−s−1v= (A− zI)−1 u (4.13d)

−s−1v=R (z)u (4.13e)

Taking the norm of (4.13e) relates the magnitude of the resolvent to the the magnitude of the
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parameter change. This is accomplished by using the property of a norm that ‖X‖‖Y‖ ≥ ‖XY‖.

‖R (z)u‖ = ‖− s−1v‖ (4.14a)

‖R (z)‖‖u‖ ≥ ‖R (z)u‖ = s−1‖v‖ (4.14b)

‖R (z)‖ ≥ s−1 > ε−1 (4.14c)

Finally, the ε-pseudospectra are now defined as the values for which the inverse of the resol-

vent is less than a specified magnitude of parameter perturbation.

‖R (z)‖−1 < ε (4.15)

This form also allows for a compact extension to ODEs with delays by using the resolvent for

delayed differential equations [85].

R (z)=
(
A0 +

∑
k=1

Ake−τk z − zI

)−1

(4.16)

Simplified calculation of the ε-pseudospectra can be achieved by using the Frobenius

norm, or matrix 2-norm, in conjunction with properties of singular value decomposition

(SVD). A property of the SVD is that the largest singular value, smax, of a matrix, B, is

equivalent to the matrix’s Frobenius norm. In addition, the largest singular value, smax, of a

matrix’s inverse is equal to the inverse of the smallest singular value, smin.

‖ (B)−1 ‖ = smax
(
(B)−1)= (smin (B))−1 (4.17)

Substituting 4.16 into (4.15) and using the relations of (4.17) results in a compact and stable

method to numerically calculate the ε-pseudospectra for non-delayed (k = 0) and delayed

(k > 0) systems.

smin

(
A0 +

∑
k=1

Ake−τk z − zI

)
< ε (4.18)

The ε-pseudospectra are the values of z that satisfy (4.18). The value of the resolvent

can be computed by evaluating the left-hand side of (4.18) at a desired grid of values over a

region of the complex plane. The resulting surface will have valleys with a minimum zero

value about the eigenvalues. Narrow valleys suggest eigenvalues that are less sensitive to
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parameter change while wide valleys correspond to the eigenvalues that are most sensitive

to parameter change. Therefore, the ε-pseudospectra correspond to the open subset of the

complex plane bounded by the level curve formed by the norm of the resolvent equal to ε−1.

4.2.4 Stability radius

We now present the complex stability radius with unstructured parameter perturbation us-

ing the concepts of stability and ε-pseudospectra. The mathematical definition is extended to

the delayed case and presented in a form that is can be implemented numerically.

Stability radius is defined as the smallest change to a system parameter that results

in shifting eigenvalues so that the corresponding system is unstable. In terms of the ε-

pseudospectra this is equivalent to finding the smallest magnitude of parameter change

where the pseudospectral set is grown to just contain part of the positive right-half complex

plane. When the parameter perturbation is allowed to be a complex value the mathematical

definition of stability radius is:

r =minε

s.t. ‖R (z)‖−1 < ε

R (z0)≥ 0

(4.19)

This can be further simplified by minimizing ‖R (z)‖−1 in place of ε. In addition, we can

restrict the minimization to only pseudospectral values strictly on the boundary of stability,

R (z)= 0.

r = min
R(z)=0

‖R (z)‖−1 (4.20)

Finally, using properties of the SVD (4.17) and the extended resolvent (4.16) we can write

a compact and stable method to numerically calculate the complex stability radius for non-

delayed (k = 0) and delayed (k > 0) systems. Therefore, minimization can be achieved quickly

by evaluating the SVD of the characteristic equation only over values on the imaginary axis.

r = min
ℜ(z)=0

smin

(
A0 +

∑
k=1

Ake−τk z − zI

)
(4.21)
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4.3 Application

We present an application of stability radius to identify how changes in delayed feedback

gains and stance width affect frontal-plane balance control. Subjects during standing balance

respond to support surface translations in the frontal-plane with nearly identical center-of-

mass motion regardless of their stance width[133]; however, muscle activity is observed to

decrease as stance width increases, demonstrating a change in neural control[39]. We used

stability radius as a tool to analyze the changes in stability due to different stance widths

and delayed feedback gains.

First, we give an overview of a mathematical model of frontal-plane standing balance.

Using this model we show the steps necessary to calculate the stability radius for a set of

parameters. Then, we use stability radius to identify the feedback gains that produce the

maximum stability at nominal stance width and the feedback gains that produce similar

stability radius at narrow and wide stance width. Finally, we compare simulated center-of-

mass responses at narrow and wide stance width using the feedback gains identified to have

the same stability radius.

4.3.1 Model

We examined a delayed second order system that modeled human frontal-plane standing

balance as a four-bar linkage (Fig 4.1) with hip angle, q, using scaled anthropometric param-

eters based on healthy adults.

I (q (t)) q̈ (t)+Q (q (t) , q̇ (t))+G (q (t))=−C
(
kpq (t−τ)+kv q̇ (t−τ)

)
(4.22)

Inertial, I, coriolis, Q, and gravitational, G, terms were included in the closed-chain, non-

linear equations of motion. Joint torque necessary to maintain the initial configuration was

generated by feedback gains of position, kp, and velocity, kv, with a delay, τ, and geometric

scaling, C =
(

S
W

)2
(S is stance width, W is hip width). Nominal parameters for the model

were selected based on average anthropometric values of height (1.8 m), mass (72 kg), and

delay (100 ms). Further details of the model can be found in Appendix A.
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Figure 4.1: Application for a frontal-plane model of human mediolateral balance control.
Frontal-plane motion of the body was modeled as a four-bar linkage. Two bars represented
the legs, the third bar was the torso, and the fourth bar was the ground. Perturbations
were applied as initial conditions in lieu of ground translations. Important parameters of the
model were the hip width (W), stance width (S), and hip angle (q).

4.3.2 Analysis

The system ((4.22)) was first linearized about the symmetric equilibrium condition to gener-

ate a linear system of first order equations with states, x= [q q̇]T .

d
dt

x (t)=

 0 1

G
I 0

x (t)−C

 0 0

kp
I

kv
I

x (t−τ) (4.23)

Next, using (4.6) the characteristic equation for the system was formed.

det


 0 1

G
I 0

−C

 0 0

kp
I

kv
I

 e−τλ−λ

 1 0

0 1


 (4.24)

det


 −λ 1

G
I −C kp

I e−τλ −λ−C kv
I e−τλ


 (4.25)

λ2 − G
I
+C

(kp

I
+ kv

I
λ

)
e−τλ = 0 (4.26)

We explored the stability of the system at the nominal stance width (S/W = 1) by comput-

ing the dominant eigenvalues across all feasible pairs of delayed feedback gains. Previously

identified stability boundaries were used to restrict feedback gains that produced unstable

dynamics [7]. Across this region, we examined each stable gain pair in a 100×100 grid. First,
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we verified stability by ensuring that none of the roots of the characteristic equation had a

positive real part. A limited set of eigenvalues for each solution were then numerically deter-

mined using Cauchy’s argument principle and a modification to the Lehmer polynomial root

finding algorithm so that characteristic equations with delay could be solved[152, 68].

For representative cases, we computed the ε-pseudospectra to investigate the sensitivity

of the dominant eigenvalues to perturbations. For each case, the magnitude of the resolvent

was evaluated across a grid of complex values and these magnitudes were plotted as level

sets to illustrate the pseudospectral variations across the level of perturbation (1.0×10−3 <
ε< 2.0).

The stability radius (4.27) for each stable, delayed feedback gain pair was also calculated

for each of 16 stance widths ranging from S/W = 0.5 to 2.0. Each stability radius result was

solved using a bisection line search over the set of complex values along the imaginary axis

to identify the minimum value of the argument.

r = min
ℜ(z)=0

smin


 −z 1

G
I −C kp

I e−τz −z−C kv
I e−τz


 (4.27)

To compare the relative stability of feedback gain pairs within the same stance width

the stability radius was compared across all feasible gain values at the nominal stance width

(S/W = 1). A single pair of delayed feedback gains was selected that resulted in the maximum

stability radius for the model at nominal stance width.

To compare the relative stability of feedback gain pairs across stance widths, kp and kv

gains were found that resulted in the same stability radius across stance widths. Across the

range of stance ratios the largest common stability radius was identified and for each stance

width the associated delayed feedback gain pair was recorded.

Finally, to test the behaviors resulting from the selected feedback gains, we simulated the

motions of the COM using the fully nonlinear equations of motion in both narrow and wide

stances. An initial velocity disturbance was imposed ( q0 = [ 0 rad, 10 rad/s] ) to the model at

narrow (S/W = 0.5) and wide (S/W = 2) stance widths using the respective delayed feedback

gain pairs associated with the same stability radius value.
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Figure 4.2: Eigenvalues and pseudospectra for a single feedback gain pair at the nominal
stance width. (A) A subset of the infinite number of eigenvalues for the delayed four-bar
linkage model (S/W = 2, kp=243 N-m/rad, and kv=57 N-m/rad/s). Shaded box is complex
region surrounding the three dominant eigenvalues and enlarged in (B) The pseudospectra
corresponding to a perturbation that caused the eigenvalues to go unstable is represented
by dotted lines. The value of the smallest perturbation to cause any of the eigenvalues to go
unstable was the stability radius for this system. For the neuromechanical system modeled
here, the more negative eigenvalue (unfilled dot) went unstable at a lower level of perturba-
tion than the dominant eigenvalues that were closer to the imaginary axis (filled dots).

4.4 Results

A pattern of three stable dominant eigenvalues was found for all stable feedback gains for

the model at the nominal stance width (Fig. 4.2). The ε-pseudospectra of these eigenvalues

as the perturbation ε increased from 0 to 0.8 demonstrated that the most positive eigenvalue

was often least sensitive to parameter changes (Fig. 4.2). That is, an eigenvalue further from

the imaginary axis (Figure 4.2B) was more sensitive to the imposed perturbation, crossing

the imaginary axis first and rendering the system unstable.

Across all stable feedback gain pairs in the nominal stance width, the stability radius

was found to be lowest at the boundaries and highest for mid-range gain values (Figure 4.3).

The maximum stability radius (r = 0.92) at the nominal stance (S/W = 1.0) was found when

kp = 1540 N-m/rad and kv = 405 N-m/rad/s. This stable feedback gain pair produced system

behavior that was least sensitive to changes in system parameters.

Maximum stability radius was found to decrease as stance width increased. Maximum

stability radius at narrow stance (r = 0.93 at S/W = 0.5) was associated with larger feedback

gains (kp = 7312 N-m/rad/s, kv = 1982 N-m/rad) and stability radius at wide stance (r = 0.89

at S/W = 2.0) had smaller feedback gains (kp = 323 N-m/rad/s, kv = 79 N-m/rad) (dotted line
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Figure 4.3: Stability radius across all stable feedback gains at the nominal stance width.
The solid lines giving a D-shaped boundary encloses the range of all stable feedback gains at
the nominal stance width (S/W = 1.0). Shaded intensity represents the value of the stability
radius for each stable gain pair. Lighter values have greater stability radius and resulted in
system behavior that was less sensitive to parameter variations.
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Figure 4.4: Stable feedback gains across stance width. The shaded regions defined all sta-
ble feedback gains across stance widths. The dotted line indicates the feedback gain pairs
that produced maximum stability radius across stance widths. The solid line indicates the
feedback gain values that produced the same stability radius (r = 0.8) across stance widths.
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Figure 4.5: Simulated center-of-mass position across stance widths using feedback gains
that produce the same stability radius. (A) Although feedback gain values differed substan-
tially across stance widths, the resulting center-of-mass motion produced in response to a
change in the initial state of the system was similar in narrow (solid) and wide (dotted)
stance widths when feedback gains with the same stability radius were used. (B) The re-
sulting torque necessary to generate the center-of-mass response was an order of magnitude
smaller for the wide stance compared to the narrow stance

in Figure 4.4). Narrow stance was found to be less sensitive to parameter perturbations than

wide stance.

