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SUMMARY

Hot section components of land-based gas turbines are subject to extremely harsh,

high temperature environments and require the use of advanced materials. Directionally

solidified nickel base superalloys are often chosen as materials for these hot section compo-

nents due to their excellent creep resistance and fatigue properties at high temperatures.

These blades undergo complex thermomechanical loading conditions throughout their ser-

vice life, and the influences of blade geometry and variable operation makes life prediction

difficult. Accurate predictions of material response under thermomechanical loading con-

ditions is essential for life prediction of these components. Complex physics-based crystal

viscoplasticity (CVP) models are often used to capture the behavior of Ni-base superalloys.

While accurate, these models are computationally expensive and are not suitable for all

phases of design.

This work involves the calibration of a reduced-order, macroscale, transversely isotropic

viscoplasticity (TIVP) model to a directionally solidified Ni-base superalloy. The unified

model is capable of capturing isothermal and thermomechanical responses in addition to

secondary creep behavior over the temperature range 20-1050◦C. An extreme reduced or-

der microstructure-sensitive constitutive model is also developed with an artificial neural

network (ANN) to provide a rapid first-order approximation of material response under

thermomechanical loading conditions. Based on uniaxial isothermal training data from

more complex crystal viscoplasticity and transversely isotropic viscoplasticity models fit to

a simple 1-D Ramberg-Osgood relation, the ANN model is able to generate Ramberg Os-

good parameters at any arbitrary temperature, strain rate, and material orientation from

the DS axis within the domain of the training data. These microstructure-sensitive param-

eters can then be used in a Neuber-type analysis to predict local stresses and strains at

stress concentrators of components.
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CHAPTER I

INTRODUCTION

1.1 Motivation

For decades, land-based gas turbines have been employed in the energy sector and are a

convenient choice for numerous power generation applications. In these turbines, combus-

tion of a compressed air/fuel mixture forces superheated gases through different stages of

blade components, which then turn a rotor connected to the power transmission grid. Very

high operating temperatures are desired in order to increase the thermal efficiency of these

systems, which leads to harsh operating environments for turbine components. Blades in

the hot section of the turbine must be able to withstand these extreme conditions. Because

of their excellent strength retention and creep resistance at high temperatures, among other

desirable qualities, directionally solidified (DS) nickel-base superalloys are often selected as

materials for these components. An example of a gas turbine shaft with blade components

attached is shown in Figure 1.1.

Figure 1.1: A partially constructed land based gas turbine [1]
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1.2 CM247LC-DS Material Specifications

Directionally solidified Ni-base superalloys have far fewer transverse grain boundaries with

respect to the direction of solidification when compared to their polycrystalline (also called

equiaxed) counterparts. This reduction in tranverse grain boundaries leads to better creep

resistance, and the resulting lower modulus in this direction allows for better fatigue re-

sistance at high temperatures [2]. Developed by the Cannon-Muskegon Corporation [3],

CM247LC-DS is descended from a parent alloy Mar-M247 when an effort was made to re-

duce cracking at grain boundaries through lowering the carbon content of the alloy. The

average chemical composition of CM247LC-DS is given in Table 1.1.

Table 1.1: Chemical composition of CM247LC-DS

Composition by Weight Percent

Material Al B C Co Cr Hf Mo Ta Ti W Zr Ni

CM247LC-DS 5.6 0.015 0.07 9.2 8.1 1.4 0.5 3.2 0.7 9.5 0.015 Bal.

CM247LC-DS is a two-phase material consisting of hard FCC Ni3Al (γ
′
) phase precip-

itates in a softer γ phase FCC matrix comprised mostly of Ni. This structure is shown in

Figure 1.3.

Figure 1.2: SEM image of two-phase structure of CM247LC-DS [4]
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Figure 1.3: (a) A DS turbine blade and (b) convention for off-axis specimens [5]

For design and life prediction of these components, it is essential to be able to predict

material behavior under a variety of conditions. Of particular interest is the material

response under thermomechanical fatigue (TMF) conditions, in which both temperature and

load change simultaneously. These conditions are experienced by blade components during

startup and shutdown, where temperature variations across the airfoil have a detrimental

effect by inducing thermal cycling in sections of the component. Both in-phase (IP) and

out-of-phase (OP) TMF loading conditions are experienced by different sections of the

component during operation. In addition, it is also important to predict creep behavior at

higher temperatures, since at base operating conditions the components are subjected to

centrifugal stresses arising from the 3000 or 3600 RPM required to provide power to the

transmission grid. Since the grain size is relatively large ( 0.5 mm), a crystal viscoplasticity

(CVP) constitutive model that explicitly considers 3-D grain structure is ideal for capturing

the important features of the microstructure.

However, these models are computationally expensive and, in general, are not suitable

for design analysis. The aim of this project is to evaluate more computationally efficient

approaches that still capture the important microstructural features which govern the re-

sponse.
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1.3 Research Objectives

The research presented in this thesis will focus on exploring reduced order methods of

predicting Ni-base superalloy behavior under TMF loading conditions and making com-

parisons between these reduced order constitutive models and ones that include additional

microstructural attributes, but are computationally expensive. The specific objectives of

this research are as follows:

1. Calibrate a transversely isotropic viscoplasticity (TIVP) model to capture

the response of a DS Ni-base superalloy for isothermal, thermomechanical,

and creep conditions. Developed previously by Shenoy et al. [6], this continuum-

based model is much less computationally expensive than crystal viscoplasticity (CVP)

models which are currently used. Since the TIVP model is a unified creep-plasticity

model, it is much more representative of material behavior and preferable to built-in

finite element models in which creep and plasticity are considered separately while

still providing significant improvements in computation time.

2. Develop an extreme reduced order constitutive model to rapidly approx-

imate DS Ni-base superalloy behavior under a variety of conditions. An

extreme reduced order model consisting of a feedforward artificial neural network

(ANN) is intended to approximate the local response almost instantly, which could

be used in systems level design or life model. This model would be trained using

the output from a CVP model and approximate material response under a range of

temperatures, strain rates, and material grain orientations by predicting parameters

for a much simpler analytical model. The effects of temperature, strain rate, and

orientation would be captured through the model parameters themselves.

3. Compare the reduced order and extreme reduced order constitutive mod-

els to the more complex crystal viscoplasticity (CVP) model in terms of

relative accuracy and computational expense. It is important to understand

the comparative performance of each of the three material models in terms of both
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accuracy and computational expense in order to determine their prescribed usage in

component and systems level design.

1.4 Thesis Overview

Chapter 2 is a background and literature review on constitutive modeling of Ni-base super-

alloys and the utlization of the function fitting capabilities of feedforward artificial neural

networks in the materials science field. Chapter 3 is an overview of a transversely isotropic

viscoplasticity model and provides details pertaining to its calibration to CM247LC-DS and

verification/validation cases. Chapter 4 discusses the development of an extreme reduced

order microstructure-sensitive constitutive model. Chapters 6 and 7 conclude the thesis and

provide suggestions for future work, respectively.
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CHAPTER II

BACKGROUND

Accurate prediction of high temperature and thermomechanical behavior of directionally

solidified Ni-base superalloys is essential for reliable life prediction of turbine components

made from these materials. Life prediction of these components can be a nontrivial task due

to the variety of damage mechanisms present under thermomechanical fatigue conditions,

which are primarily fatigue, creep, and environmental effects [5]. These have been previously

studied [4,5,7–9] and the extent of each varies depending upon the nature of test conditions

[4]. The methods presented in this research deal primarily with life prediction through

predicting the cyclic response and then correlating to life. Included here is an overview

of life prediction methods for components subjected to thermomechanical fatigue, as well

as methods to account for stress concentrators and non-local computational approaches.

Previous work on reduced order modeling techniques is presented also.

2.1 Stress Concentration Effects

In addition to numerous empirical approaches suggested to account for notch effects, classic

analytical approaches to predicting the local stresses and strains for notched components

involve a relation between linear elastic pseudo stresses/strains (values that are from a

purely elastic analysis) and actual elastic-plastic stresses/strains at the notch. One such

relation was proposed by Neuber [10]. Known as Neuber’s rule, it is given as

σelasεelas = σε (2.1)

where σelas and εelas are the linear elastic stress and strain, respectively, and σ and ε are

the local stress and strain, respectively. A geometrical interpretation of this relation is

that the area under the theoretical linear elastic stress-strain curve (a triangular area) is

equivalent to the area under a second triangle formed by the origin, the point on the true
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local stress-strain curve [ε,σ], and the point [ε,0]. This is depicted in Figure 2.1.

Figure 2.1: Geometrical interpretation of Neuber’s Rule

Neuber showed that the stress concentration factor can be expressed as

Kt =
√
KσKε (2.2)

where the theoretical stress concentration factor, Kt, is the geometric average of the stress

concentration factor, Kσ, and the strain concentration factor, Kε. The stress concentration

factor and strain concentration factor are defined

Kσ =
σ

S
(2.3)

and

Kε =
ε

e
(2.4)

respectively, where σ is the local stress at the notch feature, S is the nominal stress, ε is

the local strain at the notch, and e is the nominal strain. Using this relation, Equation 2.2

can be rewritten as in Equation 2.5.

K2
t Se = σε (2.5)
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Using a substitution with the stress concentration factor definition and assuming nominal

elastic behavior, Equation 2.5 can be rewritten as

σ2
elas

E
= σε (2.6)

where σelas is the local stress using an elastic analysis. Using the simple Ramberg-Osgood

relation [11] [12]

ε =
σ

E
+
( σ
K

) 1
n

(2.7)

where E is the elastic modulus, K is a strength coefficient, and n is an exponent capturing

strain hardening behavior, Equation 2.6 can be rewritten again as

σ2
elas

E
= σ

[
σ

E
+
( σ
K

) 1
n

]
(2.8)

Using this relation, the value of σ can be solved through iteration, and then the value

of ε can be computed using Equation 2.6.

Alternatively, a relation proposed by Molski and Glinka [13] can be used instead of

Equation 2.8.

σ2
elas

E
= σ

[
σ

E
+

2

1 + n

( σ
K

) 1
n

]
(2.9)

This approach is generally less conservative than a Neuber relation and assumes the mag-

nitude of the strain energy density near the elastic-inelastic notch root is equivalent to

nominally elastic behavior [14]. A geometrical interpretation of Glinka’s rule is shown in

Figure 2.2, where the area under the theoretical linear elastic stress-strain curve (the strain

energy density) is equal to the area under the true stress-strain curve.

It has been shown that the Glinka or modified Glinka relation gives a better approxi-

mation of stresses and strains at notch roots than Neuber’s relation, in the case of plane

strain, although the Neuber relation is more conservative for LCF conditions [15]. Both
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Figure 2.2: Geometrical interpretation of Glinka’s Rule

relations may be extended to cyclic stress-strain curves by replacing the monotonic form of

the Ramberg-Osgood equation with the cyclic, incremental form

∆ε =
∆σ

E
+ 2

(
∆σ

2K ′

) 1
n′

(2.10)

where ∆ε is the increment in strain, ∆σ is the increment in stress, and K ′ and n′ are

the cyclic strength coefficient and cyclic strain hardening exponent, respectively. Neuber’s

relation now is given by

∆σ2
elas

2E
= ∆σ

[
∆σ

2E
+

(
∆σ

2K ′

) 1
n′
]

(2.11)

and Glinka’s relation is now

∆σ2
elas

2E
= ∆σ

[
∆σ

2E
+

2

1 + n′

(
∆σ

2K ′

) 1
n′
]

(2.12)

Both Neuber’s Rule and Glinka’s Rule provide a method to analytically determine the

local stresses and strains at a notch root, although approximating these stresses and strains

without a known stress concentration factor may be difficult. Finite element methods may

be used to determine the local elastic pseudo-stress at a region of interest and avoid the

use of a stress concentration factor altogether. Moore [16] developed a model for high
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temperature LCF of a DS Ni-base superalloy that incorporated a multiaxial Neuber model

from the work of Mucke and Bernhardi [17] based on a multiaxial Ramberg-Osgood relation

generalized from the simple 1-D relation

ε =
σ

E
+ α

(
σ

σ0

)n−1

σ (2.13)

This form of the Ramberg-Osgood is common and is used as the built-in classical plasticity

model in ABAQUS [18]. A 3-D generalization of this relation is given by

ε = H : σ +
α

ER

(
σeq
σ0

)n−1

M : σdev (2.14)

The multiaxial Neuber model is then expressed as the nonlinear function φ(σ) given as

φ(σ) := σ2
elas − σ2

1 +
D∗dev : M : D∗dev

D∗dev : H : D∗dev
α

ER

(√
D∗dev : M : D∗devσ

σ0

)n−1
 = 0 (2.15)

where D∗dev is the unit direction tensor associated with deviatoric stresses, M is the

anisotropy tensor of Hill’s parameters, H is the elastic compliance tensor, α is the yield

offset corresponding to the uniaxial case, ER is a suitable reference stiffness, and σ0 is the

reference stress. Details of its derivation can be gathered from Moore [16] with additional

details from Mucke and Bernhardi [17]. Equation 2.15 can be solved through iteration for

σ, whose value may be used to determine the elastic-plastic stress state through the unit

direction tensor and the strain state through the multiaxial Ramberg-Osgood relation.

To account for time-dependent loads and their effect on the local response at a notch,

Chaudonneret and Culie [19] proposed a method based on a differential version of Neuber’s

rule, given by

σ̇ =
1

2σ + Eεp
(2σelasσ̇elas − Eσεp) (2.16)

where σ̇ is the increment in stress at the notch, εp is the plastic strain at the notch, and

σ̇elas is the increment in stress from the elastic analysis. The authors used a unidimensional
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flow rule for plastic strain with evolution equations for backstress and drag stress in the

manner of Chaboche [20]. This method was shown to give reasonably good results for creep

and fatigue, in addtion to cycles with holds. For multiaxial loading conditions, the second

invariants of the deviatoric stress and strain tensors were used to characterize the state of

stress and deformation.

Moftakhar et al. used a strain energy density type method to predict time-dependent

stresses and strains at notches under creep [21] as well as time-dependent stresses and

strains under generalized multiaxial conditions [22]. These methods involve the use of

strain energy density concentration factors to relate nominal stresses and strains to local

stresses and strains. This method and other time-dependent notch analysis methods are

discussed in detail by Moore [16].

2.2 TMF Life Prediction

Thermomechanical loading conditions in blade components arise from both applied loads

and thermal gradients present in the component during engine operation. TMF is generally

classified as either in-phase (IP) or out-of-phase (OP) and simple situations are tested in

the laboratory, usually with linear waveforms, although endless combinations of nonlinear

temperature and load changes are possible. An example of both IP and OP TMF waveforms

is given in Figure 2.3.

