
DISPERSION ANALYSIS OF NONLINEAR PERIODIC
STRUCTURES

A Dissertation
Presented to

The Academic Faculty

by

Kevin L. Manktelow

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
George W. Woodruff School of Mechanical Engineering

Georgia Institute of Technology
May 2013

Copyright© 2013 by Kevin L. Manktelow



DISPERSION ANALYSIS OF NONLINEAR PERIODIC
STRUCTURES

Approved by:

Dr. Michael J. Leamy, Advisor
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Alper Erturk
School of Mechanical Engineering
Georgia Institute of Technology

Dr. Massimo Ruzzene, Co-Advisor
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Julian J. Rimoli
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Aldo Ferri
School of Mechanical Engineering
Georgia Institute of Technology

Date Approved: 03-March-2013



ACKNOWLEDGEMENTS

I followed a rather unorthodox path to graduate school when I decided to pursue a Ph.D.

several years ago. I didn’t go through the same ‘meet-and-greet’ avenue that many new

graduate students go through to meet their future advisers. Instead, I traveled 800 miles

from Chicago, IL to Atlanta, GA prior to the start of the Fall semester in hopes of finding

a research adviser(s) whose personality and research interests aligned with my own. After

several enlightening discussions, I met with Dr. Aldo Ferri. I am grateful and fortunate

to have met Dr. Ferri at that time, because he directed me to Dr. Michael Leamy and

Dr. Massimo Ruzzene – two incredibly talented faculty members who would become my

graduate mentors and co-advisers.

I feel fortunate to have been advised by Dr. Michael Leamy and Dr. Massimo Ruzzene.

They provided me with an interesting research area, invaluable guidance and instruction,

motivation during hard times, boundaries to keep me on track, opportunities to present my

research, time to prepare for qualifying examinations, and invaluable feedback on all of my

papers and presentations. I would like to specifically thank Dr. Leamy for providing sup-

port from before I even set foot on campus, and for fostering an environment and research

relationship conducive to personal growth and professional development. I am also grate-

ful for the invaluable technical and personal insight that Dr. Ruzzene always offered. I am

deeply appreciative of the uncountable hours they spent working with me. I can’t possibly

describe all of the ways that Dr. Leamy and Dr. Ruzzene have supported and helped me

throughout my graduate career. So, I hope that a simple and humble thank you will suffice

for now.

I would also like to thank the members of my reading committee, Dr. Aldo Ferri, Dr.

Alper Erturk, and Dr. Julian Rimoli, for their invaluable time and feedback throughout

iii



the dissertation process. I take pride in noting that my committee members’ involvement

extended beyond my dissertation proposal and defense. Their well-crafted classes, experi-

mental expertise, literature recommendations, and general advice were immensely helpful

in crafting a successful graduate career. I would also like to thank Dr. Karim Sabra and his

graduate students for their supportive role in initial experiments and to Dr. Raj Narisetti for

his role in developing part of the literature directly supporting this dissertation.

I am also thankful for the friendships I developed while at Georgia Tech with my lab-

mates. Unique insight and perspective from Kyle Karlson, Jason Kulpe, and Dekun Pei

often helped resolve technical or research-related problems. Beyond research, Kyle, Jason,

Dekun, and my other labmates Maj. Elsa Johnson, Farzad Sadeghi, John Arata, Kamil
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SUMMARY

The present research is concerned with developing analysis methods for analyzing

and exploring finite-amplitude elastic wave propagation through periodic media. Periodic

arrangements of materials with high acoustic impedance contrasts can be employed to con-

trol wave propagation. These systems are often termed phononic crystals or metamaterials,

depending on the specific design and purpose. Design of these systems usually relies on

computation and analysis of dispersion band structures which contain information about

wave propagation speed and direction. The location and influence of complete (and partial)

band gaps is a particularly interesting characteristic. Wave propagation is prohibited for

frequencies that correspond to band gaps; thus, periodic systems behave as filters, wave

guides, and lenses at certain frequencies. Controlling these behaviors has typically been

limited to the manufacturing stage or the application of external stimuli to distort material

configurations. The inclusion of nonlinear elements in periodic unit cells offers an option

for passive tuning of the dispersion band structure through amplitude-dependence. Hence,

dispersion analysis methods which may be utilized in the design of nonlinear phononic

crystals and metamaterials are required. The approach taken herein utilizes Bloch wave-

based perturbation analysis methods for obtaining closed-form expressions for dispersion

amplitude-dependence. The influence of material and geometric nonlinearities on the dis-

persion relationship is investigated. It is shown that dispersion shifts result from both self-

action (monochromatic excitation) and wave-interaction (multi-frequency excitation), the

latter enabling dynamic anisotropy in periodic media. A particularly novel aspect of this

work is the ease with which band structures of discretized systems may be analyzed. This

connection enables topology optimization of unit cells with nonlinear elements. Several

xix



important periodic systems are considered including monoatomic lattices, multilayer ma-

terials, and plane stress matrix-inclusion configurations. The analysis methods are further

developed into a procedure which can be implemented numerically with existing finite-

element analysis software for analyzing geometrically-complex materials.
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CHAPTER I

INTRODUCTION

1.1 Overview

This dissertation is concerned with developing analysis methods for analyzing and explor-

ing small but finite-amplitude elastic wave propagation through periodic media. Pertur-

bation analysis of dispersion relationships for periodic media serve as a vehicle for as-

sessing wave propagation traits in materials exhibiting strain and displacement-dependent

nonlinearities. These materials generally exhibit amplitude-dependent wave propagation

characteristics which provides a broad range of opportunities for designing and analyzing

acoustic signal processing equipment (filters, diodes, frequency de-multiplexers), vibration

isolators, wave-based imaging, and energy harvesting. Mechanical energy transport by

elastic waves through periodic material/systems particularly interests researchers because

of innate filtering properties.

A dispersion relation describes the frequency-dependent propagation characteristics of

periodic systems and is sometimes regarded as the DNA or signature of a periodic system.

An overwhelming majority of wave propagation research and design efforts focus on low

energy applications where system dynamics (and hence dispersion relations) are indepen-

dent of amplitude. Dispersion analysis methods purposed for linear systems break down

for finite-amplitude wave propagation where well-known frequency-amplitude dependen-

cies arise.

The primary question addressed herein is how mechanical systems with nonlinearity

can be effectively tailored so that their unique dynamics enable and enhance design, rather

than hinder and suppress it. The present research addresses nonlinearities and their ef-

fect on dispersion in a positive light by providing dispersion analysis tools and validation
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studies with the intention of designing materials, systems, and devices which advanta-

geously utilize nonlinear system dynamics. The specific nonlinearities considered involve

displacement- or strain-dependencies in the governing equations. These situations arise

commonly in structural systems which often exhibit geometrical nonlinearity (linear elas-

ticity, but nonlinear strain-displacement), as well as in material systems whereby a nonlin-

ear stress-strain constitutive relationship enters the governing equation. Because the geom-

etry and particular nonlinearities considered take a variety of forms, a focus of this work is

to present general analysis methods and tools which can be implemented computationally.

The reminder of this chapter provides an introduction to periodic systems and the char-

acteristics of researchers (Sec. 1.2). Specific interest is given to two special classes of

periodic materials which are termed metamaterials and phononic crystals. Dispersive prop-

erties are highlighted to motivate a detailed study of nonlinear analysis methods and design

strategies for periodic systems. The link between dispersion and nonlinearity arising from

high-intensity wave propagation is identified with examples from literature that serve as a

basis for the contained work (Sec. 1.3.2). Some unique characteristics of nonlinear struc-

tures that motivate dispersion analysis are presented in Sec. 1.3. Section 1.4 summarizes

the main results. Finally, Sec. 1.5 outlines the material contained in subsequent chapters.

1.2 Periodic systems

A periodic system is composed entirely of a single, repeating unit. Their appearance in na-

ture is almost as ubiquitous as their use in man-made structures. Figure 1.1 depicts several

common periodic structures, in order of increasing length scale. Atomic crystal lattices

are composed of one or more types of atoms which are arranged periodically. Ionic and

covalent bonds between atoms result in periodic energy potentials which are responsible

for the propagation of heat through lattice vibrations (phonons) [4]. In nature, some insect

shells (e.g. the jewel beetle [5]) evolved with layers of biological material with alternating

refractive indices. The absorption of some frequencies of light and the reflection of others
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produces a unique color pattern (Fig. 1.1b). Another naturally-occurring periodic system

is the hexagonal honeycomb structure constructed by various bee species. While elastic

wave propagation in actual honeycombs is not necessarily of great concern, it is one of

the most important structures in periodic composites for its ability to form complete band

gaps and other unique traits (chirality, beaming, etc.) [6, 7, 8]. At larger length scales yet,

(a) Atomic lattices (b) Insect shell (c) Honeycomb

(d) Railroads (e) Aircraft ribs (f) Buildings

Figure 1.1: Periodic structure occurring in nature, in order of increasing length scale:
atomic lattices, insect shells, and honeycomb. Man-made periodic structures employing
periodicity include railroads, aircraft ribs, and multi-story buildings.

periodic systems that respond to entirely different frequency ranges appear in railroads,

aircraft structures, and city structures such as sky-scrapers and bridges (Figs. 1.1d – 1.1f).

Despite their ubiquity, only recently – within the last forty years – have researchers began

to explore the unique system dynamics of these materials in depth [9, 10, 11].

It turns out that the ability to completely reflect impinging waves at some frequencies

(band gaps) while allowing others to propagate (pass bands) is a universal trait among

periodic materials. Frequency pass and stop bands are formed through the coherent and

incoherent reflections inside a unit cell, respectively, as depicted in Fig. 1.2 for a layered

material. An incident wave is partially reflected and partially transmitted at an interface;
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each of the reflected and transmitted waves undergoes the same process ad-infinitum until

a Bloch wave is formed. Bloch waves formed through constructive interference reside in

the pass band frequency ranges. Evanescent waves, on the other hand, result from the

destructive interference and thus exist in the stop band frequency ranges. Nevertheless,

despite the fact that evanescent waves cannot carry energy deep into a material they have

been purposed for ultra high-resolution imaging beyond the diffraction limit [12].

Figure 1.2: Reflections in periodic materials occur due to impedance contrasts. Interfer-
ence among transmitted and reflected (assuming linearity) waves results in band gaps.

Dispersive materials are, by definition, characterized by a frequency-dependent wave

speed. The dispersion relation contains a wealth of information pertaining to the wave prop-

agation characteristics of a periodic material including the speed and direction of energy

propagation, band gap locations, and resonant frequencies. In two- and three-dimensional

systems, knowledge of this information can be used for a variety of purposes such as di-

recting energy along pre-defined paths (wave guides), isolating structures from vibration,

or focusing energy. Man-made materials which exploit these traits to achieve unique func-

tionality are often termed metamaterials and phononic crystals, depending on the specific

design strategy.

1.3 Motivation

The research contained within is motivated by the possibility of designing entire classes of

new devices from the synthesis of two main ingredients: (1) periodic materials and, and (2)
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nonlinear elements. Phononic crystals and metamaterials without specific nonlinearities

exhibit unique dynamics worthy of entire volumes. In a completely different category, non-

linear mechanical systems exhibit a variety of rich dynamic properties such as frequency-

conversion, bi-stability, and harmonic generation. A significant body of literature exists

for each of these distinct topics, individually. However, the synthesis of phononic crys-

tals and metamaterials composed of nonlinear elements is a largely unexplored topic. The

possibility of marrying the unique traits found in nonlinear systems with those in periodic

structures motivates a number of questions that need answers: what happens to dispersion

in periodic systems with nonlinear elements? how can nonlinear elements be used advan-

tageously in metamaterials and phononic crystals? These are the fundamental questions

motivating analysis of nonlinear periodic systems. Each of these individual elements is

discussed next, followed by a summary of answers to these questions.

1.3.1 Engineered materials: phononic crystals and metamaterials

Phononic crystals consist of a homogeneous host/matrix material with strategically placed

scattering inclusions in order to manipulate the location of band gaps in the frequency re-

sponse [1, 13]. The location and width of these band gaps is of primary concern in the

design of band gap-based diodes [14], switches, and filters. A combination of geometry

and impedance mismatch between the host material and scatterers can produce large band

gaps due to the overlap of Bragg and Mie resonances. Until recently, physical realization

of phononic crystals has been limited to macroscopic structures of beads and rods within

an air, water, or epoxy host material which typically limits phononic band gaps to about

1 MHz [15, 16]. Recently, advances in micro-machining have enabled phononic crystals to

operate at much higher frequency ranges. Figure 1.3 depicts a microfabricated phononic

crystal in a substrate designed at Sandia National Laboratories. Excitation and subsequent

measurement from adjacent interdigital transducers reveals frequency stop bands bands in
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(a) SAW Phononic crystal (b) Frequency response with band gaps

Figure 1.3: A surface acoustic wave (SAW) phononic crystal is formed form a lithium
niobate substrate with low-impedance air inclusions. The transmission spectra depicts a
complete band gap (colored gray) where propagation is prohibited in all directions [1].

the neighborhood of 210 MHz which block acoustic energy transmission. However, strate-

gic removal of inclusions can produce high-Q resonators, notch filters, and waveguides that

operate in this frequency range which may be useful in ultrasound imaging and other signal

processing applications.

Acoustic metamaterials are designed to manipulate the propagation of acoustic waves

in an entirely different manner in order to achieve desirable properties such as negative re-

fractive indices, one-way transmission (i.e. diodes), and sub-diffraction resolution imaging

(i.e. superlens) [17]. Metamaterials typically utilize effective material properties to tailor

behavior. By including resonant elements that respond strongly at a particular frequency,

metamaterials achieve behaviors not known to occur in natural materials. Of course, this

usually limits the range of application to a small frequency band and so an on-going re-

search topic seeks to broaden their range of application.

The acoustic cloak1 depicted in Fig. 1.4 is the flag-ship metamaterial. It operates by

redirecting wave energy around a cylindrical region through the use of a radially-periodic

arrangement of resonators tuned to a particular frequency [2].

1An electromagnetic/optical analogue exists, an in fact served as the inspiration for the acoustic cloak
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Figure 1.4: Acoustic cloak design which utilizes sub-wavelength resonators to redirect
acoustic rays around a central cavity without distortion [2].

A primary difference between phononic crystals and acoustic metamaterials is the wave-

length each operates at. Phononic crystals rely on band gaps and defect modes to con-

trol wave propagation; in contrast, acoustic metamaterials usually operate at longer wave-

lengths (and thus lower frequencies) where unit cell homogenization is valid. Because

phononic crystals and acoustic metamaterials typically operate within fixed frequency lim-

its, tunable frequency response is of primary concern. Adjustable (tunable) dispersion rela-

tions may be useful in engineering applications such as waveguides [1, 16], acoustic filters

[18, 19], diodes [20], acoustic mirrors, and transducers [21, 22]. However, tunable band

structure may only be obtained in linear systems by altering the geometry or material ar-

rangement, which typically limits tuning beyond the manufacturing stage [18]. One option

that has shown great promise for adding tunability to these systems utilizes nonlinearities

for achieving amplitude-dependent dispersion, and thus amplitude-dependent frequency

response.

1.3.2 Nonlinearity in periodic systems

The desire to achieve a more dynamic range of responses from metamaterials and phononic

crystals has inspired several investigations of nonlinear metamaterial properties and analy-

sis methods [23, 24, 19, 25, 26]. The intimate connection between frequency response and

amplitude in stand-alone nonlinear systems is well-known [27]. Still, understanding the

complexities that arise in nonlinear dynamical systems remains an active area of research.

For example, the interaction of two waves in a constitutively-nonlinear material results in
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energy transfer between two waves at commensurate frequencies [28, 29]. In the same

vein, finite-amplitude waves propagation almost always results in harmonic generation – a

phenomena which has been exploited for designing acoustic diodes [20].

Cubic nonlinearities which appear in force-displacement type relationships are a par-

ticularly important class of nonlinearity, often termed the Duffing nonlinearity. The Duff-

ing nonlinearity is responsible for bi-stability, resonant amplitude-dependent frequency-

shifting, and chaos as just a few examples [30]. Nonlinearities play an increasingly dom-

inant role in the dynamics of small scale applications such as resonators and gyroscopes

[31, 32, 33]. Precise design at these scales relies on a complete understanding of how

nonlinearities affect operation and performance. Individual Duffing oscillators have been

purposed for enhancing energy harvesting applications that utilize high-energy periodic or-

bits [34]. Moreover, broadening of the frequency response in the vicinity of linear natural

frequencies enables energy harvesters to operate in wider frequency bands [35]. Forced

and free vibration response of coupled-oscillators have received some attention, but have

received less attention than single oscillators. Hence, a present goal of acoustic metamate-

rial and phononic crystal research is to understand how nonlinearities influence operation

and how they may be used to enhance and control material properties.

Nonlinear phononic systems provide unique opportunities for tunable band gap engi-

neering such as wave-wave interactions [36], amplitude-dependent band structures [37, 38,

3], and extra harmonic generation. The effect of a cubic Duffing-like nonlinearity in force-

displacement type relationships is of particular interest as it leads to amplitude-dependent

dispersion [39, 40, 41, 42, 43], which has implications for device design. However, analysis

methods and literature specifically addressing nonlinear phononic crystals and metamate-

rials are sparse.

A fundamental system of considerable interest in this realm is the 1D monoatomic chain

of nonlinear oscillators. The coupled oscillator system finds application in anharmonic

atomic lattice analysis, finite-difference modeling for continuous materials, and nonlinear
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modal analysis as some examples. Wave propagation in various nonlinear Duffing oscilla-

tor chains have been the subject of recent review. The nonlinear dynamics and band gap

behavior were investigated to determine approximate closed-form expressions for band gap

shifting [24, 3]. Others have investigated wave propagation in similar systems or those with

locally-attached oscillators which have shown chaotic responses [26, 44, 45]. Often, these

analyses assume a weakly nonlinear constitutive force-displacement relation which enables

analysis through perturbation methods.

A strongly nonlinear system, on the other hand, which has seen increased interest lately

is granular media composed of spherical or cylindrical elements. Continuum solutions for

Hertzian contact between individual elements allows for lumped-parameter approximate

solution of such systems. Strongly nonlinear waves in a chain of Teflon beads were in-

vestigated in [37] where tunable band gaps were reported in response to pre-compression.

One-dimensional beaded systems have been devised for use in energy trapping, shock disin-

tegration, and diode devices [38, 46, 47, 48, 49]. Raj et. al have specifically investigated the

dispersion relationship in both one- and two-dimensional granular-media and have shown

the existence of frequency ranges that exhibit wave beaming [50].

Continuous periodic systems have received less attention because of the inherent com-

plexities associated with nonlinear partial-differential equations and geometrically-complex

material domains. The one-dimensional bi-material system was investigated to determine

the response of the system to second harmonic generation in and outside of the acoustic

band gaps [22] and subsequently demonstrated as a potential acoustic diode [20]. How-

ever, the use of more complex media or integration of nonlinear continuous elements into

periodic systems is a largely unexplored research area. As such, analysis methods specif-

ically applicable to nonlinear phononic crystals and metamaterials are sparse. A recent

perturbation-based analysis method for phononic systems offers an alternative method for

determining the amplitude-dependent band structure of discrete nonlinear systems [50].

One component of the research presented herein stems from this work in particular by
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extending this analysis to discretized representations of more general continuous systems.

1.4 Main results

This dissertation contributes several major results of importance in analyzing the dispersion

band structure of nonlinear periodic structures. These results support design of state-of-

the-art phononic crystals and metamaterials which utilize nonlinear elements to achieve

amplitude-tunable propagation behavior. A summary of these results is as follows:

• Two perturbation-based analysis methods for analyzing wave propagation are devel-

oped in a general manner such that they may be applied to discrete or continuous

systems (post-discretization). The first applies to monochromatic excitations, and

has been used to demonstrated novel wave-beaming and applied later in topology-

optimization studies. The latter is more general in that it may be applied to multifre-

quency excitations for analyzing wave-wave interactions.

• Wave interactions in multi-frequency excitation of nonlinear systems leads to tunable

dispersion relationships. The dispersion relation for each primary frequency compo-

nent follows a different dispersion curve. Through these dynamic interactions, tem-

porary lattice anisotropy can be introduced to steer/guide wave beams and alter group

velocity. An example application for tunable-focus imaging is proposed.

• Amplitude-tunable dispersion relations in finite systems are explored and experimen-

tally demonstrated. Frequency shifts are related to dispersion curves and it is found

that a Bloch wavenumber of π/3 in a chain of nonlinear oscillators corresponds,

mathematically, to the exact frequency shift of a single nonlinear oscillator.

• Constitutive material nonlinearities in various continuous systems exhibit optimal

configurations with regard to the magnitude of dispersion shifts. Optimal config-

urations result from Bloch wave modes which exhibit high-strain regions that are
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confined to thin nonlinear layers. An efficient amplitude-tunable filter constructed of

layered materials is simulated and discussed.

• A general numerical framework for implementing nonlinear perturbation-based anal-

ysis in general continuous systems is presented. Integration with finite-element soft-

ware enables evaluation of geometrically-complex unit cells.

An outline of the remaining chapters is presented next.

1.5 Organization of the Work

General analysis methods and procedures are detailed in Chapter 2. The Bloch theorem as

applied in later analytical work is presented along with a description of dispersion in both

linear and nonlinear systems. Two methods for obtaining dispersion relations in nonlin-

ear periodic systems are presented: one previously developed method based on Lindstedt-

Poincaré and a new, more general method based on multiple scales formalism. Chapter 3

describes the interaction of multiple plane waves in 1D and 2D nonlinear periodic lattices.

Nonlinear dispersion shifts are experimentally observed and related to discrete models in

Chapter 4. Nonlinear constitutive laws and their effect on dispersion is presented in Chap-

ter 5 using both perturbation analysis and a transfer matrix method for nonlinear systems.

Topology design and optimization for unit cells with nonlinearity is described in Chapter 6

with the goal of attaining large shift sensitivity. Chapter 7 describes a general method for

analytically obtaining nonlinear dispersion relationships for continuous systems enables the

possibility of analyzing complex materials and nonlinearities. Finally, Chapter 8 concludes

with a summary and describes several areas with promising opportunities for follow-on

work.
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CHAPTER II

ANALYSIS METHODS

2.1 Overview

This chapter documents the analytical methods and tools necessary for describing disper-

sion relations. An overview of periodic system geometry and Bloch wave solutions starts

the discussion. The dispersion relation associated with Bloch waves and several of its im-

portant properties are presented next. The influence of nonlinearities on amplitude are de-

scribed generally and illustrated with a simple and well-known example. The more general

systems examined in later chapters are presented in a general way that allows nonlinearity

to enter the governing equations. Then, two important wave-based perturbation analysis

methods are introduced. The first is limited to situations with monochromatic frequency

content. The second provides a more general means for analyzing nonlinear dispersion

in the event of multiharmonic frequency response. Finally, a note on the presentation of

nonlinear dispersion relations is given.

2.2 Analysis of dispersion in periodic systems
2.2.1 Bloch theorem

Bloch wave analysis, in the most general scenario, addresses wave propagation in domains

of infinite extent which are generally composed of spatially repeating unit cells as depicted

in Fig. 2.1 for a two-dimensional scenario. Unit cells are defined mathematically by the ex-

tent of the spatial period over which periodic geometry or coefficients repeat. Bloch theory

was first introduced by Felix Bloch as a means for identifying wave functions to periodic

electron potentials [4]. Since then, researchers have applied and extended the linear solu-

tion technique to multiple physical domains including electromagnetics (photonics, optics,
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and plasmonics) and elasticity (including acoustics and phononics). Literature concerning

wave propagation in elastic media often refers to this type of problem as the Floquet-Bloch

problem in honor of Floquet who independently investigated the same type of solution.

However, recent literature concerning photonic and phononic systems (the focus of this

research) typically favor the term Bloch wave and so that language is adopted herein.

Figure 2.1: Generalized unit cell arrangement and notation for a 2D Bloch wave propaga-
tion scenario.

Figure 2.1 schematically depicts the geometry of a generalized periodic system in two

dimensions. Individual unit cells are identified by by gray boundaries and referenced with

indices p, q, and r (if a 3rd dimension is present). Unit cell boundaries are described using

primitive lattice vectors ai = diei, where di denotes the unit cell length in the ith dimension

and ei denote Cartesian coordinate system unit vectors. The definition of reciprocal lattice

vectors bi considerably simplifies analysis of Bloch wave propagation and their use in

periodic system analysis is ubiquitous. These vectors are defined as [4]

b1 =
a2 × a3

a1 · a2 × a3
and b2 =

a3 × a1

a1 · a2 × a3
. (2.1)

such that

ai · b j = δi j, δi j ≡ 1 if i = j, and 0 otherwise. (2.2)
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For rectangular unit cells, the reciprocal lattice vectors are simply bi = (1/di)ei. The more

general scenario commonly appears in hexagonal close-packed or body-centered cubic unit

cells.

A state vector u(x, y, z, t) = u(r̃, t) describes field variables (e.g. displacement, pressure,

etc.) at position r̃ = xe1 + ye2 + ze3 relative to an inertial coordinate system. The position

vector is equivalently defined using a local coordinate system located at r such that

r̃ = rp,q + r, (2.3)

where the local position vector r describes position relative to the lower-left corner and the

unit cell position vector rp,q = pa1 + qa2 ∀ (p, q) ∈ R2.

The Bloch theorem postulates the existence of solutions in the form

u(r̃, t) = ψ(r̃)ei(µ·r̃−ωt) + c.c., (2.4)

where µ = µ1b1 + µ2b2 denotes the Bloch wave vector, ψ(r) denotes the Bloch wave func-

tion, and c.c. denotes the complex conjugates of preceding terms. The Bloch wave function

is spatially periodic such that ψ(r + rp,q) = ψ(r); thus, the Bloch relationship may be cast

in the form

u(r + rp,q, t) = ψ(r + rp,q)ei(µ·(r+rp,q)−ωt) + c.c. (2.5)

u(r + rp,q, t) = ψ(r)eiµ·rp,qei(µ·r−ωt) + c.c.. (2.6)

Comparing Eq. (2.6) to Eq. (2.4) with r̃→ r, we arrive at an alternative form of the Bloch

theorem. Since Bloch wave propagation is time-harmonic with frequency ω by definition,

the state vector u(r, t) may be written with the aid of a Bloch wave mode φ(r) such that

u(r, t) = φ(r) exp(−iωt) and Eq. (2.6) reads

u(r + rp,q, t) = φ(r)ei(µ·rp,q−ωt) + c.c.. (2.7)

Equation (2.7) states that response in any unit cell (p, q) differs from the response in

neighboring unit cells only by a phase change equal to µ · rp,q. The latter form Eq. (2.7)
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considerably simplifies the analysis of discrete systems where the field vector u (and thus

Bloch wave mode φ) is known only at discrete locations within each unit cell, as in the

finite-element method or solid state physics [4, 11, 3, 36]. The former form Eq. (2.4) finds

application in reflection and refraction analysis for periodic systems and is often associated

with a solution technique known as the plane wave expansion [51, 52, 9]. This manuscript

adopts the latter form Eq. (2.7) for its utility in conjunction with discretization schemes

such as the finite-element and transfer matrix methods.

The governing equations1 of the domain are responsible for coupling the oscillation

frequency ω, Bloch wave vector µ, and either Bloch wave functions ψ(r) or Bloch wave

modes φ(r). Periodic system analysis is therefore typically defined as finding the nontrivial

combinations of frequency, wave vector, and Bloch mode (or function) which solve the

homogeneous governing equations. The elastodynamic systems considered herein require

satisfaction of Newton’s second law. After formulating the equations of motion, the prob-

lem reduces to a parametric eigenvalue problem which, ultimately, yields the dispersion

relation ω = ω(µ) and the associated Bloch wave modes φ(r;µ). The dispersion relation-

ship governing a particular unit cell contains a wealth of information regarding the dynamic

properties of both infinite and finite systems. These properties are the topic of Sec. 2.2.2.

In closing this section, note that Bloch wave analysis requires linear system; however, by

taking advantage of weak nonlinearity the analysis tools presented in the following section

permit investigation of nonlinear system phenomena, which may enhance existing designs

or suggest new device configurations.

2.2.2 Linear systems

The objectives of the following discussion are to introduce notation and describe relevant

concepts for interpreting and assessing nonlinear dispersion as it pertains to periodic sys-

tems. For a more complete discussion on basic dispersive phenomena the reader is referred

1Partial differential equations in the case of continuous media, and difference equations in the case of
discrete systems
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to other comprehensive texts [4, 53, 54]. Dispersion describes a phenomena whereby the

phase speed c of a propagating wave depends on frequency ω. The frequency and material

wave number2 k are related by the phase speed such that ω = ck. The relationship between

frequency and wavenumber, more generally described by ω(k), is termed the dispersion

relation.

Periodic systems are dispersive by nature. Bloch wave dispersion refers to the disper-

sion relation ω(µ) for linear systems. Figure 2.2 depicts a typical dispersion relation using

a dispersion diagram. The original research contained in this manuscript makes liberal use

of the dispersion diagram in presenting results because it graphically depicts a number of

useful properties. Wave number is plotted along the abscissa, while the ordinate is reserved

for frequency. The ranges of frequencies where propagating waves exist are termed pass

bands. Evanescent Bloch wave solutions exist in regions with imaginary wave numbers;

these frequency ranges are termed stop bands or band gaps.

Figure 2.2: Schematic dispersion diagram illustrates multiple dispersion branches, band
gaps, phase velocity, and group velocity.

2The deliberate use of k as a material wave number helps to distinguish it from the Bloch wave number µ
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A unique feature of Bloch wave dispersion relationships is periodicity whereby ω(µ) =

ω(µ + 2π); this quality motivates the definition of a first Brillouin zone since periodic

systems may be completely described by wave numbers or wave vectors within this re-

gion. The first Brillouin zone in one-dimensional systems is conventionally defined by the

domain µ ∈ [−π, π] (as depicted); unit cells in higher dimensional space require more

complex definitions. Moreover, as infinite domains do not distinguish “forward” from

“backward” propagation the dispersion relationship also follows the symmetry relation-

ship ω(−µ) = ω(µ). These symmetries motivate the definition of an irreducible Brillouin

zone which corresponds to µ ∈ [0, π] in Fig. 2.2.

Frequencies bounding pass and stop bands are particularly relevant for system design.

These frequencies correspond to minima and maxima of each dispersion branch (black

lines). Although unproven, these extrema appear at the edge of the first Brillouin zone in

all but a few known cases [55]. Thus, in many cases (especially in two-dimensions where

dispersion relations describe surfaces) the dispersion relation is evaluated only along the

contour of the Brillouin zone.

Group velocity is an important concept in analyzing periodic structures because it de-

scribes the direction and speed of energy flow [56, 54, 57]. The general definition of group

velocity cg is obtained from the dispersion relation according to

cg ≡ ∇µω(µ) =
∂ω

∂µ1
b1 +

∂ω

∂µ2
b2 +

∂ω

∂µ3
b3, (2.8)

where cg represents the group velocity in reciprocal space bi. In one dimension, group

velocity is described simply by the slope of the dispersion curve as depicted in Fig. 2.2.

Further inspection reveals zero group velocity at the edges of the Brillouin zone where band

gaps begin. Group velocity finds particular utility in analyzing the response of a periodic

structure to external excitation. Unlike phase velocity, group velocity is 2π-periodic in the

wave vector space and also obeys the symmetry relation.

Generally, a Bloch wave travels with the group velocity cg. However, a Bloch wave can

be expressed as a superposition of plane waves, each traveling at different phase speeds.
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This Bloch analysis method is termed the plane wave expansion method or the the method

of space harmonics [9, 11]. This method is not described in depth but it is mentioned for

completeness. These space harmonic methods stem from Eq. (2.4) where the spatially

periodic Bloch wave function ψ may be expressed using a Fourier series. Each of these

individual space harmonics propagates and reflects on itself at each interface. Joannopoulos

et al. refer to this phenomenon as coherent scattering [57]. The superposition of each space

harmonic produces the overall Bloch wave described by φ. Application of Eq. (2.7) to

discrete systems is a simple, exact, and effective approach for discrete systems; therefore

this form of the Bloch theorem is preferred in the analyses to follow.

2.2.3 Nonlinear systems

Nonlinear dispersion analysis (NDA) is concerned with understanding the relationship be-

tween Bloch wave amplitude and dispersion in (usually weakly) nonlinear systems. The

first appearance of NDA for weakly nonlinear one-dimensional systems demonstrated that

a Lindstedt-Poincaré procedure applied in conjunction with the Bloch theorem could suc-

cessfully identify frequency shifts in discrete chains [3]. Analytical expressions of the form

ω(µ; A) = ω0(µ) + εω1(µ; A) + O(ε2) (2.9)

were derived for both monoatomic and diatomic systems which identified the functional

relationship between amplitude and frequency shifting. The expression for the monoatomic

system was given (with some manipulation) as

ω(µ; A) =
√

2 − 2 cos(µ) + ε
3ΓA2

8
(2 − 2 cos(µ))3/2 + O(ε2) (2.10)

where ε denotes a “small parameter”, Γ denotes a nonlinear stiffness coefficient, A is the

Bloch wave amplitude, and µ is the Bloch wave number. A schematic of the system and the

first-order corrected dispersion is presented in Fig. 2.3. This dispersion relation exhibits a

very important feature: it is parametrized by the Bloch wave amplitude such that all of the

properties germane to linear dispersion relations are now amplitude-tunable. For example,
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a the critical cutoff frequency for the linear monoatomic chain (Γ = 0) can be increased

(tuned) with hardening springs (Γ > 0) or decreased with softening springs (Γ < 0).

Figure 2.3: Dispersion relation for a hardening linear monoatomic chain with weakly
nonlinear connecting springs as described in [3]

A related publication arrived at a similar conclusion using a similar perturbation anal-

ysis could identify amplitude-dependent wave numbers in both pass band and stop band

regions, but could not be effectively implemented for complex systems [24]. In addition

to tunable pass and stop bands, amplitude-dependent dispersion relations cause variation

in group velocity and phase speed; two related concepts which find particular use in two-

dimensional systems.

Significant strides have been made since the original appearance of NDA in literature.

Many of these developments are cataloged in the dissertation by R. Narisetti [50], includ-

ing the exact perturbation analysis of several discrete systems and the development of a

similar harmonic balance approach for strongly nonlinear systems. The remainder of this

document builds on his dissertation to analyze continuous systems, more general pertur-

bation methods for analyzing nonlinear wave interactions, and identifying optimal system

topologies.
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2.3 Nonlinear equations of motion

The objectives of this section is to introduce and the general wave equation for elasto-

dynamics, and to discuss the various simplified forms which are used in later chapters.

Sources of nonlinearity are considered and discussed. When discretized, the nonlinear

wave equation(s) reduces to a system of second-order differential equations describing mo-

tions at each node.

2.3.1 Governing equations for a unit cell

Elastodynamic wave propagation in nonlinear periodic systems is generally governed by a

balance of linear momentum. The governing equation pertains to displacements belonging

to the unit cell domain, denoted Ω, while Bloch boundary conditions discussed in 2.2.1

are applied to the domain boundary, denoted ∂Ω. Many of the systems considered later

derive from the elastic wave equation for isotropic solids. Equations of motion for those

systems which are inherently discrete in nature, such as atomic systems, are derived and

presented where necessary. The elastic wave equation for isotropic solids with negligible

gravitational forces, in its most general form, is given by [58, 53] as

∇ · σ(r) = ρV
∂2u(r)
∂t2 , ∀r ∈ Ω, (2.11)

where ρV is the volume density, σ denotes the stress tensor, and u = [u(r), v(r),w(r)]T

denotes displacement from equilibrium at position r = xe1 + ye2 + ze3 in the standard

Cartesian basis. Equation (2.11), while general, is often more complex than necessary for

assessing wave propagation in many geometries. Chapter 7 discusses a method for lever-

aging pre-existing finite-element software for directly attacking nonlinear implementations

of Eq. (2.11).

The two-dimensional reduction of (2.11) explicitly considered in this manuscript are

the plane stress elasticity equations. Plane stress describes a limiting conditions of 3D

elasticity equations where a third dimension is considerably smaller than the other two.
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The general form of these equations is obtained by assuming ∂/∂z = 0 so that Eq. (2.11)

reduces to

∂σxx

∂x
+
∂σxy

∂y
= ρV

∂2u
∂t2 , ∀(x, y) ∈ Ω, (2.12a)

∂σxy

∂x
+
∂σyy

∂y
= ρV

∂2v
∂t2 , ∀(x, y) ∈ Ω, (2.12b)

where σi j components relate to displacement components through a (generally) nonlinear

constitutive law. Chapter 6 analyzes periodic systems with domains governed by Eqs.

(2.12) using topology design and optimization methods.

One-dimensional bars and rods result from a further approximation of Eqs. (2.12)

whereby displacements are constrained to a single direction (say e1) and spatial variation

along the e2 is negligible. These approximations are valid for thin rods when characteristic

wavelengths are much larger than the considered cross-sectional area. With these assump-

tions, Eq. (2.12) reduces to

∂σxx

∂x
= ρV

∂2u(x, t)
∂t2 , ∀x ∈ Ω, (2.13)

where σxx may contain nonlinear terms due to stress-strain constitutive laws. Equation

(2.13) is used in Chapter 5 and Chapter 6 for analyzing one-dimensional propagation, as

well as in Chapter 7 as a validation case. Furthermore, a finite-element approximation of

Eq. (2.13) reduces exactly to the open system of difference equations presented in Chap-

ter 3. Next, we consider the mechanisms which introduce nonlinearity into these governing

equations.

