

USING MODEL-BASED METHODS TO SUPPORT VEHICLE

ANALYSIS PLANNING

A Thesis

Presented to

The Academic Faculty

by

William Cristopher Bailey

In Partial Fulfillment

of the Requirements for the Degree of

Master of Science in the

School of Mechanical Engineering

Georgia Institute of Technology

December 2013

COPYRIGHT © 2013 BY WILLIAM C. BAILEY

USING MODEL-BASED METHODS TO SUPPORT VEHICLE

ANALYSIS PLANNING

 Approved by:

 Dr. Chris Paredis, Advisor

School of Mechanical Engineering

Georgia Institute of Technology

 Dr. Leon F. McGinnis

School of Mechanical Engineering

Georgia Institute of Technology

 Dr. Judy Che

Vehicle System Analysis & MBSE

Ford Motor Company

 Date Approved:

 iii

ACKNOWLEDGEMENTS

Since I was young, it has always been my dream to go to Georgia Tech. There

have been moments throughout my time here that I regretted ever wishing for that, but in

the end I can look back and say that every struggle that I had was worth it in the end.

After a little more than five years here, it seems that this chapter in my life is coming to a

close at last. I’ve accomplished a lot since I started here, but I never could have done it on

my own.

I would first like to thank my parents, Jeff and Tammy, for all of their love and

support throughout my life. They were the first to promote my intellectual curiosity, and I

have always been motivated by their incredible work ethic. They’ve always given me the

encouragement and advice that I need to overcome any obstacles arise in my life, and I’m

unbelievably thankful to always have them to rely on. I must also thank my younger

siblings, Michael, Matthew, and Nikki. They’ve each been a source of inspiration for me

in their own ways, and I couldn’t be prouder of them.

Second, I would like to thank my advisor, Dr. Chris Paredis, for his continued

support and patience with me. I began this project knowing practically nothing about

model-based systems engineering, SysML, or programming. It has been an incredible

learning experience from start to finish, and I never could have reached this point without

his continued guidance and huge breadth of knowledge.

I would also like to thank Mark Jennings and Judy Che from Ford Motor

Company. They have been extremely helpful throughout this project and have always

been glad to help me whenever I had questions about their work. They also provided me

 iv

the opportunity to spend the summer working on this project at Ford, which was a

fantastic experience for me on its own.

I would also like to thank my third committee member, Dr. Leon McGinnis, for

taking the time to read my work and provide his insights into my research.

I must also thank my lab mates: Ben Lee, Sebastian Herzig, Bill Binder, and

Douglas Broadwell. They have all supported me throughout this project in some way or

another, whether than meant looking through my Java code, discussing SysML modeling,

or just making me laugh when I needed it. It’s been a great lab to work in.

Finally, I also acknowledge the support of the George W. Woodruff School of

Mechanical Engineering and Ford Motor Company. I would also like to thank No Magic,

Inc. for providing the software licenses to perform this work.

 v

TABLE OF CONTENTS

Page

Acknowledgements .. iii

List of Tables ... viii

List of Figures .. ix

Summary .. xi

Chapter 1 Introduction ...1

1.1 Motivation ... 2

1.2 Applying MBSE to Systems Analysis Modeling ... 4

1.3 Motivating Question ... 5

1.4 Thesis Organization .. 8

Chapter 2 Related Work ..9

2.1 Model-Based Systems Engineering .. 9

2.2 Using SysML with Analysis Models .. 13

2.3 Knowledge Management in MBSE .. 14

2.4 Summary ... 17

Chapter 3 Analysis Planning and Related Processes ...18

3.1 Overview of Integrated Vehicle Analysis Planning and Development 18

3.2 Analysis Planning Process .. 20

3.2.1 Inputs... 24

3.2.2 Drafting the System Analysis Application Plan ... 25

3.2.3 Vehicle Model Requirements and Analysis Architecture 30

3.2.4 Requesting Control Signals... 32

3.2.5 Domain Model Requirements ... 33

3.2.6 Domain Model Specifications ... 34

3.2.7 Vehicle Model Specifications ... 35

3.2.8 Outputs from Analysis Planning ... 35

 vi

3.3 Model Development Process .. 36

3.3.1 Domain Engineer Swimlane ... 38

3.3.2 System Engineer Swimlane .. 38

3.4 Design Analysis Process ... 39

3.5 Applying MBSE to Analysis Planning ... 40

Chapter 4 Infrastructure Framework ...41

4.1 SysML Model ... 41

4.1.1 Reference Architecture ... 42

4.1.2 Analysis Artifacts.. 48

4.1.3 Analysis Templates ... 49

4.1.4 Specialized Analysis Architecture .. 51

4.1.5 Views and Viewpoints .. 56

4.2 User Interface .. 58

4.2.1 Desired Capabilities for a User Interface .. 59

4.2.2 Excel Template Engine ... 61

4.2.3 Excel User Interface Additions ... 64

Chapter 5 Applying Infrastructure Framework to Analysis Planning69

5.1 Creating a Draft of the System Analysis Application Plan............................... 70

5.2 Creating a Specialized Analysis Architecture... 76

5.3 Domain Model Requirements ... 78

5.4 Domain Model Specifications ... 82

5.5 Creating Modelica Templates ... 85

5.6 Summary ... 87

Chapter 6 Conclusions ...88

6.1 Response to Motivating Question ... 88

6.2 Contributions... 92

6.3 Future Work .. 94

Appendix A. Views and Viewpoints ...96

 vii

Basic Functionality ... 96

Advanced Functionality .. 98

Appendix B. Excel Template Engine ..100

References ..105

 viii

LIST OF TABLES

Appendix B

Table B1. Valid XML attributes for different SysML elements 101

 ix

LIST OF FIGURES

Figure 1. Simulation development process activity diagram .. 20

Figure 2. Analysis planning activity diagram ... 22

Figure 3. Activity diagram for analysis planning reviews .. 23

Figure 4. Analysis application influence diagram .. 27

Figure 5. Model development Activity diagram ... 37

Figure 6. Vehicle Domain Hierarchy .. 44

Figure 7. Generic plant and control elements ... 45

Figure 8. Propulsion system decomposition ... 46

Figure 9. Propulsion plant IBD ... 47

Figure 10. Definition of connection between Engine and Transmission 48

Figure 11. EngTrnInct IBD ... 48

Figure 12. Analysis template dependency matrix ... 51

Figure 13. Propulsion plant IBD in VRA ... 52

Figure 14. Propulsion plant IBD in Specialized Analysis Architecture 53

Figure 15. Analysis correspondence between VRA and Modelica model 54

Figure 16. Analysis correspondence IBD ... 55

Figure 17. View/Viewpoint definition for exporting instance data 58

Figure 18. Example of a command in the Excel template engine 63

Figure 19. Simple BDD defining a block and enumeration.. 63

Figure 20. Excel dropdown menu generated by template engine 64

Figure 21. Multi-select capability in Excel ... 65

Figure 22. Example of dependencies defined in BDD ... 66

Figure 23. Tooltips in Excel UI .. 67

Figure 24. Analysis application SysML model... 71

Figure 25. Dependency matrix for a VOS choice ... 73

Figure 26. Analysis application spreadsheet ... 74

Figure 27. System study package structure ... 75

 x

Figure 28. Analysis application package with an analysis architecture............................ 77

Figure 29. Generic requirements model .. 79

Figure 30. Specialized engine requirements model .. 81

Figure 31. Domain requirements spreadsheet ... 82

Figure 32. Domain specification BDD ... 83

Figure 33. Excel UI for engine model specifications ... 85

Figure 34. Generating Modelica model from SysML ... 86

Figure 35. Modelica code generated from SysML model .. 86

 xi

SUMMARY

Vehicle system analysis models are becoming crucial to automotive designers

wishing to better understand vehicle-level attributes and how they vary under different

operating conditions. Such models require substantial planning and collaboration between

multidisciplinary engineering teams. To improve the process used to create a vehicle

system analysis model, the broader question of how to plan and develop any model

should be addressed. Model-Based Systems Engineering (MBSE) is one approach that

can be used to make such complex engineering tasks more efficient.

MBSE can improve these tasks in several ways. It allows for more formal

communication among stakeholders, avoids the ambiguity commonly found in document-

based approaches to systems engineering, and allows stakeholders to all contribute to a

single, integrated system model. Commonly, the Systems Modeling Language (SysML)

is used to integrate existing analysis models with a system-level SysML model. This

thesis, on the other hand, focuses on using MBSE to support the planning and

development of the analysis models themselves.

This thesis proposes an MBSE approach to improve the development of system

models for Integrated Vehicle Analysis (IVA). There are several contributions of this

approach. A formal process is proposed that can be used to plan and develop system

analysis models. A comprehensive SysML model is used to capture both a descriptive

model of a Vehicle Reference Architecture (VRA), as well as the requirements,

specifications, and documentation needed to plan and develop vehicle system analysis

models. The development of both the process and SysML model was performed

alongside Ford engineers to investigate how their current practices can be improved.

 xii

For the process and SysML model to be implemented effectively, a set of

software tools is used to create a more intuitive user interface for the stakeholders

involved. First, functionality is added to views and viewpoints in SysML so that they may

be used to formally capture the concerns of different stakeholders as exportable XML

files. Using these stakeholder-specific XML files, a custom template engine can be used

to generate unique spreadsheets for each stakeholder. In this way, the concerns and

responsibilities of each stakeholder can be defined within the context of a formally

defined process. The capability of these two tools is illustrated through the use of

examples which mimic current practices at Ford and can demonstrate the utility of such

an approach.

 1

CHAPTER 1

INTRODUCTION

Analysis models are becoming a critical tool for vehicle development. These

models can be used to better understand the impact of different operating conditions on

vehicle-level attributes, such as the effect of a cold winter day on a hybrid vehicle’s fuel

efficiency. To accurately represent a given vehicle, these analysis models are created by

integrating different models of the subsystems within a vehicle, such as the engine or

transmission. These subsystem models will be referred to as “domain models”.

Developing an integratable set of domain models requires that the domain

engineers creating them have a deep understanding of both the system-level requirements

for the vehicle model, as well as how their models must interface with other domain

models. These issues can be partially addressed by performing extensive planning before

any models are developed. However, when using a document-based approach to analysis

planning, there are still ample opportunities for issues to arise, such as requirements

documents becoming obsolete or interfaces between analysis models becoming

inconsistent.

This thesis proposes a model-based approach to support analysis planning. This

approach is specifically designed to support analysis planning at Ford Motor Company to

perform high-level vehicle attribute trade-offs, but the lessons learned can be applied to

any analysis modeling process. There are two key components presented in this approach.

First, a formal process is defined for system engineers and domain engineers to adhere to

when planning and developing analysis models. Second, an infrastructure framework is

introduced that can be used within this formal process. The infrastructure framework

 2

consists of SysML models and software tools that can be used by both system engineers

and domain engineers to plan, develop and verify analysis models. Before introducing

this approach, however, the remainder of this chapter discusses the motivation for

applying a model-based approach to analysis planning and what characteristics an

effective approach should possess.

1.1 Motivation

Pressure to create more fuel-efficient, low-emission vehicles has led to an

increased interest in both electrified vehicles and more efficient traditional internal

combustion vehicles. To keep pace with the rapid improvements being made to these

technologies and maintain competitiveness with other manufacturers, design cycles have

become shorter and more efficient. The use of models for Integrated Vehicle Analysis

(IVA) has been used to support these shorter design cycles. These models are created by

integrating various domain analysis models into a complete vehicle model. The models

used for IVA allow different dynamic vehicle-level attributes, such as energy

management and performance, to be examined and optimized for various operating

scenarios that a vehicle might undergo, such as driving on the highway or towing a boat.

These vehicle-level attributes are tightly coupled; investigating the tradeoffs between

these attributes is crucial for system design. In addition, these models used for IVA can

be extremely useful for evaluating the value of different vehicle architectures, such as

weighing the advantages of a plug-in hybrid-electric vehicle (PHEV) versus those of a

battery-electric vehicle (BEV).

 3

However, developing these analysis models is an extremely complex task itself.

Creating an IVA model is a multidisciplinary task that requires significant input from the

many domain experts involved. These teams of domain experts must be able to

effectively communicate and coordinate such that when their respective domain models

are integrated, the assembled model is an accurate representation of the vehicle being

modeled and is appropriate for the intended analysis or cycle. Extensive planning is

needed so that the underlying goals and assumptions of these models can be consistent at

both the vehicle and domain levels.

Systems engineering practices can be used to develop solutions to complex

problems such as these. Systems engineering is a “multidisciplinary approach to develop

balanced system solutions in response to diverse stakeholder needs” (Friedenthal, et al.,

2012). In this case, the stakeholders concerned are primarily the domain- and system-

level engineers. Traditionally, many engineering practices have used document-based

approaches for systems engineering, in which documents (such as reports or

presentations) are exchanged between teams to communicate information. Such

approaches have significant pitfalls. Different disciplines often use different vocabularies,

so that semantic differences can cause misunderstandings between teams. Continuously

managing and updating a large number of documents can be extremely tedious and error-

prone, which can result in significant inconsistencies between the documents. Generating

and maintaining these documents must be done manually, which introduces the potential

for human error and disregards the potential to use the abundant computing power

available to improve this process. An alternative is to take a model-based approach to

systems engineering.

 4

1.2 Applying MBSE to Systems Analysis Modeling

Model-based systems engineering (MBSE) makes use of formal modeling

methods to support complex engineering tasks in lieu of a document-centric approach.

There are no constraints placed on what constitutes a model or on the systems that can be

designed using such an approach. A model can potentially take any form and serve any

purpose, whether it be a 3D CAD model or a MATLAB script. Often, these models are

created to provide different, specialized views of the same system for specific

stakeholders.

To organize and capture the relationships between these different views, a system-

level model is often used. The Systems Modeling Language, or SysML, is becoming the

de facto language for producing such a “descriptive” system model. Significant work has

been done towards linking domain-specific analysis models, such as those created in

Modelica or Simulink, to a system-level SysML model.

Traditionally, MBSE is used to design a physical system, such as an automobile

or airplane. In the approach presented by this thesis, however, the “system” being

designed is an analysis model itself. Our goal is to use MBSE and SysML to support the

preliminary planning needed to define the set of desired analyses and to create the

appropriate set of integrated vehicle analysis models. Developing these models requires

efficient communication, collaboration, and understanding among multidisciplinary

engineering teams, which MBSE and SysML can improve significantly. Some

background and justification for the selection of both MBSE and SysML is presented in

Chapter 2.