The feedback gains kp and kv that maintained the same stability radius (r = 0.8) in-

creased by over 16× from wide (kp=243 N-m/rad and kv=57 N-m/rad/s) to narrow (kp=3951

N-m/rad and kv=1201 N-m/rad/s) stance (solid line in Figure 4.4). This similar level of stabil-

ity radius was found to be associated with gains that were within the mid-range of feasible

feedback gains.

Simulations of the model at narrow and wide stance using feedback gains with the same

stability radius (r=0.8) produced similar center-of-mass kinematics (Figure 4.5). Trajectories

of the center-of-mass position were characterized by a near critically damped response in

both cases.

4.5 Discussion

Here we demonstrated that stability radius is a useful metric for comparing behavior across

neuromechanical conditions where both biomechanics (plant) and neural control (controller)
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change during a task. Similar to previous applications of stability radius [41, 42] we identi-

fied the most robust neural feedback gains (controller parameters) for a given stance width

(plant parameter). In addition, we used stability radius to quantify and predict how con-

current changes in neural control and biomechanical configuration affected system behavior.

Using stability radius we identified the underlying delayed neural feedback gains associated

with a stance width that produced similar center-of-mass behavior. Stability radius may

provide insight into the neuromechanical interactions governing robust balance control by

identifying the neural control parameters that yield the same stability radius across changes

in biomechanical configuration. This type of analysis could be extended to understanding

general principles of neuromotor control.

In contrast to typical stability analyses that explore tolerable delays, in our application

the delay was a fixed parameter reflecting measured neural conduction and processing time.

Standard delayed-system analyses pose a problem of finding the maximum delay for which

the system is stable [117, 115] or the sensitivity of stability to delays [84]. In contrast, delays

in neuromechanical systems are remarkably invariant to system changes [39, 38]. Thus,

the problem is to identify how variations in system parameters, and not changes in delay,

cause instability. Stability radius is particularly useful for delayed systems, because it is not

necessary to explicitly compute any of the infinite number of eigenvalues associated with a

delayed system.

The application of stability radius to a simple neuromechanical model of balance con-

trol with delayed neural feedback improved our ability to compare postural behaviors across

biomechanical configurations. In our prior work using eigenvalue analysis, it was only pos-

sible to determine the set of feedback gains that produced stable behaviors at each stance

width and to compare the relative stability of each solution within a stance width using

the gain margin [7]. However, it was not possible to compare stability across stance widths

without performing explicit forward simulations of the system using the different parameter

values. This was because the gain margin is computed with respect to the boundary of stabil-

ity, which was specific to each stance width. Thus, gain margin does not take into account the

changes in stability due to changes in configuration, and provides only a relative measure of
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stability within a stance width. In contrast, the stability radius is an absolute measurement

of system behavior which allows comparisons of feedback gains across stance widths. For

example, whereas the maximum gain margin was identical across stance widths, the stabil-

ity radius demonstrated that narrow stance widths are actually more robust to parameter

variations, consistent with our previous simulation results[7].

We show that changes in system behavior due to perturbations to the state variables of

the model are described by the stability radius. Previously we demonstrated that precise

tuning of delayed neural feedback gains were necessary to produce similar behaviors across

stance widths, but we lacked a method to prospectively select the appropriate gains that

generated a desired behavior [7]. We replicated the experimentally-observed similarity in

center-of-mass kinematics across stance widths in response to imposed motion of the sup-

port surface by selecting feedback parameters with the same stability radii across stance

widths. Thus, feedback gains and stance widths that reduced the sensitivity of the behavior

to parameter variation were the same as those that led to similar responses to physical per-

turbations. Although the similarity in center-of-mass kinematics could be the result of the

nervous system selecting robust feedback gains it is also possible that the nervous system

selects the trajectory itself to produce robust behaviors.

Our results support the hypothesis that the nervous system may employ a neural strategy

for selecting feedback gains and biomechanical configurations that reduces the sensitivity to

parameter variation arising from sensory noise or imperfect control. The feedback gains in

the model that produced maximum stability radius were in the mid-range of possible stable

values, consistent with the feedback gain values identified by fitting the model to experimen-

tal data [7]. Similarly, research in upper-extremity control also suggests that motor strategies

are selected that reduce sensitivity to parameter variation in dexterous tasks [122, 5].

Our results corroborate the idea that stability is maximized in unstable motor tasks,

and stability radius could contribute to a better understanding of how increased stability is

achieved. Previously, arm impedance has been shown to increase by muscle co-contraction

when generating forces in an unstable environment [98, 46, 111]. However, limb impedance
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can be altered by both muscle activity [64] as well as limb configuration [135]. Using sta-

bility radius, the contribution of muscle activity and limb configuration on stability could be

dissociated. This may be useful for understanding modulation of feedback gains in a given

context, as well as the selection of a particular configuration or strategy to achieve a desired

behavior.

Our current formulation for stability radius assumes a conservative estimate of how pa-

rameters affect the stability of a neuromechanical system. Our perturbation to the system, E,

assumed that the musculoskeletal and neural feedback gain parameters were equally vari-

able. In this unstructured case, all parameters contributed equally to the stability radius,

leading to a conservative estimate. It is possible to structure the parameter perturbations

so that only specific parameters are affected [143, 42, 44]. Such a weighting may be useful

in cases where some parameters are known to a greater accuracy and are unlikely to be per-

turbed, e.g. mass of the body, and could lead to a less conservative stability radius estimate.

We also assumed that perturbations to parameters could be complex valued, which begs the

question: When do real-world parameters have complex value? While the perturbations

to system parameters are almost always real-valued, it is possible that imposing complex-

valued perturbations could reveal how transient changes in parameters, e.g. oscillations

from sensory noise, may further alter stability [43, 134]. In cases where it is reasonable to

assume that parameter perturbations are only achieved through real values, such as uncer-

tainty in knowing limb inertia, the perturbations can be restricted to only real values using

a slightly more complicated minimization technique to identify the stability radius [41, 102].

To conclude, stability radius has many benefits over using eigenvalues alone for analysis

of neuromechanical systems. Specifically, we were able to quantify the effect of both biome-

chanical and neural parameters on the stability of frontal-plane standing balance. Stability

radius is generalizable and can be applied to a variety of complex systems that may be non-

linear and have delays. Thus, stability radius lends itself to additional applications that

were not explored in the example presented in this paper. Stability radius can be used as

a tool for bifurcation analysis to identify critical parameter values that cause large changes

in system behavior [141]. Often the parameters in neuromechanical models are unknown,
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using stability radius to determine the sensitivity of stability to these parameters can help

to identify error bounds and simulation accuracy [1]. Determining muscle activation and

musculoskeletal parameters that reproduce observed behaviors is often achieved through

optimization[126, 104, 3]. However, simulations based on the optimized parameters are of-

ten unstable, which affects the ability to produce forward simulations over a long duration

[89]. This affects the ability to perform dynamic optimization of parameters that rely on com-

pletion of a movement[137]. In contrast, selection of muscle activation patterns that produce

a system with stable eigenvalues generate simulations that are stable and can be run for

much longer simulation times [12, 14]. Further, parameters selected based on stability cri-

teria result in responses to perturbations that are more similar to experimentally-measured

responses than those found using minimum muscle stress criteria alone [12]. Stability ra-

dius could be used as an additional optimization criterion to identify parameters that gen-

erate stable behaviors, which would improve both optimization speed, as well as identifying

parameters that could generate more physiologically-realistic behaviors. In short, stability

radius offers a metric for quantifying the stability and dynamical responses of parameters

within, and across, individuals, which offers a useful tool for the analysis of neuromechanical

systems. In contrast to classical stability analyses from control theory, stability radius can

concurrently evaluate the effect of active and passive mechanisms affecting system stabil-

ity; this could be an important tool for the design of assistive and rehabilitative devices for

improving motor function.
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CHAPTER V

THE EFFECTS OF ALTERED BODY INERTIA ON NEURAL CONTROL

5.1 Introduction

A fundamental question of human movement is to what extent do the biomechanics, as op-

posed to neural control, influence movement? If you have ever stopped for a moment in a

busy crowd and watched people walk by you were likely struck by the diversity of the hu-

man body yet the similarity in their movements. While similar, each gait is unique, so is

it the differences in biomechanics that produce the subtle quirks that allow us to identify a

friend based on his walk, or is it the underlying neural control? Conversely, there are times

when apparently large changes in biomechanics are seemingly masked by the adaptability

of neural control. Is it the highly trained nervous system of a trans-tibial amputee that

makes it difficult to distinguish their gait from a healthy control, or is the amputation actu-

ally a relatively small disturbance to the biomechanics? Therefore, to understand whether

the similarities and differences in movement between individuals is a result of the underly-

ing biomechanics or due to neural control requires quantifying the separate contributions of

each for a particular behavior.

In tasks that require balance, tightly regulated motion of the center-of-mass (CoM) has

been observed across postures. Examples of this include standing under a variety of pos-

tures [39, 132] and perturbations [49] as well as in locomotion over different surface condi-

tions [28]. Furthermore, the consistency in CoM motion produce simple dynamics that are

remarkably well modeled by an inverted pendulum for both postural balance [150] and loco-

motion [119, 31]. The consistency of CoM motion may point to the CoM as task-level variable

controlled by the nervous system despite varying biomechanical conditions [48]. Evidence
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of neural control of the CoM has been presented for postural balance tasks, where muscle

activity in response to support surface translations can be reconstructed based on the error

of CoM kinematics from the desired upright state [107, 145, 69]. In addition, studies in low-

gravity environments have observed regulation of posture with respect to CoM over veridical

reference in low-gravity [61, 76]. Since the CoM motion is a consequence of both neural and

biomechanical influences, separating their effects on CoM motion have not been achieved ex-

perimentally in a single paradigm. Here, our goal was to explicitly dissociate the effect of

biomechanical and neural control on the CoM response to translational perturbations during

frontal plane balance control.

Medial-lateral perturbation to standing balance in the frontal plane is a particularly well-

suited paradigm for dissociating the interactions of biomechanics and neural control. The

behavior and task are well defined; the CoM must be maintained over the base of support.

Changes to the biomechanics can be controlled experimentally by altering the stance width

[132, 39, 7, 34]. When a discrete perturbation of the support-surface is imposed there is an

inherent neural feedback delay of 100 ms [48] that can be exploited to dissociate effect of pos-

tural set [49, 101] prior to the perturbation, biomechanics of the postural configuration, and

active neural feedback. The initial CoM response is due to the combined effects of postural set

and biomechanics and the later CoM motion is due to a combination of biomechanics, postural

set, and delayed neural feedback response [48]. Using our previously developed frontal-plane

model we can assess the separate contributions of biomechanics and neuromuscular state to

the motion.

Observed similarity in the initial CoM response across stance widths suggests that the

postural set is altered with changes in configuration; however, this has not been described.

