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SUMMARY 

Vehicle system analysis models are becoming crucial to automotive designers 

wishing to better understand vehicle-level attributes and how they vary under different 

operating conditions. Such models require substantial planning and collaboration between 

multidisciplinary engineering teams. To improve the process used to create a vehicle 

system analysis model, the broader question of how to plan and develop any model 

should be addressed. Model-Based Systems Engineering (MBSE) is one approach that 

can be used to make such complex engineering tasks more efficient. 

MBSE can improve these tasks in several ways. It allows for more formal 

communication among stakeholders, avoids the ambiguity commonly found in document-

based approaches to systems engineering, and allows stakeholders to all contribute to a 

single, integrated system model. Commonly, the Systems Modeling Language (SysML) 

is used to integrate existing analysis models with a system-level SysML model. This 

thesis, on the other hand, focuses on using MBSE to support the planning and 

development of the analysis models themselves. 

This thesis proposes an MBSE approach to improve the development of system 

models for Integrated Vehicle Analysis (IVA). There are several contributions of this 

approach. A formal process is proposed that can be used to plan and develop system 

analysis models. A comprehensive SysML model is used to capture both a descriptive 

model of a Vehicle Reference Architecture (VRA), as well as the requirements, 

specifications, and documentation needed to plan and develop vehicle system analysis 

models. The development of both the process and SysML model was performed 

alongside Ford engineers to investigate how their current practices can be improved. 
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For the process and SysML model to be implemented effectively, a set of 

software tools is used to create a more intuitive user interface for the stakeholders 

involved. First, functionality is added to views and viewpoints in SysML so that they may 

be used to formally capture the concerns of different stakeholders as exportable XML 

files. Using these stakeholder-specific XML files, a custom template engine can be used 

to generate unique spreadsheets for each stakeholder. In this way, the concerns and 

responsibilities of each stakeholder can be defined within the context of a formally 

defined process. The capability of these two tools is illustrated through the use of 

examples which mimic current practices at Ford and can demonstrate the utility of such 

an approach. 
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CHAPTER 1 

INTRODUCTION 

Analysis models are becoming a critical tool for vehicle development. These 

models can be used to better understand the impact of different operating conditions on 

vehicle-level attributes, such as the effect of a cold winter day on a hybrid vehicle’s fuel 

efficiency. To accurately represent a given vehicle, these analysis models are created by 

integrating different models of the subsystems within a vehicle, such as the engine or 

transmission. These subsystem models will be referred to as “domain models”.  

Developing an integratable set of domain models requires that the domain 

engineers creating them have a deep understanding of both the system-level requirements 

for the vehicle model, as well as how their models must interface with other domain 

models. These issues can be partially addressed by performing extensive planning before 

any models are developed. However, when using a document-based approach to analysis 

planning, there are still ample opportunities for issues to arise, such as requirements 

documents becoming obsolete or interfaces between analysis models becoming 

inconsistent. 

This thesis proposes a model-based approach to support analysis planning. This 

approach is specifically designed to support analysis planning at Ford Motor Company to 

perform high-level vehicle attribute trade-offs, but the lessons learned can be applied to 

any analysis modeling process. There are two key components presented in this approach. 

First, a formal process is defined for system engineers and domain engineers to adhere to 

when planning and developing analysis models. Second, an infrastructure framework is 

introduced that can be used within this formal process. The infrastructure framework 
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consists of SysML models and software tools that can be used by both system engineers 

and domain engineers to plan, develop and verify analysis models. Before introducing 

this approach, however, the remainder of this chapter discusses the motivation for 

applying a model-based approach to analysis planning and what characteristics an 

effective approach should possess. 

1.1 Motivation 

Pressure to create more fuel-efficient, low-emission vehicles has led to an 

increased interest in both electrified vehicles and more efficient traditional internal 

combustion vehicles. To keep pace with the rapid improvements being made to these 

technologies and maintain competitiveness with other manufacturers, design cycles have 

become shorter and more efficient. The use of models for Integrated Vehicle Analysis 

(IVA) has been used to support these shorter design cycles. These models are created by 

integrating various domain analysis models into a complete vehicle model. The models 

used for IVA  allow different dynamic vehicle-level attributes, such as energy 

management and performance, to be examined and optimized for various operating 

scenarios that a vehicle might undergo, such as driving on the highway or towing a boat. 

These vehicle-level attributes are tightly coupled; investigating the tradeoffs between 

these attributes is crucial for system design. In addition, these models used for IVA can 

be extremely useful for evaluating the value of different vehicle architectures, such as 

weighing the advantages of a plug-in hybrid-electric vehicle (PHEV) versus those of a 

battery-electric vehicle (BEV). 
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However, developing these analysis models is an extremely complex task itself. 

Creating an IVA model is a multidisciplinary task that requires significant input from the 

many domain experts involved. These teams of domain experts must be able to 

effectively communicate and coordinate such that when their respective domain models 

are integrated, the assembled model is an accurate representation of the vehicle being 

modeled and is appropriate for the intended analysis or cycle. Extensive planning is 

needed so that the underlying goals and assumptions of these models can be consistent at 

both the vehicle and domain levels. 

Systems engineering practices can be used to develop solutions to complex 

problems such as these. Systems engineering is a “multidisciplinary approach to develop 

balanced system solutions in response to diverse stakeholder needs” (Friedenthal, et al., 

2012). In this case, the stakeholders concerned are primarily the domain- and system-

level engineers. Traditionally, many engineering practices have used document-based 

approaches for systems engineering, in which documents (such as reports or 

presentations) are exchanged between teams to communicate information. Such 

approaches have significant pitfalls. Different disciplines often use different vocabularies, 

so that semantic differences can cause misunderstandings between teams. Continuously 

managing and updating a large number of documents can be extremely tedious and error-

prone, which can result in significant inconsistencies between the documents. Generating 

and maintaining these documents must be done manually, which introduces the potential 

for human error and disregards the potential to use the abundant computing power 

available to improve this process. An alternative is to take a model-based approach to 

systems engineering. 
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1.2 Applying MBSE to Systems Analysis Modeling 

Model-based systems engineering (MBSE) makes use of formal modeling 

methods to support complex engineering tasks in lieu of a document-centric approach. 

There are no constraints placed on what constitutes a model or on the systems that can be 

designed using such an approach. A model can potentially take any form and serve any 

purpose, whether it be a 3D CAD model or a MATLAB script. Often, these models are 

created to provide different, specialized views of the same system for specific 

stakeholders. 

To organize and capture the relationships between these different views, a system-

level model is often used. The Systems Modeling Language, or SysML, is becoming the 

de facto language for producing such a “descriptive” system model. Significant work has 

been done towards linking domain-specific analysis models, such as those created in 

Modelica or Simulink, to a system-level SysML model. 

Traditionally, MBSE is used to design a physical system, such as an automobile 

or airplane. In the approach presented by this thesis, however, the “system” being 

designed is an analysis model itself. Our goal is to use MBSE and SysML to support the 

preliminary planning needed to define the set of desired analyses and to create the 

appropriate set of integrated vehicle analysis models. Developing these models requires 

efficient communication, collaboration, and understanding among multidisciplinary 

engineering teams, which MBSE and SysML can improve significantly. Some 

background and justification for the selection of both MBSE and SysML is presented in 

Chapter 2. 
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1.3 Motivating Question 

To improve the capabilities of SysML and other modeling tools to support 

analysis model planning, a broader motivating question must be addressed: 

 

Motivating Question: 

How should one plan and guide the development of analysis models? 

 

To support model consistency within an MBSE methodology, extensive work has 

been performed by others to support the transformation from SysML models to other 

modeling languages. Integration frameworks using SysML to unify many different 

existing models in a variety of simulation toolsets have also been researched heavily. 

However, very little emphasis has been placed on supporting the definition and 

integration of those models. Developing integrated vehicle analysis models is a complex, 

multidisciplinary process. To add value to this process, this thesis proposes a SysML-

based approach with a complementary Excel user interface to define a set of analyses and 

plan for development and verification of the analysis models. This approach is intended 

to support a transition from a document-based workflow to a more model-based one. 

Because quantifying the value of such an approach can be subjective, it will be judged 

instead on several different “Desired Characteristics” that an ideal approach would 

possess. 
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Desired Characteristic: 

Follow a formal, precise process 

 

Oftentimes, engineering tasks are performed in an ad hoc manner and rely on the 

expertise and experience of the engineers involved to produce results. However, for 

complex engineering tasks that require coordination among many individuals, this can be 

a particularly risky approach. Developing an approach that follows a formal, precise 

process can provide a better understanding of the responsibilities of different engineering 

teams and areas where issues may arise. A formal, precise process should define not only 

the different tasks that stakeholders must perform, but also more specifically, which 

pieces of information are expected to be exchanged between stakeholders and how this 

should occur. 

 

Desired Characteristic: 

Provide an intuitive graphical user interface 

 

To make the analysis model planning and development process more efficient, the 

graphical user interface (GUI) should be intuitive to the many different stakeholders that 

will use it. These users may have different levels of expertise and experience with the 

planning tools being used, so it is important to consider all levels of familiarity when 

selecting (or creating) a user interface. For our approach, SysML models are used 

extensively to support the analysis planning process. However, many engineers today are 

still unfamiliar with SysML. Because of this, the training and licenses needed to put 
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SysML tools into practice across large engineering teams can be cost-prohibitive. As a 

result, a more intuitive GUI is considered desirable. 

 

Desired Characteristic: 

Minimize the opportunity for inconsistencies 

 

There are many different areas where inconsistencies can arise during the 

development of analysis models. Misunderstandings about the goals of an analysis 

model, miscommunication between teams, and even simple human error can all 

contribute to inconsistent analysis models. These inconsistencies, if not found and 

addressed, can lead to longer development cycles and even erroneous results from the 

analysis models. An effective approach should identify and minimize these opportunities 

for inconsistency wherever possible. 

 

Desired Characteristic: 

Support the roles of all stakeholders directly involved 

 

As mentioned, analysis modeling is an inherently multidisciplinary process. There 

are many different stakeholders with many different unique concerns. As a result, an 

effective approach to analysis modeling must consider all of these different stakeholders 

and their responsibilities and skill-sets. More specifically, an effective model-based 

approach should not only support these many different tasks, but also make them easier 

to perform. This characteristic is very strongly related to the final characteristic which 

must be considered. 
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Desired Characteristic: 

Add value to the process 

 

For a model-based approach to analysis model development to be useful, it must 

be more valuable than the existing (and in this case, document-based) approach. To add 

value to the process, the benefits of using such an approach must be weighed against the 

costs of implementing it and training users. Although a quantitative measure of value is 

not used, this is still an extremely important aspect to consider. Current practices at Ford 

have been given particular attention to ensure that any proposed approach would improve 

the existing processes, rather than necessitating entirely new workflows. 

1.4 Thesis Organization 

The remainder of this thesis is organized as follows. Chapter 2 presents the related 

work and the context within which our research has been performed. Chapter 3 

introduces the formal process outlined for the planning and development of complex 

analysis models. Chapter 4 presents the reusable set of tools and models that are used to 

support analysis model planning. In Chapter 5, these tools and models are applied to the 

process outlined in Chapter 3. Finally, Chapter 6 discusses the conclusions drawn from 

this research and provides a response to the motivating question posed in this chapter.  
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CHAPTER 2 

RELATED WORK 

2.1 Model-Based Systems Engineering 

Model-based systems engineering (MBSE) is an alternative to traditional 

document-based approaches to systems engineering. INCOSE defines MBSE as the 

“formalized application of modeling to support…activities beginning in the conceptual 

design phase and continuing through development and later life cycle phases” (2007). 

The benefit of a model-based approach is dependent on the quality of the descriptive 

models themselves, which are only valuable if they increase “a decision maker’s ability 

to design a better system at an acceptable cost” (Keeney, 1994). To support MBSE, these 

models must have a clearly defined purpose. A particular model may only represent part 

of a larger system; therefore, it is often advantageous to have a system-level model to 

understand how these different specialized models are related. 

(Estefan, 2007) provides an overview of various MBSE methodologies that have 

been used across different industries. Some of these methodologies are designed around 

certain toolsets, such as the IBM Rational Unified Process for Systems Engineering (RUP 

SE) or the Vitech MBSE Methodology. Others, however, are defined as broader 

methodologies that can be implemented through whatever tools can best support the 

process. It is important to note that regardless, there is no all-encompassing methodology 

that can be applied to any MBSE process. Whichever methodology an organization 

chooses—or creates—must be modified and adapted to support that organization’s 
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project lifecycle. To do so, one must consider the knowledge, skills, and abilities of all of 

the stakeholders that will be involved. 

There are many different tools that can be used with the MBSE methodologies 

presented in (Estefan, 2007), but the Systems Modeling Language (SysML) is quickly 

becoming the de facto standard. SysML was developed by the Object Management 

Group™ (OMG™) as an extension to the Unified Modeling Language (UML) (Object 

Modeling Group, 2012). SysML was designed specifically for systems engineering 

applications and is intended to help unify the many different modeling languages used by 

systems engineers. It uses a graphical model representation with a formal set of semantics 

to define different characteristics of a system, including the requirements, structure, 

behavior, and parametric relationships between system elements. SysML reuses some 

UML diagrams and introduces two new ones—requirement diagrams and parametric 

diagrams. SysML, like UML, is also extensible. This allows the possibility for SysML to 

be customized for specific domains as needed. A much more detailed overview of SysML 

and its role in MBSE methodologies is presented in (Friedenthal, et al., 2012). It is worth 

noting that the system models presented in this thesis are created in SysML using No 

Magic’s MagicDraw tool and SysML plugin (No Magic, 2013). 

