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SUMMARY

In this thesis, a novel robust estimation strategy for observing the system state variables

of robotic manipulators with distributed flexibility is established. Motivation for the de-

rived approach stems from the observation that lightweight, high speed, and large workspace

robotic manipulators often suffer performance degradation because of inherent structural

compliance. This flexibility often results in persistent residual vibration, which must be

damped before useful work can resume. Inherent flexibility in robotic manipulators, then,

increases cycle times and shortens the operational lives of the robots. Traditional compen-

sation techniques, those which are commonly used for the control of rigid manipulators, can

only approach a fraction of the open-loop system bandwidth without inducing significant

excitation of the resonant dynamics. To improve the performance of these systems, the

structural flexibility cannot simply be ignored, as it is when the links are significantly stiff

and approximate rigid bodies. One thus needs a model to design a suitable compensator for

the vibration, but any model developed to correct this problem will contain parametric er-

ror. And in the case of very lightly damped systems, like flexible robotic manipulators, this

error can lead to instability of the control system for even small errors in system parameters.

This work presents a systematic solution for the problem of robust state estimation for

flexible manipulators in the presence of parametric modeling error. The solution includes:

1) a modeling strategy, 2) sensor selection and placement, and 3) a novel, multiple model

estimator. Modeling of the FLASHMan flexible gantry manipulator is accomplished using

a developed hybrid transfer matrix / assumed modes method (TMM/AMM) approach to

determine an accurate low-order state space representation of the system dynamics. This

model is utilized in a genetic algorithm optimization in determining the placement of MEMs

accelerometers for robust estimation and observability of the systems flexible state variables.
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The initial estimation method applied to the task of determining robust state estimates un-

der conditions of parametric modeling error was of a sliding mode observer type. Evaluation

of the method through analysis, simulations and experiments showed that the state esti-

mates produced were inadequate. This led to the development of a novel, multiple model

adaptive estimator. This estimator utilizes a bank of similarly designed sub-estimators and

a selection algorithm to choose the true value from a given set of possible system parameter

values as well as the correct state vector estimate. Simulation and experimental results are

presented which demonstrate the applicability and effectiveness of the derived method for

the task of state variable estimation for flexible robotic manipulators.
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Chapter I

INTRODUCTION

1.1 Motivation for Research

While advances in control system design have enabled more efficient and accurate ma-

nipulation, industry has been reluctant to embrace lightweight and large workspace robotic

manipulators. The demand for high precision in both static positioning and dynamic motion

has driven manipulator design and resulted in massive, inefficient, expensive, and poten-

tially dangerous robot arms. In making the structures of these robots lighter we could

achieve higher speed manipulation, while reducing energy consumption, and providing a

safer working environment for operators. Increased speed, workspace size and reduced pur-

chasing and operating costs allow for interesting and appealing applications of lightweight

manipulator technology.

Relatively few examples of lightweight manipulators exist in modern industry, despite

the fact that this has been a subject of research interest for many years. Current lightweight

manipulators are largely used in applications where external factors preclude excess weight.The

space industry provides one example. Robots required to manipulate objects in space must

be light enough to be launched by rocket into orbit. Though light in weight, these manipu-

lators lack modern control methods that compensate for the inherent structural flexibility of

the system. Instead, control bandwidth is limited and sufficient time is allowed for vibration

to subside, up to 30% of total operation time [6].

The modern control techniques for creating vibration limiting motion of flexible struc-

tures have not been widely applied in industry because they are impractical for the com-

plexities of industrial implementation. Especially lacking is an adequate method for the

reconstruction of system states from practical low cost sensing systems. Assuming this

state information can be retrieved in an efficient, accurate, and practical manner, many of

the already developed control algorithms could be used to enable highly capable lightweight
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and long-reach robots. This is the goal of this dissertation project.

1.1.1 State of the Art Industrial Manipulators

Since their initial introduction in the 1960s, significant advancements in industrial ma-

nipulators have been made. However they still, with relatively few exceptions, rely primarily

on joint sensing to determine their position and orientation in the workspace. Thus, in order

to reliably position the end effector, the links which comprise the robot must be rigid, and

the joints where actuation takes place are designed to exhibit very little compliance [14,101].

These conditions are obtained through structural design employing strong, heavy materials

and reducing the link lengths.

Ultimately these design requirements necessitate that large powerful motors and drives

be used to actuate these massive structures. These motors and drives not only require more

energy to operate but come with larger initial costs [14]. Since a larger percentage of the

torque produced from the drive is reserved for motion of the structure itself, less is allotted

to the acceleration and motion of the payload. This results in reduced payload capacities.

(a) Industrial Manipulator (b) Lightweight Manipulator

Figure 1: Traditional and Lightweight Manipulators1

1Sources: http://www.robots.com, http://www.scholarpedia.org
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Examination of the current products (Figure 1(a)) of four major industrial robot man-

ufacturers, Fanuc, ABB, Kuka, and MotoMan (including twenty nine specific robot models

sampled from low to high payload capacity lines of each brand), indicates that most operate

with payloads less than 10% of the total manipulator mass. A significant portion of these

require payloads of 5% or less. The higher ratio robots in Figure 2(a) are found in heavy

duty manipulator categories with payload capacities greater than 150kg. These represent a

small but significant portion of the total market.

(a) Comparison of Payload/Total Manipulator
Mass Ratios (upper-bound) for Standard Indus-
trial Robots

(b) Comparison of Reach to Total Manipulator
Mass

Figure 2: A Survey of Commercially Available Robotic Manipulators

Workspace size is also sacrificed for the sake of rigidity, as increases in link stiffness are

necessary to prevent loss of accuracy and repeatability under static deflection and vibration

during motion. As shown in Figure 2(b), increases in workspace size result in increased

mass.

The excess mass means that these systems carry significant amounts of energy when in

motion, and any collision with the environment or operator can certainly be destructive,

if not life threatening. Therefore all human interaction with these massive manipulators is

strictly prohibited and safety barriers are erected to separate the operators from the robots.

1.1.2 Benefits of Lightweight High-speed Manipulators

Reducing the mass and extending the reach of these robotic systems improves system

performance by allowing more of the power generated by the motors to be transformed into
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motion of the payload rather than the structure itself. This results in greater accelerations

and reduced cycle times [14]. Extended reach also enables greater utility as workspace

size increases allowing manipulation of larger objects and promoting more cost efficient au-

tomation solutions. With lighter weight components, energy consumption is reduced. Thus

smaller motors and drives can achieve nearly identical performance metrics to that offered

by the more massive manipulators. The need for expensive high performance actuators is

thereby reduced along with the high energy costs.

While most industrial manipulators are certainly too heavy for mobile applications and

require large sturdy mounting platforms, light weight manipulators have seen use in many

applications where total mass is limited. Examples include explosive ordinance disposal

robots, space robotics, and nuclear waste mitigation.

By reducing the mass of the manipulator, the system is made less rigid and more compli-

ant, resulting in a manipulator more suited for robots in contact with fragile environments.

Examples include a safer robot for washing windows or interacting with human opera-

tors [97]. While natural systems are well equipped for controlling compliant structures

with extensive sensing systems and proprioception (e.g. positioning control of human arms

via compliant muscles and flexible joints), it is much more difficult to accurately control a

flexible robot than a rigid one.

1.1.2.1 Motivating Example: Large Scale Additive Manufacturing

Large scale additive manufacturing, an example of which is illustrated in Figure 1.1.2.1,

refers to the automated process of incrementally building large parts. Akin to 3D printing

on a small scale, forays into large scale additive manufacturing are aimed at producing

large parts out of traditional and novel materials with nearly unlimited complexity. Beyond

seemingly unlimited design freedom, additive manufacturing on large scales reduces waste,

and labor and tooling costs when compared with traditional manufacturing methods.

Solid free form construction is a large scale application where a special mix of concrete

is used to form a wall one layer at a time. A truly additive process, very little construc-

tion waste is created, making it environmentally preferable. Being a nearly automated
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Figure 3: Large Scale Additive Manufacturing2

process,well suited for rapid construction, the technique could be used to provide tem-

porary housing to disaster victims and permanent shelter for inhabitants of third world

countries [51]. One of the primary barriers to development in this new and burgeoning

field are suitable large workspace manipulators, with adequate performance characteristics.

Build size, time, and quality are directly dependent on the workspace, speed, accuracy, and

precision of the robotic manipulator used.

1.1.3 General Challenges

Structural flexibility in robotic systems comes in numerous forms and poses many control

challenges. Usually concentrated in the joints, links, and/or base, this flexibility can result

in a loss of accuracy and precision, excess vibration, or in some cases instability [14].

Using only internal joint sensing it is very difficult to determine the amount of deflection

in each link. This results in inaccurate end effector position measurements. Since the

actuators and rate sensors are typically collocated at the joints, the vibration resulting

from motion will persist. No corrective compensation can be made with non-backdrivable

actuators, because no significant error is observable at the joints. Estimates of the true

flexible system states are necessary to correct for any errors between the desired and actual

motion of the manipulator.

2http://www.artecreha.com/
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While Proportional Derivative (PD) or (PID) control is typically used for rigid manip-

ulators, the dynamics of a flexible manipulator exhibit non-minimum phase characteristics.

Given a step command in position, the non-minimum phase behavior will result in a tip de-

flection in the opposite direction. Thus a suitable controller must be designed to compensate

for this effect [14].

Aggressive trajectories, like trapezoidal velocity profiles, work well for rigid systems

as they achieve the desired motion in a time optimal fashion. However, these aggressive

trajectories are capable of exciting the resonant structural dynamics resulting in undesirable

and potentially damaging vibration. Thus, the generation of vibration limiting commands

is a necessary component of the control structure [80].

Assuming these challenges can be overcome, long-reach light-weight robots could im-

prove current automation processes and enable robotic solutions for fields where the current

state of technology makes automation impractical or even impossible.

1.2 Problem Statement

Stable and precise control of flexible manipulators requires accurate knowledge of flex-

ible state variables, which are difficult to measure directly. Accurate estimates of these

system states are predicated on the accuracy and reliability of the model used by the esti-

mator. While certain system parameters are well known, many can be difficult to accurately

measure or change with time. For example, in almost any use scenario, the manipulator

payload will change over a cycle. For the the control system to remain stable and ensure

reliable operation, the estimation routine must be robust to these errors and continue to

provide accurate state information.

The ability to maintain accurate state estimates under conditions of parametric uncer-

tainty and error is therefore important to the practical success and industrial application

of light-weight, long-reach, high-speed, or otherwise flexible robotic manipulators. This

research is targeted toward the solution of this problem by extending the utility of esti-

mation algorithms to a broader range of parametric modeling error. The ultimate goal of

the research is to have developed a systematic approach for modeling the flexible system,
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selecting and placing sensors, and leveraging its modal properties such that an estimator

design which preserves state accuracy over a large operational range is achieved

1.3 Research Overview

The proposed estimation strategy is the product of systematic approach, broken down

into three separate research problems. First, one must select a suitable modeling strategy

which adequately parametrizes the system dynamics in terms of useful state variables to be

estimated. Second, selecting and placing sensors on the structure for optimal state recon-

struction. Third, there must be effective utilization of the sensing and model information

in the production of accurate state estimates.

1.3.1 Dynamic Modeling of Flexible Manipulators

The structural compliance of an elastic system permits a material deformation under

both external and inertial forces. Permitting bending without failure, the structural elas-

ticity allows the system to return to its pre-loaded state when the forces are removed. This

structural compliance also increases the mathematical complexity of models used to describe

the dynamic behavior of the system. Since the elasticity in a flexible link manipulator is

distributed along the individual beam elements which comprise the manipulator structure,

distributed parameters are used to characterize the behavior [39]. Consisting of an infinite

number of degrees of freedom, the partial differential equations which describe the motion

of the structure are very difficult to solve in closed form. Thus, numerical methods are often

used to approximate the system dynamics for control and estimation purposes.

The modeling approach taken in this work is a hybrid strategy of frequency and time do-

main modeling techniques. Natural frequencies and basis functions are determined through

the frequency domain transfer matrix method (TMM), and the time domain assumed modes

model (AMM) used for control and estimation is seeded with these basis functions to reduce

the systemic error associated with the assumption of polynomial or trigonometric functions

in the AMM approach. The result is an accurate, low order, time domain approximation

of the system dynamics for a finite number of vibratory modes. Given the finite bandwidth
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of practical control systems and the reduced contributions of higher order modes this trun-

cation is often justified. The result is unwanted behavior including excess vibration and in

some cases instability. Potential spillover is addressed in this work through redundancy and

sensor placement.

1.3.2 Selection and Placement of Sensors

For rigid manipulators, position sensors at the joints are sufficient to determine the

full state vector of the system. The addition of flexible links adds additional states to the

model. Bending and torsional modes of vibration are a direct consequence of compliant

links. Adding these modes of vibration to the system model results in two additional

state variables for each mode considered. These states are neither directly measurable or

observable from non-backdrivable joints. Therefore, extra sensors are necessary to recover

these states.

Traditionally a strain gauge mounted at the base of the link is utilized for estimating the

flexible state variables [42]. While effective for estimating the first mode of vibration, this

placement is not optimal for multiple modes. In this work, the observability gramian and

observability test matrix are utilized for developing an n-sensor, where n is the number of

modes considered. This sensor placement strategy which maximizes the measurement/state

energy correlation, ensuring maximizing signal to noise ratios for sensing each mode of

vibration. A tradeoff between optimal and robust sensor placements is also considered.

Low cost MEMs accelerometers are used as the primary sensing apparatus in this work,

and while a large portion of the analysis is performed with respect to this sensor choice, the

results can be generalized and applied to strain gauges, or other measurement devices.

1.3.3 Robust State Estimation

Parametric error is always present when constructing a model of any complex dynamic

system. Excess modeling error can be detrimental or destabilizing when inaccurate parame-

ters are used in control system design. Traditional estimators like Luenberger observers and

Kalman filters have been shown to suffer dynamic and static state error when the models
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used are errant. Sliding mode techniques have been reported as a solution to these prob-

lems, as they extend the bounds of tolerable parametric error. Predicated on a Lyapunov

stability analysis, these methods use a large gain switching algorithm to ensure estimator

stability in the presence of bounded nonlinearities and parameter uncertainty [103]. Sliding

mode estimation is evaluated for use in flexible manipulator control and deemed a marginal

improvement in estimation convergence rate at the expense of noisy state estimates. An

alternative solution is proposed wherein multiple estimators built on parametrically dis-

similar models are used and evaluated relative to each-other to determine the correct state

vector.

1.4 Thesis Overview

The work presented in this thesis has been driven by fundamental work completed in the

fields of flexible manipulator control and estimation theory. To that end, the presentation

of completed work will begin with the fundamental concepts and available literature on

the subject, and progress toward the development of systematic approach to the robust

estimation of flexible state variables for flexible link manipulators.

Chapter II is a review of background material, a discussion of relevant fundamental

literature, and presents the contributions of this work to the larger body of literature in

the field. Chapter III details the development of the system models used throughout the

subsequent chapters. Chapter IV presents a systematic approach to choosing sensors and

their placements for optimal and robust performance in estimation routines. Chapter V is a

discussion of the general estimation problem, the role of parametric modeling error, and an

evaluation of robust observation techniques as tools to combat modeling error. A solution

to the parametric modeling error problem is proposed and evaluated in chapter VI. Finally,

chapter VII concludes the work with a summary and suggested future work.
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Chapter II

BACKGROUND AND REVIEW OF PREVIOUS WORK

This review consists of a discussion of background material, foundational work, and

variations of techniques applied in this thesis.

2.1 Flexible Manipulator Control

While feed forward methods work well for planning vibration limiting trajectories, exter-

nal disturbances and modeling uncertainties will result in excitation of oscillatory dynamics.

Feedback control can be used to compensate for these effects, thereby improving transient

performance and reducing steady state error.

The appropriate choice of feedback control is imperative to the desired goal of achieving

accurate high speed motion of flexible manipulators. The choice of feedback controllers

also determines the specific form of feedback information that will be necessary to enact

control(e.g. output vs. state feedback, and the performance targets for the estimator such

as bandwidth, state error and robustness to noise). Thus the design of the state observer

cannot be entirely divorced from the control design, necessitating the appropriate choice of

control methodology.

2.1.1 PID Control

As previously described, PID control architectures are used in nearly all industrial ma-

nipulators. As described in [14], the control bandwidth achievable for a flexible arm us-

ing this method is approximately one third of the clamped joint natural frequency. As

work-spaces increase, robot mass decreases, or payload mass increases, the system natural

frequency becomes lower which limits the achievable control bandwidth using this method.
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2.1.2 Modern Control Methods

A number of feedback compensation approaches are available for the control of flexible

manipulators. Robust control methods like H∞ [87] and sliding mode control [50] have been

applied with relative success, as they maintain stability with minor reductions in achiev-

able performance. Adaptive algorithms have also been applied to improve the controller

performance given model uncertainties or time varying system parameters [34]. However,

adaptive control with no compensation for the flexible behavior yields little improvement.

More recently, fuzzy logic [18] and neural network based control schemes [85] have been ap-

plied to the problem. Singular perturbation techniques have been shown effective for a class

of manipulators by separating the control problem into two distinct time scale problems,

a slow trajectory tracking problem and a fast vibration suppression problem [14]. Linear

state feedback control is, perhaps, the most well developed and promising approach, but

requires modeling simplifications of the continuum and nonlinear structure of the flexible

system. All techniques developed to date, however, rely on estimates of the flexible system

states or end effector position measurements to provide the appropriate control effort.

2.2 Modeling Methods for Flexible Robots

State estimation for the control of flexible manipulators is predicated on the availability

of an accurate system model with a complete characterization of the internal states of the

flexible system. For traditional robotic manipulators the internal states associated with

deflection of the link members are small and can be neglected in most applications, given

that speeds are low and manipulator stiffness is high.

2.2.1 Traditional Rigid Robotic Manipulators

For rigid manipulators, the equations of motion (1), in the joint space form, can be

represented as a function of the joint variables and their derivatives which are often easily

measurable through encoders and tachometers:

M(q)q̈ +C(q, q̇) + τg(q) = τ (1)
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Derived in [86, 93] M(q) is the inertia matrix, C(q, q̇) is the dissipation matrix, q is

the vector of generalized coordinate vector composed entirely of joint variables, τg(q) is

the vector of joint torques caused by gravity, and τ is the vector of input torques at the

joints. In reality, however, no structure is truly rigid and (1) is merely an approximation

that is valid under limited conditions. Cetinkunt and Book [20,22] outlined procedures for

determining when this approximation is valid for joint feedback control systems. A critical

ratio of undamped natural frequency of the controlled rigid system and lowest clamped

structural natural frequency ωR/ωC is used to confirm or invalidate the rigid system model.

For controller bandwidths much less than one third of the clamped natural frequency, the

assumption holds, but for significant increases in control gains, the critical ratio increases

beyond an acceptable level and the achievable damping ratio decreases and the closed loop

system eigenvalues no longer reach the real axis, which is indicative persistent vibration of

the end effector.

2.2.2 Joint vs. Link Flexibility

Flexibility can be considered as concentrated in the joints or distributed throughout

the structure a robotic manipulator [27]. Joint flexibility originates from elastic elements

in the drive train of a manipulator. In recent years, series-elastic actuators have been

utilized in robot arms intended for human robot interaction to enhance the compliance of a

manipulator in contact with delicate objects. Increased joint flexibility requires additional

generalized coordinates associated with the deflection of the flexible elements (θ - motor

displacement, q - link displacement). The dynamic equations of motion are, therefore:

M(q)q̈ +C(q, q̇) + τg(q) +K(q − θ) = 0

Bθ̈ +K(θ − q) = τ (2)

where K is a matrix of joint stiffnesses and B is a matrix of rotor inertias from the drive

motors [26, 27]. De Luca and Flacco [28] designed and simulated a PD regulation control

algorithm that utilizes the additional generalized coordinates. In the case of flexible joints,

these additional variables are easily measured with additional encoders and tachometers.
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In contrast to flexible joint manipulators, the additional generalized coordinates associ-

ated with distributed link flexibility arise from an infinite length series expansion, and are

only indirectly measurable. In practice this infinite series is truncated to a finite number

of modes. Alberts et al. [2, 3] studied the addition of viscoelastic damping layers to the

link structures as a mechanism of improving the achievable performance of flexible link

manipulators. The approach significantly reduced the contributions of higher order modes

in the system response and further reduced control requirements to the active damping of

only one or two modes of vibration. Even with applied damping treatment, the residual

vibration associated with the controlled motion of flexible manipulators must be measured

in order to affect active vibration control. State observers are, thus, needed to recover the

required state variables [42].

2.2.3 Time Domain Models

Time domain models in the form of time dependent ordinary differential equations are

desirable for estimation of flexible robotic manipulators, as they can be directly converted

to state space form and implemented on deterministic real-time systems.

2.2.3.1 Field Descriptions of Vibrating Beams

Flexible link manipulators are, essentially, collections of beams connected through actu-

ated joints. Therefore, the study of the manipulator’s structural vibration can be directly

linked to the study of vibrating beams. Links are often assumed to be Euler-Bernoulli

beams as in [25] because of their large length to diameter ratios. However researchers, to

a lesser extent, have also applied Timoshenko beam theory in an attempt to characterize

flexible “stubby” links [13]. Exact displacement field descriptions of the structure can only

be obtained through analysis of a continuous system with an infinite number of degrees of

freedom. This requires the solution of a fourth-order boundary-value problem in the case

of a bending bar.

Let x be the location of a point along the axial coordinate of a bar, w(x, t) be the

transverse displacement of that point, and f(x,t) be the transverse force at that location.

The system parameters are m(x), mass per unit length, and the flexural rigidity EI, where
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E is Young’s Modulus and I is the area moment of inertia. Then the deflection at any point

along the beam satisfies:

− ∂2

∂x2
[EI(x)∂

2w(x, t)
∂x2

] + f(x, t) =m(x)∂
2w(x, t)
∂t2

(3)

.

From [39, 71], a general solution to the unforced system differential equation obeys the

form:

W (x) = C1 sinβx +C2 cosβx +C3 sinhβx +C4 coshβx (4)

,

where β4 = ω2m
EI

The natural modes can be determined, by applying the four geometric and natural

boundary conditions. While providing the greatest accuracy, this modeling approach is

often unfeasible for the study of flexible manipulators. More often than not, no closed

form solution like (4) is available due to nonuniform mass and stiffness distributions [71],

violations of the thin beam assumption, damping, or other effects. Therefore, most solutions

for practical systems are computationally burdensome, if solvable at all.

2.2.3.2 Lumped Parameter Approximations

The distributed nature of the mass and stiffness of a flexible manipulator link has been

approximated in significantly different ways. First, there is the lumped parameter approxi-

mation where the mass and stiffness elements are assumed to be uniformly distributed along

the link. Here each lump represents a point mass with attached elastic elements. Book and

Majette [16] compared the natural frequencies predicted through lumped parameter ap-

proximations versus continuous methods. They found that the series length has a large

impact on the accuracy of this model. Book [11] developed 4 × 4 transformation matrices

using the lumped parameter approximation to efficiently describe the link deflections due

to forces at the end of arm. Lumped parameters are also easier to identify experimental,

Yoshikawa [110] used a machine vision system and discrete targets to identify a lumped

parameter model of a single link flexible manipulator for use in state estimation. However,
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as described in [16] this method is only accurate for longer series approximations.

2.2.3.3 Raleigh-Ritz / Assumed Modes Method (AMM)

The assumed modes approach is an energy method that requires the specification of ap-

propriate basis functions which approximate the displacement field of the flexible element

through a Ritz series expansion. The number of terms in the series corresponds to the

number of modes considered. As in the lumped parameter approximation, the approxima-

tion improves with increases in the series length until converging to the true displacement

field for an infinite series. In contrast to the lumped parameter approximations, the mass

and stiffness are not assigned uniformly but associated with each mode of vibration. Com-

bined with the material stiffness and inertial properties, Lagrange’s equations can be used

to develop an equation of motion for a finite number of vibratory modes [39,71].

This approach was modified by Asada in [4] using a virtual link coordinate system to

allow up to n serially connected flexible links. Lee [58] applied an assumed modes approach

to flexible manipulators with closed kinematic chains by introducing Lagrange multipliers

to determine constraint forces and in [59] proposed a computationally efficient method for

deriving the mass and gravity matrices by expressing the velocity vector as a function of a

Jacobian matrix and generalized coordinates. Hastings and Book [43] derived a method for

developing simple state space models, using the assumed modes approach, in this case, by

assuming orthogonal mode functions. Book [12] used assumed mode shapes to develop 4×4

transformation matrices for representing manipulators with rotary joints. In all of these

cases, as the number of links increases, the number of state variables necessary to represent

the system increases. The result is increasing model complexity.

2.2.4 Frequency Domain Models

Transfer Matrix Method (TMM) [10, 15, 27, 53] is a useful extension to the continuous

method, which uses 4x4 matrices, derived in [77], to describe both the joint motion and link

deflection of a flexible manipulator. Directly utilizing the solution to the partial differential

equations governing the bending of the flexible elements and including the rigid bodies,

lumped masses, and joint control variables, the TMM provides the exact approach for
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determining the natural frequencies of the manipulator. In establishing transfer matrices

for each individual element of the manipulator the displacement, deflection, moment, and

shear at any point along the manipulator arm can be expressed as a function of frequency

in a 4 × 4 matrix relating the current station to another. By expressing the global transfer

matrix from the base of the arm to the end of the arm and applying appropriate boundary

conditions, a homogeneous matrix equation can be determined. The natural frequencies of

the system consists of the frequencies for which there exists a non-trivial null space of the

matrix equation [11, 15]. Krauss [53] extended this method to three dimensional flexure,

and [17] developed state space models using the transfer matrix method via an iterative

procedure.

2.2.5 Determining Modeshapes and Natural Frequencies

While the TMM method has been used to develop state space models suitable for control

and estimation, physical intuition is lost. In practice most researchers use assumed modes

approaches, but the selection of basis functions varies among researchers. A majority use

continuously differentiable polynomials to represent the mode shapes of the system, but

these basis functions are a poor fit for the true mode-shapes and result in inaccurate models.

Some researchers have used finite element analyses to determine the natural frequencies

and mode-shapes used in the AMM approach. This results in accurate models, given that

a sufficiently large number of elements are used. Similarly mode-shapes computed through

the TMM method were used by Book and Majette in [17] to determine assumed modes

models for control. This approach results in very accurate low order approximations of the

flexible system which can be easily transformed into state space form in a manner described

in chapter 3.

2.3 Sensing for Reconstructing Flexible State Variables

Sensors used for feedback and determining flexible system states include vision sys-

tems [34,75,108], optical deflection sensors [33,40,74,75], strain sensors [2,35,42,61,100,108]
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(by far the most popular), and accelerometers [76,79,94]. Li and Wang [63] compared com-

binations of the sensing elements (joint displacement, joint velocity, root strain, tip acceler-

ation, and tip deflection) for estimating the states of a flexible manipulator with a Kalman

filter. They found that joint measurement combined with another sensor significantly im-

proved the quality of estimates from the Kalman filter over any of the measurements by

themselves. The recent advancements in and resulting ubiquity of low cost MEMS ac-

celerometers make them a natural choice for this application when combined with a joint

position measurement. However, the effects of modeling error on state reconstruction using

accelerometer measurements and how to improve the robustness of these estimates remain

open questions in the study of flexible manipulators.

2.3.1 Sensor Placement for State Estimation of Flexible Robotic Manipulators

While the choice of sensor is often well justified in the flexible manipulator literature,

very little analysis of the desired number of sensors and sensor locations for controlling flex-

ible robotic manipulators is presented. Statements such as, tip position is measured, strain

gage placed at the base of the link, and vision feedback is utilized, are made with reference

to the type of sensing used and sensor location. Given the complexity of these systems,

parameter changes, modeling error, and nonlinear effects can result in unobservability of

one or more system modes necessary for control and lead to instability of the control system

if the sensing strategy is treated as an afterthought rather than an fundamental part of the

estimation strategy.

In the late 80’s and early 90’s large truss-like space structures were being developed.

Because of the flexible nature of these large structures active vibration control approaches

were sought to eliminate persistent vibrations. Once one of these structures are in place, the

sensors and actuators become difficult and expensive, if not impossible to move [49]. There

was, thus, an interest generated in developing systematic methods that would determine

optimal actuator and sensor placements. Trial and error placement of the sensors was

simply unsatisfactory.
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Kammer and Yao [49] used accurate finite element analyses to determine the mode-

shapes of a structure. Placements were initially assumed at candidate locations and the

Fisher information matrix composed of measurement noise covariances and mode-shapes

was used to eliminate placements with low “effective independence.” The result was op-

timal sensor placement for a limited set of target modes. In one of the few experimental

applications in the literature, Toncgo and Meldrum [98] applied a form of the Fisher in-

formation matrix in an optimization routine to determine sensor placements for a 63 DOF

planar truss structure (one of the few experimental applications in the literature).

Meanwhile, in [48] errors in the pre-launch finite element analysis are considered to deter-

mine the detrimental effects on the effective independence sensor placement strategy. This

remains one of the few works which have considered any modeling error in the placement

of sensors for flexible structures. Maghami and Joshi [68] developed a nonlinear program-

ming strategy which placed sensors and actuators to move the transmission zeros of the

control system further into the left half plane and avoid pole-zero cancellation to enhance

the performance of the control system. Gawronski and Lim [37] approached optimal sen-

sor/actuator placement using a balanced flexible realization where approximations of the

controllability and observability gramians are equal and diagonal and where the diagonal

values are the Hankel singular values of the system. The Hankel singular values are then

used to quantify the joint observability and controllability properties and serve as a metric

for determining the actuator and sensor locations. Georges [38] used the maximization of

the minimum eigenvalue of the observability gramian and the minimization of the maxi-

mum eigenvalue of the controllability gramian as conditions for placing a single actuator

and sensor independently. Hiramoto et al. [44] combined the problems of collocated sen-

sor/actuator placement and control design using an explicit solution of the algebraic Riccati

equation. They simulated their method for the determination of two pairs of sensor and

actuator placements which minimized the H2 norm of the closed loop system for a simply

supported beam.

Rao et al. [82] used a genetic algorithm to determine optimal actuator placements for

a flexible truss structure by maximizing the energy dissipation of the active controllers. A
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genetic algorithm approach is interesting as it allows for the generation of fitness functions

with no closed form solution, a trait that will be exploited in chapter 4.