Evidence from healthy subjects shows little difference in initial CoM motion across stance

widths [132, 39]. We showed that increasing stance width decreases the inertia of the body

[7, 109], suggesting that there must be a concomitant change in postural set. However, the

decrease in inertia as stance width increases also reduces the effective force of the pertur-

bation on the CoM, which could account for the similarities in initial CoM across stance

width without changes in postural set. Therefore, a consistent perturbation magnitude must
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be matched across stance widths to have a similar effect on the CoM response. Moreover,

our model shows that increasing stance width also increases the effective leverage of joint

torques; the same postural state across stance widths will produce different effective torques

about the CoM. Thus, the inertia of the body must be altered separately from the configura-

tion to dissociate changes in CoM motion due to inertia or stance width. To address these

issues in our current study, we included conditions with additional mass added to the torso

and applied two levels of perturbation so that inertia and effective perturbation could be

matched across stance widths.

Changes in neuromuscular responses with changes in configuration may be the result of

altered neural feedback. Evidence from healthy subjects shows that, despite little change in

peak CoM motion, muscle activation decreases in response to the same translational pertur-

bation when standing with a wider stance [132, 39]. However, changes in feedback mecha-

nisms were not possible to determine from the Henry experiments, since the separation of

effects from postural set and neural feedback responses was not possible due to the mini-

mal time ( 250 ms) between the acceleration and deceleration of the platform perturbation,

obfuscating the feedback response that would have first become visible near the time of the

deceleration. Therefore, we extended the length of the perturbation in order to separate the

effect of passive biomechanics and delayed neural feedback on peak CoM excursion.

Previously, it has been shown that active neural feedback is the primary factor in correc-

tive frontal-plane motion in the lower-body [36]. Similarly, we showed in a model that sta-

ble behavior across all stance widths could only be achieved if sensorimotor feedback gains

decreased as stance increased [7], however these could be attributed to more peripheral sen-

sory effects due to changes in leverage. It is possible that the sensory feedback change is

due to configuration affecting the length and sensitivity of proprioceptive afferents. There-

fore, changes to neuromuscular responses within the same stance width could be attributed

to altered sensorimotor transformation and responses at different stance widths could be a

combination of central and local effects. Thus, we altered body mass to produce different

inertia within the same stance width to test central changes in the sensorimotor transforma-

tion and compared different stance widths where inertia was matched to test if additional
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changes occurred due to peripheral effects.

Here, we hypothesized that changing stance width during standing balance control al-

ters the neuromechanical interactions, necessitating adjustment of postural set and neural

feedback gain to produce similar CoM motion. We used model predictions to test whether

postural set changes across stance width we dissociated the effects of configuration and iner-

tia by applying two levels of perturbation in weighted and unweighted conditions, such that

inertia was matched across two stance widths. We predicted that changes in geometry would

affect postural set differently than changes in inertia allowing for separate and quantifiable

changes in the initial CoM response. We designed translational perturbations to lengthen

the time between acceleration and deceleration to separate responses from postural set and

neural feedback. We tested if changes in neural feedback were the result of changes in in-

ertia or due to peripheral effects by comparing weighted and unweighted responses within

and across stance widths. Finally, we predicted that this effect would be generalizable across

perturbation magnitude and the CoM response would scale with the perturbation.

5.2 Methods

5.2.1 Frontal plane model of balance

In order to analyze frontal plane motion we used the extended version of our previously de-

scribed four-bar linkage model that included non-delayed position and velocity feedback to

model postural set and delayed position and velocity feedback for neural control (See Ap-

pendix A: Eq. A.16)[7]. Leg length, hip width and torso height of the model were scaled

to each subject’s anthropometric measurements and used with anthropometric tables to de-

termine segment CoM and inertia [148]. Muscular force was modeled as a lumped term and

applied with constant moment arms as torque about each hip joint. Hip torque was generated

as non-delayed and delayed feedback of the hip joint angle with fixed gains on position and

velocity. The delay was selected to be a single lumped value of 150 ms to account for neural

transmission from sensation to actuation (100 ms) and mechanical actuation (50 ms) as ob-

served from the automatic postural response [48]. The perturbation applied to the four-bar

linkage was applied as an inertial acceleration of the ground recorded from the measured
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platform acceleration. Numerical simulation of the equations of motion was performed in

Matlab (Mathworks, Natick, MA). Integration was performed with the explicit trapezoidal

rule with a step size of 1 ms, zero initial conditions, and zero-valued state history. Center-of-

mass trajectories and ground reaction forces were recorded.

Model predictions were performed to identify the effects of specific parameters on the

resulting simulated CoM trajectories. This was accomplished by setting the model to a nom-

inal set of parameters associated with a subject of height 1.8 m, mass 70 kg and stance ratio

(stance width / hip width) of 1.0. Non-delayed feedback gains were set to zero for the nomi-

nal condition. Delayed feedback gains were selected such that the simulated CoM trajectory

matched average experimental results (kp=600 N-m/rad, kv=160 N-m/rad/s). Simulated per-

turbation was set to a gaussian acceleration pulse with a halfwidth of 80 ms and nominal

amplitude of 0.2 g. Parameters were increased one at a time to observe changes to the ini-

tial slope, peak and settling time of the simulated CoM excursion and velocity. Mass was

increased by 14 kg, stance ratio increased to 1.3, perturbation magnitude increased to 0.3

g, delayed and non-delayed stiffness increased by 100 N-m/rad and delayed and non-delayed

damping increased by 50 N-m/rad/s.

Combined neuromechanical effects were simulated to predict CoM responses for possible

neural control changes in response to changes in either configuration, body mass or body in-

ertia. Following the experimental design to separate the effects of configuration and inertia,

two matched inertia conditions (Ie = 55 kg-m2, see Appendix A: Eq. A.7) were created by

setting the model to a narrow stance ratio (S/W = 0.6) condition and a weighted, wide stance

ratio (S/W = 1.4) condition with an additional 20% mass added to the torso. Next, three con-

trol policies of unchanged neural control, scaled delayed neural feedback, or scaled postural

set were proposed to determine if neural feedback scaled with changes in configuration and

body mass separately or with changes in body inertia. A nominal neural feedback control for

the “unchanged” control policy scaled only with stance ratio and was set such that it maxi-

mized stability radius (see Chapter 4) at each of the stance ratios with only delayed feedback

was set (Narrow: kp = 3000 N-m/rad, kv = 800 N-m/rad/s; Wide: kp = 540 N-m/rad, kv =

144 N-m/rad/s) and non-delayed feedback gain values were zeroed. For the weighted, wide
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stance condition two additional control policies were simulated that increased feedback gain

in proportion to the increase in mass or the change in inertia. The first modeled a scaling of

the neural feedback control and increased the nominal delayed feedback gains by 20%. The

second policy modeled changes in postural set by prescribing the non-delayed feedback gains

to values that were 20% of the nominal delayed feedback gains.

5.2.2 Experimental design

Twelve young, healthy subjects (7 male, 5 female, 21.3±3.2 years of age) were recruited under

protocols conforming to the Declaration of Helsinki and approved by the Georgia Tech and

Emory University Institutional Review Boards.

Data were collected during perturbations of the support surface where the stance width,

weight, and perturbation magnitude were varied. In each trial, subjects were instructed to

stand upright and to maintain balance during perturbations. Each foot was located on an

individual calibrated force plate (AMTI, Watertown, MA) that recorded all six reaction forces

and moments. Perturbations were administered with a custom platform (Factory Automation

Systems, Atlanta, GA) with position and acceleration of the platform recorded. Subject kine-

matics were captured with a custom 25-marker set that included head-arms-trunk, thigh,

shank, and foot segments using a motion capture system (Vicon, Oxford, UK) utilizing 8

cameras. Motion capture was sampled at 120 Hz and platform kinematics at 1080 Hz. Plat-

form kinematics were low-pass filtered at 30 Hz (third-order zero-lag Butterworth filter) and

combined with motion capture kinematics to produce relative position, velocity and acceler-

ation of the markers with respect to the platform. The relative motion of the markers and

a proportional model of human mass were used to calculate center-of-mass position, velocity

and acceleration for each subject [148].

To test the effects of varying stance width on CoM kinematics, each subject was tested

at three different stance widths. Preferred (P) stance was identified as the stance width

measured after instructing subjects to walk forward three steps and stop in a comfortable

standing posture. Each subject was also asked to stand in a narrow (N) stance width of 10 cm

and a wide (W) stance of 30 cm. These stance widths were fixed to allow for a range of ratios
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of hip width to stance width caused by the natural variation in subjects’ hip widths. Each

stance width distance was measured between the centers of the heels and the lateral border

of each foot was marked with masking tape to allow the subject to return to the specified

stance width.

In order to produce conditions with similar inertia across stance widths, subjects were

tested in weighted and unweighted conditions. The additional mass and its location was

designed to produce matching inertia between unweighted-narrow and weighted-preferred

conditions and between unweighted-preferred and weighted-wide conditions. The weighted

condition consisted of an additional mass of 20% of the subject’s total mass rounded to the

nearest 5 lbs. Weight was applied with a small backpack filled with lead diving weights

placed tight and flat across the upper back. To measure changes in CoM height, subjects

were asked to lie on a horizontal platform and the ground-reaction force at one end was

measured using the AMTI force plate. The COM height was then computed with respect to

the soles of their feet using a static force balance [96, 6].

To match the effective force on the CoM across stance widths two levels of perturbation

magnitude were used for each condition, low (L) and high (H), in the four cardinal directions.

Translational ramp-and-hold platform perturbations were given in the anterior, posterior,

left and right directions in random order. To maximize perturbation duration, all pertur-

bations had a total movement distance of 24 cm, the largest possible on our device. Here

we examined only responses to medial-lateral perturbations; anterior-posterior perturbation

were not analyzed. In the medial-lateral directions, the low and high perturbation magni-

tudes differed across stance widths such that a constant CoM acceleration (0.2 g) due to the

perturbation was achieved across stance widths in three conditions (N-H, P-L, W-L). Addi-

tionally, in three other conditions, a constant effective force was applied by the perturbation,

resulting in a graded acceleration (0.1, 0.2, 0.3 g) across stance widths (N-L, P-H, W-H). Peak

platform velocity and acceleration for low magnitude perturbations were specified as: 10 cm/s

and 0.1 g for narrow; 15 cm/s and 0.2 g for preferred; and 15 cm/s and 0.2 g for wide. Simi-

larly, high magnitude perturbations were specified as: 15 cm/s and 0.2 g for narrow; 20 cm/s

and 0.2 g for preferred; and 30 cm/s and 0.3 g for wide.
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To administer all combinations of weight, stance width and perturbation magnitude, tri-

als were presented in blocks of unweighted and weighted trials, and sub-blocks of stance

width, which were randomized. For each perturbation, subjects were instructed to stand up-

right with arms crossed and to maintain balance while looking straight ahead. For 8 subjects,

the A group, only low perturbation magnitudes were administered in the rightward direction

and only high perturbation magnitudes were administered in the leftward direction (8 repeti-

tions x 4 directions x 1 magnitude each = 32 trials per subject). In these subjects we assumed

the left and right responses were symmetrical and pooled all of these data for analyses. To

ensure that these results were not biased due to the difference in perturbation magnitudes

across direction, we tested an additional 4 subjects, the B group, in which both low and high

perturbations were administered in both leftward and rightward direction (4 repetitions x 4

directions x 2 magnitudes each = 32 trials per subject). In each set of subjects we presented

the unweighted conditions first for all but one subject. Within each block, sub-blocks were

presented for each stance width of narrow, preferred and wide; the order of stance width was

randomized within a block. Within each sub-block, 32 perturbation trials were randomly

ordered. Inter-trial intervals were varied between 5-15 s to reduce predictability of pertur-

bation onset. A total of 192 trials (2 weights x 3 stances x 32 perturbations = 192) were

administered to each subject. In this study, a subset of 96 trials (2x3x16=96 trials) consisting

of only the medial-lateral perturbations were analyzed for each subject.