MBSE has been applied across many different industries to support different 

phases of engineering design. Often, the cost of implementing a complete, model-based 

workflow can be difficult to justify. To move towards such an approach, some 

organizations have used small pilot projects as test beds for MBSE methodologies. One 

such project was started at JPL to investigate and model the behavior of an antenna on an 

Earth-orbiting satellite (Ingham, et al., 2012). While the pilot project focused on a small 
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test case, the goal was to use it to investigate the broader benefits of integrating MBSE 

into JPL’s existing systems engineering practices, and how it could be used to develop 

better products in general. This pilot project provided the opportunity to investigate 

different modeling patterns and revise them for future projects. Taking small steps in this 

way can be a useful measure to determine the value of MBSE for a particular 

organization. 

Small pilot projects are not the only test case used to assess the value of MBSE. 

(Robinson, et al., 2010) introduces a methodology applied to the development and 

support of a ground-based air defense system. In this work, MBSE was used to improve 

the preliminary process of outlining and documenting the capabilities desired for the 

system. The authors found that a model-based approach was completely compatible with 

their current development processes, and had the added advantages of increased 

efficiency, standardization, and greater stakeholder understanding of the system. It is 

worth noting that the MBSE methodology applied in this work was the Vitech MBSE 

Methodology—one of the methodologies introduced in (Estefan, 2007). This 

methodology was found to be particularly effective; it was chosen because many of the 

staff were already familiar with the CORE suite of software tools. Again, considering the 

expertise and experience that stakeholders already have is very important when selecting 

an MBSE methodology. 

The benefits of MBSE are not limited to any particular industry, either. MBSE 

has been successfully implemented for other aerospace applications (Graves and Bijan, 

2011, Spangelo, et al., 2013), for telescope design (Claver, et al., 2010, Karban, et al., 

2009), and even for modeling a disaster management system (Soyler and Sala-Diakanda, 
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2010). Its benefits are also not limited to organizations with substantial funding—a 

university satellite team found that using MBSE and SysML to capture the structure, 

behavior, requirements, and parametrics of their design improved member understanding 

and the productivity of their design reviews (Nottage and Corns, 2012). 

MBSE has also been used across the automotive industry to different extents. In 

(Piques and Andrianarison, 2012), SysML was used to support the systems engineering 

activities for developing embedded automotive systems. In (Marco and Vaughan, 2010), 

high-level system models in SysML were used to support the understanding and 

development of automotive electronic control systems. (Dumitrescu, et al., 2013) presents 

an approach which used SysML models to capture variability within a family of parking 

brakes to better understand how SysML can be used to support mass customization. 

In (Branscomb, 2012), a different approach is used to support automotive 

applications. Integrated vehicle analysis models are already used extensively to support 

vehicle design. These models can be complex and require collaboration and 

communication between many different multidisciplinary teams. Branscomb et al. 

proposed an MBSE approach where the “system” being developed is in fact a model 

itself (Branscomb, 2012). A SysML model of a vehicle architecture was created and used 

to auto-generate model templates for Modelica and Simulink. This approach ensured that 

domain models remained consistent and reusable for future applications. It is important to 

note that this work is the direct predecessor to the work presented in this thesis; many of 

the models and methods used in our approach are heavily influenced by the work in 

(Branscomb, 2012). 
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2.2 Using SysML with Analysis Models 

A descriptive system model can provide an integration framework for relating 

different, more specialized models (Friedenthal, et al., 2012). There are many different 

ways to implement such an integration framework. One such example is the Formal 

United System Engineering Development Language, or FUSED (Boddy, et al., 2011). 

FUSED is a meta-language specification that is intended to unify nine different languages 

(with the possibility of adding more later), including Modelica, SysML, and Excel. The 

goal was to make it easier to integrate MBSE practices into existing tools. While the 

authors claim that the higher-order grammar used in FUSED is an advantage over UML, 

it has only been applied to a limited use case. 

In (Eisenmann, et al., 2010), an integration framework is presented which was 

created by the European Space Agency (ESA) for virtual spacecraft design. This 

framework is built around a reference database, rather than a particular model or 

modeling language. The database is used to store all of the design data in a central 

location and manage its integration into other tools. Users can use a series of Design 

Editor tools built on SysML notation and the Eclipse environment to design and specify a 

virtual spacecraft model. The database can also be accessed through the Space Systems 

Visualization Tool, which is capable of producing diagrams, 3D model representations, 

tables, and charts to help support design reviews and simulations. A prototype of the 

environment is available for download for free by users living in a member country of the 

ESA (European Space Agency). 

An alternative to FUSED and the ESA’s approach is the Systems Lifecycle 

Management workspace, or SLIM (Bajaj, et al., 2011). Rather than utilizing a new meta-
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language, SLIM proposes a framework built around SysML to integrate different domain-

specific models. Such a framework could be used to integrate any number of domain-

specific models, including CAD models, simulations, or requirements, among others. 

Because SysML is focused on system-level architecting and modeling, it can serve as an 

acceptable integration framework for many different engineering tasks and tools. The 

SLIM technology is available from InterCAX at InterCAX.com. 

To integrate SysML with analysis models, formal transformations must be used to 

make the tools interoperable. Such transformations have been developed for many 

different cases, including SysML to Arena (McGinnis and Ustun, 2009), SysML to 

Modelica (Johnson, et al., 2012), and SysML to Simulink (Qamar, et al., 2009), among 

others. (Branscomb, 2012) provides a more thorough overview of these many different 

model transformations. All of these approaches have one thing in common—they are 

designed to integrate existing analysis models with SysML, but do not directly support 

the planning and development of those models. The aim of this thesis is to support this 

gap in analysis model development. To do so, developing model transformations is only 

part of the problem. It is also important to formally manage the knowledge generated 

when planning and developing these models. 

2.3 Knowledge Management in MBSE 

In a traditional document-based approach, each stakeholder works from their own 

domain-specific tools and documents that they need to perform their tasks. For a model-

based approach, this necessity remains. Ideally, each stakeholder would only use models 

which have been customized to their “view” of the system, in lieu of any documents. 
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Practically speaking, however, this is not yet possible. Documents and presentations are 

still an integral part of the engineering design process. To support this functionality for a 

SysML-driven MBSE approach, many tools have been developed that allow users to 

generate and modify documents linked to a SysML model. 

The most basic functionality needed is the ability to generate documents from a 

SysML model. Many tools exist to do so. MagicDraw includes a built-in “Report 

Wizard” tool that can be used to generate PDF reports from a SysML model (No Magic 

Inc., 2013). It supports the use of text-based templates to generate these documents and 

includes a query tool for parsing through different SysML elements and their attributes. 

However, using the Report Wizard to generate reports requires that users understand the 

Report Wizard user interface, the Velocity Template Language, and the MagicDraw API. 

Once the templates are created, they can be reused extensively. However, creating them 

initially requires an experienced, expert-level user, which can be a hindrance when first 

transitioning to a model-based approach. In addition, information can only be transferred 

in one direction. Users can view the reports generated, but any edits to them will not be 

reflected by the SysML model. 

An alternative to MagicDraw’s built-in Report Wizard is the DocBook plugin for 

MagicDraw (INCOSE SE2 Challenge Team for Telescope Modeling). The plugin is built 

around the DocBook standard—a mature schema used to capture the structured content of 

a document without making any assumptions about what kind of document it is (Walsh, 

2011). The plugin for MagicDraw allows users to create a “model” of their document 

using a specialized SysML profile. Unlike the Report Wizard, the DocBook plugin 

provides its own basic user interface and simplified model queries that can be used to 
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create a document in SysML and export it to a PDF. However, like the Report Wizard, 

information can only flow in one direction; users cannot use these documents to update 

the SysML model. 

In (Delp, et al., 2013), a different approach is taken to model-based knowledge 

management. A much more formal method is used to describe the different views and 

concerns of stakeholders. SysML includes “View” and “Viewpoint” elements to model 

the perspective and concerns of different stakeholders, but these elements are not 

functional. In (Delp, et al., 2013), these elements are redefined and linked to functional 

Activity diagrams that describe how to construct each stakeholder’s view. These views 

can take many different forms, including pop-up, editable tables, web interfaces, or 

exported documents. This work is capable of exporting DocBook XML files, but also 

adds the ability to package information in a REST interface that allows users to update 

the model from an HTML view. When a large design team is working from a SysML-

based integration framework, the ability to work with user interfaces other than SysML 

models and exported documents can be extremely valuable. 

However, there are still many gaps remaining. Certain SysML elements or 

properties may need to be modified by users without SysML experience, so a user 

interface that can support this is desirable. While the environment presented in (Delp, et 

al., 2013) is extremely powerful, it is the culmination of years of research and funding. 

To transition from a document-based approach to a model-based one, a simpler approach 

for supporting different stakeholder views is preferred (at least initially). 
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2.4 Summary 

There are many different methodologies for MBSE and many different possible 

applications. However, there is no universal MBSE methodology. No set of tools and 

processes can fully address the needs of every specific engineering task. As a result, 

either the process, the tools, or both must be customized for each application. 

However, the true value of an MBSE approach lies in the quality of the models. 

Significant work has been done to create integration frameworks which can unify existing 

models into a single framework, but very little research has been done to support the 

planning and creation of those models. The remainder of this thesis presents a model-

based approach that can be used to plan and develop complex analysis models within a 

large, multidisciplinary engineering team. 
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CHAPTER 3 

ANALYSIS PLANNING AND RELATED PROCESSES 

In this chapter, a formal process for planning, developing, and using analysis 

models is introduced. This process is modeled in detail in SysML using Activity 

diagrams to capture the flow of information and the stakeholders involved. Using these 

diagrams, the overall process can be better understood. In addition, mapping activities to 

certain stakeholders provides a better understanding of who the ultimate decision-makers 

are for each step. Because this approach focuses on planning the analysis models, special 

attention is given to that aspect of the process. 

3.1 Overview of Integrated Vehicle Analysis Planning and Development 

The use of integrated vehicle analysis models is becoming crucial to automotive 

engineers wishing to better understand how the vehicle system performs under different 

operating scenarios. These models are particularly useful when performing propulsion 

system design and optimization. To create these analysis models, it is necessary to first 

plan and develop detailed domain analysis models according to vehicle-level goals and 

requirements. Once these domain models have been planned, developed, verified, and 

validated, they can be integrated together to simulate a complete vehicle. This vehicle 

model can then be optimized for key system-level attributes, such as fuel efficiency. 

Conclusions drawn from these simulations can be used to support the development of 

both physical components and control algorithms for real-world vehicles. 
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This process of developing detailed analysis models may be performed upstream 

of the vehicle’s design and may be used to support different milestones in the vehicle’s 

design. Depending on the milestone being targeted, different sets of data or levels of 

fidelity may be required to produce an accurate model. 

Coordinating all of the different tasks needed to produce an accurate vehicle 

model requires developing a thorough understanding of the underlying engineering 

processes. To do this, a set of activity diagrams is used to demonstrate how these vehicle 

analysis models are developed, from start to finish. Figure 1 shows a high-level overview 

of this process. Note that there are three distinct activities shown here: Analysis Planning, 

Model Development, and Design Analysis. The focus of our research is on supporting 

analysis planning, so that is the focus of this thesis and this chapter, in particular. 

However, the latter two phases are also discussed in some detail to give the reader a more 

complete understanding of the entire process. 
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3.2 Analysis Planning Process 

The first phase of the process shown in Figure 1 is the “Analysis Planning” phase. 

In this phase, the different sets of analyses which are needed to support a given vehicle 

development milestone are identified and defined in some detail. In most cases, this 

means running a variety of vehicle analyses in order to reach some conclusion. This set of 

analyses will hereafter be referred to as a “System Analysis Application Plan”. The 

majority of this research is focused around supporting this analysis planning phase, as 

many inconsistencies can arise out of the planning process. It is important that the 

different teams of domain subject matter experts are all working under the same set of 

 

Figure 1. Simulation development process activity diagram 
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assumptions and understand what the overall objective of a particular analysis actually is. 

To identify these sources of inconsistency and to develop tools and methods to reduce 

them, the analysis planning phase is modeled in a more detailed SysML activity diagram. 

This diagram is shown in Figure 2. Each activity presented in Figure 2 also includes a 

review and approval process. To make the diagrams more legible, the series of reviews is 

shown separately in Figure 3. 
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Figure 2. Analysis planning activity diagram 
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Figure 3. Activity diagram for analysis planning reviews 
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3.2.1 Inputs 

Figure 2 shows that there are two inputs to the analysis planning process. The first 

is the set of potential Vehicle Operating Scenarios (VOS). A VOS is a specific test event 

that will be used to execute a vehicle simulation, such as a drive cycle or vehicle launch 

scenario. These VOSs include some qualitative details about what the test event is meant 

to describe, as well as more quantitative information such as operating ranges and 

conditions to which the vehicle may be exposed. Depending on the goal of the overall 

system design study, the set of VOSs selected may vary. For instance, if the goal of the 

study is only to evaluate fuel efficiency attributes, the set of VOSs may only include 

selected regulatory drive cycles. 