More recently, smart structures research has been the impetus for the pursuit of opti-

mal sensor/actuator locations. Mounting PZT actuators on thin beams and plates allows

collocated sensing and actuation, and many of the methods developed for placing actuators

and sensors on large space structures have found their way into these applications. Liu

and Rao [64] placed sensors according to a maximum signal to noise ratio including both

measurement noise and spillover of uncontrolled modes. Bruant et al. used a genetic algo-

rithm for placing sensors on a vibrating plate according to a fitness function related to the

observability gramian.

In this dissertation a general approach will be developed using the singular value de-

composition of the observability gramian and a genetic algorithm optimization to determine

optimal (with respect to signal to noise ratio) and robust (with respect to observability)

sensor placements for a finite number of modes, as discussed in chapter 4.

2.4 Robust Flexible State Variable Estimation

Practical flexible robotic manipulators are rarely encountered in the literature. Often

only simulated results are presented and effects like changes in payload, nonlinear deforma-

tion, saturation, and modeling error are neglected. Even fewer examples of experimental

analysis with imperfect models exist. A large reason for this gap is the lack of methods

for recovering useful estimates of flexible state variables when the parameters of the system

vary or are incorrectly identified. Without accurate state estimates, any control algorithm’s

performance would suffer. Thus, a search for a suitable state estimator which exhibits

invariance to bounded parametric uncertainty and nonlinearities was executed.

While a plethora of “robust” observers exist in the literature, (e.g robust Kalman filters

[62, 107, 112], neural network observers [1], and H∞ [46] observers to name a few), sliding

mode observers generated the most interest. Sliding mode control has been implemented

on several occasions to flexible manipulators [8, 50, 109] with great success, but in all cases

the state vector is assumed to be known. And direct measurements of the flexible state
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vector, as established, are very difficult to obtain. A natural extension therefore is to apply

sliding mode control theory to the observation problem. Originally developed in the late

80’s by Walcott and Zak [104], sliding mode observers have been gaining momentum in

recent years, especially as estimators for flexible manipulators.

Utilizing the techniques from variable structures theory (VSS) Walcott and Zak [104]

developed the first sliding mode observer. It uses a discontinuous switching gain in addition

to a traditional linear gain in providing an observation strategy which does not require exact

knowledge of the nonlinearities or uncertainties of the system. They present a proof in which

a term associated with parametric error is bounded by a scalar gain to enforce a negative

definite condition on the derivative of a Lyapunov candidate. This ensures stability of the

estimate error. In doing so it is asserted that the estimate error → 0 as t→∞. As is argued

in this dissertation, this is often not the case and, instead, the error will approach some

bounded value. In [103] the rate of convergence was studied and a more general observer

formulation offered, including invariance to input as well as state disturbances.

2.4.1 Applications of Sliding Mode Estimation to Flexible Robotic Manipula-
tors

Wit and Slotine [105] applied sliding mode observers to simulations of robotic manip-

ulators with and without joint friction. Comparisons of the sliding mode estimates with

sampled and differentiated joint variable measurements were drawn with favorable results.

Chalhoub and Kfoury [23] developed a sliding mode estimator of the form in [105] for a

flexible link manipulator using the joint displacement variable to estimate the flexible states.

The authors noted that poor estimator performance was achieved in the presence of un-

strucured uncertainty, but good performance was found when the model was a good match

for the plant. Elberheiry and Elmaraghy [32] derived a combination Luenberger and sliding

mode estimator and applied the result to a two link flexible joint manipulator. In their

work, the switching gain derived is active until the transient time interval ends and a high

gain Luenberger observer takes over. The switch between the sliding mode and Luenberger

gains was used in order to avoid the large overshoots produced by high gain observers under

transient conditions. Zaki et al. [111] applied a variable structure observer design for the
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control of a two link flexible manipulator and showed better performance than a “quasi-

linear” estimator (a linear estimator applied to the nonlinear system but designed using a

linearized system model). Martinez et al. [69, 70] combined a sliding mode estimator and

sliding mode controller for vibration suppression control of a flexible arm, using only the

motor position as feedback (in simulation) for a nominal model of the plant dynamics.

2.4.2 Other Developments in Sliding Mode Observers of Note

Furuhashi et al. [36] designed a control algorithm for brushless DC motors using an

adaptive sliding mode observer to estimate the position and velocity of the rotor from the

voltages induced by the rotation of the motor. An adaptive scheme was also presented

to correct the velocity estimate from the effect of parameter errors. Kim and Inman [52]

proposed a sliding mode observer to reduce the effect of observation spillover from residual

modes in the state estimation of a vibrating cantilever beam, again using a Lyapunov anal-

ysis to demonstrate that the residual modes (treated as a disturbance) will not destabilize

the estimator, whereas a Kalman filter was shown to produce divergent state estimates.

Chen and Dunnigan [24] developed a sliding observer with six design rules to avoid chat-

tering phenomena and compared the results of estimates from the sliding mode observer to

estimates from both the Kalman filter and extended Kalman filter for an induction machine

simulation and experiment. Results were presented that indicate that while the extended

Kalman filter outperformed the sliding mode observer, the design and implementation was

more complex. Su et al [95] develop a sliding observer for determining unmeasured velocity

signals from measured position signals, but requiring only the degrees of freedom of the

mechanical system, but no other detailed modeling information. Veluvolo et al. [102] devel-

oped a sliding mode observer for a bio-reactor and used it to estimate the unknown (scalar

valued) input from an equivalent control term (a byproduct of the estimation algorithm)

while in the sliding mode. Dian et al. [31] applied a sliding mode observer to the application

of positioning a precision motion stage. The error compensation approach used an estima-

tor function based on the equivalent output injection signal (i.e. the effort to maintain the

motion on the sliding surface), which can be directly calculated from the sliding surface
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dynamics and approximates the state and input dependent uncertainty.

2.4.3 Multiple Model Adaptive State Estimators

Given the complex problem of modeling error in flexible state variable estimation it

makes intuitive sense that if the correct model could be recovered, an estimator based on the

accurate model would provide better state estimates than one based on an inaccurate model.

This notion is the basic premise of a multiple model adaptive state estimator (MMAE).

Essentially the general objective is to operate a set of independent estimators based on

different parameter variations which correspond to the likely range of true parameter values.

Therefore, determining the best fit state vector estimate simply requires identification of

the best model in the set for the given operating regime. Multiple model approaches to

control and estimation grew out of the need to handle complex problems and computing

improvements of the 1970s and 80s but fell out of favor for the most part because of high

computational burden. However, because of the growing parallel computing sector, multiple

model estimation is making a comeback. Each estimator can be run independently on low

performance processors or embedded systems and a central agent is only used to select the

best estimate.

Athans and Chang [5] provide one of the earliest analyses of the multiple model adap-

tive state estimation approach. In their work, they derive the evolution of the posterior

probability density and weighting functions used to select state estimates from a bank of

Kalman filters using the residual output error. Lashlee and Maybeck [56] applied multiple

model adaptive estimation to space structure control using a moving bank which was used

to select a small set of representative models is selected from a large bank of 100 models by

a decision mechanism. The benefit of the moving bank approach is the reduced computa-

tional burden, but it comes at the expense of performance if the best model lies outside of

the moving bank. Leahy and Tellman [57] developed an approach for multiple model-based

control of rigid robotic manipulators with varying payloads. Inclusion of the Kalman filter

bank MMAE allows the estimation of the full payload vector for a rigid robot. The pay-

load vector estimate was then used to switch joint PD gains and feed-forward compensation.
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Simulations were performed of a PUMA robot and results indicated significant performance

improvements over single model based controllers. Menke and Maybeck [72] used a multiple

model adaptive estimation approach to determine sensor/actuator failure detection in the

Vista F-16 aircraft with the ability to detect hard single and multiple failures with good

convergence properties. Debus et al. [29] determined a multiple model adaptive estimator

to estimate contact states for rigid robot/environment contact. Applied to a peg-in-hole

manipulation task, a hidden markov model was used as the decision test. Providing the

kinematics of the rigid robot and a description of the contact states, object properties

were estimated successfully and to a level exceeding what could be achieved by the oper-

ator. Rong and Vesselin [83] performed a survey of maneuvering target tracking including

applications of multiple model approaches. They identified three separate generations of

multiple model estimators. In the first generation each filter operates independently and

in the second the filters cooperate to achieve better performance. The third is different in

that it uses a variable size bank of estimator models. Multiple Kalman filters were used by

Quinlan and Middleton in [81] to determine the state of a robo-cup robot. In this variation

of the multiple model estimator, models were allowed to split and merge. The developed

approach is compared with a particle filter and shown to be significantly faster in terms of

execution time.

Of the developed approaches, a modified first generation method (with a fixed bank of

parallel estimators) will be used in this dissertation as described in chapter 6.

2.5 Thesis Contributions

The primary contribution of this work is the creation, fundamental analysis, and experi-

mental verification of a robust strategy for state estimation for general flexible manipulators.

This strategy encompasses generation of an appropriate model of the dynamic behavior, se-

lection and appropriate placement of sensors for flexible state estimation via a derived

optimal procedure, and the establishment of a robust multiple model adaptive estimator

that takes into account modeling error and parametric variation.

A significant effort was put toward the creation of an accurate low order system model
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of the FLASHMan testbed. A combined TMM/AMM model approach has been reported

in the literature (see [17]). My original contributions are, in part, in the application to

flexible gantry systems and in the use of joint flexibility to change the control domain from

force/torque inputs to displacement inputs. The latter improves flexible state estimation

(i.e. using a readily measured joint variable as the input to the state observer rather than the

estimated force on the base of a flexible link). Furthermore, the analysis and experimental

evaluation of low-cost MEMs acceleration sensors presented herein is unique in flexible

robotic manipulator applications. While accelerometers have been used in previous works,

the effects of direct feed-through behavior and dynamic errors introduced through parameter

bias have not been studied in this domain.

The use of the singular values of the observability gramian associated with the modes

of the flexible system for maintaining robustness with respect to observability, and the

novel procedure for determining multiple sensor placements for flexible link manipulators

are valuable additions to the flexible manipulator control literature.

Analyses and experimental results of sliding mode estimation approaches for the control

of flexible manipulators, under conditions of parametric uncertainties which corrupt the

output and direct feed through matrices, are presented. Simulation and experimental results

are provided comparing the performance of sliding mode estimation vs both Kalman filter

and traditional Luenberger observers in flexible manipulator applications.

Finally, the development and experimental verification of a multiple model adaptive

estimator for controlling flexible manipulators is presented and serves as a novel approach

for the determination of robust state estimates in the flexible manipulator domain. Unlike

the works presented in the literature from other domains, the weight assignment and selec-

tion algorithms developed are uncorrelated with Kalman filter estimate probability density

functions. Instead, they are directly related to the parametric bias in the modal model,

by utilizing multiple sensor measurements and multiple sub-estimators, regardless of the

chosen estimation strategy.
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Chapter III

MODELS FOR ESTIMATION AND CONTROL

The modeling of flexible manipulators has been the subject of investigation over several

decades. Single and multi-link manipulator models have been presented in both the time

and frequency domain. At issue in this work is the determination of a low order model

which adequately characterizes the behavior of the flexible system. Modal models are a

common choice among researchers for estimation and control of flexible motion systems [6]

and offer an elegant transition into state space form described by (5) and (6).

ż(t) = Az(t) +Bu(t) (5)

y(t) = Cz(t) +Du(t) (6)

The task then becomes relating the rigid and flexible system dynamics in the state space

form. A hybrid approach of both frequency and time domain modeling methods is used to

form modal equations of motion that are transformed into state space form. In doing so, an

accurate system model of low order is generated that is suitable for real time control and

estimation.

3.1 Frequency Domain Modeling for Basis Function Generation

Complex partial differential equations are required to model complicated manipulator

structures. These equations range from difficult to impossible to solve in closed form. If we

set up the problem at an arbitrary pose, transfer matrices can be used to combine individual

elements into a representation of the dynamics of the complete system. The roots of the

resulting boundary value problem are the natural frequencies of the individual modes of

vibration.

Let the TMM state variables be chosen to adequately describe the planar flexure of a
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beam as follows.

υ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−w

ψ

M

V

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−displacement

angle

moment

shearforce

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

Note that these states are not the same as those used to define the state space repre-

sentation in (5). Furthermore, let a transfer matrix U describe the evolution of these state

variables over an element of the structure, e.g. a joint, a beam, or a rigid body.

υi = Uiυi+1 (8)

Then, for example, a system composed of three components would have the total transfer

matrix Utot as described in [77].

υ0 = U0U1U2υ3 = Utotυ3 (9)

3.1.1 Controlled Joint

Controlled joints which enforce a manipulator’s pose share similar behavior with stiffness

and damping elements. For example, for a PD controlled joint illustrated in figure 4

Figure 4: Controlled Joint

the torque produced in response to an error of e = ψ+ − ψ− is

M+ = −Kpe −Kdė (10)
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.

Thus, in the frequency domain, −ψ− = ψ+ + M+

Kp+Kds
and therefore the transfer matrix

associated with a controlled joint is

ControlledJoint(C) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 1/k(s) 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

where k(s) is the transfer function of the joint controller and s = jω.

3.1.2 Planar Rotation

The second important transfer matrix is for static rotation in a plane of angle θ as

illustrated in figure 5.

Figure 5: Planar Rotation

Reproduced from [27] the associated transfer matrix is A as described by (12) when

compressive effects are assumed to be negligible.

PlanarRotation(A) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/ cos θ 0 0 0

0 1 0 0

0 0 0 0

msω
2 sin θ tan θ 0 0 cos θ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

where ms = ∑nj=imj is the outboard mass from the joint i to the end of arm or the next

planar rotation.
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3.1.3 Rigid Body

The transfer matrix associated with rigid bodies, an example of which is shown in Figure

6, can be derived by: 1) summing moments about the center of mass of the rigid body; and

2) balancing forces in the normal direction (y).

Figure 6: Rigid Body

∑Fy =mÿ = V− − V+ (13)

where ÿ = ẅ− + rψ̈−, ψ+ = ψ−, and w+ = w− +Lψ− ⇒ ÿ = ẅ+ −Lψ̈+ + rψ̈+. Meaning that,

in the frequency domain, the shear force on the left end of the rigid body is

V− =ms2(−w+) +ms2(L − r)ψ+ + V+

= [ ms2 ms2(L − r) 0 1 ]υ+ (14)

Similarly, summing moments about the center of gravity results in an expression for the

left moment in terms of the state vector υ.

∑
⟳+

Mg = Ig(−ψ̈+) = V−r + V+(L − r) −M+ +M− (15)

Inserting the definition of V− from (14).
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M− = Igs2ψ+ −ms2r(−w+) −ms2r(L − r)ψ+ − V+L +M+ (16)

Therefore, the complete transfer matrix for a rigid body element is R as described in

(17)

RigidBody(R) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 L 0 0

0 1 0 0

−ms2(L − r) s2I −ms2r(L − r) 1 −L

ms2 ms2(L − r) 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(17)

3.1.4 Beam Element with Distributed Flexibility

Most importantly the transfer matrix for a flexible beam element can be derived from

the four state equations in the spatial direction, x.

ψ = dw
dx

(18)

M = EI d
2w

dx2
(19)

V = −∂M
∂x

(20)

∂V

∂x
= µ∂

2w

∂t2
(21)

where (18) comes from the small angle approximation of tan(dψdx ) as displayed in figure

7, (19) comes from the mechanics of a beam in bending, and (20) and (21) come from the

application of Newtons second law to a differential beam element, and where V+ = V−+ ∂V
∂x dx

andM+ =M−+∂M∂x dx. Combining equations (19), (20), and (21) yeilds the partial differential

equation governing the flexure of the beam in bending.
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Figure 7: Beam Element

−EI ∂
4w

∂x4
= µ∂

2w

∂t2
(22)

This equation can be solved by separating the time and space dependent terms of w(x, t),

i.e.

w(x, t) =W (x)T (t) (23)

Therefore the resulting spatial DE is

W
′′′′ − (β

L
)

4

W = 0 (24)

where

(β
L
)

4

= −ω2 µ

EI
(25)

.

A general solution to (24) is given by
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W = A1sin(
βx

L
) +A2cos(

βx

L
) +A3sinh(

βx

L
) +A4cosh(

βx

L
) (26)

which can be substituted into equations (18)-(20) for w. In combination with (26) these

equations can express the state vector υ in terms of a coefficient vector A such that

υ = U(x,β)A (27)

Evaluating at each of the end points x = 0, x = L and solving for A

U(0, β)−1υ(0) = A (28)

and therefore

υ(L) = U(L,β)U(0, β)−1υ(0) (29)

or

υ(0) = U(0, β)U(L,β)−1υ(L) (30)

where the transfer matrix B = U(0, β)U(L,β)−1, or in closed form:

FlexibleBeam(B) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0 Lc1 ac2 aLc3

β4c3/L c0 ac1/L ac2

β4c2/a β4Lc3/a c0 Lc1

β4c1/aL β4c2/a β4c3/L c0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(31)

where,

a = L2

EI
, β4 = ω2L4µ/(EI) (32)
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and

c =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(cosβ + coshβ)/2

(sinβ + sinhβ)/(2β)

(coshβ − cosβ)/(2β2)

(sinhβ − sinβ)/(2β3)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(33)

for a more detailed derivation see [9, 53].

3.1.5 Transfer Matrix Modeling

Figure 8: Three Link Flexible Manipulator

For complex robot structures, the global transfer matrix is simply the product of several

individual transfer matrices. For example, the global transfer matrix for the robot in Figure

8 fixed in a particular pose with three flexible links and rigid bodies at the end of each link

would simply be:

UG = R1A1B1R2A2B2R3A3B3R4 (34)

Therefore υ0 = UG(s)υ4 provides the relationship for the state variables at the robot base
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given the conditions at the end effector. By applying the appropriate boundary conditions,

a reduced order homogeneous system UGh(s) can be obtained whose determinant, when

evaluated for varying frequencies for zero crossings, provides the eigenvalues of the flexible

system. For example in the case of the manipulator in figure 8 with clamped - free boundary

conditions in a static pose,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

M

V

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦0

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1,1 u1,2 u1,3 u1,4

u2,1 u2,2 u2,3 u2,4

u3,1 u3,2 u3,3 u3,4

u4,1 u4,2 u4,3 u4,4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w

ψ

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦4

(35)

from which the homogeneous reduced order system (36) can be extracted.

⎡⎢⎢⎢⎢⎢⎢⎣

0

0

⎤⎥⎥⎥⎥⎥⎥⎦0

=

⎡⎢⎢⎢⎢⎢⎢⎣

u1,1 u1,2

u2,1 u2,2

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

w

ψ

⎤⎥⎥⎥⎥⎥⎥⎦4

(36)

Therefore, values of s for which (36) has a non-trivial solution are the natural frequencies

of the system. These values can be determined directly by evaluating the determinant of

the subsystem as a function of s and searching for the zero crossings.

As a direct solution to the PDE governing the elastic deformation of the flexible struc-

ture, this method is a very accurate approach to determining the natural frequencies. As

will be discussed in Section 3.3, it also is useful in determining the mode shapes of a flexible

manipulator. It is not, however, a trivial matter to extract a meaningful state space model

from the frequency domain representation [17].

3.2 Assumed Modes Modelling of Flexible Manipulators

The assumed modes modeling (AMM) approach for flexible structures is a Lagrangian

approach for expressing the equations of motion, in the time domain, of systems with

distributed mass and elasticity. Assumptions are made about the mode shapes of the system

which are in turn used to formulate the structural dynamics. Kinetic energy, potential

energy, and energy dissipation equations are formulated using these assumed mode shapes as
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basis functions. The equation of motion can then the be determined through the application

of the non-conservative Lagranges equations

d

dt
(∂T
∂q̇i

) − ∂T
∂qi

+ ∂D

∂q̇i
+ ∂V
∂qi

= Q (37)

which, for a linear system, results in the equations of motion (38).

⇒ Mq̈ +Cq̇ +Kq = Q (38)

3.2.1 AMM Example - Generic Single Link Manipulator

To best illustrate the AMM procedure for general flexible manipulator systems, consider

the planar single link flexible manipulator in figure 9.

Figure 9: Flexible Link Manipulator

The kinetic energy of the system must first be expressed before determining the equa-

tions of motion.

T = 1

2
∫
m
ṘP ⋅ ṘP dm (39)

where ṘP is the velocity of a mass element dm at point P expressed in the global

coordinate system (X,Y ). From figure 9

RP = (x1Cθ −w (x1, t)Sθ)̂i + (x1Sθ +w (x1, t)Cθ)ĵ (40)

where w (x1, t) is the deflection of the link in the y1 direction and î and ĵ are unit vectors
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in the global X and Y directions. The deflection w (x1, t) can be separated into spatial and

time dependent variables according to

w (x, t) =
∞
∑
i=1

ψi(x1)qfi(t) (41)

where qfi(t) is the generalized coordinate associated with the ith mode of vibration and

ψi(x1) is the basis function approximating the ith mode shape of the link. Taking the

derivative with respect to time of (41) gives the velocity of point P .

ṘP = [−Sθ
N

∑
i=1

ψi(x1) ˙qfi − θ̇ (x1Sθ +Cθ
N

∑
i=1

qfiψi(x1))] X̂

+ [Cθ
N

∑
i=1

ψi(x1) ˙qfi + θ̇ (x1Cθ − Sθ
N

∑
i=1

qfiψi(x1))] Ŷ (42)

and therefore

ṘP ⋅ ṘP = θ̇2 ⎛
⎝
N

∑
i=1

N

∑
j=1

qfiqfjψi(x1)ψj(x1) + x2
1

⎞
⎠
+ 2x1θ̇

N

∑
i=1

˙qfiψi(x1) +
N

∑
i=1

N

∑
j=1

˙qfi ˙qfjψi(x1)ψj(x1)

(43)

The kinetic energy can be divided into separate integrals over each mass element. With

simplification this result is

T = 1

2
Jj θ̇

2 + 1

2
∫
m1

ṘP ⋅ ṘPdm + 1

2
meff

˙Reff ⋅ ˙Reff +
1

2
Jeff

⎛
⎜⎜
⎝
θ̇ + ∂ẇ(x1, t)

∂x1 x1 = L

⎞
⎟⎟
⎠

(44)

After determining the first two terms of (37), and sparing the tedious manipulation of

the resulting equations, the mass matrix of the equation of motion is determined. The total

system inertia term is,

JTotal = [Jj +
1

3
ρAL3 +meffL

2 + Jeff] (45)
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the terms coupling the rigid body coodinate θ to the flexible coordinates qfi are

Wi = ρAL∫
L

0
ψi(x1)x1 dx1 +meffLψi(L) + Jeff

∂ψi(L)
∂x1

(46)

and the terms coupling the modes of vibration to each other are

Hi,j = ρAL
N

∑
i=1
∫

L

0
ψi(x1)ψj(x1) dx1 +Meffψi(L)ψi(L) + Jeff

N

∑
i=1

∂ψi(L)
∂x1

∂ψj(L)
∂x1

(47)

Therefore in terms of the complete generalized coordinate vector q = [ θ qf1 . . . qf1 ]
T

the complete mass matrix for the system is found to be (48).

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Jtotal W1 W2 W3 ⋯ Wn

W1 H1,1 H1,2 H1,3 ⋯ H1,n

W2 H2,1 H2,2 H2,3 ⋯ H2,n

W3 H3,1 H3,2 H3,3 ⋯ H3,n

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

Wn Hn,1 Hn,2 Hn,3 ⋯ Hn,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(48)

The stiffness matrix K is found in a similar manner by expressing the potential energy of

the complete system, which originates solely from the strain energy of the beam deflection.

V = 1

2
∫

L

0+
EI [∂

2w (x1, t)
∂x2

1

]
2

dx1

= 1

2

n

∑
i=1

n

∑
j=1

qfiqfj EI ∫
L

0+

d2ψi (x1)
dx2

1

d2ψj (x)
dx2

1

dx1 (49)

Evaluating the fourth term of (37) with respect to the generalized coordinates yields
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K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 ⋯ 0

0 k1,1 k1,2 k1,3 ⋯ k1,n

0 k2,1 k2,2 k2,3 ⋯ k2,n

0 k3,1 k3,2 k3,3 ⋯ k3,n

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 kn,1 kn,2 kn,3 ⋯ kn,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(50)

where

ki,j = EI ∫
L

0+

d2ψi (x1)
dx2

1

d2ψj (x1)
dx2

1

dx1 (51)

Note that the rank deficiency of K indicates that the eigenvalue problem (K −ω2M)v =

0 would result in a 0 eigenvalue, indicating a rigid body mode is present in the system

dynamics.

For non-conservative systems a dissipation term must also be considered. Rayleigh’s

dissipation function D is used in this instance and is equal to 1
2Pdis

D = 1

2
cj θ̇

2 + 1

2
Pdis =

1

2
γEI

n

∑
i=1

n

∑
j=1

q̇iq̇j ∫
L

0+

d2ψi (x1)
dx2

1

d2ψj (x1)
dx2

1

dx1 (52)

Evaluating the remaining term of (37) on the left hand side results in the damping

matrix C.

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cj 0 0 0 ⋯ 0

0 c1,1 c1,2 c1,3 ⋯ c1,n

0 c2,1 c2,2 c2,3 ⋯ c2,n

0 c3,1 c3,2 c3,3 ⋯ c3,n

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 cn,1 cn,2 cn,3 ⋯ cn,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(53)

where

ci,j = γEI ∫
L

0+

d2ψk (x1)
dx2

1

d2ψi (x1)
dx2

1

dx1 (54)
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The generalized forcing term indicates how control and disturbance energy enters the

system. In this case it is assumed that the input is a torque Γ at the joint resulting in the

generalized force vector

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Γ

0

⋮

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(55)

Extendable to multiple link manipulators, this approach is a valid method for deter-

mining the complete nonlinear equations of motion. For the remainder of this work, it is

assumed that these equations are linearized about each operating point of interest and linear

analysis methods applied or manipulated with nonlinear tools such as the extended Kalman

filter in order to extend the developed estimation approach beyond single link manipulators.

3.3 Selecting Basis Functions for Accurate AMM Models

The accuracy of the assumed modes modeling approach is dependent on the choice of

basis functions used to represent the spacial component of flexure. The only requirements

for selecting appropriate basis functions is that they match the boundary conditions of the

flexible element to which they are applied and are continuously differentiable. For example,

a clamped-free beam has geometric boundary conditions on the clamped end

w(x1 = 0) = 0 (56)

ψ(x1 = 0) = 0 (57)

(58)

which mean that, as suggested in [39]

ψi(x1) = (x1

L
)
j+1

(59)
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is a valid basis function. If, however, this choice is made, the result from [39] describing

the convergence of the approximate natural frequencies to the true frequencies becomes

important, (i.e. the approximate natural frequencies predicted by the AMM modeling

process approach the true natural frequencies from above as the series length (number of

modes considered in the Ritz approximation) →∞).

This is referred to as the upper bound theorem which predicts that model accuracy is

higher with higher numbers of modes. Higher order models are thus required to obtain

accurate approximations of important low frequency system dynamics. Nevertheless, the

choice of basis function ultimately plays a large role in the overall error. In using better

approximations of the mode shape for the basis functions in the initial estimates of the

systems natural frequencies, the approximations are better for low order models

The best approximation of the mode shape is intuitively the true mode shape which can

only be evaluated experimentally, but is best approximated through the transfer matrix

method analysis of section 3.1. After determining the natural frequencies of the system, the

base state vector υ0 for each mode can be determined by solving for the non zero elements

υ̂ep of the end point boundary conditions υep using

0 = subUG(s = jωi)υ̂ep (60)

where subUG is the sub-matrix described in (36) and then evaluating

υ0 = UG(s = jωi)υep (61)

.

The mode shapes are simply w(x1), or the first element of υ evaluated over the length

of the structure by computing intermediary transfer matrices from the base vector to a

position x along the arm. For example given the single link manipulator in Figure 9, the

state vector at a position x1 along the neutral axis of the beam is simply

υ(x1) = (C1R1A1B1(x1))−1 υ0 (62)
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where B1(x1) is the beam transfer matrix where x1 is substituted for L. Evaluating

this in an iterative fashion for successive values of x1 results in the basis functions ψi(x1) =

wi(x1) for i = 1 . . . n where n is the desired number of modes.

While the hybrid TMM/AMM approach is used exclusively in this work, alternative

methods for establishing accurate mode shapes like finite element analysis are equally valid.

3.4 FLASHMan Introduction

The primary experimental testbed for this work is known as FLASHMan: Flexible,

Lightweight, And Stable Manipulator. Pictured in Figure 10 FLASHMan is a re-purposed

CAMotion Inc. gantry style packaging robot. Actuated by belt drives, the end effector

is located at the end of a flexible beam and is capable of traversing the x − y plane. The

stiffness in the x-direction (left to right in the diagram) is significantly lower than in the

y-direction. As such, the primary focus of the analysis presented will be with regard to

motion in the x-direction.

Controlled motion of the x-axis is achieved through a timing belt pulley which moves

the cart and the affixed aluminum flexible link and payload. Feedback signals consist of

an encoder measurement of the pulley position and acceleration measurements from re-

positionable MEMs accelerometers along the length of the flexible link. A vision system is

used throughout to assess the effectiveness of the developed approach by providing a ground

truth measurement of payload position.
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Figure 10: FLASHMan (Flexible, Lightweight, And Stable Manipulator) Testbed

3.5 Hybrid TMM-AMM Model Derivation - FLASHMan

Following the hybrid TMM-AMM modeling approach detailed in the preceeding sections,

a state space model has been developed as follows.

A simplified schematic of the system is presented in Figure 11, isolating motion in the

x direction. Constructing the system model requires first calculating the kinetic energy of

the complete system. The generalized position vector of a mass element of the system is

Rdm = (xc +w(y, t))̂i + yĵ (63)

where xc is the displacement of the cart, w(y, t) is the displacement of a mass element at

position y along the flexible beam. Separating the spatial and time dependent components

of w(y, t) per (41).

Rdm = (xc +
n

∑
i=1

qfiψi (y))̂i + yĵ (64)

Therefore, the dot product of the velocity of the beam element is
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Figure 11: System Diagram

Ṙdm ⋅ Ṙdm = ẋc2 + 2ẋc
n

∑
i=1

q̇fiψi (y) +
n

∑
i=1

n

∑
j=1

q̇fi q̇fjψi (y)ψj (y) (65)

The kinetic energy of the system can be divided over the three individual mass elements:

the cart, the beam, and the payload.