 5

1.3 Motivating Question

To improve the capabilities of SysML and other modeling tools to support

analysis model planning, a broader motivating question must be addressed:

Motivating Question:

How should one plan and guide the development of analysis models?

To support model consistency within an MBSE methodology, extensive work has

been performed by others to support the transformation from SysML models to other

modeling languages. Integration frameworks using SysML to unify many different

existing models in a variety of simulation toolsets have also been researched heavily.

However, very little emphasis has been placed on supporting the definition and

integration of those models. Developing integrated vehicle analysis models is a complex,

multidisciplinary process. To add value to this process, this thesis proposes a SysML-

based approach with a complementary Excel user interface to define a set of analyses and

plan for development and verification of the analysis models. This approach is intended

to support a transition from a document-based workflow to a more model-based one.

Because quantifying the value of such an approach can be subjective, it will be judged

instead on several different “Desired Characteristics” that an ideal approach would

possess.

 6

Desired Characteristic:

Follow a formal, precise process

Oftentimes, engineering tasks are performed in an ad hoc manner and rely on the

expertise and experience of the engineers involved to produce results. However, for

complex engineering tasks that require coordination among many individuals, this can be

a particularly risky approach. Developing an approach that follows a formal, precise

process can provide a better understanding of the responsibilities of different engineering

teams and areas where issues may arise. A formal, precise process should define not only

the different tasks that stakeholders must perform, but also more specifically, which

pieces of information are expected to be exchanged between stakeholders and how this

should occur.

Desired Characteristic:

Provide an intuitive graphical user interface

To make the analysis model planning and development process more efficient, the

graphical user interface (GUI) should be intuitive to the many different stakeholders that

will use it. These users may have different levels of expertise and experience with the

planning tools being used, so it is important to consider all levels of familiarity when

selecting (or creating) a user interface. For our approach, SysML models are used

extensively to support the analysis planning process. However, many engineers today are

still unfamiliar with SysML. Because of this, the training and licenses needed to put

 7

SysML tools into practice across large engineering teams can be cost-prohibitive. As a

result, a more intuitive GUI is considered desirable.

Desired Characteristic:

Minimize the opportunity for inconsistencies

There are many different areas where inconsistencies can arise during the

development of analysis models. Misunderstandings about the goals of an analysis

model, miscommunication between teams, and even simple human error can all

contribute to inconsistent analysis models. These inconsistencies, if not found and

addressed, can lead to longer development cycles and even erroneous results from the

analysis models. An effective approach should identify and minimize these opportunities

for inconsistency wherever possible.

Desired Characteristic:

Support the roles of all stakeholders directly involved

As mentioned, analysis modeling is an inherently multidisciplinary process. There

are many different stakeholders with many different unique concerns. As a result, an

effective approach to analysis modeling must consider all of these different stakeholders

and their responsibilities and skill-sets. More specifically, an effective model-based

approach should not only support these many different tasks, but also make them easier

to perform. This characteristic is very strongly related to the final characteristic which

must be considered.

 8

Desired Characteristic:

Add value to the process

For a model-based approach to analysis model development to be useful, it must

be more valuable than the existing (and in this case, document-based) approach. To add

value to the process, the benefits of using such an approach must be weighed against the

costs of implementing it and training users. Although a quantitative measure of value is

not used, this is still an extremely important aspect to consider. Current practices at Ford

have been given particular attention to ensure that any proposed approach would improve

the existing processes, rather than necessitating entirely new workflows.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. Chapter 2 presents the related

work and the context within which our research has been performed. Chapter 3

introduces the formal process outlined for the planning and development of complex

analysis models. Chapter 4 presents the reusable set of tools and models that are used to

support analysis model planning. In Chapter 5, these tools and models are applied to the

process outlined in Chapter 3. Finally, Chapter 6 discusses the conclusions drawn from

this research and provides a response to the motivating question posed in this chapter.

 9

CHAPTER 2

RELATED WORK

2.1 Model-Based Systems Engineering

Model-based systems engineering (MBSE) is an alternative to traditional

document-based approaches to systems engineering. INCOSE defines MBSE as the

“formalized application of modeling to support…activities beginning in the conceptual

design phase and continuing through development and later life cycle phases” (2007).

The benefit of a model-based approach is dependent on the quality of the descriptive

models themselves, which are only valuable if they increase “a decision maker’s ability

to design a better system at an acceptable cost” (Keeney, 1994). To support MBSE, these

models must have a clearly defined purpose. A particular model may only represent part

of a larger system; therefore, it is often advantageous to have a system-level model to

understand how these different specialized models are related.

(Estefan, 2007) provides an overview of various MBSE methodologies that have

been used across different industries. Some of these methodologies are designed around

certain toolsets, such as the IBM Rational Unified Process for Systems Engineering (RUP

SE) or the Vitech MBSE Methodology. Others, however, are defined as broader

methodologies that can be implemented through whatever tools can best support the

process. It is important to note that regardless, there is no all-encompassing methodology

that can be applied to any MBSE process. Whichever methodology an organization

chooses—or creates—must be modified and adapted to support that organization’s

 10

project lifecycle. To do so, one must consider the knowledge, skills, and abilities of all of

the stakeholders that will be involved.

There are many different tools that can be used with the MBSE methodologies

presented in (Estefan, 2007), but the Systems Modeling Language (SysML) is quickly

becoming the de facto standard. SysML was developed by the Object Management

Group™ (OMG™) as an extension to the Unified Modeling Language (UML) (Object

Modeling Group, 2012). SysML was designed specifically for systems engineering

applications and is intended to help unify the many different modeling languages used by

systems engineers. It uses a graphical model representation with a formal set of semantics

to define different characteristics of a system, including the requirements, structure,

behavior, and parametric relationships between system elements. SysML reuses some

UML diagrams and introduces two new ones—requirement diagrams and parametric

diagrams. SysML, like UML, is also extensible. This allows the possibility for SysML to

be customized for specific domains as needed. A much more detailed overview of SysML

and its role in MBSE methodologies is presented in (Friedenthal, et al., 2012). It is worth

noting that the system models presented in this thesis are created in SysML using No

Magic’s MagicDraw tool and SysML plugin (No Magic, 2013).

MBSE has been applied across many different industries to support different

phases of engineering design. Often, the cost of implementing a complete, model-based

workflow can be difficult to justify. To move towards such an approach, some

organizations have used small pilot projects as test beds for MBSE methodologies. One

such project was started at JPL to investigate and model the behavior of an antenna on an

Earth-orbiting satellite (Ingham, et al., 2012). While the pilot project focused on a small

 11

test case, the goal was to use it to investigate the broader benefits of integrating MBSE

into JPL’s existing systems engineering practices, and how it could be used to develop

better products in general. This pilot project provided the opportunity to investigate

different modeling patterns and revise them for future projects. Taking small steps in this

way can be a useful measure to determine the value of MBSE for a particular

organization.

Small pilot projects are not the only test case used to assess the value of MBSE.

(Robinson, et al., 2010) introduces a methodology applied to the development and

support of a ground-based air defense system. In this work, MBSE was used to improve

the preliminary process of outlining and documenting the capabilities desired for the

system. The authors found that a model-based approach was completely compatible with

their current development processes, and had the added advantages of increased

efficiency, standardization, and greater stakeholder understanding of the system. It is

worth noting that the MBSE methodology applied in this work was the Vitech MBSE

Methodology—one of the methodologies introduced in (Estefan, 2007). This

methodology was found to be particularly effective; it was chosen because many of the

staff were already familiar with the CORE suite of software tools. Again, considering the

expertise and experience that stakeholders already have is very important when selecting

an MBSE methodology.

The benefits of MBSE are not limited to any particular industry, either. MBSE

has been successfully implemented for other aerospace applications (Graves and Bijan,

2011, Spangelo, et al., 2013), for telescope design (Claver, et al., 2010, Karban, et al.,

2009), and even for modeling a disaster management system (Soyler and Sala-Diakanda,

 12

2010). Its benefits are also not limited to organizations with substantial funding—a

university satellite team found that using MBSE and SysML to capture the structure,

behavior, requirements, and parametrics of their design improved member understanding

and the productivity of their design reviews (Nottage and Corns, 2012).

MBSE has also been used across the automotive industry to different extents. In

(Piques and Andrianarison, 2012), SysML was used to support the systems engineering

activities for developing embedded automotive systems. In (Marco and Vaughan, 2010),

high-level system models in SysML were used to support the understanding and

development of automotive electronic control systems. (Dumitrescu, et al., 2013) presents

an approach which used SysML models to capture variability within a family of parking

brakes to better understand how SysML can be used to support mass customization.

In (Branscomb, 2012), a different approach is used to support automotive

applications. Integrated vehicle analysis models are already used extensively to support

vehicle design. These models can be complex and require collaboration and

communication between many different multidisciplinary teams. Branscomb et al.

proposed an MBSE approach where the “system” being developed is in fact a model

itself (Branscomb, 2012). A SysML model of a vehicle architecture was created and used

to auto-generate model templates for Modelica and Simulink. This approach ensured that

domain models remained consistent and reusable for future applications. It is important to

note that this work is the direct predecessor to the work presented in this thesis; many of

the models and methods used in our approach are heavily influenced by the work in

(Branscomb, 2012).

 13

2.2 Using SysML with Analysis Models

A descriptive system model can provide an integration framework for relating

different, more specialized models (Friedenthal, et al., 2012). There are many different

ways to implement such an integration framework. One such example is the Formal

United System Engineering Development Language, or FUSED (Boddy, et al., 2011).

FUSED is a meta-language specification that is intended to unify nine different languages

(with the possibility of adding more later), including Modelica, SysML, and Excel. The

goal was to make it easier to integrate MBSE practices into existing tools. While the

authors claim that the higher-order grammar used in FUSED is an advantage over UML,

it has only been applied to a limited use case.

In (Eisenmann, et al., 2010), an integration framework is presented which was

created by the European Space Agency (ESA) for virtual spacecraft design. This

framework is built around a reference database, rather than a particular model or

modeling language. The database is used to store all of the design data in a central

location and manage its integration into other tools. Users can use a series of Design

Editor tools built on SysML notation and the Eclipse environment to design and specify a

virtual spacecraft model. The database can also be accessed through the Space Systems

Visualization Tool, which is capable of producing diagrams, 3D model representations,

tables, and charts to help support design reviews and simulations. A prototype of the

environment is available for download for free by users living in a member country of the

ESA (European Space Agency).

An alternative to FUSED and the ESA’s approach is the Systems Lifecycle

Management workspace, or SLIM (Bajaj, et al., 2011). Rather than utilizing a new meta-

 14

language, SLIM proposes a framework built around SysML to integrate different domain-

specific models. Such a framework could be used to integrate any number of domain-

specific models, including CAD models, simulations, or requirements, among others.

Because SysML is focused on system-level architecting and modeling, it can serve as an

acceptable integration framework for many different engineering tasks and tools. The

SLIM technology is available from InterCAX at InterCAX.com.

To integrate SysML with analysis models, formal transformations must be used to

make the tools interoperable. Such transformations have been developed for many

different cases, including SysML to Arena (McGinnis and Ustun, 2009), SysML to

Modelica (Johnson, et al., 2012), and SysML to Simulink (Qamar, et al., 2009), among

others. (Branscomb, 2012) provides a more thorough overview of these many different

model transformations. All of these approaches have one thing in common—they are

designed to integrate existing analysis models with SysML, but do not directly support

the planning and development of those models. The aim of this thesis is to support this

gap in analysis model development. To do so, developing model transformations is only

part of the problem. It is also important to formally manage the knowledge generated

when planning and developing these models.

2.3 Knowledge Management in MBSE

In a traditional document-based approach, each stakeholder works from their own

domain-specific tools and documents that they need to perform their tasks. For a model-

based approach, this necessity remains. Ideally, each stakeholder would only use models

which have been customized to their “view” of the system, in lieu of any documents.

 15

Practically speaking, however, this is not yet possible. Documents and presentations are

still an integral part of the engineering design process. To support this functionality for a

SysML-driven MBSE approach, many tools have been developed that allow users to

generate and modify documents linked to a SysML model.

The most basic functionality needed is the ability to generate documents from a

SysML model. Many tools exist to do so. MagicDraw includes a built-in “Report

Wizard” tool that can be used to generate PDF reports from a SysML model (No Magic

Inc., 2013). It supports the use of text-based templates to generate these documents and

includes a query tool for parsing through different SysML elements and their attributes.

However, using the Report Wizard to generate reports requires that users understand the

Report Wizard user interface, the Velocity Template Language, and the MagicDraw API.

Once the templates are created, they can be reused extensively. However, creating them

initially requires an experienced, expert-level user, which can be a hindrance when first

transitioning to a model-based approach. In addition, information can only be transferred

in one direction. Users can view the reports generated, but any edits to them will not be

reflected by the SysML model.

An alternative to MagicDraw’s built-in Report Wizard is the DocBook plugin for

MagicDraw (INCOSE SE2 Challenge Team for Telescope Modeling). The plugin is built

around the DocBook standard—a mature schema used to capture the structured content of

a document without making any assumptions about what kind of document it is (Walsh,

2011). The plugin for MagicDraw allows users to create a “model” of their document

using a specialized SysML profile. Unlike the Report Wizard, the DocBook plugin

provides its own basic user interface and simplified model queries that can be used to

 16

create a document in SysML and export it to a PDF. However, like the Report Wizard,

information can only flow in one direction; users cannot use these documents to update

the SysML model.

In (Delp, et al., 2013), a different approach is taken to model-based knowledge

management. A much more formal method is used to describe the different views and

concerns of stakeholders. SysML includes “View” and “Viewpoint” elements to model

the perspective and concerns of different stakeholders, but these elements are not

functional. In (Delp, et al., 2013), these elements are redefined and linked to functional

Activity diagrams that describe how to construct each stakeholder’s view. These views

can take many different forms, including pop-up, editable tables, web interfaces, or

exported documents. This work is capable of exporting DocBook XML files, but also

adds the ability to package information in a REST interface that allows users to update

the model from an HTML view. When a large design team is working from a SysML-

based integration framework, the ability to work with user interfaces other than SysML

models and exported documents can be extremely valuable.

However, there are still many gaps remaining. Certain SysML elements or

properties may need to be modified by users without SysML experience, so a user

interface that can support this is desirable. While the environment presented in (Delp, et

al., 2013) is extremely powerful, it is the culmination of years of research and funding.

To transition from a document-based approach to a model-based one, a simpler approach

for supporting different stakeholder views is preferred (at least initially).

 17

2.4 Summary

There are many different methodologies for MBSE and many different possible

applications. However, there is no universal MBSE methodology. No set of tools and

processes can fully address the needs of every specific engineering task. As a result,

either the process, the tools, or both must be customized for each application.