The second input to the analysis planning process is the program information for 

the vehicle being modeled. The program information contains several different details 

about the vehicle model to run. First, it specifies which vehicle architecture should be 

modeled, such as a traditional internal combustion engine or power-split hybrid 

architecture. Second, it describes the control signals available to use. 

Note that this program information may also contain unique information about the 

types of vehicles to be modeled. For instance, if the analyses are being used to evaluate a 

drivetrain that will be used across multiple vehicles, the program information might 

include details about different vehicle top hats (body styles) that will need to be 

investigated. In addition, many analyses are used to simulate unique subsystem 

technologies that have not been used previously or are not well-understood. In this case, 

it is important to emphasize those technologies up front and pinpoint changes that may 

need to be made to the standard analysis modeling procedures to account for them. 
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These two inputs—the set of Vehicle Operating Scenarios to consider and 

program-specific information about the vehicles to model—can be used to infer many 

details about the types of analysis models that need to be run. Using these inputs, a more 

detailed plan for the analyses that need to be run can be drafted. This is known as the 

System Analysis Application Plan. 

3.2.2 Drafting the System Analysis Application Plan 

Once the inputs to the analysis planning phase have been evaluated, the next step 

is to draft the System Analysis Application Plan. This step is performed by a team of 

system engineers, as it requires taking a holistic view of the system design and the related 

vehicle attribute tradeoffs that need to be assessed. These system engineers typically 

represent a range of different disciplines, such as transmission hardware or engine 

controller modeling. In this way, the needs of all of the different domain engineers—who 

create the models—may be taken into consideration when the system analysis application 

plan is created. 

The primary purpose of the System Analysis Application Plan is to identify all of 

the analyses that need to be performed to support the design and system trade-offs for a 

vehicle or vehicle subsystem. These different analyses are referred to as the “analysis 

applications”. Each analysis application is a detailed description of a specific analysis 

that needs to be run. This description includes information about the purpose of the 

analysis, what vehicle models will be simulated, and which attributes will be looked at. 

The full set of analysis applications can be used to investigate the tradeoffs between 

vehicle system attributes. There are several different components of an analysis 
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application that must be defined, and it is extremely important to understand the 

relationships between them. Without this understanding, it is possible that the analysis 

application specified by the system engineers may be contradictory or confusing. 

These relationships are illustrated by the influence diagram shown in Figure 4. 

This influence diagram graphically depicts how the two inputs to the analysis planning 

phase—the program information and set of vehicle operating scenarios—can be used to 

systematically define an analysis application and how the information contained by this 

analysis application influences outside elements as well. 

In many cases, experienced system engineers should understand these influences 

implicitly. However, semantic misunderstandings and simple human error can still lead to 

inconsistencies when defining an analysis application. Formally mapping these influences 

can be used to better understand how and where such inconsistencies arise. This formal 

map can also be used to build a system of checks-and-balances into the user interface 

where analysis applications are defined. 

Several pieces of information specified for an analysis application do not directly 

influence anything else. These elements are shown at the top-left of Figure 4. First, the 

analysis application is given a name and short description so that it is clear to domain and 

system engineers what each model is intended to represent and why it is needed to 

support a particular system study. 
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Second, system engineers define the “Analysis Type” for each analysis 

application. The analysis type describes the purpose of the results from each analysis. For 

instance, the analysis may be used to check a correlation between simulation models and 

physical tests, or to model potential technologies that do not have extensive real-world 

test results to assess their utility. While this information is important for the perspective 

that domain engineers take when creating analysis models, it does not directly affect any 

of the other pieces of information. 

The final piece of non-influencing information that must be defined is the 

“Milestone” targeted by the analysis. The milestone indicates the stage in the vehicle 

development process at which these results should be delivered by. It serves not only as a 

deadline for the analysis model’s development, but also implies what level of model 

fidelity is required for the analysis. In addition, because each system analysis model must 

be verified and validated against different vehicle datasets, the milestone can also be used 

to indicate which datasets will be available to use at that time. 

Once these three elements have been defined, system engineers can use the 

program information to define an analysis application, as shown in Figure 4. The 

program information contains details about the complete set of control signals available 

on the real-world vehicle at that point in its development. The process of narrowing down 

this list of signals to only those needed for an analysis model is performed in an iterative 

process by both system and domain engineers. This process is discussed in Section 3.2.4. 

System engineers must also be clear about which vehicle tophat and vehicle 

architecture to model, as a vehicle program may have many different possible 

combinations of these two elements. For example, if a system design study is used 
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examine a particular drivetrain rather than a specific vehicle model, multiple vehicle 

models might need to be constructed to understand all of the different operating scenarios 

of that drivetrain. Alternatively, if the goal of a system design study is to examine a 

particular vehicle, that vehicle might have several possible architectures, such as a 

traditional internal combustion engine version or a full-hybrid version. It is of the utmost 

importance that this information is presented explicitly; otherwise it could result in major 

inconsistencies between the models that domain engineers produce. 

The analysis application must also identify the vehicle-level attributes to be 

evaluated. Examples of vehicle-level attributes include fuel efficiency, electric drive 

range, or emissions, among others. One or several of these attributes may be targeted by a 

particular analysis application. 

The second input to the analysis planning phase is the set of available VOSs to 

model. By knowing the attributes to examine and the system architecture and vehicle 

tophats to model, system engineers can narrow down this list of VOSs. Certain VOSs 

may be used for different vehicle architectures (such as special drive cycles for electric 

vehicles), different vehicle tophats (such as towing simulations for trucks and SUVs), or 

different vehicle attributes (such as EPA drive cycles for testing fuel efficiency). It is 

critical to define these pieces of information up front, so that only valid VOSs can be 

chosen for analysis work. 

Finally, system engineers may also need to identify subsystem content that should 

be modeled, such as the engine or transmission type. This content is included as part of 

the program information, but depending on the analysis application, may or may not need 

to be modeled for a given analysis. 
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Once system engineers have defined the pieces of information denoted as 

“Defined in Analysis App.” in Figure 4, the analysis application can be used to select a 

“Reference Architecture” and “Analysis Template”. This is shown by the outputs of the 

“Draft System Analysis Application Plan” activity in Figure 2. Using these two 

resources, system engineers can draft a set of vehicle model requirements and use them to 

create a specialized analysis architecture. These two tasks are discussed together in the 

following section. 

3.2.3 Vehicle Model Requirements and Analysis Architecture 

Using the analysis application defined in the previous step, system engineers can 

draft a set of requirements for the vehicle system model. This includes specifying the 

computer and operating system that the model should be run on, which solvers and file 

formats to use, what language(s) the model should be written in, etc. These requirements 

are used to drive the development of the individual domain subsystem models, whose 

requirements are defined later. Part of this process also involves using a reference 

architecture and analysis template to define the vehicle model’s structure. 

A reference architecture is an extremely useful resource for a complex, 

multidisciplinary process such as vehicle system analysis. Reference architectures 

provide a holistic view of a system and allow different stakeholders to work together 

from a common vehicle system definition. Many different reference architectures exist 

for capturing vehicle architectures. AUTOSAR, for instance, is the product of an 

industry-wide effort to produce a standardized architecture for controls design and 
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development that can be used among major OEMs and their suppliers (AUTOSAR, 

2013). 

For our approach, a reference architecture developed internally at Ford Motor 

Company is used. This reference architecture is known as the Vehicle Model 

Architecture, or VMA. There were two primary motivations behind the creation of the 

VMA. First, like AUTOSAR, the VMA allows models to be exchanged between different 

organizations under a common format. Second, the VMA simplifies the process of 

modeling different system configurations. The VMA contains a hierarchical breakdown 

of the different subsystems contained within a vehicle. In addition, the primary physical 

interfaces between all of these subsystems are specified. Because this common set of 

domain-to-domain interfaces is used, different subsystem models (such as different 

engine models) may be more easily interchanged within the same vehicle architecture 

(Tiller, et al., 2003). A SysML representation of the VMA is presented in Section 4.1.1. 

Using information about the analysis application, such as the type of vehicle 

being modeled and vehicle operating scenarios to use, system engineers can create a 

specialized version of the reference architecture to build their analyses around. This is 

known as the “analysis architecture”. An analysis architecture captures only the set of 

interfaces and hierarchy of domain models needed for a particular analysis. Starting from 

a given reference architecture such as VMA, a finite set of generic analysis architectures 

can be pre-specified for most common analysis applications. The same analysis 

architecture can potentially be modified to address several combinations of vehicle 

operating scenarios, vehicle-level attributes, and types of analyses, so there are 
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significantly fewer analysis architectures than there are combinations of analysis 

attributes. 

Despite the broad range of applications that an analysis architecture can address, 

it is still necessary to specialize this generic analysis architecture for each vehicle 

program. Creating a specialized analysis architecture is performed by adding the 

program-specific set of control signals and making any changes to the analysis 

architecture that may be needed to capture the unique subsystem content. The process of 

selecting these signals is discussed in the following section. Once a specialized analysis 

architecture has been developed, it can be passed to domain SMEs to use as the basis for 

their analysis models. 

3.2.4 Requesting Control Signals 

For each analysis application, domain engineers must identify the control signals 

that they anticipate will be needed to execute their analysis models. The initial program 

information provided to them includes details about the control signals available at that 

time. Depending on the phase of vehicle development at which this occurs, domain 

engineers may have the ability to request new signals that they believe they will need to 

execute their models. At later phases of vehicle development, however, the signals used 

in analysis models will be fixed as they begin to represent the signals used in the actual 

vehicle. In addition, analysis models created to support later development milestones may 

be used for hardware-in-the-loop (HIL) testing and to support code generation for control 

units, so correctly modeling the real-world set of control signals becomes crucial. 
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Defining the list of control signals to use in an analysis model is an iterative 

process. Domain engineers must specify both the control signals that they need and the 

control signals that they plan to provide from their models. In addition, they may request 

new signals that they believe should be available. This complete list of signals is then 

reviewed by the team of system engineers, who negotiate with each team of domain 

engineers to develop a consistent set of signals for the entire vehicle. These system 

engineers must negotiate with both the domain engineers who will provide certain signals 

and those who will be receiving those signals, so that all of the analysis models can 

interface correctly. Because this is an iterative process, it may require several rounds of 

negotiations with all of the different teams of domain engineers before a vehicle-wide set 

of control signals can be agreed upon by everyone involved. Tools such as signal 

databases are used to capture this information in a central location. However, because the 

full list of control signals for a vehicle model can be quite large, it is still possible that 

inconsistencies can arise if this list is not checked extensively. 

3.2.5 Domain Model Requirements 

Once an analysis application and set of vehicle requirements have been defined, 

the team of system engineers develops a set of requirements for each domain model that 

will be created. These requirements are first created by the system-level team to ensure 

that any assumptions made at the vehicle level will also be reflected by each domain 

model. In addition, this holistic view allows the team of system engineers to establish 

computational restrictions on the analysis models. This may include defining the 

operating system that models should be compatible with, which simulation environments 



 34 

will be used to run the integrated vehicle model, and any other guidelines that the domain 

model should comply with. 

In addition, system engineers can also add more domain-specific requirements at 

this stage, such as a particular engine that should be modeled. Once all of the domain 

requirements have been created, they are then sent to their respective domain engineers 

for review. After the reviews are complete and all parties are in agreement, the 

requirements are sent back to the domain engineers, who use them to create a set of 

domain model specifications. 

3.2.6 Domain Model Specifications 

Once the domain model requirements have been created by the system engineers, 

domain engineers are responsible for developing their own set of specifications for the 

analysis models they plan to create (as shown by Figure 2). These model specifications 

are intended to capture more detailed information about how they plan to create, verify, 

and validate their respective domain models. This includes identifying specific data sets 

that will be necessary, how that data will be processed and used, and the desired fidelity 

of the model. Detailed plans to verify and validate the models are also needed so that the 

accuracy of the domain models can be confirmed before they are integrated into a 

complete vehicle model. Although problems can still arise when integrating these 

models, preliminary verification and validation at the domain-level can eliminate some of 

these problems. 

To create this set of domain model specifications, domain engineers must work 

from the information defined by the team of system engineers. This information includes 
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system-wide criteria defined by the analysis application, as well as their domain-specific 

requirements. While domain engineers can view this information, they do not have the 

authority to directly modify any of it. This distinction is important and is made at several 

other steps throughout this process. By identifying who has the ultimate authority to 

make decisions during different phases of the modeling process, the software tools 

created to support it can be tailored to different users. Once the domain specifications 

have been reviewed and approved by the system engineers, the analysis planning phase 

can be concluded. 

3.2.7 Vehicle Model Specifications 

Like the domain models, each vehicle model also has its own set of specifications. 

However, their purpose is somewhat different. While the domain model specifications are 

intended to specify what kind of model to create, the vehicle model specifications specify 

how all of those domain models will be integrated. This complete process which defines 

how a vehicle model should be assembled and tested is known as the “integration plan”. 