T = 1

2
mc∫

0+

0
(Ṙdm ⋅ Ṙdm)δ(y) dy + 1

2
ρA∫

L

0+
(Ṙdm ⋅ Ṙdm) dy + 1

2
mp∫

L+

L
(Ṙdm ⋅ Ṙdm)δ(y) dy

(66)

Therefore, for clarity, the kinetic energy of each element will be expressed separately.

T = Tcart + Tbeam + Tpayload (67)

Tcart =
1

2
mc∫

0+

0

⎡⎢⎢⎢⎢⎣
ẋc

2 + 2ẋc
n

∑
i=1

q̇fiψi (y) +
n

∑
i=1

n

∑
j=1

q̇fi q̇fjψfi (y)ψfj (y)
⎤⎥⎥⎥⎥⎦
δ(y) dy (68)

= 1

2
mcẋ

2
c (69)
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Tbeam = 1

2
ρA∫

L

0+

⎡⎢⎢⎢⎢⎣
ẋc

2 + 2ẋc
n

∑
i=1

q̇iψi (y) +
n

∑
i=1

n

∑
j=1

q̇fi q̇fjψi (y)ψj (y)
⎤⎥⎥⎥⎥⎦
dy (70)

= 1

2
ρALẋ2

c + ρAẋc
n

∑
i=1

q̇fi ∫
L

0+
ψi (y) dy +

1

2
ρA

n

∑
i=1

n

∑
j=1

q̇fi q̇fj ∫
L

0+
ψi (y)ψj (y) dy (71)

Tpayload =
1

2
mp∫

L+

L

⎡⎢⎢⎢⎢⎣
ẋc

2 + 2ẋc
n

∑
i=1

q̇fiψi (y) +
n

∑
i=1

n

∑
j=1

q̇fi q̇fjψi (y)ψj (y)
⎤⎥⎥⎥⎥⎦
δ(y) dy (72)

= 1

2
mpẋ

2
c +mpẋc

n

∑
i=1

q̇fiψi (L) +
1

2
mp

n

∑
i=1

n

∑
j=1

q̇fi q̇fjψi (L)ψj (L) (73)

To determine the mass matrix the first two elements of Lagrange’s equations are em-

ployed with respect to the joint and flexible generalized coordinates.

d

dt
( ∂T
∂ẋc

) = d

dt
(∂Tcart
∂ẋc

) + d

dt
(∂Tbeam

∂ẋc
) + d

dt
(∂Tpayload

∂ẋc
) (74)

(Joint Variables)

d

dt
( ∂T

∂q̇fk
) = d

dt
(∂Tcart
∂q̇fk

) + d

dt
(∂Tbeam
∂q̇fk

) + d

dt
(∂Tpayload

∂ẋc
) (75)

(Flexible Variables)

Carried out one element at a time (w.r.t. Joint Variables):

∂Tcart
∂ẋc

=mcẋc (76)

⇒ d

dt
(∂Tcart
∂ẋc

) =mcẍc (77)

∂Tbeam
∂ẋc

= ρALẋc + ρA
n

∑
i=1

q̇fi ∫
L

0+
ψi (y) dy (78)

⇒ d

dt
(∂Tbeam

∂ẋc
) = ρALẍc + ρA

n

∑
i=1

q̈fi ∫
L

0+
ψi (y) dy (79)
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∂Tpayload

∂ẋc
=mpẋc +mp

n

∑
i=1

q̇fiψi (L) (80)

⇒ d

dt
(∂Tpayload

∂ẋc
) =mpẍc +mp

n

∑
i=1

q̈fiψi (L) (81)

Therefore:

d

dt
( ∂T
∂ẋc

) = (mc + ρAL +mp) ẍc +
n

∑
i=1

q̈fi [ρA∫
L

0+
ψi (y) dy +mpψi (L)] (82)

Again one element at a time (w.r.t. Flexible Variables):

∂Tcart
∂q̇fk

= 0 (83)

⇒ d

dt
(∂Tcart
∂q̇fk

) = 0 (84)

∂Tbeam
∂q̇fk

= ρAẋc∫
L

0+
ψk (y) dy + ρA

n

∑
i=1

q̇fi ∫
L

0+
ψk (y)ψi (y) dy (85)

⇒ d

dt
(∂Tbeam
∂q̇fk

) = ρAẍc∫
L

0+
ψk (y) dy + ρA

n

∑
i=1

q̈fi ∫
L

0+
ψk (y)ψi (y) dy (86)

∂Tpayload

∂q̇fk
=mpẋcψk (L) +mp

n

∑
i=1

q̇fiψk (L)ψi (L) (87)

⇒ d

dt
(∂Tpayload

∂q̇fk
) =mpẍcψk (L) +mp

n

∑
i=1

q̈fiψk (L)ψi (L) (88)

Therefore,
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d

dt
( ∂T

∂q̇fk
) =(mpψk (L) + ρA∫

L

0+
ψk (y) dy) ẍc

+
n

∑
i=1

q̈fi [ρA∫
L

0+
ψk (y)ψi (y) dy +mpψk (L)ψi (L)] (89)

and the resulting generalized mass matrix is (90).

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mc + ρAL +mp W1 W2 W3 ⋯ Wn

W1 H1,1 H1,2 H1,3 ⋯ H1,n

W2 H2,1 H2,2 H2,3 ⋯ H2,n

W3 H3,1 H3,2 H3,3 ⋯ H3,n

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

Wn Hn,1 Hn,2 Hn,3 ⋯ Hn,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(90)

where,

Wi = ρA∫
L

0+
ψi (y)dy +mpψi (L) (91)

and

Hi,j = ρA∫
L

0+
ψi (y)ψj (y)dy +mpψi (L)ψj (L) (92)

Similarly, to derive the stiffness matrix K the potential energy is expressed using the

strain energy of the link in flexure.

V = 1

2
∫

L

0+
EI [∂w (y, t)

∂y
]

2

dy (93)

= 1

2

n

∑
i=1

n

∑
j=1

qfiqfj EI ∫
L

0+

d2ψi (y)
dy2

d2ψj (y)
dy2

dy (94)

Therefore:

45



∂V

∂xc
= 0 (95)

− ∂V
∂qk

=
n

∑
i=1

qfi EI ∫
L

0+

d2ψk (y)
dy2

d2ψi (y)
dy2

dy (96)

Let,

ki,j = EI ∫
L

0+

d2ψi (y)
dy2

d2ψj (y)
dy2

dy (97)

then the generalized stiffness matrix is:

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 ⋯ 0

0 k1,1 k1,2 k1,3 ⋯ k1,n

0 k2,1 k2,2 k2,3 ⋯ k2,n

0 k3,1 k3,2 k3,3 ⋯ k3,n

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 kn,1 kn,2 kn,3 ⋯ kn,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(98)

Dissipation in the system comes in the form of structural damping, which is measured

via a loss factor γ, and viscous damping between the cart and track (cbelt).

D = 1

2
Pdis =

1

2
γEI

n

∑
i=1

n

∑
j=1

q̇fi q̇fj ∫
L

0+

d2ψi (y)
dy2

d2ψj (y)
dy2

dy (99)

Evaluating the dissipation term from Lagrange’s equations,

∂D

∂ẋc
= cbeltẋc (100)

∂D

∂q̇k
= γEI

n

∑
i=1

q̇fi ∫
L

0+

d2ψk (y)
dy2

d2ψi (y)
dy2

dy (101)

Let

ci,j = γEI ∫
L

0+

d2ψk (y)
dy2

d2ψi (y)
dy2

dy (102)

then the damping matrix C is:
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C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cbelt 0 0 0 ⋯ 0

0 c1,1 c1,2 c1,3 ⋯ c1,n

0 c2,1 c2,2 c2,3 ⋯ c2,n

0 c3,1 c3,2 c3,3 ⋯ c3,n

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 cn,1 cn,2 cn,3 ⋯ cn,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(103)

Forcing functions enter through a direct excitation of the rigid system. These functions

influence the flexible variables by the corresponding basis function, which is evaluated at

the point of application, i.e.

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

ψ1 (0)

ψ2 (0)

ψ3 (0)

⋮

ψn (0)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

F (104)

3.5.1 Closing the Loop Around the Pulley Position

Without a very accurate model of the AC servo drive, motor, gear reduction, and power

electronics that actuate the x-axis, the input force on the cart is known with relatively little

accuracy. Conversely, the pulley position is known with very high accuracy, because of the

attached encoder. It is therefore desirable to use the motion of the pulley as the input to

the system rather than the force on the cart.

A tension is applied to the belt as the pulley rotates. This pulls the cart via a set of steel

cables embedded in the rubber cover. This effect can be approximated as a base excitation

where a displacement of the pulley results in a motion of the cart via an approximate spring

constant. The true spring constant is nonlinear as it is dependent on the free length of the
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Figure 12: Belt Drive Diagram

belt, which is in-turn dependent on both the cart position and direction of travel.

Let the diameter of a cable be d, the equilibrium length be L and Young’s Modulus be

E, then the spring constant of a single cable is

K = EA
L

= Eπd
2

4L
(105)

.

All of the cables are stretched in parallel. Thus the effective spring constant is

Kbelt =K1 +K2 + . . . +Kn = n
Eπd2

4L
(106)

where n is the number of cables. The kinetic energy stored in this elastic element is

described by

Vbelt =
1

2
Kbelt (xc − xd)2 = 1

2
Kbeltx

2
c −Kbeltxcxd +

1

2
Kbeltx

2
d (107)

.

Therefore Lagrange’s equations have an additional term from the belt stiffness which is

decoupled from the distributed stiffness of the elastic beam. Differentiating the potential

energy of the belt system with respect to the previously defined generalized coordinate xc

yields:
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∂Vbelt
∂xc

=Kbeltxc −Kbeltxd (108)

Augmenting the AMM model to include the belt stiffness and belt displacement (xd)

input results in the following mass, stiffness, damping, and forcing matrices:
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M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mc + ρAL +mp W1 W2 W3 ⋯ Wn

W1 H1,1 H1,2 H1,3 ⋯ H1,n

W2 H2,1 H2,2 H2,3 ⋯ H2,n

W3 H3,1 H3,2 H3,3 ⋯ H3,n

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

Wn Hn,1 Hn,2 Hn,3 ⋯ Hn,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(109)

K =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Kbelt 0 0 0 ⋯ 0

0 k1,1 k1,2 k1,3 ⋯ k1,n

0 k2,1 k2,2 k2,3 ⋯ k2,n

0 k3,1 k3,2 k3,3 ⋯ k3,n

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 kn,1 kn,2 kn,3 ⋯ kn,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(110)

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cbelt 0 0 0 ⋯ 0

0 c1,1 c1,2 c1,3 ⋯ c1,n

0 c2,1 c2,2 c2,3 ⋯ c2,n

0 c3,1 c3,2 c3,3 ⋯ c3,n

⋮ ⋮ ⋮ ⋮ ⋱ ⋮

0 cn,1 cn,2 cn,3 ⋯ cn,n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(111)

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Kbelt

0

0

0

⋮

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

xd (112)

where W , H, k, and c are as previously defined. The complete equations of motion are

the end product.
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M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẍc

q̈f1

⋮

q̈fn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+C

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋc

q̇f1

⋮

q̇fn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+K

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xc

qf1

⋮

qfn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Kbelt

0

⋮

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

xd (113)

Note that if the belt is very stiff, the cart displacement xc will be essentially equivalent

to the desired cart displacement xd.

3.6 AMM Model Verification

A nominal model of the FLASHMan testbed was constructed using the identified system

parameters listed in Table 1. Most parameters were measured experimentally with a few,

including damping, loss factor, cart mass, and belt stiffness, approximated by inspection

and analysis.

Table 1: Nominal FLASHMan Parameters

Parameter Value Unit

Payload (mt) 0.281 kg
Cart Mass (mc) 10 kg
Arm Length (L) 0.42 m

Elastic Modulus (E) 7E10 N/m
Density (ρ) 2700 kg/m3

Area Moment (I) 1.0114E−10 m4

Belt Stiffness (Kb) 2.1814E5 N/m
Cart Damper (Cd) 100 Ns/m

Structural Damping Coefficient (γ) 0.0025 ND

Comparison of natural frequency predictions of the AMM modeling approach using the

aforementioned techniques for specifying basis functions, demonstrate the improvement re-

alized through utilization of TMM produced mode shapes over polynomial approximations.

Table 2: Natural Frequency Predictions

Basis Function Choice ωn1 ωn2

True Values 4.81Hz 66.63Hz

Poly - Series Length 2 4.81Hz 89.32Hz
Poly - Series Length 3 4.81Hz 66.9Hz

TMM MShape - Series Length 2 4.81Hz 66.64Hz
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As indicated in Table 2, using the basis functions determined through the TMM mod-

eling approach provides an accurate approximation of the true natural frequencies without

having to expand the series length. The use of the TMM mode shapes as basis functions

eliminates the necessity of using higher order models to achieve low order mode accuracy.

Given the bandwidth of the control system for this application, models beyond the second

mode of vibration are of little use. This is because the controller cannot realistically alter

the response of the higher order modes.

(a) FFT Using Sensor on the Cart (b) FFT Using Sensor Near the Middle of the Beam

(c) FFT Using Sensor at End of Arm

Figure 13: FFTs of Acceleration Measurements

From FFTs of the system shown in Figure 13, captured via accelerometers placed on

the flexible link, the damped natural frequencies of the system are approximately 4.4 and

55Hz respectively. The model predictions place the damped natural frequencies at 4.8 and

56.8Hz. These experimental results are in good agreement (< 10% error) with the predicted

frequencies but indicate some small persistent level of modeling error.
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3.7 State Space Models From Equations of Motion

In order to cast the generated equations of motion into state space form, i.e.

ż = Az +Bu (114)

y = Cz +Du (115)

,

the equations of motion are converted to their modal form by solving the eigenvalue

problem (K−ω2M)v = 0, resulting in the natural frequencies and eigenvalues of the system.

The eigenvectors are then normalized by their modal masses

φj =
vj√
vTj Mvj

(116)

and organized into the normal mode matrix Φ where

Φ = [ φ1 . . . φn ] (117)

Substitution of the generalized coordinates in (38) by the state transformation q = [Φ]η,

the modal equation of motion can be obtained

η̈ + [Ĉ] η̇ + [ω2]η = [Φ]T Q (118)

where η are the modal coordinates of the system, Ĉ is the modal damping matrix, and

ω2 is a diagonal matrix of the systems natural frequencies in the following order: the first

beam mode, the belt-cart mode, and the second beam mode. Defining the state vector
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z =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η1

η2

η3

η̇1

η̇2

η̇3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(119)

yields the state space realization

ż =

⎡⎢⎢⎢⎢⎢⎢⎣

03×3 I3×3

−ω2 −Ĉ

⎤⎥⎥⎥⎥⎥⎥⎦

z +

⎡⎢⎢⎢⎢⎢⎢⎣

03×1

ΦTQ

⎤⎥⎥⎥⎥⎥⎥⎦

u (120)

Determining the output and feed-through relationship requires the selection of a sensor

(choices of sensors for flexible state recovery will be discussed in Chapter 4). For example,

assume the measured output is the position of a point p along the link, then given q = [Φ]η,

xp = [ 1 qf1 . . . qfn ] [Φ]η (121)

For the system model with parameters listed in Table 1 with belt displacement input and

an accelerometer placed at the tip for output measurement, the pole zero map is displayed

in Figure 14.
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Figure 14: Pole/Zero Map Tip Accelerometer Feedback

Note that the system exhibits both non-minimum phase behavior and near pole zero

cancellation of the 2nd beam mode of vibration. Satisfied that a simple, accurate model of

the system can be determined, the question becomes “Where should sensors be located to

provide the most robust state estimates?”
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Chapter IV

SENSING STRATEGIES FOR STATE FEEDBACK ESTIMATION

4.1 Measuring Flexible State Variables

Reiterating the assertion that the deflection of a link in flexure can be separated into a

spatial dependent term and a time dependent term, and assuming the mode shape of the

link is known exactly, the problem of measuring and ultimately controlling link deflection

becomes a matter of determining the time dependent flexible coordinates qi where i =

1,2, . . . ,∞. From qi and ψi(x) any desired position output quantity can be calculated, (i.e.

tip position, with velocities and accelerations requiring q̇i (to be discussed)).

Assume that the link deflection at a point xs is directly measurable as in:

w(xs, t) =
∞
∑
i=1

ψi(xs)qfi(t) (122)

However, the contributions of higher order modes is significantly diminished. And for

most practical purposes, this series is truncated to a finite number of modes n. Therefore,

w(xs, t) ≈ ψ1(xs)qf1(t) + ψ2(xs)qf2(t) + . . . + ψn(xs)qfn(t) (123)

Or more simply described by the vector equation,

w(xs, t) ≈ [ ψ1(xs) ψ2(xs) . . . ψn(xs) ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qf1(t)

qf2(t)

⋮

qfn(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(124)

If sufficient distinct, measurements p are available where p ≥ n then the flexible coordi-

nates can be calculated in a least squares sense as in
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[ΨTΨ]−1
ΨT

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w(x1, t)

w(x2, t)

⋮

w(xn, t)

⋮

w(xp, t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qf1(t)

qf2(t)

⋮

qfn(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(125)

where,

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ1(x1) ψ2(x1) . . . ψn(x1)

ψ1(x2) ψ2(x2) . . . ψn(x2)

⋮ ⋮ ⋮

ψ1(xn) ψ2(xn) . . . ψn(xn)

⋮ ⋮ ⋮

ψ1(xp) ψ2(xp) . . . ψn(xp)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(126)

For example, imagine the pinned-pinned beam in bending shown in Figure 15 with

sensors S1 and S2 located at L
2 and L

4 respectively.

Figure 15: Pinned - Pinned Beam and Modes of Vibration

The corresponding basis functions are
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ψi(x) = sin( iπx
L

) (127)

and therefore,

Ψ =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0

.707 1

⎤⎥⎥⎥⎥⎥⎥⎦

(128)

The generalized flexible coordinates can be determined via,

⎡⎢⎢⎢⎢⎢⎢⎣

1 0

−.707 1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

wS1(t)

wS2(t)

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

qf1(t)

qf2(t)

⎤⎥⎥⎥⎥⎥⎥⎦

(129)

Note that because the first sensor lies in the node of the 2nd mode of vibration, it is not

correlated with the 2nd generalized coordinate. If instead, two sensors were chosen very close

to the node, then large gains would be associated with the 2nd generalized coordinate. This

would result in high noise sensitivity and low accuracy. In addition, the full system state

consists not only of rigid coordinates and flexible coordinates, but also their derivatives.

Thus, the number of necessary sensors is in fact 2n, or twice the number of considered

modes. Conversely a numeric derivative of the determined generalized coordinates could be

taken at the expense of extra measurement noise.

To estimate the full state of the system from a limited set of sensors, a state observer can

be utilized which utilizes a model of the system to extrapolate the missing state information.

As illustrated in Figure 16, an observer is a dynamic system which acts as a closed loop

control system with a loop gain L. This gain drives the model predicted state estimates ẑ to

the true state z by acting on the error between estimated and measured output quantities.

As a dynamic system, the performance characteristics can be modified via the loop gain to

alter convergence properties and filter measurement noise. The addition of a state observer

to the complete controlled system adds observer poles, effectively doubling the number of

system poles. The additional poles are associated with the convergence of the estimation

error and, as a result of the eigenvalue separation principle, can be placed irrespective of the
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Figure 16: Observer Diagram

locations of the controller poles. However, their placements have important repercussions

on the system dynamics; too fast and measurement noise is prevalent, too slow and the

closed loop system performance will suffer.

When referring to the task of measuring flexible state variables, it is assumed going

forward that the primary vehicle will be variations on a common linear state estimator.

4.2 Sensor Types and State Relationships

4.2.1 Strain Measurements

While direct measurement of link deflection at multiple locations might be possible

through machine vision or other optical sensing techniques, in an industrial environment

where structured lighting is difficult to maintain, other sensor types are preferable. The

most common sensors used for measuring the state of flexible structures are strain gages

(Figure 17).

A strain gage operates on a simple principle, small conductors are oriented parallel to

one another and connected in series. Affixed to the structure with an adhesive, the geometry

of the conductors necessarily changes as the material is stretched, increasing resistance for

elongation and decreasing resistance for compressive strain. Figure 18 illustrates the strain

on a beam in bending.
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Figure 17: Strain gage

Figure 18: Beam Strain Diagram

Initially the strain gage on the surface of a beam element has an undeformed length of

dx. In bending, this length is changed to dx′ where,

dx′ = (ρ − v)dθ = dx − vdθ (130)

The strain, therefore, can be represented as

ε = dx
′ − dx
dx

= −v dθ
dx

(131)

where dθ
dx is the curvature of the beam element. From (49), it has already been deter-

mined that the curvature of a beam element can be related to the second derivative of the
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mode shapes and the corresponding flexible generalized coordinates.

⇒ ε(t) = −vd
2w(xs, t)
dx2

= −v
∞
∑
i=1

d2ψi(xs)
dx2

qfi (132)

or in modal form,

ε(t) = −v [ d2ψ1(xs)
dx2

d2ψ2(xs)
dx2

. . .
d2ψn(xs)

dx2
]Φη (133)

Thus, the output-state relationship for a general flexible manipulator with a modal state

space representation is:

ε(t) = −v [ [ 0
d2ψ1(xs)
dx2

d2ψ2(xs)
dx2

. . .
d2ψn(xs)

dx2
]Φ [ 0 0 0 . . . 0 ] ] z + 0u (134)

given a strain measurement at position xs at a distance v from the beam’s neutral axis.

4.2.2 Pros and Cons of Strain Gage Measurements

Strain gage measurements have been shown to be relatively successful in reconstruct-

ing the flexible system states by many researchers. To facilitate direct comparison with

acceleration measurements for this task the pros and cons of strain sensors are listed below.

� Pros

○ Strain gages operate on a simple principle.

○ Gages themselves are relatively inexpensive ≈ $10+ 1.

○ They exhibit no direct feed-through in output-state relationship.

� Cons

○ The uutput range is measured in mV or µV and, therefore, requires extra signal

conditioning before ADC.

1As of May, 2013
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○ For accurate measurements, signal conditioning units can be relatively expensive

≈ $200 1.

○ The reliability and accuracy of gage measurements is very sensitive to environ-

mental conditions, including

* Temperature fluctuations (compensation with “dummy gage”)

* Self-heating (applied voltage heats gage changing resistance value) → low

driving/measurement voltages

* Bonding effects (poor adhesion results in inaccurate readings, and local stiff-

ness variation caused by bonding agent)

* Sensitivity to electromagnetic interference

* Overloading - strain beyond elastic limit will introduce a permanent bias

and degrade performance

○ There is no link to rigid state variables (e.g. joint motion).

In summary, strain measurements are an effective and accurate method for determin-

ing the state variables of a flexible robotic manipulator. However, in order to function

reliably, environmental factors must mitigated using expensive and complex signal condi-

tioning equipment. (it is interesting to note that the origin of the term “Murphy’s law” was

coined after a failed implementation of strain gage conditioning equipment.)

4.2.3 Acceleration Measurements

Accelerometer technology has, in recent years, advanced significantly. Driven in large

part by the ubiquity of mobile devices (e.g. smart phones, tablets, gaming systems) and

improvements in micro and nano-scale manufacturing, micro-electromechanical systems

(MEMs) accelerometers are readily available and cost effective.

The acceleration sensor pictured in Figure 19 is of the type used in this analysis. The

Analog Devices ADXL325 3 axis ±5g MEMs accelerometers, is shown with conditioning filter

capacitors on the custom circuit board. Each accelerometer, fully assembled, is priced2 at

2As of August 2012
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Figure 19: Analog Devices 3 Axis MEMs Accelerometer

$6.91.

Figure 20: MEMs Accelerometer - Zero State

The operating principle behind MEMs accelerometers is very simple. A proof mass is

affixed to spring elements as shown in Figure 20 (Note that while only one set is pictured,

in practice many are utilized in parallel). Voltage is applied to the mass/spring system

and measured at the “sensing fingers.” In the nominal, undeformed state, the capacitance

between the left and right fingers and the proof mass is equal. Therefore, the voltage

measured at the left and right is identical.

In the presence of acceleration pictured in Figure 21, the springs deform and shift the

position of the proof mass in proportion to the subjected acceleration. The mass shift

results in a change of capacitance between the left and right fingers and therefore a voltage

measurement proportional to the acceleration.

The relationship between measured acceleration, state, and input is easily determined.
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Figure 21: MEMs Accelerometer - Deformed State

For the FLASHMan flexible manipulator the acceleration of a point p on the flexible link is

ẍp = ẍc + ẅ(yp, t) (135)

where ẍc is the acceleration of the cart and yp is the location of the sensor along the

length of the beam. Therefore, as a function of the generalized flexible coordinates,

ẍp = ẍc +
n

∑
i=1

ψi (yp) q̈fi(t) (136)

Since q = [Φ]η then it follows that q̈ = [Φ] η̈ must also be true. Therefore, from (118):

q̈ = [Φ] η̈ = − [Φ] [ω2]η − [Φ] [Ĉ] η̇ + [Φ] [Φ]T Q (137)

The tip acceleration is a function of the cart acceleration and the acceleration of a beam

element at the tip, i.e.

ẍp = ẍc +
n

∑
i=1

q̈fiψ (yp) (138)

where

ẍc = [1,0, . . . ,0]q̈ (139)
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and

n

∑
i=1

q̈fiψ (yp) = [0, ψ1 (yp) , . . . , ψn (yp)]q̈ (140)

which means that,

ẍp = [1, ψ1 (yp) , . . . , ψn (yp)]q̈ (141)

it follows that β(yp) = [1, ψ1 (yp) , . . . , ψn (yp)]. Then

ẍp = −β(yp) [Φ] [ω2]η − β(yp) [Φ] [Ĉ] η̇ + β(yp) [Φ] [Φ]T Qu (142)

The equation (142) determines the output and feed-through matrices C and D, where

C = [ −β(yp) [Φ] [ω2] −β(yp) [Φ] [Ĉ] ] (143)

and

D = [ β(yp) [Φ] [Φ]T Q ] (144)

Therefore the resulting output-state relationship is

ẍp = [ −β(yp) [Φ] [ω2] −β(yp) [Φ] [Ĉ] ] z + [ β(yp) [Φ] [Φ]T Q ]u (145)

4.2.4 Pros and Cons of Acceleration Measurements

Acceleration measurements offer some significant practical benefits over strain sensing.

� Pros

○ Low cost MEMs accelerometers are readily available.

○ Sensors are robust to environmental factors (e.g for ADXL325) in that

* They can be subjected to 2000× the maximum rated acceleration value.

* They have large operating temperature ranges (−40○C to +85○C).

○ They have an output range 0 − 3.3V without additional amplification.
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○ There is a direct link to rigid state variables (no additional sensor necessary).

○ Digital versions are available which reduce sensitivity to EMI in transmission

lines.

� Cons

○ There is a direct feedthrough in the output-state relationship.

○ The output-state relationship is dependent on the model parameters.

○ Drift is a possibility at low frequencies.

4.3 Sensor Placement

The process of selecting placements for sensors of a flexible system can be closely cor-

related with the observability gramian. The observability gramian provides a method of

determining if the initial state of a system (x0(t0)) can be characterized by a given output

measurement (y(t)).

In order to derive the observability gramian, first consider the following state equations:

ż(t) = Az(t) +Bu(t)

y(t) = Cz(t) +Du(t) (146)

which can be discretized to form (147).

zk+1 = Adzk +Bduk

yk = Cdzk +Dduk (147)

Assuming for a moment that the system is autonomous, i.e. uk = 0, without loss of

generality, then the relationship between the future state (zk+1) and the current state (zk)

is simply
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zk+1 = Adzk (148)

and therefore,

yk+1 = Cdzk+1 = CdAdzk (149)

If the goal is to recreate the initial condition z0 from a series of output measurements

y0, y1, y2, . . . , yp, where p > n this problem becomes a straight forward least squares problem.

Continuing the pattern of (149)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

y2

⋮

yp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CdA
0
d

CdA
1
d

CdA
2
d

⋮

CdA
p
d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

z0 (150)

Pre-multiplying both sides by the transpose of the RHS matrix,
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(n×p)
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[ A0T

d CT A1T

d CT A2T

d CT ⋯ Ap
T

d CT ]

(p×1)
³¹¹¹¹¹¹·¹¹¹¹¹¹¹µ
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

y2

⋮

yp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

(n×p)
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[ A0T

d CT A1T

d CT A2T

d CT ⋯ Ap
T

d CT ]

(p×n)
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CA0
d

CA1
d

CA2
d

⋮

CApd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

z
(n×1)
0 (151)

Written more succinctly,

p

∑
i=0

Ai
T

d C
T
d yi = [

p

∑
i=0

Ai
T

d C
T
d CdA

i
d] z0 (152)

And, therefore, the initial condition, z0, for a given series of measurements, y0, . . . , yp,

is

[
p

∑
i=0

Ai
T

d C
T
d CdA

i
d]
−1 p

∑
i=0

Ai
T

d C
T
d yi = z0 (153)

where [∑pi=0A
iT

d C
T
d CdA

i
d] is the discrete observability gramian Wod . Therefore, for a

solution to exist, Wod must be invertible (i.e., rank(Wod) = n). If the system is stable then

z0 will approach a steady-state value as p→∞. Therefore,

lim
p→∞Wod =W∞

od
(154)

where
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W∞
od

=
∞
∑
i=0

Ai
T

d C
T
d CdA

i
d (155)

is the steady-state discrete observability gramian. Beyond a simple litmus test for

observability, it provides a description of the state energy corresponding to a selected sensor

[19,54]. Take for example the sensor energy, ∥y∥, where

∥y∥ = yT y = zToWodzo (156)

The singular value decomposition of the observability gramian, indicates the directions

of high state influence for a given sensor measurement. In fact, one can construct an

“ellipsoid of detectability”, describing this correlation. Similar to the ellipsoid of dexterity

for a manipulator which describes the relative ease of motion in any direction, the ellipsoid

of detectability describes the relative contribution of energy from an output to the initial

state vector:

Wod = UΣV T (157)

where U and V represent the left and right singular vectors and describe how the state

energy is divided. The representation in (157) can be replaced by a summation of rank one

matrices:

Wod =
n

∑
i=1

σiuiv
T
i (158)

For a modal system, the singular vectors are along a single axis of the state space, as

demonstrated in Figure 22.a. Therefore, if the singular values are sorted according to their

state associations rather than their magnitudes as in:

Wod ≈ IΣzI
T = Σz (159)
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then

∥y∥ = σz1z2
01 + σz2z

2
02 + . . . + σznz

2
0n (160)

The condition number of the observability gramian, therefore, describes the symmetry

of the ellipsoid of detectability

Q = 1

CN
= min(σz)
max(σz)

(161)

Q defines the “observation quality” of a sensor, which describes the relative contribution

of the least observable state compared to the most observable state [88]. If Q = 1, then all

states are equally observable from a given measurement, and the ellipsoid of detectability

becomes a sphere (for n = 3). If Q = 0 then at least one state is unobservable and the

ellipsoid of detectability loses a dimension. One of the singular values is zero in Figure

22(b) leading to the representation of the observability gramian as a summation of n − 1

rank 1 matrices. Under this condition, the solution of (150) is indeterminate from the given

sensor information.