Figure 2.3: Out-of-phase (OP) and in-phase (IP) TMF cycles with linear waveforms [23]
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For low-cycle fatigue (LCF) conditions, the classic Coffin-Manson relation [24] is often

used for life prediction and serves as the basis for numerous life models. Its associated

damage parameter is given by

Dcm = ∆εp = f(Nf ) (2.17)

where ∆εp is the inelastic strain range and Nf is the number of cycles to failure. In this

relation, only the inelastic strain range, ∆εp is used to predict life. For TMF life prediction,

an energy-based approach was proposed by Ostergren [25] with a damage parameter given

by

Dostr = ∆εpσmax = f(Nf ) (2.18)

where σmax is the maximum stress seen by the component in the half cycle. Mean stress

effects are captured by adding the σmax parameter [4] in the model, which assumes crack

propagation is the driving force for failure in low cycle fatigue [25]. Zamrik and Renauld [26]

further modified the Ostergren model by normalizing the product of the maximum tensile

stress and strain ranges at midlife cycle by the product of the ultimate strength and strain

to failure at the OP TMF cycle minimum temperature. The damage parameter was then

term defined as

Dzr = ∆W =
σmaxεten
σuεf

(2.19)

where ∆W is the dimensionless damage term, σmax is the maximum tensile stress range at

midlife, εten is the tensile strain range at midlife, σu is the ultimate tensile strength, and

εf is the strain to failure. This term was then fitted to a power law relationship to predict

cycles to crack initiation.

The weakness of these types of models is that isothermal LCF data does not take into

account the presence of other damage mechanisms under TMF conditions. McDowell et

al. [27] suggested that life models which consider damage from fatigue, creep, and oxidation
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explicitly were more promising than models which either included the effects of oxidation

only implicitly or ignored them altogether. A more comprehensive linear accumulation

model for high temperature damage for TMF was proposed by Neu and Sehitoglu [7,28,29]

which incorporated the effects of oxidation and creep, in addition to fatigue. This model is

given as

1

Nf
=

1

Nfat
f

+
1

Nox
f

+
1

N creep
f

(2.20)

where the superscript of each Nf term denotes the mechanism with which it is associated.

For fatigue, the Nfat
f term is given by a relation typical of strain life in which the damage

parameter consists of one half of the mechanical strain range. In work done with DS GTD-

111, Gordon [5] modified this fatigue life term further to incorporate the effects of material

orientation from the DS axis through a shape function.

Neu and Sehitoglu [29] used a creep damage term that is a function of both effective

stress and hydrostatic stress, with an Arrhenius-type relation to include temperature effects.

Gordon [5] used a different relation based on the Larson-Miller Parameter [30]. Kupkovits [4]

extended this sort of definition to TMF conditions by modifying a leading constant to

account for temperature changes through taking an average value using integration over

time. An additional constant was added to account for phasing using a functional form

previously used by Neu and Sehitoglu [29]. It is important to note that one limitation of

this sort of creep model is that it decouples creep from fatigue. Thus it cannot capture

stress relaxation effects or changes in material compliance with temperature [4].

For environmental fatigue, Neu and Sehitoglu [29] used a term based on the contribu-

tion of crack formation and growth in the oxide layer that accounted for both the length

at which damage from the environment lags behind the crack tip and the ductility within

the envinronmentally affected zone. Gordon [5] used an environmental fatigue damage term

that accounted for orientation effects through a shape function as before, in addition to a

constant to incorporate the effects of phasing and constants to capture high temperature
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dwell oxidation. Domas and Antolovich [31] developed a high temperature LCF life pre-

diction model based on oxidation kinetics for smooth specimens of a Ni-base superalloy.

This model was later extended to life predictions of notched specimens by incorporating a

power series approximation of the stress distribution in the notch region and showed good

correlation with experimental data.

2.3 Non-local Methods

Methods that use finite element analysis are an alternative means of predicting component

life. FE analysis has allowed non-local methods that take into account the stress or strain

gradients of notches to be used, especially for cases where the stress concentration factor

is unknown. These methods have been shown to yield better fatigue life predictions under

LCF conditions [32].

In addition, the theory of critical distances (TCD) is a very powerful and practical

theory and is well-described by Taylor [33]. Variations of this method have been used for

over 50 years, having been suggested by Neuber [10] and Peterson [34]. This approach

utilize a characteristic length scale derived from the fracture toughness as

L =
1

π

(
Kc

σu

)2

(2.21)

where Kc is the fracture toughness and σu is the tensile strength. For fatigue crack forma-

tion, it is more relevant to use a charateristic length based on threshold values

L =
1

π

(
Kth

σ0

)2

(2.22)

where Kth is the threshold for crack propagation and σ0 is the fatigue limit. Applications

of this method include the line method, the first critical distance method invented and

used by Neuber [10] and the point method suggested by Peterson [34]. In this method,

the stress for failure is determined by averaging the stress values along a line a certain

distance from the notch root, theoretically shown to be 2L. Area and volume integrals have

also been suggested [33]. More recently, TCD methods have been used to predict life in
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medium cycle fatigue [35] and LCF by using strain as the controlling parameter [36]. Domas

and Antolovich [37] developed an integrated local energy density (ILED) approach for life

prediction of notched LCF specimens which utilized an average strain energy density for

the notch region.

Another approach is the critical plane approach, which uses the material plane with

maximum shear strain and the stresses normal to this plane in conjunction with other

criteria to predict component life. This approach and others have been studied extensively

by Fatemi and Socie [38]. Moore [16] provides a good overview of typical critical plane

parameters and used this sort of method in his life model by using a Smith-Watson-Topper

(SWT) damage parameter defined as

Dswt = σmaxεa (2.23)

where σmax is the maximum normal stress resolved on the critical plane and εa is the total

strain amplitude resolved on the critical plane. A critical value of this parameter is used to

captures the aniotropic material resistance. Kupkovits [4] showed that the actual damage

mechanisms encountered during TMF tests were not accounted for in Moore’s simplified

model.

Fernandez-Zelaia and Neu [39] [23] used a nonlocal method of area averaging to predict

lives for notched specimens under OP TMF. In this case an effective Ostergren parameter

was used, defined as

Deff
ostr = ∆εincyc,eqσvm|maxcyclic (2.24)

where εincyc,eq is the equivalent inelastic strain range and σvm|maxcyclic is the maximum value of

the Von Mises stress occurring in tension over one cycle. The average value of this parameter

was taken over an invariant domain as

D
eff
ostr =

1

D

∫
D
Deff
ostr|cyclicdD (2.25)
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where D is the domain over which the parameter was averaged. The domain was taken as a

critical area since 1) cracks were found to initiate at some distance from the notch root and

2) the location of maximum Von Mises stresses and cyclic inelastic strains were found at

some distance away from the notch root depending on notch severity [39]. This method of

averaging over an invariant area was demonstrated to work reasonably well for both areas

taken using surface sweep and circular sweep paths. Averaging over a fixed area took into

account the stress and strain gradients present near the notch, and the area was selected

such that the averaged effective Ostergren parameters for Kt = 2 and Kt = 3 were nearly

identical, which was consistent with experimental observation [39].

2.4 Reduced Order Constitutive Modeling Techniques

Crystal viscoplasticity models are advanced materials models that are useful for capturing

complex behavior of metals, including time and temperature dependent effects. These

models relate observed macroscopic deformation to deformation occurring at a micro-

scopic/atoministic scale by explicitly taking into account three-dimensional grain structure

and individual slip systems of the material. A background on CVP models can be gathered

from McGinty [40] Shenoy [41]. McDowell [42] also provides a thorough background on

CVP models and recent advances in crystal plasticity modeling.

The basis for this type of model is a multiplicative decomposition of the deformation

gradient [43] given as follows:

F = Fe · Fp (2.26)

where F is the deformation gradient tensor and Fe and Fp are corresponding elastic and

plastic deformation gradients, respectively. This is shown graphically in Figure 2.4.

Since the flow rule for this sort of model is formulated in terms of shearing rates on ac-

tive slip systems and must be evaluated on each one, the computational expense related to

implementing a CVP model is one of its primary drawbacks. Kalidindi et al. [44] and Kneze-

vic et al. [45, 46] have done extensive work in capturing crystal plasticity through spectral

frameworks. In one approach, discrete Fourier transforms (DFTs) are used to interpolate
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Figure 2.4: Decomposition of the deformation gradient tensor [6]

functions that relate stresses, lattice spins, and strain hardening to lattice orientation and

mode of deformation [45]. This was accomplished by decomposing the velocity gradient

tensor into a sum of symmetric stretching and antisymmetric spin components,

L = ε̇D0 + Wapp D0 =

3∑
j=1

Dje
p
j ⊗ epj ε̇ = |D| (2.27)

The stretch tensor D was then parameterized using a single angular variable θ

D1 =

√
2

3
cos(θ − π

3
), D2 =

√
2

3
cos(θ +

π

3
), D3 = −

√
2

3
cos(θ) (2.28)

This method was used as the basis for constructing the spectral database, along with a

crystal orientation parameter. DFTs were then used to construct spectral representations of

three functions σ
′
(gp, θ), W∗(gp, θ) and Σα|γ̇alpha|(gp, θ) that captured the rigid-viscoplastic

crystal plasticity solutions and are given as

W∗
rq = ε̇

1

NgNθ

∑
k

∑
n

Bkne
2πikr
Ng e

2πinq
Nθ + Wapp (2.29)

σ
′
rq = s|ε̇|msgn(ε̇)

1

NgNθ

∑
k

Ckne
2πikr
Ng e

2πinq
Nθ (2.30)
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(∑
α|γ̇

alpha|
)

= |ε̇| 1

NgNθ

∑
k

Gkne
2πikr
Ng e

2πinq
Nθ (2.31)

where r and q define the points of the grid upon which the values are stored, and Bkn,

Ckn, and Gkn form the set of coefficients. Additional details related to the calculation

of these tranforms can be found in Knezevic et al. [45]. The crystal plasticity equations

were not solved directly; rather, the approximate solutions for any arbitrary deformation

mode and lattice orientation were obtained by evaluating the dominant DFTs at points of

interpolation on the r − q grid. This approach of using spectral representation of crystal

plasticity equations was shown to drastically decrease the computation time by two orders of

magnitude when compared to conventional implementations. Limitations of this relatively

new approach are that it has not been extended beyond isotropic plasticity. In addition,

this method has not been extended to account for changes in temperature.

Other attempts at reduced order constitutive models have involved the use of artificial

neural networks (ANNs) to model material behavior. An ANN consists of group of process-

ing elements called neurons (also called nodes or units) which are arranged in successive

layers and receive inputs from other neurons as the signal works forward from an input

layer to an output layer. A typical feedforward ANN layout is shown in Figure 4.2.

Figure 2.5: A typical multilayer feedforward artificial neural network layout [47]
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where Xi are the inputs to the ANN, Wij are the connection (synaptic) weights between

neurons, and Yi are the outputs from the ANN. These networks are able to automatically

produce nonlinear mappings between multiple input and output data through learning from

a so-called training set, and are able to generalize well for new data not appearing in the

training set while requiring minimal computational resources [48]. A thorough background

on ANN research is summarized by Anderson [49] and Lau [50].

Jung and Ghaboussi [51] used an ANN as a constitutive model for a simulated vis-

coelastic solid (using a standard solid model for viscoelasticity) in which the ANN gave the

increment in stress after being given the stress and strain values from the previous increment

and the increment in strain. Al-Haik et al. [52,53] used an ANN as a constitutive model to

capture the viscoplastic behavior of a carbon-fiber/polymer matrix composite under ther-

momechanical loading conditions. Liang and Chandrashekhara [54] also used an ANN as a

constitutive model for elastomeric foams. The neural network was used to implicitly define

the strain energy function by first being given the first and second deviatoric strain invari-

ants and the total volume ratio, and returning the value of the strain energy function. A

drawback to this sort of approach is it requires extensive amounts of experimental data to

be used for training, which can be expensive and time-consuming.

ANNs have also been used to predict parameters of simple constitutive relations, such as

in the work of Ghajar et al. [55] where an ANN was used to predict the Ramberg-Osgood

parameters of various types of steels given material properties. Gupta et al. [56] used

an ANN to model the high temperature creep behavior of a rotating composite Al-SiCp

disk. In this case, the ANN was used to correlate radial and tangential stresses and strain

rates to temperature, radial distance, particle size and particle content of reinforcement, an

example of correlating observed behavior at the macroscale with a parameter characterizing

material at a smaller scale. Shenoy et al. [57] combined these sorts of approaches and used an

artificial neural network to predict parameters of a macroscale model given microstructural

parameters. The training set was comprised of simulations from a more complex crystal

plasticity model, where the response was fitted to a simpler macroscale model with two-term

flow rule from Chaboche [20] for an intially isotropic material given as
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Dn =

{
A

′
1

〈
σv − κ
K1

〉p1
+A

′
2

〈
σv
K2

〉p2}
sgn(σ − Ω̃) (2.32)

where Dn is the inelastic strain increment, A
′
1 and A

′
2 are temperature dependent viscos-

ity coefficients, K1 and K2 are drag stresses, p1 and p2 are hardening exponents, κ is the

threshold stress, and σv is the viscous overstress. Further details may be found in Shenoy et

al. [57]. This process was repeated for each microstruture, and the microstructural param-

eters and their corresponding macroscale model parameters were used as a training set for

the ANN. The network was then able to generate approximate macroscale model parameters

given any arbitrary microstructure within the domain of the training set. Limitations of this

approach are associated with the confidence in interpolating between microstructures, in-

cluding interpolated microstructures that may not be stable in a thermodynamic sense [57].

In addition, potentially significant computational expense is required in the initial stages

of this process in order to create an adequate training set for the ANN. Although ANNs

may provide a convenient way to predict material model parameters, they are essentially a

method of interpolation and generally do not provide any insight into the physical processes

occurring at the microstructural level.

Shenoy et al. [6] also developed a macroscale transversely isotropic viscoplasticity (TIVP)

model for a directionally solidified Ni-base superalloy based on homogenizing the response

of several grains with random secondary orientation. The flow rule for this TIVP model is

given as

Dp
i = ṗN = Aexp

(
−Q
RT

)〈
σ̄ −K
D0

〉n
N (2.33)

where Dp
i is the rate of deformation tensor, N is the unit vector in the direction of plastic

strain, A is a constant, Q is the activation energy for the thermally activated dislocation

bypass of obstacles, R is the gas constant, T is absolute temperature, σ̄ is the effective

stress, and D0 is the drag stress. The temperature dependent parameters are the threshold

stress K and the strain rate sensitivity exponent n. Further details of the formulation of

this model may be found in Shenoy et al. [6].
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This macroscale model showed better computational efficiency when compared against

a CVP model while still capturing the aggregate material response from thermomechanical

fatigue experiments, as well as capturing secondary creep behavior at high temperatures.

In addition to averaging the response of multiple grains, another drawback to this sort of

model is that it cannot capture tension-compression asymmetry, which could be significant

near transition temperatures [6].

For prediction of material response under thermomechanical loading, Skelton [58] and

Skelton et al. [59] suggested both graphical and analytical techniques that could be used

to approximate the TMF hysteresis loops from isothermal fatigue data. It was found that

modeling TMF curves was complex due to the history effects present in each half cycle and

that constructing hysteresis loops be done first on stabilized material [58]. Later it was

shown that using a cyclic energy parameter could resolve some of the difference in stress-

strain prediction in TMF using isothermal data. A weakness of this method is that it does

not work well for materials that exhibit history dependence.