2.3.2 Sources of nonlinearity

Equations (2.11) – (2.13) are are completely general in the sense that they provide oppor-

tunity for nonlinear terms to enter through either a nonlinear constitutive law or nonlinear

strains, for example. Figure 2.4 schematically depicts several typical nonlinearities consid-

ered herein. The types of nonlinearity considered generally take the form of displacement-

or strain-dependent stiffness terms.
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(a) Constitutive nonlinear-
ity

(b) Geometric nonlinearity (c) Geometric nonlinearity

Figure 2.4: Nonlinearities enter equations of motion through various avenues such as
nonlinear constitutive laws or strain-energy relationships (a), or nonlinear geometry such
as stretching in strings, membranes, beams, plates, and shells (b,c).

General hardening and softening nonlinearities may arise in a stress-strain constitutive

relation when higher order terms are kept in a strain-energy potential. Linear stress-strain

laws result when only quadratic strain-energy potential terms are retained; in contrast, re-

tention of cubic and quartic strain-energy terms produces nonlinear elastic constitutive re-

lations. Chapter 5, Chapter 6, and Chapter 7 discuss the influence of cubic stress-strain

relations (resulting from quartic potential terms) on dispersion shifts. Chapter 3 similarly

discusses nonlinear force-displacement relations encountered in lumped-parameter systems

and atomic lattices.

Constitutive nonlinear nonlinearities enter Eqs. (2.13) or (2.12) directly through speci-

fication of a nonlinear stress-strain relation. In contrast, geometric nonlinearities depicted

in Fig. 2.4b and Fig. 2.4c often arise in structural models such as the strings, membranes,

beams, plates, and shells where various small-amplitude approximations are typically made

in order to neglect such terms [59]. String and membrane structural models are considered

in Ch. 4 and Ch. 7, respectively. In these models, an applied pretension load typically pro-

duces restoring forces; however, displacements dynamically increase the pre-tension and

produce cubically nonlinear restoring forces that are a function of the specific geometry.

More specific nonlinearities such as Lennard-Jones potentials, pre-stressed Hertzian

contact, and higher-order polynomial constitutive laws can be directly attacked by their
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specification in specialized finite-element software. Chapter 7 discusses a method for im-

plementing the perturbation method in such cases.

2.3.3 Discretized and weakly nonlinear equations of motion

The equations of motion presented in the previous section are often too complex to solve

when nonlinear terms are present. Even linear formulations of Eqs. (2.11) – (2.12) lead

to difficulty where complex geometry is present. The standard method for solving such

problems is the finite element method. A comprehensive discussion of finite-element dis-

cretization is well beyond the scope of this dissertation and the reader is referred to specific

texts for complete details [60, 61]. In addition to local continuum-based equations of elas-

ticity, many phononic systems of interest in vibration and thermal transport are inherently

discrete in nature such as crystal lattice structures analyzed in solid-state physics.

In linear systems, one discretized unit cell and the associated internal forces from neigh-

bor unit cells is sufficient for analyzing Bloch wave propagation. However, to obtain the

equations of motion governing wave propagation through a single unit cell of an infinite

nonlinear system it is necessary to analyze a unit cell and partial neighbors so that non-

linear forces on the unit cell boundary ∂Ω are left unexposed in a free body diagram [50].

Consider the slice of a continuous periodic 1D, 2D, or 3D elastic system governed shown

Figure 2.5: Central unit cell (colored red) surrounded by neighboring unit cells for 1D,
2D, and 3D periodic systems
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in Fig. 2.5. The global system consists of a central unit cell (colored red) surrounded by

identical neighboring unit cells and the associated internal forces f(p,q,r) on neighboring unit

cells. All neighbor unit cells are included to avoid the appearance of internal forces for the

central unit cell.

Each unit cell can be indexed as convenient; here the central unit cell is indexed as zero.

Suppose that the continuous domain has been discretized so that qi denotes the degrees of

freedom (DOFs) for the ith node. Furthermore, let u(p,q,r) = [q1,q2, . . .qn]T denote the

collection of DOFs within the unit cell indexed by p, q, and r (only p for a 1D system,

or p and q for a 2D system). Then, the total collection of generalized coordinates for the

discretized system is given by

u = [u(−1,−1,−1),u(−1,−1,0), . . . ,u(0,0,0), . . . ,u(0,1,1),u(1,1,1)]T. (2.14)

In order to apply the Bloch theorem, the meshes for each unit cell must be identical. Then,

the sub-vectors u(p,q,r) are the same length. Given this ordering scheme, the discretized

equations of motion for the entire system are written in canonical form as

Mü + Ku + fNL(u) = fext + f int, (2.15)

where M and K denote the mass and stiffness matrices for the central unit cell and its

neighbors as shown in Fig. 2.5, fNL(u) denotes a nonlinear force vector, fext denotes a vector

of externally applied forces, and f int denotes the internal forces acting on the neighbor unit

cells. The mass and stiffness matrices arise from the linear and positive definite differential

operators in the associated wave equation. The nonlinear force vector fNL accounts for all

other terms resulting from the discretization of nonlinear operators.

Nonlinear terms considered in Ch. 5–6 all arise from nonlinear force-deflection type

relationships and so fNL(u) depends only on u. The following methods are, however, ap-

plicable to more complex nonlinear expressions which may take the form fNL(u, u̇, ü) [62].

Moreover, only systems which are weakly nonlinear are amenable to the perturbation anal-

yses presented herein. Thus, the nonlinear force vector is typically defined (or redefined)
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as fNL(u) → εfNL(u) in order to introduce a small perturbation parameter |ε| � 1 which

controls where terms appear in an asymptotic perturbation expansion. Furthermore, free

wave propagation is considered so that fext = 0; then, Eq. (2.15) becomes

Mü + Ku + εfNL(u) = f int. (2.16)

The specific origin of ε varies from case to case. It is generally possible to redefine some

nonlinear coefficient (e.g. Γ) which is known to be small such that Γ = εΓ̂. In other situa-

tions, a small parameter may arise out of dimensional analysis of the governing equations.

The dynamic equations Eq. (2.16) resulting from a discretization of the central unit cell

and its neighbors constitute an open set of nonlinear difference equations whose solution

is dependent upon all u(p,q,r) surrounding the central unit cell. Assuming a lumped mass

matrix, the open set of difference equations for the central unit cell only are given by

1D System: M0ü0 +

1∑
p=−1

Kpup + εfNL
0 = 0 (2.17)

2D System: M0ü(0,0) +

1∑
p=−1

1∑
q=−1

K(p,q)u(p,q) + εfNL
(0,0) = 0 (2.18)

3D System: M0ü(0,0,0) +

1∑
p=−1

1∑
q=−1

1∑
r=−1

K(p,q,r)u(p,q,r) + εfNL
(0,0,0) = 0, (2.19)

where M0 denotes a partition of total mass matrix corresponding to the central unit cell,

K(p,q,r) denote partitions of K responsible for linear restoring forces on the central unit cell

as a result of u(p,q,r), fNL
(p,q,r) denotes the partition of the nonlinear force vector, and it has

been noted that internal forces on the central unit cell are identically zero3. A few notation

simplifications permit the open set of difference equations (for a general 3D system) to be

rewritten as

Mü +
∑

(p,q,r)

K(p,q,r)u(p,q,r) + εfNL(u(p,q,r)
)

= 0, (2.20)

3More specifically, the internal forces on the central unit cell are contained in the stiffness matrix such
that fint

0 = −K(p,q,r)u(p,q,r).
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where the simplified notation fNL
(0,0,0) = fNL and

∑1
p=−1

∑1
q=−1

∑1
r=−1 =

∑
(p,q,r) has been em-

ployed and zero subscripts have been dropped from M0 and u0. This form facilitates per-

turbation analysis and marks the point where the Lindstedt-Poincaré and multiple scales

analysis methods presented next diverge.

2.4 Wave-based perturbation analysis
2.4.1 Lindstedt-Poincaré

Lindstedt-Poincaré perturbation analysis provides opportunity for amplitude-frequency in-

teractions in nonlinear systems. The wave-based perturbation analysis as presented next

was developed primarily by R. Narisetti et. al [3, 63] with some developments contributed

by the author. This method is convenient to apply for monochromatic free wave propa-

gation and has been validated extensively with numerics and by preliminary experimental

results (Ch. 4). Full details of the perturbation approach to be presented next, as applied to

discrete systems, are given in [50].

The small parameter ε appearing in Eq. (2.20) facilitates an asymptotic solution ap-

proach. We introduce a dimensionless time τ = ωt and standard expansions

ω = ω0 + εω1 + O(ε2)

u(p,q,r) = u(0)
(p,q,r) + εu(1)

(p,q,r) + O(ε2). (2.21)

These expansions, when substituted into Eq. (2.20), yield ordered equations:

O(ε0) : ω2
0M

∂2u(0)

∂τ2 +
∑

(p,q,r)

K(p,q,r)u(0)
(p,q,r) = 0 (2.22)

O(ε1) : ω2
0M

∂2u(1)

∂τ2 +
∑

(p,q,r)

K(p,q,r)u(1)
(p,q,r) = −2ω0ω1M

∂2u(0)

∂τ2 − fNL
(
u(0)

)
. (2.23)

Since the discretized system at O(ε0) is periodic and linear, Bloch’s theorem may be applied

to Eq. (2.22) to produce a set of equations describing an infinite [linear] system. The Bloch

wave takes the form of Eq. (2.7)

u(0)
(p,q,r) =

A
2
φei(µ·rp,q,r−τ) + c.c., (2.24)
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with φ the Bloch mode4 and A denoting the amplitude. Equation (2.22) reduces to

ω2
0M

∂2u(0)

∂τ2 + K(µ)u(0) = 0, (2.25)

where u(0,0,0) = u are the DOFs in the central unit cell and the wavenumber-reduced stiff-

ness matrix K(µ) is

K(µ) =
∑

(p,q,r)

K(p,q,r)ei(pµ1+qµ2+rµ3). (2.26)

Equation (2.25) combined with Eq. (2.26) yields a standard eigenvalue problem for eigen-

frequencies ω(0)
j (µ) and Bloch wave modes φ j(µ), parametrized by the dimensionless Bloch

wave vector (
K(µ) − ω2

0M
)
φ j = 0. (2.27)

The dispersion relation for the continuous system is approximated by ω0, j(µ), where the jth

eigenvalue corresponds to the jth dispersion branch (or surface).

Secular terms identified in the O(ε1) Eq. (2.23) lead to a frequency correction to the

eigenfrequency ω(0)
j . Equation (2.23) has the same linear kernel as Eq. (2.22), and thus the

the same wave modes. Introduce the modal coordinates z(0)(t) and z(1)(t) according to

u(0) = Φz(0)(t) and u(1) = Φz(1)(t) (2.28)

where Φ = [φ1, φ2, . . . , φN] is the square modal matrix and N denotes the number of DOFs

per unit cell. Substituting Eq. (2.28) into Eq. (2.23) and subsequently pre-multiplying by

ΦH yields

ω2
0Φ

HMΦ
∂2z(1)

∂τ2 + ΦHK(µ)Φz(1) = −2ω0ω1Φ
HMΦ

∂2z(0)

∂τ2 −ΦHfNL
(
u(0)

)
, (2.29)

where again we note that K(µ) denotes the reduced stiffness matrix as before. Having been

obtained from a general eigenvalue problem, the modal matrix Φ is orthogonal with respect

to the mass and stiffness matrices such that

φH
i Mφ j = mi jδi j φH

j K(µ)φ j = ki j(µ)δi j (2.30)

4Normalized in some consistent manner
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where mi j and ki j are modal mass and stiffness, and δi j denotes the Kronecker delta such

that δi j = 1 if i = j and δi j = 0 otherwise. It is important to note that Eq (2.29) can be

interpreted as a system of real or complex equations. Complex equations are generally

more amenable to solution via the Bloch theorem; however nonlinear terms in fNL must be

derived from purely real quantities. Equation (2.29) denotes a system of decoupled scalar

equations. In particular, the jth equation takes the form

ω2
0m j j

∂2z(1)
j

∂τ2 + k j j(µ)z(1)
j = ω0ω1Am j je−iτ − φH

j fNL
(
u(0)

)
+ c.c. (2.31)

where z(0)
j = (A j/2) exp (−iτ) + c.c. for modal amplitude A j and repeated indices do not

imply summation. The eigenfrequency is againω0, j =
√

k j j(µ)/m j j and terms which appear

on the R.H.S. of Eq. (2.31) with exp(−iω0t) = exp(−iτ) temporal-dependence produce

resonant, and therefore secular, terms. Secular contributions from fNL are identified by

expanding the nonlinear vector fNL(u(0)) from Eq. (2.23) in a Fourier series

fNL
(
u(0)(τ)

)
=

+∞∑
n=−∞

cne−inτ. (2.32)

Solutions which retain the coefficients c1 and c−1 (complex conjugates of one another) result

in secular expansions due to resonance with the O(ε0) system of equations. Furthermore,

any c0 terms are also secular because they require solutions z j ∝ τ
2; this is not encountered

with cubic nonlinearities. Equation (2.31) combined with Eq. (2.32) yields

(
−ω2

0m j j + k j j(µ)
)

z(1)
j =

(
ω0ω1A jm j j − c1

)
e−iτ + O.H.T + c.c. (2.33)

where O.H.T. denotes other harmonic terms with exp(i2τ) and higher frequency association

and c.c. denotes the complex conjugate of the preceeding terms. The frequency expansion

Eq. (2.21) for ω provides a degree of freedom in ω1 which can be used to remove the

secular term in Eq. (2.33). Specifically, for the jth scalar equation, we require the quantity

in parenthesis to vanish identically

ω0ω1A jm j j − c1 = 0. (2.34)
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The ω1, j which satisfies Eq. (2.34) yields a frequency correction for the jth dispersion

branch (or surface) given by

ω1, j(µ) =
φH

j c1

ω0, jA jm j j
. (2.35)

Note that Eq. (2.35) can be expressed alternatively using the modal stiffness through the

relationship ω2
0, j = k j j/m j j. Multiply Eq. (2.35) by

(
ω0, j/ω0, j

)
and recognize the modal

stiffness k j j = ω2
0m j j in the denomonator; the result is

ω1, j(µ) =
ω0, jφ

H
j c1

A jk j j
. (2.36)

The updated dispersion relation is then given as

ω j(µ) = ω0, j(µ) +
εω0, jφ

H
j c1

A jk j j
+ O(ε2), (2.37)

which may be used to identify amplitude-dependent dispersion shifting. This form may be

further simplified by factoring out ω0, j from each term

ω j(µ) = ω0, j(µ)

1 + ε
φH

j c1

A jk j j

 + O(ε2), (2.38)

which reveals a dimensionless frequency correction in terms of the ratio of the nonlinear

force component described by φH
j c1 to the linear force A jk j j.

2.4.2 Method of multiple scales

The method of multiple scales refers to a particular type of perturbation solution method

which allows variables – usually amplitude and phase – to evolve on multiple time scales

[64, 27, 65]. Therefore, like Lindstedt-Poincaré perturbation, the method of multiple scales

provides for amplitude-frequency interaction that avoids secularity in perturbation solu-

tions. The method of multiple scales, however, is more general than Lindstedt-Poincaré.

Lindstedt-Poincaré perturbation specifies solutions with constant amplitude, and phases

which are linearly proportional to time (i.e. constant frequency). The method of multiple

scales, in contrast, does not require that the specific phase relationship be known and amp-

litude may not necessarily be constant. These are particularly desirable traits for dispersion
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analysis methods in nonlinear systems where multiple waves (frequencies) may be present

in the lowest-order O(ε0) solution. Chapter 3 specifically employs this new analysis method

for deriving dispersion shifts due to wave interactions.

The multiple scales analysis presented considers wave propagation in a unit cell where

the governing equations have been discretized into the form of Eq. (2.20), repeated here

Mü +
∑

(p,q,r)

K(p,q,r)u(p,q,r) + εfNL(u(p,q,r)
)

= 0. (2.39)

The general postulation that variables evolve on multiple timescales is formally written as

u = u(t) = u(T0(t),T1(t), ...Tn(t)) ∀ n ≥ 0 ∈ Z. (2.40)

Individual timescales denoted by Tn are defined as Tn = εnt. For small ε that are valid

in perturbation expansions (e.g. ε = 0.01), events occurring only on timescales T1 are

sufficient for describing long time-evolution. As an example, 1 s on a slow timescale T1

with ε = 0.01 corresponds to 100 s on “fast” time t = T0.

The derivatives in Eq. (2.20) transform accordingly. Assuming that only timescales up

to T1 are relevant, a first total derivative d()/dt is expressed using the chain rule as

d( )
dt

=
dT0

dt
d( )
dT0

+
dT1

dt
d( )
dT1

= D0( ) + εD1( ), (2.41)

where the specific timescale derivative operator notation Dn = d( )/dTn has been intro-

duced. The second time derivative follows accordingly as

d
dt

(d( )
dt

)
= (D0 + εD1)(D0 + εD1)

= D2
0 + 2εD0D1 + ε2D2

1,

(2.42)

and Dp
n denotes the pth derivative with respect to time scale Tn. Note that in Eqs. (2.41)

and (2.42) the equality does not strictly hold true in general because of the assumption that

only timescales T0 and T1 are relevant. Using Eq. (2.42) with (2.20) produces

M(D2
0 + 2εD0D1 + ε2D2

1)(u) +
∑

(p,q,r)

K(p,q,r)u(p,q,r) + εfNL = 0 (2.43)
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where the external force vector is ignored in anticipation of free wave propagation solu-

tions.

Next, introduce a standard asymptotic expansion for u(p,q,r) that allows the separation

of individual solutions at each order of ε

u(p,q,r)(T0,T1) = u(0)
(p,q,r)(T0,T1) + εu(1)

(p,q,r)(T0,T1) + O(ε2)

=
∑

i

εiu(i)
(p,q,r)(T0,T1).

(2.44)

It is only necessary retain terms up to O(ε) to solve for a first perturbation correction term

at u(0)
(p,q,r). Substitution of Eq. (2.44) into (2.43) gives

M(D2
0 + 2εD0D1 + ε2D2

1)(u(0) + εu(1)) +
∑

(p,q,r)

K(p,q,r)(u(0)
(p,q,r) + εu(1)

(p,q,r)) + εfNL = 0. (2.45)

After some rearranging, this equation becomes

D2
0Mu(0) +

∑
(p,q,r)

K(p,q,r)u(0)
(p,q,r) + ε

(
D2

0Mu(1) + 2D0D1Mu(0)

+
∑

(p,q,r)

K(p,q,r)u(0)
(p,q,r) + fNL

)
= 0,

(2.46)

where terms O(ε2) are neglected and the strict equality is no longer true. As ε is arbitrary,

the coefficient multiplying each order of ε must vanish individually which produces the

ordered system of equations

O(ε0) : D2
0Mu(0) +

∑
(p,q,r)

K(p,q,r)u(0)
(p,q,r) = 0 (2.47)

O(ε1) : D2
0Mu(1) +

∑
(p,q,r)

K(p,q,r)u(1)
(p,q,r) = −2D0D1Mu(0) − fNL

(
u(0)

(p,q,r)

)
. (2.48)

Hence, the nonlinear system of open difference equations reduces to a cascading set of

linear problems. The ordered equations reduce further when the specific form of the Bloch

wave is specified. Equation (2.47) admits a Bloch wave solution in the same form as Eq.

(2.24). Moreover, a superposition of Bloch wave solutions is also a solution and may be

used to assess nonlinear wave interactions

u(0)
(p,q,r) =

∑
i

Ai(T1)
2

φiei(µi·rp,q,r−ω0,iT0) + c.c., (2.49)
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where individual Bloch wave solutions u(0)
i have wave mode φi, frequency ω0,i, and slowly

varying complex amplitude Ai(T1).

Substituting Eq. (2.49) into the R.H.S of the O(ε1) Eq. (2.48) and evaluating the partial

derivatives D0 and D1 yields

D2
0Mu(1) + K(µ)u(1) = iM

∑
i

ω0,iA′iφie−iω0,iT0 − fNL
(
u(0)

(p,q,r)

)
+ c.c., (2.50)

where again K(µi) denotes the wavenumber-reduced stiffness matrix evaluated for the µith

wave vector and a prime denotes differentiation with respect to the argument. The R.H.S.

of Eq. (2.50) expands with the introduction of a polar form for amplitudes Ai(T1) such that

Ai(T1) = αi(T1)e−iβi(T1). (2.51)

The amplitudes αi(T1) ∈ R and phases βi(T1) ∈ R vary slowly with T1 such that they are

constant in the T0 time scale. The R.H.S. of Eq. (2.50) evaluates to

(. . .) = iM
∑

i

ω0,i
(
α′i − iαiβ

′
i
)
φie−i(ω0,iT0+βi(T1)) − fNL

(
u(0)

(p,q,r)

)
+ c.c.. (2.52)

It is worth noting that at this point that Eq. (2.52) and (2.23) are exactly equivalent

when the following conditions are true:

1. u(0) is monochromatic (i.e. i = 1),

2. A constant amplitude is assumed such that α(T1) = A = const, and,

3. Phase β(T1) varies linearly with slow time T1 such that β(T1) = ω1T1 = εω1t.

Then, Eq. (2.52) reduces to

D2
0Mu(1) + K(µ)u(1) = ω0ω1MAφe−i(ω0+εβ1)T0 − fNL

(
u(0)

(p,q,r)

)
+ c.c..

= 2ω0ω1Mu(0) − fNL
(
u(0)

(p,q,r)

)
+ c.c..

(2.53)

The ability of the multiple scales method to accommodate time varying, multi-harmonic,

Bloch wave solutions in the form of (2.49), or simple monochromatic and constant ampli-

tude solutions in the form (2.24) is very appealing. Indeed, for computing dispersion it may
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be necessary to make assumptions (2) and (3) to obtain tractable expressions for systems

with many harmonics present.

Returning to Eq. (2.52), we note that the linear kernel is the same as the linear kernel

of the O(ε0) equation Eq. (2.52). Therefore, the Bloch wave mode matrix Φ decouples the

linear kernel in the same manner as described previously for Lindstedt-Poincaré analysis.

Introduce modal coordinates u(1) = Φz(1)(t) as before and pre-multiply by φH
j to obtain

D2
0m j jz

(1)
j + k j jz

(1)
j = φH

j iM
∑

i

ω0,i
(
α′i − iαiβ

′
i
)
φie−i(ω0,iT0+βi(T1)) − φH

j fNL + c.c.. (2.54)

As before, terms proportional to exp(±iω0, jT0) result in nonuniform perturbation ex-

pansions and must be removed. As the nonlinear force vector fNL depends on u(0)
(p,q,r), it

must first be expanded to collect terms proportional to exp(iω0, jT0). The discrete frequency

combinations found in fNL are amenable to a multi-dimensional Fourier series expansion

as (in the case of two frequencies denoted by i and j)

fNL(T0) =
∑

i

∑
j

ci jeiω0,iT0eiω0, jT0 + c.c., (2.55)

where the Fourier coefficients are generally a function of all amplitudes and wave vectors

ci j(∪Ak,∪µk). This expansion specifically provides for the existence of higher generated

harmonics as well as sum-and-difference frequency generations [66]. For simplicity, we

denote the fundamental harmonic terms using a single index such that ci0 = ci and c0 j = c j.

The explicit dependence of ci on the complex amplitude of each wave, as well as individual

wave numbers has been noted. A special case arises when two frequencies ω0,m and ω0,n

are commensurate with one another such that these extraneous harmonics occur at one of

the input frequencies ω0,i. This case is treated analytically in Ch. 3 for third-harmonic

interaction. Since cubic nonlinearities are considered herein, the coefficient vector ci can

be obtained symbolically (usually with the aid of symbolic manipulation software) or com-

putationally with the aid of a Fourier transform.

Equations (2.54) and (2.55) combined facilitate the identification of secular terms

D2
0m j jz

(1)
j + k j jz

(1)
j = φH

j

∑
i

[(
iMω0,iφi

(
α′i − iαiβ

′
i
)

e−iβi(T1) − ci

)
e−iω0,iT0

]
+ c.c., (2.56)
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where other harmonic terms (O.H.T.) exist but do not contribute to secularity and so have

been omitted from the above expression. Terms on the R.H.S. of Eq. (2.56) with exp(iω0,iT0)

time-dependence result in secular expansions; therefore, we remove them by requiring they

vanish identically. Factoring out the i = j term from the summation provides the required

condition

iω0, jm j j

(
α′j − iα jβ

′
j

)
e−iβ j − φH

j c j = 0, (2.57)

where the orthogonality properties of the mass matrix have been enforced.

Incidentally, when the frequencies ω0,i are incommensurate it is convenient to multiply

Eq.(2.57) by eiβ j to obtain for the jth equation

iω0, jm j j

(
α′j − iα jβ

′
j

)
− φH

j c jeiβ j = 0. (2.58)

Equation (2.58) requires that real and imaginary components vanish individually such that

ω0, jm j jαiβ
′
j −<

(
φHc jeiβ j

)
= 0 (2.59)

ω0, jm j jα
′
j − =

(
φHc jeiβ j

)
= 0. (2.60)

where <( ) and =( ) return real and imaginary components of the included expression,

respectively. Equations (2.59) and (2.60) are termed evolution equations because, when

solved, they describe the slow-time evolution of the amplitude α j(T1) and phase β j(T1).

In general, Eqs. (2.59) and (2.60) constitute a set of 2N nonlinear differential equations

when a total of N Bloch wave modes are considered. The evolutions equations simplify

considerably when the included frequencies are incommensurate. It happens that the co-

efficient c j for the jth frequency always occurs, for cubic nonlinearities, in the fortuitous

form c j = ĉ j(∪αk) exp(−iβ j). Moreover, the scalar product φHc j results in a purely real ex-

pression quantity because φ j has been derived from a Hermitian eigenvalue problem. Then,

the evolution equations are simply

ω0, jm j jα jβ
′
j − φ

H ĉ j = 0 (2.61)

ω0, jm j jα
′
j = 0. (2.62)
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Equation (2.62) implies that α′j = 0∀ j is constant with respect to slow time T1. Moreover,

Eq. (2.61) can be solved and directly integrated to obtain β j(T1) since ĉ j is independent of

β j

β j =
φH ĉ j

ω0, jα jm j j
T1 (2.63)

Thus, it is often of interest to specify the slow-time behavior of A(T1) a priori to reduce

the complexity of the evolution equations. The nonlinear dispersion corrections produced,

for each Bloch wave, using the method of multiple scales for the case of incommensurate

frequencies read

ω j(µ) = ω0, j(µ) + ε
φH ĉ j

ω0, jα jm j j
+ O(ε2). (2.64)

Here again it is possible to manipulate the corrected frequency by introducing the modal

stiffness according to ω2
0, jm j j = k j j so that the updated frequency is given as

ω j(µ) = ω0, j(µ)
(
1 + ε

ω0, jφ
H ĉ j

α jk j j

)
+ O(ε2). (2.65)

In the more general case, the evolution equations (2.59) and (2.60) possess non-trivial

solutions and must be solved as a coupled system of nonlinear differential equations for

each α j(T1) and β j(T1). Then, the instantaneous frequency correction yields frequency

expansions in the form

ω j(µ) = ω0, j(µ) + εβ j(T1)/T0 + O(ε2) (2.66)

such that the ith Bloch wave component is given by

u(0)
j =

αi(T1)
2

φ je−i[(ω0, j+β j(εt)/t)t] + c.c. (2.67)

This incommensurate case is generally more informative for assessing nonlinear dispersion.

However, the incommensurate case is discussed in more detail in Chapter 3.
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CHAPTER III

NONLINEAR WAVE-WAVE INTERACTIONS

3.1 Monoatomic chain
3.1.1 Overview

Acoustic devices may be subject to multi-harmonic excitations. In one-dimensional linear

materials, the only wave-wave interactions expected are constructive and destructive in-

terference. In nonlinear materials, additional wave-wave interactions take place such that

the strength of the interaction causes dispersion to become both amplitude and frequency

dependent. The interaction of harmonic waves that are commensurate1 with frequency

ratios close to 1:3 may be of particular concern for cubically nonlinear materials where

super-harmonic generation may be present.

The propagation of multiple nonlinearly interacting waves has received considerably

less attention than the propagation of a single wave. It is well-known that oscillations in

nonlinear systems tend to generate super-harmonics and subharmonics [29]. This charac-

teristic behavior of nonlinear systems motivates the investigation of wave-wave interac-

tions. Nayfeh and Mook explored these interactions using the method of multiple scales

for transverse waves along a beam on an elastic foundation [27]. Rushchitsky has been

a primary investigator in the subject of wave-wave interaction and evolution in continu-

ous solids [28, 29, 67]. Rushchitsky and Savel’eva also presented theoretical results on

the interaction of harmonic elastic plane waves in a cubically nonlinear material using the

method of multiple scales for a continuum model [29]. They derived a theoretical model

governing the transfer of energy from a stronger primary wave to a nearly-commensurate

super-harmonic.

1Two frequencies ωA and ωB where two integers n and m can be chosen to satisfy nωA + mωB = 0
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Periodic materials are of particular interest in metamaterial research due to the pres-

ence of band gaps. Various types of periodic media have been studied in the past, including

strongly nonlinear contact in beaded systems [37], kink dynamics [68], and weakly cou-

pled layered systems [45, 44]. One of the most commonly studied systems in the last few

decades is the one-dimensional, undamped spring-mass chain [3, 63, 69, 25]. Amplitude-

dependent dispersion and band gap behavior has recently been explored in several discrete

periodic systems characterized by cubic nonlinearities [3]. It is shown that the boundary

of the dispersion curve may shift with amplitude in the presence of a single plane wave.

Approximate closed-form solutions are obtained that allow the determination of the effects

nonlinearities have on dispersion and group velocity.

In this work, the analysis presented in [3] is extended to include the propagation of mul-

tiple harmonic plane waves. It is shown that the method of multiple scales provides more

generality than Lindstedt-Poincaré when wave-wave interactions occur due to commensu-

rate or nearly-commensurate frequency ratios. The following development supports the

interests being generated by the community by contributing a numerically verified theoret-

ical framework in which the dispersion properties of discrete, periodic, cubically nonlinear

systems undergoing harmonic wave-wave interactions may be determined.

The chapter is organized as follows. In Sec. 3.1.2 we describe the nonlinear model

used for the perturbation analysis. For completeness, in Sec. 3.1.3.1 we briefly reconsider

the case of a single harmonic wave present using Lindstedt-Poincaré perturbation and then

recover the same result using MMS in Sec. 3.1.3.2. The method of multiple scales is

applied to the same nonlinear spring-mass system under the influence of two waves to

obtain theoretical dispersion relations and evolution equations in Sec. 3.1.4. Finally, the

dispersion relations generated by the method of multiple scales are numerically verified in

Sec. 3.1.5.
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3.1.2 Model description and nonlinear governing equation

The monoatomic spring-mass chain with a cubic nonlinearity shown in Fig. 3.1 is consid-

ered. The equation of motion for the monoatomic chain considered is

Figure 3.1: Monoatomic mass-spring chain with cubic stiffness and lattice vector a1.

m ¨̃up + k(2ũp − ũp−1 − ũp+1) + εΓ(ũp − ũp−1)3 + εΓ(ũp − ũp+1)3 = 0, ∀p ∈ Z, (3.1)

where ũp(t) is the displacement from equilibrium of the pth mass, ε is a small parameter, Γ

characterizes the cubic nonlinearity, and m and k denote the mass and linear stiffness. We

nondimensionalize the equation of motion (3.1) by first writing the equation of motion in

canonical form, where ω2
n = k/m

¨̃up + ω2
n(2ũp − ũp−1 − ũp+1) +

εΓ

m
(ũp − ũp−1)3 +

εΓ

m
(ũp − ũp+1)3 = 0. (3.2)

We represent space and time by introducing characteristic length and time parameters (dc

and tc) and nondimensional variables for space and time (up and t) such that ũp ≡ dc up and

t̃ ≡ tc t, where characteristic length is dc =
√

k/Γ and the characteristic time is tc = 1/ωn.

The equation of motion is then re-written using nondimensional variables as

üp + (2up − up−1 − up+1) + ε(up − up−1)3 + ε(up − up+1)3 = 0, ∀p ∈ Z. (3.3)

Note that double dot corresponds to a second derivative with respect to nondimensional

time t.

3.1.3 Single wave dispersion analysis

For the remainder of the chapter, a single-wave analysis refers to calculations presuming

the presence of only one harmonic plane wave, whereas a multi-wave analysis refers to
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the presence of two or more dominant harmonics present such that wave-wave interactions

take place.

3.1.3.1 Lindstedt-Poincaré analysis

It was shown in [3] that a correction to the linear dispersion relation for the mono-atomic

chain could be obtained using Lindstedt-Poincaré perturbation as ω(µ) = ω0(µ) + εω1(µ) +

O(ε2), where

ω0 =
√

2 − 2 cos µ (3.4a)

ω1 =
3α2( cos 2µ − 4 cos µ + 3

)
4ω0

, (3.4b)

and α and µ denote the amplitude and nondimensional wavenumber, respectively. The

dispersion relation ω(µ) is periodic in wavenumber space such that only 0 < µ ≤ π is

considered.

Equation (3.4b) provides a correction to the linear dispersion relation due to the pres-

ence of cubic nonlinearities. The same type of cubic nonlinearity in a spring mass chain

was considered in [24], where a correction to the dispersion relations was also found. The

approach presented in [24] consists in the application of Bloch Theorem directly to the

nonlinear governing equations, while in [3] a perturbation method is applied to decouple

linear and nonlinear terms. This leads to a set of linear equations for increasing order of the

nonlinear parameter ε. Applying Bloch theorem to the lowest order equation, and imposing

solvability conditions to the first order leads to the expressions presented in Eqs. (3.4a) and

(3.4b).

We note that one simplification may be added to Eq. (3.4b) by substituting in the linear

dispersion relation given by Eq. (3.4a). After some manipulation, Eq. (3.4b) can be re-

written as

ω1 =
3α2

8

ω4
0︷          ︸︸          ︷(

2 − 2 cos µ
)2

ω0
=

3
8
α2ω3

0, (3.5)

39



Given a point on the linear dispersion relation (µ, ω0), a frequency correction may be cal-

culated as a function of ω0. The reconstituted dispersion relation is

ω(µ) =
√

2 − 2 cos µ + ε
3α2

8
(2 − 2 cos µ)3/2 + O(ε2). (3.6)

3.1.3.2 Dispersion Relation using the Method of multiple scales

We begin with the equation of motion (3.3) and seek expressions for time-varying amp-

litude and phase as described in Chapter 2. Slow time scales are introduced explicitly as

Tn = εnt. As before, correction terms up to O(ε2) are sought so that the only time scales of

interest are T0 = t and T1 = εt. An asymptotic expansion for the dependent variable up(t)

is expressed in multiple time scales as

up(t) =
∑

n

εnu(n)
p (T0,T1, . . .Tn).

Keeping terms up to and including O(ε1) gives

up(τ) = u(0)
p (T0,T1) + εu(1)

p (T0,T1) + O(ε2). (3.7)

Substituting Eq. (3.7) into Eq. (3.3), and collecting terms in orders of ε, gives the first two

ordered equations which may be written as

ε0 : D2
0u(0)

p + (2u(0)
p − u(0)

p−1 − u(0)
p+1) = 0 (3.8a)

ε1 : D2
0u(1)

p + (2u(1)
p − u(1)

p−1 − u(1)
p+1) = −2D0D1u(0)

p − f NL(u(0)
p , u

(0)
p±1), (3.8b)

where

f NL =
(
u(0)

p − u(0)
p−1

)3
+

(
u(0)

p − u(0)
p+1

)3
. (3.9)

Recall that D0 and D1 represent partial derivatives with respect to the time scales T0 and

T1, respectively. In the presence of a single plane wave at frequency ω and wave number

µ, the solution of (3.8a) is

u(0)
p (T0,T1) =

1
2

A0(T1)ei(µp−ω0T0) +
1
2

A0(T1)e−i(µp−ω0T0), (3.10)
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where A0(T1) is the complex quantity that permits slow time evolution of the amplitude

and phase and an over-bar indicates a complex conjugate. The distinction may be made

explicit by using polar form such that A0(T1) = α(T1)e−iβ(T1), where both α(T1) and β(T1)

are real-valued functions. Substituting Eq. (3.10) into Eq. (3.8a) and simplifying gives the

linear dispersion relation that was previously given in Eq. (3.4a).

The linear kernel of the O(ε1) equation is identical to the linear kernel of the O(ε0)

equation (3.8a), and thus the homogeneous solution has the same form as Eq. (3.10).

Therefore, any terms appearing on the right hand side of Eq. (3.8b) with similar spatial

and temporal forms result in a non-uniform expansion. Removal of these secular terms by

setting them equal to zero results in a system of evolution equations for the functions α(T1)

and β(T1)

α′ = 0 (3.11a)

β′ =
3α2(cos 2µ − 4 cos µ + 3

)
4ω0

=
3
8
α2ω3

0, (3.11b)

where α′ and β′ denote the derivatives with respect to the slow time scale T1. It is clear

from Eq. (3.11a) that α(T1) = α0, and β(T1) = β1T1 + β0, where α0 and β0 are arbitrary

constants determined by imposing initial conditions on the plane wave given in Eq. (3.10).

For the mass-spring chain in consideration, β0 may be set to zero without loss of generality.

Equation (3.10) may be expressed using trigonometric functions as

u(0)
p (T0,T1) = α0 cos

(
µp − (ω0 + ω1ε)T0

)
, (3.12)

such that β1ε ≡ ω1ε may be regarded as a first order frequency correction which results in

a shift of the linear dispersion curve. The reconstituted dispersion relation is identical to

Eq. (3.6). Hence, the method of multiple scales recovers the same results as the Lindstedt-

Poincaré procedure.
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3.1.3.3 Multiple Scales vs. Lindstedt-Poincaré for Wave Interactions

It is well-known that super-harmonics are generated as a result of wave propagation in

nonlinear media and that there exists nonlinear interaction between the waves [28, 27].