5.2.3 Data analysis

To identify changes in CoM trajectories across conditions, we compared CoM excursion at

time points associated with the response from postural set and the later response including

neural feedback (Figure 5.1). The initial CoM excursion and velocity due to the passive

properties of the musculoskeletal system was evaluated 100 ms after the peak in platform

acceleration. Values of the CoM excursion for time points at 250 ms and 500 ms after the

peak in platform acceleration were recorded to evaluate the later response that included

neural feedback. CoM excursion was computed with respect to the feet and each data point

was computed as the mean value over a 3 ms window centered at the selected time.
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Figure 5.1: Location of CoM data points analyzed. Time zero marks the peak accelera-
tion of the platform perturbation. Vertical lines delineate time points analyzed, which were
referenced to the peak acceleration.

For the B group (4 subjects, 384 trials), we performed a five-way ANOVA to demonstrate

the effects of subject, stance condition, weight condition, perturbation magnitude, and per-

turbation direction on CoM excursion. The ANOVA was modeled with all main effects and

second-order interactions. The significance level used was α=0.05, adjusted with a Bonferroni

correction for multiple comparisons (5 comparisons: α′=0.01).

We also performed two-way ANOVA tests at each time point using subsets of trials to

evaluate the independent effect of each factor with significance set at α=0.05, adjusted with

a Bonferroni correction for multiple comparisons (5 comparisons: α′=0.01). Each ANOVA had

subject and either stance condition, weight condition, perturbation magnitude, or perturba-

tion direction as factors. Significance of factor levels was determined with a Scheffe post hoc

test at a significance level of α=0.05. The effect of perturbation magnitude was assessed for

trials from the 4 subjects of B group in the unweighted condition at preferred stance width

and perturbed leftward. The effect of perturbation direction was assessed for trials from the

4 subjects of B group in the unweighted condition at preferred stance width and perturbed

at the low level. Across all subjects, the effect of increased stance width was assessed for

trials having subjects in the unweighted condition and perturbed leftward at the constant

level of acceleration. The effect of weight condition was assessed for trials having all subjects

at preferred stance width and perturbed leftward at the low level. Finally, we compared CoM

excursion in conditions where inertia was similar across stance widths by grouping trials by

unweighted, narrow stance and weighted, preferred stance from all subjects.
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5.3 Results

5.3.1 Model predictions
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Figure 5.2: Changes to simulated CoM trajectories with changes in biomechanical param-
eters. Dotted trace is reference trajectory for nominal case. Shaded circles highlight impor-
tant changes to CoM trajectories. A) Increased mass caused larger CoM position overshoot
with lengthened response. B) Increased stance width decreased overshoot of position and
increased oscillation of velocity. C) Increased perturbation caused increased position and
velocity peak values.

Altering biomechanical parameters while holding all other model parameters constant

had little effect on initial CoM motion, but affected the peak CoM excursion and later CoM

kinematics. Increasing mass resulted in greater excursion of the CoM (Figure 5.2A). Con-

versely, increasing stance width decreased the excursion of the CoM. Increasing the stance

width also effectively shortened the response time and generated larger oscillation in the ve-

locity trace (Figure 5.2B). Increasing perturbation magnitude was the only parameter that

increased the initial slope during the first 100 ms of CoM excursion and this also resulted in

increased peak CoM excursion and increased peak velocity (Figure 5.2C). Increasing the per-

turbation magnitude was also the only parameter that did not affect the timing of the peak

response; the peak occurred at the same time between the two perturbation magnitudes.

Altering the model neural feedback parameters, similar to biomechanical parameters, af-

fected peak CoM response and later kinematics with minimal effect on the initial response.
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Figure 5.3: Changes to simulated CoM trajectories with changes in neural feedback parame-
ters. Dotted trace is reference trajectory for nominal case. Shaded circles highlight important
changes to CoM trajectories. A) Increased delayed position feedback gain resulted in a faster
settling response. B) Increased delayed velocity feedback gain decreased the peak magnitude
of the CoM position response. C) Increased non-delayed velocity feedback gain has very sim-
ilar effects as the delayed velocity feedback gain, but was the only parameter that decreased
the peak CoM velocity response.

Altering either delayed (Figure 5.3A) or non-delayed position feedback gain had very simi-

lar effects; however, increasing non-delayed position feedback gain had relatively minimal

effect on the peak CoM excursion and mostly reduced settling time. Delayed stiffness also

decreased settling time, but had even less of an effect on the peak excursion. Conversely,

delayed velocity feedback, when increased, decreased the peak CoM excursion with less of

an effect on the the settling time (Figure 5.3B). Therefore, combinations of delayed position

feedback, which affect settling time, and delayed velocity feedback, which affect peak CoM

excursion, could be combined to offset increases in mass or stance width. However, no biome-

chanical or delayed parameter was observed to significantly change the peak CoM velocity

response.

Surprisingly, increasing model non-delayed velocity feedback was the only parameter that

decreased the peak CoM velocity and was therefore the parameter that most affected the rise

time of CoM excursion (Figure 5.3C). Therefore, differences in postural set from changes in

non-delayed velocity feedback gain were observed in the model by observing the CoM velocity

within the first 100 ms. Increasing non-delayed velocity feedback also reduced the peak CoM
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excursion and affected settling time, similar to delayed velocity feedback.
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Figure 5.4: Predicted changes in CoM based on differences in feedback gain when inertia
was matched. As reference, the dotted trace is for unweighted narrow stance width and the
dashed trace is the unweighted wide stance width. The solid lines are the predicted weighted
wide stance responses. Shaded circles highlight important features of the CoM trajectories.
A) No additional scaling of feedback gain resulted in CoM traces that matched based on
similar inertia, narrow-unweighted = wide-weighted. B) Scaling the delayed feedback gain
in proportion to the change in mass resulted in CoM traces that matched based on similar
stance width, wide-unweighted = wide-weighted. C) Scaling the non-delayed feedback gain
in proportion to mass resulted in traces that matched based on similar stance width and also
decreased the initial peak CoM velocity.

Predicted CoM responses for conditions where inertia was matched but stance was dif-

ferent resulted in three different behaviors depending on the form of neural feedback. The

predicted scenarios for how neural control may change with differences in body inertia were:

neural control does not change, delayed neural feedback is adjusted to account for changes

in mass, or changes in postural set account for changes in mass (Table 5.1). In the condition

that neural feedback was only scaled based on stance width, with no additional scaling based

on differences in mass, CoM responses were matched between conditions of similar iner-

tia; weighted, wide stance width had the same CoM response as unweighted, narrow stance

(Figure 5.4A). Conversely, in the condition that delayed feedback gain was further scaled in

proportion to increased mass, CoM responses were similar across stance width; weighted and

unweighted wide stance had the same CoM response (Figure 5.4B). Finally, if non-delayed
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Table 5.1: Three hypotheses of changes in neural control in response to increased body mass
and their predicted effects on CoM kinematics

Neural control policy Peak CoM excursion Peak CoM velocity Matched condition
Gain not scaled ↑ increased = same wide-wt = narrow

Delayed gain scaled = same = same wide-wt = wide
Non-delayed gain scaled = same ↓ decreased wide-wt = wide

feedback was scaled in proportion to the increase in mass instead, CoM responses were sim-

ilar across stance width as well; however, this had the distinct effect that peak CoM velocity

was decreased unlike the other hypotheses (Figure 5.4C).

5.3.2 Anthropometrics and summary statistics of experimental groups

Anthropometric differences across all subjects were varied (height 176.3±12.7 cm and mass

70.4±12.1 kg), but CoM location was similar. Measured CoM location with respect to the

subjects feet as a ratio of their height (CoM / height) was 0.58±0.01 for men and 0.56±0.01.

The addition of 20% mass to the subjects’ resulted in increasing the height of the CoM by

approximately 4 cm, such that the CoM-to-height ratio increased to 0.60±0.01 for men and

0.60±0.01 for women. Subjects’ preferred stance ratio was wider than hip width and men

tended to have a relatively wider stance (S/W: men 1.54±0.33, women 1.15±0.13; stance:

men 27.1±6.0 cm, women 20.4±0.9 cm). The effective body inertia between the two groups

compared was similar (Ie: unweighted-narrow 58±15 kg-m2, weighted-wide 58±14 kg-m2).

Finally, of the 12 subjects 11 subjects reported being right-handed with 10 of those subjects

reporting right-leg dominance; only one subject reported both left-handedness with left-leg

dominance.

Results of the five-way ANOVAs for the B group (n=4) demonstrated significant effects

of subject, stance condition, perturbation magnitude, and perturbation direction and the in-

significant effect of weight condition on CoM excursion. Across all time points the initial

COM excursion and velocity for factors of subject, stance condition, and perturbation mag-

nitude were found to be statistically significant (p<1e-3). Also, across all time points only

stance condition and perturbation magnitude were found to have a significant interaction

(p<1e-6). Finally, weight condition was only significant (p<1e-6) for the 500 ms time point
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and not significant for all others (100 ms pos.: p=0.42, 100 ms vel.: p=0.47, 250 ms pos.:

p=0.65). Perturbation direction was statistically significant for all times (p<1e-2) except the

100 ms position point (p=0.90).

Table 5.2: Average CoM excursion and velocity from the B group across all possible condi-
tions.

Condition 100 Pos 250 Pos 500 Pos 100 Vel
mm mm mm mm/s

Stance Mass Mag Dir avg std avg std avg std avg std
1 0 10 0 7.0 0.9 19.5 2.2 29.5 7.1 82.0 17.7
1 +20% 10 0 6.8 0.6 19.1 1.6 29.7 4.7 83.9 6.7
1 0 10 180 6.8 0.3 19.2 1.4 25.3 6.7 87.1 6.8
1 +20% 10 180 6.6 0.6 18.3 1.2 25.9 4.5 81.9 5.1
1 0 15 0 10.1 1.6 28.0 3.8 42.2 10.7 120.1 22.4
1 +20% 15 0 10.9 0.4 29.2 1.3 44.8 3.2 130.8 5.1
1 0 15 180 10.7 0.7 29.6 1.5 40.2 9.8 133.5 6.4
1 +20% 15 180 10.8 0.6 30.1 1.1 47.6 7.5 132.5 3.8
2 0 15 0 11.0 0.6 27.7 2.1 37.1 7.4 129.4 13.8
2 +20% 15 0 10.6 0.6 26.0 2.3 33.8 7.0 123.4 7.2
2 0 15 180 10.6 0.4 26.2 1.8 33.3 8.3 123.0 5.0
2 +20% 15 180 10.6 0.4 25.8 2.1 30.1 8.7 123.8 5.0
2 0 20 0 13.8 0.4 35.8 2.1 50.4 10.2 164.0 6.3
2 +20% 20 0 13.9 0.5 35.1 2.7 49.1 8.7 162.6 8.4
2 0 20 180 13.9 0.4 34.9 1.4 45.3 7.5 162.3 4.2
2 +20% 20 180 13.9 0.7 34.7 2.0 45.2 8.5 162.5 5.5
3 0 15 0 10.3 0.8 23.4 4.3 23.7 16.0 116.0 12.7
3 +20% 15 0 10.3 0.6 24.2 3.2 27.0 12.6 119.0 13.3
3 0 15 180 10.4 0.5 23.9 3.3 23.3 13.7 117.9 8.7
3 +20% 15 180 10.5 0.7 23.1 3.8 24.3 10.6 114.0 12.7
3 0 30 0 20.5 1.0 49.3 6.2 59.3 24.5 235.7 18.4
3 +20% 30 0 20.1 2.2 49.4 6.1 62.0 17.5 237.5 26.1
3 0 30 180 20.2 1.0 47.3 5.2 53.5 19.1 228.5 16.6
3 +20% 30 180 19.6 0.9 45.2 5.2 53.4 16.1 214.4 22.8

5.3.3 Changes in CoM kinematics were more similar within a stance width than
across stance widths

Perturbation direction resulted in responses that suggested possible limb dominance. A mod-

est effect of perturbation direction was observed in group B (n=4) for trials in the unweighted

condition at preferred stance width and perturbed at the low level (Figure 5.5). During the

initial response, non-significant differences (p=0.028) in excursion of the CoM at 100 ms
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Figure 5.5: Perturbation direction resulted in responses that suggested possible limb dom-
inance. Rightward trace flipped for comparison with leftward trace. Thicker lines are the
average trials from B group subjects at preferred stance width, unweighted, and perturbed
at the low level. Lighter bounding lines mark one standard deviation. Time zero marks the
peak acceleration of the platform perturbation and the grey vertical lines mark time points
used for quantification.

were observed between leftward perturbations, 10.6±0.4 mm, and rightward perturbations,

11.0±0.6 mm. There was a trend of increased CoM velocity in the rightward direction at

100 ms with magnitudes of 123.0±5.0 mm/s (leftward) and 129.4±13.8 mm/s (rightward)

(p=0.070). The later response also showed differences in CoM excursion at both 250 ms (left-

ward: 26.2±1.8 mm, rightward: 27.7±2.1 mm, p=0.031) and 500 ms (leftward: 33.3±8.3 mm,

rightward: 37.1±7.4 mm, p=0.080). The trend of increased rightward CoM excursion was

observed in 3 of the 4 individual subject averages (all of these subjects reported right-leg

dominance) and this trend was found to be consistent across all observed conditions (Ta-

ble 5.2).