2.5 Summary

Accurate life prediction under TMF must take into account each of the damage mechanisms

and their contribution to overall damage of a component, since these mechanisms may vary

depending on temperature and phase. Linear damage accumulation models with varying

damage term definitions have been developed. Models which take into account stress con-

centrators, such as multiaxial Neuber models, have been used to attempt to predict life

of notched components under TMF. Non-local computational methods which often utilize

critical distance-type approaches, have also been used with some success. Spectral repre-

sentation of crystal plasticity is an example of a powerful reduced order modeling method.

Artificial neural networks have been used in reduced order constitutive modeling approaches

at various levels of implementation, from transitioning from microscale to macroscale models

to implicitly defining material constitutive behavior itself.
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CHAPTER III

CALIBRATION OF A TRANSVERSELY ISOTROPIC

VISCOPLASTICITY MODEL TO CM247LC-DS

3.1 Introduction

In order to reduce computational cost associated with life modeling of CM247LC-DS using

a crystal viscoplasticity (CVP) Model [60], alternative modeling methods were explored.

One such model is a transversely isotropic viscoplasticity (TIVP) Model for directionally

solidified Ni-base superalloys. Like the CVP model, the TIVP model is implemented as

a user material subroutine (UMAT) Fortran source code for ABAQUS [18] with a semi-

implicit integration scheme. The model is calibrated using isothermal uniaxial test data

in the temperature range 20◦C to 1050◦C generated by the CVP model and captures the

homogenized aggregate response of multiple grains in the material. This model is also

capable of performing TMF simulations and shows good correlation to IP and OP TMF

data for CM247LC-DS.

3.2 TIVP Model Details

Developed by Shenoy, McDowell, and Neu [6], the TIVP model is a continuum-based model

originally calibrated to a different directionally solidified Ni-base superalloy, DS GTD-111.

Unlike the CVP model, the TIVP model does not explicitly consider individual grain orien-

tation or slip systems across crystallographic planes and instead considers a representative

volume element (RVE) that adequately describes material behavior, which is in effect as-

suming a large enough number of grains with random secondary orientation about the

direction of solidification in order to homogenize the material response [6]. This model

works well to predict elastic behavior of a DS alloy assuming there are 6-10 grains being

considered [61] [6]. The flow rule and evolution equations are formulated in the intermedi-

ate configuration (using the second Piola-Kirchoff stress as a stress measure) to take into
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account finite deformation effects [6].

The flow rule for the transversely isotropic viscoplasticity model is of the form

Dp
i = ṗN = Aexp

(
−Q
RT

)〈
σ̄ −K
D0

〉n
N (3.1)

where Dp
i is the rate of deformation tensor, N is the unit vector in the direction of plastic

strain, A is a constant, Q is the activation energy for the thermally activated dislocation

bypass of obstacles, R is the gas constant, T is absolute temperature, and D0 is the drag

stress. The temperature dependent parameters are the threshold stress K and the strain

rate sensitivity exponent n. The effective stress σ̄ is given by

σ̄ =

√
3

(
J2 − ξ

(
J − J2

0

)
− 3

4
ζ
(
J2

0

))
(3.2)

where

J2 =
1

2
ΣijΣij (3.3)

J0 = MijΣij (3.4)

J = MijΣjkΣki (3.5)

following Robinson and Binienda [62] where Σij is the symmetric overstress defined as

Σij = σPK2′
ij − αij (3.6)

where σPK2′
ij is the second Piola-Kirchoff stress and αij is the backstress. Also, ξ and ζ are

temperature dependent parameters specific to the material. The values of the parameters

ξ and ζ have certain thermodynamic restrictions, which are

ξ ≤ 1

2
(3.7)
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ξ ≥ 3

4
ζ (3.8)

Details of this derivation can be found in Shenoy et al [6]. In order to capture kinematic

hardening, back stress is used as an internal state variable (ISV). The back stress evolution

is of the form

α̇ = H
(
LDp

i − πṗ
)
−Rαᾱmπ (3.9)

where H, L, m, and Rα are temperature dependent constants. The hardening and dynamic

recovery is characterized by the first part of the evolution equation, whereas the second part

captures the static thermal recovery of the material. The short-term viscoplastic response

of the material is captured by the strain rate dependence of the flow rule and is minimally

influenced by the back stress evolution. The components of π are given as

πij = αij − ξ
(
Mkiαjk − 2Ĵ0Mij

)
− 3

2
ζĴ0

(
Mij −

1

3
δij

)
(3.10)

where M is a dyad of the irreducible integrity basis of σ̄ given as

M = d0 ⊗ d0 (3.11)

Here di is the direction vector corresponding to the 〈001〉 direction in the reference config-

uration. The effective backstress ᾱ is defined similarly to σ̄ as

ᾱ =

√
3

(
Ĵ2 − ξ

(
Ĵ − Ĵ0

2
)
− 3

4
ζ
(
Ĵ0

2
))

(3.12)

where

Ĵ2 =
1

2
αijαij (3.13)

Ĵ0 = Mijαij (3.14)
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Ĵ = Mijαjkαki (3.15)

For further details on this model and its formulation, see Shenoy et al. [6].

3.3 Calibration

Since the TIVP model was originally calibrated to a similar Ni-base superalloy, DS GTD-

111, the original temperature dependent parameters determined by Shenoy et al. [6] were

used as a starting point. The new parameters were fitted manually to stabilized cyclic

isothermal hysteresis loops obtained from the most current version of the CVP model cali-

brated by Kirka [60]. Calibration curves can be found in Appendix A. The model was cal-

ibrated at nine different temperatures: 20◦C, 150◦C, 300◦C, 650◦C, 750◦C, 850◦C, 950◦C,

1000◦C, and 1050◦C, with additional temperatures of 800◦C, 900◦C used for secondary

creep calibration. An example calibration curve is shown in Figure 3.1. The calibration

was performed on a unit cube, a single element of type C3D8, with boundary conditions

such that three adjacent orthogonal faces were fixed on rollers in their respective normal

directions.

For material orientation within the UMAT, the Euler angle convention used is a right-

handed Z-Y′-Z′ transformation, as shown in Figure 3.2. The three angles φ , ϕ1 , ϕ2

correspond to counterclockwise rotation about the Z, Y′, and Z′ axes, respectively. In the

UMAT, the 〈001〉 direction of solidification in the model is along the global Z-axis. In

order to simulate a longitudinal loading case, the FEA model must either be loaded in

the global Z-direction, or proper Euler angles corresponding to an equivalent loading must

be specified. For example, if an FEA model is loaded in the Y-direction and longitudinal

response is desired, the Euler angles 90◦, 90◦, 0◦ must be used to properly rotate the material

coordinates and ensure the 〈001〉 direction is aligned with the Y-axis. Alternatively, a

local material orientation may be specified within ABAQUS through the *ORIENTATION

keyword. If this option is used, the material coordinates may be assigned within ABAQUS

to desired directions and the three Euler angles given to the UMAT are simply (0◦, 0◦, 0◦).
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Figure 3.1: TIVP model calibration curve for 650◦C, longitudinal orientation

Figure 3.2: Rhoe convention for Euler angles specifying rotation [40]

For initial calibration, the parameters Rα and m were set to zero (i.e. the secondary

creep behavior was ignored) since the calibration was done at an intermediate strain rate of

10−4s−1. The first parameter that was determined was the threshold stress, K. Although K

is sometimes used as an ISV, it was treated as a temperature dependent constant following
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Shenoy et. al. [6], since CM247LC-DS is cyclically stable. The values of K were selected

such that they followed the general trend of yield stress with increasing temperature, an

example of which is shown in Figure 3.3.

Figure 3.3: 0.2% offset yield strength of CM247LC-DS as a function of temperature for
longitudinal and transverse orientations [63]

After the values of K are selected, the other model parameters are found. All of the

parameters are interdependent; that is, changing one usually requires changing all of the

others to give the same response. The parameter ξ does not affect the uniaxial response of

the material and was unimportant for calibration to uniaxial data, although it was assigned

a value that satisfied the thermodynamic restrictions outlined in Equations 3.7 and 3.8.

That is,

ξ =
3

4
ζ (3.16)

The parameter ζ controls the rate of dissipation through the effective stress term, and,

similar to ξ, potential assigned values are also restricted. Visually, increasing the value of

ζ will increase the slope of the stress-strain curve just after yielding. The values of ξ and ζ
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decrease with increasing temperature. The back stress constants H and L were calibrated

after suitable values of other parameters were found. The parameter L controls the slope

of the stress-strain curve after yielding, more so than ζ. Decreasing L decreases the rate of

hardening and widens the hysteresis loop slightly. For H, increasing its value widens the

hysteresis loop and vice versa. From there, iteration was required to obtain a good set of

parameters that matched the experimental data well.

.
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Table 3.1: Elastic and inelastic model parameters for CM247LC-DS

Temp. (◦C) EL (MPa) ET (MPa) GL (MPa) νT νZ K (MPa)

20 129,453 178,138 125,929 0.4 0.2 200
150 126,529 174,606 124,179 0.4 0.2 200
300 121,689 164,015 118,300 0.4 0.2 200
650 104,317 139,944 104,400 0.4 0.2 200
750 97,776 130,587 99,700 0.4 0.2 400
800 94,249 125,528 97,200 0.4 0.2 *280
850 90,560 121,557 94,300 0.4 0.2 160
900 86,672 115,860 91,100 0.4 0.2 *110
950 82,623 111,583 87,500 0.4 0.2 60
1000 78,399 107,975 82,900 0.4 0.2 38
1050 74,020 100,586 77,400 0.4 0.2 15

Temp. (◦C) n ξ ζ H L (MPa) Rα (MPa−3) m

20 95 0.28 0.35 420 120 0 0
150 60 0.28 0.35 470 120 0 0
300 40 0.28 0.35 520 120 0 0
650 20 0.24 0.3 840 180 0 0
750 18 0.21 0.26 625 180 0 0
800 17* 0.14* 0.17* 523* 200* 2.00E-7 1
850 16 0.06 0.08 420 220 4.75E-7* 1*
900 15* 0.05* 0.065* 335* 220 7.50E-7 1
950 14 0.04 0.05 250 220 1.38E-6* 1*
1000 8 0.04 0.05 185 160 2.00E-6 1
1050 4 0.04 0.05 100 20 2.00E-6 1

A (1/s) Q (kJ/mol) R (J/molK) D0 (MPa)

5.006825E+11 450 8.314 102

Note: * Value determined by linear interpolation
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It is important to note that the set of parameters that may be selected to match ob-

served material response is non-unique, which is why parameters were chosen such that

they made physical sense. This was important for the linear interpolation utilized in the

UMAT between calibration temperatures; if parameters were selected which do not make

sense physically, the model would not interpolate well between calibration temperatures

and thermo-mechanical simulations would be unreliable. A plot of each parameter as a

function of temperature is shown in Figures 3.4 through 3.7. At the transition temperature

of 750◦C, the threshold stress jumps significantly. Although the large jump could be partly

a consequence of the parameters chosen for calibration, it also reflects the hardening of the

γ
′

precipitates with a rise in temperature.

Figure 3.4: Threshold stress K as a function of temperature
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Figure 3.5: Strain rate sensitivity exponent n as a function of temperature

Figure 3.6: Dimensionless parameters ξ and ζ with temperature
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Figure 3.7: Back stress hardening parameters H and L as functions of temperature
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The only model parameters which were not predicted through linear interpolation at

intermittent temperatures were the elastic modulus for both longitudinal and transverse

orientations, EL and ET respectively, and the shear modulus GL. The temperature depen-

dence of the elastic properties with temperature is well-understood and follows a negative

quadratic trend, which is captured using a second degree polynomial. Poissons ratios with

respect to the longitudinal and transverse orientations, νL and νT respectively, are assumed

independent of temperature.

After initial calibration, the thermal recovery parameters were adjusted to match sec-

ondary creep behavior at three different temperatures: 800◦C, 900◦C, and 1000◦C, at dif-

ferent stress levels within the elastic domain. Originally, the value of m was set to 3 in

accordance with Shenoy et al. [6] , but it was found that the corresponding values of the pa-

rameter Rα did not fit the data well across different stress levels. The value of the exponent

m was lowered to 1 and new values for Rα were determined. Plots of the creep predictions

for each calibration temperature at separate normalized stress levels can be seen in Fig-

ures 3.8 through 3.10. The model is not able to capture tertiary creep, as this is normally

associated with damage and would require an additional ISV in conjunction with some sort

of damage model.
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Figure 3.8: Comparison of TIVP model creep strain prediction to test data, 800◦C
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Figure 3.9: Comparison of TIVP model creep strain prediction to test data, 900◦C

Figure 3.10: Comparison of TIVP model creep strain prediction to test data, 1000◦C
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Isothermal response was then checked at a slower strain rate of 4 ·10−6s−1 at higher temper-

atures to see if backstress parameters needed readjustment to fit the data, which they did

not. An example of a TIVP model prediction at a slower strain rate is shown in Figure 3.11.

Figure 3.11: TIVP model prediction at 850◦C, strain rate 4 · 10−6s−1, compared to exper-
imental data

Once parameters were determined for the model, the UMAT was altered to include a thermal

deformation gradient to account for thermal strain. Thermal strain was calibrated using

data from a free thermal expansion test conducted over the temperature range 100◦C to

950◦C using a tangent method. Fitting a third order polynomial to a plot of thermal

strain as a function of temperature and taking the derivative with respect to temperature

yielded a second order polynomial that described the coefficient of thermal expansion as a

function of temperature. This coefficient of thermal expansion was used to define a thermal

deformation gradient whose form is given in Equation 3.17.

Fθn+1 = exp(α∆T I)Fθn (3.17)
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A comparison of the raw thermal strain data to the TIVP model prediction can be seen

in Figure 3.12.

Figure 3.12: Comparison of thermal strain experimental data to TIVP prediction, 100-
950◦C temperature range
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3.4 Model Verification

To verify that the model is predicting results consistently with finite element models con-

sisting of multiple elements as opposed to just a single element, a few comparisons were

made between the single element isothermal simulations used for calibration of the model

and multi-element simulations of an eight-element cube. Free expansion and TMF simu-

lations were also conducted in order to compare the results. Results for the eight element

cube were collected through the use of reference nodes, in the manner of Zhang [64] and

Alley [65]. This is depicted in Figure 3.13.

Figure 3.13: Placement of reference nodes used to record response

The forces and displacements recorded at the reference nodes were converted to stresses and

strains, respectively, using the dimensions of the cube. The responses of both the single

element and eight element cubes are indentical under isothermal and TMF conditions, as

well as thermal expansion cases. These can be seen in Figures 3.14 through 3.17.