Therefore it is of interest to extend the problem to the propagation of multi-harmonic plane

waves to obtain closed-form relationships capturing these interactions.

The Lindstedt-Poincaré method provides a tool to capture nonlinear amplitude-frequency

interaction in systems with time-invariant amplitude and phase, but fails to capture time-

variant behavior such as in the long wavelength limit where amplitude or frequency mod-

ulation may occur. The failure in the Lindstedt-Poincaré method results from the require-

ment that wave amplitudes remain constant such that a single secular term may be used

to obtain a single frequency correction term. When there are multiple secular terms, ad-

ditional degrees of freedom are necessary to obtain a perturbation solution. Allowing for

multiple time-varying amplitudes and phases provides additional degrees of freedom to the

problem.

The assumption implicit in the preceding single-wave analysis is that only a single

harmonic plane wave exists for all time. However, when multiple waves are present with

amplitudes that are the same order of magnitude, the single-wave analysis fails to accurately

capture some nonlinear system behavior due to wave-wave interactions that are neglected.

3.1.4 Wave interaction analysis using multiple scales

Due to linearity of the O(ε0) expression Eq. (3.8a), a superposition of solutions in the form

of Eq. (3.10) is also a solution, such that u(0)
p ⇒

∑
n u(0)

p,n. When two waves are present, we

superimpose two traveling wave solutions, labeled A and B, such that

u(0)
p (T0,T1) = u(0)

p,A(T0,T1) + u(0)
p,B(T0,T1) + O(ε2), (3.13)
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where

u(0)
p,A(T0,T1) =

1
2

A0(T1)ei(µA p−ωA0T0) + c.c. =
1
2
αA(T1)ei

(
µA p−ωA0T0−βA(T1)

)
+ c.c., (3.14a)

u(0)
p,B(T0,T1) =

1
2

B0(T1)ei(µB p−ωB0T0) + c.c. =
1
2
αB(T1)ei

(
µB p−ωB0T0−βB(T1)

)
+ c.c., (3.14b)

and c.c. represents the complex conjugates of the preceding terms. Here, αA, αB, βA, and

βB are functions for the amplitude and phase of each wave, which will be determined by

imposing uniform asymptotic expansion conditions.

Substituting Eqs. (3.13), (3.14a), and (3.14b) into Eq. (3.8b) and expanding the nonlin-

ear terms denoted by f NL allows for identification of secular terms. These terms are those

which are proportional to eiµA peiωA0T0 and eiµB peiωB0T0 , labeled S A and S B, respectively. Due

to the arbitrary naming convention of the A and B waves, the secular terms arising from

each wave are identical. For the A wave, secular terms are

S A = eiµA pe−iωA0τ0

[
−iA′0ωA0 +

3
4

A0|B0|
2ei(µA−µB) +

3
4

A0|B0|
2ei(µB−µA)

+
3
8

A0|A0|
2ei2µA +

3
8

A0|A0|
2e−i2µA −

3
2

A0|B0|
2eiµA −

3
2

A0|B0|
2e−iµA

−
3
2

A0|A0|
2eiµA −

3
2

A0|A0|
2e−iµA +

3
4

A0|B0|
2ei(µB+µA) +

3
4

A0|B0|
2e−i(µB+µA)

−
3
2

A0|B0|
2eiµB −

3
2

A0|B0|
2eiµB +

9
4

A0|A0|
2 + 3 A0|B0|

2
]

+ c.c.. (3.15)

Additional secular terms may arise if (µA, ωA0) and (µB, ωB0) are related such that their

combination results in a secular term. When ωB0 ≈ 3ωA0 and µB ≈ 3µA, these additional
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secular terms are

A3
0ei3µA pe−i3ωA0τ0

[
−

3
8

e−iµA +
1
3
−

1
8

ei3µA +
3
8

e−i2µA −
3
8

eiµA −
1
8

e−i3µA +
3
8

ei2µA

]
+ A0

2B0ei(µB−2µA)pe−i(ωB0−2ωA0)τ0

[
−

3
8

e−iµB +
3
8

e2iµA −
3
8

eiµB −
3
4

e−iµA

−
3
8

ei(µB−2µA) −
3
4

eiµA +
3
4

+
3
4

ei(µB−µA)

−
3
8

e−i(µB+2µA) +
3
4

e−i(µB+µA) +
3
8

e−2iµA

]
+ c.c.. (3.16)

The equivalent secular terms for the B wave may be obtained by letting µA → µB, ωA0 →

ωB0, and A0 ↔ B0. In light of Eqs. (3.15) and (3.16), there exist two possibilities for

secularity when two harmonic plane waves are present:

Case 1.
{
(µB, ωB0) ∈ R2 : (µB, ωB0) , a · (µA, ωA0) where a = 1/3 or 3

}
, such that wave-

wave interactions are produced due to amplitude products (the most general case),

and

Case 2.
{
(µB, ωB0) ∈ R2 : (µB, ωB0) = a · (µA, ωA0) where a = 1/3 or 3

}
such that wave-

wave interactions are influenced by nonlinear frequency and wave number coupling,

as in the long wavelength limit.

Case 1 is the most general case in which there are two waves present, and nonlinear cou-

pling occurs only due to the products of amplitude coefficients A0 and B0. Case 2 produces

secular terms due to amplitude products and nonlinear coupling of both the frequency and

wave number. The super-harmonic (a = 3) and subharmonic cases (a = 1/3) are essentially

the same due to the arbitrary choice in naming the A and B waves. Due to additional secular

terms arising in the long wavelength limit for the super-harmonic (and subharmonic) case,

a separate treatment is necessary.
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3.1.4.1 Case 1. General wave-wave interactions

We suppose there are two waves A and B such that there is no wave-wave interaction

due to special combinations of frequency and wave number (a = 1/3 or 3). Then, two

independent, complex secular terms arise which lead to a nonuniform expansion at O(ε1) as

in Eq. (3.15). Solvability conditions for a uniform expansion require these terms to vanish

identically. Separating the real and imaginary components for each coefficient function and

equating the resulting expressions to zero results in a set of four evolution equations

α′A = 0 α′B = 0

β′A =
3
8
ω3

A0 α
2
A +

3
4
ωA0ω

2
B0 α

2
B β′B =

3
4
ω2

A0ωB0 α
2
A +

3
8
ω3

B0 α
2
B, (3.17)

Equations (3.17) lead to some interesting observations regarding the dispersion relationship

when two waves interact. As with the single-wave case, the amplitudes αA and αB of

both waves are constant at O(ε1). The separable equations β′A and β′B, when integrated,

yield linear phase corrections that can be interpreted as frequency (and thus dispersion)

corrections similar to Eq. (3.12). After integration, the expressions in Eq. (3.17) become

αA = αA,0 αB = αB,0

βA = βA,1T1 + βA,0 βB = βB,1T1 + βB,0, (3.18)

where as before, one of the constants of integration βA,0 or βB,0 may be set to zero without

any loss of generality, while the remaining constant controls the phase relationship between

the two waves (but has no effect on dispersion). The slopes of βA and βB, given by βA,1 = β′A

and βB,1 = β′B in Eqs. (3.18), determine the magnitude of the dispersion correction for each

wave.

It is convenient to express the relationship between ωA0 and ωB0 by a single frequency

on the linear dispersion curve ω0 ≡ ωA0 and a frequency ratio r so that both frequency

corrections can be visualized on a single plot, and also so that r = 3 corresponds to Case 2
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in the long wavelength limit

r ≡
ωB0

ωA0
−→ ωB0 = rω0. (3.19)

Furthermore, we assume without loss of generality, that ωA0 < ωB0 so that a single fre-

quency ω0 and ratio r > 1 describe the dispersion corrections rather than two frequencies.

The frequency correction terms become

ωA1 ≡ βA,1 =
3
8
ω3

0α
2
A +

3r2

4
ω3

0α
2
B (3.20a)

ωB1 ≡ βB,1 =
3r
4
ω3

0α
2
A +

3r3

8
ω3

0α
2
B. (3.20b)

The reconstituted dispersion relations, corrected to O(ε1), are given by

ωA =
√

2 − 2 cos µA + ε
(3
8
α2

A +
3r2

4
α2

B

)
(2 − 2 cos µA)3/2 + O(ε2) (3.21a)

ωB =
√

2 − 2 cos µB + ε
(3r

4
α2

A +
3r3

8
α2

B

)
(2 − 2 cos µA)3/2 + O(ε2) (3.21b)

so that each wave follows its own dispersion curve for a given frequency ratio r and given

amplitudes αA and αB. Thus, when two waves nonlinearly interact they form two ampli-

tude and frequency dependent dispersion branches. In the absence of nonlinear wave-wave

interaction, only a single dispersion curve exists.

Figure 3.2 shows two possible dispersion relation corrections for both hardening and

softening chains. These dispersion curves were plotted using αA = αB = 4, r = 2.7 and

ε = ±0.01 to produce hardening and softening curves. Note that the dotted section of theωA

curve corresponds to values which would cause the super-harmonic ωB = 3ωA0 + εωB1 to

be in the band gap. This section of the curve is not explored here, but has been included as a

visual aid to make the trends more apparent. At large amplitudes the single-wave corrected

dispersion curve in Eq. (3.6), labeled ω in Fig. 3.2, underestimates the magnitude of the

correction to both ωA and ωB. The failure is especially evident at the edge of the Brillouin

Zone.
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Figure 3.2: Multi-wave corrected dispersion curves compared with the linear curve ω0

and the nonlinear single-wave corrected curve ω

If the frequency correction terms ωA1 and ωB1 in Eqs. (3.20a) and (3.20b) are inter-

preted as asymptotic frequency expansion terms as in the Lindstedt-Poincaré method, the

ratios2 of the O(ε1) correction terms to specified O(ε0) linear values (ωA0, ωB0) for each

wave provide an estimate for the expansion uniformity and a normalized measure of the

dispersion correction. These ratios are

ρA =

∣∣∣∣∣εωA1

ωA0

∣∣∣∣∣⇒ ∣∣∣∣∣εωA1

ω0

∣∣∣∣∣ =

[
(3/8)ω3

0α
2
A + (3r2/4)ω3

0α
2
B
]
|ε|

ω0
=

[3
8
α2

A +
3r2

4
α2

B

]
|ε|ω2

0 (3.22)

ρB =

∣∣∣∣∣εωB1

ωB0

∣∣∣∣∣⇒ ∣∣∣∣∣εωB1

rω0

∣∣∣∣∣ =

[
(3r/4)ω3

0α
2
A + (3r3/8)ω3

0α
2
B
]
|ε|

rω0
=

[3
4
α2

A +
3r2

8
α2

B

]
|ε|ω2

0. (3.23)

Hence, αA, αB, r, and the quantity |ε|ω2
0 determine the uniformity and magnitude of the

correction terms. Uniform expansions correspond to when the ratios (3.22) and (3.23) are

much less than one. Furthermore, since ρA,B represent a percentage of the linear frequency

at specified point on the dispersion curve, we can calculate parameters to obtain a spe-

cific dispersion shift. Numerical simulations, presented in Sec. 3.1.5, have shown good

agreement for ρA,B less than about 0.2.

2More specifically, the absolute value of the ratios in the event that ε < 0
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3.1.4.2 Case 2. Long wavelength limit wave-wave interactions

We previously mentioned in Case 2 that additional wave-wave interactions may be pro-

duced due to nonlinear phase coupling when ωB0 ≈ 3ωA0 and µB ≈ 3µA. This corresponds

to when the phase velocities of each wave are approximately equal so that the waves travel

together. The closeness of (µB, ωB0) to 3(µA, ωA0) can be formally represented using detun-

ing quantities σ̄ω and σ̄µ, respectively, so that

ωB0 = 3ωA0 + σ̄ω and µB = 3µA + σ̄µ (3.24)

are exact relations. In the long wavelength limit, σ̄ω = σ̄µ = σ̄ ≡ σε to O(ε3) where the

detuning parameter σ is defined to be a real, positive number of order O(ε0). To show this,

let µA → εµ̂A and µ̂A ≡ O(ε0), so that µA is in the long wavelength limit. Inverting the linear

dispersion relation ωB0(µB) gives

µB(ωB0) = cos−1
(
1 −

1
2
ω2

B0

)
.

Substituting ωB0 = 3ωA0 + σε = 3
√

2 − 2 cos (εµ̂A) + σε in the previous expression and

Taylor expanding µB(µ̂A; ε, σ) in the small parameter ε gives

µB(µ̂A; ε, σ) = (3µ̂A + σ)ε + O(ε3).

Thus,

µB ≈ 3µA + σ̄. (3.25)

Hence, Case 2 may be realized for small µA (and consequently small ωA0) that are in the

long wavelength limit. This one-to-one ratio of frequency to wave number is expected since

the slope of the nondimensional linear dispersion relation is approximately 1 in the long

wavelength limit where µA approaches zero.

One more implication of Eq. (3.25) arises when the substitutions (3.24) are made for

ωB0 and µB in the O(ε0) solution (3.14b) – an additional long spatial scale J1 ≡ εp arises.
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Equation (3.14b) for Case 2, after substitutions, becomes

x(0)
p,B(T0,T1, J1) =

B0(T1)
2

ei(µB p−ωB0T0) + c.c. =
B0(T1)

2
ei(3µA+σ̄)pe−i(3ωA0+σ̄)T0 + c.c.

=
B0(T1)

2
ei(3µA p+σJ1)e−i(3ωA0T0+σT1) + c.c..

(3.26)

From this point forward the procedure follows the development in Sec. 3.1.4.1. However,

secular terms are instead proportional to exp (iµA p − iωA0T0) as well as the third harmonic

exp (i3µA p − i3ωA0T0) so that the secular terms arise from both Eq. (3.15) and Eq. (3.16).

Separating the real and imaginary parts of the two solvability conditions yields a set of

strongly coupled, nonlinear evolution equations with long spatial (J1) and temporal depen-

dence (T1). It happens that the slow time variable T1 exists in each evolution equation such

that they may be written autonomously via substitution of a new variable γ(T1) and its slow

time derivative

γ = −3βA + βB + σT1 − σJ1 (3.27a)

γ ′ = −3β′A + β′B + σ. (3.27b)

Using this fact, the evolution equations may be written in a fashion similar to Eqs. (3.17)

as

α′A =
3
2
α2

AαBξ sin(γ) (3.28a)

α′B = −
1
6
α3

Aξ sin(γ) (3.28b)

β′A = −
3
2
αAαBξ cos(γ) + a1α

2
A + a2α

2
B (3.28c)

β′B = −
1
6
α3

A

αB
ξ cos(γ) + b1α

2
A + b2α

2
B − σ, (3.28d)

where the coefficients a1, a2, b1, b2 and ξ are most simply expressed as functions of ωA0 ≡
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ω0 given by

a1 =
3
8
ω3

0 b1 =
1
4
ω7

0 −
3
2
ω5

0 +
9
4
ω3

0

a2 =
3
4
ω7

0 −
9
2
ω5

0 +
27
4
ω3

0 b2 =
1
8
ω11

0 −
3
2
ω9

0 +
27
4
ω7

0 −
27
2
ω5

0 +
81
8
ω3

0

ξ = −
1
4
ω5

0 +
3
4
ω3

0 (3.29)

The large state space of Eqs. (3.28) complicates the analysis. Some general observations

can be made, though, about the character of the solution in certain limiting cases. The

coefficients a1, a2, b1, and b2 occur in the general form (a, b)1,2 =
∑

n cn(−1)n+1ω2n+1
0 , where

cn > cn+1 by inspection. Thus, for low frequencies in the long wavelength limit the c1ω
3
0

terms dominate. Comparison of Eqs. (3.29) with Eqs. (3.20a) and (3.20b) shows that these

leading order terms are identical for r = 3, and thus the primary difference in the resulting

evolution equations of Case 1 and Case 2 is the existence of the ξ sin(γ) and ξ cos(γ) terms

in Eqs. (3.28). These terms are responsible for coupling the α′A and α′B evolution equations

with the β′A and β′B equations, and is usually negligible for small ω0 (and hence small ξ).

Numerical integration of the evolution equations in Eq. (3.28) provides additional in-

sight and verification to the previous assertions. The solutions of the differential equations

depend on the initial values αA(0) = αA,0, αB(0) = αB,0, βA(0) = βA,0, and βB(0) = βB,0,

and the parameters ω0, σ, and ε. Some possible solutions for the evolution equations are

illustrated in Fig. 3.3 for αA,0 = αB,0 = α0 = [1, 2, 5], βA,0 = βB,0 = 0, and ω0 = 0.5, σ = 0,

and ε = 0.01.

The frequency was chosen to illustrate the oscillations clearly; however, ω0 = 0.5 is

at the edge of the long wavelength limit. The amplitudes αA and αB tend to oscillate pe-

riodically about some fixed point, while the phase corrections βA and βB tend to oscillate

about some linear functions. Therefore, in the long wavelength limit the wave-wave inter-

action gives rise to amplitude and frequency modulation. Based on numerical observation,

the modulations are negligible for small frequencies in the long wavelength limit so that
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Figure 3.3: Typical solutions for αA, αB, βA, and βB

α′A = 0, α′B = 0, and β′A and β′B are both constant to O(ε1). Therefore, even when ωA0 and

ωB0 are commensurate or nearly-commensurate, long wavelength limit wave-wave interac-

tions may be negligible, and the corrected dispersion relations obtained for Case 1 provide

a good (and potentially more useful) approximation.

3.1.5 Numerical verification and discussion

Numerical simulation of the mass-spring system depicted in Fig. 3.1 and governed by Eq.

(3.3) verifies the presented asymptotic approach [3]. In deriving corrections to the linear

dispersion curve, it was assumed that two interacting waves with O(ε0) amplitudes existed

in a one-dimensional, nonlinear medium away from any forcing. By imposing plane-wave

initial conditions and allowing a simulation to run for 100 – 200 nondimensional “sec-

onds,” a space-time matrix of displacements was produced. Points on the dispersion curve

were located by performing a two-dimensional Fast Fourier Transform (2D FFT) on the

displacement matrix.

Figure 3.4 illustrates how the frequency ratio r may be considered as a design parameter

in addition to the wave amplitudes for tunable acoustic metamaterials. We seek to obtain

a 10% (ρB = 0.1) frequency shift for a B wave with amplitude αA = 2 and frequency

ωB0(µB) = rω0 = 1.8. Then, the parameters αA and r may be chosen freely to obtain
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ρB = 0.1 in Eq. (3.23) subject only to the restriction that r > 1 and αA ∈ R is order O(ε0).

The parameter sets [αA = 4.36, r = 3] and [αA = 8, r = 5.5] were chosen such that these

criteria were satisfied. The ratio ρB = 0.1 determines the dispersion curve of the B wave for

any set of values αA and r. However, the dispersion curve for the A wave varies depending

on the choice of parameters according to Eq. (3.22). Several simulations were run and

overlaid in Fig. 3.4a. The zoomed view in Fig. 3.4b plots the two different dispersion

branches that the A wave follows for different choices of the parameters αA and r.

The ratios ρA and ρB that were introduced earlier to estimate the uniformity of the

expansion increase with ω2
0. As the frequency ωB = rω0 increases toward the cutoff fre-

quency, the theoretical frequency corrections become less accurate. Numerical observation

suggests that the propensity of the spring-mass chain to generate additional large-amplitude

harmonics (comparable to the amplitude of the two injected waves) is responsible for this,

owing to additional wave-wave interactions that are not accounted for herein.
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Figure 3.4: A 10% shift at ωB0 = 1.8 can be achieved injecting high-amplitude, low
frequency waves, or low-amplitude, high-frequency waves

3.1.6 Conclusion

A multiple time scales approach has been shown to yield accurate dispersion characteristics

for wave-wave interactions in a discrete nonlinear medium with a cubic material nonlinear-

ity. Evolution equations were derived for a monoatomic chain for both the single-wave and
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multi-wave scenarios.

The Lindstedt-Poincaré method and multiple time scales approach result in the same

dispersion corrections when the resulting evolution equations are autonomous. However,

the multiple time scales approach provides more generality than a Lindstedt-Poincaré meth-

od in dealing with time-varying amplitude and phase. In most cases, the two-wave inter-

action scenario results in a different time-invariant dispersion branch for each wave. These

branches are parametrized by the wave amplitudes (αA, αB), the frequency ratio r, and the

magnitude of the nonlinearity. Additional interactions may take place in the long wave-

length limit due to frequency and wave number coupling between two waves. These inter-

actions result in amplitude and frequency modulations, although transient effects such as

super-harmonic generation may dominate such interactions.

Still, in the long wavelength limit and for small amplitudes, the single-wave disper-

sion correction in Eq. (3.12) provides a reasonable estimate for the dispersion behavior.

Away from the long wavelength limit, such as near the edge of the Brillouin Zone and

at larger amplitudes, the single-wave dispersion analysis fails to yield accurate frequency

corrections. Hence, the wave-wave interaction analysis presented herein provides a more

accurate and complete estimation of the monoatomic chain’s dispersion in such cases.
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3.2 Monoatomic lattice
3.2.1 Overview

Two-dimensional lattices and periodicity form the building blocks of many phononic crys-

tals and metamaterials. Phononic crystal devices such as wave guides and resonators are

formed from the strategic periodic arrangement of two-dimensional unit cells [16, 70, 71].

Crystal lattice planes and graphene sheets also exhibit 2D lattice periodicity where non-

linear restoring forces may arise from inter-atomic attraction and repulsion. For example,

as early as 1973 dispersion relation and wave propagation in anharmonic atomic lattices

were of interest to researchers [72]. The 2D anharmonic lattice considered herein is very

similar to atomic systems and is one of the most fundamental and important systems for

understanding and analyzing Bloch wave propagation in two-dimensional geometry. The

monoatomic lattice is also unique in that in the long wavelength limit the lattice models

wave propagation in membrane systems [73]. Membranes, like strings, exhibit cubic hard-

ening nonlinearities as a result of stretch-induced tension so studying the cubic nonlinearity

in the monoatomic system is particularly appropriate.

Wave propagation in two dimensional systems exhibit directionality in addition to other

dispersion behaviors exhibited by one dimensional systems (1D). Directionality in 2D

structures introduces conceptually new opportunities such as wave beaming, spatial fil-

tering, and imaging. Wave beaming in the two-dimensional beam grillage considered

by Langley et. al in [74], while Ruzzene et. al have considered wave beaming in two-

dimensional cellular structures [75]. The cubically nonlinear lattice and some variations

were studied extensively for single-wave propagation in [63]. They showed that the non-

linear monoatomic lattice exhibits tunable dispersion under the influence of self-action fre-

quency shifts. Tunable parameters included the amplitude of the fundamental Bloch wave

and its wave number.

Nonlinear wave interaction in two-dimensions offers a fundamentally different perspec-

tive for viewing tunability. The introduction of additional waves can predictably control
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or alter the behavior of the system, in addition to nonlinear self-action whereby a wave

self-adjust its frequency according to local intensity. Wave interaction in two-dimensions

provides three new tunable parameters3: two wave vector components and an additional

wave amplitude (usually termed the control wave or pump wave). The idea that nonlinear

wave interactions can enhance traits in two-dimensional periodic systems has been explored

more recently in the photonic crystal community. Panoiu et. al. utilized the Kerr nonlin-

earity with a pump/control wave to enhance the “superprism” effect, whereby the direction

of propagation in the photonic crystal is extremely sensitive to the wavelength and angle

of incidence [76]. This chapter aims to continue the development of the multiple scales

perturbation presented in Ch. 3 with the intent of realizing wave-tunable dispersion.

The following sections introduce the equation of motion for a single unit cell in the

presence of nonlinear restoring springs. A multiple time scale perturbation analysis is ap-

plied to determine dispersion frequency shifts for a Bloch wave solution containing two

dominant harmonic components. The resulting frequency shift expressions are analyzed

and three distinct propagation cases are identified: collinear propagation, orthogonal prop-

agation, and oblique propagation. Numerical simulations validate the expected dispersion

shifts. Finally, negative group velocity corrections induced through a control wave are ex-

plored as a viable means for achieving amplitude-tunable focus and beam steering that may,

ultimately, lead to a phononic superprism effect.

3.2.2 Model description and nonlinear governing equation

The monoatomic lattice equation of motion follows from Newton’s second law derived

for a unit cell at location indices (p, q). Each mass adjoins four neighbors (top, bottom,

left, and right) via springs with nonlinear force-displacement relationships as shown in Fig.

3.5. Individual masses have only one degree of freedom in the out-of-plane direction e3.

The out-of-plane displacements up,q are described by the open set of nonlinear difference

3Assuming the presence of two waves
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Figure 3.5: Monoatomic lattice configuration with lattice vectors a1 and a2. Dashed lines
indicate boundaries for the unit cell.

equations

müp,q + k1(2up,q − up+1,q − up−1,q) + k2(2up,q − up,q+1 − up,q−1) + f NL = 0, (3.30)

where m denotes mass, k1 and k2 denote linear stiffnesses in the e1 and e2 directions, and

f NL results from nonlinear stiffness contributions. The nonlinear force term f NL that arises

from cubically nonlinear inter-atomic springs is

f NL = Γ1(up,q − up+1,q)3 + Γ1(up,q − up−1,q)3 + Γ2(up,q − up,q+1)3 + Γ2(up,q − up,q−1)3 (3.31)

where Γ1 and Γ2 denote nonlinear stiffness coefficients along the e1 and e2 directions, re-

spectively. Weak nonlinearity is enforced in the governing equation Eq. (3.30) by specify-

ing nonlinear coefficients to appear at O(ε1) for small parameter |ε| � 1

Γ1 ≡ εΓ̂1, Γ2 ≡ εΓ̂2, (3.32)

and additionally specifying Γ1 and Γ2 ≈ O(ε0). The resulting equation is amenable to

perturbation analysis. Wave interactions are analyzed using the multiple scales perturbation

analysis procedure outlined in Ch. 2.
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3.2.3 Multiple scales perturbation analysis

Introduce an asymptotic expansion for the displacement in addition to multiple time scales

up,q(Ti) = u(0)
p,q(Ti) + εu(1)

p,q(Ti) + O(ε2) (3.33)

where slow time scales are defined according to Ti ≡ ε
it. Derivatives transform according

to Eq. (2.42) where Di denote derivatives with respect to the Tith time scale. Ordered

perturbation equations result from substitution of Eq. (3.33) and slow time derivatives Di

into Eq. (3.30)

O(ε0) : mD2
0u(0)

p,q + k1(2u(0)
p,q − u(0)

p+1,q − u(0)
p−1,q) + k2(2u(0)

p,q − u(0)
p,q+1 − u(0)

p,q−1) (3.34)

= 0

O(ε1) : mD2
0u(1)

p,q + k1(2u(1)
p,q − u(1)

p+1,q − u(1)
p−1,q) + k2(2u(1)

p,q − u(1)
p,q+1 − u(1)

p,q−1) (3.35)

= −2mD0D1u(0)
p,q − f NL

(
u(0)

p,q, u
(0)
p±1,q±1

)
where the nonlinear function f NL depends only on the O(ε0) solution. The O(ε0) equation

admits a Bloch wave solution

u(0)
p,q =

1
2

A(T1)ei(µ·r(p,q)−ωT0) + c.c. (3.36)

for Bloch wave numbers µ = [µ1, µ2] and position vector r(p,q) = [p, q]. The complex

amplitude A(T1) varies with slow time T1 and is therefore considered constant at O(ε0).

The zero-order equation, with application of the Bloch wave solution Eq. (3.36), reduces

to [
−ω2m + k1

(
2 − eiµ1 − e−iµ1

)
+ k2

(
2 − eiµ2 − e−iµ2

)]
u(0)

p,q = 0, (3.37)

Nontrivial solutions u(0)
p,q , 0 exist when only when the dispersion relation is satisfied.

Setting the expression in brackets equal to zero produces the linear dispersion relationship

ω(µ) =

√
ω2

n1(2 − 2 cos(µ1)) + ω2
n2(2 − 2 cos(µ2)) (3.38)

where ωn1 ≡
√

k1/m and ωn2 ≡
√

k2/m denote characteristic frequencies. Next, corrections

to this dispersion relationship due to weakly nonlinear wave interactions are considered.
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As discussed in Ch. 2, dispersion shifts must be calculated for a specific frequency

content and amplitude ordering. The input signal considered for wave interactions is com-

posed of two Bloch waves at ωA0 and ωB0 and amplitudes ordered such that both signals

are present in the O(ε0) equation

u(0)
p,q =

1
2

A(T1) exp(iµA · r − iωA0T0) +
1
2

B(T1) exp(iµB · r − iωB0T0) + c.c. (3.39)

The wave numbers µA = [µA1, µA2] and µB = [µB1, µB2] correspond to a primary wave

at ωA0 and a control wave at ωB0 through the linear dispersion relationship Eq. (3.38),

respectively. The frequencies ωA0 and ωB0 are incommensurate by definition. Indeed, the

O(ε0) equation is identically satisfied for this multi-frequency Bloch wave solution.

A multiple time scales solution informed by a Lindstedt-Poincaré type phase expansion

yields the resulting frequency corrections. The amplitude functions A(T1) and B(T1) take

the form

A(T1) = αA(T1)eiβA(T1) and B(T1) = αB(T1)eiβB(T1) (3.40)

for amplitudes αA and αB of O(1). As per the discussion in 2.4.2, the amplitudes αA and

αB will be constant with respect to T1 time scales. The time-varying phase terms βA and

βB result in instantaneous frequency shifts. Lindstedt-Poincaré type solutions correspond

to the situation where the βA and βB depend linearly on T1.

We can take, without loss of generality, the indices p = 0 and q = 0 for the central unit

cell. Terms appearing on the right of the O(ε1) equation with exp(iωA0T0) or exp(iωB0T0)

time-dependence result in primary resonances, and therefore secular expansions. Collect-

ing these terms and setting the coefficients S A and S B to zero, respectively, produces two
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complex equations. The first of the secular equations is

S A =
3
2

Γ1αB
2αAeiβAT1eiµB1 +

3
2

Γ1αB
2αAeiµA1eiβAT1 +

3
2

Γ1αB
2αAeiβAT1

eiµA1

+
3
2

Γ1αB
2αAeiβAT1

eiµB1
+ m1αAβAωAeiβAT1 −

3
4

Γ2αB
2αAeiµA2eiβAT1eiµB2

−
3
4

Γ2αB
2αAeiµA2eiβAT1

eiµB2
−

3
4

Γ2αB
2αAeiβAT1eiµB2

eiµA2
−

3
4

Γ2αB
2αAeiβAT1

eiµA2eiµB2

−
3
4

Γ1αB
2αAeiµA1eiβAT1eiµB1 −

3
4

Γ1αB
2αAeiβAT1

eiµA1eiµB1
−

3
4

Γ1αB
2αAeiβAT1eiµB1

eiµA1

+ . . .

−9/4 Γ2αA
3eiβAT1 − 9/4 Γ1αA

3eiβAT1 = 0,

(3.41)

where some terms have been omitted for brevity; a similar equation results for ωB0 and has

been omitted. The real and imaginary components of each of the two equations S A = 0 and

S B = 0 must vanish independently such that

<(S A) = <(S B) = =(S A) = =(S B) = 0. (3.42)

The resulting expressions, termed solvability conditions or evolution equations, de-

scribe the slow time evolution of the amplitude and phase. The imaginary equations reveal,

as expected, that amplitudes αA and αB are constant with T1 time scales. The other two

evolution equations may be solved for the the instantaneous frequency corrections βA(T1)

and βB(T1). The solution of the ordinary differential equations yields

βA(T1) =
3
8

Γ̂1

mωA0

[
α2

A f (µA1)2 + 2α2
B f (µA1) f (µB1)

]
T1

+
3
8

Γ̂2

mωA0

[
α2

A f (µA2)2 + 2α2
B f (µA2) f (µB2)

]
T1

(3.43)

and (3.44)

βB(T1) =
3
8

Γ̂1

mωB0

[
α2

B f (µB1)2 + 2α2
A f (µA1) f (µB1)

]
T1

+
3
8

Γ̂2

mωB0

[
α2

B f (µB2)2 + 2α2
A f (µA2) f (µB2)

]
T1,

(3.45)

where the function f (θ) is defined as

f (θ) ≡ 2 − 2 cos(θ). (3.46)
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The function f (θ) is recognized as the squared dispersion relation for the 1D mono-atomic

chain4.

The linearity of βA(T1) and βB(T1) on slow time scale T1 permits the definitions ωA1 ≡

βA/T1 andωB1 ≡ βB/T1 such that a Lindstedt-Poincaré type asymptotic series in ε describes

frequency corrections to ωA and ωB as

ωA(µA,µB) = ωA0(µA,µB) + εωA1(µA,µB; αA, αB, Γ̂1, Γ̂2) (3.47)

and (3.48)

ωB(µA,µB) = ωB0(µA,µB) + εωB1(µA,µB; αA, αB, Γ̂1, Γ̂2), (3.49)

where the frequency corrections are given explicitly as

ωA1 =
3
8

Γ̂1

m
√
ω2

n1 f (µA1) + ω2
n2 f (µA2)

[
α2

A f (µA1)2 + 2α2
B f (µA1) f (µB1)

]

+
3
8

Γ̂2

m
√
ω2

n1 f (µA1) + ω2
n2 f (µA2)

[
α2

A f (µA2)2 + 2α2
B f (µA2) f (µB2)

] (3.50)

ωB1 =
3
8

Γ̂1

m
√
ω2

n1 f (µB1) + ω2
n2 f (µB2)

[
α2

B f (µB1)2 + 2α2
A f (µA1) f (µB1)

]

+
3
8

Γ̂2

m
√
ω2

n1 f (µB1) + ω2
n2 f (µB2)

[
α2

B f (µB2)2 + 2α2
A f (µA2) f (µB2)

]. (3.51)

3.2.4 Analysis of predicted dispersion shifts

Equations (3.50) and (3.51) depend on the input wave vectors µA and µB in a complicated

manner. The qualitative nature of these dispersion shifts relies heavily on the behavior of

f (θ). Several key results are evident with the observations f (0) = 0 and f (−θ) = f (θ):

1. Collinear wave vectors Two waves which propagate collinearly along a lattice vec-

tor interact as if propagation were one-dimensional.

4With this definition, the dispersion relationship for the 2D monoatomic lattice may be written as ω =√
ω2

n1 f (µ1) + ω2
n2 f (µ2).
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2. Orthogonal wave vectors Two waves which propagate with orthogonal wave vectors

aligned to the lattice vectors do not interact, and receive frequency shifts due only to

self-action.

3. Oblique wave vectors Two waves propagating with oblique wave vectors do interact

according to the derived relationship.

Figure 3.6 depicts each of these scenarios schematically. Case 1 describes the situation

where µA · a2 = 0 and µB · a2 = 0, or alternatively µA · a1 = 0 and µB · a1 = 0. This

case reduces to the 1D monoatomic array analyzed in Ch. 3. A special case of this occurs

during resonant wave propagation whereby counter-propagating waves are described with

µB = −µA. Case 2 describes orthogonal wave propagation only when wave numbers are

Figure 3.6: Three cases of wave-wave interaction in the monoatomic lattice.

aligned to lattice vectors; in this case, dispersion corrections to O(ε1) do not indicate any

wave interaction. Case 3 depicts the most general situation where arbitrary wave vectors

interact. Each of these three cases is validated numerically.

There are additional important aspects of the predicted dispersion shifts which are sub-

tle: Brillouin zone symmetry is retained, and group velocity remains zero along the Bril-

louin zone boundaries. Figure 3.7 depicts Brillouin zone symmetry in the linear disper-

sion relation ω0(µ) and the frequency correction ωA1(µA,µB) evaluated with horizontal and

oblique control waves µB and µB′ , respectively. The linear dispersion relationship in Fig.

3.7a depicts ω0(µ1, µ2) and is symmetric with respect to both µ1 and µ2. Any reflection,
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Figure 3.7: Brillouin zone symmetry is retained by dispersion shifts resulting from wave
interactions. (a) Linear dispersion relationship with the FBZ identified by points Ri, i =

1..4. Wave vectors µB = [3.0, 0.0] and µB′ = [1.0, 2.1] correspond to horizontal and
oblique control waves used for frequency corrections plotted in (b) and (c), respectively.

or combination of reflections, of a wave vector µ about axes µ1 or µ2 yields the same fre-

quency. The same symmetry is retained by frequency corrections ωA1 and ωB1. Figures

3.7b and 3.7c depict this symmetry for the ωA1 correction in Eq. (3.50) by evaluating the

expression over the entire First Brillouin zone (FBZ), subject to a given control wave at

wave number µB. It is easily verified that ωA1(µA,µB) and ωB1(µA,µB) are symmetric for all

combinations of µA and µB since f (−θ) = f (θ) and f (θ) ≥ 0∀ θ ∈ R.

Less obvious is the fact that the group velocity of the corrected dispersion relationships

ωA and ωB remains zero at the appropriate edges of the FBZ. Let cgA = c(0)
gA + c(1)

gA and

cgB = c(0)
gB + c(1)

gB, where c(1)
gA and c(1)

gA denote corrections to the linear group velocity from

Eqs. (3.50) and (3.51), respectively. A group velocity calculation using the chain rule on

the frequency correction Eq. (3.50) expresses this relationship as

c(1)
gA = ∇µωA1 =

∂ωA1

∂ f (µA1)
∂ f (µA1)
∂µA1

b1 +
∂ωA2

∂ f (µA2)
∂ f (µA2)
∂µA2

b2. (3.52)

The function f (θ) has derivative d f /dθ = 2 sin(θ); therefore, along the FBZ edges where

µ1,2 = ±π the group velocity evaluates to zero along boundary normal directions.