Increased perturbation magnitude caused increased CoM excursion across conditions.

Similar to predicted CoM kinematics it was found that the magnitude of CoM excursion sig-

nificantly increased with increased perturbation magnitude (Figure 5.6). During the initial

response, excursion of the CoM at 100 ms in the unweighted condition at preferred stance

width and perturbed leftward resulted in a magnitude of 10.6±0.4 mm for the low perturba-

tion and 13.9±0.4 mm for the high perturbation (p<1e-6). Velocity of the CoM at 100 ms had

magnitudes of 123.0±5.0 mm/s (low) and 162.3±4.2 mm/s (high) (p<1e-6). The later response

also had an increase in CoM excursion at both 250 ms (low: 26.2±1.8 mm, high: 34.9±1.4
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Figure 5.6: Increased perturbation magnitude caused increased CoM excursion across con-
ditions. Thicker lines are the average trials from B group subjects at preferred stance width,
unweighted and perturbed leftward. Lighter bounding lines mark one standard deviation.
Time zero marks the peak acceleration of the platform perturbation and the grey vertical
lines mark time points used for quantification.

mm, p<1e-6) and 500 ms (low: 33.3±8.3 mm, high: 45.3±7.5 mm, p<1e-6). This trend was

also found to be consistent across all observed conditions (Table 5.2).

Table 5.3: Average CoM excursion and velocity from all subjects at selected time points of
100, 250 and 500 ms.

Condition 100 Pos 250 Pos 500 Pos 100 Vel
mm mm mm mm/s

Stance Mass Mag Dir avg std avg std avg std avg std
1 0 15 180 10.8 0.5 29.0 1.8 40.3 6.7 130.6 5.9
1 +20% 15 180 10.6 0.8 28.4 2.2 42.7 7.7 127.7 7.4
2 0 15 180 10.6 0.5 25.8 1.6 29.8 6.5 123.0 5.0
2 +20% 15 180 10.6 0.6 25.9 2.1 31.5 7.1 122.9 6.6
3 0 15 180 10.4 0.4 23.0 2.6 19.7 10.4 115.8 6.1
3 +20% 15 180 10.3 0.4 23.4 2.8 23.3 9.1 115.5 8.6

Increased stance width resulted in decreased CoM excursion. Across all subjects (n=12),

increased stance width was found to significantly (p<1e-6) decrease CoM excursion for trials

in the unweighted condition and perturbed leftward at the constant level of acceleration

(Figure 5.7). The initial response at 100 ms had a subtle, but significant decrease in CoM

excursion from 10.8±0.5 mm (narrow), 10.6±0.5 mm (preferred), and 10.4±0.4 mm (wide).

Velocity of the CoM at 100 ms had magnitudes of 130.6±5.9 mm/s (narrow), 123.0±5.0 mm/s

(preferred), and 115.8±6.1 mm/s (wide). The later response also showed differences in CoM
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Figure 5.7: Increased stance width resulted in decreased CoM excursion. Thicker lines
are the average trials from all subjects in the unweighted condition and perturbed leftward
at the constant level of acceleration. Lighter bounding lines mark one standard deviation.
Time zero marks the peak acceleration of the platform perturbation and the grey vertical
lines mark time points used for quantification.

excursion at both 250 ms (narrow: 29.0±1.8 mm, preferred: 25.8±1.6 mm, wide: 23.0±2.6

mm) and 500 ms (narrow: 40.3±6.7 mm, preferred: 29.8±6.5 mm, wide: 19.7±10.4 mm). The

trend of decreased CoM excursion as stance width increased was also found to be consistent

across all observed conditions (Table 5.3).
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Figure 5.8: Increased mass did not significantly affect CoM excursion. Thicker lines are
the average trials from all subjects at preferred stance width and perturbed leftward at the
low level. Lighter bounding lines mark one standard deviation. Time zero marks the peak
acceleration of the platform perturbation and the grey vertical lines mark time points used
for quantification.

Consistent with the model predictions where neural feedback gain scaled with mass (Fig-

ure 5.3B and C), increased mass did not significantly affect CoM excursion. In trials hav-

ing all subjects (n=12) at preferred stance width and perturbed leftward at the low level,
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there was no significant difference between the unweighted and weighted conditions (Fig-

ure 5.8). The initial response at 100 ms had no significant change (p=0.884) in CoM excur-

sion from 10.6±0.5 mm (unweighted) to 10.6±0.6 mm (weighted). Velocity of the CoM at

100 ms had magnitudes of 123.0±5.0 mm/s (unweighted), and 122.9±6.6 mm/s (weighted),

(p=0.964). The later response also showed no statistical differences in CoM excursion at

both 250 ms (unweighted: 25.8±1.6 mm, weighted: 25.9±2.1 mm, p=0.873) and 500 ms (un-

weighted: 29.8±6.5 mm, weighted: 31.5±7.1 mm, p=0.173). The trend of unchanged CoM

excursion with increased torso mass was also found to be consistent across all observed con-

ditions (Table 5.3).
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Figure 5.9: Responses from matched inertia scaled with stance width and not mass.
Matched inertia conditions are the unweighted-narrow stance and weighted-wide stance.
Lines are the average trials from all subjects grouped by unweighted-narrow stance,
unweighted-preferred stance, and weighted-preferred stance for leftward perturbations at
the constant level of acceleration. Standard deviation boundaries have been left off for clar-
ity. Time zero marks the peak acceleration of the platform perturbation and the grey vertical
lines mark time points used for quantification.

Changes in CoM excursion across different conditions of inertia were explained by changes

in stance width and not mass; therefore, the model prediction that best explained the ob-

served differences in the matched inertia conditions utilized a control policy that scaled de-

layed feedback gain with increased body mass (Figure 5.4B). CoM excursion in conditions

where inertia was similar across stance widths by grouping trials by unweighted, narrow

stance and weighted, preferred stance from all subjects had significantly different CoM re-

sponses (Figure 5.9). The initial CoM excursion response at 100 ms was the only time point

that had no significant change (p=0.142) in motion from 10.8±0.5 mm (unweighted-narrow)
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to 10.6±0.6 mm (weighted-preferred). Velocity of the CoM at 100 ms had statistically dif-

ferent (p<1e-6) magnitudes of 130.6±5.9 mm/s (unweighted-narrow), and 122.9±6.6 mm/s

(weighted-preferred), (p=0.964). The later response also showed decreased (p<1e-6) CoM ex-

cursion at both 250 ms (unweighted-narrow: 29.0±1.8 mm, weighted-preferred: 25.9±2.1

mm) and 500 ms (unweighted-narrow: 40.3±6.7 mm, weighted-preferred: 31.5±7.1 mm).

5.4 Discussion

The results of this study are important because they suggest a definite change in neuromus-

cular control to account for altered configuration of the body. Perhaps the most distinguishing

observations of the study are that increasing the mass of the torso, which significantly raised

the height of the CoM, had little effect on the kinematic responses of the subjects’ CoM; how-

ever, increasing stance width had a consistent effect of decreasing the motion of the CoM.

Our simple model best predicted these experimental results based on a control policy that

changed postural set in response to changes in stance width and updated delayed neural

feedback with changes in both body mass and stance width. These results provide evidence

of possible neural strategies, such as maintaining similar stability, that trigger changes in

the sensorimotor transformation that affects the neural control of standing balance.

We showed that, unlike previous reports [132, 39], “similar” CoM motion does not neces-

sarily mean the “same” CoM motion. In platform translation perturbations, if the decelera-

tion follows too soon after the acceleration there is the possibility of forcing the CoM to its

initial position before the subject can actively respond. By maximizing the time of the con-

stant velocity phase of the platform, our perturbations were designed to remove the effect of

the deceleration on the subjects’ active response to the perturbation. This revealed that CoM

responses were not actually identical across stance widths. Rather, only the initial response

was found to appear to be nearly identical and responses 300 ms after the perturbation onset

were found to decrease as stance width increased.

The initial CoM position response is dominated by inertial effects of the perturbation on

the body, but the initial CoM velocity may be modulated by postural set. Model predictions

suggest that the changes to the initial response in CoM position is nearly immutable under
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physiological ranges in stance width and added body mass (Figure 5.2) as well as changes

in postural set (Figure 5.3). This is likely because the inertial effects of the perturbation

vastly outweigh any torque developed at the joints of the subject. Further evidence of this

is that only increased perturbation magnitude was capable of causing noticeable changes

in the initial response (Figure 5.2C). However, while changes in the CoM position may be

non-existent, changes in initial CoM velocity are detectable and statistically significant as

stance width changes (Figure 5.7B). Model predictions suggest that these differences are

due to changes in postural set, specifically changes in non-delayed velocity feedback gain, or

damping, that affect the initial peak CoM velocity (Figure 5.3C). A changes to postural set

from altered stance width seems intuitive. The change in geometry likely affects the lengths

of muscle groups, which in turn affect muscle properties. These biomechanical changes alone

may account for the differences in the initial response, but additional feedforward changes

may also occur to account for the less obvious effects the initial kinematic state may have on

the later CoM response.

The later response from 300 ms to the platform deceleration are similar, but not exactly

the same across stance widths and may be the result of delayed feedback gains that are se-

lected based on similar levels of stability. Previously we have shown that delayed feedback

gain must decrease as stance width increases in order to produce stable responses [7]. We

also predicted that selecting the delayed feedback gains with similar stability, as suggested

in chapter 4, would produce slightly decreased CoM excursion as stance width increased

in order to produce similar performance. The observed experimental responses certainly

follow the trend of decreased CoM excursion as stance width increases, but the more inter-

esting point is that the responses follow a characteristically critically damped response that

matches the predicted consistent level of stability across stance widths (Figure 5.7). Pro-

ducing a similar level of stability across different conditions can also be interpreted as the

neural control placing the neuromechanical system in a state that is most robust to possible

disturbances and motor errors. In this context there is a considerable amount of evidence

that suggests that the sensorimotor system operates in regimes that minimize uncertainty

and variation caused from internal motor noise [5], precision of timing [18] or posture [135].
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We were also able to show that delayed neural feedback is likely sensitive to changes

in body mass and that similarity in the CoM motion cannot be explained based on biome-

chanical factors alone. Remarkably, CoM responses were most similar between unweighted

and weighted conditions (Figure 5.8). Across all combinations of perturbation magnitude and

stance width the responses of the CoM kinematics were not statistically different between the

unweighted and weighted conditions (Tables 5.2 and 5.3). This may seem surprising, as the

additional mass was non-trivial; 20% of body mass is on the order of having four Principles

of Neural Science [56] books in a book-bag.