Its use is discussed in more detail in Section 3.3.2. 

3.2.8 Outputs from Analysis Planning 

There are three primary outputs from the analysis planning phase. The first is the 

set of domain model specifications created by the domain engineers. These domain 

model specifications are essentially the product of all of the work done in the analysis 

planning phase, and should provide enough background information for the domain 

engineers to create their analysis models. 
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The second two outputs are related to the vehicle model itself—the vehicle model 

specifications and the I/O templates, as shown in Figure 2. These I/O templates are model 

templates in either Modelica or Simulink (for plant or control models, respectively) that 

the domain engineers must fill in with their model content. Each template has a 

predefined set of interfaces so that it may correctly integrate with the other domain 

models. The set of interfaces modeled is derived directly from the details of the 

specialized analysis architecture. 

One benefit of adhering to the domain/vehicle model specifications and I/O 

templates is that it allows a repository of analysis models to be built up around a common 

format. Once this repository has been built up, it becomes possible to more easily search 

through existing models and their documentation—at both the domain and vehicle 

level—to find models that can be reused or modified to address new analysis 

applications. With a large enough repository, this can significantly reduce the time and 

cost needed to create an integrated vehicle analysis model. 

3.3 Model Development Process 

Once the specifications for each domain model have been defined and the set of 

I/O templates has been generated, domain engineers can begin work developing their 

system analysis models. This process is illustrated by Figure 5. The I/O templates used in 

this process contain no content other than a pre-defined set of primary interfaces; the 

content of the models is left to the domain engineers. 

Supporting and improving the model development process was the primary focus 

of previous work by Branscomb et al. (Branscomb, 2012, Branscomb, et al., 2013). The 
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authors used a slightly simplified model development process, whereby plant and control 

models were assumed to be created exclusively in Modelica and Simulink, respectively. 

This assumption is carried throughout our approach as well, as it is representative of the 

majority of modeling work being considered. Rather than discussing each activity 

presented in Figure 5, the broader responsibilities of the two actors (shown by the 

DomainEngineer and SystemEngineer swimlanes) are discussed in this section. 

 

Figure 5. Model development Activity diagram 
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3.3.1 Domain Engineer Swimlane 

The model development process, unlike the model planning process, starts with 

the domain engineers. Once an analysis model has been created, verified/validated, and 

reviewed, the model must then be documented. The model created should adhere to the 

set of specifications defined before its development; if deviations from the specifications 

are necessary, the specifications must be updated, reviewed by the team of system 

engineers, and approved, before continuing that model’s development. The 

documentation for each model does not duplicate this information, as doing so could 

potentially result in inconsistencies between this information and the model 

specifications. 

Instead, it is primarily used to describe the results of the verification and 

validation efforts. In addition, the documentation for an analysis model contains some 

administrative information, such as who created the model or who to contact to get a 

copy. The documentation typically also includes some instructions for how to use the 

model and for what applications it is intended. In some cases, a single analysis model 

may be used to meet multiple sets of requirements and specifications. When this occurs, 

the documentation should also include references to any sets of model requirements and 

specifications to which it adheres. 

3.3.2 System Engineer Swimlane 

Once each team of domain engineers has created, verified, and validated their 

analysis models, these models are handed off to a system engineer who is responsible for 

integrating the domain models to produce a complete vehicle model. The system engineer 
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also receives the vehicle model’s specifications, as shown by the input parameter in 

Figure 5. The most important component of the specifications is the integration plan for 

the vehicle model. The integration plan describes the order in which domain models 

should be integrated and how they should be verified and validated at each step along the 

way. 

The integration plan may call for intermediate subassemblies to be created and 

tested, rather than immediately creating the complete, integrated vehicle model. By doing 

so, it is easier to identify problem areas in domain models as these subassemblies are 

built up. When necessary, domain models may need to be updated and the integration 

process restarted. Once the completed vehicle model has been created and approved by 

the team, it is documented and passed on to the next phase of the process, the Design 

Analysis Phase. 

3.4 Design Analysis Process 

The third and final phase is the “Design Analysis Phase”. This phase is not 

addressed by this thesis or in previous work by Branscomb et al., but it is worth 

introducing at a high level. The goal of this phase is to execute one or more analysis 

applications and use the results to improve the system design of the vehicle. This may 

involve performing a design of experiments on different vehicle attributes or an analysis 

of different system alternatives, whether at the vehicle- or subsystem-level. Once this has 

been completed, the conclusions drawn from these results can be saved, documented, and 

delivered to other engineers to use in the engineering design process of the real-world 

vehicle. 
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3.5 Applying MBSE to Analysis Planning 

With the components of the analysis planning phase formally defined, the next 

step is to identify how MBSE principles can be applied to make the process more 

efficient. Again, one of the issues with MBSE is that there is potentially a substantial cost 

associated with it, and the benefits may not be quantifiable or even necessarily obvious. 

To add value to this process, an approach is needed which would not require significant 

capital to implement. Previous work by Branscomb et. al made steps towards a model-

based approach for the model development phase, but much of the analysis planning 

phase still required a document-based approach. 

To address this, our approach aims to capture the knowledge generated during the 

analysis planning process using MBSE principles. By doing so, the time required to 

manually create, update, and communicate this information can be significantly reduced. 

In addition, by using models to link the analysis planning phase to the model 

development phase, a comprehensive repository of models and their documentation can 

be more easily created and maintained. Chapters 4 and 5 present the models and tools 

developed to support this approach in much greater detail.  
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CHAPTER 4 

INFRASTRUCTURE FRAMEWORK 

This chapter proposes a set of models and tools intended to be used to support the 

analysis planning process introduced in Chapter 3. These models and tools will 

henceforth be referred to as the “infrastructure framework” for our approach. The 

infrastructure framework includes a SysML model used to capture both the vehicle model 

architecture and the analysis artifacts needed to support its development. In addition, a 

template engine is used in Excel which is capable of importing data about the SysML 

model in the form of an XML file and producing a unique spreadsheet for engineers to 

input information. This infrastructure framework is capable of aiding the transition to 

MBSE practices by presenting a familiar user interface to stakeholders and using formal 

SysML models to minimize inconsistencies that may arise during the development of a 

multidisciplinary analysis model. 

4.1 SysML Model 

This section presents the different SysML models which have been created to 

support analysis planning and development. These SysML models can be used to 

understand information about the vehicle itself, such as the relationships between 

different domains, as well as the different information elements needed to fully plan and 

describe the models being created. By capturing all of this information using the common 

set of semantics that SysML provides, the entire analysis modeling process can be more 

easily understood by all stakeholders involved. 
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4.1.1 Reference Architecture 

A Vehicle Reference Architecture (VRA) is modeled in SysML to capture the set 

of physical interfaces and logical hierarchy of a vehicle architecture. The goal of the 

VRA is to create a structured model which can be used to not only present and 

understand the vehicle architecture, but also more practically, to generate a set of model 

templates in Modelica and Simulink with a predefined set of interfaces. In this way, the 

potential for inconsistency when creating a multidisciplinary vehicle model can be 

minimized in many respects when analysis models from across many domains are 

integrated. 

This reference architecture conforms to a version of the Vehicle Model 

Architecture Version 3 (VMA v3) specification, which is still under development. 

Currently, the set of interfaces in VMA v3 is not fully defined, so modeling efforts are 

focused around capturing the interfaces known for the propulsion system and developing 

modeling patterns that can be followed once the VMA v3 specification is finalized. 

Creating this reference architecture is not the primary focus of this work; many of the 

decisions, details, and challenges of modeling the VRA are discussed by (Branscomb, 

2012, Branscomb, et al., 2013). However, the previous iteration of the VRA used both an 

older VMA specification and SysML specification. As a result, many model elements of 

the previous VRA are updated and modified. In addition, some previous modeling 

decisions have been changed, which are also worth noting.  

The current iteration of the VRA introduces a new domain element hierarchy, as 

shown in Figure 6 below. At the highest level of the hierarchy is the VehicleDomain 

block, which encompasses both the vehicle (ICHEVVeh) and the environment (Env) with 
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which it interacts. The vehicle is broken down into six subsystems: Power (Pw), Chassis 

(Cha), Vehicle System Controller (Vsc), Cabin (Cabn), Air (Air), and Climate (Climt). 

Note that at this level of detail, this hierarchy would be consistent across any vehicle 

architecture (such as either a hybrid-electric or battery-electric vehicle). However, in 

order to define the interfaces in more detail, each vehicle architecture must currently have 

its own Vehicle Reference Architecture model in SysML. The current SysML 

specification does not natively support variants, so an all-encompassing VRA which 

captures all of these potential vehicle architectures would be both time-consuming to 

create and unwieldy to use. In addition, because the VMA v3 specification is still in 

development and the interfaces are not completely defined, such an effort is not yet 

possible. Instead, a single, semi-complete VRA is used in SysML to model a traditional 

hybrid vehicle. This VRA model serves as the foundation for the tools and methods 

developed to improve the analysis planning process. 

All of the subsystems and their components in the VRA, with the exception of the 

Vehicle System Controller, are composed of both a plant element and a control element. 

Plant and control elements are denoted in the SysML model by appending either “Plnt” or 

“Ctrl” to the element names, respectively. These plant and control elements are all 

specializations of the generic “Plant Element” and “Control Element” blocks shown in 

Figure 7. 
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Figure 7. Generic plant and control elements 

These elements are used to model the generic set of control signal buses for 

control and plant elements. For control elements, there are three proxy ports to consider. 

The first two, global control in and global control out, are used to model the signals sent 

and received between the control element and the global CAN bus, respectively. The 

second proxy port, local control bus, represents the signals passed between the plant and 

control element within a single domain. This port has two nested ports. The first, actuator 

signal out, refers to signals sent to actuators in the complementary plant element. 

Similarly, sensor signal in refers to signals sent to the control element from its related 

domain element. For plant elements, these local ports are reversed. On the local control 

bus for plant elements, actuator signals are received and sensor signals are sent. Because 

knowledge about these signals is unique to each vehicle program and tends to evolve as 

the vehicle design becomes more detailed, the control signals needed for a particular 

analysis model cannot be known entirely in advance. As a result, a Vehicle Reference 

Architecture cannot capture all of the control signals that might be used for an analysis 

model like it can for physical interfaces. Instead, placeholders are used in the VRA so 
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that these signals may be added later to the Specialized Analysis Architecture. This is 

discussed further in Section 4.1.4. 

An example of the decomposition of the “Propulsion” domain into its respective 

sub-domains and their plant and control elements can be seen by Figure 8 below. Note 

that the Prp block also owns Trn, Eng, Dln, Exh, and Fuel, but those relationships are not 

shown in this diagram. 

In the VMA specification, physical interfaces are fixed and well-understood for 

the plant elements. However, VMA v3 introduces significantly more physical interfaces 

to the architecture than in VMA v2. As a result, port nesting is implemented to organize 

the interfaces in SysML. Because the interfaces defined in the VMA specification refer to 

energy exchanges rather than physical connections, proxy ports are chosen to represent 

them in SysML. Proxy ports do not represent physical parts of a system like full ports; 

 

Figure 8. Propulsion system decomposition 
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instead, a proxy port is used to expose “features of either its owning block or parts of that 

block” (Friedenthal, et al., 2012). In this case, the “features exposed” refer to the types of 

energy being exchanged between two domains. 

To organize the substantial number of interfaces defined by the VMA v3 

specification, ports are grouped according to which two domains are interacting. An 

example of this is shown in part by Figure 9. In this figure, a single connector is used to 

define the connection between the engTrn and trnEng ports on an engine plant and 

transmission plant, respectively. Both ports are typed by an EngTrnIF interface block. 

The definition of the EngTrnIF interface block is provided by Figure 10, which 

defines two internal proxy ports, work and thrml, to capture rotational and thermal energy 

exchanges, respectively. In addition, the figure also shows an association block, 

EngTrnInct, which is used to define the connection between two “EngTrnIF”-typed ports. 

Using this association block, an IBD is created to model the connectors between the 

nested ports, as shown by Figure 11. Creating these three diagrams provides a complete, 

formal method for modeling a nested set of physical interfaces. Through the use of 

hyperlinks to navigate between these diagrams in MagicDraw, it also serves as a useful 

interface for examining and analyzing pieces of the VRA model in increasing levels of 

detail. This pattern is repeated to capture all of the known interactions between domains. 

 

Figure 9. Propulsion plant IBD 
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4.1.2 Analysis Artifacts 

A substantial amount of information must be generated and organized in order for 

analysis models to be properly planned, developed, and run. This may include details 

about the kinds of analyses to be run, the requirements and specifications for each 

domain model or complete vehicle model, or the documented results of the analyses. This 

broad category of information produced during analysis modeling will be referred to as 

the “analysis artifacts”. To better organize the analysis artifacts and the information that 

 

Figure 10. Definition of connection between Engine and Transmission 

 

Figure 11. EngTrnInct IBD 
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they contain, they are formally captured in a SysML model and linked to the VRA. In 

most cases, this information is stored as instance data inside a SysML package created for 

each analysis. 