The group velocity correction may be used to dynamically steer wave beams through

the application of a control wave µB. The monoatomic lattice k1 = k2 exhibits a known

singularity in the vicinity of µA = [π/2, π/2] whereby wave beams form along diagonals
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[63]. Express the group velocity correction c(1)
gA = cgA(cos θgb1 +sin θgb2) where cgA denotes

group velocity amplitude at an angle of θg. An interesting situation results when θg < 0;

group velocity corrections correspond to negative angles θg. Equation 3.52 evaluated in

the vicinity of µA = [π/2, π/2] yields an expression describing the control wave numbers

which produce negative angled corrections5

cos(µB2) =
1
6
[
6 − rgr2

A + 7r2
A − 6rg f (µB1)

]
, (3.53)

where rg ≡ Γ1/Γ2 and rA ≡ αA/αB denote nonlinear stiffness and amplitude ratios, respec-

tively. The solution of this equation yields two distinct solution regions: (I) θg < 0 and (II)

θg > 0. Figure 3.8a depicts a wave beam of a linear system (black, dashed) and the cor-

rected wave beam (black, solid) as a result of a negative group velocity correct (red vector).

Figures 3.8b and 3.8c depict regions (I) and (II) where negative group velocity corrections

exist for low and moderate amplitude ratios. This phenomena is unique to nonlinear lat-
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Figure 3.8: Negative group velocity corrections are a unique result of wave interaction. A
linear wave beam (black, dashed) receives a negative group velocity correction (labeled red
vector) to produce beam shifting (black, solid). Control waves which achieve θg < 0 are
found in region (I).

tices subject to wave-wave interactions; negative group velocity corrections, as depicted

in Fig. 3.8, cannot be realized under nonlinear self-action corrections. This phenomena

offers a unique opportunity for beam steering and tunable focusing; example applications

5Eq. (3.53) refers to the system described by ωn1 = ωn2 = 1.0
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are presented later.

3.2.5 Numerical simulation validation cases

Time-domain finite-element simulations confirm the accuracy of analytical perturbation

calculations. Simulations are constructed using a large array of masses and springs with

unit parameters m = 1 kg and k1 = k2 = 1 N m−1 such that boundary reflections are not

encountered. Bloch waves are introduced into the system by means of specifying initial

conditions; numerical integration for a specified time interval of approximately 40 s results

in space-time data for each mass. Each mass oscillates at a corrected frequency, depending

on the initial amplitude, which is measurable from its time response signal.

3.2.5.1 Analysis method

A nonlinear least-squares model provides an accurate method of quantifying the frequency

shift over short time periods. This method also provides quantified uncertainty levels for

the determined parameter values, although in the cases presented the uncertainty is negligi-

ble. The nonlinear least-squares curve fit method attempts to minimize the sum of squared

error between trial function F (x) and a provided signal u(t). This analysis method is first

analyzed without the influence of wave interactions, i.e. αB = 0. The left subfigure of

figure 3.9 depicts the wave field corresponding to µA = [1.8, 0] and amplitude αA = 2. The

wave vector is aligned to the a1 lattice vector. The right subfigure shows the displacement

field evaluated for up,q(x, t) located centrally in the wave field such that boundary reflections

have no influence for the times considered.

Figure 3.10 displays frequency shifts ωA1 as a function of the primary wave amplitude

αA. Frequency shifts obtained from numerical simulation (triangles) match the theoretical

predictions almost exactly for amplitudes αA < 2. Simulation results for amplitudes αA > 2

diverge from theoretical perturbation calculations. This behavior is typical of asymptotic

solutions where amplitude or frequency corrections exceed the O(ε0) values. Indeed, the

frequency correction at αA = 3 results in a 7.2% to the linear frequency ωA0 = 1.567. We
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Figure 3.9: Initial wave field and corresponding displacement probe located centrally in
the field (p = 40, q = 40). Markers denote a nonlinear least squares fit while solid lines
indicate the numerical simulation time signal.
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Figure 3.10: Numerical simulation results for frequency-amplitude relationship using a
least-squares curve fit method

note that the theoretical frequency corrections tend to overestimate the resulting frequency

shift due to energy transfer from a primary wave to sub- and super-harmonics. The dotted

line in Fig. 3.10 represents theoretical frequency corrections evaluated for the same probe

location with an amplitude α∗A = 0.95αA. This curve better fits data at higher amplitudes

(e.g. αA = 3) where additional harmonic generation causes energy leakage from the pri-

mary harmonic. Thus, it is likely that frequency corrections will be less than predicted by

a perturbation analysis when weakly nonlinear assumptions are no longer valid.
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3.2.5.2 Orthogonal and oblique interaction

Numerical simulation of Case 2 (orthogonal interaction along a lattice vector) and Case

3 (general, oblique wave vectors) is presented next. Collinear propagation has been thor-

oughly addressed in Ch. 3. Recall that during the course of wave interaction, dynamic

frequency shifts exist for both the primary wave ωA1 and the control wave ωB1. In this

section, emphasis is placed on validating ωA1.

Figure 3.11 depicts initial wave fields for both orthogonal and oblique wave interaction.

Each validation case considers a control wave a constant amplitude αB = 2.0 while the amp-

litude of the primary wave αA varies from 0 to 2 (depicted in Fig. 3.12). Primary and con-

trol Bloch wave fields correspond to randomly generated wave vectors µA = [1.811, 0.0]

and µB = [0.0, 1.043] for orthogonal propagation and µA = [0.831, −2.528] and µB =

[−1.391, 0.294] for oblique propagation. Initial wave fields are depicted in the left graph-

ics. Sub-plots on the right depict the multifrequency numerical time-domain responses

(solid), along with least-squares data fits of the form f (t) = Ã cos(ω̃At+ θ̃A)+ B̃ sin(ω̃Bt+ θ̃B)

(markers). Least-squares data fit parameters are denoted by (˜). The frequencies associated

with the fit agree well with the time-domain responses.

Amplitude-dependent frequency shifts ωA1 are plotted in Fig. 3.12. Solid lines denote

theoretical frequency shifts, while markers indicate the frequencies extracted from simula-

tion data. All simulation cases agree very well with perturbation theory. Figure 3.12a also

overlays the result for no wave interaction presented previously in Fig. 3.10. As expected,

two waves propagating along a lattice vector experience no additional frequency shift from

the presence of control wave. In contrast, Fig. 3.12b depicts a nonzero frequency shift

even for αA ≈ 0 owing to dynamic lattice anisotropy introduced from the presence of µB.

This result unique to wave-interaction has not been previously documented to the author’s

knowledge.

66



(a) Orthogonal propagation

(b) Oblique propagation

Figure 3.11: Initial wave field for orthogonal and oblique wave interaction (for αA = 2.0
) and corresponding displacement probe located centrally at p = 40, q = 40. Symbols de-
marcate the time series corresponding to the nonlinear least-squares curve fit for frequency,
phase, and amplitude.

The idea that lattice anisotropy can be dynamically introduced through nonlinear con-

trol wave interaction is a powerful concept for nonlinear metamaterials and phononic de-

vices. Dynamic anisotropy is explored next in an amplitude-tunable focus device which

employs wave dynamic wave beaming.

3.2.6 Application: Amplitude-tunable focusing

The idea behind amplitude-tunable focusing was first explored in Sec. 3.2.4 where a group

velocity analysis of dispersion frequencies exhibited possible negative group velocity cor-

rections. Negative group velocity corrections offer the potential for tuning the direction of

wave beams. Moreover, the constructive interference of two wave beams may be used to

develop a metamaterial variation of the high-intensity focused ultrasound devices employed

in medical procedures to locally heat or destroy tissue [77].
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Figure 3.12: Numerical simulation results for orthogonal and oblique wave interaction.
Theoretical results (line) are validated by numerical time-domain simulations (markers).
Unlike orthogonal interaction (a), oblique interactions (b) result in nonzero frequency shifts
for low-amplitude A waves.

Numerical validation of conjectures described in Sec. 3.2.4 are presented in Fig. 3.13.

A control wave with wave number µB = [3.0, 0.0] was injected into the nonlinear mate-

rial (rg = 1). At time t = 0, a centrally located point source forms wave beams along

the diagonals. Solid black lines depict theoretical beam trajectories; dotted lines indicate

low-amplitude (linear) trajectories for comparison. Root-mean-square displacements from

numerical simulations are overlayed with theoretical beam trajectories. In order to visual-

ize the primary wave field resulting from the point source, a notch filter was applied to the

control wave frequency for each frame by transforming spatial data into the wave vector

domain.

Increasing the control wave amplitude causes the beam to converge along the horizontal

direction. At very high amplitudes αB = 4.0 as seen in Fig. 3.13c, the lattice response loses

complete symmetry which may suggest more efficient transfer of energy in the direction

of the control wave vector. Regardless of this, numerical simulations agree strongly with

analytical group velocity calculations.

The same principle may be applied to an amplitude-tunable focus device (ATFD) as

depicted schematically in Fig. 3.14. The ATFD operates on the principal of constructive
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Figure 3.13: Wave beam steering using a control wave with µB = [3.0, 0.0] and a point
source excitation at ω = 2.0. Increasing levels of control wave amplitude αB shown in (a) –
(c) vary the beam angle. Solid lines indicate a theoretical beam path; dashed lines indicate
the low-amplitude beam path for comparison.

interference. Two identical sources located at the edge of a nonlinear metamaterial provide

tunable wave beams. At low amplitudes, the focal point (FP) lies on the mid-plane (focal

plane) at a distance of half the source separation6. The presence of a control wave produces

(a) Device schematic
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(b) Focal point

Figure 3.14: (a) Schematic of a tunable focus device which utilizes constructive interfer-
ence on a central focal plane. (b) Power distributions calculated along the focal plane from
numerical simulation results reveal a sharpening of the focal point (see Fig. 3.15 also) and
tunable distance.

dynamic lattice anisotropy which adjusts the wave beam angle. By varying the intensity of

the control wave, the FP moves toward or away from the sources. Numerical simulations of

the ATFD at various amplitudes confirm the expected behavior as depicted in Figs. 3.14b

6This is because the wave beams form at 45 degree angles in the system considered
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and 3.15. Figure 3.14b depicts the power distribution (a.u.) evaluated along the focal plane

for three control wave amplitudes. An unexpected and positive consequence of the focusing

mechanism is a distinct peak sharpening relative to the low-amplitude/linear scenario. The

e
2

e
1

Linear FP

(a) αB = 0.1

e
2

e
1

Linear FP

(b) αB = 2.5

Figure 3.15: Time-domain simulation results for a tunable focus device. In the presence
of a control wave field (µB = [3.0, 0.0]), dynamic anisotropy introduced into the alters the
focal point (FP) distance and sharpness. Dashed lines indicate the focal plane.

low-amplitude case (black dashed) exhibits a broader FP than do the cases with greater

control wave amplitude (green and red). Figure 3.15 depicts a distinct change in the FP

location. Indeed, the FP has shifted toward the sources from y = 10.0 to approximately

y = 6.0, a 40% location change.

3.2.7 Conclusions

Nonlinear wave interactions in the monoatomic lattice result in unique dispersion qualities

that cannot be reproduced through simple self-action. In particular, a small but finite-

amplitude control wave can modify the dispersion relation of a control wave through wave

interaction. These wave interactions take place in all directions, with the exception of or-

thogonal propagation aligned to a lattice vector. Even infinitesimally small primary waves

may experience dispersion frequency shifts as a result of other harmonic content present in

the lattice.

Frequency shifts are intimately connected with group velocity and thus wave beam-

ing directions. The possibility of negative group velocity corrections may result from the
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presence of control waves with properly selected wave vectors. Such wave vector com-

binations can be used to control wave beam directionality for use in devices such as the

amplitude-tunable focus device presented.
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3.3 Multi-DOF Systems: Diatomic chain
3.3.1 Overview

The diatomic chain offers a convenient model for assessing dispersion effects in bi-layered

systems. The diatomic chain also exhibits all of the complexities required for extending the

multiple scales analysis for wave interactions for continuous media: namely, the existence

of non-trivial Bloch wave modes. The model and governing equations first presented. Then,

the multiple scales dispersion analysis presented in Chapter 2 is applied to the system of

weakly nonlinear equations. Frequency-corrections obtained for a primary wave under the

influence of a control wave are evaluated. Finally, a first look at the variation of mass and

stiffness ratios on wave interaction is considered.

3.3.2 Model description and nonlinear governing equations

The diatomic chain exhibits additional complexity as compared to a monoatomic system

because nontrivial Bloch wave modes exist. The diatomic chain can be considered a first-

order approximate model for a bi-layered system for wave lengths which are greater than

the length of a unit cell. Figure 3.16 depicts a bi-layer unit cell with layer lengths denoted

by Li and density per unit length denoted by ρi. A lumped parameter model consists of two

mass elements with mass mi = ρiLi and linear stiffness ki = EiAc/Li where Ei denote the

linear elastic modulus of the ith layer and Ac denotes cross-sectional area (equal for both

layers). A nonlinear constitutive law for stress and strain may exhibit cubic nonlinearities

which are accounted for by the nonlinear stiffness coefficients Γi.

The pth unit cell contains two degrees of freedom u1 and u2 whose displacements are

along the e1 direction. The equation of motion governing the infinite system derives from
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Figure 3.16: Monoatomic diatomic chain with cubic stiffness and lattice vector a1. Inter-
atomic linear and nonlinear stiffness coefficients k and Γ are the same for each spring ele-
ment.

a force balance on each degree of freedom:m1 0

0 m2


ü1,p

ü2,p

 +

k1 + k2 −k1

−k1 k1 + k2


u1,p

u2,p

 +

0 −k2

0 0


u1,p−1

u2,p−1

 + . . .

 0 0

−k2 0


u1,p+1

u2,p+1

 + ε

Γ1(u1,p − u2,p)3 + Γ2(u1,p − u2,p−1)3

Γ1(u2,p − u1,p)3 + Γ2(u2,p − u1,p+1)3

 =

00
 .

(3.54)

We note that Eq. (3.54) fits the general form of Eq. (2.20) outlined in Chapter 2, given by

the compact expression

Mü +
∑

p=−1,0,1

K(p)u(p) + εfNL
(
u(p)

)
= 0, (3.55)

where u(p) = u and u(p±1) = [u1,p±1, u2,p±1] and stiffness matrices are given by

K(p) =

k1 + k2 −k1

−k1 k1 + k2

 , K(p−1) =

0 −k2

0 0

 , and K(p+1) =

 0 0

−k2 0

 . (3.56)

Next, the multiple scales perturbation analysis is applied to Eq. (3.55) as a demonstration

of the procedure in a general multi-DOF system.
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3.3.3 Multiple scales perturbation analysis

Multiple scales analysis begins with the postulation that the degrees of freedom (DOFs) for

the unit cell evolve on multiple timescales according to

u = u(t) = u(T0(t),T1(t)). (3.57)

where we have retained only fast time T0 = t and one slow time scale T1 = εt. Time-

derivatives transform with application of the chain rule as described in Sec. 2.4.2 such

that
d
dt

(d( )
dt

)
= D2

0 + 2εD0D1 + ε2D2
1. (3.58)

Next, introduce asymptotic perturbation expansions for the displacement as described

by multiple time scales Ti. We consider only first-order approximations to establish correc-

tions to the dispersion relation:

u(p)(T0,T1) = u(0)
(p)(T0,T1) + εu(1)

(p)(T0,T1) + O(ε2) (3.59)

Substituting Eqs. (3.58) and (3.59) into the governing Eq. (3.55) produces, after some

rearranging, a governing equation which accounts for interactions up to O(ε)

D2
0Mu(0) +

∑
p=−1,0,1

K(p)u(0)
(p) + ε

(
D2

0Mu(1) + 2D0D1Mu(0)

+
∑

p=−1,0,1

K(p)u(0)
(p) + fNL) = 0.

(3.60)

As Eq. (3.59) must hold true for any and all ε, the coefficient of each ε must vanish

identically. This statement leads to a system of ordered equations.

O(ε0) : D2
0Mu(0) +

∑
p=−1,0,1

K(p)u(0)
(p) = 0 (3.61)

O(ε1) : D2
0Mu(1) +

∑
p=−1,0,1

K(p)u(1)
(p) = −2D0D1Mu(0) − fNL. (3.62)

Hence, the weakly nonlinear problem in Eq. (3.54) has been transformed to the solution

of a cascading system of linear differential equations, whose solution at each order of ε is
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informed by previous orders. The O(ε0) equation admits a Bloch wave solution

u(0)
(p) =

1
2

A(T1)φei(µp−ωT0) + c.c. (3.63)

for Bloch wave numbers µ and position index p. The complex amplitude A(T1) varies with

slow time T1 and is therefore considered constant at O(ε0). The zero-order equation, with

application of the Bloch wave solution Eq. (3.63), reduces to

−ω2

m1 0

0 m2


u

(0)
1,p

u(0)
2,p

 +

 k1 + k2 −k1 − k2e−iµ

−k1 − k2eiµ k1 + k2


u

(0)
1,p

u(0)
2,p

 =

00
 . (3.64)

After collecting terms in u(0), equation expressed (3.64) the wave-number reduced stiffness

matrix K(µ) reads (
−ω2M + K(µ)

)
φ = 0, (3.65)

where φ denotes the degrees of freedom in the central unit cell, and p = 0 without any

loss in generality. Equation (3.65) denotes an eigenvalue problem for Bloch wave modes

φ(µ) and frequencies ω(µ) that describe the dispersion relationship. The symbolic solution

for ω(µ) expressed with general stiffness coefficients k1 and k2 is a complicated expression.

Thus, we present here the dispersion relation for a special case k1 = k2 = k

ω =

√√√
k(m2 + m1)

m1m2
±

k
2

√
4m2

2 + 4m2
1 + 8m1m2 cos(µ)

m2
1m2

2

(3.66)

Equation (3.66) describes the acoustic branch ωac(µ) when − is taken under the radical

and the optical dispersion branch ωopt when the + sign is taken. Figure 3.17 depicts the

acoustic and optical branch for the diatomic system. Similarly, the acoustic φac and optical

φopt Bloch wave modes are given, respectively, by

φac =


(1 + e−iµ)m2

m2 − m1 +

√
m2

1 + m2
2 + 2m1m2 cos(µ)

1

 (3.67a)
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Figure 3.17: Dispersion relation evaluated for a diatomic chain where m1 = 1.0 and
m2 = 2.0 and stiffness k = 1.0.

and

φopt =


−(1 + e−iµ)m2

m1 − m2 +

√
m2

1 + m2
2 + 2m1m2 cos(µ)

1

 . (3.67b)

The Bloch wave modes are unique only to a scalar multiple. Thus, the maximum compo-

nent of each Bloch wave mode is normalized to unity according to φ j = φ j/max(φ j) in all

analysis that follows such that a scalar multiple specifies the amplitude.

The fact that there now multiple dispersion branches – optical and acoustic – leads to

additional complexity in analyzing wave interactions. Specifically, interacting waves are

no longer completely characterized by specifying a wave number, a dispersion branch must

also be specified. As an example, in the monoatomic lattice of Chapter 3, the dispersion

relation accounting for wave interactions required only the wave number of a B wave. Now,

a specific wave number µB corresponds to two dispersion branches, and we must specify

whether the B wave exists on the acoustic branch or the optical branch. The effect of a

control wave B on the dispersion of a primary wave A is investigated next.
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3.3.4 Wave-wave interaction effect on dispersion

Consider now the O(ε1) equation (3.62). The right hand side depends on the specific solu-

tion u(0) at O(ε0). We study the effect of two interacting waves, labeled A and B, such that

the solution to the zero-order problem is specified by

u(0) =
A(T1)

2
φAei(µA p−ωA0T0) +

B(T1)
2

φBei(µB p−ωB0T0) + c.c. = u(0)
A + u(0)

B + c.c. (3.68)

where now Bloch wave modes φA(µA), ωA0(µA) and φB(µB), ωB0(µB) give the specific modal

occupation of the A and B waves, respectively. We consider the case where ωA0 and ωB0 are

incommensurate such that ωA0 , 3ωA0. Amplitudes A(T1) and B(T1) are, in general, com-

plex quantities that allow phase differences between the waves; however, the specific phase

relationship of the A and B waves turns out to be irrelevant in a first-order perturbation

analysis.

Substituting Eq. (3.68) into Eq. (3.62) and evaluating partial derivatives D0 and D1

yields the following inhomogeneous system of equations

D2
0Mu(1) + Ku(1) = iωA0A′MφAe−iωA0T0

+iωB0B′MφBe−iωB0T0 − fNL
(
u(0)

(p,q,r)

)
+ c.c.,

(3.69)

where a prime denotes differentiation with respect to slow time T1 and c.c. denotes the

complex conjugate of the preceding terms. Following the procedure in Sec. 2.4.2 and

anticipating the appearance of secular terms in Eq. (3.69), we expand the nonlinear force

vector fNL into frequency components using a two-dimensional Fourier series and retain

only primary frequency terms such that

fNL
(
u(0)

(p,q,r)

)
= cAe−iωA0T0 + cBe−iωB0T0 + O.H.T. + c.c. (3.70)

where O.H.T. denotes other harmonic terms such as 3ωA0, 2ωA0 ± ωB0, etc. The nonlinear

force vector, assuming Γ1 = Γ2 = Γ can be expressed in the general form (due to a cubic

nonlinearity)

fNL =
∑
l,m,n

Glmn(u(0)
l ⊗ u(0)

m ⊗ u(0)
n ) (l,m, n) ∈

{
A, Ā, B, B̄

}
, (3.71)
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where ⊗ denotes the Hadamard product such that the ith element of the result is given by

component-wise multiplication

(ul ⊗ um)i = (ul)i ⊗ (um)i, (3.72)

and the indices l, m, and n take either A, Ā, B, or B̄ where an overbar denotes complex

conjugate. The specific terms which comprise the cA coefficient are given by the sum of

terms with the form

cAe−iωA0T0 = GAAĀ(u(0)
A ⊗ u(0)

A ⊗ u(0)
Ā

) + GAB̄B(u(0)
A ⊗ u(0)

B ⊗ u(0)
B̄

), (3.73)

because frequency terms from u(0)
B exactly cancel one another since they are complex con-

jugates; the above expression expressed with Bloch wave modes explicitly is written

cAe−iωA0T0 =
AAĀ

8

(
φAe−iωA0T0 ⊗ φAe−iωA0T0 ⊗ φ̄BeiωA0T0

)
+

ABB̄
8

(
φAe−iωA0T0 ⊗ φBe−iωB0T0 ⊗ φ̄BeiωB0T0

)
.

(3.74)

After appropriate cancellation and grouping of terms, this expression becomes

cAe−iωA0T0 =

[
AAĀ

8

(
φA ⊗ φA ⊗ φ̄A

)
+

ABB̄
8

(
φA ⊗ φB ⊗ φ̄B

)]
e−iωA0T0 . (3.75)

Note that wave number dependence is not explicitly included in the cA coefficient; however,

as the Bloch wave modes are a function of µA or µB this functional dependence enters

through φA(µA) and φB(µB). Symbolic manipulation has been used here to expand the

nonlinear force vector and obtain cA and cB coefficients. The specific expressions for these

coefficients are complex and do not provide a great deal of insight into the phenomena of

wave interactions beyond what has already been presented; therefore, they are not presented

here in full.

Having defined the cA and cB coefficients, we rewrite Eq. (3.69) as

D2
0Mu(1) + Ku(1) =

(
iωA0(α′A − iαAβ

′
A)MφAe−iβA − cA

)
e−iωA0T0

+
(
iωB0(α′B − iαAβ

′
B)MφBe−iβB − cB

)
e−iωB0T0 + c.c.,

(3.76)
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where the polar form Ai(T1) = αi(T1) exp(−iβi(T1)) has been introduced. Secular terms are

identified as described in Chapter 2 by pre-multiplying Eq. (3.76) with either φA or φB.

Following Eq. (2.58), secular terms are required to vanish for uniform expansions, leading

to:

iωA0φ
H
A MφA

(
α′A − iαAβ

′
A
)
− φH

A cAeiβA = 0 (3.77a)

and

iωB0φ
H
B MφB

(
α′B − iαBβ

′
B
)
− φH

B cBeiβB = 0. (3.77b)

The real and imaginary components of Eqns. (3.77) must vanish separately, leading to a

system of four differential equations for amplitudes and phases αA, αB, βA, and βB. These

equations decouple (see Sec. 2.4.2 for details) when the frequencies are incommensurate

such that first-order frequency corrections are given by

ωA1 ≡
βA

T1
=

φH ĉA

ωA0αAφH
A MφA

and ωB1 ≡
βB

T1
=

φH ĉB

ωB0αBφH
B MφB

. (3.78)

where ĉA = cA exp(iβA) and ĉB = cB exp(iβB). Thus, the reconstituted expressions which

account for wave interactions are given by

ωA = ωA0(µA) + ε
φH ĉA

ωA0αAφH
A MφA

∣∣∣∣∣∣
µB

+ O(ε2) (3.79a)

and

ωB = ωB0(µB) + ε
φH ĉB

ωB0αBφH
B MφB

∣∣∣∣∣∣
µA

+ O(ε2), (3.79b)

where we emphasize that each correction must be evaluated for a specific wave number

and frequency pair that corresponds to a particular dispersion branch. Next, we will con-

sider specifically corrections to a primary A wave in the presence of a control B wave by

evaluating ωA(µA) subject to fixed µB and corresponding φB(µB) on either the acoustic or

optical dispersion branch.
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Figure 3.18: Dispersion shifts to the primary wave effected through the introduction of
a control wave on (a) the acoustic branch, and (b) the optical branch. Red markers indi-
cate the specific modal occupation of the B control wave. Dashed lines indicate the linear
dispersion.

3.3.5 Analysis of predicted dispersion shifts

3.3.5.1 Acoustic vs. optical branch control wave

The dispersion relationship, hereby defined as ωA(µ), for the diatomic system depends on

the specific modal occupation of the control B wave. The system parameters considered

are m1 = 1.0, m2 = 3.0, k1 = k2 = 1.0, εΓ1 = εΓ2 = 0.05, and αA = 1.0. A control wave at

µB = 2.0 and amplitude αB = 1.0 is evaluated for modal occupation on the acoustic branch

as well as the optical branch as shown in Fig. 3.18. We note that larger shifts are attained

when the control wave occupies higher frequency modes. In fact, this is true in general for

the diatomic system considered herein and it is likely to be true for more complex systems

as well. Therefore, µB = 0 on the optical branch produces greater frequency shifts than

µB = π on the optical branch. An explanation for this may lie in the energy content of the

mode.
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3.3.5.2 Mass and stiffness ratio analysis

The diatomic system possesses a variety of parameters that offer avenues for tailoring dis-

persion shifts. We consider specifically the effect of varying the mass and stiffness ratio on

dispersion. As the influence of dispersion near band gaps is often of interest, we specif-

ically consider the acoustic branch shift evaluated at ωA1(µ = π). We fix the parameters

m1 = 1.0, k1 = 1.0, and εΓ1 = εΓ2 = 0.05 and parametrically vary m2 and k2. Dispersion

shifts are evaluated subject to a control wave at µB = π with amplitude αB = 1.0 on the

optical branch. The amplitude primary amplitude αA = 0.01 such that dispersion shifts are

entirely a result of wave interactions.

Figure 3.19 reveals that maximum dispersion branch shifts are achieved for high stiff-

ness ratio contrasts. Optimal mass ratios for the specific configuration considered are ap-

proximately m2/m1 = 0.6. The major conclusions to be drawn here are that the nonlinear
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Figure 3.19: (a) Parametric analysis of mass and stiffness ratios effects on the dispersion
shift ωA1(π). A specific slice at k2/k1 = 0.1 of the surface highlights the mass variation.

dispersion shifts exhibit complex functional-dependence on the specific system parameters.

This dependence enters the nonlinear shift primarily through the Bloch wave modes. Spe-

cific system configurations which result in optimized dispersion shifts are considered later

in Chapter 6.
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3.3.6 Conclusions

Wave interactions in complex systems with multiple degrees of freedom can be analyzed

efficiently through the multiple scales analysis procedure presented in this chapter. Wave

interactions in more complex materials require specification of which Bloch wave modes

are interacting. As a consequence, the specific modal occupation of a control wave can have

a significant influence on the dispersion shifts for a primary wave. Low-frequency modal

occupation tends to produce smaller dispersion shifts than does high-frequency modal oc-

cupation (i.e. acoustic vs. optical branches). The diatomic chain exhibits all of the com-

plexity needed to extend wave-wave interaction analysis into continuous media. Because

the diatomic chain can be derived as a first-order approximation of a bi-layer system, it

offers good perspective into wave interactions in layered materials. Dispersion shifts to a

primary wave can be effected through the dynamic introduction of a control wave; thus, it

may be possible to design phononic materials which exhibit band gaps only in the presence

of a control wave. Further analysis should include numerical validation of the predicted dis-

persion. In closing, we note that the wave-interaction results presented herein degenerate

exactly to those obtained for the monoatomic chain when m1 = m2 and k1 = k2.
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CHAPTER IV

EXPERIMENTAL ESTIMATION OF NONLINEAR DISPERSION

4.1 Overview

Nonlinear amplitude-dependent dispersion relationships are experimentally investigated

within the scope of a classical Duffing oscillator chain. The idea of amplitude-tunable

dispersion relationships in nonlinear phononic systems has received relatively little atten-

tion on the experimental side. Moreover, to the author’s knowledge no previous studies

have attempted to link nonlinear dispersion frequency shifts to the backbone curves in-

trinsic to nonlinear frequency response functions. This work represents a critical step in

moving towards nonlinear amplitude-tunable phononic devices.

Existing studies of nonlinear phononic systems focusing on dispersion typically fall into

two categories: mass-loaded strings [78, 79, 80] and granular (spherical) beads [37, 81, 47].

Notable exceptions are some studies dealing with arrayed Helmholtz resonators [82, 83].

These types of systems are considered for two fundamental reasons: (1) they are readily

fabricated in repeatable arrays, and (2) they exhibit nonlinear responses. However, many of

these existing studies focus on other phenomena such as Anderson localization or tunable

solitary wave propagation. The present study provides the theoretical background required

to link backbone curves to nonlinear dispersion diagrams within the context of a chain of

Duffing oscillators as well as experimental evidence to support these results.

Section 4.2 provides the requisite background on Duffing oscillator and reviews pre-

vious theoretical treatments of the nonlinear oscillator chain. A theoretical model for a

nearly-discrete system of nonlinear oscillators is presented and used as the basis for de-

signing a nonlinear test article in Sec. 4.3. Linear and nonlinear system responses are

documented in Sec. 4.4 with specific attention called to the dispersive nature of the system.
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Amplitude-dependent dispersion shifts are experimentally identified for the given system at

the edge of the Brillouin zone where a tunable cutoff frequency could lead to initial devices

such as amplitude-dependent filters [3]. Lastly, the theoretical model compared with the

experimental results shows very good agreement.

4.2 Theoretical background
4.2.1 Nonlinear dispersion and the Duffing backbone

The frequency shifts arising in periodic systems can be connected with the classical duffing

oscillator. The following analysis shows that an infinite chain of oscillators behaves similar

to a single nonlinear oscillator (from a frequency shift viewpoint) when the wavenumber

µ = π/3. Moreover, a chain of nonlinear oscillators exhibits dispersion shifts due to the

hardening or softening nature of the connecting springs. This behavior is intimately related

to the Duffing backbone curve for the case of a single Oscillator. Consider the classical

Duffing oscillator with forcing and cubic stiffness ordered at O(ε)

mü + k1u + εk3u3 = ε f (t), (4.1)

u(t) denotes displacement from equilibrium, m denotes mass, f (t) denotes the forcing func-

tion, and k1 and k3 denote linear and nonlinear stiffness coefficients, respectively. Pertur-

bation analysis of this system reveals that the resonant response of this system exhibits

hardening or softening behavior according to

σ =
3
8

k3A2

mωn
±

√
f 2
0

4ω2
nA2 , (4.2)

where ωn =
√

k/m, f (t) = f0 cos(ωt) and ω = ωn + εσ. The backbone curve of the duffing

oscillator follow from setting f0 = 0 and is given by (3/8)(k3/ωn)A2 [27]. This result is

remarkably similar to the dispersion frequency correction terms in [3, 36], repeated here

for convenience

ω(µ) = ωn

√
2 − 2 cos(µ) + ε

3
8

k3A2

mωn

(
2 − 2 cos(µ)

)3/2
+ O(ε2) (4.3)
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In fact, the backbone curve represents the natural frequency of oscillation for an unforced

mass with initial amplitude A. This is quite similar to free wave propagation in an infinitely

large system where boundary reflections do not exist.

Figure 4.1 graphically depicts this observation. The nonlinear dispersion relationship

for coupled nonlinear oscillators Eq. (4.3) is plotted with wave amplitude A as a third

dimension. Several dispersion curves are plotted with amplitude held constant as shown on

the left subfigure. The locus of points in the amplitude-frequency plane (wavenumber held

constant) is plotted with bold lines at various wave numbers. Specific attention is called

to the red curve at µ = π/3; this is exactly the Duffing backbone curve as shown in the

right subfigure. Further analysis of this particular nonlinear dispersion relationship shows

that for any given amplitude the largest frequency-shift occurs at µ = π (near the band

edge/cutoff frequency). In this case, the O(ε1) frequency shift is given by ω1 = 3k3A2/mωn

which amounts to an 8x increase in frequency shift sensitivity to amplitude.

Figure 4.1: Amplitude-dependent dispersion in the monoatomic chain is strongly related
to the Duffing backbone curve (red).

The notion that the Duffing backbone curve relates to nonlinear dispersion shifts in pe-

riodic media is of significant importance in experimentally observing nonlinear frequency

shifts: the backbone curve corresponding to a given resonance frequency may be extracted
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and plotted as a nonlinear frequency shift on the dispersion relation. Next, a physical sys-

tem which closely resembles the nonlinear spring-mass system is identified and discussed

as a model for experimentally observing these shifts.

4.2.2 Nonlinear, periodic wire model

The ideal spring-mass system consists of infinitely small mass elements joined together

along a common axis by infinitely light spring elements. A system that approaches this

ideal model consists of lead weights joined with a segments of wire or string. A distinction

between wire and string is made to emphasize the existence of bending rigidity at higher

frequencies, particularly those with out-of-phase oscillations. However, the bending stiff-

ness of the wire is negligible in cases where the wave mode exhibits low to moderate spatial

oscillations [59, 73, 27]. The small-but-finite transverse displacement field v(x, t) for a pre-

tensioned wire undergoing without body forces and damping is modeled approximately by

the nonlinear wave equation

ρV Acv̈ − T0
∂2v
∂x2 = (EAc − T0)

∂

∂x

[1
2
∂v
∂x

(
∂v
∂x

)2]
(4.4)

where T0 denotes pretension, ρV denotes volume density, Ac denotes cross-sectional area,

and E denotes Young’s modulus [59, 27, 73] where in-plane motion transverse motion has

been assumed. The term T0 is typically neglected relative to the product EAc so that the

equation reads (after some rearranging)

ρV Acv̈ − T0
∂2v
∂x2 − EAc

∂

∂x

[1
2

(
∂v
∂x

)3]
= 0. (4.5)

The cubic nonlinearity in this expression arises from von Kármán strains which account

for changes in tension induced by small-but-finite rotations and displacements in strings,

beams, plates, and shells [59, 84, 85]. We suppose now that there are an infinite number of

mass elements (termed beads herein) connected by wires segments of length a, and that the

mass of the connecting wire is negligible compared to the beads. Then, Eq. (4.5) provides

linear and nonlinear stiffness terms for the equation of motion governing the transverse
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displacement of a single bead. For short connecting lengths a, a finite-difference approx-

imation for the wire displacement yields an open set of finite-difference equations in the

form of coupled nonlinear oscillators

mv̈p +
T0

a
(vp − vp+1) +

T0

a
(vp − vp−1) +

EAc

2a3 (vp − vp+1)3 +
EAc

2a3 (vp − vp−1)3 = 0, (4.6)

where m denotes the bead mass and vp denotes the transverse displacement of the pth

mass. The linear stiffness term is given by k1 = T0/a and the nonlinear stiffness term is

εk3 = EAc/(2a3). According to the theory presented in Chapter 3, the nonlinear dispersion

shift corresponding to a system of beads connected by pretensioned wires is given, for a

single propagating wave by

ω1 =
3

16
EAcA2

mωna3

(
2 − 2 cos(µ)

)3/2 (single wave), (4.7)

accurate to a first-order approximation. However, a system in steady-state resonance with

amplitude A is equivalent the summation of counter-propagating waves with equal ampli-

tude A∗ = A/2. Thus, the wave-wave interaction theory of Chapter 3 applies here with two

waves with equal and opposite wave numbers ±µ. Following the wave-wave interaction

theory, the zero-order displacement solution v(0) takes the form

v(0)
p =

A∗

2
ei(µp−ωτ0) +

A∗

2
ei(−µp−ωτ0) + c.c., (4.8)

where τ0 denotes the fast time scale (rather than T0 in order to avoid confusion with the pre-

tension notation). The nonlinear frequency shift in the case of resonance should consider

counterpropagating Bloch waves according to Eq. (3.21a). Thus, the frequency shift for

counterpropagating waves is

ω1 =
3

16
EAc(A∗)2

mωna3

(
2 − 2 cos(µ)

)3/2
+

3
8

EAc(A∗)2

mωna3

(
2 − 2 cos(−µ)

)3/2 (4.9)

where the first term is recognized as the self-action frequency shift and the second term

results from nonlinear wave interaction. Since cos(−µ) = cos(µ) and A∗ = A/2, these terms

combine to give

ω1 =
9

64
EAcA2

mωna3

(
2 − 2 cos(µ)

)3/2
. (4.10)
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For experimental analysis and evaluation it will be convenient to introduce a shift percent-

age parameter η such that the frequency is given by

ω = ω0(1 + η), (4.11)

where η = ω1/ω0 and ω0 = ωn
√

2 − 2 cos(µ). This arrangement allows one to arrive at an

expression for the amplitude required in order to achieve a shift percentage η. Furthermore,

we assume a circular cross-sectional area Ac = πD2/4 for the wire where D denotes the

diameter. The resulting expression for required amplitude, evaluated at the Brillouin zone

edge1, reads

A2 =
128
9

ηT0a2

πD2E
√

2 − 2 cos(µ)

∣∣∣∣∣∣∣
µ=π

→ A2(η) =
64η
9π

(T0

E

)( a
D

)2

. (4.12)

Equation (4.12) gives rise to several noteworthy points regarding the design of an experi-

ment to observe frequency shifts. First, the required shift amplitude is independent of bead

mass. Second, the required amplitude can be decreased by lowering the “stiffness” ratio

T0/E and geometry ratio a/D. An additional constraint on the bead mass is required to

validate the model assumptions, namely that the bead mass is much greater than the wire

mass for a given unit cell m � ρV Aca = ρVa(πD2/4). A description of the test article,

apparatus, and measurement system follows.