However, the true value of an MBSE approach lies in the quality of the models.

Significant work has been done to create integration frameworks which can unify existing

models into a single framework, but very little research has been done to support the

planning and creation of those models. The remainder of this thesis presents a model-

based approach that can be used to plan and develop complex analysis models within a

large, multidisciplinary engineering team.

 18

CHAPTER 3

ANALYSIS PLANNING AND RELATED PROCESSES

In this chapter, a formal process for planning, developing, and using analysis

models is introduced. This process is modeled in detail in SysML using Activity

diagrams to capture the flow of information and the stakeholders involved. Using these

diagrams, the overall process can be better understood. In addition, mapping activities to

certain stakeholders provides a better understanding of who the ultimate decision-makers

are for each step. Because this approach focuses on planning the analysis models, special

attention is given to that aspect of the process.

3.1 Overview of Integrated Vehicle Analysis Planning and Development

The use of integrated vehicle analysis models is becoming crucial to automotive

engineers wishing to better understand how the vehicle system performs under different

operating scenarios. These models are particularly useful when performing propulsion

system design and optimization. To create these analysis models, it is necessary to first

plan and develop detailed domain analysis models according to vehicle-level goals and

requirements. Once these domain models have been planned, developed, verified, and

validated, they can be integrated together to simulate a complete vehicle. This vehicle

model can then be optimized for key system-level attributes, such as fuel efficiency.

Conclusions drawn from these simulations can be used to support the development of

both physical components and control algorithms for real-world vehicles.

 19

This process of developing detailed analysis models may be performed upstream

of the vehicle’s design and may be used to support different milestones in the vehicle’s

design. Depending on the milestone being targeted, different sets of data or levels of

fidelity may be required to produce an accurate model.

Coordinating all of the different tasks needed to produce an accurate vehicle

model requires developing a thorough understanding of the underlying engineering

processes. To do this, a set of activity diagrams is used to demonstrate how these vehicle

analysis models are developed, from start to finish. Figure 1 shows a high-level overview

of this process. Note that there are three distinct activities shown here: Analysis Planning,

Model Development, and Design Analysis. The focus of our research is on supporting

analysis planning, so that is the focus of this thesis and this chapter, in particular.

However, the latter two phases are also discussed in some detail to give the reader a more

complete understanding of the entire process.

 20

3.2 Analysis Planning Process

The first phase of the process shown in Figure 1 is the “Analysis Planning” phase.

In this phase, the different sets of analyses which are needed to support a given vehicle

development milestone are identified and defined in some detail. In most cases, this

means running a variety of vehicle analyses in order to reach some conclusion. This set of

analyses will hereafter be referred to as a “System Analysis Application Plan”. The

majority of this research is focused around supporting this analysis planning phase, as

many inconsistencies can arise out of the planning process. It is important that the

different teams of domain subject matter experts are all working under the same set of

Figure 1. Simulation development process activity diagram

 21

assumptions and understand what the overall objective of a particular analysis actually is.

To identify these sources of inconsistency and to develop tools and methods to reduce

them, the analysis planning phase is modeled in a more detailed SysML activity diagram.

This diagram is shown in Figure 2. Each activity presented in Figure 2 also includes a

review and approval process. To make the diagrams more legible, the series of reviews is

shown separately in Figure 3.

 22

Figure 2. Analysis planning activity diagram

 23

Figure 3. Activity diagram for analysis planning reviews

 24

3.2.1 Inputs

Figure 2 shows that there are two inputs to the analysis planning process. The first

is the set of potential Vehicle Operating Scenarios (VOS). A VOS is a specific test event

that will be used to execute a vehicle simulation, such as a drive cycle or vehicle launch

scenario. These VOSs include some qualitative details about what the test event is meant

to describe, as well as more quantitative information such as operating ranges and

conditions to which the vehicle may be exposed. Depending on the goal of the overall

system design study, the set of VOSs selected may vary. For instance, if the goal of the

study is only to evaluate fuel efficiency attributes, the set of VOSs may only include

selected regulatory drive cycles.

The second input to the analysis planning process is the program information for

the vehicle being modeled. The program information contains several different details

about the vehicle model to run. First, it specifies which vehicle architecture should be

modeled, such as a traditional internal combustion engine or power-split hybrid

architecture. Second, it describes the control signals available to use.

Note that this program information may also contain unique information about the

types of vehicles to be modeled. For instance, if the analyses are being used to evaluate a

drivetrain that will be used across multiple vehicles, the program information might

include details about different vehicle top hats (body styles) that will need to be

investigated. In addition, many analyses are used to simulate unique subsystem

technologies that have not been used previously or are not well-understood. In this case,

it is important to emphasize those technologies up front and pinpoint changes that may

need to be made to the standard analysis modeling procedures to account for them.

 25

These two inputs—the set of Vehicle Operating Scenarios to consider and

program-specific information about the vehicles to model—can be used to infer many

details about the types of analysis models that need to be run. Using these inputs, a more

detailed plan for the analyses that need to be run can be drafted. This is known as the

System Analysis Application Plan.

3.2.2 Drafting the System Analysis Application Plan

Once the inputs to the analysis planning phase have been evaluated, the next step

is to draft the System Analysis Application Plan. This step is performed by a team of

system engineers, as it requires taking a holistic view of the system design and the related

vehicle attribute tradeoffs that need to be assessed. These system engineers typically

represent a range of different disciplines, such as transmission hardware or engine

controller modeling. In this way, the needs of all of the different domain engineers—who

create the models—may be taken into consideration when the system analysis application

plan is created.

The primary purpose of the System Analysis Application Plan is to identify all of

the analyses that need to be performed to support the design and system trade-offs for a

vehicle or vehicle subsystem. These different analyses are referred to as the “analysis

applications”. Each analysis application is a detailed description of a specific analysis

that needs to be run. This description includes information about the purpose of the

analysis, what vehicle models will be simulated, and which attributes will be looked at.

The full set of analysis applications can be used to investigate the tradeoffs between

vehicle system attributes. There are several different components of an analysis

 26

application that must be defined, and it is extremely important to understand the

relationships between them. Without this understanding, it is possible that the analysis

application specified by the system engineers may be contradictory or confusing.

These relationships are illustrated by the influence diagram shown in Figure 4.

This influence diagram graphically depicts how the two inputs to the analysis planning

phase—the program information and set of vehicle operating scenarios—can be used to

systematically define an analysis application and how the information contained by this

analysis application influences outside elements as well.

In many cases, experienced system engineers should understand these influences

implicitly. However, semantic misunderstandings and simple human error can still lead to

inconsistencies when defining an analysis application. Formally mapping these influences

can be used to better understand how and where such inconsistencies arise. This formal

map can also be used to build a system of checks-and-balances into the user interface

where analysis applications are defined.

Several pieces of information specified for an analysis application do not directly

influence anything else. These elements are shown at the top-left of Figure 4. First, the

analysis application is given a name and short description so that it is clear to domain and

system engineers what each model is intended to represent and why it is needed to

support a particular system study.

 27

F
ig

u
re

 4
.
A

n
al

y
si

s
ap

p
li

ca
ti

o
n
 i

n
fl

u
en

ce
 d

ia
g

ra
m

 28

Second, system engineers define the “Analysis Type” for each analysis

application. The analysis type describes the purpose of the results from each analysis. For

instance, the analysis may be used to check a correlation between simulation models and

physical tests, or to model potential technologies that do not have extensive real-world

test results to assess their utility. While this information is important for the perspective

that domain engineers take when creating analysis models, it does not directly affect any

of the other pieces of information.

The final piece of non-influencing information that must be defined is the

“Milestone” targeted by the analysis. The milestone indicates the stage in the vehicle

development process at which these results should be delivered by. It serves not only as a

deadline for the analysis model’s development, but also implies what level of model

fidelity is required for the analysis. In addition, because each system analysis model must

be verified and validated against different vehicle datasets, the milestone can also be used

to indicate which datasets will be available to use at that time.

Once these three elements have been defined, system engineers can use the

program information to define an analysis application, as shown in Figure 4. The

program information contains details about the complete set of control signals available

on the real-world vehicle at that point in its development. The process of narrowing down

this list of signals to only those needed for an analysis model is performed in an iterative

process by both system and domain engineers. This process is discussed in Section 3.2.4.

System engineers must also be clear about which vehicle tophat and vehicle

architecture to model, as a vehicle program may have many different possible

combinations of these two elements. For example, if a system design study is used

 29

examine a particular drivetrain rather than a specific vehicle model, multiple vehicle

models might need to be constructed to understand all of the different operating scenarios

of that drivetrain. Alternatively, if the goal of a system design study is to examine a

particular vehicle, that vehicle might have several possible architectures, such as a

traditional internal combustion engine version or a full-hybrid version. It is of the utmost

importance that this information is presented explicitly; otherwise it could result in major

inconsistencies between the models that domain engineers produce.

The analysis application must also identify the vehicle-level attributes to be

evaluated. Examples of vehicle-level attributes include fuel efficiency, electric drive

range, or emissions, among others. One or several of these attributes may be targeted by a

particular analysis application.

The second input to the analysis planning phase is the set of available VOSs to

model. By knowing the attributes to examine and the system architecture and vehicle

tophats to model, system engineers can narrow down this list of VOSs. Certain VOSs

may be used for different vehicle architectures (such as special drive cycles for electric

vehicles), different vehicle tophats (such as towing simulations for trucks and SUVs), or

different vehicle attributes (such as EPA drive cycles for testing fuel efficiency). It is

critical to define these pieces of information up front, so that only valid VOSs can be

chosen for analysis work.

Finally, system engineers may also need to identify subsystem content that should

be modeled, such as the engine or transmission type. This content is included as part of

the program information, but depending on the analysis application, may or may not need

to be modeled for a given analysis.

 30

Once system engineers have defined the pieces of information denoted as

“Defined in Analysis App.” in Figure 4, the analysis application can be used to select a

“Reference Architecture” and “Analysis Template”. This is shown by the outputs of the

“Draft System Analysis Application Plan” activity in Figure 2. Using these two

resources, system engineers can draft a set of vehicle model requirements and use them to

create a specialized analysis architecture. These two tasks are discussed together in the

following section.

3.2.3 Vehicle Model Requirements and Analysis Architecture

Using the analysis application defined in the previous step, system engineers can

draft a set of requirements for the vehicle system model. This includes specifying the

computer and operating system that the model should be run on, which solvers and file

formats to use, what language(s) the model should be written in, etc. These requirements

are used to drive the development of the individual domain subsystem models, whose

requirements are defined later. Part of this process also involves using a reference

architecture and analysis template to define the vehicle model’s structure.

A reference architecture is an extremely useful resource for a complex,

multidisciplinary process such as vehicle system analysis. Reference architectures

provide a holistic view of a system and allow different stakeholders to work together

from a common vehicle system definition. Many different reference architectures exist

for capturing vehicle architectures. AUTOSAR, for instance, is the product of an

industry-wide effort to produce a standardized architecture for controls design and

 31

development that can be used among major OEMs and their suppliers (AUTOSAR,

2013).

For our approach, a reference architecture developed internally at Ford Motor

Company is used. This reference architecture is known as the Vehicle Model

Architecture, or VMA. There were two primary motivations behind the creation of the

VMA. First, like AUTOSAR, the VMA allows models to be exchanged between different

organizations under a common format. Second, the VMA simplifies the process of

modeling different system configurations. The VMA contains a hierarchical breakdown

of the different subsystems contained within a vehicle. In addition, the primary physical

interfaces between all of these subsystems are specified. Because this common set of

domain-to-domain interfaces is used, different subsystem models (such as different

engine models) may be more easily interchanged within the same vehicle architecture

(Tiller, et al., 2003). A SysML representation of the VMA is presented in Section 4.1.1.

Using information about the analysis application, such as the type of vehicle

being modeled and vehicle operating scenarios to use, system engineers can create a

specialized version of the reference architecture to build their analyses around. This is

known as the “analysis architecture”. An analysis architecture captures only the set of

interfaces and hierarchy of domain models needed for a particular analysis. Starting from

a given reference architecture such as VMA, a finite set of generic analysis architectures

can be pre-specified for most common analysis applications. The same analysis

architecture can potentially be modified to address several combinations of vehicle

operating scenarios, vehicle-level attributes, and types of analyses, so there are

 32

significantly fewer analysis architectures than there are combinations of analysis

attributes.

Despite the broad range of applications that an analysis architecture can address,

it is still necessary to specialize this generic analysis architecture for each vehicle

program. Creating a specialized analysis architecture is performed by adding the

program-specific set of control signals and making any changes to the analysis

architecture that may be needed to capture the unique subsystem content. The process of

selecting these signals is discussed in the following section. Once a specialized analysis

architecture has been developed, it can be passed to domain SMEs to use as the basis for

their analysis models.

3.2.4 Requesting Control Signals

For each analysis application, domain engineers must identify the control signals

that they anticipate will be needed to execute their analysis models. The initial program

information provided to them includes details about the control signals available at that

time. Depending on the phase of vehicle development at which this occurs, domain

engineers may have the ability to request new signals that they believe they will need to

execute their models. At later phases of vehicle development, however, the signals used

in analysis models will be fixed as they begin to represent the signals used in the actual

vehicle. In addition, analysis models created to support later development milestones may

be used for hardware-in-the-loop (HIL) testing and to support code generation for control

units, so correctly modeling the real-world set of control signals becomes crucial.

 33

Defining the list of control signals to use in an analysis model is an iterative

process. Domain engineers must specify both the control signals that they need and the

control signals that they plan to provide from their models. In addition, they may request

new signals that they believe should be available. This complete list of signals is then

reviewed by the team of system engineers, who negotiate with each team of domain

engineers to develop a consistent set of signals for the entire vehicle. These system

engineers must negotiate with both the domain engineers who will provide certain signals

and those who will be receiving those signals, so that all of the analysis models can

interface correctly. Because this is an iterative process, it may require several rounds of

negotiations with all of the different teams of domain engineers before a vehicle-wide set

of control signals can be agreed upon by everyone involved. Tools such as signal

databases are used to capture this information in a central location. However, because the

full list of control signals for a vehicle model can be quite large, it is still possible that

inconsistencies can arise if this list is not checked extensively.

3.2.5 Domain Model Requirements

Once an analysis application and set of vehicle requirements have been defined,

the team of system engineers develops a set of requirements for each domain model that

will be created. These requirements are first created by the system-level team to ensure

that any assumptions made at the vehicle level will also be reflected by each domain

model. In addition, this holistic view allows the team of system engineers to establish

computational restrictions on the analysis models. This may include defining the

operating system that models should be compatible with, which simulation environments

 34

will be used to run the integrated vehicle model, and any other guidelines that the domain

model should comply with.