The analysis artifacts modeled are adapted from existing documents used during 

the analysis model development process (Jennings 2013). Some elements were removed 

and other elements added to better support the approach proposed by this thesis. Each 

information element is classified based on several categories. First, each is categorized 

based on whether the information should belong to the model requirements, 

specifications, or documentation. In addition, each is grouped according to whether it 

pertains to domain models, vehicle models, or both. Finally, where possible, a finite list 

of options is defined for information elements in order to restrict the possible user inputs 

and to limit ambiguity. For instance, the VOS used to drive a particular analysis may be 

selected from the set of operating scenarios imported before defining the system analysis 

application plan (see Chapter 3). In some cases, these lists of choices may vary from 

domain to domain, so specialized analysis artifact models are used where needed. It is not 

the goal of this research to completely define these lists of choices, but rather to provide 

the framework for more experienced users to do so. These analysis artifact models are 

presented in more detail in Chapter 5. 

4.1.3 Analysis Templates 

Analysis models typically will not use the full set of interfaces available from the 

VRA. To define the interfaces needed for a particular analysis (such as a fuel efficiency 
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study), it is necessary to identify the specific ports which will be used in an analysis 

model. To do this, SysML “analysis templates” are defined in advance. 

An analysis template is modeled as a block in SysML which has dependencies to 

the ports needed for a particular vehicle analysis. It is possible to create these 

dependencies manually on a BDD, but the number of ports and their nesting in the VRA 

makes this process incredibly tedious. Instead, dependency matrices are used to manage 

the analysis templates and their dependencies. An example of one of these dependency 

matrices is shown by Figure 12. Each column corresponds to a particular analysis 

template, while rows are used to show all of the ports modeled in the VRA.  The version 

of MagicDraw used for this thesis (17.0.4) allows these matrices to be set up such that 

users can easily double-click in a cell to create a dependency between an analysis 

template and a port. This makes the process of capturing analysis templates in a SysML 

model much more straightforward than in previous efforts (Branscomb, 2012). A set of 

analysis templates can pre-defined for each VRA, as the same set of interfaces can be 

reused across many different analysis applications. Consequently, this also allows the 

possibility for domain models to be reused across multiple analyses. 
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4.1.4 Specialized Analysis Architecture 

A specialized version of the Vehicle Reference Architecture is created in SysML 

for each vehicle analysis that needs to be run. This is referred to as the Specialized 

Analysis Architecture. The Specialized Analysis Architecture has two components—a 

specialized copy of the VRA, and the analysis artifacts needed to define it. The 

specialized copy of the VRA includes only the subset of ports specified by a particular 

analysis template. Ports that will not be used to run the analysis are excluded so that the 

Specialized Analysis Architecture more accurately reflects the analysis models to be 

 

Figure 12. Analysis template dependency matrix 
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created. A custom plug-in for MagicDraw is used to generate this Specialized Analysis 

Architecture automatically by copying the VRA and deleting any ports that do not have 

dependencies to the analysis template specified. Additionally, any domain elements 

which have all of their ports and parts deleted are also removed from the analysis 

architecture, so that only the relevant domains are included. An example of the 

transformation from the VRA to a Specialized Analysis Architecture can be seen in the 

transformation from Figure 13 (the vehicle reference architecture) to Figure 14 (the 

specialized analysis architecture). In this example, only the Engine and Transmission 

models are assumed to be needed for the analysis. All extraneous ports and unneeded 

domain models are automatically removed when creating the Specialized Analysis 

Architecture. 

 

Figure 13. Propulsion plant IBD in VRA 
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Figure 14. Propulsion plant IBD in Specialized Analysis Architecture 

To fully specialize the analysis architecture, it is also necessary to import the 

unique set of control signals that will be needed to run a particular analysis. Placeholder 

proxy ports, as shown in Figure 7, are modeled on plant and control elements such that 

they can be specialized once this set of control signals is known. However, the methods 

and standards for specializing these ports are not yet finalized, and as a result, are not 

considered as part of this work. 

Once the specialized analysis architecture is created in SysML, it is used to 

generate a set of blank model templates for Modelica. A representation of the complete 

Modelica vehicle model is modeled alongside the VRA in SysML using stereotypes from 

the open source SysML-Modelica profile (Object Modeling Group, 2012). The plugin 

used by (Branscomb, 2012) to generate Modelica templates from MagicDraw is modified 

to accommodate the port nesting introduced in Section 4.1.1. 

To map the relationships between the VRA and the Modelica elements, 

association blocks are used to map the correspondence between a SysML element and its 

Modelica representation (modeled using the SysML-Modelica stereotypes). Note that 

these relationships are only modeled for plant elements; control elements are intended to 
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be modeled in Simulink. An example of one of these correspondences for the complete 

vehicle model is shown in Figure 15. The VRA is shown by the ICHEVVeh block on the 

left; its Modelica counterpart is shown by the ICHEVVehModelica block on the right, 

which also has a <<ModelicaModel>> stereotype. The AnalysisCorrespondence 

association block is used to map the correspondence between the two and their part 

properties. 

These correspondences are modeled at each level of the VRA hierarchy so that 

the correct part property hierarchy can be traced and maintained. Using IBDs for each 

association block, the relationships between a system’s part properties is modeled using 

connectors. Figure 16 shows a simplified example of this for the power system owned by 

the vehicle. The Modelica model is shown by the analysis:ICHEVVehModelica element, 

while the VRA model is shown by the structure:ICHEVVeh element. 

 

Figure 15. Analysis correspondence between VRA and Modelica model 
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The second component of the specialized analysis architecture is the set of 

analysis artifacts which describes the analysis that is to be performed. This includes 

information about what kind of vehicle analysis will be run, the requirements and 

specifications for the domain-specific and vehicle models, the plans for validating and 

verifying the analysis results, and documentation of the analysis results themselves. 

These artifacts are modeled alongside the SysML VRA, such that the relationships and 

ownership of particular sets of information can be formally captured. This approach 

allows a repository of analysis architectures and the information about how and why they 

were created to be stored within a SysML model. 

To fully understand these analysis artifacts and the information they contain, it is 

also necessary to understand how information is built up throughout the model 

development process, and who has the ultimate authority to author pieces of that 

information. To address this, tools were developed to add functionality to Views and 

Viewpoints in SysML. 

 

Figure 16. Analysis correspondence IBD 
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4.1.5 Views and Viewpoints 

In SysML, Views and Viewpoints can be used to model the perspectives of 

different stakeholders and their interests. A viewpoint describes a particular perspective 

of interest to a set of stakeholders, while a view is a stereotyped package that is said to 

conform to a particular viewpoint (Friedenthal, et al., 2012). While viewpoints in SysML 

include properties to identify the stakeholders, their concerns, and even the methods used 

to establish the view, there is no functionality currently associated with these two SysML 

elements. 

A group at OMG is attempting to establish a standardized approach for generating 

views from SysML models, but there is no established timeline for its adoption into the 

SysML specification (“Auto-View Generation Working Group Wiki”, 2013). However, 

by taking advantage of external software tools and SysML’s inherent extensibility, 

customized approaches can be developed to add such functionality. As mentioned in 

Section 2.3, work has been done by groups at JPL, for instance, to allow for the 

generation of both web- and document-based tools using Views and Viewpoints in 

SysML (Delp, et al., 2013). 

Our approach can also support the generation of a user interface from a SysML 

model. In this approach, the capabilities of Views and Viewpoints are extended through 

Java plugins so that they can be used to export stakeholder-specific information about the 

SysML model to XML files. Viewpoints are used as filters—they use dependencies to 

point to specific metaclasses or stereotypes that elements must have in order to be 

exported to XML. Views, which conform to a particular Viewpoint, are used to specify 

the packages and specific elements that should be filtered. Once these elements have been 
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filtered, they can be exported to an XML file. This XML file is then used to generate a 

stakeholder-specific user interface, but does not place any constraints on how that 

interface must be constructed. An Excel user interface is used, as discussed in Section 

4.2. In this way, only the information considered pertinent to that stakeholder must be 

processed by the user interface; extraneous information is excluded. An example of this 

use of Views and Viewpoints is shown in Figure 17. 

In Figure 17, the InstanceInfo viewpoint has dependencies to three metaclasses: 

InstanceSpecification, Slot, and InstanceValue. This viewpoint can be used to export any 

SysML elements that are derived from these metaclasses. The view shown in this figure, 

InstanceView, conforms to this Viewpoint. In addition, it has a dependency, with an 

<<import>> stereotype, to the InstanceData package. Using the software plugins 

developed for our approach, this InstanceView can be used to export all of the instance 

data contained by the InstanceData package to an XML file. 

The advantage of this approach, which may not be entirely obvious from this 

trivial example, is that it leverages SysML’s visual capabilities to allow users to export 

specific collections of information from the model. Rather than modifying Java or Python 

scripts to change how information gets exported, users need only drag a few elements 

onto a diagram and create dependency relationships between them. Several additional 

capabilities are added to make this use of views and viewpoints more intuitive to SysML 

users; these are discussed in more detail in Appendix A. 
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Figure 17. View/Viewpoint definition for exporting instance data 

4.2 User Interface 

One issue that arises when using a SysML model to handle the many different 

analysis artifacts is that SysML tools, such as MagicDraw, are not particularly efficient 

when it comes to entering, modifying, and viewing large sets of information. To develop 

an effective user interface, it is necessary to first identify the capabilities that are most 

desirable to end-users unfamiliar with model-based systems engineering and its related 

tools. From there, existing solutions can then be evaluated and considered, or a custom 

solution can be created to meet the needs of the various stakeholders being considered. 
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4.2.1 Desired Capabilities for a User Interface 

There are several characteristics of an effective user interface that were identified. 

Although SysML tools like MagicDraw meet some of these requirements on their own, 

the costs to train users to use SysML, to modify existing workflows and processes, and to 

purchase licenses can seem prohibitively high if the benefits of doing so are not 

immediately obvious. To address these concerns, a set of desired capabilities were 

outlined that an effective user interface should possess. These capabilities are presented 

below in order of their relative importance to our approach. 

Interface with SysML model 

The first capability desired for the user interface is that it be capable of interacting 

with the SysML model discussed in Section 4.2. This means allowing users to view 

information about the model, modify it, or add new information. Although SysML tools 

such as MagicDraw obviously provide the ability to create and modify SysML models, 

this requires that the users have a sufficient understanding of SysML and its semantics. 

Otherwise, allowing large numbers of users to interact with the same SysML model 

directly can introduce as much inconsistency as traditional document-based approaches if 

users misuse SysML elements or if user permissions are not strictly regulated. 

MagicDraw also is not particularly efficient when entering large amounts of data. 

Because analysis artifact data is stored as instances in the VRA SysML model, it can be 

extremely tedious to view and edit such data without specialized tools. 
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Familiar to stakeholders 

Another capability desired is that the user interface should be familiar to as many 

stakeholders using it as possible. Training and licenses for SysML tools can be 

expensive, particularly when needed for many different teams of engineers. By providing 

a user interface that is already familiar to stakeholders, or at least simple enough to learn 

without extensive training, many of these costs can be significantly reduced. 

Customized for stakeholders 

In addition to being familiar to stakeholders, an ideal user interface should also be 

customizable for particular individuals or groups of stakeholders. These stakeholders may 

need to view different sets of information to perform their tasks and may need to interact 

with the SysML model in different ways. It is important that the user interface selected 

can be customized to these different needs. 

Enumerated lists 

The ability for users to select from a list of options is a seemingly minor yet 

immensely important capability. Because creating full-vehicle simulations is a 

multidisciplinary process, it is important that the same set of semantics be used across 

different teams of domain experts when possible. By limiting large groups of users to the 

same vocabulary and set of options where possible, inconsistencies arising out of 

miscommunication or misinformation can be reduced significantly. This can be 

accomplished using any number of common graphical user interface elements, such as 

dropdown menus, radio buttons, or checkboxes. 
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Consistency checking 

It is also important that the user interface have some notion of automated or semi-

automated consistency checking in order to make sure that the inputs provided by 

different stakeholders are consistent. Parsing and comparing long strings of text is 

obviously beyond the scope of this research, but it would be advantageous to check if 

different options selected from dropdown menus or checkboxes are consistent with one 

another. For instance, if a user specifies that an analysis should examine attributes 

typically associated with a fuel efficiency vehicle model, the user interface would ideally 

prevent the end-user from selecting unrelated options associated with cabin comfort 

models. 

4.2.2 Excel Template Engine 

Excel is already used extensively by both domain and system engineers during the 

analysis planning process. To ensure a minimal impact on current workflows, it was 

considered to be the most desirable choice for a user interface. However, on its own, it 

does not have all of the capabilities outlined in Section 4.2.1. 

To address some of these concerns, a template engine created for Excel adds the 

ability for users to auto-generate user-forms based on special templates defined directly 

in Excel spreadsheets. This template engine was written to be fairly generic, such that if a 

new kind of user-form is desired or if an existing one needs to be reformatted, it can most 

likely be done without requiring any VBA or Java code to be updated. Note that only a 

small number of administrative-level users would be required to create and modify these 

templates; the majority of the stakeholders introduced in Chapter 3 would only interact 
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with spreadsheets that had been pre-generated for them. In this way, generating these 

user-forms requires only knowledge of how the template engine and SysML models 

interact, rather than an extensive programming background and understanding of the 

underlying code. 