4.3 Experimental design and configuration

A test article closely following the system described in Sec. 4.2 consists of lead beads

strung along a length of spring steel wire. The model outlined considers the wire mass neg-

ligible relative to the bead mass. In order to achieve this, 6.35mm diameter spherical lead

beads were affixed to a 0.25mm diameter wire through high-precision holes bore through

the center of the beads. Spherical beads and precisely located wire holes are necessary

to obtain the in-plane motion assumed in the model. This configuration, pictured in Fig.

1We know a priori that the resulting frequency shift is greatest here for a given amplitude
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4.2a realizes a 120:1 mass ratio between the bead and the wire (per unit cell); hence, the

wire mass is negligible. Fourteen unit cells spaced by a = 32.5mm comprise the test arti-

cle. Table 1 summarizes the geometric and material properties of the system components.

The test article is pretensioned between two upright I-beams designed to minimize flex-

ure while a shaker excites the system in a horizontal plane (Fig. 4.2b). A scanning laser

Doppler vibrometer (LDV) measures oscillation velocity (Fig. 4.2c).

(a) Mass element (b) Apparatus (c) Scanning head

Figure 4.2: Photographs of the experimental apparatus and scanning laser Doppler vi-
brometer head used to capture data. (a) Individual mass elements (dimensioned as shown)
produce a mass-spring equivalent system. (b) The experimental apparatus is constructed of
solid aluminum, with the test article tensioned between two I-Beams. (c) A scanning laser
Doppler vibrometer measures individual masses to obtain data.

Table 1: Material and geometry properties for test article
Parameter D [mm] a [mm] E [GPa] m [g] ρV [kg/m3] T0 [N]

Value 0.254 32.5 205 1.57 7850 21.8

The schematic in Fig. 4.3 illustrates the major system components used to excite and

measure the system. A B&K 4809 type modal vibration shaker, powered by a B&K 2718

amplifier, excites the system according. A Polytec PSV-400 scanning LDV head and an

associated controller measure the system response at each bead site. Two primary modes

of excitation are utilized: wide-band excitation at low excitation levels captures the lin-

ear system response, while slow, narrow-band frequency sweeps at high amplitude permit

investigation of nonlinear system responses.

Low-amplitude system response is measured by exciting the system with a pseudo-

random excitation signal. The internal function generator produces the pseudo-random
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Figure 4.3: Test article and measurement hardware configuration

signal by inverting a uniform frequency distribution with randomly distributed phases.

This periodic signal is supplied continuously to the system until a steady-state response is

achieved2. The internal function generator is synchronized with the data acquisition trigger

signal in order to accurately capture phase information. Moreover, automated complex-

averaging techniques reduce random errors introduced into the measurements by noise.

The nonlinear system response desired cannot be achieved through a pseudo-random

excitation signal since harmonic excitation has been assumed. Instead, slow frequency

(0.2 Hz/sec) sweeps over a resonant frequency of the linear system identify steady-state

response amplitude. In this configuration, an Agilent 33220A function generator is sub-

stituted for the internal function generator of the Polytec system. The Agilent 33220A is

capable of producing sweeps which are initiated from a steady-state response at the starting

frequency, thus eliminating data corruption from transient effects. The function generator

sync port connects to the data acquisition system’s trigger port to precisely initiate mea-

surements.

2Less than 2-3 seconds
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4.4 Results and discussion
4.4.1 Linear model validation

Characterizing the low-amplitude system response serves several important functions in

nonlinear dispersion analysis. First, the resonant frequencies are identified and may be

mapped to a Brillouin diagram to illustrate dispersion. Second, the pretension – a critical

parameter in the frequency shift equation (4.12) – can be determined by fitting a linear

model to the resulting frequency response function (FRF). Figure 4.4 depicts a typical

FRF for the system. Low frequency resonant peaks (e.g. 1–8) occur at approximately

equal intervals due to the linear relationship between wavelength and frequency in the long

wavelength limit. Homogenization of the system unit cell at these frequencies produces a

system model which accurately captures response characteristics [86]. Higher frequencies

(e.g. peaks 9–14) associate with wavelengths approaching the unit cell dimension a and

thus exhibit dispersive wave propagation where this approximation fails.

0 50 100 150 200 250 300 350 400

10
−5

Frequency [Hz]

V
el

oc
ity

 [m
/s

] 1 2 3 4 5 6 7 98
10

11
12

13
14

Defect
mode

Figure 4.4: The frequency response reveals which Bloch wave numbers are excited

The Polytec software automatically records and processes the time-response at each

mass location. The trigger signal is especially important to this process for ensuring accu-

rate phase relationships between the excitation signal and individual masses. Figure 4.5a

depicts the graphical user interface for data post-processing and viewing. The resulting
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forced response snapshots agree very well with what is expected; this is largely due to pre-

cise manufacturing and careful experiment design. Figure 4.5b also depicts the response at

several other frequencies associated with the 2nd, 4th, 10th, and 14th resonant frequencies.

(a) Polytec software output

(b) Response snapshots near resonant frequencies

Figure 4.5: The Polytec software captures and automatically processes velocity data at
each mass location using laser Doppler vibrometry. (a) A resonant frequency near 22 Hz
and a portion of the user interface is depicted. (b) Several other snapshots near the 2nd,
4th, 10th, and 14th resonant frequencies.

Figure 4.6 contains snapshots of the forced steady-state motion near all the resonant
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frequency peaks of Fig. 4.4. All data has been directly imported from the Polytec soft-

ware into MATLAB for visualization purposes only. Indeed, low frequency modes are

reminiscent of a pinned-pinned string response v(x, t) = sin(nπx/L) for n ∈ Z and L denot-

ing the system length. Neighboring beads increasingly oscillate out of phase as frequency

increases. Moreover, by the 14th mode, neighboring bead modes are completely out-of-

phase and thus natural frequencies are influenced by the bending rigidity of the wire. Not
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Figure 4.6: Snapshots of the forced steady-state motion near resonant frequencies (labeled
1–14) and near the defect mode (labeled accordingly). The 16 black markers indicate
measurement points (14 masses and two endpoints).

surprisingly, the out-of-phase motions in the 14th mode correspond to the edge of the Bril-

louin zone whereby group velocity reduces to zero. Figure 4.4 clearly shows the the first

band gap frequency at around 250 Hz; beyond this frequency appears a resonant frequency

associated with a defect mode at 350 Hz. This resonance appears only as a result of a light-

weight copper connector used to secure a wire loop used for pretensioning the system. We

note that although wave propagation initiates from the left side of the system, the highly

evanescent mode reaches the right end and excites a localized resonance at the last bead.
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The natural frequencies of periodic systems occur in tight groups [78, 79, 10]. These

groups are located, with few exceptions, around pass band frequencies of the ideal infinite

system. Figure 4.7 depicts the experimentally measured natural frequencies using a disper-

sion diagram; each resonant peak corresponds to a wavelength which achieves resonance

in a finite system due to in-phase reflections from the boundaries. Although assumptions

made previously dictate a spring-mass type model, we note that including bending rigidity

provides an improved fit for the linear model. However, the nonlinear analysis of such

a system is significantly more complex and provides less physical intuition and insight.

The following sections describe the experimental measurement and analysis of nonlinear

dispersion shifts.
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Figure 4.7: The analytical model accurately captures the expected Bloch-wave disper-
sion, revealing a band gap in the neighborhood of 250 Hz. Markers correspond to the
experimentally measured natural frequencies of the system (pictured on the right subfig-
ure). Dashed and solid lines indicate dispersion relationships for periodic string and wire
models, respectively. The inclusion of bending stiffness (wire model) improves the fit at
higher frequencies.

4.4.2 Measurement and analysis of nonlinear dispersion shifts

Measurement of nonlinear dispersion shifts is facilitated by the theoretical background

provided in Sec. 4.2. As the Duffing backbone represents the frequency shift for wave

propagation in an infinite system, it suffices to measure the forced response from which the
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backbone curve may be extracted and plotted as the amplitude-dependent dispersion curve

(as in Fig. 4.1). Nonlinear frequency response measurements are made by initiating a slow

frequency sweep of ω = ±2 Hz around a measured natural frequency3. Slow frequency

sweeps allow the system to achieve steady-state response amplitude at a single frequency.

Unlike the broadband pseudo-random excitation used for low-amplitude measurements,

single-frequency excitation is critical in nonlinear measurements to reduce wave-wave in-

teraction effects [36].

Figure 4.8 shows the results of a typical frequency sweep. The response level increases

as the sweep progresses over and beyond the natural frequency. A clear Duffing-like insta-

bility manifests around 15 seconds where the amplitude sharply declines. The oscillations

following the instability result from transient signal response remaining from the previously

high amplitudes. The red line denoting signal amplitude A(t) represents the magnitude of

the Hilbert transform A(t) = |H(vp(t))|, where vp(t) denotes the measured signal at the pth

site. The Hilbert transform converts a real signal vp(t) into an analytic signal of the form

vp(t) = A(t) cos(ϕ(t)), where A(t) denotes the time-varying amplitude and and ϕ(t) denotes

the time-varying phase. Also implicit in the theoretical analysis presented previously is a
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Figure 4.8: Example measurement at high excitation level shows clear Duffing instabil-
ity post-resonance. The right subfigure reveals an essentially monochromatic response.
Marker indicate sampled points.

monochromatic response. The right subfigure of Fig. 4.8 reveals an essentially sinusoidal

3Natural frequencies refer to low-amplitude system response
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response at the excitation frequency. As a result, velocity response measurements directly

converted into amplitudes by dividing out the excitation frequency ω.

Figure 4.9 depicts the time-frequency response signal of Fig. 4.8 in the form of a

spectrogram. The spectrogram combines time and frequency-domain data into a single

figure by virtue of a sliding Fourier transform window. Higher frequency resolution is

achieved by increasing the length of the window at the expense of temporal resolution,

and vice-versa. The presence of super-harmonics at 2ω, 3ω and 4ω at -3 dB supports

the monochromatic assumption since the amplitudes are several orders of magnitude less

than the fundamental frequency. The existence of these harmonics is typical of nonlinear
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Figure 4.9: Spectrogram showing weak harmonic generation at high amplitudes. As the
harmonics are approximately -3dB relative to the fundamental frequency, the signal is es-
sentially monochromatic.

systems; the well-known third harmonic results directly from the cubic nonlinearity [28,

27], while wave-mixing produces sum and difference frequencies at 2ω = 3ω − ω and

4ω = 3ω+ω which are routinely analyzed in nonlinear optics literature [66, 39]. The right

subfigure of Fig. 4.9 depicts a zoomed-in view around the fundamental frequency ω. The

linearly-increasing frequency sweep is clearly visible here, as is the Duffing jump behavior

around t = 15 seconds where stable motion is lost.

Several frequency sweeps at increasing amplitudes were conducted and analyzed with

the aid of the Hilbert transform as previously described. High-amplitude excitations were

limited by the ultimate tensile strength of the system as well as the propensity of the system
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Figure 4.10: Several frequency up-sweeps performed from low (400 mVpp) to high
(5 Vpp) excitation levels.

to whirl. Figure 4.10 depicts the amplitude function A(t) for each sweep. Low-amplitude

sweeps do not experience the jump-phenomena. The maximum amplitude of each fre-

quency sweep traces out the backbone curve as can be seen from Eq. (4.1). Alternatively,

the backbone curve may be extracted by performing both frequency up- and down-sweeps

and extracting the mid-frequency. Figure 4.11 depicts the stable response points from both

up and down-sweeps. Solid lines indicate stable response points, while the dashed black

line indicates the jump phenomena. The backbone curve (solid gray) extracted from the

experimental data describes change in dispersion frequencies with amplitude.

The backbone curve depicted in Fig. 4.11 depicts a nonlinear frequency shift per-

centage η = ω1/ω0 of approximately 0.6%. This shift occurs at a velocity amplitude of

360 mm s−1. As the signal is monochromatic, this translates into a displacement amplitude

of A=0.23 mm. A computation using Eq. (4.12) and tension tuned to match the Brillouin

zone edge results in a theoretical amplitude A=0.17 mm required to obtain the same shift.

The minor disparity between the theory and experiment can be attributed to several fac-

tors. The theoretical models assumes a truly infinite system with displacements occurring

purely in the vertical direction. Additionally bending rigidity of the wire is not explicitly
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Figure 4.11: Jump phenomena and associated backbone curve

accounted taken into consideration, nor is rotary inertia from the beads. Despite this, the

theoretical model used to design the experiment agrees well with experimental measure-

ments as a first-order approximation.

4.5 Conclusions

Nonlinear dispersion in periodic systems was described within the context of backbone

curves innate to nonlinear frequency response functions. A periodic wire-mass system,

designed after a classical spring-mass system, exhibited amplitude-dependent wave prop-

agation with good agreement to a theoretical model. The idea that amplitude-dependent

dispersion relations are intimately related to backbone curves may have far-reaching conse-

quences. At present, determining the hardening or softening behavior of periodic dynamic

systems requires a full perturbation analysis. In contrast, nonlinear dispersion analysis of a

single unit cell can provide complete hardening and softening behavior over a range of fre-

quencies with a single comprehensive analysis. Further experimental analysis of nonlinear

periodic systems should explore systems exhibiting stronger nonlinear response that allow

for greater tunability.
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Figure 4.12: Dispersion diagram including amplitude dependence. The left subfigure
depicts the typical Brillouin diagram with an additional 3rd axis denoting amplitude (shift
not to scale on left subfigure). The right subfigure depicts a zoom of the experimental
backbone curve AB (black) and theoretical backbone curve (red).
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CHAPTER V

NONLINEAR DISPERSION IN LAYERED MATERIALS

5.1 Overview

This chapter analyzes intensity dependent dispersion of acoustic waves in nonlinear one-

dimensional (1D) layered material characterized by constitutive laws with cubic strain

nonlinearities. The analysis predicts amplitude-dependent dispersion leading to tunable

bandgaps. These predictions are compared with those obtained from a simplified anal-

ysis conducted by linearizing the governing equations about an assigned field intensity

followed by application of the transfer matrix method, as is commonly done in nonlinear

photonic crystal studies. Comparison of the two methods generally shows good dispersion

agreement; however, in phononic systems the transfer matrix analysis does not accurately

capture high-strain behavior that occurs for some configurations, such as those with thin

nonlinear layers, and may even predict erroneous bandgaps. Numerical predictions result-

ing from a finite-element analysis of the nonlinear media confirm the improved accuracy of

the perturbation approach, suggesting its continued use for predicting intensity-dependent

dispersion in 2D and 3D nonlinear phononic systems.

Nonlinear systems provide unique opportunities for bandgap engineering such as amp-

litude-dependent band structures [37, 38, 3], wave-wave interactions [36], and extra har-

monic generation [87], but have received significantly less attention than linear systems.

The nonlinearity often arises from an intensity-dependent constitutive law for stress. The

effect of a cubic term, in either case, is of particular interest as it leads to amplitude-

dependent dispersion [39, 40, 41, 42, 43, 3], which has implications for enhanced device

design. For example, a wide variety of literature exists discussing the application of Kerr

media to photonic systems such as left-handed metamaterials [88], light bullets [89], and
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optical switching [90]. Moreover, intensity-dependence induced by the Kerr nonlinearity

is responsible for large phase shifts near the band edge, which may also be exploited to

achieve slow group velocities of light for optical switching [91]. The nonlinear behavior of

these systems is non-trivial and requires advanced analysis techniques.

Nonlinear periodic materials are commonly analyzed using finite-difference time-do-

main (FDTD) simulations [92, 11]. However, the computation and post-processing time

involved reduces the appeal of FDTD simulations for nonlinear material optimization and

design problems. A common theme in photonic crystal analysis literature is the approxi-

mation of a cubic polarization by a linearized relationship. In 1D analyses, this leads to a

problem formulation which is amenable to analysis by the transfer matrix method. How-

ever, much of the influence from the nonlinear dynamics is ignored. A new method for

calculating the band structure for nonlinear photonic crystals was proposed in [93], where

a nonlinear dielectric coefficient in a layered material proportional to intensity is consid-

ered. By iteratively solving the field equations, a convergent solution for the bandgaps

shifts was obtained. Two years later, the same system analyzed in [93] was addressed us-

ing a FDTD model of an oscillating dipole possessing a cubic Kerr nonlinearity [94]. In

2005, nonlinear bandgap tunability in a 2D photonic crystal with a Kerr nonlinearity was

demonstrated experimentally and computationally [42]. The experimental results indicate

that realistic bandgap shifting may be achieved in photonic microsystems doped with Kerr

nonlinearities.

Analysis methods and literature specifically for nonlinear phononic crystals is more

sparse than for photonic crystals. However, there are some notable contributions in the

more general area of periodic composites. Mechanically triggered phononic bandgap shifts

from external stimuli were investigated in 2008 [18]. The one-dimensional bimaterial sys-

tem was investigated to determine the response of the system to second harmonic genera-

tion in and outside of the acoustic bandgaps [22]. This nonlinear one-dimensional layered
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system was demonstrated as a potential acoustic diode in 2009 [20]. The nonlinear dynam-

ics and bandgap behavior of some discrete systems were investigated to determine closed-

form expressions for the bandgap shifting [24]. Others have investigated wave propagation

in several nonlinear periodic systems which have shown chaotic responses [26, 44, 45].

Strongly nonlinear waves in a chain of beads under Hertzian contact were investigated

analytically using a harmonic balance method [95] as well as experimentally [37] where

tunable bandgaps were reported in response to pre-compression.

A quasilinear material analysis employed with the transfer matrix method has not been

applied to nonlinear phononic crystal design with regard to bandgap engineering. It is of in-

terest to explore the application of the two techniques in both material systems, and to com-

pare and contrast their findings. The present work addresses this by applying the existing

photonic crystal analysis technique in the mechanical domain. The transfer matrix analysis

method applies only to a continuous system whose constitutive law is first linearized. On

the other hand, the perturbation-based analysis method presented herein is applicable only

to discrete systems (finite-element discretized or lumped-parameter) and does not require a

priori linearization of any constitutive laws. The applicability of each method in analyzing

the behavior of bandgap size and location in response to finite-amplitude wave propagation

is quantified and scrutinized.

One of the simplest phononic crystals that can be considered is a one-dimensional (1D)

bilayered material, consisting of alternating material layers with contrasting properties.

This type of structure exhibits many of the interesting properties of phononic crystals such

as dispersion and bandgaps, while being sufficiently simple to analyze [96, 97]. There-

fore, the bilayered material is our starting point for analyzing nonlinearities in continuous

phononic, and for assessing the two techniques in regards to estimating the effects nonlin-

earities have on dispersion.

The work is structured as follows: first, the general nonlinear wave equation for 1D pe-

riodic layered systems is introduced. Then, a nonlinear constitutive relationship for stress
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introduces nonlinear terms into the wave equation which are later analyzed with two dif-

ferent nonlinear analysis techniques: (1) the quasi-linear analysis using transfer matrices,

and (2) the perturbation-based approach. Dispersion curves are generated for a bilayered

material using the two techniques. The results are compared to dispersion curves generated

from finite element analysis simulations of the fully-nonlinear system. Finally, conclusions

are drawn regarding the applicability of each technique to nonlinear systems together with

the benefits and drawbacks of each.

5.2 Nonlinear model for layered media

The one-dimensional bi-layered material shown in Fig. 5.1 is governed by a nonlinear wave

equation whose coefficients are piecewise functions of the material layer. The system con-

sidered is unbounded in directions transverse to material interfaces such that unidirectional

plane wave propagation exists. Two layers per unit cell are considered in this analysis,

although the method is generally applicable to any number of layers. The pth unit cell has

layers with widths a and b such that the total unit cell length is d = a + b. The form of the

Figure 5.1: Bimaterial rod unit cell

nonlinear wave equation to be considered for a layer derives from Eq. (2.11) reduced to

one-dimension and a nonlinear constitutive law. The one-dimensional wave equation takes

the form
∂σxx

∂x
= ρV

∂2u(x, t)
∂t2 , ∀x ∈ Ω, (5.1)
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where σxx denotes the e1 component of stress, ρV(x) is the volume density, and u(x, t) is the

displacement field in the e1 direction. The nonlinear constitutive law considered is

σxx = E1εxx + Γε3
xx + O(ε5

xx), (5.2)

where εxx = u,x is the strain component in the e1 direction, and E1(x) and Γ(x) are the linear

and nonlinear elastic moduli, respectively. Substituting Eq. (5.2) into Eq. (5.1) leads to a

one-dimensional nonlinear wave equation

∂

∂x

E1(x)
∂u(x, t)
∂x

+ Γ(x)
(
∂u
∂x

)3 = ρV(x)
∂2u(x, t)
∂t2 , x ∈ Ω. (5.3)

The effect of the nonlinear stiffness term on dispersion is the focus of this work. The

coefficient functions E1(x), Γ(x), and ρ(x) are defined in a piecewise fashion for the layered

system considered

E1(x) =


E1A if 0 ≤ x < a

E1B if a ≤ x < b
(5.4a)

Γ(x) =


ΓA if 0 ≤ x < a

ΓB if a ≤ x < b.
(5.4b)

ρ(x) =


ρA if 0 ≤ x < a

ρB if a ≤ x < b,
(5.4c)

where E1A, E1B, ΓA, ΓB, ρA, and ρB are constants. We assume only a single nonlinear layer

such that ΓB = 0.

The third order coefficient Γ(x) is typically several orders of magnitude larger than

the first order coefficient E1(x) [98]; thus, a weakly nonlinear system is obtained when

the strain amplitude is small. The small parameter ε is quantified by a weakly nonlinear

contribution in the stress-strain constitutive relation Eq. (5.2). Regrouping terms as σxx =

E1Aεxx(1 + ΓAε
2
xx/E1A) motivates the small parameter definition ε = ΓAε

2
0/E1A, where ε0

denotes strain amplitude for a harmonic solution of the analagous linear problem where
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ΓA = 0. To this end, the small parameter ε is introduced through the expression ΓA = εΓ̂A

when perturbation calculations are performed. This form is not required in the transfer

matrix analysis presented next.

5.3 Transfer matrix analysis of linearized systems

The transfer matrix analysis of cubically nonlinear layered materials with quasilinear mate-

rial properties has been applied in nonlinear optics to deterimine dispersion properties [99].

This method is presented here as applied to phononic systems assess its utility and validity.

The disperion relationship of a layered phononic system can be derived from a transfer ma-

trix formulation when linear constitutive relationships are used [97, 100]. The appropriate

interface matching conditions in conjunction with a Bloch periodicity statement result in a

transfer matrix that relates values of the displacement field u(x, t) and the strain εxx(x, t) at

the beginning of a layer to the values at the end of a layer.

Repeated application of the transfer matrix for each layer results in an overall transfer

matrix T for an entire unit cell. The field variables u(x, t) and εxx(x, t) within the lth layer

are contained in a state vector uT = [u, εxx] and related by a transfer matrix Tl

Tl =

 cos(kldl) 1/Zl sin(kldl)

−Zl sin(kldl) cos(kldl)

 , (5.5)

where kl = ω/cl is the material wave number, cl =
√

E1l/ρl is the phase speed, and

Zl = ρlc2
l kl denotes an impedance. Each unit cell consists of two layers in the bimate-

rial system referenced by the subscript l = A, B. Application of the transfer matrix across

a complete unit cell, together with Bloch boundary conditions, results in an eigenvalue

problem whose solution yields the dispersion relationship and Bloch wave modes. For the

two-layer periodic system considered, this is given as

u(x + d, t) = TBTAu(x, t) −→ u(x, t) exp(iµ) = Tu(x, t), T = TBTA, (5.6)

where TA,B denote transfer matrices evaluated using properties for layers A and B, respec-

tively, and µ = µ̂d relates the dimensionless Bloch wave number µ (normalized by unit cell
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length d) to its dimensional counterpart. We note that the particular eigenvalue problem

here is linear in the Bloch wave number µ, but nonlinear in the frequency ω = clkl. Thus, it

is more direct to solve for the inverted dispersion relation µ(ω), rather than ω(µ) as typical

in discrete system analysis.

The transfer matrix analysis as stated above requires a linear system, although recent

publications have appeared which combine a pertubation approach with a transfer matrix

for nonlinear systems [101]. One common method of treating the cubic nonlinearity (i.e.

the Kerr nonlinearity) in optics community involves linearizing the constitutive relationship

for the nonlinear electric polarization field. The rationale behind the linearization process

is that material properties are reasonably described by an intensity-dependent quantity for

weak nonlinearities. This linearization can be applied more generally to any physical sys-

tem where a constitutive relation can be approximated by a truncated Taylor series as in

Eq. (5.2).

Consider the nonlinear homogeneous medium governed by Eq. (5.3) with ΓA , 0. At a

point x in space, the equivalent linear system (ΓA = 0) exhibits time-harmonic behavior. We

consider monochromatic wave propagation in the form εxx(x, t) = ε0 cos(ωt−kx) governing

a wave of frequency ω, material wave number k, and strain amplitude ε0 traveling in the

e1 direction. Substituting the linear strain solution into the constitutive equation Eq. (5.2)

truncated at the second term results in

σ(x, t) = E1ε0 cos(ωt − kx) + Γε3
0 cos3(ωt − kx), (5.7)

where E1 and Γ denote linear and nonlinear elastic moduli of the homogeneous system

under consideration. The average material property of the linearized system is obtained by

expanding the cubic cosine term into individual frequency components and then collecting

coefficients

σ(x, t) = E1ε0 cos(ωt − kx) + Γε3
0

(3
4

cos(ωt − kx) +
1
4

cos(3(ωt − kx))
)
. (5.8)

The third and higher harmonic terms are neglected on the basis that the nonlinearity is
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small, yielding a third harmonic amplitude of negligible order. This approximation is re-

ferred to as the rotating wave approximation (RWA) in some fields. The elastic modulus

reduces to a linear relationship with effective linear material property Ē = (E1 + 3Γε2
0/4)

σxx(x, t) ≈
(
E1 +

3
4

Γε2
0

)
ε0 cos(ωt − kx) = Ēεxx(x, t). (5.9)

For harmonic plane waves, the power flux (intensity) is proportional to the strain amplitude

squared. Thus, the effective material property at a point x in space is related to the time-

averaged intensity of a propagating wave through Eq. (5.9). Heuristically, the derivation

of Eq. (5.9) also shows that even-order nonlinearities do not contribute to the effective

property Ē since even-ordered expansions of trigonometric functions do not contain terms

of the fundamental frequency ω. Furthermore, Eq. (5.9) gives a condition for which a

linearization may be practical. For weak nonlinearities, and thus negligible third harmon-

ics, one expects only small deviations of the effective property Ē from the linear material

property E1. This condition is written in dimensionless form as∣∣∣∣∣Γε2
0

E1

∣∣∣∣∣ � 1, (5.10)

which corresponds physically to small strains, or a small nonlinear modulus Γ relative to

E1.

This linearization process extends readily to layered periodic systems with coefficients

E1 = E1(x) and Γ = Γ(x) that are piecewise functions in space. This quasi-linear de-

scription of the stress-strain relationship results in an amplitude-dependent phase speed

c̄ =
√

Ē(ε0)/ρ since Ē is a function of the strain amplitude ε0. Likewise, for periodic

systems the phase speed in the lth layer is given by c̄l(ε0) =
√

Ēl/ρl so that the effective

impedance of the lth layer is Z̄l(ε0) = ρlc̄2
l (ε0)kl. Thus, the effective quasilinear system is

obtained when the Zl coefficient in Eq. (5.5) is replaced by the effective Z̄l (at a particu-

lar amplitude). Since the Zl coefficient depends upon amplitude, it is no surprise that the

dispersion relationship obtained from a transfer matrix analysis depends on the intensity

of the propagating Bloch wave. This intensity-dependence gives rise to some interesting
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phenomena that are exploitable in the design of novel phononic systems such as tunable

pass- and stop-bands. Obtaining the dispersion relationship from the transfer matrix at this

point only requires the solution of an eigenvalue problem.

5.4 Perturbation analysis of nonlinear dispersion

A more consistent approximation of weakly nonlinear system may be obtained using per-

turbation methods where the nonlinearity is treated asymptotically. The governing wave

equation for the nonlinear 1D layered material contains a linear kernel with associated

wave modes. For weak nonlinearities, a perturbation method may yield corrections to the

frequency of the linear system. However, the perturbed equations of the continuous system

have a complex nature not amenable to solution. Thus, we choose to apply the perturbation

scheme to a discretized system following Sec. 2.4.1 to obtain a first-order corrected disper-

sion band structure. The discretization and perturbation analysis as applied to the layered

system are described next.

5.4.1 Discretization of the bilayer system

Consider the continuous layered system described by Eq. (5.3) with periodic coefficients

E1(x) and ρV(x) and a weakly nonlinear term given as ΓA = εΓ̂A for |ε| � 1.

∂

∂x

(
E1(x)

∂u(x, t)
∂x

)
+ ε

∂

∂x

(
Γ̂(x)

∂u
∂x

)3

= ρV(x)
∂2u(x, t)
∂t2 , x ∈ Ω, (5.11)

This system is discretized using a Galerkin weighted residuals approach. The equation of

the motion within a layer of the bimatieral rod is the same equation of motion that governs a

single element (‘slice’) of the rod. Introduce comparison functions Ni as well as generalized

coordinates qi(t) such that the displacement variable u(x, t) can be approximated as a linear

combination

u(x, t) =
∑

i

Ni(x)qi(t). (5.12)
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We use linear Lagrange such that only two comparison functions are necessary. The equa-

tion of motion no longer evaluates to zero, but to an error e

e(x, t) = E1

2∑
i=1

(
∂2Ni

∂x2 qi − ρV Niq̈
)

+ εΓ̂
∂

∂x

(
q1
∂N1

∂x
+ q2

∂N2

∂x

)3

(5.13)

Following the Galerkin method, we obtain two ordinary differential equations by seek-

ing to minimize the error in the space spanned by N1 and N2. These equations are obtained

by forming the inner product of the error with each comparison function and setting it equal

to zero ∫ L

0
e N1 dx = 0 (5.14)∫ L

0
e N2 dx = 0. (5.15)

Equation (5.14) integrates by parts to yield an equation of motion and boundary conditions

−

∫ L

0

(
ρV N1N2q̈2 + ρV N2

1 q̈1 + σxx
∂N1

∂x

)
dx = 0 (5.16)

σ(x, t)N1(x)
∣∣∣L
x=0

= 0, (5.17)

while Eq. (5.15) yields a similar second equation of motion and boundary condition. The

boundary condition derived at the left and right nodes are equal and opposite one another

for any choice of Ni which verifies the necessary condition of equal internal forces. The

specific comparison function used in this development are

N1(x) = 1 −
x
L
, N2(x) =

x
L
. (5.18)

The equations derived from Eqs. (5.14) and (5.15) yield nonlinear equations of motion.

Linear mass and stiffness operators produce elemental mass and stiffness matrices (Me and

Ke), while nonlinear terms produce the elemental nonlinear force vector fNL
e given by

Me = ρV L

1/3 1/6

1/6 1/3

 , Ke =
E1

L

 1 1

−1 −1

 , and

fNL
e =

Γ̂

L3

 (q2 − q1)3

−(q2 − q1)3

 .
(5.19)
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The elemental matrices and nonlinear force vector for a nonlinear rod element may

be assembled into global mass and stiffness matrices that may be used to describe the

approximate dynamics of the continuous system. System mass and stiffness matrices are

obtained by requiring continuity of displacements and internal force balance so that the

equations of motion for the entire rod become

Mü + Ku + εfNL(u) = 0, (5.20)

where the global mass and stiffness matrices take the form

M = L



1
3ρA

1
6ρA 0 · · · 0

1
6ρA

2
3ρA

1
6ρA

. . .
...

0 1
6ρA ( 1

3ρA + 1
3ρB) 1

6ρB 0

...
. . . 1

6ρB
2
3ρA

1
6ρA

0 · · · 0 1
6ρB

1
3ρB


n×n

(5.21)

and

K =
1
L



E1A −E1A 0 · · · · · · · · · 0

−E1A 2E1A
. . .

...

0 . . .
. . . −E1A

...

... −E1A (E1A + E1B) −E1B
...

... −E1B
. . .

. . . 0

...
. . . 2E1B −E1B

0 · · · · · · · · · 0 −E1B E1B


n×n

, (5.22)

where n denotes the number of nodes and u ∈ Rn×1 denotes the nodal displacement vector.

Each jth term f NL
j of the nonlinear force vector fNL depends nonlinearly on the dis-

placements u j and u j±1, as well as the corresponding material properties. As a result, man-

ual discretization of nonlinear terms is generally difficult and a method of automating the
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process is desirable. An efficient scheme for doing this is described in Chapter 7. As an

example, a unit cell composed of four elements (u1 through u5) has a nonlinear force vector

fNL =
1
L3



−ΓA (u1 − u2)3

ΓA (−2u2 + u3 + u1)
(
u2

2 − u2u3 − u1u2 + · · · − u3u1

)
−ΓAu3

2 + 3ΓA + · · · + 3ΓBu3u2
4 − ΓBu3

4

ΓB (−2u4 + u3 + u5)
(
u2

4 − u4u5 − u3u4 + · · · − u3u5

)
ΓB (u4 − u5)3



, (5.23)

where several terms have been excluded due to length. A unit cell with more nodes assem-

bles similarly.

The global mass and stiffness matrices M and K are consistent. However, others have

shown that a lumped mass matrix yields a more accurate approximation of the eigenvalues

and eigenvectors associated with a system [60]. For this reason, a proportional lumping

approach was used to diagonalize the mass matrix. The lumped mass matrix has an added

benefit of inertially decoupling the equations of motion, thereby simplifying numerical cal-

culations and perturbation analysis. The discretized system is depicted in Fig. 5.2. The

end-to-end assembled elements produce a global system of equations describing any num-

ber of unit cells; however, 3 unit cells is sufficient for describing Bloch wave propagation

in nonlinear systems as noted in Sec. 2.3.3. After the appropriate perturbation expansions,

Figure 5.2: Discretized unit cell with N elements per unit cell, and N unique degrees of
freedom. The N + 1th DOF in a unit cell p lies on the boundary and therefore belongs to
the next unit cell p + 1.

Bloch conditions applied at the zeroth order represent all other unit cell degrees of freedom
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in terms of the central unit cell degrees of freedom.

The matrices M(p) and K(p) for the pth unit cell and its two neighbors may be written

as block matrices with submatrices Mi j and Ki j. The equations of motion for a system of

three unit cells neglecting outer neighbors are
M11 0 0

0 M22 0

0 0 M33




ü1

ü2

ü3

 +


K11 K12 K13

K21 K22 K23

K31 K32 K33




u1

u2

u3

 + ε


fNL
1

fNL
2

fNL
3

 =


0

0

0

 , (5.24)

where u j is an N × 1 vector holding the displacements of the pth unit cell, fNL
p is an N ×

1 vector holding the nonlinear forces, and the submatrices Mi j and Ki j are each N × N

matrices. For convenient matrix notation, the central unit cell p corresponds to an index

p = 2 whereas its left and right neighbors are indexed with p − 1 = 1 and p + 1 = 3,

respectively.

The exact subsystem governing the p = 2 unit cell’s N DOFs are next obtained from

the second row of Eq. (5.24). The internal interactions f int
p±1 (see Fig. 5.3) on unit cell p

resulting from its neighbors are captured by the submatrices K21 and K23 as well as the first

and last terms of fNL
2 . The dynamic equations resulting from a discretization of the pth unit

cell and its two neighbors constitute an open set of nonlinear difference equations whose

solution is dependent upon up+1 and up−1

M22ü2 +

3∑
p=1

K2pup + εfNL
2 (u2,u2±1) = 0. (5.25)

Figure 5.3: Interactions resulting from isolating unit cell p
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5.4.2 Perturbation solution for an open set of difference equations

The small parameter ε appearing in Eq. (5.25) facilitates an asymptotic solution approach

as described in Sec. 2.4.1. We introduce a dimensionless time τ = ωt and standard expan-

sions
ω = ω0 + εω1 + O(ε2)

up = u(0)
p + εu(1)

p + O(ε2).
(5.26)

These expansions are substituted into Eq. (5.25) to yield the ordered equations

O(ε0) : ω2
0M22

∂2u(0)
2

∂τ2 +

3∑
j=1

K2 ju(0)
j = 0 (5.27)

O(ε1) : ω2
0M22

∂2u(1)
2

∂τ2 +

3∑
j=p

K2pu(1)
p = −2ω0ω1M22

∂2u(0)
2

∂τ2 − fNL
2 (u(0)

2 ). (5.28)

Bloch’s theorem may be applied to the O(ε0) equations (5.27) to produce a set of equations

describing an infinite [linear] system that depends on the dimensionless Bloch wave number

µ,

ω0
2M

∂2u(0)

∂τ2 + K(µ)u(0) = 0, (5.29)

where the matrix M = M22 and reduced matrix K(µ) = K21 exp(−iµ) + K22 + K23 exp(iµ)

are both N × N matrices, and u(0) = u(0)
2 is an N × 1 field displacement vector within the

central unit cell at the ε0 order. Seeking solutions that are time-harmonic with amplitude A

u(0) =
A
2
φ exp(iτ) + c.c., (5.30)

Eq. (5.29) yields a standard eigenvalue problem for eigenfrequencies ω0, j(µ) and Bloch

wave modes φ j(µ), parameterized by the dimensionless Bloch wave number µ

(
K(µ) − ω2

0M
)
φ j = 0. (5.31)

The dispersion relation for the continuous system is approximated by ω0, j(µ), where the jth

eigenvalue corresponds to the jth dispersion branch. The approximate dispersion relations

become more accurate as the number of mesh elements is increased; this is quantified in
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the results section. This is particularly important for comparing FEA-generated dispersion

relations to the exact linear solution produced by the transfer matrix.