In addition, system engineers can also add more domain-specific requirements at

this stage, such as a particular engine that should be modeled. Once all of the domain

requirements have been created, they are then sent to their respective domain engineers

for review. After the reviews are complete and all parties are in agreement, the

requirements are sent back to the domain engineers, who use them to create a set of

domain model specifications.

3.2.6 Domain Model Specifications

Once the domain model requirements have been created by the system engineers,

domain engineers are responsible for developing their own set of specifications for the

analysis models they plan to create (as shown by Figure 2). These model specifications

are intended to capture more detailed information about how they plan to create, verify,

and validate their respective domain models. This includes identifying specific data sets

that will be necessary, how that data will be processed and used, and the desired fidelity

of the model. Detailed plans to verify and validate the models are also needed so that the

accuracy of the domain models can be confirmed before they are integrated into a

complete vehicle model. Although problems can still arise when integrating these

models, preliminary verification and validation at the domain-level can eliminate some of

these problems.

To create this set of domain model specifications, domain engineers must work

from the information defined by the team of system engineers. This information includes

 35

system-wide criteria defined by the analysis application, as well as their domain-specific

requirements. While domain engineers can view this information, they do not have the

authority to directly modify any of it. This distinction is important and is made at several

other steps throughout this process. By identifying who has the ultimate authority to

make decisions during different phases of the modeling process, the software tools

created to support it can be tailored to different users. Once the domain specifications

have been reviewed and approved by the system engineers, the analysis planning phase

can be concluded.

3.2.7 Vehicle Model Specifications

Like the domain models, each vehicle model also has its own set of specifications.

However, their purpose is somewhat different. While the domain model specifications are

intended to specify what kind of model to create, the vehicle model specifications specify

how all of those domain models will be integrated. This complete process which defines

how a vehicle model should be assembled and tested is known as the “integration plan”.

Its use is discussed in more detail in Section 3.3.2.

3.2.8 Outputs from Analysis Planning

There are three primary outputs from the analysis planning phase. The first is the

set of domain model specifications created by the domain engineers. These domain

model specifications are essentially the product of all of the work done in the analysis

planning phase, and should provide enough background information for the domain

engineers to create their analysis models.

 36

The second two outputs are related to the vehicle model itself—the vehicle model

specifications and the I/O templates, as shown in Figure 2. These I/O templates are model

templates in either Modelica or Simulink (for plant or control models, respectively) that

the domain engineers must fill in with their model content. Each template has a

predefined set of interfaces so that it may correctly integrate with the other domain

models. The set of interfaces modeled is derived directly from the details of the

specialized analysis architecture.

One benefit of adhering to the domain/vehicle model specifications and I/O

templates is that it allows a repository of analysis models to be built up around a common

format. Once this repository has been built up, it becomes possible to more easily search

through existing models and their documentation—at both the domain and vehicle

level—to find models that can be reused or modified to address new analysis

applications. With a large enough repository, this can significantly reduce the time and

cost needed to create an integrated vehicle analysis model.

3.3 Model Development Process

Once the specifications for each domain model have been defined and the set of

I/O templates has been generated, domain engineers can begin work developing their

system analysis models. This process is illustrated by Figure 5. The I/O templates used in

this process contain no content other than a pre-defined set of primary interfaces; the

content of the models is left to the domain engineers.

Supporting and improving the model development process was the primary focus

of previous work by Branscomb et al. (Branscomb, 2012, Branscomb, et al., 2013). The

 37

authors used a slightly simplified model development process, whereby plant and control

models were assumed to be created exclusively in Modelica and Simulink, respectively.

This assumption is carried throughout our approach as well, as it is representative of the

majority of modeling work being considered. Rather than discussing each activity

presented in Figure 5, the broader responsibilities of the two actors (shown by the

DomainEngineer and SystemEngineer swimlanes) are discussed in this section.

Figure 5. Model development Activity diagram

 38

3.3.1 Domain Engineer Swimlane

The model development process, unlike the model planning process, starts with

the domain engineers. Once an analysis model has been created, verified/validated, and

reviewed, the model must then be documented. The model created should adhere to the

set of specifications defined before its development; if deviations from the specifications

are necessary, the specifications must be updated, reviewed by the team of system

engineers, and approved, before continuing that model’s development. The

documentation for each model does not duplicate this information, as doing so could

potentially result in inconsistencies between this information and the model

specifications.

Instead, it is primarily used to describe the results of the verification and

validation efforts. In addition, the documentation for an analysis model contains some

administrative information, such as who created the model or who to contact to get a

copy. The documentation typically also includes some instructions for how to use the

model and for what applications it is intended. In some cases, a single analysis model

may be used to meet multiple sets of requirements and specifications. When this occurs,

the documentation should also include references to any sets of model requirements and

specifications to which it adheres.

3.3.2 System Engineer Swimlane

Once each team of domain engineers has created, verified, and validated their

analysis models, these models are handed off to a system engineer who is responsible for

integrating the domain models to produce a complete vehicle model. The system engineer

 39

also receives the vehicle model’s specifications, as shown by the input parameter in

Figure 5. The most important component of the specifications is the integration plan for

the vehicle model. The integration plan describes the order in which domain models

should be integrated and how they should be verified and validated at each step along the

way.

The integration plan may call for intermediate subassemblies to be created and

tested, rather than immediately creating the complete, integrated vehicle model. By doing

so, it is easier to identify problem areas in domain models as these subassemblies are

built up. When necessary, domain models may need to be updated and the integration

process restarted. Once the completed vehicle model has been created and approved by

the team, it is documented and passed on to the next phase of the process, the Design

Analysis Phase.

3.4 Design Analysis Process

The third and final phase is the “Design Analysis Phase”. This phase is not

addressed by this thesis or in previous work by Branscomb et al., but it is worth

introducing at a high level. The goal of this phase is to execute one or more analysis

applications and use the results to improve the system design of the vehicle. This may

involve performing a design of experiments on different vehicle attributes or an analysis

of different system alternatives, whether at the vehicle- or subsystem-level. Once this has

been completed, the conclusions drawn from these results can be saved, documented, and

delivered to other engineers to use in the engineering design process of the real-world

vehicle.

 40

3.5 Applying MBSE to Analysis Planning

With the components of the analysis planning phase formally defined, the next

step is to identify how MBSE principles can be applied to make the process more

efficient. Again, one of the issues with MBSE is that there is potentially a substantial cost

associated with it, and the benefits may not be quantifiable or even necessarily obvious.

To add value to this process, an approach is needed which would not require significant

capital to implement. Previous work by Branscomb et. al made steps towards a model-

based approach for the model development phase, but much of the analysis planning

phase still required a document-based approach.

To address this, our approach aims to capture the knowledge generated during the

analysis planning process using MBSE principles. By doing so, the time required to

manually create, update, and communicate this information can be significantly reduced.

In addition, by using models to link the analysis planning phase to the model

development phase, a comprehensive repository of models and their documentation can

be more easily created and maintained. Chapters 4 and 5 present the models and tools

developed to support this approach in much greater detail.

 41

CHAPTER 4

INFRASTRUCTURE FRAMEWORK

This chapter proposes a set of models and tools intended to be used to support the

analysis planning process introduced in Chapter 3. These models and tools will

henceforth be referred to as the “infrastructure framework” for our approach. The

infrastructure framework includes a SysML model used to capture both the vehicle model

architecture and the analysis artifacts needed to support its development. In addition, a

template engine is used in Excel which is capable of importing data about the SysML

model in the form of an XML file and producing a unique spreadsheet for engineers to

input information. This infrastructure framework is capable of aiding the transition to

MBSE practices by presenting a familiar user interface to stakeholders and using formal

SysML models to minimize inconsistencies that may arise during the development of a

multidisciplinary analysis model.

4.1 SysML Model

This section presents the different SysML models which have been created to

support analysis planning and development. These SysML models can be used to

understand information about the vehicle itself, such as the relationships between

different domains, as well as the different information elements needed to fully plan and

describe the models being created. By capturing all of this information using the common

set of semantics that SysML provides, the entire analysis modeling process can be more

easily understood by all stakeholders involved.

 42

4.1.1 Reference Architecture

A Vehicle Reference Architecture (VRA) is modeled in SysML to capture the set

of physical interfaces and logical hierarchy of a vehicle architecture. The goal of the

VRA is to create a structured model which can be used to not only present and

understand the vehicle architecture, but also more practically, to generate a set of model

templates in Modelica and Simulink with a predefined set of interfaces. In this way, the

potential for inconsistency when creating a multidisciplinary vehicle model can be

minimized in many respects when analysis models from across many domains are

integrated.

This reference architecture conforms to a version of the Vehicle Model

Architecture Version 3 (VMA v3) specification, which is still under development.

Currently, the set of interfaces in VMA v3 is not fully defined, so modeling efforts are

focused around capturing the interfaces known for the propulsion system and developing

modeling patterns that can be followed once the VMA v3 specification is finalized.

Creating this reference architecture is not the primary focus of this work; many of the

decisions, details, and challenges of modeling the VRA are discussed by (Branscomb,

2012, Branscomb, et al., 2013). However, the previous iteration of the VRA used both an

older VMA specification and SysML specification. As a result, many model elements of

the previous VRA are updated and modified. In addition, some previous modeling

decisions have been changed, which are also worth noting.

The current iteration of the VRA introduces a new domain element hierarchy, as

shown in Figure 6 below. At the highest level of the hierarchy is the VehicleDomain

block, which encompasses both the vehicle (ICHEVVeh) and the environment (Env) with

 43

which it interacts. The vehicle is broken down into six subsystems: Power (Pw), Chassis

(Cha), Vehicle System Controller (Vsc), Cabin (Cabn), Air (Air), and Climate (Climt).

Note that at this level of detail, this hierarchy would be consistent across any vehicle

architecture (such as either a hybrid-electric or battery-electric vehicle). However, in

order to define the interfaces in more detail, each vehicle architecture must currently have

its own Vehicle Reference Architecture model in SysML. The current SysML

specification does not natively support variants, so an all-encompassing VRA which

captures all of these potential vehicle architectures would be both time-consuming to

create and unwieldy to use. In addition, because the VMA v3 specification is still in

development and the interfaces are not completely defined, such an effort is not yet

possible. Instead, a single, semi-complete VRA is used in SysML to model a traditional

hybrid vehicle. This VRA model serves as the foundation for the tools and methods

developed to improve the analysis planning process.

All of the subsystems and their components in the VRA, with the exception of the

Vehicle System Controller, are composed of both a plant element and a control element.

Plant and control elements are denoted in the SysML model by appending either “Plnt” or

“Ctrl” to the element names, respectively. These plant and control elements are all

specializations of the generic “Plant Element” and “Control Element” blocks shown in

Figure 7.

 44

F
ig

u
re

 6
.
V

eh
ic

le
 D

o
m

ai
n
 H

ie
ra

rc
h
y

 45

Figure 7. Generic plant and control elements

These elements are used to model the generic set of control signal buses for

control and plant elements. For control elements, there are three proxy ports to consider.

The first two, global control in and global control out, are used to model the signals sent

and received between the control element and the global CAN bus, respectively. The

second proxy port, local control bus, represents the signals passed between the plant and

control element within a single domain. This port has two nested ports. The first, actuator

signal out, refers to signals sent to actuators in the complementary plant element.

Similarly, sensor signal in refers to signals sent to the control element from its related

domain element. For plant elements, these local ports are reversed. On the local control

bus for plant elements, actuator signals are received and sensor signals are sent. Because

knowledge about these signals is unique to each vehicle program and tends to evolve as

the vehicle design becomes more detailed, the control signals needed for a particular

analysis model cannot be known entirely in advance. As a result, a Vehicle Reference

Architecture cannot capture all of the control signals that might be used for an analysis

model like it can for physical interfaces. Instead, placeholders are used in the VRA so

 46

that these signals may be added later to the Specialized Analysis Architecture. This is

discussed further in Section 4.1.4.

An example of the decomposition of the “Propulsion” domain into its respective

sub-domains and their plant and control elements can be seen by Figure 8 below. Note

that the Prp block also owns Trn, Eng, Dln, Exh, and Fuel, but those relationships are not

shown in this diagram.

In the VMA specification, physical interfaces are fixed and well-understood for

the plant elements. However, VMA v3 introduces significantly more physical interfaces

to the architecture than in VMA v2. As a result, port nesting is implemented to organize

the interfaces in SysML. Because the interfaces defined in the VMA specification refer to

energy exchanges rather than physical connections, proxy ports are chosen to represent

them in SysML. Proxy ports do not represent physical parts of a system like full ports;

Figure 8. Propulsion system decomposition

 47

instead, a proxy port is used to expose “features of either its owning block or parts of that

block” (Friedenthal, et al., 2012). In this case, the “features exposed” refer to the types of

energy being exchanged between two domains.

To organize the substantial number of interfaces defined by the VMA v3

specification, ports are grouped according to which two domains are interacting. An

example of this is shown in part by Figure 9. In this figure, a single connector is used to

define the connection between the engTrn and trnEng ports on an engine plant and

transmission plant, respectively. Both ports are typed by an EngTrnIF interface block.

The definition of the EngTrnIF interface block is provided by Figure 10, which

defines two internal proxy ports, work and thrml, to capture rotational and thermal energy

exchanges, respectively. In addition, the figure also shows an association block,

EngTrnInct, which is used to define the connection between two “EngTrnIF”-typed ports.

Using this association block, an IBD is created to model the connectors between the

nested ports, as shown by Figure 11. Creating these three diagrams provides a complete,

formal method for modeling a nested set of physical interfaces. Through the use of

hyperlinks to navigate between these diagrams in MagicDraw, it also serves as a useful

interface for examining and analyzing pieces of the VRA model in increasing levels of

detail. This pattern is repeated to capture all of the known interactions between domains.

Figure 9. Propulsion plant IBD

 48

4.1.2 Analysis Artifacts

A substantial amount of information must be generated and organized in order for

analysis models to be properly planned, developed, and run. This may include details

about the kinds of analyses to be run, the requirements and specifications for each

domain model or complete vehicle model, or the documented results of the analyses. This

broad category of information produced during analysis modeling will be referred to as

the “analysis artifacts”. To better organize the analysis artifacts and the information that

Figure 10. Definition of connection between Engine and Transmission

Figure 11. EngTrnInct IBD

 49

they contain, they are formally captured in a SysML model and linked to the VRA. In

most cases, this information is stored as instance data inside a SysML package created for

each analysis.