In addition, a more complex asymmetric model was run using the TIVP UMAT in order

to verify that the code was working properly and giving reasonable results for different

geometries. The case used for this verification of the TIVP UMAT is a three dimensional

plate with a circular hole in the center, which is represented using a one-eighth symmetry

model, similar to the model used by Shenoy et al. [6]. This model is shown in Figure 3.18 and

consists of 2114 elements and 3381 nodes. For the plate model, boundary conditions that
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Figure 3.14: Comparison of single element and eight element responses at 100◦C

Figure 3.15: Comparison of single element and eight element responses at 950◦C
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Figure 3.16: Comparison of single element and eight element responses, free thermal ex-
pansion from 100-950◦C

Figure 3.17: Comparison of single element and eight element responses, OP TMF 100-
950◦C, R = −∞

40



reflected the full plate with circular hole in the center were chosen. This was accomplished

through the use of ABAQUS commands XSYMM, YSYMM, and ZSYMM on three of the

planar faces that would be exposed if the entire plate were to be cut into eight identical

pieces. All other surfaces were traction free. For isothermal simulations, a displacement

of 0.3 mm is specified on the top surface in a single step over 2 seconds. Free thermal

expansion and OP TMF simulations were conducted over a 100-second step. The material

is oriented such that the direction of solidification is aligned with the Y-direction of the

plate. These simulations therefore correspond to a longitudinal loading case.

Figure 3.18: Plate model used for TIVP UMAT verification in ABAQUS

For off-axis loading (i.e. loading at angles not aligned with the direction of solidifi-

cation), simulations were performed on the single cube element with boundary conditions

used for calibration of the model. To check elastic behavior, simulations were conducted

where the 〈001〉 direction of solidification was varied from zero to 90 degrees (longitudinal

to transverse orientations). Simulation results can be seen in Figure 3.22, compared to ex-

perimental data for elastic modulus with respect to orientation at 850◦C for CM247LC-DS.
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Figure 3.19: Boundary conditions assigned to the plate model, reflected through ABAQUS
commands

Figure 3.20: Von Mises stress after monotonic compressive loading to 0.3 mm mechanical
displacement under OP TMF 100-950◦C conditions at maximum temperature, ramp time
100 s
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Figure 3.21: Effective plastic strain after monotonic compressive loading to 0.3 mm me-
chanical displacement under OP TMF 100-950◦C conditions at maximum temperature,
ramp time 100 s

The difference in the values for elastic modulus in the longitudinal orientation are due to

differences between the data presented from the literature and the Siemens data used to

calibrate the model. TIVP model predictions for elastic modulus at several temperatures

as a function of orientation are shown in Figure 3.23. TIVP model predictions of 0.2%

offset yield strength as a function of orientation at different temperatures are shown in

Figure 3.24.

3.5 Validation

The validity of the model for TMF conditions was tested by comparing the TIVP model

predictions to experimental TMF data, both IP and OP and at different R ratios. For

completed reversed loading at Rε = −1, the model showed good predictions for the mid-life

cycle hysteresis loops, although the model predicted a mean stress closer to zero than was

observed in experiment. For a different R ratio of Rε = −∞, OP TMF simulations showed

good agreement with experimental data.
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Figure 3.22: Elastic modulus of CM247LC-DS at 850◦C as a function of orientation, TIVP
sim. compared to literature [63]

Limitations of this model are discussed at length in Shenoy et al. [6]. In addition to these

limitations, since the TIVP model was calibrated to as-received CM247LC-DS, the model

would be unable to capture any behavior associated with microstructural changes due to

stress and temperature; for example, observed decreased yield strength after compressive

holds in OP TMF.
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Figure 3.23: Elastic modulus of CM247LC-DS as a function of orientation for various
temperatures, TIVP sim.

Figure 3.24: 0.2% offset yield strength of CM247LC-DS as a function of orientation for
various temperatures, TIVP sim.
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Figure 3.25: Mid-life cycle comparison under IP TMF conditions for single element, 0.0625
strain amplitude, min. temp. 100◦C, max. temp 750◦C, Rε = −1

Figure 3.26: Mid-life cycle comparison under OP TMF conditions for single element, 0.0625
strain amplitude, min. temp. 100◦C, max. temp 750◦C, Rε = −1
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Figure 3.27: First cycle comparison under OP TMF conditions for single element, 0.01
strain range, min. temp. 100◦C, max. temp 950◦C, Rε = −∞

Figure 3.28: Mid-life cycle comparison under OP TMF conditions for single element, 0.01
strain range, min. temp. 100◦C, max. temp 950◦C, Rε = −∞
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Figure 3.29: First cycle comparison under OP TMF conditions for single element, 0.008
strain range, min. temp. 100◦C, max. temp 950◦C, Rε = −∞

Figure 3.30: Mid-life cycle comparison under OP TMF conditions for single element, 0.008
strain range, min. temp. 100◦C, max. temp 950◦C, Rε = −∞
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CHAPTER IV

DEVELOPMENT OF AN EXTREME REDUCED ORDER

MICROSTRUCTURE SENSITIVE CONSTITUTIVE MODEL

4.1 Introduction

For design of components at a systems level, a rapid first-order estimate of material response

is sometimes more useful than full finite element simulations which incorporate advanced

material models. The ability to predict endpoint stresses almost instantaneously under a

variety of loading conditions can be beneficial to designers, especially when strain-based life

models are employed to predict component life. Current methods to predict inelastic strain

range and mean stresses, such as Neuber or Glinka approaches, do not capture the effects

of material anisotropy or rate dependence, nor do they capture any microstructural depen-

dence. To address this need, an extreme reduced order microstructure-sensitive constitutive

model was developed through utilizing the function-fitting capabilities of a feedforward arti-

ficial neural network (ANN). This ANN model is capable of predicting isothermal behavior

of a directionally solidified Ni-base superalloy through predicting Ramberg-Osgood model

parameters for the temperature range 20-1050◦C at arbitrary off-axis loading scenarios from

longitudinal to transverse material orientations and strain rates ranging from 10−3 to 10−8

s−1. These responses are then used to predict endpoint stresses under in-phase (IP) and

out-of-phase (OP) thermomechanical (TMF) loading conditions and are used to analyze

notch features in engineering components.

4.2 Background

In order to capture the response of a Ni-base superalloy in a format suitable for ANN

prediction, isothermal, uniaxial monotonic data generated from a more complex, physics-

based crystal viscoplasticity (CVP) model [60] was fitted to a simple 1-D Ramberg-Osgood

relation. The parameters obtained through this process, each capturing temperature, rate,
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and orientation effects, were used to construct a training set for an artifical neural network.

Figure 4.1 outlines the methodology for deveoping this extreme reduced order model and

is based on the work done by Shenoy et al. [57].

Figure 4.1: Training methodology for ANN model
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Artificial neural networks have been used to solve problems of different type and levels

of complexity [66] and have been applied to problems in the materials science field such as

predicting material properties [55, 67, 68] and material behavior [51, 54, 56, 69]. A typical

feedforward ANN layout is shown in Figure 4.2.

Figure 4.2: A typical multilayer feedforward artificial neural network layout [47]

Yagawa and Okuda [48] summarize the advantages of using hierarchical feedforward

artificial neural networks as follows:

• One can automatically construct a nonlinear mapping from multiple input data to

multiple output data in the network through a learning process of some or many

sample input vs. output relations.

• The network has a capability of the so-called ”generalization”, i.e. a kind of inter-

polation, such that the trained network estimates appropriate output data even for

unlearned input data.

• The trained network operates quickly in an application phase. The CPU power re-

quired to operate it may be equivalent only to that of a personal computer.

An ANN consists of group of processing elements called neurons (also called nodes or

units) which are arranged in successive layers and receive inputs from other neurons as the

signal works forward from an input layer to an output layer. Once an input is received by
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a neuron from another neuron in the previous layer, it is multiplied by a synaptic weight

and added to a bias value.

vj =
∑

wijyi + bj (4.1)

where vj is the sum of the weighted input signals, wij is the synaptic weight between neurons

i and j, and bj is the bias associated with neuron j. The scalar output from hidden layer

neuron j is given by a tan-sigmoidal activation function.

yj =
2

1 + e−2vj
− 1 (4.2)

where yj is the output signal from neuron j. In the output layer, the activation function

for neurons is a simple linear function.

yj = vj (4.3)

It has been proven that a single hidden layer feedforward ANN can map between any m

and n dimensional space to any desired degree of accuracy, provided there is a sufficient

amount of neurons in the hidden layer [70] although they are not necessarily as efficient as

networks with multiple hidden layers [66].

4.3 ANN Implementation

The isothermal response from the CVP model was fitten to a Ramberg-Osgood relation [11],

given by

ε =
σ

E
+
( σ
K

) 1
n

(4.4)

in monotonic form and

∆ε =
∆σ

E
+ 2

(
∆σ

2K ′

) 1
n′

(4.5)
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in cyclic forms [12]. The data in this exercise consists of 605 simulations in which temper-

ature, strain rate, and material orientation were varied. Since CM247LC-DS is cyclically

stable, the monotonic responses are used to approximate the cyclic stress-strain curve.

∆ε =
∆σ

E
+ 2

(
∆σ

2K ′

) 1
n′

(4.6)

where ε and ∆ε are the strain and increment in strain, respectively, σ and ∆σ are the

stress and the increment in stress, respectively, E is the elastic modulus, K is a strength

coefficient, and n is an exponent which characterizes strain hardening. To fit the CVP data

to the simplified Ramberg-Osgood model, MATLAB [71] was used to determine the values

of E, K, and n using linear regression. This is accomplished by separating the elastic and

plastic portions of the stress-strain curve,

∆εe =
σ

E
(4.7)

and

∆εp =
( σ
K

) 1
n

(4.8)

respectively, where ∆εe and ∆εp are the increments in elastic and plastic strains, respec-

tively. In MATLAB, linear regression was first used to find the modulus using the elastic

portion of the curve, then K and n were determined by applying a linear regression fit to

log ∆σ versus log ∆εp [72].

The training set for the ANN is composed of these values of E, K, and n, which are

set as targets corresponding to their respective temperatures, strain rates, and orientations

with respect to the 〈001〉 direction. A total of 605 data points form the training set, where

the strain rate was replaced by its log in base 10 for linearization.

For the network architecture, two hidden layers, each with 12 neurons, are chosen and

encompassed by an input and output layer of three neurons each. A schematic of this ANN

is shown in Figure 4.3. Although it would be preferable to perform a convergence study in

order to determine a more optimal ANN architecture, it is beyond the scope of this research
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and, consequently, a large enough network to capture the nonlinear relations between input

and output variables is selected. Certain training methods are utilized to prevent overfitting

and are discussed in section 4.4.

Figure 4.3: Schematic of ANN used for extreme reduced order model

The Neural Network Toolbox in MATLAB [71] is used to generate and train the ANN.

Generally the data is divided into three sets when training ANNs: one each for training,

validation, and testing. The training set is used to update the weights and biases during

the backpropagation training method. The validation set is used to check for overfitting by

monitoring its error, and training is ended when the error associated with the validation

set begins to rise after a specified number of iterations. The test set is never seen by the

ANN until training is complete and is used to check the accuracy of the trained ANN. In

this exercise, 90% of the data was used for training and 10% used for testing. There is

no general agreement on how much data should be placed into these sample groups when

training ANNs [73].
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4.4 Training

For training, the backpropagation technique is applied [74] in which the connection weights

and biases of the neurons in the hidden layers are adjusted so as to minimize the difference

between the target values and the network output. Bayesian regularization [75] is used

within a Levenberg-Marquardt algorithm to train the ANN while minimizing overfitting.

To track error, two measurements were used. The first, MSE, is the mean squared error

defined as

MSE =
1

N

N∑
i=1

(ti − ai)2 (4.9)

Although MSE is used to measure performance during training, predictive performance

of the ANNs is eventually measured using mean relative error, MRE, defined as

MRE =
1

N

N∑
i=1

∣∣∣∣ ti − aiti

∣∣∣∣ (4.10)

where N is the number of points in the training set, ti is the target value of the parameter

under consideration, and ai is the value predicted by the ANN corresponding to the same

inputs as the target value ti. This has been used as a measure of performance for very

similar applications of ANNs [55,76,77] and is chosen because it is a more intuitive measure

of error.

Overfitting is one of the most reported problems with ANNs and can occur when the

network is too large [73]. Since the performance of the ANN is measured by its accuracy

with respect to the targets, a network may show a low error when compared to target values

and yet not capture the general trend of the data. This is shown in Figure 4.4 using a test

case where a trained ANN is used to fit a sine waveform.

Detecting ANN overfitting may be difficult, especially when the ANN is used to map between

higher dimensional spaces. In order to check for overfitting, two of the three input variables

are fixed and each output variable plotted as a function of the free independent variable

(in effect, this is looking at the projection of the ANN prediction onto several selected

subspaces). These functions are then compared to the entire data set and the natural spline
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Figure 4.4: Example of ANN overfitting when trained to a sine waveform

interpolating polynomial. An example of this sort of check is shown in Figure 4.5, where

the three Ramberg-Osgood parameters are normalized by a constant and are plotted as

functions of the off-axis angle in order to compare to points in the data set. These ANN

predictions are compared to the natural spline interpolation of the same points to check for

consistency.

Although not an absolute standard to which to compare the ANN output, the natural spline

seems to serve as a good indicator as to whether or not the ANN is capturing the trend of

the Ramberg-Osgood parameters as a function of orientation for a given temperature and

strain rate. If overfitting is suspected, the ANN may be retrained and checked again in the

same manner.
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Figure 4.5: Comparisons of ANN prediction to natural splines to check for overfitting
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4.5 Results

As mentioned in Section 4.3, the monotonic stress-strain curves produced by the CVP

model are assumed to approximate the cyclic stress-strain curves, i.e. K ′ = K and n′ = n.

The trained ANN shows good correlation with the CVP model predictions at arbitrary

temperatures, strain rates, and orientations, since these effects are captured in the Ramberg-

Osgood parameters. A few comparisons between the responses predicted by the CVP and

ANN are shown in Figures 4.6 through 4.8, using Massing’s hypothesis [78] to generate

cyclic curves.

Figure 4.6: Comparisons of CVP and ANN predictions at 623◦C, 2 · 10−5s−1, 78◦ off-axis
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Figure 4.7: Comparisons of CVP and ANN predictions at 886◦C, 5 · 10−6 s−1, 27◦ off-axis

Figure 4.8: Comparisons of CVP and ANN predictions at 1031◦C, 5 ·10−4 s−1, 53◦ off-axis
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To predict TMF response for fully reversed cycling (i.e. Rε = −1), the isothermal curves

of the endpoint temperatures were used to approximate the stresses at the endpoints, in the

manner of Skelton et al. [59]. An example of this sort of prediction is shown in Figures 4.9

and 4.10.

Figure 4.9: Determination of endpoint stresses for 550-950◦C IP TMF, Rε = −1
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Figure 4.10: Determination of endpoint stresses for 550-950◦C OP TMF, Rε = −1
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Under strain ratios of Rε = 0 and Rε = −∞, the isothermal curve endpoint of the

temperature at loading endpoint is taken, and the material is assumed to unload elastically

with an effective modulus at a mean temperature. This approach appears to work well in

approximating the stabilized hysteresis loop for these strain ratios, as seen in Figures 4.11

through 4.12.