Figure 22: Ellipsoid of Detectability: (a) Complete Observability, (b) z3 Unobservable
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The magnitude of the singular values also plays a role in the ability of a specific sensor

to accurately describe the behavior of a specific mode of vibration. For example, a sensor

which is placed at the end of a flexible beam will have a large singular value associated with

the state that corresponds to the first mode of vibration. However in all likelihood, the

state corresponding to the 2nd mode of vibration will have a small singular value, indicating

a small portion of that sensor’s energy is being used to determine that state. Thus while a

large singular value indicates a good estimate of the current state value based on a significant

measurement, a small singular value indicates a poor estimate based on limited information.

While the discussion above is limited to discussions of single sensors, the logic of the

analysis can be applied to groups of sensors as well.

4.3.1 Simulations of FLASHMan Sensor Placements

Computing the singular values of the observability gramian for a sensor placed along

the length of the arm at candidate points yields curves which describe the ability of an

estimator to reconstruct an individual state from the chosen measurement. For a single

accelerometer placed on the FLASHMan testbed, these curves are shown in Figure 23.

Note that because acceleration is the chosen measurement, the magnitude of the singular

values attributed to higher order modes is much higher than the low order modes, (i.e. the

expected accelerations for equal excitations of the modes would be larger for the higher

order modes). In reality, these modes are damped more significantly than the lower order

modes resulting in behavior primarily attributed to the low frequency dynamics.

Because of the way the singular values of a matrix are organized in the chosen compu-

tational tool (Matlab), i.e. by magnitude rather than by state correspondence, the singular

vectors are used to associate the singular values with their corresponding state variable.

When two or more singular values are relatively close in magnitude, the singular vectors

associated with each singular value may be selected arbitrarily: the only constraint is that

they span the proper subspace. Since the singular vectors are used to determine the state

correspondence, when the singular values of two separate states are close in value, the in-

correct state is often chosen. This results in the discrete jumps obvious in Figure 23. These
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Figure 23: Singular Values of the Observability Gramian vs. Sensor Location

locations are, nevertheless, important, as they represent sensor positions where the states

are equally observable, (i.e. the output energy is equally distributed between the system

modes).

Figure 24 is a close up of Figure 23 near the location where the singular values for the

first three states are almost equivalent in value. At this point the system is “most equally

observable” and, thus, is in the desired sensor location offering the highest sensor quality.

However, this location is precariously near to where the singular value related to state z3

is zero (i.e. state z3 is unobservable, and z2 is nearly unobservable)! Given a slight shift in

the system parameters, this sensor could fall into the node of mode 3 and be blind to the

energy stored in that mode of vibration. If this were to occur, system performance may be

reduced and/or the system may become unstable.
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Figure 24: Singular Values of the Observability Gramian vs. Sensor Location (Zoomed)

Figures 25(a)-25(f) show the individual singular values, σi, associated with each state,

zi. The correspondence between a state and its derivative indicates that the derivatives

of the modal coordinates (z4 . . . z6) can be ignored for the purposes of establishing sensor

placements, (e.g. a satisfactory sensor placement for the state z1 will also suffice for z4).
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(a) σ1 (b) σ4

(c) σ2 (d) σ5

(e) σ3 (f) σ6

Figure 25: State Correspondence of SV with Sensor Location
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With the reduced dimensions, the ellipsoids of detectability, originally presented in Fig-

ure 22, can be visualized as seen in Figure 26.

Figure 26: Elipsoids of Detectability

Each ellipsoid in Figure 26 is centered about its corresponding sensor location along

the beam. The dimensions of the ellipsoid represent the state correlation of that particular

sensor as described in Figure 22. On inspection this graphic procedure intuitively describes

the observability of each state given a sensor position: the more spherical the ellipsoid, the

more equal the balance of state information observed in the output. At the beginning of the

flexible link, states z2 and therefore z5 are the most observable. Since these states correspond

primarily to the vibration of the belt/cart system, it makes sense that a sensor placed on

the cart would provide the best reconstruction of these states. The states corresponding

to the vibration of the link are very weakly observable at this location. Traveling down

the length of the arm, the z3 and z6 states become more observable peaking in magnitude

near the middle of the link. The z1 and z4 states become the most observable near the

tip of the link. Metrics can be designated for the placement of a single sensor, one choice

is the location in which the ellipsoid of detectability most closely resembles a sphere (i.e.

min(σmax/σmin)). This condition is equivalent to the location where the condition number

of the observability gramian is minimum. This criteria must be considered in conjunction

with a bound on minimum elipsoid volume such that conditions of poor observability are

avoided. From Figure 27. This optimal placement occurs near the tip of the beam where the

quality, Q, of the sensor placement is maximum. Maximum ellipsoid volume also serves as
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a viable metric for determining sensor placement, but will not be utilized in the remaining

discussion.

Figure 27: Sensor Observation Quality vs. Location

There are also points of modal unobservability, where no sensor energy is devoted to a

particular system mode. These are points where the quality drops to zero (see Figure 27).

No accurate state estimates corresponding to those modes can be determined. This problem

has led to interest in the question of robustness of observability which will be discussed in

section 4.7.

Applying the same analysis to strain sensing, the singular values of the observability

gramian as a function of strain gage location are shown in Figure 28. From the figure it’s

obvious that the two beam modes are closely correlated with the link strain. The belt

motion, however, exhibits significantly less correlation with the strain sensor.

In contrast with the accelerometer measurement, here, the optimal locations appear

at the start of the link. These will necessarily be locations with highest curvature when

deformed, rather than the locations of greatest displacement. The singular value corre-

sponding to the second beam mode drops to zero at approximately 1.1m indicating that a

gage placed at this point would result in unobservability of this mode.
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Figure 28: Singular Values of the Observability Gramian vs. Strain Gage Location

From the sensor quality shown in Figure 29, optimal placement at the first peak is

determined to be around 0.075m, sacrificing observability of the beam modes in order to

balance the belt/cart mode. If the limitation of placing a single sensor could be lifted, vast

improvements could be made, both in terms of acceleration and strain measurements.

Figure 29: Strain Sensor Observation Quality vs. Location
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4.4 Grouping Sensors

In order to consider the consequences of multiple sensors on state observability, the

state-output description must be extended to include multiple output measurements:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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⋮
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uk (162)

More succinctly for autonomous systems (uk = 0), these sensor groups can be represented

as

ygk = Cgzk (163)

Therefore, taking multiple successive samples as in (150):
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x0 (164)

Therefore, there are j ×p equations and n unknowns. By the Cayley Hamilton theorem,

An can be expressed as a linear combination of lower powers of A. Necessarily, any rows

of (164) with powers of A beyond n − 1 are linearly dependent. Thus, there exist, at most,

j × n linearly independent equations for a system of n unknowns.

It suffices, however, to find a set of sensors which result in n linearly independent
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equations to ensure complete observability of the full state vector. This can be accomplished

in numerous ways. For example, 1) given a single sensor and for which Wod is invertible

and n output measurements, 2) given 3 sensors for which Wodi i = 1,2,3 are invertible and

n
3 measurements from each sensor, and 3) any combination of sensors which contribute, as

a group ≥ n linearly independent rows to Wog (a gramian for the sensor group). A trivial

example of the 3) would be full state measurements, where a single sensor is used to measure

each state independently. Thus Wog = I(n×n) and the state vector is completely observable

in one time step. Even though a sensor may lack the ability to observe a specific state or

set of states, the addition of other sensors targeted at the remaining states can supply the

missing information.

The problem of multiple sensor placement simplifies to the selection of groups and

placements of sensors to maximize the observability of the full state vector, (i.e. to recover

the most state information possible). By placing sensors at the locations resulting in the

maximum singular values of each mode, observability is assured.

Beyond multiples of the same sensor type, integration of multiple, different sensors is

often beneficial. For example, take the strain measurement used to determine Figure 28.

The states corresponding to the belt/beam mode are not very observable from the strain

measurement. They are, however, very highly correlated to a measurement of the cart

position. Adding in the cart position measurement results in the singular values shown in

Figure 30

The strain sensor placement can then be made by examining the observation quality of

the augmented system as demonstrated in Figure 31.

In comparison with Figure 29 the addition of the cart position measurement frees up the

strain measurement to be placed at the optimal location for measuring the flexible beam

states, at the beginning of the arm.
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Figure 30: Singular Values of Observability Gramian of Strain Sensor vs. Location with
Cart Position Measurement

Figure 31: Cart Position + Strain Sensor Observation Quality vs. Location
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4.5 Selecting Sensor Placements via Genetic Algorithm Optimization

Since the singular value decomposition of the observability gramian is unavailable in

closed form and the parametrization with respect to changing sensor location is unknown,

searching sets of singular values to evaluate candidate points can be computationally ex-

pensive for complex structures. In employing a genetic algorithm, the placement process

can be simplified and evaluated more quickly than random search. The genetic algorithm

also offers greater precision than evaluating candidate locations uniformly distributed over

the entire arm length.

Figure 32: Genetic Algorithm Overview

A general overview of genetic algorithms is provided in Figure 32. Initially a population

of potential sensor locations is randomly generated. Each sensor location in this set is

evaluated through the computation of a fitness function. This function provides the selection

criteria on which the sensor location is judged, for example to select a single sensor for

reconstructing all the states, a simple fitness function would be the maximum of the sensor

quality Q.

After evaluating the fitness of the individual sensors in the population, they are checked

against a desired metric to determine if the optimal solution has been found. For example,
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if the best solution hasn’t changed for a number of generations, then it is likely the best

solution. If deemed insufficient to stop the process, the individuals are ordered by their

fitness and assigned reproductive probabilities based on their fitness. Therefore, an individ-

ual sensor with higher fitness is more likely to be selected for reproduction than one with a

lower fitness. Often the first one or two “elite” individual’s chromosomes are directly copied

into the next population. Otherwise pairs are selected in a weighted random fashion based

on their reproductive probability (fitness). Each pair selected for reproduction can then be

subjected, according to the probability assigned, to several processes inspired by natural

reproductive processes.

Figure 33: Crossover

Two copies of a chromosome may exchange genetic material as they may have different

variants of a gene at the same location. This is referred to as crossover. Crossing over

adds to the potential variability of the sensor positions considered. In the example shown

in Figure 33, one copy of the chromosome carries alleles that are dominant (mask the effect

of recessives) and the other only recessive copies of genes. Crossing over is a random event,

though genes that are located further apart from one another are more likely to end up in

different offspring. If the pair is not selected for crossover, the dominant partners chromo-

some is directly copied to form the offspring. The resulting offspring is then subjected to the

possibility of genetic mutation according to a user specified probability. Genetic mutation

occurs on the gene level flipping random genes in the chromosome, the likelihood of which
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is weighted so that less significant genes (neutral to selection) are more likely candidates for

mutation than very significant genes (subject to natural selection) as described by Figure

34.

Figure 34: Mutation

After the reproduction events are complete, from which the new population is generated,

the process begins again and continues to repeat until either a desired number of generations

are produced or a stop condition has been reached. For example, over a significant number

of generations the optimal solution variant remains unchanged.

Table 3: FLASHMan Simulation Parameters

Parameter Value

Link Length 0.42m
Cart Mass 10kg
Payload Mass 0.291kg
Cart Damping 100Ns/m
Structural Damping Factor 0.0005
Young’s Modulus 7E10Pa
Density 2700kg/m3

Area Moment 1.01E − 10m4

Crossectional Area 1.21E − 4(m2)

The parameters of the FLASHMan testbed in Figure 10 are listed in Table 3. For this

system a genetic algorithm as described in the preceding section was used to determine the

optimal sensor placements for both a single sensor and for multiple sensors. Accelerometers

were chosen to be the candidate sensors for this analysis and the parameters of the genetic
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algorithm are listed in Table 4.

Table 4: Genetic Algorithm Settings

Parameter Value

Population 20
# of Generations 100

# of Elites 2
Probability of Crossover 25%
Probability of Mutation 80%

The final population and chosen solution for the different placement metrics (observation

quality, SV of Wo for z1 − z5) are shown in Figures 35 and 36(a)-36(f).

Figure 35: Genetic Algorithm Results Observation Quality Fitness Metric

Using the sensor quality metric, invariance to parametric error can be improved through

the design of fitness function. For example, by selecting multiple models over the expected

level of parametric variation, and taking the minimum sensor quality of the set for each

potential sensor location, a search over the length of the arm for the maximum value of the

fitness function results in a placement which will avoid potential nodal points.
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(a) Fitness z1 (b) Fitness z2

(c) Fitness z3 (d) Fitness z4

(e) Fitness z5 (f) Fitness z6

Figure 36: Genetic Algorithm Results (Final Population and Optimal Placement)
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The placements determined by the algorithm are listed in table 5.

Table 5: Chosen Sensor Locations

Fitness Function Sensor Location

Q 0.4122m
σ1 0.4198m
σ2 0.0000m
σ3 0.2387m
σ4 0.4198m
σ5 0.0098m
σ6 0.2388m

Placing a single sensor using Q as the fitness function results in an optimal placement

near the tip of the beam at 0.4122m. Using multiple sensors, and selecting placements based

on the maximum singular values of each modal state, results in sensor locations of 0.420,

0.239, and 0.005m from the root of the beam. While rather trivial for this simple structure,

the computational benefits are amplified when considering more complex structures.

4.6 Observability Robustness Evaluation

While optimal for a perfect system model, these sensor placements may or may not be

robust to parametric error. Therefore in order to quantify the robustness of a given sensor

placement to changes in a specific system parameter, the singular values must be inspected

over the range of the expected parametric error. Parametric error can result in two distinct

errors in the resultant state estimates. First given a limited set of sensors, parametric error

may result in unobservability of a subset of system states. And second, the gains calculated

using the sensor placement can result in static state error.

Special care must be taken to ensure the chosen sensor locations are robust to unob-

servability caused by potential parametric errors. This can be accomplished by redefining

the fitness function used in the genetic algorithm. For example if sensor quality is used as

the metric for the placement of a single sensor as in Figure 27, the optimal placement lies

near the end of the beam where the condition number of the observability gramian is its

minimum. If however, the payload changes from its nominal value, the singular values of
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the observability gramian will have a corresponding shift. This shift is illustrated in Figure

37 for a true payload mass of 0.425kg (orange line) and a modeled mass of 0.281kg (black

line).

Figure 37: Observation Quality vs. Payload

From the analysis in Section 4.5, an accelerometer placement at xs = 0.412m was de-

termined to be optimal. From Figure 38 the increase in payload moves the nodal point

associated with the second beam mode to the position of the sensor placement. At the

nodal point, the system becomes unobservable.

However, by prescribing the placement of multiple sensors, one for each mode of vibra-

tion, robust observability is assured for a wide range of parametric variation. While a single

sensor may experience a modal occlusion, the sensor corresponding to the occluded mode

will not be obstructed and, thus, maintain system observability (a result which is discussed

in detail in Section 5.1.1).

Modal occlusions are not always detrimental. They may be harnessed to combat residual

mode spillover. If the sensors are located in the nodes of the residual mode, the state

estimates will be an accurate description of the controllable modes and remain uncorrupted

by spillover from the unmodeled residual modes. If residual modes are problematic, the

described sensor placement analysis can be used to place these sensors by modifying the

fitness function of the genetic algorithm to determine the nodal points of the residual modes
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Figure 38: Observation Quality vs. Payload (Zoom)

instead of the modal maxima.

4.7 Connection Between Observability and Observer Design

More than a simple test for determining if a state observer is feasible for a given sensor

choice, the observability gramian and observability test matrix are integrated in the determi-

nation of observer gains as well. For example, Ackerman’s formula (165) for pole placement

relies on a direct inversion of the observability test matrix to determine the observer gain.

L = α (A)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C

CA

⋮

CAn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

⋮

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(165)

where α (A) is the desired characteristic equation as a function of the state matrix A,

and
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C

CA

⋮

CAn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is the observability test matrix O. The observability test matrix is easily derived, as in

(150) where p = n−1 and n is the total number of system states. If instead of only considering

n − 1 an infinite number of measurements are considered, OTO becomes the observability

gramian. Therefore, many of the results from previous sections apply to the observability

test matrix as well as the the observability gramian. The inversion of O in (165) determines

the sensitivity of the gain selection to the measurement. This allocates the sensor’s energy

among the individual states. Using Ackerman’s formula, the gains associated with each

state versus the sensor location are shown in Figures 39(a) through 39(f) (for desired pole

locations of −100,−110,−120,−130,−140,−150 on the real axis).

89



(a) Gain assigned to z1 (b) Gain assigned to z4

(c) Gain assigned to z2 (d) Gain assigned to z5

(e) Gain assigned to z3 (f) Gain assigned to z6

Figure 39: Observer Gain (L) Associated with Each State vs. Sensor Position
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Comparing the results of Figure 39 with those of Figure 25, it is apparent that large sin-

gular values equate with smaller gain values. As expected, this simply means that less gain

is necessary because the measurement energy is well correlated to the state. Very little en-

ergy is associated for small singular values, resulting in a large amplification. Amplification

adds noise and diminishes robustness with respect to parametric error.

Discussed in detail in Chapter 5 the Kalman filter is an optimal state estimator which

places the system poles by minimizing a quadratic cost function in order to balance conver-

gence rate and measurement noise. Assuming the system is both discrete and autonomous

for this discussion, the estimated state vector at the time step k is,

ẑk = Adẑk−1 +L(yk−1 −Cdẑk−1) (166)

The Kalman gain, as described in the literature [92] is

L = PkCTd R−1 (167)

where the state covariance error after measurement is

Pk = (M−1
k +CTd R−1Cd)

−1
(168)

which is dependent on the covariance generated between measurements:

Mk = AdPk−1A
T
d +GQGT (169)

Combining (168) and (169) and working backwards in time with the assumpitons of no

process noise (Q = 0) and an infinite initial error covariance (P −1
0 = 0),
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P −1
k+1 = (AdPkATd )
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∑
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d (170)

Note the similarity to the discrete observability gramian (153). The result in (170) is

called the stochastic observability gramian, and it includes the effects of measurement noise

covariance. The Kalman gain is, therefore:

L = (
k

∑
i=0

A−i
d C

T
d R

−1CdA
−i
d )

−1

CTd R
−1 =W −1

os C
T
d R

−1 (171)

under the given assumptions and is therefore dependent on the inverse of the stochas-

tic observability gramian for pole placement. For single sensor placements, the results of

the singular value analysis remain unchanged, and for multiple measurements use of the

stochastic observability gramian has the added benefit of weighting the singular values by

the magnitudes of the sensor noise.
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Chapter V

ROBUST STATE ESTIMATION FOR FLEXIBLE MANIPULATORS

Robust state estimation, as defined in this work, means that the estimator performance

(i.e. the convergence rate and accuracy of the estimated state to the true state) is preserved

under conditions of parametric uncertainty. In the following analysis, the fundamental prop-

erties of state estimators subjected to parametric error are derived and used to compare

the robustness of the evaluated observers. While the analysis is aimed at flexible manipu-

lators, simplified second order mass-spring-damper examples are used to demonstrate the

derived results. These second order examples allow effective visualization of the dynamic

behavior, whereas, the sixth order FLASHMan system would require more dimensions than

are available in this format to achieve the same result. Simulation and experimental results

are presented, that: 1) validate this analysis; and 2) compare traditional linear estimators

with a purportedly robust non-linear sliding mode observer.

5.1 Linear Estimation for State Reconstruction

The goal of a state estimator is to reconstruct the internal state of a dynamic system

from measurable external observations. From these measurements an initial condition is

inferred which would produce, given a suitable model of the system, the set of system

states which correspond to the measured output. Given that these conditions are met, the

state estimate will match the true state.

The restrictions on measurements are that they are sufficiently coupled to the inter-

nal state, so that all states can be inferred from the measurement(s). By evaluating the

rank of the matrix O (166), the observability of the internal system states from a given

measurement can be determined. If (166) is full rank, then the system is said to be “com-

pletely observable,” meaning all the states can be reconstructed. If O is rank deficient, (i.e.

rank(O) = p < n), then there exist n − p unobservable states, and additional measurements

may be necessary to fully observe the state of the system. Thus observability provides a
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litmus test for whether a sensor, or set of sensors, sufficiently characterizes the state of the

system. While the preceding observability discussion was tailored for determining optimal

sensor placements, the following brief analysis is aimed at justifying the choice of feedback

control and estimation structure used in this work.

As a motivating example, consider the simple cart system in Figure 40.

Figure 40: Unconstrained 1-DOF Mass

A state space representation of the system is

⎡⎢⎢⎢⎢⎢⎢⎣

ż1
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ẋ
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(172)

If the position of the mass is selected as the measurement, the output y can be specified

as

y = [ 1 0 ]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

C

⎡⎢⎢⎢⎢⎢⎢⎣

z1

z2

⎤⎥⎥⎥⎥⎥⎥⎦

+ [ 0 ]
²
D

u (173)

Therefore the observability test matrix is:

O =

⎡⎢⎢⎢⎢⎢⎢⎣

C

CA

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

1 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎦

(174)

Obviously O is full rank. Therefore, the position and velocity states are observable from

a position measurement. Conversely, if velocity is chosen as the measurement, C = [ 0 1 ]

and therefore:
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O =
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C
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⎤⎥⎥⎥⎥⎥⎥⎦
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0 1

0 0

⎤⎥⎥⎥⎥⎥⎥⎦

(175)

Which is rank 1. This means that the state corresponding to position is unobservable

from a velocity measurement. The problem lies in the free integrator, which makes the

initial condition on position indeterminate.

If the model can be expressed as a constrained system, by for example by making the

input a displacement of a spring attached to the block as shown in Figure 41, then the prob-

lem is resolved and derivative measurements like acceleration are sufficient to reconstruct

the full state of the system.

Figure 41: Constrained 1-DOF Mass

⎡⎢⎢⎢⎢⎢⎢⎣

ż1

ż2

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

0 1

− k
m 0

⎤⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A

⎡⎢⎢⎢⎢⎢⎢⎣

z1

z2

⎤⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎣

0

k
m

⎤⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¸¹¹¹¹¹¹¶

B

u (176)

and given the dynamic equation of motion ẍ = − k
mx +

k
mu, the output equation for

accelerometer measurement becomes:

y = [ − k
m 0 ]
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m
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D

u (177)

Therefore:
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O =
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(178)

Because (178) is full rank, acceleration measurements for this system are sufficient to

reconstruct the full state without an additional position measurement. For flexible manip-

ulators this is beneficial as it is often difficult to prescribe, in an open loop manner, the

amount of force or torque on a link from a joint with flexibility. Conversely, it is often

relatively easy to close the loop on the displacement of the motor which commands the

joint. This prescribes, as described in Figure 42, the displacement of a spring attached to

the link.

Figure 42: Flexible Arm and Joint Coupling

Because this input constraint removes the rigid body displacement information from

the scope of the estimator and pushes it into the control domain, it allows acceleration

measurements to be used as the sole source of state information and allows the input to the

estimator to be a signal which is well known, i.e. the displacement of the drive motor.

Given the choice of model structure as illustrated in Figure 42, a complete state space

control system can be constructed as described in Figure 43. A tight position control loop is

placed around the actuator position which serves as the input to the flexible system. When

using an encoder to measure this position, one applies a well known measured quantity

rather than an approximate force as the input to the estimator. A state feedback controller

96



Figure 43: Control System Block Diagram

is used to drive the state to the desired state by perturbing the position command to the

motor.

5.1.1 Observability Conditions for Accelerometer Based Flexible Manipulator
Estimation Algorithms

For a single link manipulator with a belt drive the dynamic model can be derived, as in

Chapter 3. The result of this analysis is reproduced below in the modal form considering

three modes of vibration (two predominantly associated with the flexible beam modes, and

one with the cart/belt mode) and no damping.
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and the acceleration of a point along the length of the arm at position y is described by:
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where

d =φ2
1,1Kbelt + φ2
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Or written more concisely:
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Therefore, the observability can be checked using (166) to determine if all states are

observable.
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(183)

From (183) it is obvious that the system is unobservable if it exhibits a rigid body

mode(s), i.e. ω1, ω2, or ω3 = 0. Less obviously, the accelerometer cannot be located at a
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nodal point.

A mode shape exhibits nodes at locations where it crosses the neutral axis of the beam

at rest. At these points, if one were to excite the flexible structure at the appropriate

frequency ωi, the displacement of the beam element would be zero for all time. Intuitively,

this means that for a sensor located at the nodal point the corresponding mode has no

contribution to the measured acceleration. Therefore, the full state of the system cannot

be reconstructed from that specific sensor measurement (as previously described).

To demonstrate this fact consider the displacement of a beam element of the system

described by (179) at location yp:

x(t) = [ 1 ψ1(yp) ψ2(yp) ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1,1 φ1,2 φ1,3

φ2,1 φ2,2 φ2,3

φ3,1 φ3,2 φ3,3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

η1

η2

η3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(184)

If excited at a natural frequency, all energy is contained within that mode of vibration

and therefore all other modal coordinates are zero. Thus the ith mode shape of the flexible

system can be determined by setting all the other modal coordinates (ηj≠i) to zero in (184).

xmode1(t) = (φ1,1 + ψ1(p)φ2,1 + ψ2(p)φ3,1)η1 (185)

At a node of the mode shape, ynode:

0 = (φ1,1 + ψ1(ynode)φ2,1 + ψ2(ynode)φ3,1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

−c1

η1 (186)

Because c1 = 0, (183) is singular when the sensor is placed at a nodal point, and the

system is not completely observable. At a node, system poles corresponding to the mode

of vibration attributed to the node, are obscured by zeros. This reduces the residues of

that pole in the sensor signal preventing the observation of the states corresponding to the

specific mode of vibration. This effect is illustrated in Figure 44, if the sensors are placed

in the nodal points indicated, then the resulting zeros cover the poles corresponding to the

obscured mode.
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Figure 44: Pole-Zero Map of Sensors in Nodal Points

5.1.2 Linear Estimation of Systems with Parametric Error

Assuming the appropriate choice of sensor and sensor placement, linear estimation tech-

niques can be applied to estimate the state of single link or linearized multi-link flexible

manipulators. The goal of a state estimator is to force the error between the estimated

states and the true system states to converge to zero by matching the predicted outputs

and the measured outputs. This presents a problem which is complicated by modeling error

and uncertainty. Modeling error can be both structured and unstructured, in that the form

of the model is either of known or unknown order.

For flexible link manipulators it is assumed that the dynamic system can be truncated

to a finite number of modes, and therefore any relevant uncertainty in the model can be

described in terms of the system parameters of the reduced order model. This structured

uncertainty corrupts both the state and measurement matrices in the system representation.

These effects are most easily described through a simple example. A mass spring system

was illustrated in Figure 41. The system dynamics for the system, with damping, can be
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expressed as:

⎡⎢⎢⎢⎢⎢⎢⎣

ż1

ż2

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

0 1

− k
m − c

m

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

z1

z2

⎤⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎣

0

k
m

⎤⎥⎥⎥⎥⎥⎥⎦

u (187)

For the sake of argument assume that the position of the mass is directly measured for

use in the estimator. Therefore the output y can be described by

y = [ 1 0 ] z + [0]u (188)

and is simply a state of the system. Conversely if acceleration of the mass (ẍ) were

chosen, the corresponding output formulation would be:

y = [ −k
m

−c
m

] z + [ k
m

]u (189)

Immediately obvious from the above formulation is that for a given parametric error

(e.g. spring stiffness, damping coefficient, or mass) the relationship that connects the mea-

sured output to the system states remains the same for the case when y is a direct state

measurement (188). However, it will change if the measurement is linked to the specific

parameters of the system as it is in (189).

To determine how parametric error influences the estimation of system states let a

generic state space system be represented as:

ż = Az +Bu (190)

y = Cz +Du (191)

Allowing structured uncertainty in the model through parametric error, this model

becomes:
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ż = (A +∆A) z + (B +∆B)u (192)

y = (C +∆C) z + (D +∆D)u (193)

where ∆A, ∆B, ∆C, and ∆D are unknown but bounded matrices and A, B, C, and D

are the approximate state space matrices on which the observer and controller are based.

A current state observer (Figure 45) uses the system model to predict the current state of

the system. By comparing the predicted output and measured output, a gain L is used to

force convergence between the predicted and measured outputs, thus causing the estimated

states to match the true system states.

Figure 45: Current State Observer

However this logic is only valid with the assumption that there is no uncertainty in the

system model. For the case of an ideal estimator the estimator dynamics are:
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˙̂z = Aẑ +Bu +L(y − ŷ) (194)

y = Cz +Du (195)

ŷ = Cẑ +Du (196)

which gives the state estimate dynamics:

˙̂z = Aẑ +Bu +L(Cz +��Du −Cẑ −��Du) (197)

⇒ ˙̂z = Aẑ +Bu +LC(z − ẑ) (198)

defining the estimate error as:

e = z − ẑ (199)

⇒ė = ż − ˙̂z (200)

Thus the estimate error dynamics are:

ė =����
�:Ae

Az −Aẑ +��Bu −��Bu +����
��:LCe

LC(z − ẑ) (201)

⇒ė = (A −LC)e (202)

Thus one can simply select L such that all the poles of A − LC are in the left half

plane (LHP) forcing the estimated state to converge to the true state as the state error

converges. Consider, however, the case of modeling uncertainty under which the estimator

model and physical systems differ by the quantities ∆A, ∆B, ∆C and ∆D. The new

estimator dynamics are as follows:
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˙̂z = Aẑ +Bu +L(y − ŷ) (203)

y = (C +∆C)z + (D +∆D)u (204)

ŷ = Cẑ +Du (205)

Thus,

˙̂z = Aẑ +Bu +L((C +∆C)z + (D +∆D)u −Cẑ −Du) (206)

⇒ ˙̂z = Aẑ +Bu +L(Cz −Cẑ +��Du −��Du +∆Cz +∆Du) (207)

⇒ ˙̂z = Aẑ +Bu +LC(z − ẑ) +L∆Cz +L∆Du (208)

(209)

Again let e = z− ẑ where z is as designated by (192), ż = (A +∆A) z+(B +∆B)u. Then

ė =����
�:Ae

Az −Aẑ +∆Az +��Bu −��Bu +∆Bu −����
��:LCe

LC(z − ẑ) −L∆Cz −L∆Du (210)

⇒ė = (A −LC)e + (∆A −L∆C)z + (∆B −L∆D)u (211)

Let,

A0(n × n) = (A −LC) (212)

W(n×n) = (∆A −L∆C) (213)

J(n×p) = (∆B −L∆D) (214)

where n is the number of model states, p is the number of inputs to the system, and W

and J are unknown matrices. Then the state estimate error dynamics are:

ė = A0e +Wz + Ju (215)

Obviously (215) contains the original error dynamics from (202) plus a term dependent
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on the true system state and a term dependent on the controlled input. When a state

feedback control of the form u = −Kẑ is used then Ju→ −JKẑ and the error dynamics are

dependent not only on the current system state but the estimated state as well. Both serve

as exogenous inputs to the error system which will drive the equilibrium point of the error

system away from the origin of the state space and produce state estimate error.