The analysis artifacts modeled are adapted from existing documents used during

the analysis model development process (Jennings 2013). Some elements were removed

and other elements added to better support the approach proposed by this thesis. Each

information element is classified based on several categories. First, each is categorized

based on whether the information should belong to the model requirements,

specifications, or documentation. In addition, each is grouped according to whether it

pertains to domain models, vehicle models, or both. Finally, where possible, a finite list

of options is defined for information elements in order to restrict the possible user inputs

and to limit ambiguity. For instance, the VOS used to drive a particular analysis may be

selected from the set of operating scenarios imported before defining the system analysis

application plan (see Chapter 3). In some cases, these lists of choices may vary from

domain to domain, so specialized analysis artifact models are used where needed. It is not

the goal of this research to completely define these lists of choices, but rather to provide

the framework for more experienced users to do so. These analysis artifact models are

presented in more detail in Chapter 5.

4.1.3 Analysis Templates

Analysis models typically will not use the full set of interfaces available from the

VRA. To define the interfaces needed for a particular analysis (such as a fuel efficiency

 50

study), it is necessary to identify the specific ports which will be used in an analysis

model. To do this, SysML “analysis templates” are defined in advance.

An analysis template is modeled as a block in SysML which has dependencies to

the ports needed for a particular vehicle analysis. It is possible to create these

dependencies manually on a BDD, but the number of ports and their nesting in the VRA

makes this process incredibly tedious. Instead, dependency matrices are used to manage

the analysis templates and their dependencies. An example of one of these dependency

matrices is shown by Figure 12. Each column corresponds to a particular analysis

template, while rows are used to show all of the ports modeled in the VRA. The version

of MagicDraw used for this thesis (17.0.4) allows these matrices to be set up such that

users can easily double-click in a cell to create a dependency between an analysis

template and a port. This makes the process of capturing analysis templates in a SysML

model much more straightforward than in previous efforts (Branscomb, 2012). A set of

analysis templates can pre-defined for each VRA, as the same set of interfaces can be

reused across many different analysis applications. Consequently, this also allows the

possibility for domain models to be reused across multiple analyses.

 51

4.1.4 Specialized Analysis Architecture

A specialized version of the Vehicle Reference Architecture is created in SysML

for each vehicle analysis that needs to be run. This is referred to as the Specialized

Analysis Architecture. The Specialized Analysis Architecture has two components—a

specialized copy of the VRA, and the analysis artifacts needed to define it. The

specialized copy of the VRA includes only the subset of ports specified by a particular

analysis template. Ports that will not be used to run the analysis are excluded so that the

Specialized Analysis Architecture more accurately reflects the analysis models to be

Figure 12. Analysis template dependency matrix

 52

created. A custom plug-in for MagicDraw is used to generate this Specialized Analysis

Architecture automatically by copying the VRA and deleting any ports that do not have

dependencies to the analysis template specified. Additionally, any domain elements

which have all of their ports and parts deleted are also removed from the analysis

architecture, so that only the relevant domains are included. An example of the

transformation from the VRA to a Specialized Analysis Architecture can be seen in the

transformation from Figure 13 (the vehicle reference architecture) to Figure 14 (the

specialized analysis architecture). In this example, only the Engine and Transmission

models are assumed to be needed for the analysis. All extraneous ports and unneeded

domain models are automatically removed when creating the Specialized Analysis

Architecture.

Figure 13. Propulsion plant IBD in VRA

 53

Figure 14. Propulsion plant IBD in Specialized Analysis Architecture

To fully specialize the analysis architecture, it is also necessary to import the

unique set of control signals that will be needed to run a particular analysis. Placeholder

proxy ports, as shown in Figure 7, are modeled on plant and control elements such that

they can be specialized once this set of control signals is known. However, the methods

and standards for specializing these ports are not yet finalized, and as a result, are not

considered as part of this work.

Once the specialized analysis architecture is created in SysML, it is used to

generate a set of blank model templates for Modelica. A representation of the complete

Modelica vehicle model is modeled alongside the VRA in SysML using stereotypes from

the open source SysML-Modelica profile (Object Modeling Group, 2012). The plugin

used by (Branscomb, 2012) to generate Modelica templates from MagicDraw is modified

to accommodate the port nesting introduced in Section 4.1.1.

To map the relationships between the VRA and the Modelica elements,

association blocks are used to map the correspondence between a SysML element and its

Modelica representation (modeled using the SysML-Modelica stereotypes). Note that

these relationships are only modeled for plant elements; control elements are intended to

 54

be modeled in Simulink. An example of one of these correspondences for the complete

vehicle model is shown in Figure 15. The VRA is shown by the ICHEVVeh block on the

left; its Modelica counterpart is shown by the ICHEVVehModelica block on the right,

which also has a <<ModelicaModel>> stereotype. The AnalysisCorrespondence

association block is used to map the correspondence between the two and their part

properties.

These correspondences are modeled at each level of the VRA hierarchy so that

the correct part property hierarchy can be traced and maintained. Using IBDs for each

association block, the relationships between a system’s part properties is modeled using

connectors. Figure 16 shows a simplified example of this for the power system owned by

the vehicle. The Modelica model is shown by the analysis:ICHEVVehModelica element,

while the VRA model is shown by the structure:ICHEVVeh element.

Figure 15. Analysis correspondence between VRA and Modelica model

 55

The second component of the specialized analysis architecture is the set of

analysis artifacts which describes the analysis that is to be performed. This includes

information about what kind of vehicle analysis will be run, the requirements and

specifications for the domain-specific and vehicle models, the plans for validating and

verifying the analysis results, and documentation of the analysis results themselves.

These artifacts are modeled alongside the SysML VRA, such that the relationships and

ownership of particular sets of information can be formally captured. This approach

allows a repository of analysis architectures and the information about how and why they

were created to be stored within a SysML model.

To fully understand these analysis artifacts and the information they contain, it is

also necessary to understand how information is built up throughout the model

development process, and who has the ultimate authority to author pieces of that

information. To address this, tools were developed to add functionality to Views and

Viewpoints in SysML.

Figure 16. Analysis correspondence IBD

 56

4.1.5 Views and Viewpoints

In SysML, Views and Viewpoints can be used to model the perspectives of

different stakeholders and their interests. A viewpoint describes a particular perspective

of interest to a set of stakeholders, while a view is a stereotyped package that is said to

conform to a particular viewpoint (Friedenthal, et al., 2012). While viewpoints in SysML

include properties to identify the stakeholders, their concerns, and even the methods used

to establish the view, there is no functionality currently associated with these two SysML

elements.

A group at OMG is attempting to establish a standardized approach for generating

views from SysML models, but there is no established timeline for its adoption into the

SysML specification (“Auto-View Generation Working Group Wiki”, 2013). However,

by taking advantage of external software tools and SysML’s inherent extensibility,

customized approaches can be developed to add such functionality. As mentioned in

Section 2.3, work has been done by groups at JPL, for instance, to allow for the

generation of both web- and document-based tools using Views and Viewpoints in

SysML (Delp, et al., 2013).

Our approach can also support the generation of a user interface from a SysML

model. In this approach, the capabilities of Views and Viewpoints are extended through

Java plugins so that they can be used to export stakeholder-specific information about the

SysML model to XML files. Viewpoints are used as filters—they use dependencies to

point to specific metaclasses or stereotypes that elements must have in order to be

exported to XML. Views, which conform to a particular Viewpoint, are used to specify

the packages and specific elements that should be filtered. Once these elements have been

 57

filtered, they can be exported to an XML file. This XML file is then used to generate a

stakeholder-specific user interface, but does not place any constraints on how that

interface must be constructed. An Excel user interface is used, as discussed in Section

4.2. In this way, only the information considered pertinent to that stakeholder must be

processed by the user interface; extraneous information is excluded. An example of this

use of Views and Viewpoints is shown in Figure 17.

In Figure 17, the InstanceInfo viewpoint has dependencies to three metaclasses:

InstanceSpecification, Slot, and InstanceValue. This viewpoint can be used to export any

SysML elements that are derived from these metaclasses. The view shown in this figure,

InstanceView, conforms to this Viewpoint. In addition, it has a dependency, with an

<<import>> stereotype, to the InstanceData package. Using the software plugins

developed for our approach, this InstanceView can be used to export all of the instance

data contained by the InstanceData package to an XML file.

The advantage of this approach, which may not be entirely obvious from this

trivial example, is that it leverages SysML’s visual capabilities to allow users to export

specific collections of information from the model. Rather than modifying Java or Python

scripts to change how information gets exported, users need only drag a few elements

onto a diagram and create dependency relationships between them. Several additional

capabilities are added to make this use of views and viewpoints more intuitive to SysML

users; these are discussed in more detail in Appendix A.

 58

Figure 17. View/Viewpoint definition for exporting instance data

4.2 User Interface

One issue that arises when using a SysML model to handle the many different

analysis artifacts is that SysML tools, such as MagicDraw, are not particularly efficient

when it comes to entering, modifying, and viewing large sets of information. To develop

an effective user interface, it is necessary to first identify the capabilities that are most

desirable to end-users unfamiliar with model-based systems engineering and its related

tools. From there, existing solutions can then be evaluated and considered, or a custom

solution can be created to meet the needs of the various stakeholders being considered.

 59

4.2.1 Desired Capabilities for a User Interface

There are several characteristics of an effective user interface that were identified.

Although SysML tools like MagicDraw meet some of these requirements on their own,

the costs to train users to use SysML, to modify existing workflows and processes, and to

purchase licenses can seem prohibitively high if the benefits of doing so are not

immediately obvious. To address these concerns, a set of desired capabilities were

outlined that an effective user interface should possess. These capabilities are presented

below in order of their relative importance to our approach.

Interface with SysML model

The first capability desired for the user interface is that it be capable of interacting

with the SysML model discussed in Section 4.2. This means allowing users to view

information about the model, modify it, or add new information. Although SysML tools

such as MagicDraw obviously provide the ability to create and modify SysML models,

this requires that the users have a sufficient understanding of SysML and its semantics.

Otherwise, allowing large numbers of users to interact with the same SysML model

directly can introduce as much inconsistency as traditional document-based approaches if

users misuse SysML elements or if user permissions are not strictly regulated.

MagicDraw also is not particularly efficient when entering large amounts of data.

Because analysis artifact data is stored as instances in the VRA SysML model, it can be

extremely tedious to view and edit such data without specialized tools.

 60

Familiar to stakeholders

Another capability desired is that the user interface should be familiar to as many

stakeholders using it as possible. Training and licenses for SysML tools can be

expensive, particularly when needed for many different teams of engineers. By providing

a user interface that is already familiar to stakeholders, or at least simple enough to learn

without extensive training, many of these costs can be significantly reduced.

Customized for stakeholders

In addition to being familiar to stakeholders, an ideal user interface should also be

customizable for particular individuals or groups of stakeholders. These stakeholders may

need to view different sets of information to perform their tasks and may need to interact

with the SysML model in different ways. It is important that the user interface selected

can be customized to these different needs.

Enumerated lists

The ability for users to select from a list of options is a seemingly minor yet

immensely important capability. Because creating full-vehicle simulations is a

multidisciplinary process, it is important that the same set of semantics be used across

different teams of domain experts when possible. By limiting large groups of users to the

same vocabulary and set of options where possible, inconsistencies arising out of

miscommunication or misinformation can be reduced significantly. This can be

accomplished using any number of common graphical user interface elements, such as

dropdown menus, radio buttons, or checkboxes.

 61

Consistency checking

It is also important that the user interface have some notion of automated or semi-

automated consistency checking in order to make sure that the inputs provided by

different stakeholders are consistent. Parsing and comparing long strings of text is

obviously beyond the scope of this research, but it would be advantageous to check if

different options selected from dropdown menus or checkboxes are consistent with one

another. For instance, if a user specifies that an analysis should examine attributes

typically associated with a fuel efficiency vehicle model, the user interface would ideally

prevent the end-user from selecting unrelated options associated with cabin comfort

models.

4.2.2 Excel Template Engine

Excel is already used extensively by both domain and system engineers during the

analysis planning process. To ensure a minimal impact on current workflows, it was

considered to be the most desirable choice for a user interface. However, on its own, it

does not have all of the capabilities outlined in Section 4.2.1.

To address some of these concerns, a template engine created for Excel adds the

ability for users to auto-generate user-forms based on special templates defined directly

in Excel spreadsheets. This template engine was written to be fairly generic, such that if a

new kind of user-form is desired or if an existing one needs to be reformatted, it can most

likely be done without requiring any VBA or Java code to be updated. Note that only a

small number of administrative-level users would be required to create and modify these

templates; the majority of the stakeholders introduced in Chapter 3 would only interact

 62

with spreadsheets that had been pre-generated for them. In this way, generating these

user-forms requires only knowledge of how the template engine and SysML models

interact, rather than an extensive programming background and understanding of the

underlying code.

The template engine first imports an XML file which is generated by exporting

Views from a SysML model, as discussed in Section 4.1.5. This XML file is then mapped

to its own spreadsheet in the workbook. On the sheet in which the user-form will be

generated, “commands” can be specified in either the first row or first column of the

sheet to process XML elements.

These commands can be used to different effects. They can be used to specify

which properties from the SysML model should be presented as fields for the user to

enter information. Commands can also denote which pieces of information should be

presented for users to view in a spreadsheet, but not change. In addition, they can be used

to specify how these pieces of information should be imported back into the SysML

model—such as importing fields as instance data or modifying existing elements. In this

way, the notion of Ownership versus Viewership of information can be built into the user-

forms, rather than relying on users to adhere to these rules on their own.

A command has two components. An example of a command is shown by Figure

18. The first component is the reference, shown on the right after the two colons. The

reference is used to find a particular SysML element by some attribute, whether it be its

name, ID, or type (in the case of properties). In the template engine, a reference is

formatted as an XML element with an element type and any number of attributes. In the

example shown below, the reference points to a “property” whose name is “color”. The

 63

second component of a command is the action, shown to the left of the colons. The action

tells the template engine what to do with the SysML element that it finds. For instance,

the action might tell the template engine to create a user field based on a SysML element,

to export a row or column as instance data, or to present some information for the user to

see while they fill out other fields. In the example presented, the action “FIELD” tells it

to create a field using the property pointed to by the reference.

Figure 18. Example of a command in the Excel template engine

In this simple example, the reference points to the color property (typed by the

ColorKind enumeration) defined in Figure 19. Once the command has been processed as

a “FIELD”, as specified by the action, a dropdown menu will be created in the Excel

spreadsheet. The enumeration literals specified in the SysML ColorKind enumeration

map directly to the choices available in the dropdown menu, as shown in Figure 20.