The template engine first imports an XML file which is generated by exporting 

Views from a SysML model, as discussed in Section 4.1.5. This XML file is then mapped 

to its own spreadsheet in the workbook. On the sheet in which the user-form will be 

generated, “commands” can be specified in either the first row or first column of the 

sheet to process XML elements. 

These commands can be used to different effects. They can be used to specify 

which properties from the SysML model should be presented as fields for the user to 

enter information. Commands can also denote which pieces of information should be 

presented for users to view in a spreadsheet, but not change. In addition, they can be used 

to specify how these pieces of information should be imported back into the SysML 

model—such as importing fields as instance data or modifying existing elements. In this 

way, the notion of Ownership versus Viewership of information can be built into the user-

forms, rather than relying on users to adhere to these rules on their own. 

A command has two components. An example of a command is shown by Figure 

18. The first component is the reference, shown on the right after the two colons. The 

reference is used to find a particular SysML element by some attribute, whether it be its 

name, ID, or type (in the case of properties). In the template engine, a reference is 

formatted as an XML element with an element type and any number of attributes. In the 

example shown below, the reference points to a “property” whose name is “color”. The 
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second component of a command is the action, shown to the left of the colons. The action 

tells the template engine what to do with the SysML element that it finds. For instance, 

the action might tell the template engine to create a user field based on a SysML element, 

to export a row or column as instance data, or to present some information for the user to 

see while they fill out other fields. In the example presented, the action “FIELD” tells it 

to create a field using the property pointed to by the reference. 

 

Figure 18. Example of a command in the Excel template engine 

In this simple example, the reference points to the color property (typed by the 

ColorKind enumeration) defined in Figure 19. Once the command has been processed as 

a “FIELD”, as specified by the action, a dropdown menu will be created in the Excel 

spreadsheet. The enumeration literals  specified in the SysML ColorKind enumeration 

map directly to the choices available in the dropdown menu, as shown in Figure 20. 

 

Figure 19. Simple BDD defining a block and enumeration 
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Figure 20. Excel dropdown menu generated by template engine 

Although this example is trivial, the template engine can be extremely powerful 

when used to interact with a complex SysML model. Using these commands in concert 

with XML files exported from SysML, an administrative-level user can create reusable 

Excel templates which allow different stakeholders to view and modify a central SysML 

model. Updating the spreadsheet to reflect changes to the SysML model is as simple as 

importing the most up-to-date XML file from the model. A more detailed discussion of 

how this template engine works is presented in Appendix B. 

4.2.3 Excel User Interface Additions 

The template engine on its own can automatically create the data fields for users 

to input information, but there are additional capabilities that were added to make the 

user-interface more accessible and user-friendly. These auxiliary capabilities are 

presented below, in no particular order. 

Multi-selection in dropdown menus 

One feature that Excel drop-down lists do not natively support is the ability to 

select multiple options. This is an extremely important capability to have. Many data 
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fields in the analysis artifact documents allow, and in some cases require, multiple 

choices to be selected. When a user selects multiple options, they appear as a comma-

separated list in the cell that the user is entering information. This capability is enabled 

automatically if the dropdown menu created by the template engine is linked to a SysML 

property with a multiplicity of “0..*”. An example of this is shown by Figure 21, where 

multiple vehicle attributes have been selected to examine for a particular analysis. 

Context-specific dropdown menus 

While dropdown menus and enumerated lists can significantly reduce 

inconsistencies that may arise when planning analyses, it is still possible that certain 

options selected may contradict one another. To address these concerns, a feature is 

included in the user interface which can automatically limit the options available to the 

user. To map how different fields in the user interface relate to one another, dependencies 

are used in SysML. An example of such a set of dependencies is shown by Figure 22. 

 

Figure 21. Multi-select capability in Excel 
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Figure 22. Example of dependencies defined in BDD 

In this example, dependency relationships are drawn between enumeration 

literals—from Apple and Tomato to Red, and from Broccoli to Green. This implies, for 

instance, that the ability to select Apple is contingent on selecting the Red enumeration 

literal. If another enumeration literal is selected to which does Apple not have a 

dependency, then Apple cannot be selected by the user. Note that managing these 

dependencies in BDDs can quickly become confusing; it is much simpler to add and 

modify them through dependency matrices in MagicDraw. 

Like other elements in the SysML model, these dependencies can be chosen for 

export to the Excel user interface through the use of Views and Viewpoints. Using this 

capability, inconsistencies can be prevented by only permitting users to select valid 

combinations of choices. 

Supplemental tooltips 

While the added capabilities of dropdown menus can help to bridge the semantic 

gaps between multidisciplinary teams of domain experts, it is still possible that the Excel 

user interface may seem ambiguous or confusing to the end-user. Traditionally, sets of 
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reference documents would be used to define any unclear sets of terms. However, such 

documents can quickly become obsolete as the user interface changes and evolves over 

time. Instead, it is more desirable to handle this kind of information using a model-based 

method. 

To do this, this information is maintained in comments in the SysML model. By 

storing the information in this way, the SysML model can remain the master source of 

any and all information about the analysis artifact models. These comments are exported 

to XML from the SysML model with the rest of the information and displayed as tooltips 

in Excel when the user selects a particular cell. An example of a tooltip that has been 

generated in this way is shown in Figure 23. 

Cell color-coding 

The final capability added to the Excel user interface is the ability to visually 

display which data fields a user can edit, and which are only meant to be viewed. This is 

a seemingly minor detail, but for users unfamiliar with the template they are using, it is a 

critical feature. The template engine allows two actions to be specified when creating 

these templates: VIEW and FIELD. Data fields which a user can edit are specified by 

 

Figure 23. Tooltips in Excel UI 
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FIELD and displayed in white, while data fields which are only meant to be viewed are 

denoted by VIEW and are left gray.  
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CHAPTER 5 

APPLYING INFRASTRUCTURE FRAMEWORK TO ANALYSIS 

PLANNING 

This chapter details how the infrastructure framework introduced in Chapter 4 is 

applied to the analysis planning process presented in Chapter 3. The chapter follows the 

general progression of the “Analysis Planning” activity diagram shown in Figure 2. In 

addition, this chapter includes a brief discussion about how the infrastructure framework 

can be applied to the model development process. Each section discusses the user 

interface and underlying SysML models which pertain to a particular activity. The focus 

of this chapter is primarily on analysis planning for domain models, as they require the 

most interdisciplinary coordination. Note that each vehicle system model also has its own 

set of requirements, specifications, and documentation, but those are not presented here 

as they are largely the same as their domain model counterparts (with the exception of the 

integration and verification/validation plans discussed in Sections 3.2.7 and 3.3.2). 

There are, however, two components of the infrastructure frameworks which are 

not discussed explicitly in this chapter. The tools created to use SysML 

Views/Viewpoints in conjunction with the Excel template engine are used at every step in 

this process. The combination of these two tools allows users to export View-specific 

XML files from SysML and use them to produce a user interface in Excel. Their 

functionality is independent of the activity to which they are applied. As a result, the 

details of the implementation for SysML Views/Viewpoints and the Excel template 

engine are left to Appendix A and Appendix B, respectively. 
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5.1 Creating a Draft of the System Analysis Application Plan 

The first step in planning a system analysis application plan is defining the full set 

of analyses that need to be performed—the set of analysis applications. All of the 

analysis applications for a given system study must be defined together, so that any 

similarities between them can be identified. Identifying and understanding these 

similarities can potentially allow a single vehicle model to be used to address multiple 

analysis applications. 

To apply the infrastructure framework to the process of drafting a system analysis 

application plan, a SysML model is used to capture the information which must be 

defined for each analysis application. This SysML model is shown in the BDD in Figure 

24. The diagram is used to define several different components of an analysis application 

which are owned by the AnalysisApplication block. Once the SysML model has been 

defined, it can be used to store analysis application data by creating instances of the 

AnalysisApplication block. There are four aspects of this model worth noting. 

First, value properties are used to represent fields in which users can write textual 

information. In this case, these fields are the name of the analysis application (name), a 

short description of it (description), and the name of the engineer who will lead the model 

development effort (lead). Second, a set of enumerations and enumeration literals is used 

to define the system design study. These enumerations are used to define several different 

aspects of a given analysis application, including the different vehicle attributes to 

examine (AttributeKind), the type of analysis being considered (AnalysisKind), possible 

vehicle top hats (VehicleKind), any subsystems which are unique for the vehicle program 

(UniqueSubsystemKind), the set of operating scenarios that could be modeled  
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(VOSKind), and the possible development milestones to target (MilestoneKind). The 

enumeration literals owned by each of these elements are used to create dropdown menus 

in the Excel user interface. 

The third component of the analysis application SysML model is the set of 

dependencies between the elements. These dependencies are used to ensure that the 

options available for a user to select in the Excel user interface are all consistent with one 

another, as discussed in Section 4.2.3. The most important selections are the 

AbstractSystemArchitecture and AnalysisTemplate chosen. Each analysis template is only 

valid for a single system architecture, so it is important to ensure that the user selects a 

valid option. These dependencies are more easily managed through a dependency matrix 

created for each element, rather than through a BDD like the one shown in Figure 24. A 

condensed example of a VOS dependency matrix is shown in Figure 25 for the “EPA-

FTP4” operating scenario. This example shows that the ability to select that operating 

scenario will depend on ElectricDriveRange, Fuel, Performance, Thermal, or some 

combination of these attributes being selected. Any other choices will prevent the user 

from selecting “EPA-FTP4”. 

The fourth and final aspect of the analysis application model worth noting is the 

reference properties owned by the AnalysisApplication block. These are shown by the 

white diamond relationships between AnalysisApplication and the abstract blocks (which 

have italicized names) in Figure 24. In this model, there are three such reference 

properties. First, it references AbstractSystemArchitecture block. Any VRA modeled in 

SysML must be a specialization of this block. Only one VRA has currently been modeled 

in SysML, which is shown by the ICHEVVeh block. 
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Second, the AnalysisApplication block references the set of analysis templates 

defined in SysML, given by AnalysisTemplate. Again, any analysis template defined in 

SysML must be a specialization of this block in order for it to be referenced by an 

analysis application. In this case, two sample analysis templates have been created for 

fuel efficiency and performance simulations—ICHEVFuelEff and ICHEVPerf, 

respectively. These analysis templates are not complete; the goal of our approach is to 

create the tools and approach necessary to define them, rather than to define them 

ourselves. Note that a given analysis template is only valid for a single VRA. To make 

sure that the analysis template selected is valid for the system architecture chosen, 

dependency matrices like the one shown in Figure 25 can be used to map these relations. 

Finally, AnalysisApplication also has a reference property to 

AbstractAnalysisArchitecture. Using the system architecture and analysis template 

selected by a user, an analysis architecture can be created as a specialization of the 

 

Figure 25. Dependency matrix for a VOS choice 
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AbstractAnalysisArchitecture block for each analysis application (as discussed in 4.1.4). 

Analysis architectures are not generated until the other data fields for an analysis 

application have been defined, so this property is left as a placeholder in the analysis 

application SysML model. 

By exporting this SysML model to XML, and loading that XML file through our 

Excel template engine, a user interface similar to the one shown in Figure 26 can be 

generated. This user interface has been truncated to show only the most important fields, 

including the name, system architecture, vehicle attributes, VOS, and analysis 

architecture for each analysis application. Note that in the user interface shown, each row 

corresponds to one analysis application. System engineers can define as many analysis 

applications here as needed. Once the full set of analysis applications has been defined, 

they can be imported back into SysML. 

 

Figure 26. Analysis application spreadsheet 

Importing the analysis application data into SysML creates a package and 

instance of the AnalysisApplication block for each row defined in Figure 26. For a given 

system analysis application plan, all of the individual analysis application packages are 

stored in one parent package. All of the data and models associated with an individual 

analysis application are stored within that application’s package. This can be seen by 

Figure 27 below. 
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Figure 27 shows what the information from Figure 26 looks like when imported 

back into SysML. A package is created for each row from the Excel spreadsheet, and an 

instance of the AnalysisApplication block from Figure 24 is created to store the 

information entered by a user. In addition, instances are created for the ICHEVVeh and 

ICHEVFuelEff blocks and stored in the slots for the systemArchitecture and 

analysisTemplate properties, respectively. In this way, a formal relationship between the 

analysis application and the VRA is created. By creating this relationship, traceability 

between an analysis application and the appropriate Vehicle Reference Architecture can 

be maintained within the SysML model. 

As shown in Figure 2, the set of control signals for each analysis application 

should be negotiated and defined concurrently with this process. However, the 

mechanisms and standards for doing so are not finalized, so that step is omitted from this 

 

Figure 27. System study package structure 
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example. Consequently, the next step in the process is to generate a specialized analysis 

architecture for each analysis application. 

5.2 Creating a Specialized Analysis Architecture 

Once the system engineers have defined each analysis application, their 

information can be used in SysML to generate a specialized analysis architecture simply 

by right-clicking on any analysis application package (such as Analysis application 01 in 

Figure 27) and selecting “VMA Analysis Planner > Generate analysis architecture”. This 

function parses the instance data and confirms that a valid system architecture and 

analysis template have been selected by the user. If this is true, then the specialized 

analysis architecture is created. This is an automated, multi-step process, so these steps 

will be briefly presented in order. 