5.1.3 Important Repercussions of Parametric Modeling Error on Closed Loop
Perfomance

While appropriate estimator behavior is important for accurate state estimates, it is

imperative to note the repercussions of modeling error on closed loop system performance.

Specifically, the destabilizing potential of controllers which act on model-corrupted esti-

mated states should be carefully considered in selecting an appropriate feedback control

system. While the convergence properties of the estimator and control system are un-

changed when the estimated state remains unutilized in the control system, the changing

equilibrium points of the estimator dynamics invalidate the stated “separation principle,”

effectively coupling the controller and estimator poles.

To demonstrate this effect consider the closed loop system dynamics

ż = (A +∆A) z − (B +∆B)Kẑ (216)

And replacing ẑ with z − e,

ż = (A +∆A −BK −∆BK) z + (BK +∆BK) e (217)

Similarly the estimator dynamics are described by

˙̂z = Aẑ −BKẑ +L [(C +∆C) z − (D +∆D)Kẑ −Cẑ +DKẑ] (218)

or more simply

˙̂z = Aẑ −BKẑ +LCe +L∆Cz −L∆DKẑ (219)
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The estimator dynamics are therefore,

ė = (A −LC −L∆DK +∆BK) e + (∆A −∆BK −L∆C +L∆DK) z (220)

Combining the estimator (220) and controlled system dynamics (217) results in the full

system dynamics

⎡⎢⎢⎢⎢⎢⎢⎣

ż

ė

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

A +∆A −BK −∆BK BK +∆BK

∆A −∆BK −L∆C +L∆DK A −LC −L∆DK +∆BK

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

z

e

⎤⎥⎥⎥⎥⎥⎥⎦

(221)

The eigenvalues of the full system block matrix Afull determines the location of the con-

troller and estimator poles. If the modeling error is neglected, the system becomes an upper

triangular block matrix

⎡⎢⎢⎢⎢⎢⎢⎣

ż

ė

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

A −BK BK

0 A −LC

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

z

e

⎤⎥⎥⎥⎥⎥⎥⎦

(222)

for which the determinant is det(Afull) = det(A −BK)det(A −LC). Therefore, the system

poles are simply the combined estimator and controller poles.

However with parametric modeling error, the determinant is no longer separable into

terms associated with only the control or estimation subsystems. For example, consider the

aforementioned mass spring damper system with accelerometer feedback and force input

and nominal parameters m = 1, k = 1 and c = 0.

⎡⎢⎢⎢⎢⎢⎢⎣

ż1

ż2

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎣

0 1

1 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

z1

z2

⎤⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎣

0

1

⎤⎥⎥⎥⎥⎥⎥⎦

u (223)

y = [ 1 0 ] z + [1]u (224)

The controller poles are placed at pc = −1+ i,−1− i and the observer poles are placed at

p0 = −5 + i,−5 − i. Nominally, the full system matrix is
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Afull =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1.00 0 0

−2.00 −2.00 1.00 2.00

0 0 7.50 8.50

0 0 −18.50 −17.50

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(225)

, the poles of which are the controller and observer poles combined:

−1.00 + 1.00i

−1.00 − 1.00i

−5.00 + 1.00i

−5.00 − 1.00i

(226)

If the mass was over estimated in the model by 20%, (i.e. the true mass is 0.8) the

observer poles remain at:

−5.00 + 1.00i

−5.00 − 1.00i
(227)

Assuming the system poles can be tuned to the desired locations pc the true system matrix

is:

Afull =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1.00 0 0

−2.00 −2.00 0.75 2.00

3.00 3.00 6.375 5.50

−7.40 −7.40 −15.725 −10.10

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(228)

, which has poles at closed loop poles located at

−1.9259 + 5.6309i

−1.9259 − 5.6309i

−0.9366 + 0.7687i

−0.9366 − 0.7687i

(229)
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Thus, the resulting poles are not the combined controller and observer poles. Instead

the closed loop performance is significantly affected by the inaccurate parameter estimate.

Therefore, utilization of the separation principle allows only the approximation of the sys-

tem pole locations for any real system. This approximation degrades as the level of error

increases, meaning even if the observer and controller are designed correctly, a parameter

shift or model inaccuracy can result in poor performance and potential destabilization.

The coupling between system state and estimate error can also result in steady state error

when the desired final state is non zero. Because of the exogenous state error injection, the

resulting state predictions from the estimator, in some systems, exhibit persistent prediction

bias which results in set-point bias of the closed loop system. This prediction bias is further

explored in the following illustrative example.

5.1.4 Illustrative Single Degree of Freedom Example

The following example is presented to further explore the effects of parametric error on

estimation performance for traditional linear estimators. Again examine the mass spring

damper system from Figure 41.

From a position measurement the the system is fully observable, and the output and

feed through matrices become (230).

C = [ 1 0 ] D = 0 (230)

Assuming parametric error in the measurement of both the spring constant and damping

coefficient of km = k + ∆k and cm = c + ∆c, then, the plant for which a model (187) was

chosen is, in actuality,

ż =
⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎣

0 1

− k
m − c

m

⎤⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎣

0 0

−∆k
m

−∆c
m

⎤⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠
z

+
⎛
⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎣

0

k
m

⎤⎥⎥⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎢⎢⎢⎣

0

∆k
m

⎤⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠
u (231)
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where,

∆A =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0

−∆k
m

−∆c
m

⎤⎥⎥⎥⎥⎥⎥⎦

∆B =

⎡⎢⎢⎢⎢⎢⎢⎣

0

∆k
m

⎤⎥⎥⎥⎥⎥⎥⎦

(232)

Let, L = [ l1 l2 ]
T

be the estimator gain determined from the inaccurate model of the

system dynamics. Then the full dynamics of the error system become (233).

ė =

⎡⎢⎢⎢⎢⎢⎢⎣

−l1 1

− k
m − l2 − c

m

⎤⎥⎥⎥⎥⎥⎥⎦

e +

⎡⎢⎢⎢⎢⎢⎢⎣

0 0

−∆k
m

−∆c
m

⎤⎥⎥⎥⎥⎥⎥⎦

z +

⎡⎢⎢⎢⎢⎢⎢⎣

0

∆k
m

⎤⎥⎥⎥⎥⎥⎥⎦

u (233)

From (231) the equilibrium state z∗ = [ u∗ 0 ]
T

can be determined. This is the case

because, the error in spring stiffness does not result in an error in resting length of the

spring. Therefore, when the system reaches steady state the model and plant have identical

equilibrium conditions. At equilibrium,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0

0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
=

⎡⎢⎢⎢⎢⎢⎢⎣

−l1 1

− k
m − l2 − c

m

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

e1∗

e2∗

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
+

⎡⎢⎢⎢⎢⎢⎢⎣

0 0

−∆k
m

−∆c
m

⎤⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

u∗

0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
+

⎡⎢⎢⎢⎢⎢⎢⎣

0

∆k
m

⎤⎥⎥⎥⎥⎥⎥⎦

u∗ (234)

indicating that even though transient state error will occur, as t → ∞ the state error

will converge to the origin of the error space for stationary inputs at the convergence rate

of the controlled system.

Simulation results for the system using the parameters (exaggerated for demonstration)

in table 7 are presented in Figure 46 and Figure 47. From Figure 46, note that initially the

ideal estimate ẑ1i (based on a nominal plant model) and the true estimate ẑ1 both converge

to the true state z1 and continue to track the true position of the mass as the step command u

is given to the system, (indicated by the overlapping traces). The precise tracking is enabled

by the fact that the position measurement is directly fed back as the output measurement.
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Table 6: SMD Model Parameters
Parameter True Value Modeled Value Unit

m 0.5 0.5 kg
k 100 150 N/m
c 1 50 Nm/s

Table 7: SMD Simulation Parameters
Parameter Value Unit

Command (u) { 0 t < 1
10 t ≥ 1

m

Initial State (z0) [ 0 0 ]T [ m m/s ]T

Initial Estimate (ẑ0) [ 2 10 ]T [ m m/s ]T

Desired Est. Poles −100 + 0i −101 + 0i

Est. Gain (L) [ 101 −300 ]T

Figure 46: Simulated SMD Position Estimate (Position feedback)

The observer gain drives the predicted output ẑ1 to match the measured output z1. This is

the equivalent of filtering a direct state measurement, and results in good coherence between

the state prediction and true state.

However, from Figure 47 its obvious that after an initial convergence, the estimate of

velocity ẑ2 differs significantly from the true velocity state z2 once the command is initiated

forcing a transient condition where z ≠ z∗. The estimate error is driven away from the origin

and slowly converges again as z → z∗ at the rate of damping in the plant as demonstrated

in Figure 48. Conversely, the ideal estimator’s velocity estimate (z2i) is identical to the true

velocity after the initial conditions are synchronized.
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Figure 47: Simulated SMD Velocity Estimate (Position feedback)

Figure 48: Error Space Trajectories of Ideal (ei) and Real Estimator (e)

The observer gain constrains the position error by allowing the velocity error to grow

to a state which produces initial conditions z0 which, for the provided model, result in an

estimate of the current output which closely resembles that of the physical system. And

while the position is well known, the estimator must make an intelligent guess of what the

velocity state is. This guess is based solely on the relationship between position and velocity

described by the errant model. Given there is no feedback to the estimator of the error in

velocity state, no corrective action can be performed. This problem is exacerbated when the

measured outputs are not directly measured states. Take, for example, a scenario in which
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Figure 49: Simulated SMD Position Estimate (Acceleration feedback)

Figure 50: Simulated SMD Velocity Estimate (Acceleration feedback)

an acceleration measurement is used which is related to the states of the system through

the modeled parameters via (235)

ẍ = [ −(k+∆k)
m

−(c+∆c)
m

] z + (k +∆k)
m

u (235)

Then, the connection to the system states is even more tenuous, and the error between

plant and estimated states will be present in both estimates as shown in Figures 49 and 50.

Finally if the estimator model and the plant do not share equilibrium points, as is the

case when the input to the system is a force on the cart and the spring is fixed at the end.
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Figure 51: Simulated SMD Position Estimate (Position feedback, Force Input)

Figure 52: Simulated SMD Velocity Estimate (Position feedback, Force Input)

The error then, will not converge to the origin of the error space at steady state. Instead

the control effort applied by the estimator gain seeks to drive the estimated position to the

true position (Figure 51) by producing a constant offset in the velocity estimate (Figure 52).

While physically impossible, it is the only mathematically possible solution that matches

the output criteria at time t. The estimator model assumes it is traversing the state space

according to the model dynamics to the predicted equilibrium state ẑ∗ given the input u,

the gain L forces the trajectory to intersect the correct position state, resulting in the offset.

Initially the state error will converge to the origin, but given the dependency on system

113



Figure 53: Error Space Trajectories of Ideal (ei) and Real Estimator (e) (Force Input)

state, as the system moves in response to the command u it will diverge from the origin

and as the system state converges, the state error will converge to an equilibrium point

corresponding to that specific system state as demonstrated by Figure 53.

What this means is that parametric error is capable of producing bias in the state

estimates. States which are used as measured outputs exhibit very little estimation error,

but unmeasured states experience bias in proportion to the amount of modeling error and

the current trajectory error, (z−z∗). If the model and system plant share equilibrium states,

(z∗), for a given set point, (u∗), the estimation error will eventually converge to zero, but at

the rate of the system decay, and not the desired convergence rate of the estimator. Finally,

if the model and plant have disparate equilibrium states the estimation error will persist if

the desired set point is not the origin of the state space z = 0.

5.2 Extensions to other Estimation Structures

While this initial discussion has focused primarily on traditional Luenberger type linear

estimators, most observers are based on these principles. They, therefore, suffer similar

performance degradation in the presence of modeling error. Additional strategies have

been tested both in simulation and experimentally applied to the FLASHMan testbed.

The following discussion will include results of both optimal and robust estimation

strategies for observing the flexible system states of the FLASHMan testbed. Strategies

for tuning are presented to improve the robustness of these approaches to modeling error.
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However, the overall problem persists.

Without a quantitative measure of the accuracy of a given state estimate, from a single

static estimator, errors will persist with the potential to significantly degrade the closed loop

performance. In chapter 6 a strategy is proposed which successfully incorporates multiple

sensors and multiple estimators to form a robust solution for the estimation of flexible

system states.

5.3 Discrete Time Kalman Filtering for Flexible State Estimation

The Kalman filter (KF), since its introduction in the 1960’s, has found widespread

adoption for state estimation problems in dynamic systems subject to measurement noise.

Studied unremittingly since its inception, the Kalman filter and its many variations have

been discussed and implemented in a nearly limitless body of literature. To that end, this

discussion will not attempt a repeat of the vast body of work. Instead it will focus on

the specific application and the utility of the approach for robust state estimation under

conditions of parametric uncertainty.

Kalman filtering was developed by R.E. Kalman [47] and serves as an statistically opti-

mal recursive estimation routine for systems with Gaussian measurement and process noise.

The Kalman filter is a conditional mean estimator, in that it attempts to estimate the con-

ditional mean of the system state given a noisy state estimate, (i.e. determine ẑk ∶= E [zk∣yk]

where zk and yk are Gaussian distributed random variables).

Let the stochastic representation of the system be described by

z̄k+1 = E [zk+1∣yk] = E [Adzk∣yk] +E [Gwk∣yk] (236)

where wk is a zero mean vector which represents the system process noise, (i.e. noise internal

to the states). Therefore the propagated state estimate (estimate in between measurements)

is

z̄k+1 = Adẑk (237)
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Likewise the propagated estimate error covariance (Mk+1) is

Mk+1 =E [(zk − z̄k+1) (zk − z̄k+1)T ∣yk] (238)

=E [(Ad (zk − ẑk) +Gwk) (Ad (zk − ẑk) +Gwk)T ∣yk] (239)

=AdE [êkêTk ∣yk]ATd +GE [wxwTk ∣yk]GT (240)

=AdPkATd +GQGT (241)

where Pk is the estimate error covariance immediately after measurement

Pk = (M−1
k +CTd R−1Cd)

−1
(242)

and Q is the process noise covariance which is assumed to be constant for all time (i.e.

process noise Gaussian characteristics do not change with time).

The minimum variance estimate minimizes the mean square of the estimate error, and

is the goal of the estimation routine.

ẑ = argmin (E [(z − ẑ)2 ∣y] , ẑ) (243)

This problem simplifies to determining the state z at which the conditional probability

distribution function

fx∣z =
1

(2π)n ∣P ∣
1
2

eφ (244)

where,

φ = [(z − z̄) − (M−1 +CTR−1C)−1
CTR−1 (y −Cz̄)]

T
(M−1 +CTR−1C) (245)

× [(z − z̄) − (M−1 +CTR−1C)−1
CTR−1 (y −Cz̄)] (246)

reaches its mean value. The result is the optimal estimate

ẑ = E [z∣y] = z̄ + (M−1 +CTR−1C)−1
CTR−1 (y −Cz̄) (247)

116



or written in a more familiar form processing sequential measurements instead of batch

measurements:

ẑk+1 = z̄k +L(yk − ŷk) (248)

where the observer gain is,

L = PkCTd R−1 (249)

Therefore, the Kalman filter consists of two distinct stages a prediction stage and an

update stage.

1. Prediction Stage

(a) Calculate apriori estimate z̄k∣k−1

(b) Calculate error covariance Pk∣k−1

2. Update Stage

(a) Sample measurement signal yk

(b) Calculate Kalman gain Lk

(c) Update state measurement ẑk∣k

Note that the recursive gain only varies in Pk, which in turn, contains no state or

measurement dependent terms. Therefore, the estimator gain has no dependency on the

current system state or measurement and can be precomputed. Furthermore as k → ∞

Pk→∞ and Lk → the infinite time horizon Kalman gain L∞, which can be determined a

priori via the solution of the algebraic Ricatti equation (ARE):

AdP∞ + P∞AT − P∞CTR−1CP∞ +Q = 0 (250)

The resulting infinite time horizon Kalman gain is

L = P∞CTR−1 (251)
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Without the recursion, this means the Kalman filter is simply an optimally designed

Luenberger state observer. As discussed in the following section, even with the recursion,

parametric error results in poor system performance, degrading both the noise rejection

properties of the Kalman filter and producing bias in the estimates.

5.3.1 Tuning Kalman Filters and Robustness Concerns

A Kalman filter is only “optimal” if a perfect model is available, the measurement

covariance is known exactly, and the process noise covariance is known (an speculative

assumption for any real system). Furthermore, perturbations to the measurements or state

variables from external sources must be zero mean Gaussian valued random additions. These

assumptions being infrequently validated, tuning a Kalman filter to achieve the desired

performance characteristics becomes less rote mathematical evaluation and more of an art-

form.

Determining the best Kalman gain for an application becomes a matter of tuning the

process and measurement noise covariance matrices in order to reject the measurement

noise. According to [92] (for a scalar system)

mk+1 = a2
dpk + q (252)

pk =
mkr

q +mkc2
(253)

lk =
pkc

r
(254)

and therefore the Kalman gain is determined by the balancing of the process noise covariance

q and the measurement noise covariance r. Letting r → 0

lim
r→0

lk =
pkc

q
= c

r
mk

+ c2
= 1

c
(255)

and the state estimate becomes

ẑk = z̄k +
1

c
(zk − cz̄k) =

zk
c

(256)
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Obviously this means that the state estimate is only a function of the measurement, and the

model information is completely discarded. Conversely if the measurement noise covariance

r →∞

lim
r→∞ lk =

mkc

r +mkc2
= 0 (257)

i.e. the measurement is completely discarded and only the model is used to estimate the

state:

ẑk = z̄k + 0(zk − cz̄k) = adẑk−1 (258)

Thus, the traditional procedure for tuning a Kalman filter is to directly measure the

measurement noise covariance R through statistical analysis of the measurement signal, and

then tune Q to achieve the desired level of filtering. By increasing Q more weight is placed

on the measurements and by decreasing Q more emphasis is placed on the model in the

state estimate.

If the model and internal system were perfect (i.e. no process noise, and no parametric

error), there would be no need for measurement if the initial conditions were synchronized.

However in practice this is never the case and increased process covariances Q are fictitiously

attributed to modeling error to place extra weight on the measurements [62]. While this

prevents the estimation error from diverging, it does not correct for the equilibrium bias

error observed in the traditional Luenberger estimator [65](section 5.1.2).

“Robust” forms of the original formulation have been developed by many researchers,

e.g. [62, 78, 107], which limit the filtering error covariance to a minimum value for a given

level of parametric uncertainty. However this only enhances the consistency of the estimator

over a range of values, relative to a Kalman filter designed without regard to the potential

of parameter error, and not the accuracy of the estimates themselves, i.e. e → e∗ +∆e∗ as

t→∞ at steady state where ∆e∗ ≤ ε and not e→ 0 as t→∞.

5.3.2 Extended Kalman Filtering

If the parameter is not uncertain, but changes reliably and with known value as a func-

tion of time, the extended Kalman filter (EKF) can be applied. For the case of multiple
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degree of freedom manipulators, the system state description is a function of joint variables

which change continuously in time and are well known [60]. Coupled non-linearly, these joint

variables affect the characteristic vibratory modes of the system (which are often modeled

inaccurately). The result is a nonlinear description of the system dynamics. Application of

the extended Kalman filter allows the extension the preceding analyses through lineariza-

tion of the full nonlinear model of the system at each time step. From this linearized model

a statistically optimal Kalman gain is generated. While capable of handling time depen-

dent parameters, the problem of persistent estimate bias when error exists in the model

parameters remains.

A summary of the extended Kalman filter algorithm (as described in [62]) is presented

below.

� System and measurement model:

ż = a(z, u, t) +Gw (259)

yk = c(z(tk), k) + vk (260)

� Jacobians:

A(z, t) = ∂a(z, u, t)
∂z

(261)

C(z) = ∂c(z, k)
∂z

(262)

� Time update:

˙̂z = a(ẑ, u, t) (263)

Ṗ = A(ẑ, t)P + PAT (ẑ, t) +GQGT (264)
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� Measurement Update:

Lk = P̄ (tk)CT (z̄k) [C(z̄k)P̄ (tk)CT (z̄k) +R]−1
(265)

˙̂z = z̄k +Lk(yk − ŷ−k ) (266)

Note that the primary difference between the extended Kalman filter and the Kalman

filter (aside from the nonlinear model) is the time and state dependence on the error co-

variance P . This means that the Kalman gains must be computed each time interval rather

than being precomputed or statically approximated as was the case in the KF procedure.

5.4 Robust Observers for Measuring Flexible System States

Many additional “robust” methods for determining flexible system states have been

reported in the literature including, but not limited to, fuzzy logic [45], neural network [1],

and sliding mode estimators [23, 69, 70, 105]. Sliding mode estimators were chosen for this

work primarily because of their increasing popularity and reported performance guarantees.

Implemented on the FLASHMan testbed, a benchmark comparison of the sliding mode

estimator and traditional Kalman filter was performed to asses the validity of the claims

reported in the literature. To that end, what follows is a general description and evaluation

of the sliding mode observer (SMO) and its applicability to the task of reconstructing flexible

system states for the control of robotic manipulators.

The function of the sliding mode observer is very similar to sliding mode control, a prod-

uct of variable structures systems theory. The general analysis for these types of systems

requires a segmentation of the state space, where the dynamics are governed by sepa-

rate differential equations. The boundaries between segments are generally discontinuous.

Therefore, the full dynamics of a system are represented as a piecewise continuous nonlinear

function [111]. A subclass of hybrid systems referred to as variable structure systems have

been studied since the early 1950’s and resulted, most prominently, in the development of

sliding mode control.
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5.4.1 Sliding Mode Control

Sliding mode control is a nonlinear control method which influences the dynamics of

a system through the application of a large discontinuous control effort. This large gain

forces the state trajectory to a hypersurface in the state space called the “sliding surface”

(s = 0). Once on the sliding surface (or hyper plane for Rn, n > 3), the gain keeps the

state confined to the surface, where the trajectories have desirable characteristics and are

invariant to parametric variation.

The process of deriving a sliding mode control is two-fold. First, one must choose a

sliding surface s which exhibits desirable state trajectories. For example, the spring-mass-

damper system (187) is fully described by the states corresponding to position (x1) and

velocity (x2). By choosing a sliding surface s = e1+λe2 where e = x−x∗ the error trajectories

are confined to a line which passes through the origin of the error space. Therefore, the

state error will, after being driven to the sliding surface, converge exponentially to the

origin of the error space (i.e. to the desired equilibrium state). The inclination of the

sliding surface (λ) determines the performance of the closed loop system. As shown in

Figure 54 the steeper the sliding surface (i.e. greater λ), the less position and more velocity

error tolerated. Conversely, a shallow sliding surface corresponds to large position and

smaller velocity error.

For position control, the steeper the sliding surface the more responsive the control

system becomes (theoretically). There are, however, practical considerations, which can

limit the achievable performance metrics of the controlled system. These limitations are

discussed in section 5.4.2.

5.4.2 Limitations and Undesirable Behavior

One of the primary limitations of sliding mode control is the large gain applied to

the actuators. Often resulting in actuator saturation, the large switching gain can excite

unmodeled dynamics, wastes energy and results in undesirable chatter around the desired

sliding surface [7].
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Figure 54: Inclination of the Sliding Surface si = e1 + λie2λ1 < λ2

Chattering occurs because of the practical impossibility of coincidence of the error tra-

jectory with the sliding surface. In reality, the true error will always lie close but not

coincident with the sliding surface. The signum function, therefore, applies the large sliding

mode gain, pushing the trajectory across the surface where the gain direction is reversed

again and over-shoots the surface. Thus, the error trajectory “chatters” across the surface

as it “slides” to the origin of the error space as illustrated in Figure 55. Practical imple-

mentations of sliding mode control rely on high sampling rates and low control bandwidths

to filter this high frequency chatter and avoid excitation of resonant system dynamics.

Other chatter mitigation strategies have been employed, including the implementation

of a boundary layer and the insertion of integrators on the input side of the dynamics to

raise the order of the system. These additions result in continuous inputs to the physical

system [7]. By far the most popular of these techniques is the insertion of a boundary layer,

below which the switching gain is replaced with a linear gain proportional to the distance

from the sliding surface as demonstrated in Figure 56. Care must be taken however to avoid

compromising the disturbance rejection properties of the sliding mode controller associated
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Figure 55: Chattering Behavior of Sliding Mode Control

with the high gain switching control.

Figure 56: Boundary Layer Error Trajectory

5.5 Sliding-Mode Observation

Sliding-mode observers have widely been reported as a solution to the robustness issues

present in typical state estimators. This result is generally attributed to a reported theoret-

ical invariance to disturbances and parametric uncertainty during this sliding phase. While
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many unique formulations have been employed, for linear and nonlinear systems, most slid-

ing observers are predicated on the notion that a large gain is used to enforce a negativity

constraint on the derivative of the Lyapunov energy function associated with the system.

While the Walcott and Zak [103] observer form is used in this examination, the analysis of

many sliding observer structures are similar, (e.g. the works in [24,31,32,52,111]).

Let a state estimator be defined with a structure similar to the linear observer, with an

additional nonlinear sliding-mode term as defined in [103].

˙̂z = Az +Bu +L(y − ŷ) +Kssgn(y − ŷ) (267)

Where,

Ks = ρsP −1CT (268)

Then the error dynamics of the estimator, given the plant (192) with parametric uncer-

tainty confined to the state and input matrices, can be described by (269).

ė = A0e −Kssgn(Ce) +∆Az +∆Bu (269)

If the Lyapunov equation is chosen as

V = eTPe (270)

then it can be shown that the derivative

V̇ = − eTQe − 2ρs ∥Ce∥ + [zT∆ATPe+

eTP∆Az + uT∆BTPe + eTP∆Bu] (271)

can be manipulated by the scalar gain ρs to dominate the terms which result from

parametric uncertainty. This enforces a negative definite constraint and establishes sufficient
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conditions for stability of the estimate error. If one were to restrict the types of parametric

error under the (“matching”) assumptions made in [103], (i.e. ∆Az = P −1CTh(t, z) and

∆Bu = P −1CTw(t)), then if ξ(t, z) = h(t, z) +w(t), then (271) reduces to (272).

V̇ = −eTQe − 2ρs ∥Ce∥ + 2eTCT ξ(x, t) (272)

To ensure the negative definiteness of this expression, one must simply choose ρs >

∥ξ(x, t)∥. Often in the literature this, or similar analyses are used to prove that ẑ → z

and therefore e → 0 [103, 104, 111]. Lyapunov stability asserts that if the derivative of a

satisfactory Lyapunov candidate function is negative definite, then the system will converge

to an equilibrium point of the system. Thus, the former argument is predicated on the

assumption that the equilibrium of the error system is the origin. However, from (269) it

is immediately obvious that while ∆Az ≠ −∆Bu, e∗ ≠ 0. Therefore, as t →∞, e → e∗(z, u).

This relationship indicates that one would expect similar behavior to linear estimators

under conditions of parametric uncertainty. In fact, the only assertion that can be made

from (272), without extremely restrictive assumptions on the specific type of parametric

error, is that the convergence rate of a sliding-mode estimator to the equilibrium error

state will be equal to or faster than the underlying linear estimator itself [103]. This is

a consequence of the large “bang-bang” style gain used to drive the errors to the sliding

surface.

5.5.1 Return to the Single Degree-of-Freedom Example

To demonstrate the convergence properties of the sliding-mode observer, recall the single

degree of freedom mass-spring-damper example from section 5.1.4. Assuming identical levels

of parametric error and simulation parameters as described in Tables 6 and 7, and given

measurements of the cart’s position as the chosen output, the state estimates are shown

in Figures 57 and 58 for ρs = 10 and Q = I(2x2). While the position estimates again track

well and converge more quickly than the Luenberger estimates, the velocity error in the

transient regime is significant and appears to offer no clear improvement over the linear

estimator in Figure 47.
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Figure 57: Simulated SMD Position Estimate (Position feedback)

From a plot of the error space (Figure 59) it is obvious that the switching gain forces the

state error to the sliding surface, and initially the error slides down the surface to the origin.

After initial convergence, motion is initiated causing a perturbation of the equilibrium state

and forcing the error state away from the origin. The sliding mode gain keeps the errors

confined to the surface but does not drive the error state to the origin. Instead, errors

converge to the origin only once the oscillations of the mass-spring-damper system settle.

If parametric error is experienced in the output or feed-through matrices, then the

orientation of the sliding surface itself will be state and input dependent. Thus the “instan-

taneous sliding surface” is a hyperplane which passes through the origin but its orientation

varies with time dependent parameters. As the orientation changes, the error state is forced

to the new surface and begins sliding towards the equilibrium point defined by the current

state and input, coincident with the instantaneous sliding surface.