Figure 19. Simple BDD defining a block and enumeration

 64

Figure 20. Excel dropdown menu generated by template engine

Although this example is trivial, the template engine can be extremely powerful

when used to interact with a complex SysML model. Using these commands in concert

with XML files exported from SysML, an administrative-level user can create reusable

Excel templates which allow different stakeholders to view and modify a central SysML

model. Updating the spreadsheet to reflect changes to the SysML model is as simple as

importing the most up-to-date XML file from the model. A more detailed discussion of

how this template engine works is presented in Appendix B.

4.2.3 Excel User Interface Additions

The template engine on its own can automatically create the data fields for users

to input information, but there are additional capabilities that were added to make the

user-interface more accessible and user-friendly. These auxiliary capabilities are

presented below, in no particular order.

Multi-selection in dropdown menus

One feature that Excel drop-down lists do not natively support is the ability to

select multiple options. This is an extremely important capability to have. Many data

 65

fields in the analysis artifact documents allow, and in some cases require, multiple

choices to be selected. When a user selects multiple options, they appear as a comma-

separated list in the cell that the user is entering information. This capability is enabled

automatically if the dropdown menu created by the template engine is linked to a SysML

property with a multiplicity of “0..*”. An example of this is shown by Figure 21, where

multiple vehicle attributes have been selected to examine for a particular analysis.

Context-specific dropdown menus

While dropdown menus and enumerated lists can significantly reduce

inconsistencies that may arise when planning analyses, it is still possible that certain

options selected may contradict one another. To address these concerns, a feature is

included in the user interface which can automatically limit the options available to the

user. To map how different fields in the user interface relate to one another, dependencies

are used in SysML. An example of such a set of dependencies is shown by Figure 22.

Figure 21. Multi-select capability in Excel

 66

Figure 22. Example of dependencies defined in BDD

In this example, dependency relationships are drawn between enumeration

literals—from Apple and Tomato to Red, and from Broccoli to Green. This implies, for

instance, that the ability to select Apple is contingent on selecting the Red enumeration

literal. If another enumeration literal is selected to which does Apple not have a

dependency, then Apple cannot be selected by the user. Note that managing these

dependencies in BDDs can quickly become confusing; it is much simpler to add and

modify them through dependency matrices in MagicDraw.

Like other elements in the SysML model, these dependencies can be chosen for

export to the Excel user interface through the use of Views and Viewpoints. Using this

capability, inconsistencies can be prevented by only permitting users to select valid

combinations of choices.

Supplemental tooltips

While the added capabilities of dropdown menus can help to bridge the semantic

gaps between multidisciplinary teams of domain experts, it is still possible that the Excel

user interface may seem ambiguous or confusing to the end-user. Traditionally, sets of

 67

reference documents would be used to define any unclear sets of terms. However, such

documents can quickly become obsolete as the user interface changes and evolves over

time. Instead, it is more desirable to handle this kind of information using a model-based

method.

To do this, this information is maintained in comments in the SysML model. By

storing the information in this way, the SysML model can remain the master source of

any and all information about the analysis artifact models. These comments are exported

to XML from the SysML model with the rest of the information and displayed as tooltips

in Excel when the user selects a particular cell. An example of a tooltip that has been

generated in this way is shown in Figure 23.

Cell color-coding

The final capability added to the Excel user interface is the ability to visually

display which data fields a user can edit, and which are only meant to be viewed. This is

a seemingly minor detail, but for users unfamiliar with the template they are using, it is a

critical feature. The template engine allows two actions to be specified when creating

these templates: VIEW and FIELD. Data fields which a user can edit are specified by

Figure 23. Tooltips in Excel UI

 68

FIELD and displayed in white, while data fields which are only meant to be viewed are

denoted by VIEW and are left gray.

 69

CHAPTER 5

APPLYING INFRASTRUCTURE FRAMEWORK TO ANALYSIS

PLANNING

This chapter details how the infrastructure framework introduced in Chapter 4 is

applied to the analysis planning process presented in Chapter 3. The chapter follows the

general progression of the “Analysis Planning” activity diagram shown in Figure 2. In

addition, this chapter includes a brief discussion about how the infrastructure framework

can be applied to the model development process. Each section discusses the user

interface and underlying SysML models which pertain to a particular activity. The focus

of this chapter is primarily on analysis planning for domain models, as they require the

most interdisciplinary coordination. Note that each vehicle system model also has its own

set of requirements, specifications, and documentation, but those are not presented here

as they are largely the same as their domain model counterparts (with the exception of the

integration and verification/validation plans discussed in Sections 3.2.7 and 3.3.2).

There are, however, two components of the infrastructure frameworks which are

not discussed explicitly in this chapter. The tools created to use SysML

Views/Viewpoints in conjunction with the Excel template engine are used at every step in

this process. The combination of these two tools allows users to export View-specific

XML files from SysML and use them to produce a user interface in Excel. Their

functionality is independent of the activity to which they are applied. As a result, the

details of the implementation for SysML Views/Viewpoints and the Excel template

engine are left to Appendix A and Appendix B, respectively.

 70

5.1 Creating a Draft of the System Analysis Application Plan

The first step in planning a system analysis application plan is defining the full set

of analyses that need to be performed—the set of analysis applications. All of the

analysis applications for a given system study must be defined together, so that any

similarities between them can be identified. Identifying and understanding these

similarities can potentially allow a single vehicle model to be used to address multiple

analysis applications.

To apply the infrastructure framework to the process of drafting a system analysis

application plan, a SysML model is used to capture the information which must be

defined for each analysis application. This SysML model is shown in the BDD in Figure

24. The diagram is used to define several different components of an analysis application

which are owned by the AnalysisApplication block. Once the SysML model has been

defined, it can be used to store analysis application data by creating instances of the

AnalysisApplication block. There are four aspects of this model worth noting.

First, value properties are used to represent fields in which users can write textual

information. In this case, these fields are the name of the analysis application (name), a

short description of it (description), and the name of the engineer who will lead the model

development effort (lead). Second, a set of enumerations and enumeration literals is used

to define the system design study. These enumerations are used to define several different

aspects of a given analysis application, including the different vehicle attributes to

examine (AttributeKind), the type of analysis being considered (AnalysisKind), possible

vehicle top hats (VehicleKind), any subsystems which are unique for the vehicle program

(UniqueSubsystemKind), the set of operating scenarios that could be modeled

 71

F
ig

u
re

 2
4
.
A

n
al

y
si

s
ap

p
li

ca
ti

o
n
 S

y
sM

L
 m

o
d
el

 72

(VOSKind), and the possible development milestones to target (MilestoneKind). The

enumeration literals owned by each of these elements are used to create dropdown menus

in the Excel user interface.

The third component of the analysis application SysML model is the set of

dependencies between the elements. These dependencies are used to ensure that the

options available for a user to select in the Excel user interface are all consistent with one

another, as discussed in Section 4.2.3. The most important selections are the

AbstractSystemArchitecture and AnalysisTemplate chosen. Each analysis template is only

valid for a single system architecture, so it is important to ensure that the user selects a

valid option. These dependencies are more easily managed through a dependency matrix

created for each element, rather than through a BDD like the one shown in Figure 24. A

condensed example of a VOS dependency matrix is shown in Figure 25 for the “EPA-

FTP4” operating scenario. This example shows that the ability to select that operating

scenario will depend on ElectricDriveRange, Fuel, Performance, Thermal, or some

combination of these attributes being selected. Any other choices will prevent the user

from selecting “EPA-FTP4”.

The fourth and final aspect of the analysis application model worth noting is the

reference properties owned by the AnalysisApplication block. These are shown by the

white diamond relationships between AnalysisApplication and the abstract blocks (which

have italicized names) in Figure 24. In this model, there are three such reference

properties. First, it references AbstractSystemArchitecture block. Any VRA modeled in

SysML must be a specialization of this block. Only one VRA has currently been modeled

in SysML, which is shown by the ICHEVVeh block.

 73

Second, the AnalysisApplication block references the set of analysis templates

defined in SysML, given by AnalysisTemplate. Again, any analysis template defined in

SysML must be a specialization of this block in order for it to be referenced by an

analysis application. In this case, two sample analysis templates have been created for

fuel efficiency and performance simulations—ICHEVFuelEff and ICHEVPerf,

respectively. These analysis templates are not complete; the goal of our approach is to

create the tools and approach necessary to define them, rather than to define them

ourselves. Note that a given analysis template is only valid for a single VRA. To make

sure that the analysis template selected is valid for the system architecture chosen,

dependency matrices like the one shown in Figure 25 can be used to map these relations.

Finally, AnalysisApplication also has a reference property to

AbstractAnalysisArchitecture. Using the system architecture and analysis template

selected by a user, an analysis architecture can be created as a specialization of the

Figure 25. Dependency matrix for a VOS choice

 74

AbstractAnalysisArchitecture block for each analysis application (as discussed in 4.1.4).

Analysis architectures are not generated until the other data fields for an analysis

application have been defined, so this property is left as a placeholder in the analysis

application SysML model.

By exporting this SysML model to XML, and loading that XML file through our

Excel template engine, a user interface similar to the one shown in Figure 26 can be

generated. This user interface has been truncated to show only the most important fields,

including the name, system architecture, vehicle attributes, VOS, and analysis

architecture for each analysis application. Note that in the user interface shown, each row

corresponds to one analysis application. System engineers can define as many analysis

applications here as needed. Once the full set of analysis applications has been defined,

they can be imported back into SysML.

Figure 26. Analysis application spreadsheet

Importing the analysis application data into SysML creates a package and

instance of the AnalysisApplication block for each row defined in Figure 26. For a given

system analysis application plan, all of the individual analysis application packages are

stored in one parent package. All of the data and models associated with an individual

analysis application are stored within that application’s package. This can be seen by

Figure 27 below.

 75

Figure 27 shows what the information from Figure 26 looks like when imported

back into SysML. A package is created for each row from the Excel spreadsheet, and an

instance of the AnalysisApplication block from Figure 24 is created to store the

information entered by a user. In addition, instances are created for the ICHEVVeh and

ICHEVFuelEff blocks and stored in the slots for the systemArchitecture and

analysisTemplate properties, respectively. In this way, a formal relationship between the

analysis application and the VRA is created. By creating this relationship, traceability

between an analysis application and the appropriate Vehicle Reference Architecture can

be maintained within the SysML model.

As shown in Figure 2, the set of control signals for each analysis application

should be negotiated and defined concurrently with this process. However, the

mechanisms and standards for doing so are not finalized, so that step is omitted from this

Figure 27. System study package structure

 76

example. Consequently, the next step in the process is to generate a specialized analysis

architecture for each analysis application.

5.2 Creating a Specialized Analysis Architecture

Once the system engineers have defined each analysis application, their

information can be used in SysML to generate a specialized analysis architecture simply

by right-clicking on any analysis application package (such as Analysis application 01 in

Figure 27) and selecting “VMA Analysis Planner > Generate analysis architecture”. This

function parses the instance data and confirms that a valid system architecture and

analysis template have been selected by the user. If this is true, then the specialized

analysis architecture is created. This is an automated, multi-step process, so these steps

will be briefly presented in order.

First, a copy of the chosen VRA is made in the analysis application package. The

plant and control elements are then checked to see whether they, or any of their owned

parts or ports, have dependencies to the analysis template selected. Elements that are not

needed by a given analysis template are deleted, so only pertinent elements are left. This

also includes deleting the elements with Modelica stereotypes like the

ICHEVVehModelica element shown in Figure 15, which can be used to create a Modelica

model template. By tracing through the correspondences like the one shown in Figure 15,

the SysML vehicle model and Modelica vehicle model can be reduced to the same

analysis architecture. Note that the copy of the top-level vehicle block (ICHEVVeh) is

also automatically modeled as a specialization of the AbstractAnalysisArchitecture block

from Figure 24.

 77

Once this copy has been created and extraneous elements have been removed, an

instance of the analysis architecture is created. This serves two purposes. First, the

instance created can be stored in the analysisArchitecture slot, as shown in Figure 28,

because of the specialization relationship given to it in the previous step. This allows the

analysis application to have an explicit relation to its analysis architecture. Second,

creating an instance of the entire analysis architecture also creates instances of the full set

of analysis artifact documents (such as requirements, specifications, and documentation)

which are needed to plan and develop the remaining domain elements. System engineers

can then export these instances to XML as needed and allow domain engineers to

populate them from the Excel user interface.

Figure 28. Analysis application package with an analysis architecture

 78

The final package structure for the analysis application is shown in Figure 28.

Note that the copied VRA is stored in the Vehicle Domain and Units and Flows packages.

The exportable Modelica elements and instance data are stored in the ModelicaModel and

InstanceData packages, respectively. This ICHEVVeh instance also contains additional

analysis artifacts, such as domain and vehicle model requirements. The following

sections detail how these different analysis artifacts are used to support the analysis

planning process.

5.3 Domain Model Requirements

Once the specialized analysis architecture has been created, the team of system

engineers can then define the requirements for all of the necessary domain models. Many

of these requirements should be common across all domains, such as operating systems to

use, so a generic domain requirements model serves as the foundation for more

specialized models. This model is shown in Figure 29.

 79

F
ig

u
re

 2
9
.
G

en
er

ic
 r

eq
u
ir

em
en

ts
 m

o
d
el

 80

This model follows essentially the same format as the analysis applications model

shown in Figure 24; the enumerations shown are used to create dropdown menus in an

Excel spreadsheet. One difference, however, is that the top-level block—

DomainRequirements—is abstract. For a particular domain to have its own set of

requirements, it must specialize the abstract DomainRequirements block and redefine any

abstract or generic enumerations to their domain-specific counterparts. For instance, the

DomainContentKind block is intended to define particular domain variants, such as an

inline 4-cylinder engine or a 6-speed manual transmission. This block needs to be

redefined for each specialized set of domain model requirements, but other blocks in the

model can also be redefined as needed. An example of this specialization and redefinition

is shown in Figure 30.

In this example, a specialized set of engine requirements is being modeled. The

EngineRequirements block is a specialization of DomainRequirements, and redefines the

domainDescription property to own the EngineDescription block. This block, also a

specialization of DomainDescription, then redefines the DomainContentKind

enumeration in favor of EngineContentKind. This enumeration contains a list of different

engine variants that could be modeled. Using this pattern, requirements can be

specialized for each domain from a common, generic model.