Furthermore, our model predicted that increasing body mass by this amount without

changing neural feedback would have a significant increase in CoM motion (Figure 5.2).

These observations are not necessarily unique to this experimental paradigm as similarity in

motor responses between conditions with different inertial properties has also been reported

in lean-and-release tasks between healthy and obese subjects [78] and identical whole-body

reaching responses in conditions of altered body inertia [105]. In order to reproduce this phe-

nomenon, our model predicted that either delayed feedback gains (Figure 5.4B) or postural

set (Figure 5.4C) must scale with the increase in mass. Postural set was removed as a pos-

sible hypothesis since scaling the postural set also affected the initial CoM velocity response

contrary to the experimental observation that the initial velocity was unchanged with the

increase in mass (Figure 5.8B). Therefore, the model predicted that similarity in the CoM

responses was the result of delayed neural feedback that scaled with increased body mass.

We also showed that changes in delayed feedback caused by changes in stance width

were likely the result of changes in body geometry and body mass, but not directly changes

in inertia. Since changing stance width affects both body geometry and inertia we designed

experimental conditions where the inertia was matched across two different stance widths.

If delayed neural feedback was scaled with inertia our model predicted that CoM responses

should be identical when inertia was matched (Figure 5.4A). However, experimental results

showed that when inertia was matched the CoM response behaved like the matched stance

width instead (Figure 5.9). Therefore, delayed neural feedback was predicted to scale with

the increase in mass and not actually the change in inertia (Figure 5.4B). This is a subtle but
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important addition to the result described in the previous paragraph. An increase in body

mass within a stance width is also an increase in inertia; to determine if the neural feedback

scaled with body mass or inertia required comparing behavior across stance widths. That the

changes in neural control appear to change with body mass and not inertia may corroborate

previous reports that gravitational forces, or weight, affect running behavior [17] or object

manipulation [157] differently than inertial effects.

Changes in neural feedback in response to altered configuration and body mass may be

driven by sensory cues of ground reaction force. A remarkable feature of the hypothesized

neural changes in this study is the rapidity of their change. While anecdotal, no noticeable

differences were found between the first and last trials within a stance width. Also, postural

adaptation of a slight forward lean appeared to occur immediately upon adding the addi-

tional mass. Certainly it could be possible that these changes are the result of updating an

internal model of the body. However, studies that suggest changes in internal models of body

dynamics report a lengthy adaptation period, which has been presented in conditions where

limb inertia was altered [91] or in reaching environments where endpoint inertia is altered

[114, 67]. Therefore, the apparently sudden changes in neural control and their impact on

CoM kinematics may be driven by signals associated with changes in ground reaction forces.

An update of an internal model may not be necessary for these conditions as ground reaction

forces are immediately affected by changes in body mass and stance width even during static

conditions; ground reaction force could directly regulate neural feedback gains. While the

role of ground reaction forces was not addressed in this study, previous research points to

the importance of load receptors on appropriate muscle responses in standing balance [22]

and the coordination of contralateral limb motion [45]. Furthermore, this would predict that

changes in body inertia that cannot be statically sensed would result in motor errors until an

internal model was updated. This appears to be the case in reaching tasks based on observed

systematic movement errors corresponding to differences in arm inertia [37].

The implications of this work may be important for understanding changes in balance for

populations where stance and weight are affected. In obese populations both mass and stance
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width are increased [106] and it is reported that falls are twice as common over healthy in-

dividuals [29]. Our work would suggest that these biomechanical changes necessarily cause

changes in the neural control in order to maintain balance. Specifically, it would be expected

that delayed neural feedback would need to increase to compensate for increased mass, but

still be decreased to maintain stability at the widened stance. From our previous work, in-

creased delayed feedback at wide stance may be destabilizing [7]; therefore, the increase in

stance width and accompanied increase in mass may pose a dual threat to the stability of

these individuals. Furthermore, since neural control is likely altered it may be important to

consider possible residual neural control patterns that may persist as individuals exercise

and lose weight, which may affect their balance. In cases of rapid weight loss, such as imme-

diately after pregnancy, it has been reported that there is decreased balance stability, which

may be due to neural strategies that have not compensated for the sudden change in body

mass [54].

This study suggests that changes in body mass affect neural feedback, which may have

critical implications for rehabilitation strategies that implement reduced body weight. Weight

support devices used in gait rehabilitation have the advantage of providing support for indi-

viduals who may not have the strength or motor coordination necessary to stand. However,

this may have an unintended consequence that balance may not be being trained and even

possibly maladjusted through inappropriate ground reaction cues. This may be one rea-

son that weight supported rehabilitation devices have had poor results when rehabilitating

subjects who suffer from spinal cord injury [147], stroke [63], or multiple sclerosis [140].

Therefore, rehabilitation of these individuals may be significantly improved if rehabilitation

is done in two parts, one focusing on strength training that may utilize body support and a

second part that focuses on balance in a condition with realistic ground reaction forces, such

that both muscles and neural control are appropriately trained.

In conclusion, we showed evidence that changing stance width during standing balance

control alters neuromechanical interactions, necessitating adjustment of postural set and

neural feedback gain to produce similar CoM motion. We showed that changes in geometry

affect both postural set and neural feedback, while changes in body mass only affect delayed
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neural feedback. We also found that changes in neural feedback are not cued to changes in in-

ertia for the conditions we studied. Finally, we showed that these phenomena were observed

across different perturbation magnitudes, stance widths and mass conditions. We believe

that these data provide important insights into how sensorimotor feedback is changed to

account for alterations in biomechanics and show the importance of neuromechanical inter-

actions for stable balance. Thus, stability of movement may be the reason behavior is similar,

however the subtle differences that make our movements unique are likely due to a little bit

of biomechanics and a little bit of neural control.
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CHAPTER VI

CONCLUSION

6.1 Stable covariation of biomechanical and neural factors are necessary
for healthy standing balance

This thesis argued that for stable behavior both neural control and biomechanical configu-

ration must covary in a stable manner. A conclusion that is often made by those who study

biomechanics is the apparent dictum of form following function. Studying the curvature of

articular surfaces, the muscle physiology and even the microstructure of bone all relate to

a functional purpose for efficient movement. Evidence of the importance of biomechanics in

motor behavior is exemplified by passive dynamic walkers [79], resonance of feeding appa-

ratus in aplysia [154] and multi-leg interaction in cockroaches running over rough terrain

[118]. Therefore, form of the biomechanics is expected to have significant effects on neural

control [136]. Certainly the converse is also true, without neural input driving musculature

even simple movement would not be possible.

I first showed that simple changes in configuration, such as stance width drive changes

in neural control to maintain stability. My model demonstrated that the increase in stance

width allows for mechanical leverage at the hip to increase, allowing greater torque gener-

ation about the center of mass. A wider stance thus lessens the muscular effort required

for balance control, which may allow a subject to resist larger perturbations. However, my

results demonstrated that this increase in functional stability was only possible when accom-

panied by appropriately scaled delayed neural feedback. The same mechanical effects that

allowed for reduced effort and larger responses to perturbations in wide stance also increased

the inherent instability of the musculoskeletal system and limited the set of feasible stable

feedback gains at wide stance. This was important, because it showed that the perception
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of increased stability at wide stance is not simply due to changes in the biomechanics of

the body, but predicated on the requisite flexibility and appropriate response of the neural

system.

I also used our model to show the extent that neural control can compensate for changes

in biomechanics and, conversely, how configuration can compensate for changes in neural

control. I showed that time to peak torque can be increased through many model parameters:

lengthened neural delay, narrowed stance width, increased position feedback, or decreased

velocity feedback. The increase in time to peak torque from one parameter could then be

compensated by commensurate changes in others. I showed that for the case where neural

feedback delay was increased changes in time to peak torque could be compensated by ei-

ther increasing velocity feedback without changing stance width, or narrowing stance width

without changing feedback gains.

Using an experimental paradigm I provided evidence of changes in neuromuscular control

to account for altered configuration of the body. These observations showed that increasing

the mass of the torso and altering the location of the CoM had little effect on the kinematic

responses of the subjects’ CoM. Using our model to interpret these results we found that

postural set is likely updated in response to changes in stance width while delayed neural

feedback is updated with changes in both body mass and stance width. Furthermore, our

results showed that the similar responses in different biomechanical contexts could be ex-

plained by changes in neural control that complemented changes in biomechanics to result

in a consistent level of system stability. This confirmed previous work showing that changes

in arm impedance occur in unstable environments [98, 46, 111] and those changes can be

achieved through muscle activity [64] as well as limb configuration [135]. In short, stable be-

havior requires neural and biomechanical systems to stably interact and deficiencies in one

may be compensated through changes in the other.

6.2 Clinical relevance

This work was scientifically motivated to determine how changes in either neural or biome-

chanical configuration might affect the behavior of standing balance. However, the results
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show a promising direction for improving clinical diagnosis and rehabilitation for a variety

of balance disorders from both the biomechanical and neurological side. First, the model fits

and stability radius technique provide a way to quantitatively measure balance stability and

separate out possible differences in either biomechanics or neural control that may be con-

tributing to a balance deficiency. There are many subjective measures to quantify balance

performance (Berg Balance Scale, Brunel Balance Assessment, etc) and a handful of quan-

titative models [93, 94], but these tests do not separate biomechanical effects from neural

effects on balance deficiency. The ability to have tools that can predict these differences in

balance stability is an important addition to previous work to identify different sources of

sensorimotor deficiency [88, 99].

This thesis shows that changes in stance width can significantly impact stability of stand-

ing balance and affects how neural control responds to perturbation. Since stance width is

a conceivably simple behavior to alter, understanding the optimal stance width for improv-

ing stability for a patient could have significant consequences. Changes in neural gain are

reported for many neurological populations [52, 9, 23], and it may be conceivable to offset

some of these effects by adopting a different posture. For example, damage to the basal gan-

glia in Parkinson’s disease may impair the ability to modify postural muscle responses in

response to changing postural configurations. Parkinson subjects are unable to modulate the

muscle activity evoked during standing balance perturbation across different stance widths

[24]. Parkinson’s subjects can maintain balance to postural perturbation when standing, but

persist in activating leg muscle when subsequently seated [50]. Moreover, Parkinson subjects

have characteristically stiff joint responses to perturbations [47]. These observations can be

interpreted as an inability to adjust feedback gains associated with changing biomechanical

constraints [60]. Stiffening may be the result of increased feedback gains, which our model

suggests are less stable in wide stance. Thus, patients with Parkinson’s disease may select

narrow stance to compensate for inflexible high gains. Also, it has been observed that stance

width decreases as people age [80, 124]. Sensorimotor delay has been reported to lengthen

with aging [151] and the four-bar model predicts that this should result in decreased feed-

back gains [2] due to smaller feasible feedback gains for maintaining stability. Therefore, it
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may be advisable for subjects with known balance deficits to monitor their stance width to

help improve their stability in the context of reduced neural flexibility. Further, o Another

possible compensation to increased delay may be to decrease stance width, which has been

observed in elderly populations [80, 124].