Figure 4.11: Determination of stabilized hysteresis loop for 550-950◦C OP TMF, Rε = 0

To predict the hysteresis curves at half life, an equivalent loading ramp method was

used. The strain rate given to the ANN was equivalent to the strain amplitude divided

by the equivalent cycle time at half life. Comparisons between the mid-life approximation

using the ANN model and experimental results are shown in Figures 4.13 and 4.14.
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Figure 4.12: Determination of stabilized hysteresis loop for 327-892◦C IP TMF, Rε = −∞

Figure 4.13: Mid-life hysteresis loop at 903 cycles, mean stress and endpoint stress ap-
proximation using ANN model compared to experiment, 100-950◦C OP TMF, Rε = −∞,
∆ε = 0.8%
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Figure 4.14: Mid-life hysteresis loop at 377 cycles, mean stress and endpoint stress ap-
proximation using ANN model compared to experiment, 100-950◦C OP TMF, Rε = −∞,
∆ε = 1%
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4.6 Extension to Component Analysis

In order to extend the functionality of the extreme reduced order model to a component

level, a Neuber-type analysis method is proposed, outlined in Figure 4.15. This would

involve conducting a trnsversely isotropic elastic finite element analysis of the component

in question in order to determine the local of the highest stressed element.

The basis for this method is identifying the highest stressed element in the component

model and using it as a limiting factor for the entire component. For example, to illustrate,

a cylindrically-notched specimen model is studied. The highest stressed element would

likely occur on the surface at some angle from the notch root in a DS alloy. Knowing that

one side of the element is the free surface, the direction of principal stresses is known, and

the information for the highest stressed element concerning temperature, orientation, and

strain rate may be passed into the ANN model to give the approximate Ramberg-Osgood

curve for that element. These curve endpoints can be used to determine peak endpoint

stresses and strains for the element, in addition to mean stresses. This information could

be used in a strain-based lifing approach such as Neuber’s rule.

Figure 4.15: Procedure for component analysis using ANN
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Although plane stress conditions are assumed for uniaxial tests, plane strain conditions

may dominate at the notch root if the notch radius is sufficiently small [72,79,80]. In these

cases, biaxial stress conditions are present and the principal stress-strain relation can be

modified accordingly. One modification suggested by Dowling et al. [81] is given as

∆ε1
2

=
∆σ1

2E
+

(
∆σ1

2K ′

) 1
n′

(4.11)

where

∆ε1
2

=
∆ε

2

(1− µ2)√
1− µ+ µ2

(4.12)

∆σ1

2
=

∆σ

2

1√
1− µ+ µ2

(4.13)

E1 =
E

1− ν2
(4.14)

and

µ =
ν +

E∆εp
2∆σ

1 +
E∆εp
∆σ

(4.15)

Equation 4.11 is used in conjunction with the Neuber and Glinka relations to approximate

the stress-strain behavior of the critical element of a cylindrically notched specimen model

with Kt = 2.0. The Abaqus FE model is shown in Figure 4.16 and is comprised of 4813

axially symmetric elements (type CAX4) with 4960 nodes.
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Figure 4.16: FE model of cylindrically notched specimen, KT = 2.0

To verify the approach, an isothermal simulation is conducted using the TIVP UMAT

and built-in Abaqus elastic material models at 950◦C under completely reversed conditions

(Rσ = −1) with a net section stress amplitude of 250 MPa. The elastic modulus and

Poisson’s ratio in the longitudinal and transverse orientations, taken from experiment at

950◦C, are given to Abaqus in order to define a transversely isotropic elastic material. The

methodology outlined in Figure 4.15 is applied in order to approximate the stress-strain

behavior of the element with the highest Mises stress in the elastic analysis. Figure 4.17

shows the location of this element at third reversal.

Using the nodal locations of this element, its orientation from the DS axis (the Y-axis

in this model) can be determined and given to the ANN in order to acquire the Ramberg-

Osgood parameters defining the relation between the principal stresses and strains. These

parameters are then used in the Neuber-type analysis to approximate the local response of

the element when using the TIVP UMAT by using only the local reponse from the built-in

Abaqus elastic analysis.

67



Figure 4.17: Location of element with maximum Mises stress at third reversal, 950◦C,
Rσ = −1, σa = 250 MPa

A comparison of these methods is shown in Figures 4.18 and 4.19. Figure 4.18 shows

the predicted local response of the element using Neuber’s relation with and without mod-

ification for plane strain, while Figure 4.19 shows the prediction using Glinka with and

without this adjustment. In this case, the Neuber relation with modification for plane

strain provides the best approximation to the local response of the critical element. A

similar procedure was conducted for a cylindrically notched specimen model of Kt = 1.7 at

550◦C with 600 MPa net section stress. Results are shown in Figures 4.20 and 4.21, where

the Glinka relation with modification for plane strain appears to match more closely.
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Figure 4.18: Comparison of predicted and actual responses of critical element at third
reversal using Neuber relation, 950◦C, Rσ = −1, σa = 250 MPa

Figure 4.19: Comparison of predicted and actual responses of critical element at third
reversal using Glinka relation, 950◦C, Rσ = −1, σa = 250 MPa
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Figure 4.20: Comparison of predicted and actual responses of critical element at third
reversal using Neuber relation, 550◦C, Rσ = −1, σa = 600 MPa

Figure 4.21: Comparison of predicted and actual responses of critical element at third
reversal using Glinka relation, 550◦C, Rσ = −1, σa = 600 MPa
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For TMF conditions, a similar procedure was conducted, as outlined in Section 4.5,

using isothermal stress-strain curves to approximate endpoints of the TMF cycle curves for

a critical element. The response of a critical element, along with isothermal predictions at

endpoint temperatures, are shown in Figure 4.22 for OP TMF 500-950◦C with net section

stress amplitude of 300 MPa and Kt = 2.0 under completely reversed conditions (Rσ = −1).

Figure 4.23 shows the same comparisons for IP TMF under the same conditions.

Figure 4.22: Comparison of predicted endpoints and actual response of critical element,
OP TMF 500-950◦C, Kt = 2.0, Rσ = −1, σa = 300 MPa

Stress levels for this case shown in Figure 4.22 are reasonably well-estimated using the

method for completely reversed conditions, although the true ratio Rσ at the critical location

is not precisely equal to -1. The predictions do not incorporate ratchetting strain, since the

ANN predictions are based on stabilized hysteresis loops. Thus, accuracy will diminish as

ratchetting become more and more significant. In the cases presented, it is important to

note that the ANN is being compared against a higher-level TIVP model and not against

the physically-based CVP model to which it was trained. Thus, any differences in off-axis

predictions between the CVP and TIVP models will be implicitly reflected in comparisons
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Figure 4.23: Comparison of predicted endpoints and actual response of critical element, IP
TMF 500-950◦C, Kt = 2.0, Rσ = −1, σa = 300 MPa

between the TIVP and ANN models.

As one moves from a complex physically based model to an extreme reduced order

constitutive model of this type, error will inevitably accumulate. Sources of error for this

type of model include the degree of fit of the original CVP model to experimental data,

the degree of fit of the simple Ramberg-Osgood constitutive relation to CVP simulation

data, and the generalization capability of the ANN (i.e. how well the ANN predicts the

microstructure-sensitive Ramberg-Osgood parameters). For extension to TMF, the methods

outlined earlier deal primarily with typical limiting-case strain ratios, although accounting

for other strain ratios may be difficult, as evidenced in the example cases of cylindrically

notched specimens under IP and OP conditions.
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CHAPTER V

A COMPARATIVE STUDY OF REDUCED ORDER MODELING

TECHNIQUES

5.1 Overview

The purpose of this exercise is to demonstrate the capabilities and limitations of the trans-

versely isotropic viscoplasticity (TIVP) model and the extreme reduced order artificial neu-

ral network (ANN) model when compared to the more physically-based crystal viscplasticity

(CVP) model in a head-to-head comparison. Local responses along a notch root from TIVP

and CVP FE simulations are compared to local reponses predicted using the ANN model

in conjunction with a Neuber analysis. In this case, a new ANN model was created in a

manner similar as before using training data generated by the TIVP model. The complete

training set can be found in Appendix B.

5.2 Test case: square plate with circular hole

The component model used for this demonstration case is a square plate with a circular

hole at its center, simliar to that presented in Shenoy et al. [6]. The hole has a diameter

equivalent to one-tenth of the side length of the plate, whose thickness is one-half the hole

diameter. To reduce computational expense, one-fourth of the geometry is modeled in

ABAQUS using symmetry boundary conditions and is shown in Figure 5.1. The FE model

consists of 2700 three-dimensional, 8-noded C3D8 linear brick elements and 3856 nodes.

The 〈001〉 direction of solidification is aligned with the global Z-axis in this model.

In order to simulate the behavior of the entire plate, the two smaller surfaces of the plate

model nearest the hole feature (i.e those corresponding to interior surfaces of the entire plate)

are assigned symmetric boundary conditions in their respective normal directions. For the

first simulation at 950◦C, the top surface of the plate is displaced an amount of 0.1 mm

corresponding to a nominal strain based on the net section of 0.33% over a time step of 33
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seconds, corresponding to an effective nominal strain rate of 10−4 s−1.

The second simulation is conducted at 750◦C, where the top surface was displaced an

amount corresonding to 0.51% nominal strain at the same rate. All other surfaces are

traction-free.

Figure 5.1: Square plate with circular hole at center (one-fourth symmetry model)

5.3 Results

The plate model is run in ABAQUS using both the CVP multi-grain (MG), CVP single

crystal (SX) and TIVP material models at 750◦C and 950◦C. Figures 5.2 through 5.7 show

the predictions for the CVP (SX) and TIVP models at 950◦C. For the lower temperature

of 750◦C, predictions are shown in Figures 5.8 through 5.13. Runtimes for both simulations

using each UMAT are given in Table 5.1.
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Table 5.1: Runtimes for CVP and TIVP with plate model

Model Temp. (◦C) Runtime (s) Speed factor relative to CVP (MG)

CVP (MG) 750 72060 1
CVP (SX) 750 16140 4.5
TIVP 750 901 80.0
ANN 750 102 706.5

CVP (MG) 950 62639 1
CVP (SX) 950 14176 4.4
TIVP 950 673 93.1
ANN 950 79 792.9

*Note: MG - multi-grain, SX - single crystal
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Figure 5.2: CVP (SX) Mises stress (MPa) after tensile loading to 0.33% nominal strain at
10−4 s−1, 950◦C

Figure 5.3: TIVP Mises stress (MPa) after tensile loading to 0.33% nominal strain at 10−4

s−1, 950◦C
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Figure 5.4: CVP (SX) Normal stress (MPa) in Z-direction after tensile loading to 0.33%
nominal strain at 10−4 s−1, 950◦C

Figure 5.5: TIVP: Normal stress (MPa) in Z-direction after tensile loading to 0.33% nominal
strain at 10−4 s−1, 950◦C

77



Figure 5.6: CVP (SX) Plastic strain in Z-direction after tensile loading to 0.33% nominal
strain at 10−4 s−1, 950◦C

Figure 5.7: TIVP: Plastic strain in Z-direction after tensile loading to 0.33% nominal strain
at 10−4 s−1, 950◦C
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Figure 5.8: CVP (SX) Mises stress (MPa) after tensile loading to 0.51% nominal strain at
10−4 s−1, 750◦C

Figure 5.9: TIVP: Mises stress (MPa) after tensile loading to 0.51% nominal strain at 10−4

s−1, 750◦C
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Figure 5.10: CVP (SX) Normal stress (MPa) in Z-direction after tensile loading to 0.51%
nominal strain at 10−4 s−1, 750◦C

Figure 5.11: TIVP: Normal stress (MPa) in Z-direction after tensile loading to 0.51%
nominal strain at 10−4 s−1, 750◦C
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Figure 5.12: CVP (SX) Plastic strain in Z-direction after tensile loading to 0.51% nominal
strain at 10−4 s−1, 750◦C

Figure 5.13: TIVP: Plastic strain in Z-direction after tensile loading to 0.51% nominal
strain at 10−4 s−1, 750◦C
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5.4 Local response comparison

In order to verify the approach of estimating local responses, the new ANN model was

compared to the TIVP model to which it was trained at various element positions on the

along the notch surface. A more refined mesh was used for this comparison to obtain reliable

results. The ANN model prediction of the notch root response shows good agreement with

the TIVP model, shown in Figures 5.15 for 950◦C and Figure 5.16 for 750◦C. To obtain

these curves, a purely elastic analysis is conducted to the same nominal strain value, and the

elastic stresses are used in a Neuber analysis. Additionally, other elements along the notch

surface are compared. Figure 5.14 identifies elements along the notch surface evaluated in

the analysis.

.

Figure 5.14: Nomenclature for notch surface elements
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Figure 5.15: Comparison of notch root (Element A) reponses and ANN predictions, 950◦C

Figure 5.16: Comparison of notch root (Element A) reponses and ANN predictions, 750◦C
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Figure 5.17: Comparison of Element B reponses and ANN predictions, 950◦C

Figure 5.18: Comparison of Element B reponses and ANN predictions, 750◦C
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Figure 5.19: Comparison of Element C reponses and ANN predictions, 950◦C

Figure 5.20: Comparison of Element C reponses and ANN predictions, 750◦C
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Figure 5.21: Comparison of Element D reponses and ANN predictions, 950◦C

Figure 5.22: Comparison of Element D reponses and ANN predictions, 750◦C
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Figure 5.23: Comparison of Element E reponses and ANN predictions, 950◦C

Figure 5.24: Comparison of Element E reponses and ANN predictions, 750◦C

87



It is evident that there are noticeable, although small, differences between the ANN

model and the TIVP model to which it was trained. These differences probably arise from

error associated with the ability of the ANN to generalize the Ramberg-Osgood parameters

for arbitrary off-axis orientations. The responses of the elements are best characterized by

plane stress, which is expected with the elements on the thin plate model surface. Element

responses under more complex states of stress will not be captured well by the ANN model,

since it is trained using TIVP simulations under plane stress conditions. This is an addi-

tional limitation of the ANN model. However, while it is less accurate than the CVP and

TIVP models, the ANN model is able to generate approximate stress-strain curves almost

instantaneously, given the elastic stresses from a purely elastic FE simulation, and thus

provides a drastic reduction in computational cost when compared to the CVP and TIVP

models, as shown in Table 5.1.
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CHAPTER VI

CONCLUSIONS

The results of this research are as follows:

1. Calibrate a transversely isotropic viscoplasticity (TIVP) model to capture

the response of a DS Ni-base superalloy for isothermal, thermomechanical,

and creep conditions.

• The TIVP model, previously developed for a similar DS Ni-base superalloy, was

calibrated to CM247LC-DS from 20-1050◦C using isothermal uniaxial test data

and simulations conducted with the CVP model.