 81

Once these requirements models are created, they are used to generate a

comprehensive user interface that allows the team of system engineers to view and edit

all of them at the same time. An example of this interface with completed user fields is

shown in Figure 31. Note that other than the leftmost column, the UI shown was

generated automatically using the template engine in Excel. Here, only the requirements

for the Engine Plant and Transmission Plant are shown. However, this approach can be

used to show the domain requirements models for the entire analysis architecture

simultaneously. By presenting the domain requirements in this way, system engineers are

provided with an interface that promotes a more holistic view of the vehicle system. Once

this information has been filled out by the system engineers, it can be imported back into

SysML, which serves as the master source of information for analysis planning.

Figure 30. Specialized engine requirements model

 82

5.4 Domain Model Specifications

Once the domain model requirements have been specified at the system level,

domain engineers can create specifications for the model that they will create. Like the

analysis applications and domain requirements, the domain specifications are modeled in

SysML, as shown in Figure 32. Note that unlike the DomainRequirements block shown

in Figure 29, DomainSpecification is not abstract. The domain specification model was

left intentionally generic so that domain engineers have some freedom in creating their

model specifications. This is needed, in part, because the Excel user interface does not

lend itself well to all applications. In many cases, more detailed Word documents or PDF

files may be needed to explain the rationale behind certain modeling decisions. To

support this, URLs can be used to reference external documents, as shown by the

documentURL value properties owned by several blocks in Figure 32.

Figure 31. Domain requirements spreadsheet

 83

F
ig

u
re

 3
2

.
D

o
m

ai
n
 s

p
ec

if
ic

at
io

n
 B

D
D

 84

Creating these specifications requires that the domain engineers understand both

the analysis application that the model is being developed for and the requirements for

their domain model. However, they do not have the authority to directly change any of

that information. To address this issue of viewership versus ownership of information, the

template engine can visually depict which fields are editable in Excel. This can be seen in

Figure 33, which shows the user interface for defining engine plant specifications in

Excel. Here, the information defined by the analysis application and domain model

requirements is presented for the domain engineer in gray in Column D. The data fields

that the user can modify are shown in white. This color-coding can be created

automatically using the Excel template engine. The fields shown in blue were created

manually to provide users with another visual cue about which fields need to be filled

out. Given the information provided, domain engineers can fill out the data fields under

the “Subsystem Model Specification” heading and export the data back to SysML.

 85

Figure 33. Excel UI for engine model specifications

5.5 Creating Modelica Templates

Once the analysis planning phase is complete and the model specifications have

been imported back into SysML, system engineers can use the specialized analysis

architecture to generate blank Modelica templates that the domain engineers will use to

create their models. This process is as simple as right-clicking on the Modelica model

package in the analysis application package and selecting SysML to Modelica > Generate

Modelica. This process is shown in Figure 34 below. Note that it is currently not possible

to generate Simulink templates for control signals in the same way, as they have not been

captured in the SysML model yet.

 86

 Once the Modelica templates have been generated from SysML, domain

engineers can open them and add the content needed create their analysis models. An

example of the code generated for one of these templates is shown in Figure 35.

 Note that these templates capture the port nesting modeling pattern described in

Section 4.1.1. In Figure 35, the “EngEleModelica” connector captures all of the interfaces

between the engine plant and electrical plant in the same way that they are modeled in

SysML. In this case, only a single rotational mechanical interface, “alternator”, is

Figure 34. Generating Modelica model from SysML

Figure 35. Modelica code generated from SysML model

 87

included, but any number of interfaces can be nested in this way. This approach provides

an organized method for managing a large number of interfaces and because it is backed

by a system-level SysML model, it ensures that the interfaces across domain analysis

models will be consistent.

5.6 Summary

This chapter outlined how the SysML models and software tools presented in

Chapter 4 can be applied to the analysis planning process defined in Chapter 3. Excel is

used as a supplementary user interface for domain and system engineers, as it is

commonly used in current document-based approaches. A method was described for

using Excel to interact with a SysML model by graphically creating “views” for each

stakeholder which define the information they need to see, as well as the information they

need to author. In addition, while this work is primarily focused on the planning that goes

into analysis model development, it was created in a way that allows it to integrate with

the work done by Branscomb et al. for generating vehicle analysis model templates from

SysML (Branscomb, 2012). While the tool is fairly robust, there are certainly limitations,

and the ability to directly support other user interfaces as well would be ideal.

 88

CHAPTER 6

CONCLUSIONS

The value of any model-based systems engineering approach depends on the

quality of the models themselves. The previous chapters introduced an approach that can

be used to plan the development of not just complex vehicle system models, but also of

the corresponding analysis models. This chapter provides a response to the motivating

question and desired characteristics posed in Chapter 1. In addition, some insight is

provided into the limitations of such an approach. Finally, possible future research areas

are identified.

6.1 Response to Motivating Question

The development of vehicle system analysis models has traditionally followed a

document-centric approach. To improve this process, though, a more generic question

was posed in Chapter 1.

Motivating Question:

How should one plan and guide the development of analysis models?

The goal of this thesis is to improve the existing document-based approach used

to create analysis models. This thesis proposes a transitional model-based approach.

Because the benefits of MBSE are not easily quantifiable and depend heavily on the

nature of the project, taking smaller steps to implement MBSE practices can make the

benefits of such an approach more apparent. The approach proposed by this thesis is

 89

designed to complement current development practices, rather than replace them entirely.

To evaluate whether the approach presented is in fact better than current practices, the

desired characteristics of an effective approach must also be examined.

Desired Characteristic:

Follow a formal, precise process

The first characteristic desired for an effective approach is that it be a formal,

precise process. To achieve this, the entire process of planning and developing analysis

models is modeled in SysML activity diagrams. This formalizes the workflows and roles

of the stakeholders. In addition, SysML models are used to define the information that

must be captured at each step in the process. Using these models, the token pins modeled

in the Activity diagrams are linked to SysML elements that describe their content. These

two components provide model users with a formal understanding of the process and

instructive models that describe the information that must be generated at each step in the

process. Beyond the value of the models themselves, defining this formal process also

provided a better understanding of where issues and inconsistencies may arise.

Desired Characteristic:

Provide an intuitive graphical user interface

One drawback of a SysML-based approach is that many users are not yet familiar

with SysML. Training users to use SysML can be costly, particularly for large design

teams. While SysML models are used wherever practical, in many cases they are not the

 90

best option for user interaction. To address this, an Excel-based user interface is used

instead.

Most users should be familiar with Excel; it is already one of the most common

tools used for vehicle analysis planning at Ford. To make it more intuitive, a template

engine is used in Excel to generate dynamic spreadsheets. Additional capabilities are also

included, such as context-specific dropdown menus, multi-select capability, and

informative tooltips, to make the user interface more user-friendly. These additions are

discussed in Section 4.2.3, and provide an impressive amount of functionality within a

familiar user interface.

Desired Characteristic:

Minimize opportunity for inconsistencies

As mentioned, there are many potential sources of inconsistency in analysis

model planning and development. Several methods are used to address these. First, by

defining the formal process of model planning and development, inconsistencies that may

arise out of more ad hoc processes can be reduced. Second, using SysML as the master

source of information can reduce informational inconsistencies that arise when managing

a large number of independent documents. Finally, dependency checking is used within

the Excel user interface to ensure that the options selected by each user are valid. These

dependencies are maintained in the SysML model, like the rest of the information, so

they remain consistent for all stakeholders who interact through the SysML model.

 91

Desired Characteristic:

Support the roles of all stakeholders directly involved

The roles of the many stakeholders are supported in different ways. By

formalizing the analysis planning process, those roles become much clearer. In this way,

each stakeholder has a better understanding of each other’s responsibilities, as well as

their own. If changes are needed, it is easier to determine who has the authority to make

those changes.

More practically, the user interface has been designed to be easily tailored to the

many different stakeholders involved in analysis model planning—many of which are

unlikely to have SysML experience. Because of this, a SysML tool such as MagicDraw

would have been inefficient and unwieldy to use by the entire engineering team. To

customize the user interface to each stakeholder and their concerns, expertise, and

software familiarity, a template engine was created in Excel that is capable of producing

spreadsheets from views defined within a SysML model. By creating this interface

through intermediate XML files, it also leaves the possibility open to create user

interfaces within other tools.

Desired Characteristic:

Add value to the process

Ultimately, a new approach is not worth considering unless it adds value to the

existing one. The approach proposed by this thesis is similar in many respects to the

existing document-based approach to analysis planning, and was designed to have a

 92

minimal impact on current workflows. However, by using MBSE as the foundation for

this approach, many of the current inconsistencies and inefficiencies can be reduced. This

approach can be used as a stepping-stone from a document-based to a model-based

workflow, rather than necessitating abrupt, organization-wide changes.

The tools and models presented were made such that SysML would only need to

be used directly by the system engineers; domain engineers can continue to work more or

less as they already do. This prevents users unfamiliar with SysML from making invalid

changes to the system models and more practically, means that fewer software licenses

are needed to support the entire engineering team. However, by using a SysML model as

the backbone, the approach proposed in this thesis provides a more informative user

interface, better consistency across domains, improved traceability of design decisions, a

more formal planning process, and a common set of semantics to improve

interdisciplinary communication.

6.2 Contributions

The contributions of this thesis can be divided into two categories. First, there are

contributions which address broader, research-related questions. These are summarized

as follows. In this research, we:

 Defined a process for planning and developing complex system

analysis models. The tasks that must be performed by each stakeholder to

plan and develop analysis models were defined. This involved not only

defining which tasks should be performed, who should perform them, and

what information must be exchanged to perform each tasuk.

 93

 Created a comprehensive SysML model to support analysis model

planning. This SysML model integrates both a descriptive model of the

vehicle architecture, as well as models of the analysis model requirements,

specifications, and documentation, so that the two these two perspectives

can be defined in a single location.

 Performed validation checks on the process and SysML model by

collaborating with Ford engineers. The process and SysML model

proposed by this thesis were created in collaboration with Ford engineers

to ensure that the resulting methodology is an improvement on current

modeling practices.

In addition to the aforementioned research contributions, there are also more

tangible contributions that arose out of the implementation of our approach. These are

outlined below.

 Added functionality to views and viewpoints. A plugin was created for

Excel which is capable of generating unique XML files from SysML using

views and viewpoints defined by a user.

 Developed a template engine in Excel to produce stakeholder-specific

user interfaces. To allow the user interface to be customized for each

user, a template engine was written for Excel. This allows domain and

system engineers to interact with the SysML model without requiring any

formal SysML training, and can be used to make the user interface more

intuitive to use.

 94

 Illustrated the capability of these tools with examples. Examples were

used to make the utility of these previous contributions more apparent.

These examples were created to mimic current practices at Ford to

demonstrate the utility of our approach for existing workflows.

6.3 Future Work

While the approach proposed in this thesis addresses many of the needs of the

planning and development process for system analysis models, there are some limitations

to this approach. These limitations, along with some areas of future research, are

discussed below.

 More general support for views and viewpoints is needed. The Excel

user interface, combined with SysML views and viewpoints, is not an all-

encompassing solution. While Excel is fairly robust, there may still be a

need to support other forms of user interfaces when planning analysis

models. A custom XML schema was used for the files that are exchanged

between MagicDraw and Excel; this schema should most likely be

revisited and more formally defined before utilizing it for other

applications. In addition, updates to views and viewpoints in future

SysML specifications may render this solution obsolete.

 The data storage solution chosen should be more scalable. SysML is

not a particularly efficient way to store information. Because this approach

relies on the users to manually import and export XML files from SysML,

there is also the possibility that the system model could become out of

 95

sync with a domain engineer’s user interface. Automatic updates to the

SysML model and version control measures could limit these issues. More

automated consistency checks are needed throughout the process to ensure

that the SysML model remains valid as users update and modify it. In

terms of the scalability of this approach, however, a more practical

solution may be to use a centralized database as the master source of

information, rather than a SysML model.

 Control signal negotiation should be supported through SysML.

Control signals are not addressed in the approach presented in this thesis.

Better support for the negotiation process that occurs when selecting and

requesting these signals is an area of future research.

 The complete Vehicle Reference Architecture needs to be modeled in

SysML. The Vehicle Reference Architecture modeled in SysML is

incomplete, because VMA v3 has not been finalized yet. Future work may

involve altering the approach presented by this thesis to support VMA v2

until the VMA v3 specification is completed.

 The “Design Analysis Phase” of analysis model development has not

yet been addressed. Finally, the third phase of analysis model

development has not been addressed—the “Design Analysis Phase” shown

in Figure 1 and introduced in Section 3.4. Formally defining this phase, as

has been done for analysis model planning in this thesis and analysis

model development in (Branscomb, 2012), may necessitate changes to the

current approach.

 96

APPENDIX A. VIEWS AND VIEWPOINTS

Basic Functionality

A plugin was created for MagicDraw which allows views to be used to

graphically select what kind of data should be exported to XML. By selecting the types of

elements to export and where those elements are stored, a user can export a very specific

set of data to XML.

 The base SysML specification includes “view” and “viewpoint” elements, but

there is no functionality currently possible with them. Our plugin adds some functionality

to them when dealing with many of the elements commonly found in Block Definition

Diagrams (BDDs) and Internal Block Diagrams (IBDs).

 A view is a package with a <<view>> stereotype. It may be related to a single

viewpoint by a dependency stereotyped as <<conforms>>. That is to say, a view

conforms to a viewpoint. A view is used to identify what data it consists of, whether it be

a specific element or a package of elements. This is done by linking it to these packages

and elements using another dependency relationship, stereotyped as <<import>>.

 A viewpoint, as defined by the SysML specification, includes information about

its purpose, who the stakeholders are, and what their concerns are, among others. A

viewpoint, because it is a class, may also inherit from other viewpoints--although this

functionality has very little meaning in the base SysML specification. Other than that,

however, it serves very little purpose.

 Our plugin adds some functionality to these different relationships and uses it to

generate XML files with a filtered-down set of data. For an example, refer to Figure 17.

 97

A user starts by first creating a BDD in SysML. From there, in the "Package Diagram"

set of tools in MagicDraw, they can create a new view and drop it into the diagram. In

order to identify what packages and specific elements should be exported for that view,

they should first be dragged into the BDD. Once they've been included, a user can simply

create an "import" relationship from the view to the elements they want to filter from.

This relationship can be found by either hovering over the package in the BDD (note that

this only shows the "Package Import" relationship), or selecting either the "Package

Import" or "Element Import" relationships from the "Package Diagram" tools.

 Once this is done, a user can then create the viewpoint that the view will conform

to. In this case, the viewpoint acts as a filter to identify the elements that should be

included in the view. Note that the filter is used to add items to the view, rather than

delete them. This plays a more important role in the "Advanced Functionality" section.

 To select types of elements to include, a user can use one of three options--meta-

classes, stereotypes, and "Type Elements". A Type Element is any element which may

type another element, such as an interface block used to type a proxy port. In order to add

these elements to the filter, simply create a dependency relationship from the viewpoint

to the elements to include.