In a similar vein, changes in mass may also have consequences on neural feedback and

stability. In the obese, both mass and stance width are increased [106] and the increase

in stance width with increased feedback gains necessary to accommodate increase in mass

may pose a threat to the stability of these individuals. Therefore, since neural control is

likely altered it may be important to consider possible residual neural control patterns that

may persist as individuals exercise and lose weight, which may affect their balance. This

may be most important if long-term adaptation of neural feedback to changes is slow com-

pared to biomechanical changes in postural configuration, such as in during pregnancy and

postpartum. Reports of decreased stability in balance postpartum have been reported. Dur-

ing pregnancy, stance width increases gradually and frontal plane sway remains consistent.

However, shortly after delivery, preferred stance width returns to pre-pregnancy width and

frontal plane sway increases [54]. The decrease in stability postpartum may be due to using

low feedback gains appropriate for wide stance at the preferred stance width, generating a

transient aftereffect [112] of instability while the neural gains must re-adapt to the preferred

configuration. In cases of rapid weight loss, it may be important to enforce a slow return of

posture to accommodate adaptation of neural feedback gains to appropriately matched levels.

Finally, this study suggests that changes in body mass affect neural feedback, which may

have critical implications for rehabilitation strategies that implement reduced body weight.

Gait rehabilitation strategies that utilize weight support devices have the advantage of pro-

viding support for individuals with reduced strength and motor coordination. Unfortunately,

the reduced body weight removes cues from ground reaction forces that may be important for

balance. This may be one reason for poor outcomes when rehabilitating subjects with weight

support devices who suffer from spinal cord injury [147], stroke [63], or multiple sclerosis

[140]. Therefore, rehabilitation of these individuals may be significantly improved if reha-

bilitation is done such that both muscles and neural control are appropriately trained. This
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might be achieved by first focusing on strength training that may utilize body support and a

then training balance in conditions with realistic ground reaction forces.

6.3 Future work

All future work that I pursue stemming from this thesis will be influenced by the research

philosophy learned here about the power of combining modeling, experimentation and anal-

ysis. The simple analytic model of frontal plane standing balance provides a spring board

for a wide array of possible experiments to test neuromechanical interactions and their ef-

fect on behavior. I have also developed stability radius as a quantitative tool that promises

an useful technique for analyzing and comparing the stability of different neuromechanical

systems and conditions. Opportunities exist for extending this work both depth-wise and

breadth-wise.

Many questions remain from chapter 3 about delayed responses due to aging. Behavioral

responses were explored in the context of joint torque, but an equally important question

would be to perform the same analysis and examine the effects on the observed CoM kine-

matics. Furthermore, a question raised by this investigation that seems critically relevant

is whether the observed decrease in stance width with the increase in age actually corre-

sponded to a change in the stability of the individual. An obvious change would be to repeat

the experiments with the subjects restricted to specified stance widths. Using the techniques

from chapter 2 feedback gains could be determined based on the CoM response and using

stability radius from chapter 4 to compare the stability of the individuals.

There is still a considerable amount left to develop for the stability radius as a method.

While not immediately useful for postural tasks, an obvious extension would be to extend

stability radius to describe locomotor tasks that may have limit cycles. This would require

formulating the problem in terms of Floquet analysis. Furthermore, the stability radius

technique as it was presented in chapter 4 considers the most conservative case, where any

perturbation could possibly lead to instability. Obvious extensions of this would be to restrict

the set of possible perturbations to external environmental forces or specific model parame-

ters. Work on structured perturbations has already been done for non-delayed systems [42],
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so extending this may be straightforward.

Changes in neural control elicited from altered stance width and inertia likely have sig-

nificant consequences on stability. The data from chapter 5 is ripe for fitting the model as

in chapter 2 and using stability radius from chapter 4 to determine the relative changes in

stability across the different conditions. Preliminary work towards this goal has been shown

that this is feasible in appendix B. Furthermore, it would be interesting to see if differences

in anthropometrics and preferred stance width relate to any differences in stability between

the subjects. Simply, did subjects prefer their most stable posture?

A glaring hole in all of these studies is the lack of analysis of electromyographic (EMG)

data. All of the studies that were analyzed in this thesis have corresponding muscle activity

recorded; however, none of the results made it into the thesis because they were too prelim-

inary. A significant amount of analysis remains to examine how changes in muscle activity

relate to changes in predicted feedback gain and postural set. This data may help to answer

questions about whether variability in muscle activity is constrained by feasible feedback

gains as is suggested in chapter 2. It may also highlight whether neural delay or neural feed-

back is most affected with increased age as was brought up in chapter 3. Finally, questions

of changes in postural set and neural feedback raised in chapter 5 may be better answered

by looking at muscle activity before and during the response to the postural perturbation.

Further depth-wise investigation includes anchoring the template four-bar linkage model

into a more realistic and detailed musculoskeletal model [31]. The four-bar model’s most ob-

vious deficiency is an inability to take a step. Some work to correct this has been started [13].

In addition, a fully articulated model would allow predictive simulations to test differences

in stability if control were local (joint based), task level (CoM based), or hierarchical (both

joint and CoM based).

Breadth-wise extension is also obvious; these methods are directly applicable to patho-

logical populations. The experimental studies in this thesis focused on healthy populations;

however, the true benefit of studying postural stability will surely come from those popula-

tions where stability is reduced. This also has two distinct directions: the first, populations

with biomechanical deficiencies and the second, those with neurological deficiencies. It may
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be possible to predict changes in stability due to factors affecting neural control that are ac-

companied with aging and neuropathies such as stroke and Parkinson’s disease. Conversely,

the four-bar model can be used to predict changes in postural stability due to altered strength

and configuration, which could be used to explore how biomechanical pathologies such as lig-

ament deficiency, arthritis, and amputation affect postural stability.

In general, the framework of modeling, experimentation and analysis is a powerful method

for understanding complex systems holistically. With a simple model and relative stability

metric a vast array of experimental questions pertaining to neuromechanical principles may

be interpreted that span from understanding evolutionary principles of form and function to

developing better control for robotic devices. There is much work left to be done, so while this

document must end, really it is just the beginning.
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APPENDIX A

FOUR-BAR LINKAGE MODEL

A.1 Symbols

COM center-of-mass

kp delayed position feedback gain

kv delayed velocity feedback gain

g earth’s gravitational acceleration

S stance width

W hip width

L leg length

LCOM length from ankle to center-of-mass of leg

HCOM vertical distance from hip center to center-of-mass of torso segment

t time

τ delay parameter

qA ankle angle

I non-linear model inertia

Q non-linear model centripetal and coriolis terms

T non-linear model joint torques

P non-linear model perturbation terms

G non-linear model gravitational terms

CP non-linear model configuration dependent coefficient for perturbation

Ie linearized model inertia

Ge linearized model gravitational terms
iC linearized model configuration dependent coefficient for feedback
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A.2 Parameters

Table A.1: Anthropometric data for four-bar linkage model of human standing

Description Symbol Value Unit
Nominal human mass M 70 kg
Nominal human height H 1.8 m
Leg mass mleg 0.161M kg
Leg length L leg 0.630H m
Leg CoM w.r.t. ankle LCleg 0.293H m
Leg inertia w.r.t. CoM I leg 0.030MH2 kg ·m2

Trunk mass mtrunk 0.678M kg
Trunk CoM w.r.t. hip joint LCtrunk 0.108H m
Trunk inertia w.r.t. CoM I trunk 0.020MH2 kg ·m2

Width between hip joints W 0.134H m

A.3 Model

The four-bar linkage model was a single degree-of-freedom system with the ankle angle, qA ,

selected as the generalized coordinate. The form of the equation-of-motion was separated into

configuration dependent inertia terms, I, centripetal and coriolis terms, V , and gravitational

terms, G.

I (qA (t)) q̈A (t)+Q (qA (t) , q̇A (t))+G (qA (t))

= T (qA (t−τ) , q̇A (t−τ))+P (qA (t) , t) (A.1)

Generalized forces applied to the model were divided into joint torques, T, and perturbations,

P. The joint torque was dependent on delayed position and velocity values of the feedback

signal, where the delay was signified by τ. The platform perturbation, (A.2), was applied

as a generalized force with a configuration dependent inertia term, Cp, and an acceleration

profile, a. When experimentally measured accelerations were unavailable the acceleration

term consisted of two Gaussian pulses with opposite direction. The pulses were 40 ms wide

(ρ), spaced 500 ms apart (t f − to) and had amplitudes ranging from 0.1-0.5 g (A).

P (qA (t) , t)= Cp (qA (t)) a (t)= Cp (qA (t)) A

(
e−

(t−to )2

2ρ2 − e−
(t−t f )2

2ρ2

)
(A.2)
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A.4 Linearization

For the stability analysis and sensitivity of parameters the equations-of-motion with pertur-

bation forces removed, (A.1), were linearized by taking the first order Taylor series expansion

about an equilibrium. The equilibrium angle of the ankle was defined with (A.3), where W

was the hip width, S was the stance width and L was the leg length.

qAo = arccos
(

S−W
2L

)
(A.3)

The equations-of-motion were then expressed as linear relations, (A.4), with respect to the

generalized coordinate states and their delayed counterparts. Linearized inertial, Ie, and

gravitational, Ge, terms were then expressed as constant coefficients for a specified configu-

ration and the coriolis terms, Q, vanished.

Ie q̈A(t)−GeqA(t)= Ti (A.4)

The linearized inertia, (A.7), was represented as a single lumped value dependent on stance

width (S) and the subject specific leg and trunk masses (mleg, mtrunk), inertias (I leg, I trunk)

and geometry (W , L, LCOM , HCOM).

δ= S−W (A.5)

η= 1
2

√
4L2 −δ2 (A.6)

Ie = 2
(
mleg L2

COM + I leg
)+ 1

W2

[
mtrunk

(
HCOMδ−W η

)2 + I trunkδ
2
]

(A.7)

Similarly, the linearized gravitational stiffness, (A.8), was dependent on subject specific mass

and geometry as well as stance width.

Ge =
(

mtrunk
(
HCOM δ2)

W2 −
(
2LCOM mleg +L mtrunk

)(
δη2 −L2 S

)
LW η

)
g (A.8)

The linearized expression for the generalized torque, (A.9), was written in terms of the feed-

back law and a configuration dependent term, iC, that was specific to each type of feedback

signal. For the following equations the superscript i is a substitute for either hip or COM

feedback signals.

T =−iC
S
W

(
ikpqA (t−τ) + ikv q̇A (t−τ)

)
(A.9)
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Two types of feedback signals were used, when hip angular position and velocity was used,

the configuration dependent coefficient, hipC, was dependent only on the width of stance and

distance between the hips, (A.10).

hipC = S
W

(A.10)

When the center-of-mass excursion was used as a feedback signal the expression for the

configuration dependent coefficient, comC, was more complex and was related to the height

of the center-of-mass, (A.11).

comC = HCOM L mtrunkδ−W
(
L mtrunk +2LCOM mleg

)
η

LW
(
2mleg +mtrunk

) (A.11)

A.5 Stability boundaries

The closed-loop stability of the delayed feedback system was accomplished by analyzing the

system about equilibrium, (A.3), and assuming exponential solutions to the differential equa-

tion. This resulted in the development of the following characteristic equation, (A.12).

Ieλ
2 −Ge + iC

(
S
W

)[
kpe−λτ+kvλe−λτ

]
= 0 (A.12)

The solutions to the characteristic equation become unstable when the real part transitions

from negative to positive. Stability was then determined by finding solutions, values of λ =
r+ jω, to the characteristic equation that had strictly zero real part, r = 0. These solutions

therefore were described as curves parameterized by the magnitude of the imaginary part,

ω.