Expanding the nonlinear vector fNL
2 in a Fourier series and keeping only the c1 term, the

O(ε1) system of equations may be reduced by assuming a “secular-Bloch” type solution.

The eigenvectors (i.e. Bloch wave modes) for the reduced O(ε0) problem are the same

as those for the reduced O(ε1) homogeneous system, and thus the matrix of wave modes

Φ = [φ1...φN] decouples the system of equations in a similar manner. Removal of secular

terms leads to an O(ε1) frequency correction term for the jth branch given by Eq. (2.36)

ω1, j(µ) =
φH

j c1

ω0, jAφH
j Mφ j

,

where φH
j denotes the Hermitian transpose of φ j. However, when fNL

2 more-generally con-

tains u(0)
2 and its time derivatives, such as in electromagnetics, the correction ω1, j must be

developed on an individual basis [62]. The updated dispersion relation for the jth branch is

then given as

ω j(µ) = ω0, j(µ) + εω1, j(µ) + O(ε2), (5.32)

which may be used to identify amplitude-depending shifting of dispersion bandgaps and

variations in group velocity. Next, dispersion shifts computed using a quasilinear transfer

matrix approach are compared and contrasted with those computed using this perturbation

analysis.

5.5 Results
5.5.1 Linear system dispersion convergence analysis

Sufficient discretization of the domain is important in analyzing nonlinear dispersion using

the perturbation method. The discretized systems at O(ε0) directly produce the dispersion

relationship of the linear system following the procedure outlined in Sec. 5.4. The number

and type of finite elements are important in obtaining accurate eigenvectors, particularly

for higher frequencies. Figure 5.4 depicts the convergence of several dispersion branches
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for a phononic system as the number of finite elements is increased (parameters provided

in Sec. 5.5.2). The solid branches ωTMM(µ) represent theoretical values for the linear sys-

tem, obtained by solving the linear bilayered problem using the transfer matrix approach.

Convergence is quantified as a percent difference from the theoretical values calculated us-
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Figure 5.4: Dispersion branch convergence of the first 3 dispersion branches for a lin-
ear bilayered periodic system. Solid lines represent exact calculations using linear transfer
matrix theory. Dashed lines indicate calculations performed using a discretized system. Ar-
rows indicate the direction of convergence as the number of elements per unit cell increases
N = 5, 10, 20.

ing the transfer matrices. The point of measurement is µ = 0 or µ = π where the largest

deviation ∆ωFEA exists.

∆ωFEA =
|ωFEA − ωT M |

ωT M

∣∣∣∣∣
µ=0,π

. (5.33)

The first three branches of the discrete systems converge to the theoretical values (ωTMM)

within 0.5% or better when using 40 linear Lagrange elements to discretize a unit cell, as

shown in Fig. 5.4

Caution must be taken near small bandgaps, because such bandgaps may erroneously

arise from the discretization procedure. In such cases, these errors propagate through to the

calculation of the eigenvectors. The result of an incorrect eigenvector calculation is man-

ifested by anomalous dispersion characteristics such as branch crossings or non-smooth
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dispersion branches. This may be remedied by increasing the mesh resolution or using

higher order elements, such as quadratic Lagrange elements. A few Bloch wavemodes are

illustrated in Fig. 5.5 using both the transfer matrix method and the finite element method.

The Bloch wavemodes are in good agreement with the theoretical mode shapes obtained

using a transfer matrix analysis. In all nonlinear results presented next, the number of

elements employed are chosen based on achieving modal convergence as explained above.
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Figure 5.5: A few linear Bloch wave modes for (a) ω = 1.925, (b) ω = 6.321, and (c)
ω = 10.568 calculated using the transfer matrix method (solid green) and the finite element
discretization (solid red). These Bloch wave modes correspond to points on the first three
dispersion branches of the phononic system considered herein. The dashed line indicates
the boundary between adjacent layers.

5.5.2 Dispersion for weakly nonlinear vs. linearized systems

After evaluating the eigenvalues and eigenvectors for the linear acoustic system (as a func-

tion of µ), the linearized transfer matrix analysis outlined in Sec. 5.3 and the perturbation

procedure described in Sec. 5.4 quickly leads to the dispersion band structure for the non-

linear systems. The eigenvectors of the linear system are normalized such that each wave

mode corresponds to a constant strain (and thus a constant ε value for any point on the

dispersion curve). The dispersion band structure for the linear system is plotted with the

dispersion relation for the weakly nonlinear system in Fig. 5.6a. The branches shift up-

ward for hardening nonlinearities where ΓA > 0 and downward for softening nonlinearities

ΓA < 0, which is consistent with past results [3].

The parameters used for the bimaterial rod model are ρA = ρB = 1 kg m−3, E1A = 1 Pa,
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E1B = 4 Pa, and ΓA = 1 Pa with a strain amplitude of ε0 = 0.3 such that ε = 0.10. These

parameters are chosen to give an impedance mismatch of ZB/ZA = 2. This relatively low

impedance mismatch illustrates how discretization and linearization affect the dispersion

relation where a small bandgap may exist. The shifts calculated using quasilinear mate-

rial properties in tandem with the transfer matrix method, also shown in Fig. 5.6, tend

to overestimate the higher frequency wave modes slightly (relative to the perturbation re-

sults), while for acoustic wave modes and the first optical branch the differences are almost

negligible. Figure 5.6 also contains data points obtained from time-dependent numerical

simulations which are discussed shortly. Group velocity plots are presented in Fig. 5.7

to illustrate more explicitly the qualitative differences and similarities between each of the

methods presented. The group velocity is defined as cg = dω/dµ as described in Chapter 2.

The existence of a new, and likely erroneous, bandgap in the quasilinear system is ob-

served; a short discussion on this is presented in Sec. 5.5.4, where numerical comparisons

are introduced.

5.5.3 Numerical validation

Time-dependent numerical simulations of the bimaterial rod were performed using the

commercial finite element package Comsol. A large domain of 80 unit cells was con-

structed and simulated for times such that no reflections were produced, and such that

spatial frequencies could be resolved using fast fourier transforms. A time-harmonic strain

of the form

εxx(0, t) = ε0 sin(ωt) (5.34)

was applied at the left boundary, while the right boundary condition was fixed. Dispersion

points were calculated by performing a two-dimensional fast fourier transform (2D-FFT)

on the resulting time-space matrix of nodal displacement and then extracting peak values.

Some error in the 2D-FFTs is introduced due to (small) extra-harmonic generation over the

80 unit cells considered.
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Figure 5.6: Dispersion points generated from numerical simulation of the bimaterial rod
(black squares) for (a) ε = 0.10 and (b) ε = 0.25, compared to the analytical dispersion
branches calculated using the transfer matrix method (solid green) and the proposed per-
turbation method (solid red). The linear dispersion relation (black dashed) is shown for
comparison. Black markers denote data extracted from time-domain numerical simulation
results.

Figure 5.6 documents very good agreement for both the transfer matrix and perturba-

tion approaches. The nonlinear results for the bimaterial rod tend to agree quite well with

the perturbation results for stronger nonlinearity (ε = 0.25) as well. The relatively good

agreement between the perturbation approach and the transfer matrix approach shown in

Figs. 5.6 and 5.6b does not hold true for all layered systems. The transfer matrix pre-

dicts almost no shift of the dispersion curve for thin nonlinear layers. The reason for this

stems from the fact that large strains produced in certain wave modes are not captured in

a constitutive law linearization. The transfer matrix (see Eq. (5.5)) corresponding to a

thin nonlinear layer begins to look like an identity matrix as the layer thickness approaches

zero. Since the off-diagonal terms contain the amplitude-dependent impedances multiplied

by sine functions, the their relative contribution decreases with layer thickness as well. In

contrast, perturbation approach captures fine details of the wave mode and their effect on
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Figure 5.7: Group velocity plots for the first four branches of the bimaterial rod. The
linear system (black dashed) has no bandgap between the third and fourth branches (around
ω = 12.8 rad s−1), while the quasilinear system (green) exhibits a small bandgap. The
nonlinear system (red) faithfully represents the dispersion qualities of the underlying linear
system.

dispersion. An additional analysis case further highlights this behavior.

Time-domain simulation results are shown along-side perturbation and transfer-matrix

calculations for a thin nonlinear layer (a/d = 0.05) in Fig. 5.8a. The time-domain sim-

ulation is performed using a higher impedance mismatch (E1B = 20 Pa, E1A = 1 Pa,

ρA = ρB = 1 kg m−1) and amplitude such that ε = 0.10. The Bloch wave modes are

normalized in the same manner as those in Fig. 5.6a. The increased contrast in material

properties results in a larger dispersion shift for the same amplitude. Unlike in Fig. 5.6a,

the quasi-linear approach cannot capture the nonlinear shift. Analytical calculation of the

dispersion curves using the transfer matrix approach is shown along-side results from a

linear system (black dashed) and perturbation calculations (red). Markers are used to high-

light the transfer-matrix calculations since the shift is nearly indiscernable from a linear

system.

Figure 5.8b shows results from a time-domain simulation (ω = 11.0 rad s−1) that have

been transformed in the frequency-wave number domain via 2D-FFT. This view of the

time-domain results reveals that loss of energy to sub- and super-harmonics contributes

to the small discrepency between predicted and realized dispersion relationships. Am-

plitudes greater those used for this simulation cannot be predicted using the perturbation

approach as nonlinear interactions resulting from harmonic generation are not considered
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Figure 5.8: Nonlinear dispersion relation for a high-contrast thin nonlinear layer (ε =

0.10). The points generated from numerical simulation (black squares) are shown with
analytical curves generated using the perturbation method on the nonlinear system (red)
and the transfer matrix method on the quasi-linear system (green with markers). The linear
curve (black dashed) is shown for comparison. Results are obtained from 2D-FFT trans-
forms as depicted in Fig. 5.8b.

in the current analysis. Nevertheless, these generated harmonics tend to appear at wave

number-frequency pairs which coincide with the predicted dispersion relationship.

5.5.4 Analysis of bandgaps

The choice of parameters for the bimaterial rod highlights an important difference between

each nonlinear analysis method. A detailed analysis of Figs. 5.6a and 5.6b between the

third and fourth dispersion branches (ω ≈ 12.8 rad s−1) reveals no bandgap for a linear

system. Linearizing system and applying the transfer matrix technique, however, results in

a new linear system with qualitatively different dispersion characteristics. The quasilinear

analysis predicts the existence of new bandgaps. The perturbation analysis predicts changes

in only the size and location of existing bandgaps, while preserving the band structure
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qualities of the linear system. This qualitative disparity becomes more prominent as the

nonlinearity increases.
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Figure 5.9: Attenuation coefficient for the quasilinear dispersion showing the existence of
a small bandgap. The size and location of the bandgap changes with intensity.

The evanescent wave produced inside a bandgap is quantified by the magnitude of the

imaginary component of µ, termed the attenuation coefficient. Larger attenuation coeffi-

cients cause exponential decay at a quicker per-unit-cell rate. Figure 5.9 shows the atten-

uation coefficient for several values of ε. The magnitude of the attenuation coefficient is

such that many periods of a unit cell are required to observe any significant decay. Fur-

thermore, any wave propagation of a given amplitude within this bandgap would undergo

amplitude decay, which changes the location and size of the attenuation zone. Eventually,

the wave reaches a point in space where there is no attenuation (a saturation behavior) as

described in [24]. Because of this, it is difficult to show numerically that such a bandgap

exists. However, since the linear system and the nonlinear system, as analyzed using a rig-

orous asymptotic technique (perturbation), do not exhibit these bandgaps, it is reasonable

to expect that they are spurious.

5.6 Conclusions

Wave propagation through a bilayered material was investigated within the context of non-

linear phononic systems. The locations of bandgaps as a result of dispersive material
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behavior and amplitude-dependence were identified analytically using (1) a quasi-linear

approach in conjunction with the transfer matrix method, and (2) a perturbation method

whereby the continuous system is discretized. In applying the perturbation analysis, it is

important to discretize the system finely-enough such that convergence is obtained in the

dispersion relationship over the frequency range of interest.

For weakly nonlinear systems, the magnitude of the dispersion shifts predicted by both

methods is comparable when the layer fraction of nonlinear material is large. For simple

systems such as the bilayered material where the transfer matrix method may be used to ob-

tain an analytical dispersion relationship, a quasi-linear analysis may be appropriate given

the extra effort required to discretize the system. The transfer matrix method with quasi-

linear material properties is less attractive when analyzing complex geometry in more than

one dimension, or systems that support Bloch waves with localized regions of high-strain

(thin layers), and so the proposed perturbation method may be more appropriate.

The quasi-linear analysis method of calculating dispersion shifts results in qualitatively

different band structure than the linear system. In contrast, perturbation analysis of the

weakly nonlinear system perserves and modifies the dispersion characteristics of the linear

system such as the group velocity and the size, location, and number of bandgaps. Analysis

of the attenuation coefficient for the weakly nonlinear systems shows that the differences

are negligible for weak nonlinearities.
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CHAPTER VI

TOPOLOGY DESIGN AND OPTIMIZATION

6.1 Overview

Topology designs which maximize dispersion shifts are explored through parametric op-

timization and an implementation of the genetic algorithm. The cubic nonlinearity com-

monly found in mechanical systems gives rise to frequency shifting and thus a shift in band

gap location [102]. We consider two systems exhibiting this nonlinearity: (1) a continuous

one-dimensional layered system, and (2) a binary plane-stress system composed of two

materials. Each system contains one material governed by a nonlinear constitutive law.

The multilayer and plane stress systems provide convenient unit cells for exploring op-

timized topology configurations in the presence of nonlinearities. Layered systems often

serve as fundamental building blocks in topology optimization studies [103, 104]. Com-

pound layered systems (sometimes termed sequentially ranked laminates), for example,

find use in topology optimization for microstructure distribution [86]. However, structures

composed of sequentially ranked laminate microstructures derive their overall response

from homogenized properties since wavelengths of concern in these problems are many

orders greater than a unit cell length. In contrast, we focus on systems where these two

length scales are similar.

The plane stress system provides a convenient entry point for analyzing the effects of

topology on nonlinear periodic arrays in two dimensions where directionality, in addition to

band gaps, may be tailored. Topology optimization of a linear binary inclusion system was

considered in [104] with the goal of optimizing dispersion band structure and frequency

response characteristics. The system considered in Sec. 6.4 resembles the system discussed

in [104], but considers nonlinear stress-strain relationships that arise from large amplitude
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waves.

Genetic algorithms have been used extensively by the phononic/photonic crystal com-

munity for identifying configurations which achieve complete band gaps [105, 106, 107,

108, 109]. Genetic algorithms identify optimal solutions through iterative population gen-

eration, mutation, crossover, and selection processes. A fitness function ranks individual

members of a population based on a specified criteria. Because these algorithms do not

rely on knowledge of local gradients, there is a greater probability of finding a global

maximum. Furthermore, the genetic algorithm handles binary material systems directly,

whereas gradient-based optimization routines usually require continuous design variables

and explicit gradient expressions. This partially explains why genetic algorithms have

gained such popularity in phononic and photonic crystal analysis where it is known a priori

that stark material contrasts are essential to producing the desired results.

This chapter is organized as follows. First, the equations of plane stress are introduced.

A system of nonlinear coupled wave equations results from the introduction of a nonlinear

constitutive perturbation term. A finite-element discretization of the governing equations

for a single unit cell leads to computationally-intensive expressions for the nonlinear force

vector when computing dispersion diagrams. A structured mesh and symbolic evaluation

of the weak integral expedite computations. Moreover, an efficient algorithm for evaluat-

ing the nonlinear force vector is introduced. Application of nonlinear dispersion analysis

to a simplified continous layered system yields configurations which are sensitive to stiff-

ness nonlinearity (Sec. 6.3). The topology and material parameters of the layered system

are varied systematically to identify configurations resulting in large dispersion relation

shifts. Finally, we investigate topology variations which result in large band gaps for two-

dimensional plane stress arrays in Sec. 6.4. A parametric study reveals that thin nonlinear

layers (ligaments) produce large group-velocity and band gap variation with amplitude. A

genetic algorithm implementation confirms that the intuitive designs examined in the para-

metric analysis are, indeed, near-optimal solutions for achieving nonlinear sensitivity. The
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results provide direction for designing unit cells optimized for dynamic tunability.

6.2 Theoretical background
6.2.1 System model

The developments that follow assume a periodic elastic structure whose dynamics are gov-

erned by the conservation of momentum in the absence of externally applied forces (Eq.

(2.11)), repeated here

∇ · σ(r) = ρV
∂2u(r)
∂t2 , ∀r ∈ Ω, (6.1)

where σ denotes the elastic stress tensor, ρV is the material density, and u is the displace-

ment field vector. We consider 1D and 2D computational domains. In the following, we

report in detail the equations governing the 2D case, with the 1D case being omitted as a

particular case for the sake of brevity.

In the 2D case, each material point with in-plane coordinates described by r = x e1+y e2

for (x , y) ∈ Ω undergoes in-plane motion. Then, the displacement vector u = [u(r), v(r)]

describes motion along the e1 and e2 directions, respectively. With these assumptions, Eqs.

(6.1) are expressed as:

∂σxx

∂x
+
∂σxy

∂y
= ρV

∂2u
∂t2 , ∀(x, y) ∈ Ω, (6.2a)

∂σxy

∂x
+
∂σyy

∂y
= ρV

∂2v
∂t2 , ∀(x, y) ∈ Ω, (6.2b)

where σi j denotes the stress tensor, h denotes thickness in the e3 direction, and ρV denotes

volume density. We adopt Voigt notation such that components of the stress tensor are

given by σi = [σxx, σyy, σxy]T . A nonlinear elastic constitutive law is considered
σxx

σyy

σxy

 =


c11(εxx) c12 0

c12 c22(εyy) 0

0 0 c66(εxy)




εxx

εyy

2εxy

 , (6.3)

where small strain components are defined according to

εxx =
∂u
∂x
, εyy =

∂v
∂x
, and εxy =

1
2

(
∂u
∂y

+
∂v
∂x

)
. (6.4)
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Strain dependence in off-diagonal terms c12 is neglected. The coefficient functions c11,

c22, c12, and c66 describe an isotropic material with cubic nonlinearities and are given by

[58]

c11 =
E1

1 − ν2 + Γxεxx
2 (6.5a)

c22 =
E1

1 − ν2 + Γyεyy
2 (6.5b)

c66 =
E1

2(1 + ν)
+ Γxyεxy

2 (6.5c)

c12 =
νE1

1 − ν2 , (6.5d)

where E1 and ν denote the linear modulus and Poisson ratio, respectively. The cubic

nonlinearity coefficients Γx, Γy, and Γxy may be derived from experimental data, or from

well-known nonlinear constitutive laws such as the Neo-Hookean, Mooney-Rivlin [110],

or Murnaghan Potential models [28, 67].

Small strains and weak nonlinearity are enforced in the constitutive equations by intro-

ducing Γ̂x, Γ̂y, and Γ̂xy according to Γx = εΓ̂x, Γy = εΓ̂y, and Γxy = εΓ̂xy. These terms result

in a weakly nonlinear contribution when the stresses due to the nonlinear terms are much

less than the stresses due to linear terms. The updated plane stress equations are

∂

∂x

(
c11

∂u
∂x

+ c12
∂v
∂y

)
+
∂

∂y

[
c66

(
∂u
∂y

+
∂v
∂x

)]
+ ε f NL

x = ρ
∂2u
∂t2 (x, y) ∈ Ω (6.6a)

∂

∂x

[
c66

(
∂u
∂y

+
∂v
∂x

)]
+
∂

∂y

(
c22

∂u
∂x

+ c12
∂u
∂x

)
+ ε f NL

y = ρ
∂2u
∂t2 (x, y) ∈ Ω. (6.6b)

and the nonlinear functions f NL
x and f NL

y are given by

f NL
x =

∂

∂x

[
Γ̂x

(
∂u
∂x

)3]
+
∂

∂y

[
Γ̂xy

(
∂u
∂y

+
∂v
∂x

)3]
f NL
y =

∂

∂x

[
Γ̂xy

(
∂u
∂y

+
∂v
∂x

)3]
+
∂

∂y

[
Γ̂y

(
∂u
∂y

)3]
.

(6.7)

6.2.2 Finite-element discretization

The nonlinear analysis of the continuous equations of motion is impractical for general

periodic unit cells; therefore, discretized equations of motion as provided by the FE method
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will be employed herein. As the objective of the study is the dispersion analysis for periodic

systems, the computational domain Ω of interest is a unit cell, which is discretized into

a suitable number of elements Ω(e), so that Ω =
⋃

(e) Ω(e). Consider for a moment the

plane stress equation (6.2) for an element domain Ω(e). We choose to employ quadrilateral

elements for several reasons:

1. Strain varies over the element, unlike triangular constant-strain elements,

2. Manual assembly is straight-forward and can produce a structured mesh, and,

3. A structured mesh improves evaluation speed of the nonlinear force vector, which is

particularly beneficial in optimization routines (to be discussed later).

However, a weak formulation of the governing equations is next presented without bias

towards any particular element type.

Each of the governing equations is multipled by an interpolation function Ni(x, y) and

integrated over the element domain to produce the weak form of the governing equations:

(see [61] for complete details)

h
"

Ω(e)

[
∂Ni

∂x

(
c11

∂u
∂x

+ c12
∂v
∂y

)
+
∂Ni

∂y
c66

(
∂u
∂y

+
∂v
∂x

)
+ ε f NL

ui
+ ρNiü

]
dΩ(e)

− h
∫
∂Ω(e)

Ni

[(
c11

∂u
∂x

+ c12
∂v
∂y

)
nx + c66

(
∂u
∂y

+
∂v
∂x

)
ny

]
ds = 0

(6.8a)

and, similarly for the second equation:

h
"

Ω(e)

[
∂Ni

∂x
c66

(
∂u
∂y

+
∂v
∂x

)
+
∂Ni

∂y

(
c12

∂u
∂x

+ c22
∂v
∂y

)
+ ε f NL

vi
+ ρNiv̈

]
dΩ(e)

− h
∫
∂Ω(e)

Ni

[
c66

(
∂u
∂y

+
∂v
∂x

)
nx +

(
c12

∂u
∂x

+ c22
∂v
∂y

)
ny

]
ds. = 0

(6.8b)

Equations (6.8) represent the weak form of the plane stress equations. The first term in

either equation is the field equation, while the latter term represents boundary conditions.

Integration has been carried out over the entire domain, including the e3 direction, which

is responsible for producing the thickness h in the expressions. The nx and ny terms denote
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components of the boundary normal in e1 and e2 directions, respectively. However, as the

system considered is infinite in extent the latter term is not explicitely considered beyond

this point.

The displacement fields u(x, y, t) and v(x, y, t) over the element domain Ω(e) are repre-

sented with n interpolation functions Ni, i = 1..n and nodal displacements ui(t) and vi(t)

according to

u(x, y, t) =

n∑
i=1

Ni(x, y)ui(t), v(x, y, t) =

n∑
i=1

Ni(x, y)vi(t). (6.9)

Elemental mass, stiffness, and nonlinear force vectors are formed by introducing Eq. (6.9)

into the weak form of the governing equations Eq (6.8), carrying out the integration, and

collecting terms as appropriate. The discretized matrix form of the governing equations for

an element can be expressedM(e) 0

0 M(e)


ü(e)

v̈(e)

 +

K
11
(e) K12

(e)

K21
(e) K22

(e)


u(e)

v(e)

 + ε

f
NL
u

fNL
v

 =

00
 , (6.10)

where M(e), Kmn
(e) , fNL

u,v , u(e) and v(e) denote element mass mass and stiffness matrices, ele-

mental nonlinear force vectors, and displacement components. Exact expressions for the

mass and stiffness matrix terms are given by

Mi j = h
∫

Ω(e)
ρNiN jdΩ(e)

K11
i j = h

∫
Ω(e)

(
c11

∂Ni

∂x
∂N j

∂x
+ c66

∂Ni

∂y
∂N j

∂y

)
dΩ(e)

K12
i j = K21

ji h
∫

Ω(e)

(
c12

∂Ni

∂x
∂N j

∂x
+ c66

∂Ni

∂y
∂N j

∂x

)
dΩ(e)

K22
i j = h

∫
Ω(e)

(
c66

∂Ni

∂x
∂N j

∂x
+ c22

∂Ni

∂y
∂N j

∂y

)
dΩ(e).

(6.11)

Each of Eqs. (6.8) contains a nonlinear force term that arises from nonlinearities in the

constitutive law. These terms are derived exactly as in Eq. (6.8) but are retained as separate
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terms. Their contribution to the elemental nonlinear force vectors fNL
u and fNL

v are given by

f NL
ui

= h
"

Ω(e)

∂Ni

∂x

[
Γ̂x

(
∂u
∂x

)3

+ Γ̂y

(
∂u
∂y

+
∂v
∂x

)3]
dΩ(e)

f NL
vi

= h
"

Ω(e)

∂Ni

∂y

[
Γ̂x

(
∂u
∂y

+
∂v
∂x

)3

+ Γ̂y

(
∂u
∂y

)3]
dΩ(e),

(6.12)

where f NL
ui

and f NL
vi

denote nonlinear restoring forces applied to the ith node in the e1 and e2

directions, respectively. An assembly of nonlinear elastic plane stress elements of the form

given in Eq. (6.11) produces a system of weakly nonlinear governing equations which fits

the general form required for the perturbation analysis

Mü + Ku + εfNL(u) = 0, (6.13)

where M and K are assembled mass and stiffness matrices for the domain Ω and u contains

is a vector containing all of the degrees of freedom in Ω. In what follows, the domain Ω

is defined as the union of 9 adjacent unit cells as depicted in Fig. 2.5. Then, Bloch wave

analysis follows directly as decribed in Chapter 2.

The evaluation of the nonlinear force vector can be a computationally intensive task.

The cost of this operation is here reduced through the symbolic evaluation of the integrals

in Eq. (6.12) for each interpolation function Ni. The use of regular meshes with elements

all of equal size leads to symbolic expressions for the elemental nonlinear forces that are

identical for all elements. This further streamlines the nonlinear term evaluation, whose

symbolic expression is saved as part of functions evaluated in terms of the elemental nodal

displacements and the relevant constitutive parameters.

Nonlinear band structure calculations required repeated assembly and evaluation of fNL

for multiple wave vectors. Optimization codes that use band structure as part of an objec-

tive function may require evaluation of fNL thousands of times. Further improvements are

obtained by using compiled codes that utilize parallel assembly and efficient evaluation of

c1. An efficient algorithm for evaluating the first Fourier coefficient c1 is described next.

Figure 6.1 summarizes the nonlinear force vector assembly procedure and Fourier coeffi-

cient evaluation conducted as part of the nonlinear dispersion analysis described in Ch. 2.
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Figure 6.1: Efficient procedure for evaluating nonlinear dispersion band structures.

6.2.3 Efficient algorithm for calculation of Fourier coefficients

The nonlinear frequency correction requires the Fourier series expansion of fNL, and specif-

ically the evaluation of the first coefficient c1. This is done through the numerical evaluation

of the nonlinear force function at discrete times to ascertain the temporal behavior of each

term in fNL. Previous work has evaluated the function at discrete time instants τi ∈ [0, 2π]

and numerically computed the first Fourier coefficient using either numerical integration

schemes or FFT algorithms (See Ch. 7 and Refs. [102, 111], for example). Both of these

methods require fine temporal discretization over a single fundamental period to obtain ac-

curate estimates for the c1 coefficient. Individual band structure computations do not suffer

significantly from this method; however, optimization routines require optimized code. An

improved evaluation method takes advantage of the polynomial nature of the constitutive

law, and thus reduces the number of function evaluations to four.

Individual elements of the nonlinear force vector may generally be expressed in the
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form

fNL
i (u(τ)) =

∑
l,m,n

αlmnulumun, (6.14)

where each node ui denotes the ith element of the displacement vector and is 2π periodic in

dimensionless time τ. Thus, the temporal behavior of each term is known a priori to be of

the form

fNL(τ) = A1 cos(τ) + A3 cos(3τ) + B1 sin(τ) + B3 sin(3τ) (6.15)

as a result of trigonometric identities. This equation is linear in the four unknown ampli-

tude vectors A1,A3,B1,B3. The first complex Fourier coefficient is determined from the

expression

c1 = (A1 − iB1)/2. (6.16)

Thus, it remains only to compute the vectors A1 and B1. The unknown amplitude vectors

are determined by evaluating the nonlinear force vector at four distinct times to obtain a

consistent set of equations. Strategically chosen times τi = [0, π/2, π/3, π/6] reduce the

complexity of the resulting expressions. The system of equations obtained using these τi is

given by 

I I 0 0

0 0 I −I

cos(π/3)I −I sin(π/3)I 0

cos(π/6)I 0 sin(π/6)I −I





A1

A3

B1

B3


=



fNL(0)

fNL(π/2)

fNL(π/3)

fNL(π/6)


, (6.17)

where I denotes the N × N identity matrix and 0 denotes the N × N zero matrix, where N

is the total number of degrees of freedom in the system.

The unique solution to this linear system of equations provides the desired c1 coeffi-

cient. The solution for A1 and B1 is

A1 = fa −
1
√

3
fb, B1 = fb −

1
√

3
fa, (6.18)

where the substitutions fa = fNL(0)+fNL(π/3) and fb = fNL(π/2)+fNL(π/6) have been made.

This enhanced formulation dramatically increases the computation speed by reducing the
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number of fNL evaluations to an absolute minimum of four.

6.2.4 Shift sensitivity analysis

Recall that the systems considered all contain cubic nonlinearities or exhibit one after

a Taylor expansion. Recall also that O(ε0) Bloch wave solutions take the form u(0) =

Aφ/2 exp(−iτ) + c.c.. Since the nonlinear force term has been defined as the cubic contri-

bution of a general nonlinear force function in Eq. (6.5d), it is possible to factor out A3 from

each element of c1 without loss of generality (see Eq. (6.14)). In doing so, the nonlinear

dispersion corrections may be computed using the expression

ω1, j = Kω(µ)A2, Kω ≡
φH

j c1

ω0, jφH
j Mφ j

(6.19)

where we term Kω is termed the shift sensitivity, and redefine c1 such that it is no longer

parametrized by A. The shift sensitivity describes the quantitative and qualitative nature of

the dispersion shifts for a given nonlinearity, independent of wave mode amplitude. Large

Kω are found for systems where large frequency shifts occur for relatively small amplitudes

and are desirable for designing tunable systems which respond to signal gain. Softening

nonlinearities shift the dispersion curves downward in frequency, implying Kω < 0, while

hardening nonlinearities shift the dispersion curves upward, implying Kω > 0, for a given

wave vector. Using Eq. (2.36) and the sensitivity Kω, the updated dispersion relation is

given by

ω j(µ) = ω0, j(µ) + εA2Kω(µ) + O(ε2). (6.20)

Note that a group velocity calculation based on Eq. (6.20) yields a correction to the group

velocity,

cg = ∇µω0, j + εA2(∇µKω) + O(ε2) = c(0)
g + εc(1)

g + O(ε2), (6.21)

where ∇µ denotes a gradient with respect to the components of the wave vector, c(0)
g denotes

the group velocity of the linear system, and c(1)
g = A2∇µKω denotes the group velocity

correction.
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6.3 Strain-induced dispersion shift in 1D layered systems
6.3.1 Model description

The bi-layer structure of Fig. 6.2 provides a straightforward context for exploring the man-

ner in which topological changes can enhance advantageous behavior present in nonlinear

band structures. In this example, material A includes a cubic nonlinearity in its stress-strain

relationship, while material B includes only a linear term. The topology of this 1D system

is defined by the length fraction a/d for a given unit cell length d. We consider, for material

Figure 6.2: Unit cell p for a bi-layer system

A, a hardening-type nonlinearity previously described, while material B is governed by a

linear stress-strain constitutive relationship. Analytical solutions for the dispersion relation

of a linear bi-layer system are widely available and can be expressed as [99, 100, 112],

cos(µ1d) = cos
(
ωa
cA

)
cos

(
ωb
cB

)
−

1
2

(ZA

ZB
+

ZB

ZA

)
sin

(
ωa
cA

)
sin

(
ωb
cB

)
, (6.22)

where c j =
√

E1 j/ρ j denotes the phase speeds in a homogeneous material, and the impe-

dance for a layer is given by Z j =
√

E1 jρ j with j being either A or B. Equation (6.22)

indicates that band gaps arising in the linear layered system derive from an impedance

mismatch caused by stiffness and density contrast at the material interface. The influence

of stiffness contrast on the shift sensitivity parameter Kω is considered next to identify

configurations exhibiting optimized band gap width and frequency shifts.
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6.3.2 Parametric analysis of dispersion shifts

Dispersion shifts for layered structures generally fall into two categories: individual dis-

persion branch shifts and band gap width shifts. Group velocity shifts are arguably an

additional category; however, large dispersion branch shifts generally imply large group

velocity shifts to some extent. Figure 6.3 illustrates the some effects that “small” and

“large” shifts may have on dispersion. The middle figure, for example, illustrates that large

acoustic branch shifts maintaining original band gap width may be possible. In contrast,

large dispersion shifts to the acoustic branch combined with small optical branch shifts

might result in band gap closure.

Figure 6.3: Optimizing 1D layered structures may achieve large shifts to individual dis-
persion branches (middle) and also to band gap widths (right). Dotted lines indicate a
low-amplitude (linear) system, while solid lines indicate the nonlinearly shifted dispersion
relation.

As an initial investigation into topology optimization of nonlinear layered systems, the

length fraction a/d and linear stiffness ratio E1B/E1A are varied to determine their effects on

dispersion. Consideration is given to metrics related to the first band gap. In particular, ∆ω1

and ∆ω2 denote the frequency shift for the first and second dispersion branches evaluated

at the edge of the Brillouin zone (µ1 = π). The domain for the bi-layer rod is discretized

into 200 linear Lagrange finite elements to obtain fine resolution for small layer fractions

a/d. The system parameters used in Ch. 5 are chosen for comparison purposes, which also

contains an account of the finite-element discretization procedure.
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(a) First branch shift, ∆ω1(π) (b) Second branch shift, ∆ω2(π)

Figure 6.4: Frequency shift maps evaluated at the edge of the Brillouin zone for a bi-layer
unit cell (ε = 0.1). White lines indicate the locus of maximum shift for a given linear
modulus or layer thickness.

Figure 6.4a depicts the computed frequency shift of the acoustic branch ∆ω1 ∝ Kω(π).

The maximum acoustic branch shift for a given material stiffness ratio, occurs in nearly all

cases for nonlinear length fractions a/d � 0.5, the case considered in Ref. [62]. The white

line indicating the locus of maximum frequency shift tends towards a length fraction of

approximately 3% at high stiffness ratios. Figure 6.4b, on the other hand, reveals that max-

imum corrections to the second dispersion branch ∆ω2 appear for larger length fractions

a/d ≈ 0.35. Therefore, the length fraction corresponding to a maximum first band gap

width lies somewhere between the two optimum shift values for any given stiffness ratio.

Figure 6.5 further details these results by considering a cross-section S 1 of the frequency

shift maps taken at E1B/E1A = 4. Figure 6.5a depicts the frequency shifts to the first and

second dispersion branches. The maximum shift to the acoustic branch occurs at a layer

thickness of approximately 12% in this case.

The second dispersion branch, in contrast, does not exhibit a discernible optimum shift

value. Instead, the correction ∆ω2 increases towards an asymptote representing the shift

expected for a continuous system (a/d = 1.0), reaching a slight maximum value near a/d =

0.9. A perturbation calculation based on a continuous, homogeneous system gives the
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Figure 6.5: Cross-sections of the frequency shift maps shown in Fig. 6.4a and 6.4b evalu-
ated at E1B/E1A = 4. The gap width for low- and high-amplitude systems are shown in Fig.
6.5b with dashed and solid lines, respectively, to illustrate the effect of the nonlinearity on
the band gap width at this cross-section.

value of this asymptote (details in Appendix C). Indeed, an examination of the frequency

shift map in Fig. 6.4b shows that at stiffness ratios E1B/E1A . 7, a clear maxima is not

discernible.

A relatively sharp transition between small and large frequency shifts as the length

fraction increases is noted for the second dispersion branch that may be advantageous in

nonlinear acoustic switches, diodes, and superprism crystals [76]. Figure 6.5b depicts how

shifts to the first and second dispersion branches combine to vary the band gap width. The

maximum gap width for a bi-layered system using these materials occurs at a/d ≈ 0.30.