• The TIVP model, a unified creep-plasticity model implemented as a User MATe-

rial subroutine (UMAT) for ABAQUS, is able to capture rate dependent stress-

strain behavior under isothermal and thermomechanical conditions over the tem-

perature range to which it was calibrated.

• The TIVP model is also able to capture secondary creep behavior and stress

relaxation at higher temperatures.

2. Develop an extreme reduced order constitutive model to rapidly approx-

imate DS Ni-base superalloy behavior under thermomechanical loading

conditions.

• An artificial neural network (ANN) was trained using data generated by a CVP

model in which temperature, strain rate, and material off-axis orientation were

varied independently. The results were fitted to a simple 1-D Ramberg-Osgood

relation, and the Ramberg-Osgood parameters and their corresponding temper-

atures, strain rates, and material orientations were then used to construct a

training set for the ANN.
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• Given inputs of temperature, strain rate, and material orientation from the

DS axis, the trained ANN model is able to generate instantaneously Ramberg-

Osgood parameters which capture material behavior at arbitrary temperatures,

strain rates, and material orientations within the domain of the training set.

• The rapid first-order approximation produced by the ANN model shows good

agreement with isothermal CVP predictions and experimental data, and is able

to be extended to TMF in a limited manner, particularly using isothermal curves

and effective Young’s moduli to approximate the endpoints of stabilized hystere-

sis loops.

3. Compare the reduced order and extreme reduced order constitutive mod-

els to the more complex crystal viscoplasticity (CVP) model in terms of

relative accuracy and computational expense.

• The TIVP model shows excellent speed benefits, around an order of magnitude,

when compared to the single crystal and multi-grain CVP models while still

providing a high degree of accuracy.

• The training process was repeated using the TIVP model to construct a new,

different ANN model. The new ANN model provides a first-order approximation

of material response almost instantaneously, given results from a purely elastic

analysis.

• While less accurate and not implemented as a user subroutine for finite element

codes, the ANN modeling technique shows promise in certain phases of design

where approximations of local responses at stress concentrators are desired and

speed is of primary importance rather than accuracy.
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CHAPTER VII

RECOMMENDATIONS

There are several steps that could be taken to extend this research and to improve the

reduced order modeling techniques described in this work. The following recommendations

are presented.

Microstructure sensitivity

Although quantification of microstructure is not a trivial task, it is possible that some

sort of aspect ratio describing precipitate morphology could be used to characterize the

microstructure at a given state. The addition of microstructure sensitivity to the TIVP

and ANN models would be a natural extension of this work. This would perhaps require

the need of a microstructure-sensitive CVP model to account for microstructure evolution

with the effects of time, temperature, and stress. The advanced CVP model could then be

used to calibrate a lower level TIVP model, and additional internal state variables could

be defined in the TIVP model to reflect the evolution of model parameters. In addition,

the microstructure-sensitive CVP model could be used to construct a new training set for

an ANN that would further take into account microstructure evolution through adding

microstructural parameters as inputs.

Improved ANN Training

One benefit of artificial neural networks is the ability to generalize well even with limited

training data. Reducing the training set for the ANN would allow new training sets to be

comstructed more rapidly, which would be beneficial when the model used to train the

ANN is updated (i.e. a newer version of the CVP is released). Also, a more optimal ANN

architecture could be determined, which may reduce memory and time required for training

and increase performance. Many other variations in training could be explored, including

other training functions or techniques to improve generalization such as early stopping.
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Damage Model

A damage model could be incorporated into the TIVP model in order to capture tertiary

creep. This would result in better creep characterization and improved creep predictions at

longer durations, which could be useful in predicting creep behavior of a blade component

after an extended period of service, although the useful life of the component may have been

exhausted at this point. A fully 3-D anisotropic damage model was implemented during

previous work on a similar DS Ni-base superalloy [41] and captured tertiary creep response

reasonably well at various temperatures and stress levels.
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APPENDIX A

TIVP CALIBRATION CURVES

Figure A.1: TIVP model calibration curve for 20◦C, longitudinal orientation
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Figure A.2: TIVP model calibration curve for 20◦C, longitudinal orientation
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Figure A.3: TIVP model calibration curve for 150◦C, longitudinal orientation

Figure A.4: TIVP model calibration curve for 150◦C, longitudinal orientation
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Figure A.5: TIVP model calibration curve for 300◦C, longitudinal orientation

Figure A.6: TIVP model calibration curve for 300◦C, longitudinal orientation
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Figure A.7: TIVP model calibration curve for 650◦C, longitudinal orientation

Figure A.8: TIVP model calibration curve for 650◦C, longitudinal orientation
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Figure A.9: TIVP model calibration curve for 750◦C, longitudinal orientation

Figure A.10: TIVP model calibration curve for 750◦C, longitudinal orientation
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Figure A.11: TIVP model calibration curve for 850◦C, longitudinal orientation

Figure A.12: TIVP model calibration curve for 850◦C, longitudinal orientation
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Figure A.13: TIVP model calibration curve for 950◦C, longitudinal orientation

Figure A.14: TIVP model calibration curve for 950◦C, longitudinal orientation
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Figure A.15: TIVP model calibration curve for 1050◦C, longitudinal orientation

Figure A.16: TIVP model calibration curve for 1050◦C, longitudinal orientation
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APPENDIX B

ANN TRAINING DATA FROM TIVP

Temperature (◦C) Log(ε̇) θ(◦) E (MPa) K (MPa) n (unitless)

20 -3 0 130537 1241.87 0.0394

20 -3 5 133429 1263.22 0.0426

20 -3 10 141951 1353.27 0.0549

20 -3 15 155500 1446.22 0.0676

20 -3 20 173484 1499.07 0.0753

20 -3 25 194642 1508.77 0.0778

20 -3 30 217270 1463.72 0.0738

20 -3 35 239017 1403.29 0.0677

20 -3 40 257269 1360.43 0.0636

20 -3 45 269520 1342.60 0.0629

20 -3 50 273922 1302.28 0.0597

20 -3 55 269971 1278.71 0.0589

20 -3 60 258541 1261.65 0.0589

20 -3 65 241980 1240.29 0.0583

20 -3 70 223217 1228.90 0.0589

20 -3 75 205382 1202.57 0.0569

20 -3 80 190955 1182.63 0.0552

20 -3 85 181591 1165.61 0.0534

20 -3 90 178329 1156.46 0.0523

150 -3 0 127417 1256.13 0.0422

150 -3 5 130431 1265.36 0.0440

150 -3 10 138616 1356.03 0.0562

150 -3 15 151824 1460.74 0.0701

150 -3 20 169357 1508.31 0.0773

150 -3 25 189936 1510.47 0.0789

150 -3 30 211841 1471.12 0.0755
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Temperature (◦C) Log(ε̇) θ(◦) E (MPa) K (MPa) n (unitless)

150 -3 35 232859 1406.37 0.0689

150 -3 40 250488 1352.97 0.0634

150 -3 45 262249 1325.81 0.0615

150 -3 50 266397 1307.93 0.0611

150 -3 55 262467 1283.48 0.0601

150 -3 60 251255 1264.84 0.0600

150 -3 65 235076 1241.31 0.0593

150 -3 70 216907 1226.18 0.0594

150 -3 75 199573 1202.09 0.0577

150 -3 80 185537 1177.28 0.0554

150 -3 85 176478 1165.89 0.0544

150 -3 90 173323 1156.37 0.0533

300 -3 0 122701 1252.54 0.0463

300 -3 5 125411 1270.88 0.0491

300 -3 10 133337 1331.03 0.0578

300 -3 15 146022 1434.83 0.0716

300 -3 20 162840 1491.71 0.0798

300 -3 25 182590 1494.44 0.0815

300 -3 30 203570 1443.34 0.0767

300 -3 35 223680 1391.95 0.0715

300 -3 40 240453 1346.24 0.0670

300 -3 45 251594 1320.47 0.0652

300 -3 50 255387 1289.10 0.0630

300 -3 55 251434 1264.09 0.0619

300 -3 60 240612 1247.69 0.0621

300 -3 65 225033 1228.50 0.0619

300 -3 70 207564 1203.78 0.0607

300 -3 75 190896 1184.06 0.0596

300 -3 80 177455 1168.81 0.0586

300 -3 85 168750 1155.66 0.0574

300 -3 90 165760 1146.88 0.0564
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Temperature (◦C) Log(ε̇) θ(◦) E (MPa) K (MPa) n (unitless)

450 -3 0 116280 1309.66 0.0686

450 -3 5 118843 1322.04 0.0707

450 -3 10 126327 1370.66 0.0777

450 -3 15 138449 1458.01 0.0893

450 -3 20 154418 1515.99 0.0972

450 -3 25 173235 1515.18 0.0982

450 -3 30 193143 1481.92 0.0951

450 -3 35 211393 1424.65 0.0890

450 -3 40 224039 1370.70 0.0829

450 -3 45 231615 1325.89 0.0782

450 -3 50 234268 1297.09 0.0762

450 -3 55 226419 1257.35 0.0727

450 -3 60 219932 1249.81 0.0744

450 -3 65 211397 1264.60 0.0795

450 -3 70 196083 1247.78 0.0795

450 -3 75 180286 1223.41 0.0779

450 -3 80 167431 1207.91 0.0769

450 -3 85 159175 1187.35 0.0747

450 -3 90 156364 1186.95 0.0748

600 -3 0 108209 1453.69 0.0863

600 -3 5 110662 1473.09 0.0890

600 -3 10 117740 1513.08 0.0948

600 -3 15 129154 1596.55 0.1050

600 -3 20 144186 1647.26 0.1115

600 -3 25 161862 1650.66 0.1128

600 -3 30 180473 1617.87 0.1098

600 -3 35 197207 1546.59 0.1023

600 -3 40 208940 1466.46 0.0935

600 -3 45 216334 1418.94 0.0886

600 -3 50 218360 1381.20 0.0855

600 -3 55 212623 1346.53 0.0830
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Temperature (◦C) Log(ε̇) θ(◦) E (MPa) K (MPa) n (unitless)

600 -3 60 205907 1348.67 0.0859

600 -3 65 196841 1370.84 0.0917

600 -3 70 182612 1371.63 0.0941

600 -3 75 167751 1348.76 0.0929

600 -3 80 155631 1330.06 0.0915

600 -3 85 147848 1314.63 0.0901

600 -3 90 145119 1304.83 0.0890

750 -3 0 98562 1309.64 0.0503

750 -3 5 100874 1347.72 0.0549

750 -3 10 107478 1467.27 0.0683

750 -3 15 118067 1642.44 0.0864

750 -3 20 132079 1762.20 0.0985

750 -3 25 148482 1810.98 0.1032

750 -3 30 165920 1795.43 0.1018

750 -3 35 182561 1731.81 0.0956

750 -3 40 196432 1679.11 0.0905

750 -3 45 205515 1637.62 0.0869

750 -3 50 208401 1619.24 0.0861

750 -3 55 204784 1609.98 0.0867

750 -3 60 195441 1596.28 0.0872

750 -3 65 182216 1586.29 0.0881

750 -3 70 167465 1567.08 0.0877

750 -3 75 153435 1540.11 0.0860

750 -3 80 142102 1511.79 0.0836

750 -3 85 134825 1494.93 0.0819

750 -3 90 132354 1487.31 0.0811

900 -3 0 86954 1306.42 0.1520

900 -3 5 88977 1307.35 0.1526

900 -3 10 94968 1366.63 0.1609

900 -3 15 104628 1407.63 0.1669

900 -3 20 117379 1453.78 0.1728
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Temperature (◦C) Log(ε̇) θ(◦) E (MPa) K (MPa) n (unitless)

900 -3 25 132345 1459.36 0.1732

900 -3 30 148277 1445.24 0.1708

900 -3 35 163553 1429.52 0.1680

900 -3 40 176236 1415.10 0.1654

900 -3 45 184580 1414.31 0.1649

900 -3 50 187290 1395.96 0.1627

900 -3 55 183936 1409.10 0.1648

900 -3 60 175289 1399.42 0.1644

900 -3 65 163128 1416.71 0.1673

900 -3 70 149561 1401.38 0.1661

900 -3 75 136696 1407.59 0.1670

900 -3 80 126308 1378.18 0.1633

900 -3 85 119622 1379.39 0.1630

900 -3 90 117320 1364.30 0.1610

1050 -3 0 74323 1429.66 0.1333

1050 -3 5 76110 1420.31 0.1331

1050 -3 10 81271 1389.55 0.1315

1050 -3 15 89312 1326.37 0.1255

1050 -3 20 99561 1244.48 0.1154

1050 -3 25 110760 1133.57 0.0988

1050 -3 30 121864 1027.90 0.0806

1050 -3 35 131740 937.39 0.0631

1050 -3 40 139519 872.27 0.0494

1050 -3 45 144403 834.29 0.0410

1050 -3 50 145927 821.87 0.0383

1050 -3 55 144055 832.96 0.0411

1050 -3 60 139290 866.35 0.0488

1050 -3 65 132323 920.39 0.0603

1050 -3 70 123894 989.62 0.0737

1050 -3 75 115461 1073.85 0.0881

1050 -3 80 107584 1135.35 0.0973
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Temperature (◦C) Log(ε̇) θ(◦) E (MPa) K (MPa) n (unitless)

1050 -3 85 102122 1170.17 0.1018

1050 -3 90 100212 1184.16 0.1035

20 -4 0 129963 1232.65 0.0405

20 -4 5 132721 1245.21 0.0426

20 -4 10 141142 1322.12 0.0535

20 -4 15 154689 1421.58 0.0671

20 -4 20 172609 1480.65 0.0756

20 -4 25 193632 1474.66 0.0764

20 -4 30 216110 1442.86 0.0738

20 -4 35 237757 1380.22 0.0673

20 -4 40 256750 1351.73 0.0646

20 -4 45 268284 1323.86 0.0630

20 -4 50 272704 1282.83 0.0596

20 -4 55 268722 1261.02 0.0588

20 -4 60 257294 1233.01 0.0572

20 -4 65 240748 1230.39 0.0594

20 -4 70 222098 1189.71 0.0558

20 -4 75 204359 1182.77 0.0566

20 -4 80 189924 1163.83 0.0549

20 -4 85 180612 1147.67 0.0532

20 -4 90 177436 1139.46 0.0522

150 -4 0 126984 1234.52 0.0431

150 -4 5 129749 1247.21 0.0453

150 -4 10 137903 1321.25 0.0558

150 -4 15 151074 1414.85 0.0687

150 -4 20 168413 1465.77 0.0763

150 -4 25 188874 1467.59 0.0779

150 -4 30 210719 1433.06 0.0749

150 -4 35 231692 1374.72 0.0688

150 -4 40 249284 1327.88 0.0641

150 -4 45 261085 1307.40 0.0630
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Temperature (◦C) Log(ε̇) θ(◦) E (MPa) K (MPa) n (unitless)