First, a copy of the chosen VRA is made in the analysis application package. The 

plant and control elements are then checked to see whether they, or any of their owned 

parts or ports, have dependencies to the analysis template selected. Elements that are not 

needed by a given analysis template are deleted, so only pertinent elements are left. This 

also includes deleting the elements with Modelica stereotypes like the 

ICHEVVehModelica element shown in Figure 15, which can be used to create a Modelica 

model template. By tracing through the correspondences like the one shown in Figure 15, 

the SysML vehicle model and Modelica vehicle model can be reduced to the same 

analysis architecture. Note that the copy of the top-level vehicle block (ICHEVVeh) is 

also automatically modeled as a specialization of the AbstractAnalysisArchitecture block 

from Figure 24. 
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Once this copy has been created and extraneous elements have been removed, an 

instance of the analysis architecture is created. This serves two purposes. First, the 

instance created can be stored in the analysisArchitecture slot, as shown in Figure 28, 

because of the specialization relationship given to it in the previous step. This allows the 

analysis application to have an explicit relation to its analysis architecture. Second, 

creating an instance of the entire analysis architecture also creates instances of the full set 

of analysis artifact documents (such as requirements, specifications, and documentation) 

which are needed to plan and develop the remaining domain elements. System engineers 

can then export these instances to XML as needed and allow domain engineers to 

populate them from the Excel user interface. 

 

Figure 28. Analysis application package with an analysis architecture 
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The final package structure for the analysis application is shown in Figure 28. 

Note that the copied VRA is stored in the Vehicle Domain and Units and Flows packages. 

The exportable Modelica elements and instance data are stored in the ModelicaModel and 

InstanceData packages, respectively. This ICHEVVeh instance also contains additional 

analysis artifacts, such as domain and vehicle model requirements. The following 

sections detail how these different analysis artifacts are used to support the analysis 

planning process. 

5.3 Domain Model Requirements 

Once the specialized analysis architecture has been created, the team of system 

engineers can then define the requirements for all of the necessary domain models. Many 

of these requirements should be common across all domains, such as operating systems to 

use, so a generic domain requirements model serves as the foundation for more 

specialized models. This model is shown in Figure 29. 
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This model follows essentially the same format as the analysis applications model 

shown in Figure 24; the enumerations shown are used to create dropdown menus in an 

Excel spreadsheet. One difference, however, is that the top-level block—

DomainRequirements—is abstract. For a particular domain to have its own set of 

requirements, it must specialize the abstract DomainRequirements block and redefine any 

abstract or generic enumerations to their domain-specific counterparts. For instance, the 

DomainContentKind block is intended to define particular domain variants, such as an 

inline 4-cylinder engine or a 6-speed manual transmission. This block needs to be 

redefined for each specialized set of domain model requirements, but other blocks in the 

model can also be redefined as needed. An example of this specialization and redefinition 

is shown in Figure 30. 

In this example, a specialized set of engine requirements is being modeled. The 

EngineRequirements block is a specialization of DomainRequirements, and redefines the 

domainDescription property to own the EngineDescription block. This block, also a 

specialization of DomainDescription, then redefines the DomainContentKind 

enumeration in favor of EngineContentKind. This enumeration contains a list of different 

engine variants that could be modeled. Using this pattern, requirements can be 

specialized for each domain from a common, generic model. 
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Once these requirements models are created, they are used to generate a 

comprehensive user interface that allows the team of system engineers to view and edit 

all of them at the same time. An example of this interface with completed user fields is 

shown in Figure 31. Note that other than the leftmost column, the UI shown was 

generated automatically using the template engine in Excel. Here, only the requirements 

for the Engine Plant and Transmission Plant are shown. However, this approach can be 

used to show the domain requirements models for the entire analysis architecture 

simultaneously. By presenting the domain requirements in this way, system engineers are 

provided with an interface that promotes a more holistic view of the vehicle system. Once 

this information has been filled out by the system engineers, it can be imported back into 

SysML, which serves as the master source of information for analysis planning. 

 

Figure 30. Specialized engine requirements model 
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5.4 Domain Model Specifications 

Once the domain model requirements have been specified at the system level, 

domain engineers can create specifications for the model that they will create. Like the 

analysis applications and domain requirements, the domain specifications are modeled in 

SysML, as shown in Figure 32. Note that unlike the DomainRequirements block shown 

in Figure 29, DomainSpecification is not abstract. The domain specification model was 

left intentionally generic so that domain engineers have some freedom in creating their 

model specifications. This is needed, in part, because the Excel user interface does not 

lend itself well to all applications. In many cases, more detailed Word documents or PDF 

files may be needed to explain the rationale behind certain modeling decisions. To 

support this, URLs can be used to reference external documents, as shown by the 

documentURL value properties owned by several blocks in Figure 32. 

 

Figure 31. Domain requirements spreadsheet 
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Creating these specifications requires that the domain engineers understand both 

the analysis application that the model is being developed for and the requirements for 

their domain model. However, they do not have the authority to directly change any of 

that information. To address this issue of viewership versus ownership of information, the 

template engine can visually depict which fields are editable in Excel. This can be seen in 

Figure 33, which shows the user interface for defining engine plant specifications in 

Excel. Here, the information defined by the analysis application and domain model 

requirements is presented for the domain engineer in gray in Column D. The data fields 

that the user can modify are shown in white. This color-coding can be created 

automatically using the Excel template engine. The fields shown in blue were created 

manually to provide users with another visual cue about which fields need to be filled 

out. Given the information provided, domain engineers can fill out the data fields under 

the “Subsystem Model Specification” heading and export the data back to SysML. 
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Figure 33. Excel UI for engine model specifications 

5.5 Creating Modelica Templates 

Once the analysis planning phase is complete and the model specifications have 

been imported back into SysML, system engineers can use the specialized analysis 

architecture to generate blank Modelica templates that the domain engineers will use to 

create their models. This process is as simple as right-clicking on the Modelica model 

package in the analysis application package and selecting SysML to Modelica > Generate 

Modelica. This process is shown in Figure 34 below. Note that it is currently not possible 

to generate Simulink templates for control signals in the same way, as they have not been 

captured in the SysML model yet. 
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 Once the Modelica templates have been generated from SysML, domain 

engineers can open them and add the content needed create their analysis models. An 

example of the code generated for one of these templates is shown in Figure 35. 

 Note that these templates capture the port nesting modeling pattern described in 

Section 4.1.1. In Figure 35, the “EngEleModelica” connector captures all of the interfaces 

between the engine plant and electrical plant in the same way that they are modeled in 

SysML. In this case, only a single rotational mechanical interface, “alternator”, is 

 

Figure 34. Generating Modelica model from SysML 

 

Figure 35. Modelica code generated from SysML model 
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included, but any number of interfaces can be nested in this way. This approach provides 

an organized method for managing a large number of interfaces and because it is backed 

by a system-level SysML model, it ensures that the interfaces across domain analysis 

models will be consistent. 

5.6 Summary 

This chapter outlined how the SysML models and software tools presented in 

Chapter 4 can be applied to the analysis planning process defined in Chapter 3. Excel is 

used as a supplementary user interface for domain and system engineers, as it is 

commonly used in current document-based approaches. A method was described for 

using Excel to interact with a SysML model by graphically creating “views” for each 

stakeholder which define the information they need to see, as well as the information they 

need to author. In addition, while this work is primarily focused on the planning that goes 

into analysis model development, it was created in a way that allows it to integrate with 

the work done by Branscomb et al. for generating vehicle analysis model templates from 

SysML (Branscomb, 2012). While the tool is fairly robust, there are certainly limitations, 

and the ability to directly support other user interfaces as well would be ideal.  
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CHAPTER 6 

CONCLUSIONS 

The value of any model-based systems engineering approach depends on the 

quality of the models themselves. The previous chapters introduced an approach that can 

be used to plan the development of not just complex vehicle system models, but also of 

the corresponding analysis models. This chapter provides a response to the motivating 

question and desired characteristics posed in Chapter 1. In addition, some insight is 

provided into the limitations of such an approach. Finally, possible future research areas 

are identified. 

6.1 Response to Motivating Question 

The development of vehicle system analysis models has traditionally followed a 

document-centric approach. To improve this process, though, a more generic question 

was posed in Chapter 1. 

 

Motivating Question: 

How should one plan and guide the development of analysis models? 

 

The goal of this thesis is to improve the existing document-based approach used 

to create analysis models. This thesis proposes a transitional model-based approach. 

Because the benefits of MBSE are not easily quantifiable and depend heavily on the 

nature of the project, taking smaller steps to implement MBSE practices can make the 

benefits of such an approach more apparent. The approach proposed by this thesis is 
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designed to complement current development practices, rather than replace them entirely. 

To evaluate whether the approach presented is in fact better than current practices, the 

desired characteristics of an effective approach must also be examined. 

 

Desired Characteristic: 

Follow a formal, precise process 

 

The first characteristic desired for an effective approach is that it be a formal, 

precise process. To achieve this, the entire process of planning and developing analysis 

models is modeled in SysML activity diagrams. This formalizes the workflows and roles 

of the stakeholders. In addition, SysML models are used to define the information that 

must be captured at each step in the process. Using these models, the token pins modeled 

in the Activity diagrams are linked to SysML elements that describe their content. These 

two components provide model users with a formal understanding of the process and 

instructive models that describe the information that must be generated at each step in the 

process. Beyond the value of the models themselves, defining this formal process also 

provided a better understanding of where issues and inconsistencies may arise. 

 

Desired Characteristic: 

Provide an intuitive graphical user interface 

 

One drawback of a SysML-based approach is that many users are not yet familiar 

with SysML. Training users to use SysML can be costly, particularly for large design 

teams. While SysML models are used wherever practical, in many cases they are not the 
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best option for user interaction. To address this, an Excel-based user interface is used 

instead. 

Most users should be familiar with Excel; it is already one of the most common 

tools used for vehicle analysis planning at Ford. To make it more intuitive, a template 

engine is used in Excel to generate dynamic spreadsheets. Additional capabilities are also 

included, such as context-specific dropdown menus, multi-select capability, and 

informative tooltips, to make the user interface more user-friendly. These additions are 

discussed in Section 4.2.3, and provide an impressive amount of functionality within a 

familiar user interface. 

 

Desired Characteristic: 

Minimize opportunity for inconsistencies 

 

As mentioned, there are many potential sources of inconsistency in analysis 

model planning and development. Several methods are used to address these. First, by 

defining the formal process of model planning and development, inconsistencies that may 

arise out of more ad hoc processes can be reduced. Second, using SysML as the master 

source of information can reduce informational inconsistencies that arise when managing 

a large number of independent documents. Finally, dependency checking is used within 

the Excel user interface to ensure that the options selected by each user are valid. These 

dependencies are maintained in the SysML model, like the rest of the information, so 

they remain consistent for all stakeholders who interact through the SysML model. 
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Desired Characteristic: 

Support the roles of all stakeholders directly involved 

 

The roles of the many stakeholders are supported in different ways. By 

formalizing the analysis planning process, those roles become much clearer. In this way, 

each stakeholder has a better understanding of each other’s responsibilities, as well as 

their own. If changes are needed, it is easier to determine who has the authority to make 

those changes. 

More practically, the user interface has been designed to be easily tailored to the 

many different stakeholders involved in analysis model planning—many of which are 

unlikely to have SysML experience. Because of this, a SysML tool such as MagicDraw 

would have been inefficient and unwieldy to use by the entire engineering team. To 

customize the user interface to each stakeholder and their concerns, expertise, and 

software familiarity, a template engine was created in Excel that is capable of producing 

spreadsheets from views defined within a SysML model. By creating this interface 

through intermediate XML files, it also leaves the possibility open to create user 

interfaces within other tools. 

 

Desired Characteristic: 

Add value to the process 

 

Ultimately, a new approach is not worth considering unless it adds value to the 

existing one. The approach proposed by this thesis is similar in many respects to the 

existing document-based approach to analysis planning, and was designed to have a 
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minimal impact on current workflows. However, by using MBSE as the foundation for 

this approach, many of the current inconsistencies and inefficiencies can be reduced. This 

approach can be used as a stepping-stone from a document-based to a model-based 

workflow, rather than necessitating abrupt, organization-wide changes. 

The tools and models presented were made such that SysML would only need to 

be used directly by the system engineers; domain engineers can continue to work more or 

less as they already do. This prevents users unfamiliar with SysML from making invalid 

changes to the system models and more practically, means that fewer software licenses 

are needed to support the entire engineering team. However, by using a SysML model as 

the backbone, the approach proposed in this thesis provides a more informative user 

interface, better consistency across domains, improved traceability of design decisions, a 

more formal planning process, and a common set of semantics to improve 

interdisciplinary communication. 

6.2 Contributions 

The contributions of this thesis can be divided into two categories. First, there are 

contributions which address broader, research-related questions. These are summarized 

as follows. In this research, we: 

 Defined a process for planning and developing complex system 

analysis models. The tasks that must be performed by each stakeholder to 

plan and develop analysis models were defined. This involved not only 

defining which tasks should be performed, who should perform them, and 

what information must be exchanged to perform each tasuk. 