 The filtering process works by checking every element chosen to be "imported"

into the view against the meta-classes, stereotypes, and types called out by the viewpoint.

If an element is valid, the elements that it owns are then checked as well. Note that this

means elements are not necessarily checked recursively—if a user doesn't specify that

"Packages" should be included in their filter, then any sub-packages will be ignored.

 98

Similarly, properties owned by a block won't be included unless the <<Block>>

stereotype has been added to the filter.

 Once these elements have been defined, a user can export their view by right-

clicking on it in the containment tree and selecting VMA Analysis Planner > Export View

to XML. Finally, from there, they can name their file and choose where to save it.

Advanced Functionality

To augment the functionality, several additional features were added. One such

feature is the ability for a view to import other views. Because a view is just a stereotyped

Package, the default "import" relationship in the SysML specification did not need to be

modified. Note that these imported views already conform to their own viewpoints,

which means that they can act independently as a filter. However, because our process

works as an additive filter, additional stereotypes can be added to them when they are

imported into the new view. This is done by adding stereotypes to the viewpoint to which

the new view conforms.

 In addition to importing views, functionality was also added for viewpoints to

inherit from other viewpoints. Note that the basic "Package" diagram toolbar doesn't

include this function in BDDs, but it can be found in the "Block Definition Diagram"

toolbar. This allows users to define a base set of viewpoints for other viewpoints to be

derived from. For instance, a user may choose to create a viewpoint that would be used to

filter out everything but instance data, and then add additional meta-classes to viewpoints

which inherit from it.

 99

Although the goal of this views/viewpoints functionality was to allow users to

export customized sets of XML data, it was also apparent that it could be useful for other

applications as well. One such application is for creating custom views of diagrams. Once

a view is defined, a user may right-click on a diagram and select VMA Analysis Planner >

Create custom diagram view. A copy of the diagram will be created which only includes

elements specified by the filter. Note that this functionality has not been fully

implemented, but it is a useful example of it could be used in the future.

 100

APPENDIX B. EXCEL TEMPLATE ENGINE

A schema was developed to allow users to auto-generate user forms in an Excel

spreadsheet using XML data from a SysML model. The process is somewhat complicated

and not entirely bug-free, but this document is meant to give some background into how

it works, how it can be used, and ongoing work being done to improve it.

The cornerstone of the entire process is the range where the format of the template

is specified. This may be done in either the first row or first column of the spreadsheet

(but not both!). The first cell in the document, at A1, should be labeled "TEMPLATE".

From there a user can specify commands in the following format:

(Desired Output)::(Reference element)

We'll start with the "Reference Element" portion of the command. The reference

element is identified using a pseudo-XML node. A user specifies the type of the element,

which attributes to use to find it, and what the value of those attributes should be. Say we

want to find a block whose name is "Analysis Application". This block could be found

with the following reference element:

<block name="AnalysisApplication"/>

Note that the schema does require that the XML node is a valid XML element—

therefore, the forward slash at the end is always required. Users can specify as many

 101

attributes as they need to identify the element. However, text content and children

elements within the XML node cannot be used. For more information about which XML

attributes can be used for each SysML element, refer to Table B1.

XML Element XML Attributes

Package id name ownerID comment

Block id name ownerID isAbstract comment

Property id name ownerID multiplicity typeName

Property cont. typeID redefinedID comment

Enumeration id name ownerID comment

Literal id name ownerID comment

Dependency id ownerID targetID targetOwnerID

Instance id name ownerID classifierID comment

Slot id ownerID featureID comment

Value id name ownerID instanceID comment

Generalization id ownerID targetID targetOwnerID comment

Attribute values may also be used to reference other cells in the spreadsheet using

the following format:

@R(row number)C(column number)

The portions in parentheses should be replaced by the appropriate number for the

row or column. It is also possible to refer to only a particular row or column, by omitting

either the row or column reference. However, keep in mind that additional hidden

Table B1. Valid XML attributes for different SysML elements

 102

columns get added when generating these sheets, so it is important to define static

references first in the template, before defining other elements.

The "Desired Output" of the command tells the plugin what to do with the

reference element once it finds it. There are several keywords that can be used for this

process:

 PACKAGE

 INSTANCE

 FIELD

 VIEW

We'll address them in order. The first keyword, "PACKAGE", is used to identify

or create the package to store our data. This is the only case where the reference element

may be labeled as "null", rather than as an XML element. If it is labeled as "null", the

data will be imported into the package where a user right-clicked in MagicDraw by

default. Note that only one "PACKAGE" command may be used.

The second keyword, "INSTANCE", tells the plugin to create an instance of the

element identified by the reference element. For this case, the reference element must

refer to a block. This keyword is also used when importing instance data. In this case, the

same reference element is used to identify instances from SysML that can be mapped to

our template.

The third keyword, "FIELD", is used to actually create user fields. In this case,

"FIELD" must refer to either a "property" or "block" as its reference element. If it refers

to a property, it will check to see if that property refers to an enumeration, value type, or

block. If it is none of these, it will do nothing. If it's a value type, it will create a field

 103

where a user can enter text. If it is an enumeration, it will create a dropdown which

consists of the literals owned by that enumeration. In addition, it will check the property's

multiplicity to see if the user is allowed to select multiple options from the dropdown. If

the property or reference element refers to a block, it will create a dropdown menu of all

of the specializations of that block.

The final keyword, "VIEW", is used to display instance data to the user, but

disallow them from actually editing that data. It may be used in the same way as the

"FIELD" command.

Finally, there is a fifth option when specifying the desired output. A user may

specify any XML attribute to display to the user or use as a reference for other cells. For

instance, it is often useful to get a block's ID and use it as a reference to find properties

whose "ownerID" attribute matches it. An example of this can be seen below.

NOTE: commands cannot be entered in Row 2. Row 2 is reserved for headers

used to store additional information about fields, so any information entered in Row 2

can throw off the entire process.

Once these fields have all been specified, the user must then highlight the range

(which should be either a single row or single column) and name the range. This can be

done by right-clicking on the range and selecting Define Name. The name must be

"TEMPLATE", and the scope must be set to the name of the worksheet that is currently

being worked on.

Once the template range has been created, there are two steps left before creating

our user form. First, select the “VMA Tools” tab, and click “Import XML”. The XML

file from SysML will be imported into our workbook and mapped to a copy of the

 104

“XMLTemplate” worksheet. This file may be used to refer to a particular property, but

should never be modified by the user.

There is an optional step to this process—a user can choose to import existing

instance data into the spreadsheet using the “Import Existing Instances” tab. From here,

they will be asked whether they want to map the data to multiple ranges. If they select

“Yes”, each valid instance will be mapped to its own row/column. If they select “No”, all

of the instance data contained in the XML file will be mapped to the same row or

column. This option may be used in some cases, but it is generally best to avoid it—

without some experience with the schema and the SysML model, it can be difficult to

predict whether certain data will be overwritten.

The final step in the process, if no instance data has been imported, is to generate

a new row or column for the user to fill out data. This can be done by clicking the

“Generate new row/column” button in the “VMA Tools” tab. A new row or column will

then be created in the first empty row that is found.

 105

REFERENCES

[1] Auto-View Generation Working Group Wiki, OMG,

http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-autoview:auto-

view_generation_working_group.

[2] No Magic's Magicdraw, No Magic,

http://www.nomagic.com/products/magicdraw.html.

[3] AUTOSAR, www.autosar.org.

[4] InterCAX, www.intercax.com.

[5] Bajaj, M., Zwemer, D., Peak, R., Phung, A., Scott, A. G., and Wilson, M., 2011,

"SLIM: Collaborative Model-Based Systems Engineering Workspace for Next-

Generation Complex Systems," Aerospace Conference, 2011 IEEE, IEEE, pp. 1-

15.

[6] Boddy, M., Michalowski, M., SchwerdFeger, A., Shackleton, H., and Vestal, S.,

2011, "Formal United System Engineering Development (FUSED) Language," Air

Force Research Laboratory

[7] Branscomb, J. M., 2012, Supporting Multidisciplinary Analysis Using System

Architectures in SysML, Thesis, Woodruff School of Mechanical Engineering,

Georgia Institute of Technology.

[8] Branscomb, J. M., Paredis, C. J., Che, J., and Jennings, M. J., 2013, "Supporting

Multidisciplinary Vehicle Analysis Using a Vehicle Reference Architecture Model

in SysML," Procedia Computer Science, 16, pp. 79-88.

[9] Claver, C. F., Dubois-Felsmann, G., Delgado, F., Hascall, P., Marshall, S.,

Nordby, M., Schalk, T., Schumacher, G., and Sebag, J., 2010, "Using SysML for

MBSE Analysis of the LSST System," SPIE Astronomical Telescopes and

Instrumentation: Observational Frontiers of Astronomy for the New Decade,

International Society for Optics and Photonics, pp. 77381D-77381D-77310.

[10] Delp, C., Lam, D., Fosse, E., and Lee, C.-Y., 2013, "Model Based Document and

Report Generation for Systems Engineering," 2013 IEEE Aerospace Conference,

IEEE, pp. 1-11.

http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-autoview:auto-view_generation_working_group
http://www.omgwiki.org/OMGSysML/doku.php?id=sysml-autoview:auto-view_generation_working_group
http://www.nomagic.com/products/magicdraw.html
http://www.autosar.org/
http://www.intercax.com/

 106

[11] Dumitrescu, C., Mazo, R., Salinesi, C., and Dauron, A., 2013, "Bridging the Gap

between Product Lines and Systems Engineering: An Experience in Variability

Management for Automotive Model Based Systems Engineering," Proceedings of

the 17th International Software Product Line Conference, ACM, pp. 254-263.

[12] Eisenmann, H., Basso, V., Fuchs, J., and De Wilde, D., 2010, "ESA Virtual

Spacecraft Design," Proceedings of the 4th International Workshop on System &

Concurrent Engineering for Space Applications (SECESA).

[13] Estefan, J. A., 2007, "Survey of Model-Based Systems Engineering (MBSE)

Methodologies," Incose MBSE Focus Group, 25.

[14] European Space Agency, Virtual Spacecraft Design Project, http://www.vsd-

project.org/.

[15] Friedenthal, S., Moore, A., and Steiner, R., 2012, A Practical Guide to SysML: The

Systems Modeling Language, Elsevier, Waltham, MA.

[16] Graves, H., and Bijan, Y., 2011, "Using Formal Methods with SysML in

Aerospace Design and Engineering," Annals of Mathematics and Artificial

Intelligence, 63(1), pp. 53-102.

[17] INCOSE SE2 Challenge Team for Telescope Modeling, Docbook Plugin for

Magicdraw, http://sourceforge.net/projects/mbse4md/files/.

[18] Ingham, D., Donahue, K., Kennedy, K., and Post, S., 2012, "A Model-Based

Approach to Engineering Behavior of Complex Aerospace Systems,"

Infotech@Aerospace 2012 Conference, Santa Ana, CA.

[19] Jennings, M., 2013, "Personal Communication."

[20] Johnson, T., Kerzhner, A., Paredis, C. J., and Burkhart, R., 2012, "Integrating

Models and Simulations of Continuous Dynamics into SysML," Journal of

Computing and Information Science in Engineering, 12(1), pp. 011002.

[21] Karban, R., Hauber, R., and Weilkiens, T., 2009, "MBSE in Telescope Modeling,"

INCOSE INSIGHT, 12(4).

[22] Keeney, R. L., 1994, "Creativity in Decision Making with Value-Focused

Thinking," Sloan Management Review, 35, pp. 33-33.

http://www.vsd-project.org/
http://www.vsd-project.org/
http://sourceforge.net/projects/mbse4md/files/

 107

[23] Marco, J., and Vaughan, N., 2010, "Integration of Architectural Modelling Using

the SysML within the Traditional Automotive CACSD Process," UKACC

International Conference on Control 2010, IET, pp. 1-6.

[24] McGinnis, L., and Ustun, V., 2009, "A Simple Example of SysML-Driven

Simulation," Proceedings of the 2009 Winter Simulation Conference (WSC), IEEE,

pp. 1703-1710.

[25] No Magic Inc., 2013, "Magicdraw Report Wizard User Guide," No Magic, Inc.,

www.nomagic.com/support/documentation.html.

[26] Nottage, D., and Corns, S., 2012, "Application of Model-Based Systems

Engineering on a University Satellite Design Team," Procedia Computer Science,

8(0), pp. 207-213.

[27] Object Modeling Group, 2012, "OMG Systems Modeling Language.",

www.omg.org/spec/SysML/1.3/.

[28] Object Modeling Group, 2012, "SysML-Modelica Transformation.",

www.omg.org/spec/SyM/1.0/.

[29] Piques, J., and Andrianarison, E., 2012, "SysML for Embedded Automotive

Systems: Lessons Learned," Interfaces, 3.

[30] Qamar, A., During, C., and Wikander, J., 2009, "Designing Mechatronic Systems,

a Model-Based Perspective, an Attempt to Achieve SysML-Matlab/Simulink

Model Integration," Advanced Intelligent Mechatronics, 2009. AIM 2009.

IEEE/ASME International Conference on, IEEE, pp. 1306-1311.

[31] Robinson, K., Tramoundanis, D., Harvey, D., Jones, C. M., and Wilson, S., 2010,

"Demonstrating Model-Based Systems Engineering for Specifying Complex

Capability," Systems Engineering Test and Evaluation (SETE'10).

[32] Soyler, A., and Sala-Diakanda, S., 2010, "A Model-Based Systems Engineering

Approach to Capturing Disaster Management Systems," 2010 4th Annual IEEE

Systems Conference, IEEE, pp. 283-287.

[33] Spangelo, S. C., Cutler, J., Anderson, L., Fosse, E., Cheng, L., Yntema, R., Bajaj,

M., Delp, C., Cole, B., and Soremekum, G., 2013, "Model Based Systems

Engineering (MBSE) Applied to Radio Aurora Explorer (RAX) Cubesat Mission

Operational Scenarios," Aerospace Conference, 2013 IEEE, IEEE, pp. 1-18.

 108

[34] Technical Operations, 2007, "Systems Engineering Vision 2020," INCOSE,

www.incose.org/ProductsPubs/products/sevision2020.aspx.

[35] Tiller, M., Bowles, P., and Dempsey, M., 2003, "Development of a Vehicle Model

Architecture in Modelica," 3rd International Modelica Conference.

[36] Walsh, N., 2011, Docbook 5: The Definitive Guide, XML Press.

http://www.incose.org/ProductsPubs/products/sevision2020.aspx