The left-hand boundary, (A.13), represented a lower limit on delayed position feedback

gain, kp, described by a fold bifurcation. The functional consequence of this limit corre-

sponded to feedback stiffness, kp, of the delayed position feedback gain being unable to coun-

teract the destabilizing gravitational stiffness, Ge.

LHB ≡


ikp = 1

iC
W
S Ge

ikv = R

(A.13)

The right-hand boundary, (A.14), restricted both position and velocity feedback gains and

was described by a Hopf bifurcation. This upper boundary was a consequence of the feedback

112



delay and functionally represented an instability due to over-correction.

RHB ≡


ikp = 1

iC

(
Ieω

2 +Ge
) W cos(τω)

S

ikv = 1
iC

(
Ieω

2 +Ge
) W sin(τω)

ωS

(A.14)

Finally, an upper limit on the length of delay was found for which there were no feedback gain

values that were stable, (A.15). This occurred when the right-hand boundary was reduced to

a single point.

τmax =
√

2Ie

Ge
(A.15)

A.6 Non-delayed feedback

The four-bar linkage with delayed feedback may be extended to include non-delayed feedback

terms. This modification includes additional torque components associated with passive stiff-

ness, k, and damping, b, and the linearized equations of motion take on the form below.

Ie q̈A(t)−GeqA(t)=−iC
S
W

(
ikpqA (t−τ) + ikv q̇A (t−τ)

)
− S2

W2 (kqA (t) + bq̇A (t)) (A.16)

The stability boundaries in terms of the delayed feedback gains are therefore found to have

the following form.

LHBpassive ≡


ikp = 1

iC

[
W
S Ge − S

W k
]

ikv = R

(A.17)

RHBpassive ≡


ikp = 1

iC

[(
Ieω

2 +Ge
) W cos(τω)

S − S
W (kcos(τω)−bωsin(τω))

]
ikv = 1

iC

[(
Ieω

2 +Ge
) W sin(τω)

ωS − 1
ω

S
W (ksin(τω)+bωcos(τω))

] (A.18)
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APPENDIX B

MODEL FITS TO EXPERIMENTAL DATA AND PRELIMINARY STABILITY

RADIUS RESULTS

B.1 Summary

Co-variation of biomechanical and neural parameters are likely required in order to achieve

stability for a particular behavior. Changes in stability may be driven by changes in pos-

ture, such as standing with a wider stance on a moving train or adjusting arm angles when

reaching in unstable environments [135]. Changes in stability may also be driven by mus-

cle co-contractions, which have been observed to affect arm impedance within the same arm

configuration when generating forces in an unstable environment [98, 46, 111]. Changes in

neural control and biomechanical configuration is also observed to occur concomitantly. For

example, in the case of translational perturbations increased stance width is accompanied

by decreased muscle activity [39], which, based on our previous model [7], may be a neces-

sary condition for maintaining stability. Further evidence of stability driving simultaneous

changes in neural and biomechanical parameters has been reported by research in upper-

extremity control where both muscle activity and arm configuration is altered in a way to

reduce sensitivity to parameter variation in dexterous tasks [122, 5]. It has previously been

difficult to quantify how these changes might affect stability, as stability reflects the dy-

namical behavior of the body, such as limb impedance, which can be altered by both muscle

activity [64] as well as limb configuration [135]. Therefore, to quantify the importance of

neuromechanical interactions on stable behavior this appendix provides evidence of how a

particular pairing of biomechanical context and neural control state would result in greater

or less stability for the task of standing balance.
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This appendix serves as an addendum to chapter 5 with the purpose of providing prelim-

inary analysis of those data using the model fitting procedures of chapter 2 and the stability

comparison metric of chapter 4. The principle goal was to show whether changes in stance

width, which have been shown to be accompanied with changes in feedback gains (chapter

2), result in changes in stability. The central hypothesis was that changes in biomechanical

context (different stance widths or mass) would be matched by changes in feedback gain that

result in similar levels of stability across conditions.

The results of the preliminary analysis showed that across stance widths there was a

similar level of stability, but there was a trend of greater robustness at wider stance. How-

ever, increased mass, while accompanied with changes in feedback gains, showed a marked

decrease in relative stability within the same stance width. Finally, when conditions were

set such that inertia was matched but weight and stance width were different, the wide-

weighted condition was less stable than the narrow-unweighted condition. When subjects

were analyzed separately it appeared that these trends still held even though the relative

stability between subjects was observed to vary considerably.

B.2 Methods

B.2.1 Data analyzed

A subset of the data acquired in chapter 5 was used that consisted of trials from all subjects

(n=12) from perturbations in the leftward direction with magnitude of 24 cm, 15 cm/s and

0.15 g. This included three stance widths of narrow (10 cm), preferred, and wide (30 cm) as

well as unweighted and weighted (20% additional mass) conditions. Trials that had step-

ping responses and fits with a cost of greater than 15 were removed. Each condition had at

least 4 repeats with some conditions having more, thus the paired down subset spanned all

conditions with 389 trials (12 x 3 x 2 x 4 = 288).

B.2.2 Model fitting

The extended version of our previously described four-bar linkage model that included non-

delayed position and velocity feedback to model postural set and delayed position and velocity
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feedback for neural control was used to fit to experimental data to identify changes in feed-

back parameters across subjects and conditions (See Appendix A: Eq. A.16)[7]. Leg length,

hip width and torso height of the model were scaled to each subject’s anthropometric mea-

surements and used with anthropometric tables to determine segment CoM and inertia [148].

Muscular force was modeled as a lumped term and applied with constant moment arms as

torque about each hip joint. Hip torque was generated as non-delayed and delayed feedback

of the hip joint angle with fixed gains on position and velocity. The delay was selected to

be a single lumped value of 120 ms to account for neural transmission from sensation to

actuation and mechanical actuation. Numerical simulation of the equations of motion was

performed in Matlab (Mathworks, Natick, MA). Integration was performed with the explicit

trapezoidal rule with a step size of 1 ms, zero initial conditions, and zero-valued state history.

Center-of-mass trajectories and ground reaction forces were recorded.

The model was fit to experimental data to identify changes in feedback parameters across

subjects and conditions. To determine non-delayed and delayed model feedback parameters,

simulated CoM position and velocity trajectories were fit to each experimental trial through

optimization with the perturbation applied to the four-bar linkage as an inertial acceleration

of the ground recorded from the measured platform acceleration. A cost function (Eq. B.1c)

was defined using error between simulated and experimental center-of-mass trajectories with

penalties on absolute (weight of 1) and sum-squared error (weight of 10); error in position was

weighted twice the error in velocity; and the errors summed.

ek = simk − expk (B.1a)

Ji = 10
(∑

ek
)2 +max(|ek|) (B.1b)

J = 2Jpos + Jvel (B.1c)

To produce unique feedback gain values, optimization was performed in two steps. The

first optimization kept non-delayed feedback gains fixed at zero-value and used only the de-

layed feedback gains to fit 2.5 s of simulation. To identify non-delayed feedback gains, the

second optimization kept delayed feedback gains fixed to the values found in the first opti-

mization and used the delayed feedback gains to improve the fit. Optimization was achieved
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by using a grid-search with bounds set on delayed gains within the feasible range and non-

delayed gains to be positive and less than the found delayed feedback gains.

B.2.3 Feedback gain and stability analysis

Relative stability was calculated using the stability radius method described in chapter 4.

Linearized equations of motion (Appendix A: Eq. A.16) were used to formulate system matri-

ces (Eq. B.2) from the anthropometric properties and found feedback gains discovered from

the fit procedure described above. Using a grid search the minimization for equation 4.21 was

solved to determine the stability radius for each fit trial. The bounds for the grid search were

restricted to be strictly positive imaginary values with an upper bound (UB=1000) heuristi-

cally set to two orders of magnitude larger than the largest imaginary value observed from

the first 10 eigenvalues.

d
dt

x (t)= 1
Ie

 0 Ie

Ge −k
(

S
W

)2 −b
(

S
W

)2

x (t)− 1
Ie

(
S
W

)2
 0 0

kp kv

x (t−τ) (B.2)

Three experimental conditions were analyzed for changes in non-delayed feedback gain,

delayed feedback gain and stability radius. Across subjects, the effect of increased stance

width was assessed for trials having subjects in the unweighted condition, statistical tests

were performed between the narrow and wide stance width. The effect of weight condition

was assessed for trials having all subjects at preferred stance width. Finally, we compared

CoM excursion in conditions where inertia was similar across stance widths by grouping

trials by unweighted, narrow stance and weighted, preferred stance. For each variable of

interest statistical significance was determined using a Students’ t-test (α=0.05) to reject the

null hypothesis that the two means within a group were not from the same distribution.

B.3 Results

No statistical difference in stability radius was observed between narrow and wide unweighted

conditions (p=0.19). However, wide stance had a trend of slightly greater stability radius com-

pared to narrow stance. Increased mass significantly decreased (p<1e-5) the relative stability

between the weighted and unweighted condition at preferred stance (Figure B.1). Stability
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Table B.1: Average feedback gain and stability results from fitting the fourbar model to ex-
perimental trials of narrow (N), preferred (P), and wide (W) for unweighted (U) and weighted
(W) conditions.

Cond. k b kp kv stab. rad.
N-m/rad N-m/rad/s N-m/rad N-m/rad/s

NU 82.0 ± 133.5 144.5 ± 123.2 3133.2 ± 1548.3 613.2 ± 294.8 0.52 ± 0.12
PU 83.3 ± 85.9 74.0 ± 60.1 702.2 ± 338.7 112.7 ± 57.4 0.53 ± 0.15
PW 75.8 ± 109.8 75.4 ± 74.1 730.7 ± 412.9 130.2 ± 73.6 0.39 ± 0.17
WU 68.3 ± 58.5 37.8 ± 21.7 373.4 ± 139.7 67.4 ± 42.3 0.57 ± 0.24
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Figure B.1: Stability radius predicts decreased stability with increased body mass across
stance widths.

was also reduced (p<1e-4) in the wide, weighted condition compared to the inertia matched

condition of narrow, unweighted. A representative subject had similar trends in stability ra-

dius across the conditions (NU: 0.50±0.03, PU: 0.53±0.10, PW: 0.33±0.17, WU: 0.67±0.04).

Stability radius at the preferred stance width in the unweighted condition varied from 0.25-

0.70 across subjects (Figure B.2).

The fitted non-delayed feedback gains appeared to be insensitive to changes in mass and

slightly affected by changes in stance width. Non-delayed position feedback did not sig-

nificantly change across any of the conditions (p>0.47). Non-delayed velocity feedback was

sensitive to changes in stance width and decreased significantly from narrow to wide stance

width (p<1e-6). However, non-delayed velocity feedback did not significantly change with

increased mass (p=0.91). Non-delayed position feedback gains were found to be an order of
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Figure B.2: Stability radius varies across subjects. Shown for the preferred stance width the
median stability radius across all trials within the low-level, leftward perturbations shows
different levels of stability and variance across subjects.

magnitude smaller than the delayed position feedback gains, suggesting only minimal effects

on behavioral response. Conversely, non-delayed velocity feedback were of a similar order of

magnitude to the delayed velocity feedback gains, suggesting relatively higher importance

on their effect on behavior.

Delayed feedback gains fitted to the experimental data increased as stance width de-

creased and mass increased. There was a statistically significant increase in feedback gain

between wide and narrow stance in both delayed position (p<1e-6) and velocity (p<1e-6) feed-

back gains. While not statistically significant, delayed position (p=0.67) and velocity (p=0.14)

increased slightly with the increase in body mass.
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