While significant design freedom is available to the control engineer in the form of scalar

gain ρ, linear gain L, and the positive definite matrix Q, performance is directly linked

to the command input and true state. While manipulation of these variables, along with

boundary layer function λ in the case of the boundary layer sliding mode observer, can

result in performance and robustness improvements relative to a poorly designed estimator,
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Figure 58: Simulated SMD Velocity Estimate (Position feedback)

the technique itself suffers many of the same limitations observed in linear estimators for

parametrically uncertain systems.
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Figure 59: Error Space Trajectories of Ideal (ei) and Real Estimator (e)

5.5.2 Simulation Results

Simulations of the FLASHMan testbed under different payload estimates were performed

for the express purpose of determining the performance of the Wallcot and Zak sliding mode

observer (SMO) in comparison to a traditional Luenberger observer for the reconstruction

of flexible system states. An observer of the form (267) was designed with a scalar value

ρs = 0.005 and Q = 1E5, chosen through iteration to limit noise and ensure fast convergence

of the estimated output to the true output (estimated tip acceleration to measured tip

acceleration). Luenberger gains of

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0236

0.0109

0.0070

0.0951

−10.3294

−0.0781

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Table 8: Motion Profile
Parameter Value Unit

Displacement 0.2 m
Maximum Velocity 2 m/s

Acceleration 30 m/s2

Dwell 4 s

Table 9: Nominal Model Parameters
Parameter Value Unit

Payload (mt) 0.281 kg
Cart Mass (mc) 10 kg
Arm Length (L) 0.42 m

Elastic Modulus (E) 7E10 N/m
Density (ρ) 2700 kg/m3

Area Moment (I) 1.0114E−10 m4

Belt Stiffness (Kb) 2.1814E5 N/m
Cart Damper (Cd) 100 Ns/m

Structural Damping Coefficient (γ) 0.0005 Ns/m

were used for both the SMO and traditional linear estimator. A version of the SMO with a

boundary layer (BLSMO), below which the discontinuous gain sgn(y− ŷ) is replaced with a

linear gain, was also implemented. Each observer system was used to track the manipulator

given a cycle of open loop trapezoidal velocity profile moves xm(t) as described in Table 8.

To excite the vibratory dynamics, the chosen trajectory is very aggressive, approaching the

actuator limits of the robot.

Performance is assessed by examining the estimated tip position, which is calculated

from the state estimates, and the true tip position. Under nominal conditions (table 9) each

observer performs nearly identically, the only difference being the increased noise of the SMO

and BLSMO from chatter as illustrated in Figure 60. To assess the performance degradation

under varying levels of parametric error, the modeled tip mass (mt) was perturbed from the

nominal value. Note that while tip mass (i.e. payload) was chosen, for ease of experimental

modification as demonstrated in chapter 6, any of the system parameters which effect the

system’s natural frequencies and damping ratios yield similar results.

When the tip mass is over estimated (mt = 0.45kg), the modeled natural frequencies

are lowered and for a given acceleration measurement the amount of tip displacement is

exaggerated relative to the true value. As shown in Figure 61, the performance of the
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Figure 60: Nominal Estimates of Tip Position

estimators is comparable, with all significantly overestimating the actual tip displacement.

Eventually the estimated tip position and true position would converge as the result of

damping in the physical system. However, while oscillations persist, significant estimation

error persists.

Figure 61: Estimates of Tip Position with Over Estimation of Tip Mass

If instead the value of the tip mass is underestimated (mt = 0.1kg) the result is as shown

in Figure 62. Because of the dependence on the output matrix C in the definition of the
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sliding mode gain Ks (268), the parametric variation of C results in larger sliding mode

gains, increasing the chatter.

Figure 62: Estimates of Tip Position with Under Estimation of Tip Mass

As expected, as the parametric error grows, the estimation error increases. Figure 63

is a direct comparison of the mean squared estimation error for perturbations of the tip

mass below and above the nominal value. For this application, the sliding mode observer

provides no appreciable benefits over a traditional observer in terms of diminishing mean

squared error. In fact, with the addition of chatter, noise is introduced into the system

increasing the error.

Estimation error is indicative of control system performance, the larger the error, the

worse the performance. Therefore, in order to ensure adequate performance of the complete

control system, a maximum acceptable level of estimation error must not be exceeded.
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Figure 63: Mean Square Estimation Error

5.6 Experimental Results

Experiments were carried out to assess the ability of the sliding mode estimator to

expand the stability bounds and improve performance of the FLASHMan testbed with un-

certain parameter estimates. A linear output-weighted quadratic regulator, with penalties

on tip acceleration and cart position, was used to control the position of the payload, while

traversing motion cycles identical to those in Section 5.5.2, and a NI SmartCamera machine

vision system was used as an unbiased ground truth measurement of tip position.

Figure 64 illustrates the structure of the complete control system. The state feedback

controller produces a desired belt displacement which is implemented via a tight PD con-

troller around the drive motor’s position. The shaft mounted encoder measurement is used

as the input to the state observer, and the sole output feedback measurement is obtained

through a single MEMs accelerometer mounted near the tip of the arm. Nominal values

of the system parameters were identified as those from Table 9 and the model of the flex-

ible system is identical to the one used in the simulations of Section 5.5.2. However, the

linear estimator gains were chosen via an infinite time horizon Kalman filter formulation

to reduce the contribution of sensor noise to the comparison. All performance metrics of

the system response were evaluated using the camera measurements and not the observer
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estimates. Control loops were evaluated at 1000Hz and vision measurements were reported

at an approximate rate of 30Hz and accuracy of approximately 0.0004m.

Figure 64: Complete Control System Diagram

Given a nominal system model, the controlled system response to the trajectory exhibits

a significant reduction in oscillation and settling time when compared to the open loop

response, as illustrated in Figure 65. A significant increase in damping ratio is also noted.

At issue is whether the addition of a robust estimator improves the stability margin and

extends the performance benefits of the nominal system to a perturbed system in which

error exists in one or more parameters.
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Figure 65: State Space vs. No Control

For the purpose of this study the modeled mass of the payload was perturbed from

its nominal value to determine the deterioration of control performance. Figure 66 demon-

strates the range of system responses for the sliding mode estimator given the minimum and

maximum values of tip mass chosen experimentally to lie at the upper and lower bounds of

stability. Above a modeled tip mass of 0.375kg, the first mode of vibration (1st beam mode)

becomes marginally unstable and quickly destabilizes, and below 0.225kg, the second mode

of vibration (the cart/belt mode) destabilizes, regardless of the observation strategy. Thus,

experimentally, the sliding mode observer does not usefully extend the stability bounds of

the system beyond those offered by the Kalman filter.
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Figure 66: Measured Responses Using Sliding Mode Observer for Different Modeled Tip
Masses (*indicates nominal value)

The comparison of damping ratios in figure 67 (equivalent damping ratio of a second

order system evaluated via logarithmic decrement procedure assuming only the range of

peaks between the maximum peak and the first peak within 5% of target position) over the

range of parametric variation indicates a marginal performance increase through the use of

a sliding mode estimator. The addition of a boundary layer eliminates this advantage and

significantly deteriorates damping performance for tip mass values below the true value.
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Figure 67: Damping Ratio vs Tip Mass

Results are similar for the 5% settling time metric as demonstrated in Figure 68. The

sliding mode observer exhibits marginal performance improvements over the Kalman filter

and BLSMO over the range of parametric error.

Figure 68: Settling Time vs Tip Mass

While slight improvements are observed in the performance metrics of the controlled

system responses, the sliding mode observer also results in significant chatter, which adds

noise to the system estimates, and therefore, to the control actions. This chatter results in
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an audible hum of the servo drive at the sampling frequency.

These results bare practical significance as they expose a fundamental property of state

estimators. With a limited set of unique measurements, k where k < n a mapping M1 ∶Rk →

Rn maps the measurement to the state space and is defined by the provided dynamic model

of the system. In the case of an errant model, these k measurements will produce an incorrect

state vector which is mapped back into the the measurement space by M2 ∶ Rn → Rk

(defined by output and feed-through matrices) to produce k error signals. The error signals

are used to adjust the n states by manipulating the initial conditions of the dynamic system

through the observer gain. If the k error signals have converged to zero, all n states are

assumed to have converged as well. However, this is simply a sampling of the error in the

states, and this assertion requires that both mappings M1 and M2 be accurately known.

If for example, the measurements are the states, M2 only maps the k states back to the

measurement space, and no feedback of the n−k unmeasured states is provided, no control

action can be applied to drive these unmeasured states to the true state values, regardless

of the approach taken for gain selection. Only by correcting the mappings M1 and M2 can

the true state be extracted from a set of k unique measurements.

5.7 Remarks on the Use of Single Model/Single Sensor Estimators

Given that the sliding mode observer has been demonstrated to be of only marginal

improvement over more traditional linear estimators, the problem of flexible state variable

estimation in the presence of parametric uncertainty remains. However, the equilibrium

state definitions derived in this work lead to an interesting and novel solution to this prob-

lem.

From the preceding analysis it has been demonstrated that an estimator will drive the

output error to zero at the expense of estimate error. For a single sensor feedback signal,

only one error quantity is available, and when that error is driven to zero, the estimator

is assumed to have converged to the true state values. As demonstrated, this is only

the case for a perfectly modeled system. Flexible link manipulators are unique in that

their displacement fields are functions of their mode shapes. This means that a sensor
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placed in one location and another placed in a separate location on the same link provide

measurement signals which are disparate linear combinations of the modal responses. These

modal responses are, in turn, affected by parametric error to differing relative degrees.

Since a single estimator using a single sensor is essentially blind to its own state error,

the only way to correct the state estimates is to adapt the true model parameters [96].

Using multiple sensors placed in locations described in Chapter 4, multiple error signals are

generated, permitting quantification of the estimator performance. In Chapter 6 multiple

sensors and multiple estimators will be utilized in the creation of a novel multiple model

adaptive estimator structure. This estimation approach uses the equilibrium analysis of

Section 5.1.2, to determine the true parameters. In doing so, the true state vector is also

recovered.
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Chapter VI

MULTIPLE MODEL ADAPTIVE FLEXIBLE STATE ESTIMATION

In order to form a general solution for the problem of correctly identifying the state of

a flexible manipulator under conditions of parametric uncertainty, it becomes necessary to

correct any errant parameters and recover the true dynamic model. The degree to which

this task can be accomplished is directly linked to the control system’s ability to cancel

vibrations and improve the utility of these devices. While the discussion in chapter 5 brought

to light the persistent bias and performance degradation of flexible manipulators when the

underlying estimation model contains parametric error, no form of gain manipulation can

correct for this action. Furthermore, traditional estimators are, in a sense, unaware of any

estimate errors resulting from parameter error as the true state is unavailable. However, this

fact can be utilized to develop a robust solution in the form of a multiple model adaptive

estimator.

A series of multiple model adaptive estimators is generated in the following analysis,

which offers the ability to select the true state from a bank of state estimators executed

simultaneously. This is accomplished by utilizing the knowledge that the level of parametric

error is directly proportional to the persistent bias in the state estimates. Therefore, a

selection metric can be defined which chooses the correct state estimate or combination

of state estimates for the operating regime, while also identifying the best approximation

of the true (unknown) parameter. Finally, a complete multiple model control system is

developed and implemented on the FLASHMan testbed, consisting of an adaptive multiple

model estimator and multiple model control.

6.1 Operating Principles

As previously discussed, parametric bias results in perturbations to the error dynamics

of an estimator which seek to drive the system to equilibrium points other than the origin.

Therefore, modeling error results in persistent errors between the estimated and true state
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values. These results are reproduced in (273).

ėsi(t) = (A −LsiCsi) e(t) + [∆A(t) −Lsi∆Csi(t)]z(t)

+ [∆B(t) −Lsi∆Dsi(t)]u(t) (273)

Meaning that at steady state, the estimation error converges to an equilibrium position,

e∗si(t) = (A −LsiCsi)
−1 [∆A(t) −Lsi∆Csi(t)]z(t)

+ (A −LsiCsi)
−1 [∆B(t) −Lsi∆Dsi(t)]u(t) (274)

as previously discussed. Note that “steady state” again implies that the state error has

converged to its equilibrium value and not that the controlled system has reached steady

state (much slower). For the latter, when the true plant and model have equivalent equilib-

rium states, as is often the case for reduced order models, at tss, [∆A −Lsi∆Csi] z(tss) =

− [∆B −Lsi∆Dsi]u(tss). Therefore, after the controlled system has converged to a static

state z(tss) corresponding to a static input u(tss), the estimate error will vanish.

In the transient regime (after convergence of the estimate error, but before convergence

of the controlled system) the true state z(t) is unknown and therefore the estimate error

is unquantifiable. However, if it can be determined that e∗si(t) is nonzero, then it can be

asserted that estimate error exists and is in proportion to the modeling error. Unfortunately,

no quantitative measure of the estimate error can be determined from a single state estimate.

If instead, multiple distinct measurements are used to produce independent estimates of

the state vector, a direct measure of model inaccuracy can be determined under specific

conditions.
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6.2 State Estimate Difference Weighting

Modal models of systems can exhibit error in three potential aspects: natural frequency

estimates ω, modal damping estimates Ĉ, and the input state relationship Q̂. These er-

rors are directly correlated to errant state estimates from the closed loop state observers.

Conceptually, in a closed loop state estimator, the observer gain (L) drives the estimated

output (ŷ) toward the measured output (y) by manipulating the estimated states via the

injection of extra control effort into the estimator dynamics. This serves as an attempt to

recover from mismatched initial conditions. When the model is an accurate representation

of the true system, the effort (L(y − ŷ)) drops as ŷ tracks y, (i.e. after the initial conditions

have been matched). This is akin to using a small maintenance control effort to track a

desired trajectory vs. the control effort in response to a step command. However, if the

model is not a perfect match, the observer continues to inject control effort in an attempt

to achieve equality of these signals. This indicates that the level of persistent effort applied

by the estimator is in proportion to the level of parametric error in the underlying system

model when noise is mitigated with a suitable estimator design.

Figure 69 illustrates this effect for the end of arm accelerometer based FLASHMan es-

timates described in the preceding chapter. As the model parameters deviate from nominal

the error between the estimated and measured acceleration grows.

The effort applied is dependent on two factors, the output estimation error y− ŷ, and the

control gain L. Regardless of the method used to design L, the end result for a linear system

is a pole placement which determines the convergence properties of the estimator dynamics,

ideally ė = (A −LC)e. Placing poles through traditional methods (e.g. Ackerman, Kalman

filter, direct pole placement) is dependent on an inversion of the observability test matrix

or, in the case of the discrete time Kalman filter, the stochastic observability gramian. As

previously discussed, the gains produced through any design procedure will vary significantly

based on sensor location.

Given the FLASHMan gantry robot previously described, and with three accelerometers

positioned in their optimal placements from the preceding analysis (Figure 70). The sensor

positioned on the cart (S1 ) is an optimal placement for reconstructing the states associated
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Figure 69: Proportionality of Output Error to Parametric Modeling Error (FLASHMan
Nominal Model vs. Exaggerated Tip Mass (.75kg))

with the belt/cart mode of vibration. Likewise the sensor at the tip (S3) is optimal for the

1st mode of beam vibration, and S2 is optimal for the 2nd mode of beam vibration.

A quantity proportional to the magnitude of the modeling error can be constructed by

taking the difference between two estimates of the full system states produced from dis-

parate sensors.

State Estimate Difference Theorem

Let δz(t) = ẑs1 − ẑs2 then, assuming the estimator dynamics are significantly faster than

the plant dynamics,

δz(t) = χ1(∆Az(t) +∆Bu) + χ2(∆Cs1z(t) +∆Ds1u(t)) + χ3(∆Cs2z(t) +∆Ds2u(t)) (275)

where χ1, χ2, and χ3 are constant matrices and ∆A, ∆B, ∆Cs1 , ∆Ds1 , ∆Cs2 , and ∆Ds2

are the perturbations to the system matrices attributed to parametric modeling error.
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Figure 70: Flexible Gantry Robot with Multiple Accelerometer Placements

Proof. The dynamics of estimator 1, which uses sensor 1, are described in (276). A and B

are the modeled plant and input matrices, ys1 = (Cs1 +∆Cs1)x(t) + (Ds1 +∆Ds1)u(t), and

ŷs1 = Cs1 x̂(t) +Ds1u(t).

˙̂zs1(t) = Aẑs1(t) +Bu(t) +Ls1(ys1(t) − ŷs1(t)) (276)

Similarly, the estimator dynamics for estimator 2 using sensor 2 are

˙̂zs2(t) = Aẑs2(t) +Bu(t) +Ls2(ys2(t) − ŷs2(t)) (277)

and therefore, the state estimate difference dynamics ˙̂zs1(t) − ˙̂zs2(t) are described by

(278).

˙̂zs1(t) − ˙̂zs2(t) =A(ẑs1(t) − ẑs2(t)) +Ls1Cs1(z(t) − ẑs1(t)) −Ls2Cs2(z(t) − ẑs2(t))

+ (Ls1∆Cs1 −Ls2∆Cs2)z(t) + (Ls1∆Ds1 −Ls2∆Ds2)u (278)
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Again assuming the error states have converged to their equilibrium values (i.e. esi →

e∗si). In comparison to the estimator dynamics (very fast), the plant and estimate difference

dynamics are assumed to be quasi-static (δ̇z ≈→ 0).

0 =Aδz(t) +Ls1Cs1e∗s1(t) −Ls2Cs2e
∗
s2(t) + (Ls1∆Cs1 −Ls2∆Cs2)z(t)

+ (Ls1∆Ds1 −Ls2∆Ds2)u (279)

Substituting for e∗si in (279)

δ∗z (t) = −A−1 [Ls2Cs2(A −Ls2Cs2)−1 −Ls1Cs1(A −Ls1Cs1)−1] (∆Az(t) +∆Bu)

−A−1 [Ls1 +Ls1Cs1(A −Ls1Cs1)−1Ls1] (∆Cs1z(t) +∆Ds1u)

+A−1 [Ls2 +Ls2Cs2(A −Ls2Cs2)−1Ls2] (∆Cs2z(t) +∆Ds2u) (280)

and therefore,

δ∗z (t) = χ1(∆Az(t) +∆Bu) + χ2(∆Cs1z(t) +∆Ds1u) + χ3(∆Cs2z(t) +∆Ds2u) (281)

where χi are independent of the true values of the system parameters.

Thus, the magnitude of the estimated state difference is proportional to the cumulative

modeling error. In the simplest cases, when no parametric error is associated with the output

and feed-through matrices, ∆Az(t) +∆Bu can be directly calculated through an inversion

of χ1 (i.e. when the output is a direct state measurement or a known linear combination of

states). While complicated when the output and feed-through matrices contain parametric

error, there are only two contexts when the state estimation difference will be zero: 1)

when the system parameters are identical to the true parameter; and 2) when the true state

matches its equilibrium value (i.e., if the model and plant share equilibrium states).
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For flexible link manipulators with modal state space control systems and accelerometer

measurements, this relationship can be further refined. Recall that the state space equations

can be defined as:

ż =

⎡⎢⎢⎢⎢⎢⎢⎣

0(n×n) I(n×n)

−ω2
(n×n) −Ĉ(n×n)

⎤⎥⎥⎥⎥⎥⎥⎦

z +
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

0(n×m)

Q̂(n×m)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
u (282)

where ω and Ĉ are the modal frequencies and damping coefficients and Q̂ describes the

modal contribution of the input command to each state. In this form the measurement

from an accelerometer at a position xs1 can be described as,

ysi = [ − [1, ψ1 (xsi) , . . . , ψn (xsi)]Φn×nω2
(n×n) − [1, ψ1 (xsi) , . . . , ψn (xsi)]Φ(n×n)Ĉ(n×n) ]z

+ [ [1, ψ1 (xsi) , . . . , ψn (xsi)]Φ(n×n)Q̂n×n ]u

(283)

Let βsi = [1, ψ1 (xsi) , . . . , ψn (xsi)], as it was in chapter 3. Therefore, any parametric

modeling error in A, B, C, and D can be attributed to the sub-matrices ω2, Ĉ, and Q.

(∆Az(t) +∆Bu) =

⎡⎢⎢⎢⎢⎢⎢⎣

0(n×n)

I(n×n)

⎤⎥⎥⎥⎥⎥⎥⎦

([ −∆ω2 −∆Ĉ ] z(t) +∆Q̂u(t)) (284)

(∆Csiz(t) +∆Dsiu) = βsiΦ([ −∆ω2 −∆Ĉ ] z(t) +∆Q̂u(t)) (285)

The difference between the estimates produced by estimators using two separate ac-

celerometer measurements is

δz(t) =

⎡⎢⎢⎢⎢⎢⎢⎣

χ1

⎡⎢⎢⎢⎢⎢⎢⎣

0(n×n)

I(n×n)

⎤⎥⎥⎥⎥⎥⎥⎦

+ χ2βs1Φ + χ3βs2Φ

⎤⎥⎥⎥⎥⎥⎥⎦

([ −∆ω2 −∆Ĉ ] z +∆Q̂u) (286)

or more concisely
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δz(t) = Λ(2n×n)γ(t) (287)

Where Λ is a known transformation from the estimated state difference space to the

effective modal error space, R2n → Rn, where n is the number of modes considered in the

state space model of the flexible manipulator. γ(t) is therefore, at any time t a relative

measure of the parametric accuracy of the modal model (i.e. the first element of γ is an

indication of the accuracy of the natural frequency and damping attributed to the first

mode of vibration).

Note that this error quantity can be related to the difference between estimates of a

desired output quantity. For example, if accurate payload position estimates are desired,

the output yp is

ypsi = Cpzsi(t) + 0u(t) (288)

Therefore, the difference in position estimates from each observer is

yps1 − yps2 = Cp [zs1(t) − zs2(t)] = Cpδz(t) (289)

And consequently,

yps1 − yps2 = CpΛ(2n×n)γ(t) (290)

This means that the difference between two estimates of a projected output is also related

to the parametric error in the system model. In both cases, γ serves as a quantitative metric

directly linked to the level of modeling error. Since this quantity cannot be isolated from

the true state vector and input, the exact errors can not be directly determined. However,

if multiple estimators are utilized, γ offers an unbiased metric for comparing the relative

level of parametric error between identically designed estimators with disparate underlying

dynamic models. The goal, therefore, is to determine, the best state estimate in real time,

given multiple estimators operating on the same sensor information and command inputs.
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The least squares solution for γ (291) can be utilized directly and solved a priori, yielding

a computationally efficient method for comparing state estimators.

(ΛTΛ)−1
ΛT δ∗z (t) = γ(t) (291)

The norm of γ serves as a quantitative value on which a comparison of the accuracy of

multiple estimators can be based. The end result is a systematic approach for determining

the relative reliability of estimates produced with identical linear state observers with dis-

parate models of the dynamic system. Given the same set of measurements, state estimates

produced with more accurate models of the system will produce smaller γ(t) and, thus, be

given given a larger weight, wi, in the state vector selection algorithm.

6.3 Multiple Model Adaptive Estimates and the “Sub-Estimator”

Multiple model control and estimation systems were originally applied to highly non-

linear systems like the F-16 fighter jet and stimulated muscle tissue [72, 73], where the

dynamics change based on the operational mode. For the control of practical flexible ma-

nipulators it poses a simple and effective method of determining accurate system states

and approximate model parameters for these often complex and marginally stable systems

where the availability of accurate state information plays such a large role in control system

success.

While illustrated in two dimensions for the purpose of clarity in Figure 71, the multiple

model adaptive estimator can be carried out in as many dimensions as there are uncertain

model parameters. A bank of estimators is generated, each built on a slightly different

model, with the desired result of spanning the space of possible true parameter sets. The

end goal of which is to identify the estimator, and therefore, the state estimate which best

describes the observed behavior of the system. The finer the gradations in parameter varia-

tions the more accurate the end result, but accuracy comes at the expense of computational

efficiency requiring large estimator banks.

In this work, each estimate is produced in real time. Further, a selection routine is used

to identify the quality of the estimates, select from among the estimator bank, and fuse
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Figure 71: Multiple Model Adaptive Estimator Description

the most likely estimates to achieve the “best” state vector approximation. Often these

algorithms are predicated on the conditional probability of a state estimate being correct,

through the online adaptation of the system parameter, or through a priori assumptions of

the system behavior.

Instead of relying on the conditional probability of a particular model outcome, estima-

tion performance can be directly calculated by utilizing the derived relative state estimate

difference weighting routine. The general form of the MMAE is therefore nested with “sub-

estimators” which are used to calculate the state estimates and weights associated with

each model variant. A pictorial description of this arrangement is shown in Figure 72.

Each sub-estimator consists of three independent state estimators which are used to

produce the final state estimate and a weight corresponding to the reliability of the model.

Two of the observers, E2 and E3, use independent sensors to produce estimates which are

compared to form the state estimate difference weight. The third, ET uses all the sensor

measurements to produce the best possible estimate of the true state.

Therefore, each observer in the MMAE consists of a sub-estimator. Producing the true
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Figure 72: Nested Estimation - State Estimate and Weight Generation

estimate of the system state then becomes a matter of using the generated weights to fuse

the state estimates from all of the individual observers.

For design purposes ∥γ∥ is not directly utilized, instead a modified weighting quantity

is defined in (292) which provides a value between 0 and 1.

wi = ( 1

eρ[γT (t)Wγ(t)])
p

(292)

W(n×n) is, therefore, a weighting matrix which determines which modes are considered

to be the most important for accurate state reconstructions. For example, if the controller

heavily penalizes the first mode of the system, it is important to have an accurate esti-

mate of that mode, while the others can be weighted less significantly in the estimation

routine. Increasing p provides additional separation between weights of relatively similar

state estimates.

6.4 Multiple Model Switching Adaptive Estimator (MMSAE)

The simplest way to utilize the generated weights is to simply select the state estimates

corresponding to the nested observer with the most desireable weight. This process is

illustrated in Figure 73.

While Figure 73 illustrates payload estimation, any unknown parametric error can be

corrected in the same fashion. The end products from this form of estimation are the

“best fit” state estimate and an approximation of the unknown model parameter. While
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Figure 73: Multiple Model Switching Adaptive Estimator

switching between the estimates is the simplest method, it results in discrete jumps in the

resulting state observations. The unknown parameter and state estimate are determined

from only one nested state estimator, meaning that if the quantization of the parametric

space is too coarse, poor approximations of the state vector and parameter will be chosen. If

two or more observers operate with similar levels of modeling error, the selection algorithm

will switch back and forth between them: this switching is exacerbated in the presence of

measurement noise.

6.4.1 MMSAE Simulation

Simulation of the MMSAE algorithm for identification and compensation for uncertain

payloads of the gantry style FLASHMan flexible manipulator in Figure 70 were performed.

Nominal parameters for the system used in the simulations are listed in table 10.

Five potential payload values were chosen in even increments between lower and upper

bound estimates of 0.2kg and 0.3kg, as listed in table 11.

The simulated manipulator was given an open loop command of the belt motion, and

sensor responses (accelerations) at the positions listed in Table 12 along the flexible link

were simulated as outputs to the MMSAE.
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Table 10: Nominal Simulation Parameters

Parameter Value Unit

Payload (mt) 0.281 kg
Cart Mass (mc) 10 kg
Arm Length (L) 0.42 m

Elastic Modulus (E) 7E10 N/m
Density (ρ) 2700 kg/m3

Area Moment (I) 1.0114E−10 m4

Belt Stiffness (Kb) 2.1814E5 N/m
Cart Damper (Cd) 100 Ns/m

Structural Damping Coefficient (γ) 0.0005 Ns/m

Table 11: MMSAE Simulation Payloads

Estimator E1 E2 E3 E4 E5

Payload Estimate (mt) 0.200 0.225 0.250 0.275 0.300

In the absence of measurement noise, the resulting state estimate difference weights

produced by the MMSAE are shown in Figure 74. With larger weights indicating a more

accurate state estimate, it is clear that the estimators built on 0.275kg and 0.300kg payloads

perform the best. However, it is also apparent that the weights peak in correspondence with

state equilibrium crossings. Initially crossings are observed in all modes of vibration as state

trajectories oscillate around the commanded equilibrium states (i.e. [ −∆ω2 −∆Ĉ ] z(t) =

−∆Q̂u(t)). As the modes converge to their steady state values in accordance with their

damping ratios, the frequency of the weight oscillation diminishes to 2T1 corresponding to

the oscillation about the equilibrium state where T1 is the period of oscillation corresponding

to the 1st mode of vibration. Furthermore as all the modal energy dissipates, the system

settles to its equilibrium value and γ → 0⇒ wi → 1. Meaning that since the estimators share

equilibrium states, as the system settles to the equilibrium all the estimators accurately

predict the true state.

As a result, for practical implementation purposes, weights can be low-pass filtered or

averaged over time to smooth discrete peaks and avoid unnecessary switching when the

predicted state estimate from a less reliable observer happens to instantaneously match the

true state. Figure 75 shows the evolution of the estimator weights low pass filtered with a
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Table 12: Sensor Placements

Sensor # s1 s2 s3

Location (m) 0.015 0.250 0.420

Figure 74: Unfiltered State Estimate Difference Weights Without Noise

time constant of 1 second and weighting all modes equally.

These weights are used to produce an estimate of the payload mass as shown in Figure

76. Note that the switching algorithm simply selects the state vector from the observer

which receives the largest weight at the current time-step. Therefore the true parameter

value is only approximated to the nearest discrete entry provided by the designer. From

Figure 76 it is apparent that 0.275kg estimator is the preferred choice given the 0.281kg

nominal value.

The resulting individual state estimates are presented in Figures 77(a) - 77(f) where

the states z1 - z3 are the modal coordinates of the system and z4 - z6 are the derivatives

of the modal coordinates. Because the payload estimate is constant over time, the selected

estimates are derived from a single estimator, E4. While not a perfect match, the estimates

are the closest to the true values out of all of the provided sub-estimators.
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Figure 75: Filtered Weights Without Noise

Figure 76: Simulated Payload Estimate
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(a) State - z1 (b) State z2

(c) State z3 (d) State z4

(e) State z5 (f) State z6

Figure 77: Simulation Results of Switching MMAE Without Measurement Noise
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When measurement noise is unaccounted for in the design of the estimator, the effect

will often corrupt the estimator weights resulting in poor parameter choices (Figure 78).

Increasing the observer gain only exacerbates this effect by decreasing the signal to noise

ratio.

Figure 78: Weights With Simulated Measurement Noise (white noise)

Figures 79(a)-79(f) illustrate the individual state estimates produced by the MMSAE.

Note in Figure 79(a), slightly after 2 seconds, the state estimate switches from a slight over

estimation to a slight under estimation of the true state as the MMSAE changes estimates

from the sub-estimator with 0.275kg as its payload to the sub-estimator with the 0.30kg

payload (see illustration in Figure 80). For this system, this error would not be enough of a

perturbation to result in performance degradation, but if the estimators were significantly

disparate, control effort resulting from the discontinuity of the state estimates could degrade

system performance and result in instability. The conditions on closed loop stability are

discussed further in section 6.7.
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(a) State - z1 (b) State z2

(c) State z3 (d) State z4

(e) State z5 (f) State z6

Figure 79: Simulation Results of Switching MMSAE With Measurement Noise
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Figure 80: Payload Estimate Under Conditions of Measurement Noise

For the sake of completeness, the simulation results for a MMSAE with uncertain cart

damping coefficient are below. Note that the parameters are identical to those in Table 10

from the preceding simulations with the exception that the true cart damping is 2000Ns/m

rather than 100Ns/m (correction from recent experimental model verification).