150 -4 50 265211 1288.31 0.0624

150 -4 55 261234 1264.09 0.0614

150 -4 60 250062 1244.80 0.0612

150 -4 65 233933 1218.74 0.0600

150 -4 70 215789 1203.83 0.0601

150 -4 75 198568 1181.73 0.0587

150 -4 80 184547 1158.88 0.0566

150 -4 85 175550 1138.49 0.0543

150 -4 90 172519 1140.13 0.0548

300 -4 0 122095 1224.41 0.0480

300 -4 5 124795 1239.16 0.0504

300 -4 10 132628 1288.85 0.0580

300 -4 15 145252 1382.92 0.0711

300 -4 20 161981 1441.16 0.0796

300 -4 25 181586 1440.55 0.0809

300 -4 30 202468 1402.52 0.0775

300 -4 35 222549 1349.35 0.0719

300 -4 40 239343 1310.79 0.0681

300 -4 45 250506 1289.12 0.0668

300 -4 50 254298 1257.92 0.0645

300 -4 55 250359 1233.28 0.0634

300 -4 60 239494 1215.81 0.0634

300 -4 65 223957 1195.82 0.0631

300 -4 70 206520 1178.39 0.0628

300 -4 75 189953 1153.65 0.0609

300 -4 80 176488 1131.40 0.0589

300 -4 85 167875 1119.81 0.0578

300 -4 90 164927 1119.99 0.0581

450 -4 0 115616 1271.04 0.0698

450 -4 5 118228 1283.79 0.0720

450 -4 10 125678 1320.30 0.0778
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Temperature (◦C) Log(ε̇) θ(◦) E (MPa) K (MPa) n (unitless)

450 -4 15 137704 1410.90 0.0901

450 -4 20 153603 1457.61 0.0969

450 -4 25 172239 1460.35 0.0982

450 -4 30 192148 1432.92 0.0957

450 -4 35 211179 1393.31 0.0916

450 -4 40 227041 1357.51 0.0880

450 -4 45 237506 1322.86 0.0848

450 -4 50 241014 1298.53 0.0834

450 -4 55 237070 1273.53 0.0822

450 -4 60 226697 1256.54 0.0824

450 -4 65 211776 1236.58 0.0821

450 -4 70 195157 1213.89 0.0812

450 -4 75 179387 1190.25 0.0796

450 -4 80 166597 1168.73 0.0777

450 -4 85 158357 1155.05 0.0764

450 -4 90 155520 1147.06 0.0754

600 -4 0 107627 1394.13 0.0872

600 -4 5 110041 1406.77 0.0893

600 -4 10 117087 1461.54 0.0968

600 -4 15 128449 1526.07 0.1054

600 -4 20 143428 1570.19 0.1114

600 -4 25 160999 1579.48 0.1132

600 -4 30 179621 1553.36 0.1109

600 -4 35 197516 1506.68 0.1060

600 -4 40 212413 1464.27 0.1017

600 -4 45 222173 1430.55 0.0988

600 -4 50 225351 1395.65 0.0961

600 -4 55 221572 1377.93 0.0960

600 -4 60 211647 1356.16 0.0957

600 -4 65 197522 1338.73 0.0959

600 -4 70 181821 1323.28 0.0961
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Temperature (◦C) Log(ε̇) θ(◦) E (MPa) K (MPa) n (unitless)

600 -4 75 166861 1298.03 0.0944

600 -4 80 154815 1274.00 0.0923

600 -4 85 147042 1257.50 0.0907

600 -4 90 144449 1250.73 0.0900

750 -4 0 98158 1304.68 0.0551

750 -4 5 100286 1348.67 0.0602

750 -4 10 106892 1445.95 0.0717

750 -4 15 117375 1598.79 0.0882

750 -4 20 131348 1701.65 0.0991

750 -4 25 147718 1731.56 0.1025

750 -4 30 165046 1722.64 0.1016

750 -4 35 181673 1667.25 0.0961

750 -4 40 195453 1624.68 0.0918

750 -4 45 204581 1591.85 0.0890

750 -4 50 207452 1573.50 0.0881

750 -4 55 203859 1549.78 0.0872

750 -4 60 194521 1547.44 0.0889

750 -4 65 181348 1535.74 0.0895

750 -4 70 166605 1516.91 0.0891

750 -4 75 152602 1495.06 0.0878

750 -4 80 141340 1460.55 0.0846

750 -4 85 134091 1447.53 0.0833

750 -4 90 131692 1443.95 0.0829

900 -4 0 87026 1320.06 0.1648

900 -4 5 88952 1333.56 0.1668

900 -4 10 94940 1368.04 0.1722

900 -4 15 104675 1410.83 0.1784

900 -4 20 117422 1455.78 0.1842

900 -4 25 132395 1466.10 0.1852

900 -4 30 148354 1440.71 0.1816

900 -4 35 163617 1419.00 0.1781
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Temperature (◦C) Log(ε̇) θ(◦) E (MPa) K (MPa) n (unitless)

900 -4 40 176288 1401.22 0.1751

900 -4 45 184623 1398.90 0.1744

900 -4 50 187355 1405.90 0.1754

900 -4 55 183976 1393.54 0.1743

900 -4 60 175363 1386.35 0.1742

900 -4 65 163191 1410.66 0.1780

900 -4 70 149618 1404.60 0.1778

900 -4 75 136658 1394.62 0.1767

900 -4 80 126238 1377.92 0.1745

900 -4 85 119579 1361.88 0.1721

900 -4 90 117349 1382.73 0.1745

1050 -4 0 74210 678.96 0.0994

1050 -4 5 76009 678.41 0.0998

1050 -4 10 81367 680.44 0.1017

1050 -4 15 89959 672.28 0.1010

1050 -4 20 100994 649.66 0.0959

1050 -4 25 113834 616.65 0.0869

1050 -4 30 127279 575.73 0.0744

1050 -4 35 139907 537.28 0.0616

1050 -4 40 150292 506.49 0.0507

1050 -4 45 157057 489.32 0.0443

1050 -4 50 159280 482.18 0.0417

1050 -4 55 156671 487.86 0.0442

1050 -4 60 149766 500.79 0.0494

1050 -4 65 139992 522.40 0.0575

1050 -4 70 129532 547.03 0.0662

1050 -4 75 118540 564.81 0.0720

1050 -4 80 109367 572.61 0.0742

1050 -4 85 103439 581.18 0.0764

1050 -4 90 101164 577.13 0.0751

20 -5 0 129754 1220.11 0.0412
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Temperature (◦C) Log(ε̇) θ(◦) E (MPa) K (MPa) n (unitless)

20 -5 5 132597 1235.05 0.0437

20 -5 10 140902 1301.21 0.0534

20 -5 15 154477 1408.39 0.0680

20 -5 20 172333 1462.17 0.0760

20 -5 25 193438 1463.17 0.0775

20 -5 30 215891 1426.32 0.0743

20 -5 35 237540 1370.97 0.0688

20 -5 40 255745 1326.39 0.0642

20 -5 45 268004 1310.87 0.0637

20 -5 50 272459 1268.97 0.0603

20 -5 55 268515 1246.92 0.0595

20 -5 60 257039 1234.68 0.0601

20 -5 65 240510 1217.53 0.0602

20 -5 70 221844 1194.36 0.0591

20 -5 75 204143 1172.72 0.0576

20 -5 80 189704 1153.50 0.0559

20 -5 85 180523 1138.96 0.0545

20 -5 90 177310 1130.20 0.0534

150 -5 0 126891 1223.39 0.0454

150 -5 5 129560 1231.21 0.0469

150 -5 10 137665 1295.72 0.0564

150 -5 15 150821 1387.59 0.0693

150 -5 20 168256 1440.58 0.0772

150 -5 25 188703 1439.96 0.0785

150 -5 30 210487 1403.95 0.0753

150 -5 35 231458 1354.93 0.0703

150 -5 40 249066 1312.02 0.0660

150 -5 45 260800 1293.72 0.0651

150 -5 50 264964 1262.88 0.0629

150 -5 55 260967 1238.54 0.0618

150 -5 60 249780 1220.18 0.0617
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Temperature (◦C) Log(ε̇) θ(◦) E (MPa) K (MPa) n (unitless)

150 -5 65 233694 1203.74 0.0619

150 -5 70 215568 1180.85 0.0608

150 -5 75 198342 1161.01 0.0596

150 -5 80 184383 1141.17 0.0579

150 -5 85 175337 1119.47 0.0554

150 -5 90 172314 1121.34 0.0559

300 -5 0 121988 1198.91 0.0501

300 -5 5 124602 1208.05 0.0518

300 -5 10 132402 1250.54 0.0586

300 -5 15 145052 1348.54 0.0725

300 -5 20 161770 1404.76 0.0810

300 -5 25 181359 1406.38 0.0825

300 -5 30 202284 1363.39 0.0783

300 -5 35 222290 1318.55 0.0736

300 -5 40 239101 1283.78 0.0702

300 -5 45 250261 1263.43 0.0690

300 -5 50 254169 1232.92 0.0667

300 -5 55 250068 1207.78 0.0655

300 -5 60 239212 1190.19 0.0655

300 -5 65 223709 1170.38 0.0651

300 -5 70 206287 1146.18 0.0637

300 -5 75 189751 1123.03 0.0621

300 -5 80 176303 1102.93 0.0602

300 -5 85 167659 1092.38 0.0593

300 -5 90 164765 1085.28 0.0585

450 -5 0 115634 1237.38 0.0717

450 -5 5 118041 1250.91 0.0739

450 -5 10 125495 1292.14 0.0804

450 -5 15 137561 1373.63 0.0918

450 -5 20 153439 1423.70 0.0991

450 -5 25 172098 1426.71 0.1005
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Temperature (◦C) Log(ε̇) θ(◦) E (MPa) K (MPa) n (unitless)

450 -5 30 191913 1394.53 0.0973

450 -5 35 210922 1356.64 0.0932

450 -5 40 226775 1322.15 0.0896

450 -5 45 237241 1297.70 0.0877

450 -5 50 240811 1273.34 0.0862

450 -5 55 236866 1248.69 0.0850

450 -5 60 226430 1230.93 0.0851

450 -5 65 211598 1204.40 0.0838

450 -5 70 194927 1181.95 0.0829

450 -5 75 179103 1158.91 0.0813

450 -5 80 166380 1139.34 0.0797

450 -5 85 158134 1125.90 0.0783

450 -5 90 155401 1119.85 0.0777

600 -5 0 107608 1360.17 0.0909

600 -5 5 109888 1373.44 0.0930

600 -5 10 116926 1416.29 0.0993

600 -5 15 128235 1476.85 0.1076

600 -5 20 143240 1523.34 0.1140

600 -5 25 160783 1535.71 0.1161

600 -5 30 179453 1510.80 0.1138

600 -5 35 197324 1466.67 0.1091

600 -5 40 212207 1427.29 0.1050

600 -5 45 221961 1394.64 0.1020

600 -5 50 225170 1366.24 0.1001

600 -5 55 221396 1342.96 0.0993

600 -5 60 211451 1325.86 0.0995

600 -5 65 197364 1303.54 0.0990

600 -5 70 181599 1281.81 0.0983

600 -5 75 166685 1258.00 0.0969

600 -5 80 154633 1234.66 0.0948

600 -5 85 146916 1219.47 0.0933
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Temperature (◦C) Log(ε̇) θ(◦) E (MPa) K (MPa) n (unitless)

600 -5 90 144276 1212.23 0.0925

750 -5 0 98033 1311.42 0.0611

750 -5 5 100181 1350.21 0.0657

750 -5 10 106695 1428.82 0.0754

750 -5 15 117234 1570.49 0.0913

750 -5 20 131160 1701.14 0.1050

750 -5 25 147491 1694.23 0.1050

750 -5 30 164901 1675.23 0.1032

750 -5 35 181474 1628.66 0.0985

750 -5 40 195298 1591.17 0.0947

750 -5 45 204350 1558.77 0.0918

750 -5 50 207268 1540.27 0.0909

750 -5 55 203665 1516.98 0.0900

750 -5 60 194346 1514.32 0.0917

750 -5 65 181127 1490.15 0.0909

750 -5 70 166434 1475.41 0.0909

750 -5 75 152459 1459.75 0.0902

750 -5 80 141176 1431.20 0.0875

750 -5 85 133967 1408.64 0.0852

750 -5 90 131507 1403.71 0.0846

900 -5 0 86901 1316.45 0.1751

900 -5 5 88838 1323.55 0.1764

900 -5 10 94849 1367.84 0.1830

900 -5 15 104485 1375.18 0.1852

900 -5 20 117249 1423.21 0.1915

900 -5 25 132236 1417.66 0.1908

900 -5 30 148155 1404.36 0.1886

900 -5 35 163437 1378.29 0.1846

900 -5 40 176158 1359.03 0.1814

900 -5 45 184500 1353.74 0.1804

900 -5 50 187163 1357.33 0.1810
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Temperature (◦C) Log(ε̇) θ(◦) E (MPa) K (MPa) n (unitless)

900 -5 55 183826 1347.79 0.1802

900 -5 60 175204 1344.47 0.1805

900 -5 65 163045 1372.55 0.1848

900 -5 70 149371 1373.42 0.1855

900 -5 75 136503 1351.30 0.1828

900 -5 80 126148 1349.83 0.1824

900 -5 85 119453 1342.25 0.1810

900 -5 90 117230 1337.75 0.1803

1050 -5 0 67952 292.68 0.0445

1050 -5 5 75926 332.45 0.0681

1050 -5 10 78533 318.17 0.0605

1050 -5 15 89791 338.47 0.0725

1050 -5 20 100779 330.96 0.0689

1050 -5 25 112244 318.05 0.0617

1050 -5 30 124523 303.17 0.0529

1050 -5 35 135791 288.59 0.0438

1050 -5 40 144826 278.09 0.0369

1050 -5 45 150623 271.04 0.0322

1050 -5 50 152453 268.54 0.0307

1050 -5 55 150210 269.99 0.0320

1050 -5 60 144484 275.00 0.0358

1050 -5 65 136156 281.36 0.0405

1050 -5 70 129054 293.15 0.0484

1050 -5 75 118066 295.31 0.0500

1050 -5 80 109041 297.62 0.0515

1050 -5 85 103309 299.86 0.0528

1050 -5 90 100584 295.50 0.0501

20 -6 0 129732 1212.42 0.0426

20 -6 5 132483 1224.55 0.0447

20 -6 10 140842 1295.13 0.0550

20 -6 15 154362 1386.42 0.0679
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Temperature (◦C) Log(ε̇) θ(◦) E (MPa) K (MPa) n (unitless)