These results indicate that, contrary to what might be expected, less nonlinear material (i.e.,

small a/d nonlinear layer fractions) corresponds to larger shifts for this example case, and

highlights the importance of systematic topology optimization and design. We note that
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the combined effect of a large Kω for the acoustic branch and a small Kω for the optical

branch (evaluated at the band edge) may result in a complete closure of the first band gap

at large amplitudes for hardening nonlinearities, or a significant size increase for softening

nonlinearities.

Figure 6.6 depicts the resulting dispersion diagram for a system with a/d = 0.05 and

E1B/E1A = 20. Several important features on this nonlinear dispersion diagram may influ-

ence the design of nonlinear phononic crystals.

1. The band gap width of the nonlinear system decreases with amplitude due to a hard-

ening nonlinearity. The change in band gap width is dominated by ∆ω1 since ∆ω2 is

negligible (small Kω). Operation at frequencies above 10 rad s−1, for low amplitudes,

results in complete attenuation. A slight amplitude increase shifts the dispersion

curve upward, allowing unattenuated wave propagation.

2. Frequency upshifts are greatest near the edge of the Brillouin zone where the group

velocity is zero. Similar results have been demonstrated by the photonic crystal com-

munity for Kerr nonlinear electromagnetic materials [91, 76].

3. The group (and phase) velocity for wave numbers µ1 < π are also significantly

shifted; in fact, at greater amplitudes the material appears less dispersive because

there exist a greater range of wave numbers with the same phase speed. This concept

may be important in realizing soliton solutions and mitigating unwanted dispersion.

These features are explored for use in an amplitude-tunable filter next.

6.3.3 Application: Amplitude-tunable filter

A time-domain simulation elucidates how nonlinear layered systems behave as simple tun-

able filters. We consider a finite-element model of a bi-layered system composed of 80

elements per unit cell with material properties ρA = ρB = 1, E1A = 1, E1B = 20, and Γx = 1.

A length fraction a/d = 0.05 achieves a large acoustic branch shift (see Fig. 6.4a). A
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harmonic stress σxx(0, t) = σ0 cos(ωt) at the left boundary excites Bloch wave propagation

through the system. The right boundary is located sufficiently far from the excitation so

that no reflections are produced.
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Figure 6.6: Dispersion diagram (a/d = 0.05 and E1B/E1A = 20) for the simulated system
evaluated for low- and high-amplitude excitations. The marker (◦) shows simulation results
obtained via 2D-FFT of system transient response after a finite-element simulation.

Figure 6.6 depicts dispersion diagrams for low (dashed) and high (solid) amplitude ex-

citations. The combination of amplitude (σ0) and nonlinearity (Γx) considered yields a shift

to the acoustic branch that is on the order of the first band gap width. Indeed, increasing

the propagation amplitude would close this band gap entirely. This effect allows the first

band gap to operate as an amplitude-dependent filter or switch that permits propagation at

certain frequencies only for high amplitudes. The excitation frequency ω = 11.0 rad s−1

falls within the band gap for an essentially linear system (low-amplitude excitation); in

contrast, ω = 11.0 rad s−1 falls well within the pass band for a weakly nonlinear system

(high-amplitude). Two simulations are performed: the first at a low-amplitude excitation

where the propagation is expected to decay exponentially, and a second at high-amplitude

excitation where propagation is expected.
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Figure 6.7: Normalized average power distributions for low- and high-amplitude excita-
tions. Evanescent decay of power in space is observed, as expected, for the low-amplitude
system.

0 50 100 150 200

10
−4

10
−2

10
0

Frequency [rad/s]

N
or

m
al

iz
ed

 R
es

po
ns

e

 

 
High−amplitude

Low−amplitude

Input
frequency

ω

3ω
5ω

7ω 9ω

(a) Displacement FFT

Figure 6.8: Displacement signal frequency response in the 10th unit cell. The low
amplitude system exhibits a response nearly two orders of magnitude less than the high-
amplitude system. The frequency content of the low-amplitude response is distributed
throughout the pass bands of the linear system. Super-harmonics of the high-amplitude
response are dominant in the response.

A two-dimensional fast Fourier transform provides frequency-domain information from

the simulation data that corresponds directly to the dispersion diagram, and facilitates a

one-to-one comparison between the predicted dispersion relationship and the numerical

simulation. The marker in Fig. 6.6 resulting from the 2D-FFT shows that the pair ω =
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11.0 rad s−1, µ1 ≈ 2.5 dominates the signal content of the forced response simulation, in

agreement with the theoretical dispersion relation.

Figure 6.7 further elucidates the qualitative disparity between the two simulations by

considering the distribution of power Π throughout the domain (only the first 10 unit cells

are shown). Power distributions are normalized to the highest power Πmax occurring to

highlight the spatial distributions. The power distribution for the low-amplitude simulation

(top) decays quickly in space, while for the high-amplitude excitation (bottom) power is

evenly distributed through the system. Normalized fast Fourier transforms at the end of

the 10th unit cell compare the two signals. Nearly all of the frequency content of the low-

amplitude signal is due to wave transients with frequency content located within the first

pass band (Fig. 6.6). In contrast, the high-amplitude signal contains a dominant frequency

at ω = 11.0 rad s−1, as well as small third harmonic and sum-and-difference frequencies

due to the cubic nonlinearity. Thus, the nonlinearity provides an amplitude-tunable filtering

mechanism.

6.4 Analysis and optimization of 2D plane stress systems

The results of Sec. 6.3 demonstrate that multilayer materials exhibit optimum configura-

tions with respect to shift sensitivity and band gap tunability. Next, we investigate optimal

configurations of 2D phononic crystals constructed with a nonlinear matrix material. The

arrangement of the nonlinear material is optimized in terms of band gap width and non-

linear shifts through both parametric analysis and topology optimization. The selected

optimizer is a genetic algorithm that explores a design space defined by a unit cell Ω of the

2D periodic structure with fixed dimensions.

6.4.1 Model description

Figure 6.9 depicts the system under consideration. The material is of infinite extent and is

constructed of a periodic arrangement of arbitrarily distributed materials A and B. Figure
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6.9 arbitrarily depicts inclusions ΩB inserted into a matrix of ΩA; equally valid is a depic-

tion of material A inclusions in a matrix of material B. Moreover, the distribution may not

necessarily resemble a matrix/inclusion at all. The domain Ω is defined as the union of

Figure 6.9: Schematic depiction of a periodic material constructed of two phases labeled
A and B.

simply-connected domains Ω
(i)
A and Ω

(i)
B where the superscript (i) emphasizes that the sys-

tem is not restrained to single inclusion type systems. The unit cell domain Ω is subdivided

into a number of finite elements such that Ω =
⋃

(e) Ω(e) as shown in Fig. 6.10. Each element

comprises a sub-domain which takes on a binary value of 0 or 1 corresponding to material

A (ΩA, nonlinear) or material B (ΩB, linear), respectively. Each sub-domain is considered

a design variable, referenced by gi j with (i, j) = 1..48 for a total of 2(48×48) = 2.8e+14

potential design combinations.

Application of a 1/8 symmetry constraint eliminates ambiguity in the design space due

to translational-invariance. Moreover, 1/8 symmetry eliminates designs for which partial

band gaps are preferentially larger in either the e1 or e2 directions [105, 106]. This reduces

the design space from 2(48×48) to 2300 = 2e+9. It is more convenient to index the domains

in a linear fashion whereby gi j is instead referenced with gi, i = 1..300. The numbering

scheme indexes elements from left to right, increasing from bottom to top as shown in Fig.
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Figure 6.10: Structured unit cell mesh and numbering scheme for design variables gi j

6.4.2 Analysis of strain-induced dispersion shifts

A specific subset of the possible designs informed by the results of Sec. 6.3 are considered

next. Figure 6.4.2 depicts a prototypical unit cell (enclosed with dashed lines) with dimen-

sions dx and dy describing the width and height. ΓXM symmetry calls for a square unit cell

with a = b and d = dx = dy such that a1 = a2. White material represents a nonlinear matrix

(Material A) within which stiffer inclusions (Material B, black) are embedded. The white

sections are termed nonlinear ligaments because their purpose is to nonlinearly couple the

motion of adjacent inclusions.

Recall that 1D layered systems exhibit sensitive tunability and large dispersion shifts

when nonlinear material are

1. restricted to thin layers, and

2. compliant relative to inclusions.

These qualities eliminate some common phononic crystal structures, e.g. air/silicon, as po-

tential design options. Indeed, nonlinear dispersion analysis of a similar two-dimensional
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Figure 6.11: A specific subset of important unit cell designs are characterized by nonlinear
ligament widths a and b. The subset considers unit cells with 1/8 symmetry as indicated by
the red line.

structure confirms that the combination of thin, compliant1 layers produces Bloch wave

modes with localized high strain regions. An example unit cell is highlighted in Fig. 6.4.2.

Figure 6.4.2 graphically depicts the dilitational strain field ε(x, y) = εxxe1+εyye2 produced in

a unit cell for a Bloch wave mode on the ΓX portion of the acoustic dispersion surface with

an approximate wavelength 3d-4d. Strain-localizations enter the nonlinear force vector fNL

through a few large entries fNL
i in the nonlinear force vector acting on nodes in the liga-

ment, rather than the cumulative effect of many smaller contributions (as in a completely

homogeneous material).

The specific relationship between ligament geometry and associated dispersion shifts

is quite complex. The following analysis interrogates the effects of ligament width and

stiffness contrast on group velocity and band gap width through systematic parameter vari-

ations. Table 2 contains the material properties used for the following analysis. Shear

stiffness nonlinearities Γxy are assumed negligible.

1Compliance is described here as a property of linear systems, since for large strains a hardening material
may not be compliant.

143



Figure 6.12: Small nonlinear ligaments result in high-strain areas localized in the nonlin-
ear ligament sections. Dashed lines indicate boundaries of rigid inclusions. These high-
strain Bloch wave modes are often found in the acoustic band.

Table 2: Material properties
E1 Γx Γy Γxy ρ ν h

Material A 1.0 4.0 4.0 0 1.00 0.34 0.01
Material B {5.0, 10.0, 20.0, 40.0} 0 0 0 1.00 0.34 0.01

The prototypical unit cell considered has dimensions of dx = dy = 1.0, thickness h, and

is subdivided into 48x48=2304 linear Lagrange elements Ω(e). Dispersion computations

use a strain-normalization scheme with strain amplitude e0 = max(εxx, εyy, εxy) = 0.1 as

detailed in Sec. A. Nonlinear ligament thickness is increased from a = 0 (100% Material

B) to a = d (100% Material A) for various material stiffness contrasts.

Figure 6.13 and 6.14 depict the variation in group velocity and band gap width as a

function of layer fraction a/d and material stiffness contrasts. Figures 6.13a and 6.13b dis-

play group velocity shifts evaluated on the acoustic dispersion surface at µ = [π/6, 0]. The

transverse acoustic branch experiences no nonlinear shift because nonlinear shear moduli

Γxy are zero. Low stiffness contrasts (curve A) result in a maximum group velocity shift

for layer fractions of a/d = 1 (homogeneous nonlinear material), with a small local maxi-

mum appearing near a/d = 0.25. As the stiffness contrast increases (curves B–D), a global

maximum appears where thin nonlinear ligaments (a/d = 0.18) produce larger c(1)
g shifts

than a purely homogeneous material. Increasing material contrasts tend to push the local
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maximum towards smaller layer fractions, as was seen in the bi-layer system.
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Figure 6.13: (a) Absolute group velocity shift and (b) relative group velocity shifts for the
longitudinal acoustic mode along the ΓX-direction. Curves A–D show results for material
stiffness ratios E1B/E1A of 5 (A), 10 (B), 20 (C), and 40 (D).

We note that the linear group velocity c(0)
g varies with topology because the physical

system is changing. Thus, the group velocity shift c(1)
g quantified relative to the linear

group velocity provides another metric for defining optimal designs. Figure 6.13b depicts

the relative group velocity shift defined by cgr = |c(1)
g |/|c(0)

g | such that cg = c(0)
g (1 + cgr).

All material combinations converge to a single value (0.15) as the layer fraction increases

toward a homogeneous nonlinear material.

This result can be validated by considering Eq. (C.12) of Appendix C, repeated here

with Γx for convenience with the substitution ω(0) = cµ for phase speed c.

ω = cµ
(
1 +

3Γx

8E1
ε2

0

)
. (6.23)

As the homogeneous system exhibits no dispersion, the group velocity and phase velocity

are identical such that c(0)
g = c. Therefore, the relative group velocity is easily obtained

from the group velocity cg = dω/dµ. This ratio is precisely

chomog.
gr =

3Γx

8E1
ε2

0 . (6.24)

The relative group velocity shift is chomog.
gr = 0.15 when evaluated with the system param-

eters provided in Table 2 and ε0 = 0.1. Thus, the relative group velocity shift calculated
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using a discrete wave-based perturbation approach in two dimensions is validated by a

perturbation analysis for the corresponding continuous system.

Figures 6.14a and 6.14b reveal that near-optimal configurations that achieve complete

band gaps follow similar trends. Complete band gaps do not exist for a/d > 0.5. The first

complete band gap is located between the 3rd and 4th dispersion branches. The width of

the band gap is given as

∆ωi ≡ min(ωi+1) −max(ωi) = µ ∈ ΓXM, (6.25)

while band gap shifts are defined as the difference between the linear and nonlinear band

gap widths

Band gap shift ≡ |∆ω(1)
i − ∆ω(0)

i |. (6.26)

The hardening nonlinearity tends to shift the third branch more than the 4th branch for

optimal configurations, resulting in a net decrease in band gap width. Similarly, a softening

nonlinearity increases the band gap by down-shifting the 3rd dispersion branch. Black lines

in figure 6.14a show results for a hardening nonlinearity, while the low-amplitude (linear)

systems are shown with nearby gray lines for comparison.
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Figure 6.14: Complete band gap widths for material systems A–C are shown in 6.14a
where black lines indicate the band gap width of the nonlinear system and nearby gray
lines indicate the width of the corresponding linear system. The change in complete band
gap width is shown in 6.14b, corresponding to the difference between nonlinear and linear
band gaps.
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Some material/geometry combinations may be effectively used to close the band gap at

high amplitude. For instance, material system A corresponding to a geometry of a/d = 0.16

tends to exhibit a small band gap ∆ω3 ≈ 0.3 rad/s. For larger amplitudes, this band gap

closes due to the frequency shift. The magnitude of this band gap shift is shown in Fig.

6.14b. Indeed, as the band gap shift is greater than the band gap width, the band gap closes.

Both small layer fractions and high material contrasts tend to increase the band gap shift.

As in one-dimension, the maximum band gap width and maximum band gap shift for

a given material system do not appear at the same layer fraction. However, both maxima

appear for small layer fractions and thus this may be used to guide design of systems which

are sensitive to Bloch wave amplitude. While the heuristic design utilized for parametric

analysis produced simple configurations, the design space was restricted to those systems

corresponding to the predefined geometry defined by the ligament width a. This constraint

is removed in the following section whereby the selected optimizer assigns material prop-

erties to each of the elements in the considered domain.

6.4.3 Genetic algorithm optimization for tuning dispersion shifts

We seek to simultaneously optimize low-frequency band gap width and band gap shift

(similar to Figs. 6.14). A genetic algorithm implementation offers a convenient and viable

solution for strategically assigning material to each of the element domains within the 1/8

symmetry constraint Ω(e) defined by g =
⋃

gi. Introduce a single aggregate objective

function (fitness function) defined according to

F(g) = α1F1(g) + α2F2(g), (6.27)

where F1(g) is a metric on the band gap width and F2(g) is a metric on the band gap

shift. The linear system band gap width appearing between branches 3 and 4 is calculated

according to

F1(g) = ∆ω(0)
3 (µ1, µ2), (µ1, µ2) ∈ ΓXM, (6.28)
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while the corresponding nonlinear band gap shift is obtained through the expression

F2(g) =
∣∣∣∆ω3(µ1, µ2) − ∆ω(0)

3 (µ1, µ2)
∣∣∣, (µ1, µ2) ∈ ΓXM, (6.29)

where the dispersion relation is evaluated along the first Brillouin zone contour ΓXM. The

absolute value signs for F2(g) ensure that shifts which both open and close low-amplitude

band gaps are equally awarded. Since almost any randomly generated design will not

exhibit a band gap, the coefficients α1 and α2 are defined piecewise according to whether

or not a band gap exists, similar to [106].

α1 = 10e4, α2 = 10e3 if F1(g) > 0 (band gap exists)

α1 = 1, α2 = 0 if F1(g) ≤ 0 (no band gap)
. (6.30)

This fitness function promotes individuals which exhibit large band gaps and, to a lesser

extent, those which exhibit large band gap shifts. The piecewise jump in the α1 function

ensures that individuals exhibiting band gaps are always selected over those individuals

which exhibit no band gap. Until a configuration exhibiting a band gap is reached, the band

gap shift function F2 has no meaning, and so α2 is set to zero for configurations with no

band gap. The optimization problem for simultaneously maximizing band gap width and

shift is expressed as

max
g

F(g) subject to: g ∈ Ω̃, (6.31)

where Ω̃ denotes the collection of sub-domains g within the 1/8 symmetry constraint. A

priori knowledge suggests choosing a high contrast stiffness ratio E1B/E1A = 20 for the

analysis.

The algorithm begins by generating an initial population of 20 individuals. A uniform,

random distribution of individual sequences (with all elements of g taking either 0, or 1)

ensures that subsequent evolutionary iterations are not biased towards any particular design.

Each individual of the population is evaluated according to the fitness function; individuals

with greater fitness are selected to move on to the next generation (iteration), while those

with lower fitness scores are discarded. New individuals enter into the population through
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both mutation and crossover. During mutation, small modifications (bit-flips from 0 to

1, or 1 to 0) to existing individuals are introduced through random selection. Crossover

individuals spawn from combinations of two- or more parents. This implementation uses

a single-point crossover scheme whereby two parents swap a randomly selected portion of

their genes (sub-domains).

The genetic algorithm terminates when the change in objective function is less than

1e-6 (about 1500 iterations). Figure 6.15a depicts the final design surrounded by partial

neighbor unit cells. The design consists of a square inclusion of rigid material surrounded

by a thin nonlinear ligament of width a/d = 0.125. In contrast to the simple designs

presented earlier, the optimized configurations contain rigid beams protruding from the

corners of the unit cell. The appearance of these corner features may have been predicted,

since previous (gradient-based) studies have shown that corner features tend to distinguish

optimal designs from sub-optimal designs in linear band gap optimization problems [104].

The dispersion relation evaluated along the first Brillouin zone contour is shown in Fig.

(a) Unit cell before processing (b) Unit cell after processing

Figure 6.15: Final unit cell design (enclosed by dashed line) surrounded by partial neigh-
boring cells. (a) Depicts the raw output from the genetic algorithm after 1500 iterations,
while (b) depicts a processed version amenable to fabrication. White regions correspond to
nonlinear material A, while black regions correspond to material B.
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6.16. Points P3 and P4 bound the complete band gap of the nonlinear system with width

∆ω3 = 3.1906 rad s−1. The band gap shift (0.43 rad s−1) results from nonlinear shifts at

both of points P3 and P4. However, the branch shift may be roughly approximated by the

difference between frequencies at P2 and P3.

Practical implementation of the optimal design may be effected through slight mod-

ification of the design produced by the genetic algorithm. Figure 6.15b depicts one such

design whereby a majority image filter has been applied. The resulting design has a slightly

smaller band gap width at ∆3 = 3.0464 rad s−1, but a larger band gap shift (0.44 rad s−1).

The modified design retains longitudinal and transverse stiffness at the inclusion corners

and exhibits no qualitative difference in dispersion band structure.
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Figure 6.16: Dispersion diagram for optimized unit cell
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6.4.4 Discussion

An understanding of wave modes which exhibit maximum shifts may be used to speed up

computation times by reducing the number of wave vectors evaluations. Indeed, referenc-

ing Figs. 6.14a and 6.14b, one finds that the optimized unit cell has increased the band

gap width at some expense of band gap shift. This is an expected outcome since the sin-

gle aggregate objective function only distinguishes maximum function values based on the

assigned weight coefficients α1 and α2.

An examination of the strain fields for Bloch wave modes at points P1, P3 and P4 pro-

vides some intuition about where and why minimum and maximum shifts occur. The O(ε0)

strain fields εxx(x, y), εyy(x, y), and εxy(x, y) evaluated at these points are shown in Fig. 6.17.

Points P1 and P4 exhibit negligible shifts relative to the shift at point P3. The εxx strain

field at point P3 is much stronger, relative to points P1 and P4, while the εyy components

are approximately the same order of magnitude.

This localized tension and compression in the nonlinear ligaments is responsible for

producing large stresses due to the Γx coefficient. This results in an effective stiffness

increase, and therefore a shift in the dispersion curves. Similarly, points along the longitu-

dinal acoustic branch, labeled L.A., receive shifts which produce effective group velocity

variation. In contrast, points P1 and P4 exhibit greater shear strain εxy than the wave mode

at P3. As the nonlinear shear coefficient Γxy is zero, these modes exhibit no nonlinear shifts.

In the same vein, those modes along the transverse acoustic branch (labeled T.A.) also ex-

hibit no shift since they are in nearly pure shear. The reason for the rigid fingers protruding

from the corner of the cell is less apparent; one possible explanation is that they may tend

to compress/tension ligament material which would otherwise see less strain. An under-

standing of these Bloch wave mode features may assist in design strategies for nonlinear

phononic systems and metamaterials.
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Figure 6.17: Mode shape deformation and strain at P1, P3 (P2), and P4.

6.5 Conclusion

Nonlinear systems such as those examined herein exhibit amplitude-dependent dispersion

which introduces new design opportunities for tunable devices such as filters and waveg-

uides. A frequency shift sensitivity Kω quantifies the shift sensitivity for a particular con-

figuration by isolating system-dependencies from amplitude. The nonlinear force vector

presents the biggest technical hurdle because its functional time-dependence is required to

obtain c1. However, techniques such as the one presented herein offer simple solutions to
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this problem.

We have shown that highly tunable nonlinear systems may be realized by arranging

rigid inclusions in a compliant matrix of nonlinear material. In both 1D and 2D settings,

arrangements with thin nonlinear layers resulted in highly sensitive group velocity and

band gap width which may be practical in many applications (e.g., diodes, filters, and

waveguides). A genetic algorithm topology optimization routine confirms that such designs

are, indeed, optimal for achieving high sensitivity.

The genetic algorithm implemented herein tended toward a square inclusion with nom-

inal dimensions a/d = 0.125 and small fingers protruding from the corners. A heuristic

analysis of critical wave modes provides some insight into why some dispersion branch

points result in large shifts, while others result in no shift. It is shown that high strain re-

gions in the linear Bloch wave modes are evidence of such sensitivity, and may be used to

enhance design strategies for nonlinear phononic crystals and metamaterial devices.
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CHAPTER VII

DISPERSION ANALYSIS USING COMMERCIAL SOFTWARE

7.1 Overview

Wave propagation in continuous, periodic structures with weak nonlinearity is explored

using the perturbation described in Ch. 2. Appropriate application of Bloch theory to a

discrete and weakly nonlinear system results in an amplitude-dependent dispersion rela-

tionship. This chapter builds upon the perturbation framework by integrating commercial

FEA software, thereby facilitating analysis of geometrically-complex continuous systems

with weak nonlinearity. A scheme for evaluating the nonlinear force vector fNL is particu-

larly important in the process.

A periodic structure consists of a unit cell which repeats itself to form the entire struc-

ture. A number of interesting properties exhibited by periodic structures have been demon-

strated analytically and experimentally [113, 114]. The dispersion relation relating fre-

quency to the Bloch wave vector is of particular interest herein. An analysis of the dis-

persion relationship reveals pass bands, band gaps, phase velocities, and group velocities.

Nonlinearity is known to modify the dispersion relationship in ways that can be useful in

the design of materials or devices such as band gap-based diodes, switches, filters, and

wave guides.

A nonlinear periodic structure can support a variety of wave solutions depending on the

wave amplitude, magnitude, interaction of waves, and type of nonlinearity - for example

solitary wave solutions and discrete breathers [38, 48, 115, 45, 116, 44, 117]. The existence

of Bloch wave solutions for nonlinear, periodic materials and the effects of amplitude-

dependent dispersion are considered. An understanding of amplitude-dependent dispersion

enables tunable system design where propagation characteristics (directionality, intensity,
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etc.) vary with forcing amplitude. Two continuous nonlinear systems are investigated

herein as examples of the perturbation procedure.

The first system considered is the one-dimensional multilayer rod governed by a mate-

rial nonlinearity (the same type as in Ch. 5). This type of structure exhibits many of the

interesting properties of periodic structures, such as dispersion and band gaps, while being

sufficiently simple to analyze. The linear version of this system has received considerable

attention in the past [97, 52]. Dispersion in the multilayer rod with a nonlinear constitu-

tive stress-strain law was studied using an in-house FEA code and perturbation analysis in

[62]. Results from this study are utilized in assessing the validity of output obtained from

a commercial FEA package in calculating nonlinear dispersion relationships.

The second system considered is a two-dimensional membrane supported by periodi-

cally repeating supports. The supports provide a nonlinear restoring force to the membrane

and thus influence the dispersion relationship. This particular system is partly motivated by

the need to study the dynamic behavior of micro-machined ultrasonic capacitive transduc-

ers (CMUTs) [118]. CMUTs are essentially metallic membranes on flexible supports which

vibrate due to alternating currents, and thus generate ultrasonic waves [119]. In the sensing

mode, the pressure waves generate vibrations in the membrane which induces a measurable

change in capacitance. These micro electro-mechanical systems are used in various appli-

cations such as low-frequency sonar applications [120] and photo-acoustic imaging [118].

In most cases, CMUT elements are arranged in 1D or 2D periodic array arrangements. For

large membrane displacement, the dynamics of the CMUT element are nonlinear [121]. As

a first approximation, the CMUT can be considered as a two dimensional nonlinear peri-

odic structure with each element modeled as an elastic membrane supported by nonlinear

springs. The reduced system is discretized and the nonlinear dispersion diagram is obtained

using the perturbation procedure integrated with commercial FEA software.

This chapter is organized as follows: Sec. 7.2 describes the perturbation analysis and

a method for integrating the analysis into a commercial FEA software package. Analyses
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for the multilayer rod and periodically-supported membrane appear in Sec. B.1 and 7.4,

respectively. Results are presented and discussed to illustrate amplitude-dependent disper-

sion. Closing thoughts are presented in Sec. 7.5 along with suggestions for future research.

7.2 Theory and perturbation analysis integration
7.2.1 System model and dispersion analysis

The use of finite element discretization of continuous domains enables band gap analysis of

structures with complex geometry. The developments that follow assume a periodic elastic

structure whose dynamics are governed by Eq. (2.11) the conservation of momentum

∇ · σ + f = ρV
∂2u
∂t2 , (7.1)

where σ denotes the elastic stress tensor, ρV is the material density, u = u(r, t) is the dis-

placement field vector, and f denotes external body forces. The various approximations and

simplified structural models described in Ch. 2 are equally applicable to this development.

In particular, the rod and membrane structural model are used for examples in this chapter.

An elastic membrane supported by periodic elastic supports serves to illustrate the rel-

evant components of a nonlinear dispersion analysis. This system, illustrated in Fig. 7.1,

can be considered as a prototypical CMUT model. Weak nonlinearities may arise from

Figure 7.1: Depiction of a CMUT array. Pretensioned membranes are supported by elastic
boundaries.

the elastic support for large displacements. In this case, the equation of motion Eq (7.1)

reduces to the simple membrane equation.
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A nonlinear analysis of the continuous equations of motion is impractical in most sit-

uations; therefore, discretized equations of motion will be employed herein. Commercial

finite-element software implementations offer a convenient and powerful interface to ob-

tain mass and stiffness matrices for the discretized system, which are used in a subsequent

perturbation approach. What typical commercial packages do not provide is a means for

analyzing dispersion relations and extracting the nonlinear force vector.

Figure 7.2 outlines the typical procedure for evaluating approximate dispersion rela-

tionships for nonlinear systems. The governing PDE is first discretized. Then, after for-

mally applying a perturbation procedure (Sec. 2.4.1), the linear Bloch wave modes and

frequencies are obtained from the mass and stiffness matrices. The nonlinear force vector

appearing in the first order equation is then calculated for each wave mode (Sec. 7.2.2) and

used in the final calculation for the first-order accurate dispersion relationship.

Figure 7.2: Basic procedure for calculating dispersion relationships in nonlinear systems

Finite-element software is a particularly useful aid in Steps 1, 2, and 4, while other

computational software (e.g. MATLAB or custom C++) can handle the calculations for

Steps 3 and 5. Many finite-element software can also be used in Step 3 to calculate the

linear Bloch modes via frequency-domain analysis, but since the system matrices and Bloch

wave modes are required for Step 5, it is useful to perform these calculations in the same
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software so that the results are close at hand.

Full details of the perturbation approach to be presented next, as applied to discrete

systems are described in Ch. 2. The numerical implementation of the approach in full

generality follows. We assume that the governing equations contain nonlinear terms and

have been discretized such that the nonlinear system of equations may be expressed as Eq.

(2.16), repeated here for convenience

Mü + Ku + εfNL(u) = f int. (7.2)

The procedure for reducing the discrete equations of motion of the global system to those

describing a single unit cell is straight forward when terms in the nonlinear force vector

are known in closed-form. In this case, the first Fourier coefficient c1 can be analytically

obtained and the dispersion corrections immediately follow. Simple systems such as the

nonlinear diatomic spring-mass system admit tractable analytical expressions for fNL and

thus c1. However, for more complex systems such as those with inclusions, voids, nontriv-

ial geometry, or complex nonlinearities, hand calculations for explicit expressions become

impractical. Instead, numerical estimates of c1 can be obtained using commercial software

so that the complex design space of periodic materials can be investigated. In what fol-

lows, the general procedure for determining c1 via commercial software implementation is

described. The procedure is then applied to a practical and well-known example (the 1D

multilayer system), and finally to a periodic membrane with nonlinear elastic supports.

7.2.2 Nonlinear force vector evaluation

The first Fourier coefficients c1 must be obtained from knowledge of the time dependence

of fNL(u). In an analytical setting, the functional time-dependence is explicit and the co-

efficients may be obtained exactly. When analytical solutions are not practical, numerical

evaluation of the nonlinear force vector over a time range equal to one fundamental period

yields an approximate time-domain signal from which c1 may be obtained. In presenting

the procedure, we assume there are no constraints on the problem, the governing PDE is
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homogenous and contains no damping terms, and nonlinearity is only in the displacement

field variable u. Therefore, the boundary value problem consists only of the PDE and

associated boundary conditions.

Finite element software routines typically form a residual vector R(u, ü) that can be

decomposed into the equation system

R(u, ü) = Mü + Ku − fL − fNL = 0, (7.3)

where each of the vectors fL and fNL are functions of u. The load vector f = fL + fNL

is comprised of those terms in R(u, ü) which are not part of the mass or stiffness matrix.

These terms are typically only the applied external loads and any nonlinear terms that do

not “fit” into the standard matrix form.

Obtaining the nonlinear force vector numerically requires calculation of R for specific

displacement fields. Finite-element software packages can evaluate the residual vector nu-

merically by linearizing the system about a prescribed solution vector u0. The linearization

is done numerically with a first order Taylor series as

R(u, ü) ≈ R(u0, ü) + ∇uR(u0, ü)T(u − u0), (7.4)

where ∇u represents a gradient with respect to each dependent variable in the displacement

field vector u and the subscript (sys) is implied but removed for clarity.

The objective is to isolate the fNL term in Eq. (7.3) at subsequent instances in time for a

Bloch wave displacement fields u0. This is easily accomplished by setting the coefficients

of linear operators in the boundary value problem to zero. Then, the evaluated load vector

f(u0) contains only applied loads (which are zero in the homogeneous problem) and the

nonlinear terms fNL. A simple example of this process is presented in Appendix B.1 for a

single rod element subject to a nonlinear constitutive stress-strain law.

The first Fourier coefficient of fNL is obtained by choosing the linearization point u0 as

a Bloch wave mode φ j. The residual vector is evaluated over a number of equally spaced
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times τi in the range τ ∈ [0, 2π]. The information of how the nonlinear force vector varies

over a single period is stored in a matrix of force vectors in the form

FNL
j (τ) =

[
fNL(u0(0)

)
, fNL(u0(τ1)

)
, fNL(u0(τ2)

)
, . . . , fNL(u0(2π)

)]
. (7.5)

Each row in the force matrix FNL
j (τ) for the jth wave mode contains a time-series whose

Fourier series yields the corresponding term in the coefficient vector c1, j. The coefficient

vector for the jth mode is obtained via numerical integration of the Fourier integral

c1, j =
1

2π

∫ 2π

0
fNL(A,φ j(µ), τ)e−iτdτ

or via Fast Fourier Transform (FFT) routines. The resulting coefficient vector may be used

to compute the nonlinear correction term ω1 as in Eq. (2.36). The process is outlined for

the 1D multilayered system in the following section.

7.3 Example 1: One-dimensional multilayer system

The linear 1D multilayer system is one of the simplest examples of a continuous periodic

structure exhibiting dispersive wave propagation. Amplitude-dependence in the dispersion

relationship may arise if, in addition to periodicity, one of the layers is governed by a

nonlinear constitutive law. In this section, the basic process flow illustrated in Fig. 7.2 is

applied to a specific example with discussion centered around the general technique and

any difficulties that may arise. An implementation of the procedure using COMSOL as the

commercial FEA package is detailed in Appendix B.2.

Step 1: Model design The first major task in evaluating the nonlinear dispersion rela-

tionship for the multilayer system is to develop a time-dependent elasticity model. The

geometry of the model should consist of a single central unit cell surrounded by a single

neighbor to each side as in Fig. 2.5. In one dimension, this means three complete unit

cells should be drawn. The fact that internal forces on the neighbor unit cells are not in-

cluded does not impact the model negatively, as only the equations governing the central
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unit cell are ultimately considered. This example considers a central unit cell composed of

two layers, labeled A and B, that repeat periodically as shown in 7.3. Because we seek the

Figure 7.3: The jth unit cell in the multilayered system considered herein is composed of
two repeating layers.

dispersion relationship for free wave propagation, no external forces are applied and the

governing PDE is homogeneous. The constitutive stress-strain relationship for the material

in layer A contains a cubic nonlinearity such that

σxx = (E1,A + ΓAε
2
xx)εxx, (7.6)

where σxx is the stress as a function of strain εxx. The density of each layer is ρA = ρB =

1 kg m−1 and the elastic moduli are E1,A = 1 N m−2 and E1,B = 4 N m−2, respectively. The

nonlinear modulus for layer A is ΓA = 1 N m−2. The governing equations are given as

∂2u
∂t2 −

∂

∂x

[(
1 +

(
∂u
∂x

)2)∂u
∂x

]
= 0, 0 < x < a (7.7)

∂2u
∂t2 −

∂

∂x

(
4
∂u
∂x

)
= 0, a < x < b, (7.8)

where the position coordinate x is measured from the left endpoint of a given unit cell.

For this particular example, the boundary conditions should be homogeneous Neumann

or Dirichlet conditions at the endpoints x = 0 and x = d of the first and third unit cells,

respectively, to eliminate pre-stressed states. However, homogeneous boundary conditions

are not required, in general. The nonlinear membrane considered next, for example, may
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have a Neumann or Robin boundary condition on the interior or exterior boundaries to

represent grounded linear and nonlinear supports.

Step 2. Discretize domain A primary motivation for integrating the formally developed

perturbation procedure into a commercial FEA package is to automate discretization of

continuous systems so that optimization routines and nonlinear system design processes

can be effectively implemented. There is one constraining requirement: the meshes in

each unit cell must be identical in order to apply the Bloch theorem to the discrete system

properly. A unit cell of the multilayer system discretized into N elements is depicted in

Fig. 7.4. As indicated by the node numbering in the figure, the left-most node u1,p in a unit

cell is considered part of the pth unit cell, while the right-most node uN,p+1 is considered

part of the (p + 1)th unit cell1.

Figure 7.4: pth unit cell for a discretized multilayer system

Step 3: Obtain linear Bloch modes The most important step in obtaining the linear

Bloch modes from the finite-element model is to identify nodes belonging to each unit cell.

The nodal information is parsed to determine which unit cell each node belongs to. Once

a unit cell (left, center, or right for a 1D case) has been identified for each node, the nodes

must be sorted such that the nodes with identical local coordinates r (i.e., taken from a

similar reference point within a unit cell) can be arranged into a vector

u = [u−1,u0,u1]T (7.9)

1This sequential numbering scheme is not required in general. However, appropriate pre-processing must
identify boundary and interior nodes in any case.
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as in Eq. (2.14), where u−1,u0, and u1 denote DOFs in the left, center, and right unit cells,

respectively. This step is important so that the resulting mass and stiffness matrices may

easily be combined in such a way that an infinite system is represented by the mass and

wavenumber-reduced stiffness matrices (as in Eq. (2.25)).

Next, the global system matrices M and K must be obtained for the linear model (that

is, with nonlinear coefficients set to zero). A two-step matrix-partitioning process yields

the mass and stiffness matrices for the infinite system as illustrated in Fig. 7.5. Rectangular

submatrices of M and K that correspond to DOFs within the central unit cell are extracted.

These submatrices, in turn, can be partitioned into square matrices grouped by unit cell as

described in Sec. 2.4.1. For the 1D system, this means three square matrices are formed for

each of the three unit cells: K−1, K0, and K1 (and likewise for mass matrices). Application

of the Bloch theorem to these matrices results in a familiar eigenvalue problem from which

the linear Bloch wave modes may be obtained. For example, the stiffness matrix for the

infinite system in this example is represented by:

K = e−iµdK−1 + K0 + eiµdK1. (7.10)

Figure 7.5: Illustrating how mass and stiffness sub-matrices are identified when the nodes
are conveniently sorted in ascending order.