 93 

 Created a comprehensive SysML model to support analysis model 

planning. This SysML model integrates both a descriptive model of the 

vehicle architecture, as well as models of the analysis model requirements, 

specifications, and documentation, so that the two these two perspectives 

can be defined in a single location. 

 Performed validation checks on the process and SysML model by 

collaborating with Ford engineers. The process and SysML model 

proposed by this thesis were created in collaboration with Ford engineers 

to ensure that the resulting methodology is an improvement on current 

modeling practices. 

In addition to the aforementioned research contributions, there are also more 

tangible contributions that arose out of the implementation of our approach. These are 

outlined below. 

 Added functionality to views and viewpoints. A plugin was created for 

Excel which is capable of generating unique XML files from SysML using 

views and viewpoints defined by a user. 

 Developed a template engine in Excel to produce stakeholder-specific 

user interfaces. To allow the user interface to be customized for each 

user, a template engine was written for Excel. This allows domain and 

system engineers to interact with the SysML model without requiring any 

formal SysML training, and can be used to make the user interface more 

intuitive to use. 
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 Illustrated the capability of these tools with examples. Examples were 

used to make the utility of these previous contributions more apparent. 

These examples were created to mimic current practices at Ford to 

demonstrate the utility of our approach for existing workflows. 

6.3 Future Work 

While the approach proposed in this thesis addresses many of the needs of the 

planning and development process for system analysis models, there are some limitations 

to this approach. These limitations, along with some areas of future research, are 

discussed below. 

 More general support for views and viewpoints is needed. The Excel 

user interface, combined with SysML views and viewpoints, is not an all-

encompassing solution. While Excel is fairly robust, there may still be a 

need to support other forms of user interfaces when planning analysis 

models. A custom XML schema was used for the files that are exchanged 

between MagicDraw and Excel; this schema should most likely be 

revisited and more formally defined before utilizing it for other 

applications. In addition, updates to views and viewpoints in future 

SysML specifications may render this solution obsolete. 

 The data storage solution chosen should be more scalable. SysML is 

not a particularly efficient way to store information. Because this approach 

relies on the users to manually import and export XML files from SysML, 

there is also the possibility that the system model could become out of 
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sync with a domain engineer’s user interface. Automatic updates to the 

SysML model and version control measures could limit these issues. More 

automated consistency checks are needed throughout the process to ensure 

that the SysML model remains valid as users update and modify it. In 

terms of the scalability of this approach, however, a more practical 

solution may be to use a centralized database as the master source of 

information, rather than a SysML model. 

 Control signal negotiation should be supported through SysML. 

Control signals are not addressed in the approach presented in this thesis. 

Better support for the negotiation process that occurs when selecting and 

requesting these signals is an area of future research. 

 The complete Vehicle Reference Architecture needs to be modeled in 

SysML. The Vehicle Reference Architecture modeled in SysML is 

incomplete, because VMA v3 has not been finalized yet. Future work may 

involve altering the approach presented by this thesis to support VMA v2 

until the VMA v3 specification is completed. 

 The “Design Analysis Phase” of analysis model development has not 

yet been addressed. Finally, the third phase of analysis model 

development has not been addressed—the “Design Analysis Phase” shown 

in Figure 1 and introduced in Section 3.4. Formally defining this phase, as 

has been done for analysis model planning in this thesis and analysis 

model development in (Branscomb, 2012), may necessitate changes to the 

current approach.  
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APPENDIX A. VIEWS AND VIEWPOINTS 

Basic Functionality 

A plugin was created for MagicDraw which allows views to be used to 

graphically select what kind of data should be exported to XML. By selecting the types of 

elements to export and where those elements are stored, a user can export a very specific 

set of data to XML.  

 The base SysML specification includes “view” and “viewpoint” elements, but 

there is no functionality currently possible with them. Our plugin adds some functionality 

to them when dealing with many of the elements commonly found in Block Definition 

Diagrams (BDDs) and Internal Block Diagrams (IBDs). 

 A view is a package with a <<view>> stereotype. It may be related to a single 

viewpoint by a dependency stereotyped as <<conforms>>. That is to say, a view 

conforms to a viewpoint. A view is used to identify what data it consists of, whether it be 

a specific element or a package of elements. This is done by linking it to these packages 

and elements using another dependency relationship, stereotyped as <<import>>. 

 A viewpoint, as defined by the SysML specification, includes information about 

its purpose, who the stakeholders are, and what their concerns are, among others. A 

viewpoint, because it is a class, may also inherit from other viewpoints--although this 

functionality has very little meaning in the base SysML specification. Other than that, 

however, it serves very little purpose. 

 Our plugin adds some functionality to these different relationships and uses it to 

generate XML files with a filtered-down set of data. For an example, refer to Figure 17. 
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A user starts by first creating a BDD in SysML. From there, in the "Package Diagram" 

set of tools in MagicDraw, they can create a new view and drop it into the diagram. In 

order to identify what packages and specific elements should be exported for that view, 

they should first be dragged into the BDD. Once they've been included, a user can simply 

create an "import" relationship from the view to the elements they want to filter from. 

This relationship can be found by either hovering over the package in the BDD (note that 

this only shows the "Package Import" relationship), or selecting either the "Package 

Import" or "Element Import" relationships from the "Package Diagram" tools. 

 Once this is done, a user can then create the viewpoint that the view will conform 

to. In this case, the viewpoint acts as a filter to identify the elements that should be 

included in the view. Note that the filter is used to add items to the view, rather than 

delete them. This plays a more important role in the "Advanced Functionality" section. 

 To select types of elements to include, a user can use one of three options--meta-

classes, stereotypes, and "Type Elements". A Type Element is any element which may 

type another element, such as an interface block used to type a proxy port. In order to add 

these elements to the filter, simply create a dependency relationship from the viewpoint 

to the elements to include. 

 The filtering process works by checking every element chosen to be "imported" 

into the view against the meta-classes, stereotypes, and types called out by the viewpoint. 

If an element is valid, the elements that it owns are then checked as well. Note that this 

means elements are not necessarily checked recursively—if a user doesn't specify that 

"Packages" should be included in their filter, then any sub-packages will be ignored. 
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Similarly, properties owned by a block won't be included unless the <<Block>> 

stereotype has been added to the filter. 

 Once these elements have been defined, a user can export their view by right-

clicking on it in the containment tree and selecting VMA Analysis Planner > Export View 

to XML. Finally, from there, they can name their file and choose where to save it. 

Advanced Functionality 

To augment the functionality, several additional features were added. One such 

feature is the ability for a view to import other views. Because a view is just a stereotyped 

Package, the default "import" relationship in the SysML specification did not need to be 

modified. Note that these imported views already conform to their own viewpoints, 

which means that they can act independently as a filter. However, because our process 

works as an additive filter, additional stereotypes can be added to them when they are 

imported into the new view. This is done by adding stereotypes to the viewpoint to which 

the new view conforms. 

 In addition to importing views, functionality was also added for viewpoints to 

inherit from other viewpoints. Note that the basic "Package" diagram toolbar doesn't 

include this function in BDDs, but it can be found in the "Block Definition Diagram" 

toolbar. This allows users to define a base set of viewpoints for other viewpoints to be 

derived from. For instance, a user may choose to create a viewpoint that would be used to 

filter out everything but instance data, and then add additional meta-classes to viewpoints 

which inherit from it. 
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Although the goal of this views/viewpoints functionality was to allow users to 

export customized sets of XML data, it was also apparent that it could be useful for other 

applications as well. One such application is for creating custom views of diagrams. Once 

a view is defined, a user may right-click on a diagram and select VMA Analysis Planner > 

Create custom diagram view. A copy of the diagram will be created which only includes 

elements specified by the filter. Note that this functionality has not been fully 

implemented, but it is a useful example of it could be used in the future. 
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APPENDIX B. EXCEL TEMPLATE ENGINE 

 

A schema was developed to allow users to auto-generate user forms in an Excel 

spreadsheet using XML data from a SysML model. The process is somewhat complicated 

and not entirely bug-free, but this document is meant to give some background into how 

it works, how it can be used, and ongoing work being done to improve it. 

The cornerstone of the entire process is the range where the format of the template 

is specified. This may be done in either the first row or first column of the spreadsheet 

(but not both!). The first cell in the document, at A1, should be labeled "TEMPLATE". 

From there a user can specify commands in the following format: 

  

(Desired Output)::(Reference element) 

  

We'll start with the "Reference Element" portion of the command. The reference 

element is identified using a pseudo-XML node. A user specifies the type of the element, 

which attributes to use to find it, and what the value of those attributes should be. Say we 

want to find a block whose name is "Analysis Application". This block could be found 

with the following reference element: 

  

<block name="AnalysisApplication"/> 

  

Note that the schema does require that the XML node is a valid XML element—

therefore, the forward slash at the end is always required. Users can specify as many 
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attributes as they need to identify the element. However, text content and children 

elements within the XML node cannot be used. For more information about which XML 

attributes can be used for each SysML element, refer to Table B1. 

XML Element XML Attributes 

Package id name ownerID comment  

Block id name ownerID isAbstract comment 

Property id name ownerID multiplicity typeName 

Property cont. typeID redefinedID comment   

Enumeration id name ownerID comment  

Literal id name ownerID comment  

Dependency id ownerID targetID targetOwnerID  

Instance id name ownerID classifierID comment 

Slot id ownerID featureID comment  

Value id name ownerID instanceID comment 

Generalization id ownerID targetID targetOwnerID comment 

 

Attribute values may also be used to reference other cells in the spreadsheet using 

the following format: 

@R(row number)C(column number) 

The portions in parentheses should be replaced by the appropriate number for the 

row or column. It is also possible to refer to only a particular row or column, by omitting 

either the row or column reference. However, keep in mind that additional hidden 

Table B1. Valid XML attributes for different SysML elements  
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columns get added when generating these sheets, so it is important to define static 

references first in the template, before defining other elements. 

The "Desired Output" of the command tells the plugin what to do with the 

reference element once it finds it. There are several keywords that can be used for this 

process: 

 PACKAGE 

 INSTANCE 

 FIELD 

 VIEW 

We'll address them in order. The first keyword, "PACKAGE", is used to identify 

or create the package to store our data. This is the only case where the reference element 

may be labeled as "null", rather than as an XML element. If it is labeled as "null", the 

data will be imported into the package where a user right-clicked in MagicDraw by 

default. Note that only one "PACKAGE" command may be used. 

The second keyword, "INSTANCE", tells the plugin to create an instance of the 

element identified by the reference element. For this case, the reference element must 

refer to a block. This keyword is also used when importing instance data. In this case, the 

same reference element is used to identify instances from SysML that can be mapped to 

our template. 

The third keyword, "FIELD", is used to actually create user fields. In this case, 

"FIELD" must refer to either a "property" or "block" as its reference element. If it refers 

to a property, it will check to see if that property refers to an enumeration, value type, or 

block. If it is none of these, it will do nothing. If it's a value type, it will create a field 
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where a user can enter text. If it is an enumeration, it will create a dropdown which 

consists of the literals owned by that enumeration. In addition, it will check the property's 

multiplicity to see if the user is allowed to select multiple options from the dropdown. If 

the property or reference element refers to a block, it will create a dropdown menu of all 

of the specializations of that block. 

The final keyword, "VIEW", is used to display instance data to the user, but 

disallow them from actually editing that data. It may be used in the same way as the 

"FIELD" command. 

Finally, there is a fifth option when specifying the desired output. A user may 

specify any XML attribute to display to the user or use as a reference for other cells. For 

instance, it is often useful to get a block's ID and use it as a reference to find properties 

whose "ownerID" attribute matches it. An example of this can be seen below. 

NOTE: commands cannot be entered in Row 2. Row 2 is reserved for headers 

used to store additional information about fields, so any information entered in Row 2 

can throw off the entire process. 

Once these fields have all been specified, the user must then highlight the range 

(which should be either a single row or single column) and name the range. This can be 

done by right-clicking on the range and selecting Define Name. The name must be 

"TEMPLATE", and the scope must be set to the name of the worksheet that is currently 

being worked on. 

Once the template range has been created, there are two steps left before creating 

our user form. First, select the “VMA Tools” tab, and click “Import XML”. The XML 

file from SysML will be imported into our workbook and mapped to a copy of the 
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“XMLTemplate” worksheet. This file may be used to refer to a particular property, but 

should never be modified by the user. 

There is an optional step to this process—a user can choose to import existing 

instance data into the spreadsheet using the “Import Existing Instances” tab. From here, 

they will be asked whether they want to map the data to multiple ranges. If they select 

“Yes”, each valid instance will be mapped to its own row/column. If they select “No”, all 

of the instance data contained in the XML file will be mapped to the same row or 

column. This option may be used in some cases, but it is generally best to avoid it—

without some experience with the schema and the SysML model, it can be difficult to 

predict whether certain data will be overwritten. 

The final step in the process, if no instance data has been imported, is to generate 

a new row or column for the user to fill out data. This can be done by clicking the 

“Generate new row/column” button in the “VMA Tools” tab. A new row or column will 

then be created in the first empty row that is found. 
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