20 -6 20 172255 1439.72 0.0759

20 -6 25 193291 1439.89 0.0773

20 -6 30 215826 1403.20 0.0741

20 -6 35 237428 1358.37 0.0696

20 -6 40 255640 1310.97 0.0646

20 -6 45 267914 1297.75 0.0645

20 -6 50 272301 1254.09 0.0608

20 -6 55 268371 1254.21 0.0628

20 -6 60 256913 1221.87 0.0607

20 -6 65 240347 1206.31 0.0610

20 -6 70 221727 1186.69 0.0606

20 -6 75 203868 1160.52 0.0583

20 -6 80 189581 1143.95 0.0570

20 -6 85 180347 1128.96 0.0555

20 -6 90 177162 1120.72 0.0544

150 -6 0 126779 1195.92 0.0455

150 -6 5 129479 1217.08 0.0488

150 -6 10 137634 1284.27 0.0587

150 -6 15 150792 1365.71 0.0705

150 -6 20 168149 1413.91 0.0779

150 -6 25 188578 1418.86 0.0799

150 -6 30 210420 1383.86 0.0767

150 -6 35 231310 1336.56 0.0718

150 -6 40 249029 1298.03 0.0680

150 -6 45 260690 1268.85 0.0656

150 -6 50 264925 1250.09 0.0650

150 -6 55 260823 1225.50 0.0639

150 -6 60 249689 1207.18 0.0638

150 -6 65 233563 1180.74 0.0624

150 -6 70 215439 1144.25 0.0593

150 -6 75 198227 1148.71 0.0617
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Temperature (◦C) Log(ε̇) θ(◦) E (MPa) K (MPa) n (unitless)

150 -6 80 184223 1122.98 0.0591

150 -6 85 175254 1101.85 0.0566

150 -6 90 172219 1103.73 0.0571

300 -6 0 121953 1173.00 0.0520

300 -6 5 124521 1190.95 0.0548

300 -6 10 132345 1225.27 0.0607

300 -6 15 144940 1313.12 0.0736

300 -6 20 161663 1369.41 0.0822

300 -6 25 181277 1369.63 0.0836

300 -6 30 202145 1334.07 0.0801

300 -6 35 222176 1290.66 0.0754

300 -6 40 238958 1258.33 0.0722

300 -6 45 250145 1227.81 0.0696

300 -6 50 254146 1208.74 0.0688

300 -6 55 250011 1183.83 0.0676

300 -6 60 239103 1166.13 0.0675

300 -6 65 223617 1146.72 0.0671

300 -6 70 206171 1124.35 0.0660

300 -6 75 189528 1100.87 0.0642

300 -6 80 176207 1084.37 0.0629

300 -6 85 167591 1066.66 0.0609

300 -6 90 164597 1066.91 0.0611

450 -6 0 115539 1220.55 0.0754

450 -6 5 117989 1233.89 0.0776

450 -6 10 125411 1266.02 0.0830

450 -6 15 137425 1336.30 0.0933

450 -6 20 153351 1389.73 0.1011

450 -6 25 171982 1391.24 0.1022

450 -6 30 191838 1366.77 0.0998

450 -6 35 210799 1330.16 0.0957

450 -6 40 226656 1298.14 0.0924
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Temperature (◦C) Log(ε̇) θ(◦) E (MPa) K (MPa) n (unitless)

450 -6 45 237166 1274.38 0.0905

450 -6 50 240782 1250.14 0.0890

450 -6 55 236786 1225.43 0.0878

450 -6 60 226277 1207.07 0.0877

450 -6 65 211442 1180.89 0.0864

450 -6 70 194784 1159.10 0.0855

450 -6 75 178976 1137.23 0.0841

450 -6 80 166283 1112.37 0.0816

450 -6 85 158083 1100.04 0.0805

450 -6 90 155358 1094.50 0.0798

600 -6 0 107544 1327.64 0.0943

600 -6 5 109869 1341.49 0.0965

600 -6 10 116872 1385.91 0.1030

600 -6 15 128162 1434.03 0.1101

600 -6 20 143118 1480.67 0.1166

600 -6 25 160703 1491.17 0.1185

600 -6 30 179387 1473.27 0.1168

600 -6 35 197242 1431.20 0.1121

600 -6 40 212098 1393.79 0.1081

600 -6 45 221855 1362.45 0.1052

600 -6 50 225097 1334.94 0.1034

600 -6 55 221316 1311.55 0.1024

600 -6 60 211402 1294.69 0.1027

600 -6 65 197296 1276.38 0.1027

600 -6 70 181485 1249.90 0.1013

600 -6 75 166565 1226.59 0.0999

600 -6 80 154558 1204.14 0.0979

600 -6 85 146833 1184.72 0.0958

600 -6 90 144194 1177.75 0.0950

750 -6 0 98000 1327.03 0.0678

750 -6 5 100105 1352.63 0.0710
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Temperature (◦C) Log(ε̇) θ(◦) E (MPa) K (MPa) n (unitless)

750 -6 10 106639 1412.86 0.0790

750 -6 15 117173 1562.17 0.0959

750 -6 20 131087 1663.66 0.1071

750 -6 25 147435 1674.28 0.1088

750 -6 30 164762 1639.09 0.1054

750 -6 35 181382 1594.39 0.1007

750 -6 40 195233 1559.31 0.0971

750 -6 45 204336 1528.16 0.0943

750 -6 50 207135 1507.26 0.0931

750 -6 55 203628 1485.54 0.0924

750 -6 60 194240 1482.22 0.0939

750 -6 65 181048 1459.61 0.0933

750 -6 70 166330 1447.31 0.0935

750 -6 75 152344 1422.72 0.0918

750 -6 80 141130 1401.87 0.0899

750 -6 85 133881 1381.51 0.0877

750 -6 90 131486 1380.63 0.0877

900 -6 0 86862 1070.96 0.1578

900 -6 5 88812 1089.32 0.1611

900 -6 10 94791 1104.41 0.1646

900 -6 15 104415 1111.33 0.1670

900 -6 20 117168 1122.54 0.1695

900 -6 25 132187 1114.71 0.1686

900 -6 30 148083 1088.07 0.1641

900 -6 35 163357 1056.88 0.1585

900 -6 40 176105 1044.67 0.1560

900 -6 45 184361 1020.99 0.1518

900 -6 50 187105 1019.02 0.1516

900 -6 55 183667 1015.51 0.1515

900 -6 60 175125 1031.34 0.1548

900 -6 65 162985 1041.34 0.1572
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Temperature (◦C) Log(ε̇) θ(◦) E (MPa) K (MPa) n (unitless)

900 -6 70 149309 1039.15 0.1572

900 -6 75 136427 1049.28 0.1589

900 -6 80 126055 1041.26 0.1573

900 -6 85 119369 1040.89 0.1569

900 -6 90 117176 1040.64 0.1567

1050 -6 0 73601 185.55 0.0521

1050 -6 5 75894 187.28 0.0540

1050 -6 10 79641 187.00 0.0538

1050 -6 15 86158 186.73 0.0538

1050 -6 20 95369 185.87 0.0531

1050 -6 25 106330 182.88 0.0502

1050 -6 30 125220 181.96 0.0495

1050 -6 35 136610 177.11 0.0445

1050 -6 40 145770 173.34 0.0406

1050 -6 45 151620 170.96 0.0381

1050 -6 50 153460 170.04 0.0374

1050 -6 55 151210 170.29 0.0380

1050 -6 60 145430 171.57 0.0398

1050 -6 65 137000 173.44 0.0422

1050 -6 70 130140 176.69 0.0460

1050 -6 75 115630 175.50 0.0449

1050 -6 80 107690 175.88 0.0455

1050 -6 85 102780 175.78 0.0455

1050 -6 90 98722 174.21 0.0438

20 -8 0 129670 1194.70 0.0450

20 -8 5 132442 1206.21 0.0470

20 -8 10 140792 1267.09 0.0563

20 -8 15 154363 1359.68 0.0695

20 -8 20 172198 1413.19 0.0776

20 -8 25 193255 1408.90 0.0786

20 -8 30 215697 1374.83 0.0755
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Temperature (◦C) Log(ε̇) θ(◦) E (MPa) K (MPa) n (unitless)

20 -8 35 237365 1333.91 0.0714

20 -8 40 255610 1287.93 0.0666

20 -8 45 267847 1274.05 0.0664

20 -8 50 272224 1254.82 0.0656

20 -8 55 268231 1213.77 0.0621

20 -8 60 256815 1211.33 0.0643

20 -8 65 240342 1150.67 0.0579

20 -8 70 221719 1162.68 0.0619

20 -8 75 203890 1138.65 0.0601

20 -8 80 189530 1114.60 0.0576

20 -8 85 180271 1101.65 0.0563

20 -8 90 177259 1096.75 0.0558

150 -8 0 126746 1170.72 0.0494

150 -8 5 129429 1187.93 0.0522

150 -8 10 137560 1241.67 0.0606

150 -8 15 150696 1316.23 0.0719

150 -8 20 168145 1371.00 0.0803

150 -8 25 188463 1370.25 0.0815

150 -8 30 210298 1340.92 0.0789

150 -8 35 231222 1297.40 0.0742

150 -8 40 248959 1261.51 0.0706

150 -8 45 260555 1231.56 0.0681

150 -8 50 264858 1213.72 0.0675

150 -8 55 260813 1189.29 0.0663

150 -8 60 249632 1172.04 0.0663

150 -8 65 233509 1154.97 0.0662

150 -8 70 215405 1127.30 0.0643

150 -8 75 198081 1108.17 0.0632

150 -8 80 184169 1087.42 0.0612

150 -8 85 175196 1076.29 0.0602

150 -8 90 172264 1070.89 0.0596
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Temperature (◦C) Log(ε̇) θ(◦) E (MPa) K (MPa) n (unitless)

300 -8 0 121867 1124.62 0.0556

300 -8 5 124487 1140.37 0.0583

300 -8 10 132292 1181.61 0.0653

300 -8 15 144912 1262.36 0.0777

300 -8 20 161571 1306.21 0.0850

300 -8 25 181224 1308.96 0.0866

300 -8 30 202108 1277.95 0.0834

300 -8 35 222140 1240.07 0.0792

300 -8 40 238887 1210.69 0.0763

300 -8 45 250012 1191.56 0.0751

300 -8 50 253828 1160.11 0.0724

300 -8 55 249910 1136.78 0.0713

300 -8 60 239050 1120.41 0.0713

300 -8 65 223493 1101.74 0.0710

300 -8 70 206085 1077.31 0.0694

300 -8 75 189576 1055.98 0.0678

300 -8 80 176134 1039.79 0.0665

300 -8 85 167525 1024.34 0.0647

300 -8 90 164648 1018.78 0.0641

450 -8 0 115505 1170.05 0.0800

450 -8 5 117935 1179.45 0.0817

450 -8 10 125384 1214.27 0.0875

450 -8 15 137377 1279.77 0.0975

450 -8 20 153301 1334.98 0.1057

450 -8 25 171884 1338.45 0.1070

450 -8 30 191711 1309.38 0.1038

450 -8 35 210694 1282.33 0.1007

450 -8 40 226612 1253.88 0.0977

450 -8 45 237138 1230.72 0.0957

450 -8 50 240638 1205.87 0.0940

450 -8 55 236679 1181.66 0.0928
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Temperature (◦C) Log(ε̇) θ(◦) E (MPa) K (MPa) n (unitless)

450 -8 60 226304 1164.54 0.0928

450 -8 65 211407 1138.70 0.0915

450 -8 70 194736 1117.78 0.0907

450 -8 75 178932 1091.61 0.0885

450 -8 80 166220 1068.55 0.0862

450 -8 85 158031 1051.97 0.0843

450 -8 90 155289 1046.33 0.0837

600 -8 0 107526 1275.52 0.1014

600 -8 5 109819 1284.23 0.1029

600 -8 10 116821 1327.22 0.1094

600 -8 15 128122 1370.51 0.1160

600 -8 20 143069 1418.40 0.1228

600 -8 25 160676 1425.83 0.1242

600 -8 30 179267 1406.11 0.1221

600 -8 35 197155 1374.41 0.1184

600 -8 40 211946 1340.04 0.1146

600 -8 45 221788 1311.26 0.1118

600 -8 50 225037 1284.48 0.1099

600 -8 55 221131 1264.16 0.1093

600 -8 60 211267 1243.36 0.1090

600 -8 65 197197 1224.47 0.1089

600 -8 70 181502 1200.03 0.1078

600 -8 75 166541 1172.67 0.1057

600 -8 80 154498 1146.64 0.1031

600 -8 85 146765 1130.61 0.1014

600 -8 90 144180 1124.73 0.1008

750 -8 0 97941 1318.94 0.0759

750 -8 5 100109 1341.25 0.0790

750 -8 10 106960 1413.80 0.0886

750 -8 15 117129 1524.86 0.1018

750 -8 20 130997 1627.38 0.1134
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Temperature (◦C) Log(ε̇) θ(◦) E (MPa) K (MPa) n (unitless)

750 -8 25 147400 1642.85 0.1156

750 -8 30 164709 1582.07 0.1095

750 -8 35 181267 1550.03 0.1060

750 -8 40 195087 1506.62 0.1014

750 -8 45 204202 1475.95 0.0986

750 -8 50 207151 1456.59 0.0976

750 -8 55 203515 1446.53 0.0981

750 -8 60 194203 1432.27 0.0983

750 -8 65 180944 1421.99 0.0991

750 -8 70 166219 1401.34 0.0983

750 -8 75 152294 1374.08 0.0962

750 -8 80 141074 1361.24 0.0952

750 -8 85 133866 1335.16 0.0923

750 -8 90 131444 1334.57 0.0923

900 -8 0 86836 291.71 0.0179

900 -8 5 88785 292.95 0.0188

900 -8 10 94775 298.45 0.0225

900 -8 15 104396 305.64 0.0272

900 -8 20 117120 307.33 0.0287

900 -8 25 132140 306.42 0.0285

900 -8 30 148058 298.58 0.0241

900 -8 35 163318 286.63 0.0174

900 -8 40 176008 279.48 0.0133

900 -8 45 184293 274.38 0.0104

900 -8 50 187080 272.27 0.0091

900 -8 55 183673 273.87 0.0105

900 -8 60 175047 276.76 0.0127

900 -8 65 162868 280.72 0.0153

900 -8 70 149240 284.09 0.0176

900 -8 75 136393 283.62 0.0175

900 -8 80 126038 281.80 0.0165
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Temperature (◦C) Log(ε̇) θ(◦) E (MPa) K (MPa) n (unitless)

900 -8 85 119353 280.27 0.0155

900 -8 90 117148 279.13 0.0148

1050 -8 0 73976 60.44 0.0172

1050 -8 5 75831 60.62 0.0178

1050 -8 10 77514 60.64 0.0179

1050 -8 15 86306 60.91 0.0189

1050 -8 20 94405 60.70 0.0184

1050 -8 25 110760 60.69 0.0186

1050 -8 30 128690 60.34 0.0177

1050 -8 35 142030 59.79 0.0162

1050 -8 40 153130 59.23 0.0148

1050 -8 45 160380 58.87 0.0139

1050 -8 50 162790 58.63 0.0135

1050 -8 55 159970 58.60 0.0137

1050 -8 60 152600 58.64 0.0142

1050 -8 65 138730 58.64 0.0145

1050 -8 70 129670 58.78 0.0152

1050 -8 75 118750 58.86 0.0157

1050 -8 80 109380 58.70 0.0154

1050 -8 85 103070 58.46 0.0147

1050 -8 90 100280 58.44 0.0147
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