Figure 81 shows the cart damping approximation produced by the multiple model adap-

tive estimator given the weights and parameter range demonstrated in Figure 82. The trends

observed demonstrate similar characteristics as those for the payload estimates and indicate

the applicability of the MMSAE for any structured parametric error.
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Figure 81: Cart Damping Estimate

Figure 82: Weights for Cart Damping MMSAE
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6.5 Multiple Model Weighted Averaging Adaptive Estimator (MMWAAE)

Often the true parameters vary slowly with time, or the discontinuity associated with

the MMSAE approach results in exaggerated control signals. In these cases it may be

better to avoid switching between the sub estimators as a parameter changes, and instead

implement a multiple model weighted averaging adaptive estimator. The MMWAAE is

designed such that the state estimate is a linear combination of all of the estimates from

the sub estimators. Individual contributions are judged on the associated weights, with

those receiving high weights being most important. In that manner the resultant estimated

state vector is an interpolation of the sparse estimator structure allowing for the utilization

of intermediate parameter values. The structure of the MMWAAE is shown in Figure 83.

Care must be taken however to ensure that the weight magnitudes are significantly disparate

Figure 83: Multiple Model Weighted Averaging Adaptive Estimator

through conditioning of the weighting function. This requires a large enough spread such

that the predicted state is not simply an average of the state vectors produced by each sub-

estimator, but that the center of mass (mass in this case refers to the weighted summation
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of parameter estimates) can be perturbed such that it tends toward the true parameter.

6.5.1 MMWAAE Simulation

Again utilizing the nominal parameters in Table 10, simulations of the FLASHMan

testbed were performed using the MMWAAE to determine both the true state vector and

the estimated unknown parameter. From Figure 84 that the weights produced by the

MMWAAE are nearly identical to those produced by the MMSAE. However the estimated

parameter value (Figure 85) no longer switches between provided values, but takes inter-

mediary values between the provided model increments.

Figure 84: MMWAAE Filtered Weights Without Noise

As the vibrations subside, the weights approach 1 and each state estimate is weighted

equally, pulling the estimated parameter value to the average of the specified candidates.

This result illustrates the need for a persistence of excitation criterion for successful pa-

rameter identification. If the system is stationary, any of the models will produce accurate

state estimates. It is only once the system is perturbed from its equilibrium state that any

residual can be formed and used to identify the true parameter. Figures 86(a)-86(f) show
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Figure 85: MMWAAE Simulated Payload Estimate

the state estimates produced by the MMWAAE. Note that the initial state estimates are

relatively accurate, but as the system converges to its equilibrium state, the estimate error

grows to a constant value.
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(a) State - z1 (b) State z2

(c) State z3 (d) State z4

(e) State z5 (f) State z6

Figure 86: Simulation Results of Weighted Averaging MMAE Without Measurement Noise
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The addition of noise in the acceleration measurements serves as a small excitation to

the closed loop estimators, resulting in a convergence to the neighborhood of the true value

rather than the average value of the parameter candidates, as demonstrated in Figure 87.

Essentially eliminating very poor candidates, convergence occurs, not to the true parameter,

but to a weighted average of the best candidates for the true parameter.

Figure 87: Payload Estimate Under Conditions of Measurement Noise

While the parameter estimate is a useful byproduct of the multiple model adaptive

estimator, the desired results are accurate state estimates. As the system converges to

its steady state value incorrect estimators will be chosen on occasion. However, they are

chosen because they provide the state estimate with the least state error at any given time,

(i.e. the sub-estimator with the best model approximation does not necessarily produce the

best state estimates for all possible operating scenarios). For example, when the link is in

equilibrium and no longer vibrating, the measurement noise dominates the measurement

signal. If the ideal sub-estimator gains are larger than a less ideal sub-estimator, it will

respond more aggressively to the noisy error signals, increasing δz and lowering its weight in

the selection criteria. In this case it is actually better to choose a less accurate sub-estimator

with a lower gains as the state estimates are smoother and more accurate. However, given

a disturbance from equilibrium, the MMAE must still respond quickly to recover the best

state estimate, (i.e. the selection criteria should be tuned as well as the observer gains to

164



achieve the desired performance over the entire operational range).

6.5.2 Output Weighted Multiple Model Estimators

For the purposes of computational streamlining, the state difference weighting metric

can be replaced with an output weighting strategy. The benefit is that in comparing output

estimates rather than the state predictions, the measurement signals can be used to replace

one of the state estimators in the sub-estimator, provided that there are at least n mea-

surements where n is the number of system modes. However the measurements need not

be the signals which were used to close the loop on the estimator. The difference between

a measured set of outputs and an estimated set is

yo − ŷo(t) = (Co +∆Co)z + (Do +∆Do)u −Coẑ −Dou

= Coe +∆Coz +∆Dou (293)

where yo is the measured output vector and ŷo estimated output vector. Applying the

equilibrium assumptions described in section 6.2, i.e.

e∗ = −(A −LCs)−1 [(∆A −L∆Cs )z+(∆B −L∆Ds )u] (294)

then the difference between the measured and estimated outputs is

δyo(t) = −Co(A −LCs)−1 [(∆A −L∆Cs )z+(∆B −L∆Ds )u] +∆Coz +∆Dou (295)

= (∆Co −C0(A −LCs)−1∆A +C0(A −LCs)−1L∆Cs) z

+ (∆Do −C0(A −LCs)−1∆B +C0(A −LCs)−1L∆Ds)u (296)

.

Let βo be the basis function vector for the chosen output measurement (i.e. βo =
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[ 1 ψ1(xo) . . . ψn−1(xo) ]) and βs be the basis function vector for the sensor place-

ments utilized by the observer. Then

δyo(t) =
⎛
⎜⎜
⎝
[βo +C0(A −LCs)−1Lβs]Φ −C0(A −LCs)−1

⎡⎢⎢⎢⎢⎢⎢⎣

0(n×n)

I(n×n)

⎤⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠
[ −∆ω2 −∆Ĉ ] z(t)

+
⎛
⎜⎜
⎝
[βo +C0(A −LCs)−1Lβs]Φ −C0(A −LCs)−1

⎡⎢⎢⎢⎢⎢⎢⎣

0(n×n)

I(n×n)

⎤⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠
[∆Q̂]u(t)

(297)

and therefore, as before, the unknown parametric error quantity γ is described as a

function of known system quantities according to (298).

δyo(t) =
⎛
⎜⎜
⎝
[βo +C0(A −LCs)−1Lβs]Φ −C0(A −LCs)−1

⎡⎢⎢⎢⎢⎢⎢⎣

0(n×n)

I(n×n)

⎤⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟
⎠
γ(t) (298)

6.5.2.1 High vs. Low Gain State Observers for Multiple Model Weight Determination

Beyond simple noise rejection/amplification associated with the observer gain, the resid-

ual error between the measured and estimated output is largely dependent on the magni-

tude of the attributed observer gain. Large gains result in smaller error signals on which

the output difference weights are determined and the lower signal to noise ratios, leading to

inaccurate weight assignment. Very low gains (i.e. low eigenvalues of the observer system)

prevent phase synchronization of the oscillatory estimates and true system, meaning that

the zero crossings γ = 0 for each sub-estimator will occur asynchronously. This is in con-

trast with Figure 74, and results in weights attributed to the current estimator state and

not the parametric error. Likewise, small estimator gains also invalidate the quasi-static

assumption made in the state difference theorem by reducing the convergence rate of the

estimator to the same order of magnitude as the system itself. Care must be taken when

choosing an estimator gain for determining the residual errors δz and δyo which are neither
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too large or too small. For application on FLASHMan, the residual observer’s poles are

placed ≈ 5 times faster than the fastest system poles.

Similar to two model techniques applied in fault detection [41] a High-Low gain sub

estimator can be used to determine both the residual output error for weight generation

and the estimated state for control. The high gain estimator determines the state estimate,

and the low gain observer is used to calculate the reliability of the state estimates, (i.e. how

accurate the model is).

Figure 88: High + Low Gain Sub-estimator

6.6 FLASHMAN Experimental Results - Payload Identification in Multi-
Waypoint Move Cycles

To test the efficacy of the multiple model for identification of true model parameters and

flexible system states, a multiple model estimator was designed and implemented utilizing

the output difference weighting criterion for a high/low gain sub-estimator and the switching

form of the MMAE.

6.6.1 Experiment Preface - Definitions and Apparatus

Implementation on the real time system used for the experiments, required significant

simplification of the methods used in the preceding simulations. First, the output difference

multiple sensor strategy was employed rather than the state difference multiple estimator,

single sensor strategy. This effectively eliminates one of the observers in the sub-estimator

and allows the full five member estimator bank to be evaluated in real time at 1kHz.

Second, using three accelerometers, weights are defined as the RMS value of the norm

167



of the output error, y − ŷ, rather than functions of the state estimates of two separate

estimators. Third, these measurements form a common basis for comparison. Therefore, as

a result of the common measurements between all estimators and because the estimators

were tuned similarly, the need for the output difference scaling matrices was reduced and

they were subsequently eliminated. Fourth, because the weights are based on the norm of the

output estimate error, low values indicate higher accuracy. This is contrary to the weighting

functions in Section 6.3 where high values indicated good estimator performance. Therefore,

the selection algorithm chooses the state vector corresponding to the sub-estimator with

the lowest weight. Finally, high/low gain sub-estimators are utilized. A low gain estimator

is used to determine the weight associated with the state vector estimate produced by the

high gain estimator.

The multiple model switching adaptive estimator control system was implemented on

a LabView RealTime quad core desktop computer. Each core was responsible for separate

parts of the control system, one for command generation, data acquisition, and the graphical

user interface, one for feedback control, one for the state estimation routine, and the final

core was reserved for data capture and storage.

A gripper was designed for the FLASHMan testbed to permit evaluation of the proposed

estimation strategy resulting in a nominal end of arm mass of 0.36kg. Payloads of varying

mass were also fabricated as shown in Figure 89.

As a baseline for comparison, a move cycle was designed for a pick and place task. As

demonstrated in Figure 90 the manipulator moves to a desired location where it picks up a

payload and after performing a series of motions, drops the payload off at a target location.

All moves are trapezoidal velocity profiles with a maximum velocity of 3m
s . And after each

move, the manipulator pauses until the vibration reaches a tolerable level measured by the

acceleration at the end of arm, RMS(ÿtip) < 0.5 m
s2

.

Different move lengths and starting positions were used to eliminate the likelihood of

inadvertent command shaping and any asymmetries in the manipulator workspace, includ-

ing nonlinear effects from track friction, changing belt length, or other sources. A list of

these moves and their corresponding actions is listed in Table 13.
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Figure 89: Gripper and Payloads (0.059kg (left) 0.143kg (right))

Figure 90: Multiple Waypoint Move Cycle
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Table 13: Cycle Move List and Descriptions
Move # Start Location End Location Move Length Task

#1 0 1 0.20m Wait until RMS(ÿtip) < ÿtol)
#2 1 2 0.20m Pick up payload
#3 2 1 0.20m Wait until RMS(ÿtip) < ÿtol)
#4 1 3 0.35m Wait until RMS(ÿtip) < ÿtol)
#5 3 4 0.30m Wait until RMS(ÿtip) < ÿtol)
#6 4 5 0.35m Wait until RMS(ÿtip) < ÿtol)
#7 5 6 0.20m Drop off payload
#8 6 5 0.20m Wait until RMS(ÿtip) < ÿtol)
#9 5 0 0.20m Wait until RMS(ÿtip) < ÿtol)
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6.6.2 MMSAE Experimental Results

The first set of experiments was aimed at evaluating the ability of the MMAE to deter-

mine the approximate parameter value without closing the state space loop. A PID control

loop around the cart position was used to drive the system through the pre-programmed

way-points, and the estimator was used to verify the payload mass and corresponding sys-

tem states. Five payload candidates at even increments of 0.05kg were selected to fully

capture the expected parameter range (0.36kg - 0.51kg). Figure 91 shows the payload es-

timates for a move cycle in which no payload is picked up. The corresponding weights are

shown in Figure 92.

Figure 91: Payload Estimate (0.36kg + no additional payload)

Because no payload is picked up, for each motion the best weight is assigned to the

estimate from the mt = 0.35kg estimator. The sharp jumps in Figure 92 indicate motion

from one station to another where the control effort injected instantaneously drives the

estimated acceleration to a large value. The measurements of the acceleration, because of

the filtering used, follow, but delayed slightly, resulting in large output errors.
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Figure 92: Estimate Weights (0.36kg + no additional payload)

Picking up a 0.059kg payload, Figure 93 illustrates the switch in the multiple model

adaptive estimator at Station 2 when the payload is grasped. When the payload is released

at Station 6, the corresponding parameter estimate drops back to the nominal gripper mass.

Figure 93: Payload Estimate (0.36kg + 0.059kg payload)
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Figure 94: Estimate Weights (0.36kg + 0.059kg payload)

Finally the test was repeated with a larger 0.143kg payload, the results of which are

shown in Figures 95 and 96

Figure 95: Payload Estimate (0.36kg + 0.143kg payload)
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Figure 96: Estimate Weights (0.36kg + 0.143kg payload)

Again the true parameter value mt = 0.503kg is approximated by the closest value, 0.5kg

from Station 2 when the payload is grasped to Station 6 where it is dropped off, elsewhere

the estimator which utilizes the nominal end of arm mass receives the best weight.

From the results it is clear that the MMSAE structure is capable of accurately deter-

mining the true system parameter and select the appropriate sub-estimator for the current

operating regime. At a minimum, this forms the basis of an open loop parameter identifi-

cation scheme for tuning the state space control systems of flexible manipulators. However,

the desired goal is to use the produced state information to close the loop around the flex-

ible state variables and reject residual vibration and disturbance inputs. In the following

sections a closed loop, state space control system is designed and implemented to satisfy

this objective.

6.7 Closing the Loop - Multiple Models for Parametrization of the Op-
erating Regions of a Dynamic Control System

The incorporation of control based on state estimates produced from the multiple model

adaptive estimator can be approached as variations of gain scheduling type approaches.

From [73] the operating range of a complex system can be decomposed into a number of

“operating regimes” (Figure 97) for which local controllers/observers are developed. While

not necessarily limited to identical control structures, the analysis is simplified if each
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control system shares the same state space. Furthermore, the finer the graduation between

parametrized models, the more accurate the result will be [73].

Figure 97: Decomposition of Full Operating Range into Operating Regimes about the
Operating Point and Gain Scheduling Type Control

From [30,73], moving from one local control regime to another is a form of gain scheduling

procedure and can be analyzed as a nonlinear system which is described by a weighted

combination of linear subsystems.

zk+1 = f(zk, uk) =
N

∑
i=1

(zi +Adi(zk − zi) +Bdi(uk − ui))wi(zk) (299)

where

uk = ui +
N

∑
i=1

Ki(zk − zi)wi(zt) (300)
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and wi is defined by arbitrary positive definite functions such that ∑Ni=1wizk = 1. Then

for a slowly varying scheduling variable (i.e. parameter estimate) relative to the closed loop

bandwidth, global stability can be asserted by designing each local controller to have poles

inside the unit circle [73, 84]. The result is that by ensuring a fine enough graduation of

parameter estimates around the expected working range, global stability can be inferred

from local linear analysis. The proof of which is replicated from [30] in Appendix A.

6.8 Closed Loop State Space Control of FLASHMan Using a Multiple
Model Estimation Strategy

The proposed multiple model control structure consists of independent linear quadratic

regulator (LQR) gains with penalties on cart position and tip acceleration designed for

each of the candidate parameter values. Gains are selected using the parameter estimates

from the MMSAE and the states produced are used to generate the control effort. This

procedure is illustrated by Figure 98 where the measured signals are the accelerometer

readings, the control input is the desired cart position, and the set-point is the desired end

effector location.

The control structure of the x-axis, therefore, is a gain scheduling type controller and

subject to the local stability requirements outlined in section 6.7. Implementation occurs on

a LabView real-time desktop with sampling rates of 1kHz. In the y-direction, PID control

of the axis position is utilized since the corresponding flexible states are negligible.

6.8.1 Experimental Results

Closed loop performance and robustness can be assessed through multiple measures.

Cycle time comparisons demonstrate the improvement in performance made by switching

to the closed loop state space control form over PID control. As illustrated in Figure 99, the

closed loop flexible state feedback control system based on the MMSAE observer reduces

the cycle time by ≈ 90%.

Comparisons can also be drawn with static state space controllers/estimators designed

with respect to an estimated value of the payload. Note that given the nominal tip mass

(i.e. the mass of the gripper), designed control systems with estimated static payloads above
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Figure 98: Control Structure for FLASHMan Control with MMSAE State Estimates

0.4kg are unstable for the chosen LQR penalties which are held constant for all designs.

Therefore, for example, if the controller/estimator was designed using the 0.143kg payload,

the control system would be unstable if the payload was removed. However, given the

MMSAE based control system, only a range of potential payloads must be specified for

stability to be assured. This reduces the potential for poor control design by essentially

allowing the designer to identify a bound for the system parameter instead of a single

static value. Conversely, if by chance the designer was to chose a nominal payload estimate

of 0.25kg, the system would outperform the MMSAE based control system with respect to

cycle time for this move cycle and LQR penalty set. However, the choice would be arbitrary

and not necessarily robust to a wide range of parameter variation.

Comparing the variation in move cycle time for the manipulator with/without the

0.143kg payload (Figure 100) shows that the variability of cycle time is reduced with the

MMSAE-based control system. Therefore, it can be demonstrated that the proposed control

system best preserves the performance characteristics over the range of payload values.
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Figure 99: Cycle Time for Implemented Control Methods

The residual vibration from move to move is also reduced by ≈ 60% relative to the

PID only control system. This result is demonstrated in Figure 102. These responses have

been time normalized to demonstrate the relative magnitudes of the acceleration traces.

However, the PID only cycle takes ten times longer to execute then the MMSAE cycle. the

large accelerations indicate transitions from one station to another. The transitions, (i.e.

the timing of the transitions) and residual vibration levels are far more consistent with the

MMSAE approach for the three payload values relative to the PID controlled system. Thus,

indicating that the changing system parameter value has limited effect on the closed loop

system performance.

178



Figure 100: % Variation in Cycle Time for Implemented Control Methods
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(a) Acceleration MMSAE vs. PID (0.36kg + no additional
payload)

(b) Acceleration MMSAE vs. PID (0.36kg + 0.059kg pay-
load)

(c) Acceleration MMSAE vs. PID (0.36kg + 0.143kg pay-
load)

Figure 101: Time Normalized End of Arm Acceleration Profiles for a Complete Cycle
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Examining the parameter estimates and weights associated with the MMSAE reveals

interesting behavior. From Figure 102 it is apparent that, because the excitation of the

flexible structure is minimized by the control system, the true parameter is rarely iden-

tified. In the adaptive control literature similar effects are referred to as persistence of

excitation requirements. The estimator operates on the output estimation error, however

if the structure is not vibrating, the accelerations are zero (or at least below a meaningful

signal to noise threshold). This means that the state estimates produced by any of the

estimators is equally valid. Furthermore, since the controller is designed to eliminate the

residual vibration, once the oscillation is damped below certain threshold the control effort

is too small to overcome the cart stiction. Excitation of the flexible modes is required in

order to determine the true parameter value. In a particular part of the track (encountered

at approximately 11 seconds in Figures 102(a), 102(c), and 102(e)), the stiction is signifi-

cant and results in a small residual oscillation that the controller is unable to damp. In this

residual period, the true parameter is more closely approximated.
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(a) Payload Estimate (0.36kg + no additional pay-
load)

(b) Estimate Weights (0.36kg + no additional pay-
load)

(c) Payload Estimate (0.36kg + 0.059kg payload) (d) Estimate Weights (0.36kg + 0.059kg payload)

(e) Payload Estimate (0.36kg + 0.143kg payload) (f) Estimate Weights (0.36kg + 0.143kg payload)

Figure 102: MMSAE Payload Estimates and Weights

182



6.9 Notes on Sensor Redundancy and Parallelization

The multiple model estimator structure is ideal for developing fault tolerant control

systems for flexible manipulators with redundant sensors. Requiring only the generation

of additional sub-estimators associated with the redundant sensors or sensor groups, if

sensor failure were to occur, the state difference or output difference metrics would grow

significantly. Thus, the offending sub-estimators would be eliminated from consideration in

the selection of the resulting state estimate vector.

The many advances in computing technology have made low cost, high speed parallel

computing much more feasible today then it was in the early 1990’s when multiple model

techniques were initially developed and largely discarded because of the associated high

computational burden. Graphics processing units (GPU) and low cost microprocessors

could be utilized to parallelize the multiple model estimation strategy, thereby, boosting

performance and expanding the range and number of parametric modeling errors tolerated

by the control system.
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Chapter VII

SUMMARY, CONCLUSIONS, AND EXTENSIONS

7.1 Summary and Conclusions

A novel robust estimation strategy for observing the flexible states of a flexible robotic

manipulator is established in this thesis. This multiple model adaptive estimator technique

permits the state feedback control of these systems even under conditions of parametric

modeling error and/or time varying system parameters. This summary serves as a concise

description of the performed work and major results of the preceding thesis sections.

Motivation for the derived approach stems from the observation that lightweight, high

speed, and large workspace robotic manipulators often suffer performance degradation be-

cause of inherent structural flexibility. This flexibility often results in persistent residual

vibration, which must be damped before useful work can resume. Increased cycle times are

the undesirable consequences of residual vibration. Traditional compensation techniques

commonly used for the control of rigid manipulators can only approach a fraction of the

open-loop system bandwidth without inducing significant excitation of the resonant dy-

namics. Therefore, the performance objectives are artificially limited (i.e., control gains are

reduced and slow trajectories implemented) to avoid induced oscillation. To improve the

performance of these systems, the structural flexibility cannot simply be ignored as it is

when the links are significantly stiff and approximate rigid bodies. Instead, detailed models

of the complete system must be used to anticipate the effects of structural flexibility and

control actions applied which compensate for the undesired behavior. Nevertheless, any de-

termined model of the system will contain parametric error. And, in the case of very lightly

damped systems like flexible robotic manipulators, even small errors in system parameters

can lead to instability of the control system. Furthermore, time varying changes in the

manipulators pose or payload affect not only the rigid-body but also the flexible dynamics

of the manipulator.
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While very accurate modeling approaches have been created and verified over many

years of research, modeling error is always present in practical implementations. Such errors

restrict the performance and stability of these systems. Techniques for generating vibration

limiting commands like input shaping and inverse dynamics are seeing more industrial use,

in large part, because they improve the performance of flexible systems without impacting

stability. However, feedback control of flexible manipulators in industry for the purpose of

vibration damping and bandwidth improvement is, as of yet, unrealized.

A strategic modeling approach was employed in this thesis work to create an assumed

modes model of the FLASHMan flexible gantry manipulator. The transfer matrix modeling

method was utilized to determine the mode shapes and natural frequencies used in the

assumed modes model approximation. This improved the low order approximation of the

flexible system dynamics To improve the accuracy of state estimates, the flexibility of the

belt drive was modeled and used to change the control domain from an estimated force

input on the cart to a measured displacement of the belt. This change also allowed the

full state vector to be estimated solely from acceleration measurements, whereas with force

input a position measurement would also be necessary to recover rigid body motion. The

equations of motion are represented in state space form through a modal transformation.

This results in a three mode approximation of the joint and distributed flexibility: mode 1

corresponds primarily to the 1st clamped mode of the flexible beam, mode 2 to the belt/cart

motion, and mode 3 to the second clamped beam mode. Experimental results were used to

confirm the accuracy of the derived modeling approach.

Low cost MEMs accelerometers were evaluated for reconstructing the flexible system

state vector. Augmenting the state space system to include acceleration measurements

introduces direct feed-through behavior in the estimation routine, an effect which is of-

ten ignored in the literature. The detrimental effects of modeling error on classical state

estimation with direct feed through behavior were investigated and documented through

simulations and experiments of the FLASHMan system.

A systematic approach utilizing a genetic algorithm optimization was conceived in or-

der to determine sensor placements for multi-sensor state estimation approaches. It was
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determined that by using a sensor for each mode, placed at the location of highest singular

value of the corresponding observability gramian (for that mode), observability is guaran-

teed. Multiple sensor placement provides more robust observability than a single sensor

placement, where changing system parameters can lead to modal occlusion (i.e. where no

part of a sensors measurement can be attributed to a specific mode of vibration).

Sliding mode observers were investigated to assess the purported robustness properties

that several researchers had attributed to the estimation approach. It was determined

through equilibrium analysis, simulation, and experiments that the primary benefit of the

sliding mode approach over that offered by the Kalman filter or Luenberger observer, is

an increased convergence rate and guaranteed stability for BIBO stable nonlinear systems.

However, it offers no improved robustness to parametric error for this application, and any

convergence rate improvements are tempered by the presence of significant increases in state

estimate noise.

A novel strategy was created for estimating the full flexible state of flexible manipulators.

It entailed the development of a multiple model representation of the expected system

parameters. Independent sub-estimators are used to determine the state vector and a weight

proportional to the relative accuracy of that estimated state vector for a given number of

estimators: multiple sensors provide the necessary information on perturbations of the

system model. These weights are then used to compare individual estimators from a static

estimator bank to determine the best fit estimator. In doing so, the true plant parameter

is estimated and the best model is determined. This approach was evaluated both in

simulation and with experiments to determine the ability of the estimation strategy to adapt

to discrete changes in model parameters. It was determined that the constructed multiple

model adaptive estimation approach successfully ascertained the correct parameter when

discrete changes in the system dynamics occurred (the manipulator picked up or dropped

off a payload of known mass). This approach was also used for state feedback control

of the flexible state to correct for disturbances and eliminate residual vibration. Results

indicate that the new estimation method not only maintains control system stability for a

larger range of parametric variation relative to a single estimator/controller designed for a
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nominal payload, but also improves the repeatability of cycle performance over the range

of experienced parametric error.

7.1.1 Summarized Contribution List

This thesis makes contributions to the areas of: modeling flexible systems, sensing and

sensor placement for flexible manipulators, robust estimation strategies, multiple model

estimation, and feedback control of flexible manipulators. The primary contribution of

this work is the generation, fundamental analysis, and experimental verification of a ro-

bust strategy for state estimation for general flexible manipulators. Specific contributions

include:

� The creation of a state space model for the FLASHMan flexible gantry robot and a

generalized approach for flexible manipulators with both drive and link flexibility

○ TMM & AMM combined approach for accurate low order model approximations

○ Improved accuracy and guaranteed observability of estimators for flexible ma-

nipulators, using only acceleration feedback by leveraging flexible joint charac-

teristics

� The generation of an approach for multiple sensor placements utilizing the singular

values of observability gramians

○ Genetic algorithm formulation for sensor placements that guarantee optimal and

robust observability

○ Improved robustness with respect to observability for multiple sensor placements

� The analytical, simulation, and experimental evaluation of sliding mode observation

for flexible state estimation

○ Compared Luenberger, Kalman filter, and sliding mode observers for estimating

the states of flexible motion systems

○ Demonstrated negligible robustness improvements vs. traditional estimators for

parametric modeling error in the flexible manipulator model
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� The formation and experimental verification of a novel multiple model adaptive esti-

mator for robust state estimates of flexible manipulators

○ Derivation of sensor and output difference metrics for weighting state estimates

○ Nested sub-estimator approaches for multiple model estimation

○ Simulation and experimental evaluation of the derived approach

○ Design, and implementation of a stable multiple model control system

7.2 Extensions and Future Work

7.2.1 Sensitivity Analysis - Persistence of Excitation

The results of this work show that in order to correctly identify the system parameter,

accelerations corresponding to the residual vibration must be non-zero and larger then the

sensor noise amplitude. This means that if the link vibrations are suppressed (the desired

end goal), the estimation algorithm will not be able to select the true parameter value.

This can be considered to be a form of persistent excitation condition. It is conceivable

that there is a minimal level of vibration that cannot be suppressed, because the appro-

priate controller cannot be selected. This, in turn, results in more vibration, allowing the

estimation algorithm to select the correct model and thereby suppress the vibration to be-

low the original threshold. The result is likely limit cycling, the extent of which depends

on the aggressiveness of the controller and the precision of the chosen sensors. Note that

this behavior has not been observed in the experiments reported in this work. Its absence

is likely the result of significant stiction in the FLASHMan testbed, which prevents the cart

from moving when small control signals are applied to the system.

7.2.2 Multiple Link Manipulators

The primary limitation of this work, in its current state, is the reliance on a linear model

of the system. This limitation means the results, as derived, are only applicable for small

motions about a fixed manipulator pose. Expansion to multiple links for large motions,

while probably of moderate research interest, is of great practical importance. Most of the

necessary components for extending the derived methods to multiple links exist in various
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forms. For example, models of multiple link manipulators appear in [4, 11, 12, 15, 21, 99].

Additionally estimators suitable for implementation in the multiple model framework, like

the extended Kalman filter have already been applied to multiple link flexible manipulators

[60]. What remains is a way to ensure that sensors are placed such that they do not suffer

modal occlusions over the entire workspace of the robotic manipulator. This could simply

be accomplished by increasing the number of sensors and either switching between sensor

groups as the manipulators pose changes, or by using all of the measurements in each

estimator. Furthermore, the state and output difference weighting metrics were derived

under the assumption of a linear model. Extensions to nonlinear models, while intuitively

promising, must be studied.

7.2.3 Parallel Computing and Network Based Consensus Estimation

One of the main drawbacks of multiple model approaches, and the reason for the re-

cent work in the literature suggesting growing?/shrinking of the estimator banks, is that

running simultaneous estimators on a single processor is computationally expensive. The

performance of the estimator and the system sample rate are therefore highly restricted,

based on the processing capability of the real time system. Such constraints limited the

number of estimators in the multiple model bank to five in the system examined in this

thesis. Multiple core computing, graphics processing units (GPUs), and embedded systems

pose potential solutions to the problem of increased computational burden. If each estima-

tor is run independently on its own processor, there is no limit to the number of estimators

(n) in or dimensions (p) of a multiple model estimator bank. The problem, therefore, re-

duces to ensuring synchronicity between the estimators and enabling communication to a

central agent. The central agent then performs the decision making tasks, (i.e. selecting the

best state from among the estimators). Rather than a central agent receiving np estimates

and weights, a more elegant solution would be for each estimator to communicate with a

limited set of other estimators. This would allow the complete set to come to a consensus of

the best state estimate. Network based weighted consensus estimation has been studied for

the purpose of sensor fusion [91,106] and multiple model estimation is a natural extension.
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7.2.4 A Complete Solution for Controlling Flexible Robotic Manipulators

Robust flexible state variable estimation, as introduced in this dissertation, forms one

part of a complete solution with the potential to enable industrial use of light weight,

high speed, and large workspace manipulators. However, any comprehensive solution must

consider three distinct domains in order to be a generally applicable solution: trajectory

design, control design, and hardware design.