Step 4. Calculate nonlinear force vector Calculation of the nonlinear force vector fol-

lows directly from the procedure in Sec. 7.2.2. In order to evaluate the first Fourier co-

efficients c1, j for use in Eq. (2.36), the nonlinear force vector fNL(A,φ j(µ), τ) must be
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evaluated for each desired wave number µ ∈ [0, π] and wave mode over equally spaced

times τi ∈ [0, 2π].

The Bloch wave displacement field for the global system must be formed using Bloch’s

theorem and the linear Bloch wave modes. Then, the global nonlinear force vector corre-

sponding to all three unit cells can be calculated. This vector is given by

û(µ, τ) =
[
u−1,u0,u1

]Teiτ =
A
2

[
φ jeiµ,φ j,φ je−iµ

]T

eiτ. (7.11)

This vector should be passed as the linearization point u0 to the finite-element software of

choice as described previously. The nonlinear force vector is obtained by setting all linear

coefficients to zero so that the only remaining term in the residual vector is fNL. Repeated

application of this procedure yields the nonlinear force matrix FNL
j that may be numerically

integrated for each Fourier coefficient c1, j for the jth wave mode.

Step 5. Calculate dispersion calculation The final step in the process is to combine the

mass matrix, Bloch wave modes and frequencies, amplitude, and first Fourier coefficient

vectors as in Eq. (2.36) to obtain the first-order dispersion corrections. This straight-

forward calculation is appended to the linear dispersion relationship ω0 = ω0(µ) to obtain

the first-order accurate dispersion relationship ω(µ). The weakly nonlinear dispersion re-

lationship was calculated using an in-house finite-element code; details for the in-house

finite-element code can be found in Ch. 5.

Figure 7.6 illustrates the results of this calculation using (i) in-house finite-element dis-

cretization and evaluation code (black line), and (ii) commercial finite-element software

discretization and evaluation (square marker). Both formulations were run for three disper-

sion branches at 15 wavenumber points. At each wavenumber point, the nonlinear force

vector was calculated at 8 equally spaced τi for a total of 3x15x8=360 calls to the nonlinear

force assembly functions. The authors note that the level of temporal discretization depends

on the nature of the nonlinearity; for cubic nonlinearity considered herein, eight points pro-

vide sufficient resolution. This statement is supported by results generated from an in-house
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Figure 7.6: Linear (dotted) and nonlinear dispersion curves generated for the multilayer
rod using in-house code (solid) and commercial FEA-assisted code (squares). The abscissa
corresponds to a dimensionless Bloch wavenumber µ that has been nondimensionalized
using the unit cell length d.

code that uses a much finer temporal discretization (256 points per fundamental period).

Generally, however, the level of temporal discretization should be optimized to the specific

nonlinearity being addressed. Both the in-house code and commercially-assisted code pro-

duce identical results. This result validation provides motivation to consider geometrically-

complex systems where commercial finite-element routines are indispensable.
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7.4 Example 2: Membrane on periodic supports
7.4.1 Model description

A membrane supported by a periodic arrangements of support springs illustrates the ability

of the proposed analysis method to analyze complex meshes and geometry. Wave propaga-

tion through a periodically supported membrane also gives rise to more complex phenom-

ena, such as frequency-dependent directionality, because wave propagation is not restricted

to one dimension. Consider an elastic membrane under constant tension with the boundary

of the element on a flexible support as shown in Fig. 7.7. The membrane is homogeneous,

implying that the mass of the membrane per unit area (ρA) is constant. The tension per unit

length caused by stretching the membrane is the same at all points and in all directions and

is assumed to not change during the motion. Additionally, transverse deflection w(x, y, t)

of the membrane is small compared to the size of the membrane.

Figure 7.7: Periodically arrayed membrane elements under a constant tension and con-
nected to ground through a flexible support

The equation of motion solved by commercial software packages for the membrane is

ẅ = c2∇ · (∇w) + f0, (7.12)
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where w = w(x, y, t), c =
√

T0/ρ, T0 denotes the pretension per unit area, and f0 is an

applied force per unit area. The flexible support at the boundary of each unit cell can be

modeled as an external force applied to the system on the boundaries of the membrane

element [111], namely

f0 = ksu(x, y) + εΓsu3(x, y), ∀(x, y) ∈ ∂Ω, (7.13)

where ks denotes the equivalent linear stiffness, Γs denotes the equivalent cubic stiffness, ∂Ω

denotes element boundaries, and ε denotes a small parameter ensuring weak nonlinearity.

Free wave propagation is investigated by considering the dynamics of a single unit cell

from an infinite membrane. The open set of finite-difference equations are obtained by

discretizing Eqs. (7.12) in conjunction with (7.13) over a set of 9 unit cells as shown in

Fig. 2.5. The remainder of the problem formulation follows from Sec 2.4.1 from which

the linear Bloch wave modes and nonlinear dispersion diagrams may be obtained. A com-

prehensive write-up of a manual finite-element discretization and analysis of the nonlinear

elastically-supported membrane can be found in [111].

7.4.2 Linear system analysis and discretization

The nonlinear correction term ω1 in Eq. (2.36) depends on the linear Bloch wave modes

and frequencies. Therefore, a converged solution for the linear problem is paramount in the

accurate determination of the weakly nonlinear dispersion relationship. The present sec-

tion considers the flexible support stiffness to be governed by a linear force-displacement

relationship such that Γs = 0. Figure 7.8 illustrates a discretization of the 9-cell membrane

model using 56 elements per unit cell. It is imperative that the nodal points for each unit

cell correspond to the same local coordinates so that displacements in neighboring unit

cells are known through application of the Bloch theorem.

Convergence of the lowest two dispersion branches is typically the most important be-

cause a low-frequency band gap is always created by the flexible supports, while a second

complete band gap may emerge between the first and second branches for some system
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Figure 7.8: Meshing for a 9-cell assembly using 56 elements per unit cell. A critical aspect
of this discretization is the existence of identical meshes for each unit cell. Moreover, edge
mesh on adjacent unit cell sides are identical.

parameter choices. It was shown in [111] that, for a fixed geometry, the ratio of the lin-

ear support stiffness to the membrane pre-tension ks/T0 is a key parameter in the width

and number of band gaps appearing in the dispersion diagram. The parameters used for

the system considered next are ρA = 1.0 kg m−2, T0 = 1.0 N m−2, ks = 2.0 N m−3, and side

lengths a = b = 1.0 m.

The frequency corrections to the dispersion relationship of the nonlinear system pro-

vide an additional motivation for fine discretization levels. The order of the calculated

weakly nonlinear corrections should not be of the same order as the error in the linear

dispersion relationship. Figure 7.10 depicts the convergence of the first two dispersion

branches as the number of elements per unit cell Nel increases. Approximately 170 tri-

angular Lagrange elements per unit cell suffices to capture accurate low-frequency band

gaps appearing between the first and second dispersion branches. At the critical location

on the second branch (µ1 = π, µ2 = 0) that bounds any low-frequency band gaps which

may appear, the dispersion branches for 170 elements per unit cell are within 0.5% of the

values computed for 896 elements per unit cell; all other locations on the second branch

are within 2.0. We choose 170 elements per unit cell to facilitate computations. However,

higher-fidelity models should be used when appropriate.
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Figure 7.9: Discretization levels used in dispersion branch convergence study: (a) 26
elements per unit cell, (b) 56 elements per unit cell, and (c) 170 elements per unit cell.

X M
0

1

2

3

4

5

6

7

8

Wavenumber

F
re

qu
en

cy
 (

ra
d/

s)

 

 

ΓΓ

Figure 7.10: Convergence of the first two linear wave modes with increasing mesh density.
The linear dispersion curves shown were calculated using 26 elements (dotted), 56 elements
(dashed), and 170 elements (solid) per unit cell.

7.4.3 Nonlinear system analysis

Dispersion in the two-dimensional membrane on a nonlinear foundation is analyzed through

band diagrams which are now amplitude-dependent. The considered system is the same as

for the linear analysis, with the nonlinear stiffness parameter Γs = −0.2 N m−5. The non-

linear dimensionless parameter ε quantifies the magnitude of the nonlinearity. Following

[27], a characteristic length L0 = 1.0 m is chosen based on the unit cell dimensions so that
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the small parameter ε is identified as

ε ≡
ΓsL2

0

ks
.

Thus, for fixed unit cell dimensions, the ratio Γs/ks determines the magnitude of the system

nonlinearity. The system is considered to be weakly nonlinear when |ε| � 1. Time-domain

simulations in previous work have indicated that the predicted nonlinear dispersion rela-

tionships may be reasonably valid up to ε = 0.25 [62, 36]. The nonlinear dispersion band

diagram is obtained as detailed in Sec. 7.2.2. The band diagram is evaluated along the con-

tour of the first Brillouin zone [4, 52]. The nonlinear correction to the dispersion relation-

ship is sensitive to the Bloch wave mode, so a slight perturbation in the Brillouin contour

was introduced to avoid situations where repeated frequencies (eigenvalues) occurred, such

as when two dispersion branches converge.

Figure 7.11: Band diagram of membrane system with ks/T0 = 2.0 m−1 on nonlinear
supports at two different amplitudes. The dotted black line indicates the membrane on
linear supports. Nonlinear calculations are shown for amplitudes A = 2.0 (dashed) and
A = 4.0 (solid). The low-frequency band gap is highlighted for each of the different ampli-
tudes to illustrate the shift resulting from nonlinearity.
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Figure 7.11 depicts results from the nonlinear calculation for several dispersion branches.

The linear case is shown next to calculations at two different amplitudes for compari-

son. The system parameters are chosen such that ε = ΓsL2
0/ks = −0.1. The case con-

sidered assumes a soft nonlinear foundation which generates a downward shift of the

dispersion curves as the wave amplitude increases. This result is similar to that of the

amplitude-dependent dispersion predicted in soft nonlinear spring-mass models [63]. Band

gap shifts of this magnitude have been numerically verified in several previous publications

[3, 63, 62, 36]. Of important note is the shift in the low-frequency band gap whose width

is primarily governed by the elastic ground support. Due to the soft nonlinear foundation,

the low-frequency band gap is decreased by an increase in amplitude. This implies, for

example, that low-frequency wave propagation can be controlled with variation in wave

amplitude.

The results for a higher ks/T0 ratio are presented in Fig. 7.12. The system parameters

used are the same as before, except with ks = 10.0 N m−3 and Γs = −1.0 N m−5 such that

ks/T0 = 10.0 m−1 and ε = −0.1 as before. The higher ks/T0 ratio results in the creation

of a high-frequency band gap in the linear system between the first and second dispersion

branches. The shift in the low-frequency band gap is less sensitive to the nonlinearity,

whereas the high-frequency band gap exhibits a significant shift.

7.5 Conclusions

The amplitude-dependent dispersion relationship for continuous periodic systems with weak

nonlinearities provides the opportunity to design tunable structures. A closed-form rela-

tionship describing a correction to the dispersion relationship was presented that is valid for

1D, 2D, and 3D periodic systems after appropriate discretization. A method for integrating

the nonlinear dispersion analysis procedure with commercial finite-element software was

also presented. Commercial FEA software facilitates meshing and numerical evaluation of

the nonlinear force vector that is required to obtain nonlinear dispersion relationships. An
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Figure 7.12: Band diagram of membrane system with ks/T0 = 10.0 m−1 on nonlinear
supports at two different amplitudes. The dotted black line indicates the membrane on
linear supports. Nonlinear calculations are shown for amplitudes A = 2.0 (dashed) and
A = 4.0 (solid). The low- and high-frequency band gaps are highlighted for each of the
different amplitudes to illustrate the shift resulting from nonlinearity.

analysis of a multilayer system showed that the commercially integrated routine produced

results identical to an explicit in-house FEA code that has been validated by time-domain

simulations.

The analysis was extended to a structure composed of repeating membrane elements

supported by a nonlinear foundation. A triangular mesh was utilized in anticipation of ana-

lyzing periodic structures with more complex geometry (such as voids or inclusions). The

ability of the meshing software to produce identical meshes in each unit cell is necessary in

order to apply the Bloch theorem. The dispersion behavior is observed to be affected by the

ratio of support stiffness to membrane tension. With the nonlinear model and at low ks/T0

ratio, there exists a strong dependence of the low-frequency band gap on the wave ampli-

tude. But as the ratio increases, the band diagram modifies in two ways; the first being the

upward shift of the first mode depending on the support stiffness, and the second being the
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appearance of the band gap between the first and the second mode. For this case, i.e. high

ks/T0 ratio, the first mode does not appear to have significant dependence on the amplitude

but the band gap between the first and second mode appears to weaken with increase in

wave amplitude.

The ability to successfully analyze nonlinear dispersion through an integrated commer-

cial software environment enables exploration and optimization of geometrically-complex

structures. Since unit cell topology affects the Bloch wave modes in a periodic structure

(and thus the magnitude of the nonlinear correction), there may be optimal designs for pe-

riodic systems with weak nonlinearity. Investigation into topology design and optimization

is presented in Ch. 6.
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CHAPTER VIII

CONCLUDING REMARKS

8.1 Summary

The effect of finite-amplitude wave propagation in nonlinear periodic structures was an-

alyzed within the framework of dispersion band structures. Nonlinearities in stand-alone

nonlinear systems such as the classical Duffing oscillator are responsible for a variety dy-

namic effects not found in linear systems such as frequency conversion, harmonic gener-

ation, chaos, and amplitude-dependence. Engineered materials composed of periodically

repeating nonlinear elements exhibit nonlinear amplitude-tunable wave propagation char-

acteristics. Several analysis methods and techniques were presented as strategies for ana-

lyzing a variety of such systems.

Perturbation-based analysis methods applied to discretized unit cells lead to nonlinear

dispersion relation corrections. These first-order corrected dispersion relations described

amplitude-tunable qualities which are enhanced with nonlinearity such as pass and stop

bands, group velocity, and wave beaming. A new multiple time scales perturbation analysis

was presented which provides the additional generality needed for analyzing nonlinear

wave interactions that result from multi-harmonic excitation.

Analysis of discrete-parameter atomic systems in one- and two-dimensions connected

with cubically nonlinear spring elements demonstrated that the interaction of two waves

results in different amplitude and frequency-dependent dispersion branches for each wave.

This constrasts nonlinear dispersion relations derived from monochromatic excitation sig-

nals where only a single amplitude-dependent branch is present. A theoretical development

utilizing multiple time scales results in a set of evolution equations which are validated by

numerical simulation. For the specific case where the wavenumber and frequency ratios are
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both close to 1:3 as in the long wavelength limit, the evolution equations suggest that small

amplitude- and frequency-modulations may be present. In the case of two-dimensional

systems, it was shown that lattice anisotropy could be introduced by injecting a control

plane wave. The resulting lattice anistropy can be used to control wave directionality for

application in tunable-focus devices.

Experimental analysis of wave propagation in one-dimensional periodic systems re-

vealed an intimate connection between duffing oscillators and nonlinear dispersion fre-

quency shifts. This connection was analytically derived and experimentally demonstrated

through measurement of resonant frequency shifts. Resonant frequencies of finite-sized

systems surround a backbone curve which relates to dispersion frequency shifts.

The layered system was investigated as a first venture in applying the perturbation tools

in continuous systems. A comparison with an existing analysis quasilinear transfer matrix

analysis method suggested that the wave-based perturbation analysis methods presented

herein capture Bloch wave mode details that may be ignored otherwise. Detailed finite-

element time-domain simulations validated the predicted dispersion relation. It was discov-

ered that thin, compliant layers of nonlinear material in one-dimensional systems resulted

in sensitive dispersion shifts. Optimization of two-dimensional arrays was presented using

plane-stress models discretized using bilinear Lagrange elements. Parametric analyses and

a genetic algorithm implementation identified topologies that produce large increases in

complete bandgap width or group velocity variation. Analysis of Bloch wavemodes which

produce large nonlinear frequency shifts reveals that the largest contributions to the fre-

quency shift are primarily produced from localized strains in compliant, nonlinear matrix

material.

The dispersion analysis methods were integrated with commercial finite-element anal-

ysis software to expedite nonlinear analysis of geometrically-complex unit cells. A simple

continuous multilayer system illustrates the principle aspects of the procedure. A periodic
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structure formed by membrane elements on nonlinear elastic supports was used to demon-

strate the versatility of the procedure. Weakly nonlinear band diagrams are generated in

which amplitude-dependent bandgaps and group velocities are identified. The nonlinear

dispersion analysis procedure described, coupled with commercial FEA software, should

facilitate the study of wave propagation in a wide-variety of geometrically-complex, non-

linear periodic structures.

8.2 Research Contributions

The research presented in this dissertation provides the following original contributions:

• A general multiple scales analysis method capable of assessing amplitude dependent

dispersion variation from nonlinear wave interactions;

• Dynamic lattice anistropy introduction through nonlinear wave interactions, as ap-

plied to tunable-focus and steerable wave beam applications;

• Developed, compared, and contrasted two approaches for calculating intensity-de-

pendent dispersion in one-dimensional nonlinear phononic crystals;

• Connected backbone curves in nonlinear resonant oscillator systems to dispersion

relations in ideal periodic counterparts;

• Experimental validation of dispersion relation for a nonlinear periodic system;

• A general finite-element framework for analyzing Bloch wave propagation in contin-

uous media with a nonlinear constitutive law;

• Identified conditions where frequency shifts are sensitive to amplitude changes, and

a method for maximizing these effects; and,

• Efficient and general computational analysis tools for assessing nonlinear dispersion

in complex continuous systems.
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8.3 Recommendations for future work

Although the research presented here offers significant advancements in nonlinear disper-

sion analysis, there are a number of exciting opportunities available for further exploration.

The tools and discussion presented have brought nonlinear dispersion analysis to the point

of practical experiment design and implementation. Several fundamental theoretical inves-

tigations and possible designs are discussed next as potential options for future work.

8.3.1 Group velocity and group velocity dispersion analysis

Group velocity in nonlinear periodic systems exhibits amplitude-dependence. It is a natural

and logical extension of amplitude-dependent dispersion relations, and has been analyzed

successfully in this dissertation and in Ref. [50]. However, group velocity in the context

of amplitude-dependent dispersion relations as applied to frequency-localized pulses is not

well understood. Figure 8.1 depicts contrasts the idea of a frequency-domain amplitude

distribution with the monochromatic signals previously considered. Pulses are most often

described by a frequency-domain amplitude distribution (e.g. Gaussian). Thus, individ-

ual frequency components correspond to different amplitude-dependent dispersion curves.

Furthermore, the interaction of various frequency components has additional consequences

on dispersion as discussed in Chapters 3 and 3.2. The question remains: how does the

group velocity of a pulse, with a specific frequency distribution, propagate? A Gaussian

pulse may be a logical first step, and an interesting perspective may consider the energy

content of the pulse, rather than a specific frequency-amplitude function.

8.3.2 Local resonance in unit cells

Local resonance refers to the inclusion of structural elements in a unit cell that associate

with specific resonant frequencies. Local resonances have been connected to negative

group velocity, and thus negative refraction in sonic materials [122]. Chapter 6 discussed

how thin nonlinear ligaments can be incorporated into unit cell design to achieve sensitive
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Figure 8.1: The nonlinear dispersion curve associated with frequency-domain amplitude
distributions is not well understood for periodic systems (top figures). Dispersion curves
for monochromatic signals (bottom figures), however, has been numerically validated as
accurate.

nonlinear dispersion shifts. Thus, band gaps which appear at frequencies associated with

local resonators should exhibit highly-sensitive dispersion shifts due to large displacements

at resonance. Figure 8.2 depicts one possible configuration for a nonlinear locally-resonant

unit cell. This configuration uses a symmetric and massive inclusion connected to a host

material by a nonlinear ligament. However, variations on this simple configuration may

introduce directionality by incorporating asymmetric inclusions and ligaments designs.

8.3.3 Experimental investigation of dispersion

Experimental observation of nonlinear dispersion should be a primary research area for fu-

ture investigation. Nonlinear dispersion analysis results have been strongly confirmed by

numerical simulation of physical systems. In addition, some preliminary work investigat-

ing dispersion experimentally was presented. Deeper investigations may be facilitated by

designing nonlinear spring elements such as those considered in Ref. [30]. The design of
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Figure 8.2: Schematic depiction of a locally-resonant unit cell which may exhibit negative
refraction and highly-tunable dispersion

sensitive nonlinear elements should be at the forefront of future experimental analyses.

8.3.4 Transmission and reflection analysis

A fundamental study concerning the transmission and reflection behavior material inter-

faces of differing nonlinear phononic crystals should support future application designs.

The investigation should explore the concept of amplitude-dependent impedance as it re-

lates to transmission and reflection. If it is possible for amplitude-dependency to adjust

the characteristic impedance of a material – then it may also be possible to design per-

fect transmission-interfaces at specific amplitudes, which may otherwise reflect portions

(possibly significant) of the incident waves. A transmission/reflection study targeted at un-

derstanding amplitude-dependent impedances at junctions would provide a great deal of

insight into design strategies for nonlinear phononic systems such as acoustic diodes and

mirrors. An initial case study for a nonlinear diode is described in Sec. 8.3.5.

Transmission and reflection analysis for two-dimensional domains is a logical extension

which should provide further understanding for designing two-dimensional devices such

as those which utilize the superprism effect. Figure 8.3 depicts one conceptual design.

Two nearly-identical phononic systems are coupled at an interface: the left infinite half-

plane contains localized resonators while the right half-plane does not. One may expect
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Figure 8.3: Transmission and reflection at the interface of two nonlinear phononic crystals
is not well-understood. Appropriate design of nonlinear elements may lead to amplitude-
tunable refraction angles and potentially high-amplitude activation of nonlinear refraction
indices.

sensitive amplitude-dependent transmission and reflection at interfaces like these near the

natural frequency of the local resonators. Such systems may naturally lend to frequency-

demultiplexers, wave guiding, and imaging devices.

8.3.5 Transmission/reflection case study: nonlinear diode

One example of an application exploring transmission and reflection at an interface (junc-

tion) is a nonlinear diode. Figure 8.4 depicts one possible configuration that has been par-

tially investigated. Diodes, by definition, must be asymmetrical in some sense to provide

directional behavior. This nonlinear diode is formed by the union of nonlinear and linear

transmission segments as well as an energy harvesting segment which extracts energy from

the system. Each segment supports forward and backward propagating waves A+ and A−,

with subscripts defining the relevant domain. The linear material is tuned to a critical cutoff

frequency (ωco = 2.15 rad s−1) as depicted in Fig. 8.5. The nonlinear material (colored red)

exhibits hardening behavior such that the cutoff frequency increases with amplitude. At
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Figure 8.4: Schematic depiction of two operating modes for a wave-based diode. In Con-
figuration I, the forward configuration, signals transmit from left to right for high enough
amplitudes. In Configuration II, the reverse configuration, signal transmission is prevented
by the existence of amplitude-dependent band gap behavior.

some critical amplitude A = Acrit, the cutoff frequency of the nonlinear segment aligns with

ωco.

In the forward operating mode, wave propagation at the critical frequency is prohibited

until the critical amplitude Acrit = 1.0 is reached. At the junction, part of the wave transmits

into a lossy-material (e.g. an energy harvester) while the remaining part partially propa-

gates into the linear segment and may also reflect back into the nonlinear material. As the

amplitude increases, the systems become more dissimilar and transmission is likely to be

less efficient. In the reverse propagating mode, when a signal is transmitted from the linear

segment, it is still partially transmitted into the lossy material. However, now a low amp-

litude signal enters the nonlinear segment and is immediately attenuated. The remaining

portion reflects back into the linear segment.
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Figure 8.5: Dispersion diagram used for designing the nonlinear diode. Solid black lines
indicate the dispersion relation for the linear segment, while red lines indicate dispersion
of the nonlinear system at various amplitudes.

Figure 8.6 summarizes the results from several numerical simulations. In each simula-

tion, wave propagation was stimulated by a time-harmonic displacement applied at either

the left (forward mode) or right (reverse mode) side of the diode. The RMS amplitude of

the time signal measured in each domain near the source, but several unit cells out in order

to capture the effects of evanescent attenuation. The measured RMS amplitudes are nor-

malized by the RMS amplitude of the input signal. Note that, as expected for the forward

operating mode, negligible transmission is measured in any section until the critical amp-

litude Acrit = 1.0 is reached. Beyond this critical amplitude, forward propagation through

the diode is permitted. In contrast, the reverse operating mode essentially prohibits prop-

agation into the nonlinear section for all amplitudes A < 2. The reflected linear signal A+
L

and partial absorption by the lossy material are responsible for decreasing the signal trans-

mitted into the nonlinear segment. In this case, transmission amplitudes A−NL are such that

the operation frequency lies in a bandgap. Beyond A = 2, the diode breaks down.

This device, and others utilizing the same principles should be explored both numeri-

cally and experimentally. However, before physical instantiations of devices can take place
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Figure 8.6: Numerical simulation results of a nonlinear band gap-based junction diode
device. RMS responses are measured near the input and output of the system near after
near steady-state conditions are achieved.

it is necessary to design nonlinear spring elements which can be practically implemented.

Nevertheless, nonlinear system components composed of periodic materials may find a

place in the future of nonlinear phononic crystals and metamaterials.
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APPENDIX A

WAVE MODE NORMALIZATION

The frequency correction terms described by (2.36) and (2.67) capture frequency shifts due

to displacement amplitude. The following focuses on monochromatic frequency correc-

tions, but is equally applicable to the more general frequency content. Since Bloch wave

modes are unique only up to a scalar multiple, one must choose a method for scaling the

wave modes before evaluatingω1. The displacement amplitude of the jth Bloch wave mode

is given as

max(u(0)) = max(Aφ j), (A.1)

where max(..) returns the maximum modulus of the imaginary components comprising an

input vector. One normalization approach sets the maximum value of φ j(µ) for all wave

vectors to unity such that the overall amplitude of the Bloch wave mode is controlled by

A [63, 3]. This approach is sufficient for dealing with lumped-parameter models where

nonlinear restoring forces produced by spring elements depend only on the displacement

amplitude and not on frequency or wavenumber. The same is not true for constitutive and

geometric nonlinearities arising in continuous systems where spatial derivatives (due to

strain or large deformation) will lead to frequency and/or wave number dependence in the

nonlinear restoring forces.

We consider the simple homogeneous rod with a nonlinear constitutive law as an ex-

ample. The stress-strain nonlinearities take the form σxx = E1exx + Γe3
xx, where σxx de-

notes stress, exx denotes strain, and the linear and nonlinear moduli are given by E1 and

Γ. This constitutive law may be rewritten as σxx = Ēexx where the stain-dependent elas-

tic modulus is given by Ē(exx) = E1(1 + Γe2
xx/E1). The system is weakly nonlinear when

|Γ/E1e2
xx| � 1 or when exx is small. The material choice fixes the ratio Γ/E1; thus, only the
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strain amplitude varies the stiffness contribution from the nonlinear term. As strain intro-

duces wavenumber dependence into the nonlinear restoring forces for plane wave propaga-

tion, the magnitude of the nonlinearity increases with frequency1.

A strain normalization scheme is appropriate in this situation to ensure predicted fre-

quency shifts are within the weakly nonlinear regime. One may employ strain normal-

ization by calculating the Bloch wave modes and then computing the maximum strain

(e.g. numerically). Figure A.1 depicts two possible normalization schemes for the acous-
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Figure A.1: Two possible methods for normalizing amplitude-dependent dispersion cur-
ves. The dotted black line indicates the dispersion relation for a low-strain (linear) system.

tic branch of a bilayer material discussed in later Chapters. The top subfigure depicts the

Bloch wave mode amplitude |φ j| as a function of wavenumber while the bottom subfigure

depicts corresponding amplitude-dependent dispersion relations. In the long wavelength

limit, amplitude-normalization produces smaller shifts than a strain-normalization scheme;

at higher frequencies it results in larger shifts. Each of these dispersion branches is valid in

1Since frequency in a continuum is proportional to wavenumber according to ω = ck
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the sense that individual points convey correctly the wavenumber-frequency relationship as

a function of wave amplitude, regardless of the normalization approach employed. A group

velocity calculation based on NDA requires knowledge of multiple dispersion points be-

cause it expresses the propagation of a pulse that is localized in the frequency domain. The

work presented herein utilizes a strain-normalization approach, unless noted otherwise, for

presenting dispersion diagrams in continuous systems such that strains produced from all

Bloch modes considered are consistent with a weak nonlinearity (small strains).
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APPENDIX B

NONLINEAR DISPERSION ANALYSIS WITH FEA

B.1 Simple Example Using a Single Element in COMSOL

As a simple example, consider a rod discretized using only a single linear Lagrange ele-

ment. We digress from periodic systems for a moment to study an elementary example that

illustrates the majority of the process steps needed to obtain the nonlinear force vector. The

homogenous PDE governing the system is

∂

∂x

(
∂σ

∂x

)
= ρ

∂2u
∂t2 (B.1)

where the constitutive law for stress σ may be a nonlinear function of the displacement u

or its spatial derivatives. The weak formulation of Eq. (B.1) and subsequent discretization

using shape functions ψ1,2 leads to the residual vector

R =


∫ L

0
(−ρψ1ψ2ü2 − ρψ

2
1ü1 − σψ

′

1) ds∫ L

0
(−ρψ2ψ1ü1 − ρψ

2
2ü2 − σψ

′

2) ds

 =


0

0

 , (B.2)

where a prime denotes a spatial derivative and a dot denotes a time derivative. The residual

vector evaluated for linear Lagrange shape functions ψ1 (x) = 1− x/L and ψ2 (x) = x/L and

the nonlinear constitutive relationship σ = E1u
′

+ E3(u
′

)3 is

R =


ρL
3 ü1 + 1

6 ü2 + E1
L (u1 − u2) + E3

L3 (u1 − u2)3

ρL
3 ü2 + 1

6 ü1 + E1
L (u2 − u1) + E3

L3 (u2 − u1)3

 =


0

0

 . (B.3)

It is clear that in this simple example the mass and stiffness are those typical of a rod

element

M = ρL

1/2 0

0 1/2

 and K =
E1

L

 1 −1

−1 1

 ,
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while the nonlinear components making up the load vector are

fNL=


E3
L3 (u1 − u2)3

E3
L3 (u2 − u1)3

 .
A linearization of the residual vector about some displacement vector u0 would, in addi-

tion to the fNL(u0) terms, include terms such as those arising from any pre-compression.

Specifically, these terms are given by K(u0)u0 The nonlinear force vector can be isolated in

the residual vector by setting the coefficients ρ and E1 of the linear differential operators to

zero in the associated COMSOL model. The model can then be imported into MATLAB

using the COMSOL function

model = mphload(<filename>).

The residual vector containing only the nonlinear forcing terms is obtained by pre-

scribing a current solution vector and allowing COMSOL to evaluate the load vector. In

COMSOL 4.2, the syntax inside MATLAB is as follows:

u0 = [u1, u2];

model.sol(‘sol1’).setU(u0);

model.sol(‘sol1’).setPVals(0);

model.sol(‘sol1’).createSolution;

MA = mphmatrix(model, ‘sol1’, ‘out’, ‘L’, ‘initmethod’, ‘sol’);

The first command simply specifies the vector to evaluate for. The second command

sets the nodal values of ‘sol1’ to these values. The third command, setPVals() is

required by COMSOL before createSolution() can be called. It sets the time vector at

which solutions are stored for a time-dependent problem. The fourth command creates the

solution object, while the last command outputs the load vector to a MATLAB structure

that can be accessed as MA.L. A COMSOL model created with the parameters L=1, E3=1
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and linearization “point” u0=[1,2] returns the load vector MA.L = [1, -1]. Comparing

this result with a direct computation using Eq. (B.3) shows that the residual vector returned

by COMSOL contains only those terms previously denoted as fNL.

B.2 Bimaterial system FEA implementation

COMSOL is an ideal commercial FEA package to analyze nonlinear dispersion with. It

provides direct access to the governing physical equations, mesh information, and residual

vector. The information is easily manipulated with the aid of MATLAB through the op-

tional LiveLink Software. A brief description of the commands used for a COMSOL 4.2

implementation are detailed here for reference.

The three unit cell model was created using the wave equation interface waeq along

with a Time-Dependent study type. The model parameter f = 0 is chosen so that the

governing PDE is homogenous. The nonlinear constitutive law for stress-strain is applied

by setting the diffusion coefficient for Layer A to E1+E3*uxˆ2, where E1=1.0 and E3=1.0.

The final step in this process is to run the solver routine so that a default solution object

‘sol1’ is created. The saved model may then be directly imported into MATLAB for

further processing.

The system matrices M and K describing the three unit cells may be obtained as detailed

in as detailed in B.1. In order to obtain system matrices M and K describing the infinite

system, mesh and node information must be processed so that appropriate partitions of M

and K may be selected (see Sec. 5.4). The model object contains information regarding

the nodes, coordinates, DOFs, solution, governing PDE, boundary conditions, and more.

The COMSOL command mphxmeshinfo() provides the requisite information about nodal

coordinates and degrees of freedom.

Once this information has been processed, linear Bloch wave modes φ j and frequencies

ω0 for the system may be obtained by solving the generalized eigenvalue problem for each
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wavenumber µ of interest. The nonlinear force vector for the infinite system can be cal-

culated by eliminating the linear operators from the system and leaving only the nonlinear

terms. Within MATLAB, the coefficients of the linear operators are set to zero program-

matically by the commands:

model.physics(‘waeq’).feature(‘weq1’).set(‘c’,‘uxˆ2’);

model.physics(‘waeq’).feature(‘weq2’).set(‘c’,‘0’);

model.physics(‘waeq’).feature(‘weq1’).set(‘ea’,‘0’);

model.physics(‘waeq’).feature(‘weq2’).set(‘ea’,‘0’);

The first of these commands sets the “diffusion coefficient” of the first layer (the non-

linear layer) to only the nonlinear part uxˆ2. This eliminates the linear modulus from the

problem. The second command sets the diffusion coefficient to zero because there is no

nonlinearity here. The last two lines simply set the density for each material to zero; this is

not strictly necessary since these terms should not appear in the load vector, but it is a good

practice.

The discrete time-history of the nonlinear force vector fNL is obtained by evaluating

system load vector (as in B.1) over a full period of the displacement field u0(τ). The O(ε0)

displacement field u0 is calculated for the three unit cells using the Bloch wave vector φ j

and the Bloch theorem. This calculation is repeated for each desired wavenumber and

frequency. The results for the multilayer rod of Sec. B.1 completed in approximately 20

minutes when each dispersion contour contained 16 equally spaced wavenumber points.
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APPENDIX C

DISPERSION SHIFT FOR A HOMOGENEOUS ROD

The dispersion shift arising for a one-dimensional rod with a constitutive nonlinearity may

be obtained through perturbation of the continuous PDE governing wave propagation

∂σ

∂x
= ρ

∂2u
∂t2 . (C.1)

The constitutive law governing the strain displacement relationship is defined as

σ = E1
∂u
∂x

+ E3

(
∂u
∂x

)3

. (C.2)

Substitution of Eq. (C.2) into Eq. (C.1) results a nonlinear wave equation. The small

parameter ε is introduced through the relationship E3 = εÊ3 to enforce weak nonlinearity,

where Ê3 is of the same order as the linear modulus E1.

E1(x)
∂2u(x, t)
∂x2 + εÊ3(x)

∂

∂x

(
∂u
∂x

)3

= ρ(x)
∂2u(x, t)
∂t2 . (C.3)

Nondimensional time τ = ωt and asymptotic expansions are introduced according to

ω = ω(0) + εω(1) + O(ε2)

u = u(0) + εu(1) + O(ε2). (C.4)

Substitution of the expansions Eq. (C.4) into the weakly nonlinear wave equation (C.3)

produces a set of equations ordered by the small parameter ε

O(ε0) : E1
∂2u(0)

∂x2 = ρ(ω(0))2∂
2u(0)

∂τ2 (C.5)

O(ε0) : E1
∂2u(1)

∂x2 + 3Ê3

(
∂u(0)

∂x

)2∂2u(0)

∂x2 = ρ(ω(0))2∂
2u(1)

∂τ2 + 2ρω(0)ω(1)∂
2u(0)

∂τ2 . (C.6)

The solution to the O(ε0) is well-known, and given by the plane wave

u(0)(x, t) =
A
2

exp i(kx − τ) + c.c = A cos(kx − τ). (C.7)
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where the wavenumber k is defined through the relationship ω(0) = ck, c =
√

E1/ρ denotes

phase speed, and c.c. denotes complex conjugate terms. Subsequent substitution of u(0)(x, t)

into the O(ε) equation results in the equation

E1
∂2u(1)

∂x2 − ρ(ω(0))2∂
2u(1)

∂τ2 = −2ω(0)ω(1)ρA cos(kx − τ)+

3
4

Ê3A3k4 cos(kx − τ) + O(3kx − 3τ),
(C.8)

where terms higher frequency terms are indicated by O(3kx − 3τ). The linear kernel of

the O(ε1) equation is identical to the linear kernel of the O(ε) equation. Removing secular

(those multiplying cos (kx − τ)) results in an equation which may be solved for a first-order

frequency correction ω(1)

−2ω(0)ω(1)ρA +
3
4

Ê3A3k4 = 0. (C.9)

The solution for the first frequency correction is

ω(1) =
3
8

Ê3A2k4

ρω(0) . (C.10)

The strain amplitude e0 = kA and the relationship ω(0) = ck may be used to obtain alternate

forms of the frequency correction, namely

ω(1) =
3
8

Ê3

E1
e2

0ω
(0). (C.11)

Thus, the first-order corrected frequency is given by

ω = ω(0) + ε
(3
8

Ê3

E1
e2

0ω
(0)

)
= ω(0)

(
1 +

3E3

8E1
e2

0

)
. (C.12)

This relationship is useful for validating results produced from nonlinear dispersion analy-

sis routines.
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