Figure 103: Complete Structure for the Control of Flexible Manipulators

Of course, when possible, robotic manipulators should be designed to be as stiff as pos-

sible while maintaining the desired levels of performance, energy consumption, and overall

cost. Often however, the application dictates structures where flexibility is an unavoidable

consequence of the desired workspace, performance requirements, or cost. Design solutions

should be explored to raise the stiffness of the system, for example, by using composite

materials or increasing the structural damping as in [2, 3]. If flexibility remains a barrier,

then mitigation with active control systems becomes a viable option.

Trajectory design for flexible manipulators has been extensively studied. The three main

techniques that have emerged as potential solutions for generating vibration limiting trajec-

tories are command smoothing, where trajectories are filtered to reduce the aggressiveness
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of the applied commands [89], input shaping , where the trajectories are convolved with

impulses designed to eliminate residual oscillation [66,67,90], and inverse dynamics [55,80],

where the complete dynamic model is utilized to generate commands which prescribe the

end of arm trajectory at each time instant. While these methods have been very successful,

they require accurate knowledge of the system to be effective and are entirely open loop

approaches, meaning that disturbances cannot be rejected.

Feedback control can modify the dynamics of system, increasing the performance. How-

ever, errors must be observed before any corrective action is taken. Feedforeward control

supplements feedback control by applying control effort in response to changing set points

rather than feedback signals. This reduces the effort required from the feedback control

system. Reducing the burden on the reactive feedback controller, allows the use of larger

feedback gains as large errors are compensated for by the feedforeward controller, leaving

the reactive controller to handle small errors and disturbances.

Often overlooked, robust state estimation forms a critical piece of a complete solution for

the control of flexible manipulators. The novel robust multiple model adaptive estimator

created in this work serves as a potential systematic solution to this problem, enabling

the state feedback control of these systems and eventual industrial acceptance of flexible

manipulator technology.
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Appendix A

STABILITY PROPERTIES OF GAIN SCHEDULED STATE SPACE

CONTROL

Gain scheduling in its many forms is a nonlinear control method where controller gains

are precomputed. The job of the controller is to then, based on the current operational

mode, switch between these gain sets. For the sake of analysis, gain scheduled controlled

systems can be represented by a generic nonlinear state equation.

zk+1 = f(zk, uk) (301)

Which, in turn, can be represented as a summation of individual linear plants

zk+1 =
N

∑
i=1

(zdi +Ai(zk − zdi) +Bi(uk − udi))wi(νk) (302)

where ∑Ni=1wi(νk) = 1 is a selection function which determines the current plant based

on a scheduling variable νk and the individual controllers are state feedback controllers of

the form

uk = udi +
N

∑
i=1

Ki(zk − zdi)wi(νk) (303)

And therefore the closed loop system is

zk+1 = Ãk(νk)zk (304)

which is essentially a traditional dynamic system formulation with a time varying plant

matrix Ã

Ãk(νk) = Ak(νk) +Bk(νk)Kk(νk) (305)
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If Ãk is designed to be stable (i.e. all eigenvalues in the unit circle and more specifically

inside a disk of radius 1 − 2ε, ε > 0)

max ∣λj(Ãk)∣ ≤ 1 − 2ε < 1 (306)

then the global control system is exponentially stable provided the sequence of matrices

Ãk(νk) is slowly varying, i.e.

sup ∥Ãk+1 − Ãk∥ ≤ δ (307)

The proof of the assertion in (307) is reproduced here from the work of Desoer [30]. The

first step is to establish a bound on ANk as described below

ÃNk = 1

2πj
∮
c
sN(sI − Ãk)−1ds (308)

then the norm of ANk is

∥ÃNk ∥ ≤ (1 − ε)N+1 (1 − ε) + (aM)n−1

εn
(309)

where

aM = sup ∥Ãk∥ (310)

Let ρ = 1 − ε, then

∥ÃNk ∥ ≤mρN (311)

where m is independent of k. For the kth sampling instant pick a Lyapunov function

Vk = zTk Pkzk (312)

Therefore,
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Vk+1 − Vk = zTk (ÃTk Pk+1Ãk − Pk)zk (313)

Choosing Pk+1 such that

ÃTk Pk+1Ãk − Pk+1 = −I (314)

which has a solution:

Pk+1 = I +
∞
∑
c=1

(ÃTk )c(Ãk)c (315)

and therefore, from (311),

1 ≤ ∥Pk+1∥ ≤
m2

1 − ρ2
∀k (316)

and from (312)

∥zk∥2 ≤ Vk ≤
m2

1 − ρ2
∥zk∥2 ∀k (317)

Taking the difference between successive time steps in (314)

ÃTk (Pk+1 − Pk)Ãk − (Pk+1 − Pk)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

−Mk

= −{(ÃTk − ÃTk−1)PkÃk + ÃTk−1Pk(Ãk − Ãk−1)} (318)

Given that

∥Mk∥ ≤ 2 ∥Ãk − Ãk−1∥
m2

1 − ρ2
aM (319)

from (310) and (311). Therefore solving (318) yields

Pk+1 − Pk =Mk +
∞
∑
c=1

(ÃTk )cMk(Ãk)c (320)

so
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∥Pk+1 − Pk∥ = ∥Ãk − Ãk−1∥
2m2aM
1 − ρ2

m2

1 − ρ2
(321)

Then if,

sup ∥Ãk − Ãk−1∥ ≤
(1 − ρ2)2

2m4aM
(1 − η) = δ (322)

where η > 0. It follows that

∥Pk+1 − Pk∥ ≤ 1 − η < 1 ∀k (323)

and therefore,

Vk+1 − Vk ≤ −η ∥zk∥2 (324)

meaning that stability is assured if

sup ∥Ãk − Ãk−1∥ ≤ δ (325)

i.e. the system’s controlled plant changes slowly (i.e. the parametrization of the models

used in the multiple model estimator is not excessively sparse, and discrete switches occur

incrementally)
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Appendix B

CODE - FLASHMAN MODEL GENERATION

clc

close all

clear all

format short

Modes = 2; % Number of flexible modes to consider

F_Max = 1000; % Max Control Bandwidth Hz

% Beam Properties

L = 42/100; % Length m

a = 3.81/100; % Width m

t = .317/100; % Thickness m

E = 7*10^10; % Youngs Modulus Pa

rho = 2700; % Density kg/m^3

mbase = 10; % Cart Mass kg

Damper = 100; % Cart Damper Ns/m

LF = 0.0025; % Beam Loss Factor

mtip = .281; % Mass of Payload kg

Kbelt = 7*2.05*10^11*(pi*(3.81*10^(-4))^2/4)/.75; % Belt Stiffness N/m

% Derived Quantities

I = 1/12*a*t^3; % Area Moment

A = a*t; % Crossectional Area

m_beam = rho*L*a*t; % Beam Mass

mu = m_beam/L; % Distributed Mass

% Frequency Sweep to find Natural Frequencies and Mode Shapes

% (Using Transfer Matrix Method)

omega= 0.001; % Starting Frequency (rad/s)

tol = 0.01; % Sweep interval (rad/s)

a = L^2/(E*I);

num_roots = 0;

i = 1;

while num_roots < Modes && omega/(2*pi) < F_Max

%Elastic Beam Matrix

beta = (omega^2*(mu/(E*I))*L^4)^(1/4);

c0(i) = (cos(beta)+cosh(beta))/2;

c1(i) = (sin(beta)+sinh(beta))/(2*beta);

c2(i) = (cosh(beta)-cos(beta))/(2*beta.^2);

c3(i) = (sinh(beta)-sin(beta))/(2*beta.^3);

U_beam(:,:,i) = [c0(i) , L*c1(i) , a*c2(i) , a*L*c3(i) ;...
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beta^4*c3(i)/L , c0(i) , a*c1(i)/L , a*c2(i) ;...

beta^4*c2(i)/a , beta^4.*L.*c3(i)/a , c0(i) , L*c1(i) ;...

beta^4*c1(i)/(L*a) , beta^4*c2(i)/a , beta^4*c3(i)/L , c0(i) ];

% Rigid Body Matrix for Tip Mass

R_tip(:,:,i) = [ 1 , 0 , 0 , 0;...

0 , 1 , 0 , 0;...

0 , 0 , 1 , 0;...

mtip*omega^2 , 0 , 0 , 1];

% Complete Transfter Matrix

Utot(:,:,i) = U_beam(:,:,i)*R_tip(:,:,i);

% Characteristic Equation

CHAR(i) = det(Utot(1:2,1:2,i));

O(i) = omega;

% Search for the Roots of the Characteristic Equation!

if length(CHAR)>1

if sign(CHAR(i))~= sign(CHAR(i-1)) % Detect Sign Change

num_roots = num_roots+1;

roots(num_roots) = (O(i)+O(i-1))/2; % Add to List of Roots

Beta(num_roots) = (roots(num_roots)^2*(mu/(E*I))*L^4)^(1/4);

% Beta @ Natural Frequencies

C2(num_roots) = -(sin(beta)+sinh(beta))/(cos(beta)+cosh(beta));

% Constant for Mode Functions

indices(num_roots) = i;

end

end

omega = omega+tol;

i = i+1;

end

% Display Natural Frequencies)

NaturalFrequenciesHz = roots/(2*pi)

%Determine Mode Shapes of the first link at the desired natural frequencies

for i=1:Modes

k=indices(i);

%Step 1 - Find the initial state vector at the beginning of the link by

%applying the boundary conditions

R = Utot(:,:,k);

Z_L = [-1;R(1,1)/R(1,2);0;0]; %Based on Boundary Conditions

%Z_0 = R*Z_L %At the very beginning

Z_0 = R*Z_L % [0;0;-R(3,1)+R(3,2)*(R(1,1)/R(1,2));-R(4,1)+R(4,2)*(R(1,1)/R(1,2))];

Z_payload = R_tip(:,:,k)*Z_L;

% Z_link2 = R_beam(:,:,k)*Z_payload;

% Z_theta2 = A_theta_2(:,:,k)*Z_link2;

Z_joint2 = R_tip(:,:,k)*Z_L; %R_joint(:,:,k)*Z_theta2;

chunk = .0001; %m

num_chunk=L/chunk;
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%Elastic Beam Matrix

a = chunk^2/(E*I);

beta = (roots(i)^2*(mu/(E*I))*chunk^4)^(1/4);

c_0 = (cos(beta)+cosh(beta))/2;

c_1 = (sin(beta)+sinh(beta))/(2*beta);

c_2 = (cosh(beta)-cos(beta))/(2*beta.^2);

c_3 = (sinh(beta)-sin(beta))/(2*beta.^3);

% Flexible Matrix for Beams

U_chunk_beam = [c_0 , chunk*c_1 , a*c_2 , a*chunk*c_3 ;...

beta^4*c_3/chunk , c_0 , a*c_1/chunk , a*c_2 ;...

beta^4*c_2/a , beta^4.*chunk.*c_3/a , c_0 , chunk*c_1 ;...

beta^4*c_1/(chunk*a) , beta^4*c_2/a , beta^4*c_3/chunk , c_0 ];

Z_link1(:,1)=Z_joint2;

for j=1:round(num_chunk)

Z_link1(:,j+1) = U_chunk_beam*Z_link1(:,j);

end

Z_link1=flipdim(Z_link1,2);

Modeshape(i,:) = Z_link1(1,1:num_chunk+1); %/max(abs(Z_link1(1,1:num_chunk+1)));

end

x = 0:chunk:L; % Displacement Along Link

% % Determine Asssumed Modes Model of the Complete OL Plant

% tol = 0.001; % Integration Tolerance

% x = 0:tol:L; % Displacement Along Link

% UNCOMMENT TO PLOT MODE SHAPES

% figure(1)

%

% plot(x,Modeshape)

% color = [’r’,’g’,’b’,’k’];

% for i = 1:length(roots)

% phi = sin(Beta(i)*x./L)-sinh(Beta(i)*x./L)+C2(i)*(cos(Beta(i)*x./L)-cosh(Beta(i)*x./L));

% plot(x,phi,color(i))

% end

% Given the NEW basis functions, compute the ASSUMED MODES MODEL

% (Since the basis functions are the solution to the PDE we dont need to

% extend the series approximation!)

% Rigid Mass Terms

m_total = mbase+m_beam+mtip;

%Flexible Coupling Terms (Couples Rigid and Flexible Subsystems)

for i = 1:Modes

W_0 = rho*A*Modeshape(i,:).*x;

W(i)= (trapz(W_0)*chunk+mtip*Modeshape(i,end))

d_dx_Modeshape(i,:)=[0,diff(Modeshape(i,:))/chunk];

d2_dx2_Modeshape(i,:)=[0,diff(d_dx_Modeshape(i,:))/chunk];

end
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for i = 1:Modes % Flexible Subsystem

for j = 1:Modes

M_stuff = rho*A*(Modeshape(i,:).*Modeshape(j,:));

M(i,j) = trapz(M_stuff)*chunk+mtip*(Modeshape(i,end).*Modeshape(j,end));

K_stuff = E*I*d2_dx2_Modeshape(i,:).*d2_dx2_Modeshape(j,:);

K(i,j) = trapz(K_stuff)*chunk;

end

end

M = [m_total , W ;...

W’ , M ];

K = [ Kbelt , zeros(1,Modes);...

zeros(Modes,1) , K ];

C = LF*K; %Compute damping coefficient matrix

C(1,1) = Damper;

Q = [ Kbelt ;

zeros(Modes,1) ];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Modal Analysis %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Solve Eigenvalue Problem for natural frequencies and eigenvectors

[eig_Vec,eig_Val]=eig(K,M);

% sort in ascending order

[w,index]=sort(diag(eig_Val));

% do the same for eigenvectors

phi=eig_Vec(:,index);

RealNaturalFrequenciesHz=sqrt(w)/(2*pi)

%Normalize Eigenvectors according to "modal masses" of individual modes

for i = 1:Modes+1

phi(:,i) = phi(:,i)./(sqrt(phi(:,i)’*M*phi(:,i)));

end

% Basis Functions @ x = L for Output Matrices

for i = 1:Modes

Basis(i)= Modeshape(i,end);

end

N_M_r = phi’*M*phi;

N_C_r = phi’*C*phi;

N_K_r = phi’*K*phi;

N_Q_r = phi’*Q;

A = [zeros(Modes+1), eye(Modes+1);...

-N_K_r , -N_C_r];

B = [zeros(Modes+1,1); N_Q_r];
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C = [[1,zeros(1,Modes)]*phi,zeros(1,Modes+1)];

D = [0];

Plant = ss(A,B,C,D);

Ctip = [[1,Basis]*phi,zeros(1,Modes+1)];

TipPlant = ss(A,B,Ctip,D);

C_accel = [[1,Basis]*phi*-N_K_r, [1,Basis]*-N_C_r];

D_accel = [1,Basis]*phi*N_Q_r;

AccPlant = ss(A,B,C_accel,D_accel);
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Appendix C

CODE - GENETIC ALGORITHM FOR ROBUST SENSOR

PLACEMENTS

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Genetic Algorithm For Robust Sensor Placement %

% Settings %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clc

clear all

close all

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Genetic Algorithm %

% Settings %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

mode_num = 1; %Selected mode for sensor placement

% Define Population Size

Pop_num = 20;

% Define Number of Elites to Keep

Elites = 2;

% Define Crossover Probability

Crossover = 25; % Chance of occurance (%)

% Define Mutation Probability

Mutation = 80; % Chance of occurance (%)

Mut_bits = 25; % Percentage of genes to mutate (%)

% Define the number of generations

num_generations = 100;

% Define Chromosomes Precision

Sig_Dig = 6;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Plant Model %

% Settings %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

L_p = 42/100; % Length m

M_p = 10;% Cart Mass kg

m_p = .281; % Mass of Payload kg

D_p = 100; % Cart Damper Ns/m

F_p = 0.0005; % Beam Loss Factor
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stdev_m_p = 0.15; % Small Perturbation to tip mass

num_plants = 10; % # of gaussian distributed plants to consider in fitness metric

m_p_vec = abs(m_p+stdev_m_p*randn(num_plants,1));

% Calculate Plant Models

for i = 1:num_plants

[N_M_r{i}, N_C_r{i}, N_K_r{i}, N_Q_r{i}, phi{i},Beta{i}, C2{i},...

RealNaturalFrequenciesHz{i}] = Single_Link_Model_Func(L_p,M_p,D_p,F_p,m_p_vec(i));

end

% Define Search Bounds

max_val = L_p;

min_val = 0;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Inital Populaton % %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Create Initial Random Population Chromosomes

Pop_dec =1/(10^Sig_Dig)*randi([ceil(min_val*10^Sig_Dig),...

floor(max_val*10^Sig_Dig)],[Pop_num,1]);

Before_dec = floor(Pop_dec./1);

After_dec = mod(Pop_dec,1)*10^Sig_Dig;

%convert to binary strings

% Step 1: Convert number before Decimal

if max_val>1

LS_p_of_2 = nextpow2(max_val);

else

LS_p_of_2 = 1;

end

LS_quant = quantizer([LS_p_of_2+1,0]);

LS = num2bin(LS_quant,Before_dec);

RS_p_of_2 = nextpow2(10^Sig_Dig);

RS_quant = quantizer([RS_p_of_2+1,0]);

RS = num2bin(RS_quant,After_dec);

Pop = strcat(LS,RS);

chromosome_length = length(Pop(1,:));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Iterate Through Generations % %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for j = 1:num_generations

% Convert Binary Population to Decimal

int_val = bin2num(LS_quant,Pop(:,1:LS_p_of_2+1));

dec_val = bin2num(RS_quant,Pop(:,LS_p_of_2+2:end))/10^Sig_Dig;

value = int_val+dec_val;

% Evaluate Fitness of Each Chromosome

for i = 1:Pop_num

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Fitness Function % %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Find location of lowest average condition number for the plants
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for l = 1:num_plants

[Accplant] = AssemblePlant_Single_Link(N_M_r{l}, N_C_r{l}, N_K_r{l},...

N_Q_r{l}, phi{l}, Beta{l}, C2{l}, value(i), L_p);

[U,S,V]= svd(gram(Accplant,’o’));

[~,loc] = min(1-abs(U(mode_num,:))); %Select Mode to Consider

temp_fitness(l) = S(loc,loc);

end

fitness_values(i,1) = mean(temp_fitness);

end

% Sort Chromosomes by Fitness

[sorted_fitness,indices] = sort(fitness_values,’descend’);

sorted_chromosomes = Pop(indices,:);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Population Plot % %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

figure(1)

hold off

plot(value(indices),sorted_fitness,’g*’,value(indices(1)),sorted_fitness(1),’r*’)

%,min_val:.01:max_val,...

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Reproduction % %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Assign Selection Probabilitys Based on Rank (Higher Rank -> better chance

% of reproduction)

Selection_Prob = [length(sorted_chromosomes(:,1)):-1:1]...

./length(sorted_chromosomes(:,1)); % Linear Weighting

% Keep desired number of elites

New_Pop(1:Elites,:) = sorted_chromosomes(1:Elites,:);

index = Elites+1;

while index <= Pop_num

% Select 2 individuals for reproduction

Parent_1 = randsample([1:Pop_num],1,true,Selection_Prob);

Parent_2 = randsample([1:Pop_num],1,true,Selection_Prob);

% Identify the Rank the Parents

Dominant_Parent = sorted_chromosomes(min(Parent_1,Parent_2),:);

Recessive_Parent = sorted_chromosomes(max(Parent_1,Parent_2),:);

% Do not allow asexual reproduction

if Parent_1 ~= Parent_2

% Determine Genetics of offspring

% Check for Crossover Event

if randsample([0,1],1,true,[1-Crossover/100,Crossover/100])

% T = Crossover Event

% Select Crossover Point (get more genes from dominant parent)

CO_point = randsample([round(chromosome_length/2):chromosome_length],1);

% Perform Crossover

New_Pop(index,:) = [Dominant_Parent(1:CO_point),...

Recessive_Parent(CO_point+1:end)];

elseif randsample([0,1],1,true,[1-Mutation/100,Mutation/100])
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% T = Mutation Event

inrange = 0; % Only allow mutations in valid range

while inrange == 0

% Select Mutation indices (stay away from really early indices)

M_indices = randsample([1:chromosome_length],...

ceil(chromosome_length*rand()*Mut_bits/100)...

,true,[1:chromosome_length]./chromosome_length);

% Prefer random modifications to end bits

% Perform Mutation

New_Pop(index,:) = Dominant_Parent;

New_Pop(index,M_indices) = num2str(Dominant_Parent(M_indices)==’0’,’%u’);

% Check that the new mutation is in the search range

int_check = bin2num(LS_quant,New_Pop(index,1:LS_p_of_2+1));

dec_check = bin2num(RS_quant,New_Pop(index,LS_p_of_2+2:end))/10^Sig_Dig;

check_val = int_check+dec_check;

if check_val < max_val && check_val > min_val

inrange = 1;

end

end

else % No Crossover or Mutation (select most dominant parent and copy)

New_Pop(index,:) = Dominant_Parent;

end

index = index+1;

end

end

Pop = New_Pop;

%pause(0.1)

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Display Solution % %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Solution_Chromosome = Pop(1,:)

int_sol = bin2num(LS_quant,Pop(1,1:LS_p_of_2+1));

dec_sol = bin2num(RS_quant,Pop(1,LS_p_of_2+2:end))/10^Sig_Dig;

Solution_val = int_sol+dec_sol

Fitness = sorted_fitness(1)

figure(1)

hold on

plot(Solution_val,Fitness,’ro’)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% FLASHMAN MODEL FUNCTION %

% %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function [N_M_r, N_C_r, N_K_r, N_Q_r, phi,Beta, C2, RealNaturalFrequenciesHz] ...

= Single_Link_Model_Func(L,mbase,Damper,LF,mtip)

Modes = 2; % Number of flexible modes to consider
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F_Max = 1000; % Max Control Bandwidth Hz

% Beam Properties

% L = 40/100; % Length m

a = 3.81/100; % Width m

t = .317/100; % Thickness m

E = 7*10^10; % Youngs Modulus Pa

rho = 2700; % Density kg/m^3

% mbase = 10; % Cart Mass kg

% Damper = 100; % Cart Damper Ns/m

% LF = 0.001; % Beam Loss Factor

% mtip = .22; % Mass of Payload kg

Kbelt = 7*2.05*10^11*(pi*(3.81*10^(-4))^2/4)/.75; % Belt Stiffness N/m

% Derived Quantities

I = 1/12*a*t^3; % Area Moment

A = a*t; % Crossectional Area

m_beam = rho*L*a*t; % Beam Mass

mu = m_beam/L; % Distributed Mass

% Frequency Sweep to find Natural Frequencies and Mode Shapes

% (Using Transfer Matrix Method)

omega= 0.001; % Starting Frequency (rad/s)

tol = 0.01; % Sweep interval (rad/s)

a = L^2/(E*I);

num_roots = 0;

i = 1;

while num_roots < Modes && omega/(2*pi) < F_Max

%Elastic Beam Matrix

beta = (omega^2*(mu/(E*I))*L^4)^(1/4);

c0(i) = (cos(beta)+cosh(beta))/2;

c1(i) = (sin(beta)+sinh(beta))/(2*beta);

c2(i) = (cosh(beta)-cos(beta))/(2*beta.^2);

c3(i) = (sinh(beta)-sin(beta))/(2*beta.^3);

U_beam(:,:,i) = [ c0(i) , L*c1(i) , a*c2(i) , a*L*c3(i) ;...

beta^4*c3(i)/L , c0(i) , a*c1(i)/L , a*c2(i) ;...

beta^4*c2(i)/a , beta^4.*L.*c3(i)/a , c0(i) , L*c1(i) ;...

beta^4*c1(i)/(L*a) , beta^4*c2(i)/a , beta^4*c3(i)/L , c0(i) ];

% Rigid Body Matrix for Tip Mass

R_tip(:,:,i) = [ 1 , 0 , 0 , 0;...

0 , 1 , 0 , 0;...

0 , 0 , 1 , 0;...

mtip*omega^2 , 0 , 0 , 1];

% Complete Transfter Matrix

Utot(:,:,i) = U_beam(:,:,i)*R_tip(:,:,i);

% Characteristic Equation

CHAR(i) = det(Utot(1:2,1:2,i));

O(i) = omega;

% Search for the Roots of the Characteristic Equation!
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if length(CHAR)>1

if sign(CHAR(i))~= sign(CHAR(i-1)) % Detect Sign Change

num_roots = num_roots+1;

roots(num_roots) = (O(i)+O(i-1))/2; % Add to List of Roots

Beta(num_roots) = (roots(num_roots)^2*(mu/(E*I))*L^4)^(1/4);

% Beta @ Natural Frequencies

C2(num_roots) = -(sin(beta)+sinh(beta))/(cos(beta)+cosh(beta));

% Constant for Mode Functions

end

end

omega = omega+tol;

i = i+1;

end

% Display Natural Frequencies)

NaturalFrequenciesHz = roots/(2*pi);

% Determine Asssumed Modes Model of the Complete OL Plant

tol = 0.001; % Integration Tolerance

x = 0:tol:L; % Displacement Along Link

% Given the NEW basis functions, compute the ASSUMED MODES MODEL

% (Since the basis functions are the solution to the PDE we dont need to

% extend the series approximation!)

% Rigid Mass Terms

m_total = mbase+m_beam+mtip;

%Flexible Coupling Terms (Couples Rigid and Flexible Subsystems)

for i = 1:Modes

W_0 = rho*A*(sin(Beta(i)*x./L)-sinh(Beta(i)*x./L)+C2(i)*...

(cos(Beta(i)*x./L)-cosh(Beta(i)*x./L)));

W(i)= (trapz(W_0)*tol+mtip*(sin(Beta(i)*L/L)-...

sinh(Beta(i)*L/L)+C2(i)*(cos(Beta(i)*L/L)-cosh(Beta(i)*L/L))));

end

for i = 1:Modes % Flexible Subsystem

for j = 1:Modes

M_stuff = rho*A*(sin(Beta(i)*x/L)-sinh(Beta(i)*x/L)...

+C2(i)*(cos(Beta(i)*x/L)-cosh(Beta(i)*x/L)))...

.*(sin(Beta(j)*x/L)-sinh(Beta(j)*x/L)+C2(j)*...

(cos(Beta(j)*x/L)-cosh(Beta(j)*x/L)));

M(i,j) = trapz(M_stuff)*tol+mtip*(sin(Beta(i)*L/L)...

-sinh(Beta(i)*L/L)+C2(i)*(cos(Beta(i)*L/L)-cosh(Beta(i)*L/L)))...

.*(sin(Beta(j)*L/L)-sinh(Beta(j)*L/L)+...

C2(j)*(cos(Beta(j)*L/L)-cosh(Beta(j)*L/L)));

K_stuff = E*I*(Beta(i)/L)^2*(-sin(Beta(i)*x/L)-...

sinh(Beta(i)*x/L)-C2(i)*(cos(Beta(i)*x/L)+cosh(Beta(i)*x/L)))...

.*((Beta(j)/L)^2*(-sin(Beta(j)*x/L)-sinh(Beta(j)*x/L)-...

C2(j)*(cos(Beta(j)*x/L)+cosh(Beta(j)*x/L))));

K(i,j) = trapz(K_stuff)*tol;
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end

end

M = [m_total , W ;...

W’ , M ];

K = [ Kbelt , zeros(1,Modes);...

zeros(Modes,1) , K ];

C = LF*K; %Compute damping coefficient matrix

C(1,1) = Damper;

Q = [ Kbelt ;

zeros(Modes,1) ];

%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Modal Analysis %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Solve Eigenvalue Problem for natural frequencies and eigenvectors

[eig_Vec,eig_Val]=eig(K,M);

% sort in ascending order

[w,index]=sort(diag(eig_Val));

% do the same for eigenvectors

phi=eig_Vec(:,index);

RealNaturalFrequenciesHz=sqrt(w)/(2*pi);

%Normalize Eigenvectors according to "modal masses" of individual modes

for i = 1:Modes+1

phi(:,i) = phi(:,i)./(sqrt(phi(:,i)’*M*phi(:,i)));

end

% Basis Functions @ x = L for Output Matrices

for i = 1:Modes

Basis(i)= (sin(Beta(i)*L/L)-sinh(Beta(i)*L/L)+C2(i)*...

(cos(Beta(i)*L/L)-cosh(Beta(i)*L/L)));

end

N_M_r = phi’*M*phi;

N_C_r = phi’*C*phi;

N_K_r = phi’*K*phi;

N_Q_r = phi’*Q;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Assemble Plant % %

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function AccPlant = AssemblePlant_Single_Link...

(N_M_r, N_C_r, N_K_r, N_Q_r, phi, Beta, C2,x, L)

Modes = 2;

for i = 1:Modes

Basis(i)= (sin(Beta(i)*x/L)-sinh(Beta(i)*x/L)+C2(i)*...

(cos(Beta(i)*x/L)-cosh(Beta(i)*x/L)));
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end

A = [zeros(Modes+1), eye(Modes+1);...

-N_K_r , -N_C_r];

B = [zeros(Modes+1,1); N_Q_r];

C_accel = [[1,Basis]*phi*-N_K_r, [1,Basis]*-N_C_r];

D_accel = [1,Basis]*phi*N_Q_r;

AccPlant = ss(A,B,C_accel,D_accel);
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Appendix D

SLIDING MODE OBSERVER LABVIEW CODE

Figure 104: Sliding Mode Observer Block Diagram
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Figure 105: Sliding Mode Observer Gain Determiniation
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Appendix E

MULTIPLE MODEL ADAPTIVE ESTIMATOR LABVIEW CODE
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Figure 106: Multiple Model Adaptive Estimator
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Figure 107: Sub Estimator Detailed View

Figure 108: Model Creation and Bundling into Multiple Estimator Models
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Figure 109: Sub Estimator Gain Assignment

Figure 110: Multiple Model Adaptive Switching State Space Controller With Command
Shaping
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Appendix F

ADXL 325 - MEMS ACCELEROMETER SPECIFICATIONS
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